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SYNOPSIS

The three years' work undertaken in this project is a purely numerical analysis

of the inelastic behaviour of steel columns in fire. This is made up of three

main parts, each devoted to the development and use of a numerical technique

to study the behaviour of steel columns in fire. The first two chapters report

on the state of the art on plate analysis, plasticity theories, column behaviour

at room temperature, finite strip method and the behaviour of columns at

elevated temperature.

Part 1, consisting of Chapters 3 to 5, reports on the development of the

small deflection finite strip method which includes the effect of plastification

of component plates using deformation theory of plasticity. The validity of the

method is tested by comparing with published test data on steel columns at

ambient and elevated temperature. The comparisons show that the method

gives good correlation with test data. Parametric studies have been carried out

to assess the effects of slenderness ratios, different stress-strain-temperature

representations, residual stresses, eccentricity of loading and local budding of

columns. In addition the inelastic behaviour of an H-section under uniform

end couples is studied.

Part 2, consisting of Chapters 6 and 7, reports on the development of a finite

element method which includes the effect of thermal gradients over the member

cross-section. The method is compared with test data on both uniformly and

non-uniformly heated columns. This shows a good correlation between the

method and experiment. Parametric studies have been carried out to assess the

effects of initial out-of-straightness, different end conditions, thermal gradients
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and interaction of eccentricity of loading with thermal gradients on columns.

In addition a simple Shanley's column theory is utilised to demonstrate the

interaction effect of eccentricity of loading with thermal gradients on columns.

Part 3, consisting of Chapter 8, reports on the development of a large deflection

finite strip method which includes flow theory of plasticity. The method has

not been used for any parametric study.

Finally, general conclusions and recommendations for future works are pre-

sented in Chapter 9. It is hoped that the valuable information provided in

this thesis will be useful in providing a better understanding on the real be-

haviour of steel columns in fire.
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Chapter 1

INTRODUCTION

The effect of fire on structural steel is quite detrimental to its performance in

that it loses strength and stiffness with increasing temperature. This leads to

collapse when its stiffness and material properties have degraded to such an ex-

tent that the steelwork is unable to support the applied load. The temperature

at which such collapse occurs can be referred to as the failure temperature.

This is often assumed to be about 550° C for the purpose of design. Since this

temperature is very quickly reached in a standard fire it has major implications

for fire protection requirements as incorporated in many building regulations.

Thus in order to prevent the rapid decline in stiffness and strength some form

of fire protection in the form of insulation to the steelwork is often utilised.

This ensures a reduced rate of temperature increase and hence the fire resis-

tance of the steelwork, that is the time to collapse, is improved. However,

the application of fire protection increases the cost of construction. According

to one survey carried out by the British Steel Corporation on multi-storey
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steel frames the increase in construction cost can be about 30%. Despite this

the provision of protection is often based on a simplified approach which fails

to take into account the real behaviour of steelwork in fire. It may be that

columns under different conditions will exhibit different failure temperatures.

If this is so the type and quantity of protection needed should reflect these

factors in order to ensure economy.

Fire protection materials are often applied to cover the whole surface area of

the steelwork. However, some forms of construction offer partial protection

to the steelwork. These include steel beams supporting a concrete slab which

provides protection to the top flanges of the beams, shelf angle floor construc-

tion, columns built into xnansory walls and blocked in web columns, where the

blockwork is provided specifically to give partial protection to the steelwork.

It has been established experimentally that such forms of construction result

in a temperature gradient over the member cross-sections and hence sustain

applied load for longer periods of time.

It is highly desirable for more work to be done experimentally to establish the

behaviour of steel columns under various conditions in fire. Unfortunately this

cannot be readily accomplished. This is due to the high cost and time involved

in full-scale fire resistance tests and the scarcity of suitable facilities. In United

Kingdom, for example, the only furnace available for testing columns is at

Fire Insurer Research and Testing Organisation (FIRTO). This is basically a

vertical cylinder with natural gas burners in both vertically-split halves. This

cannot be used without modifications for eccentric loading or non-uniform

heating tests on columns.
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Because of the problems of an expensive experimental investigation there is

clearly a role for numerical and analytical studies to be employed to provide

data at relatively low cost. Thus the present study is a purely numerical

investigation of steel column behaviour in fire. The possibility of including

many parameters in theoretical studies enablesp(extensive parametric studies

to be undertaken with relative ease. However, as with any theoretical approach

it is necessary to validate the method with available test data. Hence the work

is compared wherever possible with published results.

OBJECTIVES AND SCOPE

The scope of this research is divided into three main parts. The first is con-

cerned with the development and use of a finite strip method for elevated tem-

perature structural analysis. Small deflection theory is used with deformation

theory of plasticity applied. The uniaxial stress-strain-temperature represen-

tation is modelled as a series of continuous curves. The method is then used

for parametric studies on the inelastic behaviour of steel columns in fire. The

second phase involves the development of a finite element method capable of

handling thermal gradients across the section. The original development of

this approach was meant for ambient temperature ultimate strength analysis

of multi-storey steel frames. Extensive remodelling of the method has been

necessary in order to include thermal gradients. This is subsequently used

for some parametric studies on the inelastic behaviour of steel columns. The

final part involves a large deflection finite strip method in which flow theory

of plasticity is utilised with von Mises's yield criterion incorporated. This has

not been used for any parametric studies as some further work is needed to

fully establish it.
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The parametric studies include consideration of slenderness ratio, different

stress-strain-temperature representations, residual stress, eccentricity of load-

ing, local buckling, initial out-of-straightness, thermal gradient, interaction of

eccentricity of loading with thermal gradient and different end conditions. In

addition the behaviour of blocked in web columns and sections under uniform

end couples are studied.

The information generated represents a step forward towards the development

of an improved fire engineering system. Up to the present moment only a

little research has been done to study the inelastic behaviour of columns in

fire. Thus this research will provide some valuable information that may be of

use in this context.
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Chapter 2

LITERATURE REVIEW

2.1 Plate Buckling Review

2.1.1 Historical Background

The first work on plate buckling analysis dates back to 1766 when Euler[1] for-

mulated the first mathematical theory of plates based on the analogy of two

systems of stretched strings perpendicular to each other. His work included

the vibrational problem of rectangular and circular membranes. Bernoulli[2]

in 1789 employed a grid work analogy to develop the partial differential equa-

tion governing the small deflections. This was an extension to Euler's analogy

for plates. Between 1811 and 1820 Lagrange and Navier arrived at the cor-

rect partial differential equation for the small deflections of an isotropic plate

under surface load. Saint Venant(1833) included the in-plane forces applied

6



at the edges to complement Navier and Lagrange's work. In 1891 a simply

supported plate was analysed by Bryan[3]. He subjected the plate to in-plane

compressive load. The energy criterion of stability was first applied to the so-

lution of the plate buckling problem. By 1907, Timoshenko[4] had determined

the critical stresses of plates with different support conditions using Bryan's

approach. Reissner (1909)[6] independently presented the solution for an edge

- compressed rectangular plate with two edges clamped, one edge clamped and

the other one free. Between 1910 and 1913 Timoshenko[5] applied the ideas of

R.ayliegh and Ritz to the stability problems and thus solved a stiffened plate

problem for the first time. Bleich[7] in 1924 extended the theory of plate sta-

bility to include inelastic considerations by accounting for anisotropicity of a

plate with varying modulus of elasticity. This approach constitutes an elastic

theory with varying modulus. Between 1935 and 1946 Krollbrunner[8] tested

large scale plates under edge compression. The buckling behaviour of plates

was investigated in both elastic and inelastic ranges. The development of the

large deflection theory of plates was initiated by Kirchhoff in 1877. Foppi

(1907)[9] introduced the use of stress functions to simplify the form of the

governing differential equation. Von Karman (1910)[22] for the first time es-

tablished the partial differential equation of the large deflections in its current

form. Marguerre in 1910 extended von Karman's equations to include initial

deflection,
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2.1.2 Plate Buckling Behaviour

The evaluation of the critical buckling stresses of a plate has been attempted

by many researchers as documented by Timolshenko and Gere (1960)1101,

I3ulson (1970)[11] and Allen and Bulson (1980)[12].

Solutions for plates under transverse loading have been obtained by many

researchers, among them Kaiser[13] who obtained the finite difference solution

for a simply supported plate under transverse pressure. The same problem was

solved by Way[141 with slightly more complexity in the boundary conditions.

Levy[15] attempted to obtain a more general solution for a rectangular plate

under in-plane loading using a double Fourier series with restricted boundary

conditions.

Most of the early work on the investigation of plate behaviour neglected the

effect of membrane forces due to bending. Thus these analyses were limited to

bending stiffness reduction due to the in-plane stress. The effect of combina-

tions of loading on the plate behaviour was studied by Levy[18J by extending

his method to include the combination of lateral pressure and in-plane com-

pression. This method was later extended further by Woolley et al[19] in

studying the behaviour of a clamped long rectangular plate under lateral in-

plane compression. The incapability of the Timo/shenko[20] method to allow

for the effect of the in-plane boundary conditions has placed restrictions on the

approach of approximate solution for combined loading using Fourier series.

Bleich[21] extended plate theory to indude the effect of pressure by deriving

a cubic equation in terms of plate deflections and transverse pressure.

8



The application of large deflection theory to analyse plates was first under-

taken by Wang[16]. Later Basu and Chapman[17] extended Wang's method to

obtain large deflection solution for a wide range of isotropic plates. The inclu-

sion of initial imperfections in the large deflection analysis of plate has been

undertaken by many researchers. The early work includes von Karman's [22]

in which some sets of equations were developed. These equations were gener-

alised by Marguerre[23] to allow the inclusion of initial imperfections. In 1946

Hu et al[24] extended Levy's method for plates under compression to include

initial imperfections and Coan[25], using the same approach, combined differ-

ent forms of applied compression with the unloaded edges allowed to distort.

Yamaki [26] obtained solutions for rectangular plates with clamped or simply

supported edges and provided data for the ultimate loads of square plates by

defining the yield limit. In 1963 Bauer and Reiss[27] transformed the von

Karman equations into two simultaneous pairs. These equations were solved

using a finite difference scheme to provide information on the postbuckling

behaviour of plates under in-plane compression.

The arrival of digital computers led to a breakthrough in the analysis of plates.

This led to the advancement and development of many numerical methods such

as finite element, dynamic relaxation and recently the finite strip method. The

finite element method has been widely applied to obtain elastic and inelastic

solutions for plates[28][29][30][31]. This is a general solution method which

has no restrictions on the mode of buckling but is approximate in the sense

that it is based on assumed displacement functions.

In order to simulate sophisticated plate behaviour, many parameters have to be
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accounted for, such as the large deflection behaviour, spread of yield through

the volume of plate, the inclusion of both the initial geometric imperfection

and residual stresses. An ultimate strength analysis would provide designers

with a more efficient design analysis than elastic post buckling analysis.

The ultimate strength of plates has been widely studied both experimentally

and numerically. Since 1960 a comprehensive study on the ultimate strength of

plates has been carried out at Cambridge University[32] [33] [34] [35] [36] [37] and

also at Imperial College[38][39]. The theoretical studies of elasto-plastic large-

deflection buckling and post-buckling behaviour of plates have received atten-

tion from many researchers. In Imperial college Frieze et al[38] and Harding[39]

have used the dynamic relaxation method to analyse an isolated plate in the

elasto-plastic range using flow theory of plasticity. In the two studies un-

dertaken the major differences have been in the loading, yield criterion and

representation of residual stresses. Frieze et al[38] studied the plate under

uniaxial and biaxial compression with the llyushin criterion of a single-layer

of sudden plastification at any section occurring over the full depth. Uniaxial

residual stress was taken into account. Harding et al[39] considered complex

loading such as compression, shear and in-plane bending. The plate thick-

ness was divided into layers with the von Mises yield criterion applied to each

layer. Biaxial residual stresses were induded. Many researchers have ap-

plied the Rayleigh-Ritz energy method to analyse the compressive strength of

plates with simply supported boundary condition and both residual stresses

and initial imperfection have been taken into account. Little[40] applied a live

energy method to analyse accurately the collapse behaviour of simply sup-

ported rectangular plates loaded uniaxially or biaxially (in-plane). He used
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the flow theory of plasticity which allows for elastic unloading. The effects

of residual stresses and initial imperfections were considered. This approach

was later applied to analyse 960 different simply supported rectangular plates

under longitudinal compression[41]. The actual plate panels of a box-girder

bridge were modelled by carefully controlling the transverse displacement func-

tion, the longitudinal in-plane boundary conditions and the aspect ratio. It

was concluded that the critical aspect ratio for a simply supported plate in

the inelastic range is not unity as suggested by the classical elastic buckling

analysis. In most cases the minimum plate strength was shown to occur at an

aspect ratio of 0.6 while Dwight[33] suggested a critical aspect ratio of 0.875.

Little suggested that this disparity was due to small initial imperfections and

limited boundary conditions used by Dwight[33] (i.e the unloaded edge was

free to pull in). Little[41] concluded that the maximum effect of the longitudi-

nal boundary conditions on the plate strength was less than 7 %. Crisfield[42]

applied the finite element method to analyse the collapse behaviour of plates.

In his analysis two approaches were considered viz: the volume and area ap-

proaches. The volume approach was based on the flow theory of plasticity with

von Mises yield criterion applied. The area approach was based on the use of

the approximate yield criterion given by Ilyushin[43] which relates to the six

generalised stress resultants in a shell with sudden plastification of the plate

section. The area approach is much economical but less accurate than the

volume approach. In his later work[44] Crisfield modified the area approach to

allow for the spread of yield through the fibres before full plastification of the

section sets in. A detailed review of plasticity theory is presented in a later

section 2.3.
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In the present decade more sophisticated work has been undertaken on the

analysis of plates. Among this Kalda.s and Dickinson[45] applied the finite

difference method to predict the in-plane residual stresses induced by welding

heat. The plate's critical stress was determined using the Rayleigh-Ritz en-

ergy approach. Dow and Smith[46] studied extensively the effect of localised

initial imperfections on the compressive strength of long rectangular plates

using a general purpose finite element package in which large-displacement

effects are handled using an updated Langrangian formulation. The plasticity

effect is represented by assuming the von Mises yield criterion and the asso-

ciative Prandtl-Reuss flow rule. Bradfleid and Stonor[47] applied a simplified

eiasto-piastic approach to predict load-shortening characteristics of plates un-

der uniaxial in-plane compression. The flyushin yield criterion was applied

to set the limiting condition on the plate response. In this approach both

the initial imperfection and welding induced residual stresses were accounted

for. This method compared favourably with many numerical methods and

test data. Dawe and Grondin[48] investigated the inelastic buckling of plates

experimentally by simulating simply supported web and flange outstands. In

their investigation four sets of inelastic material properties were examined.

The unsatisfactory behaviour of plates with these material properties led to

the development of a new set of semi-empirical material properties which re-

suited in accurate prediction of inelastic plate behaviour.

Voyiadjis et al[49] investigated the effect of transverse shear strain on the plate

behaviour. The governing differential bending equations of a plate were recast

into the form involving the average transverse displacement function to ac-

count for the influence of transverse normal strain. The resulting sixth order
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differential equations were solved using the Levy type of plate with various

boundary conditions considered in the direction orthogonal to the simply sup-

ported direction. Very recently Mahendran and Murray[50] studied the elastic

response of plates under complex loading (compression, bending and shear) us-

ing the finite strip method. Although this work is limited to elastic response,

an insight into the effect of combination of loading could be gained. Gradzki

and Kowal-Michalska[51] also studied the post-buckling behaviour of plates

using the Raleigh-Ritz variational principle with the flow theory of plasticity.

The von Mises effective stress was used as a proportional limit. The ultimate

load of the plate was determined as the the load at which the load-shortening

curve reaches a maximum or has a long plateau.

Inelastic analysis of plates has become very popular with many researchers.

The material nonlinearity is given preference to the elastic nonlinear analysis.

Effort has been directed towards combinations of elasto-plastic material re-

sponse with the large displacement theory. This ensures better representation

of the plate constitutive equations for studying its behaviour.

2.2 Column Buckling At Ambient Tempera-

ture

Historically, the first work on metal columns dates back to 1729 and 1759 when

Euler published his treatise on the elastic buckling of columns. For the critical

load of a perfect column in the inelastic range, two well-known formulae have

been proposed. The tangent modulus theory known as Engesser theory and
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the reduced or double modulus theory known as the Considere-Engesser the-

ory. The reduced modulus theory provided the basis for the column buckling

concepts in the inelastic range.

The reduced modulus theory had been accepted as the correct buckling theory

for columns in the inelastic range for many years. It was in 1947 when Shanley

[52] reported that the buckling load of a centrally loaded column was actually

the tangent modulus load. He pointed out for a simplified column that bend-

ing will begin as soon as the tangent-modulus load is exceeded and that the

maximum column load will be reached at a load less than reduced-modulus

load. This concept has since been investigated by many researchers.

The buckling mode of a steel column can be of the local, interactive or overall

type as shown in Fig. 2.1. The critical mode depends on the geometry of

the cross-section, slenderness ratio, the geometric initial imperfection, residual

stresses and the eccentricity of loading. The local buckling effect may cause

premature overall buckling in thin-walled sections, while on the other hand

failure might be delayed beyond the local buckling load. This phenomenon

is usually common for column sections whose component plates have large

width-thickness ratio and small slenderness ratio. It is usually assumed that

the cross-section of a structural member buckling in the overall mode remains

undistorted. The interactive buckling mode involves distortion in both local

and overall modes. This is critical for structural elements of intermediate

length with large width-thickness ratio of their component plates. Fig. 2.2

shows the various buckling modes associated with columns.

Bijlaard and Fisher[53] were the first to study the behaviour of I-sections
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and hollow-sections in the post-local buckling range. They tested aluminium

columns which had minimal initial geometric imperfection and found that

these columns buckled in a flexural mode at a load higher than the local

buckling load when this load is less than the Euler buckling load. Since then

a considerable amount of work has been reported on the stability problem of

columns. Theoretical and experimental investigations have been carried out

on members with different cross-sections. Most of this work is limited to the

elastic response of the component plates using small deflection theory.

Locally buckled column behaviour has attracted the attention of many re-

searchers over the past four decades and an appreciable amount of attention

has been given to the numerical study of this problem. These approaches

can be classified into three categories. The first approach is the treatment of

the problem as a pure bifurcation problem in which both the member and its

component plate elements are assumed to be perfectly straight and flat respec-

tively. The interaction strength (i.e incipient buckling strength) is determined

using the theory of plasticity applied to thin plates with residual stress ac-

counted for. The second approach focuses on the postbuckling strength of

the component plate elements with or without initial out-of-flatness, while the

member itself is assumed to be perfectly straight. The interaction strength

is computed from linear buckling theory with the decrease in flexural rigidity

due to local buckling accounted for. The third approach is supposed to take

both initial plate out-of-flatness and the member initial out-of-straightness

into account.

Cherry[54] studied the elastic instability of beams and proposed an approxi-
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mate method which is applicable to those sections in which the compression

flanges alone have buckled. The webs are assumed to be undistorted. The

effective width concept was applied in order to account for the post-buckling

behaviour of flanges. The theoretical approach was compared with test data

on H-sections and T-sections under pure end couples. The 30% overestirna-

tion of the test data by the theory was claimed to be the result of excluding

geometric initial imperfections. The test results of initially imperfect columns

reported by Skaloud and Zornerova[55] demonstrated the significance of the

initial imperfection on column behaviour. Goldberg et al [56] reported more

sophisticated buckling analysis using the elastic small deflection theory for

members of arbitrary cross-section geometry. This approach enables the cou-

pling of membrane and plate bending equations leading to eight first order

partial differential equations. The critical load corresponds to the point of

vanishing of the determinant of these equations and is obtained by an itera-

tion scheme.

For a column with initial geometric imperfections in the plate elements forming

the column section, the bifurcation load for overall buckling may be signifi-

cantly less than the Euler or local buckling loads. DeWolf et al [57] reported

the tests performed at Cornell Jniversity on steel I-columns fabricated by

connecting cold-formed channels back to back. These columns had plate im-

perfections and buckled at loads lower than the Euler and local buckling loads

when these loads were approximately equal. These test data are useful for the

estimation of the effect of the local buckling phenomenon on the overall buck-

ling of columns. An analytical iterative approach for the interactive buckling of

rectangular box columns was developed. This method is based on the tangent
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modulus and effective width concepts. Kalyanaraman et al[58] also reported

the test results on cold-formed inverted hat section and H-columns. Based

on these test data an empirical model, using the Winter[59] [60] effective width

concept, was developed, which approximates the post-buckled stiffness of plate

elements. Kalyanararnan[61] also applied the Stowell[62] plasticity index ap-

proach to develop an analytical procedure for calculating the local buckling

coefficients of the members with stiffened and unstiffened compression elements

of cold-formed steel sections. Gale and Pekoz[631 investigated analytically the

effect of local buckling on the overall buckling behaviour of singly symmetric

thin-walled columns and beam-columns. Tsutomu and Fukumoto [64] inves-

tigated the behaviour of welded box compression members experimentally.

An effective width approach was developed which proves satisfactory in pre-

dicting the behaviour of locally buckled welded box columns with relatively

large width-thickness ratio but not those with low width-thickness ratio ele-

ments. The reason for this shortfall is attributable to the non-inclusion of the

residual stresses induced by welding heat in the model. More recently, Gale

and Pekoz[65J reported an experimental investigation conducted on the local

buckling interaction in cold-formed steel columns. The interaction between

stiffened elements and unstiffened elements and between stiffened and edge-

stiffened elements was carefully examined. It was concluded that the effective

section that was generally applicable to thin-walled stub columns in which lo-

cal buckling interaction occurs is not adequate because of the waving exhibited

by the unstiffened flanges.

Lee et al[66] applied a moment-curvature-thrust relationship to predict the

strength of thin-walled welded steel columns subjected to a combination of

-
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axial load and end moments. Twenty small scale steel box columns were

tested. The test results compared favourably with the theory. The theoretical

method incorporates the local plate buckling and residual stresses. Longhlan

and Howe[671 developed a semi-energy method of analysis for columns. The

appropriate differential equation which describes the overall flexural equilib-

rium behaviour of a locally buckled compression member was included in the

method. The method could only be applied to pinned columns.

Many analytical investigations on columns in both the pre-buckling and post-

buckling ranges can be found in the literature. Among these are the finite

element, finite difference and finite strip methods. The finite strip method

has been applied to the study of the behaviour of columns. Yoshida and

Maegawa[68 studied the behaviour of H-columns in local, overall and interac-

tive modes.The deformation theory of plasticity based on von Mises yield cr1-

tenon and small defection theory was employed. The effect of residual stresses

was taken into account. Hancock[69][70] extended the finite strip approach to

the post-buckling range and proposed a method for calculating the effective

rigidity of locally imperfect box and H-sections. The method estimates satis-

factorily the effective rigidity of a box section when compared with the effective

width approach. Using the proposed flexural rigidity the interactive buckling

loads of H-columns could be obtained. The theoretical results compared very

well with Cornell test data. Graves-Smith [7111721(731 developed a numerical

method to predict the ultimate strength of locally buckled rectangular hollow

cross-sections under concentric compression or pure bending. Strain reversal

was not included, thus the column length must be chosen such that elastic lo-

cal buckling is ensured. Later this method was modified by including an extra
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nonlinear transverse in-plane term in the strain expressions. This enables the

elastic limit state to be reached and compatibility at the corner is ensured.

The theory compared reasonably with test data on silicone rubber columns.

He concluded that the ratio of maximum stress to the critical stress is linearly

related to the width-thickness ratio. Little[74] applied a moment-curvature-

thrust approach to study the ultimate strength of square box columns. The

local buckling of the flange was allowed for by applying an appropriate aver-

age stress-strain curve to the moment-curvature-thrust relation. Two cases of

web behaviour were assumed. The first treatment assumed an unbuckled web

(which was treated simply as elastic-perfectly plastic material) and the second

a buckled web (which was treated by using an appropriate average stress-strain

curve). No attempt was made to allow for strain reversal.

In the past few years effort has been directed towards the study of the inter-

active buckling analysis of columns. Srinivasan and Ashraf [75] developed a

new analytical model for doubly symmetric beam-columns. This model in-

corporates the interaction of overall buckling and bending with two compan-

ion local modes. The concept of amplitude modulation was applied together

with the combination of finite strip and finite element methods. Rafeal and

Sridharan[76] also reported an approach which combines finite strip with the

theory of mode interaction to study the interactive buckling mode of some open

cross-sections. Recently, Hancock and David[77] reported tests conducted on

thin-walled high strength steel columns. These tests were primarily carried

out in order to establish column curves which allow for local and Euler buck-

ling interaction. The test results were compared with various column curves

from different sources. Among them are BS5950 Ptl[78], AISI[79] and the
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Australian standard[80]. The conservative estimation of I-column strength by

BS5950 Ptl was highlighted.

2.3 Theory Of Plasticity Review

Tresca was the first person to study the plastic behaviour of materials in

1864 by conducting an experiment on the punching and extrusion of metal,

which led to conclusion that metal yielded plastically when the shear stress

attained a critical value. From then on considerable work was done by many

researchers, among them Saint-Venant and Levy. Later, many yield criteria

were proposed, but the most significant was the von Mises yield condition

in 1913. This yield criterion was deduced purely by mathematical considera-

tions. This was later interpreted by Hencky as implying that yielding occurred

when the elastic shear strain energy reached a critical value. Von Mises also

independently proposed an equation similar to Levy's equation. It was be-

tween 1920 and 1921 that Prandtl showed that the two-dimensional plastic

problem is hyperbolic in nature and Hencky supplied the general theory un-

derlying Prandtl's special solution. In 1926 Lode experimentally investigated

the Levy-Mises equation by measuring the deformation of tubes of various

metals under combined tension and internal pressure. This confirmed the va-

lidity of the Levy-Mises stress-strain relation to a first approximation. The

generalisation of this theory of plasticity was made by Reuss in 1930 by includ-

ing the elastic component of strain following the earlier suggestion of Prandtl.

Later, the concept of strain hardening was introduced by Schmidtl(1932) and

Odquist(1933). Experimental confirmations of the Levy-Mises equations have
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been undertaken by many researchers. Among them were Hohenemser(1931-

1932) and Schmidtl. By 1932 a theory had been constructed reproducing the

plastic and elastic properties of an isotropic metal at ambient temperature.

This theory is known as flow or incremental theory of plasticity.

In 1924 Hencky proposed a rival theory which received attention from sci-

entists for its analytical simplicity in problems where plastic strain is small.

Nadai(1931) established this theory firmly and afterward many researchers

employed it. This is known as the deformation theory of plasticity. A detailed

account of the historical development of the both theories of plasticity can be

found in reference [81].

The use of a yield criterion is inevitable in the application of the theory of

plasticity to structural analysis. The two prominent yield criteria are Tresca's

and von Mises' yield conditions. For a uniaxial state of stress either in tension

or compression, the yield condition for most metal is given by:

0• =	 (2.1)

in which o, is the yield strength. In a multiaxial state of stress the yield

criterion can be represented by either Tresca's or von Mises' yield condition.

Tresca's yield criterion states that the greatest absolute value of the differences

between the principal stresses taken in pairs must be equal to twice the value

of the critical shearing stress. Mathematically , this can be expressed as

- 02 = 2k
	

(2.2)
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where 01,02 and 03 are the principal stresses, k is the critical value of the

greatest shearing stress and 01 > 02 > 03. This relation is a straight line

perpendicular to the bisector of the boundaries of the region. Each of the five

other possible orders of principal stress magnitude gives a similar line in the

appropriate sector of the r—plane(in which the sum of the principal stresses

is zero) and the final result is the regular hexagonal prism in principal stress

space as shown in Fig. 2.3a

Von Mises' yield criterion is the most mathematically accurate of all yield

criteria. To a first approximation it is defined mathematically as

	

= ()SSii
	

(2.3)

in which S, is the deviatoric stress tensor which is given by

	

= 0•j2 - 0•5
	

(2.4)

where 0j is the stress tensor, 0 is the hydrostatic stress and 5, is the Kronecker

delta. The hydrostatic stress is given by

1
0. = ()0..

In the stress space the von Mises yield condition defines a circular cylinder as

shown in Fig. 2.3b. The constant volume condition is retained, as it should be.

In contrast to the Tresca flow rule there is one-to-one correspondence between

(2.5)
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the directions of the strain increment vector and the deviatoric stress vector,

and in particular there is no ambiguity in the direction of the plastic strain

increment vector.

The stress-strain relationship for both deformation and flow theories of plas-

ticity can be established on the basis of J2-yield condition to the first ap-

proximation. From Hutchinsion[90], the rate-constitutive relation for a three-

dimensional solid can be defined as

0 kl =
	

(2.6)

in which

-	 S,,S1
1/)ijkl	 I'ijkl - q

and

= 1	 ( [5t,&3z + &ilöjk] +	 2oi3Ekl)	 (2.8)

in which

S,, is the deviatoric stress tensor

o is the von Mises effective stress

5 is the Kronecker delta

E is Young's modulus of elasticity

(2.7)
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fE	 \ 1
h1=3U__1) (2.12)

ii is the Poisson's ratio.

The three-dimensional tensor of moduli ,&ijk1 has two branches, one corre-

sponding to plastic loading and the other to elastic unloading. The elastic

tensor of moduli is taken to be isotropic.

The J2-flow theory stress-strain increment relation for a three-dimensional

solid is given by

01d - 

(tb	

aEhlSSk,-	
_(1+V)(1+V+2hlJ_2))	 (2.9)

where the material plastic behaviour is determined by parameters a, h1 and J2.

J2=
	

(2.10)

i.e

J2 = sijsij	 (2.11)

The parameter a determines when the material loads plastically or unloads

elastically. For a plastic case a = 1 and for elastic unloading a = 0, and h1 is

given by
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where ET is the tangent modulus derived from the uniaxial stress-strain curve.

The J2-deformation theory of plasticity applied to a three-dimensional solid

follows from Equation (2.6) and the stress-strain increment is given by

E	 1
O kI =

(1 + v + h2 ) 2 {61, ökl + &ilöjk} €;..,

E	
i 

3v+h2
+

(1 + v + h2 ) (3(1 - 2)6hi5k1}

E	

{	

h'SIJSkl 
J) }ciJ	 (2.13)- (1+v+h2) (1+v+h2+2h'

and

'E	 \1	
(2.14)

where h(J2) is the derivative of h2 with respect to J2 . E is the secant modulus

obtained from the uniaxial stress-strain relation.

The paradox of the flow theory of plasticity has not been completely resolved.

Although this theory is physically sound, the buckling loads predicted are al-

ways higher than the experimental data. However, the deformation theory of

plasticity had been established as an appropriate theory that gives buckling

loads in agreement with the experimental data. The inelastic buckling of plates

using the concept of bifurcation of equilibrium and the conventional theory of

plates neglecting shear deformations have been investigated by llyushin[43],

Stowell[62] and Bijlaard[82] on the basis of the constitutive relations of the J2-

deformation theory of plasticity. On the other hand Handleman and Prager[83]

employed the constitutive relations of J2-flow theory of plasticity. Batdorf[84]

showed that a more refined flow theory of plasticity with the vertex on the yield
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surface would give better agreement between the two theories. Pearson[85] im-

proved incremental analysis by incorporating Shanley's concept of continuous

loading. This improvement did not significantly lower the buckling load. Onat

and Drucker[861 and Hutchinson and Budiansky[871 explained the difference

between buckling predictions based on incremental plasticity theory and the

experimental data as the result of unavoidable geometric initial imperfections.

This proposal was demonstrated by analysing a cruciform column using flow

theory. Neal[88] also proved that buckling prediction using flow theory could

coincide with the experimental data by accepting a certain amount of initial

imperfection in the analysis. It has been observed that J2-deformation theory

can be shown to be equivalent to the refined incremental theory of Sanders[89J,

taking into account the development of a corner on the yield surface under

progressive compression. Thus the bifurcation loads obtained on the basis of

J2-deformation theory are in fact those obtained from a more complicated and

physically acceptable incremental theory of plasticity[90]. Many researchers

have established stress-strain relations based on flow theory starting from the

Prandtl-Reuss equation. Among them are Yamada et al[911 who established

explicitly an incremental stress-strain relationship using the von Mises effective

stress as a yield criterion.

Recently, attempts have been made by Damkilde[92] to examine the influ-

ence of plasticity on the buckling loads of a finite cruciform column. The

two theories of plasticity were considered in his analysis. He concluded that

incremental theory predictions would be influenced by plasticity, but not as

much as those based on deformation theory. Shrivastara[93] also studied the

inelastic buckling of rectangular plates using both theories of plasticity. It
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was concluded that the correction for the shear effect is usually larger for the

incremental theory than the deformation theory.

The two theories have been used to analyse plate problems by many researchers

and the results lead to the notion that deformation theory gives a better

estimate of buckling loads.

2.4 Finite Strip Method

In the past seven years considerable effort has been given to the use of the

finite strip method in studying the behaviour of plate and plate subassem-

blage. Wittrick[94][95][96],[97][98] laid the foundations of an exact finite strip

method(i.e, exact within the limitations of linear theory in the elastic range).

In these developments a stiffness matrix for a long flat plate strip subjected

to a basic state of membrane stress which varies longitudinally is established.

This basic stress state includes uniform longitudinal, transverse and shear

stresses. Wittrick's development was based on the assumptions that when

buckling occurs in local, overall or coupled modes the three components of

displacement vary sinusoidaily in the longitudinal direction with a common

wavelength. This implies that the buckled half-wavelength is small compared

to the length of the plate assembly, or that the component plates are simply

supported at their ends so far as transverse displacement is concerned, and are

constrained against tangential in-plane displacement but are allowed to move

freely in the axial direction. This assumption leads to the problem being gov-

erned by ordinary differential equations which can be solved explicitly. The
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stiffness matrix relating the amplitudes of the sinusoidally varying edge forces

and displacements of the plate strips are obtained. There are four degrees of

freedom comprising the three displacements and a rotation component. The

inclusion of shear stress leads to the perturbation forces and displacements at

the plate longitudinal edges being out of phase. This is accounted for by spec-

ifying their magnitudes in terms of complex quantities, and thus the stiffness

matrix becomes Hermitian in nature. Plank and Wittrick[99] employed this

approach to study the behaviour of plated structures under combined loadings.

Generally, the overall stiffness matrix for plate assemblies in the exact finite

strip method has components which are complicated transcendental functions

of a loading factor and the half wavelength of the buckled mode. The critical

loading factor cannot be obtained by a standard eigenvalue method. Wittrick

and Williams[96] developed an algorithm which requires the specification of

an upper bound for the structure's buckling load when all inter-strip junction

lines are fully clamped.

Cheung[100] developed an approximate finite strip method which was applied

to obtain the solution of static plate bending problems. This was later ex-

tended to solve plate buckling problems. This analysis was limited to the

consideration of local buckling. In this method polynomial functions are as-

sumed to describe the variation of the displacements in the transverse direc-

tion. The advantage of this approximate finite strip over the exact finite strip

is that the coefficients of the overall stiffness matrix are linear functions of the

load factor, and thus standard eigenvalue methods can be applied to obtain

the buckling loads. Furthermore, the approximate finite strip method is more

general than the exact approach. In principle, completely arbitrary geometry

28



of cross-section can be incorporated together with the anisotropic material

behaviour. The restriction to simply supported ends might possibly be re-

moved by considering appropriate longitudinal variation of displacements to

account for the distortion. The approximate approach has some disadvantages

as well; for example, in order to achieve sufficient accuracy it often requires

more than a single strip to model a component plate. This consequently results

in increased size and bandwidth of the overall stiffness matrix. The approxi-

mate finite strip method is now well established as an economical and efficient

method for elastic buckling analysis of plates[1O1][102][103][104].

The inclusion of curved anisotropic plate in the finite strip method has also

received attention. Viswanathan and Tamekurni[105] extended finite strip to

include a curved anisotropic plate which has constant transverse curvature

and thickness. These basic plates can be subjected to uniform biaxial direct

and shear stresses. The formation of the strip stiffness is accomplished nu-

merically and standard eigenvalne routines can not be used; thus a Wittrick

algorithm is needed to calculate the buckling loads. Williams[106], and Plank

and Williaxns[107], adopted an idealised flat strip approach for the analysis

of curved plates. This requires a large number of flat strips to simulate the

curved geometry with the use of substructures, which partly offsets the result-

ing increase in computational effort.

The behaviour of sandwich panels has been studied by many researchers.

Among these are Chan and Cheung[108] who investigated the bending and

vibrational behaviour of multi-layered sandwich plates using the finite strip

method.
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The extension of the finite strip method to simulate plate behaviour in the

inelastic range opened up a new dimension in its application. Fukumoto et

al[109] applied it to investigate the inelastic behaviour of axially compressed

panels stiffened with longitudinal stiffeners. Yoshida and Maegawa[68] studied

the inelastic local, overall and interactive buckling of H-columns by applying

the deformation theory of plasticity originally developed by Bijla.ard[82].

The post-buckling analysis of plates using the finite strip method was first

attempted by Graves-Smith and Sridharan[11O] by extending the elastic bi-

furcation range into the post-buckling range. They used new displacement

functions different from the linear finite strip type. This enables the in-plane

equilibrium equations to be satisfied. The compatibility between out-of-plane

and transverse in-plane displacements could not be satisfied at the corners of

the structure where component plates meet at an angle. To overcome this

problem Sridharan[111] assumed another function for the transverse in-plane

displacement which requires a higher number of harmonics. Graves-Smith and

Sridharan[112] later included an extra nonlinear term (a transverse in-plane

term) into the axial strain expression. This enables the elastic limit state to be

reached. Hancock[69] extended the post-buckling finite strip method to include

the effect of local initial imperfections. Squared functions are assumed for both

the longitudinal and transverse in-plane displacements. Furthermore, the re-

distribution of Poisson's ratio was accounted for while Graves-Smith kept it

constant. Hancock assumed that in-plane displacement functions were divided

into two components, the Hookean and geometrically nonlinear displacements

of the strip, as shown in Fig. 2.4. The assumed longitudinal in-plane har-

monic series eliminates shear straining at the ends of the strip, and permits
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compatibility between the out-of-plane and in-plane displacements at the plate

junctions to be approximately maintained.

Very recently the finite strip method has been extended to include the theory

of mode interaction. Rafeal and Sridharan[76] combined the mode theory

with the finite strip method to study the behaviour of T-sections subjected

to end moments. The method allows for the inclusion of local and overall

initial imperfections. Furthermore, Fau[1131[114][115] developed a spline finite

strip method in which the longitudinal trigonometric series is replaced by a

linear combination of the local B3-spline. The usual transverse polynomials are

retained. The advantage of this extension is the localised nature of B3-spline

functions which reduces the computational effort and allows specification of

different boundary conditions by slight modification of a few local splines at

the boundary. Lau and Hancock[116] later employed this method to study the

buckling behaviour of thin flat-walled structures.

The combination of the finite strip method with the finite element method

has been attempted by Graves-Smith et al[119] in order to analyse box sec-

tions with diaphragms. Bruce et al[117] developed a technique in which the

Bogner displacement functions for the rectangular finite element and the dis-

placement functions used with a simply supported finite strip method were

combined. This method proves versatile but the increase in degrees of free-

dom leads to additional computational effort. It is anticipated that this could

be taken further in conjunction with the finite element method to yield a more

sophisticated method of analysis that would bridge the gap in the numerical

analysis.
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2.5 Column Buckling At Elevated Tempera-

ture

During the course of a building fire structural steelwork undergoes degrada-

tion both in material properties and physical consideration. The structural

elements lose stiffness as well as yield strength with increasing temperature.

In an attempt to safeguard against this the building regulations of many coun-

tries grade structural construction materials on the basis of minimum time the

element can survive when exposed to the standard fire ISO 834[120]. The de-

sign solutions currently in practice normally involve application of fire-proof

protecting materials. This fire protection is often designed by consideration

of the minimum time protection provided. An investigation into multi-storey

building costs by the British Steel Corporation indicates that fire protection

is responsible for about 30% of the total cost of steel frarne[121].

During fire spread the temperature rise with time in a steel column depends

on the following factors:

• the amount of fire load (given as Kg of fuel per square metre of the floor

for the test)

• the ventilation factor	 where A is the area of the opening in m2, h

is its height in m and A is the area of the surrounding surface in m2.

• the thermal properties of the wails

A tremendous amount of work has been done in numerical and regressional

32



analysis to determine the thermal response of the structural steel[122] [123] and

thus considerable data on the subject are available in the literature.

The development of a versatile fire engineering system has not been possible

up to the present. Law and O'Brien[124] established a comprehensive fire en-

gineering system which is limited to thermal response of structural steel. This

method embraces all physical features of fire engineering. The method as-

sumes steady state heat transfer with the collapse temperature set at 550° C in

accordance with BS476 Pt8[125]. This target may be conservative, as demon-

strated by the series of tests performed by British Steel Corporation and the

Fire Research Station at Cardington[166][171]. It is now recognised that un-

protected steelwork does not necessarily collapse when its temperature reaches

550° C but can exhibit a range of limiting temperatures higher than 550° C for

common design situations, and particularly for those where the load bearing

capacity is not fully utilised[126].

The critical temperature of a load bearing steel element, or structural assembly

as defined by ECCS[128], is the temperature at which the limit state of failure

is expected to be attained. Experimentally, a considerable amount of work has

been done to investigate the behaviour of steel columns in fire. Most of the full

scale fire tests have followed the standard fire testing procedure because of the

difficulty involved in simulating a real fire situation. This makes it impossible

to simulate the real situation during fire spread. Knublauch et al[127] tested

23 columns insulated with box-shaped vermiculite insulating plates. The test

specimen was not fully immersed in the furnace - only about 80% of its length

was actually exposed to fire. The axially applied load was kept constant while
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heating progressed and there was no restriction on thermal expansion. It was

found that 95% of all the columns tested attained critical temperatures of

500°C or more when subjected to the design load according to DIN 4114. The

inclusion of an elastic restraint instead of a hinge by Kertsma et al[129] at the

column base resulted in a considerable increase in the critical temperature.

Stanke[1301 tested steel columns with varying degrees of axial restraint on

thermal expansion and found that the load increased rapidly during initial

heating because of the axial restraint. At buckling unloading took place, which

showed that columns sustained the initial loading much longer than Magnusson

et al[131] had predicted theoretically.

Vandamme and Janss[1321 and Janss and Minne[133] reported tests conducted

on 27 columns, out of which two were uninsulated. In each test the applied

load was kept constant without axial restraint while heating progressed. The

ends were given rotational restraint with the aid of special device. The critical

temperature was accurately predicted by their analytical model based on the

ECCS[134] buckling curve C with the modification factor originally proposed

by Pettersson and Witteveen[135] taken into account. This factor is used

to overcome the deficiencies in reproducibility and repeatability associated

with the test data, and thus ensures a better basis for comparing theory with

experiment. Olesen's tests[136] were conducted in a horizontal position in a

special furnace. In these tests the load was increased with constant loading

rate until buckling occurred, while the temperature of the furnace was kept at a

prescribed level. Eighteen columns were tested at a constant loading rate while

the remaining six columns were tested keeping the axial load constant while

heating progressed until buckling. In all the tests the columns were axially
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unrestrained. Comprehensive column tests were conducted by Hoffend[137].

Seventy five columns were tested with the following parameters taken intQ

consideration.

• load eccentricity

• column slenderness ratio

• load level

• axis of buckling

• hinged or clamped column ends

• thermal gradient along the column length due to partial protection

• rate of heating

• full axial restraint

The test results were correlated with numerical simulation[138][139]. It was

concluded that critical temperature of a slender column is slightly higher than

that of a stocky column. The load eccentricity is more detrimental to the

critical temperature with increasing column slenderness. Furthermore the lon-

gitudinal temperature gradient (shown in Fig. 2.4) has only a minor effect on

the load-bearing capacity of the pinned-end columns, in contrast to its effect

on the clamped columns.

Quite recently Aasen and Larsen[140] conducted elevated temperature tests

on several columns. The test program comprised two phases. The load was
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applied in increments at room temperature to a prescribed level and kept con-

stant while the heating progressed. The axial column end displacement could

be fixed in order to introduce an axial restraint. The following parameters

were taken into consideration during the course of testing.

• slenderness ratio

• load level

• rotational and axial restraint

• end eccentricity

• rate of heating and the temperature gradient

Their observations can be summarised as follows;

For a column without axial restraint:

1. The failure time is significantly affected by the load level.

2. Geometrical imperfections are detrimental to the load carrying Ca-

pacity of the column(inore so than at ambient temperature).

3. The maximum column strength is only slightly influenced by the

column slenderness and the heating rate.

For columns with axial restraint:

1. The load level at initial heating, and geometric imperfections, affect

the column strength.
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2. An imperfect column exhibited a gradual type of failure while per-

fect columns exhibited a more abrupt reduction in imposed axial

load due to the restricted thermal expansion.

The influence of thermal stresses due to non-uniform temperature distribu-

tion across the cross-section and residual stress was studied by Alpsten[144J.

He showed that the presence of residual stresses has a more adverse effect on

column strength than geometric initial imperfections in the range of low to in-

termediate column slenderness. Culver[145] investigated the effect of thermal

gradient along the length of column on its performance. A finite difference

scheme was utilised together with a tangent modulus approach. The effect

of residual stresses was examined. It was found that the pin-ended column,

in which the maximum temperature occurred at the midheight, exhibited the

highest loss of buckling strength. This contradicted Hoffend's[137] observa-

tions. The reason for this contradiction may be connected with the idealised

temperature profile assumed in the Culver formula to predict the critical stress

of an axially restrained column at elevated temperature. Ossenbruggen et

al[1471 studied the effect of thermal gradient across the cross-section using a

moment-curvature-thrust-temperature approach. This included both thermal

and residual stresses. The thermal bowing induced by the thermal gradient

across the cross-section was approximated by a certain amount of initial im-

perfection. They concluded that thermal gradient is detrimental to the axially

loaded column.

Attempts towards the development of an adequate fire engineering system

have been made by many researchers. The simplified but practical approach
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to strut strength prediction in fire is to assume that the room temperature

design curve is valid at elevated temperature, but allowing for the influence

of heating on the yield stress and modulus of elasticity. This approach was

employed by Vandamme and Janss[132]. The ECCS[128] expressions for yield

stress and the modulus of elasticity were used. These expressions are given

below:

= 1.0+

	

	 0°C<0<600°C
(767 in

= 108 ( =	 600°C <0 < 1000°C

= 1 - 17.2 x 10-1204 + 11.8 x iO0 - 34.5 x 10-702

+ 15.9 x icr5o

E9

£120

(2.15)

(2.16)

(2.J 7)

(2.18)

(2.19)

0 y,20 and are the yield stresses at room and elevated temperature respec-

tively, E, and E9 are the modulus of elasticity at room and elevated temper-

ature respectively. The same approach was adopted by Magnusson et ai[131].

The Swedish column design curves were derived from the buckling equations

o•y,e	 V	 A2

	 (2.20)

where

- 1+A2x4.8x105+A2
2A2

(2.21)
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where

(2.23)

/3— 1+a(X-0.2)+
2A2

(2.24)

and

- A [Ov.2O
	

(2.22)

irV 20

The ECCS[134] buckling curve at room temperature may be described by

Equation (2.20) provided that

with a as the imperfection parameter which ranges from 0.206 to 0.489 for

buckling curves a-c. The Swedish buckling curves are related to the propor-

tionality slenderness ratio A0 while ECCS buckling curves are related to the

relative slenderness ratio I. At elevated temperature there exists a remark-

able deviation between these two design approaches. These disparities are

due to the replacement of modulus of elasticity by secant modulus and 0.2%

proof stress by 0.5% proof stress in the Swedish buckling equations. Proe

et al[148] appraised the CTICM[149] and ECCS[128] fire engineering systems

and concluded that the theoretical estimates of buckling stress based on ECCS

strength and modulus reduction expressions are considerably more conserva-

tive than the estimate based on the CTICM expressions.
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(2.26)

(2.27)

The poor repeatability and reproducibility of test results have made it very

difficult to compare theory with fire test data. In order to overcome this short-

coming Petterson and Witteveen[135] suggested a more unified approach given

by the following equation.

= fo ,.,e
	

(2.25)

where 0c,,9 is the theoretical buckling load at elevated temperature for a uni-

form temperature distribution and 0u,9 is the test failure stress. The correction

factor f compensates for the difference between the nominal and actual values

of the mechanical properties at elevated temperature, the imperfection and

non-uniform temperature distribution in the column. This factor is given by

f = 1+	 0°C^O^300°C
1500

f = 1.2 O^300°C

Vandamme and Janss[132] and Janss and Minne [133] have shown that the

best correlation between test results and theoretical buckling predictions is

obtained by using the actual yield stress instead of nominal values. Hoffend

and Kordinal [139] concluded that the value off = 1.18 adopted by the ECCS

resulted in a conservative estimate of the buckling load.

The behaviour of pin-ended columns made of HEA200 welded tube and box

columns was studied by Setti[150]. Both initial geometric imperfection and

residual stresses were taken into account. The Danish[136] and the French[141]

tests were simulated using his approach. He concluded that a more favourable
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buckling curve than curve C of ECCS can be obtained provided that repre-

sentative estimates of the structural and geometrical imperfections are taken

into account. He also suggested that the ECCS expressions for the mechanical

properties are inadequate for theoretical predictions of buckling load.

The influence of creep on column performance becomes more noticeable when

the temperature increases beyond 550° C. Aribert and Randrianstsara(141 con.-

ducted creep buckling tests on 33 HEA 100 pinned uninsulated columns. The

test specimen was about 2m long with slenderness ratio of 80 about the mi-

nor axis. The test program allowed loading at prescribed temperature levels

with and without axial restraint. It was noted that creep starts to influence

the column strength at about 545°C. This effect depended on the amount of

load applied on the column. At high load level the effect of creep was less

significant, but at very low load level and temperature of about 600° C, the

reduction in the column bearing capacity is about 9%. Fujimoto et al[142]

reported on the creep buckling tests conducted on fixed-end H-columns. The

test specimen slenderness ratio was 29.1 and the tests were conducted with

the following parameters taken into account:

. eccentricity of loading

• different temperature profiles and loads.

The test results were verified numerically. There was an underestimation of

the bearing capacity of columns theoretically by about 50% but the modes of

creep buckling behaviour of columns are similar for both theory and experi-

ment. Fujimoto et al[143] tested another set of H-columns with slenderness
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(2.28)

(2.29)

ratio of 46.9. The theoretical simulation was ammended by using a modified

tangent modulus-temperature relationship and creep model. This resulted in

reasonable agreement between theory and experiment.

The adoption of a time-independent approach to analysis has been justified by

Witteveen et al[151] and Witteveen and Twilt[152]. From the experimental

investigation of model structural steel members, it was established that the

collapse temperature is time-independent and consequently is not influenced

by the heating history. They found that the result for a column calculated

at 600°C coincided with a buckling analysis result by Eggwertz[153J for a

column with slenderness ratio of 45 subjected to a temperature-time history.

Eggwertz's analysis was based on Norton's creep law modified to conform

with Dorn-Harmathy theory[1541 (only secondary creep is taken into account).

Randriantsara[155] derived an interaction formula on the basis of a similar

creep model as proposed by Eggwertz. The equilibrium condition is established

only at the midheight of a column assuming the deflected shape is a half-sine

curve.

Proe et al[156] have given an overall-approach treatment to the behaviour of

structural steel members in fire without the inclusion of thermal creep. The

method involves both the thermal response based on the regressed tempera-

ture equation and the structural response based on the following mechanical

property expressions:

011,0 - 895-0

0y,20 -	 700

___ - 1— 
0

Oy,20 -	 2000

300°C < 0 <895°C

0°C < 0 < 300°C

The CTICM expressions for the effective modulus are used.
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The application of the finite element method in simulating the structural re-

sponse at elevated temperature has been undertaken by many researchers.

Among them are Muzeau and Lemaire[157] who used a non-linear elasto-

plastic model to study the behaviour of beams and external columns. Fu-

rumura and Shinoshara[159] applied elasto-plastic analysis, with creep taken

into consideration, to study the behaviour of steel columns in high rise frames.

The influence of geometrical imperfection was allowed for. Schleich et al[1581

also applied an elasto-plastic finite element method to study the behaviour

of composite construction and steel structural members. All these models

demonstrate the power of the finite element method as a numerical tool, al-

though at the expense of computational efficiency. Until now the finite strip

method has not been applied to study the behaviour of steel columns in fire.

The issue of an adequate design philosophy has not been totally resolved.

Witteveen[160] concluded that the nonlinearity of the stress-strain relationship

of steel at elevated temperature has completely ruled out the application of

linear theory of elasticity. Thus the application of plasticity theory is desirable

to simulate accurately the steel structural response in the fire environment.
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Chapter 3

FINITE STRIP METHOD

3.1 Theoretical Basis Of Finite Strip Method

The finite strip method of analysis has been established as an efficient numeri-

cal tool for the elastic and inelastic analysis of plate and plate subassemblages

[96][99][68]. In the present development the elasto-plastic finite strip originally

developed by Mahmoud[1611 is extended to include the deformation theory

of plasticity applied to thin plates. This method incorporates local, overall

and interactive buckling modes. The uniaxial stress-strain relation is repre-

sented by a Ramberg-Osgood[168] formula which is continuous. The original

Ramberg-Osgood formula is given by:

(O.2)= f+O.002 
0• "
	

(3.1)
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where n is the material constant and 00.2 is the 0.2% proof stress. This formula

is simple and can be easily adjusted to produce the material behaviour of steel

by setting n to a high value. The first term of the formula is the elastic

component while the second term represents the plastic component. A high

value of n represents a sharp knee which tends to idealise elastic-perfectly

plastic behaviour. In the present work consideration is given to Galaxnbos'

modified version of the formula(1721 which gives appropriate representation of

the steel properties. This is given by:

0	 3 /0v.20) ( 0=	
+ 7 E	 \0y,20)

in which

E20 is the Young modulus of elasticity at ambient temperature

0y.20 is the yield strength at ambient temperature

e is the effective strain

0 is the effective stress

n is the material constant set at 30 for the ambient temperature cases.

Since uniaxial compression is considered the effective stress corresponds to the

longitudinal stress o,.

In the present analysis the structure may be subjected to a combination of

longitudinal compression and bending. Thus the state of applied stress in a

strip may be longitudinal compression which is uniform or varying linearly

across the width of the strip. The inclusion of residual stresses also results

in a non-uniform stress state in the strip. The development of the finite strip

method is based on small deflection theory of elasticity for initially perfect

plates.

(3.2)
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(3.5)

At the onset of buckling the strip suffers some deformation and the components

of displacement are assumed to vary sinusoidiafly in the longitudinal direction

with half wavelength A. There are only four independent degrees of freedom

corresponding to u, v, w, and e at the two edges of the strip as shown in Fig.

3.1.

The extension of the elastic finite strip method to the inelastic range is accom-

plished by using the deformation theory of plasticity applied to thin plates.

This theory was established by Bijla.ard[82] and was applied by Yoshida and

Meagawa[68] in studying the behaviour of H-columns in the inelastic range.

Based on this theory of plasticity the nonlinear material properties are given

by the following equations:

{o} = E20 [F]{c}
	

(3.3)

where the elasto-plastic modular matrix [F] is given by

lu 112 0
[F] =	 112 f22 0	 (3.4)

0 0 f

and the coefficients of [F] are given by

(14-3r)
fuu =

1'
2(1—(l-2z')r)

112 =
11

4
f22 = -

Ii

1
f33= 2+ 2z' + 3e

E
C =

E
E20

= 5-4v+3e—(1-2v)2r
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where

E is the tangent modulus

E8 is the secant modulus

E20 is Young's modulus of elasticity at ambient temperature.

These moduli are obtained from the uniaxiaj stress-strain relation.

The moment-curvature relationship is given by

E20t3
{M} = 12 [F] {x}

where

I 82W 82W 82W
{x} 

=	 Ox	 8y2 2ô,J	 (3.7)

and

t is the plate thickness

The elastic material properties can be obtained by setting r = 1 and e = 0 in

the stress-strain relation. This results in [F] becoming

1	 lv	 0

= 1	 2 v 1	 0	 (3.8)
-LI	

0 0 (1—v)

In the derivation of the stiffness matrix the out-of-plane and in-plane effects are

considered separately. Both the out-of-plane and in-plane stiffness equations

can be combined to enable all buckling modes to be considered. The out-of-

plane displacement function is given by

10 = {W}
	

(3.9)

fo = {Z}Tsin,re{5o}
	

(3.10)

(3.6)
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where
C3

{Z}T =

Ce

and

C3 =

C4 = 1_32+,13

C5 = b(—q2+q3)

Ce = 32_23

x

A

I,

(3.11)

(3.12)

8

{5} = j ' }	 (3.13)
The out-of-plane strain vector is related to the curvature as given below

{E} = z{x}

{ E } = [B0] {6}

and [BO1 is given by
r
I	

j{Z}Tsin7r

[BO] = I _{Z,,,}Tsin
I
I	

{z}Tcos	 I2irz

(3.14)

(3.15)

(3.16)

Applying the principle of virtual work the change in the internal virtual work

dW 0 for the out-of-plane behaviour is given by
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dW10 
= 11,01 

{dE0}T [F]
	

(3.17)

dW10 
= 11101 

{d60}T [BOlT [F] [B01 {6)
	

(3.18)

dW10 = {d50}T [K0] {o}
	

(3.19)

and the out-of-plane stiffness matrix is given by

[K0] 
= J 

[B,] ' [F] [B0] dvol
vol

The in-plane displacement function is given by

f={U V}

(3.20)

(3.21)

I {X}"cosir
fi 

= I {Y}Tsinir I { }
where

{X}T = { 0 c1 0 c2 }

{y}T 

= { c
1 0 c2 0 }

and

(3.22)

(3.23)

(3.24)

Ci = 1—is

C2 =
	

(3.25)

{Si } = {v1 Ui V2 u2}
	

(3.26)
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The in-plane strain vector is given by
OU

	

I	 8z
1	 J	 8V

	

- '
	 8ii
I 9UL8V

8p'8z

{E} = [Be] {o}

and
r

	

I	 _{X}Tsin7rC

	

[Be] = I	
}T 

sin ire

[({x} +{Y}T)cosire]

(3.27)

(3.28)

(3.29)

The change in the internal virtual work for the in-plane behaviour is given by

dW11 = J {d} ' [F] {c,} dvolvol

= J {d61 }" [B]T [F] [B1] {ö,} dvol

=

and the in-plane stiffness matrix is given by

[K1] = I [B1]T [F] [B1] dvol
Jvol

(3.30)

(3.31)

In order to account for the membrane stress, the stability matrices for the

in-plane and out-of-plane cases are calculated. The out-of-plane virtual work

done by the membrane stress system during a virtual out-of-plane displacement

is given by

dWmo = j{d6bo}{(7}Tdvol	 (3.32)

By expressing the out-of-plane displacement function as

{f0} = [Ne] {6}
	

(3.33)
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The membrane bending strain vector is given by
(aw)2

{6b} =

8x 8y

aw 
°1 8W'

{6b) 
= 1	 fli:! I	 -b;- I

8W 1
I 8W	 ll--)
L-;- DxJ

(3.34)

(3.35)

[N]TFN' 1L O,J

1

+ [N1T[N1} {
	 }	 (3.36){cb} = 1 {6}T -	 -

L o,ti

The bending strain increment is given by

{ E6o} = {d150}T [B501 {6}

Thus the virtual work dWmo is given by

dWmo =
	

{döj [B0] {}T {6} dvol

= {d.50} ES0] {8}

and the out-of-plane stability matrix is given by

[SO] = fiBso] {0.}T dvol

(3.37)

(3.38)

(3.39)

The in-plane stability matrix can be deduced following the above approach.

The in-plane displacement function is given by

{fi} = {UV}

(3.40)=

The bending strain is given by

(8U\ 2 (9V\2

{c } = 
1

(8U8U L OV8V
Ow

(3.41)
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This can be expressed as

8U

1	 Dx

{4} =— 0

Dv

DU
DV n n" "	 av

DU DV
'I
av StY av

Dv

(3.42)

Following the same procedure for the derivation of the out-of-plane stability

matrix the in-plane stability matrix can be established as given below

[Si] = 
/ 

[Bail 
{0.}T dvol
	

(3.43)

Considering equilibrium state, the out-of-plane equilibrium equation is given

by

(3.44)dW 0 = dWmo

This results in an eigenvalue problem which can be expressed as

[[K01 - [S0]1 {5} = 0

Also consideration of the in-plane equilibrium leads to

[[Ks] - [Se]] {ö} = 0

(3.45)

(3.46)

The expressions for the out-of-plane and in-plane stiffness and stability matri-

ces are documented in appendix A. The stiffness and stability matrix coeffi-

cients are numerically integrated over a basic strip width which is subdivided

into substrips to ensure accuracy. The equilibrium equations are solved using

the Wittrick-Williams[97] algorithm which ensures automatic convergence on

the lowest buckling stress o,.
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3.2 Extension To Elevated Temperature Struc-

tural Response

The underlying principle that creep influences the steelwork behaviour at tern-

peratures higher than 550° C has not been totally established. In most reported

instances the behaviour of steel columns with the creep phenomenon included

coincides with those in which no account is taken of creep effect. If creep

is ignored the problem can be considered as time-independent, so that the

structural material response can be represented with stress-strain-temperature

relationships. A modified form of the finite strip method described in the pre-

vious section for ambient temperature behaviour can then be used for the

analysis. The collapse can be computed for a given temperature simply by

replacing the ambient temperature stress-strain relationship with the a series

of stress-strain-temperature relations. The stress-strain-temperature relations

are markedly nonlinear and are better represented by the modified form of

Ramberg-Osgood formula given by

= --+o.oi()(--V
E9 \O•y9/

where

E9 is the effective modulus of elasticity

Og is the effective yield strength

(3.47)

n0 is the material constant at elevated temperature.

The modulus of elasticity and yield strength expressions are modelled to ap-

proximately satisfy the BS5950 Pt8 stress-strain-temperature data. These

expressions are given by:

0 y0 = 0 1,20(0.978 - 9.74 X 10O) 80°C < 0 ^ 400°C	 (3.48)
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(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

Oy,2O(1.553 - 1.55 X iO- 0) 400°C < 0 550°C

OO O,2o(2.34 - 3.143 x 10_20) 550°C <0 600° C

0y0 - 0y,20(1.374 - 1.56 X 100) 600°C < 0 ^ 690°C

OyO - O,2O(1.120 - 1.28 X iO- 0) 690°C < 0 ^ 800°C

Eo = E20(1 - 1.27 x 10°C2) 80°C0 ^ 550°C

E0	E20(1 - 1.402 X 10 6C2) 550°C0 ^ 800°C
4600

	

no 
=	 + T 80°C < 0 ^ 200°C and 690°C < 0 ^ 800°C

2650
= -j---+T 200°C<O^400°C

2400

	

=	 + T 400°C <0 ^ 550°C

3900
fl = -j—+T 550°C<0^600°C

3600

	

no =	 600°C<0^690°C

4600
no = --i--- + T 690°C <0 800°C

0

500ln (j)

C	 0-20

For clarification the stress-strain models developed are compared with BS5950

Pt8 stress-strain-temperature data, obtained experimentally, as shown in Fig.

3.2.

3.3 Computer Program

In order to solve the simultaneous equations a computer routine was developed.

The program is coded in Fortran 77 and the flow chart of this program is shown

in Fig. 3.3. The critical stress at different temperatures for the inelastic
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analysis is calculated by inputting the temperature. The following stages are

incorporated in an analysis:

s The input data is read and printed out.

. The stress at each substrip node is calculated (taking into account the

residual stress). The division of the basic strip to a number of substrip

is to improve the accuracy of the numerically calculated strip stiffness.

. The inelastic material properties, which are temperature dependent, are

generated for each substrip.

. The stiffness matrix for each strip is calculated.

. The stability matrix for each strip is calculated.

• Transformation of the stiffness and stability matrices from cartesian co-

ordinate to the global coordinate system.

• Assembly of the overall stiffness matrix and the imposition of boundary

conditions.

• Determination of critical stress using Wittrick-Williams algorithm.

• Printout of results

3.3.1 The Substrip Total Stress

The total stress for each substrip node is the sum of the applied longitudinal

stress and the residual stress. This is stored for use in the calculation of the

inelastic material properties. The total stress is given by
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0T(i) = o(i) + u,.(i)
	

(3.63)

where

O T(i) is the resultant stress at the substrip node

Or(i) is the applied longitudinal stress at the substrip

o(i) is the residual stress at the substrip node

3.3.2 The Nonlinear Material Properties

The total stress at every substrip node is used in calculating the tangent

modulus E(0) and secant modulus E3 (9) from the temperature-dependent

stress-strain relations. These moduli are given by

=	 + 0.0in.L ()(fl._1)
da	 E9

E(0) = --	 (3.64)

i	
1 f\(flil)

- = -+- I --E9 E9\c.
E3(0) =	 (3.65)

The elasto-plastic modular matrix is then generated at every substrip.

3.3.3 The Strip Stiffness Matrix

The stiffness matrix for each strip is generated by numerically integrating the

stiffness equations using the Simpson technique. The elasto-plastic matrix
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is calculated using the shape functions and the modular matrix. The stiff-

ness matrix is stored for subsequent imposition of boundary conditions and

transformation from the cartesian coordinate system to the global coordinate

system.

3.3.4 The Strip Stability Matrix

The procedure for calculating the strip stability matrix is similar to the one

used for the calculation of the stiffness matrix with the exception of the use

of the stress vector instead of the elasto-plastic modular matrix. This is also

accomplished by numerical integration.

3.3.5 Impose Boundary Condition

For every strip the two edges are checked to determine whether external bound-

ary conditions need to be applied. If the first edge is free or continuous the

routine will check the second edge. If the second edge is free or continuous

as well the routine skips that strip and advances to the next strip. The strip

stiffness and stability matrices will not be altered. In cases where one edge

is hinged, the diagonal element of the stiffness matrix corresponding to the

out-of-plane deflection will have a very high value of the order of 1 x 1020.

The corresponding diagonal element in the stability matrix will be set to zero.

For a fixed edge both the diagonal elements corresponding to the out-of-plane

deflection and the rotation will be modified accordingly.

57



3.3.6 Transformation and Assembly of the Global Ma-

trix and Solution

The basic strip stiffness and stability matrices are calculated with respect

to the cartesian coordinate system. If the strip coordinate system does not

coincide with the global coordinates the strip stiffness and stability matrices

will be transformed as shown below:

[K] = [R]T[7?][R]
	

(3.66)

where

[K] is the transformed strip matrix

[R] is the transformation matrix

[1?] is the strip matrix before transformation.

The transformed stiffness and stability matrices are assembled into the overall

global matrix. This overall matrix is triangulated using Gausian elimination.

The resulting eigenvalue problem is solved using the Wittrick-Williams algo-

rithm. The critical stress is determined as the stress at which the determinant

of the sum of stiffness and stability matrices is zero.

The adequacy of this approach is established in the succeeding chapter where

test data on columns' behaviour at both ambient and elevated temperatures

are compared with the results obtained from the finite strip method. Further-

more, a parametric study is undertaken in the subsequent chapter.
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Chapter 4

COMPARISON WITH TEST

DATA

The finite strip method developed in Chapter 3 has been thoroughly checked

by analysing different isolated rectangular plates at ambient temperature. This

exercise was undertaken in order to clarify the adequacy of the method at a

basic level, and thus this is an auxiliary program validation. For more rigorous

validation of the method comparisons were made with available test data on

the ambient and elevated temperature buckling behaviour of steel columns.

4.1 Ambient Temperature Comparison

Horsley and Strymowicz[163] carried out tests on 130 columns of high strength

steel with ambient temperature yield stress of 447N/mm2. Five sections of dif-
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ferent geometries were studied over a range of slenderness ratio. The influence

of residual stress was investigated by comparing the behaviour of as-rolled and

stress-free stub columns. They found that the residual stress had very little

influence on the overall strength of columns tested. This may be connected

with the high value of the material yield strength. During the course of testing

they found that initial imperfections had very little effect on the final failure

load. For comparison purposes a 203 x 102 x 25.3UC I-section was analysed

using the finite strip method. There was no record of residual stresses and

thus the finite strip analysis is based on consideration of the perfect member.

This is justifiable in as much as the high strength of the material overshadows

the effect of residual stresses. It is observed that the finite strip method results

are in good agreement with the test data as shown in Fig. 4.1. The finite strip

underestimates the buckling load of short columns with slenderness ratio of

l/r ( 50 by about 4%. This discrepancy may be attributed to the unavoidable

restraint provided by real loading and support systems. Despite this limitation

of the test procedure the finite strip method is found to be very efficient and

adequate. There is close agreement between theory and experiment.

Tebedge et al[164] performed tests on some European wide flange sections. A

total of 16 full-size columns were tested from each of the four source countries

(Britain, Belgium, Italy, Germany) with slenderness ratios of 50 and 95. These

slenderness ratios were chosen on the basis that they covered the critical range

according to theoretical and practical consideratioiis. The support .onditions

were; pin-ended in the direction of the minor axis and fixed in the direction of

the major axis. The geometric characteristics of the columns were measured.

These include the initial out-of-straightness. The residual stresses and the yield
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strength were measured as well. The measured yield strength for the flanges

varied between 198 and 250N/mm2 while that of the webs varied between 200

and 253N/mm2 . Compressive residual stresses of about O.280'y,20 were found

at the edges of the columns. For comparison purposes a W12 x 161 section was

analysed over a range of slenderness ratio. The average yield strength of about

240N/mm2 was used in the analysis together with residual stress of 0.1u. It

was found that the finite strip method results compared more closely with the

test data than curve B3 —27 of the ECCS. For columns with slenderness ratio

l/r <50, the finite strip method results and curve B3 - 27 are identical but

for more slender columns (l/r > 50) curve B3 - 27 underestimates the test

data considerably, as shown in Fig. 4.2. On the whole the finite strip method

simulates the test data more accurately than curve B3 - 27. This shows the

capability of the present method for the analysis of heavy sections.

Dibley[165] carried out a series of tests on beams of I-section under uniform

bending moments. Four sections made up of two universal columns and two

universal beams were chosen to cover a wide range of sections and slenderness

ratios. Both initial imperfections and residual stresses were measured. Only

two specimens were found to exhibit measurable values of initial imperfection.

The testing was accomplished by a system of loading at four points so that

the centre of the unsupported span carried a uniform bending moment. The

beams' ends were constrained in guides to move vertically only, with the load

applied vertically downwards. The measured values of maximum bending mo-

ments were reduced to account for the effect of dead load bending moment

of the beam itself, and friction in the loading and support systems. For com-

parison purposes, both IJB and UC sections were analysed with a parabolic
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pattern of residual stress, of maximum O.lo,o accounted for. The plots of

critical moment against the effective slenderness ratios are shown in Fig. 4.3a

and 4.3b for the universal beam and column respectively. For the universal

beam the finite strip method underestimates the criticai moments by 4% ot

beams with effective slenderness ratio of hr ^ 60, but the correlation between

theory and experiment is good for more slender beams. The observations for

the universal columns are similar to those for universal beams. In the two

cases the finite strip method is found to compare very well with the test data.

The agreement between the theory and experiment demonstrated by these

comparisons validates the finite strip method as an accurate numerical tool

for the analysis of the collapse behaviour of structural elements under uniaxial

compression or uniform bending moment.

4.2 Elevated Temperature Comparison

The above comparisons cover ambient temperature structural response. In this

section the elevated temperature structural response is given consideration. It

is apparent that previous theoretical predictions of elevated temperature fire

resistance of steel columns is markedly lower than the experimental data. In

an attempt to bridge this gap modification factors were used to buffer the

theoretical predictions[135]. In the present consideration the unfactored results

are compared with test data.

Vandaznme and Janss[132] carried out high temperature tests on 29 columns.
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The tests covered a wide range of parameters such as different cross-sections

and slenderness ratios. During the course of experimentation both the geomet-

rical and structural imperfections were measured. These imperfections were

found to be within the acceptable tolerance adopted by the ECCS for study

of the buckling characteristics of columns at ambient temperature. Material

yield stresses were measured as well. Most of the specimens were protected,

which ensured fairly uniform temperature distribution in the columns. The

test specimens were placed in the furnace vertically and clamped in a special

end device intended to provide rotational restraint at both ends. Each col-

umn was loaded axially and exposed to fire in accordance with the Iso 834

standard. The load applied to the column at ambient temperature was kept

constant for the whole duration of the fire test. The longitudinal expansion of

the loaded column was not restrained and the failure time was considered to

the time at which the thermal elongation due to temperature is balanced by

the deflection due to softening. For comparison purposes, a buckling length

of 50% of the test specimen length was used. As shown in Fig. 4.4 the finite

strip results compared favourably with the test data. Although there is some

scatter in the correlated results, the theory shows significant agreement with

experiment.

Olesen[136] carried out tests on 30 columns covering a range of slenderness

ratios. The columns were mounted horizontally in a special furnace and the

furnace temperature was kept at a prescribed level for different tests. The

loading on the column was increased at a constant rate until buckling devel-

oped. It was observed that the loading rate did not significantly affect the

buckling load at temperatures lower than 500° C but its influence became no-
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ticeable when the temperature was higher than 550°C due to creep effect. No

information was reported on the extent of the creep effect on the behaviour

of columns. The finite strip calculations were carried out assuming effective

length of 50% of the test specimen. The theoretical and experimental data

are compared in Fig. 4.5. There is remarkable agreement between the two

although it should be noted that, due to lack of information reported for the

tests, a nominal yield strength of 250N/mm 2 was used in the calculations.

Aasen and Larsen[140] performed tests on 15 pin-ended and 5 end-restrained

columns. All the test specimens were milled from IPE16O section. The av-

erage measured yield strength was 448N/mm 2. Residual stresses were not

measured i.e assumed zero residual stress due to miliing. The tests covered a

wide spread of parameters such as slenderness ratio, load level, rotational and

axial restraints, end eccentricity, rate of loading, heating rate and temperature

gradient. The test columns were mounted vertically and bolted to end fixtures

which acted as hinged bearings. The heating was accomplished by low volt-

age elements attached to the outside of each flange. The test specimens were

insulated with blankets of ceramic fibres which were made from a synthetic

mixture of alumina and silica. The testing procedure comprised two phases.

First, the load was applied in increments at room temperature. Second, at a

prescribed level the load was kept constant while heating progressed. In order

to introduce axial restraint the axial end displacement was fixed. For corn-

parison purposes, the columns were analysed with 100% of the test specimen

length used in the calculations. The results are compared in Fig. 4.6, which

shows very good correlation between theory and experiment although there is

some scatter of test results.
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Knublauch et al[127] carried out comprehensive elevated temperature tests on

steel columns in BAM-Berlin. The test specimen length was 3.6m with the

ends outside the furnace. The lower end was placed on a hydraulic jack (sup-

posed to function as a hinged end) which pressed the upper end against a

beam connected to the loading frame (supposed to function as a built-in end).

The ISO 834 heating path was followed. Due to the test specimen arrangement

there was a thermal gradient along the length of the column. The temperature

difference between the hottest and coldest parts of the column was in excess

of 200°C. The temperature distribution in the embedded length(80% of test

specimen) is fairly uniform. During testing the axial loading was kept con-

stant while heating progressed and the thermal elongation was not restrained.

The critical temperature was taken to be the average of the centre point tem-

peratures. In the finite strip calculation, the uniform temperature assumed

is taken over a buckling length corresponding to 70% of the specimen length.

The theory is found to agree with the experiment to an appreciable extent as

shown in Fig. 4.7.

Hoffend[137] carried out elevated temperature tests on steel columns with de-

liberate eccentricity of loading. The columns were tested vertically with an

eccentrically applied axial load. No detailed information on the support con-

ditions, residual stresses and initial out-of-straightness was reported. For corn-

parison purposes, the finite strip analysis is based on the 70% of the specimen

length without consideration given to the structural imperfections. The corre-

lation between the finite strip method and test data is good as shown in Fig.

4.8. The scatter exhibited by the compared data is reasonably low.
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British Steel Corporation[?] carried out fire tests on three 203 x 203 x 52UC

columns to BS 476 Pt8 requirements. Two of these columns were partially

protected with lightweight bricks built between the flanges using an ordinary

strength mortar. This left the webs protected against thermal exposure. The

third column was tested unprotected. The yield stress was measured and

found to range between 276 and 349 N/mm2. The base of each column was

embedded in concrete and a concrete cap was cast at the top to leave a 3m

length of steel exposed. No information was available on base fixity and the

residual stresses. For comparison purposes, the finite strip method analysis

was based on 50% of the column length. It is found that the blocked-in-web

columns tests were accurately simulated by the finite strip method while the

bare column failure load was overestimated by 8% as shown in Table 4.1.

* blocked-in-web column

Table 4.1: Comparison between BSC test data and FSM

Column Temperature(°C) Test Failure Computed
I.D	 Flanges Jj	 Stress	 Stress
1	 626 1!02	 138	 139
1*	 701 1!95	 83	 80
1**	 692	 83	 76

** bare column.

In all cases of elevated temperature comparisons the failure stress is the mean

stress obtained by dividing the failure load by the member cross-sectional area.

From the above comparisons it is apparent that the finite strip approach is an

efficient numerical method for analysing the collapse behaviour of steel columns
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at elevated temperature. This method is subsequently used for parametric

studies presented in the following chapter.
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Chapter 5

PARAMETRIC STUDIES

The finite strip method described in the previous chapter has been used to

study the inelastic buckling of structural members at elevated temperature.

Both columns and beams have been analysed with pin-ended conditions. This

means that restriction is placed on the lateral deflection and twist at the ends

but lateral bending is not restricted. The analysis excludes geometric initial

imperfections and axial load-deformation behaviour. Only uniform temper-

ature distributions are considered. These are the limitations of the present

finite strip method. In practice, depending on the position of a member in a

building, the temperature distribution in a member, both along its length and

across the cross-section, may not be uniform. However, for internal columns

exposed to fire from all sides the heating will be approximately uniform and

the majority of investigations by others have been for such conditions. Hence

the problems considered in this chapter, although restricted to uniform tem-

perature distribution, have practical application. Non-uniform temperature
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distribution across the cross-section is covered in Chapter 6.

The possible modes of failure are local and overall buckling, and material

yielding. In general these will not occur in isolation but will interact, although

in many cases one mode may be dominant. This will depend on many factors

such as

• the slenderness ratio

• the stress-strain relationships and the material property expressions

• the magnitude and distribution of residual stress

• the eccentricity of loading

• the local buckling phenomenon

Many of the investigations carried out to date have been experimental. Be-

cause of the high cost involved only a limited number of parameters have been

considered. The use of the present analysis offers an opportunity for exten-

sive parametric study without the costs associated with a large experimental

programme.

The effects of slenderness ratio of the member, the stress-strain-temperature

relationships, residual stresses and load eccentricity are investigated. In ad-

dition a section is analysed under uniform bending to estimate the effect of

fire on beams. The influence of local buckling on the behaviour of columns

at elevated temperature is also investigated. The behaviour of blocked-in web

columns is studied as well.
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5.1 Effect of slenderness ratio

The inelastic behaviour of columns at ambient temperature depends on the

slenderness ratio of the member. Elastic buckling can be divided into three

main regions namely local, interaction and overall. The influence of each of

these buckling modes depends on the magnitude of slenderness ratio. In some

cases failure by material yielding may occur depending on the material stress-

strain relationship. By applying the finite strip method to analyse columns at

increasing temperature over a range of slenderness ratio, the effect of fire on

each of these failure modes can be studied.

For the purpose of this study a 203 x 203 x 52UC section is analysed for a range

of slenderness ratios from 20 to 180. The ambient temperature yield strength

and modulus of elasticity are assumed to be 250N/mm2 and 205kN/mm2

respectively.

Fig. 5.1 shows the relationship between critical stress, o,., and slenderness ra-

tio for increasing temperature. The critical stress is non-dirnensiona3ised with

respect to ambient temperature yield stress, 0y,20• At ambient temperature

the familiar pattern of material yielding dominates for low slenderness ratio

and elastic overall buckling at high slenderness ratios is evident. At 200°C

a similar curve is obtained but the critical stress is clearly reduced compared

with the ambient temperature condition. This reduction is approximately 12%

for slenderness ratios up to 100 but becomes negligible for slenderness ratios

greater than about 120.

At higher temperatures(O > 200° C) the curves have the same form but again

69



the critical stress decreases with increasing temperature due to softening of

the material. Also shown are the Euler overall buckling curves and the yield

stress for various temperatures. For high slenderness ratios there exists a good

approximation to the critical stress where loss of stiffness is evident while in the

low slenderness ratios region the loss of strength dominates the behaviour. It

is evident that for all slenderness ratios the influence of buckling is important.

The same information in Fig. 5.lis presented in Fig. 5.2 as non-dimensionalised

critical stress (O/orV,2O) against temperature. It is noted that very stocky

columns(l/r ^ 20) lose strength gradually as the temperature increases up to

500° C. The decrease in the buckling stress becomes rapid as the temperature

increases further. This behaviour is similar to the variation of yield stress with

temperature also shown in Fig. 5.2. This shows that the failure of very stocky

columns is dominated by yielding.

The response of intermediate columns, 40 < hr 80, is similar to that

of stocky columns but at reduced buckling stress. However, in this range of

slenderness ratios the reduction in buckling stress with increasing temperature

is more uniform and shows no sudden drop, due to the interaction between

buckling and yielding.

The slender columns, 100 ^ hr 140, respond differently by exhibiting a

much reduced rate of loss of capacity within the temperature range 20°C ^

o ^ 250° C. This rate decreases further with increasing slenderness iatio. For

such slender columns Euler buckling is of course more important, and the

influence of material stiffness is therefore more pronounced. At temperatures

higher than 250° C the bearing capacity begins to decrease more rapidly.
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Fig. 5.3 shows the same information as Fig. 5.2 but as a plot of critical stress,

non-dimensionalised with respect to ambient temperature critical stress, 0c,,20,

rather than yield stress, °V,2O The curves show a wide spread depending on

slenderness ratio. It becomes clear that columns with different slenderness

ratios lose strength at different rates as temperature increases. The critical

temperature can be considered as the temperature at which the critical stress is

reduced to, say, 60% of the ambient temperature bearing capacity. The wide

range of critical temperatures exhibited by these columns is quite evident.

For example, stocky columns(l/r = 20) exhibit critical temperatures of about

520° C while the corresponding value for a slender colurnn(l/r = 100) is about

300° C. This suggests that the general notion that columns become unstable

at 550° C is not applicable to all columns.

It may seem surprising that failure of some columns occurs at temperature as

low as about 300° C. However this was also shown to be the case by Witteveen

and Twilt[152] whose experimental data are also shown on Fig. 5.4 where

critical temperature is plotted against slenderness ratio. It is quite clear that

experimental data are somewhat lower than predicted values but the gen-

eral form of critical temperature variation with slenderness ratio is similar.

The difference in the predicted and experimental critical temperatures may be

connected with the fact that the finite strip calculations are based on perfect

column conditions. The inclusion of structural imperfections such as residual

stresses may reduce the predicted critical temperature. It is clear that both the

stocky and very slender columns exhibit a better performance than columns of

intermediate slenderness ratios which are perhaps more typical of those used

in buildings. It seems reasonable to conclude that the behaviour of stocky
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columns is dependent on the yield strength while slender columns are greatly

influenced by the elastic modulus. The interaction between the yield strength

and reduction of stiffness may be dominant in the behaviour of intermediate

columns. This appears to result in the reduced performance of such columns.

Clearly this should be reflected in any quantitative design approach for columns

in fire because of different conditions prevailing in their behaviours. For exam-

ple, the behaviour of stocky columns is dominated by material yielding while

slender columns show an elastic overall buckling. The response of intermediate

columns is controlled by the interaction between material yielding and elas-

tic overall buckling. These features must be reflected in any fire engineering

system for column design.

5.2 Effect of stress-strain relationships

In fire steel strength properties degrade with increasing temperature. At a

temperature in excess of 300° C these properties become markedly non-linear.

This clearly indicates a continuous form of material constitutive equation.

This brings into question the validity of a bilinear stress-strain-temperature

relationship. However, because of its simplicity such a bilinear form is attrac-

tive, with the stress-strain-temperature relationship represented in terms of

yield stress and elastic modulus. Many proposals for expressions relating yield

stress and modulus of elasticity to temperature have been reported in the lit-

erature but only the ECCS[128], CTICM[149] and those derived on the basis

of BS5950 Pt.8[162] test data (Equation (3.48) to (3.62)) are considered. The
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expressions for strength properties recommended by ECCS for fire resistance

analysis and design of structural steel members are

= 0y,20 (i + 
767 ln(jqj))	

0°C ^ O^ 600°C

/ 108 (1	 ° ''
-	 600°C ^ 0 ^ 1000°C= 0y,20	 0 - 440 )

E9 = E20 (-17.2 x iO-'2 04 + 11.8 x iO0

- 34.5 x 10'0 + 15.9 x io-o + i)
	

0°C ^ 0 ^ 600°C (5.2)

0 > 600°C, Ee is not defined.

(5.1)

The CTICM expressions are given by:

011,9 = V,2O (i 
+ 900 in())

1 340 - 0.340'
0y,O = 0y,20 ( 0— 240 )

E9 = E20 ( + 
20O01n(jf))

0> 750° C, E9 is not defined.

0°C ^ 0 ^ 600°C

600°C 0 ^ 1000°
	

(5.3)

0°C ^ 0 ^ 750°
	

(5.4)

where

0,,g is the yield stress at elevated temperature

O'y,20 is the ambient temperature yield stress

E9 is the modulus of elasticity at elevated temperature

o is the temperature in °C

The continuous stress-strain-temperature relationship is modelled on the Rarnberg-

Osgood formula(Equation (3.47)) as shown in Fig. 3.2 and the elastic-perfectly

plastic stress-strain-temperature relationship is given by:

0 = Ee(ç,,, + ö( -	 (5.5)
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6 = 1 o•<o,e

6 = 0 O^Oy,G

where u is the stress and	 is the effective yield strain corresponding to o

at elevated temperature.

For the purpose of this study a 203 x 203 x 52UC section was analysed.

The assumed ambient temperature yield stress and modulus of elasticity are

250N/mm2 and 205kN/mm2 respectively. The results are presented as critical

stress-slenderness ratio and critical stress-temperature relationships. The crit-

ical stress is non-dimensionalised with respect to ambient temperature yield

strength.

5.2.1 Comparison between bilinear and continuous stress-

strain-temperature representation (B S 5950)

The curves shown in Figs. 5.1 and 5.2 in section 5.1 were obtained using the

BS5950 data represented as a continuous stress-strain-temperature relation-

ship. The characteristics of the predicted column behaviour based on this

representation have been discussed in the previous section.

Similar calculations for the same stress-strain-temperature relationships but

using an assumed bilinear representation are presented in Fig. 5.5 .and 5.6.

The relationship between critical stress and slenderness ratio is plotted in Fig.

5.5. The critical stress is non-dimensionalised with respect to the ambient

temperature yield stress, oo. There are two distinct features associated with
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these curves. The stocky and intermediate columns, l/r ^ 80, buckle at ef-

fective squash loads while slender columns, l/r> 80, fail in an elastic overall

buckling mode. It is observed that the tendency for columns to buckle at

effective squash loads increases with temperature. For example at ambient

temperature the maximum slenderness ratio for column buckling at effective

squash is 80 while at 700° C this value has increased to 105. This is in sharp

contrast to the observation made on the column curves generated using a

continuous stress-strain relationship with the same material property expres-

sions(Fig. 5.1), where a sharp decline in the buckling stress was noted at a

slenderness ratio of about 25 for temperatures beyond 200°C. It is interesting

to note that there is no difference in the behaviour of columns with slenderness

ratios of l/r 80 under bilinear stress-strain representation.

In Fig. 5.6 the same information as in Fig. 5.5 is presented as a non-

dimensionalised critical stress (o 1./o,2o)-temperature relationship. It is clear

that the buckling stress decreases gradually within the temperature range of

20°C < 0 ^ 450°C for the whole range of slenderness ratios, hr ^ 180, consid-

ered. As temperature increases further the decrease in buckling stress becomes

rapid. Comparing these characteristics with Fig. 5.2 shows that bilinear form

of representation of material properties leads to the behaviour of stocky and

intermediate columns, h/r 80, being identical. This is in marked contrast

to the response of such columns under continuous form of representation in

which a clear distinction in behaviour is observed.
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5.2.2 Comparison between bilinear and continuous stress-

strain-temperature representation(ECCS)

The results presented in Figs. 5.7 to 5.10 represent the same analysis in

which the ECCS[134] expressions were used with both bilinear and continuous

stress-strain-temperature representations. The range of data generated using

the ECCS expressions is limited to a maximum temperature of 600° C, due to

the fact that E9 is not defined at temperatures greater than this.

In Figs. 5.7 and 5.8 the curves show the results of calculations using continu-

ous stress-strain-temperature relationships. In Fig. 5.7 the critical stress(non-

dimensionalised with respect to ambient temperature yield stress)-slenderness

ratio relationship is plotted at increasing temperature. The familiar response

of columns under continuous stress-strain-temperature representation is evi-

dent, although at a different buckling stress level depending on the yield stress

and elastic modulus expressions. Generally the buckling stress decreases with

increasing temperature.

The same information in Fig. 5.7 is presented in Fig. 5.8 as a non-dimensionailsed

critical stress-temperature relationship. This shows a steady decline in buck-

ling stress for stocky columns (20 ^ hr ^ 40) throughout the range of tem-

peratures considered. The behaviour of intermediate columns, 40 <l/r 80,

does not differ significantly from this. However slender columns, 10() ^ l/r ^

140, exhibit a gradual decline in buckling stress within the temperature range

of 20°C <0 <200°C but as temperature increases beyond 200° C there exists

a rapid decrease.
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The results of the same analysis using a bilinear stress-strain-temperature

relationship are presented in Figs. 5.9 and 5.10. In Fig. 5.9 the curves show

a non-dimensionalised critical stress(o,./o, 2o)-slenderness ratio relationship

at increasing temperature. It is clear that both the stocky and intermediate

columns, hr 80, buckle at effective squash loads within the temperature

range of 20°C 0 500°C. This range of columns buckling at effective squash

loads decreases slightly as the temperature increases beyond 500°C.

Fig. 5.10 shows the same information as in Fig. 5.9 as a non-dimensionalised

critical stress(o r/o y,2o)-temperature relationship. There is consistent depre-

ciation in budding stress with temperature for a range of columns with slen-

derness ratios i/v ^ 80. For other columns there exists a more gradual decline

in the buckling stress up to a certain temperature before rapid decrease in

buckling stress is experienced. For example, a column with slenderness ratio

of 100 exhibits a gradual decline in bearing capacity up to a temperature of

about 200°C while a column with a slenderness ratio of 140 exhibits the same

behaviour up to 400°C. This shows that as the slenderness ratio increases

the influence of temperature reduces. It is quite evident that the bilinear

stress-strain-temp erature representation results in an identical behaviour for

stocky and intermediate columns, i/v 80 unlike the continuous stress-strain-

temperature representation.
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5.2.3 Comparison between bilinear and continuous stress-

strain-temperature representations(CTICM)

The same calculations described above were performed using CTICM[149] ex-

pressions using both the continuous and bilinear stress-strain-temperature rep-

resentations. The results of these are presented in Figs. 5.11 to 5.14.

In Figs. 5.11 and 5.12 the results of the analysis using a continuous stress-

strain-temperature representation are presented as curves of non-dimensionaiised

critical stress(o,/o,,2o)-slenderness ratio. The familiar response of columns

under continuous stress-strain-temperature representation is evident again but

at a different buckling stress level depending on the yield stress and modu-

lus of elasticity expressions. It is noted that buckling strength decreases with

increasing temperature.

In Fig. 5.12 the same information as in Fig. 5.11 is plotted as a

non-dimensionalised critical stress-temperature relationship. The linear rela-

tionship between critical stress and temperature for stocky columns(l/r ^ 40)

is quite evident. For intermediate columns, 60 ^ l/r 80, the characteristics

of these curves do not differ significantly from the behaviour of stocky columns

except that the buckling stress shows an increasingly marked decline at a tem-

perature of about 200°C. For more slender columns the initial loss of strength

within the low temperature range, 0 200°C, is less.	 -

The characteristics of the column behaviour using a bilinear stress-strain-

temperature representation are shown in Figs. 5.13 and 5.14. The curves in

Fig. 5.13 show the non-dimensionalised critical stress (o,/u,2o)-slenderness
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ratio relationship at increasing temperature. It is clear that the columns with

slenderness ratios of hr ^ 90 buckle at an effective squash load.

In Fig. 5.14 the same information as in Fig. 5.13 is plotted as the relationship

between non-dimensionalised critical stress and temperature. It is clear that

both stocky and intermediate columns, l/r 90, exhibit a steady decline in

buckling stress throughout the range of temperature considered. It is noted

that this group of columns exhibit identical characteristics.

5.2.4 Comparison between different continuous stress-

strain-temperature representations

In order to draw comparisons between different strength expressions using

continuous stress-strain-temperature representations the relationship between

non-dimensionalised critical stress(o,/o ,2o) and slenderness ratio for the three

proposals(BS5950, ECCS and CTICM) is plotted in Fig. 5.15. It is clear that

the predictions of buckling behaviour of columns based on the ECCS expres-

sions are the most conservative of the three. The BS5950 expressions result in

the highest buckling stress predictions. This difference increases with increas-

ing temperature. The difference in the column response using these expressions

increases with temperature. For example, for low slenderness ratios, l/r ^ 80,

at 200° C the difference between critical stress calculated using BS5950 and

ECCS expressions is about 10% but at about 400°C this increases to about

31%. However, for high slenderness ratios, hr > 120, at 200°C the CTICM

expressions result in the highest buckling stress, albeit marginally different. It
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is noted that with further increase in temperature this discrepancy decreases

even further. Generally, the CTICM expressions result in a column response

intermediate between the other two. The column responses using these expres-

sions become identical as slenderness ratio increases beyond the region where

interactive buckling is effective(i.e for slender column). For example the differ-

ence in the behaviour of slender columns, l/r > 120, using these expressions

is insignificant within the temperature range of 0 ^ 200°C. It is noted that

both ECCS and CTICM expressions result in almost identical predictions at

200°C.

5.2.5 Comparison between different bilinear stress-strain-

temperature representations

In order to draw comparisons between different strength expressions using

the bilinear stress-strain-temperature representation the relationship between

non-dimensionalised critical stress(o,./o,2o) and slenderness ratio for the three

proposals(BS5950, ECCS and CTICM) is plotted in Fig. 5.16. It is noted that

BS5950 expressions always yield the highest buckling predictions, especially in

the region of stocky and intermediate columns, l/r ^ 80. This difference in-

creases with temperature. For example, at 200° C the difference between buck-

ling stress calculated using both the BS5950 and ECCS expressions is about

6% while at 400° C the difference is about 31%. For more slender columns,

l/r> 100, their behaviour becomes identical under the three sets of expres-

sions within the temperature range of 20°C ^ 0 ^ 400° C. Both the BS5950 and

CTICM expressions result in the same buckling predictions for such columns
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throughout the range of temperature considered.

5.2.6 Summary of comparisons

For more comparisons the critical stress-temperature relationships using both

bilinear and continuous stress-strain-temperature representations for each of

the three proposals(BS5950, ECCS and CTICM) are plotted in Fig. 5.17(a

to d) for different slenderness ratios. It is noted that for stocky and interme-

diate columns the bilinear stress-strain-temperature representation results in

higher buckling strength prediction than the continuous form of representa-

tion, although the discrepancy diminishes as slenderness ratio increases. For

example at 300° C the difference in the buckling stress corresponding to an in-

termediate column, i/i. = 80, under both bilinear and continuous stress-strain-

temperature relationships is about 24% while for a slender column, hr = 140,

the difference is about 8%. For a very slender column, 1/i> 140, all the three

sets of expressions result to the same buckling strength within the temperature

range of 20°C^ 0 ^ 200°. It is observed that the ECCS expressions result in

the same curves under the two stress-strain representations.

From the discussion above it is clear that the non-linear representation of the

steel material properties exhibits a considerable influence compared to the bi-

linear stress-strain-temperature representation. This is evident in the region

of stocky and intermediate columns in which the bilinear form fails to show

any distinction in such columns' behaviour under all cases of strength property

expressions. Furthermore the buckling strength predictions under the bilin-

ear stress-strain-temperature representation result in higher values compared
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with the continuous form. It is noted that the discrepancy between columns'

response under both bilinear and continuous representations diminishes with

increasing slenderness ratio.

5.3 Effect of residual stress

Residual stresses are known to influence the early failure of hot-rolled and

welded structural members at ambient temperature. These stresses result

from differential cooling taking place during fabrication or manufacture. The

differential cooling leads to variation in the temperature, and the parts which

cool first contain residual compressive stress while the parts that cool later

contain residual tension. The residual stresses depend on the shape of the

cross-section (i.e the heavier the section the larger the magnitude of the resid-

ual stresses). Up to the present no experimental work has been reported on

the measurement of the effect of residual stresses on steel columns in fire. This

leaves a gap in understanding the extent of their influence on the behaviour

of steel columns in fire.

In order to study the influence of residual stresses on steel columns in fire

a parabolic residual stress pattern is assumed, as shown in Fig. 5.18a. No

attempt is made to redistribute these stresses in fire. Since the heating en-

countered by a member in a building fire differs substantially from the heating

and cooling cycles in the annealing processes the residual stress magnitude at

elevated temperature is assumed to be the same as its ambient temperature

magnitude. A 203 x 203 x 52UC section was analysed over a range of slender-
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ness ratios at various levels of residual stress magnitude (O.lOy,20 - O.S0y,2O).

The ambient temperature yield stress and modulus of elasticity are assumed

to be 250N/mm2 and 205kN/mm2 respectively.

In Fig. 5.18a to 5.18d the non-dimensionailsed critical stress (o,/O ,2o)-

temperature relationships at various levels of residual stress are plotted for

different slenderness ratios. It is clear that buckling strength decreases as

residual stress increases but the effect is approximately even for stocky and

intermediate columns, l/r 60. For example in Fig. 5.18a the curves for

a stocky column, l/r = 20, are evenly distributed throughout the range of

temperature considered. The general trend of buckling stress decreasing as

temperature increases is still evident. The decrease is steady until a tempera-

ture of about 500° C is reached, beyond which a rapid decline in the buckling

strength is evident. The behaviour of intermediate columns, hr = 60, differs

significantly from that of stocky columns as shown in Fig. 5.18b. The buck-

ling strength varies approximately linearly with temperature at low levels of

residual stress (O.1o,2o - 0.2o,2o), but at high residual stress levels there is a

sudden drop in the buckling strength within the temperature range of 200° C

^ 0 400° C . These characteristics are identical to the behaviour of slender

columns, l/r = 100, as shown in Fig. 5.18c but at a reduced buckling stress

level. The behaviour of a very slender column, hr = 140, differs significantly

from that of stocky and intermediate columns(Fig. 5.18d). It is noted that

only high values of residual stress, u, ^ O.5o V,20, influence the behaviour of

such columns at relatively low temperature.

It becomes apparent that only a. very high value of residual stress influences

83



the behaviour of very slender columns at temperatures lower than 200°C. Gen-

erally, the influence of residual stress diminishes as slenderness ratio increases

at elevated temperature.

In Fig. 5.19a to 5.19e the non-dimensionalised critical stress (o,/o,,2o) with

respect to ambient temperature critical stress is plotted against temperature.

For columns with slenderness ratio of l/r > 60 it is obvious that as the level of

residual stress increases these curves become more tightly grouped. In the re-

gion where the critical stress is reduced to, say, 60% of the ambient temperature

bearing capacity there exists a wide range of critical temperature depending

on slenderness ratios. These are plotted as critical temperature-slenderness

ratio relationships at different residual stress levels as shown in Fig. 5.20. It is

interesting to note that at low levels of residual stress(o,. = O.lo,2o) the pat-

tern of these curves does not differ significantly from the curve corresponding

to an initially stress-free condition. The critical temperature decreases as the

residual stress level increases. The behaviour of a stocky column, l/r = 20, is

not significantly influenced by the residual stress, as reflected in the limited

range of critical temperature exhibited(512°C to 526°C). It is noted that at

the maximum level of residual stress considered, 0,. = O.50y,2o, the critical

temperature for columns with a slenderness ratio of l/r ^ 80 remains fairly

constant (i.e about 260°C).

The very slender columns, l/r ^ 160, show a considerable variation in critical

temperature with increasing level of residual stress. For example, the range

of critical temperature exhibited by columns with a slenderness ratio of 160

is between 272°C and 413°C at maximum and minimum levels of residual
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stress respectively. This shows that this class of columns is more susceptible

to the influence of residual stress in terms of performance in fire relative to

the ambient temperature condition.

It can be concluded that residual stress is detrimental to the performance of

steel columns in fire but the magnitude of the effect of these stresses varies

from column to column. The behaviour of very stocky columns, l/r <20, is

not influenced by the presence of residual stress. It can be concluded that the

bigger the magnitude of residual stress the more is the possibility for slender

columns to exhibit identical behaviour(the same critical temperature).

5.4 Effect of eccentricity of loading

The difficulty in achieving a properly aligned structure implies that eccentricity

of loading will often occur in columns. The direction of eccentricity of loading

may be along both axes of buckling in the plane of the sections. It is understood

that when this tends to induce bending about the strong axis its effect is very

small and thus can be neglected. The maximum effect occurs when it acts to

induce bending about the weak axis. Thus at elevated temperature only the

applied eccentricity inducing bending about the weak axis is considered with

uniform temperature distribution.

For the purpose of this study a normal 203 x 203 x 52UC section was analysed

at different levels of applied eccentricity (0.01, 0.05, 0.1, 0.3 and 1.0 of the

half flange width) for a range of slenderness ratios. The ambient temperature
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yield strength and modulus of elasticity are assumed to be 250N/mm2 and

205kN/mm2 respectively.

In Fig. 5.21a to 5.21e the relationship between critical stress, o s,., and tem-

perature is plotted at increasing levels of eccentricity. The critical stress is

non-dimensionalised with respect to ambient temperature yield strength. The

influence of eccentricity on the behaviour of stocky columns with slenderness

ratio of l/r = 20 is evident (Fig. 5.21a) with the buckling strength decreasing

as the level of eccentricity increases. Between 20°C and 400°C the buckling

strength decreases fairly steadily at low eccentricity level, e ^ 0.3b1 , but as

temperature increases beyond 400° C there is a rapid decrease in the buckling

stress. With increasing level of eccentricity the temperature at which this sud-

den drop in capacity occurs increases. For example, at an eccentricity level

of 0.01b1 this temperature is about 450°C while at the maximum eccentricity

considered, e = 1.0b1 , it is about 500°C.

The behaviour of more slender columns, l/r ^ 60, is different from that of

stocky columns as shown in Fig. 5.21b to 5.21e. It is noted that there is a

fairly steady decline in the buckling strength throughout the range of tem-

perature and eccentricity considered. It is evident from Fig. 5.21e that low

levels of eccentricity do not influence significantly the behaviour of very slender

columns, l/r > 140, but the influence of high levels of eccentricity is significant.

In Fig. 5.22a to 5.22e the curves show the plot of non-dimensionalised critical

stress with respect to ambient tenerature critical stress (O ,./o ,2o) against

temperature. By inspecting these curves it is clear that they become more

evenly distributed with increasing level of eccentricity. This is an indication
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that the critical temperature-slenderness ratio relationship becomes more lin-

early related as the level of eccentricity increases.

In the region where the critical stress reduced to, say, 60% of the ambient tem-

perature bearing capacity the wide range of critical temperatures is apparent.

These are plotted in Fig. 5.23 as a critical temperature-slenderness ratio re-

lationship. It is noted that there are two distinct features associated with the

behaviour of columns when the level of eccentricity is low, e ^ 0.3b1. For

columns with slenderness ratio hr 100 the critical temperature increases

with the level of eccentricity, while the reverse is the case for more slender

columns, l/r > 100.

At the maximum level of eccentricity considered, e = 1.Obj , the critical tern-

perature decreases approximately linearly throughout the range of slenderness

ratio considered(h/r 160).

Generally, the influence of eccentricity decreases with increasing temperature.

The effect of this imperfection on the behaviour of columns differs from column

to column. It is noted that there is improved performance in fire condition

relative to ambient temperature for both the stocky and intermediate columns,

l/r < 80, with increasing level of eccentricity, while slender columns, hr ^ 100,

exhibit decreasing critical temperatures with increasing level of eccentricity.
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5.5 Effect of local buckling phenomenon

Local buckling is often responsible for the early failure of stocky columns with

slender component plates. The local buckling of any component of the struc-

tural element depends largely on the width-to-thickness ratio of that compo-

nent. For a low ratio the ultimate strength of the member may be reached

before buckling occurs while for a large ratio local buckling will be evident.

The extent of this phenomenon in fire has not been established.

To study the effect of local buckling on the behaviour of steel columns in fire

different sections, with flange width-to-web width ratios of bj/b =0.25, 0.45,

0.50, 0.60 and width-thickness ratio of flange outstands of bj/t1 = 10, 18,20,24

were analysed. In all the analyses the ambient temperature yield strength

and modulus of elasticity are assumed to be 250N/mm 2 and 205kN/mm2

respectively.

In Fig. 5.24a to 5.24g the relationship between critical stress and half wave-

length, A, is plotted for the different cross-sections. The critical stress, o,., and

half wavelength are non-dimensionalised with respect to ambient temperature

yield strength and web width respectively.

Generally there are three categories of half wavelength A/b-large, interme-

diate and low, which characterise these buckling curves. It is noted that at

ambient temperature(Fig. 5.24a) the point on the curves where elastic overall

buckling starts to be prominant depends on the dimension of cross-section.

As expected, for slender cross-section the range of slenderness ratios for which

local buckling is predominant increases. There is an increase in the range of
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half wavelength over which local buckling occurs as the cross-section dimension

increases.

The buckling curves start to deviate from elastic overall buckling as the half

wavelength decreases. The deviation from the elastic buckling as half wave-

length decreases may be as a result of inelastic material behaviour, elastic local

buckling or a combination of the two.

In order to establish the extent of the influence of local buckling on the be-

haviour of columns the elastic analysis of columns with b1/b = 0.6 was Un-

dertalcen at increasing temperature. It is noted from the superimposed elastic

curves in Fig. 5.24a to 5.24e that the influence of local buckling is evident only

at ambient temperature. For example, at ambient temperature the reduction

in capacity as a result of local buckling interaction is about 12.5% but at 200° C

its influence is completely eliminated. This shows that, in design situations in

which local buckling has been safeguarded against at ambient temperature, its

influence on the the structural behaviour at elevated temperature is remote. It

can be concluded that local buckling does not influence the behaviour of steel

columns in fire. The influence of degradation of the material properties in fire

overshadows the effect of this phenomenon on the behaviour of steel column

in fire.

In Fig. 5.25a to 5.25e the plots of non-dimensionalised critical stress with

respect to ambient temperature critical stress( ,/o,.,2o) against temperature

are shown for different half wavelengths. These curves exhibit a fairly linear

pattern. In the region where the critical stress reduces to, say, 60% of the

ambient temperature capacity a very limited range of critical temperatures is
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evident.

These temperatures are plotted in Fig. 5.26 as critical temperature-slenderness

ratio relationships. The most compact section, b1 /b,,, = 0.25, exhibits a fairly

wide range of critical temperatures(360°C to 440°C) compared to the most

slender section, b1/b = 0.6, with critical temperature range of 315° C to 350° C.

The compact section, b1/b,,, = 0.25, shows an increasing critical temperature

in contrast to the more slender section, bj/b > 0.25.

5.6 Sections under uniform bending

It is weli known that beams buckle laterally when subjected to loading. The

capability of a beam to carry its full plastic moment depends on its slenderness

ratio. A very short beam can sustain a full plastic moment while a very slender

beam may buckle at a moment which is significantly less than the plastic

moment at ambient temperature. Local buckling can also be an important

factor if the member is made up of very slender component plates. At elevated

temperature the behaviour of beams depends on the material properties and

the temperature distribution. In the present study only uniform temperature

distribution is considered.

For the purpose of this study a 203 x 203 x 52iJC section was analysed over a

range of slenderness ratios. The ambient temperature yield strength and mod-

ulus of elasticity are assumed to be 250N/mm2 and 205kN/mm2 respectively.

The curves in Fig. 5.27 show the non-dimensionalised critical bending stress
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(ub,,/o V,2o)-slenderness ratio relationship at increasing temperature. At am-

bient temperature beams with low slenderness ratios fail by material yielding

while those with high slenderness ratios fail in an elastic overall buckling mode.

At 200° C their behaviour is similar to that at ambient temperature, but at a

reduced critical bending stress. This reduction in the critical bending stress

becomes marginal at slenderness ratios greater than 140.

At higher temperatures the pattern of these curves is similar but at reducing

critical bending stress with increasing temperature.

Fig. 5.28 shows the same information as in Fig. 5.27. The non-dimensionalised

critical bending stress(ub,/o,2o) is plotted against temperature. The varia-

tion of critical bending stress with temperature clearly depends on the slen-

derness ratio. Stocky beams, l/r 40, exhibit a gradual decrease in critical

bending stress up to a temperature of 450° C before a rapid decline. Inter-

mediate beams, 40 < l/r ^ 80, show a steady decrease in critical bending

stress throughout the range of temperature considered while slender beams,

l/r> 100 show a gradual decline in the strength between 20°C and 200°C

before a rapid decrease is evident.

Fig. 5.29 shows the relationship between critical bending stress non-dimensionalised

with respect to the ambient temperature critical bending stress and temper-

ature. It is noted that these curves are widely distributed, especially in the

region where the critical bending stress reduces to say, 60% of the ambient

temperature critical bending stress. This shows a wide range of critical tem-

perature. This temperature is plotted against the slenderness ratio in Fig.

5.30. It is evident that stocky and intermediate beams, l/r < 60, exhibit
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critical temperatures higher than those of the more slender beams, l/r > 60.

It is noted that stocky and intermediate beams perform better than the slen-

der beams in fire relative to ambient temperature. This is in contrast to the

behaviour of sections under compressive load, in which stocky and slender

columns perform better than intermediate columns.

5.7 Behaviour of blocked in web columns

A blocked in web column can be described as a column with blocks laid between

the inner faces of the flanges as shown in Fig. 5.31. This is intended to

protect the web from radiant and convected heat resulting in a reduced rate

of temperature increase, thus improving the fire resistance in term of the time

taken for collapse to occur. There is limited information on the behaviour

of blocked in web columns in fire. The only published works are concerned

with the tests conducted by British Steel Corporation[171]. The results of

these tests have been used as the basis for a grading of such columns by the

Building Research Establishment[175]. This implies that the performance of

blocked in web columns in term of fire resistance is independent of slenderness

ratio. In view of the results described earlier for bare columns suggesting

that slenderness ratio is an important factor in this respect, further studies

have been conducted on blocked in web columns to investigate the influence of

slenderness ratio on this form of construction. To this end a range of columns

with slenderness ratios in the range ,l/r 160, are analysed. The section

considered is a 203 x 203 x 52UC and the temperature profile is assumed to be

that measured in the British Steel Corporation tests[171] for a stocky column
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of the same section with slenderness ratio of 40.7.

Fig. 5.32(a) shows the plot of non-dimensionalised critical stress, o,/o,2o,

against slenderness ratio at increasing temperature for both bare and blocked

in web columns. It is noted that both columns show an identical behaviour

implying that blocking in of a column results in no increase in failure tempera-

tures. However, the same information is plotted with respect to time as shown

in Fig. 5.32(b). The influence of the blocking in of the web is now clearly

evident at any time the blocked in web columns fail at consistently higher

buckling capacities compared to bare columns. This means that blocked in

web columns will survive for longer period in a fire than the equivalent bare

columns.

The behaviour of the blocked in web columns is clearly dependent on slender-

ness ratio like bare columns.

The relationship between non-dimensionalised critical stress, u/u,2o and

temperature for a range of slenderness ratio, hr 140, is shown in Fig.

5.33. It is noted that at the region where the buckling stress is reduced to

say, 60% of the ambient temperature bearing capacity there is a wide range

of critical temperatures exhibited by these columns. These temperatures are

plotted in Fig. 5.34 as critical temperature - slenderness ratio relationship.

It is interesting to note that only stocky columns, l/r ^ 20, show critical

temperatures of about 530° C which corresponds to a failure time of about

30 minutes. For other slenderness ratios the failure time is dependent on the

slenderness ratio but is always lower than 30 minutes. For example, a column

with a slenderness ratio of 60 shows a failure time of about 15 minutes while
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a column with a slenderness ratio of 120 shows a failure time of about 24

minutes. This contradicts the published information in the Building Research

Establishment Digest[175] which implies that all blocked in web columns have

the same fire resistance time of 30 minutes.

It can be concluded that the performance of blocked in web columns is not

influenced by the blocking in of the web in term of failure temperature but

there is significant improvement in their performance in term of failure time. It

is noted that in any circumstances, the behaviour of blocked in web columns is

dependent on the slenderness ratio and that in view of the published guidance

further research in this area would be valuable.

Concluding Remarks:

From the inelastic buckling analysis of H-sections under axial compression

and pure bending it is clear that many parameters influence the behaviour of

steel columns in fire. Such parameters include the slenderness ratio, residual

stresses, eccentricity of loading, different stress-strain relationships and cross-

section dimensions. The following conclusions may be drawn:

1. The behaviour of stocky and intermediate columns is controlled largely

by yield strength while the behaviour of slender columns is controlled

by modulus of elasticity. The behaviour of intermediate columns is con-

trolled by the interaction between material yielding and elastic overall

buckling.

2. The range of critical temperature exhibited by different columns shows

that columns with different slenderness ratios behave differently in fire.
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Stocky and slender columns perform better than those with interme-

diate slenderness ratios, which are perhaps more typical of those used

in building. The lowest critical temperatures of about 300° C are for

columns within the range of slenderness ratio of 80 ^ hr ^ 100.

3. The non-linear form of the material properties of steel at elevated tem-

perature is better represented by a continuous stress-strain-temperature

representation instead of bilinear form. A bilinear form of representa-

tion results in a higher buckling strength prediction than the continuous

stress-strain-temperature representation with any of the three sets of

expressions considered. A continuous representation has a considerable

influence on any column's behaviour in fire whereas a bilinear representa-

tion results in identical behaviour for stocky and intermediate columns.

However, for more slender columns the discrepancy in buckling predic-

tions using these representations decreases.

4. The ECCS expressions for yield strength and modulus of elasticity have

been found to be the most conservative of the three sets of expressions

considered. This shows that there is a likelihood of underestimating

the buckling strength of columns when designed to the ECCS recom-

mendations. The BS5950 expressions consistently result in the highest

buckling strength prediction, while the prediction based on the CTICM

expressions falls in between the predictions based on BS5950 and ECCS

expressions irrespective of the stress-strain relationships.

5. Generally residual stress has a detrimental influence on the behaviour

of columns in fire. This varies from column to column depending on

slenderness ratio. The critical temperature decreases with increasing
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level of residual stress for the whole range of columns considered with the

exception of a very stocky column, l/r = 20, which shows minor variation

in its critical temperature with increasing level of residual stress. The

bigger the magnitude of residual stress the more the tendency for slender

columns, hr ^ 80, to exhibit identical critical temperature.

6. The maximum effect of load eccentricity occurs when it acts so as to

induce bending about the weak axis. The effect of load eccentricity

depends on its magnitude. For a very low level of eccentricity its ef-

fect on the behaviour of slender columns is insignificant at relatively

low temperature. It is noted that there is improved performance in

fire relative to ambient temperature for both the stocky and interrne-

diate columns, hr 80, with increasing level of eccentricity, while for

more slender columns the exhibited critical temperatures decrease with

increasing level of eccentricity.

7. It is noted that the influence of local buckling on the behaviour of

columns diminishes with increasing temperature. It can be concluded

that if local buckling is not a problem at ambient temperature then it is

less of a problem at elevated temperature.

8. The behaviour of a section under uniform bending is similar to that

under compressive load, but the range of beams with low values of critical

temperature is higher than that of columns.

9. The performance of blocked in web columns is not influenced by the

blocking in of the web in term of failure temperature but there is signifi-

cant improvement in their performance in term of failure time. It is noted
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that in any circumstances, the behaviour of blocked in web columns is

dependent on the slenderness ratio.
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Chapter 6

THE EFFECT OF THERMAL

GRADIENT ON STEEL

COLUMNS

6.1 Theoretical Development Of The Finite

Element Method

During the course of a fire temperature distribution in the steel, both along and

across the cross-section, may not be uniform. This may be due to the heating

pattern or partial protection of the member offered by walls or floors. The

exposure of a steel member to a heat source from one side results in thermal

bowing towards the fire. This is due to the expansion of the hot material on

the fire side.
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The distribution pattern of temperature in a structural member depends on

its position in the building. An external or partially protected column may

be exposed to the building fire from one side. The partial protection arises if

columns are built into walls or have webs completely blocked-in with bricks or

brickwork. The protected part of the steel maintains its strength properties at

a value close to those of ambient temperature. This is clearly a beneficial effect.

However, the thermal gradient which results from the partial heating leaves

the column with an induced thermal bowing if the element is not restrained

or an induced bending moment if the element is rotationally restrained at its

ends. This can be described as the bowing of a beam or column due solely to

the internal strains caused by the temperature gradient over the cross-section

of the member.

The magnitude of the thermal bowing depends on the pattern of the tern-

perature distribution across the cross-section. At present there is no proper

understanding of this phenomenon.

The reversed bowing often experienced in fire tests might be as a result of

the early bowing towards the heat source(thermal bowing) but as heating

progresses this is overshadowed by the degradation of stiffness towards the

hotter parts. This phenomenon is often observed in the fire resistance tests of

steel columns. Cooke[170] reported the occurrence of reversed bowing in the

elevated temperature tests conducted on model columns in which thermal gra-

dient was intentionally simulated. This phenomenon makes the understanding

of the thermal gradient more difficult and thus exhaustive analytical studies

are required to explicitly establish the thermal gradient theory.

99



Culver et al[147] studied (analytically) the behaviour of steel columns under

thermal gradient by assuming the induced thermal bowing as initial out-of-

straightness. They concluded that thermal gradient is detrimental to the steel

column behaviour. The extent of the effect of thermal gradient is not yet

quantifiable. The induced bowing depends on the type of support condition

provided in the fire tests. For a pinned-end column the bowing can be con-

sidered as equivalent to an arc of a cirde. This is Cooke's[170] approach in

modelling the effect of thermal gradient on beams(Fig. 6.1).

In an attempt to study this phenomenon an existing finite element program,

INSTAF[169], which is concerned with the ultimate strength analysis of braced

and unbraced multi-storey frames, has been extended and modified. The pro-

gram was originally developed at the University of Alberta. The necessity to

adapt this method to study the thermal gradient effect on steel columns is

born out of the deficiency of the finite strip method previously developed to

cater for the overall geometrical imperfection of the member and interaction

between axial load and thermal bowing. The analysis is based on a stiffness

formulation which accounts for geometric and material nonlinearity. The basic

assumption of the finite element development is that the element is treated

as a beam-column which corresponds to a line element approach. The basic

degrees of freedom are shown in Fig. 6.2. Generally, this approach helps with

the inclusion of many parameters such as residual stresses and eccentricity of

loading. The load-deformation characteristics of the structure can be traced

by solving the finite element equations using the Newton-Raphson iteration

technique.
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In order to include the effect of thermal gradient within the INSTAF devel-

opment the displacement functions have been modified by superposing the

induced bowing on the original displacement functions. This results in a

complete remodelling of the problem parallel to the original development,

with other original assumptions retained. At the same time the tn-linear

stress-strain relationship has been replaced with a series of the stress-strain-

temperature relations modelled by Ramberg-Osgood formulae as earlier used

in the finite strip method.

The thermal bowing displacement component comprises the thermal bowing

amplification factor K which varies sinusoidally along the member length with

a half-sine wavelength. Thus the in-plane displacement functions are as shown

in Fig. 6.3 and are given by:

U = U0—ysinfl—KStanfl

V = V0 —y(1—cosfl)+KSz
	 (6.1)

in which U0 and V0 are the displacement functions corresponding to the refer-

ence axes. These are basically functions of assumed interpolating polynomials.

In the original development of INSTAF it was assumed that the slope at any

point along the reference axis is given by Equation (6.2)

,v0
V0 = -i--- = sin8

where is the rotation. Differentiating Equation (6.2) with respect to z yields

Equation (6.3)

(6.2)
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(6.3)

(6.4)

(6.6)
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"=cos4ç

From Equation (6.3)

dli	 V0'
dz - cos18

The thermal bowing amplification factor K is given by

crMl2
K	

8d

where

c is the coefficient of thermal expansion

tO is the difference between coldest and hottest flange

1 is the length of the element

d is the depth of the section.

The method of deriving the thermal bowing amplification factor is documented

in ref [170].

The derivatives of the displacement functions with respect to z are given by

K,rC	 V'	 V"
U = u:—yv0"—	 f1(V,)2z(l(1..ri!)2)i

V'V"	 K,r	
(6.5)v, -v,- OY\,,rl°&,)2+rCz

where

SI = sin

C1 = cos



+

The axial strain is related to the displacements as given below, to second order

= u' + { (U)2 + (v)2 }
	

(6.7)

By substituting Equation (6.5) into Equation (6.7) the resulting strain equa-

tion is

=

+

+

+

(/i)2	
1U + [(U + (1,)2] - y1" + U: + 

fi - ( )2]

	

(111)2 1 KrC	 Vi,'1y2(vi1)2 [i	 (VI)2] -	 - (11)2 + U:]

v,"	 ___
KSZ( - (VI)2) lb

K2ir2C F ('1/1)2	 K2irCS	 V,'V,"
	212 [1— (V,)2 +11 +	 2!	 (1-

K2SZ	 (1111)2
2 (1 - (1/1)2)3 (6.8)

The strain increment 6 is

= [1+u:—yv']ou:+ [V01-2y_v:v:
,/i_(V)2

(V')3V"	 V'(V")2 + 2 (V1)3('/11)2 1
2	 1— (1/1)2 1' (1— (yI)2)2j 5"Y(1 (V)

[Y21_Y(1+u	 (V1)2 1
—y

IKirC	 Vo'	 1':
+KSZ

1 1	 - ()2	 (1— (V?)2)] 
ou:

_____	 1	 (T/l)2 \
+

[KCZ(l + 
U:) (' - ()2 (1— (v?)2))

I31','V," \
+ KS(1 + U: + 11v') ((i - (1/I)2))

- K2 r2C Iv	 (1')	 \
2	 - (1/1)2 + ( 1— (171)2)2)
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- K2 rCS I	 4(V')2V" \

21	 ((i - (1/1)2)2 + (1- (1/1)2)3)

- 
3I(2S (T/SS)2T,fl 	 KirCi] 

.51f'
(1 - (1/1)2)4 -	 1

- 
{yKsZ ___

1'I"	 V0,1 1
	(1 - (Vl)2) + K2S(1 - 

(iJ	 (6.9)
The displacement function components U0 and V0 are

U0 = [{} {O}] {q}

V0 = [{O} {q5)] {q}

where the displacement parameter vector is

U1
(au

O)1
U2

{q} =	 ( ) 2

(6.10)

(6.11)

The shape function polynomials are

{4,}T - I (e+')(—')2 I- 1 (2—e)(-I-1)2

I (-1)(e+1)2

where

(6.12)

C
	 z	

(6.13)

The change in stress, Ao, is

cr =
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where

b,	 J= o—dv—Q1
Oq,

(6.16)

where

= aM

Application of the principle of virtual work results in the following energy

equation.

6W = j0r2&zdv_{Q}T{Eq}=O

in which

a2 is the stress

{Q}T is the external load vector

{ 
5q}T is the incremental displacement parameter vector

The energy equation can be rewritten as

(6.14)

(6.15)

for i = 1 to 4

By substituting the strain increment expression into Equation (6.15), the re-

sulting equation is

1 ffrz	([l+U—yV,"]6U
L.'i 'A

0	 0/0 0
+ [ 2 _

v'v"

- Ji
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V'(V")2	(V" 2(v')3________	 6V- V 1 - (1/1)2 + ! (1 - (V)2)2

V"(V')2
+ [Y2v_Y(1+u1)+ 

i-(Vfl2

(V' 2 1	 ________
-	 _______ w' - [JC7rCz VOl

- (1/1)2] °	
L	

- (1/1)2

V'1	 1	 FK1z
+ KS,_- °

(1	 (1/1)2)

(

1	 (V')2
- (1/1)2 (1 -

+ KS,(1+U+yVo")

- K27r2C, ( VI	 (V0')3

P

- K2,rC,S, I	 Vi"	 4(1/1)21(11

21	 v(1 - ( )2)2	 (1— ()2)3)+

- 3K2S 
(1(11)21/I -
	 cs] '

(1 - (V')2)4

-
 [YKS	

'"	 41cS,(1+U:+yV01'
'(1 —(v)2)

IV011 \ JC2 'C,5, _________

( (i - (V0l)2),	 2!	 (1 -

VI'	 1- K2S,_- (1/1)2)3] cW") dA.dz]

- {Q}T {cq} = 0	 (6.17)

By defining the stress resultants as

N = jorxdA

M = jorzydA

M = jy2dA

the energy equation can be written as

(6.18)
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[j(A1w: + A2vsV + A361") dz] - {Q}T {öq} = 0	 (6.19)

where

A1 = N(1+U)—MV'

N [KIrC r 	V01	

+ KSZ(1 - (vl)2)]
	

(6.20)-	 l)2

A2 = NV—M---3---2+ _
(Vs)2

1(1i)2

V'(V') 2 f1 
+ (/l)2 )i+ M* l o (v,)2 1	 1_(1I)2

+ N f3Ks(1 ^ U)(1 - (1/i)2)

K,)(	

1	
1)

-	 1	 1 - (1/1)2 + (1 - (vs)2)

K2 ,r2 C2 I V0'	
+	

(1)3	

2

-_

P	 - (1i)2 	 (1 - (1/1)2)2

	

(11')2V'	

KCzJ 
+ 3MKS _

111(1111)2

(6.21)- 3K2S	 -	
(1— (v1)2)

	( 2	 1A3 = —M [1 + U0 + - 
()2j

(V')2 
J +N IK1rCZ SZ+ M*VOI 

[1+ j(1(')2	 [	 2!	 (1— (115)2)2

KS2 (1+U)+ K2S(1(,,jiji_	
(1_(1)2)]

M[Ks	

V"	 (ll)2 
1+KSZ-	 Z( - (V1)2)	 (1 - ('(/s)2)J	 (6.22)

From Equation (6.16) the expression for can be deduced as follows

DV'	 av"l
= J[Ai_ + A2--2 +	 dz - Q =0	 (6.23)

1	 0q1
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in which i has a range of 1 to n (i.e n = 4). If Equations (6.23) are not satisfied,

corrections to the q may be obtained by the Newton-R.aphson iteration method

as follows;

=
	 (6.24)

in which a repeated suffix summation convention is used and j also has a

range of 1 to n. By substituting the expression for 1'j into Equation (6.24),

the resulting equation is

I I8u11 OU 0A2 OV + 
---1 dz] tq3

8q 8qJ

ou'	 OV	
dz	 (6.25)= Qi_A[A1+A2-+A3--J

Equation (6.25) is the basic Newton-Raphson equation which leads to the

extraction of the tangent stiffness [KT] and the out-of-balance load vector

{i Q} . Thus Equation (6.25) can be written as

[KT]{Eq} = {iQ}
	

(6.26)

in which

KT,	
/ 18A 1 OU 0A2 0V, 

+	 dz	 (6.27)
=	

+	
8q1 Oq j

and the unbalanced load vector EQ1 is given by

ou'	 av'	 av"
I Q$ = - / {A1 --a +	 + A3-?-] dz	 (6.28)
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The incremental equilibrium equation for an element is given by Equation

(6.26). The element stiffness matrix for any given temperature profile can be

evaluated with respect to nodal displacements within the framework of the

cartesian coordinate system shown in Fig. 6.2. The global nodal displace-

ments for the structure are given by

{q}r. = [11{q}
	

(6.29)

and the transformation matrix [T] is given by

Cs

00
00
00

[11=

00
00
00

where

00	 0	 00
0 C2 52 0 0
00	 0 CS

00	 0	 00
00	 0	 00
—1CS—CS0 0
0 0 0 S—C

00	 0	 00

0	 0	 Qi

00	 01
00
0 C2 S2 I

0	 0	 0	 I (6.30)

00	 01

00	 01
—1 CS —CS]

C=cos7

S = sin''
	

(6.31)

and 'y is the orientation of cartesian coordinate system relative to the global

reference axes. The derivation of the transformation matrix is documented by

Zanaty et al [1691. The global displacement vector is given by

{q'} = { u' v' e' (au" 8V 1
) (w)

where the superscript I denotes the node I.

The transformed incremental equations can be expressed as
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[KT]G {iqj0 = {áR,}G
	 (6.33)

where

[KTIQ is the transformed stiffness matrix for an element

{ t. qe} is the transformed incremental displacement vector for an element

{IRe}G is the transformed unbalanced force vector for an element.

Assembly of the element stiffness matrix leads to a structural tangential stiff-

ness matrix, and the structural incremental equilibrium equation is obtained

as follows:

[KT]{&} = {ER}
	

(6.34)

in which

['(TI is the structural tangent stiffness matrix

{&} is the assembled vector of incremental nodal displacements

{AR} is the assembled vector of incremental nodal forces called out-of-balance

forces.

The load-deformation characteristics of the structure can be traced at any

specified temperature profile by solving Equation (6.34) for the incremental

nodal displacements, which are added to the total nodal displacements to

ensure equilibrium.
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6.1.1 Evaluation Of Tangential Stiffness (KT)1

The tangential stiffness is given by

	

( 8U	 DV'	 DVi') dz	 (6.35)
(KT)82 

= J e
11 — + C2j 2 + C3

	

q11 	 t9q

in which

8A1
eli =

oq3

8A2
C2, =

oq,
0A3

C31 =
oqj

(6.36)

The expressions for Cjj, e2, and e31 are given in appendix B.

To evaluate the stiffness coefficients (KT)15 and the incremental unbalanced

forces AQ, the stress resultants N, M and M with their derivatives aq,' Oq,

and 8M must be evaluated first.
Oq,

For inelastic behaviour the stress resultants are evaluated when the strain

distribution is known and the stress-strain-temperature relation is defined.

The stress resultants may then be calculated numerically in the x-y reference

plane. To accomplish this the plate is divided into 5 regions and the summation

of the stress resultants over the plate length is effected as reported by Zanaty

et al[169]. This leads to the following equations;

N = jodA
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n
=	 (6.37)

k=1r=1

M = foydA
JA
n

= E	 [7ir (7/jr + 2ii) + o jr (7/i,. + 2y,.)]	 (6.38)
k=1 r=1

M = I oy2dA
JA

?1	 5
rk

=	 L -- [as, (4y,. + 2y, - i)
k=1 r=1

+ aj,(44,+2y,—l)]	 (6.39)

in which

r is the plate region

n is the number of the plate segments

k is the plate segment index

tk is the plate segment thickness

1, is the plate region length

i and j refer to the two ends of each region.

Full details of this approach can be found in Zanaty et al[169].

The evaluation of cross-section properties is based on the transformed area

approach which allows for nonlinearity in the material properties. The method

of evaluation of transformed area of the cross section is extensively covered in

Zanaty et al [169] but for completeness a brief review of the method is presented

herein.

If each element area is transformed such that the product of the current tangent

modulus at any temperature, E(0), times the element area A, is equal to the

original effective modulus, E9, and the element of transformed area, At, then

112



E(0)A = E9At
	

(6.40)

and also

= E(0)b,	 (6.41)

in which b is the transformed thickness of a particular region r and b,. is the

original thickness of this region. The tangent modulus is obtained from the

stress-strain-temperature relation. This is given by the following equation:

1
E(0) =

do

+ O.O1n 
(1W) 

()(fl9_1)

= E8	E9 O	

(6.42)

The value of E9 is obtained from the reduction equations given in the previous

finite strip development (Equations (3.48) to (3.62)). Thus the section is

transformed and the cross-section properties are evaluated as given below;

At = fdAt
JA'
n

=>Ak
k=1

I= fydA
JAt
n

= EAkYk
k=1

= I y2dA
JA'

n	 n

=

	

k=1	 k=1

= I y3dAt
JAS

	

n	 n

= 3E(1z)kYk+EAkY,
k=1	 k=1
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dA- ____

— E(0)
(6.46)

=	
y4dA

= E ( I4xx) k Y, + AkY	 (6.43)

in which (IXZ)k is the moment of inertia of the segment k about the centroidal

axis x-x of the segment and (I4zx) k is defined as

I4zx = jy4dA	 (6.44)

6.1.2 Evaluation of the incremental stress resultant

vector for the inelastic element

The incremental stress resultants ,	 and	 are evaluated by considering

the variation in the stress resultants N, M and M* at any stage of loading for

a given temperature profile:

oN = jEi(0)&dA

LM = jEt(0)ScydA

6M* = fEg (0)oEy2dA
	

(6.45)

where E(0) is the tangent modulus at elevated temperature. The elemental

area dA is given by

Thus the transformed section properties are completely defined. The substi-

tution of these properties together with the strain increment into Equation
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E9A1b11 - E91b21 + E9P2b31

E9Ib11 - E9Ib2 , + E91b31

ON

0q1
OM

Oq,

0M

0q1
E91b11 - E91b21 + E91b3, (6.47)

(6.48) followed by differentiation with respect to q, results in the following

stress resultants upon integration of Equation (6.48).

expressions for b13, ¼ and b, are given in appendix B.

The evaluation of the stress resultants is achieved by using a continuous stress-

strain-temperature relationship of a Ra.mberg-Osgood type as used in Chapter

3. For elevated temperature, a set of stress-strain curves, Equations (3.48) to

(3.62), are substituted to replace the ambient temperature stress-strain rela-

tionship. For any defined temperature profile the stiffness matrix, stress resul-

tant and their derivatives are evaluated. The load-deformation characteristics

of the structure can be traced at any defined temperature profile by solving

the Newton-Raphson equations. The accuracy of the present development is

established in the following section.

6.2 Validation Of The Finite Element Method

The finite element program INSTAF has been modified as described in the

previous section to incorporate continuous stress-strain relationships at both

ambient and elevated temperatures. In order to establish the adequacy of

the method comparison was made with the finite strip method developed in

Chapter 3 together with appropriate test data on steel columns. These data
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indude thermal gradient tests reported in the literature although it should be

appreciated that this evidence is limited.

First, a 152 x 152 x 23UC column was analysed using the methods at ambient

temperature for a range of slenderness ratios. The finite strip analysis is based

on an initially perfect column without inclusion of structural imperfections

while the finite element calculation is carried out with a small initial imperfec-

tion of magnitude 1/10000. The need to prescribe a small initial imperfection

arises from the inability of finite element method to handle perfect members.

The results from the two calculations are shown in Fig. 6.4. It can be seen

that the two theories are in close agreement.

Second, some fire tests on steel columns were simulated using the two meth-

ods. Both Olesen's[136] and Vandamme and Janss's[132] test data were used.

From experimental details these tests can be classified as uniform tempera-

ture fire tests. The finite element analysis is carried out with a small initial

imperfection of the magnitude stated above. As shown in Fig. 6.5 the two

theories agree with each other significantly. It has been shown earlier that the

finite strip approach is in close agreement with the test data. On this basis the

good correlation between the two signifies the accuracy of the finite element

approach. Furthermore, the finite element method is compared with both test

data as shown in Fig. 6.6(a & b). In both cases the theory and experiment

are in good agreement with minimal scatter. Based on these comparisons the

method has been proved accurate for the analysis of uniformly heated columns.

Cooke[170] carried out fire tests on model steel columns fabricated by milling to

size hot rolled mild steel bars. The columns were pin ended and are 1360mm

116



long. The variation in the member cross-sections provides a range of slen-

derness ratios to be tested. The actual yield stress and elastic modulus at

ambient temperature were measured prior to testing. The fabrication pro-

cesses were carefully controlled to ensure a minimum level of residual stress in

the specimens. The applied load on each column was calculated according to

BS449[167]. Heating of the member was accomplished by attaching the elec-

tric heating element to one flange. This resulted in a non-uniform temperature

distribution across the cross-section. Temperature over the cross-section and

both horizontal and vertical displacements were measured at various times into

the tests. For comparison purposes, the finite element analysis was based on an

initially deflected column. This is of the order of 1/1000, and is assumed to vary

with a half sine wavelength along the member. The temperature-deformation

history is plotted in Fig. 6.7, which shows good agreement between theory

and experiment.

British Steel Corporation[171] carried out fire tests on steel columns built into

a fire resistant wall to assess the effect of such partial protection on steel col-

umn behaviour. The columns used in these tests were 203 x 203 x 52UC's. The

actual yield stress of the specimens was measured at ambient temperature, but

no information was provided on initial out-of-straightness. The end conditions

were not known and but the base details indicate a support condition close to

full restraint. For comparison purposes the finite element calculations are un-

dertaken by admitting a fully fixed-ended condition. As shown in Fig. 6.8 the

temperature-deformation plot shows considerable agreement between theory

and experiment.
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From the above validation this approach can be expected to provide a reliable

basis to analyse steel columns under fire conditions. The influence of thermal

gradient across the member cross-section is investigated as reported in the

next chapter.
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Chapter 7

PARAMETRIC STUDIES

The finite element method described in Chapter 6 has been used to study

the influence of various parameters on the behaviour of columns in fire. The

parameters considered are the initial out-of-straightness, thermal gradient, dif-

ferent end conditions and eccentricity of loading which until now have received

only very limited attention in the context of column behaviour in fire.

The occurrence of thermal gradient is common in building fires. This may

be as a result of partial protection of steel columns or, in case of an external

column, being exposed to fire from one side only. The early bowing towards

the heat source is caused by differential heating across the cross-section. It

is possible to assess the interaction of this phenomenon with the variation of

material properties that arises from the non-uniform temperature distribution

across the cross-section.

Furthermore, a simple column model based on Shanley's theory was developed
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to demonstrate the influence of interaction of thermal gradient with eccentric-

ity of loading on the behaviour of columns in fire.

7.1 Effect of initial out-of-straightness

In practice no perfectly straight members exist and there is some measure of

initial out-of-straightness associated with any structural member. The initial

out-of-straightness can be local when component plates are initially deformed

or overall in case of a member bowing longitudinally, and the combination of

both. This may cause some loss of stiffness prior to loading. For uniformly

heated columns the presence of initial out-of-straightness may result in early

buckling. No experimental work has been reported in which the influence of

this imperfection on column behaviour has been properly assessed.

The effect of initial out-of-straightness on columns in fire is studied by analysing

an H-section over a range of slenderness ratios at various levels of initial out-of-

straightness(l/10000 1/1000 1/500 1/250). The deflected shape for this study

was assumed to be a half sine wave over the length of the member. This is

achieved with the program by entering the values of the initial deflections at

the nodes. For this study only uniform temperature distribution throughout

the member is considered.

In Fig. 7.l(a to e) the failure stress-temperature relationship at various levels

of initial out-of-straightness is plotted for a. stocky column with a slenderness

ratio of 20. The failure stress is non-dimensionalised with respect to ambient
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temperature yield strength. It is clear from Fig. 7.la that the influence of this

imperfection is not significant on stocky columns. The reduction in failure

stress is very low within the temperature range of 20°C ^ 0 ^ 400°C. With

further increase in temperature the failure stress decreases rapidly at all levels

of the initial out of straightness. Generally the failure stress decreases 'with

increasing level of initial out-of-straightness.

As slenderness ratio increases the influence of the initial out-of-straightness

increases. In Fig. 7.lb the intermediate column, l/r = 60, shows a significant

response to the presence of initial out-of-straightness at relatively low temper-

ature (0 ^ 400°C). However as the temperature increases further the influence

of this imperfection diminishes. For example at ambient temperature the dif-

ference between the column capacity at zero and 1/1000 out-of-straightness

levels is about 13% while at 500°C this decreases to about 8%.

From Fig. 7.lc to 7.le it is clear that the response of slender columns,

1/r ^ 100, does not differ significantly from that of the intermediate columns.

It is noted that columns with a slenderness ratio of 100(Fig. 7.lc) show the

greatest response to the presence of initial out-of-straightness. As the slen-

derness ratio increases beyond 100 initial out-of-straightness has a diminish-

ing effect as shown in Fig. 7.ld and 7.le. Thus both the stocky and very

slender columns do not respond significantly to the presence of initial out-of-

straightness.

Fig. 7.2a to 7.2d shows plot of a failure stress non-dimensionalised with respect

to the ambient temperature failure stress against temperature for a range of

slenderness ratios and initial imperfections. It is evident that these curves be-
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come tightly grouped as the level of initial out-of-straightness increases. Thus

the range of critical temperature corresponding to the point where failure stress

reduces to, say, 60% of the ambient temperature bearing capacity decreases

with increasing level of initial out-of-straightness. The critical temperature-

slenderness ratio relationship is plotted in Fig. 7.3. It is noted that the be-

haviour of both the stocky columns, hr ^ 40, and slender columns, hr ^ 125,

is not influenced significantly by the presence of initial out-of-straightness.

These columns exhibit a very short range of critical temperature variation with

initial out-of-straightness. For example a stocky column, hr = 20, has a crit-

ical temperature varying between 530°C undet petect dcu eci AlQ°C

at maximum level of initial out-of-straightness. It is apparent that columns

with slenderness ratios of 40 and 130 show no response to the presence of

initial out-of-straightness in terms of critical temperatures. For intermediate

slenderness ratios, 40 < hr < 125 , the critical temperature increases with

the level of initial out-of-straightness. For example a column with slenderness

ratio of 80 exhibits an increase of about 113° C at maximum level of initial

out-of-straightness compared with the perfect condition.

it is clear that initial out-of-straightness has variable influence on different

columns depending on their slenderness ratio. In term of critical temperature,

it is evident that both stocky and slender columns are detrimentally influenced

by this imperfection but only marginally while the remaining columns show

an improved performance with increasing level of initial out-of-straightness,

when comparing high temperature with ambient temperature performance.
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.2 Effect of different end conditions

In practice columns are rarely pin-ended but are connected to other compo-

nents of the structure by a variety of connection types. Although the basic

pin-ended column has traditionally been used as a reference point on which

real columns are designed the influence of different end restraint is significant

and the increase in strength associated with rigid supports is well established.

The concept of effective length is often used to model this inthience. This

length decreases as the degree of end restraint provided increases, allowing the

member to buckle at a load higher than the pin-ended condition.

In this study only two types of end restraint are considered namely hinted

and fully fixed end conditions. A 203 x 203 x 521JC section was analysed

under uniform temperature distribution over a range of slenderness ratios. The

ambient temperature yield strength and modulus of elasticity are assumed to

be 250N/mm2 and 205kN/mm2 respectively.

In Fig. 7.4 the curves show the failure stress-slenderness ratio relationships.

The failure stress is non-dimensionalised with respect to ambient temperature

yield strength. it is clear that at ambient temperature a significant difference

exists between the column response for the two different end conditions when

the slenderness ratio is greater than 80. For stockier columns, hr ^ 80 there

is no response to the variation in the end restraints at ambient temperature.

This is not the case as temperature rises. Between 200° C and 600° C full fixity

at the ends results in higher failure stress for the whole range of slenderness

ratios considered. For example at 600°C for a column with slenderness ratio
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of 80 there is about 20% difference in its response. However this difference in

column response as a result of different end conditions decreases as temper-

ature increases beyond 600° C. For example at 700°C the two end conditions

result in almost the same column curves.

The same information is replotted in Fig. 7.5 as non-dimensionalised failure

stress-temperature relationships for different slenderness ratios. It is apparent

that at relatively low temperature, 0 ^ 300°C, the stocky and intermediate

columns, hr < 60, are not significantly influenced by the variation in the

end conditions. Between 300° C and 500° C there is a noticeable difference in

the column behaviour under the two end conditions, with the fully fixed end

condition resulting in a higher failure stress. For example, at 400° C for an

intermediate column, hr = 60, the difference in its response is about 17%.

This difference increases with slenderness ratio.

Fig. 7.6 shows the relationship between non-dimensionalised failure stress with

respect to ambient temperature failure stress and temperature for the fixed-

end condition. Similar curves for the pinned-end condition are plotted in Fig.

7.2a. In the region where the failure stress reduces to, say, 60% of the ambient

temperature failure stress the corresponding critical temperature shows a wide

range under both conditions.

This variation becomes clearer with the plot of the critical temperature-slenderness

ratio relationship shown in Fig. 7.7. It is apparent that the fixed-end condition

improves the performance of columns with slenderness ratios of 20 < hr < 100

while for more slender columns, hr > 100, there is a significant reduction in

the critical temperature compared with the pinned-end condition. For a col-
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umn with slenderness ratio of l/r = 100 the two end conditions result in

identical critical temperature. The same is true for stocky columns, l/r = 20.

It is clear that both stocky and intermediate columns show an improvement in

their performance when fully fixed at both ends while very slender columns,

l/r> 100, show an improved performance under the pinned-end condition in

term of critical temperature.

It can be concluded that the influence of end conditions depends on the slen-

derness ratio of the columns and in a fire resistance test the the influence of

end conditions must be carefully assessed. It is clear that different columns

respond differently to end condition variation.

73 Effect of thermal gradient

In order to investigate the effect of thermal bowing on steel columns a 203 x

203 x 52UC section was analysed over a range of slenderness ratios. Different

temperature distribution patterns were assumed.

In Fig. 7.8 the curves show the plot of non-dimensionalised failure stress with

respect to the ambient temperature yield strength against the ratio of the

minimum to maximum temperature. The distribution was assumed in such

a way that maximum temperature is fixed and the minimum temperature is

increased gradually to ensure a linearly decreasing thermal gradient across the

cross-section. It is noted that the effect of thermal gradient is not significant

with this type of temperature distribution although there is slight improvement
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in the behaviour of columns as thermal gradient increases.

The curves presented in Fig. 7.9 show the failure stress-slenderness ratio re-

lationship. It is shown that thermal gradient enhances the performance of

columns generally. The reason for this may be connected with the variation

in the material properties throughout the member which compensates for the

induced bowing that arises from thermal gradient. Furthermore, the shift in

the neutral axis of the section towards the coldest flanges induces a bending

moment as a result of the eccentricity of loading that arises. This moment

counteracts the applied load to such an extent that the columns appear to

sustain applied load longer.

In Fig. 7.10 the results of the calculations using linear temperature distribu-

tions with three thermal gradients considered(0, —1, —1.52°C/mm) are pre-

sented. The failure stress-centre line temperature relationship is plotted for

various thermal gradients. This is to examine the possibility of thermal gra-

dient having a detrimental influence on column behaviour in fire. However,

for this case of temperature distribution the thermal gradient is shown to be

detrimental to the performance of columns in fire. It should be born in mind

that the calculations for the zero thermal gradient is based on the centre line

temperature which was assumed to be uniformly distributed throughout the

member. This observation agrees with Culver et al[147] who concluded that

thermal gradient is detrimental to the behaviour of steel columns in fire. The

reverse of this behaviour may be experienced when maximum temperature

is used as the parameter for comparison with uniform temperature. This is

demonstrated in Fig. 7.11 in which stepwise temperature distribution is as-
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sumed across the cross-section. It is interesting to note that thermal gradient

tends to improve the performance of columns in fire. It becomes apparent that

the influence of thermal gradient depends very much on the temperature profile

across the cross-section. The variation of strength over the cross-section over-

shadows the detrimental effect of thermal bowing to the extent that columns

tend to sustain applied load longer compared to uniform temperature condi-

tion. It is very difficult to assess the influence of this phenomenon properly

because of the interaction of the variation of strength with the thermal bowing.

The cutoff line of the influence of thermal bowing cannot be defined and thus

the influence of thermal bowing on its own on the behaviour of columns in fire

remains a subject for further studies. From all indications thermal bowing on

its own will not considerably influence the behaviour of steel columns in fire.

Its effect can be equated to that of initial out-of-straightness which depends

very much on the slenderness ratio of the column.

7.4 Effect of eccentricity of loading with ther-

mal gradient

The interaction of thermal gradient with applied eccentricity of loading is

investigated in this section. Thermal gradient causes induced eccentricity as

a result of the shift in neutral axis towards the cold flange. This, coupled

with applied eccentricity of loading may have some significant effect on the

behaviour of a column in fire. Thus the point of application of the applied

eccentricity influences its effect on the response of the columns. For a uniform
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temperature distribution the possibility of a shift in the neutral axis does not

occur. and thus the likelihood of induced eccentricity is less significant. For

the purpose of this study temperature distributions measured by the British

Steel Corporation(SH/RS/3664/6/84/B) test on 203 x 203 x 52UC columns

are used in the calculations. These temperatures are shown in Fig. 7.12.

Fig. 7.12 shows the response of two columns, one with an intermediate slen-

derness ratio, l/r = 60, and a slender column, l/r = 120. The temperature

profile designated as T3 was used in the calculation. The load-eccentricity,

e = ab/2, relationship is plotted.

For the intermediate column, l/r = 60, the maximum load capacity occurs at

an eccentricity of about -72mm away from the centre line of the strong axis.

As the hottest flange softens the neutral axis shifts towards the coldest flange.

The point of maximum load capacity may correspond to the location where

the point of the applied eccentricity coincides with the shifted neutral axis.

For a more slender column, l/r = 120, the maximum load capacity occurs

at an eccentricity of about —54mm away from the centre line of the strong

axis. This shows a decreasing influence of applied eccentricity of loading with

increasing slenderness ratio. This may be as a result of more induced thermal

bowing which is directly proportional to the member length.

In Fig. 7.13 the load-eccentricity characteristics of the same intermediate col-

umn, if r = 60, is plotted at increasing thermal gradient. It is interesting to

note that the eccentricity of the point of occurrence of of maximum load ca-

pacity increases with thermal gradient. This shows that the increasing induced
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eccentricity results in more counteracting induced moment which enables the

column to sustain applied load longer than usual.

It is clear that eccentricity of loading can either deteriorate or improve the

columns' performance depending on the level of thermal gradient and the

amount of eccentricity. If this point coincides with the shifted neutral axis

then an improvement in the performance of a column in fire may be achieved.

7.5 The Shanley column model

The thermal gradient effect can be demonstrated using the simple Shanley col-

umn model. This model was originally used to demonstrate the fact that in-

elastic buckling will begin as soon as the tangent-modulus load is exceeded(the

lower bound of the column buckling load) and that the maximum column load

will be reached somewhere between the loads predicted by the tangent mod-

ulus and reduced modulus theories respectively. The reduced modulus load

corresponds to the upper bound of the column buckling load.

The Shanley model has been modified in order to incorporate the thermal

gradient that will arise as a result of differential heating of the column. As

shown in Fig. 7.14 the two elements of the column cell are assumed to have

deflected in opposite directions through the distances e1 and e2 respectively

which may be regarded as the strains that occur after the column starts to

bend. The lateral deflection d is made up of the thermal bowing plus the

deflection induced by the applied loading system P on the column. Thus the
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(7.1)

(7.2)

(7.3)

(7.4)

total deflection is given by:

1 M
d = fl+a--

= (ei+e2)+a

where

a = 4! is the thermal bowing

and /3 is the rotation.

The external bending moment at the hinge is given by:

M = Pd+Px

= !(ei+e2)+P(x+a)

= 02-01

in which

02 is the hottest flange temperature

01 is the coldest flange temperature

z is the eccentricity of loading

a is the coefficient of thermal expansion(constant).

The axial force in each flange due to bending is given by:

P1 = eiEi(A/2)

P2 = e2E2(A/2)

where E1 and E2 are the effective values of E9 for each flange element respec-

tively. E9 is given by Equations (3.53) and (3.54).

The internal bending moment(about the hinge point) may be expressed as

M1 = Pi+P2
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(7.5)

(7.7)

(7.8)

(7.9)

=	 + e2E2)

Equating internal and external bending moments giv

M=M

A	
(7.6)

l(ei + e2) + 4(x + a){eiEi + e2E2}

By equating E1 = E2 = E(0) then the tangent-modulus load P is given by:

- AEg(0)(d—a)
-	 l(d-Fx)

i.e on substitution of the value of e1 given by

d—a
=

and using E1 = E(O1)

and	 E2 = E(02) = kE(O1)

and

k	
E(02)

- E(O1)

Then

AE(O1)d 1 - + (k - 1)e2}	 (7.10)
= l(d-I-x) .	 d

Another expression for P may be obtained by assuming that after the tangent

modulus load is reached, the column load continues to increase. This increase
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is given by the difference between the element loads P1 and P2 which is given

by.

iP = Pi—P2

- AE(O1) {(d - a) - (k + 1)e2 }	 (7.11)
-	 2

This value should be added to the tangent-modulus load to obtain the total

load P.

P = Pt+'P

	

______	 ___	 d+x •1

	

- AE(O1)d	 _____	 _____
- l(d+x) {i - +2(d_a)X —2(k + 1) 

d 
1e2 J (7.12)

From Equations (7.10) and (7.12) tne value o e 2 cii be ealuatec z

8(d—a)(d+z)
C2 - 

l{(k - 12(k + 1)(d + x)}
(7.13)

Substituting the value of e2 into Equation (7.10) results in the buckling axial

load P given by:

= AE(O1)d '	 a	 2(d—a)(d+x)

l(d+x)	 d{1+2(d+x)(k+1)/(k—	
(7.14)

By letting r = E(O1 )/E(O2) then P is given by:

= AEi(O1)d{ia+r}
l(d + x)

(7.15)

where

r -
	 2(d—a)(d+x)

- d{1+2(d+z)(r+1)/(1 —r)}
(7.16)
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The average stress thu's i8 given by:

E(O1 )d ç	 a
Oave 

= l(d+X)ld+r (7.17)

The average stress-deflection relationships for eccentricities of ±0.2 and zero-

eccentricity are plotted in Fig. 7.15. To simulate thermal gradient the cold

and hot flange temperature are set at 150° C and 450° C respectively. It is

interesting to note that negative eccentricity improves the performance of the

column while positive eccentricity is detrimental to its behaviour. The influ-

ence of thermal gradient on the behaviour of the column was investigated by

tracing the average stress-deflection characteristics at a uniform temperature

of 450°C. This situation corresponds to zero thermal gradient and it was found

that the influence of thermal gradient is quite minimal. The shift in the curves

is mainly as a result of the degradation of the strength properties with tem-

perature. This observation conforms with the earlier experience reported in

section 7.3. Although this is not an exhaustive investigation of the effect of

thermal gradient on columns some insight is provided to justify the observed

behaviour reported earlier in the previous sections.

Concluding Remarks:

From the analytical studies reported in the preceding sections the influence of

some parameters on the column behaviour in fire has been assessed. These pa-

rameters include the initial out-of-straightness, different end conditions (pinned-

end and fixed-end conditions), thermal gradient and the interaction of eccen-

tricity of loading with thermal gradient. A simple Shanley model was used to

assess the influence of thermal gradient and applied eccentricity of loading on
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the column behaviour in fire. The following conclusions may be drawn:

1. The influence of initial out-of-straightness on columns depends on slen-

derness ratio. Stocky and very slender columns are detrimentally influ-

enced in terms of critical temperatures while the intermediate columns

show an improved behaviour with the presence of initial out-of-straightness.

2. In terms of failure temperature the fixed-end stocky and intermediate

columns show an improved performance over the pinned-end condition

while slender columns, hr > 100, respond favourably to the pinned-end

condition. For a column with slenderness ratio of 100 the variation in

the end conditions does not influence its performance in terms of failure

temperature. Thus the type of end condition to be imposed during a fire

test must be assessed with respect to the slenderness ratio of the test

specimen.

3. The occurrence of a significant temperature gradient across the cross-

section results in variation of the strength properties and induced ther-

mal bowing. Because of the variation of these properties the loss of stiff-

ness resulting from the induced bowing can be compensated for. This

overshadowing influence of the strength properties enables the columns

to perform better than in the uniform temperature condition. It can

be concluded that partially protected columns will sustain applied load

longer than expected. Thus designers could allow for this benefit in

designing columns either built into fire resistant walls or with partial

protections that ensures thermal gradient.

4. The point of application of the loading influences a column's response

134



under thermal gradient. If the eccentricity is applied along the posi-

tive direction of the shifted neutral axis the influence of thermal bowing

will be reduced. Furthermore, the variation of the material properties

across the cross-section ensures reduced influence that thermal bowing

will have.

5. The modified Shanley column model shows that thermal bowing may

not constitute a menace to the behaviour of columns in fire compared to

uniformly heated columns(i.e assuming maximum temperature for the

uniform distribution). The influence of eccentricity of loading depends

on the point of application of loading.
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Chapter 8

NONLINEAR ANALYSIS OF

PLATE USING FLOW

THEORY OF PLASTICITY

The finite strip method described previously in Chapter 3 is based on small

deflection theory. This limits the analysis to collapse load calculation using

material nonlinearity based on deformation theory of plasticity. Since plates

can exhibit considerable post-buckling strength the work reported herein is

based on large deflection theory using flow theory of plasticity. Although this

development is not meant to provide detailed information on the post-buckling

behaviour of plates and plate subassemblages, the foundation for the ultimate

strength analysis of plates and plate subassemblages is provided for future

work.
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In the present development the displacement functions for the interactive buck-

ling analysis which satisfy the boundary conditions are

U = Ac ( - + zic ( - + EU,f(x,y)

V = bye - + (Ti - + - sin sin 7

+	 J'(z,y)

W = —2sin7rcos7+EW,f"(x,y)	 (8.1)

where

U f,Y = (Ciuim + C2u2m ) sin mire

= (Cv + C2v2 ) cos nr

W f' = (C4wi + c3e1 + C6w2 + c5e2 ) sin pir	 (8.2)

in which

x

A
I!

- end shortening
C	

A

b is the strip width

A is the length of the strip

is the angle of the strip relative to the global coordinate system

Z, is the distance from centroid to the point of load application

c is the end rotation of the assemblage

and

m = 2,4.......

= 2,4.......

p= 1,3.......

(8.3)
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The C1 , C2, C3, C4, C5 and C6 expressions are given in Chapter 3 and U, V,

and W are the displacement parameters.

The strain vector is obtained from the derivatives of the displacement functions

as given by.

=

+

=

12:1, =

+

ou 1 [(ov\ 2 (ov0\2

Ox + 2 [\Ox)	 \0x)

(i'\ 2 (ow.\ 21	 02(W—W0)
Ox) _ Ox )J_ Z 	 8x2

ov Dy0 i [(ow 2 (8w0\2
Dy O+2[O)	 Dy)

- W0)

Dy2
OU DV 0V0 OVOV 8V00V0
Dy + Ox Dx + Ox Dy OxOy
OWOW - OW0 OW0 - 2 D2(W - W0)

Ox Dy	 Ox Dy	 OxOy
(8.4)

The increment of strain is

=

+

=

1xy =

+

+

Ou OVOV i (Ov'2
Ox Ox Ox 2%Dx)

OWOiW 1 (8w' 2 D2W
Dx Dx	 2kDx)	 Dx

DV i I ow\ 2 OwoEw 02w

-+---) + -w-	 _ZD2

OU DV DWOiW OWOW
Dy Ox Ox Oy	 Dy Ox
OW OW DV OV DV OiW
OxOy OxOy	 DyOx
OvOv 82W

- 2Z (8.5)

and the derivatives of the displacement functions are listed in appendix C.
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The total strain is given by the sum of the elastic, plastic and thermal strain

components.

Eu =
	 (8.6)

The incremental strain is

&ui =
	 (8.7)

in which the thermal strain increment is

= aM
	

(8.8)

and

a is the coefficient of thermal expansion(1.4 x

LO is the temperature increment,

Considering Prandtl-Reuss associative flow rule the plastic strain increment

component is

- ___
- 3 Oo,,

=
	 (8.9)

where S,j is the deviatoric stress tensor given by

suj = o• j -
	 (8.10)

in which the hydrostatic stress is given as
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= o.z+o.v+o.z
	 (8.11)

and &j is the Kronecker delta. The deviatoric stress can be expressed as

S2 = (2o—u)/3

SI, = (2o, - (7)/3

sxtJ = Txy
	 (8.12)

The effective stress or is

= 3J2
	 (8.13)

where J2 is the stress tensor used in von Mises yield condition and is given by

=	 (8.14)

The stress increment is related to the elastic strain increments by Hooke's law

i.e

E9

= (l_v2)"

= (1 v2)	
+ v)

E9
LT,2,J = 2(l)L7z1d	 (8.15)

in which E9 is the effective modulus of elasticity at elevated temperature given

in Chapter 3.

The stress-strain relationship for a material undergoing plastic flow can only

approximate macroscopically the complicated process of slip taking place within
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the crystal lattice. It is usually accepted that the best approximation is ob-

tamed using the von Mises yield criterion with its associative Prandtl-Reuss

flow rule. This is given as effective stress 0e

l7 = 3(S+S+SzS+r2 )
	

(8.16)

The plastic strain increment, , is a scalar multiple of the steepest ascent

vector of o in the stress space, thus satisfying the requirement of being normal

to the yield surface, o = o. The factor in Equation (8.9) must be greater

than or equal to zero in order to ensure that the plastic strain increment occurs

in the same direction as the corresponding stress deviator.

For an elastic-perfectly plastic material in which yielding occurs when von

Mises effective stress reaches the material yield stress, the value of 4 is obtained

from the condition that

= 2o.Ao +	 -	 -	 +

= 3Sz. x +3SyA y +6r p.Lr y	 (8.18)

The increment of stress is given by

E9
=	 -	 + v1 - (S + vS) - i.i(1 + v))

E9=	
-	 + v13c, - 6(S + vS) - i°(1 + v))

- E9-	 -	
(---, - 2qSr))	 (8.19)
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(8.20)

Substituting Equation (8.19) into Equation (8.18) results in

3E9
12 (S3 — #S4) = 0

That is

S3

4

in which

S4 =

S3 =

S2 = S-I-vS

Si = S+vS

(8.21)

(8.22)

Substituting Equations (8.21) and (8.22) into Equation (8.19) yields the in-

cremental stress-strain relation.

{L} = [F] {i} + {°}

in which the elements of the symmetric elasto-plastic matrix [F] are

E9 I
fii = l_V2.l-P:;;-)

F	 E,I	 srt
j22 = l_V2,1l-P:c)

E9 ((1 - v) - ((1 -
= 1_v2	 2	 54

E9 /	 5152'
f12 = l_v2(0 5 )

(8.23)
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E9 (	 51rzy

1—v2	
V) 

s4
E9 (	 S2r

—V1

112

f13 =

f23 =

f21 =

131 = 113

132 = f23

and the thermal stress increment {&°} is given by

I ((1—v)S6—(1+w))if°
{.°} =	 ((i - v)Se - (1 + i')) L6°

-

in which

se=sx+st,

(8.24)

(8.25)

(8.26)

p = 1 when plastic flow occurs, i.e. when or =	 and S > 0. However,

p = 0 when strain increments are completely elastic i.e. when o <	 or

when a =	 and 53 ^ 0 (elastic unloading from the yield surface). The

effective yield stress expression o,,g is given in Chapter 3.

In order to incorporate the strain hardening phenomenon the increment in

von Mises effective stress á(o) is no longer zero but a quantity representing

the strain hardening function. The increment in the effective stress, is

found by assuming that its rate of change with respect to the effective plastic

strain,	 is given by the slope of uniaxial stress versus plastic straixi curve

(H' = ) at o = o. Thus

H' - gP
	 (8.27)
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The increment in effective plastic strain, A4, is defined as

- {u} {}

o•c

2=	 ç6o	 (8.28)

i.e. when

0 =

and

= Ip
ç6Ocr

- 38o
2

=

(8.29)

(8.30)

By using geometric relationship that

H' - do

E9E(0)

= E9 -

E9E(0)
icr. =

	

	 (8.31)
E9—E(0)

where E(0) is the tangential modulus at elevated temperature obtained from

stress-strain-temperature relationship. Substituting Equation (8.30) into Equa-

tion (8.31) yields

2	 E9E(0)
= —o. -.----3 CEE(0) (8.32)

But

= 2oe.Aoe
3E9

= 1_V2¼ 3—S4)
	

(8.33)
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Thus

S3

5

in which

22 E(0)
S5 = S4+(1_V)OeEE(0)

(8.34)

(8.35)

By following a similar procedure in establishing an elastic-perfectly plastic

material the stress-strain relationship including strain hardening can be es-

tablished by substituting 55 for 54 in the [F] matrix.

Live Energy Function F:

The equilibrium of a plate can be specified using an energy formulation. Con-

sider 4 to be the total energy of the plate i.e.

= IE	 (8.36)

where

J/ is the work done against internal force

E is the work done by the external forces

The increment of work is

= (8.37)

where
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+b/2	 +A/2

= f Wdy + f Wdx
J—b/2

(8.40)

and

= jW'dv
	 (8.38)

in which

= {{} +	

}T	

(8.39)

Since uniaxial compression is considered in this analysis only

=	 Nde
	 (8.41)

is evaluated.

Since the value of end shortening, Ae, in any increment is fixed it is indepen-

dent of the displacement parameters and has no influence on the minimization

procedure. Only the internal energy 	 varies with the displacement param-

eters. Thus

Fe=E
	

(8.42)

In the case of biaxial loading the additional energy terms would be included in

the definition of F and it would no longer be equivalent to the internal energy

of the system. This additional potential energy is given by

146



+A/2
F =	 - 2N f	 ve.dx (8.45)

and

= j 2 'T,dx
	 (8.43)

where

=
 2J

ve+ve 
N.dve
	 (8.44)

Gradient of F

In order to ensure an efficient minimisation procedure the first derivatives of

the live energy function, F, are required. These are

- O(t')
-

= 1°'d
ill 9Xi

where

0(W') - {+}T{0}

OXi -

+ j 8(io) 
T

2 1 OXi J

in which Xi are the displacement variables.

(8.46)

(8.47)

The derivatives of the incremental stress-strain relation with respect to Xi is

given with the matrix [F] constant as

1O(&) '1	 ____

1 OXi =
	 ___ (8.48)
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Thus

{

8(ir) }T 

= { 

8(t) 
}T

OX	 OX

=

I O
T (O(AE)= {Lo) 
t OXI

i.e the matrix [F] is symmetric.

This leads to

ow'	 ____	 ____1T O(&) 1 +	 (0() 1
= {{+	 t OXi J -	 1 OXi

(O()1
= {{u}+{icr}}Tt OXi

= {o}T{0)}

(8.49)

(8.50)

The partial derivatives of the incremental strain with respect to the displace-

ment parameters are given in the appendix C.

The computer program originally coded in Fortran 77 by Mofflin[173] was

modified. The program utilizes the NAG library routine[174] for unconstrained

minimisation of the live energy equation. Details of this approach can be found

in the NAG manual.

The modified version was verified by comparing the results obtained on local

buckling analysis using both programs. The modified program was found to be

as accurate as the original. The stress-strain-temperature relationhips were

substituted into the program. It has to be pointed out that neither version

simulates interactive buckling accurately. It is only local buckling analysis that

can be handled effectively. With further work the method could be established
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completely. This will prove useful in studying the inelastic behaviour of steel

columns in fire.

Due to the lack of time the program could not be used to undertake parametric

studies. It is realised that further work has to be done in order to fully establish

the method.
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Chapter 9

CONCLUSIONS AND

RECOMMENDATIONS

The work done in this study is concerned with the development of numerical

fire engineering systems and their subsequent use for parametric studies on

steel column behaviour in fire. A considerable amount of valuable data has

been generated which provides the basis for a better understanding of the

behaviour of steel columns in fire.

9.1 Scope of the work

The present work is divided into three main parts. These include a finite strip

method which is based on small defection theory, finite element method and

a large deflection finite strip method. In all cases a continuous form of stress-
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strain-temperature representation is considered. However, provision is made

for any stress-strain-temperature relationship to be included.

The first finite strip method is intended for the inelastic buckling analysis of

columns under fire conditions. The analysis is restricted to pinned columns,

without initial out-of-straightness. Other structural imperfections such as

residual stress could easily be included. The column can buckle in either

the overall, local or interactive modes. The material properties are modelled

according to deformation theory of plasticity applied to thin plates.

The second part of the present work is based on the finite element approach.

This method is capable of handling thermal gradients across the cross-section

of a member, and provides a complete load-deformation and temperature-

deformation history of columns.

Both methods have been used to study a number of aspects of column be-

haviour and several interesting points have been observed.

9.1.1 Uniformly heated columns

The general view that uniformly heated columns fail at a temperature of about

550° C is clearly not true for all columns. Columns with different slenderness

ratios exhibit different failure temperatures which, in the case of slenderness

ratios in the range of 80 ^ hr ^ 100, can be as low as 300°C as shown in

Fig. 5.4. For stocky and intermediate columns, 20 ^ l/r 80, the failure

temperatures range between 520° C and 300° C, while for columns with slen-
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derness ratios, 80 < l/r ^ 160, the failure temperatures range between 300°C

and 510°C.

The non-linear form of the steel material properties at elevated temperature

is clearly better represented as a continuous stress-strain-temperature rela-

tionship rather than in a bilinear form. The continuous representation has

a considerable influence on any column's behaviour while the bilinear form

results in identical behaviour for stocky and intermediate columns. However,

for more slender columns the discrepancy in buckling predictions using these

representations decreases. Using the two approaches the difference between

the predicted column behaviour is significant for stocky columns and those

with intermediate slenderness ratios, but for very slender columns the bilinear

representation seems to give results very close to those of the continuous form.

The ECCS strength expressions always resulted in a very conservative estimate

of the failure temperature but the recommendations of CTICM and BS5950

are in close agreement. Using different published guidelines for the stress-

strain-temperature characteristics the range of failure temperatures predicted

is quite large.

As is to be expected it was found that residual stresses are detrimental to

the performance of steel columns in fire. In the absence of any guidance it

was assumed that the magnitude of the residual stresses remains constant at

increasing temperature. The effect of residual stress clearly depends on its

magnitude but is also dependent on the slenderness ratio.

Eccentrically loaded columns, both stocky and intermediate, l/r ^ 80, show
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improved performance in terms of failure temperature with increasing level of

eccentricity of loading. This may not necessarily always be the case if excessive

eccentricity is applied. For very slender columns, l/r ^ 120, the opposite is

the case as the failure temperature decreases with increasing eccentricity of

loading.

From the examples considered in the present study it appears that local buck-

ling would not in general constitute a significant problem in the performance

of columns in fire. In a situation where ambient - temperature design princi-

ples avoid local buckling then its influence appears to be implicitly prevented

in fire. It has to be mentioned that further investigation is necessary to verify

this observation fully.

In terms of bearing capacity, any of initial out-of-straightness is clearly detri-

mental to the performance of steel columns in fire as at ambient temperature.

However, the failure temperature varies widely with increasing level of ini-

tial out-of-straightness. Stocky and very slender columns exhibit a declining

failure temperature while columns with intermediate slenderness ratios show

improved performance with increasing level of initial out-of-straightness in

terms of failure temperature.

As at ambient temperature, columns show improved performance in terms of

bearing capacity under fixed end conditions in fire, compared with equiva-

lent pin-ended columns. However, the failure temperatures exhibited by these

columns under varying end conditions depend on their slenderness ratios. Both

stocky and intermediate columns exhibit higher failure temperatures for the

fixed end condition compared with the pinned end condition while for slender
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columns the opposite is the case.

9.1.2 Columns under thermal gradients

The blocking in of the web of columns results to symmetrical thermal gradient

over the cross-section. The failure temperatures of blocked-in web columns

are approximately the same as for bare columns. The major benefit offered

by blocking in the web of an H-section column is therefore the reduced rate

of temperature increase which accounts for the better fire resistance exhibited

by the blocked-in-web columns.

For columns subject to asymmetric non-uniform heating the differential tem-

perature distribution results in a shift of the neutral axis towards the coldest

flange. The effect of the higher strength and stiffness of the colder parts is

greater than the weakening influence of the induced thermal bowing. The

beneficial effect of the variation of strength over the cross-section may be ac-

countable for the improved behaviour exhibited by columns under thermal

gradient compared to uniformly heated columns. It should be noted that

the consideration of maximum temperature is reasonable in practice. This is

particularly true if maximum temperatures are used for the analysis of bare

columns, but in a situation where average temperatures are used the opposite

is the case. This influences the effect of applied eccentricity of loading depend-

ing on its point of application. If non-uniformly heated columns are subject

to eccentricity of loading applied along the positive direction of the shifted

neutral axis the influence of induced bowing will be reduced.
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The third part of the present work is based on the large deflection finite strip

method using flow theory of plasticity with von Mises effective stress as a

yield condition. The modification to enable elevated temperature structural

analysis results in substantial remodelling of the method. Although both local

and interactive buckling of plate assemblies are modelled only local buckling

analysis could be implemented.

For checking purposes many computer runs of the prograi fo 1oc ,iitk-

ling analysis of stocky columns at ambient temperature were undertaken and

compared with the original program results. Elevated temperature computer

runs for the same problem were compared with the small deflection finite strip

method. The comparison was good but because of time limitation no para-

metric study could be undertaken.

9.2 Recommendations for future work

Each theory presented herein can be modified in a number of ways for more

parametric studies. The first method is complete and exhaustive parametric

studies on the column behaviour have been undertaken. However, consid-

eration can be given to other expressions relating strength and stiffness to

temperature in order to fully evolve a suitable stress-strain-temperature rela-

tionship for steel behaviour in fire.

The finite element method can be modified to include the effect of semi-rigid

connections by including experimental moment-rotation characteristics for dif-
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ferent connections in the program with adequate provision for calculation of

the joint stiffness matrix. This can subsequently be used for parametric stud-

ies on the inelastic behaviour of multi-storey frames in fire. In addition some

other forms of construction, such as composite structures and beams, can be

studied with minimum modification to the program.

The large deflection finite strip method can be used for a full range of para-

metric studies on the column behaviour in fire with adequate modification to

establish the method for interactive buckling analysis.

Finally, in all cases the effect of thermal load on the behaviour of steel columns

in fire can be considered.

Generally the present study provides a basis for further research into the be-

haviour of steel columns in fire. A considerable amount of valuable information

has been generated at relatively low cost. This is made possible because of the

flexibility of the methods to include the effect of many parameters. It is hoped

that better understanding of the behaviour of steel columns in fire could be

accomplished using this information. Finally, it is desirable for a more rigorous

testing program to be undertaken to validate the theoretical findings.
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Appendix A

For the purpose of completeness the expression for the out-of-plane and in-

plane stiffness and stability matrices are given in this appendix.

The out-of-plane stiffness equation is

[K0] = f [B0]T [F] [B0] dvol	 (Al)
JvoI

in which

=	 ._{z 1 ,T sinre I	 (A2)[B0]

	

	

[ 

4{Z}T sinire 1

2!Lfz'1 cosr jbA I. ',J

and

fii 112 0
[F] = 112 /22 0	 (A3)

0 0f33

The coefficients of the matrix [F] are given in Equation (3.4). Substituting for

[BOlT, [F] and [B0]T in Equation (Al), knowing that

/ 
sin2(r.)de = 1.0

f
cos2 (7r)d. = 1.0
	

(A4)

and carrying out the integration with respect to z the out-of-plane stiffness

matrix [K0] is

[K0] = /' [a4f11 {Z} {Z}T - a5f12 [{z,,,} {z}T

+ {Z} {z}7] + a6f22 {z,,,} {z,,}T

+ a7f {Z'} {z}T] di1	 (A5)
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Similarly the in-plane stiffness matrix [K1] is obtained by substituting the [B1]

matrix given by

- {X}T sin

[B1] =	 sin	 (A6)

( 
{x} + {y}T)

into

[K1] = I [B1]T[fl[B1]dvol
JvoI

Thus the in-plane stiffness matrix [K,] is

'F
[K1] = j [af, {X} {X}T - a2f12 [{i} {X}T

+ {X}{1}T] +a3f22{Y,,}{1,}

+ f [a {x} {x}T + a2 [{Y} {x}T

+ {x} {Y}T] + a {Y} {Y}T]] dT,	 (A8)

The constants in the stiffness equations(Equations (A5) and (A8)) are

a1 = 7bS

a2 = irt

t
a3 =

ir4bt3
a4 

= 12A3
2j3

a5 
= 12)b

At3
a6 

= 12b3

a7 
= 3bA

The out-of-plane stability matrix [Se] is

[s0] = j[B.0] {}T dvol
	

(A9)

(A7)
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and the [B10] matrix is given by:

ir 1yi 1TrN 1

I
[B4O]	

[

=	 bat o,,1J L o,,pJ
i .(r. y' 1T[N][N',1T[NS,,]}

L o,,J

(AlO)

Substituting the expressions for [B4O] and {0}T into the out-of-plane stability

matrix [Se] and considering only uniaxial compression i.e o, =	 = 0 results

in

1 ,1 +t/2

[Se] =	 J L,2	
N:1TiN:dzded

where

[N0] = [{Z}T sin ,rC]T

Differentiating [N0] with respect to C yields

[Na] = ir[{Z}T cos

and

[N ,e]T = 7r[{Z}T cos irC]

(All)

(Al2)

(Al3)

(A14)

Substituting Equations (A13) and (A14) into Equation (All), carrying out

the integration with respect to z and C and taking note of the conditions of

Equation (A4) then out-of-plane stability matrix is

btir2 1

[Se] = TrL o{Z}{Z}Tthi (Al5)

Similarly the in-plane stability matrix [Se] is

1 1

[5] =	 L,2 __INI,TN,ddZded (A16)
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where

[N1] = [{X}T cos lr {y}T sjflR.]	 (A17)

Differentiating [N1] with respect to e yields

= 7r[— {X)T sin	 {y}T cos r]T	(A18)

and

[NI ]T = ir[— {X} sin re {Y} cos	 (A19)

Substituting the expressions for [N1T and [NJ into Equation (A16) and

noting the condition in Equation (A4) while integrating with respect to z and

gives the in-plane stability matrix 	 given by:

[SJ 
=	

j' a',[{X} {x}T + {Y} {Y}T]di1	 (A20)

The integration of both the stiffness and stability matrices is accomplished

numerically by using Simpson's rule or the Gaussian integration method.

180



Appendix B

In order to evaluate the tangential stiffness, (KT) 12 , the expressions for ei, e23

and e must be defined. These expressions are given as follows;

= [1 + U]	
OU'	 OM

0q1	Oq,

+ L

rKc. 
V. +KS— 

1'	 ON
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(l 

2 Oq NK5-+ 3KS21 -	
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e23= -;-

= V'+N
°Oq,	 0q
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V's 	 I	_______	 3(V')4	

J!(i'')2 _ ovl+	 ____
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On substitution of these equations into Equation (6.36) the tangential stiffness

coefficients can be obtained upon numerical integration. This is accomplished

by using the Gaussian integration technique.

Incremental_stress _resultants:

The incremental stress resultants	 ,	 and	 can be evaluated from
8q, 8q1	 8q1

Equations (6.50). The ba,, bb and b, components in the incremental stress
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numerical calculation of the incremental stress resultants can be found in the

INSTAF manual.
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Appendix C

Derivatives of displacement functions:

The derivatives of the displacement functions are

t9U
=

OU

.i;- -
Ov

.; 
= ICCOS5fl7

OV
-

	

OW	 Of V
= _,CcOS,rCOS7W_!_

Ox
02w ____
Ox2 = T SIfl COS + W,

	

ow	 Ofw--
-w = To

02w w= '02

	

02w 	02f
w

	

OxOy	 = 'OxOy	
(Cl)

Derivatives of strain increment:

In order to evaluate the gradient of the live energy function with respect to the

displacement parameters the strain increment derivatives with respect to the

displacement parameters have to be evaluated first. The partial derivatives of

the strain increment are

(O(e) 1	 ____________

1 OXi I = O{U,v,W,icC}	
(C2)

where

(L
1 Ot6 l 	 J 8;7

1OUrJ	 1
!8y
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I
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I.	 Ox +

Gradient of live energy:

The gradient of the function F is

OF - ____

i

-L(°'	

8f'
-

Ofu\
1 dA= j(Nxj+Nx8j

DF - ____
aiçov,
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(( + OV OV\ Of? I DEW OV\ L!V dv

Dy + ..) Ox	 Ox + Ox) Dy))

+-	
N IDEW DV)	 I DEW OV\\ Of;

JA ((	 Ox	 Dy
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DF- ____

Dcv
(1 (OAV+2OV\\'d

= L (cry + rzv	
ox	 Dx)))

fotv Dv" 1'
=	 (C4)

where

- !! ((1 - i)uim + 77u2m) cos ,rm
Ox - A

-	 (u1m + 1i2m) sin rm

0jn7r
Ox -

Dy - 
(—v + V2ft) cos nire

-	 ((1 - 3,2 + 2q3)w1 ^ (, -	 + 273)be1
Dx - A

+ (32 - 2ii3)w2 + ('is - q2 )be2p) cosp1ri

O2f,u1 - - (P7r)2 
((1 - 32 + 2ii3)w1 + (i - 22 + i13)bei,

Ox2 -

+ (37i2 - 2i 3)w2 + (q3 - ,i2 )be2 ) sin

- (_ + 6i)!! + (1 - 4i + 37i2)8i
Dy -

+ (6i - 6q2)! + (3q 2 - 2)e2 ) sin pire

___ - 

((_6+12)+(_4+6q)
Dy2

+ (6 - 12)	 + (6 - 2)) sinprt

O2f -	
'(-6j + 6,12)!! + (1 - 4 i + 3i12)êi

OxOy - A

+ (6i - 62)! + (32 - 2)e2 1) cospir	 (C5)

where

Ulm, tL2tn,	 V2n, Wip, e1 , w2, and 02p are the displacement and rotation

parameters.
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