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Abstract

This thesis presents my work on the pickup and multiple delivery problem, a real-world

vehicle routing and scheduling problem with soft time windows, working time and last-

in-first-out constraints, developed in collaboration with Transfaction Ltd., who conduct

logistics analysis for several large retailers in the UK. A summary of relevant background

literature is presented highlighting where my research fits into and contributes to the

broader academic landscape. I present a detailed model of the problem and thoroughly

analyse a case-study data set, obtaining distributions used for further research. A new

variable neighbourhood descent with memory hyper-heuristic is presented and shown

to be an effective technique for solving instances of the real-world problem. I analyse

strategies for cooperation and competition amongst haulage companies and quantify

their effectiveness. The value of time and timely information for planning pickup and

delivery requests is investigated. The insights gained are of real industrial relevance,

highlighting how a variety of business decisions can produce significant cost savings.
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Introduction

Logistics is a trillion-dollar industry1, spanning businesses in both the public and pri-

vate sectors. It is a large and complex global system incorporating millions of companies

worldwide. Whether by aeroplane, train, ship or road vehicle, effective routing, schedul-

ing and planning strategies are vital for an efficient logistical operation. On such a large

scale, small improvements in efficiency can lead to large benefits through cost savings

or faster service. A global shift towards on-demand, just-in-time delivery, along with

increasing pressures on companies to reduce their energy consumption, means that it is

of paramount importance for supply chains to be optimised for maximum utility, with

business decisions which support this. My thesis presents techniques to help achieve

this and analyses a number of real-world case studies, examining how these techniques

and strategies can be used to reduce transportation costs in practice.

My Research has been guided by Transfaction Ltd.2, a logistics analysis company,

working with several large retailers in the UK to identify inefficiencies in their current

logistics network. The more accurately a network can be modelled, the better their

forecasts and analysis. Accurate forecasting, analysis and scheduling are valuable to

Transfaction Ltd. and their clients allowing smarter business decisions to be made;

this desire for competitive advantage drives every aspect of my research. Transfaction

Ltd.’s problem has not been directly addressed before but shares many similarities with

existing research on the pickup and delivery problem (PDP).

1 https://www.selectusa.gov/logistics-and-transportation-industry-united-states
2 http://www.transfaction.com/
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1 Introduction

Traditionally heuristic and meta-heuristic methods have been used to solve similar

problems, while state-of-the-art methods employ hyper-heuristics or hybrid-metaheuristics.

Heuristic methods generate approximate solutions and are useful for real-world prob-

lems as exact values for many parameters are not known. Travel and loading times

are often estimates, fuel cost and usage also. For the type of large scale problems that

are prevalent in the real world, heuristic methods also find acceptable solutions much

faster than exact methods. Hyper-heuristics operate at a higher level than heuristic

or meta-heuristic alternatives managing a set of low level heuristics (LLHs) to speed

up the search process and find better solutions through mechanisms to escape locally

optimal solutions. The state-of-the-art for PDPs with last-in-first-out (LIFO) loading

constraints typically employs a variable neighbourhood search (VNS) hyper-heuristic

and is concerned with finding solutions to synthetic problems. Little work has been

published investigating the commercial implications of business decisions or strategies

for cost reduction on real-world data. I investigate the savings that can be brought

about by various delivery management strategies.

A significant contribution of my research is the introduction of the novel practi-

cal aim of finding ways to add additional consignments into pre-existing routes with a

LIFO loading constraint. For this I present the pickup and multiple delivery problem

(PMDP). The specific logistics problem my research focusses on is a medium distance

truck routing problem in the UK. Working with Transfaction Ltd. I study the distri-

bution network of medium to large firms (shippers) who rely on third party haulage

companies (carriers) to deliver goods to customer partners. In PMDP, a pickup and

its deliveries is referred to as a consignment. Vehicles leave their home depots empty

and must fully service one or more consignments on route before returning to base.

Each pickup has one or more associated deliveries with a given sequence. A sequence

of deliveries may be interrupted at any point in order to fully service one or more

nested consignments provided time windows and loading constraints are not violated.

Shippers and customers are spread throughout the UK, so multiple carriers are needed.

As a real-world problem, there are constraints that must be satisfied, such as vehicle

capacity, soft time windows at pickup and delivery locations as well as driver working

time rules per day and week. A key constraint, arising from the configuration of load-
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1.1 Thesis Outline

ing bays and rear access nature of vehicles, is that each vehicle must be loaded and

unloaded in a LIFO order, imposing constraints on the sequencing of pickup-delivery

pairs. Our model of the PMDP is described in Chapter 4.

As an EngD thesis my research is strongly focussed on the business practicalities

of the PMDP. Although shippers plan their consignments well in advance, often in

regular cycles, the consignment information is typically shared with the haulage com-

panies at the last minute. The resultant need to plan close to required delivery leads

to inefficiencies in routing and scheduling. The currently used schedules are generated

manually and offer significant scope for improvement using a computational approach.

Another area that has received little research is investigating the cost savings attain-

able when many delivery companies work together, I present findings for a number of

cooperation strategies, and quantify the savings possible. Though focussed on medium

distance road vehicle haulage, with modifications my research would be applicable to

many areas of transportation routing, such as ship, air or rail freight planning.

1.1 Thesis Outline

Chapter 2 introduces the travelling salesperson, vehicle routing and pickup and de-

livery problems (TSP, VRP, PDP) as related works that share many similarities with

the PMDP, common extensions are presented that are of interest to Transfaction Ltd.

Benchmark instances, later used to compare approaches, are introduced here. A selec-

tion of literature involving real-world case studies is also presented.

Chapter 3 concludes the literature review presenting a selection of solution ap-

proaches covering exact, heuristic, meta-heuristic and hyper-heuristic methods. Con-

structive heuristics along with local search improvement operators are also introduced.

Chapter 4 describes the model developed for the PMDP and highlights how this

differs from the PDP. I introduce a number of new constraints for the PMDP along

with a real-world cost based objective function.

Chapter 5 presents the new Variable Neighbourhood Descent with Memory (VNDM)

hyper-heuristic and local search operators developed to solve instances of the PMDP. I

present comparisons to other approaches introduced in the literature review and to the

state-of-the-art on benchmark instances of the PDP. The results show the benefits of
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1.1 Thesis Outline

using VNDM over other approaches. The following chapters investigate further aspects

of real-world case studies in more detail.

Chapter 6 presents details of Transfaction Ltd.’s case study data sets and how we

use this information to generate additional problem instances for our experiments. A

number of hyper-heuristics are compared on the real-world data sets.

Chapter 7 analyses a system with less than full load consignments which may be

combined to save on delivery costs, providing LIFO constraints are satisfied. VNDM

is used to demonstrate the savings possible when hauliers cooperate, both näıvely and

in a competitive environment.

Chapter 8 establishes the financial value of early information and the width of

arrival time windows; showing that cheaper schedules are possible when there is more

notice given and when consignment arrival time does not matter.

Finally Chapter 9 discusses all the academic and industrial contributions of my

thesis and presents areas for future research.
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2

Literature Review:

Related Problems

Logistics problems have been studied for thousands of years and date back to the Late

Bronze Age (Tepić et al., 2011), they are amongst the earliest problems investigated

with the advent of modern computing. This review provides comments on work that

is of particular interest to the business operations of the industrial sponsor of this

research, Transfaction Ltd.

This chapter begins (Section 2.1.1) by introducing the Travelling Salesperson Prob-

lem (TSP). Section 2.1.2 describes the capacity limited, multiple route, extension of the

TSP known as the Capacitated Vehicle Routing Problem (VRP). Section 2.1.3 presents

a major variant of this problem known as the Pickup and Delivery Problem (PDP).

Section 2.2 introduces some of the many extensions applicable to routing problems,

necessary for modelling various real-world problems. These include constraints on the

time of service, vehicle loading and driver working hours as well as dynamic scenarios

where decisions have to be made in real time.

Section 2.4 presents the benchmark data sets used in Chapter 5 to compare the

performance of our hyper-heuristic methods.
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2.1 Routing Problems

2.1 Routing Problems

This section introduces a variety of routing problems studied over the past few decades.

Over this period many intricacies of real-world routing problems have been studied; the

aspects covered in this section are those most related to my research.

2.1.1 Travelling Salesperson Problem (TSP)

n1

n3

n5

n2

n6

n4

(a) Instance

n1

n3

n5

n2

n6

n4

(b) Greedy Solution

n1

n3

n5

n2

n6

n4

(c) Optimal Solution

Fig. 2.1: An example TSP and two potential solutions.

The Travelling Salesperson Problem (TSP), first modelled on computers by Dantzig

and Ramser (1958), Clarke and Wright (1964) and Lin (1965), involves finding the

shortest route a salesperson can take through a number of cities starting and ending at

the same point, visiting each city once. More generally the TSP can be applied to any

problem where the aim is to find the lowest cost Hamiltonian cycle of a weighted graph.

The weight of each edge could be time, distance, cost etc. or a combination of factors.

A Hamiltonian cycle consists of a connected subset of the edges from the initial graph

forming a chain such that for each node exactly 2 associated edges are chosen. Karp
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2.1 Routing Problems

(1972) shows that finding the minimum cost Hamiltonian cycle is NP-Hard. Exact and

approximate solution generation techniques are discussed in Chapter 3. Figure 2.1 is an

example of a symmetric TSP with 6 nodes where the cost between nodes is Euclidean

distance. Two potential solutions are presented, in this trivially small example, it is

clear to see that a greedy heuristic (see Section 3.2.1) generates a non-optimal solution.

2.1.2 Vehicle Routing Problem (VRP)

The VRP, described by Dantzig and Ramser (1958) as the Truck Dispatching Problem,

and later by Laporte and Osman (1995) and Fisher (1995), is an important extension

to the TSP. In this model, vehicles begin and end their tours at a depot location and

have a fixed maximum tour length or equivalent constraint (driving time). Vehicles

must return to their depot before the constraint is violated. Since VRPs are analogous

to the metric TSP (Hosny, 2010), they are all NP-hard problems as defined by Lenstra

and Kan (1981).

In the capacitated VRP (CVRP), each node represents a customer request, which

may have an associated demand; examples of constraints include maximum loading

weight or volume. In CVRP’s, once a capacity limit has been reached the vehicle

must return to the depot before visiting any further customers. Alternatively, multiple

vehicles may be employed to fulfil multiple, pre-scheduled, routes simultaneously. It is

always the case that the total demand of the customers exceeds the capacity of a single

truck, otherwise the problem becomes that of the TSP (Clarke and Wright, 1964). The

objective in a VRP is usually to minimise distance though minimising the number of

vehicles used or time taken given a fixed number of vehicles may also be considered.

2.1.3 Pickup and Delivery Problem (PDP)

The pickup and delivery problem (PDP) is the closest problem to the pickup and

multiple delivery problem (PMDP), introduced in Chapter 4. Early work on the subject

includes the single vehicle dial-a-ride problem (DARP) of Desrosiers et al. (1986) and

PDP with time windows of Sexton and Choi (1986). DARPs involve a set of individuals

with current and desired locations. A vehicle with a fixed capacity n is used to pickup

and drop-off individuals and may make several collections before a delivery. This is
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2.1 Routing Problems

often referred to as part or partial loading, meaning that multiple consignments may

be loaded onto any given vehicle concurrently. DARPs tend to be of small size and

can often be solved exactly in reasonable time (Beck et al., 2003). The PDP is also

referred to as either the travelling salesman problem with pickup and delivery (TSPPD)

(Carrabs et al., 2007; Li et al., 2011) when dealing with a single vehicle or the vehicle

routing problem with pickup and delivery (VRPPD) (Berbeglia et al., 2010). A PDP

comprises fulfilling a number of consignments. Each consignment has a pickup location,

where a vehicle is loaded, and a delivery location, where a vehicle is unloaded. This

differs from the VRP where a vehicle is loaded at a single warehouse and all other

locations represent unloading locations. In local freight operations, less-than-truckload

(LTL) consignments may be combined to reduce delivery costs.

For clarity, we represent a vehicle’s route as containing either consignment pairs or

individual pickups and deliveries. The notation summarised in Figure 2.2 is used for

all our illustrations of routes and operators on routes.

Carrier origin location

Pickup request

Delivery request

Consignment

(pickup and deliveries)

Empty leg

Loaded leg

Changed leg (grey)

Other requests

Fig. 2.2: Key to operator figures.

Abstractly, the problem can be viewed as in Figure 2.3. A delivery vehicle must

follow a route that starts and ends at its base location b. Each consignment i is

represented by a pair of locations, the pickup point pi and the delivery point di. To

fulfil a consignment, a truck must visit the pickup point before the corresponding

delivery point. In Li and Lim (2003) the objectives are first to minimise the number

of vehicles and second to minimise distance. Depending on the application, minimising

the cost or delay of servicing all consignments are other common objectives.

Desaulniers et al. (2002) present a widely accepted mathematical formulation for the

generic PDP, which they refer to as the vehicle routing problem with pickup and delivery

and time windows. However, time windows are not specific to the PDP and may be
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b

p1

p2

p3

p4
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d1

d2

d3

d4
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(a) Instance

b

p1

p2

p3

p4

p5

d1

d2

d3

d4

d5

(b) Solution

Fig. 2.3: Example pickup and delivery problem with two vehicles.
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2.2 Real-world Problems

an extension to any routing problem. These and other extensions are discussed in the

following section. The Desaulniers et al. (2002) model has inspired the constraints for

my PMDP model (Chapter 4, page 79).

Research on PDPs usually concentrates on static models of small scale problems

such as servicing taxi requests, ride sharing schemes or DARPs (Toth and Vigo, 1997;

Beck et al., 2003). Cordeau et al. (2007) refer to the PDP as Transportation on Demand

studying DARPs for the elderly and the disabled, urban courier services and emergency

vehicle services amongst others. Delay minimisation is especially common in DARPs

(Parragh et al., 2009). Berbeglia et al. (2007) summarise a number of routing problems

classifying the PDP as a one-to-one problem and the VRP as one-to-many-to-one. In

comparison, our PMDP (Chapter 4) is a one-to-many problem which Berbeglia et al.

(2007) identify as requiring further research.

2.2 Real-world Problems

Real world problems are characterised by having many more constraints or of being

much larger in size than traditional benchmark problems. Early examples include Bodin

et al. (1983) who deal with crew allocation on top of a vehicle routing and scheduling

problem. More recently Erera et al. (2008) investigate driver management schemes,

presenting a effective greedy heuristic to match drivers to loads, given a large number

of real-world constraints.

Horn (2002) models a real-world, large scale taxi routing problem within a 24h

period, in the Gold Coast area of Australia. Horn takes into account predicted future

patterns of demand and contingencies including breakdowns, trip cancellations and

stochastic travel times. However as a taxi scheduling problem within a relatively small

area the demands are different to those of our PMDP in a number of important ways.

Firstly waiting time for taxi requests is a major concern, so there are likely to be more

assets in use than a similar truck routing problem. Secondly, there is no ride sharing

so saving through cooperation would not be as beneficial.

Although Horn presents a real world problem that has many similarities with our

own, the constraints that Horn uses do not map well to our problem and the approach

developed is compared only to näıve approaches.
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2.2 Real-world Problems

2.2.1 Multiple Vehicles and Depots

VRPs are multiple route by default. As stated in Section 2.1.2, many real-world prob-

lems utilise multiple vehicles to service these routes. In the benchmark problems for

the PDP of Li and Lim (2003), minimising the number of vehicles used is the primary

objective.

Cordeau et al. (2007) consider single vehicle DARPs and Berbeglia et al. (2007)

present the multiple vehicle extension to the DARP. Since the assignment of vehicles

to customers must be specified along with the route for each vehicle, the solution set

becomes much larger, making optimal solutions harder to find.

Other real-world scenarios involve multiple depot locations. Vehicles in the system

may be located at different base depots. Any solution must specify the depot from

which a customer’s consignment is to be serviced, as well as its location in a route.

Additional parameters such as the number of vehicles available at each depot as well

as depot specific capacity constraints may need to be considered. Many large logistics

operations in the UK have multiple depots and the PMDP model presented in Chapter

4 supports this.

2.2.2 Heterogeneous Fleets

Different vehicles may have different capacities or may be equipped to deal with specific

cargo (e.g. refrigerated trucks). In some cases there can be no overlap, such as vehicles

equipped for liquid transportation (Desrosiers et al., 1995), and in these cases it is best

to treat each set of vehicles as a different problem. A heterogeneous fleet exists where

vehicles are interchangeable, e.g. simply of different capacity, a choice must be made

regarding the merits of different available vehicles. Paraskevopoulos et al. (2008); Koç

et al. (2014) and Savelsbergh and Sol (1998) model heterogeneous fleets in VRPs while

Desaulniers et al. (2002) and Xu et al. (2003) look at the same extension to the PDP.

Notable surveys that include references to heterogeneous fleets are by Desrosiers et al.

(1995); Cordeau et al. (2002); Laporte (2009) and Pillac et al. (2013).
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2.2 Real-world Problems

2.2.3 Last-in, First-out (LIFO) Loading

In some real world scenarios it is impractical to unload anything but the most recently

loaded items in a vehicle, for instance in rear access HGVs. In these cases a last-in,

first-out (LIFO) ordering constraint is placed on deliveries. Of the routing problems

presented, LIFO loading only applies to the PDP. LIFO ordering has only recently

received attention with the works of Carrabs et al. (2007), Li et al. (2011), Cheang

et al. (2012), Cherkesly et al. (2015), Crainic et al. (2015) and Benavent et al. (2015).

A variety of techniques have been used in each case, these are explored in more detail

in Chapter 3. Due to the vehicles used, Transfaction Ltd.’s problem and the PMDP

model have LIFO constraints.

2.2.4 Green Logistics

In green planning, Demir et al. (2013) survey in detail how vehicle routing can be

designed to minimise CO2 emissions. From vehicle load, speed, congestions on route,

road gradient and efficient routing, they estimate potential savings of 10%. Sbihi and

Eglese (2010) also look at issues of green logistics but from the viewpoint of routing

vehicles used in green initiatives such as recycling; this research is at a tangent to

our own, having problem specific constraints to consider. Green logistics represent a

potential area for future research on the PMDP.

2.2.5 Time Windows Constraints

VRPs with time windows are traditionally referred to as VRPTWs. In PDPs time

windows may exist at both pickup and delivery locations. Time windows are such a

common feature in PDPs that most authors assume a PDPTW when discussing the

PDP. I will do the same for brevity and consistency.

Time Window

timeei li

Fig. 2.4: Request time window - Earliest and latest service start times, ei and li respectively
are shown for a request i. Arrival at any time between these points is equally good.

Figure 2.4 shows the time window for a request i (Toth and Vigo, 2002). For the
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2.2 Real-world Problems

general VRP, we treat the time window constraint as a period of time defined by an

earliest and latest time during which a customer should be serviced (For time windows

in Transfaction Ltd.’s problem see Section 4.2.1, page 74). Arrival before a time window

is typically allowed, with the truck having to wait. Late arrival may be either a hard

or soft constraint, respectively not allowed or allowed with a fixed or delay dependent

variable penalty (Desrosiers et al., 1995; Taillard et al., 1997; Krumke et al., 2002).

Desrosiers et al. (1995) present a thorough summary of the history of temporal

information in transportation logistics problems and should be consulted for further

information.

2.2.6 Dynamic Routing Problems

All the problems introduced thus far are static, with perfect information; in which all

requests are known in advance of any vehicles commencing its journey (Berbeglia et al.,

2007). In real-world systems, this is rarely the case. Schedules may have to be altered

“on-the-fly” to accommodate new customer’s consignments arriving at any time, in any

order. These are known as real time (Zhu and Ong, 2000; Krumke et al., 2002; Nahum,

2013) or dynamic problems (Larsen, 2001; Bent and Van Hentenryck, 2004; Cowling

et al., 2004; Gendreau et al., 2006; Berbeglia et al., 2010; Ouelhadj and Petrovic, 2009;

Gschwind and Irnich, 2012; Pillac et al., 2012; Albareda-Sambola et al., 2014). To solve

a dynamic problem, a solution must change over the course of a real or simulated time

period. The current location of each vehicle must be kept up to date in this scheme and

valid insertion points are only those beyond a vehicle’s current location. The dynamic

model for the PMDP is presented in Section 6.3, page 112.

A dynamic problem can be split into a number of static routes, known before the

simulation of time begins, and dynamic consignments which arrive sporadically whilst

the currently planned consignments are serviced. The resulting schedule must evolve

to cope with the changing demands placed upon it. Bianchi (2000) compares a number

of strategies for the dynamic VRPTW and PDP.

Bouros et al. (2011) states that a conventional way to solve these dynamic problems

is by using a two phase local search algorithm, based on the quality of the solution from

the point of view of both the shippers (customers) and the carriers (delivery companies).
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The research presents a novel solution using a graph based formulation of the problem

where each request is treated independently. Bouros et al. (2011) show that Bellman-

Ford (Bellman, 1958; Ford Jr., 1956) or Dijkstra-like (Dijkstra, 1959) algorithms cannot

be applied to this problem as sub-path optimality (critical to the correctness of those

algorithms) does not hold when there are two independent cost functions. A branch and

bound approximation algorithm is presented that is shown to find solutions significantly

faster than a conventional two-phase search.

Hentenryck et al. (2009) present a strategy whereby likely consignments are antici-

pated with a probability based on how often these consignments have occurred in the

past. Schedules can then be designed to easily accommodate anticipated consignments.

The dynamic vehicle routing problem has attracted a considerable amount of atten-

tion in recent years. The survey by Pillac et al. (2013) presents a general description,

along with the notion of degree of dynamism where different systems may be classified

as more or less dynamic based on two factors, the frequency of changes and the urgency

of requests. (Larsen, 2001) introduces a measure of effective degree of dynamism for

problems with variable time windows, we investigate the effect of this in Section 8.6.1,

page 149. The research presented in this thesis focusses on long distance PMDP, as

prevalent in primary goods distribution, e.g. from a farm or supplier, to a number of

supermarkets. Though not in the area of vehicle routing, Ouelhadj and Petrovic (2009)

survey scheduling in manufacturing systems which share a number of similarities with

the VRP, namely complex constraints and a variety of unexpected disruptions. The

Ouelhadj and Petrovic (2009) survey has a strong emphasis on scheduling and predic-

tion of real time events, whilst the Pillac et al. (2013) survey is primarily a thorough

review of dynamic VRPs, with real-time events and stochasticity representing small

asides.

2.2.7 Foresight Policy

Problems with clearly repeating similar cycles of activity, such as the internet grocery

shopping problem, are described by Yang et al. (2014) as “e-fulfilment problems”.

Customer deliveries can be priced based on either their impact into the current schedule

“hindsight” or based on their projected impact in the eventual schedule “foresight”.
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The projected cost of servicing a consignment based on a foresight model (Yang et al.,

2014) is:

Cs
j = wjC

s
H + (1− wj)C

s
F , (2.1)

where Cs
j is the expected cost of insertion, Cs

H is the cost of insertion into the actual

schedule and Cs
F is the cost of insertion into a previous week’s schedule. Since foresight

methods are more accurate when fewer consignments are known and hindsight methods

are more accurate towards the end of a planning period, a weighting wj is applied to

the hindsight cost and 1−wj is applied to the foresight cost. wj is defined as j/J where

j is the number of the current consignment and J is the total number of consignments

expected in the planning period.

Repeating cycles of delivery activity occur in many areas of vehicle routing, not just

e-fulfilment. A foresight model using previous scheduling information to inform future

delivery costs could be applied to Transfaction Ltd.’s problem.

2.2.8 Stochastic Travel Times

In many logistics problems, travel time is not a fixed quantity and may depend on

weather, traffic or other considerations. Problems which attempt to deal with these

problems often use “stochastic” travel time, where journey times are altered by a ran-

dom (stochastic) quantity.

Figliozzi (2010) looks into the impact of congestion on routes where journey times

are modelled as a normal distribution. Congestion changes both the mean and standard

deviation of the journey time distribution, as well as adding further costs.

Haghani and Jung (2005) discuss time-dependent travel times and presents a genetic

algorithm that can solve trivially small problems with results within 8% of the exact

solution. They also show that, with uncertain travel time, the dynamic model vastly

outperforms the static model. Haghani and Jung (2005) consider both stepwise and

continuous functions for travel time in relation to time of day.

Lorini et al. (2011) model a situation where customer’s consignments can be altered

“online” (while on route to a destination). Their solutions are generated using a greedy

insertion heuristic followed by a descent search using CROSS moves (Taillard et al.,

1997) before a final local descent search using a relocate operator on each route (Taillard
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et al. 1997, see Section 3.2.2). Their model includes varying weights for edges at

different times of day, using a stepwise function.

Li et al. (2009) present a Lagrangian relaxation for the real-time VRP with time

windows then use a “dynamic programming heuristic” to find feasible solutions in prob-

lems with vehicle breakdowns. Li et al. (2009) test their approach on modified Solomon

(1987) benchmark instances of small size. Their insertion heuristic has a number of

clever features, such as reducing the size of the modifiable solution by removing sec-

tions of routes that are near optimal in terms of distances and time window satisfaction.

They then use a greedy heuristic on locations that produce feasible schedules. They

conclude that although this approach produces schedules of slightly higher operating

cost the cancellation and total costs are reduced.

2.2.9 Competition

Figliozzi et al. (2003) suggest that the widespread adoption of the internet has reduced

the costs of working with different companies, opening up the possibility of using online

auction houses to determine logistics suppliers for individual shipments rather than

relying on a single company for all shipments. We investigate the potential savings

when delivery companies work together in Chapter 7.

Figliozzi et al. (2003) developed a dynamic model of a logistics trading market

supporting multiple shippers and carriers. Each of these agents has a set of beliefs

about the system that gradually changes over time. Shippers initiate auctions by

presenting consignments to be fulfilled. Figliozzi et al. (2003) also investigate the

effect of changing the number of carriers (keeping the number of vehicles constant)

and the effect of modifying the arrival rate of shipments on the quality of the solution

obtained. Subsequently, Figliozzi et al. (2007) investigate the effect of hidden rewards

for consignments which only become known after the auction phase. More recently,

Robu et al. (2011) developed a similar, multi-agent auction platform as part of a Dutch

collaboration to improve transportation logistics.

Zhu (2004) analyses electronic markets that can be used by haulage companies to bid

on delivery contracts. The analysis takes a game theoretic point of view and suggests

that transparency to see other companies’ bids would weaken the appeal of joining such
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a system, because companies may intentionally bid lower than their competitors even

if it is not directly in their best interests to starve the competition. Their analysis does

not extend to the quality of schedules generated as a result of the auction with respect

to number of vehicles used, distance travelled or financial implications.

Moon et al. (2012) investigate a problem where additional vehicles may be out-

sourced with a different price structure. In their work on heterogeneous vehicles, Moon

et al. (2012) also consider driver overtime as an additional feature affecting the cost of

delivery schedules.

2.2.10 Business Design Issues

Most research on VRP and PDP is concerned with finding better solutions to a set

of problem specific, synthetic or benchmark problems. Although incredibly useful,

research has not considered the business costs and savings that pertain to the scheduling

strategy analysed. Problems that consider customer requests to have time windows

either treat them as hard constraints (Mester and Bräysy, 2005) or with a penalty

function (Taillard et al., 1997) but do not investigate how efficiently the requests could

have been served if the time windows were looser or removed entirely.

McLeod et al. (2012) show that a dynamic service person routing and scheduling

approach can work almost as well as a static solution and could enable companies to

offer same day rather than next day service. Their approach can generate schedules

fast enough that vehicles are not left without instruction and for a similar service cost.

Mitrović-Minić et al. (2004) propose a double-horizon approach for dynamic prob-

lems where requests that are not imminent are scheduled separately, using a different

fitness function. They note that although promising, “percentage improvements go

down as instances become larger”. Since real-world instances of the PMDP are very

large, we felt that the additional effort required for double-horizon scheduling was not

worthwhile in the development of our VNDM approach.

Yang et al. (2014) find that scheduling in anticipation of repeated events in a

VRPTW can produce savings of up to 6%. Similarly, Thomas and White III (2004)

find anticipation can greatly help in LTL PDP especially when customer requests ar-

rive late in a vehicle’s route. I expect anticipation would be beneficial to the PMDP
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developed in this thesis but remains an area for future research.

In a handicapped person’s transportation problem, Toth and Vigo (1997) show that

a heuristic approach is capable of solving real world instances better than existing man-

ual schedulers. Solutions assessed by their fitness function (fixed and routing costs plus

user inconvenience penalties) showed a 36% improvement whilst adhering to problem

specific constraints. The heuristic solution was able to more efficiently utilise assets,

“doubling the average number of trips served per route”. Similarly, Erera et al. (2008)

show that a heuristic approach to driver management can reduce the number of drivers

required by up to 10% in comparison to manual driver management strategies. Dorer

and Calisti (2005) uses an Agent-based approach to solve a real-world dynamic PDP

with partial loading. They find that an agent-based approach can produce overall cost

savings of around 12% when compared to manually planned dispatching. Given these

precedents in other areas of routing and scheduling we felt confident that we could

outperform manual scheduling on the PMDP.

2.3 Fitness Functions

All routing problems have an associated fitness function used to evaluate how good any

given solution is, relative to an other. Theoretical studies starting with the TSP focus

on distance minimisation. However, the fitness function varies greatly on an individual

problem basis. VRP and PDP problems often have a multi-objective fitness, first to

minimise the number of vehicles used and second to minimise total distance travelled.

Problems drawn from real world situations often use a fitness function more aligned

with business needs, for example taxi and DARPs may use a fitness function that seeks

to minimise customer waiting time (Horn, 2002). For haulage problems it is often most

appropriate to minimise the cost of delivering all consignments or to maximise profit.

If it is not possible to service all consignments, part of the problem is to decide which

consignments to service.

2.4 Benchmark Instances

Christofides (1979), Solomon (1987) and Golden and Assad (1988) have all produced

benchmark instances for the VRP. The OR library links to the VRP web where these

40



2.5 Discussion and Summary

benchmark problems are hosted (Diaz, 2006). Li et al. (2005) introduced a set of

benchmarks for large-scale VRPs, more appropriate for real-world scenarios and modern

solution approaches. Laporte (2009) includes tables by Ropke (2005) identifying the

10 best heuristics for the Christofides (1979) and Golden and Assad (1988) test sets.

The smaller test sets of Christofides (1979) (51 ≤ n ≤ 199) are solved by memetic

algorithms (Nagata and Bräysy, 2009), tabu search with adaptive memory (Rochat

and Taillard, 1995) and local search limitation strategies (Nagata and Bräysy, 2008).

Genetic and guided evolution strategies presented by Mester and Bräysy (2005, 2007)

attain results close to these (0.03% above the best solution). For the more complex

scenarios (200 ≤ n ≤ 480) of Golden and Assad (1988), local search limitation strategies

(Nagata and Bräysy, 2008) produce results within 0.01% of the optimal solution. Other

techniques applied to the larger test sets are less competitive than on the small test sets

but all still produce results within 1% worse than optimal. A derivative of tabu search

by Tarantilis (2005) achieves only 0.76% worse than optimal. These meta-heuristic

approaches are introduced in more detail in Section 3.2.4. Li et al. (2011) present

benchmarks for the single vehicle TSPPD but do not compare their results against

others. Lim et al. (2016) present a new set of benchmarks for the PDP with manpower

scheduling for a non-emergency ambulance service, comparisons are made against a

manual schedule.

The most widely studied benchmark instances of the PDP (from Li and Lim (2003))

are used in this thesis to compare our methods with the state-of-the-art. These bench-

marks are more tightly constrained than either of our retailer case studies, introduced

in Chapter 6, and use a different objective function, but are otherwise similar enough

for comparisons. The benchmarks have been investigated by Bent and Van Hentenryck

(2003); Blocho (2015); Hasle et al. (2007); Hosny (2010); Koning (2011); Li and Lim

(2003); Ropke and Pisinger (2005), and corporate researchers: Quintiq (2015); Tetra-

Soft (2003). The best published results are kept up to date online by Sintef (2008).

2.5 Discussion and Summary

A common theme is that real-world routing problems are rarely the same, though

similar techniques may be used to solve them (see Chapter 3). Berbeglia et al. (2007)
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identify one-to-many vehicle routing problems such as the PMDP as requiring further

research and no work on similar problems can be found in literature.

Much research has gone into solving the PDP, specifically the benchmarks of Li

and Lim (2003), which may be seen as a relaxed variant of the PMDP where each

pickup has only a single delivery and there is no LIFO constraint. The state-of-the-art

for PDP is ALNS of Ropke and Pisinger (2005) which set many of the best known

solutions to these problems. Fitness functions for benchmarks traditionally focus on

minimising number of routes then distance whilst real-world problems are often more

concerned with cost or timeliness. Though a practical solver for the PMDP is the goal

of my thesis, I compare against these PDP benchmarks to ensure a good standard of

solution quality in a less constrained problem.

Another more closely related problem is the PDPL, however, solvers for this problem

use block or tree structures which are not easily expandable to a multiple delivery

problem and there are fewer existing approaches to compare against, thus the PDPL

solvers have not been used as a basis for solutions for the PMDP. This chapter presented

an overview of vehicle routing and scheduling problems and models that are of particular

relevance to this thesis. The differences between PDP, VRP and TSP are explained

and extensions are introduced that more accurately model real-world problems. All of

these routing problems are NP-hard as they are at most reducible to TSP. The following

chapter looks at solution methods that have been applied to these problems.
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3

Literature Review:

Solution Approaches

Chapter 2 introduced the TSP, VRP and PDP along with some of many extensions.

This section presents a brief history of solution approaches to VRPs. Section 3.1 covers

exact solution approaches, whilst Section 3.2 introduces non-exact methods. Sections

3.2.1 and 3.2.2 present common constructive and modification methods used in non-

exact approaches. In Section 3.2.3 an overview of a number of important heuristics for

the routing problems is given. Section 3.2.4 looks into more intelligent meta-heuristics

that have been successfully applied to these problems. Section 3.2.6 presents hybrid

methods that combine multiple meta-heuristic strategies into problem specific solu-

tions. Section 3.2.5 presents a number of hyper-heuristics, the focus of this thesis,

which attempt to build hybrid meta-heuristics automatically and therefore work across

different problem domains.

3.1 Exact Methods

Exact methods solve complex problems mathematically, producing provably optimal

solutions. For the VRP, a good summary of exact methods is presented by Laporte

(1992), notably including the works of Malandraki and Daskin (1992) and Desrochers

et al. (1992). For VRP and PDP, exact methods are most useful for small size problems

as the computation time required to solve large instances grows exponentially, often
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becoming infeasible, due to the NP-hard nature of these problems.

Exact solutions to static PDPs favour branch-and-cut-and-price algorithms using

column generation techniques. Ropke and Cordeau (2009) provide a good description of

using branch-and-cut for the pickup and delivery problem with time windows. A tree of

potential solutions is generated, of which not all are feasible solutions, while searching

the tree, branches can be cut either by proving infeasible or by guaranteeing a worse

solution than the best already found. Dumas et al. (1991) use this approach to solve a

multi-depot PDP for problems with up to 55 requests. No indication is given of whether

their approach scales to larger problem sizes. Baldacci et al. (2010) has produced

an exact solution framework for a broad class of VRPs and more recently Gschwind

and Irnich (2012) presented a branch-and-cut-and-price exact solution approach to the

dynamic time window DARP of up to 96 requests.

Xu et al. (2003) solve a PDP based on real-world logistics with multiple carriers,

vehicle types and LIFO constraints of up to 500 requests using a column generation

formulation containing an exponential number of columns. However, in order to pro-

duce solutions in acceptable time, they introduce heuristics into the column generation

subproblem, and cannot guarantee optimal solutions. In general, exact methods do

not scale well, so non-exact approaches that can quickly find near-optimal solutions,

have become popular for large-scale, real-world problems. These are discussed in the

following section.

3.2 Non-Exact Methods

Most real-world problems are too large or complex to be solved quickly using exact

methods. In these cases non-exact methods are preferred, enabling approximate so-

lutions to be generated quickly. Some non-exact methods take exact methods and

make simplifying assumptions or approximations, for example, the large neighbourhood

search (LNS see Section 3.2.5.4) of Shaw (1998) uses truncated branch-and-bound to

avoid searching entire solution trees.

Heuristic methods are widely used alternative approaches that build up and modify

a solution using operators. These can be broadly divided into construction and mod-

ification operators. A heuristic defines a set of rules specifying the choice and usage
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of operators. A simple greedy heuristic for the TSP would specify an initial solution,

a pair of nodes in the graph, and one operator. The operator would choose a node

whose edge to the current chain is shortest and add this node/edge to the solution.

This operator would be used repeatedly until all nodes were in the solution and finally

join the first node to the last to complete the TSP cycle.

To improve upon this result, modification operators can be utilised, often for a

user-specified amount of time. This process is referred to as heuristic search. Running

a heuristic search for a longer period of time should result in a better solution though

in practice they offer diminishing returns as the approximate solution approaches the

optimal one. Heuristic search may also suffer from becoming stuck in poor quality local

optima and being unable to find solutions close to the global optimum. In practice, for

big problems, we probably approach the optimum very rarely so a soon-enough-good-

enough solution is sufficient.

3.2.1 Construction Operators

Construction operators add customers to an existing (initially empty) partial solution.

This section surveys a number of construction operators, common amongst heuristic

methods.

3.2.1.1 Random Insertion

Random insertion (Mester and Bräysy, 2005) is one of the simplest construction heuris-

tics and simply adds a customer in a random, feasible, position in the existing partial

solution. It is very fast as no features are used to decide where to place the customer

and no consideration is given to the quality of the resulting partial solution.

3.2.1.2 Greedy Insertion

Greedy insertion simply finds the best position for a new customer given the customers

that have already been added to the solution. It does not consider the future im-

plications of any decision so is fast but solutions generated in this way are often far

from optimal. Yang et al. (2014) present a method for greedily inserting a customer’s

consignment into an existing schedule as part of a choice based demand management
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problem in e-fulfilment (e.g. online shopping) which shares many similar constraints

with our problem, introduced in Chapter 4.

3.2.1.3 Clarke and Wright Savings (CWS)

The savings algorithm by Clarke and Wright (1964) (CWS) is one of the first com-

putational solutions to the VRP introduced in Section 2.1.2, building on the work of

Dantzig and Ramser (1958). It is a relatively simple procedure as shown in Algorithm

3.2.1.

Algorithm 3.2.1 Clarke and Wright Savings Algorithm (Clarke and Wright, 1964).

Precondition: assign a unique route for each customer

repeat

for all unique customer pairs

calculate 4 savings possible by combining these routes

update the route giving the largest saving

until no savings possible

Taking two routes as defined in Equation 3.1, new routes are made by removing

one link from each existing route, connecting together ci and cj , and re-connecting the

severed routes to base. The resultant routes are shown in Equations 3.2 though 3.5.

Note that routes in Equations 3.2 and 3.5 reverse the direction of some parts of the

existing routes.

(b, . . . , ci−1, ci, ci+1, . . . , b) (b, . . . , cj−1, cj , cj+1, . . . , b) (3.1)

(b, . . . , ci−1, ci, cj , cj−1, b) (b, ci+1, . . . , b) (b, . . . , cj+1, b) (3.2)

(b, . . . , ci−1, ci, cj , cj+1, b) (b, ci+1, . . . , b) (b, cj−1, . . . , b) (3.3)

(b, . . . , ci−1, b) (b, . . . , cj−1, cj , ci, ci+1, . . . , b) (b, cj+1, . . . , b) (3.4)

(b, . . . , ci−1, b) (b, . . . , cj−1, b) (b, . . . , cj+1, cj , ci, ci+1, . . . , b) (3.5)

The savings are calculated as the sum of the edges that were removed minus the

sum of edges added for each new route. CWS is used by Takes and Kosters (2010) and

46



3.2 Non-Exact Methods

Benavent et al. (2015) to solve subproblems of PDPs.

3.2.1.4 Generalized Insertion (GENI)

Gendreau et al. (1992) introduces Generalized Insertion (GENI), an insertion method

which considers a customer’s p closest neighbours and considers all routes which locate

the new customer such that it connects two of its p closest customers without regard

for their position in the target route. For each pair of nearest neighbours (i, j), and for

each third distinct node k in the route, there are two potential new routes, shown as

Type 1 and Type 2 in Figure 3.1. These two routes represent different ways to reconnect

the severed initial route. The lowest insertion cost route is chosen for insertion. The

original connections of the target route are maintained as far as possible (but may be

reversed) given the new customer’s position in the route.

3.2.1.5 Least Regret Insertion

Ropke and Pisinger (2005) present a least regret construction operator that considers

the k-best locations for inserting all unscheduled customers into the current solution.

The difference between the best and worst insertion location for each customer is its

regret and the objective is to minimise the total accumulated regret across all customers.

The customer with the largest potential regret is inserted first so that its regret is not

manifested. The process repeats until all customers have been added to the solution.

3.2.2 Modification, Local Search Operators

Once a solution has been generated using construction operators, modification opera-

tors can be used to improve the solution in terms of the fitness function (Section 2.3).

In the literature, these are often referred to as Local Search Operators (LSOs) or neigh-

bourhoods and serve as the LLHs used by the hyper-heuristics introduced in Section

3.2.5. Using an LSO on a solution leads to the creation of new solutions, similar to

that given, where usually only a small number of customers will have changed position.

Bräysy and Gendreau (2005a) presents a comprehensive analysis of LSOs that are sum-

marised below along with others from Taillard et al. (1997); Bräysy (2003). Figures are

presented where appropriate using the notation introduced in Figure 2.2. In all cases,
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Fig. 3.1: GENI operator.
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dotted edges are those which the LSO leaves unchanged, while solid edges are changed

from one solution to the next. K-opt and its variants are presented in the Appendix,

Section A.1.1.

3.2.2.1 Relocate

A simple strategy for local search across a solution with multiple routes is the Relocate

operator, proposed by Savelsbergh (1992) (Figure 3.2), which takes a customer from

one route and adds it to another route.

b

j

i− 1
j + 1 i+ 1

i

(a) Before

b

j

i− 1
j + 1 i+ 1

i

(b) After

Fig. 3.2: Relocate operator

3.2.2.2 λ-interchange

The neighbourhood of a λ-interchange can be thought of as a being generated by a

number of relocation operations. For a pair of routes a number less than λ is chosen;

this many customers are chosen at random from route 1 and relocated into route 2.

Concurrently a different number (< λ) of customers is chosen and relocated from route

2 to route 1, such that no customer is moved from route 1 to route 2 and back again

or vice versa.

Osman (1993) uses λ-interchange to generate routes, and proposes a way to speed

up the best admissible policy. The changes are stored in a 2 dimensional array of

customers against routes: when a customer is moved from one route to another only 2

entries must be updated, the original route and the target route corresponding to that

customer. All other results are the same so are not modified. Osman (1993) shows that

this approach produces a 50% reduction in computing time.
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3.2.2.3 Exchange

The exchange operator swaps a pair of customers in 2 routes. 4 edges are changed, as

shown in Figure 3.3, but the resulting two routes have only one node different to their

respective initial configurations.

b

i− 1

j

i+ 1j − 1

i

j + 1

(a) Before

b

i− 1

j

i+ 1j − 1

i

j + 1

(b) After

Fig. 3.3: Exchange operator.

3.2.2.4 Chain-exchange

Fahrion and Wrede (1990) presents Chain-exchange where two arbitrary length chains

of customers are selected from two routes and are swapped between routes, the insertion

point is taken as the location which would minimise cost in both cases.

3.2.2.5 CROSS-exchange

CROSS-exchange, presented by Taillard et al. (1997), is an extension of the exchange

operator where chains of customers are exchanged between routes rather than individ-

uals. It is also very similar to Chain-exchange, except that no calculations regarding

lowest insertion cost are made, the chains are simply swapped directly. The chains may

be of varying length but the process continues as shown in Figure 3.3 where i and j now

represent arbitrarily long chains of customers. Figure 3.4 shows a case where a chain of

customers from i...k is exchanged with the chain of customers j...l from another route.

3.2.2.6 iCROSS-exchange

Bräysy (2003) presents an alternative local search method, similar to CROSS-exchange

where the chains that are swapped from one route to another have their sequencing
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Fig. 3.4: CROSS exchange operator.

reversed. As shown in Figure 3.5 the customer chains i...k and j...l are reversed to k...i

and l...j respectively while simultaneously being interchanged between routes.

3.2.2.7 Insert Related Parallel

Bräysy (2003) presents Insert Related Parallel (IRP) in which a set of nodes is chosen

from two routes such that the difference (distance, cost, etc.) between nodes is less

than a given threshold. These nodes are then removed from their respective routes and

reinserted into the gaps in both routes using a parallel lowest cost insertion heuristic

which at each stage considers all nodes in all feasible locations. I-opt (Appendix, Section

A.1.1) is used in the process to further optimise the newly created chains.

3.2.2.8 Cycle-exchange

Thompson and Psaraftis (1993) introduce cycle transfers for vehicle routing problems

which involve moving a small number of customers between routes, potentially affecting

a large number of routes in a solution.

3.2.2.9 Ejection Chains

Glover (1996) proposes and Bräysy (2002) and Sontrop et al. (2005) make use of the

idea of ejection chains. Given an initial solution, a chain of consignments is moved
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Fig. 3.5: iCROSS exchange operator.

from one route in a solution to another. If the target route now violates capacity or

other constraints a chain of consignments is moved from this route to another, this

process repeats, taking each route in sequence as the target route, until no constraints

are violated or until the initial route becomes the target route. The process is similar

to that used by cycle exchange but with connected chains of consignments and more

emphasis on constraints.

3.2.2.10 Edge Assembly Crossover

Nagata (2007) extends his earlier work on Edge Assembly Crossover (EAX) for the

TSP (Nagata and Kobayashi, 1997) to the CVRP. Rather than working on one or more

routes, EAX works across 2 entire solutions. A crossover strategy is used whereby two

new solutions are generated from a pair of existing solutions. 4 intermediate solutions

are generated in this process whose edges can be partitioned into 4 sets: edges from

parent A, edges from parent B, edges from both parents, new edges. Child solutions

are built by alternating edges from A and B. Where this is not possible or where more

than one choice is available, the shortest edge is chosen.
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3.2.2.11 Discussion: Modification, LSOs

Though many of these operators come from VRP solvers they are commonly used in

PDPs as the structure of the solutions are broadly similar. The reversal of large sections

of routes as seen in Or-opt, I-opt and ICROSS is typically not useful for problems which

have tight time window constraints as the resultant route will typically violate these if

they were satisfied originally. The LSOs used in my research are introduced in Chapter

5, Section 5.2

3.2.3 Simple Heuristics

On their own, operators may not be particularly effective. Using purely constructive

heuristics, such as repeatedly using the CWS operator (Section 3.2.1), may produce

a solution to a problem quickly, but it is often far from optimal. LSOs require an

initial solution built by construction operators, and if any one LSO was used on its

own the solution would quickly become stuck in a locally optimum solution. One way

of combining the usefulness of LSOs is to use heuristics. Heuristic methods define

rules to combine the use of several different constructive operators and LSOs, offering

an efficient way of finding good, approximate, solutions to a wide variety of problems.

Summaries of heuristic solutions for the Capacitated VRP are given by Laporte (1992);

Cordeau et al. (2002); Laporte (2009). This section provides a brief introduction to

two important heuristic methods before summarising work in this area.

3.2.3.1 Sequential Insertion

In the following cij refers to the cost of travelling from node i to node j (node 0 is

the depot). Two scores are associated with every insertion (Equations 3.6 and 3.7).

Parameters λ and µ control the insertion preferences. λ = 1, µ = 0 results in minimum

extra distance. λ = µ = 0 results in smallest distance between two neighbouring nodes.

λ > 1, µ =∞ results in the node furthest from the depot being inserted first.

α(i, k, j) = cik + ckj − λcij . (3.6)

β(i, k, j) = µc0k − α(i, k, j). (3.7)
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A simple 3-step sequential insertion approach, reproduced in Gendreau et al. (2002), is

given below:

1. Initialize a route with a tour including one unrouted customer, k.

2. For each customer calculate the insertion cost at all feasible locations (between

existing routed customers).

• If no insertions are feasible, go to step 1.

• Else choose the insertion which maximises Equation 3.7 (If there is a tie,

choose the node which minimises Equation 3.6) and update the route.

3. Optimize the modified route using 3-opt, then go to step 2.

Christofides (1979) adds a second, parallel construction phase to the sequential insertion

approach, in which, any unrouted nodes are inserted into a minimal additional cost

route, and 3-opt is used to minimise cost.

3.2.3.2 Monte Carlo Techniques

Takes and Kosters (2010) present a study into the under-researched area of applying

Monte-Carlo techniques to VRPs. Taking the ordered saving list from the first stage of

CWS, Takes and Kosters (2010) apply a Monte-Carlo selection operation to decide if

each of the savings should be made. They note that their implementation (BinaryMCS-

CWS) achieves results within 3% of best known solutions on test sets from Christofides

(1979) and Augerat et al. (1998). It also outperforms ALGACEA-2 (Faulin and Juan,

2007) which follows a similar approach but uses purely random sampling, ignoring the

original ordering derived from the CWS algorithm.

3.2.3.3 Additional Methods

Cordeau et al. (2002) provides an excellent summary of common heuristic approaches

from the past for vehicle routing problems including:

• Elementary Clustering

• Sweep Algorithm
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• Fisher and Jaikumar Algorithm

• Limited Discretionary Search (Caseau, 1999)

While more suitable for real world problem sizes than exact methods, Cordeau

et al. (2002) conclude that since c.2000 meta-heuristics have proved to be more efficient

solvers, both in speed of execution and in the quality of the solutions produced so details

of these methods are not presented here.

3.2.4 Meta-heuristics (MH)

Talbi (2009) states that compared to heuristics, Meta-Heuristics “represent more gen-

eral approximate algorithms applicable to a large variety of optimization problems.

They can be tailored to solve any optimization problem. Metaheuristics solve instances

of problems that are believed to be hard in general, by exploring the usually large

solution search space of these instances. These algorithms achieve this by reducing

the effective size of the space and by exploring that space efficiently.” Meta-heuristic

approaches may use some of the heuristics introduced in Section 3.2.3 and provide al-

ternative ways of exploring the solution space, avoiding local minima in the search of

a global optimum. A summary of meta-heuristic solutions for the capacitated VRP

is given by Gendreau et al. (2002). For problems with time windows, the summary

by Bräysy and Gendreau (2005b) is also a good resource. Real-world scenarios are

investigated by Cordeau et al. (2004b); Ropke (2005).

The meta-heuristics in this section are all solution improvement methods which

assume an initial solution to the problem is given. The initial solution may be created

by using one or more of the constructive heuristics introduced in Section 3.2.1. Meta-

heuristics typically run a loop until either no further improvements are possible (hard

to judge) or for a fixed amount of time or fixed number of iterations. In the following,

an iteration lasts until the solution is changed; this may involve many thousands of

attempted modifications that do not result in the solution being altered. Many meta-

heuristics implement a re-initialisation of the solution if they detect that they are

stuck in a local optimum. For vehicle routing problems, this involves discarding large

portions of the existing solution and regenerating a solution using different construction
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heuristics, or using the same construction heuristics with customers inserted in an

alternative order.

3.2.4.1 Simulated Annealing (SA)

Lim and Zhu (2006) Present a simulated annealing (SA) approach to the multi-depot

VRP with a fixed distribution of vehicles. A randomized best insertion (RBI) algorithm

is used to generate initial solutions followed by a standard simulated annealing proce-

dure. During a SA search, initially, changes that produce worse solutions are accepted,

over time, the chance of a change being accepted if it produces a worse solution de-

creases until only improving moves are accepted. Finally, every route is optimised using

a dynamic programming TSP solver. The resultant program is both fast and effective

at minimizing the number of vehicles. During each iteration of simulated annealing one

of four procedures (intra and inter route n-node chain relocation or swapping) is used.

3.2.4.2 Tabu search for PDPL

Benavent et al. (2015) present a multi-start tabu search (TS) (Glover (1990), see Ap-

pendix, Section A.1.2) approach for the multiple vehicle pickup and delivery problem

with LIFO constraints and maximum time (PDPLT). The maximum time component

of this is a duration constraint on routes that is common to all PDP’s so I refer to this

as the PDPL. CWS (Clarke and Wright, 1964), and two random schedule heuristics

are used to build seed routes, and TS is employed to repeatedly remove and re-insert

consignments. A number of traditional strategies are employed to prevent cycling and

promote diversification of the solution. Results are presented on instances from Li and

Lim (2003)

3.2.4.3 Ant Colony Optimisation (ACO)

Ant colony optimisations are inspired by how ants navigate in the real world. Good

solutions leave a strong trail of pheromone that other ants can follow. Ant colony opti-

misations start with a solution, potentially randomly generated, and at each iteration

generate a new solution. Better solutions add pheromone to the edges they visited.

Subsequent new solutions are generated stochastically with each edge having a prob-
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ability of being included, pheromone along an edge increases the probability of using

that edge again. This technique ensures that good solutions are exploited to find better

neighbouring solutions. If an edge with pheromone is used, the pheromone present is

consumed leading to exploration of less well known edges in future searches.

Gambardella et al. (1999) propose a multiple ant colony system for the VRP with

time windows (MACS-VRPTW). Multiple independent ant colonies are used, one for

each objective, globally optimal solutions are shared between populations. The example

given looks to be extensible to the multi-depot problem, as their method duplicates the

depot with each visit to it. The objectives are to find the minimum number of vehicles

required and to take the minimum amount of time. Two ant colonies are used, the

first to reduce the number of vehicles and the second to reduce the time taken by the

current best number of vehicles. Both colonies are reinitialised if either finds a better

solution for their problem, with the best solution propagated across. The authors found

their MACS-VRPTW was on par with or better than: adaptive memory programming,

large neighbourhood search, guided local search and alternate k-exchange reduction.

The approach was not tested against TS.

3.2.5 Hyper-heuristics (HH)

Hyper-heuristics (Cowling et al., 2001) operate at a higher level of abstraction than

meta-heuristics approaches, rather than operating directly on the solution to a prob-

lem a hyper-heuristic manages a set of lower level heuristics (LLHs) to perform func-

tion minimisation. A hyper-heuristic has no knowledge of the problem domain that

it is tasked with solving. For routing problems, a hyper-heuristic is given an initial

solution and set of problem specific LSOs. The hyper-heuristic applies LSOs to make

iterative changes to the solution, in order to maximise reward / minimise cost. With

no knowledge of the underlying problem, a hyper-heuristic must choose an LSO to use

at each iteration, based only on the previous performance of the LSOs, defined in terms

of change in fitness and time taken. Burke et al. (2013) note that hyper-heuristics are

either concerned with heuristic selection or heuristic generation. The ideas of hyper-

heuristics pre-date the appearance of the term hyper-heuristic in literature. As a result,

some of the approaches in this section may not refer to themselves as a HH.
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Research has focused on different insertion, removal and local search operators, and

on the heuristics that choose between operators at any point. For example, Gendreau

et al. (2006) use neighbourhood search heuristics and ejection chains to tackle same-

day courier PDP. Mitrović-Minić et al. (2004) use a double horizon approach with

routing and scheduling sub-problems to schedule similar problems of a larger size.

Albareda-Sambola et al. (2014) use probabilistic information to inform their routing of

a multi-period VRP. Existing approaches to dynamic scheduling of PDPs (summarised

in Bräysy and Gendreau (2005b)) often use a two-phase hyper-heuristic (Berbeglia

et al., 2010): requests are first inserted into a schedule, then optimisation is performed,

either on a route that has been changed or on an entire schedule.

3.2.5.1 Random Descent (RD)

The simplest hyper-heuristic is Random Descent (RD) (Remde et al., 2011). At each

iteration, a random LSO is chosen and tested repeatedly. If the LSO produces a

better solution, it is accepted and the current best solution is updated; otherwise it

is discarded. A parameter is used to control the number of non-improving iterations

that is allowed before the solution is re-initialised. In contrast to VNS (introduced

below) RD uses LSOs in a random rather than systematic fashion and there is no

shake procedure to escape local minima.

3.2.5.2 Variable Neighbourhood Search (VNS)

Mladenović and Hansen (1997) present Variable Neighbourhood Search (VNS) as a

multi-purpose MH and demonstrated its effectiveness on the TSP. Recent implementa-

tions of VNS for the VRP are by Hansen and Mladenović (2001); Hansen et al. (2009).

VNS combines simple local search techniques intelligently in order to reach globally

maximal values quickly. A neighbourhood is defined as the set of possible moves from

a given solution, for example, the set of 2-opt or 3-opt moves, as described in the

Appendix, Section A.1.1. Since VNS works at the level of managing LLHs, I classify

it as a HH. VNS relies on the fact that a global minimum is locally minimal for all

neighbourhoods. The strength of VNS is thought to be due to two observations:

1. A local minimum of one neighbourhood is not necessarily a local minimum for
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another neighbourhood.

2. Local minima for differing neighbourhoods tend to be clustered close together.

A clear description of VNS is given by Cowling and Keuthen (2005) and is modified

for general use in Algorithm 3.2.2.

Algorithm 3.2.2 Procedure Variable Neighbourhood Search

Precondition: Create an initial tour T

Precondition: Set T∗ = T, k = kmin

1: function VNS(kmin, kmax)

2: repeat

3: Apply Local Search to T

4: if cost(T ) < cost(T∗)
5: Set T∗ = T, k = kmin

6: else

7: Set T = T∗
8: if k < kmax

9: Set k = k + 1

10: Perform kth neighbourhood modification to T

11: until Stopping criterion is met

Hansen et al. (2009) introduce various VNS techniques. The two most important

of these are Variable Neighbourhood Descent (VND) and the General VNS (GVNS),

shown in Algorithm 3.2.3.

A key point when using any VNS method is the choice and number of LSOs to be

used; these can be any of the techniques introduced in Section 3.2.2, or new LSOs.

VNS for VRP with time windows

Bräysy (2003) uses a four phase technique for solving the VRPTW comprising route

construction, route elimination and two VNS stages. In route construction, cheapest

insertion heuristics are used to sequentially build starting routes, with Or-opt being

used periodically to optimise the generated routes. Route elimination using ejection

chains is carried out in phase two, the aim being to reduce the number of routes in

the initial solution as much as possible, by reinserting all of one route’s customers

into another route. This may involve moving customers in adjacent routes to further
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Algorithm 3.2.3 Procedure General Variable Neighbourhood Search and VND

Precondition: x = The current saved best solution.

Precondition: x′ = The newly generated solution.

Precondition: k = The current neighbourhood.

Precondition: Ni(x) = The ith neighbourhood of solution x.

Precondition: t = Time.

Precondition: Label Neighbourhoods 1 through to k.

1: function VND(x, kmax)

2: repeat

3: k ← 1

4: repeat

5: x′ ← Nk(x)∗

6: if x′ < x

7: x ← x′

8: k ← 1

9: else

10: k ← k + 1

11: until k = kmax

12: until no improvement

13: function GVNS(x, k′max, kmax, tmax)

14: repeat

15: k ← 1

16: repeat

17: x′ = A random solution from the kth neighbourhood. . Shaking

18: x′ = VND(x′, k′max) . Run current solution through VND

19: if x′ < x

20: x ← x′

21: k ← 1

22: else

23: k ← k + 1

24: t ← current time

25: until k = kmax

26: until t = tmax
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additional routes. Phases three and four employ the VND aspects of VNS, and use

first-improvement rather than best-improvement to select the moves to accept. The

overall approach does not include a random shake component and therefore proceeds

in deterministic fashion from problem to solution. Four purpose made LSOs are used in

the VNDs: ICROSS, IRP, I-opt and Or-opt, introduced in Section 3.2.2. The third and

fourth stages of the technique differ only in that after the initial objective of minimising

travel distance is achieved, the objective function is modified to also include a preference

for minimising the delay per consignment.

VNS for MDVRP with time windows

Polacek et al. (2004) present an adaptation of VNS to the Multi-Depot VRPTW that

is shown to be competitive with TS approaches, their approach’s strengths are its

scalability to real-world sized problems, simplicity and ease of extension to support

additional constraints, both on the types of journeys and on fleet composition. Their

approach uses CROSS and iCROSS operators with increasing chain lengths as the

LSOs.

VNS for DARP

Parragh et al. (2009) apply VNS to the DARP using a 2-phase solution approach.

Jarboui et al. (2013) apply VNS to the location routing problem where the location

of depots is considered a variable in addition to other constraints. Both TS and VNS

approaches to this problem work well highlighting their strengths and flexibility.

VNS for TSPPDL

Carrabs et al. (2007) Use VNS to solve the single vehicle, single depot pickup and

delivery problem with LIFO. They refer to this problem as the TSPPD. They propose

a block structure to deal with the LIFO constraint where each consignment is a block

and multiple blocks can be combined to produce composite blocks. Operators then

work with knowledge of these blocks to avoid producing routes which violate the LIFO

constraint. This block structure would need substantial modifications for the PMDP

as due to having more than one delivery associated with each pickup there are many
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ways that two consignment blocks could be combined together (discussed in detail in

Section 4.2).

VNS for PDPL

Li et al. (2011) and Cheang et al. (2012) both make use of VNS to solve instances

of PDP with LIFO loading (PDPL). Cheang et al. (2012) call this a multiple PDPL

(MPDPL) but the use of multiple here is a misnomer, referring to having more than

one request to service, the problem is in no way distinct from PDPL. Both Li et al.

(2011) and Cheang et al. (2012) use a tree structure to represent a route that adheres

to LIFO constraints and this works well as conceptually the children of a node fall

between the pickup and delivery of the consignment represented by the node. It would

not work in a situation where there are multiple deliveries per consignment and other

consignments can be inserted between any pickup or delivery, such as the PMDP.

3.2.5.3 Greedy Randomised Adaptive Search Procedure

GRASP ranks customers based on either how difficult they are to service or the quality

of solution possible by their inclusion. GRASP is an iterative approach in which each

iteration consists of a construction and optimisation step. A set of solutions is stored

and diversity in the solution set is maintained through a restricted candidate list which

prevents well ranked individuals from being used too frequently. Local search using

LSOs is carried out in the optimisation step. Kontoravdis and Bard (1995) present a

GRASP for the VRP with time windows. Cherkesly et al. (2015) use a three phase

approach that creates multiple initial routes using a GRASP to solve a problem with

LIFO constraints. VND is used for local search, and new solutions are created from

existing routes using a diversification strategy derived from Rochat and Taillard (1995).

A crossover step is used to combine solutions together to form additional candidate

solutions.

3.2.5.4 Large Neighbourhood Search (LNS)

Shaw (1998) introduces LNS as a process of continual relaxation and re-optimisation.

Customer visits are removed from a solution and the resulting solution is optimised. The

62



3.2 Non-Exact Methods

removed customers are then re-inserted into the schedule using minimum cost branch-

and-bound. LNS is shown to compare favourably with contemporary MH solution

approaches “while being significantly simpler” and being able to effectively address the

additional real-world constraints of their problem.

3.2.5.5 Adaptive Large Neighbourhood Search (ALNS)

Ropke and Pisinger (2005) and Pisinger and Ropke (2007) present Adaptive Large

Neighbourhood Search (ALNS) following a similar fashion to VNS except that the

neighbourhoods to be searched are not structured in a hierarchical fashion. They are

instead built up from a selection of insertion and removal operators. SA is used to

allow exploration at the start of the search. ALNS is shown to produce good solutions

to PDPs with up to 500 requests, producing the best known solutions to many of

the benchmark problems of Li and Lim (2003). Demir et al. (2012) use ALNS and a

speed optimisation algorithm in a two phase approach to solving the pollution-routing

problem (Section 2.2.4), they carry out extensive computational experimentation to

confirm the efficiency of their algorithm on instances of up to 200 nodes. Koç et al.

(2014) combine this with an evolutionary algorithm capable of solving different classes

of problem without modification.

3.2.5.6 Parallel ALNS

Pillac et al. (2012) present a parallel adaptive large neighbourhood search (pALNS) to

generate a set of non-dominated solutions for the single depot dynamic VRP that a

decision maker may choose between. Their two objectives are distance minimisation and

driver inconvenience but this could be altered to investigate delay or other factors. Their

destroy and repair scheme for local moves includes the following destroy operators:

• Random - choose a random customer to remove from the solution.

• Related - choose one customer at random then the most related customer to it

(weighted product of distance and time window)

• Critical - remove one customer that minimises cost of solution.
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Customers are re-inserted using regret-q heuristics with three regret levels (1, 2 & 3)

at level 1 this corresponds to a greedy best insertion heuristic. The adaptive nature

of the algorithm deals with the selection of destroy and repair operators, these are

chosen randomly with a probability which changes throughout execution to favour

more successful operators. Pillac et al. (2012) do not consider variable travel times,

removed consignments or vehicle breakdowns.

3.2.5.7 Q-Learning Selection (QL)

QL (Watkins and Dayan, 1992) is a learning hyper-heuristic that shares a number of

similarities with the choice function of Cowling et al. (2001). QL attempts to learn

good sequences of LSOs, these are stored in a Q-state dictionary which maps sequences

of n LSOs to Q-values. At each iteration, QL identifies sequences from the dictionary

that start with the most recently used n−1 LSOs. The next LSO to try is chosen based

on a roulette selection over these entries Q-values. The Q-values in the dictionary are

updated using the function:

Q(s, a) = Q(s, a) + α

[
r +

(
γ max

a′
Q(s′, a′)

)
−Q(s, a)

]
(3.8)

where s is the current 1, . . . , n − 1 sequence of LSOs, a is the next LSO to use

and s′ is the resultant sequence, after this operator is used. The reward r is set to

the improvement produced by the operator, divided by the time taken to find it or to

half the smallest observed reward if no improvement is found. α, the learning rate,

γ, the discount factor, and n, the length of LSO sequences to store, are parameters.

Traditional QL allows non-improving moves. However, since our problem has a very

limited set of improving moves, in Chapter 5 we have adapted it to only accept moves

which result in better solutions.

3.2.5.8 Binary Exponential Back-off (BEBO)

BEBO (Remde et al., 2011) is a tabu based learning hyper-heuristic derived from

methods used to avoid packet collision in communications systems. If a packet collision

is detected an exponential time backoff is applied, delaying subsequent packets from a

specific sender, reducing future collisions. In hyper-heuristic form, a tabu list is stored
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along with a backoff value for each LSO. At each iteration, all non-tabued LSOs are

tested. These are then categorised as good or bad. A “Bad” LSO may be any non-

improving move, or may be defined as being one of the worst x% of LSOs. “Good”

LSOs have their backoff set to backoff-min. “Bad” LSOs have their backoff set to

backoff2 + 1. A tabu tenure is then chosen for each LSO, randomly between backoff-

min and its backoff.

3.2.6 Hybrid Meta-heuristics (HM)

Often, the use of a single meta-heuristic prevents some potentially interesting areas

of the solution space from being investigated. Hybrid meta-heuristics (HMs) seek to

overcome this problem by combining effective features from a variety of sources (Blum

et al., 2011). They typically rely heavily on domain knowledge, and transfer of methods

across problem domains is not usually possible.

Fox (1993) combines features of SA, TS and GA (Genetic Algorithms, see Appendix,

Section A.1.3), retaining spatial and temporal memory from TS, but dropping the

necessity for aspiration criteria by utilising a cooling schedule for acceptance taken from

SA. New solutions are generated using crossover and mutation strategies from GAs. Fox

(1993) proves correctness and goes on to highlight the speed and parallelizable nature

of this strategy though no results for VRP problems are presented. Moon et al. (2012)

compare integer linear programming (ILP), a GA and a hybrid approach based on SA to

solve a real-world VRP. The GA and hybrid approaches are found to perform similarly

and both outperform ILP in terms of CPU time. Cordeau and Maischberger (2012)

embeds a TS meta-heuristic within iterated local search and uses a simple parallel

computing framework to take advantage of modern multi-core processors.

Other HMs e.g. Caric et al. (2007); Ostertag et al. (2008); Paraskevopoulos et al.

(2008); Pirkwieser and Raidl (2009); Repoussis et al. (2006), have proved successful

when applied to the VRP but have seen limited applicability to the PDP.

3.2.6.1 Hybrid Variable Neighbourhood Tabu Search

Hybridisation of VNS and TS has proved beneficial for VRPs; Paraskevopoulos et al.

(2008) presents a reactive variable neighbourhood tabu search (reVNTS) for the hetero-
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geneous VRP and Belhaiza et al. (2013) presents a hybrid variable neighbourhood tabu

search (HVNTS) for the VRP with time windows. Modification operators increasing

in complexity are used as the LSOs, from simple, intra-route, 2-opt moves to 3-route

extensions of the CROSS and relocate operators. A tabu list is used to prevent cycling

of solutions. The method presented in Chapter 5 has similarities with these methods.

3.2.6.2 Two Phase Meta-heuristics

Many methods can be called two phase. The term may refer to types of operation used,

e.g. a construction phase followed by an optimisation phase. In this description, almost

all meta-heuristics for the VRP could be described as two phase. Separation of a solver

into construction and optimisation phases usually enables a method to be portable to a

dynamic situation. When a new customer needs to be added to the current solution, the

construction phase is triggered. Otherwise, the optimisation phase is used to improve

the current solution. The two phase HMs in this section refer to optimisation methods

that have two phases. The first phase minimises one objective whilst the second phase

minimises a second.

Gehring and Homberger (1999) present a parallel hybrid evolutionary meta-heuristic

for the VRPTW. The objectives of their approach are firstly to minimise number of

vehicles used and secondly to minimise travel distance. The first phase of their approach

utilises a (1, λ) evolution strategy, described in Algorithm 3.2.4. The second phase is

a TS utilizing the same set of move operators.

This method was found to produce results similar to TS approaches whilst being

easy to parallelise coarsely over a network of PCs using a master and slave model.

3.2.6.3 Hybrid Genetic Algorithm

Baker and Ayechew (2003) present a generic GA that generates results within 2.5% of

TS approaches on a number of famous VRP test cases from Solomon (1987). Baker and

Ayechew (2003) propose enhancements to the GA that reduce this deficit to 0.5%. The

approach is named a hybrid GA, as it uses problem specific knowledge to accelerate

the convergence of the GA. A couple of techniques are introduced. Firstly, generated

solutions with non-zero unfitness (see Section A.1.3) are run through a procedure to
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Algorithm 3.2.4 λ Evolution

Precondition: Existing Best Solution S∗

1: repeat

2: for λ iterations

3: Select a move operator . (2-opt, 3-opt, etc.)

4: Generate a candidate solution using this move

5: Optimise the result using Or-opt

6: Evaluate the solution and add it to the neighbourhood set

7: S ← Best solution from the neighbourhood set

8: if cost(S) < cost(S∗)

9: S∗ ← S

10: until The time limit

swap nodes between adjacent routes, allowing increases in distance if unfitness levels

reduce, repeated until unfitness is zero or no further reductions are possible in this

manner. Secondly, every 10,000 iterations two types of neighbourhood search are car-

ried out. In the first, 2-opt is carried out on the whole solution, treated as a TSP with

the depot replicated between each route. In the second λ-interchange is carried out

between adjacent routes. The reliance on polar angles from the base location makes

this approach less suitable for multi-depot problems. Keeping track of adjacent routes

is not scalable to larger problems with thousands of trucks and multiple depots.

3.2.6.4 Memetic algorithms

Memetic algorithms combine population based GA with local search techniques to re-

duce the likelihood of premature convergence. Nagata and Bräysy (2008, 2009) present

memetic algorithms to solve the CVRP. Neighbourhoods are composed using EAX (Na-

gata, 2007, Section 3.2.2.10), 2-opt, relocate and swap operators. Infeasible solutions

are generated in this process, which are addressed with an efficient modification algo-

rithm. A method using only new routes with “don’t look” bids was found to outperform

other methods on 26 instances from the Christofides (1979), Golden and Assad (1988)

and Taillard (1993) benchmarks, finding new best solutions to 12 of the problems.
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3.2.7 Dynamic Solutions

3.2.7.1 Reactive Vehicle Routing Framework

Zhu and Ong (2000) present an approach where each vehicle is represented as an agent

and as new requests come in, incremental local optimization is carried out. The system

is inherently parallel and fast at reacting to incoming events. Their implementation is

based on a discretized model of time which is a sensible abstraction for this problem.

3.2.7.2 Multiple Plan Approach

Bent and Van Hentenryck (2004) propose a Discrete Event Simulation (DES) of the

VRP with the Multiple Plan Approach (MPA) which creates and maintains a number

of feasible solutions. A least commitment strategy is used to choose the plan used at

each event, denoted σ∗. The list of feasible solutions is updated on four events:

1. Customer Request. A newly received request results in n feasible solution

plans where n is the number of feasible insertion locations for the new request in

all of the previous plans.

2. Timeout. If σ∗ calls for a truck to leave a node, all plans where the truck stays

at that node become infeasible and are removed from the set of plans.

3. Vehicle Departure. The opposite of Timeout. If σ∗ calls for a truck to stay at

a node, plans which have the truck leaving the node become infeasible.

4. Plan Generation. Whenever a new plan is generated σ∗ is regenerated.

MPA assumes that trucks wait at delivery locations until the latest time to reach

the next customer for the beginning of their time window in order to give the most

time possible for rerouteing.

3.2.7.3 Multiple Scenario Approach

Bent and Van Hentenryck (2004) extend the MPA introduced above to include predicted

future events in the plans generated. The resulting Multiple Scenario Approach (MSA)

is otherwise identical to MPA and outperforms it in situations with a high degree of

dynamic consignments.
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3.2.7.4 Online Stochastic Programming

Hentenryck et al. (2009) use randomised predictions of future events as part of the

initial planning in dynamic problems. Likely events are stochastically added to the

set of known nodes with equal probability to that of the event occurring. The vehicle

traverses the route as planned if the expected consignments arrive and updates its route

to accommodate new consignments if appropriate.

Albareda-Sambola et al. (2014) present a dynamic multi-period VRP with proba-

bilistic information. Their single depot problem consists of a set of known customer

locations with known probability distributions for requiring service however the exact

demand is not known. Service requests consist of a number of potential time windows.

Once again variable travel times, removed consignments and vehicle breakdowns are

not considered. They use VNS with an additional skipping procedure to break out of

local optimum. A compatibility index is built between pairs of customers, representing

the potential savings (similar to CWS) if these were to both occur. When one cus-

tomer’s request is received it is delayed until the potential savings are nullified by not

servicing it.

3.3 Discussion and Summary

We presented a selection of exact and non-exact methods for solving a variety of ve-

hicle routing and scheduling problems. The exact algorithms presented are often only

capable of solving small scale problems in reasonable time, which is why non-exact

methods are crucially important. A number of construction and modification LSOs are

presented that can make small changes to a schedule and heuristic methods that use

these operators iteratively to produce good approximate solutions in reasonable time.

Though useful, heuristic methods can often become trapped in local optima, meta-

heuristic solutions such as TS and VNS offer a wide range of techniques to escape these

traps and recent hybrid-meta-heuristics represent the current cutting edge of research in

VRP. Hyper-heuristics attempt to provide the functionality of meta-heuristics across

problem domains without being constrained to a specific purpose and often include

learning mechanisms to accelerate the search.
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The focus of my research is the Pickup and Multiple Delivery Problem (PMDP)

which shares a number of similarities with both PDP and VRP problems, it is a rela-

tively unexplored area of research, and is derived from real-world logistical operations.

Relevant ideas and concepts including LIFO loading, soft time windows and local search

operators have been adapted to suit this problem (Chapter 5). Lee (2013) investigates

merging consignments using a two-phase approach which first intelligently combines

consignments then creates routes using a sweep heuristic. Our work differs in two key

respects. Firstly, our problem is dynamic, not static, and secondly it is a pickup and

multiple delivery problem, not based on a centralised depot. Packing first and rout-

ing second is also explored by Bortfeldt and Homberger (2013) who add a number of

constraints related to box size, weight and stacking. Each consignment is first solved

as a 3D strip packing problem; the length of these strips then represents the capacity

requirement and constraints in a VRP, solved using the two-phase heuristic involving

(µ, λ)-evolution and tabu search of Homberger and Gehring (2005). Our model does

not go into as much detail, though is dynamic pickup and delivery, where their model

is of a static distribution centre.
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4

Model: The Pickup and Multiple

Delivery Problem (PMDP)

The PMDP is a graph based vehicle routing and scheduling problem, consisting of

servicing customer consignments within time and vehicle constraints. A consignment is

characterised by a single pickup event, at a specific time and location, and a sequence

of delivery events which must be serviced in order. The PMDP is closely related to

the one-to-one, pickup and delivery problem (PDP), common in taxi dispatching and

Dial-a-Ride problems (DARP) (Berbeglia et al., 2007), and the one-to-many-to-one,

vehicle routing problem (VRP) for delivery problems with centralised goods depots

(see Chapter 2). The PMDP falls somewhere between and can be classified as a one-to-

many problem where one pickup is associated with many deliveries as in VRP but does

not have to immediately return to the pickup location. It differs from the one-to-one

definition, in that a customer request may specify more than one delivery location.

However, there is no central dispatching / receiving depot, as in one-to-many-to-one

problems.

Our real-world problem based on the experiences of Transfaction Ltd., a logistics

analysis company working with UK retailers, is the dynamic scheduling of shared loads

for truck haulage in the UK. We model this problem as a dynamic PMDP. Waisanen

et al. (2007) is the only mention of a model similar to PMDP but is unpublished and

concerned with communications networks. Berbeglia et al. (2010) note that one-to-
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many problems such as the PMDP are of significant real-world importance requiring

additional research; and that to date, no realistic model has been published.

4.1 Introduction

We have chosen to model our problem as a PMDP rather than as a PDP due to a number

of additional constraints that must be satisfied to meet the requirements of the retailers

Transfaction Ltd. works with, such as vehicle capacity, soft time windows and driver

working time rules. The problem is defined in terms of consignments which include a

single pickup location and one or more delivery locations. Consignments vary in size,

and may be able to share one delivery vehicle, to save cost. A key constraint is that each

vehicle must be unloaded in the reverse order to the loading order: deliveries from one

vehicle are constrained to a last-in, first-out (LIFO) order. Concretely, consignment A

may be interrupted by another if all of the second consignment’s deliveries are serviced

before continuing with consignment A’s deliveries. The PMDP has been designed

as an extension to the PDP rather than an extension to the PDPL since the tree

structures utilised to handle LIFO constraints in PDPL are overly complicated when

a consignment may be interrupted at any point. It would be possible to map PMDP

as a tree structure but each leg of a consignment (from pickup to delivery or delivery

to delivery) would have to be its own node in the tree, making the trees much larger

with a higher branching factor than in PDPL. Additionally it would be much harder

to turn the LIFO constraint off for comparisons to the state-of-the-art to be made.

4.2 Consignments

Our model for the PMDP is drawn from the formulation of the multi-commodity ve-

hicle routing problem with pickup and delivery and time windows (MCVRPPDTW)

presented by Desaulniers et al. (2002) (more simply, commonly and henceforth, referred

to as the pickup and delivery problem (PDP)). The main difference between the PMDP

and PDP is expressed as follows. Instead of a request i being identified by nodes i and

n + i, a consignment c is identified by a number of requests and a received time (pc,

Dc, tc) where pc is the pickup-request and Dc = d1c , . . ., d
nc
c is the sequence of delivery-

requests, as shown in Figure 4.1. Each consignment has a received time tc, when it is
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first seen by the system. We define C as the set of consignments.

b

p1 d1,1

d1,2

d1,3

p2

d2,1

d2,2

d2,3

Fig. 4.1: An example PMDP with a single depot, b, and two consignments (p1, d1,1, d1,2, d1,3)
and (p2, d2,1, d2,2, d2,3).

The PMDP is defined on a directed graph DG = (N,A) where A is the arc set and

N is the node set. Each pickup or delivery request r is identified by (nr, lr [tstartr , tendr ],

ttservicer ) where nr is the location, lr is the load, [tstartr , tendr ] represents the start and end

time of the arrival window respectively and ttservicer is the service time, all described in

more detail below. We define R as the set of requests where R = P ∪D ∪O, P being

the set of pickup-requests and D the set of delivery-requests. O is the set of origins

which are dummy requests used to represent the multiple depots of the problem.

Location nr is the location of request r in two dimensional Cartesian space (there

may be multiple requests per location). An arc (r, u) between requests r and u has

distance that can be represented by nnru. Similarly, we define ttru as the time taken

to travel an arc at an average speed. Pickup and delivery locations are based on UK

postcodes which are translated to standard Northings and Eastings. For simplicity we

model distances as straight-lines with travel times based on analysis of a large data set.

This is accurate enough for our “strategic” investigation of the problem.

We consider load l ∈ L in terms of weight and measure it as a percentage of

maximum vehicle load. This works well for fuel consumption calculations, but would

need additional steps if modified for volumetric use. The load of a request r is denoted

by lr; this is positive for pickup requests and negative for delivery requests. For a

consignment c the sum of the loads for requests in Rc must equal 0.

In our real-world scenarios, there are two types of consignments, ‘linehauls’ which

represent goods delivery from a supply location to many store branches and ‘backhauls’
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4.2 Consignments

representing the return of empty pallets, unsold goods etc. from branches to supply

locations. Linehauls are generally of larger load than backhauls which are point to point

and have no precedence relationships with linehauls, though they must still adhere to

LIFO loading.

4.2.1 Time Windows

For a request r an arrival time window is defined between [tstartr and tendr ], representing

when the customer would like to be serviced.

Early LateOn-time

ttstartr tendr

Fig. 4.2: Arrival time window for each request.

Figure 4.2 shows the three states possible when arriving at a request r. Unlike

many PDPs, real-world logistics problems such as those of Transfaction Ltd. have soft

time windows (see Section 2.2.5) at both pickup and delivery locations. A vehicle can

therefore arrive at a location early, on-time or late. There is no penalty for arriving

at a location early, though both vehicle and driver will have to wait until the specified

earliest time to be serviced. If the vehicle arrives after tendr the request is said to be

delayed by tr − tendr where tr is the actual time that request r is serviced. If delayed,

a penalty is applied (see Section 4.4.3). Not shown in Figure 4.2 is the service time

required for loading / unloading at a customer location, ttservicer . Waiting and delay

are both calculated based on a vehicle’s arrival time at a location. For example, if a

vehicle arrives at the latest arrival time the delay is 0 even though the vehicle will not

leave until ttservicer + tendr (after the latest arrival time tendr ).

planning window

pickup arrival window delivery arrival windows

ttc tstartpc tendpc tstartdc1 tenddc1 tstartdc2 tenddc2

Fig. 4.3: Time windows for a consignment with two deliveries.
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In Figure 4.3 a consignment consisting of pickup pc and deliveries dc1 and dc2 is

shown. There are three arrival windows, one for each request. We define a planning

window as the amount of warning that the scheduler gets before a pickup is required,

defined between [tc and tstartpc ]. The effect of changing the size of these windows and

therefore their importance from a cost perspective is investigated in Chapter 8.

Given a list of scheduled consignments, 1 − n, and an insertion location i s.t. 1 ≤

i ≤ n. An additional point, j (with time window (tstartj , tendj )), may be considered for

insertion at point i by computing the earliest feasible insertion time ej and the latest

feasible insertion time lj (Yang et al., 2014):

ej = max(ei−1 + ttservicej + ti−1,j , t
start
j ), (4.1)

lj = min(li − ttservicej − tj,i, tendj ), (4.2)

where ti,j is the time taken to travel from point i to point j and ttservicej is the time taken

to load / unload the vehicle. If ej ≤ lj , the insertion point is feasible. In problems

with hard time window constraints such as the Li and Lim (2003) benchmarks, if the

insertion point is not feasible, the insertion is not considered. However, in our real-

world problem, these need to be considered. If an insertion point is not within a soft

time window then the difference between the insertion point and the soft time window

is denoted either as waiting time or delayed time, with associated costs as described in

Section 4.4.3.

4.3 Vehicles

To service a set of consignments, a fleet of vehicles must be effectively routed and

scheduled. The PMDP is a multi-depot problem with many vehicles, each of which

may be assigned a number of routes. Let K be the set of all routes. For each route

k ∈ K define the directed sub-graph DGk = (Nk, Ak) where Nk = N ∪ o(k) is the set

of requests inclusive of the route’s origin location (dummy request) o(k). The subset

Ak of Nk ×Nk comprises all feasible arcs for route k.

A vehicle has an associated capacity lk ∈ L of the same dimension as request loads.

The load of a vehicle changes after each visit to a request r. We define llrk as the load
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4.3 Vehicles

on truck-route k after servicing request r. llrk must always be less than or equal to lk.

A vehicle servicing route k is assumed to leave unloaded from its base depot at

time tstarto(k) . Each feasible pickup and delivery tour for this route corresponds to a path

beginning and terminating at o(k) in network DGk, servicing each request at most

once. If a route contains consignment c it must serve request pc and all requests in

Dc in order, not necessarily consecutively, but adhering to LIFO queuing. A consign-

ment may be ‘nested’ wholly between requests in another consignment and there is

no depth limit for nested consignments (only capacity constraints). If truck-route k

services request r ∈ R it does so at time trk, at or after time tstartr , when the ser-

vice time ttservicer begins. If the vehicle arrives after tendr , the request is delayed, we

define this as ttdelayrk = max(0,
(
trk − tendr

)
). Similarly waiting time is the time be-

tween the scheduled arrival time trk and the start of the requested arrival window tstartr

(ttwaiting
rk = max(0,

(
tstartr − trk

)
)). This is wasted time that has an associated time

cost. A vehicle has an associated time limit for its routes defined as ttk. A truck may

be assigned multiple routes commencing and terminating at its origin ok, providing all

routes satisfy working time rules (route time duration is less than ttk) and the routes

do not overlap in time (one route must terminate at o(k) before the next can start.

4.3.1 Capacity Constraints

In the literature there is little research into vehicle sharing in PDPs; many authors fo-

cus on taxi (Horn, 2002) or emergency services (Cordeau et al., 2007) problems where

vehicle sharing is not a feature of the underlying problem. Capacity and similar con-

straints are more common in DARP (Toth and Vigo, 1997; Cordeau and Laporte, 2003)

and VRP, including recent work by Lee (2013) and Bortfeldt and Homberger (2013).

Both of these favour a two phase approach in which consignments are identified as can-

didates for combination before route planning commences. This works well for static

VRP models but would require significant adaptation for the PDP, as combination

must take into account pickup and delivery locations as well as time windows. For the

dynamic case, problems arise because not all consignments are known a priori.

The vehicles we consider may only be loaded and unloaded from the rear. Since it

is a legal requirement for trucks to be loaded evenly, from left to right (Bortfeldt and
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p1 d1,1
d1,2

d1,3

p2

d2,1 d2,2 d2,3 d2,4

(a) Before

p1 d1,1
d1,2

d1,3

p2

d2,1 d2,2 d2,3 d2,4

(b) After

Fig. 4.4: Combining two consignments, here consignment p2...d2,4 is nested between two of p1’s
deliveries d1,1 and d1,2 (Symbols are defined in Figure 2.2, page 30).

Homberger, 2013; Department for Transport, 2015), when combining consignments

we are constrained by a last-in, first-out (LIFO) packing scheme. If this were not

the case, it would require the unpacking and repacking of loads on a truck at some

delivery locations which is time consuming and not generally acceptable. Therefore,

the only form of combination allowed is nesting. A single layer nesting is shown in

Figure 4.4. Here, consignment 1 is collected and its first delivery (d1,1) is made.

At this point there is sufficient capacity left in the truck to fully service (pickup and

deliver) all of consignment 2, before returning to consignment 1 and delivering d1,2 &

d1,3. Consignments may be interrupted at any point, the key constraint is that nested

consignments must be fully completed before returning to the original consignment.

There are no artificial constraints on the number of consignments nested or the number

of layers of nested consignments. In practice both of these are limited by schedule

duration and vehicle capacity constraints.

4.4 Objective - Cost Function

The formulation of our model objective requires a binary flow variable bruk, which is

set equal to one if arc (r, u) ∈ Ak is used by vehicle k and 0 otherwise. The goal is to
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4.4 Objective - Cost Function

minimise the total cost of servicing all requests r ∈ R:

min
∑
k∈K

∑
(r,u)∈Ak

(nc(nnru, llrk) + tc(ruk) + dc(ttdelayrk )) ∗ bruk (4.3)

subject to the constraints in Tables 4.1 and 4.2, described in Section 4.5. This objective

represents a linear combination of the dominant factors influencing the real cost of

servicing a set of customer consignments including vehicle maintenance, fuel, driver

pay and delay penalties, described below.

4.4.1 Distance Cost

The driving cost nc(nnru, llrk) of an arc ru is a function of distance nnru and the

load llrk of the assigned truck k after servicing request r. Fuel cost per kilometre is

calculated as consumption in litres per 100 km multiplied by the cost of fuel per litre

divided by 100.
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Fig. 4.5: Fuel consumption at load.

Figure 4.5 shows the fuel consumption of a vehicle based on its load for any arc. A

fuel cost of £1.483 per litre was chosen when this pricing was introduced and has not

been changed since to account for recent changes in fuel price; this has been done so

that we can compare our previous results to current experiments. A fixed maintenance

cost of 10p per km is added to the fuel cost per km based on data in Dff International

Ltd. (2014).
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4.4.2 Time Cost

The time cost for each leg of a route, between requests r and u can be expressed as

tc(ruk) = tc(ttru + ttwaiting
rk + ttservicer ), note that there is no waiting or service time at

the first or last request; these are both dummy requests o(k) representing the depot.

It is assumed that trucks travel at a constant 56 km/h, based on analysis of real-world

data, outlined in Section 6.1.3.4. The cost per unit time is set in accordance with

industry practice at £12 per hour (Stobart, 2013). The cost of waiting at a request

which has been arrived at early is shown in Figure 4.6.

4.4.3 Delay Cost

An additional cost is associated with delayed consignments and is based on a stepwise

function of the time that a consignment is delayed, this is represented by dc(ttdelayrk ).

This function has been specified by Transfaction Ltd. as £40 per hour, after the first

hour of delay and is shown in Figure 4.6.
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Fig. 4.6: Time costs around the arrival time window of request r, from tstartr to tendr .

4.5 Constraints

The real-world PMDP has a number of constraints, some of which have been mentioned

already. This section presents mathematical descriptions for all the constraints in the

problem. The constraints in Table 4.1 have been adapted and expanded from the

formulation for the PDP presented by Desaulniers et al. (2002); Table 4.2 presents the
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additional, new constraints for the PMDP.

Tab. 4.1: Adapted constraints from Desaulniers et al. (2002), here ≡ implies that this constraint
is equivalent to a constraint presented by Desaulniers et al. and ∗ implies that this
constraint has been modified for the PMDP.

= Constraint Applied to #

≡
∑

k∈K
∑

u∈Rk
bruk = 1 ∀r ∈ R (4.4)

∗
∑

u∈Pk
bruk ∗ |Dj | −

∑
w∈Dj

brwk = 0 ∀k ∈ K, r ∈ Rk (4.5)

∗ Removed (4.6)
∗ Removed (4.7)
∗ Removed (4.8)
≡ bruk

(
trk + ttservicer + ttru − tuk

)
≤ 0 ∀k ∈ K, (r, u) ∈ Ak (4.9)

∗ tstartr ≤ tendr , tstartr ≤ trk ∀k ∈ K, r ∈ Rk (4.10)
∗ trk + ttservicer + ttru ≤ ruk ∀k ∈ K, r ∈ Pk, u ∈ Dr (4.11)
≡ bruk (llrk + lu − lluk) = 0 ∀k ∈ K, (r, u) ∈ Ak (4.12)
∗ 0 < lr ≤ llrk ≤ lk ∀k ∈ K, r ∈ Pk (4.13)
∗ lr +

∑
u∈Dr

lu = 0 ∀r ∈ P (4.14)

≡ lo(k) = 0 ∀k ∈ K (4.15)
≡ bruk ≥ 0 ∀k ∈ K, (r, u) ∈ Ak (4.16)
≡ bruk binary ∀k ∈ K, (r, u) ∈ Ak (4.17)

Constraints (4.4) and (4.5) ensure that each arc is only included once and that

a pickup and all its corresponding deliveries are handled by the same truck. Here,

|Du| is the number of delivery-requests for pickup-request u. Constraint (4.5) is non-

standard for the PDP and is necessary as there may be multiple delivery-requests per

pickup-request. It states that for each pickup request there exists a bruk = 1 and that

this, multiplied by the number of deliveries, is the same as the number of arcs that

end at each of the corresponding delivery requests. Unlike Desaulniers et al. (2002),

we are not interested in multicommodity flow, so we omit Constraints (4.6) to (4.8).

Constraint (4.9), imposing total schedule duration, remains unchanged. To model the

real world constraints on truck working times, each vehicle may have any number of

routes; however these must all start on different days (and, on each day, a fixed length

schedule is allowed to start at any time)1. Constraints (4.10) and (4.11) have been

modified to allow for soft time windows. Constraints (4.12) to (4.14) specify that

a pickup node must have positive load and that deliveries must have negative load,

1 In reality there are more complex rules defining working times for truck drivers including limits on
the amount of work, outside of driving, that is allowed and the ability to work extra hours if these are
made up for in the following 2 weeks (Department for Transport, 2016), we ignore these rules as they
are designed to account for unforeseen traffic issues rather than as an area we should look to exploit.
Another area we currently do not consider is driver pairing, where two drivers share a truck and can
therefore drive for longer before having to take breaks.
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and that the sum of pickup and delivery loads is zero. The initial vehicle load, non-

negativity and binary requirements (Constraints (4.15) to (4.17)) are the same as those

in Desaulniers et al. (2002).

Tab. 4.2: New constraints for the PMDP.

Constraint Applied to #

|Pc| = 1 ∀i ∈ I (4.18)
|Dc| ≥ 1 ∀i ∈ I (4.19)
trk < tuk ∀k ∈ K, r ∈ Pk, u ∈ Dr (4.20)

trk < tuk ⇒ tvk < twk ∀k ∈ K, ∀r, u ∈ Pk, ∀v ∈ Du, ∀w ∈ Dr (4.21)∑
(r,u)∈Ak

bruk
(
ttservicer + ttru

)
≤ ttk ∀k ∈ K (4.22)

Table 4.2 presents the new constraints for the PMDP: (4.18) and (4.19) specify

that a request has exactly one pickup and may have arbitrarily many deliveries. (4.20)

specifies the precedence between a pickup and its deliveries while (4.21) expresses the

LIFO constraint. Finally, (4.22) specifies that the length (in time) of any tour is less

than a value Ek which may be set according to local conditions.

Minimising k, the number of vehicles used, is not considered as part of this problem

since we have a fixed vehicle fleet, though it is kept low as a side effect of the heuristics

used. For each truck, requests may be nested within other requests if LIFO and capacity

constraints are not violated.

4.6 Discussion and Summary

This chapter presents the mathematical model for the PMDP, built with data analysis

and insights from Transfaction Ltd.. The objective of minimising cost is detailed and

broken down into its constituent time, distance and penalty components. Constraints

are specified to encapsulate LIFO packing, soft time windows, delay penalties and driver

working hours.

Though we have used specific values relevant to Transfaction Ltd. in the description

of this model. The PMDP is generic enough to be applied to other similar problems

with only minor changes being needed to costs, delay penalty curves etc. Our straight

line distance assumption could be made more realistic with adequate data however,

since modelling real-world traffic flows is outside the scope of this research we did not

invest the time required to do this, we do not feel the overall conclusions of this thesis
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would change with real-world distance though the absolute value of any single solution

would be different.

The PDP which we use to compare our solution methods can be seen as a special

case of PMDP where all consignments have only one delivery and there is no LIFO

constraint. Existing solution approaches for the PDP have been considered as can-

didates for basing a solution to the PMDP during the design and implementation of

the VNDM HH introduced in Chapter 5. Care must be taken with any method that

assumes a pair of pickup and delivery nodes, a common problem is that the IDs of the

nodes can be simply i and i + n where n is the number of customers, this is not the

case with PMDP. A block or tree structure to represent LIFO consignments cannot be

easily applied to PMDP due to the many potential positions that one consignment may

interrupt another. There is no inherent reason that other models of PDP could not

be extended to support the PMDP. Another potential approach could be to group all

deliveries together in order to generate initial solutions using unmodified PDP solvers,

the resulting solutions could be optimised with LSOs with awareness of PMDP.

In the following chapter the variable neighbourhood descent with memory (VNDM)

hyper-heuristic to solve the PMDP is presented. Its performance is compared against

alternative approaches and the state-of-the-art on static benchmark instances of the

PDP.
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5

Solution Methods:

Heuristics for PMDP

Commercial logistics scheduling in companies such as Transfaction Ltd.’s clients is gen-

erally done manually. Analysis of provided manually produced schedules shows that

these are similar in quality to a greedy constructive heuristic. In this chapter we present

a new variable neighbourhood descent with memory (VNDM) hyper-heuristic for the

PMDP. VNDM is a two phase descent based local search, where new service requests

are first greedily inserted into an existing schedule, before a first improvement local

search is performed to improve the schedule. Due to the number of constraints in

PMDP, the space of improving moves is greatly reduced in comparison to PDP, whilst

the number of potential moves is still very large, resulting in a particularly difficult

optimisation problem. A number of local search operators (LSOs, see Section 3.2.2)

are created or adapted, that allow small changes to the existing schedule to be analysed

and adopted if improvements are found. A “memory” of attempted moves is used to

minimise repeated or redundant work. We show that our new VNDM algorithm is ca-

pable of producing substantial cost savings when compared to currently used scheduling

methods, in acceptable time.

This chapter presents the LSOs designed and the VNDM optimisation method

designed to produce good practical solutions for PMDP instances in order to enable

the case study research presented in later chapters. I compare our VNDM against
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5.2 Local Search Operators (LSOs)

approaches discussed in the literature review (Chapter 3) on static benchmark instances

of the PDP. Comparisons are also presented to state-of-the-art PDP solvers.

5.1 Basics of Route Modification

Ttstarti tendi tstartj tendj

tik tjk

O

i j

q

O

(a) Before

Ttstarti tendi tstartq tendq

tstartj tendj
tik tjktqk

O

i j

ttdelayj

q

O

(b) After

Fig. 5.1: An example of consignment insertion - Two consignments i and j are currently sched-
uled and only i is delayed. If another consignment (q) were inserted between the two
existing consignments, i would remain at its current time while j may have to occur
later, in this case becoming delayed by tjk − tendj . For notation see figure 2.2.

Any change to a PMDP solution can be mapped to a series of insertion and removal

operations. As the consignments themselves are present in both solutions (before and

after any change) the only aspects that need to be considered are the legs between

requests. However, when considering a modification, time and load constraints for each

subsequent request must be checked. If the new load exceeds the truck capacity at any

point, the new route is invalid. If any request becomes delayed, the cost of serving it

may increase based on the delay cost function (Figure 5.1, see Section 4.4.3). Therefore,

the cost of a route must be recalculated from the point at which it is modified, sub-total

costs are saved for each request in each route to facilitate this.

5.2 Local Search Operators (LSOs)

In this section, we first state our assumptions and describe how our LSOs are used to

alter routes when attempting to produce improved schedules. The LSOs are presented
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5.2 Local Search Operators (LSOs)

under operators that work on single routes, and those that work on pairs of routes.

LSOs for the PDP have been drawn from similar problems (Bräysy, 2003; Cherkesly

et al., 2015; Desaulniers et al., 2002; Gendreau et al., 1992; Savelsbergh, 1992), de-

scribed in more detail in Section 3.2.2, and chosen to cover a wide range of potential

variations from an existing schedule. Specifically we use: Exchange; Exchange Chain

(Cross exchange Bräysy (2003)); Relocate and Relocate Chain operators that may act

either within a route or between two routes. Exchange operators swap the positions

of two (chains of) consignments while relocate operators move only a single (chain

of) consignments. Chains have a fixed maximum length of 5 consignments to reduce

computational complexity.

5.2.1 Assumptions

Our LSOs make or obey a number of important assumptions.

• Since a pickup request must occur before its delivery requests, reversing a section

of a route will significantly alter the distance. Time windows are also usually

tight enough that one or more requests would be rendered significantly delayed.

Methods relying on partial route inversions such as GENI (Gendreau et al., 1992)

and iCROSS (Bräysy, 2003) cannot work well without substantial alteration. We

therefore use only the non sub-tour inverting CROSS exchange of Savelsbergh

(1992) which is also used by Taillard et al. (1997), and our own variation of GENI,

described below. Additional LSOs have been chosen or developed to preserve

ordering as much as possible.

• A consignment may only be moved if the target position in the new schedule

results in a valid schedule, i.e. one satisfying the constraints described in the

problem definition (Section 4.5).

• A “valid location” is any pickup, delivery or base event that has not already

happened, such that the insertion of a consignment at any point does not result

in the creation of an invalid schedule. The rationale for this assumption is that,

in dynamic problems, many potential operations become impossible as simulated

time passes; consignments which could have been moved to another time or vehicle
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5.2 Local Search Operators (LSOs)

are serviced according to the plan at the time.

• When a consignment is removed from a schedule, any requests nested within

it are not removed, except in the case of cross exchange where more than one

consignment may fall within the chain. This provides a means for the algorithm

to undo nested consignments, if it can provide an improvement elsewhere.

5.2.2 Single Route Operators

Before After

(a) Three Opt

Before After

(b) Four Opt

Before After

(c) Nest consignment

Before After

(d) Nest two consignments

Fig. 5.2: Single route operators.

For a single given route, four potential LSOs are used, if an operator can generate

more than one permutation for given inputs, the least disruptive to sub-tour ordering

is used. Sub-tour inversion is not allowed.

Three Opt moves one consignment to a new position (Figure 5.2a).

Four Opt swaps two consignments positions (Figure 5.2b).

Nest Consignment moves a consignment inside another (Figure 5.2c).

Nest Two Consignments moves two consignments inside two other consignments. This

is useful, as sometimes a single nesting produces no improvement and a first

improvement selection strategy is employed (Figure 5.2d).
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5.2.3 Dual Route Operators
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(a) Relocate
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(b) Geni-Preserve Ordering

Fig. 5.3: Dual route relocate operators.

Considering multiple routes, four additional LSOs are used. With the exception of

GENI by Gendreau et al. (1992) these local search operators were originally proposed

by Savelsbergh (1992).

Relocate (Bräysy and Gendreau, 2005a) moves one consignment to a new valid loca-

tion in a different route (this may introduce nesting) (Figure 5.3a).

Geni-PO is a variation of relocate that should generate better routes. It is modified

(from GENI (Gendreau et al., 1992)) to preserve as much previous ordering as

possible. Originally this would connect the new consignment to two of its p closest

consignments in the new route. However we currently check all possible inser-

tion location pairs (the removed consignment may have previously been nested)

(Figure 5.3b).

Swap (Bräysy and Gendreau, 2005a) exchanges two consignments in different routes,

(removing locally nested consignments) (Figure 5.4a).

Cross (Taillard et al., 1997) exchanges two chains of consignments between routes, pre-

serving the existing ordering within each chain. Cross considers all possible chains
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Fig. 5.4: Dual route swap operators.

from each route. The chains’ maximal length is bounded only by the working hour

rules imposed on each route (nested consignments are preserved) (Figure 5.4b).

5.2.4 Shake Operators

A shake operator makes a large, randomly chosen, local search move to the current

solution, and is used once no LSO produces any further improvement. It could be

thought of as a random re-start of the search from a different initial solution, or it

could be a more extreme example of a shake operation that may be used in VNS. For

the PMDP, this step consists of removing a random number of routes (drawn uniformly

between 1 and the number of routes in the solution) and a random number of additional

customers (drawn between 1 and the number of customers left in the solution). The

combined list of all removed customers is then re-inserted into the remaining routes,

creating new additional routes if required. The scale of the destruction of the original

solution normally results in a substantially different solution from which to restart the

search, though we do not guarantee it has not already been visited.

5.3 Variable Neighbourhood Descent with Memory

VNDM (Algorithm 5.3.1) is a variant of VNS with a strong bias towards exploitation,

appropriate to large problems that must be solved quickly. The LSOs introduced in Sec-

tion 5.2 are used in a first improvement descent strategy described in Algorithm 5.3.2.

Alternative strategies include “best improvement” which requires full enumeration of

all possible moves at every step and is very time consuming, “always accept” which
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5.3 Variable Neighbourhood Descent with Memory (VNDM)

leads to very bad solutions, as most changes will either make no improvement or make

the schedule worse. Another approach “SA accept”, in which moves are accepted with

a percentage chance that reduces over time at a specified cooling rate, was also consid-

ered. In preliminary testing SA accept yielded very poor performance as this cooling

rate must be tuned to specific problem instances. This works well for static problems

that can be solved repeatedly to tune this parameter but is not suitable for dynamic

real-world problems where the optimal cooling temperature may be constantly chang-

ing. The LSOs are used in a hierarchical ordering presented in Section 5.3.2. Shaking

(Section 5.2.4) is only performed once no LSOs are capable of producing improving

moves, in contrast to traditional VNS where it is used at every neighbourhood.

Algorithm 5.3.1 VNDM

Precondition: Memory db storing route and LSO IDs

1: function VNDM(Schedule s)

2: s∗ ← s

3: repeat

4: for all l in LSOs . See Section 5.2.

5: repeat

6: First Improvement (s, db, l) . See Algorithm 5.3.2.

7: if found improvement

8: Update s with improvement

9: if s better than s∗
10: s∗ ← s

11: until no improvement for l

12: Shake (s, db) . See Section 5.2.4.

13: until current time ≥ time limit

14: return s∗

In Algorithm 5.3.2, routeList rl contains all k-element subsets of route ids in the

schedule where k is the number of routes required by LSO l. rl is ordered by the

summed cost of the routes in each k-element subset, descending so that “worse” routes

are considered for modification first (lower cost is better). rl.GetNextRoutes(l,s) returns

the selected routes sr (the first k-element subset in rl). This is then removed from rl

so it is only chosen once per LSO l.

The structure of routeList tl depends on the characteristics of an LSO m. If m

requires only one route, tl is structured as a list of routes ordered by cost descending
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5.3 Variable Neighbourhood Descent with Memory (VNDM)

Algorithm 5.3.2 First Improvement

Precondition: RouteList rl sorted by fitness descending
1: function First Improvement(Schedule s, Memory db, LSO l)
2: repeat
3: selectedRoutes sr ← rl.GetNextRoutes(l,s)
4: if (sr & l) not in db
5: moves ← l.GetMoves(sr)
6: for all move m in moves
7: fitnessDelta d ← l.Test(m)
8: if d < 0 . Improvement found.
9: db.Remove(sr) . Other improvements now possible.

10: return sr, m & d

11: db.Add(sr, l) . No improvement found, add to memory.
12: else
13: do nothing . Tried before and found no improvement.

14: rl.Remove(sr)
15: until no more routes
16: return null . No improvement possible using l.

(lower is better). If m requires more than one route, tl contains all k-element subsets of

K (nCk) where n is the number of routes in K and k is the number of routes required

by move m. tl is ordered by the combined cost of each k-element set of routes, again

descending. tl.GetNextroutes(m) returns the first route or routelist in tl. This is then

removed from tl so it is only checked once per LSO m.

l.GetMoves(sr) generates all potential moves M for a given LSO l on sr. l.Test(m)

generates the difference in fitness for a given move m ∈ M with LSO l. If the fitness

delta d is less than 0 (an improvement), the selected routes, move and fitness delta are

returned. The move is then applied to the schedule, updating fitnesses for individual

routes as appropriate. The memory is updated to remove the altered routes from all

LSOs as this move may have enabled changes that were not previously possible.

5.3.1 Memory

VNDM stores information on which routes have been analysed by which LSOs,

items are removed from this list when the related routes are changed as new improve-

ments may now be possible. This hybridisation is inspired by the related reVNTS

(Paraskevopoulos et al., 2008) and HVNTS (Belhaiza et al., 2013). In contrast, HVNTS

stores recently seen solutions and distinguishes between large and small moves in its
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Fig. 5.5: Effect of memory on a static PMDP with 200 consignments.

neighbourhood structure. ReVNTS uses tabu search to find a local optimum within

each neighbourhood of a VNS; additional features are learnt to control the use of LSOs.

Both of these sources found that adding memory to traditional VNS improves perfor-

mance. In VNDM, the memory structure has no impact on the logical operation of

the algorithm, it merely enables substantially more iterations of the algorithm to be

completed in the same amount of time.

An example comparison of with and without memory approaches is presented in

Figure 5.5. Here we use a static PMDP of 200 consignments (drawn at random from

our UK hauliers data set, Section 6.1) as we can quickly find near optimal solutions

for this size problem. Using VND takes 65 seconds to reach a cost of around £25,000.

When we use VNDM, a similar cost can be achieved in 52 seconds, a 20% reduction in

CPU time.

5.3.2 Use of LSOs

VNDM’s use of LSOs is deterministic; given an ordering of LSOs, VNDM repeatedly

uses the first LSO until it stops finding improvements. The next LSO is then selected

and used in the same manner. This process repeats until all LSOs have been used, the

solution is then re-initialised using one of the shake operators described above. The
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5.4 Comparing Heuristics for the PDP

shake procedure will likely make the solution worse but offer a new position from which

to search the space of possible solutions, helping escape local optima.

The LSOs described in Section 5.2 can be split into two groups based on their

average run time:

1. Easy: 3-Opt, 4-Opt and Nest consignment

2. Hard: Nest two consignments, Relocate, Geni, Swap, Cross

The hard moves generate several orders of magnitude more potential moves than the

easy moves. Instead of placing them all in the VNDM hierarchy of moves, at each

call to VNDM one move is chosen at random from the five hard moves, such that our

neighbourhood structure is:

3-Opt→ 4-Opt→ Nest consgt.→ Random Hard LSO (5.1)

This follows convention from VNS of moving from simplest to most complicated neigh-

bourhood, the reasoning is that after making any change the HH jumps back to the

simplest neighbourhood that could yield an improvement. Ordering LSOs by size is

a convention proposed by Hansen et al. (2009). This neighbourhood structure is used

because a time limit is imposed on each optimisation step; without this the algorithm

may exceed its time limit if a hard LSO is chosen early in the sequence, and may only

rarely attempt other hard LSOs. Since there is no intuitive reason to prefer one hard

LSO to another, choosing one uniformly at random each time VNDM is called should

ensure that all hard LSOs are used frequently, and provides ample diversification. Any

hard LSO used individually does not produce enough diversification to produce good

results.

5.4 Comparing Heuristics for the PDP

VNDM is compared to a number of techniques introduced in the literature review:

Random Descent (RD, Section 3.2.5.1); Binary exponential back off (BEBO, Section

3.2.5.8); Q-learning (QL, Section 3.2.5.7) and the state-of-the-art. Since no benchmarks

exist for the PMDP, to compare our methods to existing approaches, we use the Li and
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5.4 Comparing Heuristics for the PDP

Lim (2003) benchmarks for the static PDP. This problem is simpler and more abstract

than the PMDP having single deliveries, no LIFO constraint and unitary time, distance

and speed (A vehicle moves at 1 unit distance per 1 unit time). We first perform

parameter tuning (Section 5.4.1) and secondly compare the performance of the four

methods on all 100, 200 and 400 customer instances of the static Li and Lim (2003)

benchmarks (Section 5.4.2). In these comparisons we consider hard time windows and

no LIFO constraint such that direct comparisons may be made to best known solutions.

The solution methods mentioned above share the same LSOs, are coded in single

threaded C] and distributed over a heterogeneous cluster of Intel Xeon based servers

totalling 72 cores and 120GB of RAM. All methods are given 5, 10 or 20 minutes of

CPU time based on problem size (100, 200 or 400 customers, respectively) and each is

repeated 10 times. The results presented in this section thus represent over 1200 hours

of CPU time.

5.4.1 Parameter Tuning

Each method is tested using three sets of parameters. For RD there is only one param-

eter, the number of iterations before re-initialisation. In RD 1, 2 and 3 the number of

iterations is set at 250, 500 and 1000 respectively. The parameter we modify for BEBO

controls the number of LSOs that are backed off at any stage of the search. The three

values chosen for BEBO 1, 2 and 3 represent backing off all but the best solution, or

all solutions more than 5% or 10% worse than the best solution (see Section 3.2.5.8,

page 64). VNDM has two parameters, controlling the number of iterations (a) without

improvement before re-initialisation and (b) before reverting to the previous best solu-

tion. These are set as (50, 125), (100, 250) and (200, 500) respectively for VNDM 1,

2 and 3. For QL, we investigate changes to the learning function (Equation 3.8, page

64) by setting α and γ to (0.25, 0.75), (0.5, 0.5) and (0.75, 0.25) respectively for QL 1,

2 and 3.

The performance of the heuristics is ranked for each instance, using their best result

over 10 runs, and are given a score from one (best) to twelve (worst) where ties score

equally low ranks. Figure 5.6 shows the average rank for each of the twelve methods for

the 100, 200 and 400 customer instances. The 100 customer instances have a generally
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Fig. 5.6: Average rank of heuristics on different sized problems, lower is better.

lower average rank because, in many of these cases the best known solution is found

by several methods which are then given equal rank one. An interesting point is that

BEBO is weaker on smaller data sets but better on larger data sets compared to both

QL and RD, suggesting that the overhead involved in trialling sets of LSOs is not worth

the effort on small instances. VNDM consistently outperforms its competitors whilst

demonstrating robustness to changes in parameter settings.

5.4.2 Comparison on Benchmark Instances

The Li and Lim (2003) benchmarks are split into three groups characterised by the

spatial characteristics of the problem: Random instances (LRx-y-z) have customer

locations that are spread uniformly randomly across space; clustered instances (LCx-y-

z) have customer locations that are tightly grouped into a number of distinct clusters;

and mixed instances (LRCx-y-z) have a mix of both random and clustered locations.

For each instance, x can be either 1 (tight time windows) or 2 (lax time windows);

y represents the number of customers in the instance (divided by 100) and z is the

instance id.

Presented in Tables 5.1 and 5.2 are the best results of 10 repeats for each heuristic,
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Tab. 5.1: Results for 100 clustered customer benchmarks. For explanation see text.
RD BEBO VNDM QL Gap

Name r d r d r d r d

LC1-1-1 10 828.94 10 828.94 10 828.94 10 828.94 0%
LC1-1-2 10 828.94 10 828.94 10 828.94 10 828.94 0%
LC1-1-3 9 1072.83 9 1082.18 9 1038.35 9 1048.40 0.29%
LC1-1-4 9 904.10 9 993.98 9 861.95 9 876.88 0.23%
LC1-1-5 10 828.94 10 828.94 10 828.94 10 828.94 0%
LC1-1-6 10 828.94 10 828.94 10 828.94 10 828.94 0%
LC1-1-7 10 828.94 10 828.94 10 828.94 10 828.94 0%
LC1-1-8 10 826.44 10 826.44 10 826.44 10 826.44 0%
LC1-1-9 10 827.82 10 882.86 10 827.82 10 827.82 1r
LC2-1-1 3 591.56 3 591.56 3 591.56 3 591.56 0%
LC2-1-2 3 591.56 3 591.56 3 591.56 3 591.56 0%
LC2-1-3 3 591.17 3 772.52 3 591.17 3 591.17 0%
LC2-1-4 3 676.03 3 614.65 3 590.60 3 652.95 0%
LC2-1-5 3 588.88 3 588.88 3 588.88 3 588.88 0%
LC2-1-6 3 588.49 3 588.49 3 588.49 3 588.49 0%
LC2-1-7 3 588.29 3 606.10 3 588.29 3 588.29 0%
LC2-1-8 3 591.39 3 594.69 3 588.32 3 588.32 0%

obtained using the best performing parameters identified in Section 5.4.1, for the 100

and 400 customer clustered instances respectively. For each method, the r and d

columns are the number of routes and distance for the best observed run. The gap

column records the difference between our best solution and the state-of-the-art for

PDP solvers, as reported by Sintef (2008). The best known solutions are from a variety

of sources: Bent and Van Hentenryck (2003); Blocho (2015); Hasle et al. (2007); Hosny

(2010); Koning (2011); Li and Lim (2003); Ropke and Pisinger (2005); Quintiq (2015);

TetraSoft (2003). Where our best solution has the same number of routes but is longer,

the gap records this difference as a percentage. Where our solution has n extra routes,

the gap is nr. We highlight in bold the best solutions found for each instance and

highlight the instance name in bold where we match the best known solution from the

literature. Overall we find the best known solution in 54 out of 153 benchmarks1.

The four hyper-heuristics perform very similarly on the 100 customer instances,

finding the best known solutions in many cases. In cases where the best known solution

is not found, VNDM is the best or joint best of the methods tested and produces results

within 0.3% or 1 route of the best known solution

Table 5.2 shows the results for the 400 customer clustered instances. It is clear that

VNDM is the strongest method we compare, matching best known solutions in many

1 Full results are available in the appendix, Tables A.1 to A.7.
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Tab. 5.2: Results for 400 clustered customer benchmarks. For explanation see text.
RD BEBO VNDM QL Gap

Name r d r d r d r d

LC1-4-1 40 7152.06 40 7208.31 40 7152.06 40 7152.06 0%
LC1-4-2 40 7184.42 40 7491.64 40 7170.60 40 7235.69 2r
LC1-4-3 37 8089.33 37 8684.88 37 7871.19 37 8383.98 4r
LC1-4-4 32 8328.28 32 8544.82 32 7403.17 32 7748.67 2r
LC1-4-5 40 7150.00 40 7150.00 40 7150.00 40 7150.00 0%
LC1-4-6 40 7154.02 40 7237.16 40 7154.02 40 7170.01 0%
LC1-4-7 41 7542.55 42 8734.36 40 7149.44 41 7435.92 0%
LC1-4-8 39 7111.16 40 7706.57 39 7179.98 39 7111.16 0%
LC1-4-9 38 8197.97 38 8390.38 37 7819.79 39 8479.35 1r
LC1-4-10 38 7940.02 37 8016.53 37 7670.50 37 7990.68 2r
LC2-4-1 14 6824.82 12 4116.33 12 4116.33 13 5444.85 0%
LC2-4-2 14 9135.06 13 5108.89 13 4844.74 14 7999.00 1r
LC2-4-3 13 7145.52 13 5967.34 12 5364.88 13 6375.44 1r
LC2-4-4 13 7727.34 12 6193.68 12 5766.83 13 7311.49 35%
LC2-4-5 15 8612.69 13 5243.16 13 4717.13 14 6886.47 1r
LC2-4-6 14 7560.98 13 4936.46 13 4721.75 14 7125.17 1r
LC2-4-7 14 8312.98 14 5882.84 13 4616.22 14 7542.35 2r
LC2-4-8 14 7883.71 13 5456.19 13 4523.78 14 7582.07 1r
LC2-4-9 14 7770.37 13 6334.76 13 5419.32 14 7450.32 1r
LC2-4-10 14 7867.45 13 4655.07 13 4737.62 13 6330.36 1r

cases. All our methods have difficulties with the LC2 data set due to looser time con-

straints resulting in a much larger quantity of feasible solutions. VNDM still produces

results that either have fewer routes or, for instances with the same number of routes,

solutions that are on average around 10% shorter than the other three approaches.

However, VNDM often produces more routes in comparison to best known solutions.

Closer investigation of the results for various instances shows that a wide array of

solutions is created, each of which is subtly different. Since all our heuristics are based

on first improvement and have ample time to converge, this can be attributed not to

time constraints but to the nature of the problem itself. The solution landscape for

PDPs is not smooth and contains many local optima, making it difficult for heuristics

to converge on the same result. To visualise this, we plot all of our results in two

dimensions, showing the number of routes against schedule distance. Figure 5.7 presents

solution space maps generated in this way for four representative instances.

Figure 5.7 highlights an interesting finding in the benchmark data sets. In the

clustered (LC) data sets there is a clear trend between the number of routes and the

total distance of a solution. In the random data set, however, these aspects are not

closely correlated, so using the total number of routes as the main objective does not
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Fig. 5.7: Number of routes versus cost for clustered (LC 1-2-9 and LC 1-4-7) and random (LR
1-2-9 and LR 1-4-9) benchmark instances.

seem to be appropriate. We note also that, as expected, the distance is greater in the

random scenarios, however, the number of routes is lower, probably due to the looser

time window constraints and smaller service times in these problems. Koning (2011)

notes that relaxing the hard time window constraints, applied in the Li and Lim (2003)

benchmarks, produces notably shorter routes with only minor delays, which may be

preferable in the real world.

5.5 Discussion and Summary

This chapter presents our LSOs and the VNDM hyper-heuristic used to solve instances

of the PMDP, in relation to the objective and ordering constraints set out in Chapter

4. We introduce the VNDM hyper-heuristic to solve this problem and show it to be

competitive with the state-of-the-art for small benchmark PDP instances (Li and Lim,

2003; Sintef, 2008). We have shown that, in limited CPU time, VNDM outperforms

BEBO, QL and RD on many of the 100, 200 and 400 customer static benchmark
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5.5 Discussion and Summary

instances. This result is shown to be robust to changes in parameter settings and is

performing well enough to be used as a practical optimiser for PMDP to be used in our

case-study research.

For many of the random and some of the clustered instances in the Li and Lim

(2003) benchmarks, shorter solutions are possible if more routes are used. All the

methods tested are shown to struggle on random instances of the PDP, performing

best on clustered instances. Though domain specific knowledge is used to identify

suitable LSOs for the VNDM, the majority of the method is portable across domains

and has been used successfully on the periodic vehicle routing problem (Chen et al.,

2016a).

Having analysed performance relative to the state-of-the-art for PDP benchmarks,

in the next chapter I analyse Transfaction Ltd.’s data, present the process of cleaning

the data, generate distributions that closely match the cleaned data and use these to

produce additional data sets for the PMDP. I compare the approaches introduced in

this chapter again, on dynamic data with our additional constraints.
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6

Solution Methods:

Real-world PMDP

Transfaction Ltd. has provided a pair of representative real-world data sets from

a department store and from a number of retailers, all based in the UK. Section 6.1

introduces the first data set, a large number of consignments from UK retailers, the

distributions that are apparent in this and how we clean and use this data in our ex-

periments. Section 6.2 introduces a second data set, a smaller number of consignments

from a UK department store chain, of higher quality for which we have access to the

real schedule, enabling direct comparisons of our methods to those used in industry.

Section 6.3 presents the discrete event simulation techniques that we use to simulate the

real-time execution of a scheduling strategy in silico, in order to evaluate our solution

and analyse the potential improvements to current scheduling practice. Finally, Sec-

tion 6.4 presents a comparison of the HH methods introduced in Chapter 5 on dynamic,

real-world instances of the PMDP.

6.1 UK Retailers Case Study

The UK retailers case study is a large real-world data set representing 3 large distrib-

utors and 220 haulage company “carriers”. This data set comprises 27,153 deliveries

between supplier and destination locations of retailers in the UK. However, we have

insufficient consignment data for a full scale simulation (see Chapters 7 and 8), so we

generate additional consignments from the data we have access to. This also allows us
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6.1 UK Retailers Case Study

to generate an infinite range of realistic problem instances with different characteristics.

Each generated consignment requires a location, load and a set of time windows

(consignment-received time; scheduled pickup time; service times; journey times; sched-

uled delivery times and an arrival time window, as laid out in Section 4.2.1). This

chapter investigates the real-world distributions for each of these factors.

6.1.1 Location, Linehauls and Backhauls

Our real-world data cover much of England, Wales and southern Scotland, as shown

in Figure 6.1. The data represent “linehauls”, primary deliveries of goods from man-

ufacture to multiple points of sale. “Backhauls”, carrying used packaging back to the

shipper or depot, are not present in the real data; however we know that they exist as

return, point to point, legs, originating at linehaul delivery locations and terminating

at linehaul pickup locations. There are no precedence constraints on backhauls in rela-

tion to linehauls, though LIFO loading still applies. Backhauls are therefore generated

by randomly choosing an existing delivery as the point at which a backhaul starts and

routing to its corresponding pickup location. For new backhauls, we assign load and

time values mined from our existing data.
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Fig. 6.1: Locations of real-world data, covering England, Wales and southern Scotland.

6.1.2 Load

There is no data regarding the loads of trucks in the Transfaction Ltd. data, but we

do know whether each consignment is a linehaul or a backhaul since all backhauls

have been generated. After discussion with Transfaction Ltd., linehaul load sizes (as

a percentage of a full truck load) are drawn from a normal distribution with mean of

50% and standard deviation of 5%. Backhauls are set to a fixed 30%.

6.1.3 Time

Time information is often recorded by hand leading to errors in Transfaction Ltd.’s data

set. Out of 27,153 consignment records, only 14,382 records (≈53%) include valid time

information. Recorded times are often missing, filled with a place holder such as 00:00

or clearly impossible, such as having an arrival time before the previous departure.

The following sections present the distributions observed in the 14,382 valid records

and approximating functions used to generate missing information.

101



6.1 UK Retailers Case Study

6.1.3.1 Consignment Received Time

The consignment-received time records the time when a consignment is created. From

the available records, it is clear that the values in the real data are manually-entered,

by people working a standard 09:00 to 17:00 day (see Figure 6.2). The majority of con-

signments are created before lunchtime with additional consignments created between

this time and the end of the working day. I assume that these times are a fixed aspect

of the system over which we have no control. Though each day follows approximately

the same distribution, the number of consignments changes substantially through the

course of a week, as shown in the Appendix, Figure A.5.
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Fig. 6.2: Real-world consignment received times, for consignments where this information is
present, and approximating distribution.

Many of the real data, and all generated backhauls, are missing consignment re-

ceived values. For these consignments we have to generate an appropriate received

time. To do this, we model the received time as the sum of two normal distributions

centred around the observed peaks shown in Figure 6.2, the first has a mean of 720
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6.1 UK Retailers Case Study

minutes (12:00) and the second, 930 minutes (15:30). Both have standard deviations

of 45 minutes. We weight the two distributions as 2
3 of the first distribution, plus 1

3

of the second. The result, shown in Figure 6.2, matches adequately the distribution of

known consignment received times.

We must then decide on what day each consignment occurs. To model the distri-

bution of received consignments over the course of a week the probabilities shown in

Table 6.1 are used. An example output comparing 5480 real received times to 5480

generated received times is shown in the appendix, Figure A.5.

Tab. 6.1: Modelled probabilities for received day.

Day Sun Mon Tue Wed Thu Fri Sat

Probability
1

105

2

21

2

21

4

21

8

21

4

21

4

105
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6.1.3.2 Pickup Time

Figure 6.3 shows a relationship between the consignment-received time and the cor-

responding pickup-scheduled time for all of the consignments where this data is valid

(14,382 records, ≈53%). We refer to the length of time between consignment-received

and pickup-scheduled as the planning window. We observe spikes at 24, 48, 96 hours,

relating to whole days of planning, though we can see a clear underlying trend. An

inverse Gaussian approximating function is used when generating additional data as it

produces planning windows that are similar in distribution to the original data. The

smoothing of full day peaks would have the effect of spreading our data out slightly

more evenly throughout a day; however looking at Figure 6.4, we see that pickups occur

at all times of the day so this spreading is not thought to be an issue.

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138
0

0.5

1

1.5

2

2.5

3
·10−2

Width of planning window (Hours)

P
ro

b
ab

il
it

y

Planning window

Inverse Gaussian µ = 48.76 λ = 120

Fig. 6.3: Real-world planning windows (planned pickup time minus received time) and an ap-
proximating inverse Gaussian function.
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6.1.3.3 Service Time

Figure 6.5 shows the valid pickup and delivery service times from the Transfaction

Ltd. data set. We observe that in general, delivery (unloading) times are longer than

pickup (loading) times. After observing that the distributions are most closely fit by the

inverse Gaussian distribution we have chosen parameters for two different curves. The

first, with mean 85 and shape parameter 210 fits the pickup loading times well, while

a second inverse Gaussian, with mean 100 and shape parameter 300, provides a good

fit for the delivery unloading time. Pickup and delivery service times are generated in

accordance with these distributions for all backhauls and for linehauls for which data

is missing.
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Fig. 6.5: Real-world pickup and delivery service times.
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Figure 6.6 shows that there is no correlation in the real data between loading and

unloading times. Therefore, it is unsafe to use the distributions to estimate the load of

a consignment. Figures 6.5 and 6.6 both show (un)loading time values between 0 and

240 minutes; values outside of this range are present in the Transfaction Ltd. data but

are considered to be inaccurate - notably those which have negative service times. In

cases where we cannot trust the data, service times are drawn from the distributions

shown in Figure 6.5.
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Fig. 6.6: Real-world loading vs unloading service times.
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6.1.3.4 Journey Time

Given that companies such as Transfaction Ltd. have objectives with time based com-

ponents, we have to be able to estimate the time taken to travel between any of the

pickup and delivery locations in our data set. We plot journey time as a function of

distance, for consignments which have the required information, in Figure 6.7. Large

variabilities in journey times can be seen however, a positive correlation is clearly appar-

ent. For our purposes, a best case average speed of 56km/h and straight line distances

are assumed for all our experiments, since modelling real world traffic flows is outside

the scope of this research. Since internally we map distance to time instead of using the

distance directly, it would be possible to incorporate more accurate measures into this

step. It should also be noted that there are some clearly erroneous points in this data

set: the 90km/h line in Figure 6.7 is the European speed limit for 44-tonne articulated

trucks; the data points to the left of this line represent arriving impossibly early.
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Fig. 6.7: Real-world time vs distance and approximating function.
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6.1.3.5 Delivery Time

In the Transfaction Ltd. data set, there are too few delivery times for us to model

and generate missing values. Instead of trying to emulate the real situation we take

a pragmatic approach and assign delivery times on the assumption that we reach the

pickup at the earliest possible time, then add to this the pickup service time and the

journey time from pickup to delivery. The delivery time is calculated as shown in Figure

6.8, where the planning window is also shown.

planning window

service time journey time

ttc tstartpc tstartdc1

Fig. 6.8: Estimated delivery time tstartdc1 , set to the known pickup time tstartpc plus the known
pickup service time and the journey time from pc to dc1.

Subsequent delivery arrival window start times are calculated in a similar manner

using the previous delivery’s start, service and journey from times.

6.1.3.6 Arrival Time Window

The arrival time window is the period in which no waiting or delay penalties are incurred

by a truck servicing either a pickup or delivery request (Section 4.4.3). The arrival time

window is the same for all pickups and deliveries in a consignment, and is visualised in

Figure 6.9

planning window arrival window

service time journey time

ttc tstartpc tendpc tstartdc1 tenddc1

Fig. 6.9: Planning and arrival windows for a consignment c with one pickup pc and one delivery
dc1. Labelling as described for Figure 6.8
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6.1.3.7 Delays

A delay is the time between the end of the window in which a pickup or delivery is

required and the actual time if the vehicle arrives late. Delay varies based on the

schedule used and can be used as a measure to compare different schedules. Figure

6.10 shows the delays for pickup and delivery requests in the original, manual, schedule

provided by Transfaction Ltd.. The plots ignore outliers that are delivered days before

or after their deadline. In the real data, approximately half of pickups are delayed

while a majority of deliveries arrive on time.

−
36

0
–
−

3
30

−
33

0
–
−

3
00

−
3
00

–
−

27
0

−
27

0
–
−

2
40

−
24

0
–
−

2
10

−
21

0
–
−

1
80

−
1
80

–
−

15
0

−
15

0
–
−

1
20

−
12

0
–
−

9
0

−
9
0

–
−

60
−

6
0

–
−

30
−

30
–

0

0
–

3
0

3
0

–
60

6
0

–
90

9
0

–
1
2
0

1
20

–
1
50

1
50

–
1
80

1
80

–
2
10

2
10

–
2
40

2
40

–
2
70

2
70

–
3
00

3
00

–
3
30

33
0

–
36

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·10−2

Time (Hours)

P
ro

b
ab

il
it

y

Pickup Delay
Delivery Delay

Fig. 6.10: Real-world pickup and delivery delay.
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6.1.4 Consignment Generation Process

Pulling together our data cleaning and generation, Algorithm 6.1.1 presents the con-

signment generation process used for all data used in this thesis. In Algorithm 6.1.1,

Uniform(x, y) produces a uniformly distributed random integer in the range x, y inclu-

sive, and IGaussian(x, y) produces a real number with a probability based on an inverse

Gaussian distribution with µ = x, λ = y.

Algorithm 6.1.1 Data Preprocessing

1: function Clean Consignment Data
2: Consignment c
3: c.start day ← Proportional Select . Table 6.1
4: c.received time ← 2

3(Normal(720, 45)) + 1
3(Normal(930, 45))

5: c.p ← from data
6: c.p.load ← Normal(50%, 5%)
7: c.p.start time ← c.received time + IGaussian(48.76, 120)
8: c.p.service time ← IGaussian(85, 210)
9: c.D ← from data

10: GenerateDeliveries(c)

11: function Generate Backhaul
12: Consignment c
13: c.start day ← Proportional Select . Table 6.1
14: c.received time ← 2

3(Normal(720, 45)) + 1
3(Normal(930, 45))

15: c.p ← new pickup
16: c.p.location ← Random Delivery Location
17: c.p.load ← 30%
18: c.p.start time ← c.received time + IGaussian(48.76, 120)
19: c.p.service time ← IGaussian(85, 210)
20: c.D ← new delivery . only one delivery for backhauls
21: c.D.location ← Corresponding Pickup Location . see text
22: GenerateDeliveries(c)

23: function GenerateDeliveries(Consignment c)
24: Previous Event e = c.p
25: for all Delivery d ∈ c.D
26: journey time ← e.timeTo(d.location)
27: d.start time ← e.start time + e.service time + journey time
28: d.service time ← IGaussian(100, 300)
29: d.load ← c.load / n
30: e ← d
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6.3 A Dynamic Problem

6.2 Department Store Case Study

The department store case study is a small real-world PMDP data set comprising

387 consignments spread over the south east of the UK. This data set represents a

typical one week planning period for the department store chain. The location and

time values for this data set are of high quality and are used directly. There is no load

size information associated with this data set but we make assumptions based on the

number of deliveries in each consignment. The distributions set out in Section 6.1.2

are used to assign a fictional load to each consignment.

The department store data set is especially useful as we have the real-world schedule

to compare our results to. A summary of the existing schedule is presented in Chapter

8, Section 8.2.

6.3 A Dynamic Problem

In a competitive logistics company, scheduling needs to be a dynamic process, as dis-

cussed in Section 2.2.6, that happens in real time. A static model would not work com-

petitively in a real-world problem where consignments arrive continuously throughout

the working day and are expected to be scheduled quickly in order to generate a com-

petitive quote. A static model would have to be either regenerated every time a new

consignment enters the system, leading to difficulties matching the existing schedule

to the new schedule or solved separately, sub-optimally. The dynamic model I have

implemented is a two phase process. Phase one occurs when consignments enter the

system, consignments are inserted greedily into an appropriate vehicles schedule on

a first come first served basis. Phase two, optimisation, happens continuously while

no new consignments arrive. Optimisation can take many forms, as discussed in the

literature (Chapter 3) or as developed here (Section 5.3).

6.3.1 Discrete Event Simulation (DES)

DES (Pidd, 1998) is used to simulate the dynamic receipt of consignment requests, in

silico, for testing purposes. To simulate a real consignment scheduling scenario, each

consignment is treated as an independent event and must be scheduled with knowledge

112



6.3 A Dynamic Problem

only of earlier consignments. The order in which consignments are observed is based

on their received time tc. Once sorted into ascending order by received time, the first

phase of the dynamic model can proceed, with consignments arriving throughout a

simulated period of time.

After each insertion, a fixed amount of CPU time is used to conduct the optimi-

sations of phase two. This is an acceptable simplification as the experiments run over

a considerably shorter time period than in reality, where ample CPU time would be

available between consignment arrivals.

current time

Sun ...

Mon b

c1 (fixed) c2 (fixed) c3
b

Tue b

c4 c5 c6
b

Wed ...

Fig. 6.11: An example daily schedule - Each truck’s schedule is a list of events that may repre-
sent a pickup, delivery or return to base. Here, dark nodes are locked in place; new
requests cannot be inserted before these and they cannot be moved during optimisa-
tion.

In DES, we keep track of simulation time (an internal representation of current

time, stored so that requests which in reality would have already happened cannot be

modified by our optimisation procedure). If the scheduled start time of any request is

before the current simulation time, it is marked as “fixed”, as shown in Figure 6.11. In

reality, this would be a consignment that is already being serviced. Additional requests

cannot be inserted before these fixed requests, and the routing of a fixed request cannot

be altered in any optimising moves.

Once all consignments have been inserted and after a final pass of optimisation, the

simulation is complete and performance data for the optimisation method or for the

effect of test parameters can be gathered.
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6.4 Comparing Heuristics for the PMDP

Our small real-world data set comprises 387 consignments pairs spread over the south

east of the UK. The data provided by Transfaction Ltd. is from a large department

store chain and comprises deliveries for a one-week period. Due to the distribution

of store locations, a larger number of routes is required for full service, in comparison

to similarly sized benchmark problems. In addition, for the real-world problem we

simulate consignments arriving during scheduling in a dynamic fashion (Section 6.3),

and allow late arrival at locations using “soft” end of time windows. We use a cost

based fitness function (described in Chapter 4) as the objective rather than the number

of routes and distance.

We compare VNDM, QL, BEBO and RD as before, comparisons to the state-of-the-

art for PDP cannot be made on our PMDP data without re-implementing, modifying

and parameter tuning algorithms which in many cases are not in the public domain.

We appreciate that many more techniques from PDP solvers could be used or adapted

for use on the PMDP, however, doing so would be out of scope for our research, our aim

is to find an approach capable of finding and exploiting opportunities for cost saving

in order to carry out the business design research presented in Chapters 7 and 8. The

real-world data set is run with the best parameter settings of each method (Section

5.4.1) for 40 minutes of CPU time, and repeated 100 times.

Figure 6.12 shows the average performance over CPU time. From discussions with

our industrial partner Transfaction Ltd., current manual scheduling procedures are

most closely approximated by our initial greedy insertion procedure, the cost of which

is represented by the starting figure of around £33,500 in this example data set. Clearly,

utilising any of the reviewed computational methods results in large savings to delivery

cost. On average, and over any amount of running time, VNDM can find better so-

lutions for the real-world problem than the tested alternatives and is relatively simple

to implement. We can also see that BEBO produces results that are competitive if

run-times are kept below 10 minutes but that it gets stuck at a worse level than other

approaches after this.

Figure 6.13 shows the distribution of final cost achieved by each hyper-heuristic
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Fig. 6.12: Average performance over CPU time for a real data set, note that BEBO converges
after about 5 minutes and then no longer produces any improvements.
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Fig. 6.13: Distribution of final cost across 100 runs.
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across the runs. There is considerable overlap in the plots, though VNDM can be

seen to outperform the alternatives, having lower minimum, maximum and quartile

costs. It is also clear that BEBO is unsuitable for the PDP, as it produces the highest

average final cost and is generally outperformed by RD. QL looks slightly better in

these results than in Figure 6.12 as its best and many of its results are competitive,

but it also produces the most expensive schedules, hurting its average.
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Fig. 6.14: Number of routes versus cost for real data set. Ellipses represent two standard
deviations from the mean of each method.

Figure 6.14 plots the results as number of routes against cost. We can see that,

for our real-world data set, there is a strong correlation between the number of routes

and cost, but that the cheapest solutions do not necessarily have the fewest routes.

Approaches that aggressively minimise for number of routes may not be able to perform

as well as the approaches here from an operational cost perspective. The real-world

results most closely resemble the LC 1-4-z benchmark instances.

Though we have only provided results for a single real-world data set, since VNDM
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proved competitive with state of the art approaches on many small benchmark in-

stances, we can say with some confidence that VNDM is a suitable choice for our

real-world problem, even though it has undergone no parameter tuning to specifically

fit the real-world data. In the following chapters we will present many different results

using VNDM for realistic problems which provide further evidence for the suitability

of the heuristic.

6.5 Discussion and Summary

This chapter presented the data, provided by Transfaction Ltd., needed to perform the

analysis in this thesis. Assumptions and limitations of this data are outlined, along

with methods for cleaning incomplete data and for generating additional and missing

values for backhaul consignments. This allows us to generate realistic instances of a

variety of sizes for our experiments, the generated data have been assessed by logistics

experts in Transfaction Ltd.

DES, capable of simulating the arrival of consignments in a realistic manner, for

testing scheduling strategies in a real-time environment, is described. Using DES I have

shown VNDM to perform better than alternative hyper-heuristics in a dynamic real-

world situation. Combined with the results from Chapter 5, VNDM is demonstrated

to be not overfitted to benchmarks or the real-world data set. We have shown that

the traditional PDP objective of minimising the number of routes in priority to total

distance does not always produce the cheapest solutions in a real-world problem. The

balance between vehicle maintenance costs and distance based running costs should be

considered simultaneously.

We have not considered how robust to unforeseen circumstances, such as vehicle

breakdowns, the schedules generated are, though in reality there are clauses written

into driver working time rules which allow overtime for these occurrences (Department

for Transport, 2016).
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7

Cooperation and Competition

The research in this chapter has been published in (Mourdjis et al., 2016b). Section

7.3 presents results submitted to a special edition of “Communications in Computer

and Information Science” (CCIS) published by Springer. This chapter investigates

cooperation and competition between haulage companies in a dynamic PMDP where

consignments represent less than full truck loads and vehicles may be loaded with

more than one consignment providing LIFO constraints are satisfied. The model of

the system, objective function and pricing information is that described in Chapter 4.

All consignment data used to produce these results has been drawn from Transfaction

Ltd.’s real-world UK retailer data set, described in Chapter 6.

7.1 Introduction

Logistics is a highly competitive industry; large hauliers use their size to benefit from

economies of scale while small logistics companies are often well placed to service local

clients. To obtain economies of scale, small hauliers may seek to cooperate by sharing

loads. With over six thousand hauliers in the UK alone (Dff International Ltd., 2015),

competition is fierce. Hauliers face the orthogonal demands of short notice from cus-

tomers, an expectation of low-cost service, and environmental sustainability concerns

(McLeod et al., 2012; Nahum, 2013; Demir et al., 2014). Because larger carriers can

leverage economies of scale to benefit in routing and scheduling, competition is getting

ever stronger. If smaller carriers could work together, they could increase scheduling
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efficiency, save on mileage costs, and improve flexibility. Preliminary research into

cooperation has been published in (Mourdjis et al., 2014).

A driving force behind our research is that huge savings are possible by combining

consignments that are less than the capacity of a vehicle. In the UK supermarket

delivery market for example, Transfaction Ltd. estimates that 1
3 of vehicle miles are

travelled empty. Discounting weight constraints, 44-tonne articulated trucks have a

capacity of 52 goods pallets. Deliveries, on the other hand, typically lie within a range

of 8-47 pallets with an average of 181. There is clear scope for optimisation here.

In this chapter we quantify the savings possible when carriers distributed across

a country outsource some of their customer consignments to other carriers, working

either independently or as a group. In partnership with Transfaction Ltd., we propose

realistic cost and revenue functions to investigate how companies of different sizes

could cooperate to both reduce their operational costs and to increase profitability in

a number of different scenarios.

All the results in this chapter are based on the simulation of one dynamic scheduling

week, with optimisations limited to 5 minutes of CPU time. Each configuration in this

chapter is run 30 times and 95% confidence intervals are presented in the results. A

heterogeneous cluster of Intel Xeon based servers, totalling 72 cores and 120GB of

RAM, was used. The results presented in this chapter thus represent thousands of

hours of CPU time.

7.2 Cooperation

In collaboration with Transfaction Ltd., we have access to real scheduling data and

manually-scheduled consignments for small UK hauliers (referred to as real data). As

described in Chapter 6, the real data are insufficient, in quantity and quality, for our

scheduling research, but provide us with indicative distributions and other information,

from which we generate larger, realistic, data sets on requests and consignments (re-

ferred as generated data). We generate 100 scenarios from a data set of 27,153 real-world

consignments. The scenarios are built by selecting 200 real consignments at random

from this set and building pairs of consignments representing outbound linehaul and

1 Based on information provided by Transfaction Ltd.
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return backhaul legs. Each consignment consists of at least two requests.

Initially, each haulage company (carrier) is assumed to have an unlimited number of

vehicles and is represented by a depot, randomly located within the area encompassing

the consignments. Consignments are assigned to the carrier, from the set of carriers

with the fewest consignments, that is geographically closest to the midpoint between

a consignment’s pickup and final delivery locations. Thus, the initial schedule system-

atically distributes consignments evenly across many carriers. The dynamic arrival of

requests is scheduled using DES (Section 6.3.1).

7.2.1 Simple Cooperative Strategies

The first set of results compares the average per request costs for five carriers, exploring

the effect on one carrier (the sample) under four different configurations of cooperation

with the other four carriers. All Contracted has each consignment assigned to a specific

carrier. Optimisation is only possible between vehicles belonging to the same carrier.

Out-sourcing starts with a competitive model, but allows re-assignment of consignments

from the sample to any of the other carriers, if cost savings can be made. Out-sourcing

to coop(erative) adds the out-sourcing model for the sample carrier into a model in

which the other carriers can exchange consignments if savings can be made; the sample

carrier does not accept any additional consignments. Finally, the cooperative model

initially assigns all consignments to individual carriers (as in Contracted) but allows

unrestricted re-allocation during optimisation, if cost savings are possible.

All Contracted Out-sourcing Out-sourcing to coop Cooperative
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Fig. 7.1: Average cost for a single carrier (sample carrier) and a group of carriers (other carriers),
with four different models of cooperation.
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The costs presented in Figure 7.1 show that for the sample carrier, an average 9%

saving can be made by out-sourcing to the four other carriers, whilst the configuration

that allows other carriers to also cooperate results in average savings of nearly 14%,

because the cooperation allows more efficient routing across the carriers. If the sample

carrier also cooperates in efficient scheduling, the total average saving for the sample

carrier rises to 18%. Cooperation is also beneficial for the other carriers: accepting

consignments from the single carrier can produce benefits of 3%, whilst cross-group

cooperation produces savings averaging 15%.

The results shown should drive all carriers towards cooperation. Competition

favours carriers with the lowest costs; the sample carrier achieves this in configura-

tion 2, by outsourcing to other carriers who are not cooperating. However, rational

competitors would be expected to copy this behaviour, moving the system towards a

reallocation of consignments as seen in configuration 3; here, the competitors are coop-

erating, and the sample carrier is at a competitive disadvantage. However, if all carriers

cooperate, as in configuration 4, the lowest costs for all carriers are observed.
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Fig. 7.2: Percentage of assigned consignments serviced across the four different models of co-
operation.

Increasing cooperation allows a greater number of consignments to be handled.

Figure 7.2 shows that the schedule in which all carriers operate alone covers on average

less than 70% of their assigned consignments. However, the fully cooperative model can

schedule over 85% of consignments. (Note that random scenario generation means that

there is no guarantee that all consignments are feasible given the number of carriers,

their locations and that even with an infinite number of vehicles, some consignments
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are too far apart to be serviced whilst adhering to driver working time rules: since we

do not consider driver sleeping arrangements and all routes must begin and end at the

depot, these consignments are impossible in our current model.)

Tab. 7.1: Percentage of the sample carrier’s consignments re-allocated in different configura-
tions.

Config. Cooperation Mode Re-allocated

1 Competitive 0%
2 Out-sourcing 65.6%
3 Out-sourcing to coop 67.2%
4 Cooperative 57.2%

Table 7.1 shows the percentage of consignments that are re-allocated from the sam-

ple carrier in each configuration. Both out-sourcing and out-sourcing to a cooperative

allow almost two-thirds of the carrier’s consignments to be assigned to others: be-

cause our scheduling algorithm minimises cost, these re-allocations can be interpreted

as being carried more cheaply, due to more efficient use of resources, when assigned

to other carriers. We are most interested in the percentage of consignments that are

re-allocated away from the sample carrier. When outsourcing and cooperation are com-

bined (configuration 3), the sample carrier’s re-assigned loads are most cost-effective,

as, in this configuration, the other carriers can also re-allocate loads among themselves

(but not to the sample carrier). In the fully cooperative model, the sample carrier’s

consignments are less cost-effectively reassigned than in other reallocation configura-

tions. However, the overall cost-effectiveness of the 5 carriers is significantly better than

in other configurations: 62.5% of other carriers’ consignments were reallocated in this

model, leading to the reduction in cost observed for cooperation in Figure 7.1. These

results also strongly support the contention that savings can accrue to small hauliers

who cooperate to carry each others’ consignments efficiently.

7.2.2 More Group Configurations

We seek to further investigate the effects of different sized groups of carriers on both

cost and network capacity. Using the same 100 scenarios as investigated previously,

we now investigate how efficiently 10 carriers can service the consignments, split into

a number of different group configurations. Cooperation is allowed within but not
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between these groups. In the Competing configuration each of the 10 carriers works

independently, in the second configuration, carriers work in Pairs. In 1 vs 3s, one

carrier, the sample, is compared against 3 groups of 3 carriers. In 5 vs 5, 3 vs 7 and 1

vs 9 the 10 carriers are divided into 2 groups of differing sizes accordingly. In the final

configuration, Cooperative, the 10 carriers work together.

Competing Pairs 1 vs 3s 5 vs 5 3 vs 7 1 vs 9 Cooperative
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Fig. 7.3: Cost per request for different carrier group configurations.

Figure 7.3 confirms our earlier findings that working as a group can substantially

reduce costs and additionally shows that larger groups can attain bigger cost reductions

than smaller groups.

Figure 7.4 shows again the increase in network capacity made possible through

cooperation. It is also clear that the largest savings are made quickly: just pairing with

one other carrier can increase the number of scheduled deliveries from 72% to 80%.

In each configuration, consignments are divided equally between groups, not carriers,

such that, for example in the 1 vs 3s configuration each group of carriers is assigned

100 consignments out of 400 but in the 1 vs 9 configuration, each group is assigned 200

consignments. Because of this, carrier 1 has more choice in the 1 vs 9 configuration

and can achieve slightly better results than in the 1 vs 3s configuration, however the

number of consignments that can actually be served is dramatically reduced.
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Competing Pairs 1 vs 3s 5 vs 5 3 vs 7 1 vs 9 Cooperative
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Fig. 7.4: Percentage of scheduled consignments for different carrier group configurations.

7.2.3 Carrier Group Size

Extending our analysis, we seek to identify if there are diminishing returns for increasing

the number of carriers in a cooperative group. Here we assume a single cooperative

group and modify the number of carriers. The consignments arrive identically in all

cases.

Figure 7.5 shows how both the cost per request and the percentage of consignments

scheduled improve as the size of a cooperative group increases. Though there are linear

savings evident above 10 carriers, the majority of benefit is found between 1 and 5

carriers. These results must be qualified by stating that our consignments cover the

UK and our carriers are randomly located across this area; since distance costs are

a dominant factor in real-world pricing; if larger distances are involved, for instance

across Europe, America or Asia, a larger number of well distributed carriers would

likely be necessary to produce these savings. These results can be thought of more as

suggesting that 10 major transport hubs is sufficient for efficient vehicle routes in the

UK.

So far, we have assumed that all companies work together to reduce total cost and

that an infinite number of vehicles is available at each carrier location; in practice there

will be a limited supply of vehicles at each carrier and therefore multiple carriers in the
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Fig. 7.5: Effect of carrier group size, the cost per request and number of consignments success-
fully scheduled versus the number of carriers working together.

same area would need to work together. The following section investigates cooperation

in resource constrained situations.

7.3 Competition

In the real world, delivery companies compete with one another and are unlikely to work

together unless it is beneficial to themselves. If companies are resource constrained

they are still likely to be able to profit by outsourcing less profitable consignments

to other companies, and instead servicing more convenient consignments. We use the

same 100 scenarios each with 10 carriers and 200 consignments (assigned as before).

However, companies now have a fixed number of vehicles. If a company cannot satisfy

a consignment assigned to it, instead of creating additional vehicles, the customer

is re-assigned to a random company that can service it. This means that a better

utilisation of assets will lead to more customers for a given company. We assume that

companies will not share their consignments if it results in them losing money, therefore,

when cooperation is allowed between two companies, the company originally assigned a
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consignment always receives the profit it would make. For a different company to fulfil

this consignment, it must yield sufficient profit to pay off the original company and

still cover the associated delivery costs. To do this, we introduce a simple model for

consignment revenue, enabling us to estimate carrier profitability. The revenue model

for a consignment is:

Revenue(c) = lpc
∑
r∈Dc

nnr−1,r (7.1)

where the revenue of consignment c is a linear function of the total distance between all

requests in the consignment (the summation) multiplied by the pickup load lpc . This

is good enough for our uses as it is the same for any carrier and invariant of when

the consignment was delivered (this is still handled by the delay penalty introduced

in Section 4.4.3). A company’s total profit is the revenue of all the consignments it

delivers minus the total cost of serving these, as specified in Section 4.4.

We now consider variants of the scenarios previously investigated, but, in each

case, the number of vehicles is fixed at 40. We consider the impact of cooperation

in scenarios with different distributions of these vehicle between the 10 companies, to

simulate different competitive environments.

7.3.1 Equally Sized Companies.

First, to validate our previous findings the 10 companies are set to have equal size,

with 4 vehicles each. As expected, Figure 7.6 shows that cooperation increases the

profitability of all companies by around 20 to 25%.

7.3.2 Differently Sized Companies.

The ten companies are now given different numbers of vehicles, set to: “2, 2, 3, 3, 4, 4,

5, 5, 6 and 6” respectively.

Figure 7.7 shows the increased profitability of the first three companies when they

work together as a cooperative assuming that all other companies continue to work

independently. Profit increases of 12-18% demonstrate that even the smallest companies

benefit from cooperation.

Looking at the group of heterogeneously sized companies in more detail, Figure 7.8

shows how company size affects both raw profitability and the benefit of cooperation.
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Fig. 7.6: Effect of cooperation on the total profits for ten equally sized companies.

Larger companies are able to produce more optimal routes and service more customers,

generating more profit. When all parties cooperate, the profits for companies of all

sizes increases. We can see that, as a percentage, small companies stand to gain the

most from working cooperatively, with gains of up to 50%. Compared to the 12-18%

result, above, it is again clear that more companies working together produces better

results.

7.3.3 Large vs Small Companies.

In this scenario we compare the profitability of large and small companies competing

in the same market. The ten companies are now set to: “8, 2, 2, 2, 2, 2, 2, 2, 9, and

9” vehicles respectively. Figure 7.9 shows that, initially (when no companies are coop-

erating), the 2 largest companies produce the most profit. When the small companies

work together they can increase their profitability and reduce the profits of the larger

companies. Finally we observe that if the first large company joins the cooperative

it can massively outperform its competitors. Other companies’ profits fall, and the
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Fig. 7.7: Effect of cooperation between small companies.
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Fig. 7.8: Effects of cooperation across different sized companies, absolute and percentage change
of profit.
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cooperative can more effectively handle consignments (so consignments are not stolen

by the large companies).
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Fig. 7.9: Effect of cooperation between large and small companies. Total profit in a scenario
where company 1 has 8 vehicles. Companies 2-8 have 2 vehicles each. Companies 9
and 10 have 9 vehicles each.

7.4 Discussion and Summary

Cost estimations from the RHA (Dff International Ltd. (2014), see Section 4.4) have

been used to explore the pricing and marginal costs of delivering consignments. In

reality, delivery companies charge what they can get away with for consignments; if

there is little competition, prices rise. Conversely, a competitive market leads to lower

prices. We have shown that cost savings of 15% to 18% are possible when hauliers

cooperate. Cooperation also increases the capacity of a group of hauliers, by as much

as 21%. The benefits of cooperation see diminishing returns above 10 separate carrier

locations working together assuming sufficient numbers of vehicles to meet demands.

Larger cooperatives will always have lower operating costs than smaller ones as they

are able to more efficiently schedule their consignments to the most optimal company
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locations.

We have carried out further investigation into how savings from cooperation could

be turned into increased profit in resource constrained problems with a fixed number

of vehicles. We propose that the revenue from a customer be modelled as a linear

combination of distance and load and define company profit as the sum of revenues

over all delivered consignments minus the costs associated with delivering these loads.

We consider that each company aims to maximise its own profit by only reassigning

customers when a cooperating company can pay off the original company’s profit and

still cover its delivery costs. The cooperating company makes the cost saving as its

profit on such consignments. We have shown that this more realistic model of cooper-

ation still leads to increased profits for all cooperating parties in a variety of different

scenarios with differing company sizes. A particularly interesting result is that com-

peting large companies stand to significantly benefit by cooperating with a group of

smaller companies. Benefits of cooperation scale with the number of companies in the

cooperative but generally lie within 15-20%.

So far, this research only investigates the marginal costs associated with deliveries,

profit margins, loss leading and other marketing techniques are outside the scope of this

research. We do not consider issues of vehicle reliability, for example, who pays the costs

associated with missed delivery slots and what effect this has on customer perceptions.

We have not considered the fixed costs associated with carrier-owned vehicles in this

research; implementing the strategies outlined in this paper may result in reduced usage

of carrier owned assets as cooperation allows for an increase in capacity, allowing the

same fixed cost assets to be more productive, assuming there is sufficient demand for

service.

The following chapter investigates another potential area of savings, the impact

that the amount of planning time and the width of arrival time windows have on the

cost of delivering consignments.
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8

The Value of Time and

Timely Information

8.1 Introduction

Just-in-time business processes are increasingly common and bring additional com-

plexity to logistics planning and scheduling. To efficiently manage these processes it

is important to understand the impact of time windows and timeliness of information

on costs. In co-operation with Transfaction Ltd., we investigate dynamic scheduling of

shared loads for long distance truck haulage in the UK, modelled as the pickup and

multiple delivery problem (PMDP), introduced in Chapter 4. Since a significant per-

centage of journeys involve vehicles with partially or completely empty loads, combining

these journeys, where appropriate, can enable large savings that are often missed in

practice. We use our variable neighbourhood descent with memory (VNDM) heuristic,

presented in Chapter 5, which we have shown to be capable of producing large cost

savings in acceptable time for both real-world and synthetic instances (Section 5.4).

This chapter analyses the effect of altering the length of planning and arrival win-

dows on a number of important metrics for schedule quality, both in the department

store chain data set (Section 6.2) and in a large group of UK retailers (Section 6.1).

The key findings are that savings of up to 20% are possible by increasing these time

windows, and that planning beyond 12 hours in advance offers diminishing returns, as
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sufficiently good routes can be built with this much notice. As logic would suggest,

wider arrival windows always enable shorter, cheaper routes as there are more oppor-

tunities to combine geographically close consignments. Overall, our results provide a

framework for understanding the time value of information (Cowling and Johansson,

2002) in practice, and the cost savings due to relaxation of pickup and delivery windows

so that hauliers can understand the discount that might be offered to customers for

providing timely information and wider time windows.

A significant real-world impact of this work is to quantify the time value of informa-

tion and the savings that are possible by extending arrival time windows. We also show

that current delay penalties offer little incentive for on-time delivery, especially when

considering the large cost savings possible by widening planning or arrival windows. A

discussion of how consignments may be discounted is presented in Section 8.7.

8.1.1 Parameters for Analysis

For these experiments we utilise two different real-world data sets, the first is sourced

from a UK department store chain (introduced in Section 6.2) and is the same as that

used in Chapter 5 (Sections 8.2 and 8.3). The second is drawn from the large data set

of UK retailers presented in Section 6.1 and includes some generated data (Section 8.4

and 8.5). The department store data is a smaller but more complete existing schedule

where direct comparisons to the manual scheduling used by the department store can

be made.

Since we investigate the effect of time windows on truck scheduling we consider al-

tering the planning and arrival windows of consignments in each scenario. The planning

window is the amount of warning between a consignment’s details being received and

the start of its pickup request time window. The arrival window is the time between

the start and end of the time window at every request, defining when it is acceptable

to arrive at that request (Figure 4.3, Section 4.2.1, page 74). We have chosen to in-

vestigate values for both planning and arrival window which cover the wide range of

practices observed in real-world retail haulage problems, ranging from 30 minutes to

168 hours (7 days) in appropriate steps.

For each data set, we first consider the effects if we are able to modify all con-
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signments; such that all consignments have the same planning and arrival windows,

We term this homogeneous. We then investigate whether the observed improvements

are still possible if only a small proportion of the consignments are modifiable. We

term the second group of experiments heterogeneous, as the consignments do not all

have the same planning and arrival windows. Results for the homogeneous scenarios

are presented in Sections 8.2 and 8.4, while heterogeneous scenarios are presented in

Sections 8.3 and 8.5.

We consider a typical week’s worth of scheduling; where all consignment’s requests

have start times that fall within a one week period. As the planning and arrival windows

of the requests expand, the planning horizon of our experiment, the length of time from

the beginning to the end of the experiment, also grows such that for our initial week’s

worth of consignments the planning horizon is equal to one week + planning window

+ arrival window. In the extreme case of 7 day planning and 7 day arrival windows,

the test period would cover 3 weeks. Consignments would only be serviced in weeks

two and three.

We analyse the effect that changing these parameters has on the following metrics

of schedule quality:

Distance the total distance in kilometres of all truck-routes throughout the planning

horizon.

Delay the average time in minutes that each request is delayed (note that this is an

average, so the direct cost of delay cannot be gathered from these charts due to

the stepwise delay penalty function described in Section 4.4.3)

Utilisation the average load of trucks in the schedule:

∑
llrk ∗ nnru∑
nnru

∀r ∈ R where

llrk is the load of the scheduled truck k after visiting request r and nnru is the

distance between requests r and u (for example if a truck-route has two legs, the

first at 50% load for two kilometres and the second empty for one kilometre, the

utilisation of the truck is 33%).

Cost per request the average cost in pounds for each request (using parameters dis-

cussed in Sections 4.4.1, 4.4.2 and 4.4.3). Note that consignments are made of at

least 2 requests.
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8.2 Scenario 1 - Department Store Case Study

The first scenario is a set of consignments for a large department store chain based in

the UK. The data set comprises 387 consignments over a one-week period for which

we have the real-world schedule, it is introduced in Section 6.2 and is the same as that

used in Chapter 5.

A summary of the existing schedule for scenario 1 is presented in Table 8.1. Truck

utilisation in the original, static, greedy schedule is around 40% with a per-request cost

of £43.06. In comparison to this our optimisation is able to produce schedules of similar

cost (albeit with higher delay) even with the tightest of time windows (30 minutes) in

a dynamic scheduling environment.

Tab. 8.1: Manual versus optimised schedules, example results for the static, manual schedule
and optimised, dynamic schedule when planning and arrival windows are both set to
30 minutes (30M), 4 hours (4H) and 7 days (7D).

Metric Manual 30M 4H 7D

Distance (km) 21,199 25,802 20,619 17,243
Delay (mins) 0 30.0 9.5 0

Cost per request (£) 43.06 44.07 37.48 33.86
Utilisation (%) 39.84 33 42.20 49.78

Table 8.1 also shows that utilisation, the average load of all truck kilometres in each

set of parameters, increases with both planning and arrival window length, ranging from

33% when windows are shortest to 50% when both planning and delivery windows are

set to 7 days. These results suggest that better information and optimisation brings

environmental and cost benefits.

Figure 8.1 shows the very marked effect on delay of tighter arrival windows. We also

see that in some cases, a relaxed planning window results in slightly increased delays:

This is likely due to trading delay for shorter, cheaper routes. However, even in the

highest case this delay is only 34 minutes per request, which is below the threshold for

any delay penalty. The optimisation phase has traded “free” delay for a reduction in

distance that has an observable impact on cost.

Figure 8.2 shows the expected relationship between cost and planning / arrival

windows. The relationship between the distance travelled and these windows is very

similar (Figure 8.3). We conclude that using the cost structure set out in the RHA
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Fig. 8.1: Scenario 1, average delay per request. Delay starts incurring cost penalty at 2 hours
(120 mins)
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Fig. 8.2: Scenario 1, average cost of servicing one request (a consignment is made of at least
two requests)
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Fig. 8.3: Scenario 1, total distance of solutions.

tables (Section 4.4), and using a realistic delay cost function, journey distance (ranging

from 17,180 to 25,802km) dominates the cost of road haulage. Comparing 4H and 7D in

Table 8.1, we see a substantial mileage and cost reduction when using longer planning

windows. This is particularly marked beyond four hours, as this provides enough time

to insert most consignments optimally in terms of distance. A slight upward trend

in cost is evident once planning windows exceed 12 hours (Figure 8.2); this can be

explained by the CPU time limit imposed on the optimisation step. As the planning

window is increased the search space grows and many more consignments are modifiable

at any time in the simulation. Much longer CPU runs do yield improvement for the

more relaxed problem instances. However, to keep the time for running experiments

manageable, a lower time limit was chosen here; the optimisation is unable to converge

in the given time when faced with the larger search space.

To clarify the impact of a wider planning window on cost, shown in Figure 8.2, a

series of cross-sections through the surface plot have been made at 30 mins, 6 and 48

hours; these are presented in Figure 8.4. This plot is based on 30 runs and illustrates

the substantial savings resulting from having at least 12 hours’ notice of a consignment.
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Fig. 8.4: Scenario 1, cross sections of cost per request.

8.3 Scenario 2 -

Department Store, Heterogeneous Consignments

The results so far represent a homogeneous case where all consignments have the same

planning / arrival windows. In the heterogeneous case, however, the cost reductions

that follow from advance information or larger time windows only apply to a small

fraction of consignments. The following experiments investigate the effect of controlling

a 10% sample of the consignments, where the remaining 90% have planning and arrival

windows selected uniformly at random from the set of all time windows.

Analysing results for the 10% of controllable consignments, Figure 8.5 shows a small

but significant increase in utilisation, from 38.5% to 40.5%, as planning and arrival time

windows widen.

Another interesting aspect of this experiment is that the delay and cost of the

sampled consignments (shown in Figures 8.6 and 8.7 respectively) follow the same

trend as for the homogeneous case, with significant cost savings as the planning and

arrival windows are relaxed. However, the benefit of an increased arrival window is

diminished once the planning window exceeds 6 hours; this is sufficient in this scenario

to produce schedules without significant delay.
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Fig. 8.5: Scenario 2, utilisation across time windows.
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Fig. 8.6: Scenario 2, average delay per request.
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Fig. 8.7: Scenario 2, average cost of servicing one request.
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Fig. 8.8: Scenario 2, total distance of solutions.
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In this heterogeneous setting, the total distance changes much less dramatically

than in the homogeneous case, ranging from 21,386 to 22,540 kilometres as shown in

Figure 8.8. Distance also does not seem to be as important in determining the per

request cost as in the homogeneous case.
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Fig. 8.9: Scenario 2, cross sections of cost per request at 30 minute, 6 hour and 48 hour arrival
windows.

Figure 8.9 shows a cross section of Figure 8.7 so that the effects of planning and

arrival windows can be observed in more detail. In the heterogeneous case, increased

planning windows have a greater effect on cost than wider arrival windows.

The uncontrolled consignments’ delay and cost do not vary greatly with modification

of the controlled consignments’ time windows, and are around 15 minutes and £39

respectively in all cases. A more detailed examination of the 90% of uncontrolled

consignments shows very small effects as the planning and arrival windows of sampled

consignments are altered. These fluctuations are as much due to the stochasticity in

the optimisation procedure as to the underlying data. In the worst case, however, costs

are increased by approximately £1 per request. Delays vary by less than two minutes.
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8.4 Scenario 3 - UK Retailers Case Study

The third scenario is a larger, partially generated, data set drawn from three carriers

and 220 hauliers working for UK retailers as described in Section 6.1. We generate

100 separate trial sets of consignments “instances” from a data set of 27,153 real-world

consignments. Each instance comprises 400 consignments, built by selecting 200 real

consignments at random from this set and building pairs of consignments represent-

ing outbound linehaul and return backhaul legs. In the real data, time windows are

often missing. Data is generated where needed as in Chapter 6. There is no implied

precedence between a consignment and its associated backhaul (a backhaul may be

scheduled before its linehaul); this is acceptable as, in practice, routes are repeated

week after week. A backhaul that occurs before its logical linehaul is the backhaul for

this same linehaul from an earlier period. Loads for the linehauls and backhauls are

assigned in the same way as for the real case, described in Section 8.2.
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Fig. 8.10: Scenario 3, average cost of servicing one request.

The requests in scenario 3 and 4 cover a wider area of the UK than those in scenar-

ios 1 and 2, and are therefore more spread out. This difference is reflected in the higher

average cost per request shown in Figure 8.10 and the greater total distance shown in

Figure 8.11. With the larger distances between requests in this scenario, increasing

the planning window can have a larger effect on cost than increasing arrival windows.
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Fig. 8.11: Scenario 3, total distance of solutions.

Larger planning windows can enable more effective combinations of consignments (re-

gardless of the size of arrival time window).
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Fig. 8.12: Scenario 3, utilisation across time windows.

Figure 8.12 shows a very strong correlation between increased windows and utilisa-

tion; it clearly shows that increasing arrival windows alone is not beneficial but must

be combined with additional increased planning windows.

Figure 8.13 shows the impact on delay. Here increasing the arrival window has a
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Fig. 8.13: Scenario 3, average delay per request.

direct impact without necessarily changing the schedule at all. The benefit of increasing

the arrival window tapers off after the 6 hour mark, again suggesting that this amount

of time is sufficient to guarantee timely delivery. Increasing planning windows does not

affect the overall delay; as the optimisation process always favours cheaper solutions

this implies that it is cheaper to have shorter, delayed routes than longer on-time routes,

given the cost structures outlined in Section 4.4.

8.5 Scenario 4 - Retailers, Heterogeneous Consignments

Scenario 4, is a heterogeneous version of scenario 3. Figures 8.15 to 8.17 show results

for the 100 UK retailers instances, described in Section 8.4, when considering changes

to only 10% of consignments. The differences with the homogeneous case are in line

with those observed between scenarios 1 and 2. In the heterogeneous case, the same

patterns are observable as in scenario 3 but the range of each is reduced; delay peaks

at 25 minutes, per request cost ranges from £76 to £99, total distance is from 69 to 73

thousand kilometres and utilisation is from 24 to 26%.

Figures 8.14 and 8.16 again show the correlation between solution length and per re-

quest cost with plannning windows showing slightly more impact than arrival windows.

Figure 8.17 likewise shows more impact from planning than arrival windows, with 7
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Fig. 8.14: Scenario 4, average cost of servicing one request.
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Fig. 8.15: Scenario 4, average delay per request.
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Fig. 8.16: Scenario 4, total distance of solutions.

day planning there is almost no difference in utilisation across all arrival windows.
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Fig. 8.17: Scenario 4, utilisation across time windows.
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8.6 Impact of Time Windows

To evaluate the impact of time windows in general, the following results for each scenario

have been scaled, taking the cost with 30 minute arrival time windows as the baseline

(100%).
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Fig. 8.18: Impact of increasing arrival window from 30 mins to 48 hours across 4 scenarios.

Figure 8.18 shows that, once the arrival window reaches 12 hours, the cost per re-

quest is reduced by approximately 10%. Further improvements beyond this are possible

but not as significant.

Figure 8.19 shows similar results when increasing planning windows. Moving from

30 minutes to 12 hours can produce cost savings of between 10 and 15%, depending

on the scenario, suggesting that discounts could be offered to encourage customers to

give more notice of upcoming consignments. The reduction in cost by increasing the

planning window does not change greatly after 12 hours. As in Section 8.2, this could

be due to the cut off CPU time. However, relaxing the CPU time limit sees only slight

improvements, suggesting there are few additional savings to be made beyond the 12

hour planning window. Intuitively this makes sense, as, in the case of having no better

solution, more time to plan is not going to make any difference.

The relative importance of increasing arrival or planning windows is similar across

all tested scenarios. However, improvements from increasing the planning window are
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Fig. 8.19: Impact of increasing planning window from 30 mins to 48 hours across 4 scenarios.

significantly larger when viewed from this perspective. It would be possible, given these

figures, to offer discounts of 10 to 15% on consignments if the planning window was

increased from 30 minutes to 12 hours, with a further 5 to 10% discount offered if

arrival windows were relaxed in the same manner. Discounts that could only be offered

in combination with efficient, automated scheduling.

8.6.1 Degree of Dynamism

The effective degree of dynamism for a problem with time windows (edod-tw) (Larsen,

2001) can be calculated as:

edod-tw =
1

Rtot

Rtot∑
i=1

(1−
ttresponsei

T
) (8.1)

where ttresponsei is the response time (planning plus arrival window (ttplanningi + ttvisiti )),

T is the planning horizon (the length of time between receiving the first request and the

latest end time of any request) and Rtot is the total number of requests. Edod-tw can

range in value from 0, a static problem, to 1, a completely dynamic problem. There is

a large spread of problem type in the homogeneous case (Table 8.2), from 0.333 when

both planning and arrival windows are 7 days to 0.994 when both are 30 minutes. In the

149



8.6 Impact of Time Windows

heterogeneous case (Table 8.3) these values are 0.828 and 0.894 respectively, a much

smaller range. In both cases, the edod-tw values follow the same trend, with larger

windows producing more dynamic problems.

0.5 1 2 4 6 12 24 48 168

0.5 0.994 0.991 0.985 0.974 0.963 0.931 0.873 0.776 0.499

1 0.991 0.988 0.982 0.971 0.960 0.928 0.870 0.774 0.499

2 0.985 0.982 0.977 0.966 0.955 0.923 0.866 0.771 0.497

4 0.974 0.971 0.966 0.955 0.944 0.913 0.857 0.764 0.494

6 0.963 0.960 0.955 0.944 0.933 0.903 0.848 0.757 0.491

12 0.931 0.928 0.923 0.913 0.903 0.875 0.824 0.737 0.483

24 0.873 0.870 0.866 0.857 0.848 0.824 0.778 0.700 0.467

48 0.776 0.774 0.771 0.764 0.757 0.737 0.700 0.636 0.438

168 0.499 0.499 0.497 0.494 0.491 0.483 0.467 0.438 0.333

Tab. 8.2: Edod-tw for homogeneous scenarios (1 and 3), axes are planning and arrival windows
for all requests

0.5 1 2 4 6 12 24 48 168

0.5 0.894 0.894 0.894 0.894 0.893 0.892 0.890 0.885 0.861

1 0.894 0.894 0.894 0.894 0.893 0.892 0.890 0.885 0.861

2 0.894 0.894 0.894 0.893 0.893 0.892 0.889 0.885 0.861

4 0.894 0.894 0.893 0.893 0.893 0.891 0.889 0.884 0.861

6 0.893 0.893 0.893 0.893 0.892 0.891 0.889 0.884 0.860

12 0.892 0.892 0.892 0.891 0.891 0.890 0.888 0.883 0.859

24 0.890 0.890 0.889 0.889 0.889 0.888 0.885 0.880 0.857

48 0.885 0.885 0.885 0.884 0.884 0.883 0.880 0.876 0.852

168 0.861 0.861 0.861 0.861 0.860 0.859 0.857 0.852 0.828

Tab. 8.3: Edod-tw for heterogeneous scenarios (2 and 4), axes are planning and arrival windows
for the 10% of sampled requests

All requests have start times that fall within a one week period. As the planning

and arrival windows of the requests expand, the planning horizon of our experiment,

the length of time from the beginning to the end of the experiment, also grows such

that, for our initial week’s worth of consignments, the planning horizon is equal to one

week + planning window + arrival window.

Revisiting scenario 1, our department store data, and plotting edod-tw against aver-

age request cost (Figure 8.20), we can see that in general, less dynamic problems, with

lower edod-tw values, have lower service costs than more dynamic problems. However,

there are multiple, different results for individual values of edod-tw. This is due to both
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Fig. 8.20: Edod-tw versus average request cost in scenario 1.

the arrival and planning windows having the same effect on edod-tw. For example, a

planning window of 6 hours and an arrival window of 2 hours yields the same edod-tw

as a planning window of 2 hours and an arrival window of 6 hours but results in a

different per-request cost. Due to this we must conclude that, on its own, edod-tw does

not capture enough information about a problem to determine the difficulty of solving

it or the costs involved.

8.7 Discussion and Summary

The conclusions from studying the effect of time windows can be summarised as follows.

• Once the arrival window reaches 12 hours, the arrival delay factor becomes neg-

ligible and per-request cost is reduced by approximately 10% compared to the

manual strategy. It would be possible, given these figures, to offer discounts of

up to 10% on consignments if required arrival windows were increased from 30

minutes to 12 hours.

• Increasing the planning window (from notification of a consignment to pickup)

from 30 minutes to 48 hours can produce cost savings of between 15 and 20%,

depending on the corresponding arrival window. This suggests that a discount

could be offered as an incentive for customers to give more notice of upcoming

consignments.
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• The relative importance of increasing arrival or planning windows is similar for

all tested scenarios. Looking at our average results over 100 retailer instances, it

would seem reasonable to offer discounts of 10% for clients who are prepared to

accept planning or arrival windows increased from 30 minutes to 6 hours, with

further discounts of up to 30% if both planning and arrival windows are 48 hours.

• The current industry standard for pricing delay is not significant enough to en-

courage on-time delivery. Currently, a haulage company seeking to maximise

profits would be best served producing shorter routes and arriving at destina-

tions late (albeit within the one hour grace period). This conclusion is drawn

from our results, observing that total distance charts closely resemble the cost

charts.

• As planning and arrival windows increase it becomes possible to combine consign-

ments, resulting in increased utilisation of assets and a reduction in costs. These

benefits are realisable even if only a small portion of consignments adopt the

increased windows proposed, as we observe similar trends when only modifying

10% of the consignments in a scenario.

• Relaxing the CPU time limit sees only slight improvement suggesting there are

no additional savings to be made in our scenarios beyond a 12 hour planning

window. The reduction in cost does not increase significantly when the planning

window exceeds 12 hours. Intuitively this makes sense, as, in the case of having

no better solution, more time to plan is not going to make any difference.

• Less dynamic problems, with lower edod-tw values, in general have lower associ-

ated service costs, as expected, than more dynamic problems. However, a direct

relationship between edod-tw and cost is not possible as two planning and arrival

window pairs may produce the same edod-tw but lead to different costs.

This chapter presents a number of interesting findings on the effect that changing

time windows has on various aspect of schedule quality; that increasing time windows

reduces distances, delays and costs whilst increasing utilisation is an intuitive result, as

is that increasing planning windows can produce larger savings than arrival windows.
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That the delay cost function used in industry offers no incentive for on time service is a

new observation and suggests that companies should perhaps charge more for missing

arrival deadlines.

We have also shown that cost savings are possible even if only a small portion (10%)

of consignments are altered, meaning that it could be possible to profitably implement

a multi-tiered pricing model to encourage clients to either give more warning of up-

coming consignments or accept wider arrival windows, assuming an efficient automated

scheduling approach.

A study into how cost savings could be distributed between customers and hauliers is

outside the scope of this research; this should also consider potential impacts on things

like environmental pollution. The cheaper solutions that are discussed in this chapter

are correspondingly shorter, as distance-related costs are dominant, it is intuitive to

assume that shorter routes are better for the environment but this is not necessarily

true, especially in cities. In practice a more realistic model of travel time and pollution

would be required to guarantee these savings.
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9

Conclusions

My collaboration with Transfaction Ltd. has produced a number of interesting and in-

dustrially relevant conclusions. This chapter begins with a summary of the key findings

evidenced in this thesis before introducing a number of places where this research could

be extended if future work were to be undertaken.

9.1 Key Findings

I have detailed the PMDP as a model for a real world, supplier-to-customer haulage

problem as exists in truck routing in the UK (Chapter 4, page 71). The PMDP shares

a number of similarities with the PDP but introduces multiple deliveries for each con-

signment which must be serviced in a specific order. In addition to common extensions

to the PDP such as soft time windows and driver working hours, the PMDP also in-

cludes LIFO loading constraints due to the rear access nature of trucks and loading

bays. Cost estimations from the RHA (Dff International Ltd., 2014) have been used to

explore the pricing and marginal costs of delivering consignments.

We introduced the VNDM hyper-heuristic (Chapter 5, page 83) to solve PMDP

and have shown it to be a good choice for our real world case studies, as well as being

competitive with best known solutions for small benchmark instances of the PDP (Li

and Lim, 2003). We have shown (Section 5.4, page 92) that, in limited CPU time,

VNDM outperforms BEBO, QL and RD on many of the 100, 200 and 400 customer

static benchmark instances, as well as in a dynamic real-world situation. This result
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is demonstrated with a variety of different parameter settings and is not overfitted

to either benchmark instances or the real-world data set. State of the art solutions,

which outperform VNDM on benchmark PDPs, would need significant alteration and

specialisation in order to produce solutions for the PMDP, due to the assumption of a

single delivery being inherent at many levels of other heuristic designs. VNDM is not

perfect, merely a good enough practical tool to conduct the case study analysis.

For many of the random, and some of the clustered, instances in the Li and Lim

(2003) benchmarks, shorter solutions are possible if more routes are used (Figure 5.7,

page 97). We have shown that the traditional PDP priority of minimising the number

of routes, rather than minimising total distance, does not always produce the cheapest

solutions in a real-world problem (Figure 6.14, page 116). The balance between vehicle

maintenance costs and distance based running costs should be considered simultane-

ously in the objective of PMDP solvers.

Cooperating delivery companies can make significant savings when an efficient opti-

misation strategy such as VNDM is employed. Consignments are more often delivered

by the carrier which can deliver them most cheaply. A coordinating body such as our

industrial partner, Transfaction Ltd., has the potential to deliver increased carrier prof-

its, reduced distributor costs and increased utilisation in the delivery chain. Section

7.2.1, page 121 shows that delivery costs can be reduced by up to 20%.

We conducted a thorough investigation into the impact of both planning and arrival

time windows to quantify the time value of information in routing and scheduling

problems. We found that as planning and arrival windows increase, it becomes easier

to combine consignments, resulting in 25% increased utilisation of assets (Table 8.1,

page 136) and a reduction in costs of between 15 and 30%. These benefits are realisable

even if only a small portion of consignments adopt the increased windows proposed, as

we observe similar trends when only 10% of the consignments in a scenario have flexible

time windows (Figure 8.7, page 141). A portion of this saving could be offered as a

discount to customers, as an incentive to provide more easily serviceable consignments.

The reduction in cost by increasing the planning window does not change greatly

after the 12-hour mark (for our heuristic), given the CPU time available. Relaxing the

CPU time limit sees only slight improvement suggesting there are no additional savings
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to be made in our scenarios beyond a 12-hour planning window. Intuitively this makes

sense, as, in the case of having no better solution, more time to plan is not going to

make any difference.

Once the arrival window reaches 12 hours the delay in our solutions becomes neg-

ligible (Figure 8.1, page 137) and cost per request is reduced by approximately 10%

compared to the manual strategy (Figure 8.2, page 137). Our results show that the

current industry standard for pricing delay is not significant enough to encourage on-

time delivery. A haulage company seeking to maximise profits would be best served

producing shorter routes and arriving at destinations late (albeit within the one-hour

grace period).

We have shown that cost savings of 15% to 18% are possible when hauliers cooperate

(Figure 7.1, page 121). Cooperation also increases the capacity of a group of hauliers,

by as much as 21% (Figure 7.4, page 125). The benefits of cooperation see diminishing

returns above 10 separate carrier locations working together (Figure 7.5, page 126)

assuming sufficient numbers of vehicles to meet demands. Larger cooperatives will

always have lower operating costs than smaller ones as they are able to more efficiently

schedule their consignments to the most optimal company locations.

In reality, delivery companies charge what they can get for consignments; if there

is little competition – prices rise. Conversely, a competitive market leads to lower

prices. We have carried out further investigation into how savings from cooperation

could be turned into increased profit in resource constrained problems with a fixed

number of vehicles. We propose that the revenue from a customer be modelled as

a linear combination of distance and load and define company profit as the sum of

revenues over all delivered consignments minus the costs associated with delivering

these loads. We consider that each company aims to maximise its own profit by only

reassigning customers when a cooperating company can pay off the original company’s

profit and still cover its delivery costs. The cooperating company makes the cost saving

as its profit on such consignments. We have shown that this more realistic model of

cooperation still leads to increased profits for all cooperating parties in a variety of

different scenarios with differing company sizes (Figure 7.9, page 130). A particularly

interesting result is that competing large companies stand to significantly benefit by
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cooperating with a group of smaller companies. Benefits of cooperation scale with the

number of companies in the cooperative but generally lie within 15-20%.

9.2 Contributions

• A new model for the PMDP.

• An approach that has been shown to solve a variety of realistic scenarios in

acceptable time, without requirements for specialist knowledge of the problem

(domain).

• The cost and distance savings possible through cooperation have been quantified

for differently sized companies.

• Discounts to suppliers who give longer notice or are more flexible on delivery

times have been explored in detail.

• Currently used delay penalties are shown to provide little incentive for timely

delivery.

9.3 Future Work

This section presents a number of areas where future study is needed to answer questions

raised by my research.

9.3.1 Economic Impact

So far, this research only investigates the marginal costs associated with deliveries.

Profit margins, loss leading and other marketing techniques are widespread throughout

the logistics industry. How would carriers operating these strategies effect the benefits of

cooperation? Our cooperative models have assumed relatively simple revenue sharing

approaches. A study into how cost savings could be distributed between customers

and hauliers would require substantial additional research, potential strategies involve

allowing carriers to auction jobs to cooperating parties, or having some central control

involved in deciding which carriers take what consignments. Which approach produces
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the lowest cost for the consumer? Which approach would be easiest to implement?

How could these companies be persuaded to work together?

9.3.2 Breakdowns and Unpredictability

There are more real-world issues than are discussed in this thesis, we do not consider

issues of vehicle reliability, for example, who pays the costs associated with missed

delivery slots and what effect does this have on customer perceptions? We have shown

that cooperation allows for an increase in usable vehicle capacity, allowing the same

fixed cost assets to be more productive, assuming there is sufficient demand for service.

We have not considered the fixed costs associated with carrier-owned vehicles in this

research. If there is insufficient or inconsistent demand, implementing the strategies

that this research suggests to be beneficial may result in reduced usage of carrier owned

assets; how would this affect our suggestions?

9.3.3 Green Logistics

It is possible to consider the environmental impact of a schedule, alongside the time, dis-

tance and costs investigated in this thesis. Can we guarantee that the routes generated

through optimisation produce lower levels of environmental emissions? The cheaper so-

lutions that are discussed in this thesis are correspondingly shorter, as distance-related

costs are dominant. While it is intuitive to assume that shorter and more highly utilised

routes are better for the environment, this is not necessarily true, especially in cities

where slow speeds and stop-start traffic cause fuel consumption to increase. In practice

a more realistic model of traffic, travel time and pollution would be required to guar-

antee these savings. Another question this raises is how can cost and environmental

concerns be balanced? Without incentive, why would any company choose a potentially

more expensive schedule?

9.3.4 Hyper-heuristic Research

The hyper-heuristic methods I have presented offer a practical solution for the PMDP,

but are shown to struggle on random instances of the PDP, compared to the state-of-

the-art solutions, there is opportunity for optimalising the HH approach used. VNDM

159



9.3 Future Work

performs best on clustered instances and data such as our real-world problem. Why

is this? Is this true for other hyper-heuristic approaches? Another area of investiga-

tion lies in applying VNDM to other problem domains. Though some domain specific

knowledge is used to guide VNDM, the majority of the method is transferable to other

problems. We have investigated the effectiveness of this approach on the periodic ve-

hicle routing problem with some success (Chen et al., 2016a). Can VNDM be used as

a simple all-purpose hyper-heuristic for combinatorial problems?
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Appendix

A.1 Extended Glossary

A.1.1 Simple LSOs

A.1.1.1 k-opt

k-opt removes k edges from a single route and reconnects them in a different configu-

ration. Figure A.1 demonstrates this for k = 2 (2-opt) on a very small example. Note

that although the nodes j, x and i+ 1 are still connected via the same route the order

in which these locations is visited is swapped after the use of this operator. Cowling

and Keuthen (2005) combine dynamic programming approaches within k-opt to reduce

computation time.

j + 1

b

i

i+ 1

x

j

(a) Before

j + 1

b

i

i+ 1

x

j

(b) After

Fig. A.1: 2-opt operator.

A.1.1.2 Or-opt

Or-opt is a variant of k-opt where k = 3 and the direction of edges not replaced is

preserved. In Figure A.2, the edges i− 1→ i, i+ 1→ i+ 2 and j → j + 1 are replaced
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by the edges i− 1→ i+ 2, i+ 1→ j + 1 and j → i respectively.

b

i

i+ 1

i− 1
i+ 2 j

j + 1

(a) Before

b

i

i+ 1

i− 1
i+ 2 j

j + 1

(b) After

Fig. A.2: Or-opt operator.

A.1.1.3 I-opt

Bräysy (2003) presents I-opt as a modification of Or-opt such that instead of specifying

edges to cut, a chain of nodes is selected to be preserved and a set of edges that satisfy

Or-opt are cut. The resultant solution then reverses the preserved chains and applies

Or-opt to reconnect the route. Bräysy (2003) tries to counteract the effects of insertion

order on a tour by removing the customer furthest from the base location and i−1 nodes

furthest from it, re-inserting these in every possible order using the cheapest insertion

algorithm, and using Or-opt on the new routes after every k nodes are inserted.

A.1.1.4 2-opt*

2-opt* (Potvin and Rousseau, 1995) takes two complete routes in a solution and splits

each in half. The resulting routes become the first half of one and the second half of

the other and vice versa. Only 2 edges are changed, the paths before and after the cut

remain unchanged and therefore are traversed in the same direction.

A.1.2 Tabu Search (TS)

Glover (1990) presents tabu search (TS) as a general purpose meta-heuristic framework

for solving difficult optimization problems, applying TS to the TSP as an example ap-

plication. TS attempts to avoid the problem of getting stuck in local optima associated

with hill climbing algorithms. TS differs from traditional hill climbing algorithms with
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b j

i+ 1

i

j + 1

(a) Before

b j

i+ 1

i

j + 1

(b) After

Fig. A.3: 2-opt* operator.

acceleration (e.g. Tovey (1985)) in the introduction of forbidden “tabu” moves and

aspiration criteria capable of overriding these.

At each iteration of TS, a neighbourhood of solutions similar to the current solution

are generated using one or more of the LSOs introduced in Section 3.2.2. Two strategies,

Best Admissible (BA) and First Improvement (FI) can be used to determine which of

the new solutions is actually chosen. BA searches every solution in the neighbourhood

only implementing the move with the highest pay-off, whereas FI accepts the first move

to produce an improvement in the solution. In both cases, the selected move must

either not be tabu or satisfy the aspiration criterion, usually that the move produces

an improvement in the solution.

Once made, moves are tabu for a number of subsequent iterations so that the same

customer cannot be moved back and forth between routes. To help eliminate the related

problem of cycles of moves being repeated, the duration of the tabu for a given move

is set to a random number of iterations, typically in the range [5,15]. TS stops after

a fixed number of iterations, either overall or from when the best solution was found.

Pseudo code for the TS procedure is given in Algorithm A.1.1. Malca and Semet (2003)

apply TS to the PDP with fixed fleet size.

A.1.2.1 Taburoute

Taburoute (Gendreau et al., 1994) uses a variable fitness function as discussed in Section

2.3 and otherwise follows a structure similar to TS. Taburoute uses, as its neighbour-

hood, all GENI routes of each vertex to its k nearest neighbours (see Section 3.2.1.4).
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Algorithm A.1.1 Tabu Search

Precondition: Initial Solution S

1: repeat

2: best move ← null

3: repeat

4: generate a move in the current neighbourhood.

5: evaluate the move

6: if move > best move or best move = null

7: if move is not tabu or move satisfies aspiration criterion

8: best move ← move

9: if using FI

10: break

11: until a good move is generated (BA/FI)

12: make the best move

13: update the tabu list

14: until stopping criterion met . iterations, total or since last improvement

Cordeau et al. (2001) extend Taburoute to the VRPTW and two of its generaliza-

tions, the periodic and multi-depot instances. Though it does not always produce the

best possible solutions, Cordeau et al. (2001) find TS to be simple, robust and efficient

in use, converging to good solutions quickly. Cordeau et al. (2004a) extend this work

to handle the route duration constraint in VRPTW.

A.1.2.2 Tabu search with adaptive memory

Rochat and Taillard (1995) introduce the concept of adaptive memory where sections

of the most promising solutions seen so far are kept and re-introduced into the trial

solution when a local optimum is reached.

A.1.2.3 Tabu search for the VRP with soft time windows

Taillard et al. (1997) propose a technique for applying the TS heuristic of Glover (1990)

to the VRP with soft time windows. Initial solutions are generated randomly, first

inserting a single random customer into each route then adding remaining customers

randomly, using a greedy insertion heuristic. These initial solutions are stored in an

adaptive memory, as described by Rochat and Taillard (1995). The adaptive memory
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splits the initial solutions into sub-tours and sorts these by their objective fitness.

Initial solutions are then generated by choosing sub-tours from the adaptive memory,

biased towards high fitness sub-tours, to include in a new route. When a sub-tour is

selected other tours involving those customers are removed from consideration. This

process repeats until all customers have been visited or all sub-tours used. Remaining

customers are added to the route using a greedy insertion heuristic. A neighbourhood of

candidate solutions is created using the CROSS LSO (Section 3.2.2). CROSS is used as

it preserves the ordering of chains of customers in a given solution, which is important

when the time ordering of those customers is a constraint. The tabu list stores only

the fitness of the overall solution and its tabu tenure; whilst this could rule out viable

alternate routes with identical distances, the likelihood of this is low when working

with double precision costs and thousands of customers. An interesting observation is

that the tabu tenure used in this approach is half of the number of iterations used by

the algorithm which appears very high; also high is the number of entries in the tabu

list, set at 100,000.

Rancourt et al. (2012) applies a TS based meta-heuristic to a long haul vehicle

routing and scheduling problem applying the rules on truck driver safety for long-

haul trips in North America. Similar rules exist for the UK and Europe and must be

considered as part of Transfaction Ltd.’s Problem, see Chapter 4.

A.1.2.4 Tabu search for the dynamic VRP

Gendreau et al. (2006) rely on an ejection chain operator (Section 3.2.2) to rapidly solve

instances of the dynamic VRP. An evaluation function is used to estimate the route

duration change caused by adding a customer’s request into a route. An adapted Floyd-

Warshall shortest path algorithm (Ahuja et al., 1993) is used to solve the resultant TSPs

of each route, vertices are ordered based on first improvement. An adaptive memory

(Rochat and Taillard, 1995; Taillard et al., 1997) is again used. Solutions are added

to the adaptive memory if they have a fitness greater than the fitness of the worst

individual solution currently in the memory, the worst candidate being dropped. An

adaptive descent heuristic, for instance defined as a TS from a solution derived from the

adaptive memory down to a local minima, can be used to check against the members
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of the memory to potentially replace one. A new solution is then created from the

memory and the process repeated.

Solutions are decomposed into sub-problems each containing approximately the

same number of routes and each is solved independently. Each subsequent solution

can be decomposed and recombined multiple times before being stored in the adaptive

memory.

A.1.3 Genetic Algorithms (GA)

Potvin and Guertin (1996), Homberger and Gehring (1999), Baker and Ayechew (2003)

and Mester and Bräysy (2005, 2007) present Genetic Algorithms (GAs) for variations of

the VRP. The approaches differ in details such as the way initial solutions are generated

but follow the same structure of initial solution, population generation, mutation and

parent replacement. Here, the method of Baker and Ayechew (2003) is presented.

Solutions are stored as a list of customers, each storing a vehicle id. If the solution is

changed, a TSP problem must be solved for each vehicle with its assigned customers

as the nodes. An initial assignment is made using a sweep algorithm whereby nodes

are added to the first vehicle in numerical order once they are sorted by polar angle

around the base location, once a vehicle’s route is full due to capacity constraints nodes

are assigned to the next vehicle. Further parents are generated using a generalized

assignment algorithm. Binary tournament selection is used to pick two parents at

each iteration where the better of two candidates is chosen for each parent. Child

solutions are generated using 2-point crossover as shown in Figure A.4. The population

is preserved between runs, each child potentially replacing a parent from the population.

An additional metric, referred to as unfitness, is defined as the excess weight, in violation

of limits plus the excess distance as proportions of their respective allowable totals. The

aim is of course to find good feasible solutions but allowing strong infeasible solutions

may lead to similar solutions which are feasible. The worst solution is defined as the

solution with the worst (highest) unfitness score, in the case of a tie the solution with

the worst fitness and joint worst unfitness is chosen. The child solution will replace the

worst known solution if it has better fitness or unfitness (or both).
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Node 1 2 3 4

Parent 1 R1 R1 R2 R2

Parent 2 R1 R2 R1 R1

(a) Before

Node 1 2 3 4

Child 1 R1 R2 R1 R2
Child 2 R1 R1 R2 R1

(b) After

Fig. A.4: GA crossover operator, here the x in Rx is the route that a node belongs to in a
solution.

A.2 Generated Times
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168



A.3 Full Comparison Tables

A.3 Full Comparison Tables

The tables presented in this appendix represent the best result of 10 repeats for each

instance/hyper-heuristic pair. Each run is given 5, 10 or 20 minutes depending on

the size of the problem instance (100, 200 or 400 customers respectively). The results

presented here represent over 1200 hours of CPU time.

Tab. A.1: HH Performance on 100 random customer benchmarks.
Random BEBO VND QL

Name r d r d r d r d

LR1-1-1 19 1650.80 19 1650.80 19 1650.80 19 1650.80
LR1-1-2 17 1487.57 17 1520.82 17 1487.57 17 1487.57
LR1-1-3 13 1292.67 13 1314.63 13 1292.67 13 1292.67
LR1-1-4 9 1013.99 10 1046.74 9 1013.39 9 1013.99
LR1-1-5 14 1377.11 14 1384.37 14 1377.11 14 1377.11
LR1-1-6 12 1252.62 12 1252.62 12 1252.62 12 1252.62
LR1-1-7 10 1111.31 10 1111.31 10 1111.31 10 1111.31
LR1-1-8 9 968.97 9 968.97 9 968.97 9 968.97
LR1-1-9 12 1237.71 12 1241.13 11 1208.96 11 1208.96
LR1-1-10 10 1159.35 10 1159.35 10 1159.35 10 1159.35
LR1-1-11 10 1108.90 10 1108.90 10 1108.90 10 1108.90
LR1-1-12 9 1004.19 10 1068.61 9 1003.77 9 1003.77
LR2-1-1 4 1277.14 4 1377.16 4 1257.37 4 1279.90
LR2-1-2 4 1289.88 4 1347.52 3 1197.67 3 1197.67
LR2-1-3 3 1040.27 3 1245.81 3 953.93 3 991.77
LR2-1-4 3 1062.43 3 1110.92 2 849.05 3 1096.90
LR2-1-5 3 1066.66 3 1124.74 3 1054.14 3 1072.85
LR2-1-6 3 944.65 3 1008.77 3 1072.70 3 1127.18
LR2-1-7 3 1067.64 3 1073.86 2 903.62 3 1038.00
LR2-1-8 2 766.13 2 785.06 2 741.30 2 742.14
LR2-1-9 3 1110.63 3 1099.23 3 930.59 3 1087.78
LR2-1-10 3 1072.57 3 1075.63 3 964.22 3 1008.22
LR2-1-11 3 1045.21 3 1078.28 3 907.86 3 953.56
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Tab. A.2: HH Performance on 100 random and clustered customer benchmarks.
Random BEBO VND QL

Name r d r d r d r d

LRC1-1-1 14 1708.80 14 1708.80 14 1708.80 14 1708.80
LRC1-1-2 12 1558.07 12 1558.07 12 1558.07 12 1558.07
LRC1-1-3 11 1258.74 11 1271.08 11 1258.74 11 1258.74
LRC1-1-4 10 1128.40 10 1199.79 10 1128.40 10 1128.49
LRC1-1-5 13 1637.62 13 1640.30 13 1637.62 13 1637.62
LRC1-1-6 11 1424.73 12 1469.98 11 1424.73 11 1424.73
LRC1-1-7 11 1230.14 11 1320.78 11 1230.14 11 1230.14
LRC1-1-8 10 1147.42 11 1238.68 10 1147.42 10 1147.42
LRC2-1-1 4 1481.13 4 1795.36 4 1455.54 4 1535.12
LRC2-1-2 4 1505.85 4 1551.55 4 1424.71 4 1402.95
LRC2-1-3 3 1113.55 3 1117.09 3 1092.30 3 1091.68
LRC2-1-4 3 880.52 3 908.47 3 825.85 3 883.65
LRC2-1-5 4 1307.25 4 1375.83 4 1306.41 4 1458.93
LRC2-1-6 3 1229.70 3 1360.99 3 1162.91 3 1162.91
LRC2-1-7 3 1087.62 3 1064.40 3 1062.05 3 1079.65
LRC2-1-8 3 1021.27 3 1055.87 3 862.94 3 1043.37

Tab. A.3: HH Performance on 200 clustered customer benchmarks.
Random BEBO VND QL

Name r d r d r d r d

LC1-2-1 20 2704.57 20 2704.57 20 2704.57 20 2704.57
LC1-2-2 19 2764.55 19 2774.57 19 2764.55 19 2764.79
LC1-2-3 18 2853.05 18 2946.48 17 3465.66 18 2956.02
LC1-2-4 17 3017.90 17 3206.38 17 2777.46 17 3032.49
LC1-2-5 20 2702.05 20 2782.52 20 2702.05 20 2702.05
LC1-2-6 20 2701.03 20 2701.03 20 2701.03 20 2701.03
LC1-2-7 20 2701.03 21 2987.74 20 2701.03 20 2701.03
LC1-2-8 20 2824.24 21 3586.17 20 2767.79 20 2806.49
LC1-2-9 18 2769.06 18 2794.84 18 2724.24 18 2725.45
LC1-2-10 18 3042.14 18 2919.08 18 2820.23 18 2971.62
LC2-2-1 6 1931.44 6 1931.44 6 1931.44 6 1931.44
LC2-2-2 6 2419.10 6 2000.33 6 2007.88 6 2070.36
LC2-2-3 6 2462.22 6 2287.21 6 2151.67 6 2287.92
LC2-2-4 6 2560.45 6 2196.59 6 2202.01 6 2416.52
LC2-2-5 7 2065.71 6 1891.21 6 1891.21 6 1891.21
LC2-2-6 7 2320.14 6 1869.70 6 1857.78 6 1857.78
LC2-2-7 7 2580.01 7 2406.91 6 1875.01 7 2119.85
LC2-2-8 7 2772.73 6 1983.09 6 1932.41 7 2531.51
LC2-2-9 7 2465.34 6 2064.67 6 1861.09 7 2289.21
LC2-2-10 7 2897.55 7 2316.77 6 1961.18 7 2592.19
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Tab. A.4: HH Performance on 200 random customer benchmarks.
Random BEBO VND QL

Name r d r d r d r d

LR1-2-1 20 4819.12 21 4967.33 20 4819.12 20 4819.12
LR1-2-2 18 4428.06 19 4376.67 18 4394.91 18 4416.82
LR1-2-3 15 3903.27 16 3885.18 15 3916.81 15 3859.24
LR1-2-4 11 3295.66 11 3372.85 11 3035.14 11 3366.11
LR1-2-5 17 4557.06 17 4876.26 17 4439.55 17 4505.99
LR1-2-6 15 4053.10 15 4495.60 15 4281.32 14 4460.22
LR1-2-7 13 3543.74 13 3818.84 13 3476.60 13 3630.14
LR1-2-8 10 3059.72 10 2956.80 9 2966.93 10 2936.38
LR1-2-9 15 4518.54 16 4583.60 15 4416.90 15 4429.27
LR1-2-10 12 3927.05 13 3845.36 12 3742.21 13 3790.15
LR2-2-1 5 4781.11 5 4637.96 5 4337.34 5 4637.38
LR2-2-2 5 5346.12 4 4437.51 4 4616.68 5 5084.45
LR2-2-3 4 5157.19 4 4486.13 4 4534.26 4 5101.29
LR2-2-4 3 3967.68 3 3464.04 3 3159.53 3 3793.70
LR2-2-5 4 3825.90 4 3471.89 4 3553.33 4 3629.85
LR2-2-6 4 4939.00 4 4688.85 4 4200.50 4 4957.57
LR2-2-7 4 4373.15 3 3286.50 3 4165.85 3 4055.87
LR2-2-8 3 3077.90 3 2830.92 3 2724.29 3 3299.12
LR2-2-9 4 4880.73 4 3665.64 4 3206.65 4 4820.68
LR2-2-10 4 4678.19 4 3824.13 4 3663.49 4 4293.19

Tab. A.5: HH Performance on 200 random and clustered customer benchmarks.
Random BEBO VND QL

Name r d r d r d r d

LRC1-2-1 19 3606.86 20 3746.82 19 3606.86 19 3634.12
LRC1-2-2 17 3624.70 18 3519.59 17 3359.18 17 3536.45
LRC1-2-3 13 3531.11 14 3534.31 13 3355.96 13 3293.08
LRC1-2-4 10 2963.71 10 2983.57 10 2914.47 10 3050.71
LRC1-2-5 17 3921.36 17 4212.65 17 3941.56 17 3949.78
LRC1-2-6 17 3516.42 17 3617.96 17 3396.61 17 3426.43
LRC1-2-7 16 3481.41 16 3596.10 16 3498.94 16 3652.29
LRC1-2-8 14 3274.37 15 3395.99 14 3391.50 14 3391.68
LRC1-2-9 15 3197.68 15 3396.39 14 3246.58 15 3392.74
LRC1-2-10 13 3203.80 13 3167.27 13 2907.99 13 3042.46
LRC2-2-1 7 4140.95 7 3988.44 7 3271.47 7 4039.85
LRC2-2-2 6 4036.78 6 3482.21 6 3452.40 6 3538.54
LRC2-2-3 5 4069.68 5 3632.47 5 3528.88 5 3773.64
LRC2-2-4 4 3714.56 4 2997.16 4 2998.88 4 3753.64
LRC2-2-5 5 3814.98 5 2954.58 5 3439.36 5 3824.95
LRC2-2-6 5 3471.32 5 3121.70 5 2947.10 5 3139.43
LRC2-2-7 5 3610.49 5 2860.77 5 2820.98 5 3709.73
LRC2-2-8 5 3969.72 5 3295.88 4 3175.80 5 3583.75
LRC2-2-9 4 3822.54 4 2529.38 4 2430.72 4 3345.22
LRC2-2-10 4 3211.29 4 2144.63 4 2138.04 4 3122.07

171



A.3 Full Comparison Tables

Tab. A.6: HH Performance on 400 random customer benchmarks.
Random BEBO VND QL

Name r d r d r d r d

LR1-4-1 40 11008.85 41 12051.26 40 11069.16 40 11464.51
LR1-4-2 34 10636.95 35 10639.12 34 10031.41 33 10309.82
LR1-4-3 26 9747.05 26 9677.49 26 9206.40 26 9685.00
LR1-4-4 18 8771.16 19 7514.84 19 7592.58 19 7861.49
LR1-4-5 33 10658.59 33 10740.28 33 10354.37 33 11237.52
LR1-4-6 29 10488.11 29 10603.00 28 9873.44 29 10367.68
LR1-4-7 23 9387.18 23 8929.60 23 8590.37 23 9102.70
LR1-4-8 17 7243.56 16 7091.69 16 7064.28 16 7376.67
LR1-4-9 27 10772.37 28 10716.57 27 10195.71 28 10777.67
LR1-4-10 24 9578.82 24 9371.65 23 8943.90 23 9169.52
LR2-4-1 10 14260.77 9 11605.04 8 11201.38 10 13622.01
LR2-4-2 9 14097.12 8 10515.79 8 9520.44 9 14126.43
LR2-4-3 7 12558.88 7 9257.95 7 9177.06 7 12572.50
LR2-4-4 5 9135.47 5 6654.88 5 7055.66 5 9831.22
LR2-4-5 8 12373.92 8 9914.27 8 9701.25 8 11617.47
LR2-4-6 7 12276.94 7 8940.58 7 8823.15 7 11976.53
LR2-4-7 6 11880.73 6 8586.93 6 8524.23 6 11779.42
LR2-4-8 5 9066.42 5 7141.36 5 7187.33 5 9768.87
LR2-4-9 8 12709.25 7 10287.89 7 9962.42 8 12730.21
LR2-4-10 7 11893.33 6 7872.17 6 9124.33 7 11690.58

Tab. A.7: HH Performance on 400 random and clustered customer benchmarks.
Random BEBO VND QL

Name r d r d r d r d

LRC1-4-1 38 9624.02 39 9619.17 38 9211.06 37 9484.95
LRC1-4-2 35 8494.99 37 8549.04 35 8194.06 35 8395.42
LRC1-4-3 28 7953.54 28 7868.86 27 7771.27 27 7974.48
LRC1-4-4 20 6374.28 20 6551.66 20 6344.24 20 6368.56
LRC1-4-5 36 9347.46 38 9468.85 36 9178.22 35 9183.38
LRC1-4-6 33 8575.21 34 8635.36 33 8606.90 33 8604.10
LRC1-4-7 33 8813.13 34 8952.15 33 8468.64 33 8598.97
LRC1-4-8 31 8298.78 30 8617.80 30 8203.63 31 8333.45
LRC1-4-9 29 8580.96 30 8562.79 29 8382.57 30 8615.58
LRC1-4-10 27 7778.16 27 7773.59 27 7545.90 27 7901.50
LRC2-4-1 13 10041.06 13 7233.26 13 7307.14 13 9138.96
LRC2-4-2 13 10268.22 12 7978.35 12 8288.37 12 8854.54
LRC2-4-3 11 10963.19 10 6485.29 10 6511.94 11 9972.44
LRC2-4-4 7 8152.81 7 5295.52 7 5709.16 6 8228.70
LRC2-4-5 12 11458.99 11 8407.38 11 7576.77 12 10377.07
LRC2-4-6 11 9013.67 10 7215.13 10 6979.27 11 8904.62
LRC2-4-7 10 9919.95 9 7804.22 9 7021.05 10 8759.20
LRC2-4-8 9 10051.70 8 7078.69 8 6874.11 9 9845.77
LRC2-4-9 8 8507.99 8 6463.79 8 6567.16 8 8882.12
LRC2-4-10 8 9953.80 7 6827.80 7 6354.33 7 9631.84
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