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Abstract

To succeed in a demanding and competitive market, great attention needs

to be given to the process of product design. Incorporating optimization

into the process enables the designer to find high-quality products according

to their simulated performance. However, the actual performance may

differ from the simulation results due to a variety of uncertainty factors.

Robust optimization is commonly used to search for products that are

less affected by the anticipated uncertainties. Changeability can improve

the robustness of a product, as it allows the product to be adapted to a

new configuration whenever the uncertain conditions change. This ability

provides the changeable product with an active form of robustness.

Several methodologies exist for engineering design of changeable products,

none of which includes optimization. This study presents the Active Robust

Optimization (ARO) framework that offers the missing tools for optimizing

changeable products. A new optimization problem is formulated, named

Active Robust Optimization Problem (AROP). The benefit in designing

solutions by solving an AROP lies in the realistic manner adaptation is

considered when assessing the solutions’ performance.

The novel methodology can be applied to optimize any product that can be

classified as a changeable product, i.e., it can be adjusted by its user during

normal operation. This definition applies to a huge variety of applications,

ranging from simple products such as fans and heaters, to complex systems

such as production halls and transportation systems.

The ARO framework is described in this dissertation and its unique features

are studied. Its ability to find robust changeable solutions is examined for

different sources of uncertainty, robustness criteria and sampling conditions.

Additionally, a framework for Active Robust Multi-objective Optimization

is developed. This generalisation of ARO itself presents many challenges,

not encountered in previous studies. Novel approaches for evaluating and

comparing changeable designs comprising multiple objectives are proposed

along with algorithms for solving multi-objective AROPs.

The framework and associated methodologies are demonstrated on two

applications from different fields in engineering design. The first is an

adjustable optical table, and the second is the selection of gears in a gearbox.
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Chapter 1

Introduction

Optimization is a powerful tool that allows a designer to select the appropriate design

variables to achieve high performance products. Many real-world optimization problems

involve uncertainties. A solution for such a problem is expected to be robust to these

uncertainties. Commonly, robustness is attained by designing the solution such that its

performance is less influenced by negative effects of the uncertain parameters’ variations.

This robustness may be viewed as a passive robustness, because once the solution’s

design variables are chosen, the robustness is inherent in the solution and no further

action is expected to suppress the effect of uncertainties.

This study deals with systems and products that can achieve robustness in an active

manner. In contrast to the conventional approach for designing robust products, active

robustness is attained by including some adjustable features in the product design,

thus making it a changeable product. These features enable the changeable product

to respond to variations of parameters and mitigate performance degradation in a

cost-effective manner.

For example, consider the manner in which the international space station (ISS) is

designed to protect itself against collisions with space debris. While orbiting our planet,

the ISS is in a constant threat of getting hit by space debris, made of meteoroids and

wrecked satellites. To ensure the safety of its crew and equipment, the space agencies

could have adopted a passive robustness approach and shield the station with a very

thick armour. This armour could have protected the ISS from some of the space debris,

but the added weight to the station’s modules would make the whole project infeasible.

Instead, a thin and lightweight shield is installed that can protect the station from

objects up to the size of 1cm. Larger objects are avoided by maneuvering the station

with its thrusters whenever a collision is predicted (Garcia, 2013).

The American National Aeronautics and Space Administration (NASA) has the
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ability to track the objects orbiting the Earth and calculate their path within a high

degree of precision. Therefore, the robustness against collisions, provided by the

maneuverability of the ISS, is higher than the passive robustness that could have been

attained by a heavy armour. Furthermore, implementing this ability does not come at

the cost of design infeasibility due to overweight.

Many changeable products are designed and manufactured in industry today. A few

examples are wind turbines, irrigation systems, automobiles and reconfigurable robots.

All of these products are designed to operate in a changing environment, and can be

adjusted to perform in an optimal manner whenever the environmental conditions change.

Despite some guidelines existing in the literature on how to incorporate changeability

into the design (Koren et al., 1999; Gu et al., 2004; Siddiqi et al., 2006; Haldaman and

Parkinson, 2010), optimization is not taking place in the design process. The reason

for this is the lack of a methodology to support such action. In order to optimize

changeable products, a designer needs the ability to compare the predicted performance

of alternative solutions. To do so, the effects of the adjustable features on predicted

performance, subject to the various uncertainty factors, must be understood.

In this study, the Active Robust Optimization methodology for optimizing changeable

products is presented. It considers products that are able to adapt to varying conditions

by reconfiguration of some adjustable properties. The ability of the ARO approach to

optimize changeable products is rooted in the manner in which the evaluation functions

are modelled. A distinction is made between three types of variables that affect the

performance of the candidate design:

1. Parameters that cannot be controlled by the designer, some of which are uncer-

tain.

2. Fixed decision variables that can be decided during the design phase. These

variables define the solution.

3. Adjustable decision variables that can be changed by the user during product

operation, in response to actual changes of the previously uncertain parameters.

The choice of which adjustable features to include in the product is made during the

design phase, and therefore, it is determined by the fixed decision variables. This

choice defines the solution’s range of adaptability. The configuration of these features,

determined by the user, is represented by adjustable decision variables.

Using the above distinction, a new optimization problem named Active Robust

Optimization Problem is formulated. The AROP considers the influence of adaptation

on the candidate solution’s performance. With the aid of criteria for selecting solutions
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according to their variate of performance function(s), a robust optimization scheme is

conducted to find a high quality changeable solution.

The novel methodology can be applied to optimize a great variety of products in

many different fields, ranging from simple products such as fans and heaters to complex

systems such as manufacturing halls and transportation systems. In fact, any product

that has several operation modes, aimed for different operating conditions, can be

optimized with the proposed approach, as long as its performance can be predicted for

different combinations of the uncertain parameters and decision variables.

1.1 Motivation

The main goal of this study is to establish a new engineering design methodology,

aimed at products that can cope with uncertainties in a cost-efficient manner through

adaptation. The methodology should be based on optimization to support a decision on

which properties of the products should be made changeable, and to what extent. In

developing the methodology, the following research gaps should be addressed:

1. Develop a framework for robust optimization of changeable products

(a) Provide a mathematical definition for a changeable product. This should

make it clear whether or not a certain product can be optimized with the

proposed approach.

(b) Formulate the Active Robust Optimization Problem.

(c) Understand the effects of various factors on the problem and its solution. This

includes the types of uncertainty, definition of robustness and algorithmic

issues.

2. Extend the framework to consider multiple conflicting objectives

(a) Extend the notion of optimality of changeable products when optimizing for

multiple conflicting objectives.

(b) Suggest evaluation measures for the robustness of changeable products in a

multi-objective setting.

(c) Suggest optimization methods that can incorporate the above evaluation

measures to find a robust changeable product when multiple objectives are

concerned.
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3. Demonstrate the framework

(a) Present a simple, easy to follow, analytic example that highlights the various

issues that may arise when solving AROPs. The analytic example can be used

as a reference when optimizing more complicated real-world applications.

(b) Demonstrate how the framework can be applied to real-world design activities.

This should include how models of changeable products can be constructed

to simulate their performance within the optimization process.

1.2 Outline of the Thesis

This dissertation is composed of six chapters. Following the introduction in this chapter,

Chapter 2 includes a literature review of the related research fields and provides the

required background to understand the rest of the dissertation. In Chapter 3, the

Active Robust Optimization problem is formulated, explained and analysed. Chapter 4

includes a generalisation of the AROP to applications that include multiple conflicting

objectives. In Chapter 5, the methodology is demonstrated on two applications from

engineering design. Chapter 6 concludes the thesis. The content of each chapter is

described in the outline below.

• Chapter 2 surveys the relevant literature in the fields of optimization and engi-

neering design that handle uncertainties and changeable systems. First, the types

of uncertainties considered in engineering design are classified and their sources

are explained. Next, the existing design paradigms for designing products that

are robust to uncertainties are surveyed. The manner in which changeability is

incorporated into the product to cope with uncertainties is given special attention,

and existing measures for changeable products are examined. Following this,

the concept of optimization is explained. Multi-objective optimization, dynamic

optimization and set-based optimization are explained and common methods for

solving optimization problems are presented. In order to understand the notation

that is used throughout the dissertation, the nomenclature, that appears in a

table form in the preface, is explained in detail before it is first used. The existing

literature on robust optimization is presented. This specifically focuses on studies

concerning robust multi-objective optimization and the robust optimization of

changeable products. Finally, gaps in the current literature are identified, and the

location of this research is illustrated with respect to the current state-of-the-art.

• Chapter 3 establishes the foundations of the active robust optimization framework.

It starts with the formal definition of the active robust optimization problem and
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its building blocks. Then, an analytic example for an AROP is presented and its

characteristics are examined. Next, the difference between robustness and active

robustness is demonstrated for various descriptions of optimality in the presence

of uncertainties. Following that, further analysis is conducted, such as the effect of

sampling size of the uncertainty domain on the obtained solution, and variations

of the AROP that consider various types of uncertainty.

• Chapter 4 extends the basic AROP to problems with multiple objectives. At the

beginning of the chapter, a formal definition of the Active Robust Multi-Objective

Optimization Problem (ARMOP) is presented and its notion of optimality is

discussed. Then, the unique features of an ARMOP are demonstrated through

an analytic example, which is a multi-objective extension to the example used

in Chapter 3. The complexities are added into the problem one-by-one in order

to understand the effects of each feature. Once the problem is understood,

several strategies for evaluating and comparing the performance of candidate

solutions of an ARMOP are suggested. This evaluation is a very challenging task

due to the ability of a changeable product to adapt to several, equally optimal,

configurations for every realisation of the uncertainties. The chapter ends with

high-level descriptions of algorithms that can be constructed according to the

suggested evaluation approaches.

• Chapter 5 demonstrates how the methodology can be applied to a variety of

real-world applications. Both single and multi-objective formulations AROPs are

presented for two applications from different fields in engineering design. The first

is the optimization of components of an adaptable optical table, and the second is

the optimization of a gearbox for an uncertain load demand.

• Chapter 6 concludes the dissertation. The key results are highlighted and the

contributions of this thesis are discussed in detail. Then, the limitations and

caveats in using the presented framework are addressed. Finally, additional

research and new directions are identified.

1.3 Contributions

Main contributions

1. Framework for Active Robust Optimization. The framework provides the

tools to optimize changeable products. It is based on a new class of optimization

problems–the Active Robust Optimization Problem. The AROP considers the
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uncertain conditions in which the product is expected to operate, and the ability

of the product to respond to changes of these uncertain conditions.

The methodology was first introduced in Salomon et al. (2014), and part of the

analysis provided in this thesis was published in Salomon et al. (2016a). The

methodology is described, demonstrated and analysed in Chapter 3.

2. Framework for Active Robust Multi-Objective Optimization. The ex-

tension of the ARO framework to optimize for multiple performance criteria has

many unique features that are not present in existing multi-objective optimization

problems. These features are described, and the challenges they present are dis-

cussed in Chapter 4. Some strategies for addressing these challenges are suggested

in Chapter 4 as well.

The Active Robust Multi-Objective Optimization Problem was first introduced in

Salomon et al. (2015).

3. Metrics for comparing ARMOP solutions. The performance of a candidate

solution to an ARMOP can be described as a set of alternative objective vectors

for every realisation of the uncertainties. When the entire uncertain domain is

considered, the performance becomes a variate of sets. Some metrics to evaluate

and compare changeable products according to their variates of sets are suggested

in Chapter 4. These metrics are based on different approaches for preference elicita-

tion in multiojbective optimization. The metrics are described and demonstrated,

and the advantages and disadvantages of each approach are highlighted.

One metric was presented in Salomon et al. (2015). The rest are presented in this

thesis for the first time.

4. Two Case Study applications. To demonstrate the novel methodology, two

applications from the field of engineering design were conceived and presented in

Chapter 5:

(a) An optical table with relocatable supports. This new design of an optical

table has proven to better absorb floor vibrations than the existing design

with fixed supports. The case study includes a mathematical model of the

product, derived from first principles.

The concept was first introduced in Salomon et al. (2014).

(b) Gearbox optimization for uncertain load scenarios. The case study includes a

novel perspective for gearbox optimization, where the varying load is treated
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as an uncertain entity with an estimated distribution. A model of the electric

motor and gearbox was derived from first principles.

This work was partly published in Salomon et al. (2015) and Salomon et al.

(2016a).

Additional contributions

1. Review of Robust Multi-Objective Optimization. Despite the increasing

interest in robust multi-objective optimization, a systematic review of the existing

approaches for modelling and solving uncertain multi-objective optimization

problems (MOPs) cannot be found in the literature. Section 2.4.2 consists of a

survey of the existing methods in which uncertain MOPs can be constructed, and

the definitions of robustness that are used to solve this type of problem.

2. Conceiving an elegant and simple problem to demonstrate all the issues

arising in AROPs. The analytic function that is used to guide the reader through

the complexities of the framework is a very simple trigonometric expression. It

consists of the smallest possible number of objectives, constraints, decision variables

and uncertain parameters that can still be used to formulate an AROP. This

enables the reader to recognise the role of every component of the problem, and to

understand how changes in each component affect the performance of candidate

solutions. Despite the problem’s simplicity, it includes all the required features

for observing the special properties of AROPs.

The function is first presented to construct a single-objective AROP in Chapter 3

and is slightly modified to construct an ARMOP in Chapter 4.

3. Introducing the Optimization of Adaptation Problem. The AROP consid-

ers the performance of the changeable design after it has optimally adapted to the

changing conditions, which are uncertain during the design stage. A related study

(Salomon et al., 2013a), that was conducted alongside with the development of

the AROP, addresses the following question: What is the right way to adapt once

the operating conditions have changed? In other words, it searches for the optimal

trajectory of configuration in time during the transition phase. In contrast to the

Optimal Control approach that minimizes the difference from the new optimum

in decision space, the approach presented in Salomon et al. (2013a) minimizes

the difference from the new optimum in objective space. It is formulated as an

optimization problem, termed Optimization of Adaptation Problem (OAP), that

minimizes control effort and deviation from the new optimum in objective space.
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The study was omitted from the scope of this thesis since the ARO framework is

already complete without it. The OAP can be used within an AROP to evaluate an

aspect of a candidate solution’s performance, but an AROP can also be formulated

without it.
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Chapter 2

Background

The aim of this study is to suggest a framework for optimizing changeable products.

Such a framework can be incorporated into the process of engineering design of products

that need to adapt to changes during their normal service. At the stage of product

design, the changing environment results in an uncertainty regarding the exact operating

conditions. The foundations of this study are rooted in the fields of optimization and

engineering design. The ways uncertainties and changeability are addressed in each of

these disciplines serve as the starting point for the development of the methodology.

In order to properly position the proposed methodology within the existing literature,

the relevant research fields that deal with one or more of the above topics need to be

reviewed. Figure 2.1 provides an overview of these research fields, and positions them

within the context of engineering design, optimization, uncertainties and changeability.

In this chapter, relevant literature on each of these related research areas is surveyed.

The gap in the current art is identified, and the research required for filling this gap is

highlighted.

2.1 Uncertainties in Engineering Design

Engineering design is the process in which a product is developed to achieve a desired

functionality. The result of the process is a detailed set of instructions for product

manufacturing. The process usually includes the following stages: identifying the need,

specifying the requirements, suggesting several concepts and choosing the most promising

one, detailed design, choosing parameters, simulations, experiments and possibly – if

the results are not satisfactory – redesign. Throughout the design process, the designer

has to consider uncertainties of several types. These uncertainties may affect the quality

of the design and its cost, as well as the design process itself. As a result, they have an
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Figure 2.1: Research fields related to this study.

impact on product profitability and customer satisfaction. To survive in a competitive

market, manufacturers must be able to address the uncertainties involved and reduce

their potentially negative effects. A wide range of approaches to deal with uncertainties

during the design process can be found in the literature.

According to Thunnissen (2005), uncertainty is defined as “the difference between an

anticipated or predicted value and a future actual value”. The properties of uncertainties

in the context of engineering design are classified in Section 2.1.1. Then, in Section 2.1.2,

another classification is given according to the sources of uncertainty, i.e., the sources

for the discrepancy between the actual future value and the one predicted by using a

mathematical model.

2.1.1 Types of Uncertainties

The following classification of uncertainties to different types is adopted from Thunnissen

(2005) who studied uncertainties in complex system design:

Epistemic uncertainty is any lack of knowledge during the modelling process about the

product and the environment. It includes model simplifications, misunderstanding

of the real system, human errors and unforeseen behaviour that could not be

anticipated until the actual product is first tested. An example of such unforeseen

behaviour is when some properties, well defined on their own, interact among
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themselves in an unpredictable manner.

Aleatory uncertainty refers to an inherent variation of a property’s value. While some

information such as boundaries and probability might be known, the actual value

will vary by chance from unit to unit or time to time. It is usually described by a

probability distribution function when included within a mathematical model.

Ambiguity is the type of uncertainty resulting from the usage of spoken language

to describe system properties. It might be caused by a misinterpretation of a

described property or by linguistic imprecisions that lead to a vague description.

Fuzzy sets (Zadeh, 1965) and fuzzy logic (Zadeh, 1968) are commonly used when

a mathematical model has to be based on ill-defined properties.

2.1.2 Sources of Uncertainties

To classify the sources of uncertainties in the process of engineering design, a terminology

from Beyer and Sendhoff (2007) is adopted. Before the product is produced, the designer

has to rely on models and simulations to assess the performance of a potential design. As

illustrated in Figure 2.2, the model provides an estimation of the product’s performance

based on the design variables and the environmental parameters that are given as inputs.

This can be mathematically described as follows:

z := z(x,p) , (2.1)

where z is a vector of performance measures computed by using a model, x is a vector

of design variables, and p is a vector of environmental parameters that cannot be

determined by the designer. Uncertainties are usually present at every node of the

presented scheme. In their review of robust optimization, Beyer and Sendhoff (2007)

classified the sources of uncertainties into three types:

Type A: Uncertain environmental conditions. These uncertainties are a result

of incomplete information about the requirements and operating conditions. They

might also occur due to expected changes in parameter values during a system’s

operation. This type of uncertainty is modelled by using random values to describe

the uncertain p parameters in Equation (2.1).

Type B: Production tolerances and deterioration. These uncertainties are present

when the actual values of design variables differ from their nominal values. The

deviation might occur at the production stage (due to manufacturing tolerances)

11
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Figure 2.2: Sources of uncertainties during the design process.

or during operation (as a result of deterioration). Here, the design variables, x, in

Equation (2.1) are the source of uncertainty.

Type C: Uncertainties in the system output. The actual values of the perfor-

mance vector usually differ from their simulated values due to model inaccuracies.

Model inaccuracies are a result of an incorrect or simplified description of the

relationship between variables within the model. Every simplification, and there-

fore every model, is inaccurate to some extent. The amount of inaccuracy varies

from one model to another. Type C uncertainties are caused due to poor under-

standing of the physical phenomena described by the model, or due to intentional

simplifications (such as linearisation) to reduce the model’s complexity in order to

accelerate its computation. Considering a model described by Equation (2.1), the

modelled performance measures z are the source of uncertainty.

2.2 Design Methods for Coping With Uncertainties

Since the introduction of Taguchi’s Robust Design methodology (Taguchi, 1987), a wide

variety of methods have been developed in order to account for uncertainties during

product design. Following Taguchi’s approach, these methods aim at products that

are less affected by the uncertainties, instead of trying to reduce the uncertainties

themselves. A very effective way to improve the robustness of a product to uncertainties

is to enable it to react to changes in real-time. Introducing this ability into the product

is a useful approach to enhance performance and meet the requirements in the face of

uncertainties. Many terms are used in the engineering design literature for the product’s
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ability to change, and different authors use different terminologies to support their

design methods. As a result, the same term may have different meanings, or two terms

may describe the same attribute.

Chalupnik et al. (2013) suggested a structured framework based on the existing

literature to define some terms relating to engineering design under uncertainties, and

to highlight the differences and relationships between them. The following attributes

were considered in their study: reliability, robustness, versatility, resilience, adaptability

and flexibility. These properties were collectively termed as “ilities”. Their framework

focuses on reliability, i.e. the means of minimising the risk of failure, but similar

definitions for the above are also used in the literature in the context of maximising

performance (see e.g., Phadke, 1989; Koren et al., 1999; Saleh et al., 2009; Beyer and

Sendhoff, 2007).

The ilities are classified according to the type of uncertainties they come to suppress,

and whether they do it in an active or a passive manner.

Robustness is defined in this context as “the ability of a system, as built/designed, to

do its basic job in an uncertain or changing environment”.

Versatility is defined as a passive form of protection against uncertainties associated

with uncertain requirements, or in other words, “the ability of a system to perform

several tasks without changing its configuration”.

Resilience is defined as a passive form of protection against uncertainties associated

with both uncertain requirements and environmental conditions. Formally, “the

ability of a system to perform several tasks in uncertain or changing environment

without changing its configuration”.

Adaptability is defined as “the ability of a system to be modified in order to do its basic

job in an uncertain or changing environment”. Both robustness and adaptability

address uncertainties in the environmental conditions. Robustness does it without

further action, while adaptability enables an active response to environmental

changes.

Flexibility is defined as “the ability of a system to change its states to meet new

requirements or to operate in a new environment”. It is an active form of pro-

tection against uncertainties associated with both uncertain requirements and

environmental conditions.

Reconfigurability was not classified by Chalupnik et al. (2013), although it appears

in many related studies and can be defined in the nature of this list. Following
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Table 2.1: A classification of conceptual approaches to system protection against
uncertainty (adapted from Chalupnik et al., 2013).

“Ility” Active/ Changing Changing
Passive environment requirements

Robustness Passive
√

Versatility Passive
√

Resilience Passive
√ √

Adaptability Active
√

Reconfigurability Active
√

Flexibility Active
√ √

definitions of Koren et al. (1999); Siddiqi et al. (2006); Haldaman and Parkin-

son (2010), reconfigurability is defined as “the ability of a system to change its

configuration repeatedly and reversibly to meet multiple requirements”. It can be

perceived as the active counterpart of versatility. Instead of possessing several

functionalities to address several requirements, each requirement is associated with

a different configuration. It is noted that the extent of reconfigurability should be

no more and no less than required to address the intended set of requirements

(Koren et al., 1999).

Table 2.1 summarises the differences and similarities between the approaches above.

The existing design methodologies for applying some of the above conceptual approaches

are surveyed in the reminder of this chapter. Special attention is given to the active

forms of protection against uncertainties: adaptability, reconfigurability and flexibility.

The Robust Design methodology also appears in this survey due to its significant

contribution to the field of engineering design under uncertainties. Since there is no

unified terminology in the literature for terms such as adaptability and reconfigurability,

each method is classified according to its aim, rather than the terminology used by its

authors. For example, the “Adaptable Design” methodology is described under “Design

for Reconfigurability” as it aims at products that satisfy multiple requirements.

2.2.1 Robust Design

Robust Design is the first structured methodology to incorporate protection against

uncertainties into the engineering design procedure. The methodology aims at products

that are robust to disturbances caused by uncontrollable parameters. Eliminating the

source of uncertainties can be costly (e.g. minimising manufacturing variations) or

impossible (e.g. when fluctuations in operating conditions are concerned). Hence, the

underlying principle is to reduce the effects of these uncertainties without eliminating
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their source. In other words, the aim is a design that can accommodate the uncertainties

involved.

Genichi Taguchi, “the father of Robust Design”, was the first to present a structured

methodology to account for uncertainties in the search for high quality, low cost and

robust products (Taguchi, 1987; Phadke, 1989). His seminal work contributed to Japan’s

industrial rehabilitation after World War II, when it faced a severe shortage in high

quality materials and manufacturing equipment. The tools provided by Taguchi’s

methods enabled the Japanese industry to produce high quality products despite these

conditions, leading Japan to become a dominant industry in the international markets

in many fields such as automotive, photography and electronics.

The Robust Design methodology is, in fact, an optimization scheme, aiming at finding

the optimal values for a set of design parameters, considering different scenarios of the

noise factors. Noise factors are considered by Taguchi as alternating parameters that are

impossible or too costly to control. They include Type A and Type B uncertainties (i.e.

environmental parameters, manufacturing variations and deterioration). The two major

contributions of the approach are the objective function and the search mechanism,

namely Signal to Noise Ratio and Orthogonal Arrays, respectively.

Instead of using an automated optimization procedure, as used in common optimiza-

tion approaches, Taguchi’s method relies on design of experiments (DOE) in order to

evaluate different designs. The DOE is efficiently set with the use of Orthogonal Arrays

(Rao, 1947). Each variable is sampled by a small number of discrete values (typically

2-3), and a relatively small number of experiments is conducted, where a different

combination of the variables is used for each experiment. The values of the variables are

systematically changed at each experiment according to an orthogonal lattice. Every

combination of values between every two variables exists in exactly one experiment. An

example for an orthogonal array with four variables, each with three possible values, is

shown in Table 2.2. Note that only nine experiments are required in order to examine

all combinations between pairs of variables’ values. For simulation-based robust design,

Taguchi proposed to simulate each of the parameter settings with a similar set of values

of the noise factors. The set is also constructed by assigning discrete values to each

noise factor, and constructing an orthogonal array of scenarios. Assuming an array of n

experiments and an additional array of k scenarios for the noise factor, the DOE should

include nk simulations.

Prior to the introduction of the Robust Design methodology, quality engineering

mainly relied on quality inspections, i.e., keeping the performance within the tolerance

limits. Taguchi had a different notion of quality, as he focused on keeping the performance

close to the target. His aim was to maximise the so-called Signal to Noise Ratio (SNR),
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Table 2.2: An orthogonal array for conducting nine experiments with four variables,
each has three possible values (adapted from Phadke, 1989).

Experiment number
1 2 3 4 5 6 7 8 9

A 1 1 1 2 2 2 3 3 3
B 1 2 3 1 2 3 1 2 3
C 1 2 3 2 3 1 3 1 2
D 1 2 3 3 1 2 2 3 1

described below:

Let x be the design variables, p be the noise factors and φ(x,p) be a quality characteristic

of a product with a target value φ̂. For a certain combination of x, the Mean Square

Deviation (MSD) is defined:

MSD =
1

k

k∑
i=1

(
φ(x,pi)− φ̂

)2
(2.2)

The SNR is defined as follows:

SNR = −10 log10(MSD) (2.3)

The SNR metric was used by Taguchi as an objective function that needs to be maximised

w.r.t x. Once the various SNR values are calculated, analysis of variance techniques

(Fisher, 1925, pp. 198–235) are used to decide which parameter setting x yields the

most robust performance, i.e., with smallest deviations from the target value. Design

variables that do not affect the SNR are then used to adjust the mean performance to

the target.

Since they were first published, Taguchi’s methods have been implemented in a

wide range of engineering fields. Nevertheless, their efficiency and applicability have

been widely criticised as well. In the context of this thesis, the method’s most obvious

flaw was best stated by Trosset (1996): “Taguchi’s methods attempt to optimize an

objective function by specifying all of the values of x at which the objective function will

be evaluated prior to observing any function values. Thus, the Taguchi approach violates

a fundamental tenet of numerical optimization—that one should avoid doing too much

work until one nears a solution.” An extensive overview and a debate about Taguchi’s

methods can be found in the panel discussion of Nair et al. (1992).
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2.2.2 Design for Adaptability

The term adaptable or adaptive can be found in several studies in engineering design,

but none of them addresses products that perform adaptation solely as a response to

changing environmental conditions. The following two studies were identified to address

issues of adaptability, as defined in the context of this work:

Siddiqi et al. (2006) suggested a framework to analyse adaptable systems using

Markov models. The system states are modelled as nodes, and the states evolve

according to the probabilities to adapt from one node to another. Probabilities depend

on the difference in performance and on the cost of adaptation between states. The

performance of the system depends on the configuration and time-varying environmental

conditions, and so, as long as the cost of adaptation is not too high, the system tends

to adapt to the optimal state for each environmental scenario.

To demonstrate the approach, a case study of a planetary exploration rover was

used. The rover is capable of adjusting its wheel dimensions, both in diameter and

width, in response to a change in the type of terrain. Its objectives are to maximise

thrust and to minimise power consumption. In their example, Siddiqi et al. (2006) used

a weighted objective function, and an ordered sequence of soil types. The simulation

results showed that the Markov model of the system always converges to the optimal

state (according to the weighted objective function) within a few time steps. It was also

noticed that the optimal state was very sensitive to the weighting parameter between

the objectives.

This study did not include a comparison between potential adaptable prototypes,

but it did include a comparison between the suggested adaptable rover, and one with

fixed wheel dimensions. For the chosen sequence of uncertain terrain and different values

of the weighting parameter, the superiority of the adaptable rover was demonstrated.

The study does not address the question of how to choose the adaptable properties

and their limits, and a method to handle the entire set of uncertain conditions was not

discussed either.

Ferguson and Lewis (2006) address an important issue of adaptable systems, namely

the proper way to change the variables when adapting from one configuration to another.

Since there is a correlation between the system’s configuration and its performance,

the adaptation trajectories should be considered both in design and objective spaces.

They pointed out that an adaptation trajectory dictated by high performance may be

a complex trajectory in design space. To follow this kind of trajectory a complicated

control law is required, which is usually associated with a higher cost and longer

adaptation periods. Another important distinction was made between planning the
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optimal adaptation trajectory, and implementing a controller to follow it.

Similar to other studies of reconfigurable systems in the context of multi-objective

optimization (e.g. Denhart, 2013, in Section 2.2.5), Ferguson and Lewis (2006) failed to

choose a proper multi-objective optimization problem to demonstrate their approach.

The case study used was an adaptive race car that can adjust its centre of gravity,

roll stiffness and aerodynamic downforce in order to maximise its velocity in corners

with different radii. When choosing the above properties as constant values for the

entire race, performance for different radii can be seen as competing objectives, and the

designer needs to decide for each track what trade-off is the most suitable. On the other

hand, an adaptable car can adjust to the optimal configuration that enables the highest

velocity for each corner, and therefore the multi-objective domain can be reduced to a

single one, namely maximum velocity.

2.2.3 Design for Reconfigurability

Reconfigurable systems are aimed at efficiently satisfying a set of predetermined require-

ments. Every configuration should be dedicated to satisfying a specific requirement.

The following methodologies can be considered as “design for reconfigurability”:

Reconfigurable Manufacturing Systems

Koren et al. (1999) developed an approach to design reconfigurable manufacturing

systems (RMS) that are built of modules. These modules, termed Reconfigurable

Machine Tools (see also Landers et al., 2001), can be added, removed or replaced when

a new product is to be produced. RMS combines the advantages of high accuracy and

production rates associated with dedicated manufacturing systems, with the versatility

of flexible manufacturing systems such as Computer Numerical Control (CNC). An

RMS is designed to have the exact changeability to enable the production of a desired

family of products. Six characteristics are required in a system in order for it to be

classified as an RMS (Koren and Shpitalni, 2010):

Customisation- changeability is limited to part family.

Convertibility- design for functionality changes.

Scalability- design for capacity changes.

Modularity- modular components.

Integrability- interfaces for rapid integration.

Diagnosability- design for easy diagnostics.

The methodology does not include optimization of the system in order to achieve its

goals, which are high production rates, low costs and fast reconfiguration. Instead, it is
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demonstrated how these goals can be taken into account as part of the design process.

A survey of recent advances in the field of RMS was conducted by Gadalla and

Xue (2017). Recently, Koren et al. (2015) stated that the trend in manufacturing goes

toward mass-individualisation, where manufacturers will produce open platforms, and

consumers will be able to develop and use various modules. A similar process already

exists in the software industry, where applications can be developed by any user to

extend the functionality of smart-phones and tablets.

Adaptable Design

Gu et al. (2004) and Hashemian (2005) presented the Adaptable Design (AD) methodol-

ogy as a design paradigm aiming for both business success and environmental protection.

The methodology provides guidelines for considerations during the design process. It

addresses adaptability as an extension of the product’s utility when additional function-

alities are required. These functionalities are not part of the product’s normal operation

mode. According to Gu et al. (2004), the source of uncertainty that requires structural

change is a changing requirement, rather than a changing environment. Therefore, it is

described here under reconfigurability and not adaptability. Adaptation is considered as

the work invested in order to extend the utility of the product. The AD methodology

aims at two types of adaptability: design adaptability and product adaptability.

Design adaptability is the producer’s ability to perform minor changes to an existing

design in order to design a new product. It can be achieved by creating a family of

designs or modular products such that some modules are shared by different products.

Incorporating design adaptability should expedite the development of new products,

and reduce manufacturing costs when the same equipment is used to produce different

products.

Product adaptability is the user’s ability to modify the product to satisfy new re-

quirements. Several forms of product adaptability are considered: versatility, modularity

and upgrade. The first refers to satisfaction of several functions by the same product,

the second by adding or replacing modules and the third by replacing modules with

newer versions as technology advances. A measure for adaptability is given based on the

money saved by adapting a product rather than producing a dedicated product for each

required functionality. The design process should result in a product that can be adapted

to various applications that can be foreseen a priori. Unforeseen adaptation should

be accommodated by including modularisation, adaptable interfaces and functional

independence between modules.

Since AD was presented, a variety of studies were conducted to demonstrate its
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applicability. Some examples are: a modular vehicle concept and a versatile home and

gardening tool (Hashemian, 2005), a modular kitchen appliance that can perform as

a mixer, a blender or a food processor (Li et al., 2008b), a gear-cutting machine (Xu

et al., 2008) and a modular coating machine (Han et al., 2012). For a further review

the interested reader is referred to Gu et al. (2009).

Xue et al. (2012) and later Martinez and Xue (2016) use optimization to find the

best adaptable design for a set of requirements that change through the product’s life

cycle. The dynamic nature of the requirements is known during the design phase and,

therefore, there is no uncertainty over the fitness of each candidate design. The fitness

of a candidate design is considered by its performance over the entire life-cycle. At

every time phase, the best configuration and associated adjustable design variables are

searched for through optimization, and the optimal performance at every time step is

used to evaluate the design.

A methodology for robust design and optimization of adaptable and reconfigurable

products was developed by Zhang et al. (2013, 2014, 2015) as an extension to the AD

paradigm. Since this study involves robust optimization of changeable products, please

refer to Section 2.4.3 for further details.

2.2.4 Design for Flexibility

Among the ilities mentioned in this section, flexibility is the most powerful system

attribute for protection against uncertainties. It enables the system to adapt to new

environmental conditions or new requirements by changing its state or configuration.

Studies on flexibility can be found in a variety of fields, including finance, manufacturing

systems and engineering design.

In Options theory in finance, projects or investments plans are considered flexible if

they include contingent decisions that respond to future market conditions (see e.g.,

Amram and Kulatilaka, 1999; Evans, 1991; Triantis and Hodder, 1990). The concept

of real options quantifies the financial value of flexibility. When integrated within the

engineering design process, the real options theory provides some insights about the

financial value of the product’s flexibility, although it does not guide the designer how

to introduce this flexibility into the product. The following are examples for studies of

real options in the context of engineering design: de Neufville (2003) explains how real

options can be incorporated into the evaluation of engineering products and projects,

and provides examples for industrial projects that follow the real options reasoning.

de Neufville et al. (2006) present a detailed case study of real options in a multilevel

parking lot design. Ford and Sobek (2005) demonstrate the advantages of real options by
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analysing a successful car design activity with delayed decisions. Buurman et al. (2009)

incorporate real options into the evaluation function of a robust optimization algorithm,

for designing a maritime protection system. Criticism of the applicability of real options

to the field of engineering design is also expressed. Saleh et al. (2009), for example,

highlight the difference between measuring the value of an attribute and measuring

the attribute itself. They state that real options theory has limited contribution to

engineering design since it cannot quantify flexibility, and therefore it cannot be used as

a design specification.

Flexibility of manufacturing systems has received a lot of attention during the

last three decades. It is considered as an attribute of a manufacturing system that is

capable of changing in order to cope with different types of uncertainties. Many forms

of flexibility are associated with manufacturing systems. Saleh et al. (2009) highlight in

their review some important forms:

Volume flexibility is the ability of a system to accommodate varying product demands

by efficiently changing the production volumes.

Routing flexibility is the ability of a system to produce the same product either in

a different order of operations, or by different machines. It can provide a protection

against breakdowns or an effective way to accommodate a variety of demands of different

products.

Expansion flexibility is the ability of the system to be expanded in order to accom-

modate higher demands than originally intended. It considers the maximal capacity

rather than fluctuations in demand as in volume flexibility.

Product mix flexibility is the ability to produce a variety of products with minor

adjustments to the system.

The interested reader is referred to the reviews of Sethi and Sethi (1990) and Saleh et al.

(2009).

In engineering design, product flexibility is considered to be the product’s ability

to respond to changes in requirements and operating conditions, during its normal

operation. In order to achieve this attribute, the product should include some properties

(e.g., modularity, redundancy, design margins) that do not necessarily contribute to the

product’s immediate requirements. However, these properties allow the product to adapt

in a cost-efficient manner to changes in requirements or operating conditions (Saleh

et al., 2009). To date, there is no accepted quantitative measure for product flexibility.

This kind of measure can serve as a design specification that can be weighed against

other product attributes such as cost or life-span. Existing measures are surveyed in

the next section.
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2.2.5 Evaluation Measures for Changeable Products

In this section, existing methods for the evaluation of the quality of changeable products

are surveyed. A critique of their validity is also provided. Changeable refers to any

product that can be changed during normal operation, and it is used as a general term

for adaptable, reconfigurable and flexible.

Olewnik et al. (2004) and Olewnik and Lewis (2006) suggested a framework of design

for flexibility, with an iterative search procedure that includes a measure of flexibility

in a multi-objective domain. The aim of the framework is to support a decision about

which variables should be made flexible, and to what extent. Candidate solutions are

evaluated according to a single criterion, namely the corporate utility (e.g. expected

profit), which is a function of the expected costs, demand and price. The values of

these attributes should be acquired by surveys and mathematical models, and they all

depend on the design variables. Flexibility is considered to raise the performance and

attractiveness of the product, but also to increase its cost. Making a variable flexible is

associated with a cost, and the more flexible it is, the more it costs.

Despite the use of a single evaluation measure, Olewnik and Lewis (2006) discuss the

advantages of flexible systems to satisfy multiple objectives. Generally, this statement

is true, but the reasoning provided in their study implies a lack of understanding of

basic concepts in multi-objective optimization. They state that “flexible systems have

the ability to eliminate performance trade-offs by adapting to give optimal performance

in predictable situations” (p. 75). This statement is supported with an example of

a flexible engine that eliminates the designer’s need to compromise between power

output and fuel consumption. Optimality in a conflicting multi-objective domain always

presents a set of trade-offs. Flexibility merely allows the user of the product to decide

which trade-off solution is favourable at a given moment, depending on information

that was not available earlier. For the example above, by making a flexible engine, the

designer chooses a set of trade-off alternatives between the conflicting objectives, and

the customer is able to choose the one most suitable for his/her needs. The notion

of optimality in a multi-objective domain is conceived by Olewnik and Lewis as “the

extreme points of the Pareto frontier, since they represent the optimal performance

for the individual objective functions” (p. 82). Of course this observation is not true,

especially in cases when towards the extreme points, a slight improvement in one

objective results in a drastic degradation in the others. Please refer to Section 2.3.3 for

a basic introduction to multi-objective optimization.

The interpretation of optimality described above has led Olewnik and Lewis to the

following measure of flexibility, qf , which is based on the Euclidean distances between the
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m extreme points of the Pareto front of an m-dimensional multi-objective optimization

problem:

qf =
m∑

i=1,j=i+1

‖∆fi,j‖2 (2.4)

where ∆fi,j is the vector in objective space between two consecutive extreme points

i and j. For the aforementioned reasons, and other drawbacks rooted in the manner

in which the extreme points are ordered, the measure suggested in Equation 2.4 is not

sufficient for quantifying the added value of flexibility to the product’s performance.

Although the flexibility measure, qf , is formulated, Olewnik and Lewis have failed

to demonstrate how it can be used to support a decision, even with the toy example

presented.

Denhart (2013) addressed the question of how to evaluate and compare reconfigurable

systems in a multi-objective domain.1 This question plays a significant role in this thesis

as well, and it will be studied extensively in Chapter 4. Denhart used an exploration

rover design with two possible configurations as a case study in order to suggest an

answer to the question above. Unfortunately, the suggested problem formulation avoided

the question, and actually posed a single-objective problem as a multi-objective one.

The concern in this case study was the rover’s manoeuvrability in rough terrain. A

combination of three performance measures was used to quantify manoeuvrability. Some

uncertain parameters were considered, represented by a discrete set of scenarios of

different combinations. Every configuration of a candidate solution was simulated for

all scenarios in order to assess the solution’s performance.

The problem was posed as multi-objective by treating manoeuvrability in different

operating conditions as different objectives (i.e. uphill, downhill or levelled). Since

there is no conflict between the objectives (the rover cannot move uphill and downhill

simultaneously), the best configuration for each scenario was chosen to represent the

rover’s performance. As a result, the set of performances could be represented by its

ideal vector, the vector consisting of best values in each objective among the vectors in

the set. When comparing between candidate solutions, the ideal vectors were used to

determine dominance.

As stated earlier, the multi-objective problem was not formulated correctly. The

real three objectives are the performance measures that were used to measure manoeu-

vrability: average speed, distance from intended path and the ratio between distance to

obstacle and turning diameter. The original three objectives are in fact a part of the

1See Section 2.3.3 for information on multi-objective optimization
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uncertain environmental conditions. When the reconfigurable solution is evaluated in

the ‘real’ multi-objective domain, a trade-off exists between the objectives, and a single

configuration could be superior in one objective but inferior in another.

Although Denhart did not provide a sufficient answer to this research question, some

aspects of the work have significance for this study:

1. The necessity of an evaluation method for changeable systems in a multi-objective

domain is highlighted.

2. It is noted that a changeable system can adapt to new environmental conditions,

which are uncertain during the design phase, and perform in the configuration

that yields the best performance. This ability allows the designer to evaluate the

system according to its best operating mode for each scenario of the uncertain

conditions.

A measure of adaptability was suggested by Gu et al. (2004) for the Adaptable

Design methodology. It is based on the cost of a reconfigurable product that can serve

several requirements, compared to the total costs of producing a dedicated product for

each requirement. The cost of a reconfigurable product considers the following factors:

initial production cost to the original requirement(s), probability of reconfiguration to

each state, and the cost of reconfiguration to each state. Assuming a reconfigurable

product has n states and the ith state is denoted as Si, the adaptability measure is

formulated as follows:

A =

n∑
i=1

Pr(Ri)

(
1− COST(S1 → ASi)

COST(0→ ISi)

)
(2.5)

where Pr(Ri) is the probability of requirement, i, to occur, ISi is the ideal state, i, if

the product was designed to satisfy Ri alone, and ASi is the actual state, i, achieved by

reconfiguration. The arrows in Equation 2.5 denote reconfiguration of the product from

one state to another. If the numerator is larger than the denominator, it implies that it

is more expensive to adapt to a state than to produce a dedicated product to satisfy

this requirement, and therefore adaptability is not advocated.

Fletcher et al. (2010) proposed a different quantification measure for the Adaptable

Design methodology. Here, reconfigurable products are assessed based on their architec-

ture and interconnectivity between components. The reasoning behind this measure is

that modular and segregated products can be adjusted to different requirements more

easily. The product is broken down into its functional units. Each unit is assigned with

a weight according to its cost, and the interactions and interfaces between the units

are evaluated. The complexity of the product architecture is quantified by multiplying
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each connection value with the cost of the connected components. Finally, the relative

adaptability (RA) is defined as the ratio of the ideal architecture (fully segregated) and

the actual architecture. Equation 2.6 defines the relative adaptability measure:

RA =

∑
segregated connections σij(Ci + Cj)∑

all connections σij(Ci + Cj)
(2.6)

where Ci is the cost of unit i and σij is a measure for the complexity of the connection

between component i and component j. It is worth mentioning that products are not

evaluated according to their performance when using this measure. Instead, they are

evaluated according to their architecture alone.

It can be concluded that a relatively small amount of studies exist in the literature

on evaluation measures for changeable products. Some measures are based on the

product’s performance (Olewnik et al., 2004; Olewnik and Lewis, 2006; Denhart, 2013),

while others are based on the product’s architecture (Fletcher et al., 2010) or cost (Gu

et al., 2004). Denhart (2013) is the only one to address the impact of changeability on

product performance in an uncertain environment. None of the evaluation measures

above was used within an optimization framework to search for high-quality changeable

products. Two research gaps are identified from this survey:

1. A method to evaluate changeable products in both single-objective and multi-

objective domains, to support a comparison between alternative designs. This

method should include an evaluation measure for changeable products that con-

siders various types of uncertainties.

2. A design methodology for robust changeable products that includes an optimization

procedure.

2.3 Optimization

“Since the fabric of the universe is most perfect and the

work of a most wise creator, nothing at all takes place in

the universe in which some rule of maximum or minimum

does not appear.”

— Leonhard Euler (1707-1783)

Optimization, also known as Mathematical Programming, is the process of seeking

and selecting the best alternative from a set of possibilities, with respect to a certain

(or several) objective(s). Optimization problems may arise in many different fields such

25



2. BACKGROUND

as economics, engineering, mathematics, computer science, logistics, physics and control.

Without loss of generality, a minimisation problem is mathematically defined as follows:

minimise: ψ(x) , (2.7a)

subject to: hj(x) = 0, j = {1, . . . , nj} , (2.7b)

gk(x) ≤ 0, k = {1, . . . , nk} , (2.7c)

xi,l ≤ xi ≤ xi,u, i = {1, . . . , n} . (2.7d)

A solution x ∈ Ω is a vector of n decision variables: x = [x1, . . . , xn], where Ω is

the design space, typically consisting of real or binary values. Each decision variable

xi is subject to a lower bound xi,l, and an upper bound xi,u. The objective function

is ψ : Ω → R, and nj and nk are the number of equality and inequality constraints,

respectively.

For the sake of clarity, the feasible domain is denoted as X ⊆ Ω, where a solution

x ∈ X is considered as a solution that satisfies Equations (2.7b–2.7d). Following this

notation, Equation 2.7 can be written as follows:

min
x∈X

ψ(x) . (2.8)

This study combines several topics within the wide research field of optimization.

The basic background for understanding each topic is provided below, together with

references to relevant literature for a deeper understanding. In order to address these

subjects, and to understand their differences and similarities, a structured notation is

presented first.

2.3.1 Nomenclature Explained

The nomenclature used within this thesis is presented in the preface. To better un-

derstand the differences between the type of variables, and the manner they are used

to describe different classes of optimization problems, the following explanations are

provided.

Grouped Variables

A scalar value is marked with a normal weight font, while a vector, consisting of several

scalar values is marked with a bold font and/or its elements within square brackets

(e.g., a = [a1, a2, a3]).
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A set of elements of the same type is denoted with an underline and/or its elements

within curly brackets. For example: b =
{
a ∈ R2 | a1 = a2

}
is an infinite set of vectors,

and the set b = {b1, b2} is a discrete set consisting of two scalar values.

Random vs. Deterministic Variables

A deterministic variable (either a scalar, a vector or a set) is denoted with a lower-case

letter. When the same variable is subject to uncertainties, it is treated as a random

variate. The corresponding upper-case letter is used to denote it. For example, consider

the function f(a), where f : R2 → R. If the values of the elements in a are uncertain,

then it is denoted as A. The function value is also uncertain, and therefore it is also

assigned with an upper-case letter: F (A).

Often, a random variate is repeatedly sampled and represented by a set of sampled

deterministic values. This kind of set is denoted here differently than other sets,

with a bar over a capital letter. If the random variate A is sampled k times, then

Ā = {a1, . . . ,ak}. The function variate F (A) is also represented by a sampled set, i.e.,

F̄
(
Ā
)

= {F (a1) , . . . , F (ak)}.

Types of Variables

Since this study deals with changeable products, a distinction is made between variables

that must be fixed during the design stage, and others that can be adjusted by the user.

Another distinction is made between design variables and other parameters that affect

the objective functions and cannot be controlled. The following notation is used:

• The vector x = [x1, . . . , xnx ] ∈ X represents an adaptive design, where X ⊆ Rnx

is the feasible domain. The variables in x include all the properties that define

the design, and cannot be intentionally altered once the product goes into service.

• The vector y =
[
y1(x), . . . , yny(x)

]
∈ Y(x) represents a possible configuration

of the design x. It includes all the properties that can be changed during the

product’s service. Y(x) ⊆ Rny(x) is the domain of adjustable variables of the

design x, and it includes all possible configurations of the design. It is referred to

as the design’s adaptability.

• The vector p =
[
p1, . . . , pnp

]
includes the environmental parameters, which are

independent from the design variables, and cannot be controlled. Parameters are

explicitly considered in this study when uncertainties over their values are present.
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Types of Objective Functions

Different notations are used for three types of objective functions:

• ψ(x) – a deterministic objective that does not depend on uncertain variables and

cannot be affected by adaptation.

• φ(x,p) – a stochastic objective that depends on uncertain variables and cannot

be affected by adaptation. Φ(x,P) is the variate of φ that corresponds to the

variate P.

• γ(x,y,p) – a stochastic objective that can be changed by adaptation. Objectives

of this type are inherently affected by uncertainties. Even if a changeable objective

is not directly influenced by the uncertainties, i.e. γ(x,y), the configuration y

varies according to the realisation of the uncertain parameters (to optimize other

objectives), and therefore the value of this objective is affected as well. Γ(x,y,P)

is the variate of γ that corresponds to the variate P.

2.3.2 Common Optimization Methods

Optimization problems can be tackled in many ways. Wolpert and Macready (1997) have

shown in their seminal no free lunch theorems that any two algorithms are identically

efficient when averaged over all classes of optimization problems. This means that a

single optimization method cannot be suitable for every problem, and the algorithm

needs to be tailored to the specific problem class.

Calculus-based iterative methods for local optimization such as gradient methods,

Newton methods or conjugate methods were already studied back in the 18th century.

These methods are very useful when the objective function can be analytically derived,

and derivatives information can be used (Gill et al., 1981).

Linear programming and the Simplex algorithm were proposed by Dantzig in 1947

to solve optimization problems that can be formulated as a set of linear inequalities and

equations (Dantzig and Thapa, 1997). With the increasing availability of computers,

optimization algorithms could be developed for solving more difficult problems such

as stochastic, discrete, non-convex and non-linear problems. For example, branch

and bound (Lawler and Wood, 1966) is used for discrete problems, cutting plane was

introduced by Gomory (1958) for solving mixed integer linear problems and can also be

used for non-linear programming (Avriel, 2003, pp. 477-482), and dynamic programming

(Bellman, 1957), which is a recursive method that is used as a basis for many optimization

algorithms.
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The methods mentioned above are very useful for solving problems that adhere to

a specific structure (e.g., linear/convex/combinatorial). However, many optimization

problems are formulated in a general form and include a combination of challenges

such as multi-modality, discontinuity and non-convexity. Population-based heuristics

are commonly used for global optimization of difficult problems of this sort. These

methods use a population of agents to simultaneously explore different areas of the

domain. In order to focus the search in promising areas, successful individuals attract

the other agents towards their area. Randomness is introduced into the process to

avoid convergence to local optima, and therefore two consecutive runs of the same

algorithm will not necessarily produce the same results. Among these methods are

genetic algorithms (Holland, 1975; Goldberg, 1989), differential evolution (Storn and

Price, 1997), particle swarm optimization (Kennedy and Eberhart, 1995) and ant colony

optimization (Dorigo et al., 1996; Dorigo and Blum, 2005). Please refer to Giagkiozis

et al. (2013b) for a survey of population-based optimization methods. The survey

includes a very useful introduction to each of these approaches.

2.3.3 Multi-objective Optimization

Many optimization problems can be classified as multi-objective optimization problems,

and involve the simultaneous optimization of two or more objectives. An MOP is

formulated similarly to the single-objective problem in Equation (2.7), with the slight

distinction that the objective ψ(x) is replaced with a vector of m objective functions

ψ(x) = [ψ1(x) , . . . , ψm(x)]. Objectives in real-world MOPs are often in conflict, i.e. an

improvement of one objective results in a degradation of another. When this is the case,

there is no single solution that minimises all objectives. Therefore, with the absence of

known preferences between the objectives, the solution to an MOP is usually a set of

solutions that provide different trade-offs between the various objectives.

Dominance is a fundamental concept in multi-objective optimization (MOO), which

commonly defines the notion of optimality. This type of optimality is known as Pareto

optimality. Since these terms are regularly used within this thesis, their formal definitions

are given below:

Definition 2.1 (Pareto Dominance). A vector a = [a1, . . . , an] is said to Pareto

dominate another vector b = [b1, . . . , bn] (denoted as a ≺ b) if and only if ∀i ∈
{1, . . . , n} : ai ≤ bi and ∃i ∈ {1, . . . , n} : ai < bi

Definition 2.2 (Pareto Optimality). A solution x? ∈ X is said to be Pareto-optimal

in X if and only if ¬∃x̂ ∈ X : ψ(x̂) ≺ ψ(x)
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Definition 2.3 (Pareto-Optimal Set). The Pareto-optimal set x? is the set of all

Pareto-optimal solutions: x? = {x ∈ X | ¬∃x̂ ∈ X : ψ(x̂) ≺ ψ(x)}

Definition 2.4 (Pareto-Optimal Front). The Pareto-optimal front (PF) is the set of

objective vectors corresponding to the solutions in the Pareto-optimal set, i.e., PF ≡
ψ(x?)

The global solution of an MOP, the Pareto-optimal set, may contain an infinite

number of trade-off solutions. A multi-objective optimizer should provide the decision-

maker (DM) with a finite set of solutions, known in the literature as an approximation

set (AS), which is a representation of the true Pareto-optimal set. The objective vectors

corresponding to the solutions of the AS are referred to as the approximated front

(AF). According to Purshouse (2003), the AS and its associated AF should fulfil four

requirements:

Proximity. The AF should be as close as possible to the true PF.

Pertinence. The AF should only contain vectors within the DM’s region of interest

(ROI), which is usually a subspace of the entire objective space.

Extent. The AF should be stretched across the entire range of the PF, within the ROI.

Distribution. The objective vectors of the AF should be evenly distributed along the

trade-off surface.

The ideal AF to a bi-objective optimization problem is depicted in Figure 2.3. It can be

seen that all of the objective vectors are evenly distributed on the true Pareto front,

over its full extent within the ROI.

Setting preferences between conflicting objectives is an essential task within an MOO

procedure. Ultimately, it is the role of a DM to determine which of the Pareto-optimal

solutions will be the outcome of the optimization procedure. A common classification

of MOO approaches can be made according to the stage in which DM preferences are

introduced into the search (Zitzler, 1999; Purshouse, 2003):

A priori decision-making: The objectives are aggregated to form a single-objective

function, whose optimum is the preferred optimal solution. By setting a priori

preferences, an MOP is reformulated as a single-objective optimization problem

(SOP) that can be solved by a wide variety of algorithms. However, it requires a

profound knowledge about the trade-offs between the objectives.

Decision-making during search: The DM is interactively involved in the search

procedure. Preferences can be incorporated into the search to focus it towards
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Figure 2.3: The ideal approximated front.

interesting regions, as new information becomes available. This approach does

not require initial knowledge, but it does require effective visualisation tools to

allow for efficient involvement of the DM.

A posteriori decision-making: The optimizer returns an approximated set of the

PF, and the DM chooses one preferred solution from the set. The main disadvan-

tage of this approach is the potential waste of resources on finding solutions that

are not in the DM’s ROI.

Most of the non-population-based methods for MOO are based on the first approach,

i.e., “scalarisation” of the MOP. Once the problem is formulated as an SOP, classic

optimization methods can be used in order to search for the optimal solution. If more

than one Pareto-optimal solution is sought, multiple SOPs are formulated by using

different combinations of the objectives. Please refer to Steuer (1986) and Jahn (1986)

for surveys of methods of this type for linear MOPs and to Miettinen (1999) and Marler

and Arora (2004) for non-linear MOPs.

Nowadays, evolutionary multi-objective optimization algorithms (EMOAs) are the

most popular approach for solving MOPs. Ten years after the first genetic algorithm

was presented by Holland (1975), Schaffer (1985) introduced the first vector evaluated

genetic algorithm (VEGA) to optimize multiple objectives in a single run. It was found

that evolving a population of solutions simultaneously is highly suitable to MOO, where

a set of optimal solutions is desired. During the three decades since the introduction

of VEGA, the field of evolutionary multi-objective optimization has been constantly

growing.

The large amount of studies on EMOAs is summarised in a number of review papers.
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The following are recommended for further reading:

Fonseca and Fleming (1995) provided the first overview on EMOAs, where they high-

lighted the superiority of EAs that incorporate dominance relations and niching in their

selection mechanism. Based on a conceptual algorithm proposed by Goldberg (1989),

the first algorithms of this class were MOGA (Fonseca and Fleming, 1993), NPGA

(Horn et al., 1994) and NSGA (Srinivas and Deb, 1994).

Coello (1999) conducted a comprehensive survey of evolutionary multi-objective

optimization techniques. Every method reviewed in the survey is described in detail,

followed by an extensive list of applications and a discussion on its strengths and

weaknesses. More recent surveys include the work of Zhou et al. (2011), that provides a

thorough investigation of the latest developments in the field as well as an extensive

list of applications. Some of the topics covered by this survey are decomposition-based

EMOAs, memetic EMOAs, co-evolutionary EMOAs, multi-modal MOPs and many-

objective problems. Giagkiozis et al. (2013b) surveyed the differences and commonalities

among various population-based optimization methods used for MOO. In addition to

references to the relevant literature, Giagkiozis et al. explain the principles of each

method. Therefore, this work can be very useful for researchers and practitioners who

wish to solve MOPs, but are not necessarily experts in the field. The strengths and

weaknesses of the methods are compared against each other, to support a proper choice

of heuristic according to the type of MOP.

In addition to EAs, other population-based methods were adapted to solve MOPs.

These methods include evolutionary strategies (Knowles and Corne, 2000), particle

swarm optimization (Reyes-Sierra and Coello, 2006), ant colony optimization (Doerner

et al., 2004), differential evolution (Das and Suganthan, 2011) and artificial immune

systems (Coello and Cortes, 2005).

2.3.4 Evaluation Measures for Sets

One of the goals of this study is to answer the question “how to evaluate changeable

products in a multi-objective setting?”. A changeable product is associated with a set of

performance vectors, as it can be adjusted by its user to satisfy different preferences.

Some methods for the assessment of sets were developed in the fields of EMOA evaluation

and set-based optimization. These methods can be adopted and implemented to evaluate

changeable products. In this section, popular quality measures for evaluation of sets

and their underlying principles are surveyed, followed by an overview of set-based

optimization.
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Table 2.3: Dominance relations between two point vectors a and b, and between two
sets of vectors a and b (adapted from Zitzler et al., 2003).

Relation Vectors Sets

Strictly
dominates

a ≺≺ b a is better than b in all
objectives.

a ≺≺ b Every b ∈ b is strictly
dominated by at least one
a ∈ a.

Dominates a ≺ b a is not worse than b in all
objectives and better in at
least one objective.

a ≺ b Every b ∈ b is dominated
by at least one a ∈ a.

Better aC b Every b ∈ b is weakly
dominated by at least one
a ∈ a and a 6= b.

Weakly
dominates

a � b a is not worse than b in all
objectives.

a � b Every b ∈ b is weakly
dominated by at least one
a ∈ a.

Non-
dominated/
Incomparable

a ‖ b Neither a weakly domi-
nates b nor b weakly dom-
inates a.

a ‖ b Neither a weakly domi-
nates b nor b weakly dom-
inates a.

Quality Indicators for Approximation Sets

Over the last two decades evolutionary-based approaches for multi-objective optimization

have gained increasing popularity, leading to a variety of newly-developed EMOAs. As

a result, assessment methods were required to compare alternative EMOAs and decide

which algorithm is the most suitable for a given application (Fonseca and Fleming,

1996; Zitzler, 1999; Van Veldhuizen, 1999; Knowles and Corne, 2002; Zitzler et al., 2003,

2010). This type of comparison is not a trivial task, since the result of an EMOA is

usually a set of non-dominated solutions, rather than a single scalar value. Several

quality indicators to compare and evaluate non-dominated sets were developed. These

indicators are not only used for the assessment of algorithms, but also as a selection

mechanism in indicator-based EMOAs (e.g., Zitzler and Künzli, 2004; Emmerich et al.,

2005).

The common quality indicators can be classified into two main categories:

a unary quality indicator q[a] is a function that assigns a scalar value to a set of vectors

a = {a1, . . . ,an}; and

a binary quality indicator q[a,b] is a function that assigns a scalar value to an ordered

pair of sets a and b. Some of the binary indicators are symmetric, i.e. q[a,b] = c−q[b,a],

where c is a constant (Knowles and Corne, 2002). Although symmetric indicators are

easier to use, as only one comparison has to be conducted for each pair of sets, Zitzler

et al. (2003) have shown that they provide less information regarding the relations

between the sets.
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A methodology to evaluate quality indicators was presented by Zitzler et al. (2003).

In their study they extended the concept of vector domination to domination between

sets of vectors, as summarised in Table 2.3. Based on these relations, Zitzler et al.

examined each quality indicator to check whether it can be used to indicate each of the

dominance relations. Both unary indicators and binary indicators were considered, as

well as combinations of several indicators. They also provided proofs for the following

statements:

• Unary quality indicators cannot indicate whether an approximated set is better

than another.

• Some unary indicators are able to determine whether an approximated set is not

worse than another.

• Binary indicators are able to determine that an approximated set is better than

another.

Note that this study was confined to dominance relations, and did not considered other

qualities of approximated sets such as diversity and pertinence.

In the following list, some common quality indicators are presented. Unless otherwise

specified, all indicators consider the properties of the sets in the objective space. The

list is ordered according to the indicators class (unary/binary) and the quality they

measure.

Unary Indicators

Diversity (extent and distribution):

• A very simple indicator suggested by Schott (1995) is the number of members in

the AS (i.e., number of non-dominated solutions found).

Distribution:

• Also suggested by Schott (1995), the spacing indicator is defined as follows:

qS [a] =

(
1

n− 1

n∑
i=1

(
di − d̃

)2
)1/2

, (2.9)

where di is the minimum Manhattan distance1 of the ith objective vector from

other vectors in a, and d̃ is the average of all di values. The indicator only considers

1Note that all distance-based indicators require a proper normalisation of the objectives to produce
meaningful values.
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the distribution of the set (and not its extent), where a value of qS [a] = 0 indicates

that the vectors are evenly distributed.

Combined proximity and diversity:

• The hypervolume indicator, qHV [a], proposed by Zitzler and Thiele (1998) measures

the hypervolume (HV) of the union of all objective vectors which are dominated

by the set, a, and dominate a reference point, r. The HV is a very popular

indicator, nevertheless it suffers from two major drawbacks: (a) it is sensitive

to the selection of r, as demonstrated by Knowles and Corne (2002), and (b) it

requires high computational effort and it suffers from the curse of dimensionality.

Since the values of different objectives might vary radically, the HV values are

often normalised either by the HV obtained by the true PF (Van Veldhuizen,

1999) or by a hyperbox confined between the best and worst known values for

each objective (Zitzler, 1999). For an extensive overview on the HV indicator and

its applications in the field of evolutionary multi-objective optimization (EMO),

see Bradstreet (2011).

Unary Indicators Using a Reference Set

Many quality indicators that are considered in the literature as unary are, in fact,

binary indicators, as they require two sets in order to produce a value. These indicators

compute the quality measure of a set a, compared to a reference set. The most common

reference set is the Pareto set (or Pareto front), but other sets can be used such as the

set of all known non-dominated solutions (found by various algorithms). All of these

indicators can be used as binary quality indicators as well. Considering an AS, a, and a

reference set, r:

Proximity:

• The error ratio suggested by Van Veldhuizen (1999) measures the ratio of solutions

in a that are not members of r:

qER[a, r] =
|{a ∈ a |a /∈ r}|

|a|
. (2.10)

• The generational distance suggested by Van Veldhuizen (1999) is defined as follows:

qGD [a, r] =
1

n

(
n∑
i=1

di
p

)1/p

, (2.11)
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where di is the Euclidean distance in objective space of the ith vector in a from

the nearest vector in r. A value of qGD [a, r] = 0, with r being a representative set

of vectors from the true PF, indicates that a is a subset of r, and therefore the

algorithm has converged to the true PF.

Schütze et al. (2012) indicated that qGD produces better values for larger approxi-

mated sets. For example, if a set a consists of a single vector a with a distance

d = 1 from the true PF, r, then qGD [a, r] = 1. In case the set a consists of n

replicas of a, the value of qGD [a, r] would be p
√
n/n. Therefore Schütze et al.

suggested the averaged generational distance that is indifferent to the cardinality

of the AS:

qGDp [a, r] =

(
1

n

n∑
i=1

di
p

)1/p

. (2.12)

• Zitzler et al. (2003) suggested the indicators qε[a, r] and qε+[a, r] that indicate

how much all members of r need to be scaled or translated, respectively, in order

that a would weakly dominate r.

Diversity:

• The spread indicator suggested by Deb et al. (2002) is defined as follows:

q∆[a, r] =

∑m
j=1 d

e
j +

∑n
i=1 |di − d̃|∑m

j=1 d
e
j + nd̃

, (2.13)

where m is the number of objectives, di is the minimum Euclidean distance of

the ith objective vector from other vectors in a, d̃ is the average of all di values,

and dej is the minimal Euclidean distance of the best solution in r w.r.t. the jth

objective from the solutions in a.

Combined proximity and diversity:

• The inverted generational distance suggested by Coello and Cortes (2005) is

defined as follows:

qIGD [a, r] = qGD [r,a] . (2.14)

Since the distances are measured from all vectors of r, regions of the PF not

covered by a result in an increased qIGD value.

Schott (1995) and Czyzzak and Jaszkiewicz (1998) have suggested similar metrics.

36



2.3 Optimization

For the same reasons as for the qGDp indicator, Schütze et al. (2012) proposed the

averaged inverted generational distance:

qIGDp [a, r] = qGDp [r,a] . (2.15)

• The averaged Hausdorff distance indicator suggested by Schütze et al. (2012) is

defined as follows:

q∆p [a, r] = max
{
qGDp [a, r] , qIGDp [a, r]

}
. (2.16)

According to Schütze et al. (2012), this indicator serves as a more reliable metric

than its components qGDp and qIGDp .

Binary Indicators

The indicators listed below are specifically designed to compare sets that do not dominate

each other.

Proximity:

• Zitzler and Thiele (1998) proposed the coverage metric that measures the percent-

age of solutions in b that are dominated by solutions in a:

qC [a,b] =
|{b ∈ b | ∃a ∈ a : a � b}|

|b|
. (2.17)

The qC indicator does not provide information as to “how much” solutions in

one set are dominated by the solutions of the other set. Therefore the relation

qC [a,b] > qC [b,a] does not necessarily imply that a is better than b.

Combined proximity and diversity:

• Zitzler (1999) had used the hypervolume measure to suggest a binary indicator

that measures the hypervolume covered by one set, but not covered by the other:

qD [a,b] = qHV [a ∪ b]− qHV [b] . (2.18)

• Zitzler et al. (2003) presented the binary qε+ indicator according to the concept

of ε+ dominance (Laumanns et al., 2002). A vector a is said to ε+ dominate

another vector b, denoted as a �ε+ b, iff a � b + ε, where ε is a real number. The

value of ε defines the dominance relation; a positive value allows a vector to ε+
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dominate another non-dominated vector, while a negative value requires stronger

domination than the common definition.

For two sets of vectors a,b ∈ Rn, the binary measure ε+[a,b] is defined as the

smallest value of ε required for every vector b ∈ b to be ε+ dominated by at

least one vector a ∈ a. The symmetric indicator qε+ [a,b] is composed of the

difference between ε+[a,b] and ε+[b,a]. A formal definition of the qε+ indicator

and a detailed example showing how it can be calculated appear in Appendix A.

Set Evaluation in Concept-based Optimization

Exploring alternative concepts and properly selecting the most suitable one has a great

impact on the success of an engineering design process. The significance of this problem

has been reflected in an increasing effort to develop methodologies to support concept

selection (for a review, see Okudan and Tauhid, 2008). Among the various approaches,

some studies can be found on concept-based optimization. In concept-based optimization,

the design space consists of different concepts, where each concept is associated with

a set of similar designs. Each design is mapped to a different objective vector, and

therefore every concept is mapped to a set of alternative objective vectors. When

comparing concepts, the comparison is made between sets of solutions.

Mattson and Messac (2003) proposed the s-Pareto frontier as a tool for concept

selection. In this framework, the PF of each concept is identified separately, and the

s-Pareto frontier is the global optimum, consisting of the non-dominated solutions among

all concepts. Once the s-Pareto frontier is identified, the DM should choose one of the

concepts according to additional unmodelled knowledge such as a preferred ROI within

either the design or the objective space. Mattson and Messac (2005) suggested that a

concept with a large surface area on the s-Pareto frontier is preferred, since it potentially

offers more design flexibility for detailed design. They also considered a robust s-Pareto

frontier to incorporate uncertainties, by shifting the expected objective values by kσ,

where k is a scalar and σ represents the standard deviations of the marginal objective

distributions.

Lewis et al. (2010) suggested a conceptual design approach for modular products

that involves an MOO procedure. They aimed at products that can be upgraded from

one concept to another, such that every concept allows for a different trade-off between

performance and cost. Their methodology includes optimization of several concepts to

identify Pareto-optimal solutions for each concept. Then a modular product is designed

by identifying parts that can be used in all concepts. Lewis et al. (2010) addressed the

loss of optimality caused by constraining the different concepts to use identical parts.
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The approach was validated by Wood et al. (2012) who constructed physical models

based on the optimization results.

Avigad and Moshaiov (2009a) proposed an interactive evolutionary algorithm (EA)

for set-based concept optimization. In this approach, candidate solutions that belong to

different concepts are evaluated in a common objective space, while every concept is

associated with a different design space. The DM assigns a preference value for each con-

cept, with the ability to change the preferences as the search progresses. The resulting

solution’s fitness is determined according to its objective vector and the DM’s preferences.

Although the three studies above suggested approaches to support concept selection,

none of them used an evaluation measure to assign a grade to each concept. The only

two studies found in the literature to do so are the following:

Avigad and Moshaiov (2009b) addressed the drawbacks of the s-Pareto approach.

They demonstrated that concepts with a large variety of near-optimal solutions might be

more preferable than concepts with a narrow PF that is a part of the s-Pareto frontier.

Instead, they suggested that the entire PF of each concept should be used to compare

different concepts. Two qualities were considered: optimality and variability. Optimality

is defined by using a binary quality indicator between every two concepts, and grading

each concept according to the number of successful comparisons. The quality indicator

is based on the distances of solutions from a pre-defined vector that expresses the DM’s

ROI. Variability is measured by the hypervolume indicator, using the ROI vector as

the reference point. Different concepts are then compared in the bi-objective domain of

optimality-variability, to support a selection of one of them.

Avigad et al. (2011) introduced a different approach for concept-based optimiza-

tion. In this study they considered the versatility of a family of designs to satisfy

several requirements, expressed as a set of ROIs. The performance of each set was also

converted to an auxiliary bi-objective space, considering requirement satisfaction and

proximity in design space. It was assumed that similar products are associated with

lower manufacturing costs and easier adaptation from one product to another within

the set. Unary quality indicators were used for both measures.

It is evident from the literature that when a set of vectors needs to be evaluated,

only its PF should be considered, and non-optimal members should be ignored. Some

of the quality indicators that were reviewed in this section can be used for evaluating

the performance of changeable products for multiple objectives. This will be explored

in Chapter 4.
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2.3.5 Dynamic Optimization

Optimization problems that search for a solution to changing objective functions and

constraints are known as Dynamic Optimization Problems (DOPs). Mathematically, a

DOP is defined as follows:

min
y∈Y

γ(y,p) . (2.19)

where y is an ny-dimensional vector of adjustable decision variables from some feasible

region Y ⊆ Rny , and p is a vector of time varying parameters. In some cases, the

feasible domain, Y, might also change with time. For any given vector, p, the solution

of the DOP is the vector, y, that minimises the objective function.

The unique feature of a DOP, which distinguishes it from other optimization problems,

is that the design variables can be adjusted whenever the optimum changes within the

design space. In the context of adaptive products, these design variables are therefore

considered as type y, i.e., the adjustable variables.

Some researchers consider dynamic optimization to be a special case of robust

optimization (RO) (e.g., Jin and Branke, 2005). However, this study makes a clear

distinction between the two fields. While in RO the solution needs to be found prior to

the realisation of the uncertainties (see Section 2.4), in a DOP it is searched for once a

particular environmental condition is realised. This distinction is very important when

optimizing changeable products, where decisions need to be made both before and after

the realisation of the uncertainties.

The fields of robust optimization and dynamic optimization have been comprehen-

sively studied during the past two decades, though the synergy between these two

optimization approaches has received scarce attention. The proposed AROP uses both

robust and dynamic optimization: the properties that cannot change with time are

optimized through RO, while the adaptation of adjustable properties to the changing

environment is analysed by using dynamic optimization.

Currently, evolutionary algorithms are the predominant approach for solving this

class of problems (Branke, 2002; Cruz et al., 2011), but variations of other optimization

methods exist to cope with dynamic environments. Some of them are: particle swarm

optimization (Blackwell and Branke, 2004; Du and Li, 2008), ant colony (Lee and Park,

2001; Guntsch et al., 2001), immune-based algorithms (Gasper et al., 1999; Trojanowski

and Wierzchoń, 2009; Rezvanian and Meybodi, 2010). Commonly, evolutionary algo-

rithms for DOPs consist of a mechanism for continuously tracking the optimum over

time, and an additional mechanism for seeking a new optimum in other regions of the

design space. Please refer to Cruz et al. (2011) and Nguyen et al. (2012) for comprehen-
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sive surveys of the existing methods for solving DOPs and their applications. A recent

survey of evolutionary algorithms for solving multi-objective DOPs, and benchmarks

for such problems, can be found in the work of Jiang and Yang (2017).

2.4 Robust Optimization

The term robust optimization is not uniquely defined in the literature, and is used to

describe several classes of optimization problems. In the scope of this study, robust

optimization is used to describe all optimization problems that include uncertainties. The

source of uncertainty can be the environmental parameters (Type A), design variables

(Type B), objective functions or constraints (both are Type C), or any combination

of the above. Similar to robust design, RO is concerned with minimising the effect of

uncertainties and variation without eliminating their source. The aim is to find robust

solutions – solutions that perform well with respect to the uncertainties involved, even

if they are not the optimum solutions for the nominal conditions.

This section presents the basic concepts of RO. It starts with the popular methods

for quantifying robustness of candidate solutions through robustness indicators, then

an overview of RO for multiple objectives is provided, and finally, the scarce literature

available on RO of changeable systems is surveyed. For a general overview of RO, please

refer to the surveys that are discussed below.

In the field of mathematical programming, a distinction is made between stochastic

and robust optimization. The first considers the uncertain variables as probabilistic

values with certain distribution functions, and the latter considers them as a deterministic

set of values, where the robust solution needs to be optimal over the entire set (i.e., the

worst-case).

Bertsimas et al. (2011a) considered the different types of RO problems addressed

in the mathematical programming literature. They focused on the computational

tractability and applicability of each approach, as well as their conservativeness when

compared with stochastic optimization methods.

The textbooks of Birge and Louveaux (1997) and Kall and Wallace (1994) serve as

a good base for understanding stochastic optimization.

Jin and Branke (2005) focused on evolutionary approaches for solving RO prob-

lems. In the evolutionary optimization community the distinction between robust and

stochastic optimization is not made, and both cases are considered as RO. In their

survey, Jin and Branke considered uncertainties of type A, B and C, as well as dynamic

optimization as a type of optimization under uncertainty.

Beyer and Sendhoff (2007) provided a wide perspective on the various types of
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RO problems and the different approaches for solving them, including mathematical

programming and meta-heuristics such as evolutionary algorithms.

A general robust optimization problem can be formulated as follows:

min
x∈X

Φ(x,p,U) , (2.20)

where x are the decision variables that need to be optimized and p are the uncontrolled

parameters. Here, U is a vector of random variables that includes all the uncertainties

associated with the optimization problem. A single scenario of the variate U is denoted

as u. Since uncertainties are involved, the objective function, Φ, is also a random variate,

where every scenario of the uncertainties, u, is associated with an objective value, φ.

2.4.1 Robustness Indicators

In a robust optimization scheme, the random objective function is replaced with a

robustness criterion, denoted by the indicator I[Φ]. Several criteria are commonly used

in the literature, which can be broadly categorised into three main approaches:

1. Worst-Case Scenario. The worst objective vector, considering a bounded

domain in the neighbourhood of the nominal values of the uncertain variables.

2. Aggregated Value. An integral measure of robustness that amalgamates the

possible values of the uncertain variables (e.g., mean value and variance).

3. Threshold Probability. The probability that the objective function would be

better than a predefined threshold which is considered as “good enough”.

Worst-Case Scenario

The robust indicator for the problem in Equation (2.20) considering a worst-case criterion

is defined as follows:

Definition 2.5 (Worst-case robustness indicator).

Iw [Φ(x,p,U)] := max
u∈U

φ(x,p,u) . (2.21)

For example, consider a problem involving Type B uncertainties, where the values of

x are bounded between x± δ. Here δ can represent a vector of specified manufacturing

tolerances. For the worst-case criterion, the robust optimization problem is formulated
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as follows:

min
x∈X

Iw [Φ(X,p)] ≡ min
x∈X

max
x∈∆

φ(x,p) , (2.22a)

where: ∆ = {x | x− δ ≤ x ≤ x + δ} . (2.22b)

The main deficiency of the worst-case indicator is that all possible scenarios must be

considered. This implies that either an analytic description of the random function value

is available, or all extreme cases can be evaluated. Typically, both are not possible, and

finding the worst-case scenario might require an optimization search itself (see Branke

and Rosenbusch, 2008; Lu et al., 2016, for example). Therefore, in applications where

the worst-case performance must be considered, safety factors are commonly used to

account for the fact that some scenarios cannot be foreseen.

Aggregated Value

The aggregated value approach is suitable for uncertainties of a probabilistic nature. It

includes expectancy measures of the function value, or its variance (or possibly both).

The expected value of a random variate V is defined as follows:

E(V ) :=

∫ ∞
−∞

v · f(v) dv, (2.23)

where f(v) is the probability density function for the random value V .

The expected value indicator for the problem in Equation (2.20) is defined as follows:

Definition 2.6 (Expected value robustness indicator).

IE [Φ(x,p,U)] := E [Φ(x,p,U)] . (2.24)

The variance indicator for the problem in Equation (2.20) is defined as follows:

Definition 2.7 (Variance robustness indicator).

Iv [Φ(x,p,U)] := var [Φ(x,p,U)] . (2.25)

When the probability density functions for the uncertainties f(u) are available, the
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expectancy measure can be derived by the integral:

E
(
Φ(x,p,U)

)
=

∫
U
φ(x,p,u) f(u) du. (2.26)

The variance indicator can be similarly derived:

var
(
Φ(x,p,U)

)
=

∫
U

(
φ(x,p,u)− E [Φ(x,p,U)]

)2
f(u) du. (2.27)

Commonly in real-world problems, the distribution of the uncertain variables is not

known, and information is extracted by using Monte Carlo simulations to produce a set

of values U. The integral measures in Equations (2.26) and (2.27) then become:

E
(

Φ
(
x,p,U

))
=

1∣∣U∣∣ ∑
u∈U

φ(x,p,u) (2.28)

and

var
(

Φ
(
x,p,U

))
=

1∣∣U∣∣ ∑
u∈U

(
φ(x,p,u)− E

[
Φ
(
x,p,U

)])2
, (2.29)

respectively, where
∣∣U∣∣ is the cardinality of the sampled set, U.

When both mean performance and variance are of interest, the robust optimization

problem can be formulated as an MOP:

min
x∈X

[IE , Iv] (2.30)

To address different robustness criteria other than the indicators in Equations (2.24)

and (2.25), the objective function φ can be replaced with a utility function Υ(φ). For

example, in Equation (2.24), using the utility function Υ(φ) = φa will result in different

criteria, according to the value of a:

a = 1 produces the expected function value,

a > 1 amplifies the effect of outliers, and

0 < a < 1 dampens the effect of outliers.

Threshold Probability

It is possible to address the probability of the objective function directly as a robustness

measure by setting a performance target. A threshold, q, is considered as a satisficing

performance for the objective value φ. When φ is uncertain, denoted by the random

variable Φ, the probability for φ to satisfy the threshold level can be seen as a confidence
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level c. For a minimization problem this can be written as follows:

c(Φ, q) = Pr(Φ ≤ q) . (2.31)

For the discrete version of Equation 2.31, consider the binary function

β(φ, q) =

{
1, for φ ≤ q,
0, otherwise.

(2.32)

Given a set of samples with equal probability for the uncertain variables, U, and a

corresponding set of objective values, Φ, Equation 2.31 can be replaced with:

c
(
Φ, q
)

=
1∣∣Φ∣∣ ∑

φ∈Φ

β(φ, q) . (2.33)

Equation (2.31) can be used for two different robustness indicators:

1. Maximization of the confidence level c for a given threshold q, denoted as Iq[Φ, q].

This measure can be used when the target for performance is known, and the

emphasis is on meeting this target, rather than performing as well as possible.

2. Optimization of the threshold q for a pre-defined confidence level c, denoted as

Ic[Φ, c]. This is useful when there is no specific target for performance, but the

confidence in the resulting performance can be specified. The preferred solution is

the one that guarantees the best performance with the specified confidence.

The target-based robustness indicator Iq describes the confidence of the objective

function to be better than a threshold, q. It is defined as follows:

Definition 2.8 (Target-based robustness indicator). Let Φ be a random objective

function with a cumulative distribution function F (φ), and let q be a desired target for

φ. If Φ is to be minimized, then

Iq[Φ, q] = Pr(Φ ≤ q) = F (q) . (2.34)

If Φ is to be maximized, then

Iq[Φ, q] = Pr(Φ ≥ q) = 1− F (q) . (2.35)

Using the target-based robustness indicator, the problem in Equation (2.20) becomes:

max
x∈X

Iq[Φ(x,p,U) , q] . (2.36)
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For a sampled representation of the uncertain variables, U, and the objective function,

Φ, the target-based indicator is defined as follows:

Definition 2.9 (Discrete target-based robustness indicator).

Iq
[
Φ, q
]

=
1∣∣Φ∣∣ ∑

φ∈Φ

β(φ, q) , (2.37)

The confidence-based robustness indicator, Ic, can be used when the objective

function is to be optimized, while a pre-defined confidence in the obtained value needs

to be assured. It is defined as follows:

Definition 2.10 (Confidence-based robustness indicator). Let Φ be a random objective

function with a cumulative distribution function, F (φ), and let c be a desired confidence

level. If Φ is to be minimized, then

Ic[Φ, c] = argmax
φ

(F (φ) ≤ c) . (2.38)

If Φ is to be maximized, then

Ic[Φ, c] = argmin
φ

(F (φ) ≥ 1− c) . (2.39)

In other words, there is a confidence level of c that a realisation of Φ would be better

than Ic[Φ, c]. The worst-case indicator is, in fact, a special case of the confidence-based

indicator, where a confidence level of c = 100% is required.

For a sampled representation of the uncertain variables, U, and the objective function,

Φ, the confidence-based indicator, Ic
[
Φ, c
]
, is defined as the cth percentile of the set, Φ.

2.4.2 Robust Multi-Objective Optimization

Recently, the presence of uncertainties in multi-objective optimization problems is

gaining increasing attention. Whenever uncertainties are considered in an MOP, every

candidate solution is associated with a random objective vector and/or constraint vector.

Finding a set of robust solutions to an uncertain MOP is a challenging task, affected

by the type of uncertainties involved, and the manner in which they propagate to the

objective functions and constraints.

Uncertain MOPs can be constructed in different ways to resemble situations that

may arise in real-world optimization problems. Most studies on robust multi-objective

optimization transform deterministic MOPs into uncertain MOPs by adding uncertainty
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factors to different aspects of the problem formulation. Adding noise to the objective

functions is the most common practice (Teich, 2001; Hughes, 2001; Buche et al., 2002;

Fieldsend and Everson, 2005, 2014; Goh and Tan, 2007; Knowles et al., 2009; Syberfeldt

et al., 2010; Shim et al., 2013). Noise can also be added to the decision variables to

resemble inaccuracies in the manufacturing process or deterioration (Deb and Gupta,

2006; Gaspar-Cunha et al., 2013; Mirjalili and Lewis, 2015; Meneghini et al., 2016).

Uncertainties in uncontrolled parameters are also considered (Gunawan and Azarm,

2005; Mattson and Messac, 2005; Avigad and Branke, 2008; Hu et al., 2013), as well as

a combination of the above (Basseur and Zitzler, 2006).

A general description for the stochastic features in uncertain MOPs can be found

in the studies of Goh et al. (2010) and Salomon et al. (2016b). Goh et al. (2010) have

developed a generic method that can transform any deterministic MOP into a stochastic

one by injecting a parametric configurable noise function to various parts of the problem

formulation. Salomon et al. (2016b) have presented a toolkit to generate uncertain

MOPs that allows for direct control over the stochastic properties of the problem.

The definition of robustness varies according to the manner in which uncertainty is

considered in the problem, and the algorithms for solving uncertain MOPs are designed

accordingly. Probabilistic dominance was defined by Teich (2001) to search for candidate

solutions that have the highest probability to be non-dominated. It was used to replace

the standard domination relation within a strength Pareto approach (SPEA, Zitzler

and Thiele, 1999). Probabilistic ranking was considered by Hughes (2001) for a set of

candidate solutions, according to the probability every solution has for dominating the

other solutions in the set.

The ‘true’ objective vector is a straightforward robustness measure when the un-

certainty is generated by adding noise to the objective values. The robust solution to

uncertain MOPs of this kind is the same Pareto front as the one without the noise. The

motivation in studies that use this measure is to suggest an efficient algorithm that can

“filter” the noise in objective functions to find the same set of solutions as if there was

no uncertainty. The ‘true’ objective values are assumed to be the expected values of

the noisy functions. Some examples are the studies of Fieldsend and Everson (2005,

2014), Knowles et al. (2009), Goh and Tan (2007), Syberfeldt et al. (2010) and Shim

et al. (2013).

The expected value of the variate objective vector is also used when the decision

variables are the source of uncertainty. Deb and Gupta (2006) aimed at solutions that

are less sensitive to variations from the nominal decision variables. Robustness was

defined in this context as the expected value of the variate objective vector mapped

from a neighbourhood around the nominal decision vector.

Aggregated measures may also consider the variance in addition to the expected
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function values. For example, Mattson and Messac (2005) replaced every stochastic

objective with its expected value plus k standard deviations. The expected value was also

used by Basseur and Zitzler (2006) in an indicator-based optimization framework. They

considered the expected indicator value to assess a set of candidate solutions. While

aiming at finding the set that optimizes the expected indicator value, for complexity

reasons, either the best-case, worst-case or average indicator value was calculated based

on a sample.

Sensitivity was used by Gunawan and Azarm (2005), Barrico and Antunes (2006)

and Gaspar-Cunha et al. (2013) as a measure for robustness. It is measured according

to the changes in objective values due to changes in decision variables or parameters

(depending on the type of uncertainty under consideration). Gunawan and Azarm (2005)

defined an acceptable sensitivity of the objective vector to variations of uncontrolled

parameters. This sensitivity was later used as a constraint when optimizing the nominal

objective functions. Barrico and Antunes (2006) applied a penalty to the nominal

objective values according to the sensitivity of a candidate solution. Gaspar-Cunha

et al. (2013) considered the average sensitivity to changes in decision variables in a

neighbourhood of a candidate solution.

Worst-case optimization is applied in several studies on multi-objective optimization

in the presence of uncertainties. When considering the marginal distributions of the

objectives, each uncertain objective value can be replaced with its worst-case (Kuroiwa

and Lee, 2012; Fliege and Werner, 2014). Avigad and Branke (2008) considered the

irregular shape of the random objective vector due to uncertain parameters. The

worst-case of a candidate solution is represented by the Pareto front of a reversed

problem achieved by maximizing over the uncertainty domain (e.g., finding the scenario

of uncertain parameters that maximizes the objectives of a minimization problem).

To find the robust set of solutions, a nested EA was used, where the inner algorithm

searched for the worst-case scenarios and the outer for the best solutions. The notion of

set dominance was used to find the robust set of solutions. Meneghini et al. (2016) used

a co-evolutionary algorithm to find the robust set of solutions for a worst-case problem.

Together with the population of candidate solutions, a population of scenarios for the

uncertain variations is evolved. This approach enables the worst-case scenario to be

found together with the least sensitive solutions.

2.4.3 Robust Optimization of Changeable Systems

Until recent years, there has been very little study conducted on the robust optimization

of changeable systems. The relevant studies that could be identified from the scarce

literature on this topic are listed below.
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Multi-stage stochastic optimization problems have been studied in the field of math-

ematical programming (Pflug and Pichler, 2014; Bertsimas et al., 2011b, and references

therein). These problems consider sequential decision-making under dynamic uncertain-

ties, where the decision variables can be constantly changed according to the realisation

of the uncertainties. A decision must be taken at each stage by considering accumulated

knowledge about the uncertainties and the ability of future decisions to overcome a

‘wrong’ decision.

For example, consider the following inventory control problem presented by Bertsimas

et al. (2011a): A product should be produced at a changeable rate to satisfy a time-

varying demand. A wrong decision at Stage i, that results in not satisfying the demand

at Stage i+ 1, can be recovered by buying the product from a competitor at a higher

price. Another example, presented by Pflug and Pichler (2014) considers the operation

of a hydro generation system, consisting of a series of reservoirs. The aim is to maximize

the profit by selling energy at peak prices, while maintaining the water capacity in each

reservoir throughout the year. Both the energy demand and the rainfall are uncertain,

and therefore decisions that are taken at the beginning of the year have an impact on the

yield at the end of the year. Note that multi-stage stochastic optimization aims at an

optimal strategy for adapting a system’s adjustable attributes, rather than optimizing

the system itself. For example, the problems mentioned above do not optimize the

warehouse infrastructure or the architecture for the system of reservoirs. The scope of

studies on multi-stage stochastic optimization is usually restricted to single-objective

linear problems.

Ben-Tal et al. (2004) introduced the adjustable robust optimization methodology for

uncertain linear programming problems. It distinguishes between decision variables that

need to be determined before and after the realisation of the uncertainties. Adjustable

robust optimization problems can be formulated as multi-stage problems, where a

sequence of decisions needs to be made over a period of time (e.g., Ben-Tal et al., 2009),

or as bi-level problems, where the optimization includes two stages (e.g., in circuit design

where the hardware is designed on the first stage and tuned according to the realisation

of the uncertainties on the second stage, see Mani et al., 2006; Yao et al., 2009).

Bertsimas and Caramanis (2010) studied the properties of multi-stage problems with

limited adaptability, and compared them against problems with complete adaptability

and against static robust optimization. Adjustable robust optimization problems with

complete adaptability are defined by Bertsimas and Caramanis (2010) very similarly

to the formulation of the AROP, as presented in this work (See Chapter 3). The
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formulation is given below, using the notations from Bertsimas and Caramanis (2010):

CompAdapt(Ω) :=

 min : cTx + dTy(ω)

s.t. : A(ω) x +B(ω) y(ω) ≤ b, ∀ω ∈ Ω


= min

x
max
ω∈Ω

min
y

 cTx + dTy

s.t. : A(ω) x +B(ω) y ≤ b

 ,
(2.40)

where ω is an uncertain scenario from an uncertainty set Ω, the model parameters, A

and B, depend on the uncertainties, x are the first stage decision variables, that do not

depend on ω and y are the second stage variables that can be decided according to the

realisation of ω.

The problem in Equation (2.40) can indeed be considered as an active robust

optimization problem. However, it does not focus on changeable products, as described

in this study, i.e., how to optimize the basic properties of products that can react to

changing conditions. Additionally, Problem (2.40) is restricted to applications that can

be modelled as linear systems.

Avigad and Eisenstadt (2010), followed by Lara et al. (2013), demonstrated how

active control can promote robustness to physical deterioration in the context of multi-

objective optimization. They considered two types of decision variables, similar to those

defined in Section 2.3.1, to demonstrate how adjustable variables can compensate for the

degradation caused by the deterioration of fixed variables. Robustness was considered

as the distance in objective space from the original performance, prior to deterioration.

Note that the optimization scheme suggested by Avigad and Eisenstadt (2010) is not

an RO scheme. The MOP was formulated and solved without considering the foreseen

deterioration. Nevertheless, the robustness achieved by active control was examined, in

order to support a decision as to which of the obtained Pareto-optimal solutions should

be selected.

Avigad et al. (2010) considered the solution’s ability to adapt to changing environ-

mental conditions or requirements in a multi-objective optimization framework. They

proposed a methodology for optimizing changeable solutions according to their best

performance over the combined domains of adjustable design variables and uncertain

environmental parameters. Since the problem setting is an MOP, the best performance

of a changeable solution was conceived by its Pareto front. The optimization aim is to

find all solutions that do not set-dominate each other.1 They termed the combined set

of Pareto frontiers a “Pareto layer”. The methodology of Avigad et al. suffers from

1see Section 2.3.4 for information on set-domination.
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a crucial unidentified issue that results in an unreal representation of the solution’s

abilities. The Pareto front of every solution considers its best performance over all

possible configurations, as well as over all scenarios of the uncertain parameters. Since

the parameters cannot be controlled, they must be treated by robust optimization

approaches. This was not investigated by Avigad et al. (2010).

Basseur and Zitzler (2006) proposed an aggregated evaluation measure for sets of

uncertain multi-objective vectors, based on a binary indicator. They demonstrated the

usage of the measure in a multi-objective robust optimization framework. Although

changeable systems were not addressed in this study, the suggested approach can be

adopted to evaluate solutions of this type, since they are inherently associated with a

set of objective vectors.

Zhang et al. (2013); Zhang (2014); Zhang et al. (2014, 2015) presents a methodology

for robust design optimization of adaptable and reconfigurable products. This work

was conducted in parallel to the one presented in this thesis and many similarities

exist between this study and the one of Zhang et al.1 In his study, Zhang describes an

adaptable design as a product that possesses non-changeable and changeable design

variables. The configuration of changeable design variables is determined according to

the requirement for the product’s functionality. A distinction is also made between

design variables and other parameters that affect the functional properties. Uncertainties

are considered for the parameters, design variables and requirements. Optimization is

applied to the non-changeable design variables while considering the ‘right’ configuration

of the changeable variables given the state of the uncertainty factors.

Optimality in Zhang’s framework is measured by the deviation of the functional

requirements from their required values. These deviations occur since the nominal

values of changeable design variables are calculated to meet the requirements, but the

uncertainties in parameters and design variables propagate to the product’s simulated

performance. Zhang et al. use the term robustness measure to describe the expected

deviation, which is calculated by integrating over the entire uncertainty domain. A

weighted sum approach is adopted to deal with multiple functional requirements.

Zhang’s methodology is an important development towards the establishment of a

framework for robust optimization of changeable products. However, it suffers from

several crucial issues that need to be addressed in order to provide a reliable methodology

for optimizing such products. These issues are highlighted in the next section, and

additional research required in the field of robust optimization of changeable products

is listed.

1The terms used by Zhang are modified here to fit the terminology of this study.
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2.5 Research Gaps

Considering the state-of-the-art that was surveyed in this chapter, the following research

still needs to be conducted in the field of robust optimization of changeable systems:

1. The most basic requirement from a robust optimization scheme is the ability to

evaluate and compare alternative solutions in respect of the uncertainties involved.

The evaluation consists of two main features:

(a) Approximate the distribution of random performance metrics, given the

distribution of the uncertainty factors.

(b) Quantify the random performance according to desired robustness criteria.

The choice of robustness criteria should comply with the application and the

designer’s attitude to risk.

The current state-of-the-art does not include a study that provides such a generic

framework for evaluating changeable products. The main challenge in optimiz-

ing changeable products is to properly consider the design’s adaptability when

approximating its random performance.

2. In order to use optimization as part of the design process of changeable products, a

new class of robust optimization problem needs to be formulated. The adaptability

of the candidate solutions to various types of uncertainty should be an integral

part of the problem formulation.

3. The current state-of-the-art does not include a study that addresses the com-

plexities of multi-objective optimization of changeable products. Most studies on

design practices of changeable products consider a single performance criterion.

The few studies that do consider multiple objectives do not exploit the added value

of finding a set of trade-off solutions for a posteriori decision-making. Instead,

the problem is transformed into a single-objective problem using a weighted sum

approach or other utility functions.

When a changeable product is optimized for multiple objectives, its evaluation

becomes a very challenging task. The main challenge is that the product can be

adjusted to several configurations by its user to satisfy different preferences between

competing objectives. For any realisation of the uncertainties, the available trade-

off might be different, and user preferences may change during the life-time of the

product.

From all the literature surveyed in this chapter, the methodology presented by Zhang

(2014) is the most relevant to this study. However, it does not provide the answers to

the research gaps described above. The following points highlight the reasons:
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1. In Zhang’s study, the reason for adaptation is not to improve a performance

objective or objectives, but to satisfy requirements for the functional properties.

The requirements are treated somewhat like constraints by defining set-points

for the system performance. Although it is not explicitly stated, the aim is to

minimize the deviation from these set-points.

2. As stated in the summary of Zhang’s dissertation, the method requires a closed-

form expression that maps the current requirement and state of the uncertain

parameters to the ‘correct’ values of the changeable variables. A very strong

assumption is made that the requirements can always be satisfied, thanks to

adaptation.

3. The state of changeable variables is calculated according to nominal values. Some

uncertainty factors, such as deviation of non-changeable decision variables from

their intended values or uncertainty regarding the requirements, do not exist any

more when the optimal configuration needs to be selected. However, this is not

exploited, and these factors remain uncertain when calculating the robustness

measure.

4. The functional requirements in the study are either uncertain or time-dependent,

and therefore a robustness metric is used for optimization. However, the metric

choice does not adhere to the common practice behind robust optimization,

whereby a robustness criterion is used to quantify a random objective value (Beyer

and Sendhoff, 2007). Instead, the robustness metric is taken as the variance, or

as a combination of the expected value and variance, of a utility function. This

utility function measures how well the product satisfies the different functional

requirements in a normalised fashion. Since it is assumed that adaptation can

bring the function to its maximum value based on a closed-form expression, its

variance (i.e., the robustness metric) is calculated by propagating the variances of

the various uncertain parameters to the utility function.

5. When an adaptable product has the ability to change its architecture during

operation (i.e, a combinatorial choice between some modular components is an

adjustable decision variable), this choice is considered as an uncontrolled parameter

with a predicted distribution rather than an actual choice of the user to improve

performance (Zhang et al., 2014).

6. The framework aims at finding a single robust adaptable design, by solving a

single-objective optimization problem. When multiple requirements exist, the

objective function is composed of a weighted sum of the deviations from the

different requirements.
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Figure 2.4: The scope of this study.

The review conducted in this chapter examined how uncertainties and changeability

are treated in the fields of engineering design and optimization. Relating to Figure 2.1

once again, the existing research does not include studies that combine all four elements

in a single framework.

While all relevant studies discussed in this review relate to either two or three of

the above, the proposed Active Robust Optimization framework, presented in this thesis

will combine all four. In Figure 2.4, the scope of the Active Robust Optimization is

positioned among the associated fields. The framework uses concepts from the fields of

robust, dynamic and multi-objective optimization to conduct optimization of changeable

products. The requirements from changeable products and the basic assumptions by

which they should be evaluated are burrowed from studies on engineering design of

changeable products.

In the following chapter, the framework for Active Robust Optimization will be

described in details. The Active Robust Optimization Problem, that lies in the core of the

framework, will be formulated, demonstrated on a simple analytic function and solved

for a variety of robustness metrics. A framework for Active Robust Multi-Objective

Optimization, that handles all the issues raised in this chapter, will be presented in

Chapter 4.
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Chapter 3

Active Robust Optimization

3.1 Introduction

This chapter establishes the foundations of the new Active Robust Optimization frame-

work to evaluate and optimize changeable products. The most basic Active Robust

Optimization Problem is defined and its features are analysed and discussed using a

simple analytic example.

The chapter is organised as follows: Formal definitions of the different types of

variables and objective functions are given in Section 3.2. Then, the AROP is defined

in Section 3.3.

An example AROP is formulated in Section 3.4. The function characteristics are

discussed, and its analytic solution is presented for conditions where no uncertainties

exist over any aspect of the problem formulation. Then, the uncontrolled parameter is

considered as a random variable, and the stochastic nature of the objective function is

examined by propagating the uncertainties from the uncertain parameter.

In Section 3.5 several robustness indicators are used to describe optimality for the

uncertain objective function. The AROP is solved for each of the presented indicators,

considering different definitions of robustness. The difference between robustness and

active robustness is demonstrated through a comparison between the obtained optimal

adaptive solutions and their non-adaptive counterparts.

Section 3.6 describes the differences in robustness assignment when sampling methods

are used to approximate the uncertain parameters instead of the true underlying

distribution. The effects of the sample size on estimation of the true robustness are

examined for the various robustness indicators.

Throughout this thesis, the AROP is demonstrated using Type A uncertainties, i.e.,

uncertain environmental parameters. Section 3.7 presents the effects of uncertainties of
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other types on the problem formulation and the obtained solutions. The differences and

similarities between AROPs with different sources of uncertainty are discussed.

3.2 Definitions

Before the Active Robust Optimization Problem can be properly formulated, the basic

terminology is defined in this section.

3.2.1 Variables

A distinction is made between three types of variables: design variables, adjustable

variables and uncertain parameters. Their definitions and associated terminology are

described in the following.

Definition 3.1 (Design variable). A property of the product that can be determined by

the designer. Denoted by the letter x. Once the product is realised, the value of x cannot

be modified.

Definition 3.2 (Candidate design). The minimum set of design variables required to

describe a product. Denoted by the vector x = [x1, . . . , xnx ] ∈ Rnx.

Definition 3.3 (Feasible design space). The set X ⊆ Rnx of all feasible candidate

designs. Defined by the upper and lower bound of each design variable, and a set of

equality and inequality constraints:

li ≤ xi ≤ ui, i = 1, . . . , nx, (3.1)

gj(x) = 0, j = 1, . . . , ng, (3.2)

hk(x) ≤ 0, k = 1, . . . , nh. (3.3)

Definition 3.4 (Adjustable variable). A property that can be constantly modified during

normal operation, i.e., after the product has been realised. Denoted by the letter y.

Definition 3.5 (Configuration). A unique combination of values for all adjustable

variables, denoted by the vector y =
[
y1, . . . , yny

]
∈ Rny . The configuration is determined

by the user of the product, either manually or automatically.

Definition 3.6 (Adaptation). A change of the adjustable variables from one configura-

tion to another.
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Definition 3.7 (Adaptability). The set of all possible configurations of a candidate

design x, denoted as Y(x). The product’s adaptability may differ from one candidate

design to another.

Definition 3.8 (Environmental parameter). A variable that affects the performance of

the candidate design and can neither be influenced by the designer nor the user. Denoted

by the letter p.1

Definition 3.9 (Environmental scenario). A unique combination of values for all

environmental parameters, denoted by the vector p =
[
p1, . . . , pnp

]
∈ Rnp.

Definition 3.10 (Uncertain parameter). An environmental parameter whose value

cannot be determined during the design process. Instead it is described by a random

variable P . A realisation of the uncertain parameter P is denoted by the letter p.

Definition 3.11 (Environmental space). A vector random variate P ∈ Rnp describing

all possible scenarios of p and their probabilities.2

3.2.2 Objective Functions

Definition 3.12 (Objective function). A mapping from the design and environmental

spaces to the objective space z : Rnx+ny+np → R.

Within the framework of Active Robust Optimization, three types of objective

functions are considered. The type of function is determined according to its sensitivity

to uncertainties and whether or not it can be changed by adaptation.

Definition 3.13 (Deterministic function). A function ψ(x) : Rnx → R depends only

on the decision variables, and is not affected by uncertain parameters.

For example:

ψ(x) = x1 cos(x2) . (3.4)

Definition 3.14 (Stochastic function). A function φ(x,p) : Rnx+np → R depends on

uncertain parameters and cannot be affected by adaptation. Φ(x,P) is the variate of φ

that corresponds to the variate P.

For example:

Φ(x, P ) = x1 cos(P − x2) . (3.5)
1The word ‘environmental’ is often discarded, and it is simply referred to as ‘parameter’.
2Without loss of generality, the AROP is presented with Type A uncertainties (i.e., with uncertain

environmental parameters). AROPs with different sources of uncertainties will be discussed in Section 3.7.
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Definition 3.15 (Adaptable function). A function γ(x,y,p) : Rnx+ny+np → R is a

stochastic function that can be affected by adaptation. Γ(x,y,P) is the variate of γ that

corresponds to the variate P.

For example, in the function

Γ(x, y, P ) = x cos(P − y) , (3.6)

the design variable x needs to be determined during the design phase, when the parameter

p is considered as a random variable P , while the adjustable variable y can be determined

according to the realisation of p.

The functions in Equations (3.4)–(3.6) will be used in Section 3.4 to analyse the

various aspects of the AROP.

3.3 Problem Formulation

An optimal adaptive solution is the solution to the following Robust Optimization

Problem:1

min
x∈X

Γ(x,y,P) , (3.7)

where Γ(x,y,P) is a random variate of function values γ(x,y,p) that correspond to

the variate P, according to the design, x, and the configuration, y.

The problem in Equation (3.7) is a robust optimization problem, since the optimal

solution should be robust to the uncertainties in P. The fact that x is an adaptive

solution distinguishes this problem from the common RO problem (as explained in

Section 2.4), and makes it an active RO problem. For every scenario of the uncertainties

in P, the performance of a solution can be affected by changing the y configuration

within the solution’s adaptability. As a result, whenever the environmental parameters

change, the solution’s performance can be improved by adaptation. For a proper

evaluation of an adaptive solution, it has to be assessed for each scenario with its best

possible performance. This performance is achieved by the optimal configuration for

that scenario.2,3 In order to find the optimal configuration y? in a changing environment,

1The AROP is arbitrarily formulated as a minimization problem. The same formulation holds for
maximization.

2Previous studies in the field also assumed that changeable products should be evaluated according
to the optimal configuration in every scenario (e.g., Siddiqi et al., 2006; Ferguson and Lewis, 2006;
Olewnik and Lewis, 2006; Denhart, 2013).

3The base assumption of the ARO methodology is that the user is rational, and has the will and
ability to use the product in its optimal configuration. Please refer to Section 6.3 for a discussion on
optimizing changeable products while considering sub-optimal configurations.
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one must solve the following dynamic optimization problem:

y? = argmin
y∈Y(x)

γ(x,y,p) . (3.8)

Note that in the above formulation, the values of the environmental parameters p are

known at the time of this search. The values of x are constant (the evaluated design

does not change) and therefore, in Equation (3.8), the x variables are also treated as

parameters. However, one or more values of p can change (which makes this problem

a DOP) and so, for best performance, the above DOP should be solved whenever p

changes, and y should be adapted to the new y?. The optimization can be done either

on-line or off-line, depending on how rapid the response should be.

Considering the entire environmental uncertainty, a one-to-one mapping between

the scenarios in P and the optimal configurations in Y(x) can be defined as follows:

Y? = argmin
y∈Y(x)

Γ(x,y,P) . (3.9)

In order to transform the RO problem in Equation (3.7) to an active RO problem, y

should be replaced with Y?.

Following the above, an Active Robust Optimization Problem (AROP) is formulated:

Definition 3.16 (Active Robust Opimization Problem).

min
x∈X

Γ(x,Y?,P) , (3.10)

where: Y? = argmin
y∈Y(x)

Γ(x,y,P). (3.11)

It is a multi-stage optimization problem. In order to compute the objective function

Γ in Equation (3.10), the DOP in Equation (3.11) has to be solved for every solution x

with the entire environment universe P.

3.4 Analytic Example

The active robust optimization problem has some very unique characteristics that do

not exist in other optimization problems. In order to observe these special features

and analyse them, an analytic example is presented in this Section. The problem is

constructed in the simplest possible way to include all features of an AROP. This makes

it possible to isolate the effects of each of these features, and study them separately.

The example AROP consists of a single decision variable, a single adjustable variable
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Figure 3.1: Visual interpretation of the objective function in Equation (3.12).

and a single parameter. Owing to the problem’s simplicity, its analytic solution can be

derived, and various aspects of the active robust optimization problem can be studied.

3.4.1 Problem Formulation

Consider the following objective function that needs to be maximized:

γ(x, y, p) = x cos
(
π
2 (p− y)

)
, (3.12)

where x is a design variable and y is an adjustable variable that can respond to variation

in the uncontrolled parameter p. Figure 3.1 depicts the relations between x, y, p and γ.

The upper bound for the objective function γ is x, and therefore, the larger x is, the

larger the value that can be achieved for the best case. This best case occurs when

p− y = 4k, k = 0,±1,±2, . . .

First, the problem is formulated without considering uncertainties in the parameter

p:

max
x∈X

γ(x, y?, p) , (3.13)

where: γ(x, y?, p) = x cos
(
π
2 (p− y?)

)
, (3.14)

y? = argmax
y∈Y(x)

γ(x, y, p) , (3.15)

X = (0, 1] , (3.16)

Y(x) = [x− 1, 1− x] . (3.17)

Equation (3.17) recognises the case where the product’s adaptability may differ from

one candidate design to the other. Assuming p can only take values within the interval
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Figure 3.2: Function values with optimal configuration, according to Equation (3.19),
for different combinations of x and p. Solutions with maximum function value for every
value of p are marked with a solid line.

−1 ≤ p ≤ 1, the unconstrained optimal configuration of y is y? = p. Since the solution’s

adaptability depends on the value of x—the adjustable variable y is constrained between

±(1− x)—the optimal configuration cannot be achieved for every combination of x and

p.

The following is the closed form expression for the constrained solution of Equa-

tion (3.15):

y?(x, p) =


x− 1, for p < x− 1,

1− x, for p > 1− x,
p, otherwise.

(3.18)

The objective function in Equation (3.14) then becomes:

γ(x, y?, p) =


x cos

(
π
2 (p− x+ 1)

)
, for p < x− 1,

x cos
(
π
2 (p+ x− 1)

)
, for p > 1− x,

x, otherwise.

(3.19)

The function values of γ(x, y?, p) can be seen in Figure 3.2 as contour lines.

3.4.2 Solution for Deterministic Problem

The Active Robustness methodology deals with optimization problems with some level

of uncertainty. Before analysing the effects of uncertainties on the problem formulation,

a very simple case where no uncertainties exist is examined. This provides an upper

bound for the performance of an adaptive solution.

In the case where p is a known constant parameter, there is no need to change
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the value of y, and both x and y can be determined simultaneously. The solid line in

Figure 3.2 shows the optimal value of x for every p between -1 and 1. It is evident

from the figure that when |p| < 0.36, the optimal solution has no adaptability, i.e.,

x? = 1, y? = 0. When |p| > 0.36, it is better to ‘sacrifice’ the amplitude of the function

in order to reduce the argument of the cosine. The worst optimal performance of

γ = 0.36 is achieved when p = ±1, with the solution x? = 0.54 and the configuration

y? = ±0.46.

3.4.3 Uncertainty Propagation to the Objective Function

Now let p be a realisation of a random variable P with a known (or estimated) dis-

tribution, defined by the probability density function (PDF), f(p). The problem in

Equations (3.13)–(3.17) is rewritten to accommodate the uncertainty:

max
x∈X

Γ(x, Y ?, P ) ,

where: Γ(x, Y ?, P ) = x cos
(
π
2 (P − Y ?)

)
,

Y ? = argmax
y∈Y(x)

Γ(x, y, P ) ,

X = (0, 1] ,

Y(x) = [x− 1, 1− x] .

(3.20)

Note the optimal configuration y? is replaced with a variate of optimal configurations

Y ? that corresponds to the realization of the variate P . Consequently, the objective

function also becomes a random variate Γ.

The probability density function for Γ can be obtained using the probabilistic

transformation method (Walpole et al., 2007, pp. 211–219) defined in Theorem 3.1.

Theorem 3.1. Suppose W and V are continuous random variables with probability

density functions f(w) and g(v), respectively. Let w = h(v) be a continuous bijective

function between the values of V and W over the interval [a, b], so that the inverse

function v = k(w) exists. Then the probability distribution of W in the interval

[k(a) , k(b)] is

f(w) = g(k(w))

∣∣∣∣ dk

dw

∣∣∣∣ . (3.21)

The probabilistic transformation method requires a continuous bijection between

V and W . This implies that h(v) needs to be either monotonically increasing or

monotonically decreasing. In the case of P and Γ, this condition is not true for all

values of p. As can be seen in Figure 3.2, γ(x, p) increases monotonically for p < x− 1,

decreases monotonically for p > 1 − x, and remains constant for x − 1 ≤ p ≤ 1 − x.
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Theorem 3.2 extends the method to cases where the mapping between the random

variables is not a bijective function.

Theorem 3.2. Let w = h(v) define a mapping between the values of V and W that is

not a bijective function over the interval [a, b]. If the interval [a, b] can be partitioned

into n mutually disjoint intervals

[a, b] = {[a1, b1] , [a2, b2] , . . . [an, bn]} ,

such that a bijective inverse function

v1 = k1(w) , v2 = k2(w) , . . . vn = kn(w)

exists for all n intervals, then the probability distribution of W in the interval [k(a) , k(b)]

is

f(w) =

n∑
i=1

g(ki(w))

∣∣∣∣dkidw

∣∣∣∣ . (3.22)

Using Equation (3.22), the PDF for Γ(x, Y ?, P ) can be obtained for γ 6= x. The

density function at γ = x is undefined since it corresponds to all values in the range

x − 1 ≤ p ≤ 1 − x. The two inverse functions to Equation (3.19) that correspond to

p < x− 1 and p > 1− x, respectively, are:

p1(γ, x, y?) = x− 1− 2

π
arccos

γ

x
, (3.23)

p2(γ, x, y?) = 1− x+
2

π
arccos

γ

x
. (3.24)

Note that p1(γ) = −p2(γ) which is a result of γ(p) being a symmetric function. The

derivatives of Equations (3.23) and (3.24) are:

dp1

dγ
= −dp2

dγ
=

2

πx
√

1−
(γ
x

)2 (3.25)

If P is bounded between [a, b], then Γ(x, Y ?, P ) is bounded by the following interval:

min [γ(x, y?, a) , γ(x, y?, b)] ≤ Γ(x, Y ?, P ) ≤ x. (3.26)

Otherwise it is bounded between −x ≤ Γ(x, Y ?, P ) ≤ x.

Finally, the probability density function f(γ(x, Y ?, P )) is defined for values of γ
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inside the interval in Equation (3.26):

f(γ(x, Y ?, P )) =
2
(
g
(
x− 1− 2

π arccos γx
)

+ g
(
1− x+ 2

π arccos γx
))

πx
√

1−
(γ
x

)2 , (3.27)

where g(p) is the PDF of the random variable P .

In the following, the distribution of Γ(x, Y ?, P ) is analysed for two common distri-

butions of P .

Uniform Distribution

Let p be a random variable that follows a uniform distribution P ∼ U(−1, 1). g(p) in

Equation (3.27) can be simply written as

g(p) =

{
0.5, for − 1 ≤ p ≤ 1,

0, otherwise.
(3.28)

The lower bound for Γ(x, Y ?, P ), which corresponds to the extremes of P , is x cosx.

Using Equation (3.27), the PDF for Γ(x, Y ?, P ) can be obtained:

f(γ(x, Y ?, P )) =


2

πx
√

1−( γx)
2
, for x cosx ≤ γ < x,

0, otherwise.
(3.29)

Figure 3.3 depicts the PDF, f(γ(x, Y ?, P )), and the corresponding cumulative

distribution function (CDF), F (γ(x, Y ?, P )), calculated for different values of x according

to Equation (3.29). It is evident that the variance of Γ increases for larger values of

x, due to reduced adaptability. On the other hand, other properties such as selected

percentiles, or expected value may decrease. This issue will be discussed in Section 3.5.

Normal Distribution

Now let p be a random variable that follows a normal distribution P ∼ N
(
0, 1

3

)
. A

similar exercise can be performed to derive the expression for f(γ(x, Y ?, P )) as for the

uniform distribution. Figure 3.4 depicts the PDF f(γ(x, Y ?, P )) and the corresponding

CDF F (γ(x, Y ?, P )) for the above distribution of P . Note that for this distribution

of P , there is a higher probability for values of p close to p = 0 than for the uniform

distribution. Therefore adaptability is less required, and as a result for every value of x

there is higher density at larger values of γ. On the other hand, P is unbounded, which

means that it is possible for γ(x, y?, p) to have negative values. Although, there is a

very small probability for this to happen.
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Figure 3.3: Distribution functions of the random objective for different values of x when
P ∼ U(−1, 1).
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3).
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3.4.4 Recap

The problem presented in this section is a very simple analytic function. Nonetheless, it

consists of several features that may be common in real-world active robust optimization

problems.

1. The environmental parameter is uncertain during design phase, but is known

during product operation.

2. The adjustable variable can react to changes in the uncertain parameter.

3. The adaptability of the product depends on the design itself.

4. Robustness can be achieved either by enhancing the solution’s adaptability or

its permanent features. A trade off exists between the two alternatives as they

compete for the same resources.

Working with such a simple function has several benefits:

1. The distribution of the objective value can be derived analytically. This means

that approximation methods for the solutions’ performance are not required, and

the true optimal robust solution can be found.

2. The objective function can be calculated very quickly. As a result, billions of

function evaluations can be conducted in a reasonable time and there is no need

for efficient algorithms to solve the AROP. This enables the study to focus on the

aspects of the problem, rather than on algorithmic issues.

3. Having only one decision variable, one adjustable variable and one parameter,

makes it easy to modify the problem in order to analyse the effects of different

problem features.

In the following, the AROP presented in this section will be used to highlight various

aspects of the methodology. The optimization of the random objective function will be

addressed as part of a robust optimization scheme. A comparison with the conventional

robust optimization approach will be conducted, by altering the above problem to

not consider adaptation. Other aspects such as sampling the objective function and

considering different sources of uncertainty will also be addressed.

3.5 Optimizing for Robustness

In optimization, candidate solutions are compared against each other in order to promote

convergence towards the optimal solution. To do so, every candidate solution is assigned
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a fitness value, where the optimal solution has the best fitness. In the previous section,

the performance of a candidate solution was described as the random variable Γ(x, Y ?, P ),

where the distribution of Γ depends on the solution of x, the distribution of P and the

ability to adapt through y. When optimizing for robustness, the random performance is

assigned with a fitness value, according to the manner in which robustness is defined.

The definition of robustness is expressed via an indicator I[Γ] that quantifies the random

performance variable Γ with a scalar value.

The problem in Equation (3.30) describes the AROP in Equation (3.20) as a robust

optimization problem, where the aim is to optimize the robustness indicator I[Γ].

Without loss of generality, the problem is formulated as a maximization problem. The

actual choice whether to maximize or minimize depends on the robustness criterion.

max
x∈X

I[Γ(x, Y ?, P )] ,

where: Γ(x, Y ?, P ) = x cos
(
π
2 (P − Y ?)

)
,

Y ? = argmax
y∈Y(x)

Γ(x, y, P ) ,

X = (0, 1] ,

Y(x) = [x− 1, 1− x] .

(3.30)

The optimal solution for the AROP in Equation (3.30) depends on the indicator

used for describing robustness. In the following, the above AROP is solved for four

robustness indicators, previously defined in Section 2.4. It is shown that the optimal

solution depends not only on the objective function and the distribution of uncertainties,

but also on the choice of robustness criterion.

3.5.1 AROP Solution for Different Definitions of Robustness

Expected Value

The expected value indicator, defined in Equation (2.24), is a reasonable choice as a

robustness criterion when an adaptive (and also non-adaptive) product operates over

a long period in a changing environment, and the average performance over time is

important. For example, when optimizing a product to yield maximum daily profit in a

changing market, the product with the maximum expected value is the one that is most

probable to yield the highest profit over an entire year.

Figure 3.5(a) depicts the expected γ value for different values of x. Both indicator

values for uniform and normal distributions of P are shown. The optimal robust solution

for each distribution is marked with a circle. Note that the optimal solution when P

67



3. ACTIVE ROBUST OPTIMIZATION

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

I E
[!

(x
;Y

?
;P

)]
P 9U(!1; 1)

P 9N(0; 1
3
)

(a) Expected function value.

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

I w
[!

(x
;Y

?
;P

)]

P 9U(!1; 1)

P 9N(0; 1
3
)

(b) Worst function value.

Figure 3.5: Common robustness metrics values as functions of x.

follows a normal distribution is not adaptive at all, i.e., x = 1,Y(x) = 0.

Worst-Case

For a random objective function, Γ, that needs to be maximized, the worst-case scenario

is the lower bound of Γ. Similarly, the upper bound of Γ is the worst-case scenario

for minimization. The worst-case robustness indicator Iw[Γ] is used when the most

conservative design is desired.

The indicator values for uniform and normal distributions of P are depicted in

Figure 3.5(b). Note that the optimal value of x for the uniform distribution, when

P is bounded between −1 and 1, is x = 0.54, which is the optimal value observed in

Figure 3.2 for p = ±1.

For the normal distribution, the solution that has the highest worst-case performance

is x → 0 (x must be larger than 0). This is a good example for illustrating the

conservativeness of the worst-case criterion. By minimising the potential damage caused

by any possible scenario of the uncertain parameter, the ‘optimal’ solution also prevents

any possible gain in other scenarios. The performance of x → 0 is simply γ → 0

regardless of the value of the parameter p. Note that the probability for |p| > 1, and

therefore γ < 0 is less than 0.3%. Nevertheless, as long as this probability exists, it

needs to be considered for Iw[Γ].

Confidence-Based

The confidence-based robustness indicator can be used when the objective function is to

be optimized, while a pre-defined confidence in the obtained value needs to be assured.

Figures 3.6(a) and 3.6(b) depict the values of Ic[Γ(x, Y ?, P ) , c] when P follows a
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Figure 3.6: Confidence-based indicator values as functions of x for different confidence
levels c.

uniform and normal distribution, respectively. Four levels of confidence are considered in

every figure. Note that the curve for c = 100% is identical to the curves of the worst-case

indicator in Figure 3.5(b). From a comparison between the function of Ic[Γ(x, Y ?, P ) , c]

for the two distributions, several observations can be made:

1. There exists an inverse correlation between the required confidence level and the

maximum function value that satisfies this confidence.

2. The value of Ic[Γ, c] is sensitive to the distribution of Γ.

3. The solution x with the highest Ic[Γ, c] value is sensitive to:

(a) the distribution of Γ.

(b) the required confidence level c.

4. While there is almost no difference between Ic[Γ, 99%] and Ic[Γ, 100%] when P

follows a uniform distribution, there is a great difference between the two when P

follows a normal distribution.

Target-Based

The target-based robustness indicator describes the confidence of the objective function

to be better than a predefined target q.
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Figure 3.7: Target-based indicator values as functions of x for different goals q.

Figures 3.7(a) and 3.7(b) depict the values of Iq[Γ(x, Y ?, P ) , q] when P follows a

uniform and normal distribution, respectively. The following observations can be made

based on Figure 3.7:

1. There exists an inverse correlation between the required target q and the confidence

in achieving this target.

2. The confidence for achieving a goal q with a solution x < q is zero.

3. For the above example, the value of Iq[Γ, q] is sensitive to the distribution of Γ.

4. However, the solution x with the highest Iq[Γ, q] value is not sensitive to the

distribution of Γ. The optimal solutions for the uniform distribution have very

similar indicator values at the optimum of the normal distribution, and vice versa.

5. For values of 0.36 ≤ x ≤ 0.73, there is a complete confidence for the value of γ for

the uniform distribution to be larger than 0.3. This can be verified by examining

the functions of F (γ) in Figure 3.3(b). F (γ) = 0 for x = 0.4 and x = 0.6, while it

is larger than zero for x = 0.8 and x = 1.

The Target-based robustness indicator can serve as a very useful measure of robust-

ness when targets can guide the optimization process. For example, when designing a

product in a competitive market, outperforming the competitor’s product by 10% can

serve as the target q.

3.5.2 Comparison with a Non-Adaptive Robust Solution

This section demonstrates the difference between robustness and active robustness.

Considering the four robustness criteria described above, a search for a non-adaptive
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Figure 3.8: Distribution of the objective function for a non-adaptive solution [x1, x2] =
[0.6, 0.2] and an adaptive solution x = 0.6, for P ∼ U(−1, 1).

robust solution is undertaken. A non-adaptive solution for the problem in Equation (3.30)

is a solution that cannot adapt the variable y to the realisations of P . Therefore both

decision variables are considered as type x, i.e., fixed decision variables. Since the

objective function cannot be affected by adaptation, it is denoted as Φ(x, P ).1

The robust optimization counterpart of the AROP in Equation (3.30) is the following:

max
x∈R2

I[Φ(x, P )] ,

subject to: 0 < x1 ≤ 1,

x1 + |x2| ≤ 1,

where: Φ(x, P ) = x1 cos
(
π
2 (P − x2)

)
.

(3.31)

The PDF and CDF of Φ(x, P ) can be seen in Figure 3.8 for a solution x = [0.6, 0.2],

where P ∼ U(−1, 1). The distribution of Γ(x, Y ?, P ) with x = 0.6 (taken from Figure 3.3)

is also displayed for comparison. From the CDFs in Figure 3.8(b) it is evident that

the adaptive solution outperforms the non-adaptive one for any conceivable robustness

criterion. The adaptive solution has a lower (or equal) probability to be smaller than

any value of the objective function, compared to the non-adaptive solution. According

to the definition of first-order stochastic dominance, the performance of the adaptive

solution Γ(x, Y ?, P ) dominates that of the non-adaptive solution Φ(x, P ).

When analysing the PDFs in Figure 3.8(a), a disturbing fact can be observed;

while the area under the f(φ) is equal to one, the area under f(γ) is smaller than one.

The reason for this behaviour is the piecewise description of γ(x, y?, p), as described in

1Please refer to Section 2.3.1 for further details on the differences in notation between adaptive and
non-adaptive solutions.
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Figure 3.9: Expected value and worst-case performance of adaptive and non-adaptive
solutions as functions of x. For the non-adaptive solutions, x1 = x and three alternatives
for x2 are depicted.

Equation 3.19. For every scenario of the uncertain parameter in the range−0.4 ≤ p ≤ 0.4,

the value of the adaptive objective function is γ = 0.6. A ‘jump’ of the CDF F (γ)

from approx. 0.6 to 1 can be observed in Figure 3.8(b). This means that for the given

distribution of P , there is a 40% probability for Γ(x, y?, P ) to be exactly 0.6. This exact

probability is the probability for the non-adaptive objective function to have values in

the range −0.2 ≤ Φ(x, P ) ≤ 0.35.

The optimal solution to Equation (3.31) is the vector x? = [x?1, x
?
2] that maximizes

the robustness criterion I[Φ]. In the following, the performance of the adaptive solu-

tion Γ(x, Y ?, P ) and the non-adaptive solution Φ(x, P ) is compared against the four

robustness indicators described above. In all examples the uncertain parameter follows

a uniform distribution P ∼ U(−1, 1).

Expected Value and Worst-Case

Figure 3.9 depicts the expected value and worst-case performance for various non-

adaptive solutions and an adaptive solution. The indicator values are shown as a

function of x for the adaptive solution and as a function of x1 = x for the non-adaptive

ones. The three blue curves represent different strategies for choosing x2: the solid line

is for x2 = 0; the dashed line is for the maximum value of x2, i.e., x2 = 1− x1; and the

dotted line is for a value of an intermediate value, i.e., x2 =(1− x1) /2. The solutions

to Equations (3.31) and (3.30) are marked with blue and red dots, respectively.

72



3.5 Optimizing for Robustness

0 0.2 0.4 0.6 0.8 1

c

0

0.2

0.4

0.6

0.8

1

O
p
ti
m

al
S
ol

u
ti
on

x?
1

x?
2

x?

(a) Optimal solution in Decision space

0 0.2 0.4 0.6 0.8 1

c

0

0.2

0.4

0.6

0.8

1

I c

Ic[)(x?
1; x

?
2; P ); c]

Ic[!(x
?; Y ?; P ); c]

(b) Indicator value

Figure 3.10: Optimal solutions for the confidence-based indicator with different desired
confidence levels.

It is interesting to note that once the adjustable variable y becomes fixed, it can

only degrade the solution’s robustness, and highest robustness is achieved when x2 = 0.

On the other hand, when it is used as an adaptive variable, it improves the optimal

worst-case significantly, and the optimal expected performance slightly. The optimal non-

adaptive solution w.r.t. expected value is x? = [1, 0], and w.r.t. worst-case performance

is x? = [x1, 0], where x1 can take any feasible value.

Confidence-Based and Target-Based

The robustness defined by the indicators Ic and Iq depends on the desired confidence

and target. The effect of these parameters on the indicator value and the obtained

robust solution is examined. Both the robust optimization problem in Equation (3.31)

and the active robust optimization problem in Equation (3.10) are solved for all possible

values of c and q between zero and one. The optimal solutions are found, to a precision

of ±0.005, using an enumeration, which is possible thanks to the low complexity of

the objective function. The optimal adaptive and non-adaptive solutions, and their

robustness values, are compared in the following.

Figure 3.10 depicts the optimal solutions for the confidence-based indicator with

different confidence levels. From Figure 3.10(a) it can be observed that the optimal

non-adaptive solution for every desired confidence level c is x = [1, 0]. This solution is

the same as the optimal non-adaptive solution for the expected value and the worst-case

performance. The indicator values change with the confidence level from the best-case

of φ = 1 when c = 0% to the worst-case of φ = 0, when c = 100%.

In contrast, the optimal adaptive solution does change for different desired confidence

levels c. When low confidence in the attained value is required, maximum performance
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Figure 3.11: Optimal solutions for the target-based indicator with different targets for
the objective function.

should not be sacrificed for adaptability, and the optimal solution is x? = 1. As the

desired confidence increases, adaptability is required to maintain higher function values,

and therefore x? decreases. In Figure 3.10(b) it can be seen that as the confidence

level increases, the difference between the attainable value of the adaptive and the

non-adaptive solutions increases.

The optimal solutions for the target-based indicator with different targets are shown

in Figure 3.11. Figure 3.11(a) depicts the optimal adaptive and non-adaptive solutions,

and Figure 3.11(b) depicts the confidence level that every solution can attain for each

target.

The optimal non-adaptive solution is the same solution as for the other robustness

criteria, i.e., x? = [1, 0]. The confidence in attaining every target is maximized with

the largest cosine amplitude, and when the cosine argument has a uniform distribution,

centred at zero. It can be seen in Figure 3.11 that the optimal confidence level for every

target decreases as the target increases, towards zero confidence when the target is

q = 1.

Adaptability can ensure 100% confidence in attaining low function values (i.e.,

q ≤ 0.36). In this range, as can be seen in Figure 3.11(a), a range of solutions can attain

the optimal indicator level of 100% confidence. The boundaries of the optimal solutions

x? are marked with a dashed line in Figure 3.11(a). For example, 100% confidence of

attaining the target q = 0.25 can be achieved with the solutions 0.27 ≤ x? ≤ 0.79.

Since the same level of robustness can be achieved either by improved hardware

(i.e., larger values of x) or enhanced adaptability (for small values of x), the preferred
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solution can be chosen based on additional criteria that were not specified in the original

problem formulation. For example, if the cost of the product is relative to the value

of x, the lower bound of the optimum solutions may be preferred. In this case, the

optimal adaptive solution is superior to the non-adaptive counterpart not only for the

original robustness metric, but also for the cost criterion. The cost of the non-adaptive

solution is higher as it requires the maximum value of x (denoted x1 in the non-adaptive

problem formulation in Equation (3.31)).

For targets greater than q = 0.36, the amplitude must be increased, which means

reducing the solution’s adaptability. When the target for the function value goes above

q = 0.84, the optimal adaptive solution is exactly the same as the non-adaptive one, i.e.

x? = 1.

3.6 Sampled Representation of the Uncertainties

Commonly in real-world problems, the distribution of the uncertain objective function

Γ cannot be analytically derived for the following reasons: i) the distribution of the

uncertain parameters is not known and needs to be derived from empirical data, and/or

ii) it is not feasible to analytically propagate the uncertainties to form the uncertain

objective function.

An approximation of Γ, denoted Γ, can be obtained using uncertainty quantification

(UQ) methods. Monte-Carlo sampling is the most reliable UQ method and often used

as a reference for the ‘true’ uncertainty. However, it requires a large number of function

evaluations to converge (Poles and Lovison, 2009). An approximation of the uncertain

objective function Γ can be obtained from repeated evaluations of the function using

independent samples from the uncertain parameters.

The random variate P is represented by a set with k independent samples P ={
p1, . . . ,pk

}
drawn from P. The approximated variate of the objective function then

becomes:

Γ
(
x,y?,P

)
=
{
γ
(
x,y?,p1

)
, . . . , γ

(
x,y?,pk

)}
. (3.32)

The example AROP that is used in this Chapter is composed of a very simple

objective function, and therefore it can be evaluated many times without a substantial

computational cost. In real-world optimization problems, the objective functions are

typically predicted using complicated simulation models. A single function evaluation

may take up to several hours or even days. When this is the case, Monte-Carlo methods

are not feasible to evaluate the performance of every candidate solution.
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Figure 3.12: Convergence of indicator values of sampled uncertain function to the
true indicator value, for different numbers of samples. All indicators are calculated for
x = 0.8.

A variety of other UQ methods exist that require a smaller set P for a reliable

approximation of Γ through Γ. Some examples are polynomial chaos (Wiener, 1938;

Poles and Lovison, 2009), evidence theory (Shafer, 1976; Vasile et al., 2012), stochastic

collocation (Eldred et al., 2011) and quadratic interpolation (Paenke et al., 2006). An

alternative suggested by Branke et al. (2017) is to conduct a large number of samples, but

to reduce the simulation runtime, which results in a less accurate approximation. The

simulation runtime can then be progressively increased as the optimization progresses

towards the robust solution.

Despite the computational issues associated with Monte-Carlo methods, they are

used throughout this study to present and discuss the concepts of the Active Robustness

framework. When sampling methods are required to approximate the uncertainty factors

for problems with expensive objective functions, other UQ methods should be used.

In the following, the relation between the number of samples and the estimation

of robustness is examined. The uncertain parameters are sampled into a set P and

the robustness indicators are computed using their discrete definitions provided in

Section 2.4.

Figure 3.12 depicts the convergence of various robustness indicators based on Γ

with different sample size k. A solution x = 0.8 is evaluated for the expected-value,

worst-case, confidence-based indicator with c = 60% and target-based indicator with

q = 0.6, where P ∼ U(−1, 1). The analytic indicator values are depicted as solid lines,

and the approximated indicator for every sample size is depicted as a single dot. In

agreement with the law of large numbers, as the sample size grows, the approximated

indicator value converges towards the analytic value.
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3.7 AROPs With Various Sources of Uncertainty

The convergence rate may differ from one indicator to another (even when calcu-

lating all indicators for the same sampled approximation Γ). Assuming convergence is

considered satisfactory when the approximated indicator value is within 2% of the true

value, a comparison between the convergence rate for different indicators can be made.

For the results shown in Figure 3.12, Iw converges with the smallest set of 322 samples,

then IE , Ic and Iq with 445, 850 and 5,416 samples, respectively. When a sampled

representation of the uncertainty is used to solve an AROP, it is recommended to first

find the smallest sample size that provides a reliable approximation of the robustness

indicator used.

3.7 AROPs With Various Sources of Uncertainty

The active robust optimization problem in Definition 3.16 is formulated to cope with

uncertain environmental conditions (Type A uncertainty). Adaptability can be used

to compensate for other types of uncertainties as well. This section demonstrates how

adaptability can be used when the realization of the design might differ from the nominal

value (Type B uncertainty), and when the inaccuracy of the simulation method can be

treated as an uncertain function evaluation (Type C uncertainty).

3.7.1 Type B Uncertainty

Consider an uncertainty over the value of the decision variable x in the optimization

problem of Equations (3.13)–(3.17). This uncertainty can be conceived as inaccuracies in

manufacturing processes, under acceptable tolerances. In engineering design, continuous

variables cannot be manufactured to an exact dimension, and every desired dimension

must be accompanied with an allowable tolerance. The manufactured product is

acceptable as long as the actual dimension is within the tolerance. There is no guarantee

for the distribution of the dimension for a batch of products, although some assumptions

can be made according to the manufacturing process.

The realisation of x can take any value from the random variable X that is defined

over the interval of accepted x values. Since the allowable tolerance and the manufac-

turing process are defined by the designer, he/she has some control over the boundaries

and distribution of the random variable X. This control does not exist for Type A

uncertainties, where the environmental parameters are treated as random numbers.

Manufacturing tolerances can be specified in many ways. In the following example,

a symmetric tolerance of ±20% of the nominal value is used. A uniform distribution
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within the acceptable interval is assumed:

X ∼ U(0.8xnom, 1.2xnom) , (3.33)

where xnom is the nominal value specified for x.

Assuming the parameter value p is deterministic and positive, an AROP is formulated:

max
xnom∈X

I[Γ(X,Y ?, p)] ,

where: Γ(X,Y ?, p) = X cos
(
π
2 (p− Y ?)

)
,

Y ? = argmax
y∈Y(x)

Γ(X, y, p) ,

X = {xnom|0 < X ≤ 1} ,

Y(x) = [x− 1, 1− x] ,

X ∼ U(0.8xnom, 1.2xnom) ,

p = 0.7.

(3.34)

Note that the feasible domain X is smaller than the domain when there is no uncertainty

over x. In Equation (3.34) all possible realisations of x must be smaller or equal to

1, and therefore the feasible values for xnom are 0 < xnom ≤ 0.833. The adaptability

of the solution Y(x) depends on the actual realisation of x and not on the requested

nominal value. Hence, for every possible realisation of x there might be a different

optimal configuration y?, and a one-to-one mapping exists between X and Y ?.

The optimal configuration is:

y?(x, p) =

{
p, for x ≤ 1− p,

1− x, for x > 1− p,
(3.35)

and the optimal function value is:

γ(x, y?, p) =

{
x, for x ≤ 1− p,

x cos
(
π
2 (p+ x− 1)

)
, for x > 1− p.

(3.36)

The distribution function of Γ cannot be obtained analytically, since the inverse

function x(γ) does not exist. Since X follows a uniform distribution for every nominal

value xnom, it is easy to obtain the sampled approximation Γ
(
X̄, Y ?, p

)
using Monte-

Carlo sampling with k = 5, 000 samples for every candidate solution. The indicator

values for the sampled approximation of the uncertain objective function were calculated

as explained in Section 3.6.

78



3.7 AROPs With Various Sources of Uncertainty

0 0.5 1

c

0.3

0.4

0.5

0.6

0.7

0.8

O
p
ti
m

al
S
ol

u
ti
on

x?
1;n

x?
2

x?
n

(a) Optimal solution in Decision space

0 0.5 1

c

0.35

0.4

0.45

0.5

0.55

0.6

I c

Ic[)(X?
1 ; x

?
2; p); c]

Ic[!(X
?; Y ?; p); c]

(b) Indicator value

Figure 3.13: Optimal solutions for the confidence-based indicator with different desired
confidence levels.

A non-adaptive solution with uncertainty of Type B is also considered. The robust

optimization problem is similar to the one in Equation (3.31), but here the uncertainty

over p is replaced with an uncertainty over x1. Similar to the adaptive solution, x1 follows

a uniform distribution X1 ∼ U(0.8x1,nom, 1.2x1,nom); x2 is deterministic, but needs to

be defined before the realisation of the solution, and therefore it is not adjustable.

The non-adaptive solution x? =
[
x?1,nom, x

?
2

]
is the solution to the following robust

optimization problem:

max
x∈R2

I[Φ(X, p)] ,

subject to: 0 < X1 ≤ 1,

X1 + |x2| ≤ 1,

where: Φ(X, p) = X1 cos
(
π
2 (p− x2)

)
,

X1 ∼ U(0.8x1,nom, 1.2x1,nom) ,

p = 0.7.

(3.37)

For a given candidate solution x = [x1,nom, x2], the PDF f(x1) is given, and it is

straightforward to propagate it to the uncertain objective function Φ. Since both p and

x2 are deterministic, the term cos
(
π
2 (p− x2)

)
is a constant scalar for every realisation

of x1. Therefore, Φ follows the same distribution as X1, simply scaled by the above

scalar. In the example provided in Equation (3.37), it is a uniform distribution. The

AROP in Equation (3.34) and the RO problem in Equation (3.37) are solved for two

robustness indicators Ic and Iq.
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Figure 3.14: Optimal solutions for the target-based indicator with different targets for
the objective function.

Confidence-Based. Figure 3.13 depicts the optimal adaptive and non-adaptive so-

lutions for the confidence-based indicator with different confidence levels, c. The

superiority of the adaptive solution over the non-adaptive one is evident from the figure.

Both solutions achieve the same best-case performance (i.e., function value with 0%

confidence), but as the required confidence level increases, the difference in the achieved

performance grows significantly.

The maximum function value that can be achieved by either an adaptive or a

non-adaptive solution is φ = 0.57. If the solution is non-adaptive, this value is achieved

for the best-case of the solution x? = [0.625, 0.25] (i.e., when x1 = 1.2xnom = 0.75).

If the solution is adaptive, this value can be achieved by all solutions that have non-

zero probability for x = 0.75. The nominal solution xnom needs to be in the range

x?nom ∈ [0.75/1.2, 0.75/0.8], that is, x?nom ∈ [0.625, 0.937]. The curve for x?nom in

Figure 3.13(a) does not appear as a smooth line because the maximum confidence can

be achieved by a range of adaptive solutions for some confidence levels, c.

For higher confidence levels, an adaptive solution with nominal values larger than

xnom = 0.625 can maintain high function values while remaining feasible thanks to

adaptation of y to the actual realisation of x. A non-adaptive solution must consider

feasibility for all possible realisations x1, and therefore solutions with x1,n > 0.625

cannot satisfy the constraint x2 < 0.25. As a result, only lower values of x1 can be

identified as optimal, leading to poorer performance compared to the adaptive solution.

Target-Based. Figure 3.14 depicts the optimal adaptive and non-adaptive solutions

for the target-based indicator with different targets, q. None of the solutions can achieve

function values greater than 0.57, and therefore the indicator value for q > 0.57 is zero
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for both adaptive and non-adaptive solutions. For low targets, q, both types of solutions

can assure 100% confidence in satisfying the target. A span of optimal solutions can

provide this confidence. The ranges of optimal solutions are depicted in Figure 3.14(a)

via their maximum and minimum values. For the non-adaptive optimal solutions, the

maximum x?1,n corresponds to the minimum x?2, and vice versa.

The advantage of the adaptive solutions over the non-adaptive ones can be seen

from Figure 3.14(b). While the confidence for targets larger than q = 0.37 drops for

the optimal non-adaptive solutions, it remains 100% for the optimal adaptive solutions

for all targets within q ≤ 0.52. The optimal non-adaptive solution for the targets

0.37 ≤ q ≤ 0.57 is the same optimal solution as for the confidence-based indicator

x? = [0.625, 0.25].

3.7.2 Type C Uncertainty

Adaptability can be exploited to account for approximation errors in the simulation

method. consider a property of the product that needs to be approximated by simulation.

The property might not be an objective on its own, but may be used to calculate an

objective. For example, a manufacturing line may be designed to produce at a desired

rate ω′. The production rate depends on the product being manufactured (represented

by a set of parameters p), the machines used for production (the actual solution, x) and

the way the machines are operated (adjustable variables, y). This can be denoted as

ω(x,y,p). Since a desired rate is given, a quadratic objective function can be considered:

γ
(
x,y,p, ω′

)
=
(
ω(x,y,p)− ω′

)2
. (3.38)

Now assume the production rate ω can be approximated by a simulation method.

For a given set of inputs, the simulation produces a deterministic output, but in practice

the actual production might differ from the simulated value. Depending on the fidelity

of the simulation method, its output can be considered as a random variable with a

prior based on the deterministic approximation. For example, the random production

rate Ω may follow a normal distribution with mean, ω, and standard deviation, σ:

Ω|ω ∼ N(ω, σ) . (3.39)

Considering the uncertain function evaluation, and assuming perfect information

over the other factors, the objective in Equation (3.38) becomes a random objective

function:

Γ
(
x,y,p, ω′

)
=
(
Ω(x,y,p)− ω′

)2
. (3.40)
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For the uncertainty example in Equation (3.39), the uncertain function evaluation can

be broken into the sum of a deterministic part and a random variable U ∼ N(0, σ):1

Ω(x,y,p) = ω(x,y,p) + U. (3.41)

The random objective function Γ then becomes

Γ
(
x,y,p, U, ω′

)
=
(
ω(x,y,p) + U − ω′

)2
. (3.42)

An active robust optimization problem can be formulated to minimize this random

objective function:

min
x∈X

Γ
(
x,Y?,p, U, ω′

)
,

where: Y? = argmin
y∈Y(x)

Γ
(
x,y,p, U, ω′

)
,

Γ
(
x,y,p, U, ω′

)
=
(
ω(x,y,p) + U − ω′

)2
.

(3.43)

The adjustable variables y are adapted to the optimal configuration to meet the required

production rate, ω′. Feedback control needs to be incorporated to allow for optimal

adaptation, based on the actual error between the estimated rate and the actual rate of

production.

The variables U and ω′ in Equation (3.43) cannot be controlled by the designer, and

must be considered as additional parameters in the problem formulation. Therefore, an

uncertain parameter vector P can be considered:

P =
[
p, U, ω′

]
, (3.44)

and the AROP in Equation (3.43) can be rewritten as follows:

min
x∈X

Γ(x,Y?,P) ,

where: Y? = argmin
y∈Y(x)

Γ(x,y,P) ,

P =
[
p, U, ω′

]
,

Γ(x,y,P) =
(
ω(x,y,p) + U − ω′

)2
.

(3.45)

The above AROP has exactly the same structure as the AROP defined in Definition 3.16

for Type A uncertainties. Hence, it can be concluded that as long as the uncertainties

1Note that the structure ω + U and the assumption of a normal distribution for U are specific for
the given example. Generally, other distributions for U are possible, as well as other relations between
the deterministic and the random parts of the evaluation function (e.g., ω · U).
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3.7 AROPs With Various Sources of Uncertainty

over the simulation methods can be elicited, Type A and Type C uncertainties can be

treated using the same tools.

The following example is provided to support this statement. Consider the production

rate, ω(x, y, p), can be estimated by the function and constraints used so far in this

section:

ω(x, y, p) = x cos
(
π
2 (p− y)

)
,

subject to: 0 < x ≤ 1,

x+ |y| ≤ 1.

(3.46)

The AROP in Equation (3.45) then becomes:

min
x∈X

Γ(x, Y ?,P) ,

where: Y ? = argmin
y∈Y(x)

Γ(x, y,P) ,

P =
[
p, U, ω′

]
,

Γ(x, y,P) =
(
x cos

(
π
2 (p− y)

)
+ U − ω′

)2
,

U ∼ N(0, σ) ,

X = (0, 1] ,

Y(x) = [x− 1, 1− x] .

(3.47)

A similar problem is defined for a non-adaptive solution that needs to set its y

variable regardless of the actual performance of ω:

min
x∈R2

Φ(x,P) ,

subject to: 0 < x1 ≤ 1,

x1 + |x2| ≤ 1,

where: P =
[
p, U, ω′

]
,

Φ(x,P) =
(
x1 cos

(
π
2 (p− x2)

)
+ U − ω′

)2
,

U ∼ N(0, σ) .

(3.48)

Both optimization problems were solved using an enumerative approach, and a

sample-based representation of U . The following values were used for the parameters:

p = 0.7, ω′ = 0.6, σ = 0.1. Exactly the same methods were used to solve this problem

as in Section 3.6 where the source of uncertainty was in the parameters (Type A).

The results, depicted in Figures 3.15 and 3.16 for the Ic and Iq indicators, respectively,

show that adaptation improves the solution’s performance for both robustness indicators
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3.8 Summary

for some values of c and q. The optimal adaptive solution x? is identical to the first

variable of the optimal non-adaptive solution x?1. The oscillations in the optimal solutions’

values are a result of approximation of the solution by Monte-Carlo methods, and the

discretisation of the decision space when searching for the optimal solution, x?, or, x?,

and the optimal configuration, y?.

3.8 Summary

The active robust optimization problem for optimizing adaptive products was formulated

in this chapter. The formulation takes into account the ability of the adaptive product

to change some adjustable properties in response to different realisations of parameters

that are considered as random during the design period.

The problem is a nested optimization problem – the evaluation of each candidate

solution is conducted by solving a set of optimization problems to find the optimal

configurations for different scenarios of the uncertainties. The performance with the

optimal configuration is mapped against each scenario to construct a distribution of the

random performance variable. Once the performance of the adaptive product can be

described as a random variable, conventional methods for robust optimization can be

used, through the use of robustness indicators.

In robust optimization, the performance in nominal cases of the uncertainties is

commonly sacrificed for robustness to extreme cases. Adaptability can handle those

extreme cases, and allow for better overall performance. The superiority of an adaptive

design was demonstrated over an equivalent non-adaptive design for several variations

of the problem formulation and different robustness metrics. The advantage of the

adaptive design is rooted in the ability to decide the values for some of its variables

after the uncertainty has been realised, in contrast to conventional robust optimization,

where all variables are set during the design stage.

In order to analyse the properties of this new class of optimization problems, a very

simple analytic function was used to formulate an AROP with minimum dimensionality.

It consisted of a single design variable, a single adjustable variable, a single uncertain

parameter and a single objective function. The low dimensionality of the problem and

the simplicity of the objective function made it possible to propagate the uncertainties

from the random parameter to the objective and to find the analytic solution to the

AROP for several robustness criteria.

Despite the low dimensionality of the example AROP, the uncertain objective

function could not be calculated analytically for some cases, and Monte-Carlo sampling

had to be used to estimate it. Moreover, an enumeration was used to find the optimal
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3. ACTIVE ROBUST OPTIMIZATION

robust solution when it could not be found analytically. These computationally expensive

methods could be employed for such a simple function, but real optimization problems are

never this simple. When the difficulty of the problem increases, more efficient methods

for optimization and uncertainty approximation have to be used. Some examples for

such methods are given in Chapter 5, where evolutionary algorithms are used to solve

the case studies.

The basic AROP, presented in this chapter, is composed of a single objective function.

Therefore, a one-to-one mapping between every scenario of the uncertainties and the

optimal configuration exists. In the next Chapter the problem is extended to deal with

situations where more than one objective exists. When this is the case, there might be

a set of optimal configurations for every uncertain scenario, providing different trade-off

between the objectives. The complexities of the problem as well as several approaches

to solve it are presented.
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Chapter 4

Active Robust Multi-Objective

Optimization

4.1 Introduction

In this chapter a wider definition of the AROP is provided. It is extended to include

problems that involve multiple objectives, which are very common in real-world design.

Chapter 3 introduced AROPs with one objective function that may be sensitive to

various types of uncertainties. Whenever the uncertain conditions change, a single-

objective optimization problem needs to be solved in order to find the new optimal

configuration. Therefore, a one-to-one mapping between the realisation of the uncertain

variables and the optimal configuration exists.

The problem becomes much more complicated when more than one objective can

be simultaneously improved by adaptation. Since the solution to a multi-objective

optimization problem is usually a set of Pareto-optimal solutions, a set of optimal

configurations can exist for every realisation of the uncertainties. This poses many

challenges in evaluating and comparing candidate solutions.

For example, the brightness of a smartphone screen can be adjusted by the user

according to the current lighting conditions. A brighter screen provides better visibility

of the data displayed, but consumes more energy. Each brightness level provides

a different trade-off between power consumption and the clarity of displayed data.

For every lighting condition, a different set of trade-offs exists. When choosing the

components of the smartphone, these need to be taken into account.

The Chapter is organised as follows: In Section 4.2 the Active Robust Multi-Objective

Optimization Problem is defined and its notion of optimality is discussed.

An analytic example, based on the single-objective AROP of Chapter 3, is described
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4. ACTIVE ROBUST MULTI-OBJECTIVE OPTIMIZATION

in Section 4.3. The problem features and the relations between the objective functions

are analysed, as well as the manner in which they are affected by uncertainties and

adaptation.

A candidate solution to an ARMOP has a set of optimal configurations for every

possible realisation of the uncertainties. As a result, its performance can be described

as a variate of Pareto-optimal frontiers. In order to optimize adaptive products for

a multi-objective problem, a means to evaluate and compare candidate solutions is

required. Despite the recent progress in the field of multi-objective optimization under

uncertainties, quality indicators for variate of sets cannot be found in the existing

literature. In Section 4.4, the requirements from a robustness indicator for an ARMOP

are characterised, and a number of strategies for fitness assignment and comparison

between candidate solutions are suggested. Robustness indicators, that are based on

these strategies are introduced.

Section 4.5 demonstrates how the suggested robustness indicators can be incorporated

into search heuristics. High-level descriptions of evolutionary algorithms are provided.

Each algorithm uses a different solution approach, based on the manner in which

robustness is defined for the ARMOP.

To conclude the chapter, a review of the suggested methods for solving ARMOPs

is presented in Section 4.6. It includes some guidelines for selecting the most suitable

approach based on issues such as computing resources and flexibility for a posteriori

decision-making. Section 4.7 summarises the chapter.

4.2 Problem Formulation

This section extends the definition of the Active Robust Optimization Problem in

Section 3.3 to optimization problems with multiple objectives of type γ (i.e., adaptable

objectives, see definition in Section 2.3.1).

As discussed in Section 2.1.2, uncertainties over the objective values of a candidate

design can originate from the parameters p (Type A), the decision variables x and y

(Type B) and/or the objective functions themselves (Type C). Without loss of generality,

the aspects of the ARMOP are demonstrated using Type A uncertainties, i.e., uncertain

environmental parameters. Other sources of uncertainties can be treated in a similar

fashion, as demonstrated for the single-objective case in Section 3.7.

Definition 4.1 (Active Robust Multi-Objective Optimization Problem). Let x ∈ X be

a vector of design variables within a feasible domain X , describing a changeable design.

Let y ∈ Y(x) be a vector of adjustable variables of the candidate design x, where Y(x) is

the adaptability of the design x. Let p be a vector of uncertain environmental parameters,
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described by a vector variate P. Let γ(x,y,p) be a vector of nγ > 1 adaptable objective

functions, and let Γ(x,y,P) be a vector variate corresponding to the variate P. An

active robust multi-objective optimization problem is the following:

min
x∈X

Γ(x,Y?,P) , (4.1)

where: Y? = argmin
y∈Y(x)

Γ(x,y,P) . (4.2)

The underline notation is used to distinguish a set of vectors from a single vector.

Since the solution to (4.2) is a set of optimal configurations for every realisation of

the uncertainties, Y? is a variate of Pareto-optimal sets. As a result, Γ(x,Y?,P) is a

variate of Pareto-optimal frontiers.

4.3 Analytic Example

A simple bi-objective optimization problem is used in this section to demonstrate

the unique properties of ARMOPs. Consider the following functions that need to be

simultaneously minimized:

minimize:
x

γ1(x,y,p) = r(x, y1, p1) · cos(θ(y2, p2)) ,

γ2(x,y,p) = r(x, y1, p1) · sin(θ(y2, p2)) ,

where: r(x, y1, p1) = 1− x cos
(
π
2 (p1 − y1)

)
,

θ(y2, p2) = π
2 (p2 + y2) ,

subject to: 0 < x ≤ 1,

|y2| ≤ 1
2 ,

x+ |y1|+ |y2| ≤ 1.

(4.3)

The functions are composed of a distance term r(x, y1, p1) and a direction term

θ(y2, p2). For values of θ between zero and π/2 both sine and cosine terms are positive.

Therefore, an increase in r increases both γ1 and γ2, while an increase in θ increases

γ2 and decreases γ1. The distance term, r(x, y1, p1), is based on the objective function

used in Chapter 3. The direction term, θ, determines the ratio between the objectives.

4.3.1 Functions Analysis

Before the problem in Equation (4.3) is framed as an ARMOP, let us take a step back

and assume no uncertainties exist over any part of the problem formulation. When this
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Figure 4.1: Optimal solutions for the problem in Equations (4.4)-(4.9) for different
parameter settings.

is the case, the parameters p1 and p2 are constant terms, and all decision variables can

be considered as type x, i.e., they only need to be found once. The problem in (4.3)

can then be posed as a simple multi-objective optimization problem:

minimize:
x

ψ1(x,p) = r(x1, x2, p1) · cos(θ(x3, p2)) , (4.4)

ψ2(x,p) = r(x1, x2, p1) · sin(θ(x3, p2)) , (4.5)

where: r(x1, x2, p1) = 1− x1 cos
(
π
2 (p1 − x2)

)
, (4.6)

θ(x3, p2) = π
2 (p2 + x3) , (4.7)

subject to: 0 < x1 ≤ 1, |x2| ≤ 1, |x3| ≤ 1
2 , (4.8)

3∑
i=1

|xi| ≤ 1. (4.9)

Figure 4.1 depicts the solution to Equations (4.4)-(4.9) in Decision and Objective

spaces, for three combinations of the parameters. For each parameter setting, the

problem was solved in three stages:

1. Generate a discrete set x3 spanning the feasible range of x3.

2. For each variable in x3:

(a) Calculate the direction θ(x3, p2).

(b) Minimize the distance function r(x1, x2, p1).

3. Remove dominated solutions.
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The markers in Figure 4.1 depict the non-dominated solutions for each parameter

setting, and the connecting lines show the optimal solutions for all values of θ, including

dominated solutions. For every direction θ, the optimization in Stage 2b follows the

procedures described for the single-objective problem in Chapter 3.

The value of θ(x3, p2) defines the ratio between the objectives. The ‘neutral’ ratio is

defined by the value of the environmental parameter p2. If the decision-maker is not

satisfied with this ratio and prefers a different trade-off between the objectives, the

value of x3 can be increased or decreased accordingly. The colour of the markers relates

to the magnitude of x3, i.e., to the amount of deviation from the ‘neutral’ direction.

Due to the constraint in Equation (4.9), a smaller magnitude of x3 allows for a smaller

value of r(x1, x2, p1). As a result, the Pareto frontiers in Figure 4.1(b) appear as arcs

that are pulled towards their centre at the ‘neutral’ direction.

The curves of Pareto sets in Figure 4.1(a) depend on the value of p1
1 As demonstrated

in Chapter 3, higher values of p1 require higher ratios of x2/x1 in order to remain optimal.

Additionally, as the value of p1 decreases, the problem becomes ‘easier’, and the arcs

can be brought closer to the origin and improve performance in both objectives.

4.3.2 Introducing Uncertainties

Now that the properties of the objective functions are captured, this section examines how

uncertainties over the parameters affect the problem. Adaptability is not considered in

this section, which means that all decision variables are of type x, similar to Section 4.3.1.

Assuming the uncertain parameters can be described by the vector variate P, the

problem in (4.3) can be posed as the following robust multi-objective optimization

problem (RMOP):

minimize:
x

Φ1(x,P) = R(x1, x2, P1) · cos(Θ(x3, P2)) ,

Φ2(x,P) = R(x1, x2, P1) · sin(Θ(x3, P2)) ,

where: R(x1, x2, P1) = 1− x1 cos
(
π
2 (P1 − x2)

)
,

Θ(x3, P2) = π
2 (P2 + x3) ,

subject to: 0 < x1 ≤ 1, |x2| ≤ 1, |x3| ≤ 1
2 ,

3∑
i=1

|xi| ≤ 1.

(4.10)

Note that the uncertainty over the parameters propagates to the distance and direction

terms, and eventually to the objective functions. For a given candidate solution x, every

1However, the dominance relations between the solutions on the curve depend on p2 as well.
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Figure 4.2: Performance of three candidate solutions when both objectives depend on
uncertain parameters.

scenario p is mapped to an objective vector φ. The multivariate Φ is the image of all

scenarios of P.

To illustrate the distribution of the objective functions, consider both parameters

follow uniform distributions: P1 ∼ U(−1, 1) and P2 ∼ U(0.25, 0.75). Figure 4.2(a)

depicts a sampled representation of the objective functions Φ
(
x,P

)
for three candidate

solutions, using a set of k = 500 samples for P. As expected from the relation between

θ and p2, the random direction term Θ is uniformly distributed over an interval of π/4

radians. The lower and upper bounds depend on the variable x3. Due to the cosine

term in the distance function, R is right-skewed, where the lower bound depends on the

value of x1 and the upper bound on both x1 and x2.

In order to assess the random performance vector Φ =
[
Φ1, . . . ,Φnφ

]
for a candidate

solution x, robustness indicators need to be used. There are two possible approaches

for using robustness indicators in RMOPs:

1. Indicators that quantify the multivariate Φ with a single scalar value I[Φ].

2. Using a separate indicator for each of the marginal distributions:

I[Φ] =
[
I[Φ1] , . . . , I

[
Φnφ

]]
. (4.11)

When the first approach is used, the objective functions of the bi-objective problem
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in Equation (4.10) can be transformed into a single objective:

optimize
x∈X

I[Φ(x,P)] ,

where: Φ(x,P) = [Φ1(x,P) ,Φ2(x,P)] .

(4.12)

When the second approach is used, it can be transformed into the following bi-objective

problem:

optimize
x∈X

I[Φ(x,P)] ,

where: I[Φ(x,P)] = [I[Φ1(x,P)] , I[Φ2(x,P)]] .

(4.13)

To illustrate the difference between the two approaches, consider the problem in

Equation (4.10), where a goal vector q = [0.6, 0.4] exists for the objective functions.

The threshold indicator Iq can be used in two ways. On the first, the confidence in the

random objective vector to satisfy the goal vector q is interpreted as

Iq[Φ(x,P)] = Pr(Φ(x,P) � q) , (4.14)

where a � b denotes that vector a weakly dominates vector b. The dotted region at

the bottom left corner of Figure 4.2(a) include all the samples that dominate the goal

vector (which is marked with a black triangle). It can be seen in the figure that x(1)

does not satisfy the goals for any sampled scenario of the uncertainties and therefore

Iq
[
Φ
(
x(1),P

)]
= 0. x(2) and x(3) do satisfy the goal for some of the sampled scenarios,

and their indicator values are Iq
[
Φ
(
x(2),P

)]
= 0.61 and Iq

[
Φ
(
x(3),P

)]
= 0.53.

It is worth mentioning that using the above robustness indicator as a single measure

to assess candidate solutions goes against the nature of MOO. While the aspiration in

MOO is to find a set of solutions that offer a wide range for a posteriori decision-making,

this robustness measure forces the decision-maker to set his/her preference prior to

the optimization process. At this stage the DM might not be aware of the possible

performance, and may find it difficult to set a proper goal.

It might be beneficial to use this type of scalar robustness metric in a decomposition-

based optimization framework. A set of goal vectors q can be used to decompose the

MOP into multiple single-objective problems, where each sub-problem targets a different

trade-off between the objectives.

The threshold indicator can also be used for the second approach to assess the

marginal distributions Φ1 and Φ2. For the above goal vector q = [0.6, 0.4], the vector
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Figure 4.3: Optimal configurations of an adaptive solution for two scenarios of the
uncertain parameters.

robustness indicator Iq is defined:

Iq[Φ(x,P)] = [Pr(Φ1(x,P) ≤ 0.6) ,Pr(Φ2(x,P) ≤ 0.4)] . (4.15)

The vector indicator values of the three candidate solutions in Figure 4.2 are

Iq
[
Φ
(
x(1),P

)]
= [0.86, 0], Iq

[
Φ
(
x(2),P

)]
= [0.83, 0.63] and Iq

[
Φ
(
x(3),P

)]
= [0.53, 0.98].

This approach, of using the marginal objective distributions, is the most common in

existing studies on robust multi-objective optimization (see Section 2.4.2).

4.3.3 Introducing Adaptability

Now it is time to return to the definition of the active robust multi-objective optimization

problem in Equations (4.1)–(4.2). While every scenario of the uncertain parameters in

a conventional RMOP is associated with a single performance vector, adaptive solutions

can offer a trade-off between the objectives whenever the parameters change. This is

denoted with the underline notation for Γ and Y?.

Figure 4.3 illustrates the performance of a candidate solution x for a hypothetical bi-

objective ARMOP. Two scenarios of P are depicted in Figure 4.3(a). The configuration

space, depicted in Figure 4.3(b) as the area bounded by the broken line, depends on the

solution x, and therefore it does not change from one scenario of P to another. However,

for every scenario p, a different mapping exists from configuration space to objective

space, which is depicted in Figure 4.3(c). All possible objective values in Figure 4.3(c)

are bounded by the solid and dashed contours for the star and triangle scenarios,

respectively. The Pareto frontiers and corresponding Pareto sets y? that minimize

γ(x,y,p) are shown for both scenarios. Note that y? is a set of the Pareto-optimal

configurations and not a single optimal configuration, as in single-objective AROPs.
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Figure 4.4: Pareto-optimal configurations for three solutions under three possible
parameter settings.

Figure 4.4 depicts the optimal configurations of three candidate solutions to the

ARMOP presented at the beginning of this section in Equation (4.3). When the problem

is posed as an ARMOP, there is only a single decision variable x, and the other two

variables are adjustable variables. y1 improves the distance term in response to variations

in p1, and y2 controls the direction (i.e., the ratio between the objectives) and can

respond to variations in p2. As discussed in Section 4.3.1, the distance term can be

minimized by both increasing x or setting y1 close to p1. The “adaptability constraint”

x + |y1| + |y2| ≤ 1 introduces a trade-off between the minimum achievable distance

term, and the ability to respond to variations in the uncertain parameters. Additionally,

solutions that are more adaptive (i.e., having a smaller value of x) are able to span a

wider front of Pareto-optimal configurations for each realisation of the uncertainties,

thanks to a wider range for y2.

Each colour in Figure 4.4 is associated with a different candidate solution and each

marker with a single scenario of the uncertain parameters. The blue solution x(1) = 0.6

is the most adaptive one, and the yellow solution x(3) = 1.0 has no adaptability at all.

The optimal configurations and their corresponding objective values are depicted in

Figures 4.4(a), and 4.4(b), respectively. The following observations on the ARMOP can

be made from Figure 4.4:

1. The adaptability constraint is active for all optimal configurations, regardless of

the values of the uncertain parameters. This is evident from Figure 4.4(a).1

1The non-dominated solutions among the optimal trade-off curve appear with symbols. Since the
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2. Adaptability allows the solution to maintain similar performance after a change

of the uncertain parameters. It can be seen in Figure 4.4(b) that the difference in

performance of x(3) between any two scenarios is much greater than the difference

of x(1). The maximum deviation in performance for the above example is between

the circle and diamond scenarios. For x(3), the Euclidean distance between the

performance vector of each scenario is 1.13, whereas the minimum distance between

performance vectors of x(1) for the two scenarios is 0.27.

3. Adaptive solutions span a wider Pareto front for every uncertain scenario than

non-adaptive ones. This leaves more room for decision-making whenever a change

occurs in the uncertain parameters.

In the next section, the above problem is used to demonstrate various approaches to

evaluate and compare candidate solutions to an ARMOP.

4.4 Evaluating Candidate Solutions for ARMOPs

In the previous section, the unique properties of an ARMOP were introduced by consid-

ering a small number of scenarios of the uncertain parameters, P. It was demonstrated

that for every scenario, p, there might exist a set of optimal configurations, y?(x,p),

and a corresponding front of optimal performance vectors, γ
(
x,y?,p

)
. However, in

order to properly evaluate a candidate solution, one should consider its Pareto front for

all possible scenarios of P, or at least a sufficiently large representative set of scenarios.

According to the AROP methodology, the variate Γ in Equation (4.1) should be replaced

with a robustness criterion I[Γ]. The formulation of the ARMOP then becomes:

min
x∈X

I[Γ(x,Y?,P)]

where: Y? = argmin
y∈Y(x)

Γ(x,y,P) .
(4.16)

Although there are existing robustness criteria for multi-objective random variates

(see Section 2.4.2), a criterion that quantifies a variate of sets cannot be found in the

existing literature. Figure 4.5 demonstrates why existing robustness criteria are not

suitable for quantifying a Pareto-optimal front by reducing it to a single representative

objective vector. Consider the set of Pareto-optimal performance vectors for a minimiza-

tion problem, marked with stars in Figure 4.5(a). This set can be the Pareto-optimal

front γ
(
x(a),y?,p

)
of a candidate solution x(a) for a single scenario p. Averaging these

vectors will result in the performance vector marked as a black square. Considering the

same eleven configurations are used for all scenarios, the symbols in Figure 4.4(a) overlay at some points.
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γ1

γ2

(a) solution x(a)

γ1

γ2

(b) solution x(b)

Figure 4.5: Unsuitable robustness criteria for a Pareto front. Pareto-optimal per-
formances are marked with stars, the mean value is marked with a square and the
worst-case with a circle.

worst-case could be interpreted as the vector marked with a circle, which is the nadir

objective vector defined as follows:

γnad =
[
γnad

1 , . . . , γnad
j , . . . , γnad

nγ

]
where: γnad

j = max
y∈y?

γj(x,y,p) ∀ j = {1, . . . , nγ} .
(4.17)

Now consider the optimal performances of another candidate solution x(b) for the same

scenario p, as depicted in Figure 4.5(b). It can be seen that γ
(
x(b),y?,p

)
is a subset

of γ
(
x(a),y?,p

)
, and therefore it provides the user with fewer alternatives for decision-

making. Assuming no a priori preferences have been specified, the smaller extent

provided by Solution x(b) makes it less attractive than Solution x(a) (according to this

single scenario p). Nevertheless, both robustness criteria mentioned above consider

Solution x(b) as superior to Solution x(a). This can be inferred from the fact that both

the mean performance vector and the nadir vector of Solution x(a) are dominated by

those of Solution x(b).

4.4.1 Requirements from Robustness Indicators for ARMOPs

Before performance indicators for ARMOPs can be suggested, it is important to

understand what properties make an adaptive solution preferable. The performance

of an adaptive solution is a variate of Pareto-optimal frontiers, Γ. When these Pareto

frontiers are evaluated by a performance indicator, they need to be evaluated according to

the common notions of optimality in multi-objective optimization, as listed in Chapter 2:

1. Dominance. The portion of the objective space dominated by the Pareto front

should be maximized.
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γ1

γ2

(c) Distribution

Figure 4.6: Differences in quality of Pareto frontiers for different criteria.

2. Extent. The range of possible values for each objective should be maximized.

This allows the DM to incorporate higher-level knowledge that is not available

during the design process to choose a configuration from different regions of the

objective space.

3. Distribution. The distances between neighbouring vectors of the Pareto front

should be minimized. This allows the DM a fine resolution in choosing the

appropriate trade-off between objectives.

4. Pertinence. The relevance of the solutions in the Pareto front to the decision-

maker’s preferences. Whenever preferences can be described before or during

the optimization process, the search can be accelerated by targeting only Pareto-

optimal solutions that satisfy those preferences. Pertinence is not a quality of

the Pareto-front per se, but it is necessary to check whether or not it can be

considered when evaluating a front.

Figure 4.6 depicts the differences in quality between two candidate solutions for the

first three criteria, based on their optimal performance for a single realisation of the

uncertainties. The solution marked with stars is better than the one marked with

triangles for the criterion mentioned in any panel.

An evaluation of a candidate solution x to an ARMOP consists of the following

stages:

1. Evaluating the quality of the Pareto front, γ(x,p), for each scenario under

consideration using a quality indicator, q
[
γ(x,p)

]
.

2. Constructing the distribution (or an approximation) of the quality indicator,

Q[Γ(x,P)], that corresponds to the distribution of the uncertain parameters, P.

3. Quantifying the distribution with a robustness indicator, I[Q].
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Once the Pareto front, γ(x,p), is replaced with the quality indicator, q
[
γ(x,p)

]
, the

evaluation becomes similar to a common robust optimization procedure, where a random

variate needs to be assessed. In the following, several quality indicators are introduced.

The approach taken to solve the ARMOP is highly influenced by the choice of indicator.

For example, a unary indicator that quantifies the PF with a scalar value leads to a

single-objective RO, an indicator that results in a vector leads to a multi-objective RO,

and an indicator based on goal vectors can be used in a decomposition-based framework.

4.4.2 Single-Objectivisation

A straightforward approach for an ARMOP is to identify a high-priority objective and

to transform the ARMOP into a single-objective AROP. The other objectives are also

taken into account when choosing a candidate design, but adaptation only takes place

in response to changes in the high-priority objective. This kind of approach can be

taken, for example, when a design need to be optimized for maximum functionality

and minimum cost. Different candidate designs have a different degree of functionality

and different cost. Additionally, the configuration in which the product is being used

affects the operational costs. While the overall production cost and operational cost is

taken into account when the solution is evaluated, during operation, the functionality

of the product dictates the configuration. An example of an optical table optimization

is provided in Chapter 5 to illustrate this approach.

Consider the ARMOP defined in Equations (4.1)–(4.2). Instead of considering the

entire Pareto set of optimal configurations y?(x,p) for every scenario p, the objective

vector is decomposed into a master objective γm and slave objectives γs:

γ =
[
γm, γs,1, . . . , γs,nγ−1

]
. (4.18)

Given the uncertainty the variate Γ becomes:

Γ =
[
Γm,Γs,1, . . . ,Γs,nγ−1

]
. (4.19)

The ARMOP then becomes the following AROP:

min
x∈X

Γ(x,Y?,P) ,

where: Y? = argmin
y∈Y(x)

Γm(x,y,P) .
(4.20)

Note that the variate Γ(x,Y?,P) is still a vector variate, but now there is a one-to-one

mapping between each scenario p and the objective vector γ(x,y?,p).
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y1

y2

(a) Adjustable design space

γ1

γ2

(b) Objective space

Figure 4.7: Single-objectivisation of an ARMOP for two scenarios of the uncertain
parameters.

Figure 4.7 depicts a single-objectivisation of the example used in Figure 4.3, with γ1

being the master objective. The original Pareto sets and Pareto frontiers are shown for

the star and triangle scenarios. The configuration that minimizes γ1 is marked with a

black marker for each scenario. By using this approach, the ARMOP can be solved as a

conventional multi-objective robust optimization problem, such as the one discussed in

Section 4.3.2. In the following, the example ARMOP in Equation (4.3) is solved using

single-objectivisation. First, the set of optimal configurations is found for each scenario,

as described in Section 4.3.3, then the configuration that minimizes γ1 is chosen.

To illustrate the difference in performance between adaptive and non-adaptive

solutions, consider the non-adaptive solutions to the problem presented in Figure 4.2.

Three solutions are depicted in this figure with x1 values of 0.4, 0.6 and 0.8, and various

values for x2 and x3. Now consider the ARMOP formulation of the problem, where x1

is the only decision variable, x, and x2 and x3 are replaced with the adaptable decision

variables, y1 and y2, respectively. Figure 4.8 depicts the distribution of objective vectors

of the solutions in Figure 4.2 with their adaptive counterparts with the same value for x

and x1. While for the non-adaptive solutions every scenario p maps into a performance

vector according to the fixed values of x2 and x3, for the adaptive solutions each scenario

maps into the performance vector with minimum γ1 from all possible configurations

of y1 and y2. It is clearly visible that adaptation allows for a significant improvement

of the dominant objective γ1. It is worth mentioning however that the non-adaptive

solutions were arbitrarily chosen, and not optimized to favour γ1.

The ARMOP (4.3) consists of a single decision variable x. While it is quite challenging

to display the distribution Γ(x) for every candidate solution in the feasible range

x ∈ (0, 1], a value of a robustness indicator for every distribution can be visualised.

Figure 4.9 depicts two robustness criteria: the worst-case scenario, and the expected
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Figure 4.8: Comparison of the non-adaptive solutions from Figure 4.2 with their adaptive
counterparts.
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Figure 4.9: Expected and worst-case vectors for the entire search domain after single-
objectivisation.

objective vector. Both indicators consider the marginal distributions of Γ1 and Γ2 after

single-objectivisation. The worst-case objective vector is defined as follows:

Iw[Γ] =
[
max(Γ1) , . . . ,max(Γi) , . . . ,max

(
Γnγ
)]
, (4.21)

and the mean objective vector is defined as follows:

IE [Γ] =
[
E(Γ1) , . . . ,E(Γi) , . . . ,E

(
Γnγ
)]
. (4.22)

The colour intensity of the markers in Figure 4.9 correspond to the value of x.

Lighter shades describe solutions with high value of x and low adaptability, and vice

versa. Although γ1 is prioritised over γ2 when choosing the optimal configuration for

each scenario, the trade-off between the objectives can be taken into account when
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choosing the final solution. For example, when considering the expected performance,

an improvement of γ1 can be noticed as x decreases from 1 to 0.5, and adaptability

increases respectively. However, beyond x = 0.5, the improvement in γ1 is marginal,

while γ2 keeps getting worse as x decreases. If γ1 was the only consideration, the

optimal solution with respect to expected performance would be x = 1. However, the

solution x = 0.5 makes a better choice if both objectives are to be considered. When

the worst-case is considered, the solution x = 0.5 is the most obvious choice, as it

minimizes γ1, and no significant improvement in the worst value of γ2 is achieved by

any alternative solution.

Single-objectivisation is recommended for solving ARMOPs where one of the objec-

tives has a clear priority over the others when it comes to adaptation. Its main benefits

are:

1. The complexity of the ARMOP is significantly reduced since a single-objective

optimization problem needs to be solved for the optimal configuration, instead of

an MOP.

2. The quality indicator for evaluating each set of optimal configurations is the

objective vector with the best value of γm. Since it is defined in the original

objective space, and no utility function is used, it is easier for a decision-maker to

set a robustness criterion over the distribution of the quality indicator.

It is acknowledged however that single-objectivisation can only be used for a specific

type of ARMOPs, where a leading objective for adaptation can be identified. When the

ARMOP cannot be formulated in this fashion, a different approach should be taken. In

the following section, a scalarising approach, inspired by decomposition-based EMOAs,

is suggested.

4.4.3 Decomposition-Based Approach Using Scalarisation

Decomposition-based methods have gained increasing popularity for solving multi-

objective optimization problems over the last decade, (Giagkiozis et al., 2013b). A

decomposition-based algorithm decomposes an MOP into n single-objective problems,

each targeting a different ratio between the objectives. This sort of decomposition can

be seen in Figure 4.10: a set of six reference direction vectors (grey) is being used to

guide the search towards different regions on the Pareto front. A different sub-problem

is defined for every direction vector by using a scalarising function, s(γ,w), that maps

an objective vector, γ, into a scalar value according to a vector of weights, w. The

weights vector, w, is composed of non-negative components that sum to one. The ith

component of w is the relative weight of objective, γi.
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γ1

γ2

Figure 4.10: Decomposition of a bi-objective problem using a set of reference direction
vectors.

A variety of scalarising functions exists in the literature, as well as methods for

generating the set of weighting vectors (see Hughes, 2003; Tan et al., 2012; Giagkiozis

et al., 2014). Without loss of generality, the approach is illustrated in the following

using the Weighted Chebyshev scalarising function described in Equation (4.23) below:

s =
nγ

max
i=1

(
wi ·(γi − γ?i )

)
, (4.23)

where γ? is a reference vector in objective space, typically the ideal vector, composed

of the lower bound for each objective.

It is usually desired in multi-objective optimization to find a set with an even

distribution across the Pareto front. The distribution of the obtained solutions is

highly influenced by the choice of weighting vectors used to decompose the problem.

A common practice is to use an evenly spaced set of weighting vectors (e.g., using a

simplex-lattice design (Scheffe, 1958)). However, an even distribution of the weights

may lead to a distorted distribution in objective space. For this reason, the generalized

decomposition framework, suggested by Giagkiozis et al. (2014), is utilised to generate

an evenly spaced set of reference direction vectors in objective space, and to find the

optimal weighting vector for each direction. Wang et al. (2013) has shown that the

optimal weighting vector w for the weighted Chebyshev scalarising function (4.23) is

the normalised reciprocal of the direction vector, d:

w =
[
w1, . . . , wnγ

]
,

wi = a ·(di + ε)−1 , i = 1, . . . , nγ ,

nγ∑
i=1

wi = 1,

(4.24)
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Figure 4.11: Contours of equal weighted Chebyshev values in a bi-objective space for a
given direction vector.

where ε is a small number to prevent division by zero, and a is a normalisation factor.

Figure 4.11 depicts the topography of the weighted Chebyshev function in a bi-

objective space for a given direction vector d = [0.3, 0.7]. The direction vector is marked

with a black dot, and all objective vectors with the ratio γ1/γ2 = 3/7 (i.e., with the same

direction as d) are marked with a dashed line. The coloured lines represent contours

of the scalarising function in Equation (4.23), with γ? located at the origin. Below

the direction line, where γ1/γ2 > d1/d2, the value of the scalar function only depends

of the value of γ1 according to the relation s = 0.7γ1. Similarly, above the direction

line the scalar function corresponds to s = 0.3γ2. This illustrates the inverse relation

d1/d2 = w2/w1, described in Equation (4.24).

Using a set of nw weighting vectors and a scalarising function s(γ,w), the ARMOP

defined in Section 4.2 is decomposed into nw single-objective AROPs, where the ith

AROP is defined as follows:

min
x∈X

S
(
x,Y?,P,wi

)
,

where: Y? = argmin
y∈Y(x)

s
(
x,y,P,wi

)
.

(4.25)

For every scenario of the uncertainties p, the optimal configuration y? is the member

of the Pareto-optimal set y? with the best scalar function value. Let us assume that

the Pareto front, γ
(
x,y?,p

)
, is continuous and includes an objective vector with the

same ratio as the reference direction vector. For the weighted Chebyshev function, the

optimal configuration is the one with the same ratio between the objectives as the ratio
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Figure 4.12: Performance of two candidate solutions according to weighted Chebyshev
for different direction vectors.

of the direction vector.

To illustrate how decomposition can be used to solve and analyse candidate solutions

to ARMOPs, consider the analytic example (4.3). Figure 4.12 depicts the performance

of two candidate solutions according to the weighted Chebyshev scalarising function.

The sampled distribution of the scalar value S is displayed in Figure 4.12(a), and the

confidence robustness indicator for this distribution is depicted in Figure 4.12(b). Both

figures describe a two-dimensional space where the units in both dimensions are those

of the scalar function. Each sample s
(
γ,wi

)
is represented by the vector sdi, where

wi is the optimal weight for direction, di. The dotted line corresponds to s = 1 in all

directions.

A comparison between two extreme solutions is shown in the figure. The blue

solution x = 0.1 is highly adaptive, which means that the direction of the objective

vector can be controlled and adjusted to the required direction in each sub-problem.

However, the distance term is generally large for most samples of p. The red solution

x = 1 has no adaptability at all, and its performance is determined solely by the

realisation of the uncertainties. Thanks to the high value of x, the distance term is

lower than that of the other solution for most of the scenarios. It can be concluded

from Figure 4.12 that adaptation has an advantage for the above problem when one

objective is preferred over the other. In this case, the adaptive solution achieves better

values of the scalar function for all scenarios. However, when both objectives are equally

important, the non-adaptive solution has an advantage.
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Figure 4.13: Optimal Ic value for each direction for three levels of confidence, c.

The above example only considered two candidate solutions for the problem (4.25),

which are either extremely adaptive or non-adaptive. In the following, the ARMOP

is decomposed to nw = 41 sub-problems, and is solved for the Ic indicator with three

levels of confidence: c = 0.05, c = 0.5 and c = 0.95. The solution is obtained by using

brute force. For every sub-problem, the indicator value is calculated for an enumeration

of the decision space X with a resolution of 0.01. The solution with the minimum value

of the indicator Ic is then selected as the optimal solution for the sub-problem.

Figure 4.13 depicts the optimal indicator value at every direction in a similar fashion

to Figure 4.12. For each sub-problem with direction vector, di, and weighting vector,

wi, the optimal solution is depicted by the vector, Ic
[
S
(
Γ,wi

)]
di. The colour of the

marker represents the value of the optimal solution, x.

By examining the results in Figure 4.13, we learn that the solution x = 0.5 is the

optimal solution for a wide range of trade-offs between the objectives. As the required

level of confidence increases, the solution x = 0.5 becomes the optimal solution for

a wider range of direction vectors. This finding supports the optimization results in

Section 4.4.2, where the solution x = 0.5 was identified as the preferred solution for the

single-objectivisation variant of the ARMOP.

Both approaches for evaluating adaptive solutions presented so far consider a single

optimal configuration from the set y?. In the following, the entire set of optimal

configurations for each scenario of the uncertainties is evaluated as a whole, using

quality indicators for set-based optimization.
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4.4.4 Set-Based Unary Indicator

In the field of evolutionary multi-objective optimization it is common to benchmark

newly proposed algorithms on a set of test problems, and compare the approximated

Pareto frontiers achieved by each algorithm with the aid of quality indicators. The

quality indicators used in EMO follow the guidelines described in Section 4.4.1, i.e.,

proximity, diversity and pertinence. This section describes how a unary indicator

for quantifying a set of performance vectors can be used to solve the ARMOP. A

unary quality indicator q
[
γ
(
x,y?,p

)]
is used for every scenario of the uncertainties to

scalarise the Pareto frontier of every candidate solution. The indicator variate of different

candidate solutions can then be compared and ranked through the use of robustness

criteria. Keeping in mind that the loss of meaningful information is inevitable when

using a scalarising function, it is important to use an indicator that preserves as much

information as possible regarding the quality of the trade-off surface γ
(
x,y?,p

)
.

One of the well-known quality indicators for approximation sets is the hypervolume,

defined as the volume of objective space enclosed by the Pareto front and a reference

point (Zitzler, 1999). The HV measure provides an integrated measure of proximity,

diversity and pertinence, although it has been shown by Knowles and Corne (2002) that

it is sensitive to the choice of a reference point. Despite this drawback, it is used in this

section to demonstrate the unary indicator approach.

The HV of the Pareto front of solution x for scenario p can be denoted as

qhv

[
γ
(
x,y?,p

)]
. For clarity, the shortened notation qhv [x,P] is used hereafter. It

is calculated as follows according to the ideal vector γ∗ and the worst objective vector

γw: First, the ideal and worst objective vectors are identified as the vectors with

minimum and maximum objective values, respectively, amongst all known solutions and

scenarios. Next, the objectives γ
(
x,y?,p

)
are normalised in a manner that supports

DM’s preferences (e.g., setting γ∗ to zero and γw to a vector of weights between 0-1).

Finally, the hypervolume qhv [x,p] is calculated, using the worst objective vector as

a reference. The variate of qhv [x,p] that corresponds to the variate P is denoted as

Qhv [x,P].

Fig 4.14 demonstrates the above procedure for a population of two solutions. Three

scenarios of p are considered, where the Pareto frontiers of the two solutions x9

and x◦ are depicted in stars and circles, respectively. Dashed contours show the

domains in objective space for scenario p3 that include the performances of all evaluated

configurations. The worst objective vector is calculated according to the objective

vectors of all configurations, including non-optimal ones. The ideal vector is marked

with a black triangle and the worst objective vector with a white triangle. No preference
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Figure 4.14: Pareto frontiers of two solutions for three scenarios of the uncertainties,
and hypervolumes of one solution for the three scenarios.

is considered between the two objectives, and therefore the worst objective vector is set

to γw = [1, 1]. The variate Qhv

[
x9,P

]
is shown as the collection of three HVs for x9.

Once the Pareto frontiers are scalarised, the ARMOP becomes a single-objective

robust optimization problem. The distribution of the HV variates for the analytic

example in Equation (4.3) are depicted in Figure 4.15. The variate of Pareto frontiers

Γ(x,Y?,P) was calculated for an enumeration of the decision space, with intervals of

x = 0.01. The hypervolume of each Pareto front was calculated by normalising the

objectives between γ∗ = [−0.4,−0.4] and γw = [1.25, 1.25]. The best and worst hv

value from the set of 500 samples are marked with blue and red lines, respectively.

The distributions Qhv [x,P] of nine solutions are depicted as box plots with the median

marked as a black dot within a circle, the range between the 25th and the 75th percentiles

with a thick line, and the rest of the samples that are not considered as outliers with

thin whiskers. Outliers are marked with circles. The data provided in the box plots is

in fact equivalent to Ic[Qhv [x,P]].

The values of the hypervolume indicator for this example confirm the results from

the previously presented approaches. The superiority of the solution x = 0.5 can be

easily identified from Figure 4.15. x = 0.5 is a local optimum when optimizing the

confidence indicator Ic[Qhv [0.5,P]] for any confidence level c. Additionally, it is the

global optimum for confidence levels of 0.35 ≤ c ≤ 0.95. (For confidence levels of

c < 0.35, the global optimum is x = 1, and for c > 0.95, the global optimum is x = 0).

The hypervolume indicator provides a straightforward approach to solve an AR-

MOP. It considers all objectives and supports preference incorporation through the

normalisation of the objective vectors. However, as is common with utility objectives,
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x

Figure 4.15: Distribution of hypervolume quality indicator for various candidate solutions
over 500 samples of the uncertain parameters.

the interpretation of the indicator value is difficult, and it may be challenging to choose

a robustness indicator for quantifying the variate of HV values. The computation of

the hypervolume of a set is extensive, and the complexity grows exponentially in the

worst-case with the number of objectives (Beume et al., 2009). Therefore, it is not

advised to use this indicator for problems with many objectives. The next section

demonstrates how a binary quality indicator that does not suffer from the “curse of

dimensionality” can be used to compare between candidate adaptive solutions.

4.4.5 Set-Based Binary Indicator

Binary quality indicators provide a binary comparison between two candidate solutions.

In contrast to unary indicators that assign a scalar value to each candidate solution,

and provide a complete ordering of the population, a cyclic relation can occur with

binary indicators such as aC b, bC c and cC a, where aC b denotes that the set of

vectors a is better than the set b. This property limits the scope of this approach to

optimization schemes based on binary comparisons of candidate solutions, such as the

(1+1) evolutionary algorithm (Droste et al., 2002) and differential evolution (Storn and

Price, 1997).

Several binary indicators can be used to conduct the comparison, each with its

strengths and weaknesses (e.g., Generational Distance (Van Veldhuizen, 1999), C

metric (Zitzler and Thiele, 1998)). It is demonstrated here with the qε+ measure

presented in Section 2.3.4. Qε+ [a,b] is the variate of comparisons between two candidate

solutions considering the entire uncertainties domain P.

A robustness criterion Iε+
[
x(a),x(b)

]
to select between two candidate adaptive
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Figure 4.16: Distributions of binary comparisons between three candidate solutions over
500 samples of the uncertain parameters.

solutions x(a) and x(b) can be calculated by the following steps:

1. For every scenario of the uncertain parameters p:

(a) Calculate γ
(
x(a),y?,p

)
and γ

(
x(b),y?,p

)
.

(b) Normalise all γ values according to global best and worst objective vectors,

γ∗ and γw.1,2

(c) Calculate qε+
[
γ
(
xa,y?,p

)
,γ
(
xb,y?,p

)]
.

2. Construct the variate Qε+
[
Γ(xa,Y?,p),Γ

(
xb,Y?,p

)]
from the indicator values

for all scenarios.

3. Choose a robustness indicator I[·] and compute:

Iε+

[
xa,xb

]
= I
[
Qε+

[
Γ(xa,Y?,p),Γ

(
xb,Y?,p

)]]
(4.26)

To illustrate how the ε+ based binary indicator can be applied, consider the example

problem in Equation (4.3). The uncertain parameters were sampled 500 times, as

in previous sections, and a binary comparison between any pair of xi ∈ X and xj ∈
X was conducted. Figure 4.16 depicts the distribution of quality indicator Qε+ for

three candidate solutions: x = 0.05, x = 0.5 and x = 1.0. Three distributions of

1The extreme objective vectors are either based on previous knowledge of the problem at hand, or
on current understanding of the objective space.

2The normalisation can express decision-maker’s preferences by setting the worst objective vector
elements to values different than one.
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(b) Symmetric quality indicator based on the
comparisons in (a).

Figure 4.17: Expected values of binary comparisons between all pairs of candidate
solutions.

binary comparisons can be seen in the figure in the form of box plots: Qε+ [0.05, 0.5],

Qε+ [0.05, 1.0] and Qε+ [0.5, 1.0]. Keeping in mind that a negative value of qε+
[
xa, xb

]
implies that xa is preferable to xb for the simulated scenario, and vice versa, it can

be concluded that the solution x = 0.05 is worse than the other two solutions in any

possible criterion.

An interesting property of the ARMOP is revealed from the boxplot of Qε+ [0.5, 1.0];

for half of the scenarios qε+ [0.5, 1.0] > 0 and for the other half qε+ [0.5, 1.0] < 0. This

implies that adaptability can improve the overall quality of the trade-off performance

for only half of the scenarios, while for the other half, the single configuration of the

non-adaptive solution x = 1.0 outperforms the entire set of optimal configurations of

the adaptive solution x = 0.5. An example for such a case can be seen in Figure 4.4

for the scenario p = [0.4, 0.4] (marked with diamonds) where the non-adaptive solution

(yellow) almost entirely dominates the adaptive solution x = 0.6 (blue).

Despite the fact that the median of Qε+ [0.5, 1.0] is very close to zero, it can be

concluded from the boxplot that the solution x = 0.5 is better than x = 1.0. For the

scenarios where x = 0.5 is preferable to x = 1.0, the degree of ε+ dominance is higher

than for the opposite case. In other words, while x = 1.0 offers some improvement over

x = 0.5 for half of the scenarios of P, for the other half, x = 0.5 offers a more significant

improvement.

The expected values of ε+
[
xi, xj

]
and Qε+

[
xi, xj

]
for all xi and xj within the domain

are depicted in Figure 4.17. Cold shades, representing low values, suggest that xi is

preferable over xj , and warm shades that xj is preferable over xi. Figure 4.17(a) presents

the expected value of ε+
[
xi, xj

]
. It is evident from the figure that all of the values are non-
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negative, which implies that on average, all solutions have at least one non-dominated

configuration when compared to another candidate solution. Note the asymmetry

between the values of ε+
[
xi, xj

]
and ε+

[
xj , xi

]
. As demonstrated in Figure A.1 in

Appendix A, when two sets do not dominate each other, the ε+ comparison yields

positive values for both comparisons. The solution that has the lower ε+ value when

provided as the first argument offers a better set of trade-offs between the objectives.

The expected values of Qε+
[
xi, xj

]
are depicted in Figure 4.17(b). The symmetry of

the indicator can be observed in the figure. All indicator values on the main diagonal

where xi = xj equal zero, and the diagonal serves as the axis of negative symmetry. The

advantage of the solution x = 0.5 over any other candidate solution stands out from the

figure. All indicator values for xi = 0.5 are negative for xj 6= 0.5, and therefore x = 0.5

serves both as a local and global optimum when using this indicator. The problem has

another local optimum at the non-adaptive solution x = 0.97. It shows that adaptability

provides a substantial advantage only when the direction related variable, y2, can be

exploited within its maximum adaptability range of −0.5 ≤ y2 ≤ 0.5.

Various approaches to evaluate and compare adaptive solutions to ARMOPs were

presented in this section. The next section demonstrates how these methods can

be incorporated in search heuristics in order to solve active robust multi-objective

optimization problems.

4.5 Solution Approach to ARMOPs

This section demonstrates how the quality indicators for solving ARMOPs, suggested in

the previous section, can be used in several variants of evolutionary algorithms.1 The

algorithms are described in a very generic manner without getting into the algorithm-

specific operators. Only the high-level properties of EAs are described, namely a

population of candidate solutions that evolve using selection and variation operators.

First, the basic structure of an EA that uses a quality indicator for solving ARMOPs

is described and discussed. Then, four algorithms are presented, one for each indicator

presented in the previous section. These algorithms share the same basic structure,

but some modifications are made in order to account for the differences between the

robustness indicators.

1EAs are a popular tool for solving difficult MOPs, but other classes of multi-objective optimizers
that can exploit these indicators can also be used.
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4.5.1 A Generic Algorithm for Solving ARMOPs

Algorithm 4.1 describes the template for using EAs to solve ARMOPs with the aid

of a quality indicator for evaluating Pareto sets. It consists of a main EA for robust

optimization and a nested optimizer.1 The robust optimization algorithm is based

on a sampled representation of the uncertain parameters P. At the beginning of the

algorithm, a set of np samples is derived, and the same samples are used to evaluate

every candidate solution throughout the course of the optimization.

Algorithm 4.1 A generic EA for solving an ARMOP

1: sample the uncertain domain P
2: generate an initial population
3: repeat
4: for every new solution x do
5: for every scenario p ∈ P do
6: optimise configurations y?(x,p)

7: calculate quality indicator q
[
γ
(
x,y?,p

)]
8: end for
9: construct quality indicator variate Q[Γ(x,Y?,P)]

10: calculate robustness indicator I[Q]
11: end for
12: evolve new population (selection and variation)
13: until stopping criteria satisfied

The high complexity associated with solving ARMOPs can be observed from the

depth of nested loops in Algorithm 4.1, where Line 6 in the most inner loop encapsulates

an entire multi-objective optimization run. Lines 4–11 describe the procedure for

calculating the fitness function of a single candidate solution x for the main problem.

The fitness function is the robustness indicator value for the uncertain quality indicator

I[Q]. This procedure requires the inner MOP in Line 6 to be solved np times, i.e.,

once for every sampled scenario. The total number of function evaluations required to

solve an ARMOP is no · ni · np, where no and ni are the number of function evaluations

required for the outer and inner optimization algorithms, respectively.2 In addition to

the function evaluations, the operators of the inner optimizer, as well as the calculation

of q
[
γ
]
, need to be executed no · np times, and the operators of the outer optimizer

need to be executed as well.

1The nested optimizer can be any algorithm for multi-objective optimization.
2The number of function evaluations of the inner and outer algorithms can be either fixed or subject

to variations according to the termination criteria.
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4.5.2 Indicator-Specific Algorithms

In the following, the details of the robustness indicator are incorporated into the basic

EA in Algorithm 4.1. Four different algorithms are described, one for each of the

presented approaches for evaluating candidate solutions to ARMOPs.

Algorithm 4.2 demonstrates how the single-objectivisation approach can be imple-

mented with an EA. Note that in this algorithm, the inner problem is a single-objective

optimization problem, and the outer problem is a multi-objective robust optimization

problem. There is no indicator for assessing the PF for each scenario, and instead,

the objective vector of the optimal configuration for the leading objective is used. If

the robustness indicator for assessing the multivariate I[Γ] is a scalar function, the

outer algorithm is a single-objective optimizer. If the indicator is a vector function

(e.g., a different indicator for each marginal distribution), the outer algorithm is a

multi-objective optimizer.

Algorithm 4.2 Single-objectivisation based EA

1: define a leading objective γm

2: sample the uncertain domain P
3: generate an initial population
4: repeat
5: for every new solution x do
6: for every scenario p ∈ P do
7: optimise configuration y?(x,p) = argmin

y
γm(x,y,p)

8: end for
9: construct vector variate Γ(x,Y?,P)

10: calculate MO robustness indicator I[Γ]
11: end for
12: evolve new population (selection and variation)
13: until stopping criteria satisfied

Algorithm 4.3 describes the most simple decomposition-based EA for solving AR-

MOPs. The ARMOP is decomposed into nw single-objective AROPs and each AROP

is solved without any interaction with the other sub-problems. This simple example is

used for clarity to demonstrate the decomposition approach without shifting the focus

to sophisticated algorithmic features that are not unique to the framework. Obviously,

state-of-the-art methods in decomposition-based algorithms should be used when this

approach is taken for solving an ARMOP.

Algorithm 4.4 demonstrates how the unary Ihv indicator can be used within an

evolutionary algorithm. The indicator is computed for normalised values of the objective

vectors, as explained in Section 4.4.4. If the boundaries of the objective space are

not known and cannot be approximated, it is suggested to update them according to
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Algorithm 4.3 Decomposition based EA

1: generate a set of weight vectors w
2: define a scalarising function s(γ,w)
3: sample the uncertain domain P
4: for every weight vector wi ∈ w do
5: generate an initial population
6: repeat
7: for every new solution x do
8: for every scenario p ∈ P do
9: optimise configuration y?(x,p) = argmin

y
s
(
γ(x,y,p) ,wi

)
10: end for
11: construct variate S

(
Γ(x,Y?,P) ,wi

)
12: calculate robustness indicator I[S]
13: end for
14: evolve new population (selection and variation)
15: until stopping criteria satisfied
16: add solution of sub-problem i to the solution set
17: end for

the knowledge acquired during the optimization process. After every evaluation of

the objective functions, the limits are updated so that the ideal vector consists of the

best values for every objective, and the anti-ideal the worst values. Since in EAs the

recently generated solutions compete against existing solutions, the indicator values

of the existing solutions need to be updated whenever the limits have changed. This

allows for a fair comparison between all candidate solutions. To do so, the variate of

Pareto frontiers Γ(x,Y?,P) is stored in the memory for every solution in the current

population. Whenever the known ideal or anti-ideal vectors change, the indicator values

can be recalculated without the need to re-evaluate the objective functions. Since

the Ihv indicator is a scalar function, the main optimizer is a single-objective robust

optimization algorithm.

Algorithm 4.5 describes an EA that uses the binary Iε+ indicator to solve an ARMOP.

While Algorithms 4.2–4.4 can be classified as genetic algorithms, the EA in Algorithm 4.5

follows the structure of differential evolution (DE) presented by Storn and Price (1997).

At every generation of DE, new solutions are generated, and each of them is compared

with an existing solution. If the new solution outperforms the old solution, then the old

solution is replaced with the new one. Otherwise, the old solution remains for the next

generation.

Similarly to Algorithm 4.4, the indicator is calculated for the normalised objectives

according to the known boundaries of the objective space. The ideal and anti-ideal

vectors are continuously updated when searching for the optimal configurations in the

inner problem. At each comparison between two candidate solutions, the objectives are
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Algorithm 4.4 Unary indicator based EA with dynamic reference vectors

1: sample the uncertain domain P
2: initialise ideal and anti-ideal points (limits)
3: generate an initial population
4: repeat
5: for every new solution x do
6: for every scenario p ∈ P do
7: optimise configurations y?(x,p) and store PF γ

(
x,y?,p

)
8: end for
9: construct variate Γ(x,Y?,P)

10: end for
11: if limits have changed then
12: update limits
13: calculate robustness indicator Ihv[Γ] of entire population
14: else
15: calculate robustness indicator Ihv[Γ] of new solutions
16: end if
17: evolve new population (selection and variation)
18: until stopping criteria satisfied

normalised based on the current known limits.

4.6 Review of Solution Methods for ARMOPs

Four different approaches to evaluate and compare candidate solutions were suggested

in this chapter:

1. Single-objectivisation. This approach transforms the ARMOP into a single-

objective AROP by choosing a dominant objective to guide the search for an

optimal configuration. The fitness of the other objectives is not taken into account

during adaptation, but the entire objective vector is considered when evaluating

the candidate design. Having a single optimal configuration for every realisation

of the uncertainties, the adaptive solution has a one-to-one mapping between

the variate of uncertain parameters P and the variate objective vector Γ. It

was demonstrated how adaptive solutions can outperform their non-adaptive

counterparts for the example ARMOP when using single-objectivisation.

Since a single-objective problem, rather than a multi-objective one, needs to be

solved for every realisation of the uncertainties, the complexity of the ARMOP

is significantly reduced. Therefore, this approach is highly recommended for

problems where a leading objective can be identified.

Another advantage of the single-objectivisation approach is that it does not use
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Algorithm 4.5 Binary indicator based EA with dynamic reference vectors

1: sample the uncertain domain P
2: initialise ideal and anti-ideal points (limits)
3: generate an initial population
4: for every new solution x do
5: for every scenario p ∈ P do
6: optimise configurations y?(x,p) and store PF γ

(
x,y?,p

)
7: end for
8: construct variate Γ(x,Y?,P)
9: end for

10: repeat
11: for every solution x do
12: Create a trial solution x′ using genetic operators
13: for every scenario p ∈ P do
14: optimise configurations y?(x′,p) and store PF γ

(
x′,y?,p

)
15: end for
16: construct variate Γ(x′,Y?,P)
17: update limits
18: if Iε+[x,x′] > 0 then
19: replace x with x′

20: end if
21: end for
22: until stopping criteria satisfied

any utility function to evaluate the Pareto front. This makes it easy for the

decision-maker to comprehend the results and to choose a desired solution.

2. Decomposition. With this approach the multi-objective problem is decomposed

into multiple single-objective problems using a scalarising function and different

weighting vectors. For every sub-problem on a given scenario of the uncertainties,

the optimal configuration is the member of the Pareto-optimal set that has the

best scalar function value. Since every scenario is associated with a single optimal

configuration, there is a one-to-one mapping between the variate of uncertain

parameters and the scalar function variate. The robustness criterion is applied to

the scalar function variate in order to evaluate and compare candidate solutions

in every sub-problem.

When decomposition is used to solve the ARMOP, the best solution for every

trade-off between the objectives can be identified. However, there is no guarantee

that this solution will perform in a satisfactory manner when different trade-offs

are desired.

For the example ARMOP, it was found that a high measure of adaptability is

desirable when one objective is preferred over the other, while a non-adaptive
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solution has a better distribution of the scalar function when both objectives are

equally preferred. When decomposition was used to solve the example ARMOP,

a single solution has been identified as the optimal solution for the majority of

sub-problems. This solution was also identified as the preferred solution after

solving the ARMOP through single-objectivisation.

3. Scalarisation. With this approach, each Pareto front is quantified by a unary

indicator for sets evaluation. It is important to use an indicator that can preserve

as much information as possible regarding the quality of the original Pareto front

in terms of proximity, diversity and pertinence. A variate of indicator values is

constructed for each candidate solution, according to the variate of uncertain

parameters. Robustness indicators are then applied to the scalar variate and a

single-objective robust optimization procedure can be conducted.

The main advantage of unary indicators, when it comes to solving ARMOPs, is

the ability they provide to rank a population of candidate solutions and compare

them against each other. However, it is not possible to learn from the indicator

values of two candidate solutions about the differences in individual qualities such

as proximity or diversity of their Pareto frontiers.

The scalarisation approach was demonstrated with the hypervolume indicator on

the example ARMOP. Based on the statistical properties of the indicator values

for different values of x, the same solution that was identified by other approaches

could be identified as the preferred solution. The preferred solution was not

identified based on the indicator value per se, but based on a comparison with the

rest of the solutions. This is due to the loss of physical meaning of the performance

vectors after passing them through a scalarising function (i.e., the hypervolume

indicator). The hypervolume indicator can be used to solve ARMOPs with a

small number of objectives, such as the one presented in this chapter. It is not

advised to use it for many-objective problems, as it suffers from the “curse of

dimensionality” due to exponential growth of complexity for increasing number of

objectives. The time required to compute the hypervolume can be substantially

reduced if the true hypervolume value is replaced with an approximation. This

approach is applied to indicator-based evolutionary algorithms such as HypE

(Bader and Zitzler, 2011).

4. Binary comparison. This approach uses a binary indicator for sets evaluation

to compare between Pareto frontiers of two candidate solutions. A variety of

indicators for sets comparison can be used. The Pareto frontiers of two candidate
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adaptive solutions are compared for every scenario of the uncertainty domain, and

quantified by the binary indicator. Based on the distribution of indicator values

and a robustness criterion, one solution is preferred over the other.

The main argument for using a binary indicator for solving an ARMOP rather than

a unary indicator is the availability of binary indicators that do not suffer from the

“curse of dimensionality”. The ε+ based indicator presented in this chapter is one of

them. However, this approach cannot be exploited by optimization methods that

require a complete ordering between the candidate solutions. Search heuristics

such as differential evolution or 1+1 evolutionary algorithm, that only conduct a

comparison between an existing solution and a newly generated candidate solution,

are suitable for this approach.

Each of the above approaches were used to solve the example ARMOP using an

enumeration of the decision space and the uncertainty domain. The single decision

variable was evaluated to a resolution of 0.01, and the optimal configurations were found

for a sample of 500 scenarios of the uncertain parameters. This could be easily done

for such a small scale problem, but real-world optimization problems do not tend to

be that simple. Search heuristics such as evolutionary algorithms are very common

for solving difficult optimization problems. To demonstrate how each approach can be

applied to solve more complicated ARMOPs, high-level descriptions of evolutionary

algorithms that incorporate the different metrics are given at the end of this chapter.

The algorithms share a similar structure, but each of them has its own variation to

allow the use of one of the suggested approaches.

The pseudo-algorithms presented in this chapter highlight the high complexity

involved in solving AROPs, in general, and ARMOPs, specifically. In order to evaluate

each candidate solution, a multi-objective optimization problem needs to be solved for

every sample of the uncertainties. The total number of function evaluations required to

solve an ARMOP is no · ni · np, where no and ni are the number of function evaluations

required for the outer and inner optimization algorithms, respectively, and np is the

number of samples. In addition, the quality indicator to assess the Pareto frontier of

each configuration needs to be computed no · np times.

The different approaches for solving an ARMOP that were presented in this chapter

have different strengths and weaknesses. When a solution approach needs to be chosen,

the following points should be taken into account:

1. Complexity. As discussed previously, the complexity of the algorithms for solving

ARMOPs is high. However, it differs from one solution approach to another. In

single-objectivisation, the inner problem is a single-objective problem that is easier

119



4. ACTIVE ROBUST MULTI-OBJECTIVE OPTIMIZATION

to solve than an MOP, and generally requires fewer function evaluations. When

decomposition is used, many SOPs are simultaneously solved, which increases the

complexity. The set-based approaches require the solution of an MOP for every

considered scenario and the calculations of indicators to assess the Pareto frontiers.

Therefore, they require the greatest computing resources. The complexity of the

algorithm can serve as an additional criterion for choosing between binary and

unary indicators.

2. Flexibility for decision-making. The ability to change the product’s con-

figuration during its service can be used for real-time decision-making. The

single-objectivisation approach is recommended when one objective can be iden-

tified as a single criterion to drive adaptation. With this approach, additional

objectives can be considered for choosing the solution, but no decision-making

should be made during the product’s service. The decomposition approach offers

more opportunity for decision-making as it searches for a set of solutions, each

specialised for a different trade-off between the objectives. However, this approach

is not recommended if the weights between the objectives are expected to change

during the product’s operation, since the optimality of the identified solution is

not guaranteed for the weights for which it was not optimized. The set-based

approach offers the most flexibility for real-time decision-making. The solutions

are measured according to their ability to provide a good set of configurations at

various scenarios, thus facilitating a choice between different objective trade-offs.

3. Resemblance to the original objectives. The use of indicators to solve the

ARMOP results in a modification to the original optimization problem. The

amount of information contained in the original objectives that can be inferred

from the utility measures should be kept as high as possible. This can allow

for a rational selection between alternative solutions. The ability to identify

the original objectives in the quality indicator is different from one solution

approach to another. The single-objectivisation approach is the only presented

approach that does not use a utility function to quantify the candidate solutions’

performance and preserves the physical meaning of the objective vector. The

decomposition approach aggregates the objectives through a scalarising function,

and therefore some of their original information is lost. However, it is possible to

visualise the indicator values by incorporating them into representations of the

original objective space, as demonstrated in Figures 4.12 and 4.13. The quality

indicators used in the set-based approaches provide very little information on

each individual objective. This reduces the role of the decision-maker during the
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optimization phase. Therefore, their appeal is lessened when the involvement of

the decision-maker in the optimization process is desired.

4.7 Summary

Real-world optimization problems often include more than one objective. In this

chapter, a generalization of the active robust optimization problem was introduced to

accommodate optimization of adaptive products for multiple performance criteria. The

active robust multi-objective optimization problem was defined as an optimization problem

with at least two objectives of Type γ, i.e., a change in the product’s configuration

affects more than one objective.

When solving an ARMOP, a multi-objective problem needs to be solved in order to

find the optimal configuration for every realisation of the uncertainties under considera-

tion. If some objectives are in conflict, the solution is a set of optimal configurations

offering different trade-offs between the objectives. As a result, the performance of a

candidate solution to an ARMOP is a variate of Pareto frontiers, corresponding to the

variate of uncertain parameters. Having such a performance representation makes it

very difficult to rank and compare candidate solutions to an ARMOP.

To demonstrate the structure of ARMOPs, the challenges they present and the

possible approaches to solve them, a simple bi-objective analytic example was presented.

The problem uses the single-objective function from the AROP in Chapter 3 as a

distance property for minimization. The two objectives share the same distance term

while the trade-off between them is controlled by an additional direction term. The

problem consists of a single decision variable, two adjustable variables and two uncertain

parameters. One of the uncertain parameters affects the distance term and the other

the direction term. Similarly, each adjustable variable can react to changes in either the

distance or direction term. The amount of adaptability is determined by the value of

the decision variable. The problem has the smallest amount of variables and parameters

to contain all the interesting features of the ARMOP, while its simplicity makes it

possible to analyse and understand the properties of alternative approaches for solving

ARMOPs.

One of the main goals for this study was to suggest evaluation metrics for adaptive

products. In the previous chapter, several indicators for robust optimization were applied

to AROPs, based on the optimal configuration for each scenario. As demonstrated in

this chapter, the existing robustness indicators cannot be used in a similar fashion when

evaluating a candidate solution to an ARMOP. The fact that each candidate solution

has a set of optimal configurations for every realisation of the uncertainties, requires
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new methods for evaluation.

To address this challenge, the requirements for a robustness indicator for ARMOPs

were listed, and guidance on how to construct such an indicator were provided. The

idea is to apply higher-level knowledge to quantify each Pareto front with a scalar value,

and then to apply existing methods for robust optimization to evaluate the solution

based on the variate of this scalar value. The choice of how to scalarise the Pareto front

may have a great impact on the solution to the problem. Therefore, it must be properly

tailored to the optimization problem at hand.

Four different approaches were presented in this chapter to solve an ARMOP. Each

approach uses a different strategy to quantify the variate of Pareto frontiers. As a

result, the optimization algorithms that can be used for each approach differ from one

another. High-level descriptions of evolutionary algorithms for solving ARMOPs by each

of the four approaches were presented, and a comparison between them was conducted.

Finally, some recommendations for choosing the most suitable approach for solving an

ARMOP were given.

The next chapter presents some case studies of AROPs from the field of engineering

design. Evolutionary algorithms that follow the structure described in this chapter

are used to solve the multi-objective variants of the problems. The algorithms employ

Monte-Carlo sampling to represent the uncertainties and evaluate the performance

variate. Since the complexity of the algorithm is proportional to the number of samples,

it is evident that more efficient uncertainty quantification methods should be used. The

design of efficient algorithms for solving AROPs is not covered within the scope of this

thesis. It is acknowledged, however, that in order to popularise the AR methodology as

an attractive tool for the design of adaptive products, efficient algorithms need to be

developed.
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Chapter 5

Case Studies

5.1 Introduction

The active robust optimization methodology covers a wide range of problem formulations,

and can support a variety of design optimization activities. In this chapter, two

applications from different fields are used to demonstrate how AROPs are formulated

and solved for real-world applications. In order to focus on the methodological aspects

of the framework instead of the technical issues for each application, the examples are

simplified and modelled from first principles.

Section 5.2 describes an ARMOP of designing an optical table for maximum per-

formance and minimum cost. The single-objectivisation approach is used to solve the

ARMOP and to find a design that can outperform a product designed using conventional

methods.

Sections 5.3 and 5.4 demonstrate how a gearbox design problem can be formulated as

an AROP. The gearing ratios of the gearbox need to be selected for optimal performance

over a range of load requirements. In Section 5.3 the problem considers the steady-

state performance of the gearbox, as well as its cost. Since the cost is not affected by

adaptation, this problem is considered as a single-objective AROP. In Section 5.4 the

transient performance of the gearbox is also considered. This leads to a multi-objective

formulation of the problem, and the Unary indicator approach is used to solve the

ARMOP.

5.2 Optical Table

The first case study demonstrates how the ARO methodology is applied to design an

adjustable optical table. It was first published by Salomon et al. (2014) and is given here

with permission from the authors. An optical table is a platform that supports systems
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for optics experiments. Optics equipment often requires vibrations to be sub-wavelength

(Newport Corporation, 2012), therefore the optical table has to minimize the platform

motion caused by floor vibrations. The legs of an optical table usually include an

isolation system (e.g., passive rubber mounts, air springs and regulated pneumatic

isolators). The stiffness, damping and location of the legs affect the competency of the

isolation system to absorb the floor vibrations.

There are two dominant sources of uncertainty associated with the operating condi-

tions of optical tables:

• Source of external vibration. Floor vibration can be caused by a variety of

sources. Some examples are street traffic, door slams, nearby machinery such as

fans and air-conditioners and acoustic noise. The diverse sources for vibration

are associated with a wide range of frequencies and therefore the isolation system

between the floor and the platform needs to reduce the vibration’s amplitude over

a wide spectrum.

• Setting up of the experimental equipment. The surface of an optical table

includes an array of mounting points to support different configurations of the

experimental equipment. A well designed optical table should isolate the experi-

ment from external vibrations regardless of the manner in which the equipment is

distributed.

When setting up a new experiment, the level of uncertainty regarding the operating

conditions is much smaller than its level at the stage of product design. An adaptive

optical table that can accommodate the changing conditions can therefore offer a

better insulation for a variety of experiments than a non-adaptive one. This section

describes how such an adaptive optical table is optimized using the Active Robust

Optimization framework. Two objectives are considered: vibration reduction and cost.

The cost objective takes into account the effort required to adapt the table to its optimal

configuration for every new experiment. Although the cost is affected by adaptation,

the choice of optimal configuration is made only according to the amount of damping

that can be achieved. This kind of problem leads to an ARMOP that can be solved

using the single-objectivisation approach presented in Section 4.4.2.

5.2.1 Formulation

The case study considers a simplified planar model of an optical table. It consists of

a rigid platform with an evenly distributed mass, supported by three elements: two

springs and a viscous damper. The table should be suitable for various experiments,
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Figure 5.1: A model of an optical table. c© 2014 IEEE.

and therefore, the mass of the experimental equipment and its centre position are

uncertain (within known limits). The motivation is to search for optimal combinations

of springs and damper and their positions, so as to: (a) minimize the amplitude ratio,

denoted γa, between the displacement of the equipment’s centre of mass and the floor’s

displacement, for a known band of vibration frequencies; and (b) minimize the cost,

denoted γc. An adaptive design that can satisfy these goals is considered: an optical

table with adjustable legs, that can be relocated before every new experiment. Two of

the legs include springs and the third an adjustable damper (i.e. the damping coefficient

can be altered with a valve).

A simplified planar model and its related parameters are depicted in Figure 5.1.

The table’s length is l and its mass is mt. The experimental equipment has a total mass

of m, its centre of gravity is located at um and its vertical displacement is denoted as

wm. The spring coefficients are k1 and k2, and the damping coefficient of the damper is

c. The location of the ith element is denoted as ui. uG represents the location of the

system’s centre of gravity, which is computed by:

uG =
mtl + 2mum
2(mt +m)

. (5.1)

The vertical displacement of the floor, denoted by wf , is considered to be a simple

harmonic motion with frequency ω. Horizontal displacement is not considered.

The aim of the AROP is to search for the best combination of spring coefficients,

k1 and k2, for a range of experimental settings and vibration frequencies. The spring

coefficient is a physical property which depends on the spring used to assemble the

optical table. Therefore k1 and k2 are treated as decision variables of type x. The

location of the legs and the damping coefficient, c, can be adjusted between experiments,

and therefore they are treated as adjustable variables of type y. The parameters include

the length and mass of the table, and three uncertain parameters: the equipment mass,
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Figure 5.2: Free body diagram for the optical table. c© 2014 IEEE.

m, its centre location, um, and the floor vibration frequency, ω. To distinguish the

uncertain parameters, they are denoted as random variables M , Um, and Ω. In the

absence of information regarding the parameters’ distribution functions, it is assumed

that M , Um and log(Ω) have uniform probability distribution within their limits. The

objectives vector variate that corresponds to the uncertain parameter is denoted as

Γ = [Γa,Γc].

Figure 5.2 depicts the free body diagram of the table’s surface. The horizontal

coordinates are measured from uG and are denoted as u′ = u− uG. The force applied

to the table by component i is denoted as fi. The grey line represents the steady-state

location of the surface. As a reaction to floor vibrations, its centre of gravity is shifted

by w and the whole surface is rotated by an angle ϑ.

Deriving the Amplitude Ratio

In the following, the model of the system dynamics is derived from first principles in

order to compute the amplitude ratio between the floor vibration and the equipment,

for a given combination of components, configuration and load setting. Assuming small

angles, the model of the system can be described by the following set of equations:

f1 + f2 + fc = (mt +m)ẅ, (5.2)

f1u
′
1 + f2u

′
2 + fcu

′
c = jϑ̈, (5.3)

where : f1,2 = k1,2(wf − w1,2) , (5.4)

fc = c(ẇf − ẇc) , (5.5)

w1,2 = w + ϑu′1,2, (5.6)

ẇc = ẇ + ϑ̇u′c, (5.7)

j =
3mtm(2um − l)2 +mt(mt +m) l2

12(mt +m)
. (5.8)
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�̇ and �̈ denote the first and second time derivatives, respectively. Equations 5.2

and 5.3 are Newton’s second law for vertical translation and rotation, respectively.

Equations 5.4 and 5.5 describe the forces applied by the springs and damper, and

Equations 5.6 and 5.7 describe geometric relations. Equation 5.8 describes how to

calculate the moment of inertia, j1, around the centre of gravity.

Equations (5.2)–(5.7) can be written in a matrix form as follows:

[M ]z̈+[C]ż + [K]z = [A]v, (5.9)

where : z = [w(t), ϑ(t)] ,

v = [wf (t), ẇf (t)] ,

[M ] =

(
m+mt 0

0 j

)
,

[C] =

(
c cu′c

cu′c cu′2c

)
,

[K] =

(
k1 + k2 k1u

′
1 + k2u

′
2

k1u
′
1 + k2u

′
2 k1u

′2
1 + k2u

′2
2

)
,

[A] =

(
k1 + k2 c

k1u
′
1 + k2u

′
2 cu′c

)
.

Assuming zero initial conditions, a matrix of transfer functions between V(s) = L(v)

and Z(s) = L(z) may be obtained by performing a Laplace transform on both sides

of (5.9):

[G(s)] =

(
G11 G12

G21 G22

)
=

Z(s)

V(s)

=
(
[M ]s2 + [C]s+ [K]

)−1
[A].

(5.10)

A transfer function between the equipment’s displacement, Wm(s), and the floor’s

displacement, Wf (s), can be obtained by recalling that Wm(s) = Y (s) + u′mΘ(s), and

1In order to be consistent with the notation used throughout this thesis, lower-case j is used instead
of the more common upper-case J to denote moment of inertia. As explained in Section 2.3.1, lower-case
symbols denote deterministic values, while upper-case symbols denote random values. The same rules
apply to other notations in this chapter.
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L(ẇf (t)) = sWf (s):

G(s) =
Wm(s)

Wf (s)
= G11 + sG12 + u′m(G21 + sG22) . (5.11)

Finally, the amplitude ratio between the equipment’s displacement and the floor’s

displacement, when it vibrates at a frequency ω, is the norm of the transfer function

in (5.11):

γa = ‖G(jw)‖2 . (5.12)

The Cost Function

A cost function of an adaptive solution, γc(x,y,p), can consist of any of the following

three components: (a) the initial implementation costs, denoted by cx, (b) the opera-

tional costs of using the design in a configuration y, denoted by cy, and (c) the costs

of the adaptations of a design as a reaction to changes in p, denoted by cp. The cost

function used in this case study is based on the following assumptions:

• The implementation cost, cx, does not consider costs that are identical for all different

solutions. Therefore, it is a function of the solution’s selected springs. For a given

load, a small spring coefficient demands a larger spring (either more coils or a larger

diameter), which is also more expensive. Considering the above, the implementation

cost function of the product is:

cx :=
log(kl)

log(k1)
+
log(kl)

log(k2)
, (5.13)

where kl is the lower limit of the spring coefficient (most expensive).

• The configuration in which the design operates does not affect the cost. Therefore,

cy = 0.

• The energy (and its associated cost) required to move the springs and damper is

relative to the distances travelled. The damping coefficient’s adjustment is a simple

action of turning a knob and therefore it does not have a cost. The adaptation cost

cp between two optimal states, y?i and y?j , is proportional to the difference between

the two configurations:

cp := ca
∣∣y?i − y?j

∣∣ τ, (5.14)

where ca = [0, 0.3, 0.3, 0.12] is a vector containing the costs of adjusting each variable
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per unit of change, and τ = 100 is the expected number of adaptations during the

lifetime of the product. Since the optimal configuration, Y?, is a random vector

that relies on the variate, P, the adaptation cost can also be considered as a random

variate:

CP := ca
∣∣Y?

i −Y?
j

∣∣ τ. (5.15)

Thus, the cost function, Γc, is:

Γc(x,Y
?,P) = cx + CP. (5.16)

The cost function depends on the uncertain variables and the optimal configurations,

which makes the optimization problem an ARMOP. However, it is reasonable to assume

that the optimal configuration will always be chosen according to the ability of the table

to reduce vibrations, regardless of the labour costs associated with adjusting the legs.

The Active Robust Optimization Problem

Using the above notations, the AROP for an adaptive optical table is formulated as the

following single-objectivised ARMOP:

min
x∈X

Γ(x,P) = [Γa(x,Y?,P) ,Γc(x,Y
?,P)] (5.17)

where: Y? = argmin
y∈Y(x)

Γa(x,y,P) (5.18)

x = [k1, k2] (5.19)

y = [c, u1, u2, uc] (5.20)

P = [M,Um,Ω,mt, l] (5.21)

The parameters’ values and the limits of search variables and uncertainties are given in

Table 5.1.

Robustness Criteria for the ARMOP

Due to the high sensitivity of the optics equipment, the amplitude ratio is considered to

be its worst-case over all sampled realizations of the uncertainties:

Iw[Γa] := max
p

Γa(x,Y?,P) . (5.22)

The uncertain cost function can be scalarised by adding the deterministic initial
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Table 5.1: Variables and parameters of the optical table optimization problem.
c© 2014 IEEE.

Type Symbol Units Lower limit Upper limit

x k1, k2 N/mm 1 100

y c N·s/mm 1 10
uc m 0.1 1.9
u1 m 0.1 0.9
u2 m 1.1 1.9

p m kg 20 50
um m 0.1 1.9
ω rad/s 1 104

l m 2
mt kg 200

implementation cost, cx, to the expected overall adaptation cost, E(CP). Hence, the

expected value of Γc can be used in the following manner: For a sampled set of the

uncertain vector P with k samples, the adaptation cost considers all possible adaptations

between two optimal states y?i and y?j that belong to the sampled set Y?:

IE [Γc] := cx+

∑k
i=1

∑k
j=1 ca

∣∣∣y?i − y?j

∣∣∣
k(k − 1)

τ (5.23)

Given the above robustness criteria, Equation 5.17 of the ARMOP is solved as a

multi-objective problem with the objective vector

I[Γ(x,P)] = [Iw[Γa] , IE [Γc]] . (5.24)

5.2.2 Simulations and Results

The ARMOP in Equations (5.17)–(5.21) is solved with an EA as suggested in Algo-

rithm 4.2. The MOP in (5.17) is solved using NSGA-II-PSA (Salomon et al., 2013b)

with a population size of n = 100 for 50 generations. All parameters are set according to

the values suggested in Salomon et al. (2013b) (real-coded chromosome, SBX crossover

and polynomial mutation with distribution indices ηc = 15 and ηm = 20, respectively,

crossover probability pc = 1 and mutation probability pm = 0.2). The DOP in (5.18)

is solved using a single-objective genetic algorithm with the same crossover, mutation,

population size and the number of generations as mentioned above. Two features were

added to this algorithm in order to reduce the number of function evaluations:

1. For every new sampled scenario in Algorithm 4.2, Steps 5–7, the existing sample of

Y? is added to the random initial population of the EA. This enables faster conver-
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gence towards the optimal configuration when it is close to another configuration

already found for a similar scenario.

2. A stopping criterion based on improvement of the objective function is added to

the generations’ count criterion. In the event that no improvement is made over

20 generations, the inner algorithm ends.

The real-coded algorithm was directly implemented in MATLAB. In practice, the above

features helped in speeding up the algorithm by approximately 100%, where a complete

optimization run could be completed on a standard desktop in about five hours instead

of ten.

First results indicated a strong correlation between the highest amplitude ratio and

the lower limit of the equipment’s mass. As a result, since the worst-case scenario is

considered, the value of the mass was taken as its lower limit m = 20kg. The sampled

set P consists of k = 5,000 samples, distributed according to the PDFs of um and ω

with the Latin hypercube sampling method (McKay et al., 1979).

The final approximated set and approximated front are depicted in Figure 5.3. The

results indicate that softer springs achieve better performance in reducing the reaction

to the floor’s vibrations, but they are more expensive. Interestingly, the solution with

the best damping is not the one with the smallest value of spring coefficient for both

springs, but a solution with k1 = 1 N
mm and k2 = 3.5 N

mm . This difference is shown to

decrease the equipment’s displacement better than two springs with the same coefficient

of 1 N
mm .

The amplitude ratio and adjustments of three solutions as a function of um are

depicted in Figure 5.4. These three solutions are highlighted in Figure 5.3 as a square,

a star and a diamond. Figure 5.4(a)–5.4(c) depict the amplitude ratio and optimal

locations of springs and damper for each of the three solutions, and Figure 5.4(d) depicts

the optimal damping coefficients. Note that solutions with stiffer springs, in addition to

their lower cost, require smaller adjustments to changes in location of the experimental

equipment. Another interesting observation is that the optimal adjustments of the

damper and components’ locations for the star related solution are not symmetric. This

is a consequence of the differences between its springs.

In order to assess the reliability of the obtained approximated front, the problem

was solved for twenty independent runs of the EA. The statistics for the solution with

the best amplitude ratio (marked with a star in Figure 5.3) is depicted in Figure 5.5.

To check the added value of adaptation to the performance of the adaptive optical

table, it is compared with a similar design that is not adaptive. This design possesses the

same characteristics, but it cannot be changed once implemented (i.e., all its variables are
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Figure 5.3: Final approximated set and Pareto front after 50 generations of the evolu-
tionary algorithm. c© 2014 IEEE.

of Type x). The costs are not considered for this comparison, and the only consideration

is minimum amplitude ratio. The optimal non-adaptive product is found by solving the

following worst-case RO problem:

xna = argmin
x∈X

max
p∈P

Γa(x,P) (5.25)

where x = [k1, k2, c, uc, u1, u2], P = [M,Um,Ω,mt, l]. The search was conducted with

the same genetic algorithm as for the AROP.

The solution to the problem in (5.25) is xna = [1, 1, 1, 1, 0.9, 1.1], i.e., both springs

and the damper are the weakest possible, the damper is located at the centre of the

table, and the springs are as close to the centre as possible. The worst amplitude ratio

for this configuration occurs when the centre of mass aligns with the centre of the table,

and its value is Iw[Γa(xna)] = 0.456. This value is three times larger than the worst

amplitude ratio of the adaptive solution xF, which is Iw
[
Γa

(
xF
)]

= 0.15.

5.2.3 Discussion

This case study demonstrated how the active robustness methodology can be applied

to improve existing concepts in engineering design. An adaptive version of an optical

table was suggested as an improvement of the existing design. While the suspension
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Figure 5.4: The amplitude ratio and optimal configurations of the highlighted three
solutions. c© 2014 IEEE.
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Figure 5.5: Box-plots for the results of the obtained adaptive solution with the best
amplitude ratio, from 20 independent simulations of the EA. c© 2014 IEEE.

system of the conventional optical table is made of fixed legs, the legs of an adaptive

table can move to better absorb floor vibrations for a given experimental setting. The

ARO methodology provides the missing tools for optimizing this kind of product to

exploit the full capacity of its adaptability.

A generic cost function for adaptive products was introduced in this chapter. Cost

may not be always the main criterion when designing a product, but it is always a

concern. An adaptive product is associated with three types of cost: manufacturing

costs, operational costs and adaptation costs. The manufacturing costs include all the

costs associated with producing the product. When formulating an AROP cost function

there is no need to consider costs that are identical for all solutions, and the emphasis

needs to be given to the differences between solutions, reflected in the solution, x, such

as component prices, assembly costs, etc. Manufacturing costs do not depend on the

operating conditions, and therefore they do not need to be considered when searching for

the optimal configuration, y?. Operational costs are the costs of operating the product

in a given configuration, y. They depend on the realisation of the uncertain parameters,

and their value is part of the inner optimization problem of the AROP, to find the

optimal configuration. Adaptation cost is the cost of changing the product from one

configuration to another in response to a change in the uncertain parameters. When

calculating adaptation cost, one needs to approximate which adaptations will take place

(i.e., which changes will occur in the realisations of the uncertain parameters).

In many applications the adaptability of the product can be assumed to be fully

exploited by the user in order to improve performance. In this case study, the adaptation
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to a configuration with better damping increases the cost function. A realistic assumption

is that if a customer is willing to invest in an adaptive product, he/she will use its

adaptive capabilities regardless of the adaptation and operational costs. If a single

performance objective exists, in addition to cost, the single-objectivisation is a natural

choice to solve the ARMOP. At any realisation of the uncertainties, the configuration

is determined according to optimal performance. The cost can be considered as a

secondary objective for the outer optimization problem.

A nested evolutionary algorithm was used to solve the ARMOP in this case study.

The algorithm followed the guidelines to construct a single-objectivisation EA from

Chapter 4. By their nature, active robust optimization problems require a very large

number of function evaluations due to the nested nature of the problem. The case

study highlights the need to tailor the optimization algorithm to the problem in order

to reduce the number of function evaluations, while still converging close enough to

the true ARMOP solution. The fact that the objective functions could be derived

from first principles as relatively straightforward expressions enabled a Monte-Carlo

based approach to quantify the uncertain objective functions and conduct a large

number of function evaluations. In applications where the objective functions are more

computationally expensive, some sacrifices have to be made, either regarding the fidelity

of the evaluation by using surrogate methods, or the convergence of the algorithm by

conducting fewer function evaluations.

The algorithm was able to find a solution to the ARMOP – a set of solutions that

offer a trade-off between cost and performance. Although the main consideration when

using the adaptive optical table is vibration damping, some costumers might not require

the best performance for their application, and can settle for a less expensive product.

The configurations of all solutions followed a similar pattern in adapting to changes in

the equipment position. The components generally stay away from the equipment’s

centre of gravity, while the distance depends on stiffness of the springs.

When the problem is solved for a similar non-adaptive design without considering

costs, the optimum design contains the softest springs and damper. Compared with this

solution, the adaptive design with best vibration damping was found to be three times

better at the worst-case. Interestingly, the optimum solution consists of springs with

different elasticity. This asymmetry allows the system to operate efficiently at different

frequencies by changing the position of the springs according to the experimental setting.

The ability of the proposed algorithm to converge to the true solution was tested by

solving the problem for twenty independent runs. The same solution where one spring

is at the lower limit of the elasticity range and the other is about 3.5 times stiffer, was

repeatedly found.
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5.3 Gearbox Design - Single-Objective Formulation

This section and Section 5.4 apply the Active Robustness methodology to a very common

problem in engineering design–the choice of gearing ratios for a geared system. This

section addresses the performance of a gearbox in steady-state operating conditions,

and the next section extends the problem to also consider dynamic performance.

In Section 5.3.1 the motivation and relevant background is presented. Section 5.3.2

includes a mathematical model of the geared system. The AROP is formulated in

Section 5.3.3. The complexity of the AROP is small enough to explore the entire design

space and find the optimal set of solutions without relying on optimization algorithms.

The solution is presented in Section 5.3.4. A sensitivity analysis of the AROP and its

solution to several aspects of the problem formulation is given in Section 5.3.5.

5.3.1 Background

One of today’s engineers greatest challenges is the development of energy efficient

products to cope with limited resources and reduce ecological footprint. In systems that

include a gearbox, careful design of this component can enhance the efficiency of the

system. A gearbox is an assembly of gears with different ratios that provides speed and

torque conversions from a motor to another device. With the use of a gearbox, a single

motor can meet a span of load demands, which are combinations of required speed and

torque. There is a unique gearing ratio for every given motor that will result in the least

energy consumption for a specific load demand. Usually a geared system operates under

a range of possible loads. If optimality with respect to energy consumption is targeted,

the gearbox should include an infinite number of gears in order to accommodate all

loads within this range. Naturally it is not possible to produce such a gearbox, and

anyway, a gearbox with too many gears has more drawbacks than advantages (e.g.

dimensions, weight, costs). Therefore, gearboxes used in real applications are made of a

finite number of gears (typically up to six in the auto industry), where each gear covers

a different range of the load demands (e.g. high reduction for high torque and low

speed, and vice versa). The gearbox’s gearing ratios should allow for the satisfaction of

each possible load by one of the gears in a reasonably efficient manner. Therefore, the

choice of the gears determines the overall performance of the gearbox. This choice can

be supported by an optimization procedure for minimum energy consumption.

Some previous studies on gearbox optimization can be found in the literature.

Guzzella and Amstutz (1999) presented a computer aided engineering tool for modelling

and optimization of a hybrid vehicle. They showed an example of optimizing the
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transmission ratios for minimum fuel consumption. The model is deterministic, and

the ratios are optimized for a single, arbitrarily chosen, load cycle. Roos et al. (2006)

suggested an optimization procedure for selecting a motor and gearhead for mechatronic

applications to maximize one of the following objectives: peak power, output torque or

energy efficiency. This approach is suitable for a single gear system and not for a gearbox

with several gears. The choice of the gearhead was conducted according to the worst-case

of the expected load scenarios. Swantner and Campbell (2012) developed a framework

for gearbox optimization that searches among different types of gears (helical, conic,

worm, etc.), topologies, materials and sizing parameters. The gearbox was optimized

for minimum dimensions, considering a set of functional constraints. Other problem

settings for single-objective gearbox optimization include minimum variation from a

given set of transmission ratios (Mogalapalli et al., 1992), minimum volume or weight

(Yokota et al., 1998; Savsani et al., 2010), minimum vibration (Inoue et al., 1992) and

minimum centre distance between input and output shafts (Li et al., 1996).

Some multi-objective gearbox optimization studies can also be found in the litera-

ture. Osyczka (1978) formulated a problem to minimize simultaneously four objective

functions: volume of elements, peripheral velocity between gears, width of gearbox,

and centre distance. Wang (1994) considered centre distance, weight, tooth deflection,

and gear life as objective functions. Thompson et al. (2000) optimized for minimum

volume and surface fatigue life. Kurapati and Azarm (2000) optimized a gearbox for

minimum volume and minimum stress in the output shaft. Deb et al. (2000) designed a

compound gear train to achieve a specific gear ratio. The objectives of the gear train

design were minimum error between the obtained gear ratio and the required gear ratio

and maximum size of any of the gears. Deb and Jain (2003) have optimized an 18-speed,

5-shafts gearbox for two, three and four objectives. Among the objectives were power,

volume, centre distance and variation from desired output speed. The same optimization

problem was used by Deb (2003) to demonstrate how design principles can be extracted

by investigating the relations between design variables of the Pareto-optimal solutions

in the design space. Li et al. (2008a) optimized a two-stage gear reducer for minimum

dimensions, minimum contact stress and minimum transmission precision errors.

The optimization involved within all studies above was conducted for given reduction

ratios, or at least for a given speed-torque scenario or cycle. However, most applications

that include a gearbox (such as vehicles) are subjected to a large span of uncertain

load requirements, as a result of a variety of possible environmental conditions. The

stochastic nature of the required torque and speed must be considered during the

design phase. In order to optimize a gearbox for uncertain load requirements, a robust

optimization procedure should be considered. In this case study, a gearbox is optimized
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for minimum energy consumption where the load demand is uncertain. A robust set of

transmission ratios is sought to maximize the system’s efficiency taking account of the

uncertain load domain.

A gearbox cannot be optimized for robustness using conventional robust optimization,

since its performance does not solely depend on its preliminary design. The performance

is also influenced by the manner in which the gearbox is being operated. A gearbox

with a good selection of gearing ratios for a span of load scenarios can be very inefficient

if it is not being used properly. For best performance, the proper gear in the set has to

be selected for each realization of the uncertain load demand. When cruising on the

highway, the best efficiency is achieved with the highest gear (say, sixth). A driver that

uses the fifth gear for this scenario does not operate the gearbox in an optimal manner.

Hence, robustness to the uncertain load demand is actively attained by selecting the

proper gear for each load scenario. The selection of the optimal gear for each scenario

can be made either manually by a skilled user, or with the use of a controller in the

case of an automatic transmission.

The active robustness methodology provides the precise tools required for optimizing

a gearbox. The adaptability of a geared system is provided by the user’s ability to

change the gearing ratio by using a different gear. This adaptability is taken into

account at the evaluation of a candidate solution; it is evaluated according to its best

possible performance for each scenario of the uncertain parameters. For the example

above, it is assumed that the driver uses the sixth gear while cruising on the highway

and second gear when carrying a heavy load up the hill. Since enhanced adaptability

usually comes with a price (e.g., a gearbox with more gears would be more expensive),

the objectives of the AROP are the solution’s best possible performance, evaluated at

different scenarios of the uncertainties involved, and its cost.

The problem formulated in this section is the optimization of a gearbox for a

random variate of torque and speed requirements. Both the number of gears and their

characteristics are optimized in order to minimize the overall energy consumption and

gearbox cost. The solution to the problem is a set of gearboxes with a trade-off between

energy efficiency and low cost. The methodology is demonstrated with a power system

of an electric motor and a simple two-stage reduction gearbox. This example can be

adapted to design other geared systems such as vehicles, motorcycles, wind turbines,

industrial and agricultural machinery.

138



5.3 Gearbox Design - Single-Objective Formulation

g1 g2 gngn-1......

Layshaft

From
motor

To load

τL,ωLτm,ωm

Figure 5.6: A gearbox with n gears. All gears are rotating while at any given moment
the power is transmitted through one of them.

5.3.2 Motor and Gear System

The problem at hand is the optimization of a gearbox for a span of torque-speed scenarios.

An electric motor of type Maxon A-max 32 is to convey a torque τL at speed ωL. In

order to do so, it is coupled with a gearbox, as shown in Figure 5.6. The motor’s output

shaft (white) rotates at speed ωm and transmits a torque τm. It is firmly connected to

a cogwheel (black) that is constantly coupled to the layshaft. The layshaft consists of

a shaft and ng gears (grey), rotating together as a single piece. ng gears (white) are

also attached to the load shaft (black) with bearings, so they are free to rotate around

it. The gears are constantly coupled to the layshaft and rotate at different speeds,

depending on the gearing ratio. A collar (not shown in the figure) is connected, through

splines, to the load shaft and spins with it. It can slide along the shaft to engage any of

the gears, by fitting teeth called “dog teeth” into holes on the sides of the gears. In this

manner the power is transferred to the load through a certain gear, with the desired

reduction ratio.

As noted above, the aim of this study is to optimize the gearbox to achieve good

performance over a variety of possible load scenarios. Several objectives might be

considered: monetary costs, energy efficiency for different loads and the transient

behaviour of the gearbox (e.g. energy consumption during speed transitions and time

required to change the system’s speed). A problem formulation that considers all of

the aforementioned objectives will be addressed in Section 5.4. In order to demonstrate

the features and concerns of the active robustness approach, this section focuses on a

more restricted formulation of the gearbox optimization problem. Therefore, only the

steady-state behaviour of the gearbox is addressed at this stage.
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The number of gears in the gearbox, ng, and the number of teeth in each ith gear, zi,

are to be optimized. The objectives considered are minimum energy consumption and

minimum manufacturing cost of the gearbox. The system is evaluated at steady-state,

i.e., operating at the torque-speed scenarios. The power required for each scenario is

considered, while the objective is to find a set of gears that will require the minimum

average invested power over all scenarios. For every scenario, the gearbox is evaluated

by the smallest possible value of input power. This value is achieved by transmitting

the power through the most suitable gear in the box.

Model Formulation

In this section, the model for the motor and gearbox system is presented according to

Krishnan (2001), and the required performance measures are derived.

The motor armature current can be described by applying Kirchhoff’s voltage law

over the armature circuit:

V = Lİ + rI + kvωm, (5.26)

where V is the input voltage, L is the coil inductance, I is the armature current, r is the

armature resistance and kv is the velocity constant.1 The ordinary differential equation

describing the motor’s angular velocity as related to the torques acting on the motor’s

output shaft is:

jmω̇m = ktI − bmωm − τm, (5.27)

where jm is the rotor’s inertia, kt is the torque constant and bm is the motor’s damping

coefficient associated with the mechanical rotation. Since this study only deals with the

gearbox’s performance at steady-state, the derivatives of I and ωm are considered to be

zero.

There are two speed reductions between the motor and the load. The first is from

the motor shaft to the layshaft. This reduction ratio, denoted as n1, is zl/zm, where

zm is the number of teeth in the motor shaft cogwheel and zl is the number of teeth

in the layshaft cogwheel. The second reduction, denoted as n2, is from the layshaft

to the load shaft. Each gear on the load shaft rotates at a different speed according

to its gearing ratio n2,i = zg,i/zl,i, where zg,i is the number of teeth of the ith gear’s

load shaft cogwheel and zl,i is the number of teeth of its matching layshaft wheel. n2

1V , I and L are the universal notations to describe voltage, current and inductance. For clarity,
these are used here to describe deterministic values, in contrast to the usual convention of this thesis
where capital letters are used to describe random variates.
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depends on the selected gear, and it can be one of the values
{
n2,1, . . . , n2,ng

}
. The

total reduction ratio from the motor to the load is n = n1 ∗ n2, and the load speed

ω = ωm/n. The motor and load shafts are coaxial, and the modules for all cogwheels

are identical. Therefore, the total number of teeth zt for each gearing couple is identical:

zt = zl + zm = zg,i + zl,i , ∀i ∈ 1, . . . , ng. (5.28)

At steady-state, Equation (5.27) can be reflected to the load shaft as follows:

0 = nktI −
(
bg + n2bm

)
ω − τ, (5.29)

where τ is the load’s torque and bg is the gear’s damping coefficient with respect to the

load’s speed.

If ω from Equation (5.29) is known, the armature current can be derived:

I =

(
bg + n2bm

)
ω + τ

nkt
. (5.30)

Once the current is known, and after neglecting İ, the required voltage can be derived

from Equation (5.26):

V = rI + nkvω. (5.31)

The invested electrical power is:

s = V I. (5.32)

Manufacturing costs are the only kind of cost applicable to this problem. It is

conceivable that they depend on the number of wheels in the gearbox, their size, and

overheads. A function of this type is suggested for this generic problem to demonstrate

how the various costs can be quantified:

c = αng
β + λ

ng∑
i=1

(
zl,i

2 + zg,i
2
)

+ δ, (5.33)

where α, β, λ and δ are constants. The first term considers the number of gears. It

takes into account their influence on the costs of components such as the housing and

shafts. The second term relates to the cogwheels’ material costs, which are proportional

to the square of the number of teeth in each wheel. The third represents the overheads.

In practice, other cost functions could be used.
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5.3.3 Problem Formulation

The gearbox optimization problem, formulated as an AROP, is the search for the number

of gears ng and the number of teeth in each gear zg,i that minimize the production cost,

c, and the power input, s. The variables are sorted into three vectors:

• x is a vector with the variables that define the gearbox, namely the number

of gears and their number of teeth. These variables can be selected before the

gearbox is produced, but cannot be altered by the user during its life cycle. The

variables in x are the problem’s design variables.

• y is a vector with the adjustable variables. It includes the variables that can be

adjusted by the gearbox’s user: the selected gear, i, and the supplied voltage,

V . The decisions how to adjust these variables are made according to the load’s

demand, and can be supported by an optimization procedure. For example, a

high reduction ratio will be chosen for low speed, and a low ratio for high speeds,

while the voltage is adjusted to maintain the desired velocity for the given torque.

• p is a vector with all the environmental parameters that affect performance and are

independent of the design variables. Some of the parameters in this problem are

considered as deterministic, but some possess uncertain values. The uncertainty

for ω and τ is aleatory, since they inherently vary within a range of possible load

scenarios. The random variates of ω and τ are denoted as Ω and T , respectively.

Some values of the motor parameters are given tolerances by the supplier. The

terminal resistance, r, has a tolerance of 5% and the motor damping coefficient,

bm, has a tolerance of 10%. Additionally, the gearbox damping coefficient, bg, can

be only estimated, and therefore it is treated as an epistemic uncertainty. The

random variates of r, bm and bg are denoted as R, Bm and Bg, respectively. The

resulting variate of p is denoted as P.

A certain load scenario might have more than one feasible y configuration. When

the gearbox (with the gearing ratios represented by x) is evaluated for each scenario,

the optimal configuration (the one that requires the least input power) is considered.

This configuration is denoted as y?, and it consists of the optimal transmission, i, and

input voltage, V , for the given scenario. The variate of optimal configurations that

correspond to the variate P is termed as Y?.

Two objectives are considered for optimization: the electric power invested at the

motor, s, and the manufacturing costs, c. The electric power is affected by the uncertain

parameters and the configuration of the gearbox. Therefore, the input power objective
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is denoted as γs. The manufacturing costs only depend on the design, and therefore the

cost objective is denoted as ψc.
1

Following the above, the AROP is formulated:

min
x∈X

Γ(x,P) = {Γs(x,Y?,P) , ψc(x)} ,

Y? = argmin
y∈Y(x)

Γs(y,P) ,

subject to : I ≤ Inom,

zg,i + zl,i = zt , ∀i = 1, . . . , ng,

where : x =
[
ng, zg,1, . . . , zg,i, . . . , zg,ng

]
,

y = [i, V ] ,

P = [Ω, T , R,Bm, Bg, kv, kt, Inom, n1, zt,

α, β, λ, δ].

(5.34)

The constraints are evaluated according to Equations (5.30) and (5.31), and the

objectives according to Equations (5.32) and (5.33). Inom, the nominal current, is the

highest continuous current that does not damage the motor. It is significantly smaller

than the motor’s stall current.

The problem (5.34) is a bi-objective problem, but only γs is affected by adaptation.

As a result, there is a single optimal configuration for every realisation of the uncertain

parameters, which classifies the problem as a single-objective AROP. The mean value

criterion, IE, is a reasonable choice to assess the distribution of Γs, as it captures the

efficiency of the gearbox when it operates over the entire range of expected load scenarios.

In the following sections, the performance of each candidate design is evaluated according

to IE [Γs].

By operating with maximum input power (i.e. with maximum voltage and current),

for each velocity, ω, there is a single transmission ratio, n, that would allow the maximum

torque, denoted as τmax(ω). This torque can be derived from Equations (5.29) and (5.31)

by replacing I with Inom and V with Vmax:

τmax(ω) = max
n∈Y

nktInom −
(
bg + n2bm

)
ω,

subject to : rInom + nkvω = Vmax,
(5.35)

where Y ⊂ R is the range of possible reduction ratios for this problem. Since a gearbox

in the above AROP consists of a finite number of gears, it cannot operate at τmax

1Recall that ψ denotes a deterministic objective value.

143



5. CASE STUDIES

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

ω [s−1]

τ
L
[N

m
·
1
0
−
3
]

 

 

 torque−speed domain

 sampled scenario

 τ
max

(ω)

Figure 5.7: The possible domain of torque-speed scenarios, and a representative set
randomly sampled with an even probability.

for most of the velocities. In order to obtain feasible solutions with five gears or less,

the domain of possible scenarios in this example is assumed to be in the range of

0 ≤ τ(ω) ≤ 0.55τmax(ω). The effects of this assumption on the obtained solutions’

robustness are further discussed in Section 5.3.5.

Some information on the probability of load scenarios is usually known in a typical

gearbox design (e.g. drive cycle information in vehicle design). In this generic example

this kind of information is not available, and therefore a uniform distribution is assumed.

The other uncertainties are treated in a similar manner: A uniform distribution is

assumed for R and Bm, since the tolerance information provided by the manufacturer

only specifies the boundaries for the actual property values, but does not specify their

distribution. The epistemic uncertainty regarding bg also results in a uniform distribution

of Bg within an estimated interval.

Monte-Carlo sampling is used to represent the uncertain parameter domain P. A

set, P, of size, k, is constructed by a random sampling of P with an even probability.

In this example, P consists of k = 1, 000 scenarios. The choice of sample size is further

investigated in Section 5.3.5. Figure 5.7 depicts the domain of load scenarios Ω and T ,

together with their samples in P and the curve τmax(ω).

The parameter values and the limits of search variables and uncertainties are

presented in Table 5.2. The values and tolerances for the motor parameters were taken
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Table 5.2: Variables and parameters for the gearbox AROP.

Type Variable/ Symbol Units Lower Upper
Parameter limit limit

x no. of gears ng 2 5
no. of teeth zg 19 61

y gear no. i 1 ng
input voltage V V 0 12

p load speed ω s−1 16 295
load torque τ Nm·10−3 0 0.55 · τmax(ω)
armature resistance r Ω 2.1 2.4
motor damping coefficient bm Nm·s·10−6 2.8 3.5
gear damping coefficient bg Nm·s·10−6 25 35
velocity constant kv V·s·10−3 24.3
torque constant kt Nm·A−1 · 10−3 24.3
max nominal current Inom A 1.8
first reduction ratio n1 61/19
transmission no. of teeth zt 80
cost coefficient α $ 5
cost coefficient β 0.8
cost coefficient λ $ 0.01
cost coefficient δ $ 50

from the online catalog of Maxon (2014). Note that the upper limit of the selected

gear, i, is ng, meaning that different gearboxes possess different domains of adjustable

variables. This notion is manifested in the problem definition as y ∈ Y(x).

5.3.4 Simulation Results

The discrete search space consists of 1,099,252 different combinations of gears (2–5

gears, 43 possibilities for the number of teeth in each gear: C43
2 + C43

3 + C43
4 + C43

5 ).

The constraints and objective functions depend on the number of teeth, z; as a result,

they only have to be evaluated 43 times for each of the 1000 sampled scenarios. As a

result, it is feasible to find the true Pareto-optimal solutions to the above problem by

evaluating all of the solutions. The entire simulation takes less than one minute, using

standard desktop computing equipment.

A feasible solution is a gearbox that has at least one gear that does not violate the

constraints for each of the scenarios (i.e., I ≤ Inom and V ≤ Vmax). Figure 5.8 depicts

the objective space of the AROP. There are 194,861 feasible solutions (marked with

green dots), and the 103 non-dominated solutions are marked with blue dots. It is

noticed that the solutions are grouped into three clusters with a different price range
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Figure 5.8: The objective values of all feasible solutions to the problem in Equation (5.34)
and the Pareto front.

for each number of gears. The three clusters correspond to ng ∈ {3, 4, 5}, where fewer

gears are related with a lower cost. None of the solutions with ng = 2 is feasible.

A Comparison Between an Optimal Solution and a Non-Optimal Solution

For a better understanding of the results obtained by the AR approach, two candidate

solutions are examined: one that belongs to the Pareto-optimal front, and another that

does not. Consider a scenario where lowest energy consumption is desired for a given

budget limitation. For the sake of this example, a budget limit of $243 per unit is

arbitrarily chosen. The gearbox with the best performance for that cost is marked in Fig-

ure 5.8 as Solution A. This solution consists of five gears with z2,A = {59, 49, 41, 34, 24}
and corresponding transmission ratios are nA = {9.02, 5.07, 3.38, 2.37, 1.38}. Another

solution with the same cost is marked in Figure 5.8 as Solution B. The gears of this

solution are z2,B = {57, 40, 34, 33, 21}, and its corresponding transmission ratios are

nB = {7.96, 3.21, 2.37, 2.25, 1.14}.
Figure 5.9 depicts the set of optimal transmission ratios at every sampled scenario

for both solutions. Each transmission is marked in the figure with a different marker.

This set is, in fact, the set, Y?, from Equation (5.34), that corresponds to the sampled

set of load scenarios P, in Figure 5.7. It is observed that the reduction ratios of

Solution A almost form a geometrical series, where each consecutive ratio is divided by

1.6 approximately. The resulting Y?(xA) is such that all gears are optimal for a similar

number of load scenarios. Solution B on the other hand has two gears with very similar

ratios. It can be seen in Figure 5.9(b) that the third and the fourth gears are barely
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Figure 5.9: Optimal transmission ratio for every sampled scenario.
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Figure 5.10: Lowest power consumption for every sampled scenario.

used. These gears do not contribute much to the gearbox’s efficiency, but significantly

increase its cost. As can be seen in Figure 5.8, there are gearboxes with four gears that

achieve the same or better efficiency as Solution B.

Figure 5.10 depicts the lowest power consumption for every sampled scenario,

Γs
(
x,Y?,P

)
. This consumption is achieved by using the optimal gear for each load

scenario (those in Figure 5.9). It can be seen that Solution A uses less energy at many

load scenarios compared with Solution B. This is depicted by the warmer shades of

many of the scenarios in Figure 5.10(b). The expected power consumption of both

solutions are IE
[
Γs
(
xA,Y?,P

)]
= 5.23W and IE

[
Γs
(
xB,Y?,P

)]
= 5.47W. These are

calculated by averaging the values of all points in Figure 5.10. Considering that both

solutions cost the same, this confirms Solution A’s superiority over Solution B. Given a

budget limitation of $243, Solution A should be preferred by the decision-maker.

5.3.5 Robustness of the Obtained Solutions

In this section the sensitivity of the AROP’s solution to several factors of the problem

formulation is examined. Two aspects are considered with respect to different robustness
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metrics and parameter settings: i) the optimality of a specific solution, and ii) the

difference between two alternative solutions. For this purpose, three tests are performed.

The first relates to the robustness of the solutions to epistemic uncertainty, namely

the unknown range of load scenarios. The second test relates to the robustness of the

solutions to a different robustness metric. The third test examines the sensitivity to the

sampling size.

Sensitivity to Epistemic Uncertainty

The domain of load scenarios is bounded between 0 ≤ τ ≤ 0.55 · τmax(ω). The choice of

55% is arbitrary, and it reflects an assumption made to quantify an epistemic uncertainty

about the load. Similarly, the upper bound for T could be a function a · τmax(ω) with a

different value of a. The Pareto frontiers for several values of a can be seen in Figure 5.11.

For a = 40%, the Pareto set consists of solutions with two, three, four and five gears,

whereas for a = 70% the only feasible solutions are those with five gears. For percentiles

larger than 70% there are no feasible solutions within the search domain.

To examine the effect of the choice of maximum torque percentile on the problem’s

solution, the three solutions from Figure 5.8 are plotted for every percentile in Figure 5.11.

Solutions A and C, which belong to the Pareto set for a = 55%, are also Pareto-optimal

for all other values of a smaller than 65%. Solution B remains dominated by both

Solutions A and C. When very high performance is required (i.e. maximum torque

percentiles of 65% or higher), both Solution A and Solution C become infeasible.

It can be concluded that the mean value, as a robustness metric, is not sensitive

to the maximum torque percentile. On the other hand, the reliability of the solutions,

i.e. their probability to remain feasible, is sensitive to the presence of extreme loading

scenarios.

Sensitivity to Preferences

The target-based robustness indicator, Iq, (see Section 2.4) is used to examine the

sensitivity of the obtained solutions to preferences. The aim is to check whether the

distinction between an optimal and a non-optimal design is maintained when different

targets are required for the power consumption.

Figure 5.12 depicts the results of the AROP described in Section 5.3.3, when the

consumption target is set to q = 11W. The same three solutions from Figure 5.8 are also

shown here. Solution A, whose mean power consumption is the best for its price, is not

optimal when the probability for especially poor performance is considered. Solution A

manages to satisfy the goal for 98.6% of the sampled scenarios, while another solution
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Figure 5.11: Pareto frontiers for different upper bounds of the uncertain load domain
a · τmax(ω).

with the same price satisfies 99% of the scenarios. It is up to the decision-maker to

determine whether the difference between 98.6% and 99% is significant or not.

Solutions B and C are consistent with the other robustness metric. Solution B is

far from optimal, and Solution C is still Pareto-optimal. This consistency is maintained

for different values of the threshold, q, as can be seen in Figure 5.13. Figure 5.13 also

demonstrates that setting an over-ambitious target results in a smaller probability of

fulfilment by any solution.

Sensitivity to the Sampled Representation of Uncertainties

The random variates are represented in this study with a sampled set, using Monte-Carlo

methods. The following experiment was conducted in order to verify that 1,000 samples

are enough to provide a reliable evaluation of the solutions’ statistics: Solutions A and

C were evaluated for their mean power consumption over 5, 000 different sampled sets

with sizes varying from k = 100 to k = 100, 000. Figure 5.14(a) depicts the metric

values of the solutions for every sample size. It is evident from the results that a large

number of samples is required for the sampling error to converge. For both solutions,

the standard deviation is 15%, 6%, 2% and 0.5% of the mean value, for sample sizes of

k = 100, k = 1, 000, k = 10, 000, and k = 100, 000, respectively. If an accurate estimate

is required for the actual expected power consumption, a large sample size must be used

(i.e. larger than k = 1, 000, which was used in this study).
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Figure 5.12: The objectives values of all feasible solutions and Pareto front, for maxi-
mizing the threshold probability.
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Figure 5.13: Pareto frontiers for different thresholds, q.
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Figure 5.14: Convergence of the mean power consumption of two solutions for different
numbers of samples.

On the other hand, a comparison between two candidate solutions can be based

on a much smaller sampled set. Although the values of IE
[
Γs
(
x,Y?,P

)]
may change

considerably between two consequent realisations of P, a similar change will occur for all

candidate solutions. This can be seen in Figure 5.14(a) where the “funnels” of the two

solutions seem like exact replicas with a constant bias. The difference in performance

between the two solutions ∆IE
(
P
)

is defined:

∆IE
(
P
)

= IE
[
Γs
(
xC ,Y?,P

)]
− IE

[
Γs
(
xA,Y?,P

)]
(5.36)

Figure 5.14(b) depicts the value of ∆IE
(
P
)

for every evaluated sampled set. It can be

seen that ∆IE
(
P
)

converges to 200mW. For a sample size of k = 100, the standard

deviation of ∆IE
(
P
)

is 25mW, which is only 12% of the actual difference. This means

that it can be argued with confidence that Solution A has better performance than

Solution C, based on a sample size of k = 100.

Based on the results from this experiment, it can be concluded that the solution

to the AROP (i.e. the set of Pareto-optimal solutions) is not sensitive to the sample

size. The Pareto front, shown in Figure 5.8, might be shifted along the IE
[
Γs
]

axes for

different sampled representations of the uncertainties, but the same (or very similar)

solutions would always be identified.

5.3.6 Discussion

This study is the first of its kind to extend gearbox design optimization to consider the

realities of uncertain load demand. It demonstrates how the stochastic nature of the

uncertain load demand can be fully catered for during the optimization process using

an Active Robustness approach. A set of optimal solutions with a trade-off between

cost and efficiency was identified, and the advantages of a gearbox from this set over a
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non-optimal one were shown.

The robustness of the obtained Pareto-optimal solutions to several aspects of the

problem formulation was verified. It was found that the solution is not sensitive to

the assumptions regarding the uncertain load domain. The solutions’ results were also

obtained when a different robustness criterion was used. The influence of the sample size

for representing the uncertain parameters was also examined. Although the indicator’s

value requires a very large sample to converge (more than 10,000), a sample as small as

100 has been found to be sufficient for a comparison between two candidate solutions.

Computational complexity is a concern for the ARO approach demonstrated in this

study. This case study used very simple analytic functions to evaluate each candidate

solution. Therefore, the real solution to the AROP could be found almost instantly.

When applying this method to real-world applications, every function evaluation might

require extensive computational effort. In this case, efficient optimization algorithms

would be required, and the uncertainties may need to be described by methods other

than Monte-Carlo sampling. However, the large amount of function evaluations required

to solve a typical AROP is a feasible prospect for real industrial problems. Since the

problem is solved off-line, before the product goes to manufacturing, supercomputing

facilities are likely to be available, and a reasonable time-scale for solving the problem

might be days or even a few weeks.

In this study the gearbox’s adaptability was evaluated by only considering its

performance at each of the sampled load scenarios, i.e., at steady-state. However, the

Active Robustness methodology considers adaptability in a wider sense. In addition to

its performance at steady-state, the solution’s transient behaviour during adaptation to

environmental changes should also be considered. For the problem presented in this

section, an environmental change is a change in demand from one load scenario to another.

Although the optimal configurations can be found for both scenarios, the gearing ratios

and input voltages applied while changing between these configurations may have a

substantial impact on the solution’s performance. This notion was deliberately not

considered in the current study in order to focus on basic aspects of the approach.

The next section extends the AROP to also consider the transitions between op-

timal configurations. Two additional objectives for the transient state are discussed:

adaptation time and energy consumption.
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5.4 Gearbox Design - Multi-Objective Formulation

This section extends the AROP presented in the previous section to evaluate the

candidate designs for their transient performance. This extension transforms the

problem from a single-objective AROP to an active robust multi-objective optimization

problem. In addition to finding the optimal configuration for every load scenario at

steady-state, the trajectory of adjustable variables when accelerating the load from rest

is also considered. The acceleration trajectory is evaluated by two additional objectives:

the energy required to accelerate to steady-state speed, denoted γe, and the time it

takes to accelerate from rest, denoted γt. The power consumption of the gearbox at

steady-state, γs, still needs to be minimized. The cost objective is discarded from the

problem formulation in order to focus on the new problem features that distinguish it

from the AROP in Section 5.3.

Since cost is removed from the problem formulation, there is no need to consider

gearboxes with fewer than five gears. Therefore, the search is for the optimal set of five

gears, while the adjustable variables include the motor input voltage and the selected

gear, similarly to the AROP in Section 5.3. The uncertain parameters include the

required speed and torque, as well as the inertia of the load, which is required for

transient analysis.

All objectives depend on the uncertain parameters, p, and the configuration, y, which

makes the problem an ARMOP. The transient objectives are calculated by numerically

solving an ordinary differential equation. The time required to evaluate the transient

objectives does not enable the optimal solution to be found by using enumeration, as in

Section 5.3, and requires an efficient optimization algorithm.

An evolutionary algorithm is used to solve the problem. It is constructed according

to the unary indicator approach for solving ARMOPs that was presented in Section 4.5.

It demonstrates the applicability of the ARO methodology to handle optimization

problems with high complexity and more expensive evaluation functions.

5.4.1 Mathematical Model

The motor and gear system includes the same Maxon A-max 32 electric motor that was

used in Section 5.3. All variables and parameters of the motor and gearbox, including

inertias which are denoted with the letter j, are described in Table 5.3.

The transient version of the steady-state Equations (5.30)–(5.32) include inertia and

acceleration:
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Table 5.3: Variables and parameters for the gearbox ARMOP.

Type Variable/ Symbol Units Lower Upper
Parameter limit limit

x no. of teeth zg 19 61

y gear no. i 1 5
input voltage V V 0 12

p load speed ω s−1 16.5 295
load torque τ Nm·10−3 10 260
load inertia jL Kg·m2 · 10−3 5 10
velocity constant kv V·s·10−3 24.3
torque constant kt Nm·A−1 · 10−3 24.3
armature resistance r Ω 2.23
motor damping coefficient bm Nm·s·10−6 3.16
motor inertia jm Kg·m2 · 10−6 4.17
max nominal current Inom A 1.8
gear damping coefficient bg Nm·s·10−6 30
first reduction ratio n1 3.21
transmission no. of teeth zt 80
maximum acceleration time tmax s 20

derived armature current I A 0 5.39
second reduction ratio n2 0.311 3.21
total reduction ratio n 1 10.3
layshaft inertia jl Kg·m2 · 10−6 15.9 64.5
load shaft inertia jg Kg·m2 · 10−6 5.21 53.7
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s(t) = V (t) ∗ I(t) , (5.37)

where:

I(t) =

(
jL + jg + n2(t)2 jl + n(t)2 jm

)
ω̇(t) +

(
bg + n(t)2 bm

)
ω(t) + τ

n(t) kt
, (5.38)

V (t) = rI(t) + n(t) kvω(t) . (5.39)

When the load is accelerated from rest, it is possible to calculate the speed trajectory,

for given trajectories of input voltage and speed reduction, by solving the following

differential equation:

ω̇(t) =
n(t) ktV (t)− n(t)2 kvktω(t)(

jL + jg + n2(t)2 jl + n(t)2 jm

)
r
−

(
bg + n(t)2 bm

)
ω(t) + τ

jL + jg + n2(t)2 jl + n(t)2 jm
, (5.40)

where ω(0) = 0 is used as a starting condition.

Once the speed trajectory, ω(t), is known, the total energy required for acceleration,

γe, can be derived from Equations (5.37) and (5.39):

u =

∫ tf

0

V (t)
(
V (t)− n(t) kvω(t)

)
r

dt, (5.41)

where tf is the time at which ω reaches the required speed.

5.4.2 Problem Formulation

According to the ARO methodology, the problem variables are sorted in Table 5.3 into

three types: x, y and p. The only source of uncertainty considered in this problem is

the uncertain load demand. Its three characteristics, ω, τ and jL, are treated as random

variates, denoted Ω, T and JL, respectively.

A gearbox is required to perform well both in steady-state and during acceleration.

These two requirements can be considered as different operation modes, with different

configuration spaces. The configuration space in steady-state includes the choice of the

gear, i, and the input voltage, V . During acceleration, it consists of trajectories in time

of i(t) and V (t). Therefore, the search for the optimal configuration can be separated

to y?ss that minimises steady-state power consumption, γs, and to y?tr that minimises

acceleration energy, γu, and time, γt. Since the latter is a solution to a MOP, it is

expected to be a set. The variates of y?ss and y?tr that correspond to the variate, P, are
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denoted as Y?
ss and Y?

tr, respectively.

Following the above, the AROP is formulated:

min
x∈X

[
Γs(x,Y

?
ss,P) ,Γu

(
x,Y?

tr,P
)
,Γt

(
x,Y?

tr,P
)]
, (5.42)

where :

Y?
ss = argmin

y∈Y(x)
Γs(x,y,P) , (5.43)

Y?
tr = argmin

y∈Y(x)
[Γu(x,y,P) ,Γt(x,y,P)] , (5.44)

x = [zi] , i = 1, . . . , 5, (5.45)

y = [i, V ] , (5.46)

P = [Ω, T , JL, kv, kt, r, bm, Inom, bg, n1, zt, jm, jl, jG, tmax] , (5.47)

s.t. :

zg,i + zl,i = zt, i = 1, . . . , 5, (5.48)

Iss ≤ Inom, (5.49)

tf ≤ tmax. (5.50)

The steady-state current constraint is evaluated according to Eq. (5.38), and the

objectives according to Equations (5.37), (5.40) and (5.41).

Since the ARMOP consists of separable configuration spaces, it can be decoupled

into two subproblems, one that searches for Y?
ss and Γs(x,Y

?
ss,P), and another that

searches for Y?
tr and Γtr

(
x,Y?

tr,P
)

, where

Γtr

(
x,Y?

tr,P
)

=
[
Γu

(
x,Y?

tr,P
)
,Γt

(
x,Y?

tr,P
)]
. (5.51)

The former problem is a single-objective AROP, and the latter is an ARMOP. Using

robustness indicators, Eq. (5.42) can be converted to the following bi-objective problem

that simultaneously minimises the steady-state AROP and the transient ARMOP:

min
x∈X

[
I
[
Γs(x,Y

?
ss,P)

]
, Ihv

[
Γtr

(
x,Y?

tr,P
)]]

. (5.52)

The HV measure, qhv, needs to be maximized. In order to pose the multi-objective

problem (5.52) as a minimization problem, the value of 1−Qhv is used for calculating

the robustness indicator Ihv.
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5.4.3 Optimiser Design

The problem was solved by a bi-level EMOA whose structure is described in Algo-

rithm 5.6.

First, the uncertain domain is sampled np times. These samples serve as the same

representation of uncertainties to evaluate all solutions.

Next, Eq. (5.43) is solved for the entire design space, and Y?
ss and Γs(x,Y

?
ss,P)

are stored in an archive for every feasible solution. It is possible to find the optimal

steady-state configuration of every solution for all sampled load scenarios because the

design space is discrete and the objective and constraints are simple expressions. The

search space consists of 962,598 different combinations of gears (choice of 5 gears from

43 possibilities). The constraints and objective functions depend on the number of

teeth, z, and therefore they only have to be evaluated 43 times for each of the sampled

scenarios. A feasible solution is a gearbox that has at least one gear that does not

violate the constraints for each of the scenarios (i.e., I ≤ Inom and V ≤ Vmax).

Next, a multi-objective search is conducted amongst the feasible solutions to solve

Eq. (5.52). The solutions to Eq. (5.44) for every sampled scenario are obtained by

the evolutionary algorithm described in Section 5.4.3. The solutions to Eq. (5.43) are

already stored in an archive.

Algorithm 5.6 Pseudo-algorithm for solving the ARMOP

sample the uncertain domain
evaluate all possible solutions for steady-state (s.s)
initialise nadir and ideal points for transient objectives (limits)
generate an initial population
while stopping criterion not satisfied do

for every scenario do
for every new solution do

optimise for time–energy and store PF
end for

end for
if limits have changed then

update limits
calculate Qhv of entire population

else
calculate Qhv of new feasible solutions

end if
assign scalar indicator values for s.s and transient
evolve new population (selection, cross-over and mutation)
re-mutate solutions that were already evaluated / infeasible for s.s

end while
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Figure 5.15: Gearing trajectory of a candidate solution and the resulting speed trajectory.

EMOA for Identifying Optimal Gearing Sequences

For every load scenario, a multi-objective optimization is conducted for each candidate

solution to identify the optimal shift sequence that minimises energy and acceleration

time. Early experiments revealed that maximum voltage results in better values for

both objectives, regardless of the candidate solution or the load scenario. Therefore, the

input voltage was considered as constant Vmax, and the only search variable is i(t), the

selected gear at time, t. A certain trajectory, i(t), results in a gearing ratio trajectory,

n(t), that depends on the gearbox, x, that is being evaluated.

The trajectory, i(t), is coded as a vector of time intervals dt = [dt1, . . . ,dti? ] defining

the duration of each gear in the sequence from first gear to the i?th, with i? being the

optimal gear at steady-state for the load scenario under consideration. The sum of all

time intervals is equal to tmax, and this relation is enforced whenever a new solution is

created by setting:

dt← dt

‖dt‖1
tmax. (5.53)

Inserting n(t) into Eq. (5.40) results in a trajectory, ω(t), which can be used to

calculate Γu, Γt, or whether the gearbox has failed to reach the desired speed before

tmax. Figure 5.15 illustrates how the gearing sequence is coded for an example candidate

solution, and the resulting speed trajectory. The final gear, which is optimal for the

steady-state, is the fourth gear. Therefore the gearing sequence includes four time
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intervals, one for each gear from first to fourth. It can be seen that the required velocity

has been reached before the maximum allowed time for acceleration. This time is

marked as tf . When the required velocity is reached, the system is still operated in

third gear. The rest of the gearing trajectory and the resulting speed trajectory are

marked with dashed lines. These lines mark the solution’s genotype and the result of

the differential equation. In practice, once the desired speed is reached, the optimal gear

(fourth) is engaged and the input voltage is lowered from Vmax to the optimal value.

A multi-objective evolutionary algorithm was used to estimate the set of optimal

trajectories

y?tr = argmin
n(t)

[γu(x, n(t) ,p) , γt(x, n(t) ,p)] , (5.54)

where both x and p are fixed during the entire optimization run. Solving the differential

equation (5.40) repeatedly throughout the optimization run in order to obtain y?tr is the

most expensive part of the algorithm in terms of computational resources. Therefore,

all of the solutions to (5.54) are stored in an archive to avoid repeated computations.

Calculating the Set-based Robustness Indicator

The ARMOP’s indicator, Ihv, uses a dynamic reference point. At every generation,

after the approximated Pareto frontiers, Γtr

(
x,Y?

tr,P
)

, are identified for all evaluated

solutions, the ideal and worst objective vectors are re-evaluated to include the objective

vectors of the new solutions. If neither the ideal nor the worst objective vectors have

changed, Ihv is calculated only for the recently evaluated solutions according to the

procedure described in Section 4.4.4. Otherwise, the indicator values of the entire current

population are recalculated as well, in order to allow for fair comparisons between new

and old candidate solutions. No preferences were considered in this case study, hence,

the objectives were normalised by setting γw to 1.

5.4.4 Simulation Results

Parameter Setting

The ARMOP described in Section 5.4.2 was solved with the proposed evolutionary

algorithm. Two robustness criteria were considered: Iw considers the worst-case scenario,

meaning the upper limits of the uncertain load parameters, as given in Table 5.3. IE

considers the expected value over a set of sampled load scenarios. For both cases the

same criterion was used for the steady-state and transient indicators of Eq. 5.52, i.e.,

either Iw[Γs] and Ihv,w
[
Γtr
]

or IE [γs] and Ihv,E
[
Γtr
]
.
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Figure 5.16: Approximated Pareto frontiers for the worst-case and mean-value criteria.
A close-up of the robust mean Pareto front is shown with the extreme solutions marked
as A and B.

NSGAII-PSA (Salomon et al., 2013b) with a fixed number of generations was used

for both stages of the problem (referred to as outer and inner).

Parameter setting of the outer algorithm: population size N = 100, 50 generations,

integer-coded, One-point crossover with crossover rate pc = 1, polynomial mutation

with mutation rate, pm = 1/nx = 0.2, and distribution index, ηm = 20.

Parameter setting of the inner algorithm: population size N = 50, 30 generations,

real-coded, SBX crossover with crossover rate, pc = 1, and distribution index, ηc = 15,

polynomial mutation with mutation rate, pm = 1/ny = 0.2, and distribution index,

ηm = 20.

Both stages used sequential tournament selection, considering constraint violation,

non-dominance rank and niche count, and had an elite population size of NE = 0.4N .

The uncertain load domain was sampled 25 times using Latin hypercube sampling.

Results

The approximated Pareto frontiers for both worst-case and mean-value criteria are

depicted in Figure 5.16. For the worst-case criterion, the PS consists of only two,

almost identical, solutions. In a close-up view on the approximated PF for expected

performance, the extreme solutions are marked as A and B.

Details on the solutions for both robustness criteria are summarised in Table 5.4.

Note the similarity in both design and objective spaces between the two solutions of

the worst-case problem, and the difference between Solutions A and B. Also note that
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Figure 5.17: Approximated Pareto frontiers of two solutions for three (of the 25)
scenarios.

the best solutions found for a certain robustness criterion, are dominated for another.

Solution B performs well in most steady-state scenarios, since it has a large variety

of high gears (small reduction ratio), but its ability to efficiently accelerate the load

is limited for the same reason. Solution B becomes infeasible when the worst-case

is considered. This was not detected while optimising for the mean value since the

worst-case scenario was not sampled. This result highlights the impact of the choice of

robustness criterion, and the challenge in optimising for the worst-case (see Branke and

Rosenbusch (2008)).

The dynamic performances of Solutions A and B for three load scenarios are depicted

in Fig 5.17. Solution A’s superiority for both dynamic objectives is well captured by

the Ihv indicator values.

Table 5.4: Optimization Results of the Gearbox ARMOP.

Goal Solu- Reduction Ratios IE[Γs] Ihv,E
[
Γtr
]
Iw[Γs] Ihv,w

[
Γtr
]

tion 1st 2nd 3rd 4th 5th

IE A 9.02 4.34 2.62 1.93 1.30 5.672 0.2857 13.10 0.9631
B 2.76 2.25 1.92 1.73 1.64 5.577 0.3481 infeasible

Iw 7.06 3.38 2.14 1.55 1.14 5.649 0.2896 12.30 0.9511
7.49 3.38 2.03 1.46 1.14 5.660 0.2899 12.52 0.9510

5.4.5 Discussion

This case study demonstrates how a real-world design optimization problem can be

formulated as an active robust multi-objective optimization problem. The approach
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taken to solve the ARMOP is to use a scalarising function to represent the variate of

Pareto frontiers of every candidate solution. This approach was found useful for the

gearbox case study – solutions with better Pareto frontiers were assigned with a better

indicator value. However, whenever a set is represented by a scalar value, some of

its information must be lost. As a result, setting a robustness criterion for the utility

indicator value does not automatically imply that the individual objectives will also be

robust.

Being a bi-level optimization problem, an AROP requires many function evaluations.

An ARMOP is even harder to solve, because the inner problem is a MOP. The strategy

for obtaining robust solutions taken in this study was based on Monte Carlo simulations

to represent the uncertain variables. This representation requires a large set of samples

in order to adequately capture the nature of the uncertainties, and to gain confidence

in the robustness of the obtained solutions. Due to limited computational resources,

the approach was demonstrated with a small set of sampled scenarios, only to provide a

proof of concept. Even for these minimal optimiser settings, almost 70 million function

evaluations were conducted. It took approximately three days to compute on a 3.40GHz

Intelr CoreTM i7-4930K CPU, running Matlabr on 12 cores.

The approach takes account of – and exploits – user influence on system performance,

but presently assumes that the user is able to operate the gearbox in an optimal manner

to achieve best performance. Of course, this assumption can only be fully validated if a

skilled user or a well-tuned controller activates the gearbox. This raises an important

issue of how to train this user or controller to achieve best performance, which is

identified as a priority for further research.

5.5 Summary

The framework for Active Robust Optimization enables designers to conduct optimization

as part of the design process of changeable products. In order to demonstrate how this

can be done in practice, two case study applications from the field of engineering design

were presented in this chapter. The first case study considered a changeable optical table

for protection of sensitive experimental equipment from floor vibrations. The second

case study considered the optimization of a gearbox for an uncertain load demand.

Simplified mathematical models for the performance of both products were derived

from first principles. The models were constructed according to the ARO convention,

which makes a distinction between uncontrolled parameters, fixed decision variables and

adjustable decision variables.

Both single-objective and multi-objective AROPs were presented and solved. The
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optical table problem in Section 5.2 consists of two objectives, vibration damping and

cost, both affected by the selected configuration. Since the damping could be identified

as a leading objective for selecting the optimal configuration, the ARMOP was solved

by the single-objectivisation approach.

The gearbox optimization case study consisted of two parts. The first, which was

presented in Section 5.3, only considered steady-state conditions. The cost objective

for this formulation is not affected by the selected configuration, and therefore, the

problem was formulated as a single-objective AROP. The second part of the gearbox

case study, presented in Section 5.4, considered transient performance as well. Two

additional objectives were introduced: energy consumption during acceleration, and

acceleration time. The configuration space of the steady-state and transient objectives

is not the same, since the transient case considers the trajectory of the configuration

in time. Therefore, the ARMOP was separated into two sub-problems, one for steady-

state performance and another for transient performance. To evaluate the transient

performance, the scalarisation approach, described in Section 4.4, was used.

The algorithms presented in Section 4.5 were used to solve the problems of the case

studies. A set of robust solutions could be found for every problem. The robustness of

the obtained solutions were analysed for a variety of aspects of the problem formulation.

Additionally, the changeable solutions to the AROPs were compared with non-changeable

solutions to conventional RO problems. The superiority of the changeable solutions could

always be identified, and the added benefit of optimizing changeable solutions could

be clearly shown. With the new ARO framework, many other real-world changeable

products can now be optimized as well.
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Conclusions

The Active Robust Optimization framework has been established in this thesis in order to

allow for the optimization of changeable products, i.e., products that can be adjusted by

their users for improved performance in changing or uncertain environments. Changeable

products are commonly designed and manufactured in many fields of industry. However,

until now, there were no available tools to properly optimize such products during their

design phase. Active Robust Optimization creates, for the first time, the opportunity to

incorporate meaningful optimization into the design process of changeable products. In

contrast to the few existing attempts to optimize changeable products, this framework

considers the true effects of uncertainty factors and the ability of the product to respond.

The study combines concepts and methods from the fields of operational research,

multi-criteria decision-making, engineering design and probability theory. The method-

ology includes an analysis of the uncertainties involved and a probabilistic view of the

product’s performance. Robust optimization is used to define the kind of robustness

that is desired from the product, given the uncertainty over its performance. The

ability of the product to be adjusted by its user is emphasised through a dynamic

optimization scheme, where the optimal configuration is sought over different scenarios

of the uncertain environment.

The Active Robust Optimization Problem, formulated in Chapter 3, forms the core

of the framework. It is a nested optimization problem: the outer problem searches for

the basic features of the design that distinguish it from alternative changeable products,

and the inner problem searches for the optimal configuration for different scenarios of

the uncertainties. The base assumption is that some aspects of the problem that are

uncertain during the design phase, become certain when the product is put into service.

Therefore, the search for the optimal configuration is undertaken for deterministic values

of the previously uncertain parameters. For a single-objective AROP, a single optimal
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configuration exists for every scenario of the uncertainties.1 This results in a one-to-one

mapping between every uncertain scenario and the optimal performance. Therefore,

the outer problem can be viewed as a conventional robust optimization problem. The

effects of different robustness criteria on the solution of an AROP were analysed and

discussed. Other aspects, such as different sources of uncertainties and sampling of the

uncertainty factors, have also been addressed.

When the evaluation of a changeable product is based on more than a single objective,

decision-making plays an important role in the optimization process. In Chapter 4,

the Active Robust Multi-Objective Optimization Problem was introduced. It seems

very similar to the single-objective AROP, where instead of a single objective, several

objectives need to be simultaneously optimized. However, the ARMOP introduces

considerable complexity that does not exist in any other optimization problem in

the literature. Instead of a single optimal configuration for any realisation of the

uncertainties, a candidate solution can have a set of Pareto-optimal configurations,

where the user can choose any of them during product operation. As a result, the

performance of a candidate solution is described by a variate of sets of objective vectors.

In Chapter 4, strategies for evaluating, comparing and searching for candidate solutions

of ARMOPs were presented and demonstrated. High-level descriptions of several

evolutionary algorithms that use different evaluation approaches were presented as well.

The methodology was demonstrated with simple analytical functions. These func-

tions were used to construct both single-objective and multi-objective AROPs. Addition-

ally, two case studies involving the optimization of real-world changeable products were

presented. The case studies provided proof-of-concept results for the applicability of the

framework. The advantage of changeability for achieving robustness in a cost-effective

manner was demonstrated for the case studies by comparing changeable products with

their non-changeable counterparts. The changeable products were optimized using

Active Robust Optimization, while the non-changeable products were optimized using

conventional Robust Optimization.

This dissertation includes the following major contributions:

1. Framework for Active Robust Optimization.

2. Framework for Active Robust Multi-Objective Optimization.

3. Metrics for evaluation and comparison of ARMOP solutions.

4. Two case study applications.

1This is the case, unless the function is multi-modal, in which case there might be multiple
configurations with the same optimal performance.
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To conclude the thesis, this chapter provides the following remarks. First, the contri-

butions and the key results are summarised in Section 6.1. Then, the conditions required

for using the framework are discussed in Section 6.2 together with the framework’s

limitations. Finally, suggestions for additional research and development are made in

Section 6.3.

6.1 Key Results

The findings of this study can be summarised according to the following contributions.

6.1.1 Framework for Active Robust Optimization

1. The success of the ARO methodology in optimizing changeable products is rooted

in the way in which the performance of such products is modelled. The mathemat-

ical model of the objective function makes a clear distinction between uncontrolled

parameters, fixed decision variables and adjustable decision variables. This dis-

tinction enables the designer to better understand the effect of adaptability on a

product’s performance. After optimizing the fixed decision variables, the designer

can decide which adjustable features to include, and to what extent.

2. The AROP is a nested optimization problem. The main (outer) problem searches

for the robust set of fixed decision variables that defines the changeable product.

The inner problem searches for the optimal configuration of the adjustable variables

for given realisations of the uncertainties. After optimizing the configuration for

every uncertain scenario under consideration, a one-to-one mapping exists between

the uncertain scenarios and the optimal configurations. As a result, the outer

problem becomes identical to conventional RO problems, i.e., the objective is a

random variate, and robustness criteria are used to evaluate it. Similarly to other

RO problems, the definition for robustness plays an important role in identifying

the most robust solution to an AROP.

3. An AROP must consist of at least one objective, one fixed decision variable,

one adjustable decision variable and one source of uncertainty. The source of

uncertainty can be a random environmental parameter, uncertainty over the actual

value of the selected decision variables or over the prediction of the mathematical

model of the objective function. An analytic example, with the dimensionality

mentioned above, was crafted to highlight the special features of AROPs. A

constraint between the fixed and adjustable decision variables was used for making

the adaptability dependent on the design. The relative simplicity of the problem
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made it possible to analytically propagate the uncertainties from the parameters

to the objective. It also enabled the effects of different features in the problem to

be isolated, as described in the points below.

4. A comparison between an adaptive solution and its non-adaptive counterpart

could confirm that adaptability improves the robustness for a variety of robustness

metrics and sources of uncertainty. Adaptability was found to be most effective

in improving the performance for extreme cases of the uncertainty factors. Thus,

the robustness of the solution is enhanced without sacrificing peak performance

at nominal conditions.

5. Monte-Carlo sampling is often used in robust optimization to approximate the

distribution of an uncertain objective function according to a sampled set. The law

of large numbers states that an infinitely large sample of independent experiments

will have the same distribution as the analytical one. The number of samples

that is required to converge towards the analytical value for various robustness

indicators was examined. It was found for the example analytical function that

the convergence rate greatly varies with the metric used to evaluate robustness.

Therefore, it is recommended to conduct some experiments before beginning the

optimization in order to find the smallest sample size that provides a reliable

approximation of the true indicator value.

6. The AROP was formulated in this study with uncertain environmental parameters

(Type A uncertainty). An examination of similar AROPs with other sources of

uncertainty was also conducted in order to identify the similarities and differences

from the basic AROP. It was found that AROPs with uncertainty over the realised

value of decision variables (Type B) and over the mapping between decision and

objective space (Type C) can be treated in a similar fashion to AROPs with

Type A uncertainties.

6.1.2 Framework for Active Robust Multi-Objective Optimization

1. The generalisation of the AROP to consider multiple conflicting objectives intro-

duces a great challenge. Instead of a one-to-one mapping between every uncertain

scenario and the optimal configuration, there might be a one-to-many mapping, as

the solution to the inner problem may be a set of Pareto-optimal configurations.

As a result, the performance of any candidate solution is a variate of sets of

objective vectors. Quantifying and comparing candidate solutions according to

this kind of representation has never been done before.
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2. To demonstrate and analyse the unique structure of ARMOPs, the analytic

example of a single-objective AROP was extended to a bi-objective problem.

The ARMOP was constructed from a distance term and a direction term. The

distance term includes a fixed decision variable, an uncertain parameter and an

additional adjustable decision variable. The direction term includes an additional

uncertain parameter and adjustable variable. While the distance term is shared

by the two objectives, the direction term determines the trade-off between them.

By introducing merely a single additional parameter and a single adjustable

variable that affect the ratio between the objectives, all the unique features of

ARMOPs could be revealed and discussed. This was achieved while keeping the

dimensionality of the problem to a minimum.

3. The use of robustness indicators to solve an ARMOP is more complicated than

in single-objective AROPs. The indicators suggested in this study followed these

three steps: i) represent each Pareto front with a single scalar/vector, ii) consider

the variate of this scalar/vector given the entire uncertainty range, and iii) use a

robustness criterion to quantify the above variate.

4. Four different approaches for comparing ARMOP solutions were suggested in

the thesis. Each approach is associated with a metric for the first step of the

evaluation, i.e., with the way in which a set of Pareto-optimal configurations is

represented by a single scalar/vector. The different approaches can be useful for

a decision-maker to incorporate high-level knowledge into the ARMOP, in order

to steer the search towards a solution with the most desirable trade-off between

the objectives. The following approaches were suggested: single-objectivisation,

decomposition by scalarisation, set-based unary quantification and set-based binary

comparison. It was found that each approach has its advantages and disadvantages.

Suggestions for choosing the most suitable approach for solving a given problem

were provided according to the strengths and weaknesses of each approach in terms

of complexity, ease of decision-making and resemblance to the original ARMOP

objectives.

5. High-level descriptions of evolutionary algorithms were provided to demonstrate

how each approach can be used to solve an ARMOP. The algorithms share a basic

structure, with some customisations made for every approach. All algorithms

consist of a main EA for robust optimization, based on a sampled representation

of the uncertainties, and a nested algorithm for finding the optimal set of configu-

rations for every sample. The high complexity, that is inherent in algorithms for
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solving ARMOPs, was evident in the presented algorithms. In order to evaluate a

single candidate solution, a MOP needs to be solved for every sampled scenario of

the uncertainties. Then a quality indicator needs to be computed for every set of

Pareto-optimal configurations. Many candidate solutions need to be evaluated

according to the above procedure during the execution of the main EA for robust

optimization. Some approaches, such as single-objectivisation and decomposi-

tion, transform the inner problem into a SOP, thereby substantially reducing the

algorithm complexity.

6.1.3 Case Study Applications

Optical table

1. This case study examined whether adaptability can improve the robustness of an

isolation system for optics experiments. In order to do so, a changeable optical

table to isolate the sensitive equipment from floor vibrations was suggested. The

isolation system is installed in the table’s legs, and includes springs and dampers.

In contrast to a conventional optical table, the position of the legs can be adjusted

according to the experimental settings.

The changeable optical table is designed to be robust to uncertainty with regard to

the frequency of the floor vibration and the setting of the experimental equipment.

While the uncertainty about the disturbance frequency does not decrease much

when the table is put into service, all the required information on the weight

distribution of the experimental equipment is known at the beginning of each

experiment. This information enables the user to adjust the locations of the legs

and the stiffness of the damper, to minimise the vibration transmitted from the

floor to the equipment.

2. Cost needs to be considered in almost any design activity. A cost function for

changeable products generally consists of three elements: manufacturing costs,

operational costs and adaptation costs. These three elements were demonstrated

for the adaptive optical table through a generic cost function. While the changing

environment does not affect manufacturing costs, operational and adaptation costs

are functions of the configuration and changes between configurations when the

product is being used.

3. Since both the damping and the cost can be affected by adaptation, the problem

is formulated as an ARMOP. However, the cost of adaptation and the operational

costs could be considered to be secondary to the main objective of the product,
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which is preventing floor vibrations from disturbing the experiment. Therefore,

single-objectivisation was chosen as the most appropriate approach to solve the

ARMOP. The solutions to the problem present different trade-offs between cost

and vibration damping, but once a product is selected for a given cost, it would

be operated at the most suitable configuration for every experimental setting.

4. Using methods from dynamics and vibration theory, a model of the adaptive

optical table was derived from first principles. The amplitude ratio between the

vibration of the floor and the equipment could be calculated with a closed form

expression. This enabled many function evaluations to be conducted and made

it possible to use Monte-Carlo sampling to approximate the distribution of the

uncertain objectives. An evolutionary algorithm for single-objectivisation was

designed and used to solve the ARMOP.

5. The suggested EA for single-objectivisation was found to be successful in finding

a set of solutions with trade-offs between cost and vibration damping. Three

Pareto-optimal solutions were investigated in order to examine the manner in

which adaptability is applied to different experimental settings. It was found that

both the position of the legs and the stiffness of the damper should be adjusted

according to the weight distribution of the experimental equipment, to maximize

absorption of vibration energy in the isolation system.

The results show that isolation systems with softer springs can better absorb

the energy than stiff springs. However, soft springs are more expensive. The

changeable design that could provide the best isolation had springs with a stiffness

ratio of 1 : 3. This enables the product to react in an optimal manner to different

scenarios.

6. A non-changeable design was also optimized for similar conditions. The difference

from the changeable design is that the position of the legs and the stiffness of the

damper must be determined during the design stage, and they cannot be changed

before every experiment. The solution was found at the boundary of the design

space, with the springs located as close to the centre, the damper located at the

centre and both springs and damper have the lowest possible stiffness.

The superiority of the changeable design over the conventional design was demon-

strated. The changeable design with best vibration damping performed three

times better than the non-changeable design.
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Gearbox

1. The second case study considers a gearbox as a changeable product, and optimizes

it with the tools of the ARO methodology. The gearbox is required to convert the

power provided from an electric motor to a load shaft. The required speed and

torque of the load may vary within known limits, and therefore they are treated as

uncertain entities during the optimization. The changeability of the gearbox lies

in the ability to decide which cogwheel to use for transmitting the power from the

motor to the load. The optimization task is to decide how many gears to include

in the gearbox, as well as their gearing ratios. The adaptability of each candidate

design includes the available gears to select from, and therefore, each candidate

solution has a different domain of changeable variables.

2. The case study begins with a single-objective AROP formulation. It consists of two

objectives, but only one of them is affected by the uncertainties and adaptation.

As a result, the problem is not an ARMOP. The two objectives were power

consumption at steady-state and the cost of the gearbox.

3. A model for the system was derived from first principles. It was based on the

physical phenomena in the electric motor, and the kinematic constraints in the

gearbox. The objective functions could be calculated for every combination of

parameters and decision variables by solving a simple equation. Furthermore,

every load scenario had to be evaluated for only 43 possible gearing ratios. The

combinatoric nature of the design space resulted in just over one million possible

designs. The reasons mentioned above enabled a large number of samples to be

obtained over the uncertain load domain and the problem was solved by evaluating

all candidate designs. As a result, an analysis of the ARO framework for the

application could be made without being biased by algorithmic issues.

4. Using the expected value as a robustness criterion, the solution to the AROP was

found to be a set of designs, offering different trade-offs between expected power

consumption and cost. The differences between an optimal design and another

design with the same cost, but higher power consumption, could be identified.

5. Sensitivity of the obtained solutions was examined for the following aspects:

epistemic uncertainty, preferences and the sampled representation of the uncertain

parameters.

Epistemic uncertainty is a result of missing information on the problem at the

time of its formulation. To assess the effects of epistemic uncertainty on the
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obtained solution, the problem was solved over different domains for the uncertain

load requirement. It was found that the chosen robustness criterion (the expected

value) is not sensitive to this type of uncertainty. However, the reliability of

solutions was found to be sensitive to the presence of extreme loading scenarios.

The choice of robustness criterion and its parameters can be considered as part

of the problem formulation, and they may affect the solution of the AROP. To

examine this effect, the AROP was solved with the target-based indicator using

different targets for the random power consumption. It was found that similar

solutions were obtained for the new robustness metric, with different targets. As

expected, confidence in achieving the target decreases as the goal becomes more

ambitious.

The size of the sample required to converge towards the true indicator value was

also examined. The results have shown that a very large sample is required for

the sampling error to decrease (approximately 10, 000 samples for a standard

deviation of 2% of the mean value). However, it was also found that there is a

very strong correlation between differences in performance of alternative solutions

according to the sampled set. Therefore, a set as small as 100 samples was found

to be enough to compare between two candidate solutions.

The results obtained for the above three experiments are very encouraging. They

show that a reliable solution to an AROP can be obtained with a relatively small

number of samples, and it can remain robust to the uncertainties when different

robustness criteria are considered.

6. In the second part of the case study, two objectives were added to the AROP in

order to optimize the transient behaviour of the gearbox. The transient objectives

search for the optimal gearing sequence when accelerating the load from rest

to each desired speed. They include the power consumed during acceleration

and the time it takes to reach the steady-state velocity. A conflict between the

two objectives may occur, resulting in a set of Pareto-optimal gearing sequences.

Having a set of configurations for every scenario of the uncertain load requirements,

transformed the gearbox optimization problem into an ARMOP.

7. The acceleration trajectory for every gearing sequence was simulated by numeri-

cally solving an ordinary differential equation. The duration of each simulation

ruled out the possibility of solving the inner problem (i.e., finding the optimal

gearing sequences) using enumeration, as conducted for the steady-state objective.

Therefore, an optimization algorithm, based on the unary indicator approach, was

173



6. CONCLUSIONS

used to solve the ARMOP. The ability to find a solution to the ARMOP using

the suggested EA has demonstrated how the ARO methodology can be applied to

problems with more expensive evaluation functions.

8. The unary hypervolume indicator was used to scalarise each Pareto frontier of

transient configurations. The outer problem of the AROP was then composed of

transient and steady-state performance. The solution to this problem was again

a set of Pareto-optimal solutions, providing a choice between steady-state and

transient performance. The difference between the two extreme solutions could

be analysed in order to examine the effectiveness of the suggested hypervolume

indicator.

6.2 Limitations

The usefulness of the Active Robust Optimization methodology to optimize adaptive

products was demonstrated throughout this thesis. The generic nature of the approach

makes it suitable for optimizing many real-world applications. However, some limitations

of the framework need to be considered in order to decide whether or not it can be used

for a given application:

1. Similarly to any other computational method for optimization, the AROP requires

models of the objective function(s) that can predict the product’s performance.

These models must be able to simulate the effects of changes in fixed decision

variables, adjustable variables and parameters.

2. In order to conduct meaningful robust optimization, the uncertainty factors need

to be described in a reliable fashion. Similar to other robust optimization/design

activities, the less accurate the understanding of the uncertainties, the less robust

the solution will be to these uncertainties.

3. The uncertainty quantification method that was demonstrated in this thesis was

based on Monte-Carlo sampling. This method requires a large number of samples

in order to reliably capture the true nature of the uncertain parameters. In the

case of expensive evaluation functions,1 Monte Carlo sampling cannot be used

and needs to be replaced with a more efficient UQ method.

4. The AROP is a nested robust optimization problem, and therefore it requires

a large amount of function evaluations in order to be solved. Applications that

1An expensive evaluation function may require a long time to compute and/or large amount of
other resources.
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include expensive evaluation functions may take too long to optimize with this

approach. Please refer to the next section for some suggestions for overcoming

this issue.

6.3 Future Work

The concepts and methods presented in this thesis are the foundations of the Active

Robust Optimization framework. The framework can be extended in many directions

in order to be established as a leading tool for optimizing changeable products. The

suggested future studies that are listed below will help to enrich the framework and

popularise it within the research community and among industry.

1. The first action would be to apply the methods already developed on a real

industrial problem. In order to do this, a collaboration with an industrial partner

needs to be established. This collaboration will be beneficial for the industrial

partner that will be able to produce products with improved robustness. It will

also promote the framework by benchmarking it on a real-world application.

Furthermore, a collaboration between industry and academia is likely to identify

the issues that require further attention in order to achieve a higher technical

readiness level.

2. The ARO methodology assumes that the changeable product can be adjusted to

the optimal configuration for every scenario of the uncertain parameters. The

study presented in this thesis did not consider the control that needs to be applied

in order to achieve the right adaptation for every scenario. An investigation of

changeable products from a Control Theory point of view can raise issues such

as controllability that may influence the feasibility or optimality of candidate

solutions. Eventually, a solution to an AROP should also include the controller

that will ensure correct adaptation by the product, as was assumed during the

optimization process.

3. Optimization of the adaptation process itself was addressed in Section 5.4 as part

of the gearbox optimization case study. This issue has been previously addressed

by Salomon et al. (2013a) in the form of an Optimization of Adaptation Problem.

The problem was proposed as an alternative to Optimal Control. It concerns

designing an adaptation trajectory when a solution to a dynamic optimization

problem needs to be adapted in order to track a changing optimum. The solution

to an OAP is a set of trajectories that offer a trade-off between the function value

during adaptation and the adaptation cost. An interesting future work will be
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to include the objectives of the OAP as part of the AROP. This will provide a

better understanding of the changeable product’s adaptability and lead to a better

design.

4. The AROP is formulated in a manner that assumes the changeable product can

be adapted to the optimal configuration for every realisation of the uncertain

parameters. In practice, when the product is put into service, it might be operated

at sub-optimal configurations. The reasons may vary from a wrong controller

design, inexperienced operator, wrong sensing of the changing environmental

conditions, or a decision not to adapt due to considerations that were not taken

into account during the formulation of the AROP. In any of these cases, the

actual performance of the changeable product would be inferior to its predicted

performance, which led to identifying it as the most robust solution.

Sub-optimality can be taken into account by introducing uncertainty over the

actual value of the identified optimal configuration. This means that the optimal

configuration is assumed to be a random variate. The consequences of this

assumption on the AROP structure, complexity and algorithmic design should be

investigated.

5. Decision-making plays an important role in formulating and solving active robust

multi-objective optimization problems. In this thesis, aspects of decision-making

were used to choose the suitable algorithmic approach for solving a given ARMOP.

Some of the suggested approaches can exploit a priori knowledge, while others

allow for a posteriori decision-making.

Another aspect of decision-making that exists for ARMOPs is also worth exploring.

During product operation, once the environmental conditions have changed and a

new set of trade-off configurations is available, a single configuration needs to be

selected. It would be useful to define a set of rules that can guide decision-makers

in choosing a new configuration. This selection, for example, might be according

to similarity in performance to the previous configuration, as conducted by Avigad

and Eisenstadt (2010), or by keeping the same ratio between the objectives. In

case of automatic adaptation, these rules can serve as a basis for designing a

controller.

6. The greatest challenge in developing the ARO methodology will be to overcome

the inherently high complexity of the AROP. Focus should be applied on several

fronts:
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(a) Use state-of-the-art optimization algorithms, and develop efficient algorithms

specifically designed to solve AROPs. This includes the leverage of existing

methods for dynamic optimization to find the optimal configurations in the

inner problem of the AROP.

(b) Explore efficient uncertainty quantification methods to approximate the

random performance distribution. Reducing the amount of samples drawn

from the uncertain parameters will greatly reduce the overall effort required

to solve an AROP.

(c) In the case of expensive evaluation functions, a reliable use of surrogate

models should be investigated. Using a surrogate model that is fast to

compute, but introduces additional uncertainty, can greatly speed up the

optimization process. It is important to investigate how surrogate models

can be used without decreasing the reliability of the obtained solution due

to the added uncertainty. A combination of high- and low-fidelity models

can be applied, where the expensive high-fidelity model is mainly used for

validation.

7. In order to encourage designers to use the methods presented in this study, they

should be incorporated in an optimization environment (software). The best

platform to start with would be an open-source framework such as jMetal (Durillo

and Nebro, 2011; Nebro et al., 2015) or Liger (Giagkiozis et al., 2013a). Both

frameworks can be extended with user-defined algorithms. While the former is

more widespread, the latter offers more flexibility for crafting algorithms with

unique architectures. After achieving a satisfactory level of maturity, the methods

could be also incorporated into a commercial optimization software platform.
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Appendix A

Calculation of the qε+ Indicator

The qε+ indicator (Zitzler et al., 2003) is a symmetric binary indicator for comparison

between two sets of vectors. It is based on the concept of ε+ dominance (Laumanns

et al., 2002). A vector a is said to ε+ dominate another vector b, denoted as a �ε+ b,

iff a � b + ε, where ε is a real number. The value of ε defines the dominance relation; a

positive value allows a vector to ε+ dominate another non-dominated vector, while a

negative value requires stronger domination than the common definition.

For two sets of vectors a,b ∈ Rn, the binary measure ε+[a,b] is defined as the

minimal value of ε required for every vector b ∈ b to be ε+ dominated by at least one

vector a ∈ a. A negative value of ε+[a,b] implies that all vectors in b are dominated by

vectors in a. A positive value implies that at least one vector in b dominates a vector

in a. For a minimization problem, without loss of generality, the mathematic definition

of ε+[a,b] as given in Zitzler et al. (2003) is:

ε+[a,b] = inf
ε∈R
{∀ b∈b ∃a∈a : a �ε+ b}

where a �ε+ b if and only if:

ai ≤ bi + ε ∀ i ∈ {1, . . . , n}

(A.1)

The value of ε+[a,b] can be calculated by:

ε+[a,b] = max
b∈b

min
a∈a

max
1≤i≤n

ai − bi (A.2)

It can be explained as the smallest Chebishev distance that the vectors in b must be

displaced, in order to be all weakly dominated by vectors in a (denoted as a � b).

A demonstration of calculating ε+ is given in Figure A.1. The set of stars is denoted

as s and the set of triangles as t. In Figure A.1(a) all of the vectors in t are strong
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Figure A.1: ε+ comparison of two sets with apparent difference in quality for different
criteria.

dominated by vectors in s. Therefore the vectors in t can be improved and still be

weakly dominated by vectors in s. The smallest ε value for which s � t is −2 (i.e.

ε+[s, t] = −2). It can be seen in the figure that the triangle marked as t1 can be

translated by −2 along the γ1 objective and still be weakly dominated by s1. To allow

for b � a, the vectors in a has to be translated by 2 along the γ1 objective and 4 along

the γ2 objective. Therefore the ε value for this case (i.e. ε+[t, s]) is 4 which is the

maximum among the objectives. It can be seen in the figure, as the translation of s2 to

be weakly dominated by t2. The sets in Figures A.1(b) and A.1(c) are non-dominated,

and therefore both ε+[s, t] and ε+[t, s] yield positive values. The member’s translation

in each set that defines the ε+ value is depicted in a similar manner to Figure A.1(a).

A single ε+ comparison between two sets is usually not enough to decide which

one of them is better. A positive value of ε+[a,b] merely implies that the set b is

not dominated by a, but as seen in Figures A.1(b) and A.1(c), it does not provide

any additional information on its own. Performing a double comparison ε+[a,b] and

ε+[b,a] can support a decision which of the sets should be preferred. As discussed in the

beginning of this section, the set s is superior to t in any of the panels of Figure A.1. It

can be observed that for all three examples ε+[s, t] < ε+[t, s]. Following this observation,

a comparison between two sets can be based on the value of the quality indicator

qε+ [a,b] = ε+[a,b]− ε+[b,a] . (A.3)

It is a symmetric indicator, i.e.,

qε+ [a,b] = −qε+ [b,a] . (A.4)

Therefore, a positive value means that b is better than a, and vice versa.
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