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Abstract 

Global energy consumption is projected to increase the world over from 546 EJ in 2010 

to an estimated 879 EJ in 2050 (Frei et al., 2013). Several factors contribute to this 

projected increase including growing global population, better quality of life globally, and 

continued electrification of services and products. Three serious issues arise from the 

increase in consumption and production, that is, fuel supply, and availability and 

increased anthropogenic emissions. To meet demand, developing countries, such as 

Pakistan, are investing in power generation research and technologies. Whilst a number 

of technologies are available, fluidised bed combustion (FBC) is an attractive 

technological option because of its ability to handle fuels with variable calorific content, 

moisture content, mineral content and high alkaline content. FBC offers reliable thermal 

output because of the large thermal mass (fluidised bed) associated with the method. This 

thesis set out to explore the possibility of using low grade fuels in FBC and investigate 

the impact the fuels have on agglomerate formation rates and combustion efficiencies. 

To explore the potential of FBC in the first experimental investigation presented in this 

thesis, a 350KW pilot scale FBC rig was used to perform a series of combustion 

experiments on ten Pakistani coal blends from the Northern Punjab salt rage coal seams. 

The coals had high sulphur and alkaline content and presented challenges in both 

combustion and emissions control. Operational variables including bed temperature, bed 

additives (limestone), sulphur: calcium fuel ratio, additive particle size and co-firing with 

wood biomass were employed to evaluate the effect of fuel blending, combustion and 

emissions optimisation. This thesis argues high SO2 emissions resulting from the 

combustion of high sulphur coals can be reduced in emission concentration when 

optimising operational variables. The high alkaline content, because of pyrite (FeS) 

concentrations in the fuel caused bed agglomeration and slagging in the beds. The 

investigation analyses the agglomerates and defines the mechanisms involved. This 

research allows for remedies and implementation choices when considering the coals 

application in full scale systems. 

It is not only coal which can be utilised. Further work investigated the effects of five 

different biomass fuels in FBC. Biomass can be classified as a CO2 neutral fuel as the 

CO2 released during combustion is relatively equal to the CO2 absorbed in the growth of 

the original plant. However, biomass is known to contain high concentrations of alkaline 

species such as potassium (K) and sodium (Na) which were shown in the literature to 

cause agglomeration. The biomasses were combusted in the FBC rig to evaluate the 
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combustion, emissions, agglomerates, temperatures and pressure outputs associated with 

each fuel. Following tests the air distribution plate was modified to simulate both a 

uniform air distribution system and a non-uniform air distribution system. This allowed 

for comparisons of the fuels in a system with uniform air flows and non-uniform 

airflows/distribution which would be experienced in damaged systems. Thus, this thesis 

argues biomass is significant and relevant to industrial application and allowed for 

identification of significant chemical components in the agglomeration mechanisms of 

each fuel as well as establishing the performance of each fuel in variable systems. 

In order to understand the fundamental chemical and physiological makeup of the low-

grade fuels it was necessary to conduct an extensive series of fuel characterisation. The 

fuel characterisation research undertaken yielded information as to the fuels energy 

content, chemical makeup, combustion characteristic and identify key components such 

as alkaline species associated with the negative mechanisms seen in pilot scale testing. In 

order to analyse the fuels x-ray fluorescence (XRF) was used. This technique identifies 

major and minor oxides in coal samples. However, as demonstrated in the fuel 

characterisation work, there were limitations, inaccuracies and repeatability issues when 

analysing low grade fuels with XRF. Thus, a significant effort was made to improve the 

sampling, ashing, XRF medium and normalisation process. The results of this research 

led to a more reliable XRF method for analysing low grade fuels and their bi-product of 

combustion which is applicable for any industry utilising these types of fuels and 

techniques. 

The final part of the investigations focused on the prediction of agglomeration and 

slagging tendencies of the fuels. This was done by applying the results seen in the pilot 

scale tests and the results of the fuel characterisation work with slagging indices and the 

application of a thermodynamic model (FACTSAGE). FACTSAGE can be used to 

predict slagging tendencies of the fuels by modelling chemical species released over 

temperature ranges. The results showed correlation between the theoretical results and the 

experimental results 

Together this research demonstrates the implications of using low-grade fuels in small 

scale FBC. This thesis explores how this research can then be used in full scale FBC 

operations. This thesis not only highlights the problems with using low grade fuels in 

FBC but suggests remedies and potential solutions to the problems based on the results 

from experimental data and FACTSAGE modelling. It also presents suggestions on how 

to continue development of the technology to reduce or avoid some of the difficulties in 

combusting low grade fuels. 
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ȹP = pressure drop (N/m2) 

ɚ= friction factor 

L= distance (m) 

D= Tube diameter (m) 

v= velocity of gas (m/s) 

ɟf=fluid gas density (kg/m3) 

Umf= minimum fluidisation velocity (m/s) 

Vmf¸Q =volumetric flow rate (m3/s) 

A=cross sectional area (m2) 

Dp=particle diameter (mm) 

ɟs=solid density (kg/m3) 

ɟg= gas density (kg/m3) 

g and gc = gravity (9.81 m/s2) 

Dp=average particle size (mm2) 

dsph=diameter of sphere (m) 

deff=effective particle diameter (m2) 

ȹpfr=frictional pressure drop (Pa) 

Lm=height of bed (m) 

ὑm, ὑ=void fraction 

ɛ=viscosity of gas (kg/ms-1) 

ɛo=superficial gas velocity (m/s) 

űs=Spherity of a particle 

Ȋ=interstitial velocity (m/s) 

u= carrier gas 

j=pressure gradient factor  

ɟp=particle density including pores (kg/m3) 

Vb=bed volume (m3) 
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vP= volume of the particle (m3) 
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Hmf= minimum fluidisation bed height (m) 

ŭb=pressure change across bed (kPa) 

ὑmf= volume of void fraction at minimum fluidisation (mm3) 

ut=terminal velocity (m/s) 

Db=bubble diameter (m) 
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ubr= bubble rise velocity (m/s) 
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dh=grid hole diameter (m) 

Cd= discharge coefficient 

Nj= hole density (m2) 

Nd= number of holesô density (holes/m
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1 Introduction  

In the UK ,power generation companies are shifting from large centralised facilities such 

as those brought online up to the early 1980ôs, plants such as; Ratcliffe (2GW), 

Ferrybridge (1GW), Eggbrough (2GW) and Drax (4.4GW), to medium and small scale 

localised facilities(Breeze, 2014). 

Centralised power generation facilities were chosen as a result of political, social and 

environmental climates at the time. Coal was cheaper and secure with national and 

international fuel stocks plentiful and accessible. However, global politics, public 

opinions, anthropogenic emission impacts, fuel security, developing countries and 

advances in technology have moved the UK from larger facilities to small-medium scale 

more localised facilities fuelled by alternative fuels.  

Power generation industry has continued to evolve and adapt to the changes in production 

choices. Figure 1-1 show how the fuel types for generation has changed since 1980. As 

the figure shows, coal use has reduced since 1985 with discoveries in the North Sea 

leading to large construction of gas plants across the UK, and then drive to implement 

sustainable fuel sources. 

The UK government is a member of directives such as; directive 2009/28/EC, 

2001/77/EC and 2003/30/EC (Renewable Energy Directive 2009) which promotes the use 

of renewables in the power generation sector to achieve a target of 15% of the UKôs power 

fuelled by renewables by 2020 (Glachant, 2001). Legislation and directives such as these 

Figure 1-1 Electricity generation by fuels 1980-2011 (DECC, 2012) 
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are a response to the growing concern over emissions from anthropogenic sources and the 

potential consequences forecasted to impact the atmosphere and environment in the future 

(Hassan, 2014). 

The power sector has responded to the need for renewable power by constructing wind 

farms, solar arrays, installing biomass fired facilities and modifying coal fired units. This 

is demonstrated by the changes seen in Figure 1-2 which shows the overall increase in 

renewable generation. 

Examples of the increase in biomass use include Drax power station which has converted 

from pulverised fuel (PF) (coal units) to biomass fired units, the construction of Stevenôs 

Croft virgin wood fluidised bed, Blackburn Meadows recycled wood fluidised bed, 

Wilton 10 virgin/recycled wood fluidised bed and Aberthaw virgin wood PF units 

(Breeze, 2014). 

With the renewable power sector commissioning, more and more biomass fired stations 

across the UK, the focus of this thesis will be towards the application of low grade fuels 

such as biomass in full scale technologies. As fluidised bed combustion is being utilised 

to combust low grade and renewable fuels, this thesis will investigate problems with their 

use in fluidised bed combustion and propose remedies based in critical evaluation of the 

results. 

1.1 Global Energy 

Power generation technologies vary from country to country and between local 

requirements. Many factors dictate the choice of power generation including technology 

type, economics, power requirement and most significantly fuel sources. 

Figure 1-2 UK renewable electricity generation, 2009-2015 (Evans, 2016) 

http://www.carbonbrief.org/wp-content/uploads/2016/03/UK-renewable-electricity-generation-by-source-2009-2015.png
http://www.carbonbrief.org/wp-content/uploads/2016/03/UK-renewable-electricity-generation-by-source-2009-2015.png
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Energy sources can be divided into two categories, namely non-renewable and renewable 

sources. Non-renewable sources are made up primarily of fossil fuels. These are the 

remnants of ancient plants and animals which have been exposed to pressure and heat 

over millennia e.g. coal, natural gas and crude oil. Non-renewable fuels also include 

nuclear because of its depleting finite fuel source. Renewable energy sources include 

solar, onshore/offshore wind, tidal and biomass. Renewable energy utilisation has 

increased as a result of global emissions and public awareness towards the environmental 

impacts of conventional power generation methods. Whilst the work in this thesis will 

evaluate the potential for environmental impact of using both renewable and non-

renewable fuels, the focus is drawn to engineering problems and limitations of utilising 

low grade fuels and thus how to remedy the issues. 

1.1.1  Global Energy Consumption 

Global energy consumption is projected to continue increase over the next century. In 

projections modelled by the world energy council it was suggested that world energy 

consumption will increase from 546 EJ in 2010 to 879 EJ by 2050 (Frei et al., 2013). In 

another independent study the international energy agency projects that by 2050, the 

world energy consumption will have reached 22 Gtoe (gigatons of oil equivalent) 

compared to the current 10 Gtoe a year (EIA, 2016). 

There are a number of key global factors which will cause an increase in the global energy 

consumption increase to 2050 and beyond:  

¶ Global population is predicted to increase to between 9 and 12.1 billion people before 

2100. There is a large margin of error associated with this type of study because of 

global economies, social dynamics, and technological innovation. However, the 

population is expected to peak and then reduce to a balanced value of approximately 

9 billion people as we approach the year 2100 (Lutz et al., 2001; Cohen, 2003). The 

global cap is estimated by taking into account global resource availability and free 

space, without consequence to environmental damage. The distribution of the global 

population will increase in continents such as Asia and significantly in Africa. A 

decrease is expected in developed countries such as Europe (Cohen, 2001). Each of 

the 9 billion people will create an increasing demand on energy production as 

individual demand on electrically driven appliances and lifestyles increase. This is 

until the efficiencies of power rise in the devices is optimised along with technological 

innovation. 
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¶ Quality of life can be correlated with the units of energy per capita head a person 

consumes annually. In countries with sufficient energy reserves/production, there is 

an ability to provide services and products which improve the quality of life; medical 

and health facilities for instance (Hoogwijk, 2004). Studies have indicated that when 

the energy consumption per capita head for a state reaches 2.6 Gtoe/yr, there is no 

further improvement without industrialisation Growing globalisation and economic 

growth is most prevalent in developing countries creating a deficit in energy 

production as the populations of those states come to expect the same amenities as 

citizens in developed countries. This brings with it a significant increase in energy 

demand and consumption. 

¶ Other factors are predicted to increase the global energy consumption such as 

increasing wealth in emerging markets e.g. China and industrialisation in these 

markets accompanied with globalisation. However, these factors will fluctuate 

whereas population growth and the demand of each individual is highly probable. 

1.1.2 Global Energy Production 

In order to meet the demand for electrical production it will be necessary to create more 

efficient systems whilst producing more power generation facilities, of a larger energy 

producing capacity, using the available energy resources available in the future. The type 

of energy resource is expected to also change in the future as fuel reserves are depleted 

and discovered, as different technologies become more efficient and as individual states 

alter their policies and address national pressures such as producing less CO2 intensive 

electricity. 

1.1.3 Energy in the Future 

When considering the potential sources of energy in the future there are two leading 

factors which affect the decision process; land availability/required for that fuel source 

and the respective yield achievable. This is especially true when considering renewables; 

solar, PV, wind turbines, wave, hydro and biomass. An example being a study by Berndes 

et al. (2003), who reviewed 17 studies on the potential for biomass power generation for 

future global energy deficit. The conclusions of this studies illustrated that depending on 

the land availability and yield achieved by that land, the energy produced by the biomass 

could vary between 100 and 400 EJ/yr by 2050 (Sieminski, 2014). This type of difference 

is shared with global energy associations such as IEA which predicted a 56% global 

energy consumption increase from 2010 to 2040 equating to an increase from 524 

quadrillion btu to 820 quadrillion btu (Birol, 2010). 
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As Figure 1-3 shows developing countries will be a large proportion of future increased 

power demand. These types of country will initially  utilise their indigenous fuel stocks 

and import cheap alternatives. In order to address energy consumption, these countries 

will change and utilise the most economic option available to them. Figure 1-3 illustrates 

how the trend of energy sources is likely to alter by 2030. Note should be taken to the 

dependence of fossil fuels such as coal in the developing countries. So, the question is to 

what fuel stocks are to be utilised and thus what technologies, for future energy use will 

likely to be adopted. 

1.1.4 Fuel Stocks 

In the past, fuel availability and stockpiles have been governed by two key factors; 

political ramification and economic feasibility. Political ramifications have been 

drastically steered by global political peer pressure and local social trends for climate 

change and the effect energy producers are having on anthropogenic environmental issues 

(Verrastro and Ladislaw, 2007). This is then combined with the cost of fuels as 

technologies fall in and out of fashion, nuclear energy disasters such as Chernobyl being 

a key example, means that energy generation has changed over the last 50 years (Van der 

Pligt, 1992). As a direct result, the need for the energy sector to continue sourcing new 

fuel reserves to match these trends and pressures alongside the continuing depletion has 

an effect on fuel prices which influences energy producers decisions with regards to fuel 

choice for generation (Perlack et al., 2005; Rogner, 1997). 

Figure 1-3 Primary energy use profiles for  countries within different forums 

(Kaygusuz, 2012) 
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1.1.4.1 Low Grade Coal 

Coal is a combination of carbon, hydrogen, oxygen, nitrogen, sulphur and low 

concentrations of mineral/inorganic impurities. The high carbon content makes this fuel 

ideal for combustion and power generation. Different ranks of coals exists due to the 

variance in the content of carbon, moisture, mineral matter, ash and inherent impurities 

(Volborth, 1987). 

The price of higher ranks coal such as anthracite ($80-$90/tonne) and bituminous coal 

($57-$60/tonne) is more than three times the cost of sub bituminous coals ($12-$14/tonne) 

and ligniteôs ($19-$20/tonne) (EIA, 2013)(Hecking, 2016). This has fluctuated more 

recently with North America investing in indigenous fracking and tar sands thus resulting 

in an excess in coal production and exports. For developing countries, the variability of 

the cost is forcing governments such as Pakistan, India, and China etc. to look at utilising 

indigenous fuel stocks.  

Figure 1-4 shows how the proven world coal reserves are found more in developing, non 

OECD countries (Petroleum, 2015). Within non-OECD countries there is currently a 

proven total proven reserve of 891531 Mtoe of coal. However, more than half, 57%, of 

these reserves are sub bituminous or lignite ranks(Ishiguro and Akiyama, 1995; Husain, 

2010). 

The available data illustrates a trend for developing countries to utilise their indigenous 

low grade coals in the future. Alternative fuels in developing countries include biomasses 

(wastes, virgin materials and recycling) which have the added potential for CO2 emissions 

reductions. 

Figure 1-4 Distribution of coal reserves globally and the trend for developing countries 

(Petroleum, 2015) 
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1.1.4.2 Biomass 

Biomass is organic materials such as wood, farming residues, municipal solid wastes 

(MSW) etc. which contain high concentrations of hydrocarbons and thus have high 

calorific potential. 

The potential for biomass fuels to meet power production globally is dependent on land 

availability and the yield achieved. Studies suggest that biomass could supply between 

100 and 600 EJ of electricity depending on growth variables and the local strategies 

adopted in producing the power (Slade et al., 2011). It is difficult to quantify the actual 

global availability of biomass for generation when there are so many different types and 

applications.  

The International Renewable energy agency, IRENA (2012), quantified the investment 

cost required to utilise biomass in different technologies, as shown in Table 1-1. This 

indicates that technologies such as stoker boilers and fluidised beds could potentially 

produce the cheapest electricity using biomass; 1880-4260 $/kW and 2170-4500 $/kW 

respectively.  

1.2 Fluidised Bed Combustion (FBC) 

Cheaper initial capital investment and high potential electrical output means fluidised bed 

combustion (FBC) adopted heavily in non-OECD countries. Malaysia uses FBC for 

agricultural and forestry residues (Shafie et al., 2012), Brazil for high moisture sugar cane 

residues and MSW (Hoffmann et al., 2012), China for MSW also for power (Cheng and 

Hu, 2010) and Thailand to combust residues from the fruit farming industry (Nagle et al., 

2011). 

Table 1-1 Typical capital costs and the levelised cost of electricity using different 

biomass power generation technologies (IRENA, 2012) 
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Fluidised beds are also being used to combust the lower ranked coals (previously 

described), examples including; Pakistan (Shah et al., 1994), Australia (Vuthaluru et al., 

2000), Greece (Koukouzas et al., 2009) and Africa (Papo, 2015). 

FBC is different from conventional combustion methods such as PF combustion. In FBC 

a continuous stream of air is used to lift and suspend a bed of inert bed material, such as 

silica sand. Within the turbulent bed, solid fuel enters and combusts, resulting in rapid 

heat transfer and high combustion efficiencies. FBC is particularly useful for the 

combustion of biomass and low ranks coals. The use of a bed results in a high thermal 

reservoir/mass. Therefore, any fluctuation in fuel quality (calorific value, moisture 

content etc.) is absorbed whilst a constant thermal and hence electrical output can be 

achieved. Additionally,  FBC is capable of handling high ash, high mineral impurities, 

high alkali concentration by having constant bottom and fly ash removal techniques (Wu, 

2003a). 

1.2.1 Fluidised Bed Combustion Problems 

As with any combustion technology, there are bi-products this includes the residues in the 

form of bottom ash, fly ash and fine particulate matter and ashes from the complete 

combustion of the fuels. Depending on the type of fuel and its relative quality/ranking, 

the fuel can contain elevated concentrations of inorganic elements, heavy metals and other 

chemical impurities resulting from the fuels chemical and physical structure (Khan et al., 

2009).  

Low rank coals and biomass contain elevated concentrations of inorganic elements such 

as alkali species; sodium (Na) and potassium (K). These species have melting 

temperatures (Ó764°C for Na and Ó790°C for K) (Bartels et al., 2008g) lower than the 

temperature of the combustion environment (800-900°C) (Kunii et al., 2013). The alkali 

species and ash enter a liquid melt/gas phase which coats the bed material creating a sticky 

surface. Collisions of these particles results in adhesion and growth to larger particles. 

The agglomerates grow in size and structural rigidity. The presence of agglomerates 

within the bed interferes with the hydrodynamics of the bed and turbulence. Hence 

combustion efficiency and system performance reduces. If agglomeration is not addressed 

upon detection of a system change, a bed can eventually defluidise which will result in a 

furnace outage (Öhman et al., 2000; Elled et al., 2013b; Duan et al., 2015).  
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1.3 Synopsis of Research 

The rationale of the research for this thesis was to undertake an investigation in the use 

of low rank coals and biomass fuels in pilot scale FBC and evaluate the application to full 

scale. This was to be done by completing a literature review to encompass all necessary 

theory and current research, extensive experimental testing of fuels in a pilot scale test rig 

and by conducting thorough analytical analysis of results. The literature review allowed 

for the identification and outlining of gaps in the current available research. Experiments 

and methodology were proposed and designed in order to address the outlined research 

gaps. By consulting the literature and evident theory, it was possible to approach the 

research in such a way as to evaluate the effect that the fuels had upon the fluidised bed 

system. Further work was conducted in order to assess the impact of operational changes 

such as the use of additives, bed temperatures, particle size etc. on the fluidised. 

Further analysis and characterisation of the fuels was necessary to understand the 

underpinning fundamentals and thus the effect the fuels had upon the technology. Further 

gaps in analytical techniques, such as XRF, for measuring elemental content of ashes were 

identified to develop the technique to improve accuracy and reliability in results. 

The research also involved the use of theoretical thermodynamic modelling for the use of 

predicting agglomeration and slag based mechanisms in FBC. The results will be used to 

validate the results of experimental data. The result of this work included validation of 

the software package itself and use of the technique in predicting FBC agglomeration 

likelihood when using the fuels included in the investigations of later Chapters 

1.4 Aims and Objectives 

The key aims which defined the core research objectives are as the following points 

indicate: 

¶ Investigate the effect that combusting industrially relevant biomasses and 

economically viable sub-bituminous coals have on the formation of agglomerates 

within the bed of an FBC. The aim of this is to quantify the mechanism of the 

agglomerate formation and to compare the fuels applicability in the technology. 

¶ Evaluate the affect operational variables have on the formation of agglomerates, 

emissions, combustion performances, temperature distribution and system pressures. 

By varying operational parameters conclusions will be drawn as to the flexibility and 

applicability of the fuels in FBC systems. 
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¶ Using the information of the previous objectives, a series of engineering remedies 

will be presented including operational parameter choice/optimisation and the 

alternative methods that the results indicate could be beneficial in FBC. 

¶ Investigate the application of indices, fuel characterisation and thermodynamic 

modelling in the prediction of slag and agglomeration formation in FBC. In doing so 

conclude on the use of different techniques and the use for predicting FBC issues. 

¶ Investigate the effect of damaged air distribution systems in FBC. Evaluate the impact 

on agglomeration, air distribution etc. and conclude as to the impact on industrial 

scale systems. 

¶ The overall objective is to define the applicability of the fuels in these investigations, 

the effect of operational variables, use of modelling and remedies for full scale power 

generation FBC facilities.  

Each Chapter addresses different aspects of low grade fuels for FBC. However, the focus 

is to evaluate the implications that the low-grade fuel would have if employed on full 

scale FBC technology. The following sections describe the aims of the Chapter and their 

significance. 

The is a comprehensive literature review which overviews important theory and 

previously undertaken research. This is fundamental for an understanding in the 

techniques and technology used throughout the investigations. The research is used to 

identify areas which havenôt previously considered or a need for further investigation or 

more rigorous validation is needed. Throughout this Chapter the aim is to identify gaps 

in the research and explain where the research in the subsequent investigations fit in the 

bigger picture. 

Chapter 3 is a detailed description into the methodology applied and experimental choices 

made in order to rigorously and accurately test the applicability of the fuels in FBC 

systems. Developments of the testing equipment, plans of tests and validation of 

operational choices for investigation are explained. By doing so this Chapter aims to 

indicate the logical and systematic approach taken to thoroughly test key operational 

parameters within the research in order to achieve representative and reliable results to be 

used to compare the fuels, techniques and scale of operation.  

Chapter 4 is aimed towards producing an understanding of the fundamental physical and 

chemical make-up of the fuels. The objective of this is to produce a series of data sets that 

will be used to draw links to the agglomerates and combustion mechanisms seen in later 

Chapters. This Chapter also aims to develop XRF as a more accurate and applicable 



 

 

11 

 

technique for measuring low grade fuel ashes and combustion bi-products. This data will 

also be critical for identifying key components within the combustion mechanisms and 

devising conclusions as to their importance to the research. 

Chapter 5 applies theoretical approaches including indices, predictions based on the fuel 

characterisation studies and a thermodynamic model (FACTSAGE) for the determination 

of slagging and agglomeration issues with low grade fuels in FBC. The aim is to evaluate 

the accuracy and applicability of these techniques for predicting bed issues by validating 

the results in experimental chapters. The overall objective is to identify the strengths and 

weaknesses of the methods and to suggest how the techniques could be used to predict 

bed issues in full scale operations. 

Chapter 6 aims to investigate the effect sub-bituminous coals have on a FBC bed and the 

impact the fuel has on agglomerates. The objective of this Chapter is to evaluate the 

opportunity to improve the fuel with the addition of bed additives and operational 

changes. By doing so, the work allows for conclusions to be drawn between operational 

variables whilst linking phenomena seen in the bed to the fuel characterisation work of 

Chapter 4. The overall aim of the Chapter is to conclude as to the applicability of the fuels 

in full scale operations and to offer methods for improving the fuels as a result of the data 

gathered during experimental testing. 

Chapter 7 aims to evaluate the effect combusting different biomass fuels in FBC has on 

the rates of agglomeration and the impact of operational variables on the ability to achieve 

stable combustion. The air distribution plate will be modified in order to understand the 

effect poor air flow and restriction has on the bed and combustion. The overall aim of this 

Chapter is to evaluate the biomasses and to evaluate the application of the fuels in full 

scale operations and recommend techniques that should be employed in order to mitigate 

the engineering challenges highlighted by the experimental results. 

1.5 Outline of Thesis 

This thesis contains 8 Chapters. Chapter 1 introduces the problem and rationale for the 

research undertaken in the following document. Chapter 2 develops an understanding of 

the theory and explains research in the literature. In doing so highlighting the gaps in the 

available research and the need for the research. Chapter 3 describes the experimental 

methodology, equipment and testing plan designed to vigorously the theories and 

variables defined. Chapter 4 is focused on fuel and material characterisation and the lab 

analysis techniques/methodologies development. Chapter 5 through 7 are results Chapters 
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specifically looking at areas in which the literature review has highlighted. Chapter 6 

investigates low rank Pakistani coals in FBC, Chapter 7 investigates the impact of 

biomass in FBC and the effect of a damaged air distribution system on agglomeration, 

and Chapter 5 demonstrates work conducted in the modelling package ñFACTSAGEò. 

Chapter 8 outlines the conclusions and the future work required to further develop ideas 

and theories founded in this thesis. The research shows how the fuels can be employed in 

full scale utilities and the remedies which should be considered on their application. 
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2 Literature R eview 

2.1 Introduction  

An ongoing area of research is the application of biomass fuels and sub bituminous coals 

due to the economic and technological implication in the power generation industry. In 

order to understand what research has been undertaken beforehand and identify where the 

research gaps are a thorough literature review was conducted. The following Chapter is a 

comprehensive cross section of technical, chemical and physical areas which needed 

consideration when addressing potential operational issues for the combustion of low 

grade fuels in FBC technologies. 

2.2 Coal Utilisation 

Coal in its many variations, can be found in a number of geologically significant locations 

around the world, especially in large quantities in countries such as North America, 

Russia, Australia, South Africa, Columbia and China (Speight, 2012). Coal is the result 

of dead plant life from the carboniferous period (300 million years ago) which has been 

subjected to great pressure and heat. The first formations of coal come in the form of soft 

peats, but with longer periods of heat and pressure, give rise to bituminous and less 

abundant anthracites (Stone, 2004).  Due to the plant life origins of the coal, the elemental 

make up of coal consists mainly of carbon, hydrogen, oxygen, nitrogen and sulphur. Coal 

also contains small amounts of a number of major and minor groups varying from alkaline 

species such as sodium and potassium to heavy metals such as cadmium and mercury. 

These components would normally be found in small concentrations in plant life but due 

to the compaction process and leaching from local land formations, high concentrations 

of these elemental groups can build up in the coal (Wiser, 1999).  

The price of Coal has continued to increase overall since the 1950ôs with economic 

changes and increasing consumption globally, as indicated by Figure 2-1. An example of 

change would altering coal utilisation is the collapse of the world market in the mid 2000ôs 

followed by record coal production in the USA in 2006-2008 resulting in a fluctuation in 

global coal prices from $97.68 per short tonne exported to $39.31 per short tonne exported 

respectively (Freme, 2009). This then led to increased use of coal for power generation, 

domestic heating etc. in developing countries such as China which increased its 
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consumption to 2580 Mt in 2008 which was 41% of the global consumption (Lin and Liu, 

2010). However, with the re-stabilisation of world markets by 2010. The increase in coal 

prices has left countries such as Japan unable to fund coal power generation after their 

nuclear power plant fleet was shut down amid fears post Fukushima tsunami nuclear 

disaster, 2011 (Kim et al., 2013). It is for reasons such as these that research and 

investments are being made towards the exploitation of abundant lower grade coal 

sources. 

Barnes (2015) defines low grade fuels as followed: 

ñmaterials that have an energy content that may be recovered by direct (e.g. combustion) 

or indirect (e.g. gasification) processes, but where that energy content is significantly 

lower than the range expressed in normal fossil fuels (oil, gas and coal)ò. 

The lower energy content in low grade fuels can be due to higher mineral matter and 

moisture content, thus diluting the hydrocarbon content and also negatively effecting the 

combustion properties of the fuel (Barnes, 2015). 

A review of the available literature finds significant investigative works in numerous 

research institutes for low grade fuel-electrical power utilisation globally. Li (2004) 

reviewed research and exploratory work in Australia aimed towards the liberation and 

application of Victorian brown coals and ligniteôs. There are numerous reserves of low 

grade coals including Murray Basin Mt, 19600, Gippsland Basin, 395000 Mt and Otway 

Basin, 15500 Mt. The conclusions of fuel availability, ease of extraction and its critical 

Figure 2-1 Estimated coal market prices, 1949-2011 (Dollars per short Ton) (Paduano, 

2016) 
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role in the future of Australiaôs energy production and economic exports indicate the vast 

potential and need for technological applications. Numerous other studies including; 

(Ward and Christie, 1994; Dunne and Agnew, 1992; Karthikeyan et al., 2009; Barton et 

al., 1993) have been conducted on Australian coals because of their fuel supply potential. 

This is an example of the growing desire to use these types of fuels and thus the effect 

and application in combustion systems needs evaluation. 

2.3 Biomass 

Biomass is defined by the international energy association as: 

ñOrganic, i.e. decomposable, matter derived from plants or animals available on a 

renewable basis. Biomass includes wood and agricultural crops, herbaceous and woody 

energy crops, municipal organic wastes as well as manure (DôApote, 1998)ò 

Whilst the utilisation of low grade coals could potentially alleviate some of the growing 

global electrical demand resulting from the projected population growth of 18.6% (8.5 

billion by 2030) (Davis et al., 2014), concerns towards anthropogenic climate change has 

refocused research and development to less CO2 intensive methods of electrical 

generation. CO2 measurements over the last 60 years have seen average atmospheric 

concentrations increase from measurements over the last 60 years have seen average 

atmospheric CO2 concentrations increase from 316 ppm to 400 ppm (Davis et al., 2014). 

One method to reduce this is to replace CO2 intensive fossil fuels with biomass fuels such 

as those previously described as these types of fuels have potential to be carbon neutral 

or negative if combined with carbon capture method (Mathews, 2008). 

In order to utilise biomass, it is impotent to understand the difference biomass has to coal 

both chemically and physically. Biomass, like coal, contains mainly carbon, hydrogen, 

nitrogen and oxygen. Biomass contains very little sulphur and is of a varied concentration 

to the impurities such as alkaline earth groups (Quaak et al., 1999). The difference in 

biomass composition poses challenges in its application; from harvesting and logistical 

issues (McKendry, 2002; De Wit and Faaij, 2010; Thorsell et al., 2004; Sokhansanj et al., 

2009; Ekĸioĵlu et al., 2009; Lewandowski and Heinz, 2003; Spinelli et al., 2005), 

processing of the fuel damaging traditional grinders and cutting equipment (Nunes et al., 

2016; CHEN et al., 2005; Xutao and Bailiang, 2008; SUI et al., 2012; Yonglong and 

HouShulin, 2013), to physical and chemical reactions causing abrasion, agglomeration, 

corrosion, slagging and fouling in furnaces (Qing-tao, 2009; Wang et al., 2009; Bartels et 

al., 2008a; Basu and Sarka, 1983; Chaivatamaset et al., 2013). 
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As part of this study, biomass will be assessed in its application in FBC. This is a 

technology suited to low grade fuels such as biomass and the following sections will 

elaborate. 

2.4 Fluidised Bed Combustion (FBC) 

In order to combust biomass and other low grade fuels it is necessary to utilise a 

technology which has combustion flexibility that can adapt to the variable mineral, 

calorific and moisture content alongside other varying impurities. Fluidisation refers to 

the flow of gases through a bed of solid particles suspended on a bed of gas, usually air. 

When gases (air) with sufficient velocity enters under a bed via a distribution method, the 

bed expands and lifts as the voids between particles increase. Once combustion takes 

place in the bed either through solid fuel combustion or, usually oil or gas, pre-heat 

system. With increased air flow and heat the bed material flows and reacts more like a 

fluid and thus ñfluidisationò has begun (Cotton et al., 2013). Figure 2-2 illustrates 

different stages of fluidisation a bed will undergo with increased airflow. As the airflow 

is increased the bed void increase as they are filled with the fluidisation medium. The bed 

will begin to bubble, with bubbles erupting on the surface. 

The following sections describe technological considerations and design choices for FBC 

systems which will be applied in later Chapters and experimental design. The reviewed 

literature has been used to devise the method for investigations and the need for research 

in specific areas of FBC utilisation for low grade fuels. 

Figure 2-2 Different fluidisation modes a bed can experience depending on air flow, 

fluidisation medium and bed material choice.(Kunii et al., 2013) 
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2.5 Fluidisation Theory and Fundamentals  

Operating and monitoring a FBC requires understanding and application of fundamental 

rules and mechanisms including; minimum fluidisation velocity, combustion 

optimisation, pressure drop and bed hydrodynamics. As such it is necessary to review the 

literature on the effect operational variables have on them to better understand and operate 

the experimental rig during testing and conception of tests. 

2.5.1 Minimum & Maximum Fluidisation Velocity  

Possibly the most important factor affecting the operation of a fluidised bed is the 

fluidisation velocity. That is, the velocity of the gas or liquid flowing through a packed 

bed in order to commence fluidisation. The following sections describe the fundamental 

properties and theory required for both understanding how a bed fluidises and how to 

modify and operate a bed successfully. The following sections are of particular 

importance to the air distribution, efficiencies and state of turbulence underpinning the 

rates and type of agglomeration that can occur in a bed. The theory described are a 

justification for picking operational variables to tests in later investigations including, use 

of additive, modification of air flows, particle sizes, combustion temperatures and co-

firing of different fuel ratios. 

The variables affecting minimum fluidisation are summarised by Figure 2-3, and indicate 

how fluidisation cannot occur until the forces acting down upon the bed are counteracted 

by the forces being applied to the bed from the inlet air etc. 

pressure drop 

across bed
+

cross section 

area of 

combustion 

chamber

=
volume 

of bed
+

fraction 

consisting

of solids

+
specific weight

 of solids
 

Figure 2-3 (Kunii and Levenspiel, 1991) 

When air is introduced to the system the bed will undergo a number of stages as 

fluidisation occurs; 1) initially the bed will be packed; 2) the initial development of 

fluidisation and raising of the whole bed; 3) bubbling bed starts and intensifies; 4) 

slugging of the bed occurs 5) entrainment of the bed. Initially low air velocities present 

no change in the bed due to the frictional forces between particles etc. overcoming the 

opposing forces against the bed. However, there is a pressure drop across the bed which 

is a result of a loss of mechanical energy caused by the beds particle friction (ȹP). The 

pressure drop across the bed which is influenced by the properties of the particles is 

calculated using Equation 2-1(Anthony, 2003). 
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Where æP is pressure drop, ɚ is friction factor, L is distance across the bed, v is velocity 

of the gas and ɟf is the fluid/gas density. 

Whilst Equation 2-1 calculates the pressure drop across a bed with a good level of 

accuracy with particles above 150ɛm in diameter, Equation 2-1 requires modification to 

retain accuracy when considering different particle sizes. With larger bed particles, the 

bed voidage between irregular shaped particles will also increase thus influencing the 

displacement properties of the fluidising air. The increase in voidage also has an effect on 

the particle wall effect of the particles. Therefore, taking these parameters into 

consideration Equation 2-2 develops Equation 2-1 (Kunii and Levenspiel, 1991; Anthony, 

2003).  
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2-2 

(Anthony, 

2003) 

Where æp
fr
 is frictional pressure drop, Lm is the height of the bed, gc gravity constant, Ům 

is the void fraction, ɛ is the viscosity of the gas, uo is the superficial gas velocity, dp 

particle diameter, ɟ
g
is gas density and űs is the spherity of a particle. 

With an increase of fluidisation air the fluidisation of the bed will begin. The initial 

incipient fluidisation of the bed can be calculated and is referred to as the minimum 

fluidisation velocity (Umf). Equation 2-3 illustrates the relationship with the minimum 

fluidisation to inlet velocity air and the cross-sectional area of the bed. The flow rate of 

inlet air is in reality greater than that of the calculated minimum fluidisation air value. 

This is due to frictional forces in the inlet pipes, the irregularity of bed materials such as 

sand which will not be perfectly spherical, the variable weight of the individual particles 

and the physical dimensions which will contribute to aerodynamic factors and buoyancy 

influence (Howard, 1989). Equation 2-4 develops on Equation 2-3 and gives a more 

realistic minimum fluidisation value when the average bed particles are less than 40ɛm 

whilst Equation 2-5 is more applicable for bed particles averaging > 1000ɛm. Whilst there 

are variations of these equations between authors, Equation 2-3, Equation 2-4 and 

Equation 2-5 are widely accepted for materials such as silica sand for bed materials 

(Howard, 1989; Kunii and Levenspiel, 1991) and will be applied during air distributor 

and experimental rig design. 
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Where Umf is the minimum fluidisation velocity, Vmf is the volumetric flow rate, A is the 

cross-sectional area of the bed, dp is the particle diameter, ɟs is the solid density, ɟg is the 

gas density, ɛ viscosity of the gas, ‐ is the volume of void fraction at minimum 

fluidisation, g is gravity constant and űs is the spherity of the bed particles. 

With the onset of incipient fluidisation, the pressure drop across the bed will remain 

stationary, however, the particles in the bed will increase in voidage until a state of 

equilibrium has been achieved. At this point bubbles, will form and collapse throughout  

the bed. The bed will sustain its level of buoyancy as long as no other variables are 

introduced or altered (Anthony, 2003). 

With further increases in the fluidisation inlet velocity the bed will move to a third stage 

and the bubbling will intensify. At this point the fuel particles and temperature will 

distribute within the bed resulting in a near homogenous bed with continued mixing. The 

bubbles at this point will be small and irregular and variant. As the fluidisation velocity 

continues to increase the bed enters stage 4 resulting in slugging of the bed. At this stage, 

smaller particles become entrained within the bed i.e. they are no longer mixing but 

become trapped within the bed which is stage 5. The entrainment of particles will result 

in changes of pressure drop across the bed. If these are too great the bed risks slumping 

or inefficient mixing throughout the bed (Howard, 1989; Kunii and Levenspiel, 1991; 

Anthony, 2003). These factors need consideration when analysing shape and spread 

formation of agglomerates in the bed to understand fuel distribution and the effect of 

operational parameters influencing bed turbulence. 

2.5.2 Pressure Drop vs. Velocity 

Pressure drop and the inlet fluidisation velocity is a common method for monitoring a bed 

condition because of its more simplistic representation of the bed air movement and 

particle mixing. 

Ὗ
ὠ

ὃ
 Equation 2-3 (Howard, 1989) 

Ὗ  Rep, mf<40 Equation 2-4 
(Kunii and 

Levenspiel, 1991) 
Ὗ

Ȣ
‐ • Rep, mf>1000 Equation 2-5 



 

20 

 

As the pressure drop remains constant post fluidisation of the bed, the increasing inlet 

fluidisation velocity causes some fundamental changes as shown in Figure 2-4. These can 

be used to determine the status of a FBC in operation. The changes of increasing inlet 

velocity are as follows; (a) the increasing inlet air is approaching fluidisation. When the 

onset of fluidisation occurs the hump as shown by (b) will present followed by a 

stabilisation (this stable line is an average value as the values will oscillate around this 

value with the bubbling occurring within the bed) (Anthony, 2003). (Kunii and 

Levenspiel, 1991). 

The region shown as (c) above the line represented as (d) is a buffer zone which can occur 

with smaller average particle diameters. The smaller particles are effected by buoyancy 

forces differently to that of larger particles and as a result of when minimum fluidisation 

occurs the pressure drop diminishes until a further increase in fluidisation velocity re-

establishes fluidisation. The line at which (e) occurs indicates the entrainment of material 

with the bed resulting in a decrease in pressure drop across the bed (Howard, 1989). 

Overall the theory covered will be used to evaluate the bed conditions, operational choices 

and start-up procedure. 

2.5.3 Theoretical Properties of Fluidising Particles 

Different particles interact with the bed in different ways and based on their particle 

classification this can be used to predict the particles interactions with the bed. Another 

purpose for a particle classification is that not all particles can be fluidised and therefore, 

it is important that proper classification gives an operator the information needed to run 

an FBC correctly.  

Figure 2-4 Characteristic curves of bed pressure drop and its dependence on fluidisation 

velocity (Anthony, 2003) 
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The literature shows different approaches used to try and classify the interactions of the 

particles within a FBC bed, the mode of fluidisation and the criteria for transition from 

one mode to another. Initially Wilhelm and Kwauk (1948) proposed a criteria system 

based on inter particle forces between bubbles using the Froude number. This was then 

developed by Romero (1962) which included dimensionless groups such as Reynolds 

number and Froude number. Additional approaches and takes on the classification were 

attempted and developed however,  it was Geldart (1973) who approached the issue in 

terms of particle characteristics and the way they fluidise as illustrated in Figure 2-5. 

The Geldart diagram compromises of four categories and are as follows: 

¶ Group A-consists of particles which have a small mean size and low bulk density 

(ɟɟ<1400kg/m3). These particles can be fluidised easily with smooth fluidisation 

being observed at low inlet velocities. Due to the large buoyancy effect on the small 

particles, the fluidisation of these materials results in large bed expansions and a 

homogeneous fluidisation. The bubble rising velocity will exceed the interstitial gas 

velocity during the emulsion phase resulting in a maximum bubble size achievable 

(Geldart, 1973; Kunii and Levenspiel, 1991). The interstitial gas velocity is defined 

as the velocity of the gases moving in an opposing direction to a particle in the bed 

and is summarised by Equation 2-6 (where ό.is interstitial velocity, u is the carrier 

gas and j is a pressure gradient factor). 

Figure 2-5 Geldarts approach to particle classification in fluidisation (Geldart, 1973) 
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¶ Group B-particles are of a medium size (40ɛm<Dp<500ɛm) and medium density 

(1400<ɟs<4000kg/m3) and therefore,  covers a large variety of different materials 

(Kunii and Levenspiel, 1991). Most particles of this group are described as ñsandò 

like and bubbles occur immediately after minimum fluidisation has been achieved. 

There is no maximum bubble size associated with this group which allows slugging 

etc. of beds made of this particle category (Anthony, 2003). This is a visual indicator 

for poor fluidisation brought on by operational changes. 

¶ Group C-is made up of fine particles (Dp<30ɛm) with extremely low density which 

can be described as cohesive. The fluidisation of these particles is difficult due to the 

inter particle forces being very strong. The velocity of the inlet gases required are too 

large for fluidisation but instead blow away bed material. These types of particles 

form channels and irregular slug patterns and thus the pressure drop seen in fluidised 

beds is not achieved. For this reason, the bed will remain fairly static hence poor 

mixing and no fluidisation is achieved (Geldart, 1973; Kunii and Levenspiel, 1991; 

Anthony, 2003; Jones and Williams, 2008). 

¶ Group D-is made up of larger (Dp>600ɛm) and more dense particles which 

commonly have coarse shapes which will influence fluidisation greatly. Because of 

the larger physical weight etc. of the particles, deeper beds are difficult to fluidise. 

However, once fluidisation has been achieved bubbles will rise slowly through the 

bed, specifically slower than the interstitial gas velocity. The slow bubble formation 

develops explosive bubbles on the surface of a bed and can lead to channelling or 

spouting through the bed (Howard, 1989; Kunii and Levenspiel, 1991). 

The Geldart diagram will be referred to in later results to correlate average bed particle 

size change to agglomeration formation and fluidisation. 

2.6 Physical Properties of Fluidising Particles 

There are a number of physical properties which affect the hydrodynamics of bed particles 

and hence the ability to fluidise that bed. The different physical properties such as particle 

size, density, size distribution, particle voidage, physical shape and how coarse the 

particles are etc. will contribute to the particles classification in the Geldart diagram and 

therefore, the requirements for fluidisation. Understanding these values is important for 

operators to determine what mechanisms are taking place in the bed and why. 

ό όὮ Equation 2-6 (Subramanian, 2004) 
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The following sections and theory are fundamental for the understanding of bed 

interactions that occur between gases, gas-solids and solids. The bulk density for instance 

will influence how the bed will fluidise, how the gases will move throughout the bed, 

bubble formation and consequently this impacts in the physical mechanisms associated 

with agglomeration. Furthermore, these physical properties will alter the impact that test 

variables can pose on the outcome of agglomerate formation, defluidisation times and the 

resulting flame from bed/above bed combustion. 

2.6.1 Spherity 

Each particle will interact differently within a bed due to its shape and size and therefore, 

influence the fluidisation and voidage of a packed bed. Average particle sizes are used to 

encompass variance in size and shape of particles within a bed and the large number of 

individual particles present. The term deff is the effective diameter of each particle within 

the bed. Whilst particles over 1mm2 can be measured manually by either sieve or callipers, 

particles Ò1mm2 are calculated from available data. The first method is to average 

particles by giving an equivalent spherical diameter for volume, thus mitigating the shape 

of each individual particle and is defined as Equation 2-7 (Kunii and Levenspiel, 1991). 

Ὠ
ὨὭὥάὩὸὩὶ έὪ ὥ ίὴὬὩὶὩ ύὭὸὬ ὸὬὩ ὺέὰόάὩ
 έὪ ὸὬὩ ὥὺὩὶὥὫὩ ὴὥὶὸὭὺὧὰὩ ὺέὰόάὩ

 Equation 2-7 

(Kunii and 

Levenspiel, 

1991) 

Due to the irregularity in particle shape, voidage, non-spherical nature and the non-

uniform particles it is more common for the Spherity to be calculated using the method 

in Equation 2-8. 

•
ίόὶὪὥὧὩ ὥὶὩὥ έὪ ὥ ίὴὬὩὶὩ 

ίόὶὪὥὧὩ ὥὶὩὥ έὪ ὥ ὴὥὶὸὭὧὰὩ
 Equation 2-8 

(Kunii and 

Levenspiel, 

1991) 

űs=1 is the definition for a spherical particle, therefore,  for irregularly shaped particles 

the value will be Ò1 (Kunii and Levenspiel, 1991). During combustion and the fluidisation 

of a bed, the particles will move against each other creating abrasion and erosion. This 

results in the coarser particles becoming more spherical and smooth therefore, increasing 

the űs value. A standard value for a granular particle such as that found in silica sand 

based beds is 0.6 (Howard, 1989). 
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The deff can represent a bed of non-spherical particles in terms of spherical particles by 

using the developed Equation 2-9 which takes two theoretical beds of the same particles 

including the same total surface area and the total voidage fraction. 

The spherity of particles is significant when introducing fuels such as biomass which has 

large irregularity and variance thus altering the flow through a bed and thus potentially 

effecting mixing of the bed. 

2.6.2 Terminal Velocity  

Terminal velocity is the velocity of particle falling through a gas with external forces 

acting upon the particle whilst the particle achieves a maximum falling speed which will 

max at 9.8m/s (gravity). Figure 2-6 illustrates a particle which is falling within a gas 

stream. The forces exerted on the particle include gravity, drag and buoyancy.  

When the forces acting upon the particle come to equilibrium i.e. the particle is moving 

towards the earth at the same magnitude as the particle is accelerating away from it, then 

the particle is at terminal velocity (Gupta and Sathiyamoorthy, 1998). 

When the force generated by velocity exceeds free fall forces of the particle it will travel 

in the gas stream. This would be an indication that the fluidisation inlet air velocity is to 

excessive. The terminal velocity of a particle can be calculated using Equation 2-10 and 

Equation 2-11 (Basu, 2006). 

 

Ὠ •Ὠ  Equation 2-9 (Kunii and Levenspiel, 1991) 

Figure 2-6 Forces exerted on a particle moving upward in a gas stream. The net forces 

acting on the particle come to equilibrium as terminal velocity is achieved. (Basu, 2006) 
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Where ut is the terminal velocity, ” is gas density,  ‘ viscocity of gas, Ὣ is the gravity 

constant,  ”is gas density and  Ὠis particle diameter. 

The terminal velocity should be calculated for the smallest particle in the bed as a velocity 

in excess to this value will result in the eluration of particles as they become entrained in 

the gases potentially forcing particles to exit with flue gases (Gupta and Sathiyamoorthy, 

1998). Because of the loss of material from a bed, cyclones and recycle circuits are built 

in to capture and replace bed materials. 

2.6.3 Bulk Density 

The bulk density of the bed refers to the mass of particulates per unit within the bed 

volume. This value is calculated using Equation 2-12 which will give a smaller value than 

the true density of the particles as the bulk/bed density includes the voidage between each 

particle. The bulk density is determined by the size and shape of the particles which in 

turns alters the voidage between particles (Howard, 1989).  

Where Pb is bulk density, mb is mass of bed and Vb is bed volume. 

The bulk density is an often overlooked value when considering the interactions occurring 

within a fluidised bed. The bulk density is a function of the voidage which directly alters 

the pressure drop across the fluidised bed and hence the interactions between solids and 

gases within an FBC system (Ergun and Orning, 1949).  

Therefore, in a batch bed system such as that in the experiments chapters, the constant 

input of fuel and lack of removal indicates there will be a change in bulk density. 

Therefore, a consideration will be needed for material build up in terms of fuel ash and 

mineral content in fluidisation. 

2.6.4 Bed Voidage 

As previously described, the bed voidage is the space which occurs between particles 

within a bed. The size of the voids will change with particle shape, air ingress and size. 

ό
”ὨὫ

ρψ‘
 ὙὩ πȢτ 

Equation 

2-10 

(Davidson and 

Harrison, 1987a) 
ό

ρȢχψρπ ”

”‘

Ὠ πȢτ ὙὩ υππ 

Equation 

2-11 

ὖ ” ρ ‐  Equation 2-12 (Howard, 1989) 
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Irregular particles produce more voids compared to regular particles as they fit together 

better resulting in smaller void space. On average a fixed bed will have a voidage value 

between 0.4-0.45 (Howard, 1989). The bed voidage is calculated using Equation 2-13. 

‐
ὠ ɫὠ

ὠ
ρ
”

”
 Equation 2-13 (Howard, 1989) 

Where Ů is void fraction, Vp volume of particle, Vb is bed volume, ” bed density and 

”particle density. 

The voidage is a fundamental property when considering fluidised bed combustion as the 

combustion can be directly influenced by bed voidage in terms of both mixing solids and 

gases as well as the development of combusting fuel particles. It has been shown in studies 

such as Kuo et al. (1997), that larger void fractions in a bed can lead to lower bed 

temperatures. This is due to the distribution of oxygen and combustion gases throughout 

the bed and depletion of oxygen resulting in inefficient fuel burnout. An increase in 

voidage has also been shown to decrease the average combustion rate, once again due to 

the reduced mixing regime within the bed. Other possible reasons stem from the formation 

of slugging when the larger voids join adjacent bubbles. 

2.6.5 Bed Height 

Bed height is a parameter which describes a macroscopic behaviour of a fluidised bed and 

the consequent bubbling regime. Whilst the surface of a bed will constantly vary with the 

rising and collapsing of bubbles, there is a clear relationship with bed height and the 

fluidisation velocity. However, based on the ñDavidson two phase modelò then the bed 

particles are outside rising bubbles and therefore, in a state of minimum fluidisation 

(Davidson and Harrison, 1987c). When the fluidisation velocity is increased beyond 

minimum fluidisation, the voids voidage and porosity of the bed will increase resulting in 

an increased bed height. Hence the critical value is the void space which is occupied by 

bubbles throughout the bed (Hetsroni, 1982; Davidson and Harrison, 1987a; Yang, 2003). 

The relationship for bed height, particle voidage and space occupied by bubbles has not 

been validated in the literature but can be summarised by Equation 2-14. Constants are 

required for subsequent calculations which are unique to each fluidised scenario and 

system variables. 

Ὄ

Ὄ

ρ

ρ 

ρ ‐

ρ ‐
 Equation 2-14 (Hetsroni, 1982) 
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Where H is bed height, Hmf is minimum fluidisation bed height,  is pressure change 

across the bed, Ů is void fraction and Ůmf is volume of void fraction at minimum 

fluidisation. 

Whilst increasing the fluidisation air velocity increases the bed height, there is a limit to 

the bed height. For each specific fluidised bed and operational conditions to the maximum 

bed height will be a result of the free fall velocity of fuel particles inlet gas velocity. This 

is termed as the transport disengagement height (TDH) and can be summarised using the 

Geldart equation in Equation 2-15 (Hetsroni, 1982). 

ὝὈὌ ρςππὌ ὙὩȢ ὃ Ȣ Equation 2-15 (Hetsroni, 1982) 

However, instead of determining a bed by its initial height a more suitable parameter to 

incorporate is the bed weight. Whilst an increasing bed height can be influenced directly 

by the fluidisation air velocity, the beds weight remains constant (excluding transport and 

loss of bed material). An increase in bed weight will require a higher minimum 

fluidisation velocity but will also decrease the voidage between particles as bubbles will 

be smaller and occupying less space (Yang, 2003). Therefore, varying bed weight for a 

constant fluidisation velocity will directly impact the hydrodynamic performance of the 

bed and rising bubbles and hence an effect macroscopic interactions which influence 

agglomeration and combustion.  

Bed height has been studied throughout the literature looking at the influence of 

fluidisation velocities on bed height utilising different materials for the bed. Zhong et al. 

(2008) investigated the effect of bed height with a number of biomass fuels and the 

influence of different bed materials. As the different fuels were introduced to the bed it 

was found that the density of the bed would alter resulting in a change in the minimum 

fluidisation velocity. The different beds and fuels also directly influenced the height of 

the bed by varying inlet air velocity. 

Further studies have been conducted on the influence of bed height with different 

mediums, bed shapes, height, fuel inlets etc. in (Escudero and Heindel, 2011; Sau et al., 

2007; Ramos Caicedo et al., 2002; Geldart, 1968; Cranfield and Geldart, 1974; Zhong et 

al., 2006). These studies highlight the potential variance which is to be expected when 

operating a FBC. When conducting tests with varying bed weights/height it is prudent to 

consider the alteration the different fuels will have upon the bed. 
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2.7 Fluidised Bed Combustion (FBC) 

In order to combust biomass and other low grade fuels it is necessary to utilise a 

technology which has combustion flexibility that can adapt to the variable mineral, 

calorific and moisture content alongside other varying impurities. Fluidisation refers to 

the flow of gases through a bed of solid particles suspended on a bed of gas, usually air. 

When gases (air) with sufficient velocity enters under a bed via a distribution method, the 

bed expands and lifts as the voids between particles increase. Once combustion takes 

place in the bed either through solid fuel combustion or, usually oil or gas, pre-heat 

system. With increased air flow and heat the bed material flows and reacts more like a 

fluid and thus ñfluidisationò has begun (Cotton et al., 2013). Figure 2-7 illustrates 

different stages of fluidisation a bed will undergo with increased airflow. As the airflow 

is increased the bed void increase as they are filled with the fluidisation medium. The bed 

will begin to bubble, with bubbles erupting on the surface. 

The following sections describe technological considerations and design choices for FBC 

systems which will be applied in later Chapters and experimental design. The reviewed 

literature has been used to devise the method for investigations and the need for research 

in specific areas of FBC utilisation for low grade fuels. 

2.8 FBC Technologies 

FBC units are commonly made up of a number of key components. The bed is placed on 

a distributor plate which contains holes, caps, flanges etc. The primary air is fed beneath 

Figure 2-7 Different fluidisation modes a bed can experience depending on air flow, 

fluidisation medium and bed material choice.(Kunii et al., 2013) 
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the bed and through this plate with the initial ignition system (gas/oil burners) which 

lifts/fluidises the bed whilst heating it. Above the bed is normally a secondary air input 

area as well as a fuel feeder system in which fuels are fed into the combustion chamber 

and bed. The fuel will become mixed within the bed material as the turbulent bed moves 

like a liquid. Fuel will combust above the bed as well as the collapsing air bubbles entering 

fuel particles to combust within the body of the bed. This form of combustion is very 

thermally efficient as fuel particles move against other particles and gases, maximising 

thermal transmission and accomplishing complete utilisation of combustible material. 

Post combustion flue gases move through a freeboard space above the bed that is tall 

enough for entrained particles to disengage. This combined with flue gas clean up systems 

such as bag filters or electrostatic precipitators remove particulates and degraded bed 

material before emitting gases through an exit flue stack (Kunii and Levenspiel, 1991; 

Wu, 2003a).  

When considering which method of FBC is most advantageous for a given application 

there are a number of pros and cons that need be considered for each method. This 

includes electrical or thermal output, the ability to combust specific fuels, scale of 

operation intended or economic limitations (Ltd and Ltd) (Koornneef et al., 2007). 

2.8.1 Atmospheric Fluidised Bed Combustion (AFBC) 

Figure 2-8 is a schematic of a typical AFBC system. In this design the bed material is 

fluidised from primary air which is fed from below the bed. The air flow is enough to 

fluidise the bed but not significant enough to carry over the material through the freeboard 

and into the downstream ducting. In AFBC the fuel is fed from above, and gravity drops 

the fuel onto the top of the bed. The turbulent mixing entrains the fuel and in doing so 

heating the fuel and causing it to combust. The bed and fuel will then move around the 

submerged tubes within the bed and in doing so create a high rate of heat transfer to the 

pipes and fluids. Alternatively the hot gases and radiant heat can be captured using super 

heater tubes above the bed and downstream economiser (Merrick, 1984). This is more 

common in medium to large scale operations. 

 

 



 

30 

 

AFBC systems are designed to operate at lower combustion temperatures of 800-950°C. 

This is achieved by having a uniform distribution of primary and excess air across the bed 

combined with secondary over bed air which results in a cooler flame (Wu, 2003a). The 

use of secondary over bed air in the freeboard ensures complete combustion and 

conversion of volatiles or gaseous species. This is especially important for biomass fuels 

which have high volatile matter which can be released above the bed, requiring 

modification of the flame location to ensure complete combustion (Quaak et al., 1999). 

The advantages of AFBC compared to conventional or similar technologies is the lower 

flame temperatures which will decrease NO formation, decrease higher temperatures 

alkaline species in slag formation, good heat transfer rates, high thermal retention within 

the bed for more efficient fuel conversion and easily applied emissions control 

technologies such as SO2 capture options. AFBC suffers primarily in two ways; firstly, 

the bed accumulates combustion bi products such as bottom ash, degraded bed materials 

and agglomerates which require an identification/removal and secondly, these types of 

systems have scale up limitations to 100-150 MWelectrical (Anthony et al., 2003; McIlveenȤ

Wright et al., 1999). Scale up is limited due to economic balance i.e. the cost of generating 

further under-bed air to suspend an increasing bed size vs. the energy output of such a 

system. 

2.8.2 Circulating Fluidised Bed Combustion (CFBC) 

CFBC systems share similarities with AFBC systems. CFBC systems operate at much 

higher fluidising air velocities and with a slightly lower range of combustion temperatures 

Figure 2-8 Atmospheric bubbling fluidised bed combustor design (Merrick, 1984) 
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(800-900°C). This is due to the increased system air flow rate. Figure 2-9 illustrates a 

schematic for an CFBC system (Kunii and Levenspiel, 1991).  

In a CFBC the high primary air velocities entrain the bed particles which results in them 

being transported through the freeboard with flue gases. For this reason a heavy duty 

cyclone is employed to remove bed particles from the flue stream and return them to the 

main combustion chamber (Gayan et al., 2004). In more efficient CFBC setups a 

secondary combustion chamber/bed (number 8 on Figure 2-9) can be implemented. This 

is charged with low velocity secondary air producing a second, smaller fluidise bed for 

combustion of residual materials which is then employed to preheat the input airs of the 

primary furnace and thus improve net energy efficiency (Wu, 2003a; Van de Velden et 

al., 2008). 

In CFBC the main chamber is host to the majority of combustion and heat transfer to 

water tubes. Heat recovery occurs downstream, commonly after the heavy-duty cyclone 

in an economiser. The CFBC systems have a number of advantages over the conventional 

AFBC systems; higher SO2 capture potential due to particle interactions and high 

turbulence resulting in better solid gas mixing, smaller bed area required, fewer fuel 

injection points required with high turbulence, erosion and corrosion propensity is much 

less as all tubes are submerged in material and the heat transfer coefficients are potentially 

the highest for all conventional combustion power generation techniques (Davidson, 

2000; Kunii and Levenspiel, 1991). However, these advantages can be offset by the 

requirements for larger more powerful fans for the higher air flow demand of the system. 

Higher pressure drop is generated across a less resistant/less densely packed bed requiring 

further fan air demand. The high particle recycle rates require very efficient flue gas clean 

Figure 2-9 Circulating fluidised bed combustor design (Gayan et al., 2004; Kunii and 

Levenspiel, 1991) 


































































































































































































































































































































































































































































































































































