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Abstract

Tertiary lymphoid tissues (TLT) develop ectopically in most autoimmune disor-

ders, their presence is strongly correlated with disease prognosis. The autoantibody

response driven by germinal centres within TLT is an important driver of autoim-

munity in Sjörgen’s syndrome, for which there currently lacks any adequate therapy

beyond palliative care. The cellular and molecular processes driving lymphoid neo-

genesis have remained elusive despite intense scrutiny utilising gene knock-out mice,

lineage specific reporter mice, gene expression analysis, immunohistochemistry and

flow cytometry. These approaches permit a thorough understanding of the forma-

tion of secondary lymphoid tissues. However, the mechanisms driving the formation

and function of tertiary lymphoid tissues have proven to be more controversial and

enigmatic, principally due to differences between experimental models and human

disease pathology. A set of hypotheses describing a potential theory of TLT for-

mation is developed from a combination of in vitro and in vivo data. This is then

described as a mathematical and computational model through which the veracity

of the hypotheses may be determined.

A framework is developed for the description of hybridised models combined

of many constituent sub-models utilising different mathematical approaches, and

implemented this in the development of a hybrid agent-based model incorporating

Markov models, differential equations, cellular automata and generative grammar

into a useful results model for understanding the effects of biologics on TLT for-

mation. The simulation also serves as case study for other disorders, utilising the

frameworks developed herein. Our simulation, in combination with a ‘Model-driven

Experimentation’ paradigm, has demonstrated the possibility of using such tools for

predictive purposes within the emerging field of quantitative systems pharmacology.

Utilising a hybrid agent-based complex systems model, we demonstrate that TLT

formation can be described in terms of lymphocyte-stromal crosstalk and the dif-

ferential response of B and T cells to chemokines CXCL13 and CCL19 respectively.

We evaluated the potential therapeutic effects of three biologics in silico: anti-TNF,

anti-LTβ, and, anti-VLA4. In vivo validation is provided regarding the predicted

efficacy of anti-VLA4.
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Chapter 1

Introduction

Complex systems modelling and simulation have proven to be extremely valuable

techniques in biology (?), that can augment and extend experimental biology through

hypothesis testing and generation (?), providing insight that would not be possible

through in vivo and in vitro models alone. However, as datasets grow increasingly

large and greater computational resources become available, it is necessary to develop

means of maintaining tractability in simulations that capture phenomena at an ever-

finer granularity while ensuring that models can be effectively leveraged to achieve

maximum impact; this requires complex models and their results to be communicable

across disciplines and developed according to well-defined, principled frameworks.

This ensures that a model’s fitness-for-purpose can be demonstrated through exposi-

tion of the biological data used to construct the model, the assumptions and abstrac-

tions that have been made, and the mathematical and computational methods used

in their implementation as simulations.

This chapter presents the current state-of-the-art in complex systems modelling in

biology and pathophysiology, particularly with respect to the provision of principled

frameworks for defining models, simulations and their results. Particular empha-

sis is placed on modelling lymphoid tissues and their role in immune disorders. The

modelling and simulation techniques developed and applied herein utilise a case study

of tertiary lymphoid tissue development during Sjögren’s syndrome. Novel simula-

tion visualisation and quantification methodologies are developed using an existing

22
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simulation of secondary lymphoid tissue formation in the mouse gut as an initial

case study, and these are subsequently applied to the development of simulation of

tertiary lymphoid tissue development. The literature is reviewed for hybrid models

which integrate more than one modelling methodology into a simulation, of disease

models that aim to develop and evaluate the efficacy of therapeutic interventions,

and of model visualisation techniques and their use in simulation analysis. The

motivation underlying this work is defined, and the thesis aims are discussed.

Prior to discussing the role of mathematical and computational modelling in

understanding immune function and disease pathophysiology, it is necessary to in-

troduce the reader to a few key concepts in immunology. This section provides a

very brief overview of the mammalian immune system followed by a more detailed

review of the development and role of lymphoid tissues in providing a specialised

tissue environment for effective immune responses. This then permits a discussion

of the state-of-the-art in immune system modelling and the identification of open

questions and means of providing improved methodologies for describing complex

immune processes that occur over many time and length scales.

1.1 Introducing the Immune System

The mammalian immune system is comprised of two fundamental components: in-

nate and adaptive immunity. The cells that collectively constitute the immune sys-

tem are termed leukocytes, otherwise known as white blood cells. Innate immunity

has no memory of previous infection but responds rapidly with a large and com-

plex array of methods for destroying pathogenic microbes including bacteria and

viruses; additionally, innate immune cells such as macrophages or dendritic cells

present antigen (small fragments from foreign bodies) on their surface, thus permit-

ting adaptive immunity to respond through direct cellular activity and via humoral

responses, in which antibodies are produced specific to the invading pathogen. The

adaptive immune system generates memory cells following antigen challenge, thus

enabling a quicker and more effective response if the same pathogen is encountered
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again in the future, this provides the basis for protective vaccines (?).

T and B lymphocytes are the principal constituents of the adaptive immune

response. B cells differentiate from haematopoietic stem cells and mature initially

in the bone marrow followed by further development in the spleen (?), and produce

antibodies when antigen binds to their B-cell receptor (the humoral response), B cells

also secrete cytokines (signalling molecules) and can act as ‘professional’ antigen-

presenting cells. T cells also develop from haematopoietic stem cells in the bone

marrow, but mature in the thymus where auto-reactive T cells are eliminated in

a process known as ‘thymus education’ (?); there are many T cell subsets with

different functions (?), including i. T helper cells that assist in the maturation of

B cells into plasma (antibody secreting) cells and memory B cells, ii. cytotoxic T

cells that target virus infected cells, and iii. regulatory T cells (Tregs) that maintain

immunological tolerance, with the capacity to suppress T-cell mediated immune

responses as a pathogenic threat has been cleared, or to suppress autoreactive T

cells that escaped the thymus (??). Following their respective maturation processes,

B and T lymphocytes enter circulation and migrate to secondary lymphoid tissues

such as lymph nodes, that are strategically located to provide an efficient adaptive

immune response to local infections.

1.1.1 Lymphoid Tissues: Form and Function

Lymphoid tissues are indispensable for the organisation and function of the adap-

tive immune system. The mechanisms that drive the development of these tissues

have been under intense scrutiny for hundreds of years. This section provides an

account of the historical literature and the subsequent modern understanding the

development and function of secondary lymphoid tissues.

The first account of lymphoid tissue pathophysiology belongs to the Hippocratic

Corpus (?), entitled Peri adenôn (About Glands). The year of composition is dis-

puted, but it is likely to have been penned circa the fourth century BCE. The

insight into lymph node anatomy and function held within this ancient treatise is
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astonishing, especially considering that the first microscope was not to be invented

for another 1900 years. In the hippocratic corpus, lymph nodes are described as

‘adenes, or glands, which become swollen and inflamed in the presence of disease,

resulting in illness and fever. In addition to prefiguring modern immunology, the

text described lymphatic vessels and the role of LNs in filtering lymph back into the

blood via the lymphatic vasculature (?). Little changed in the understanding of the

lymphatic system until 1622, when Pavian surgeon, Gasparo Aselli, discovered the

mesenteric lymphatic vasculature and began to document the lymphatic system in

significant detail (?). There was little progress in understanding of lymphoid tis-

sues following the work of Aselli until the late eighteenth century, with experiments

by William Hunter into the role of lymphatics in draining lymph from tissues (the

‘absorbent theory’) (?), and the development of histology in 1836 lead by Camillo

Golgi (??), for which he shared the 1906 Nobel Prize in Physiology or Medicine.

The earliest attempt at describing the formation of lymph nodes was in ?, which

linked the origin of lymph nodes with lymph sacs, and by the early 20th century,

the stages of lymph node anlagen development were characterised in humans by ?,

who acknowledged their ‘protective role’ in adults, subsequent work in swine (?)

and rabbit (?) bolstered this understanding of the development of lymphoid tissues

and their importance in providing immunity.

A modern understanding of the molecular and cellular mechanisms driving lym-

phoid tissue formation and maintenance has developed from the application of state

of the art imaging technologies, genetic tools and cell culture techniques – and

increasingly, the application of mathematical and computational models (????).

Lymphoid tissues are divided into primary, secondary and tertiary lymphoid or-

gans. The bone marrow and thymus constitute the primary lymphoid tissues; these

are responsible for the selection and differentiation of immature T progenitor cells

into naive CD8+ and CD4+ T cells. CD4+ T cells bind antigen presented in MHC-

II by Antigen-Presenting Cell (APC), and CD8+ T cells bind antigen presented in

MHC-I. The secondary lymphoid organs (SLO) provide a highly specialised micro-
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Figure 1.1: Specialised niches develop in the lymph node through lymphoid
chemokine-mediated orchestration. (a). Antigen arrives via the lymphatics car-
ried by DCs or in soluble form. (b) Subcapsular sinus macrophages take up antigen
from the lymphatics, attracting and priming CD4+ T helper cells. (c) Naive T cells
enter the LN through high endothelial venules within the T cell zone and are primed
by antigen-presenting DCs prior to migration toward the periphery. (d) Activated
naive T cells upregulate CXCR5 and migrate along a CXCL13 gradient into the
perifollicular regions adjacent to B cell follicles. (e) Naive B cells are recruited into
the follicle via CXCL13 through CXCR5 expression, and upon activation upregulate
CCR7, chemotactically migrating to the edge of the follicle permitting interaction
with T follicular helper cells to undergo class switching. Germinal centres develop
within the B cell follicle resulting in the humoral immune response. Taken from ?.
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environment with subdivisions (‘niches’) specific for different lymphocyte types (?).

Niches provide environments for the differentiation and activation of immune ef-

fector cells; SLOs capture pathogens from peripheral tissues through a process of

dendritic cell (DC) recruitment. The SLO microanatomy then facilitates contact

with their cognate APC, resulting in activation of the adaptive immune response.

The process of lymphocyte migration into and within SLOs is orchestrated by lym-

phoid chemokines, principally CCL19/21 and CXCL13 expressed in the T cell zone

and B cell follicles respectively (?), chemokine gradients are sculpted by atypical

‘scavenging’ chemokine receptors such as CCRL1 (?) to provide optimal gradients

for migration along the sub-capsular sinus. This process of chemokine-mediated self-

organisation within the lymph node, and the overall resulting structure is shown in

Figure 1.1.

SLOs are mainly comprised of lymph nodes, Peyers patches (PP), the white

pulp of the spleen and the mucosal-associated lymphoid tissue (MALT). MALT

has important roles in the innate immune response through the secretion of type I

interferon and other innate immune mediators (?), which when combined with the

strategic placing of macrophages within tissues, results in a reduction of pathogen

load in the host. This is crucial in allowing time for the adaptive immune system

to successfully mount a response (?). In healthy specimens, evidence suggests that

peripheral tissues are patrolled by relatively low numbers of mature lymphocytes

(?), indicating that SLOs are necessary for an effective adaptive immune response by

facilitating the detection of microorganisms, acting both as a garrison for immune

cells and a sink for invading pathogens (?). Leukocytes including lymphocytes

and phagocytes migrate between tissues by recirculating through the lymphatic

circulatory system (Figure 1.2).
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Figure 1.2: Certain lymphocytes and phagocytes are capable of recirculation, moving
between lymphoid and non-lymphoid tissue. This is crucial in allowing lymphocytes
to perceive their cognate antigen, and allows effector cell populations to access the
tissues in which they are needed. Arrows in the figure indicate direction of blood
and lymph.

1.1.2 Tertiary Lymphoid Tissues: Lymphoid Neogenesis

Tertiary Lymphoid Tissues (TLT) are similar in organisation to lymph nodes, but

form during chronic inflammation, due to infection, autoimmune disease and some

cancers, and their presence is generally associated with a poorer prognosis (?). The

principal components that drive the formation of TLT a process termed lymphoid

neogenesis, are poorly understood – what the minimum requirements are for TLT

induction is an open question in immunology. There are a vast number of signalling

molecules and cell types implicated, and these are subtly different when tissues

develop in different pathologies (?). An introduction to TLT form and function

is provided here, as TLT formation is used as the basis for a case study in the

development of a novel hybrid multiscale model and simulation in Chapters 3 and 4.
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While lymph nodes develop during embryogenesis in pre-determined anatomi-

cal positions, lymphoid aggregates with very similar morphology to lymph nodes,

containing organised lymphocytes niches have been observed to develop ectopically

during periods of chronic inflammation, due to persistent infection, neoplasticity in

cancer, or in autoimmune disease. Chronic inflammation involves complex patho-

physiology comprising of a large accumulation of peripheral blood mononuclear cells

(PBMCs) including macrophages, T cells, B cells and dendritic cells, which estab-

lish a self-perpetuating process of stimulation, recruitment and colonisation termed

lymphoid neogenesis. This phenomenon was first established by ?, in which it was

proposed that lymphoid organogenesis and chronic inflammation share a common

physiological basis, and that lymphotoxin induced chronic inflammation has the

characteristics of organised secondary lymphoid tissue and can respond to antigen.

The earliest reference in the literature to lymphoid neogenesis can be found in ?,

regarding the observation that bronchus-associated lymphoid tissue is not present

at birth, unlike lymph nodes and Peyer’s patches, nor is it present in every speci-

men. The role of stroma in the orchestration of lymphoid neogenesis was initially

suggested in ? with respect to non-Hodgkin’s lymphoma, wherein Follicular Den-

dritic Cells (FDC) were found in mucosa-associated lymphoid tissue (MALT) and

extranodal non-MALT.

When TLT forms during chronic infection, it permits local antigen presentation

at the site of infection and enables priming of näıve lymphocytes (?), which may

assist in clearing the infection (?). However, it has also been noted that the presence

of TLT can be detrimental in effect, leading to chronic hepatic inflammation and

ultimately malignant neoplasia. In cancers, the presence of infiltrating lymphoid

tissue has been found in some cases to both promote tumour growth (??), and

also to contribute towards anti-tumour immunity (?), for example, in ductal breast

carcinomas (??).

During autoimmune disease, TLT formation often occurs within disease-associated

tissues, and its presence is generally associated with a poorer prognosis (?), although
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Follicular Dendritic Cells (B-cell Stroma)

Figure 1.3: Schematic diagram of tertiary lymphoid tissue, illustrating separate B
and T cell zones and distinct stromal network phenotypes. B cells form follicular
niches supported by stroma of an FDC-like phenotype, surrounded by T cells sup-
ported by Fibroblastic Reticular Cells (FRC)-like phenotype stroma. Unlike in LNs,
where vasculature penetrates into the cortical interface, within TLT, blood vessels
surround the tissue externally. Another notable difference to LN organisation is
that T cells are present prior to tissue formation with B cells recruited later during
lymphoid neogenesis, however in LN organogenesis, T cells must undergo education
in the thymus and migrate to the LN anlage following B cell colonisation.

their precise involvement in disease pathology is not well understood. There is ev-

idence to suggest that in autoimmune disease, the presence of TLT correlates with

local levels of antibody production (?), and the promotion of cytotoxic T-cell re-

sponses (?). In rheumatoid arthritis, it has been noted that individuals with the

most highly developed TLT, with well-developed FDCs, germinal centres (GCs) and

clearly defined B/T-cell zones, are associated with greater disease activity and in-

creased severity of symptoms (?). Local antibody production correlation with TLT

presence has also been identified in several other autoimmune diseases, including

Sjörgen’s syndrome (SS) (??). A simplified schematic of TLT structure can be seen

in Figure 1.3, illustrating B and T cell segregation, supported by differential stromal

phenotypes that are analogous to those found in the lymph node (FDCs for B cells,

and FRCs for T cells).
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1.1.3 Sjörgen’s Syndrome

Sjörgen’s Syndrome (SS) is an autoimmune disorder with a prevalence of about

1% of the population, characterised principally by inflammation and subsequent

tissue damage in the exocrine glands, particularly the salivary gland and tear ducts.

However, as a systemic condition, it can affect the function of exocrine glands in the

vaginal tract, skin, trachea, nose and gastrointestinal tract (?). Due to the systemic

inflammatory nature of SS, clinical presentation can extend beyond the exocrine

glands resulting in fatigue and cachexia (weakness and wasting) (?).

Treatment of SS is limited to palliative measures, in particular the use of drops

(pilocarpine and cevimeline) to treat dryness in the eyes, mouth, and other glands

with “sicca” features (loss of fluid secretion) (?), and also surgical excision of tissue

(?). More recently, large molecule biologic therapies have been employed in a re-

search setting, however clinical efficacy has yet to be clearly demonstrated with any

biologic therapy (?). Anti-TNFα, a biologic intervention that binds TNFα (Tumour

Necrosis Factor alpha) in order to block its activity, was hypothesised to demon-

strate efficacy due to its known, central role in SS pathogenesis. Unfortunately,

there was no significant improvement in saliva production. There is early evidence

that rituximab (anti-CD20) is an effective treatment for SS including improvement

in both saliva production and overall measures of fatigue (??). Widespread adoption

of rituximab is however restricted due to potentially dangerous side-effects including

immunosuppression through loss of B cells, and the high economic cost of the ther-

apy. This thesis identifies the likely reasons for this and evaluates other potential

biologic therapies that may be more tolerable, using a computational model describ-

ing the inflammatory processes driving SS induction during pathogenesis, described

in chapter 6.

It is well-established that TLT has an important role in SS pathology. The forma-

tion of TLT structures within exocrine glands through lymphocyte recruitment via

chemokines results in established lymphoid follicular structures with active GC re-

actions, resulting in lymphocyte and antibody-driven damage to the exocrine glands
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in which they are present (??).

1.2 Motivation for Mathematics, Modelling and

Simulation in Immunology

There has traditionally been a great divide between the biological and physical sci-

ences – it was argued by ? that many immunologists regard mathematical science

and biology to be somehow fundamentally different, a position possibly engendered

by their artificial segregation in academia. The proceeding decade has lead to the

emergence of a vast expansion in the use of both ‘top-down’ (bioinformatics and

statistical modelling of large datasets) and ‘bottom-up’ (mechanistic models and

complex systems analysis) approaches to the mathematics and modelling of biolog-

ical systems (?), with systems biology emerging as an integral aspect of modern

biology. It should be noted that mathematics has long since had a significant role in

biology, in the application of statistical techniques to experimental results, in the de-

velopment of experimental methodologies, and more recently in the high-throughput

analysis of ‘omics’ data including gene expression analysis (?), metabolomics (?)

and proteomics (?): this thesis is concerned with the application of mathematics

in describing immunological processes, particularly for the purpose of understand-

ing complex pathophysiology, and it is mathematical modelling toward describing

biological systems mechanistically with which this section is concerned.

This biology–mathematics divide continues to exist in spite of significant, early

contributions from mathematics to biology including the seminal work by ? on

the ‘Chemical Basis of Morphogenesis’ which continues to have relevance today,

despite being overlooked or even dismissed previously by experimentalists (?). Tur-

ing demonstrated, critically, that instability in a biochemical system could arise

from the complex interaction of many stabilising components, and therefore, that

complex spatially inhomogeneous ‘profile’ formation has to be considered within the

context of interacting processes; Turing noted that gastrulation – the process during
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early embryogenesis wherein a homogeneous blastula is driven by complex cellular

dynamics to begin to develop into an organism of differentiated, specialised cell

types, could be described in terms of a uniform spatial steady-state that becomes

unstable upon the introduction of a diffusive process, which, arising from symmetry

breaking, permits complex spatial profiles developing from initially homogeneous,

steady-state conditions; this occurring despite diffusion being understood to act as

a stabilising process in itself (leading to spatial homogeneity at its limit). This leads

to fundamental insights and principles that drive modern mathematical and systems

biology today: the notion that chaotic, non-linear behaviour of individual biolog-

ical processes can result in emergent properties that cannot be understood from

consideration of each individual component in isolation. Subsequent work failed to

acknowledge the fundamental insights afforded by such work; for instance, ? wrote

that Turing’s model ‘is quite unable to generate regulative systems’, while failing to

acknowledge the fundamental insights that Turing’s notion of diffusion-driven insta-

bility and supporting toy models afforded to modern understanding complexity in

biology, with Turing’s morphogens essentially predicting the existence of cytokines

and growth hormones (which he termed ‘morphogens’) that drive cellular differenti-

ation and tissue growth, many examples of systems that behave in a manner similar

to his morpogens are now known (???).

? noted that, despite the fascinating discoveries and insights provided by exper-

imental immunology, mere exposition of experimental results cannot quantitatively

answer crucial questions such as what determines the viral load or cellular turnover

rate in HIV infection, and shrewdly acknowledged that the common refrain of bio-

logical processes being too complicated to be suited for mathematical investigation,

becomes a more logical argument when reversed: that it is precisely their complex-

ity that invites the incorporation mathematical analysis. Indeed, the complexity

of the immune system necessitates a mathematics suited to investigating chaotic,

non-linear systems composed of many individual components; that is, immune func-

tion must be considered within the context of complex systems analysis. It is this
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non-linearity in immune function that requires mathematical analysis for true, quan-

titative understanding.

To address the application of complex systems analysis, mathematical modelling

and simulation to immunology, we will require precise definitions of a ‘complex

system’, ‘complex systems analysis’ and the notion of chaotic, non-linear processes

within biology, discussed in Section 1.2.1. The state of the art in the application of

mathematical modelling in addressing important immunological questions may then

be explored (Section 1.2.3).

1.2.1 Complex Systems Analysis and Biological Processes

A ‘complex system’ can be defined as one driven principally by the behaviour of

many animate constituent components that individually may be simple but whose

collective interactions are too non-linear, chaotic, and possibly ill-defined, to admit

precise mathematical analysis (?). Complex systems are characterised by emer-

gent properties, that is, the interaction of many individual components results in

the collective emergence of a particular phenomenon, pattern or system behaviour

that cannot be intuitively understood from complete knowledge of each constituent

component nor derived from an analytical mathematical analysis. Complex sys-

tems analysis became a practical reality with the advent of two key advances in

the latter half of the nineteenth century: improved experimental methods provid-

ing accurate, quantitative data on the constituent components of complex systems

through reductionism, and the development of digital computing subsequently per-

mitting abstracted descriptions of these constituent components in silico enabling

computational simulations through which complex systems can be systematically

explored. The ever-increasing availability of computational resources has allowed

systems of greater complexity to be analysed and understood.

Biological systems are inherently complex; millions of years of evolution has re-

sulted in highly complex, robust chemical systems involving phenomena spanning

nanometres to metres, and nanoseconds to years. It is not surprising that the ma-
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jority of complex systems that have been studied are grounded in biology or are

otherwise anthropogenic – the collective behaviour of many millions of atoms or

molecules yield to mathematical analysis through application of statistical mechan-

ics due to their adherence to well-defined, inalienable ‘laws’ of physics. However,

the collective behaviour of nucleic acids and the large number of different proteins

that give rise to biological cells, and the many heterogeneous cell populations that

give rise to complex organisms including mammals, rely on ever increasing levels

of abstraction such that it is not practicable nor desirable to attempt to apply re-

ductionist principles ad infinitum to derive analytic solutions of their behaviour at

the most fundamental levels, an idea most eloquently described by ?. Such analyses

would be absurdly complicated and not amenable to developing a true understanding

of a complex system and the factors that affect its behaviour.

1.2.2 Non-linearity in immune function

It is often said that immune function, and many other biological processes beside,

are ‘highly non-linear’ (????), but what is precisely meant by non-linearity in im-

munology, and why is it important? The mathematical definition of a non-linear

process in one in which the output is not directly proportional to the input. The ex-

ample, well-known to immunologists, of T-cell responses to different concentrations

of interleukin-2 was given by ? (Figure 1.4). At low IL2 concentrations, there is

little or no proliferative response, however as IL-2 levels increase, T-cell proliferation

increases exponentially before plateauing and then decreasing. Such a dose-response

curve does not easily admit to mathematical definition, and the response by different

cell types to the myriad molecules that drive behaviour is different in each case.

What may not be immediately obvious is the complex, chaotic behaviour that

results from several interacting non-linear processes, including counter-intuitive ef-

fects. An example of this would be the role of IL10 in rheumatoid arthritis, it is

known to both promote accumulation of IgM-B cells within the synovium and pro-

motes rheumatoid factor (autoantibody) presence (?), but also acts in a regulatory
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Figure 1.4: An example of non-linearity in immunology: the response of IL-2-
dependent T-cells to increasing doses of IL-2. There is little or no proliferative
response at low doses, but as the IL-2 concentration is increased, T-cell proliferation
grows exponentially before plateauing (and in some cases, then decreasing). Taken
from ?

capacity as an inhibitor of synovial inflammation (?) – one soluble molecule respon-

sible for apparently contradictory roles. A corollary, but more generic example, is

the unpredictability of the effects of biologic blockade (e.g. fusion proteins and mon-

oclonal antibody therapies) on disease pathology. For instance, multiple sclerosis

onset is associated with anti-TNFα therapy (?) despite the pivotal role of TNFα in

driving neuronal death within multiple sclerosis (?). These counter-intuitive, often

contradictory, roles of biomolecules within immunology and biology are the result of

interacting non-linear systems driving chaotic behaviour that cannot be understood

through reductionist experimentation alone.

Through the rapid development of systems immunology, it has been established

that many of the ‘high-level’ properties of the immune system are a result of pos-

itive/negative feedback controls, amplification methods, cellular heterogeneity and

a reliance on stochastic events (?). These properties rely on many individual, in-

teracting entities and are therefore amenable to computational and mathematical

analyses, permitting a greater understanding of immune function, dysregulation and

identification of potential approaches for modulating the immune system as a ther-
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apeutic intervention strategy.

1.2.3 Modelling Immunology as a Complex Dynamical Sys-

tem

The development of models that capture the essential, emergent behaviour of specific

biological processes, with extraneous components excluded, enables understanding

of how the fundamental non-linear systems govern the process(es) of interest, and

can therefore lead to new insight or quantitative prediction (?). Often, such models

will exclude components known to be involved in the system under study in some

capacity – the inclusion of as much biological detail as possible may obscure the

key entities involved. ‘Top-down’ models that seek to include all available data

are essentially phenomenological descriptions of the biological system derived from

bioinformatics analysis of high-dimensional datasets. While such models may more

accurately fit experimental data and are useful for identifying the importance of

particular components within a system, such as genes (?) or enzymatic processes (?),

greater insights into minimum requirements, prerequisites and governing dynamics

arise from models constructed from the ‘bottom-up’ designed to address well-defined,

pre-specified research questions (?).

A rich body of literature has developed applying mathematical and computa-

tional modelling to address immunological questions, using both analytical and nu-

merical approaches encompassing techniques covering the gamut of mathematical

techniques. This section introduces generally a selection of analytical mathemat-

ical models and computer simulations which have been used to address various

immunological questions, prior to Section 1.2.4 reviewing the literature surrounding

lymphoid tissue development.

One aspect of immunology that has been the subject of significant mathemat-

ical modelling is the quantification of thymic output (?), which is critical for the

understanding of healthy homeostasis and disease dysregulation in the peripheral

T-cell compartment, such as is the case in HIV infection. The thymus clearly has
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a key role in immunity as it provides functional T cells to the periphery in both

children and adults, and is necessary for immune function reconstitution during im-

munodeficiency conditions such those caused by HIV infection. This is an excellent

example of a crucial immunological problem for which experimentation alone was

insufficient, eventually yielding to a mathematical analysis. Quantifying mammalian

thymic output is difficult to determine experimentally as there is no known surface

protein of recent thymic emigrant T cells with sufficiently short half-life that would

permit calculation of emigration rate. ? proposed that T-cell receptor excision cir-

cles (TRECs) could be used to quantify thymic output. TRECs are a by-product of

TCR rearrangement, made up of episomal DNA circles. During T-cell thymic de-

velopment, the TCR is rearranged through recombination of its variable and joining

regions on chromosome 14, and involves excision of the δ locus that resides between

the V and J segment genes on the chromosome α chain. As this excised DNA con-

tains specific sequences common in 70% of αβ T cells, are exclusively in those T cells

of thymic origin (?), and do not divide (?), these TRECs are suitable candidates for

use as markers of recent thymic emigrant T cells.

Several studies attempted to quantify thymic output, particularly in the con-

text of HIV infection and the role of a reduced thymic output on disease outcomes,

and arrived at substantially different conclusions regarding the suitability of using

TREC as a phenotypic marker for measuring CD4+ lymphocyte depletion. TREC

frequency was identified as decreasing with age, lower in HIV-infected individuals,

but that it was significantly higher in those individuals treated with antiretroviral

drugs (??). It was further determined in one study that TREC frequency could

be used as a predictor for HIV-1 disease progression, beyond viral load and CD4+

T-cell count (?). Following this early research, many more studies were conducted

attempting to quantify thymic output using TRECs (???), including some early

work exploring mathematical models as a tool for the characterisation of factors

leading to TREC concentration changes (?). Such factors influencing interpretation

of TREC frequency include its variation in response to changes in cells both with
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and without TRECs, therefore biodynamical processes beyond thymic output into

the periphery (such as T-cell proliferation or death) could influence observed TREC

frequency changes. The reader is referred to the literature for each respective TREC

model for further details with regard to each individual model’s parameterisation

and validation. Given that it is well-known that T-cell proliferation increases in HIV

infection, this presents significant difficulty in the interpretation of how TREC fre-

quency relates to thymic output in these individuals (?). Mathematical modelling is

well-suited to potentially providing insights regarding such complexities. In seminal

work by ?, it was argued that mathematical modelling must be utilised to properly

analyse these data and determine what biological parameters needed measuring.

This study (?) utilised a very simple approach using linear ordinary differential

equations to quantify TREC-containing cells (C) and total T cell population size

(T ), defining the following equations:

dC

dt
= ασ − dC (1.1)

and

dT

dt
= σ + (p− d)T (1.2)

let σ be thumic output, α be the fraction of thymic emigrants containing a TREC,

finally let p and d be the T cell proliferation and death rate. These linear ODEs

are sufficient to describe the experimental data obtained in previous studies, and

can obtain an equation describing TREC frequency, F (t)), utilising Equations 1.1

and 1.2, applying the quotient rule to express F (t) as a function of C(t)
T (t)

:

dF

dt
= α

σ

T
+ (p− σ

T
)F. (1.3)

We see in Equation 1.3 that TREC frequency dynamics are dependent upon not

only thymic output, but also on the proliferation rate. Therefore, the assumption

that TREC frequency could be used as a surrogate measure for thymic output
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was indeed incorrect (?). This insight led ? to analyse the dynamics of TREC

in HIV-infected individuals in the light of this discovery, and determined that the

reduction in TREC frequency in such individuals reported in previous studies (???)

is potentially caused by immune ‘hyper-activation’ reflected by an increase in T-cell

proliferation and further concluded that measuring changes TREC frequency was

not sufficient to provide evidence of thymic impairment in an individual.

This simple mathematical model provided an enormous contribution by deter-

mining that TREC frequency could not be a direct measurement of thymic output,

and any analyses that assumed it was would lead to contradictory or incorrect re-

sults. Furthermore, Equation 1.3 establishes that TREC concentration, rather than

frequency, could indeed permit direct measurement of thymic output. These insights

may appear obvious in the light of the mathematical model, however intuition alone

was insufficient to arrive at these conclusions. This provides an excellent example

of using mathematical modelling to evaluate the veracity of a biological hypothe-

sis, even though the model described in Equations 1.1—1.3 is a highly simplified

description of a complex, non-linear emergent biological phenomena. This model

led to various in vivo experiments that permitted direct quantification of thymic

output, for instance in ? the daily number of CD8+ and CD4+ T cells exported

from the thymus in rhesus macaques was determined. The simple model described

above was later developed upon in ?, wherein a non-linear model of thymopoesis

was derived (Figure 1.5). Implementation of the thymic involution model described

for humans in Figure 1.5 permitted simulations to determine and quantify age-

dependent changes of recent thymic emigrants produced per day (Figure 1.6), which

could not be otherwise measured experimentally. Furthermore, the model was able

to explore whether thymic concentration is an accurate predictor of thymic function,

as suggested by the simpler model described in ?.

The model described in Figure 1.5 predicts that both thymic output and periph-

eral T cell division could equally affect TREC concentration for individuals at any

age, with a lesser contribution from T cell death – broadly in agreement with the
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Figure 1.5: A multi-compartment model describing thymopoiesis (?) including
five thymocyte subsets (TN, ITTP, DP, SP4 and SP8). Model includes thymo-
cyte growth (γi) limited by maximum thymocyte population size within the thymic
epithelial space (Tes(t)), thymocyte differentiation (fi), death (di) and emigration
from thymus as recent thymic emigrants (e1, e2). Taken from ?.

earlier model by ?, however noting that this model assumed that division of naive

T cells does not occur and neglected the possibility of intracellular TREC degrada-

tion. Therefore, ? proposed that T cell division and death should be examined in

an experimental system before relying upon TREC concentration as a direct cor-

relate of thymic output, and that their model can be used as an integrated system

paired with experimentation to determine thymic output through integration of ad-

ditionally measured T cell dynamics. The notion of combining a measure of both

TREC concentration and a methodology for estimating intrathymic precursor T-cell

proliferation rates through quantification of distinct TREC molecules in peripheral

blood cells was later developed in ?, providing a reliable measure of thymic function

in HIV-infected patients undergoing anti-retroviral therapy.

The experimental (?????) and modelling (?????) work that developed our

understanding of measuring thymic output, with important consequences for moni-

toring HIV-infected individuals, spans over a decade – from early experiments pre-

dicting that TREC frequency was a direct measure of not only thymic output, but
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Figure 1.6: Recent thymic emigrant dynamics for five thymocyte subsets over an
80-year lifespan. Panel A shows simulations of five thymocyte subsets, and Panel B
shows the number of emigrants output from the thymus per day. Results from the
model described in ? as reproduced in ?.

HIV-infection disease progression, to simple mathematical modelling implicating the

role of T-cell proliferation (?) and later, complex non-linear modelling (?) further

refining this understanding to ultimately enable a reliable experimental framework

for measuring thymic output as a function of TRECs (?). This development of the

literature in this area provides a clear demonstration of the value of mathemati-

cal modelling in the interpretation of in vivo datasets that cannot be intuitively

understood due to complex non-linearities and unappreciated subtleties within the

data.

1.2.4 Modelling Lymphoid Tissue Development In Silico

The molecular and cellular mechanisms driving the formation of secondary lym-

phoid tissues have been extensively studied using a combination of mouse knockout

studies, lineage specific reporter mice, microarray gene expression analysis, immuno-

histochemistry, imaging and flow cytometry. However, the molecular and cellular

processes which drive the formation and maintain the function of tertiary lymphoid

tissue (TLT) have proven to be more controversial and enigmatic, principally due

to differences between experimental animal models and human disease pathology.

Murine models of immune-mediated inflammatory diseases are acute and fail

to replicate the chronic human disease generally characterised by cycles of “flare”
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in disease activity and subsequent remission, limiting their translational capacity

to human disease. Infection and tumour models in mice either resolve too quickly

for any chronic pathology to be established, or necessitate euthanasia for welfare

purposes prior to the establishment of TLT pathology. This contrasts sharply with

ostensibly similar human pathology: humans may live the rest of their life with

chronic disease pathology, particularly in the context of treatment with biologics

(e.g. monoclonal antibody therapies) and small molecule drugs, and this permits

pathology the opportunity to evolve from localised to systemic inflammation, in-

cluding fibrotic tissue failure, and autoimmunity working in synchrony to prevent

disease resolution. Human three-dimensional tissue culture models (???) contain-

ing both stroma and lymphocytes have become increasingly common and useful in

understanding molecular mechanisms driving TLT formation. However, it is not

currently possible to represent the full complexity of chronic human pathology in

vitro, and additional means of understanding these complex disease processes are

required.

In humans, tertiary lymphoid tissues (TLT) are found in inflammatory immune

responses associated with chronic pathologies related to hip joint replacements,

keloids, tissues in autoimmune disease (e.g. the salivary gland in Sjögren’s syn-

drome or articular joint synovial lining in rheumatoid arthritis) to solid tumours

and follicular lymphomas in the bone marrow (????). Although the role of specific

cell types has been controversial, a paradigm has begun to emerge centred on a

multi-step process in which localised inflammation induces stromal cell activation

in a lymphocyte-independent process, thus leading to localised micro-environments

permissive for T and B cells entry.

Computational and mathematical modelling of lymphoid tissues may be broadly

broken down into a several key areas, each of which has the ability to address crucial

questions required to develop a comprehensive mechanistic understanding of tissue

form and function - these areas include models concerned with: cell motility and

the reticular network, B and T lymphocyte dynamics (proliferation, activation, de-
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velopment of effector functions), tissue organisation into anatomical niches, and the

role of lymphoid tissues within the context of infection or other disease processes.

This section aims to briefly consider significant and recent work addressing each

of these areas using a variety of mathematical and computational modelling tech-

niques paired with experimentation, model hybridisation is then considered within

the context of lymphoid tissue modelling and QSP (quantitative systems pharma-

cology): the incorporation of different modelling methodologies to capture, with

varying degrees of abstraction, multiple aspects of a complex system to address

difficult questions and drive understanding.

Two-photon imaging permitted a new approach to generate data on in vivo cell

motility, as it allows tracking of cell motion within living organs with minimum

disturbance from external factors, and as such, observed behaviour can be consid-

ered to be representative of genuine in vivo behaviour. Two-photon tracking of B

and T lymphocytes in mouse lymph nodes (?) appears to favour a lymphocyte

motility model in which a random walk dominates cell motion (?), despite the lym-

phocytes’ expression of chemokine receptors and the abundance of chemokine within

the lymph node micro-environment (??). To address these conflicting data, ? de-

veloped a theoretical model of lymphocyte motility using the extended Potts model

in 2D, a technique well-suited to describing cells at the sub-cellular level including

cell morphology, surface molecule expression and additional internal structure util-

ising a lattice of volumetric elements with a defined spin state – this may generally

be described as a potential-based thermodynamic model in which cell motion (or

indeed any lattice changes) are determined by a Boltzmann law in which contribu-

tions to the energy term of the Boltzmann exponential define cellular dynamics and

interactions. A broader description of simulating cellular dynamics using extended

Potts models may be found in ?. Upon development of an extended Potts model

describing lymphocyte motility that broadly considered orientation persistence in

combination with a random walk description, and assumed motility induced cell

elongation, ? interpreted the two-photon data from ? within the framework of this



CHAPTER 1. INTRODUCTION 45

theoretical model, and found that lymphocytes exist in a single velocity state with

a highly variable, stochastic, cellular diameter, and that their assumptions were

consistent with the experimental data.

More recently, this view of lymphocyte motility within lymphoid tissues was

extended (?), particularly with respect to B and T lymphocyte migration within

GCs, in light of additional two-photon imaging data (?). The model presented in ?

still quantitatively explains imaging data in terms of random walks with persistence

of motion, as in the earlier model described in ?, however it further predicts that

chemotaxis has an active role in maintaining GC dark and light zones and predicts

that chemokine sensitivity is quickly down-regulated through receptor internalisa-

tion. The resulting model combines a general random walk with persistence with

an important role for chemotaxis in maintaining zoning within the GC – compli-

cating the more simplistic understanding developed originally (?). The pairing of

mathematical modelling and two-photon imaging in ? identified some statistical

limitations for the interpretation of two photon cell motility measurements gener-

ally, thus indicating that the reality is likely more complex than first predicted.

This migration model integrates multiple mathematical techniques that have been

applied to modelling GC reactions, including temporal ODE systems that describe

lymphocyte recycling rates between GC zones (compartments), antigen uptake by

centrocytes, and T—B lymphocyte interaction kinetics (???) and computational

models addressing the spatiotemporal aspects of T—B lymphocyte kinetics, based

primarily on the cellular automaton model described by ? hybridised with the cell

motility extended Potts model described by ?.

This earlier work modelling GC reactions in lymphoid tissues (????) eventu-

ally led to an integrated, functional theory and model of B-cell selection, division,

and exit within GCs, supported by T-B lymphocyte interactions (?) incorporat-

ing models describing two-photon motility data including both ‘random walk with

persistance’ models, chemotactic responses to chemokines, and chemokine desensi-

tisation through receptor internalisation and many other phenomena (?), with the
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Figure 1.7: Visualisation over 4 days of an instantiated GC in the model described
by ? following adjuvant challenge, wherein the model assumes cyclic re-entry is
the dominant pathway of positively selected B cells supported by affinity-dependent
activation by T follicular helper cells . Dividing B cells are coloured magenta and
non-dividing B cells are depicted in green. Adapted from ?

resulting B cell projection visualisation over 4 days demonstrating emergent organ-

isation properties arising from this model (Figure 1.7). This model incorporated a

novel ‘stochastic event generator’ (?) which represents each cell within the model

explicitly in both space and time, with discrete implementations of the previously de-

veloped differential equations permitting heterogeneous responses within the model.

The fundamental cell states permitted in this model were differentiation, mutation,

division, and spatial position, with lymphocyte shuttling and maintenance of GC

zoning emerging from interactions of many non-linear interactions. The ‘stochastic

event generator’ in combination with the mathematical descriptions derived from

the extended cellular Potts model essentially results in a highly implementation-

specific instantiation of what may be considered broadly equivalent to an ‘agent-

based’ model (although it is not described as such), relying on mathematical de-

scriptors of cell behaviour rather than state machine descriptions, yet representing

heterogeneous cellular dynamics explicitly in time and space. It is important to note

that this model of GC maintenance may be considered an early example of ‘large-

scale’ model hybridisation, although in this case much of the integration between

model types is implicit as there lacks a clear segregation of each ‘sub-model’ and the
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means by which they were integrated into a single coherent simulation. The notion

of ‘hybridised’ models composed of discrete, integrated ‘sub-models’ is introduced

in Section 1.3.2. It was noted by ? that the ‘basic philosophy of the model is to

implement known mechanisms and to use the mathematical model for the analysis

of the whole interacting system. Thus, the read-outs of the system are not set by

hand but instead emerge’: a philosophy at the core of using agent-based simulation

to understand complex dynamical biosystems (?).

Secondary and tertiary lymphoid tissues are supported by a ‘scaffold’ of mes-

enchymal stromal cells which form a collagen-based reticular network that provides

for antigen-transport, an environment conducive for leukocyte adhesion enabling

lymphoid-stromal crosstalk, and a support structure to assist in cell migration within

the tissue. The stromal network is dynamic and undergoes remodelling in response

to infection, allowing lymph nodes to adaptively grow and shrink in size and number

of follicles, and is therefore crucial in the maintenance of immune homoeostasis ?.

Given the crucial importance of the stromal network in lymphoid tissue function,

it is not surprising that a number of mathematical and computational models have

been developed to address various open-questions regarding its precise role. A 3D

dual cellular automaton model was developed by ? which describes cell movements

and interactions along the FRC network (‘T-cell stroma’) within lymphatic tissues,

the authors define one automaton which creates and stores the location of FRCs and

their connecting edges – defining the network, and another that stores the location of

DCs and naive T cells, and allows them to move in 3D such that T—DC interactions

can be measured (Figure 1.8). Stromal network density changes significantly during

LN development and remodelling, and the FDC network supporting B-cell follicles

is much denser than the surrounding FRC network (?). It was unknown to what

extent the change in network density modified the dynamics of cell—cell interactions

within the tissue, as naive T cells scan for antigen within a secondary lymphoid tis-

sue it is important that they can efficiently cover as much of the APC population as

possible, particularly as the cognate TCR clonotype for a specific antigen challenge
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Figure 1.8: Model and simulation of cell—cell interactions on the FRC network (?).
The model consists of two cellular automata, one defining FRCs and the connecting
edges that create the network structure, and one defining the location of DCs and
antigen-scanning naive T cells. These automata interact as the naive T cell moves
within the 3D network space. The bottom 3D plots show FRC networks generated
with different densities, enabling the rate of cell—cell interactions as a function of
network density to be quantified mathematically. Adapted from ? (Figure 1 A and
B).

may be extremely rare. Such questions are well-suited to mathematical analysis, as

network structures with varying densities may be constructed using a broad array of

algorithms; in addition, the inherent heterogeneity of stromal network densities in

vivo and their dynamic nature makes this a difficult question to address experimen-

tally (praeter silico - with techniques besides computational modelling). There has

however been some success in constructing FRC networks in vitro by seeding onto

a polyurethane macroporous scaffold (?), which could potentially offer a means for

independent validation of theoretical FRC network models by modifying the FRC

seed dosage to generate tissue-engineered scaffolds of different FRC densities.

The 3D cellular automaton model (Figure 1.8) was able to demonstrate that

the presence of an FRC network increased the probability of two cells coming into

contact by 25%, or as much as 40% under the assumption that the FRC network
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contributes to the motile cell velocities. Surprisingly however, FRC network density

was found to have only a small effect on the probability that a motile cell (e.g.

a naive T cell) will come into contact with either a static or motile ‘target’ cell

(e.g. an APC). This probability is reflective of scanning efficiency, higher contact

probabilities would suggest an antigen-scanning T cell is more likely to successfully

activate and promote an effective immune response. However, it was found that

disruption to the FRC network (a loss of edges between nodes resulting in reduced

network connectivity) may have a detrimental effect at physiologically relevant FRC

network densities, specifically, those found in a naive murine spleen, but still found

this to be relatively minor. Since ? determined network density is unlikely to

have a biologically significant effect on cell—cell interactions, the authors observed

that the mean diameter between two filaments connecting FRCs is approximately

equal to the mean T cell diameter, and therefore hypothesised that the presence

of the network encourages efficient T-cell flow through the spatial environment by

essentially creating channels within the LN paracortex. This notion is consistent

with the earlier observation by ? that T cells tended to move in parallel planes

during multi-photon imaging of cell motility, used as justification for describing the

dynamics in a 2D plane.

1.2.5 Quantitative Systems Pharmacology in Simulation Mod-

elling

Quantitative Systems Pharmacology has emerged in recent years as an approach that

aims to inform ’bottom-up’ modelling and simulation with “Big Data”, producing

a synergistic relationship between traditional pharmacology and computational bi-

ology to investigate complex pathological processes and develop novel therapeutic

interventions. It was argued by ? that this synergy is one of compromise, that

models should seek to be as least complex as possible, with fewest parameters, with

respect to the data available. That is, models should be precisely as complex as is

necessary and not more so. It is this concept that drives the development of the TLT
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formation model outlined in Chapters 3 and 4 - the aim is to identify the minimum

requirements capable of describing the process, rather than attempt to include all

known molecular pathways, factors, and cell phenotypes involved.

The model-based drug discovery and development paradigm is gaining traction

in the pharmaceutical industry. There has been a near constant flow of new terms in-

troduced into the literature (?) in an attempt to capture this phenomenon: ‘MBDD’

(?), ‘model-facilitated/informed drug development’ (?), ‘Quantitative and Systems

Pharmacology’ (QSP) (?), and ‘pharmacometrics’; furthermore, large pharmaceu-

tical companies have begun to review, quantify, and report the successes derived

from the adoption of a model-based strategy, providing a thorough description of its

implementation and impact (???). The US Food and Drug Administration (FDA)

recently utilised mechanistic model-based methodologies to design a post-marketing

clinical trial (?), providing a clear indicator to practitioners within computational

biology and QSP of the increasing confidence in, and prevalence, of model-based

techniques in pharmacology, drug-development, and biomedical research generally.

Although improvements in our ability to demonstrate evidence of fitness-for-purpose

within computational models taking cues from safety-critical systems (?), there is

space for vast improvement in our ability to describe, implement and experiment

with complex models of even more complex pathological processes. The increasing

availability of large human data sources permit a lesser reliance on translation from

in vivo to human models of disease, as the many issues associated with this have

been well-addressed in the literature, for detail review on this topic the reader is

referred to ???.

Forming a key component of the ‘learn and confirm’ drug discovery and devel-

opment paradigm, many of the methodologies utilised to support the deployment of

modelling and simulation-based strategies are recurrent across the pharmaceutical

industry (?). A non-exhaustive list of such methodologies include pharmacokinetics

and pharmacodynamics modelling (PK/PD), statistical design methods, and sig-

nalling network reconstruction methods, and increasingly - complex systems and



CHAPTER 1. INTRODUCTION 51

agent-based approaches (?). Such techniques can be applied across many stages

of the drug development process, with the capacity to inform experimental design,

‘go or no-go’ decisions, preclinical development, and optimal portfolio prioritization.

Wider adoption of in silico modelling for novel therapeutic design requires the de-

velopment of techniques capable of assessing whether a putative target will yield

a desired disease outcome (?). Describing heterogeneous biological systems with

genomic, transcriptomic, metabolomic-scale events occurring over length and time

scales spanning orders of magnitude, within an individual model is an important

challenge in model-driven target evaluation and selection, and must ultimately re-

main a key end-goal within QSP as an emerging field. It is argued in ? that QSP

should become a the ’central pillar of translational medicine’, incorporating multi-

scale spatiotemporal models with genomic medicine, developing new approaches

to understand drug mechanisms of action spanning different levels of detail, com-

plexity, and scale: becoming the key driver in advancement of drug discovery and

development through an integrative multidisciplinary approach. The data in Fig-

ure 1.9, taken from ? show over a ten year period common causes of attrition in

the drug discovery and development process. These data demonstrate a decline in

the effectiveness of PK in addressing toxicity and efficacy, and the authors argue

overall success of the “traditional” PK approach had decreased from 1991 to 2000.

Given the ever increasing complexity that modern QSP and multi-scale modelling

approaches are revealing, and the increasingly difficult task of identifying therapeu-

tics that are safe and efficacious, it is clear that hybrid complex systems modelling

approaches will be crucial in maintaining the historical success of medicine and

pharmacology in developing therapeutic interventions.

One of the key advantages of applying multi-scale, hybridised modelling ap-

proaches permits capture of a wide range of phenomena that occur at differing

time and length scales, including different cellular phenotypes and interactions, in-

flammatory molecules, chemotactic signals in the context of complex tissue micro-

environments in a format that permits in silico experimentation through the tem-
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Figure 1.9: Attrition causes in drug discovery are illustrated over a ten year period,
1991-2000. While great success has been found with PK approaches incorporating
modelling to address issues of drug bioavailability, attrition in efficacy and toxicity
are not being adequately addressed by traditional PK modelling approaches. This
figure was taken from ? whom adapted it from ?; the reader is referred to the latter
reference for a complete account of the data from which this figure was compiled.

poral inhibition of different signalling processes during key stages in TLT pathology

using various statistical and data driven approaches for the determination of effec-

tive means of modulating TLT pathology within immune-mediated inflammatory

disease. This permits identification of pathways that could be targeted to induce

resolution rather than formation. We have previously addressed methods of de-

termining the roles and modulating the presence of signalling pathways of thera-

peutic interest within the context of established, calibrated models of pathological

processes (?). Subsequently, this led to ? presenting a methodology grounded in

agent-based computational modelling using models that capture the heterogeneous

cellular processes which drive disease pathology and resolution, specifically in rela-

tion to simulations of inflammatory disease manifestation in order to determine the

likely, dose-dependent efficacy of potential intervention strategies in silico.

A large number of novel antibody therapies, biologics and small molecule in-

hibitors have been developed to target immune function for the treatment of immune-

mediated inflammatory diseases (???). These therapies are unlikely to show maxi-
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mal efficacy against existing tissue pathology when used as mono-therapies, use of

selective therapeutic combinations derived from a detailed mechanistic understand-

ing of the disease pathology are rather more likely to show clinical efficacy. The

principal challenge is determination of the most effective and safe therapeutic com-

binations, performing a clinical trial for the thousands of possible combinations is

intractable, however integrated computational modelling and experimentation based

approaches provide a rational approach for providing the identification of candidate

therapeutic regimes with a body of evidence to support their use, allowing the most

effective candidates to be translated into clinical use.

1.2.5.1 Evaluating Efficacy of Therapeutic Interventions Incorporated

into in silico Models

Utilising agent-based and other complex systems modelling approaches, there has

been some success in the development of mechanisms to implement and evaluate pu-

tative therapeutics in silico. In one example, utilising ARTIMMUS (??) , an agent-

based simulation of murine experimental autoimmune encephalomyelitis (EAE), a

murine disease model used for the study of multiple sclerosis in humans . We ex-

plored the potential cell-level consequences of CD200 regulation of dendritic cells

(DC) (?)1. Recent evidence suggests a potentially significant role for the mem-

brane glycoprotein CD200 in regulating T-cell priming outside the central nervous

system (CNS) (?). However, the downstream effects of CD200 down-regulation on

DC behaviour remain unclear. Two mechanisms were investigated in response to

CD200 signalling: a reduction in DC priming capacity of T cells, and, the promotion

of DC type II cytokine secretion. It was determined that CD200 down-regulation

of DC priming capacity promotes autoimmune-mediated disease processes. This

hypothetical mechanistic consequence of CD200 down-regulation does not support

recovery from autoimmunity individually, however, it was identified that resulting

DC cytokine profile switching substantially promotes type II deviation of the au-

1My contribution to the work described in ? was the development of a novel model of two
modes of action CD200 and its principled incorporation into the extant ARTIMMUS simulation
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toimmune response, wherein CD8 Tregs are unable to directly apopotse Th1 cells.

Thus, CD200-supported a type II deviation and, in the context of the ARTIMMUS

model of T cell signalling in EAE, strongly supports recovery from disease pathol-

ogy. These two potential mechanisms, while in isolation drive the system toward

increased pathological activity or disease resolution respectively, in combination they

support the view that CD200 regulation can promote recovery from autoimmunity

– a position supported by additional literature (???).

This approach to identifying and exploring drug targets was extended when the

role of anti-CD3 biologic therapy was assessed in EAE, described in ?. Additionally,

knock-out experiments can be replicated in silico to further investigate the role of key

signalling pathways and disease mechanisms, for example key knock-out experiments

were reproduced using PPSim, an agent-based model describing murine Peyer’s

patch formation (?) and using ARTIMMUS (????). Such methods of investigation

has become a mainstay for the exploration of disease pathology within the context

of agent-based models, however there lacks an integrated approach to identifying the

relative efficacy of multiple candidate therapies, although there have been important

developments in the capacity to assess temporal effects within ABMs (?).

1.3 Determining Appropriate Modelling Method-

ologies

The capacity of various modelling techniques to capture explicit notions of space

and cellular heterogeneity is illustrated in Figure 1.10. Ordinary Differential Equa-

tions (ODEs) and Physiologically-Based Pharmacokinetic (PBPK) models cannot

spatially resolve systems, although multi-compartment models exist in which sev-

eral spatially connected regions are connected, they rely on the abstract notion of

well-mixed space within each compartment. Partial Differential Equations (PDEs),

and thus also systems of coupled ODEs, are capable of spatial resolution. To cap-

ture heterogeneous cellular phenotypes, however, is often intractable. State-based
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modelling approaches enable heterogeneous phenotypes among cell populations but

cannot in themselves capture spatial resolution (although they can model multiple,

spatially disconnected compartments). ABMs incorporate state-based systems in

spatial environments; as such, ABMs can capture both heterogeneous cell popula-

tions with an explicit notion of space and time. Heterogeneity within mathematical

and computational models can be created through the introduction of stochastic-

ity, or “randomness”, for example by defining events probabilistically rather than

through purely deterministic models.

NO YES

NO PBPK      
ODE PDE

YES State-Based 
Model

ABM     
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Figure 1.10: Illustrative table describing the capacity for various model forms to
describe spatial resolution and cellular heterogeneity. In determining appropriate
modelling methodology, it is important to consider spatiotemporal scales relevant
to the system and establish any requirement for heterogeneity across model entities.
Figure previously published in (?).

1.3.1 Describing Spatiotemporal Systems using Agent-Based

Models

An agent uses a pre-defined rule-set to assess its internal state in response to fac-

tors in the agents local environment or neighbourhood. Should an agent be in a
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situation where the requirement of a rule is met, whether due to a change in the

agents attributes or within a set location in the environment, the state of that agent

is changed. An agents rule set can range from simple Boolean statements operat-

ing over the agents attributes, to more sophisticated mechanisms that relate agent

inputs and outputs through differential equations (?) and metabolic models (?).

Agent rules also offer a means of introducing stochasticity through probabilistic

events utilising Monte Carlo methods, allowing for an approximation of behaviours

in systems whose complexity precludes deterministic modelling. The rules governing

an agent’s behaviour may be described using finite state machines (FSM) expressed

using the Unified Modelling Language (UML).

1.3.2 Multiscale Modelling and Model Hybridisation

Multiscale modelling permits one to describe different aspects of the domain on

time and length scales of different orders of magnitude. In 2013, Martin Karplus

was awarded the Nobel Prize in Chemistry for ‘the development of multiscale models

for complex chemical systems’ (?). This work in multiscale mathematical modelling

formed the basis for important theoretical developments in molecular physics (??),

chemistry (??) and biochemistry (?), leading to the development of increasingly

accurate models – capable of describing phenomena from both the quantum regime

and classical mechanics. This work led to the genesis of a large-scale collaboration

in interdisciplinary science applying the methods and concepts behind the work of

Karplus to fields as diverse as economics (?), sociology (?), and as computational re-

sources became more abundant, sophisticated complex systems models of biological

phenomena (??).

A major contribution in multiscale modelling came from ? in the development

of a lysozyme, an important catalytic enzyme for the destruction of bacteria cel-

lular membranes, in which it cleaves a glycoside chain. A purely classical molecu-

lar mechanics model of this system was insufficient to describe the function of the

lysozyme enzyme, however a full description in quantum mechanical terms was com-
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putationally intractable in the 70’s. Therefore, Warshel et al. developed a modelling

methodology that permitted description of most of the molecule using classical me-

chanics, while critical parts of the system were treated quantum mechanically, this

‘QM/MM’ (Quantum Mechanics)/Molecular Mechanics) molecular dynamics simu-

lation constitutes the first form of hybridised modelling. A cartoon of this can be

seen in Figure 1.11.

Figure 1.11: A cartoon of lysozyme cleaving a glycoside chain. The region shown
in the circle on the right is a magnified part of the lysozyme; the shaded region is
treated quantum mechanically, whilst the remainder of the system is treated using
classical mechanics. These two theoretical systems describe phenomena on different
scales, and therefore constitute an early multiscale model. The classical regime is
computationally more tractable, and is essentially the limit of quantum theory as
objects become sufficiently macroscopic. Figure taken from (?)

Model hybridisation has superficial similarities to multiscale modelling, insomuch

as developing multiscale models may require different techniques to capture systems

on different spatiotemporal scales ??. However, this is not a prerequisite in the

development of a multiscale model. For example, the QM/MM lysozyme model

described by ? combined molecular mechanics and quantum mechanics, but both

of these theoretical frameworks are expressed using partial differential equations.

Conversely, hybrid models combine different modelling techniques, or modalities,

into one overarching model.

There has been important work as early as (?) (’Mycobacterium tuberculosis as

viewed through a computer’), and additionally in (?), (?), (?), (?) and (?); hybrid
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Figure 1.12: Structure of an Agent Based Model: Agents (shown as blue and orange
spheres) are individual entities capable of modulating their associated states and
attributes with respect to their local environment and pre-defined rules governing
agent behaviour. Agents are expressed explicitly in space (grey grid lines), and
captured at a specific time, which provides a context for their interactions. The ag-
gregate behaviours of the agents can then lead to the emergence of complex patterns
and behaviours. Taken from ?

modelling methodologies are principally concerned with describing differing levels

of abstraction at multiple time and length scales simultaneously.

1.4 Principled Approaches to Modelling and Sim-

ulation

A model is only useful if one has confidence in its results, and if the evidence-based

for confidence in the model and its results can be demonstrated and communicated

to others. Therefore, in using a simulation as a tool for understanding biological

systems, it is important that the relationship between the simulation and the sys-
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tem it is designed to describe is appreciated. Due to their nature, ABMs or highly

hybridised models cannot be expressed as succinctly as other modelling approaches

such as sets of differential equations, this leads to the need for appropriate doc-

umentation describing the model from the biological system it encapsulates, the

implementation and parameterisation decisions taken, and the supporting evidence-

base. Producing documentation that is both clear to an interdisciplinary team, yet

concise enough to be practicable is non-trivial. The challenge of communicating

agent-based models to non-specialists has been highlighted in the literature (??).

To ameliorate this, visual notations can ensure that the design process is...

1. ...simple for both domain experts and model developers to interpret, with a

short learning curve.

2. ...explicit and formal such that it may be interpreted objectively, not subjec-

tively. Model parameterisation should be clearly justified.

3. ...accessible: model documentation should be made available, with supporting

documentation.

Utilising a principled model design and development framework, with commonly

agreed means of specifying models throughout the development process, ensures that

evidence for confidence can be provided. Unfortunately, there is not yet a single

agreed upon modelling framework, however several have been proposed in recent

years, some of which are discussed in Section 1.4.1. When employing a principled

framework, the data used to inform the model must be appropriately justified for

the research context. Different transgenic models of disease can shed light on key

processes and interactions but may have altered dynamics which are not a true

representation of the underlying disease. A rigorous justification process can be used

to examine the suitability of data used to inform a model (?), this is particularly

pertinent in cases where the modeller does not have an in-depth understanding of

the nuances associated with different disease models. Such a modelling development
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process also exposes the decisions made in its design and implementation to the

community for scientific scrutiny.

1.4.1 Model and Simulation Development Frameworks

When developing a model of a complex biological system, the relationship between

the simulation implementation and the biological model needs to be rigorously de-

fined, described and clearly communicated. This is necessary to enable robust justifi-

cation of the means of implementing specific aspects of the biology and abstractions

made during model development. Crucially, a domain model should be defined

solely in the terms of biology, be it embedded within diagrams or as prose, before

a specification for implementation as an executable model is developed, and should

be developed to answer a specific a priori defined research question or questions.

Various frameworks have been established that aim to enforce a robust model

development methodology and emphasise the need to identify a specific research

question for which a model is designed to answer. ODD (Overview, Design concepts,

and Details) has been proposed as a three-block standardised protocol for describ-

ing mathematical and computational models (?). The three blocks are sub-divided

into seven stages: Purpose, State variables and scales (including parameterisation),

Process overview and scheduling, Design concepts, Initialization, Input, and Sub-

models. These stages are well-defined in terms of when and how each aspect of the

model should be defined, and their development provided an important first step to-

wards establishing a common framework for ABM development. However, although

ODD focuses strongly on rigour in describing the model, it does not address the

need for similar rigour in model implementation, verification, parameterisation and

parameter calibration, validation, evidencing fitness-for-purpose and in silico exper-

imentation. Parameter calibration in the context of complex-systems agent-based

models is the process by which parameter values are found that permit emergence

of expected behaviours of the system at the macro level. Recent developments are

exploring means of ‘automated calibration’ (?), applying multi-objective optimisa-
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tion specifying experimental data as objectives against which parameter values are

optimised for using linear programming or genetic algorithm approaches. This is

however a recent and experimental development, with the mainstay of agent-based

model calibration to date being dependent on ‘by hand’ perturbation of parameters

to calibrate the model to expected behaviours (??).

A framework for the development of complex systems models, independent of

both domain or modelling techniques, termed the CoSMoS (Complex System Mod-

elling and Simulation) process (?) has since evolved. The CoSMoS process comprises

an iterative process of model refinement and implementation, in collaboration be-

tween domain expert and modeller. The process broadly decomposes an entire model

into four separate entities, termed ‘domain model, ‘platform model, ‘simulation plat-

form, and ‘results model. The domain model describes the aspects of the biological

system required to produce observed phenomena, explicitly in only biological terms

and without implementation considerations such as code or mathematical equations.

The domain model will contain some degree of abstraction from the biological sys-

tem under study, but these should be to permit a self-contained description of the

system and not to permit tractability in silico. The platform model describes how

the domain model is to be implemented as an executable simulation, with many

similarities to a software specification. The simulation platform itself represents the

executable simulation - a specific instantiation of the platform model. The under-

standing derived as a result of the interpretation of the collective results from in

silico experimentation using the simulation tool comprises the results model. Fig-

ure 1.13 shows a cartoon summary of the CoSMoS framework (rectangles) and tools

that support its use (ovals). Parameterisation within the CoSMoS process occurs

predominantly at the ‘domain’ and ‘platform’ stages of modelling. As an iterative

process, the way in which these models are parameterised may change as necessary

to ensure the developed simulation platform is fit-for-purpose in addressing the a

priori identified research questions.

The CoSMoS framework provides a rigorous approach to developing a model
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Figure 1.13: The CoSMoS framework is depicted with the tools currently used
to support its adoption within a model. The framework consists of the iterative
process of Domain-Platform-Simulation-Results modelling. The ovals show tools and
techniques used to support the utilisation of this framework during biological model
development: i) describing biological systems using the unified modelling language
(?), ii) describing the evidence base and providing an argumentation structure that
the model is fit for purpose using GSN (?) with Artoo (?), iii) statistical analysis
of simulation results using the SPARTAN package (?) in R.

with confidence in its results, and places strong emphasis on designing models to

address specific aims or research questions defined a priori. Thus, a model should not

attempt to be a general purpose description of a system, as research context is crucial

in determining what aspects of the system to abstract and by what means model

entities should be implemented. A model ought never be re-purposed beyond its

original scope or within a different research context, unless a principled methodology

for model extension is followed (?). For a comprehensive description of the CoSMoS

process, the reader is directed to ?. The model used as a case study in Chapter 2
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developed by ?, and the model developed in Chapters 3 and 4, both utilise the

CoSMoS process in their development and analysis.

1.4.1.1 Model Identifiability and Parameter Estimation

Model identifiability is concerned with parameter estimation, and therefore model

calibration. A model is deemed as identifiable if it is possible to precisely infer the

true value of the model parameters, and for this to be the case there must be a

unique solution, and changes in parameter values must result in changes in observed

probability distributions. There is a wealth of literature concerning model identifi-

cation in dynamical systems across many domains. ? describe model identifiability

in the context of non-linear ODE models of viral dynamics, in which identifiability

analysis is discussed as an important and necessary process to determine unknown

parameters in ODE models based on experimental data, however the authors note

that such analysis techniques for non-linear ODE models are still under development.

In the context of systems biology, there is some literature concerning model

identifiability, for example, in gene regulatory networks (?), biochemical networks

(?) and signal transduction networks (?). In ?, the authors argued that parameter

estimation in complex systems biology models is a “major obstacle” to model de-

velopment, largely due to difficulties in measuring in vivo parameters and the large

uncertainties yielded by fitting to experimental data. ? assessed 17 systems biology

models, and found that the obtained parameters were ‘sloppy’, or not well-defined,

and therefore the models were universally unidentifiable. However, an argument was

also made that obtaining precise parameter values is not required to draw meaningful

biological conclusions.

There is a dearth of literature on model identifiability in agent-based models,

but important early work has been undertaken to improve the process of parameter

estimation, for instance through the application of multi-objective optimisation (?),

and using genetic algorithm approaches (?). Such approaches require that in vivo

data are available for which precisely matched model outputs can be produced. This
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is especially challenging in the case of TLT formation, as enormous heterogeneity

is observed in the size, frequency, organisation of these tissues, and number and

density of lymphoid follicles that form within them. Such data are not available,

and the requirements for the formation of TLT are unknown. Therefore, for the

model of TLT formation developed in this thesis (Chapters 3 and 4), it can be

stated a priori that the model will be unidentifiable. The model must therefore be

treated as a theoretical construct aimed at exploring whether the hypotheses devel-

oped in Chapter 3 are generally consistent with the observable in vivo organisation

that takes place over a 15-day period, in a generally qualitative sense. Thus, the

model outlines will be semi-quantitative, in that outputs produced are numerical

and lead to testable predictions in vivo, but that model identification and precise

parameterisation will not be possible.

1.4.1.2 Validating Theoretical Models

A complex biological model may be entirely theoretical in nature, that is, driven by

a novel theoretical framework that is capable of describing the emergence of a com-

plex biological phenomena in a manner somewhat analogous to theoretical physics.

Validating such models, in addition to the use of argument-driven validation and

principled development frameworks, is also a case of identifying whether the theory,

model and resulting simulation produces a priori defined expected behaviours. For

the TLT model developed in Chapters 3 and 4, much validation comes from domain

expert observation of simulation results with respect to available experimental evi-

dence (as outlined above in Section 1.4.1.1). This is particularly the case when it is

not possible to define any metric for model “precision” due to lack of knowledge of

variability of the domain-under-study. For example, the variation in number, size

and distribution of B-cell follicles in TLT is currently unknown, as are cell pop-

ulation sizes, and so on, and thus validation relies somewhat on observation that

the theoretical system produces behaviour similar to that which is observed in vivo

from the perspective of “opinion leaders” and domain experts. Such validation can



CHAPTER 1. INTRODUCTION 65

be enhanced by making novel predictions in silico about the domain-under-study

using the theoretical model and then performing in vivo experimentation to evalu-

ate if system responses in silico and in vivo are qualitatively or semi-quantitatively

similar.

1.4.1.3 Demonstrating Model Fitness-For-Purpose Through Argument-

Driven Validation

A computational model of biological phenomena may be considered as analogous to

a safety-critical system, given that at some point decisions regarding interventions,

clinical trials or future research direction could be based on results from the model.

It is important therefore to develop an argumentation structure that can present

a case that the simulation is valid and appropriate given the experimental scope.

Goal Structuring Notation (GSN) is a technique developed originally in the context

of arguing safety of aircraft by ?, and was later introduced to biological simulations

by ?. Figure 1.14 illustrates a sample GSN argument, with each element describing

its purpose in the context of arguing fitness.

1.5 Thesis Aims

This thesis is concerned with the development of complex systems models of im-

mune pathophysiology; in particular, the development of techniques to improve

model granularity, visualisation and quantification methods to permit intuitive un-

derstanding of many highly complex multidimensional datasets. The development

of visualisation techniques consists of two strategies. Firstly, we look toward ex-

perimental biology to develop emulations of praeter silico (non-computational) ex-

perimental techniques and data interpretation; this is explored in Chapter 2. Sec-

ondly, unsupervised machine learning analysis techniques are used to explore model

response to therapeutic intervention through manifold learning with Kohonen net-

works, these are introduced in Chapter 5 and applied to therapeutic efficacy in
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Figure 1.14: An example GSN argumentation structure. All GSN drawing elements
have been included, with the contents of each explaining its purpose within the
argument-driven validation framework.

Chapter 6, permitting visualisation of the heterogeneity of simulation outputs with

different therapeutic intervention strategies. We aim to present a flexible method-

ology and scheme for integrating multiple modelling techniques into an overarching

hybrid multiscale model and executable simulation that reproduces the domain sys-

tem at the molecular, cellular and tissue level across spatiotemporal scales spanning

orders of magnitude. Furthermore, novel approaches to producing simulation out-

puts that are analogous to those used in experimental biology are described, helping

to create a well-defined link between the results model and the domain model, im-

proving validation and assisting in effective communication of model results.

The following list enumerates the principal aims of this thesis, and is succeeded by

further exposition regarding each item including where within this thesis evidence

and discussion may be found fulfilling the aim.

1. Derive a hypothesis-driven model of tertiary lymphoid tissue (TLT) formation
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during autoimmune disease for use as a case study in applying the result of

aims 2 and 3 below.

2. Development of a schema and novel paradigm for developing a highly inte-

grated hybrid multiscale model.

3. Development of improved methods for visualising simulation outputs that are

analogous to those utilised in experimental biology.

4. Determine the veracity of the model hypothesis describing the minimum re-

quirements for TLT formation.

5. Utilize the TLT formation model to evaluate the efficacy of therapeutic inter-

ventions for Sjögren’s syndrome in silico.

1.5.1 Thesis Structure

The aims described in Section 1.5 are addressed over seven chapters, as set out below:

Aim 1: Derive a hypothesis-driven model of tertiary lymphoid tissue

(TLT) formation during autoimmune disease for use as a case study in

applying the result of aims 2 and 3

Chapter 3 presents a TLT formation domain model, and Chapter 4 describes the

Platform Model/simulation implementation. The model is analysed and predictions

derived thereof in Chapters 5 and 6.

Aim 2: Development of a schema and novel paradigm for developing

highly integrated hybrid multiscale models

Chapter 4 describes the development of an approach to succinctly yet briefly sum-

marise complex hybrid models sharing inputs and ouputs. When attempting to

describe a mathematical model constructed from ‘sub-models’, with each represent-

ing a specific biological entity or process, it quickly becomes difficult to understand
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and mentally maintain the model network topology and we lack notation to suc-

cinctly describe the model structure and organisation. Therefore it is contended

that the most informative representation should be centred on information flow be-

tween sub-models. Each input/output across the various sub-models can be defined

using arrows between sub-models defined within boxes. An example of such a dia-

gram is presented in Figure 4.2.

Aim 3: Development of improved methods for visualising simulation out-

puts that are analogous to those utilised in experimental biology

Chapter 2 describes the development of a set of methods for emulating immunohisto-

chemistry, flow cytometry, and gene and protein expression analysis. These are ap-

plied in a case study using a simulation of murine Peyer’s patch development during

organogenesis. A demonstration is provided in Section 2.3.1 that model predictions

requiring complex statistical analyses during ‘exploratory’ in silico experimentation

can be quickly identified using emulations of protein/gene expression analysis. It is

argued that the techniques described are an important additional approach in the

development of simulations with results models that are effectively communicable

across interdisciplinary teams, and can quickly identify aspects of the model worthy

of further interrogation using established statistical analysis techniques that require

significantly greater computational expense.

Aim 4: Determine the veracity of the model hypothesis describing the

minimum requirements for TLT formation

Chapter 5 deals with analysis of the simulation and hypothesis veracity verification

through comparison with in vivo descriptions of the TLT induction process.

Aim 5: Utilize the TLT formation model to evaluate the efficacy of ther-

apeutic interventions for Sjögren’s syndrome in silico

Chapter 6 deals with the evaluation of intervention strategies, and the use of fea-
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ture mapping in Kohonen networks to provide surrogate measures of clinical efficacy.

1.6 Summary of Novel Contributions

This thesis presents new approaches to visualising simulation outputs and quanti-

fying model responses in biological sciences, based on the concept that emulating

experimental techniques will provide additional insight and improve interdisciplinary

collaboration by increasing the communicative capacity of models to those not from

a modelling background. These developments are described in Chapter 2, applied

using a case study extending a pre-existing agent-based simulation of Peyer’s patch

formation. In Chapter 3 a new theoretical model of TLT formation derived from

human in vitro and murine in vivo experimental data, and frames this within the

context of Sjörgen’s syndrome pathophysiology. A semi-formal ‘Domain Model’ is

described and parameterised following the CoSMoS process outlined in Section 1.4.1.

A formal mathematical and computational model is developed in Chapter 4 from

the ‘Domain Model’. This ‘Platform Model’ is formulated in a platform-agnostic

manner prior to implementation using Java as a software simulation tool that has

been termed ‘NeoSim’ (Lymphoid Neogenesis Simulator). The platform model is an

abstract description of my hypothesised minimum requirements in TLT formation,

intended to determine whether the dynamics of lymphocyte–stroma crosstalk and

chemokine induction as described in the model are sufficient to produce structures

that are qualitatively similar to those found in Sjörgen’s syndrome in humans and

murine models.

This thesis fundamentally demonstrates that relatively low-dimensional data

combined with hypotheses of how biological systems function, when implemented

as a model describing the fundamental processes in an abstract, theoretical manner

through hybridisation of multiple mathematical techniques, is capable of demon-

strating hypothesis veracity or consistency. Furthermore, through the generation of

high-dimensional data from simulation, such models lend themselves well to high-
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throughput analysis and have significant predictive capacity.

NeoSim is designed as an abstract theoretical model intended to evaluate whether

TLT formation is consistent with the hypothesis formulated in Chapter 3.NeoSim

is found to recapitulate the 15-day TLT formation process, with randomly entering

lymphocytes stimulating stromal cells to differentially express chemokines resulting

in a self-organisation process leading to B-cell follicles supported by FDC-like (’B-

Cell’) stroma surrounded by T cells and FRC-like (’T-cell’) stroma. Analysis of the

model and simulation in Chapters 5 and 5 investigated whether NeoSim responded

as clinical trial data suggest when biologic therapies are introduced as various time-

points and dosages. This investigation ultimately led to the discovery that anti-

VLA4 (e.g. natalizumab), an adhesion molecule blockade, can prevent the formation

of B-cell follicles responsible for driving Sjörgen’s syndrome pathology. This was then

tested in vivo using an acute murine model, and near complete ablation of B-cell

follicular structures was found, suggesting that natalizumab, currently used in the

treatment of irritable bowel disease, may also be a viable treatment for Sjörgen’s

syndrome.

A more detailed summary of original contributions is presented in Chapter 7

(Section 7.1), following presentation of the work itself in the proceeding chapters.



Chapter 2

Simulation Analysis utilising

Visualisation and Emulation of

Experimental Techniques

The use of modelling and simulation as a predictive tool for research in biology is

becoming increasingly popular. However, outputs from such simulations are often

abstract and presented in a very different manner to equivalent data from the biolog-

ical domain. The development of a flexible tool-chain for emulating various biological

laboratory techniques to produce biologically homomorphic outputs in computer sim-

ulations is presented and applied to simulations in case studies. These emulations

include immunohistochemistry, microscopy, flow cytometry, and quantifying gene

and protein expression levels. Pre-natal lymphoid organ development is utilised as a

case study of the application of this tool chain to simulations without affecting their

extant behaviour. A pre-existing simulation of Peyer’s patch (PP) formation in the

mouse gut is extended to produce various new outputs aimed at improving insight

into simulation behaviour, and at accelerating the rate of discovery.

This chapter demonstrates that application of the tool-chain can provide addi-

tional, biologically relevant data, that are inaccessible with pre-existing methodolo-

gies for analysis of simulation results. It is argued that experimental techniques

71
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borrowed from in vivo animal models and in vitro cell culture systems are an im-

portant additional approach to the analysis of simulations in computational biology,

and might furthermore inspire confidence in simulation results from the perspective

of experimental biologists, and improve cross-disciplinary model communication.

2.1 Introduction

A typical approach to experimentation with an existing computational biology simu-

lation is to perform various statistical analyses on abstract simulation outputs while

varying one or more parameter values. These multivariate analyses are then used in

an attempt to make determinations regarding the fitness-for-purpose of the model

and to make predictions about the biological system which it represents. These

predictions may lead to further in silico experimentation within the simulation, and

also predictions that could be tested in the wet laboratory. However, there does not

exist a principled approach to linking the results model of a simulation back to the

original biological domain model. Model predictions often arise from observations

of how the system responds to parameter perturbation in terms of resulting changes

to abstract data structures representative of biological entities; in vivo confirmation

of these predictions therefore require an ad hoc transformation, firstly, of what the

observed change in model output permits one to infer about the system under study,

and secondly, a prediction of what one would expect to be observable in either in

vitro or in vivo models of the same system presuming the original prediction is in-

deed correct. The differing abstractions and limitations that affect these extremely

different model systems present significant confounding factors with respect to what

may be construed as sufficient evidence that a prediction is generally accepted to be

true. In silico models which frame outputs within the context of generally accepted

constructs within the field permit directly testable predictions without pre-requisite

inference of what may be considered to construe a suitable test.

The rapidly increasing popularity of mechanistic in silico models of highly com-

plex biological phenomena, including tissue organogenesis and immune processes,
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is resulting in an ever-growing population of researchers with diverse backgrounds

collaborating on multidisciplinary projects toward common goals. Just as, now long

established, it is known that a model must be entirely transparent and demonstrated

to be fit-for-purpose using sufficiently rigorous argumentation tools and model devel-

opment frameworks (such as CoSmoS), we must also acknowledge that models need

to be sufficiently communicable; a model whose results cannot be readily understood

and assimilated by the scientific community at large (that is, beyond mathemati-

cians and computer scientists) is unlikely to have maximum impact, regardless of

its fitness-for-purpose or predictive power.

A variety of theoretical advancements and practical tools have been developed in

recent years that improve understanding of interdisciplinary communication aimed

at enabling domain experts to adequetely identify flaws in model implementation

such as unsuitable abstractions or, domain misunderstanding by non-expert model

developers. Key examples of such advancements being the development of the use

of ‘expected behaviours’ diagrams, first utilised in ?, as a means to broadly commu-

nicate a model overview, including associated aims and hypotheses, and the adap-

tation of the UML to permit the description of massively parallel biological systems

such as cellular signalling networks, through a technique that biologists and other

domain experts can quickly learn to understand (?). However, there has been little

to advance interdisciplinary communication and discussion of the results model, in

which inferences about the domain are often made using techniques that are not

easily communicable to domain experts and interested third parties. This may lead

to in silico models being overlooked in favour of other modelling approaches that

are accepted within the dogma of a particular scientific field.

We propose the creation of a stronger link between biological models and exe-

cutable simulations in general by developing simulations that produce outputs that

can map to the types of data produced and used by experimental biologists. Model

developers should aim to design outputs that are amenable to analysis method-

ologies that are commonly applied to data derived from praeter silico (besides in
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Raw Results

Simulation Platform

Analyses
A-Tests, LHC, eFAST, etc.

Raw Results

Simulation Platform

Data Transformation
IHC, Flow Cytometry, qPCR, etc.

Bioinformatic Analyses
CellProfiler, TissueGnostics, 

ImageJ, Scripting, etc.

A. Standard Simulation
Analysis Workflow

B. Analysis Workflow 
incorporating Emulation

Analyses
A-Tests, LHC, eFAST, etc.

Figure 2.1: A typical approach to performing and analysing simulations within
computational biology. The red boxes represent an extended work-flow designed to
provide outputs that directly map to experimental data constructs, which enables
additional analysis of model dynamics and model predictions to be framed within a
praeter silico experimental context.

silico) models by experimentalists. It is to this end that software and protocols

for the production of such data structures that can be applied to pre-existing and

new simulations have been developed, and enable computational models to be bet-

ter interpreted within the context of the biology that they represent. Figure 2.1

presents a typical simulation analysis work-flow (black rectangles) and incorporates

the proposed additional steps (red rectangles) for creating models and simulations

that better integrate with experimental biology. The net result of these additional

processes is a wider range of model outputs that can be utilised during simulation

calibration and validation, to improve model communication, and to aid develop-

ment of directly testable predictions in terms of in vivo and in vitro model-based

experimentation.
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2.1.1 Taking Cues from Experimental Biology During In

Silico Model Development

To develop a quantitative understanding of enormously complex biological processes,

such as those involved in immunity, immunologists and other life-scientists have de-

veloped and utilised a combination of technologies to quantify molecular and cellu-

lar mechanisms during immune responses. These include flow cytometry, immuno-

histochemistry, western blotting, qPCR (quantitative polymerase chain reactions),

ELISA (enzyme-linked immunosorbent assay) and in vitro functional assays; how-

ever these technologies are, in isolation, inherently limited in spatial, temporal or

cellular resolution and insufficient alone to understand the underlying physics and bi-

ology of immune responses. The development of myriads of biologically-compatible

chemical dyes and fluorescent proteins, in combination with advances in imaging

technologies, have provided the potential to image immune function at the single-

cell level in three-dimensions over time.

Multi-photon confocal imaging has provided a unique tool to quantify immune

responses providing accurate quantitative data on cell migration and interactions

that are key to the parameterisation of mathematical and computational models of

immune responses (?). Such models have been used to understand the biophysical

mechanisms of cell migration and interactions through analysis of data sets and re-

solved how three dimensional cellular topologies dictate immune cell signalling (??).

Bottom-up in silico models are ultimately dependent on the rich array of techniques

at the disposal of experimental biology, whether the model is data-driven, utilising

these data directly, or fundamentally theoretical and mechanistic, making indirect

use of insights afforded by experimental biology. While many of these techniques are

designed to quantify specific entities and from a computational modelling perspective

are principally useful in model design and parameterisation, others offer experimen-

talists a highly intuitive means of exploring highly multi-dimensional datasets and

visualising spatiotemporal organisation of complex tissue micro-environments, and

highly specialised software exists to aid interpretation of these data. By emulating
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experimental techniques, beyond the other benefits described herein, a modeller may

leverage these tools (such as flow cytometry and microscopy image analysis software

tools) to gain additional insights from their computational models.

For a given technique to be useful within the context of emulation, it must present

data in a manner that intuitively allows inference of how an aspect of the biological

system behaves or provide a high-dimensional dataset generally understood within

the field. For instance, it would make no sense to discuss western blot emulation – the

presence of proteins within a simulation result can be simply established through

direct interrogation of the internal data structure. However, emulating means of

quantifying gene or cell surface protein expression such that the relative expression

of multiple elements over time and space can be succinctly visualised could add

significant value to a simulation. Table 2.2 describes three experimental approaches

that are potentially useful within simulations and typically produce data that are

replicable within many agent-based or hybrid in silico models, either through the

existence of direct correlates within model data structures, through the definition of

abstract quantities that permit equivalent visualisations to be developed or through

data transformation achieved by combining entities from multiple sub-models within

an overarching hybridised model (discussed in Section 4.8 following development

of a hybridisation framework in Chapter 4). In unidentifiable models, in which

multiple candidate models exist, these techniques provide an additional platform

for comparing model emergent phenomena across candidate models to data from

experimental biology.

The development of multi-colour flow cytometry and higher resolution thin sec-

tioning of immune tissues combined with an ever-expanding number of antibodies

and fluorochromes drove rapid progress in immunology, due to the capacity of these

technologies to quantify gene expression and classify live immune populations and

their effector function at the single cell level. Such technologies have been funda-

mental to the modern understanding of immune responses, and have led to new

models of the key events in antigen initiated immune responses (?). The ubiquitous



CHAPTER 2. EMULATING EXPERIMENTAL TECHNIQUES 77

Figure 2.2: Table describing the experimental techniques to be emulated in this case
study, the outputs they produce and their illustrative and communicative potential.
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presence of flow cytometry, immunohistochemistry and confocal microscopy in mod-

ern immunology makes them well-suited for use as a basis for designing simulation

data structures that can be readily interpreted by domain experts.

2.2 Case Study: Simulating Peyer’s Patch For-

mation

A pre-existing simulation, designed as a predictive tool for exploring mechanisms

that drive pre-natal lymphoid organ development within the mouse gut, was selected

as a case study in applying the techniques described herein to extend the model’s

outputs and predictive ability without modifying simulation behaviour. This model

and simulation has aided the generation of testable biological hypotheses concern-

ing the complex cellular interactions leading to the generation of organs that trigger

adaptive immune responses: interactions which cannot currently be fully explored

using laboratory techniques. A brief overview of the model is provided here, however

the reader is directed to previously published work detailing the simulation design,

implementation and analysis (???). The tool captures the 72 hour period of tissue

development in pre-natal mice. Populations of haematopoietic cells, known as Lym-

phoid Tissue Initiator (LTin) and Lymphoid Tissue Inducer (LTi) cells, migrate into

the developing gut, with data from laboratory observations suggesting these cells

follow a random motion. Both cell populations express receptors for the adhesion

molecule VCAM-1, expressed by stromal Lymphoid Tissue Organizer (LTo) cells

residing in the gut wall. VCAM-1 causes cells expressing the cognate receptor to

adhere to the VCAM-1 expressing cell, thereby restricting its movement. Contact

between a haematopoietic cell and LTo cell triggers the LTo cell to differentiate

(become more specialised), leading to increased adhesion molecule expression. In

addition, LTo cell differentiation increases chemokine secretion, creating a chemokine

gradient that promotes migration of the LTi cell population towards the differen-

tiated LTo cell. In the vicinity of LTo cells, movement of LTin and LTi cells will
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Figure 2.3: Shows output of one simulation run of PPSim illustrating a 10% section
of mouse gut showing LTi aggregations leading to PP formation in wild type mice
after 72 hours (top), and a lack of PP formation in CXCL13-/- and CCL19-/-/21-/-

mice (bottom).

be restricted by adhesion factors (VCAM-1 and others), forming aggregations of

haematopoietic cells around LTo cells at the end of the 72 hour period. These ag-

gregations later mature into lymphoid organs called Peyers patches (PPs), which

are capable of initiating immune responses against pathogenic bacteria encountered

in the gut. The visual output of the simulation at the end of the 72 hour period

from the extant simulation as described ? is shown in Figure 2.3.

It has been previously shown that the emergent cell behaviour observed in lab-

oratory experimentation is statistically similar to that observed in the simulation,

and sensitivity analysis techniques were utilised to explore the simulated biological

pathways to reveal those which have a significant impact on simulation response

(??). The output from these statistical techniques provided evidence that our sim-

ulation is fit for the purpose of aiding biologists in their exploration of the system.

However, it is proposed that confidence in the simulation would be further increased

by providing experimental biologists with simulator outputs that are comparable to

primary laboratory data, which can be more intuitively interpreted. Furthermore,
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such outputs can provide additional insight into the simulation dynamics, enable

additional exploratory experimentation in silico and furnish mechanistic detail not

readily accessible with descriptive nor inferential statistical analyses.

2.2.1 Emulating Flow Cytometry

Flow cytometry is a technology with broad application in biology and medicine,

particularly used as a means of cell sorting, cell counting, and the detection of

biomarkers through fluorescent labelling. With a large number of measurable vari-

ables and production of highly multi-parametric datasets, flow cytometric analysis

is performed using specialised software such as FlowJo (TreeStar) and WEASEL

(Walter and Eliza Hall Institute of Medical Research).

The data generated by flow cytometers may be plotted as a histogram, in one

dimension, or as dot plots in two or three dimensions. A sequence of subset extrac-

tions (termed ‘gates’) may be applied to sequentially separate regions of dot plots

based on MFI (Mean Fluorescent Intensity), FSC (Forward Scatter – proportional

to cell volume), SSC (Side Scatter – indicative of morphological complexity), and a

range of other parameters. Such gated plots are useful for identifying cell popula-

tions and sub-populations based on biomarker expression, permitting quantification

of the phenotypic make-up of tissues. Datasets produced by modern flow cytometers

are written in the ISO Flow Cytometry Standard (?) file format using the .fcs file

extension.

2.2.1.1 Flow Cytometry Emulation Methodology

For each time-point a flow cytometry analysis is to be performed, expression levels

of each protein of interest are placed into a CSV column and multiplied by a scaling

factor to bring the values into an appropriate order of magnitude for Flow Cytom-

etry data (s = 105 in this case) prior to bring cast as integers. A value of ‘105’ was

selected for this dataset as it was the minimum number that re-scaled outputs to

the same order of magnitude observed in data-files taken from actual flow cytometry



CHAPTER 2. EMULATING EXPERIMENTAL TECHNIQUES 81

experiments, the value should be selected by interrogating typical count numbers

from similar ‘real’ flow cytometry experiments. This ultimately enables flow cytom-

etry software to interpret the values as fluorescent intensities, which are proportional

to expression level. Following this, the CSV data are transformed into fcs format

compliant files according to the ISO standard described in ?, which is universally

used by modern flow cytometers to store acquisition data. This is an important step

as it allows the data to be interrogated using flow cytometry software, specifically

designed for use with biological data and is familiar to immunologists.

In order to emulate flow cytometry, a simulation requires explicit values for

cell surface expression of proteins. Absolute values are not important, rather, it

is the relative differences in expression levels that enables the insight afforded by

this technique. In the Peyers patch simulation, expression is strictly binary, such

that each cell in the simulation is either expressing a protein or not. An increase in

protein expression is achieved by changing the parameters of abstract mathematical

functions that determine behaviour. For example, LTo chemokine expression levels

are abstracted as a sigmoidal cumulative probability density function, sampled at

each time step by every LTi cell responsive to chemokine. An increase in chemokine

expression level is represented as a reduction in the standard deviation (or tightness)

of a sigmoid curve, as detailed in ?. Expression of VCAM-1 by LTo cells is handled

in a similar manner, according to a truncated linear function, this is illustrated in

Figure 2.4. Therefore, it is necessary to modify the simulation to provide relative

quantitative expression levels without compromising extant simulation dynamics.

In these cases, a new agent property needs to be created that represents relative

expression of the factor concerned, but is not used by the simulation for decision

making purposes (i.e. state changes). This value is obtained by incrementing (or

decreasing) the property each time step in direct proportion to the change in the

mathematical function responsible for the protein. For instance, each time the

standard deviation of the function responsible for describing chemotactic response is

reduced, an integer is incremented by one. This results in an integer value associated
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Figure 2.4: Graphs show the sigmoidal and linear equation that represent chemokine
expression, and adhesion probability (via VCAM-1), respectively in the Peyer’s
patch simulator developed by ?. To capture a numerical value of adhesion molecule
expression, an integer is incremented for each stromal cell, every time this discrete
linear equation increments. The two charts in this figure were taken from ?.

with each LTi cell within the simulation that may be considered directly proportional

to CCL19 expression, allowing analyses that require relative cell surface or gene

expression values to be utilised.

The forward scatter (FSC) of light that occurs when lasers strike the cell in

the flow cytometer, which is proportional to the volume of the cell, was also emu-

lated. In the simulation, cells of a given phenotype have the average diameter of

those cells as measured experimentally. This was adapted in the simulation such

that the radius is sampled from a truncated Gaussian (normal) distribution about

the mean experimentally measured radius, with a standard deviation of 1m. This

enables identification of cell populations based on both their size and their expres-

sion of VCAM-1. In order to avoid modification of the validated extant simulation

behaviour, the original average diameter is still used for model decision making pro-

cesses, for example, cell-cell contact detection, and the randomly sampled cell radius

was recorded for transformation into the FCS file for flow cytometry-based analyses.
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Figure 2.5: (A) Emulated flow cytometry dot-plot of VCAM-1 Mean Florescent
Intensity (MFI, arbitrary units) vs Forward Scatter (FSC). This is then gated on
the VCAM-1 positive cells with high forward scatter, which are the large stromal
cells. From this subset, (B) shows a histogram of VCAM-1 MFI (log scale, arbi-
trary units) vs. the number of recorded events (cells). These plots were generated
using WEASEL flow cytometry data analysis and display software (Walter and Eliza
Hall Institute of Medical Research), intended for use with biological data from flow
cytometers.

2.2.1.2 Flow Cytometry Emulation Results

Figure 2.5A shows a dot-plot of adhesion molecule VCAM-1 and forward scatter

(FSC) for all cells in the simulation at the end time-point of 72 hours. This is gated

on VCAMhi cells to produce a histogram that illustrates the distribution of VCAM-1

expression fluorescent intensities.

Unlike flow cytometry performed experimentally, in which the sample is de-

stroyed during measurement, emulated flow cytometry data can be produced at any

desired frequency during a simulation run. Crucially, this permits time-series flow

cytometric analysis in which the same ‘sample’ can be observed over time. To illus-

trate this, the VCAM-1 histogram from Figure 2.5B is shown at 4-hour intervals from

the 12th to 72nd hour of the formation process in Figure 2.6. The time-dependent

development of the VCAM-1+ LTo population is clearly visible.
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2.2.2 Emulating Immunohistochemistry and Imaging Tech-

niques

Immunohistochemistry is the process of antigen detection within tissue sections

through the use of cognate antibodies. Immunoflourescence is often used, in which an

antibody is conjugated to a fluorophore that emits photons of a specific wavelength

when excited with an appropriate laser. Sections of antibody-tagged tissues are

placed in a microscope in order to visualise the spatial location of tagged proteins

and therefore the tissue organisation. Confocal microscopy is widely used, in which

the image is constructed only from light caused by fluorescence very close to the

focal plane.

2.2.2.1 IHC Emulation Methodology

As seen in Figure 2.3, the spatial environment captured by PPSim is a 2-dimensional

(2D) rectangular grid that represents a 10% length of the mouse gut. This is toroidal

about the Y-axis, and is thus an abstract representation of an ‘un-folded’ section

of intestinal tissue. LTo cells in the simulation are stored in a 2D discrete space

grid. All haematopoetic cells in the simulation (LTi and LTin cells) are stored in a

2D continuous grid data structure provided by the MASON agent-based simulation

toolkit (Luke et al., 2005), a library for use with the Java programming language.

Continuous space is represented by storing each cell in a discretised grid and associ-

ating them with two double precision floating point numbers corresponding to their

‘true’ position within the grid. This is illustrated in Figure 2.7. To produce images

analogous to those produced by IHC and confocal microscopy, each cell object is

extracted from this grid and then drawn to on a canvas object according to the

properties of that cell, as seen in typical immunohistological imaging.
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Figure 2.7: Discrete and continuous data structures used to store cell locations in
PPSim. Continuous space is represented through the coupled association of a cell
with a discrete grid element and a set of Cartesian co-ordinates.

2.2.2.2 IHC Emulation Results

Figure 2.8 presents new visualisation approaches derived from the existing simulation

of Peyers patch formation. In Figure 2.8A, LTi cells are drawn as green circles

((0,255,0) in the RGB colour space) on a black canvas, in a manner similar to

the appearance of GFP (green fluorescent protein)-stained cells when imaged with

confocal microscopy. Overlapping cells produce a region of green with a higher

alpha (transparency) value, to enable determination of the density of a region by

measuring the level of alpha in that region as compared with the base level assigned

to individual cells. LTo cells are illustrated in Figure 2.8B, drawn red (255,0,0),

with an alpha value corresponding to VCAM-1 expression level. LTo cells without

sufficient VCAM-1 expression (beyond the threshold required for adhesion to be

possible within the model specification) have been coloured grey (128,128,128) for

the purposes of the figure so as to be rendered visible to the reader.

The two canvases undergo several stages of post-processing before combination

into Figure 2.8C as an emulation of IHC and microscopy that illustrates the co-

localisation of LTi cells and VCAM-1 expression on LTo cells. The VCAM-1 canvas

undergoes Gaussian blur and posterisation, to provide an interpolated, continuous

approximation of VCAM-1 expression within Peyers patches. Furthermore, a canvas
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Figure 2.8: Simulation visualisation after 72 hours. (A) LTi cells coloured green to
simulate GFP in microscopy. (B) LTo cells in grey, and level of red proportional to
VCAM-1 expression level. (C) Complete emulated histology and microscopy image
showing two Peyers patches. LTi cells are stained green, LTo cells stained blue, with
additional VCAM-1 staining in red. Scale bar 175 microns.

with dark blue circles drawn at 25% opacity representing all LTo cells undergoes a

Gaussian blur and is placed beneath the red VCAM-1+ LTo cell canvas. The LTi cell

layer is duplicated, with the lower layer undergoing a Gaussian blur. Posterisation

is a process in which continuous tonal gradations are reduced to a smaller number of

tones. A Gaussian blur is a common image filtering technique that blurs an image

through application of a Gaussian function, for a full description of the method the

reader is referred to ?. This was found to produce a VCAM-1 LTo canvas that

while more diffuse, reduced extension of LTo cells at the periphery and allowed each

distinct cell to be clearly identifiable despite the application of blurring.

The in silico images can be written from the simulation at any pre-specified

resolution, with the minimum usable value linearly-dependent on the diameter of

the smallest visualised object. The images can be automatically analysed en masse
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Figure 2.9: CellProfiler output for one simulation run in which two Peyers Patches
are identified, and one aggregate of LTi cells is discarded due to occupying an in-
sufficient area. This analysis can be automated over many thousands of runs to
identify trends in patch size in terms of area, density and compactness as model
parameters are perturbed (however this figure illustrates only patch detection and
evaluation with a baseline sample run of PPSim).

to detect the presence of Peyers patches using CellProfiler (?), pipeline-based image

analysis software for automated quantification of cell phenotypes from imaging data.

This is illustrated in Figure 2.9 for a single simulation run, but may be applied to

an arbitrarily large dataset. Prior to the development of this CellProfiler pipeline,

identification and quantification of patch formation has proven difficult within the

simulation, as it is achieved in the domain through manual analysis of histology

(that is, ‘by eye’) (?).

2.2.3 Producing Heat-maps Illustrating Gene or Protein Ex-

pression

Methods of presenting and analysing genomic or transcriptomic data acquired from

DNA microarrays, deep sequencing (e.g. RNA-seq) and related technologies are use-

ful for understanding spatiotemporal cellular dynamics in terms of gene expression
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and protein synthesis. Heat-maps that illustrate differential expression profiles over

time can provide important clues as to the order in which events take place during

biological processes (?).

2.2.3.1 Gene and Protein Emulation Methodology

Mean protein expression levels can be output from the simulation both over time and

across space. This permits the creation of heat maps that capture cell phenotypes

spatiotemporally, and can show the progression of protein expression over time and

space. Figure 2.10A shows a sample of 9 cells and their expression of VCAM-1

and chemokine CCL19 at three different time-points. The expression levels used to

generate these heat-maps were generated in an identical manner to the method used

for the flow cytometry emulation.

Depending on the level of abstraction within a simulation, expression levels may

represent cell-surface expression level and gene expression level specifically and in-

dependently, or abstract these into a single quantitative value. Within PPSim, the

values generated may be thought of as representing the relative cell-surface expres-

sion level of VCAM-1 and the relative gene expression or secretion rate of CCL19.

The heat-maps themselves were drawn manually using EazyDraw (Dekorra Optics

LLC), with the exception of the spatial heat-map which was generated in Java and

extracted prior to post-processing to produce the emulated micrograph images as

can was shown above in Figure 2.8 (B).

2.2.3.2 Gene and Protein Emulation Results

Figure 2.10A shows a sample of 9 cells and their expression of VCAM-1 and chemokine

CCL19 at three different time-points. In Figure 2.10B, the spatially-distributed ex-

pression of VCAM-1 is shown at 72 hours for three isolated Peyers patches that

formed during one simulation execution. The change over time of the spatial dis-

tribution of VCAM-1 within the simulation can be visualised using a 3D spatial

heat-map in which each ‘slice’ of the z-axis illustrates the distribution of VCAM-1,
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Figure 2.10: Heat-maps generated from simulation data over both time and space, to
illustrate change in protein expression levels. (A) VCAM-1 and CCL19 expression
over time for a subset of individual LTo Cells and then the mean level over that
subset. (B) Spatially-resolved heat-map showing VCAM-1 distribution in three
Peyers Patches that formed during one simulation run.

Figure 2.11: 3D heatmap illustrating change of VCAM-1 concentration over time
(vertical axis), demonstrating the formation of regions of high VCAM-1 levels over
72h. Each of the 12 slices in t represent a 6 hour time increment. This visualisation
clearly shows the non-linear increase in area of VCAM-1hi regions over time, pro-
viding a unique means of visualising the spatiotemporal patch formation process in
one plot.

as shown in Figure 2.11. Each slice in the z-axis represents a 7.2 hour increment

over the 72 hour PP formation process. The heat-maps in Figures 2.10 and 2.11

were generated by exporting the contents of the discrete stromal cell grid from the

Peyer’s patch simulator at desired time-points during a simulation, and coloured
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according to VCAM-1 expression calculated as described in section 2.2.1.1.

2.3 Discussion

It is proposed herein that a simulation may be considered effectively communicable

if the predictions derived from it can be understood not just by the modeller, but

by domain experts generally who may lack significant experience in computer sci-

ence or in silico modelling approaches, without requiring significant exposition of

the analysis methodology utilised. This widens possible participation by enabling

models to be easily understood across disciplines. For example, the prediction re-

garding the time-dependent roles of VCAM-1 and CCL19 can be illustrated using

either A-test plots or heat-maps of expression levels over time. Whilst the former

may be necessary to have confidence in the statistical significance of the effect, the

biological significance is readily demonstrated using the heat-map of Figure 2.10A.

The techniques described in this chapter for grounding computational models within

experimental biology, while not intended to replace existing analysis methodology,

are proposed to be a valuable tool for communicating model outcomes to the wider

scientific community and as a guide for early prediction identification prior to ex-

ploratory statistical analyses.

It has been suggested variously throughout development of the field of computa-

tional biology, that a ‘reverse Turing test’ could present an ultimate validation test

for computer simulations of biological phenomena (??), in which both biological

data and simulated data are presented to a biologist in order to observe whether

the simulated dataset can be readily identified, and how. This has largely not been

feasible to date because of the very different manner in which simulation results

are presented, and the difficulty presented in buffering these differences from bio-

logical domain experts. Now, with the availability of simulated histology and flow

cytometry data, computational biology and QSP is approaching the point at which

this is becoming feasible. For instance, prior to the development of the CellPro-

filer pipeline demonstrated in Figure 2.9, there was no reliable, automated means
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by which to identify, count and quantify Peyers patches over many simulation run

results, and simple dots were used for each cell in the simulation visualisation layer.

Furthermore, there are no other means except emulated flow cytometry to perform

an in-depth analysis of cell populations and their properties within a simulation

in a manner indistinguishable from in vivo animal models and in vitro cell culture

system analyses. The possibility of simulation and experimental model results be-

coming indistinguishable is an exciting prospect in terms of accelerating scientific

progress in biology and medicine.

2.3.1 Gene and Protein Expression Analysis Emulation

Figure 2.10A demonstrates the potential for expression heat-maps to illustrate the

differential temporal roles of proteins or genes of interest; in this example, notable

VCAM-1 expression is seen much earlier than chemokine CCL19 expression, how-

ever, by day 3 expression of CCL19 is clearly dominant. The dominance of adhesion

molecules early in the formation process and chemotaxis later on was a prediction

generated through statistical analysis from the original simulation in ?, as shown

in Figure 2.12. The original determination of this prediction required extensive ex-

ploratory analysis of sensitivity to model parameters and significant computational

expense. Individual simulation runs consistently show such phenomena in a visually

and immediately-apparent manner. This suggests there is significant value in gener-

ating heat-maps of time-series expression data to identify potential predictions and

guide the statistical analyses undertaken.

The temporally and spatially-resolved heat-maps presented in Figures 2.10 and 2.11

have the potential to be combined in various novel ways to demonstrate the devel-

opment of biological structures through changing gene expression across time and

space. The 2D spatiotemporal heat-map in Figure 2.11 presents an intuitive means

of visualising how factor expression within a tissue changes over time. This predicts

that VCAM-1 distribution in patches begins at a central point and spreads radially

outwards from that point over time.
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Figure 2.12: The observation that LTi cell velocity and displacement were not sensi-
tive to key parameters controlling chemotaxis during the first 24 hours of patch de-
velopment (A and B), but highly sensitive during the final 24 hours (C and D), with
the opposite effect found for adhesion molecules, led to the prediction that adhesion
molecules are responsible for driving early patch development, while chemokines are
dominant later on in the process. (A and C. The maximum chemokine expression
level per LTo; B and D. The minimum chemokine expression level required for LTi
chemotaxis)
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2.3.2 IHC Emulation

Emulating IHC and microscopy permits automated analysis with software such as

CellProfiler, and also provides visual insight into emergent structures. Although

the rudimentary image transformations applied to the spatial information contained

within the simulation are presently easily distinguishable from genuine micrographs,

it is conceivable that further development would diminish observed differences. De-

spite this, the realism afforded by the present emulation methodology is sufficient

to apply image analysis techniques to simulation results. For comparison purposes,

Figure 2.13 shows the emulated micrograph alongside a similar micrograph on the

same scale obtained from a developing murine lymph node.

The application of the IHC/microscopy emulation in combination with the Cell-

Profiler pipeline illustrated in Figure 2.9 to PPSim has created potential for a set

of in silico experiments that are not presently possible in the wet laboratory, not

were previously feasible with the original PPSim model. These are to explore how

patches change in response to parameter perturbation and gene-knockout. Previ-

ously, in silico experimentation within PPSim focused almost exclusively on velocity

and displacement of LTi cells as the principle outputs, however it is now possible to

Figure 2.13: A. Emulated immunohistology and microscopy of a Peyers Patch at
Embryonic Day 17.5, simulated in silico. LTi cells are green, the level of red is
directly proportional to VCAM-1 expression on LTo cells, while blue indicates the
presence of LTo cells not expressing significant levels of VCAM-1. B. Actual confocal
microscopy image of an antibody stained B Cell follicle within a developing murine
lymph node. The B Cells are fluorescing green (B220), the surrounding T cells are
fluorescing red (CD3). Scale bars are 50 microns
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measure a large range of parameters relating to both the structure of the patches

such as morphological features, cell density and area, and also the spatial organisa-

tion of expressed proteins. Previously, experiments relating to patch number were

intractable due to the large number of replicates per parameter sample required to

ameliorate aleatory uncertainty and the lack of a suitable means of identifying and

counting patches; clustering algorithms were used in an attempt to count patches

based purely on the locations of LTi cells, however they were found to be unreliable

with unacceptable detection errors that resulted in over-estimation of both PP area

and number.

2.3.3 Flow Cytometry Emulation

Experimental biologists experienced with flow cytometry could identify important

patterns, populations and other results that could go unnoticed in other approaches

to simulation analysis, or the significance of which may not be noted in analysis

performed by a model developer that is not a domain expert. Flow cytometry

software such as FlowJo (TreeStar) and WEASEL (Walter and Eliza Hall Institute of

Medical Research) enable gating of events based on the value of multiple parameters,

permitting identification of different phenotypes, and sub-populations within those

phenotypes, and an exploration of the properties of these populations. Although

for the sake of simplicity and demonstration purposes flow cytometry emulation was

performed utilising just two factors in this analysis, depending on the complexity of

the simulation, this approach can be extended in silico to an arbitrarily large number

of expressed proteins (as opposed to genuine flow cytometry, which is currently

limited to approximately 10 lasers in commercial devices). The multi-dimensional

nature of flow cytometry data coupled with software designed specifically for its

analysis in a biological context is what makes this approach particularly appealing.

Attempting to perform the same sort of analyses on cell populations and phenotypes

using the simulation alone, without flow cytometry emulation, would be extremely

non-trivial and time consuming.
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Figure 2.14: VCAM-1 mean fluorescent intensity histogram for all cells, taken at 24
(long dash), 48 (short dash), and 72 (solid line) hour time-points. The emergence
of a prominent peak is visible after 48 hours, and by the end time-point this has
diverged into several distinctly identifiable sub-populations, each corresponding to
VCAM-1 expression levels within a specific Peyers patch.

New insight into the model dynamics arose from the simple emulated flow cytom-

etry analysis shown in Figures 2.5 to 2.6. There is a clear emergence of two distinct

populations of LTo cells in Figure 2.5A. Interestingly, it can be seen in Figure 2.14

that there is a sudden divergence after 48 hours that created these populations, be-

fore which expression levels conformed to a Gaussian distribution. The emergence

of the Gaussian distribution over the VCAM-1+ population is encouraging, as this

is indicative of adherence to the central limit theorem and would be expected in

the domain. If the data were not normally distributed, it could be construed as

evidence that the implementation of adhesion molecule expression within the model

is an unsuitable abstraction. The divergence after 48 hours could either be a simu-

lation artefact, or it could be that each patch has a relatively uniform distribution

of VCAM-1 dependent on its unique properties, such as size and population size of

co-localised LTi cells. Therefore this simple flow cytometry analysis affords a novel

prediction regarding the dynamics of PP formation: multiple distinct populations

of LTo cells emerge with large differences in VCAM-1 relative expression. This pre-

diction is supported by the imaging emulation analysis in Section 2.2.2.2 and the
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spatiotemporal heat-map shown in Figure 2.10B.

Any predictions arising from an emulated flow cytometry analysis is a prediction

arising directly from the original simulation dynamics, insomuch that the techniques

described herein do not effect extant simulation behaviour. Such predictions were

merely unrecoverable with previously applied analytic techniques. Therefore, valida-

tion of the these techniques must be considered within the context of the simulation

to which they are applied, as what is a suitable approach for one simulation may be

wholly inappropriate when applied to another.

2.3.4 Simulation Visualisation and Emulation as Tools for

Validation and Enhanced Prediction

Through the application of high performance, high-throughput computing, emu-

lated experimental technique results from many simulations can be analysed and

combined to provide a realistic quantitative analysis of biological simulations to

provide data that can be more easily integrated into biological experiments, and

enable direct comparison between computational and in vivo animal models and in

vitro cell culture systems. This approach has the potential to somewhat simplify

simulation calibration, given the data output from the simulation maps to the same

data structures seen in biological data, the fitness function of the simulation effec-

tively becomes the primary biological data, allowing systematic exploration of the

parameter space to identify the points at which the simulation output is statistically

no different from domain experimental data. Combined with genetic algorithms or

other evolutionary computation approaches, the speed and accuracy by which simu-

lations may be automatically calibrated by computer could be improved significantly.

The development of simulation outputs that directly reflect data obtained from

the laboratory confers several advantages when used to augment current approaches

to simulation analysis. Sensitivity analysis and other descriptive statistical meth-

ods are extremely important in evaluating simulations, and have proven useful in

determining simulation robustness, aleatory uncertainty, and the roles of specific
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parameters with respect to particular outputs (???). However, they do not offer the

mechanistic insight into the spatial organisation of cells and the structures they form,

or the changing cell phenotypes and emergent populations that may be observed us-

ing time-series emulated flow cytometry analysis, emulated histology and spatially

resolved heat-maps. We therefore argue that current best-practice simulation anal-

ysis methodologies should be augmented with emulations of biological experimental

techniques. Sensitivity analysis may then be performed that determines the effect

magnitude of parameters on more biologically relevant outputs.

2.3.5 Feedback from the Life Sciences Community

Although a usability or human-computer interaction-type study has not been per-

formed for use of these techniques and methods, the work described herein has been

presented to those in the life-sciences at a number of international conferences, semi-

nars and meetings. Feedback obtained from these has been overwhelmingly positive,

particularly from those with no background in in silico modelling.

The author found that using these visualisation methods in the presentation

of models significantly improved audience response and interaction at conferences

with audiences consisting predominantly of experimental biologists. As such, the

work described in this chapter has served as an incredibly useful tool for improving

engagement with mathematical and computational models from the life sciences

community. Additional value is gained in not having to spend presentation time

providing exposition on model outputs that life scientists may be unfamiliar with,

by focusing on the use of emulated flow cytometry, microscopy and gene expression

images where possible. A final note in this area is that the caveat that in silico data

are being presented is extremely important to avoid confusion with in vitro and in

vivo models.
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2.4 Future Developments

The principles and methodologies described herein, although broadly applicable to

spatiotemporal in silico models, presently require unique manual implementation on

a simulation-by-simulation basis. The development of a software library that per-

mits automated generation of FCS files, emulated micrographs and spatial/temporal

heat-maps of gene and protein expression, would permit quicker implementation of

these techniques and therefore broader adoption of the approach. The method

should easily generalise to other agent-based models through manual adoption of

the techniques described herein, and to any system that encapsulates heterogeneity

at cellular or molecular levels. However, one of the key challenges in developing an

easily reusable software package would be not placing overly burdensome constraints

on the data structures used to store location or expression data, important to en-

sure the tool-kit is not platform-dependent (i.e. does not depend on the modelling

framework or programming language used) and to allow retroactive application to

existing simulations. Mandating that cell locations and other properties be stored

in highly specific data structures is likely to limit adoption, as such decisions often

rely on structures provided by the modelling tool-kit being used and are heavily

dependent on both the biological processes being modelled.

Extension of the DNA microarray/RNA-seq inspired heat-maps to include other

aspects of bioinformatics analysis associated with these technologies would be a

valuable addition to this work, and could be achieved through integration with

existing software libraries such as the Biopython project (?) or PyCogent module

(?) for the Python programming language.



Chapter 3

Developing a Domain Model of

Tertiary Lymphoid Tissue

Formation during Autoimmune

Disease

This chapter describes the development of a hybrid, multi-scale model and com-

puter simulation of tertiary lymphoid tissue (TLT) formation in autoimmune dis-

ease, using Sjögren’s syndrome as an archetypical model within which to explore

the formation process. Presently, there is no clear understanding of the fundamen-

tal, minimum requirements for the development of TLT. In vitro models have pro-

vided important clues regarding the role of tissue-resident stromal progenitor cells but

have proven inadequate for thoroughly evaluating hypotheses in TLT induction. Al-

though there are a plethora of in vivo murine models of Sjögren’s syndrome, many

of which include TLT formation, these acute induction models do not closely re-

flect the process during chronic inflammation, and it is difficult to isolate the key

cytokines, chemokines and cell types that fundamentally drive the process: while

many signalling molecules may perturb the dynamics of formation, which differs

across autoimmune diseases, cancers and chronic infections, identifying the princi-

100
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ple, non-redundant cellular and molecular mechanisms, and signalling feedback loops

that drive lymphoid tissue neogenesis is a crucial step in understanding their larger

role within autoimmunity. One of the largest challenges in understanding the for-

mation and role of TLT in disease is that the mouse models used in experimentation

are acute, and therefore not truly reflective of the chronic inflammatory environ-

ment within human disease. This chapter describes a hypothesis developed from

human in vitro cell culture and in vivo mouse model data that aims to describe

the minimum requirements for TLT formation to occur, and utilises state-of-the-

art computational modelling methodology to confirm the veracity of this hypothesis.

Mathematical and computational models are well-suited to investigating TLT for-

mation due to their innate capacity for abstraction: to disregard mechanisms not

thought to be pre-requisites for TLT formation, and to systematically explore the

dynamics of a handful of signalling mechanisms and cell types hypothesised to be

crucial to the development process.

Following a review of the relevant aspects of immunology and autoimmune pathol-

ogy, a TLT formation domain model is presented: a formalised description of our

hypothesis for TLT development, developed in collaboration with domain experts,

experimental datasets, and further informed by existing literature. We then de-

velop a platform-independent model; this describes how each aspect of the model

may be implemented as a computer simulation. The TLT formation model inte-

grates Markov chains, formal grammars, cellular automata, agent-based modelling,

ordinary and partial differential equations into an executable simulation that cap-

tures molecular, cellular and tissue level phenomena at time-scales from one second

to several minutes. Through identifying the most appropriate modelling technique

for each individual model entity, it is ensured that the process is captured as accu-

rately as possible, such that the model is fit-for-purpose and without necessitating the

additional abstractions warranted if one was to attempt to capture all model com-

ponents within the bounds of a single modelling technique. To achieve this, a novel

framework and supporting schemata are developed and utilised for defining hybridised
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models composed of many sub-models in terms of information flow between each of

the sub-models. I further develop this framework to permit the production of bio-

logically relevant outputs based on the methodologies described in Chapter 2 through

combination and manipulation of data structures contained within each sub-model.

3.1 Tertiary Lymphoid Tissue: Form and Func-

tion

Lymphoid tissues are complex immunological structures, evolved to orchestrate key

cell types and molecular interactions into functional immune responses. This is

achieved through the development of a niche, which supports the retention, acti-

vation, and proliferation of immune cells. An individual lymphoid organ usually

contains several microanatomical sub-compartments or niches - specialised areas for

cellular entry and function. Lymphoid tissues contain distinct, segregated T and B

cell zones with separate and supporting functions. The maintenance of a niche is

managed by stromal cells, which provide survival, activation and migratory factors.

Thus to fully understand lymphoid tissue function it is important to consolidate

current understanding of how stroma regulates immune cells, either through direct

interactions or via soluble signals. Experimental studies, typically in mice, have pro-

vided insights into the molecular and cellular mechanisms driving the development

and maintenance of lymphoid organs (???).

3.2 TLT Domain Model Development

The dynamics of tertiary lymphoid tissue formation are highly multi-factorial, non-

linear, inherently spatial, and involve phenomena occurring over time-scales from

seconds to weeks; these features do not lend well to the utilisation of simple math-

ematical models, thus complex systems analysis must be applied, in which tissue

formation is treated as an emergent phenomenon occurring due to the interaction of
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many lower-level entities (i.e. molecular and cellular interactions). An introduction

to the form and function of TLT was provided in Section 1.1.2; in this chapter, a

combination of experimental data, existing literature and clinical studies are brought

together to define a model of TLT formation that excludes many of the extraneous

components of the system and strives to capture the essential signalling molecules

and cell-types responsible for orchestrating the self-organisation process.

The hybrid-ABM paradigm, discussed in Section 4.2, lends itself well to knowl-

edge integration due to its intrinsically modular organisation, capacity to describe

phenomena occurring on distinct spatiotemporal scales simultaneously, and provides

a highly visual output, particularly considering the visualisation and model commu-

nication methods discussed in Chapter 2 and means of defining them, to be discussed

in Section 4.8. Such approaches afford a means of consolidating information at a

systems level, supported by a strong evidence-base from biological experimentation

demonstrated through the use of argument-driven validation (developed for the TLT

model and simulation in Section 4.9) (???) derived from principles of safety-critical

engineering (?). The resulting model and simulation provides an executable plat-

form for hypothesis testing. The development of a hybrid model system of TLT

formation can produce insights which otherwise may not have been reached a pri-

ori, and subsequently generate predictions which can be tested in vivo - leading to

further model refinement; we term this paradigm ‘model-driven experimentation’,

illustrated in Figure 3.1. There is in addition a clinical challenge in that there are

already many thousands of possible different combinations using existing therapeu-

tics (biologics and small molecule drugs) that would need to be trialled in order

to find optimal targeting strategies to resolve TLT pathology. Thus MDE-based

approaches as illustrated in Figure 3.1 provide a rational approach to identify novel

combination therapeutic regimes that have a best potential in clinical trials.

Clinical data from a large cohort of Sjögren’s syndrome patients have demon-

strated that the presence of TLT in salivary glands is an effective predictor of more

aggressive disease and development of B-cell lymphoma within the salivary gland
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Figure 3.1: Model-driven Experimentation Paradigm - Figure adapted from ?.

(?). The likely contributor to the worsened prognosis in the presence of TLT is the

development of germinal centres (?) capable of selection and expansion of autore-

active B cells and plasma cell differentiation (?).

Taken together, these data suggest a potential means of therapeutic intervention

in Sjögren’s syndrome, by both preventing their formation and identifying means

of dispersing established TLT structures. In order to achieve this, it is essential

to understand what is necessary and sufficient for TLT formation and maintenance,

that is, to identify the minimum requirements. This section presents a domain model

of TLT formation in Sjögren’s syndrome, integrating in vitro cell culture and in vivo

mouse model datasets with observations from clinical studies.

To develop a useful domain model, at least one research question must be iden-

tified a priori, and a hypothesis derived that aims to answer the research questions,

such that implementation of the model is capable of ultimately determining the
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veracity or theoretical feasibility of the biological hypothesis. A ‘bottom-up’ sim-

ulation cannot definitively confirm that a hypothesis is true, but can demonstrate

whether expected emergent phenomena emerge when tested in silico, and in combi-

nation with a strong argumentation case supported by clinical, in vitro and in vivo

data, a strong argument can be made as to hypothesis veracity. The basic research

questions underpinning this model may be defined as:

• What are the fundamental minimum requirements that enables TLT forma-

tion?

• What possible intervention strategies may prevent or reverse the process of

TLT formation?

With our research questions in mind, the first step in developing a domain model

is to identify key observable phenomena that occur during this process, and crucially,

the time-points at which they occur. This allows the creation of an observable phe-

nomena time-line that we must seek to encapsulate within our model, such that these

phenomena emerge naturally from the underlying model entities (cells, molecules,

etc.) when the system is ultimately implemented and simulated. Hypotheses may

then be developed that explain each aspect of the formation process. The devel-

opment time-line for our model of TLT formation is derived primarily from an

adenovirus mouse model of Sjögren’s syndrome, described in ?, wherein TLT, with

very similar characteristics and function, can be induced in murine salivary glands,

developing over approximately a 15 day period before rapidly resolving. This is

in contrast with the human disease in which there is no known role for infection

as a trigger for TLT formation, and thus might develop due to the presence of

chronic inflammation; furthermore, there is no evidence in humans of the resolu-

tion phase following development. The structure of submandibular gland TLT is

shown in Figure 3.2, illustrating the co-localisation of B cells with their cognate

chemokine CXCL13, and T cells with CCL21. This permits inference that a dif-

ferential response to CXCL13 and CCL19/21 can be assumed for B and T cells.
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By focusing on minimum requirements, avoiding incorporation of many molecular

pathways known to be involved in TLT formation and Sjögren’s syndrome, transla-

tional issues between murine and human models of disease can be minimised; this is

particularly true due to the formation of the hypotheses as whether these system of

differential chemokine feedback loops and stromal cross talk is consistent with the

formation of self-organising TLT-like structures.

The formation of TLT pathology in autoimmune disease is associated with the

formation of germinal centres, thought to be the primary source of auto-antibodies,

(????), these structures are composed of B cells and require T-cell signalling for

effective function. T and B cell organisation is dictated by lymphoid chemokines,

thus any model capable of addressing key questions in TLT formation and function

must simulate chemokine function. Mesenchymal stromal cells have an essential role

in the development of lymphoid tissues, as discussed in Section 3.1, although the

cellular origin and mechanisms driving their formation is less clear, recently it has

been shown within the our laboratory (?) that mesenchymal progenitor cells can be

induced to take on the different stromal cell fates in vitro, illustrated in Figure 3.3),

events that have been verified using in vivo models.

The presence of the chemokines CCL19, CCL21 and CXCL13 has been observed

in tertiary lymphoid tissues in many different animal models and in human pathol-

ogy (?). CCL19 and CCL21 have potent chemotactic effects on T cells and acti-

vated dendritic cells, in contrast CXCL13 is a potent B-cell chemoattractant. It has

previously been shown that localised inflammation is required to trigger tertiary

lymphoid organs, this may result from infection, autoimmunity, neoplastic haema-

tological cancers and solid tumours (?). The expression of hemostatic chemokines

and their role in secondary lymphoid tissue formation suggests a significant role for

chemokine production by ectopic lymphoid stroma in orchestrating spatiotempo-

ral organisation mediating both B and T cell tissue colonisation and segregation.

During secondary lymphoid tissue formation, local tissue-resident fibroblasts require

interactions with specialised lymphocytes that regulate stromal cell differentiation
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Figure 3.2: IHC confocal micrographs confirm expression of lymphoid chemokines
CXCL13 (blue, I) and CCL21 (blue, M), also showing colocalisation of CXCL13 (B
cell chemokine) within the B cell (red, CD19) populated region (GJ), and of CCL21
(T cell chemokine) within the T cell (green, CD3) populated area of the aggregate.
Original magnification x200. Taken from ?.

and acquisition of effector function stimulation by lymphocytes in order to adopt and

maintain the lymphoid stromal phenotypes that produce the chemokines responsi-

ble for recruiting further lymphocytes and other mononuclear cells; this results in a

positive feedback loop - the self-perpetuating process of lymphocyte recruitment and

chemokine secretion by stroma. However, in contrast to secondary lymphoid tissue,

the trigger for TLT development is inflammation, thus the initial recruitment of

lymphocytes is likely triggered by the milieu of chemokines produced as part of the

inflammatory process. This process has not been explicitly included in the model in

an emergent sense, it is assumed lymphocytes enter the tissue compartment at the

timepoints observed in vivo.

To identify the events that drive homeostatic chemokine production human

adipose-derived stem cells (ADSC), adult pluripotent mesenchymal progenitor cells,

were cultured in the presence inflammatory cytokines (replicating infection and in-

flammation in vitro) and the presence of lymphocytes. Using a combination of

quantitative PCR and ELISA the expression of CCL19/21 and CXCL13, shown
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Figure 3.3: ADSCs co-cultured with inflammatory cytokines, cytokines and T cells,
cytokines and B cells, and finally cytokines, T and B cells: qPCR relative expression
of chemokines CCL19, CCL21 and CXCL13. Data published in ?, experimentation
performed by Bridget Glaysher.

in Figure 3.3. Expression of T cell lymphoid chemokines CCL19 and CCL21 was

shown to be dependent on T cell co-culture with ADSCs that were pre-treated with

cytokines (IL13/TNFα), in contrast the co-culture of B cells leading to the expres-

sion of CXCL13, consistent with their intrinsic expression of chemokine receptors

for these chemokines. Interestingly, the presence of B cells suppressed in vitro the

expression of CCL19/21. The mechanisms for this are unknown, however this might

be related to the upregulation of CXCL13. In contrast to the T cell chemokines,

CXCL13 expression is dependent on the presence of T cells. This implicates a role

for T cell derived signalling in CXCL13 induction. To determine if these signals

resulted from receptor-ligand interaction or indirect cytokine production by lym-

phocytes, ADSCs and lymphocytes were separated using a transwell that prevents

physical interactions between the two cell types. No chemokines were induced in the

absence of direct cell-cell contact. These results have been further validated using

an in vivo model that demonstrates an absolute requirement for lymphocytes in

chemokine induction, and identified LTβ (lymphotoxin beta) as having an essential

role in chemokine induction.

In contrast to chemokines, upregulation of the key adhesion molecules VCAM

and ICAM does not require the presence of lymphocytes, rather just stimulation by
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Figure 3.4: Inflammatory cytokines TNF-α and IL-13 induce adhesion molecule
expression in ADSCs. (Previously Unpublished data from experiments by Bridget
Glaysher.)

cytokines alone. Using the ADSC culture system, the addition of TNF and IL13 was

sufficient to rapidly drive upregulation of ICAM and VCAM. Alone neither cytokine

is sufficient to induce adhesion molecule upregulation, indicating a key role for cross-

talk and synergy between the signalling pathways (Figure 3.4). This is further

supported by in vivo data showing a key role for IL4 receptor signalling mediated by

IL13 in the upregulation of adhesion molecules and expressing an activated stromal

state including the upregulation of podoplanin. As observed in vitro, these events

do not require the presence of lymphocytes, in Rag deficient mice, which lack both

B and T cells, upregulation of these molecules occurs normally.
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3.2.1 From Domain Data to developing a TLT Domain Model

Through considering a combination of the in vitro and in vivo datasets, and im-

munofluorescent staining of salivary gland biopsies from human samples, I have

developed a basic model that describes the change in stromal cell ‘state during the

pathological disease process (Figures 3.3 and 3.4). Based on the data described in

Section 3.2, I have developed a ‘four state’ model of stromal cell differentiation,

in which a localised stromal precursor cell, following activation by inflammatory

cytokines, is assumed to require a certain level of initially T cell, and later B cell

contact, to stimulate pathological stromal development. Between each stage of de-

velopment, further T and B cell stimulation that is not yet sufficient to cause a state

change is assumed to accentuate the phenotype by further up/down-regulation of

CCL19 and CXCL13 expression levels towards the limits defined by the data (Fig-

ure 3.3). The data from these co-culture experiments allow one to derive a simple

four state model of stromal cell differentiation in response to three key ‘triggers’: the

presence of soluble inflammatory cytokines causing resident stromal progenitor cells

to differentiate into lymphoid stroma precursor cells, direct T cell contact resulting

in the development of a fibroblastic reticular cell (FRC)-like phenotype, and direct

B cell contact finally causing development of an FDC-like phenotype. This is en-

capsulated in Figure 3.5, and forms the basis of constructing a computational model

that captures the dual chemokine feedback loop responsible for TLT formation.



CHAPTER 3. TLT FORMATION DOMAIN MODEL 111

Figure 3.5: Simplified illustration of the 4-state stromal cell differentiation model.
Stromal progenitors develop into lymphoid stroma in the presence of inflammatory
cytokines IL-13 and TNF-α, adopt an FRC-like phenotype following T-cell stimula-
tion and ultimately an FDC-like phenotype upon B-cell stimulation. The T and B
cell factors responsible for causing the differentiation are unknown.

Taken together, the data in figures 3.3 and 3.4, along with the observations

drawn from the in vivo model described by ?, has allowed identification of low-level

behaviours that drive emergent TLT formation, and to establish the time-scales over

which the different process occurs. The relative expression levels of CCL19, CCL21

and CXCL13 allow thresholds for relative expression of these factors to be defined

as biologically-derived parameter values. Furthermore, we can state a hypothesis

that would be extremely difficult to test using in vivo animal models or in vitro

cell culture systems, but may be tested in silico through the innate capacity of

simulation to abstract factors not relevant to the research questions. Combining

these data and observations, our principal hypothesis is stated in Figure 3.6.

3.2.1.1 Domain Model Limitations

Although this model provides capacity for analysis of the interactions between lym-

phocytes and localised mesenchymal cells to drive highly organised structures leading
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Hypothesis

TLT formation occurs as a ‘self-organising’ emergent structure in Sjögren’s
syndrome following priming of mesenchymal stroma due to the presence

inflammatory cytokines IL-13 and TNFα through two differential feedback
loops of chemokine induction, lymphocyte migration and further stimulation
by T and B cells, causing development of lymphoid stromal phenotypes from

tissue-resident progenitors.

Figure 3.6: Central hypothesis that our TLT model aims to demonstrate: stromal
cell chemokine induction due to chronic inflammation, resulting in lymphocyte re-
cruitment and subsequent self-organisation. This is derived from a combination of
in vitro cell culture data, in vivo mouse models and clinical datasets.

to the formation of germinal centres, it does not analyse the functional capacity of

TLT to drive GC formation, the formation of autoantibodies, or the role of TLT it-

self in disease pathology as there is no formal evidence that it is required for disease

formation and progression. However, developing a model of the induction and for-

mation process will address key biological questions concerning mechanisms driving

TLT organisation and formation, permitting analysis of therapeutic interventions

that may modify these outcomes. As FDC development is critical in the formation

of germinal centres and therefore autoantibody production (?), the change in ratios

of stromal cell phenotypes as the model parameters are perturbed may be used as

an appropriate surrogate for pathological outcomes, this is explored in Chapter 6.

3.2.2 Defining Expected Behaviours

Developing the domain model for TLT found in Sjögren’s syndrome through a re-

view of the relevant biological experiments and scientific literature, a cogent time-

line was constructed that encapsulates the individual cellular and molecular model

entities with the higher-level emergent phenomena of tissue development through

self-organisation. The key observable phenomena resulting in the emergence of TLT

formation are described in a cartoon based on multiple different experiments, shown

in Figure 3.7 (?). This simplified multi-step process illustrates potential triggers

including viral infection, although this is unlikely to be the only process involved in
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TLT initiation. Localised inflammation drives the recruitment of leukocytes (Den-

dritic cells, T and B lymphocytes) to the inflammatory lesion, and stromal cells

begin to adopt lymphoid phenotypes (principally an FRC-like phenotype). Finally,

the structure forms, with clear separation within the niche for B and T cells, the B

cell zone forming a follicular structure containing follicular dendritic cells that per-

mit the generation of germinal centres capable of driving autoantibody responses.

Recently, there has been growing clinical interest in TLT as a therapeutic target,

with the development of biologic agents intended to both reduce or prevent their

formation (e.g. lymphotoxin fusion protein (an antagonist for Lymphotoxin recep-

tor β), Baminercept), and to induce TLT using lymphotoxin receptor agonists (i.e.

LIGHT) in cancer (?).

Figure 3.7: Figure describing the three stages of TLT formation: induction, coloni-
sation, segregation. Taken from ?.

The ‘Expected Behaviours’ diagram illustrated in Figure 3.8 develops upon the

simple schema presented in Figure 3.7. This diagram aims to segregate but include

logical links between what cellular and molecular processes take place, what may

be directly observed through experimentation, and our hypotheses on how these

processes result in what is observed. The ‘expected Behaviours’ diagram of a bio-

logical domain model is a useful tool for summarising the relevant model entities and

the behaviour that is expected to manifest. The aggregate effects of these many,

massively parallel, individual interactions, lead to the emergence of system wide
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patterns and behaviours that are not explicitly encoded or intuitively understood

from the defined interactions alone.

The stroma has been hypothesised to have an essential role in TLT formation,

however how the interactions between lymphocytes and stroma lead to a highly

organised and function tissue are unclear, thus I have proposed that two feedback

loops, one via T cell signalling and chemokine-mediated recruitment, and the other

via B cell signalling, and chemokine-mediated recruitment, outlined in the expected

behaviours diagram (Figure 3.8). In this diagram, each coloured solid arrow in-

dicates that it is responsible for the stromal differentiation shown by the dashed

arrow of the same colour. Segregation occurs as B cells cause stromal progenitors to

adopt an FDC phenotype, secreting predominantly CXCL13, in an area surrounded

by FRC-like cells that predominantly secrete CCL19. Thus, the T cells migrate to

the neighbouring FRC network as the B cells cluster tightly in a follicular structure

supported by FDC-like cells. While this is a simple and intuitive idea, testing it ex-

perimentally has proven difficult thus far, and therefore a computational modelling

approach has been employed herein to attempt to demonstrate the veracity of this

hypothesis.

The simple model presented in this section and in Figures 3.8 and 3.7 may

be somewhat confounded through the inclusion of receptor internalisation, which

modulates both lymphocytes’ ability to detect chemokine gradients, and the local

levels of chemokine surrounding each cell. It was found in ? that tissue pattern

stability in secondary lymphoid tissues is highly dependent upon transmembrane

chemokine receptors, following reports in ? that receptor recycling has a significant

effect on lymphocyte trafficking. It was however determined in silico (?) that

receptor internalisation cannot account for regulation of B cell lymphoid follicle

size despite experimental evidence of its involvement in secondary lymphoid tissue

organogenesis (???). There is little experimental data in the literature regarding the

role of chemokine receptor internalisation in lymphoid neogenesis, however there is

evidence that it has important roles in the formation of de novo structures such as
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tertiary lymphoid organs (?), and has possible roles in ‘tuning’ immune responses

through chemokine gradient sculpting (??).

The actual significance of receptor internalisation and chemokine sequestration

by lymphocytes in TLT formation and function is therefore largely unknown and

likely to be highly dependent upon properties difficult to quantify experimentally in-

cluding the relative difference between local chemokine concentrations, lymphocyte

population size and the rate at which they internalise chemokine-ligand complexes.

However the overall effect on development dynamics is likely to be generally similar

in nature to those observed in secondary lymphoid tissue organogenesis, particularly

in light of observations in ?. These effects may be explored with an in silico model

of TLT formation, therefore an ODE model describing the internalisation, recycling

and decay of receptor-ligand complexes on an individual lymphocyte level has been

developed and will be expanded upon in Chapter 4 (Section 4.5).
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3.2.3 Describing Cellular Behaviour

This section outlines a semi-formal description of lymphocyte and stromal cell be-

haviour within the domain, such that in Chapter 4, a computational and mathe-

matical model of their dynamics can be appropriately derived.

3.2.3.1 Capturing Cellular Dynamics

The key cell types identified in the domain model, illustrated in the expected be-

haviours diagram (Figure 3.8), are represented explicitly in the TLT formation

domain model. These cells are the haematopoetic T and B lymphocytes, and

mesenchymal stromal cells which undergo a differentiation process adopting vari-

ous distinct phenotypes. Finite state machines can be used to explicitly capture

each state that the cells may occupy, the conditions required for transition between

states, and any activity that occurs as a result of these transitions (?). The unified

modelling language (UML) is a widely-used international standard for describing

object-oriented systems in engineering, and has more recently found use in describ-

ing complex biological systems (???). The UML permits expression of finite state

machines through the representation of states in rectangular boxes, with arrows

delineating transitions that may occur, ‘guards’ expressed within square brackets

that describe the condition that must be true for the transition to occur, and notes

preceded by a backslash denote activities that occur as a result of the transition.

An entity may have orthogonal states, in which the object exists in multiple states

simultaneously. This notation has been applied to a description of T and B lym-

phocytes, and stromal cells. The process of describing cell entities using finite state

machines requires explicit identification of biological parameters, these are described

in Table 3.9. A key advantage of using the UML to describe finite state machines

is the inclusion of a specification for hierarchically-nested states : effectively sets of

states inside of states. If state ‘B ’ and ‘C ’ are within state ‘A’ then B is said to

be a substate of A, and A is the superstate of B ; collectively the set of current

states within A form a composite state. This is particularly useful for describing the



CHAPTER 3. TLT FORMATION DOMAIN MODEL 118

Figure 3.9: Table of identified Domain Model parameters.

complexity of stromal cell development succinctly, as the four phenotypes it may

adopt and the properties associated with each can be described as four composite

states, with the phenotype-specific states within these described as substates of the

phenotypic state.

Several abstractions and assumptions have been made in the construction of the

cell state machines, removing extraneous detail that is not necessary to describe

the dynamics that result in TLT formation. Additional assumptions are necessary

when entities identified within the domain model have unknown values associated

with them or are themselves unknown, this is particularly the case with this do-

main model as the aim is to determine in a highly theoretical manner whether two

differential feedback loops driven by the secretion of and response to chemokine is

sufficient to describe TLT formation generally, without regard to the myriad other

cells, cytokines and signalling molecules known to be present in TLT in different

pathologies. All such assumptions and abstractions must be clearly stated to pro-

duce a transparent domain model in the interest of aiding interpretation and avoiding

ambiguity within the model. While these assumptions are documented within the
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domain model description, they are also explicitly addressed and justified using goal-

structuring notation in Section 1.4.1.3 along with all platform model assumptions

and simulation implementation decisions. Together, these diagrams form a coherent

argument that the model is fit for purpose.

1. T and B Lymphocytes

For the purposes of describing TLT formation, T and B lymphocyte dynamics

are very similar; the principle difference being the chemokine to which they

respond to and the effect they have upon stromal cells. T and B lymphocytes

both undergo adhesion to stroma and chemotaxis in response to chemokine

gradients in essentially the same manner, although B cells respond only to

lymphoid chemokine CXCL13, and T cells also to CCL19. In the domain,

B lymphocytes can also respond to a lesser degree to CCL19, and T cells to

CXCL13 (?) although for the purposes of the model, this is assumed not to

be the case. The primary role of these additional chemokine responses are

to orchestrate the immune response within lymphoid tissue by enabling T-B

interactions; as the model is concerned with the establishment of tissue and

does not capture the humoral response, we feel it is justified to reduce the

system to the simple differential response described herein.

(a) T Lymphocytes

Depicted as a UML finite state machine in Figure 3.10, the T cell begins

in the initial ‘psuedostate’ depicted as a black circle, and immediately

assumes several orthogonal states: ‘S3 Stromal Stimulation Factor Ex-

pression’, ‘CCR7 expression’, and ‘LFA-1 Expression’. The cell also must

make a choice between two states, either responsiveness to local CCL19

or a state of being in random motion – the former state is adopted if

and only if the T cell is expressing sufficient levels of cognate receptor

CCR7 and the local chemokine concentration is high enough to stimulate

downstream signalling from CCR7 that results in the chemotactic pro-

cess, otherwise, the cell will adopt the random motion state. In addition,
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there is an activity notation stating that the cell is either already present

at T0 or enters at any point after. If the T cell adopts a chemotactic re-

sponse, then receptor-ligand (CCR7-CCL19) complexes are internalised,

the CCL19 is degraded and CCR7 is either recycled back to the cell sur-

face or degraded, marked on the diagram by an activity notation below

the chemotaxis state box. Quantitative T-cell motility data available

from ?.

Once a motility state has been adopted and the associated activity (move-

ment, receptor internalisation) executed, there is a possibility that the

cell will adopt a state of adhesion, in which it is bound to a stromal cell

via receptor LFA-1 and cognate adhesion molecules on the stromal cell

(VCAM-1, ICAM-1). The conditions for this to occur are that the T

cell is in contact with a stromal cell, the stromal cell expresses adhesion

molecules, the T cell expresses adhesion molecule receptors (LFA-1), and

the bind between the cells is sufficient. In the domain, whether binding

occurs will be a highly complex function including the number of adhe-

sion molecule-receptor complexes that formed due to cell contact, and

shear forces on the cell due to surrounding cells, fluid flow dynamics, and

the cell’s motility. Modelling such complexity on the scale of thousands

of cells expressing millions of receptors is both intractable, and not desir-

able with respect to the model aims. Therefore, a probabilistic function

is assumed, described by the guard ’Bind between cells is sufficient’. This

probability is assumed to be directly proportional to the level of LFA-

1 expression on the T cell and the level of ICAM-1/VCAM-1 adhesion

molecule expression by the stromal cell. It should also be noted that

there are multiple cognate receptors to stromal cell adhesion molecules

beyond LFA-1, including for example, VLA-4. For the sake of simplicity,

these receptors are assumed to have the same function and are abstracted

into a single ’LFA-1’ entity. If the conditions for adhesion are not met,
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then the system makes a new determination as to the motility state of the

lymphocyte and re-assesses whether the cell is in an adhesion state. If a

state of adhesion is adopted, then the cell undergoes prolonged contact

with the stromal cell with only localised movement around the cell.

The stromal cell response to T cell contact is captured separately within

the stromal cell UML finite state machine, and it is assumed that stromal

stimulation can only occur if the T cell adheres to the stromal cell such

that ’glancing contact’ is insufficient to stimulate differentiation or phe-

notypic accentuation in the stromal cell. The state of adhesion ends when

the bind is no longer sufficient – this, again, is a complex function of bio-

physical forces and intracellular signalling processes within the domain,

and for the purposes of the domain model, it is assumed that there is a

probability that the cells will dissassociate at any given moment, which

leads the cell back to determination of cell motility, resulting in an iter-

ative loop of motility determination followed by adhesion determination.

It should be noted that these transitions are not necessarily a function of

time, the determination of motility and adhesion is described as occur-

ring sequentially since the cell cannot undergo chemotactic migration if it

is adhered, but these state determinations are not sequential in time; in

the domain, motility and adhesion are continuous orthogonal processes.

For the sake of simplicity, this is abstracted into the iterative sequen-

tial processes of state determination depicted iusing a UML finite-state

machine.

(b) B Lymphocytes

Depicted as a UML finite-state machine in Figure 3.11, the B cell shares

many similarities with the T cell. The principal difference is the ‘S2

Stromal Stimulation Factor Expression’ state replacing ‘S3 Stromal Stim-

ulation Factor’, CXCR5 and CXCL13 replace CCR7 and CCL19 respec-

tively, and cellular entry into the tissue occurs from the 5th day of the
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15 day development process only, an abstraction of their recruitment to

the ectopic tissue compartment through T cell-induced CXCL13 expres-

sion by FRC-like ’S3’ lymphocyes. An iterative process of motility state

determination and stromal adhesion occurs identical to that of the T cell

described above. Quantitative B-cell motility data are available from ?.

2. Stromal Cells

A stromal cell may exist in one of four phenotypes, as determined by the in-

formal ‘four-state stromal development model’ described in Figure 3.5. The

FRC-like and FDC-like phenotypes will be referred to as ’FRCs’ and ’FDCs’ for

the sake of convenience, but it should be noted that also the lymphoid stroma

phenotypes found in TLT are very similar to those of secondary lymphoid

organs, they develop in a distinct manner and should not be considered to

be equivalent in the strictest sense. These phenotypes are sequential develop-

ments from mesenchymal tissue-resident fibroblastic stromal progenitors and

phenotypic changes are induced in response to the inflammatory chemokine

millieu and stimulation from T and B lymphocytes, and are therefore cap-

tured within one state machine, despite the significant functional difference

between the phenotypes. In addition to the four phenotypes represented as

sub-states labelled S1–S4, there are several orthogonal states common to all

stromal cells. These states are ‘Adhesion Molecule (ICAM-1/VCAM-1) ex-

pression, ‘TNFR-1 expression’, ‘IL13R Expression’, and finally, if the cell is

in the ‘S2’ state, adopts a state of S2 Stromal Stimulation Factor Receptor

Expression, and upon differentiation into the ‘S3’ state, adopts an ‘S3 Stromal

Stimulation Factor Receptor Expression’ state.

Stromal cells are assumed to be present throughout the ectopic tissue spatial

environment in a network-like structure.The model aims to capture the devel-

opment of distinct phenotypic niches within the network but is not concerned

with remodelling or development of the network structure itself beyond T0,

thus the domain model makes the assumption of a static network despite it
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being known that network density and structure does remodel in response to

lymphocyte colonisation and subsequent lymphoid tissue development, as it is

assumed for the sake of the domain model that the TLT self-organisation and

development process can occur without stromal remodelling, which is likely

to be related to permitting efficient immune responses but is not necessary to

sustain the developmental process.

(a) Stromal Progenitor Cell (SPC) – State ‘S1’

The stromal cell begins in the ‘S1’ state at T0. In this state, no addi-

tional sub-states exist and the cell only exhibits behaviour manifested

through the orthogonal states segregated by swim-lanes (dashed lines) at

the bottom of the diagram. These cells differentiate into state ‘S2’, the

localised stromal precursor cell, in response to inflammatory cytokines

present due to local inflammation caused through autoimmunity. These

cytokines are assumed to be present at T0 as the model aims to capture

the 15 day development process following establishment of chronic inflam-

mation (Figure 3.3 – the cytokines responsible for S1–S2 differentiation

are principally TNF-α and IL13).

(b) Localised Stromal Precursor (LSP) – State ‘S2’

This composite state represents the localised stromal precursor pheno-

type. Immediately upon adoption of the ‘S2’ state, the cell adopts a

substate of ‘T cell chemokine expression’. This reflects that there are

multiple chemokines to which T cells respond, although for the purposes

of the model these are all subsumed into one abstract chemokine - ref-

erences in the domain model to CCL19 therefore relate to this abstract

notion, and the same is therefore true of CCR7 expression on T cells.

An orthogonal substate also exists, the ‘Adhesion Molecule Upregulation

Substate’. T-cell contact that does not result in differentiation and transi-

tion to the FRC phenotype (state ‘S3’) accentuates the LSP phenotype by

increasing adhesion molecule expression and inducing a T-cell chemokine
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upregulation state. It is assumed that there is a maximum expression

level for CCL19 achievable while the cell is in the ‘S2’ superstate, and a

maximum overall expression level for adhesion molecules: once these are

reached then T-cell contact that does not result in differentiation has no

further effect on the LSP cell.

The conditions for differentiation to state ‘S3’ are T-cell contact bound

via adhesion molecules (as determined by the T-cell UML finite state

machine, and the expression of S2 Stromal Cell Stimulation Factor). A

‘sufficient level’ of T-cell contact is necessary for S2–S3 differentiation,

however in the domain the specific factors expressed by T cells respon-

sible for LSP-FRC differentiation are largely unknown, therefore it must

be assumed that there is cumulative contact time from all T cells re-

quired for the adoption of the FRC phenotype. It is for this reason that

stimulation which does not lead to differentiation accentuates the present

phenotype – it results in a more gradual transition over time as the stroma

is stimulated as opposed to sudden stepwise changes in expression levels

of chemokines.

(c) Fibroblastic Reticular Cell (FRC) – State ‘S3’

The FRC composite state, often referred to as ‘T-cell Stroma’ (?), pro-

vides the microanatomical niche for the T cell zone in secondary and

tertiary lymphoid tissues. Once the cell has transitioned into the ‘S3’

state, it immediately adopts a state of ‘B-cell chemokine Expression’ and

a state of ‘T-cell Chemokine Upregulation’, the latter increases the cell’s

maximum expression level of CCL19. Continued T-cell contact does not

result in differentiation, but results in continued increases of T-cell and

B-cell chemokine expression levels until a maximum threshold for the

FRC phenotype is reached. This is expressed in the state machine by

an arrow showing a transition from the state of ’T-cell/B-cell Chemokine

Upregulation’ back onto itself, with an activity of increasing chemokine
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expression level demarked alongside the guard requiring T cell contact.

If a B cell is in contact with the FRC stromal cell then the cell will ei-

ther transition into state ‘S4’ (FDC) or result in an increase in B-cell

chemokine expression until the maximum threshold level is reached. It

is assumed that B-cell stimulation of an FRC-like cell is likely to prefer-

entially induce increased B-cell chemokine (CXCL13) in order to further

attract B cells in a positive feedback loop that increases the opportunity

for the stromal cell to differentiate into the FDC phenotype, state ‘S4’.

This differential response of stroma to T and B lymphocytes is hypothe-

sised to be sufficient to result in the development of B-cell follicles within

an FDC network surrounded by a T-cell zone supported by a stromal

network with an FDC phenotype.

(d) Follicular Dendritic Cell (FDC) – State ‘S4’

The FDC composite state, often referred to as ‘B-cell Stroma’. Immedi-

ately upon adoption of this phenotype, expression of CXCL13 is increased

through lymphocyte stimulation and prolonged B-cell signalling will re-

sult in down-regulation of T-cell chemokines CCL19/21. The Markov

model finite state machine is sufficient to describe changes in factor ex-

pression based on Stromal phenotype.
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Figure 3.10: UML Finite State Machine Domain Model diagram describing the role
of T lymphocytes in TLT formation.
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Figure 3.11: UML Finite State Machine Domain Model diagram describing the role
of B lymphocytes in TLT formation.
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Figure 3.12: UML Finite State Machine Domain Model diagram describing the role
of stromal precursor cells in TLT formation, including differentiation into FRC-like
and FDC-like phenotypes.
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3.2.3.2 Describing Lymphocyte–Stroma Crosstalk

The domain model UML ‘Activity Diagram’ shown in Figure 3.14, in effect, in-

tegrates the state machines for each model entity, and describes the interactions

expected to occur and the sequence they are expected to occur in over time. Also

contained within the activity diagram are the overall effect of each interaction (for

instance, the up- or down- regulation of a particular molecule on a cell surface).

Considering the massively parallel nature of biological systems, many entities will

be undergoing interactions at each point of the diagram, and it is this nature that al-

lows emergence of high-level behaviours from low-level basic molecular interactions.

3.3 Summary

In this chapter a novel domain model of TLT formation has been formulated follow-

ing the CoSMoS process (?), and an overview of the biological domain was presented,

providing a rationale for the underlying biology within the model. The TLT forma-

tion model contains many layers of complexity, describing phenomena occurring over

several spatiotemporal scales. In order to develop a tractable simulation that can

capture the inherent complexity, it is necessary to hybridise a variety of modelling

techniques to capture the different biological processes responsible for determining

model outcomes. Therefore, in Chapter 4, a methodology is presented for the simul-

Figure 3.13: Key describing the ASCII symbols used in the UML Activity Diagram
of Figure 3.14 as notation for common immunological interactions between entities
to simplify model communication.
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Figure 3.14: UML Activity Diagram describing interactions between stroma, B and
T lymphocytes that result in the self-organisation of TLT.
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taneous hybridisation of multiple mathematical and computational techniques into

a single executable simulation, this is subsequently used to develop a hybrid model

of TLT formation that utilises the most appropriate technique for each model entity.

The following chapter describes the development of a platform model and exe-

cutable simulation derived from the biological domain model described in this chap-

ter. In order to describe each model entity using the most appropriate degree of

granularity, it was necessary to develop a framework and notation to describe hybrid

models composed of many interconnected ‘sub-models’. Following development of

the platform model, the veracity of the hypothesis that TLT formation is driven by

a differential response of B and T lymphocytes to stroma may be confirmed, candi-

date intervention strategies can be subsequently evaluated, incorporating them into

the simulation to determine their potential therapeutic effect with various dosing

regimes.

The MDE paradigm discussed in Section 3.2 is applied in Chapter 6, in which

in vivo experiments are performed to test predictions of therapeutic efficacy derived

from the TLT formation model using machine learning techniques. Specifically, the

prediction that the addition of anti-VLA4 post TLT induction will result in improved

pathology resolution, that anti-TNF improves this effect if given sufficiently early,

but that anti-TNF is ineffective in established disease. The in silico experiments

concerning biologic therapy interventions are described in Chapter 6. Although

the adoption of MDE has only recently started to have an impact on immunology

research, it is starting to have a very significant impact on other areas of biology. We

propose that the increased accessibility of computational models, high-performance

computing resources, the increased familiarity and understanding of simulations as

tools to understand immune function and the capacity to apply in silico approaches

to identify potential therapeutic approaches and disease biomarkers will accelerate

the application of MDE as a methodology understand and target disease resolution.

The MDE paradigm as described in Figure 3.1 is broadly applicable to any disease

pathology providing cell culture or animal model experimental data are available in
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addition to the development of complementary in silico models.



Chapter 4

Developing and Applying Hybrid

Modelling Techniques to

Construct a Simulation Platform

of TLT Formation

The key biological processes believed to drive TLT formation were described in the

previous chapter, in which a novel model of stromal cell differentiation in response to

lymphocyte-stroma crosstalk based on in vivo and in vitro experimentation was pre-

sented. In order to develop a functional simulation of TLT formation, the biological

model must be ‘de-constructed’ into its constituent entities: each represented at the

required granularity to answer any model research questions, also taking into con-

sideration the nature and granularity of experimental data that are available. When

dealing with many separate ‘sub-model’ entities grounded in various mathematical

methodologies, it was necessary to develop a means of describing the model in terms

of information flow between each sub-model in order to communicate the model co-

herently. A general framework for defining and specifying hybridised, multiscale

models of complex biological processes is developed.

Firstly, a generalised schema for defining hybrid models is introduced, and applied

133
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to the TLT formation platform model. Each biological entity and its mathematical

implementation in terms of developing a software simulation is subsequently de-

scribed. The hybridisation framework developed is centred upon information flow be-

tween sub-models, and feedback loops are observed to emerge between the sub-models

themselves. The diagrammatic methods developed for describing integrated hybrid

models and simulations clearly and efficiently communicate the platform model archi-

tecture. Additionally, the safety-critical systems argumentation method Goal Struc-

turing Notation is applied as the experimental, domain, platform and implementation

level, ensuring that the model remains demonstrably fit-for-purpose. The visualisa-

tion methods developed in Chapter 2 were applied to the simulation to permit high-

throughput histological image analysis to operate on simulated data, utilised for in

silico experimentation regarding adhesion and TLT morphology in Chapter 5.

The following sections describe the development of the TLT Platform Model,

derived from the domain model detailed in Chapter 3. For a more concise description

of the model, please see Appendix A.

4.1 Determining Spatial Dimensionality

In the domain under study, TLT organs are 3D structures that have developed

ectopically in tissues in a state of chronic infection; in Sjögren’s syndrome, these

tissues are principally the salivary glands and tear ducts. The platform model is re-

quired to describe the minimum requirements to sustain lymphoid neogenesis within

the salivary gland. Each spatial dimension within a system adds an orthogonal axis

within which objects within that space may move, enormously increasing an object’s

degrees-of-freedom - this is often described as the ‘curse of dimensionality’. There-

fore the computational expense of simulations in three dimensions is significantly

higher than in two dimensions. This alone is not sufficient justification for using a

2D model system; it must be demonstrated that a 2D representation is adequate

with respect to the domain under study and the questions that are being asked

of the model. By abstraction of the complex cellular biophysics involved in cellu-
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Figure 4.1: Each model entity has been assigned a putative implementation method.
This figure serves to introduce each aspect of the overarching model in terms of
multiple ‘sub-models’, and can also serves a introductory process as the Expected
Behaviours diagram does when first introducing a Domain Model description. The
figure illustrates how each model entity has its own notion of space that map to
each other to produce the resulting 2D/Quasi-3D simulation.)

lar movement, contact and collision within tissues, permitting lymphocyte agents

to occupy the same spatial locations simultaneously, one can achieve what might

be termed a ‘quasi-3D ’ environment – a truly 3D environment would not permit

models of multiple volume-occupying objects to occupy the same spatial locations

as this would negate the Pauli exclusion principle (?). Due to the flexibility and

compressibility of cellular membranes, this is an appropriate abstraction given that

our principle concern is self-organisation through lymphocytic stimulation of stroma

and resulting differential chemokine expression of stromal cells.

The placing of lymphocytes in a continuous space two dimensional grid which

maps to the identically sized CDS (Cellular Data Structure) that stores the stro-

mal network structure and details of its composition in terms of individual cells,

generated through a cellular automaton implementation of a generative grammar

(detailed further in Section 4.7) lymphocytes will be able to determine contact with

co-localised stromal cells and respond to resulting chemokine gradients. Therefore,

our platform model and its resulting simulator utilise a ‘quasi-3D ’ dimensional space
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evolving over time, in which the spatial data structures of each sub-model all map

homomorphically to each other. This mapping is illustrated in Figure 4.1, which

shows a decomposition of the 2D TLT simulation visualisation at the top of the

figure into each individual sub-model containing a 2D spatial representation that

all map, or ‘overlay’, to the same spatial coordinates to permit interaction between

model entities from different sub-models.

4.2 Developing a Model Hybridisation Framework

and Schema

When attempting to describe a mathematical model constructed from multiple ‘sub-

models’, each representing a specific biological entity or process, it can quickly be

difficult to understand the model topology and there currently lacks notation to

succinctly describe the model structure and organisation. Therefore it is considered

that the most informative representation should be centred on information flow

between sub-models. Each input/output between the various sub-models can be

defined using arrows between sub-models defined within boxes. An example of such

a diagram is presented in Figure 4.2.

This example hybrid model diagram includes a ‘meta-feedback loop’ between

sub-models 1 to 4 as information passes between the 4 sub-models. This semi-formal

diagrammatic approach to defining complex hybrid models can be easily extended or

modified, for example to take multiple compartments into consideration; in this case,

one may wish to either represent each compartment of a multi-compartment model

in a separate spatial area, with sub-models involved shown within the appropriate

area — alternatively, the sub-models could include the compartment(s) to which

they operate on and what information is transmitted to the compartments by the

sub-models.
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Figure 4.2: Generalised schema for model hybridisation, a useful tool for visualis-
ing the relationship between each sub-model and the domain entity that they are
intended to represent. Arrows indicate the general direction of information flow
within the model. Sub-models may influence other sub-models based on param-
eters, or receive inputs from other sub-models. Sub-models may also reciprocally
influence each other, indicated using a double arrowed line.

4.3 Agent-Based Modelling of Lymphocytes

Lymphocytes need to move freely in a spatial environment such that they can chemo-

tactically migrate due to spatially resolved chemokine gradients, and interact with

stroma to stimulate phenotypic and ‘state’ changes to initiate and maintain the pos-

itive feedback loop of stromal cell differentiation, chemokine secretion, and emergent

lymphocyte self-organisation. The flexibility afforded by agent-based models in de-

scribing objects that can interact with their environment in innumerate ways, such

as determining and modulating local chemokine gradients in the presence of other

cells also doing the same, makes this approach well-suited to provide a ‘bedrock’ for

the overall model.
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Figure 4.3: Simplified hybridisation scheme demonstrating how each of the seven
sub-models that comprise the platform model share information to represent TLT
development as a whole. Underlined numbers indicate the number of time-steps
that occur within that sub-model with respect to other sub-models, relative to the
agent-based model, labelled ‘1/1’. For example, the PDE iterates 100 times while
the remainder of the system is held quasi-static, and as such is labelled ‘100/1’.
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4.3.1 Capturing Cellular Dynamics

This section details how the dynamics for B and T lymphocytes, whose role in stim-

ulating and regulating stromal cell phenotype was detailed in the domain model

(Section 3.2.1), can be defined in a manner suitable for implementation in a sim-

ulation. This requires a combination of UML, to describe lymphocyte states and

conditions required for change in states, and mathematics, to describe how the

chemotactic response and adhesion molecules are implemented within the ABM. In-

ternalisation, recycling and decomposition of chemokine receptor-ligand complexes

by lymphocytes is captured by an ODE model described in Section 4.5.

Although B and T lymphocytes are distinct phenotypes, of which there are many

subsets, they do have much in common – particularly with respect to their role in

lymphocyte-stroma crosstalk. For the sake of simplicity, it is assumed that B cells

respond only to lymphoid chemokine CXCL13, through expression of CXCR5, and

not to CCL19, that is, that B cells do not express CCR7, although it is known

not to be the case, and B cells can chemotactically respond to CCL19 gradients

(?). The research question is concerned with the minimum requirements for TLT

formation; the hypothesis states that capturing the differential response of inflamed

stroma to T and B cells, and the resulting self-organisation of TLT is the result

of a differential response of T and B cells to CCL19 and CXCL13 respectively.

Therefore, the structure of the finite state machines that describe T and B cells are

very similar, as they are in the domain model. The difference between B and T cells

in the platform model solely lie in the chemokines they respond to, and the effect

that they have upon the stromal cells they stimulate.

4.3.1.1 UML Finite-state Machines describing Lymphocytes

T cells begin either in a tissue-resident state, or begin to enter the simulation at

a linear rate, while B cells do not enter the tissue until day 5 of the formation

process, each ABM time-step represents 10 minutes of time, and therefore they

begin to enter after the 720th simulation time-step at a linear rate. The process
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determining the number of lymphocytes entering the simulation space at each time

space is detailed in Section 4.3.1.2. T and B cells both then determine whether to

follow a random walk or to migrate chemotactically against their respective lymphoid

chemokine CCL19 or CXCL13. If the cell’s chemokine receptor expression is greater

than a minimum parameter value, the ‘minimumReceptorThreshold ’ and the local

chemokine gradient in at least one of the six adjacent grid spaces is greater than the

parameter value ‘minimumChemokineThreshold ’, then the cell enters a chemotactic

state and uses the mathematical process described in Section 4.3.1.3 to determine

the direction of motion to follow, which involves making 10 ’sub-movements’ in

which an angle is chosen and the cell moves 1/10th of the total distance per time-

step. Alternatively, the cell will randomly select a direction to move, also making 10

smaller sub-movements within the ABM time-step. All other aspects of the model

are held to be quasi-static while these 10 sub-movements take place. The process

of making several smaller movements within one time-step produces a walk with a

closer approximation to continuous motion; as the number of sub-movements taken

approaches infinity, lymphocyte motion becomes continuous. This ’sub-movement’

process was used in ? for LTi cell motion in a model of pre-natal lymphoid organ

development. For a full mathematical formulation of the chemotaxis model, please

see Section A.5.

Once a T or B cell has determined whether it is chemotactic, it may be in

contact with stroma and enter a state of adhesion via stromal adhesion molecules.

To determine if this occurs, the continuous space grid in which T and B cells move

is discretised with an element width of 10 microns, matching the discrete stromal

network grid (CDS, described previously in Section 4.7.2). If the discrete location of

the lymphocyte is occupied by a stromal cell in the CDS, then they are taken to be in

contact. Further requirements are that the expression of stromal adhesion molecules,

as a value between 0 and 1, is greater than a random number also between 0 and 1.

This equates to the adhesion molecule expression level determined by a stromal cell’s
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Figure 4.4: UML Finite State Machine Platform Model diagram describing the role
of T lymphocytes in TLT formation.

Markov chain emissions being equivalent to a probability that any given lymphocyte

will successfully adhere to it. Finally, in order to prevent permanent adhesion to

stroma and a loss of motility, there is a maximum time that any one lymphocyte can

adhere to a stromal cell in one instance, this is reflected by the guard ‘timeAdhered

> minimumAdhesionTime’ in Figures 4.4 and 4.5. This is equal to the number

of ’sub-movements’ that a lymphocyte makes in each time-step, and is incremented

one per attempted sub-movement — the function defined as ’perSubStep()’ indicates
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Figure 4.5: UML Finite State Machine Platform Model diagram describing the role
of B lymphocytes in TLT formation.

that the probabilistic guard is re-evaluated for each sub-movement made within an

ABM time-step, such that adhered lymphocytes will move at between 0–100% of

their usual velocity, in increments of 10%. This represents a departure from the

model of adhesion molecules used in ?, in which a state of adhesion resulted in a

lower velocity for each sub-movement, rather than evaluation of a binary decision

of full-velocity motion or no movement at each interval within the time-step.

A further departure, from both ? and the TLT domain model in Chapter 3

is the abstraction of adhesion molecule receptor expression in lymphocytes - this
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is replaced with the probability of adhesion being determined only by the stromal

cell. Independent probabilistic guards on both the stromal cells and lymphocytes

is redundant, and executing two probabilistic guards would serve no useful pur-

pose. Therefore, there is no differential expression of adhesion molecules across the

lymphocyte population; there is, however, over the stromal cell population. The ab-

straction of adhesion molecules from lymphocytes represents an implicit assumption

that all lymphocytes express adhesion molecule receptors (e.g. VLA-4, LFA-1), and

as the lymphocytes in the platform model are not specialised to perform any partic-

ular effector function, there is no mechanism through which a differential response

might be established – a normal distribution of expression could be included, but it

is not clear what benefit this added complexity would bring to the model in light of

the research questions.

4.3.1.2 Defining Lymphocyte Tissue Entry Rate

Lymphocyte tissue entry rate is defined as a linear rate of population increase de-

pending on the total lymphocyte population size and the number of lymphocytes to

be added to the simulation space during a specified interval. These assumptions are

in the absence of data to the contrary, however, it should be noted that the model

does not attempt to capture emergent recruitment to the ectopic region of interest,

that is, cell exit/entry rates are predefined and assumed to be linear fixed effects.

4.3.1.3 Determining Motility by Modelling the Chemotactic Response

This section describes the process that B and T lymphocytes undergo when in a

chemotactic state to determine their direction of motion, and provides a mathemati-

cal definition. Note that this section neglects the sequestration of chemokine and loss

of chemokine receptors through the internalisation and degradation of chemokine-

ligand complexes, as this process is managed by an ODE-based model detailed in

Section 4.5.

Lymphocytes measure the chemokine concentration in the six hexagonal grid
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elements neighbouring the one in which the lymphocyte exists when its continuous

space location is discretised such that the lymphocyte exists within an element that

maps directly to the hexagonal grids that contain chemokine concentrations and

the stromal network defined within the CDS. The chemokine grid is a 2D matrix of

double precision values that lie between 0 and 1, in which ‘1’ represents a saturated

10µ M2 region of space, and ‘0’ indicates no chemokine is present. Weighted by a

scalar multiplication upon the hexagonal element with the highest concentration, the

probability of moving in the direction of each of the six neighbouring grid elements

is constructed by dividing the concentration of chemokine in each of the neighbours

by the total chemokine concentration in all six neighbouring grid elements. From

this, a cumulative probability density function is constructed which the lymphocyte

randomly samples to determine the neighbouring grid element in whose direction it

shall move. From the centre of the hexagonal grid element that the discrete-space

lymphocyte maps to, there is a range of π
3

radians (60°) between the vertices of

the shared edge of the neighbouring hexagonal grid element selected by sampling

the cumulative distribution function and the element which the lymphocyte spatially

maps to. A random angle within this range is selected and the lymphocyte’s position

co-ordinates are updated on the respective ABM continuous space grid for B or T

lymphocytes, placing the lymphocyte at a distance of 1/10th of the intrinsic cell

velocity multiplied by the length of the time-step. This is reflective of the 10 ’sub-

movements’ a lymphocyte makes within one ABM time-step in an effort to increase

isotropy in cellular motion captured by the TLT formation model, therefore, this

process of gradient measuring and direction determination is repeated a maximum of

ten times. The number of sub-movements made is dependent upon whether the cell

adheres to a stromal cell following each sub-movement, in which case no movement

is made – adherence is determined by a probabilistic guard in which the probability

depends on the level of adhesion molecules expressed by the stromal cell that maps

to the same location of the discrete-location lymphocyte, this process is detailed in

Section 4.3.1.1.
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This process can be mathematically formulated as follows. When a T or B cell is

in the state ‘currentlyChemotactic’ as described in Figures 4.4 and 4.5, the random

motion is biased towards the direction of the gradient of CCL19 (T Cell chemokine)

and CXCL13 (B cell chemokine), respectively. This is achieved by constructing a

probability distribution from the chemokine gradient, such that the probability a

cell will move in one of the six directions of the underlying hexagonal grid that

contains chemokine concentration data is defined in equation 4.1.

p(Cell moves up) = cup/C

p(Cell moves down) = cdown/C

p(Cell moves upper left) = cupperleft/C

p(Cell moves upper right) = cupperright/C

p(Cell moves lower left) = clowerleft/C

p(Cell moves lower right) = clowerright/C

(4.1)

Where cup is the concentration of chemokine in the hexagon above the hexagonal

element the cell currently lies in, cdown is the concentration of the hexagonal element

below, and so on. As lymphocytes exist on their own continuous space grid overly-

ing the discrete hexagonal grid containing chemokine concentration data, once the

general direction based on the chemokine concentration has been defined, a specific

angle of motion needs to be determined. Each of the six directions contains a range

60 degrees (360/6), thus a random angle is selected between 0 and 60 degrees as

described in Figure 4.6.
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Figure 4.6: Figure illustrating the selection of direction for continuous Lymphocytes
following determination of the discrete direction to move based on the hexagonal
grid that contains chemokine concentrations. The cell selects at random an angle
in the 60 degree range of possible directions once a particular hexagon has been
selected through probabilistic sampling according to equation 4.1

4.4 Numerical Modelling of Chemokine Secretion,

Diffusion and Decay

Stromal cells stored in the CDS map to a discrete hexagonally-packed square grid.

This enables them to produce chemokines which can diffuse in a more isotropic man-

ner as each element has 6 boundaries rather than 4, and also increases the number

of degrees of freedom for network growth, permitting stromal networks that are in-

tuitively a better representation than simple squares, retaining connectivity through

a grid edge at all times. The stromal network produces the lymphoid chemokines

CCL19 and CXCL13, to which T and B cells are chemotactically attracted, respec-

tively. The location of stromal cells within the CDS can be used as a set of point

sources for the secretion of chemokine, and therefore a natural starting point for the

implementation of a chemokine diffusion model is the ‘diffusion equation’, a par-

tial differential equation first described by ? that describes the collective motion of

many small particles in a material as a result of their random motion. The diffusion
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equation is discretised for implementation in a hexagonally-packed 2D square grid

and extended to incorporate diffusion from stromal cells and decay of chemokine

molecules over time. The hexagonally-packed grid permits chemokine diffusion to

overlay with the stromal network, and each stromal cell element to have an associ-

ated chemokine concentration, along with unoccupied space between the network.

We begin with the 2D heat equation as described by ?:

∂φ(x,y,t)

∂t
= D

(
∂2φ(x,y,t)

∂x2
+
∂2φ(x,y,t)

∂y2

)
(4.2)

Where φ(x,y,t) is the concentration at location (x, y) and at time, t, and D is

the homogeneous diffusion co-efficient. Equation 4.2 is then discretised using the

two-way finite differences method (described in ?) as follows (let ∆L be the length

of the edge of each square in the discrete grid):

φ(x,y,t) − φ(x,y,t−∆t)

∆t
≈
∂
(
φ(x,y,t)−φ(x−∆x,y,t)

∆x

)
∂x

+
∂
(
φ(x,y,t)−φ(x,y−∆y,t)

∆y

)
∂y

≈
φ(x+∆x,y,t)−φ(x,y,t)

∆x
− φ(x,y,t)−φ(x−∆x,y,t)

∆x

∆x
+

φ(x,y+∆y,t)−φ(x,y,t)

∆y
− φ(x,y,t)−φ(x,y−∆y,t)

∆y

∆y

=
φ(x+∆x,y,t) + φ(x−∆x,y,t) + φ(x,y+∆y,t) + φ(x,y−∆y,t) − 4φ(x,y,t)

∆L2

(4.3)

Equation 4.3 may be more conveniently expressed in terms of the concentration

at (x, y) at the next discrete time-step in terms of the present time-step, as follows:

φx,y(t+ 1) = (φx,y(t)−
4D∆t · φx,y(t)

∆x2
) +

D∆t

∆x2

i=4∑
i=1

φi(t) (4.4)

Where φi(t) is the value of each of the 4 adjacent edges in the discrete grid at

location (x, y) from φx,y(t) (i.e. the Von Neumann neighbourhood of φx,y). Equa-

tion 4.4 provides a suitable diffusion equation on a 2D square grid that allows one

to iterate over a discrete grid of chemokine values to model their diffusion, and a

starting point for our chemokine diffusion model. Some extension to this is neces-

sary to make it suitable for use in the TLT model, including modification to suit
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the hexagonally-packed geometry used by the stromal network model, and the in-

corporation of chemokine secretion by many point sources, and decay over time.

To extend Equation 3 to utilise a hexagonally-packed square grid is trivial, the

Von Neumann neighbourhood that is summed should be replaced with a neighbour

of the 6 adjacent grid elements in a hexagonally-packed grid, and the negation of

chemokine in the expression 4D∆t needs to be replaced with 6D∆t to incorporate

the additional edges. This results in equation 4.5 below:

φx,y(t+ 1) = (φx,y(t)−
6D∆t · φx,y(t)

∆x2
) +

D∆t

∆x2

i=6∑
i=1

φi(t) (4.5)

Finally this is extended by incorporating all chemokine point sources, and in-

tegrating the resulting discretised expression into the hybrid simulation. The final

form of the discretised chemokine diffusion equation is given in equation 4.6 A spe-

cific point may be a chemokine source if it is co-located with a stromal cell stored

in the CDS. If a stromal cell exists in that location, its expression values can be

queried from the CDS to determine appropriate diffusion rates. In terms of the

software implementation and integration with the ABM, for each hexagonal grid,

one checks whether the location is equal to an object of type StromalCell, and if so,

extracts the expression value and calculates the resulting diffusion over the previous

time-step. In equation 4.6, φx,y(t+ 1) is the chemokine concentration at point (x, y)

at the following time-step from φx,y(t). ∆t is the difference in time between t and

t+ 1. D is the diffusion co-efficient, and λ is the decay constant.

φx,y(t+ 1) = (((φx,y(t)−
6D∆t · φx,y(t)

∆x2
) +

D∆t

∆x2

i=6∑
i=1

φi(t))− φi(t)e−λ∆t) + s (4.6)
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4.5 Ordinary Differential Equation Model of Chemokine

Receptors on Lymphocyte Agents

When chemokine binds to a cognate receptor, the complex may be internalised by

the cell in a process of recycling that aims to maintain expression of the receptor

during chemotaxis, enabling the cell to continue to effectively identify the chemokine

gradient. This process has previously been explored in a simple mathematical model

of dark zone-light zone cycling by chemotactic GC B cells (?). This ODE has been

adapted for use on an individual agent level, discretised such that each B cell updates

its receptor expression level at each time step, based on a function of recycling,

degradation and synthesis, as illustrated in Fig. 4.7.

Modelling the internalisation and recycling of chemokine receptors CXCR5 (on

B cells) and CCR7 (on T cells) allows lymphocytes to undergo desensitisation in

response to locally high chemokine concentrations, as the loss of ligand surface ex-

pression due to an increased rate of internalisation will reduce lymphocyte sensitivity

to chemokines and therefore reduce chemotactic capability. However, once lympho-

cytes migrate to an area with a lower local chemokine concentration, intracellular

receptors will be recycled to the cell surface at a greater rate than they are being

internalised, resulting in re-sensitisation and therefore increased chemotactic activ-

ity. We can write an ODE expressing the rate of change of receptor expression with

respect to time as follows:

dr

dt
= S − ψπ + σ, (4.7)

where ψ is the number of receptors that have been internalised and degraded,

σ represents the quantity recycled - a given proportion of ψ (determined via the

parameter ‘receptorInternalizationScalarT’ and ‘receptorInternalizationScalarB’ for

T and B cells respectively), and S represents the addition of chemokine receptor to

the intracellular pool due to synthesis. In equation 4.7, π is a function of the local
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Figure 4.7: Figure illustrating the process of chemokine receptor-ligand internali-
sation. When a complex is internalised, it is either recycled or degraded. In the
platform model, each cell has an intracellular pool of chemokine receptors derived
from what has been synthesised or recycled, which is placed back onto the cell sur-
face at a given rate. Internalisation of chemokine also occurs at a given rate defined
as a parameter.

chemokine concentration, current receptor expression level, and a scaling variable;

it is defined as:

π =
gnqr(t)

Q
, (4.8)

where q is the local chemokine level, Q is the maximum possible chemokine level,

r(t) is the current number of chemokine receptors on the cell surface, n is a scal-

ing parameter to modulate the rate of internalisation by calibration, , and g is a

random number in the range [0,1] sampled from a Gaussian distribution using the

Mersenne twister (?) psuedo-random number generator to incorporate heterogene-

ity. Combining and discretisation of equations 4.7 and 4.8 yields equation 4.9, to be

incorporated into the model for each lymphocyte agent:

r(t+ 1) =

(
r(t)− ψgnqr(t)

Q

)
+ σ + S. (4.9)

While equation 4.9 describes the change in chemokine receptor expression levels
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on lymphocytes, there must be a corresponding reduction of chemokine availabil-

ity. The model must account for the internalisation of chemokine-ligand complexes

through provision of a means of removing chemokine from the environment to reflect

the quantity that has been absorbed and broken down by lymphocytes (?).

By operating on the same hexagonally-packed square grid that stores chemokine

concentration data, this process effectively couples the internalisation ODE with the

diffusion, secretion and decay PDE. This is achieved by determining the total number

of chemokine molecules that have been internalised, I, shown in Equation 4.10:

I = ψ
nqr(t)

Q
+ σ

nqr(t)

Q
(4.10)

Following this, we remove the same quantity from the current chemokine level at

the location of the lymphocyte in the hexagonally-packed grid, as shown in Equa-

tion 4.11, below. Let c be the change in chemokine level due to diffusion and stromal

cell secretion, defined by the PDE in Section 4.4:

q(t+ 1, x, y) = q(t, x, y) + c− I (4.11)

4.6 Integrating the Agent-Based Model with the

ODE and PDE Models

The discretised chemokine secretion and diffusion PDE model applied to a hexago-

nal grid is maps to that used by the stromal network in terms of spatial dimensions

and grid size – this ensures chemokine secretion can be easily incorporated into the

PDE by adding chemokine to a stromal cell’s cognate spatial location on the two

chemokine grids (B-cell and T-cell chemokines: CXCL13 and CCL19). The PDE

discretisation is a finite-difference approximation of the diffusion equation with ad-

ditional decay and secretion terms. This permits agents to interact with the grid

to determine concentrations, gradients and therefore motion vectors, and also with

the agent chemokine receptor ODE to consume chemokine. A similar discretisa-
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tion scheme is applied in use for the ODE system to describe cell surface protein

expression levels for the chemokine receptors on B and T lymphocytes.

4.7 Modelling the Stromal Network

This section introduces the sub-models used to define stromal cells and the stromal

network within the context of the ‘overarching’ TLT formation model, providing

a rationale for each modelling technique used and describing how the components

interoperate to provide a functional stromal network model suitably amenable to

hybridisation with other components of the TLT model; subsequent sections for-

mally define each of the three sub-models in detail — those of generative grammars,

Markov models, and cellular automata.

Stroma has a fundamental role in the formation of TLT; it is responsible for

producing adhesion molecules and the lymphoid chemokines CXCL13 and CCL19.

Stromal cells form complex interconnections resulting in a network structure that

aids lymphocyte migration and organisation (??). Crosstalk between lymphocytes

and stromal cells results in changing chemokine expression by stroma, as seen from

the data in Figure 3.3 discussed in Chapter 3. Therefore, a method is needed to

appropriately describe a spatially resolved network of individual elements, represen-

tative of the stromal network structure in vivo. The following elements are therefore

needed to adequately model the stromal network:

• A stochastic algorithm that generates networks of individual elements with

parameters permitting control of network density and element size.

• A method of determining stromal cell phenotype in response to stimulation by

lymphocyte agents from the agent-based sub-model.

• A means of implementing the network generation algorithm and storing the

result within a data structure amenable to hybridisation with other model

types, bringing together spatial network structure and individual stromal cell

phenotype.
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Each of the elements described above are best-suited to different modelling ap-

proaches. Given the choice of a continuous space ABM for T and B lymphocytes,

a discretised per-agent ODE describing chemokine sequestration and receptor in-

ternalisation, and a discretised PDE that describes chemokine secretion, diffusion

and decay, the generated network should occupy space within a grid of the same

dimensions of the spatial environment defined for the ABM — a square grid repre-

senting 40µM2 and utilise a data structure permit interaction with the ABM, ODE

and PDE sub-models.

4.7.1 Determining Appropriate Modelling Methodologies for

Individual Stromal Cell Network Components

This section describes the decision making processes that led to the adoption of each

technique used to model the stromal network and stromal cell development. The

existing literature is evaluated to determine the suitability of approaches previously

applied to similar problems and justifications are given for the techniques selected.

Following this, each of the three models is formally defined and discussed in detail.

Determining Appropriate Methodology for Stromal Network Structure

Generation

Previous approaches to modelling stromal networks have focused on generating

mathematical networks of edges connecting vertices using random sampling to de-

termine edge location (???), these types of approach are inappropriate for the TLT

model as they do not occupy a volume in order to permit emergent lymphocyte

adherence and crosstalk (for example, in ?, lymphocytes are confined to the net-

work) and it is not clear whether such approaches would be valid abstractions when

applied in 2 dimensions. Other approaches to capturing the stromal network have

attempted to accurately capture tissue geometry from imaging data, ? used confo-

cal microscopy to construct 3D geometric models of lymph node morphology which

were then converted to meshed models which, while ideally suited to finite-element
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modelling, are not appropriate for defining individual stromal cells and hybridisa-

tion with other modelling methodologies used to develop the TLT formation model;

finally, there is no suitable means of adapting meshed geometric models for use in a

2D environment.

The possibility was raised in ? of algorithms that ‘grow’ stromal networks by

beginning with a single node that propagates outward, although it was noted that

such algorithms tend to produce several long edges and results in a non-random

tree-like structure (?) that is not representative of the stromal network, which

tends to maintain a small number (3̃) of edges (connections) (?) between each

vertex (representing the stromal cell ). Indeed, it is this branching property of such

algorithms that has permitted their use in modelling plant growth (?), using formal

grammars to define rewriting systems that recursively generate network structures.

Therefore, any generative algorithm would need to address the issue of long edges for

use in modelling stromal networks. Furthermore, the use of mathematical networks

to describe the stromal network, while suitable for investigations of lymphocyte-

stroma spatial dynamics in terms of understanding their effect on antigen scanning

and cell-cell contact rates (?), are less well-suited to modelling a stromal network

when the intention is to provide a substrate for lymphocyte self-organisation and

stromal cell phenotypic development, in which a volumetric stromal network model

is preferable (or, in the case of 2 spatial dimensions, an area-occupying stromal

network model). Whilst the geometric models produced by ? are volumetric, they

do not lend themselves well to the hybridisation framework necessary to describe

the other elements involved in TLT formation.

The issue of long edges arising from generative algorithms could be mitigated

by defining multiple starting locations for vertices and allowing networks to overlap

— a sufficiently dense network representative of the mesenchymal reticular tissue

in which TLT forms should mitigate the formation of long edges. In ?, a cellular

automaton is used to describe lymphocyte motion along a generated FRC network

of edges and vertices. In the TLT model, a generative grammar was defined, in
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which the stromal network is randomly ‘grown’ through implementation in a cel-

lular automaton consisting of a discretised grid of dimensions equal to that of the

agent-based model. Instead of a non-volumetric network model consisting of edges

connecting vertices, our stromal network occupies the entire area of each grid ele-

ment within the cellular automaton in which the stromal cell is present; this permits

a spatial area to allow for lymphocyte adherence and stimulation, and is suitable

for defining point sources for chemokine secretion/diffusion using partial differential

equations. The background of formal grammars followed by a complete description

of the generative grammar created for stromal network structure definition within

the TLT model, is described below (Section 4.7.2). Once the stromal network gen-

eration algorithm has been applied within a cellular automaton, the resulting data

structure can be used as an interface between the stromal cell network and other

components of the TLT model.

Determining Appropriate Methodology for Modelling Stromal Cell Dif-

ferentiation

A Markov model using Monte Carlo techniques is well suited to model the current

and possible future phenotype of stromal cells in response to lymphocyte stimula-

tion, and lends itself well to hybridisation with other techniques. A discrete Markov

chain is a system in which a random process governs transitions between a finite ( or

‘countably infinite’) number of states, usually evolving over time. A probability ex-

ists that when in its present state, the process will change to another state, and these

are defined for each possible state change. A process is ‘Markovian’ if its future state

does not depend on the past, but only the processes present state (i.e. a memoryless

process). A Monte Carlo process is a random sampling event to determine whether

or which state transition takes place. Ordinarily, the Markov chain model would be

simulated for n steps, as it evolves over time, and then the distribution of how much

time spent in each state analysed to determine the Markov chain’s ‘steady state’

— alternatively, Markov chains can be used to make predictions about the future
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state of the system after a given interval; however in this application, each stromal

cell is associated with one Markov chain that evolves as a function of contact with

lymphocytes within an ABM, and to analyse the result we assess the final state of

each Markov chain within each time-step (as a stromal cell may be stimulated by

lymphocytes many times in one time-step, and thus many Monte Carlo samples of

the Markov chain can occur).

The Monte Carlo process to determine transition is determined by contact with

lymphocytes, which means in terms of the platform model that a lymphocyte within

the ABM is in the same location in the simulation space as a stromal cell entity de-

fined in the CDS, and that the lymphocyte is adhered to the stromal cell; this is

in contrast to ‘traditional’ Markov chains — often called DTMC, a discrete-time

Markov chain, which usually operate over a time dimension. While Markov chains

operating over other dimensions do exist, the stromal cell Markov chain model is

unique in terms of the stochastic non-linearity of the step function, at any given

moment it is impossible to know when a lymphocyte will trigger a further Monte

Carlo process. Markov chains have been used in dimensions other than time pre-

viously, mainly in the form of the Monte Carlo Markov chain class of algorithms

that utilise Markovian properties to perform an array of tasks such as evaluating

complex integral equations (?) and computing large hierarchical models in Bayesian

statistics (?). There are few examples of models using the structure of a DTMC

without ‘time’ as the dimension over which it evolves. One example however, is in

the ‘PageRank’ algorithm used by the search engine developed by Google Inc. to

determine the relevance of web-pages, (?), although this essentially is just utilis-

ing the power method for finding the largest eigenvalue (?). Markov chain models

are suitable because they allow definition of a finite state of specific entities, and

transition through probabilities in a manner common in evaluating cell-cell interac-

tions in silico (???), and Markov model ‘emissions’, or external changes induced by

the Markov chain model, are very well suited to defining specific phenotype with

regard to exactly how much CCL19, CXCL13 and adhesion molecule expression is



CHAPTER 4. HYBRIDISED PLATFORM MODEL OF TLT FORMATION 157

occurring for each cell. Given that the biology of lymphocyte-stroma crosstalk is

largely unknown in terms of the molecular signals on B and T cells responsible for

the differential chemokine response, we can assume that in contact with a lympho-

cyte, a stromal cell has a defined, unknown, probability of differentiating. Since

up/down-regulation of FRCs and FDCs does occur in response to lymphocyte stim-

ulation beyond large phenotypic changes such as FRC to FDC differentiation, if a

Markov chain model remains in the same state, its phenotype may be accentuated

- for example, B cell stimulation of an FDC will result in a small upregulation of

CXCL13 and downregulation of CCL19 — within defined limits. The transition

probabilities, and the maximum/minimum expression limits of the stromal cell for

each phenotype, are abstract platform parameter values that represent and allow us

to model the unknown factors driving lymphoid stroma development. The Markov

chain is formally defined in Section 4.7.3.

Integrating the Stromal Network and Stromal Cell Models

The three sub-models (generative grammar, cellular automaton, and Markov chain)

that collectively describe the stromal network in the TLT model, are shown in Fig-

ure 4.8, illustrating how they can provide a suitable stromal network model when in

combination that can be used within the context of a multiscale hybrid model. The

generative grammar provides the instruction set that defines the stromal network

structure, this is implemented using a cellular automaton within which the network

is ‘grown’ prior to T0 (the point in the model or simulation at which time ‘begins’).

Once the network generation process within the cellular automaton is complete, the

network structure and individual cell information is stored within the matrix data

structure used by the cellular automaton — this is referred to as the cellular data

structure (CDS) . Each stromal cell within the CDS has a Monte Carlo Markov

chain associated with it, such that every time a lymphocyte is in contact with and

adhered to a stromal cell (as defined by the agent rules within the ABM) a Monte

Carlo process is triggered on the associated Markov chain, which determines whether
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the stromal cell changes ‘state’ (representative of stromal progenitor, localised stro-

mal precursor, FRC or FDC phenotypes), or otherwise modifies expression levels of

chemokines (known as Markov chain ‘emissions’, a concept borrowed from hidden

Markov models typically used to infer unknown states, but useful for defining stro-

mal phenotype beyond the simple ‘four-state model’ defined in the domain model).

There is some precedent in integrating Markov chain models with cellular automata,

‘probabilistic cellular automata’ is an extension of cellular automata, also known as

‘locally interacting Markov chains’, in which the state of a collection of entities is

updated according to a simple, uniform rule throughout the automaton space (??),

this uniform rule is essentially a discrete-time Markov chain operating over the cel-

lular automaton. In our case, there are many Markov chains operating within the

data structure remaining from the application of a cellular automaton to implement

the formal grammar that stochastically defines the spatial location of the Markov

chains within the CDS. Changes in the stromal cell phenotype are updated within

the CDS, which is used to determine chemokine sources for secretion and diffusion,

which subsequently leads to lymphocyte migration, self-organisation, and eventu-

ally, TLT formation. Once the network is generated and time has begun within

the simulation, the CDS effectively acts as an interface between the collection of

Markov chains each associated with a stromal cell entity, and all the TLT formation

sub-models which interact with them.
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Figure 4.8: Schematic illustrating how the three model components that constitute
the stromal network are connected, and how lymphocytes within the agent-based
network migrate toward and stimulate stromal cells. Note that the chemokine re-
ceptor recycling ODE described in Section 4.5 also influences lymphocyte behaviour
and chemokine concentrations.

4.7.2 Stromal Network Generation using Generative Gram-

mar

Introducing Formal Grammars

A formal grammar falls within the framework of formal language theory, and can be

defined as a set of production rules for producing strings within a given language;

formal grammars were developed in the context of the linguistic theory of genera-

tive grammar – so called due to the intention that such grammars would be capable

of producing every possible ‘utterance’ within a language (?) that is considered

grammatically correct. The production rules describe how strings may be formed

from the defined alphabet of the language which the grammar describes. The formal

grammar itself describes the creation of strings through recursive replacing of ‘non-

terminal’ characters within a string according to a defined set of production rules,
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beginning with an initial ‘axiom’, and are therefore a form of string rewriting system.

The strings can have ‘meaning’ applied to them, enabling interpretation by software

parsers to utilise formal grammars within a wide variety of domains, extending far

beyond their linguistic origins, this is due in large part to the combination of formal

grammars and an information-theoretic approach within the ‘Shannon tradition’

of information and coding theory (?). Within the life sciences, perhaps the most

common application is their use in many modern RNA structure prediction algo-

rithms (???) through stochastic sequence generation that may then be evaluated

for correctness.

Through the assignment of operations to each letter in the grammar’s alphabet,

strings generated by a given grammar may be interpreted as an instruction set for

the production of geometric structures – this principle led to the development of

‘L-systems’ or Lindenmayer systems (?) used to describe the growth of trees and

other branching processes (?).

Grammars are generally classified according to the nature of their production

rules; fundamentally there are three classes of formal grammar: a context-sensitive

grammar has production rules that are dependent not only on the symbol undergo-

ing rewriting, but those adjacent to it – that is, the production rules are dependent

on the context of the string; conversely, a context-free grammar has no such re-

strictions, however each production rule must replace only one character. Far more

flexibility is afforded by unrestricted grammars, in which production rules may op-

erate upon any set of non-terminal characters, although this comes at the cost of

increased difficulty of creating parsers capable of interpreting resulting strings, and

the non-trivial complexity of mathematical analysis of the grammar. Grammars may

be augmented with additional properties; for instance, grammars may be stochastic,

containing probabilistic production rules, or parametric in which case characters are

associated with defined parameter values (in which case, the tuple of the character

and its associated parameter are termed a module). A full description of the math-

ematical foundations of formal grammar theory is beyond the scope of this thesis,
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however the reader is directed to ? for a comprehensive overview and to ? for a

review of the historical literature following their development by ?.

Defining the Stromal Network Generative Grammar

The grammar used to develop stochastic network-like structures of stromal cells for

use in our hybrid multi-scale model of TLT formation is described in Figure 4.9.

This grammar is both stochastic, such that each generated sequence is different

even with identical parameters, initial axiom and rule application, and parametric,

allowing values to be assigned to the grammar, permitting modulation of stromal

cell size, network density and connectivity.
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Stochastic Parametric Unrestricted Grammar for Stromal Network

Generation on a 2D Hexagonally-Packed Square Grid

Axiom: c

Alphabet: C QDP F LR { } [ ]

Constants: c q f l r

Parameters: B N n

Rules:

1. { ( [ ( c d ) n ] q )B }N ⇒ (P { ( [ (c d )n ]q )B } )N

2. ( cd ) nC ⇒ { ( [ ( cd )n ] q ) B } q C

3. c⇒ c dC

4. d⇒ F ‖L ‖R

Further stipulations:

• These rules are in order of precedence, the first applicable rule must be applied.

• During parsing, the spatial grid must be treated as toroidal and later elements

placed should overwrite existing elements.

• The generative process must continue until:

Nn

2
=

i=len(s)∑
i=1

δ( { ... } , si),

where si is the ith element of the generated sentence, s.

Figure 4.9: Complete definition of the stochastic parametric unrestricted grammar
that defines every possible stromal network structure.

Lower-case letters in generated strings are non-terminal characters or sets thereof,

and may be re-written according to the production rules, while upper-case letters

represent terminal characters that are immutable and cannot be re-written. The

parameters n , B , and N form modules with alphabet characters cd, ([(cD)n]q),

and {([(cD)n]q)B} respectively. It is important to note that these modules utilise

an abuse of notation to indicate that a parameter operates on several characters in

a manner similar to algebraic notation with standard brackets – ‘( ’ and ‘)’ – indi-
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cating where expansion should occur, whilst square and curly brackets are reserved

as characters and form part of the defined language. For example, cdn, where n = 3

is equivalent to writing ‘cdcdcd ’. Furthermore, the parameter-character modules are

nested, such that the module of parameter B contains parameter n, and parame-

ter N contains both parameters B and n within its associated module. Rule 4 is

stochastic, such that d⇒ F ‖L ‖R should be read as ‘d is to be randomly replaced

with F, L, or R with equal probability’. These three outcomes correspond to growth

of the network F orward, Left, or Right, respectively. The four rules are stated in

an order of precedence, such that the first rule that applies to a given structure

must be applied, and this continues until termination because the pre-defined num-

ber of networks defined by parameter N have been created. The grid is treated

as toroidal to maintain stromal network connectivity and prevent multiple ‘short

branches being produced at the grid edges. For the purposes of chemokine diffusion

from stromal cells, however, the grid space is treated as non-toroidal as described

in Section 4.4. The following list defines the meaning mapped to each of the letters

in the generative grammar alphabet defined in Figure 4.9:

• C — Place stromal cell in grid location.

• Q — Select random element from the preceding set of n elements.

• D — Branch out in an undetermined direction.

• R — Branching direction for current stromal cell is to the right.

• F — Branching direction for current stromal cell is forward.

• L — Branching direction for current stromal cell is to the left.

• P — Randomly select new (x,y) co-ordinates for the new sub-network.

• { — Begin new individual branch (equivalent to start of one ‘stromal cell’).

• } — End current branch (equivalent to end of one ‘stromal cell’).

• [ — Begin new network of B branches.
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• ] — End current network of B branches.

Figure 4.10 illustrates the ‘growth’ process represented by the grammar upon

implementation. The generative grammar is intended to operate over hexagonally

packed grid toroidal about the X and Y axes, initially the resulting ‘sentence’ should

be generated, and this should subsequently be parsed as the network structure is

created (in practice, however, the grammar can be algorithmically defined in a more

computationally efficient manner such that the network is directly generated using

a series of recursive loops). Rule 3 produces strings of the form ‘cd...cd’, this creates

a branch of individual grid elements that when combined may be classified as one

stromal cell. Rule 2 subsequently rewrites this by replacing each branch with a

new structure containing both the previous structure and a new branch. Rule 1

is responsible for creating numerous branching networks that overlap each other to

avoid the issue of unnatural long-edges typically produced by generative grammar-

type algorithms. The order of precedence is defined such that the ‘highest-level’

operation possible is performed first, with the lowest level being the addition of a

new grid element to a stromal cell and the highest level being the addition of a new

network of stromal cells to the grid environment. This process is further illustrated

in Figure 4.11 which demonstrates an expansion from the initial axiom of a stromal

network structure (left), alongside one of the many possible structures this sentence

could produce depending upon the stochastic choice imparted by rule four of the

grammar (right).

The grammar described in Figure 4.9 was developed manually by tracing over

micrographs of stromal networks and attempting to define informal rules for occupy-

ing squares in a hexagonally-packed square grid, prior to formalisation of these rules

in the form of the grammar described herein. Figure 4.9 provides a schematic illus-

tration of the process formally defined in Figure 4.9, and Figure 4.11 subsequently

provides an example of the ‘sentence generation’ process and how the ‘sentence’ pro-

duce describes the spatial organisation of the abstract stromal network model. The

important characteristics that the resulting structures must have were that each
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Figure 4.10: Illustrative demonstration of the network generation process imparted
by the grammar of Figure 4.9 when applied to a hexagonally-packed grid with pa-
rameters defined as B = 5, N = 2 and n = 4. Extremely simple parameter values
have been chosen in these examples for the purposes of communicating how the
grammar operates.

generated network must be unique through stochastic generation, yet consistent

with each other for a fixed set of parameter values (e.g. maintain a similar overall

density through the parameter values N and n) such that they are structurally

locally unique to prevent simulation artefacts resulting from aberrant nuances in

a specific network structure. Therefore, every single simulation run is conducted

using a unique, non-repeating network structure. It is difficult to formally define

the maximum number of possible structures this grammar is capable of producing,

however it may be considered infinite for all practical purposes providing that care

is used in selecting the random seed used for the pseudo-random number generator

for each simulation execution.
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Figure 4.11: Demonstrative implementation of the stromal network generative gram-
mar, resulting in a ‘sentence’ that provides instructions for spatially resolving the
network on a hexagonally-packed grid within a cellular automata.

4.7.3 Markov Model to Describe Stromal Phenotypes and

Differentiation

This section defines the Markov chain for a stromal cell, including its emissions (ex-

pression of adhesion molecules and lymphoid chemokines), and this is then developed

into a finite state machine using the UML in a manner amenable to hybridisation

with agent-based models, as the system evolves as a function of lymphocyte contact

— which itself is a complex non-linear stochastic function of time — and therefore

does not lend itself well to elementary analytical treatment. While emissions and

emission probabilities are a property of hidden Markov models, it is conducive to

adopt their use in the stromal cell Markov model to represent phenotype with greater

granularity than the ‘four-state stroma model’ discussed in Chapter 3, permitting

precise expression levels of CXCL13, CCL19 and adhesion molecules. The justifi-

cation for using a Markov chain model to describe stromal cell phenotypes within

the stromal network was introduced in Section 4.7.1. The Markov chain describing

one stromal cell, using finite state machine notation (?) with square boxes to define
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emissions, is shown in Figure 4.12.

Parameter values for the Markov chain are provided in Table 4.1, these represent

the probability of a given stromal cell phenotype differentiating into the next type

described by the chain, which itself is derived from the four stage differentiation

domain (biological) model described in 3.5. It is necessary to use a probabilistic

approach in which Monte Carlo sampling determines stromal cell differentiation

as the differentiation signals presented by B and T cells are presently not known.

Variation of these probabilities change the rate at which stromal cells develop, as

does variation in the number of B and T cells present in the simulation as defined

by the initial conditions. The presented parameter values were calibrated such that,

with a total of 8000 T cells and 8000 B cells, the differentiation of stromal cells into

FRC and FDC phenotypes allows the self-organisation process to emerge over the 15

day period observed in the acute TLT murine model described in Chapter 3. Given

the theoretical and unidentifiable nature of this model, it is not viable to present

ranges for these parameter values, especially considering the argument from ? that

parameter measurements must be impractically complete and precise to constrain

model behaviours in complex systems models.

It is useful to additionally define the stromal cell Markov chain and its emissions

as a UML finite state machine (?) in the manner used to define T and B lympho-

cyte behaviour within the agent-based model in Section 4.3, as this permits tight

integration of lymphocytes and stromal cells within a single simulation during the

software implementation phrase, otherwise referred to as the ‘Simulation Platform’

in CoSMoS parlance.
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Parameter
Name

Value
Hybridised

With
Monte Carlo Method

Triggered By
Event

Time-Scale

p( d[LSP] ) I0e
−λ∆T CA Stromal CA evaluating ODE 10 Minutes

p( d[FRC] ) 0.003 ABM + CA T-Cell adhered to Stroma 2 Minutes
p( d[FDC] ) 0.000001 ABM + CA B-Cell adhered to Stroma 2 Minutes
1 - p(canDifferentiate) 0.2 N/A Initiated at T=0 Once

Table 4.1: Table defining the stromal differentiation Markov model probabilities
and the sub-model with which each is hybridised. Interactions with the ABM and
CA dictate when transitions will be evaluated using Monte Carlo methods for each

stromal cell within the simulation model. The numerical probabilities provided
were determined through calibration.
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Figure 4.13: UML Finite State Machine Platform Model diagram describing the role
of stromal precursor cells in TLT formation, including differentiation into FRC-like
and FDC-like phenotypes.
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4.8 Deriving Model Outputs Using the Hybrid

Modelling Schema

This section explores a minor extension to the hybrid modelling schema introduced

in Section 4.2, permitting defining model outputs clearly in terms of sub-models,

the data extracted from them, and their combination to produce outputs that may

be used to evaluate model responses. Model outputs or responses can be defined

in terms of the individual component models that comprise the resulting hybrid

agent-based simulation. Figure 4.14 provides a generalised schema illustrating this

processes, in which high-dimensional model outputs are specified using visual nota-

tion that relates them to multiple specific model components.

Figure 4.15 provides an example of how high dimensional data such as that

provided by flow cytometry can be derived from models parameterised with low-

dimensional data. Outputs approximating imaging techniques, such as immunohis-

tochemistry confocal microscopy, are defined in terms of the stromal Markov chain,

Figure 4.14: Generalised schema for defining the overarching multi-dimensional
model outputs and visualisations with respect to combined sub-models integrated
into an executable simulation, producing novel, useful simulation outputs, including
those analogous to techniques in experimental biology, as discussed in Chapter 2.
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Figure 4.15: Scheme for combining the agent-based sub-model and receptor recycling
ODE to produce emulated flow cytometry and IHC/imaging outputs.

the ‘cellular data structure’ and the generative grammar that defines the generation

process for the stromal network structure, as presented in Figure 4.16. Understand-

ing the spatial distribution of chemokines over time is possible by combining the

chemokine diffusion and receptor internalisation models, as shown in Figure 4.17.

The model outputs defined here are based on the methodologies developed in

Chapter 2 using the Peyer’s patch development simulation, PPSim, as a case study.

Those in Figure 4.16 form the basis for understanding model responses to therapeutic

intervention in Chapter 6, and those in Figure 4.17 are used to explore co-localisation

of chemokines and lymphocytes during calibration of model parameters to fit the

temporal development pattern outlined in the TLT domain model.

In addition to the possible outputs discussed above, high-throughput image anal-

ysis is applied to graphical simulation outputs (introduced in Section 5.1.2) using

software designed for use with microscopy images. Additionally, high dimensional

data such as cell counts, particularly of the four stromal phenotypes within the

model, lend themselves well to a variety of high-dimensional image analysis method-

ologies. These are introduced in Chapter 5
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Figure 4.16: Scheme for combining the Markov model of stromal cell differentiation
and the CA that stores the phenotype data for each individual stromal cell and the
spatial organisation of the network as defined by the stochastic formal grammar.
This permits outputs of images illustrating the spatial distribution of stromal cell
type and heat-maps of VCAM-1 adhesion molecule expression within the spatial
compartment.

Figure 4.17: Scheme for combining the PDE responsible for describing the secretion,
diffusion and decay of chemokines with the chemokine receptor recycling ODE. This
permits production of spatial heat-maps of CCL19 and CXCL13 chemokine distri-
bution, and temporal heat-maps illustrating the change in total concentration over
time.
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4.8.1 Model Outputs

Both qualitative and quantitative outputs are of interest from this model. Given

the somewhat theoretical foundations for the model, based largely on hypotheses

derived from human in vitro mesenchymal stem cell models of stroma and an in

vivo murine model of Sjörgen’s syndrome, it is not possible to define a quantitative

level of precision with respect to any other model of the disease. Therefore, the prin-

cipal output of interest is whether the model as constructed, implementing the TLT

formation theory as described in Chapter 3, results in the formation of structures in

a self-organising manner consistent with those found in vivo. This is fundamentally

a qualitative, or semi-quantitative, output because of the enormous heterogeneity

of TLT observed in the domain, and the lack of quantification of the extent of this

heterogeneity.

Using high-throughput image analysis, the variation in the morphology of TLT

within the model can be assessed as parameters are peturbed. This is explored for

modulating the level of adhesion molecule expression in Chapter 5. Further to this,

by incorporating potential and previously trialled therapeutic interventions into the

model and observing the relative change in the population of stromal phenotypes,

insight can be derived into the potential therapeutic benefits of the intervention.

The key output in this sense is the change in the population size of FDC-like (S4)

stromal cells. These cells are required to support lymphoid follicles and germinal

centre reactions known to correlate with disease activity in Sjörgen’s syndrome.

This may therefore be used as a surrogate for disease activity for the purposes of

evaluating therapeutics. This is explored further in Chapter 6.

4.9 Argument-driven Model Validation

This section explores the argumentation structure for the TLT model, this contains

4 key strategies identified for arguing the fitness-for-purpose of the model. GSN

provides a useful way to present the evidence used to construct the model and
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simulation, including all assumptions that have been made and justifications thereof.

The strategies used to argue fitness-for-purpose of a model developed using the

CoSMoS process are best provided in this author’s opinion through decomposition

of the argumentation structure into the Domain, Domain Model, Platform Model

and Implementation – one must argue that the experimental data are appropriate

for the domain model (Strategy 1.1), that the domain model captures the relevant

biology (Strategy 2.1), that the platform model appropriately abstracts the domain

model and preserves emergent phenomena (Strategy 3.1), and that the simulation

is correctly implemented (Strategy 4.1).

Strategy 1.1: Experimental Data Sources

Strategy 1.1 (Figure 4.19) aims to argue that the experimental data used in the

development of the domain model are appropriate and explore how these data were

integrated into a model. This currently contains two sub-claims: Claim 1.1.1 states

that relative expression levels of chemokines produced by stroma in vitro are known.

This is evidenced in ? 1 (Evidence 1.1.1.1) and has the assumption (1.1.1.1) that

in vitro data may be used for our in silico model of an in vivo process. Claim

1.1.2 states that Adipose Derived Stem Cells (ADSCs) treated with inflammatory

cytokines are a suitable model of lymphoid stromal cells. This is evidenced from ob-

servations in vitro that ADSC-derived stromal cells adopt a “lymphoid” phenotype

when cultured with inflammatory cytokines.

Strategy 1.2: Domain Model

Strategy 1.2 (Figure 4.20) makes a case that the Domain Model encapsulates

all relevant aspects of the domain within its experimental scope. Currently this is

evidenced by the observation that IL13 KO mice do not develop TLT structures,

along with the data discussed in Strategy 1.1.

Strategy 1.3: Platform-Independent Model Strategy 1.3 (Figure 4.21) is com-

prised of 4 claims. These are 1) the model unambiguously formalises all possible

cellular interactions within the model scope, 2) that lymphocyte movement within

1Experiments shown here from ? were performed by Bridget Glaysher
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the tissue can be modelled as a random walk (essentially Brownian motion), 3) that

chemokine diffusion can be modelled using the heat equation and finally 4) that the

stromal network generated by the L-System is an appropriate abstraction of stroma.

Various pieces of evidence from literature, and justifications for implementation de-

cisions are then included. Note that a white diamond on a box indicates that it has

not yet been developed into a full argument.

Strategy 1.4: Simulation Implementation Strategy 1.4 (Figure 4.22) is con-

cerned with the actual implementation - whether space and time are modelled ap-

propriately, and whether it meets its aim of determining the minimum requirements

for TLT formation.
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4.10 Developing the Simulation Platform

The software simulator, ‘NeoSim’ was developed in Java using the MASON li-

brary ? to provide a scheduler and environment for the agent-based aspects of

the model. NeoSim will be released and made available following publication of

this thesis on the York Computational Immunology Website (www.york.ac.uk/

computational-immunology). The simulation ‘class diagram’, showing the

software classes and their relationships (e.g. inheritance) is shown in Figure ’ref-

fig:class. A full description of the model as implemented is described in Appendix A.

A screen-shot of the resulting software simulation, with a graphical user interface

(GUI) for real-time model interrogation and visualisation is shown in Figure 4.24.

A typical run in the console takes approximately 5-6 minutes using one of eight

cores on a 2.2 GHz Intel Core i7 laptop with 16 GB of RAM. With the visualisation

updating each of the 2161 time-steps (each representing 10 minutes of simulated

time), a typical run takes about 12 minutes to complete. This disparity is because

the simulation is still restricted to a single processing core but must also handle the

graphical overhead as well as running the simulation logic and writing outputs.

www.york.ac.uk/computational-immunology
www.york.ac.uk/computational-immunology
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4.11 Summary

This chapter introduced a platform model describing TLT formation in Sjögren’s

syndrome, providing mathematical and computational descriptions of each biolog-

ical entity within the model. Through the development of a model hybridisation

schema, the model could be effectively described in such a manner that each entity

is described using the most appropriate modelling technique prior to re-integration

into a single simulation tool that has been named NeoSim. Implementation details

of the NeoSim software tool have been provided.

NeoSim integrates agent-based modelling with Markov chains, a discretised PDE

model describing chemokine secretion and diffusion, and an ODE model describing

the recycling of chemokine receptors on lymphocytes. A generative grammar is

described that produces stochastic stromal network-like structures on a discrete

hexagonal grid. The generative grammar provides a key platform for lymphocyte-

stroma crosstalk, which lies at the heart of the hypothesis presented in Chapter 3

that lymphocytes induce differential chemokine secretion profiles in stromal cells

and that this results in their self-organisation into TLT structures.

The following chapter performs analysis of the model and simulation, determin-

ing whether the theoretical model outlined in Chapter 3, when implemented in the

manner described in this chapter, produces structures that are consistent with TLT

as observed in vivo. Further to this, the roles of adhesion molecules in modulating

TLT morphology in silico are explored, and some consideration to simulation sen-

sitivity and robustness is given. Baseline parameter values for the model presented

in this chapter are provided in Chapter 5, Section 5.2. A complete list of param-

eters, values, initial conditions and values used for various experimental conditions

is provided in Appendix B.



Chapter 5

TLT Model and Simulation

Analysis

The previous chapter described the platform model and implementation specifica-

tion for TLT formation. The simulation can now be calibrated against experimental

data, utilised to test our initial hypotheses regarding formation mechanisms, eval-

uate the effect of biologics and other therapeutic interventions, and perform other

explorative experimentation. We present the simulation results at key time-points

compared to TLT formation observed in the in vivo model, and apply IHC emulation

with high-throughput image analysis to determine how perturbing the model affects

TLT morphology. The effect of changing the rate at which stroma and lymphocytes

upregulate adhesion molecules and their cognate receptors is explored against TLT

morphology (aggregation factor), area, number of follicles formed using CellProfiler

(Broad Institute) for high-throughput analysis of emulated confocal IHC micrographs.

We apply Kohonen networks and other machine learning approaches to simu-

lation outputs, and explore the possibility of using the Kohonen network ‘Unified

Distance Matrix’ variance to determine the appropriate number of repeats required

to adequately ameliorate stochastic effects arising from aleatory uncertainty.

186
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5.1 Confirming TLT Formation Hypothesis Ve-

racity

A key test of our TLT formation hypothesis is whether the model conforms to

expectations from in vivo data. This is explored in Section 5.1.1 to determine if the

model is consistent with TLT formation.

5.1.1 Calibration Against Expected Behaviours

To illustrate conformity to biological observations, a representative simulation run

visualisation, applying the techniques developed during the Peyer’s patch case study

discussed in Section 2.2.2, is compared with the key observable phenomena deter-

mined from the murine model in the ‘expected behaviours’ diagram described in

Section 3.2.2. Figure 5.1 clearly shows that the calibrated simulation reproduces

the behaviour over time of TLT formation. The ‘observable phenomena’ described

in Figure 5.1 are domain-expert descriptions of the acute TLT formation process in-

formed from a murine model, and the images are taken from a typical simulation run,

illustrate that the simulation developed from the theoretical computational model

described in Chapter 4 produces outputs that are consistent with these descriptors.

For the purposes of this comparison, the stromal cell distribution over the simu-

lation space was limited so that only one follicle is likely to emerge. Therefore Sec-

tion 5.1.4 looks at a large sample of simulation runs analysed using high-throughput

image analysis software, to further validate the hypothesis veracity by assessment

of high-dimensional results model data using Kohonen (self-organising) maps.
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5.1.2 In Silico Image Analysis

As discussed in Section 2.1, emulating experimental techniques can be useful be-

yond simulation analysis, visualisations may be helpful for communicating results

models to those in fields with little exposure to mathematical and computational

modelling, and to provide insights into how a simulation result equates to the do-

main under study. Figure 5.2 presents a confocal micrograph of a TLO compared to

a baseline simulation result that has been processed using the techniques described

in Section 2.2.2. The principal output, as discussed in Section 4.8.1, is whether the

simulation implementation of the theory of TLT formation developed in Chapter 3

and formalised as a mathematical and computational model in Chapter 4, is whether

structures form over 15 days of simulated time that are qualitatively similar to those

observed in vivo. The restriction to qualitative or semi-quantitative outputs in this

sense is due to the lack of existing data describing the variation of TLT in vivo. How-

ever, there are clear criteria established in the model expected behaviours diagram

from Figure 3.8 under ‘expected behaviours’. These were compared to observed sim-

ulation behaviours in Figure 5.1. In terms of developed TLT, the key observables

of interest are that dense B-cell follicles form, supported by FDC-like stroma, sur-

rounded by T cells randomly distributed over the FRC-like stromal network. This

can clearly be seen to be the case in Figure 5.2 where a typical simulation run is

shown against an IHC micrograph of murine TLT. The simulation output here has

been processed using the methodology described in Section 2.2.2.1.

The principal research question driving this model is determining the veracity of

our hypothesis regarding the minimum requirements to sustain TLT development.

Figure 5.3 shows how multi-dimensional TLT morphology data are obtained through

analysis with CellProfiler (software developed by the Broad Institute, MA, USA. ?)

comprising TLO and lymphoid follicle number, area, compactness, perimeter and

solidity. Figure 5.4 shows the U-matrix for 100 baseline simulation runs of TLT

formation, trained on these morphology metrics.
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Figure 5.2: i. Actual confocal microscopy image of a fluorescent antibody stained
murine TLO in a salivary gland. ii.Emulated immunohistochemistry micrograph
from a simulation at 15 days post-TLT induction. This process is based on tech-
niques discussed in Chapter 2, this figure is analogous to Figure 2.13 for the Peyer’s
patch simulation case study using the methodology described in Section 2.2.2.1.
Note that this figure compares a 3D section of murine submandibular tissue against
a 2D simulation, and as such less T cells are visible surrounding the in vivo structure.

Figure 5.3: Example Cell Profiler analysis of the TLT simulation, segregating
the TLOs and lymphoid follicles and measuring many parameters including area,
perimeter, population size and compactness.

5.1.3 Introducing Kohonen maps as a means of simulation

results interpretation

Kohonen networks, otherwise known as self-organising maps (SOM), are a form of

perceptron-based neural network model introduced in (?) that utilises unsupervised
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learning to produce a low-dimensional representation of a higher dimensional input

dataset which preserves the underlying topological properties of the data, permit-

ting clustering of data samples on a 2D map which approximates the state space of

the input, and visualisation of the distribution of individual output measures over

the state space. Unsupervised learning refers to machine learning algorithms that

process unlabelled data sources, such that they do not know, for example, whether

any particular ‘input vector’ is a control sample or a test sample, this permits identi-

fication of hidden topological data structures. A Kohonen network is constituted of

an array of nodes which constitute an abstract representation of a biological neuron,

each associated with a location co-ordinate in the map space and a weight vector

with dimensionality equal to that of the input data vectors. The map itself has the

form of a discretised grid, these may be rectangular or hexagonal, although only

hexagonal maps are used for the purposes of this thesis.

The process of mapping input vectors to the SOM is termed vector quantization,

a simplified description is provided here; for the interested reader, a full description

of this process and variations thereof may be found in ?. The weight vectors for each

node are initialised, usually randomly or linearly. An input vector is selected, and

the node with the shortest Euclidean distance (most similar) weight vector identified.

The weight vectors for all nodes within the neighbourhood of the identified most

similar node are adjusted toward the input vector. The neighbourhood is defined

as the six surrounding hexagonal elements for a hexagonal network (either the Von

Neumann or Moore neighbourhoods of 4 or 8 nodes may be used with rectangular

grids). This process is repeated over all input vectors or ‘training data’, and applied

iteratively until sufficient convergence is achieved between the Kohonen network

topology and the topological structure of the set of input vectors. It is important to

note that the discrete spatial representation of the nodes is non-linear such that the

Euclidean distance between adjacent nodes is different for each node; two apparently

similar nodes may be separated by a large distance. This property permits the use

of unified-distance matrices, in which the colour or shading of each node is mapped
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to its ‘codebook vector’ (Euclidean distance over the node), this is a useful means

of visualising clustering of input vectors when mapped to the SOM: if the level of

grey for each node maps to the codebook vector, then large boundaries separating

clusters will be visible as dark lines that separate lighter-coloured regions. This

property is exploited in Section 5.3 to propose a novel means of quantifying and

ameliorating aleatory uncertainty in stochastic simulations.

The Kohonen networks presented in the following sections and in Chapter 6

were created using the open source python package and front-end Orange (version

2.4, University of Ljubljana). Full details of how the package implements Koho-

nen networks can be found at the Orange library documentation for Self-Organising

Maps (available at https://docs.orange.biolab.si/2/reference/rst/

Orange.projection.som.html). The formal mathematical derivation of Ko-

honen networks from which they were implemented in this package is presented in ?,

and the source code from which the Kohonen networks were generated is available at

the Orange version 2 Git repository (https://github.com/biolab/orange)

Visualising Simulation Outputs Over Parameter Perturbation

The usual motivation for use of Kohonen networks is as an unsupervised classifier,

such that the network is ‘trained’ with a sufficient number of input vectors (in our

case, individual simulation results), building the map through competitive learning,

this then permitting classification of unknown vectors to clusters of known samples

based on their similarity to the weight vectors of nodes. Thus, the process is divided

into modes: ‘training’ and ‘mapping’. However, for the purposes of evaluating the

effect of simulation parameter perturbation and therapeutic intervention with in

silico disease models, the motivation for utilising Kohonen networks is for their

capacity to provide visualisations of efficacy surrogate outputs over the trained map

of high-dimensional simulation results. Such maps crucially permit quantification of

the level of stratification between specific simulation sample sets, visualisation of the

differences in topological structure of high-dimensional inputs, and simultaneously,

https://docs.orange.biolab.si/2/reference/rst/Orange.projection.som.html
https://docs.orange.biolab.si/2/reference/rst/Orange.projection.som.html
https://github.com/biolab/orange
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visualisation of output values of interest such as surrogates of disease activity. A map

visualising specific model outputs over the nodes and input vectors is known as a

‘component plane’, as individual values of one component from the input vectors are

mapped to the network. In combination with mapping input vectors, this presents

a powerful tool for evaluating the effect of perturbing a parameter while taking into

consideration the topological structure arising both due to parameter perturbation

and stochastic (aleatory) effects.

5.1.4 Stochastic Variation in TLO Development

The lack of clustering occurring in Figure 5.4 illustrated by the mostly white colour-

ing of the hexagonal elements indicates that the results observed are not due to

aleatory uncertainty. The plotted circles on the U-matrix indicate the average num-

ber of TLOs that formed in a simulation, and the radius of the circle indicates the

number of simulation runs that fall into that location within the U-matrix. It can

be seen that the vast majority of results show one to three TLO structures after

15 days, with very few outlying results in which more disperse lymphoid aggregates

developed. Means of interpreting features of Kohonen networks are provided herein

as necessary where they are utilised, however the unfamiliar reader is referred to

? for a useful and more complete summary of their interpretation generally. Note

that the grey-scale in each node (hexagon) is proportional to the codebook vector

distance (similarity metric, described above in Section 5.1.3) across that node, and

therefore the apparent regularity in spacing on the following figure does not suggest

all samples are equally similar. There are clear outliers in the bottom left of the

figure, and it can be seen that the Kohonen network has stratified samples very

clearly in proportion to the number of TLT structures formed, as identified using

CellProfiler.
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Figure 5.4: U-Matrix for 100 simulation runs of the TLT model, with shading from
green to red indicating the number of TLOs that formed.

5.2 Platform Model Parameter Values

This section provides a complete list of all platform model parameters, a description

of their purpose, the baseline value and initial conditions used, and an indication

of the source of each parameter value. Those that are marked ‘Calibrated to Ex-

pected Behaviours’ were perturbed by hand such that simulated TLT development

conformed to the 15 day process outlined above in Section 5.1.1.
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Figure 5.5: Table of ‘System-wide’ parameters including those defining model initial
conditions.

Figure 5.6: Table of Chemokine model-related parameters. The chemokine diffusion
parameter value was initially determined using the Einstein-stokes relationship, but
this was found to be substantially higher than suitable for model expected behaviour,
and the values had to be reduced by 2 orders of magnitude. *Recent evidence
from the lab (unpublished) has confirmed that the Einstein-Stokes relationship is
not applicable for chemokine diffusion in vivo due to protein interactions with the
stromal network.
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Figure 5.7: Table of Stromal Cell-related parameters.
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Figure 5.8: Table of Lymphocyte-related parameters.
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5.3 Quantifying Aleatory Uncertainty using Ko-

honen Networks

Section 1.4.1.3 discussed a method by which the aleatory uncertainty introduced

by stochastic simulation events may be ameliorated, such that observed effects may

be attributable to a change in parameter values rather than random fluctuations.

These techniques were either computationally intensive and limited in scope with

regard to results measured, or assumed a normal, or other known, distribution.

This can be an issue if model outputs are not known to be independent random

variables, in which case the central limit theorem would ensure normality (?), or

otherwise if no known distribution can be identified for an output. The distribution

of outputs in the TLT formation simulation are unknown, thus alternative means of

ensuring results are reliable have been sought. Kohonen maps may be considered a

non-linear generalisation of principal component analysis (PCA). The data analysis

work-flow, whereby baseline samples of 10, 25, 50 and 100 simulations are evaluated

using SOMs is shown in Figure 5.9. The reduction in clustering and increasing

uniformity of samples as the number of simulations, n, increases, is demonstrative

of a reduction in aleatory uncertainty. The reduction in the variation of grey in

the hexagonal nodes indicates increasing uniformity of codebook vectors, and an

increase in similarity between each simulation run.

Kohonen maps are based on iteratively stratifying results into a similarity neigh-

bourhood within a 2D grid using a perceptron network utilising competitive learn-

ing. These prove invaluable in Chapter 6 in identifying clusters when therapeutic

interventions are applied to simulation results. However, the U-Matrix, or unified

distance matrix, wherein the ‘codebook vector’ Euclidean distance between simu-

lation results which broadly describes their similarity while preserving overall data

structure topology, is displayed as a grey-scale level on a 2D map such that clusters

may be identified with samples that are far apart. This can be used to identify the

point at which the number of samples of the same parameter value is sufficiently
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Figure 5.9: Pipeline for Aleatory Analysis of 10, 25, 50 and 100 simulation samples at
baseline using the Orange toolkit in the Python programming language. The inputs
are files containing either absolute and relative stromal phenotype data (left), or
relative data alone (right), the outputs of this analysis are a SOM visualisation tool
or a box-plot graph generator for attributes within the dataset. For the Kohonen
map, linear initialisation (opposed to standard random initialisation) is used to
ensure comparability between samples, and 1000 iterations are applied for each
sample set, with a Gaussian neighbourhood, hexagonal topology and initial radius
of 10 and final radius of 1 in a 10x10 grid.

high that aleatory uncertainty can be considered ameliorated. Figure 5.10 shows the

U-matrix for 10, 25, 50 and 100 simulation runs using identical baseline parameter

values.

A key benefit of this approach is that the user can sequentially increase the

number of samples taken one at a time until the U-matrix reaches pre-specified ac-

ceptable levels, and rather than functioning on just a few outputs, considers the

entirety of the multidimensional results model simultaneously. The principal nu-
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Figure 5.10: Simulation results model Kohonen map unified codebook vector dis-
tance matrix (U-matrix) for n=10,25,50,100. It can be seen significant clustering
occurs in the n=10 sample with respect to the n=100 sample.

merical outputs of the TLT formation simulation are the population sizes of the

four stromal phenotypes described by the Markov Chain Monte Carlo model in

Section 4.7.3. These are expressed as absolute population sizes based on the num-

ber of elements of the hexagonally-packed stromal network grid elements occupied,

however the precise size of this varies between simulations. Therefore, one could

conduct an aleatory analysis on the absolute values, or normalise the values by mea-

suring relative percentages of occupied area. We note that normalising the data

prior to analysis results in a significant improvement in reducing codebook vector

distances between sets of identical simulation samples, as illustrated in Figure 5.11,

in which there is a significant codebook vector distance between certain subsets

despite identical simulation parameters when using both absolute and normalised

data – this effect is not present with only non-normalised data, presumably due to

stochastic variation in the number of stromal cells in each simulation run. There-

fore, when interpreting aleatory uncertainty, an important consideration is whether

the apparent aleatory uncertainty is due to stochasticity-induced chaotic effects that

impact simulation dynamics, or an artefact of differing absolute quantities between

identical samples that may be mitigated through a simple normalisation process.

Therefore, it is proposed that U-matrix aleatory uncertainty analysis is performed

using data normalised across simulation runs at baseline to determine the appro-
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priate number of runs to mitigate stochastic effects, and on a per experiment basis,

non-normalised data should be filtered from the multidimensional datasets prior to

U-matrix generation for determination of aleatory effects. Further development in

this area would lead to a robust means of understanding the role of stochasticity

and aleatory uncertainty within complex systems ABMs, rather than the common

approach of ’mitigating’ aleatory uncertainty by simply measuring the medians of

simulation outputs over many runs. I argue that visualising the heterogeneous re-

sponse of the system outputs is important, as the probabilistic guards implemented

in ABMs are an abstraction of the stochastic events within the biological domain

that leads to the large variance we see in the biological domain, in everything from

individuals’ responses to drugs to the enormous variety of life. Kohonen networks,

or other machine learning methods for dimensionality reduction that can reduce

and stratify a higher dimensional manifold into a 2D plot over which model outputs

can be overlaid, provide a vital means of investigating this uncertainty, and, in the

context of QSP, can provide a means of predicting a priori the likely rate of efficacy

of therapeutics or expected heterogeneity within biological systems generally.

Normalising outputs over many identical simulation samples eliminates aleatory

influences of differing population sizes when comparing different parameter sam-

ples, yet the resulting distribution remains unchanged – normalisation is a linear

rescaling of the population sizes. A box-plot of absolute FDC population size and

the percentage of all stroma with an FDC phenotype is shown in Figure 5.12; the

dots represent values from individual simulation runs, the effect of normalisation

can be seen on the modified distribution of individual samples, however there is no

significant difference in the overall distribution in terms of relative mean, medians

and quartiles (the distribution difference tends to zero as the limit of the number of

samples is taken to infinity).
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Figure 5.11: U-Matrix for 100 simulation values using both absolute and normalised
multidimensional data (left) and normalised data (right) such as ratios and percent-
ages only. It is clear that the absolute value data introduces considerable noise into
the simulation results due to differences in individual simulations.

5.4 The Potent Role of Adhesion Molecules in

Regulating TLO Morphology

The role of adhesion molecules in TLT induction was explored by varying the ‘Ad-

hesion Molecule Up-regulation Rate’ parameter from very low to high values, this

defines the rate of increase in VCAM-1 and ICAM-1 expression in response to lym-

phocyte stimulation. Three simulation output measures were used in this experi-

ment, these were the median number of TLT patches observed within the simulation

space, the total area covered by lymphocytes (TLT area), and a new metric termed

‘TLT Aggregation Factor’. The TLT aggregation factor is a metric defined by nor-

malising the total area of the simulation space (400µm2) occupied by TLT, such

that the lowest observed area occupied by TLT is defined as 1 and the most highly

is defined as 0; given that there is no exit mechanism for lymphocytes during the

simulation, those with the lowest occupied areas represent the densest aggregated
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Figure 5.12: Comparison of absolute FDC stromal cell grid elements (left) vs per-
centage of stroma with FDC phenotype, derived from 100 baseline samples. The
distributions are identical, however the Kohonen map U-matrix data shown in Fig-
ures 5.10 and 5.11 are markedly different when using only relative data.

lymphoid tissue.

Figure 5.13 shows a box and whisker plot illustrating the change in TLT aggre-

gation factor as the rate of adhesion molecule up-regulation increases. There is a

clear relationship, showing an exponential increase in aggregation as the adhesion

molecule expression level increases (note the x-axis is non-linear). From this, it

is reasonable to conclude that lymphocytes do indeed require stromal cell expres-

sion of adhesion molecules to properly self-organise. If lymphocytes cannot easily

adhere to the stromal network, then lymphocyte-stroma crosstalk is significantly

reduced, preventing development of lymphoid stroma phenotypes and induction of

the chemokine feedback loops responsible for driving organisation. Significance in

Figure 5.13 was confirmed using One-way ANOVA (Analysis of Variance) in combi-

nation with Tukey’s range test, confirming that the rise in aggregation is statistically

significant until the plateau following X=0.001, the analysis summary table is shown
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Figure 5.13: Boxplot of Adhesion Molecule Upregulation (X-axis) Rate vs TLT
Aggregation Factor. There is a rapid, non-linear increase in observed aggregation as
the adhesion molecule up-regulation rate is increased. All differences are statistically
significant between each other (adjusted p< 2e16) from X=0.0001 to 0.001), however
values 0.01 to 1 are not statistically significant between themselves. This indicates
that adhesion molecule expression has a significant effect until a threshold is reached,
at which point the degree of tissue formation plateaus. (n=100).
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Df Sum Sq Mean Sq F Value Pr (>F)

Ind 9 68.04 7.559 1788 <2e16 ***
Residuals 990 4.19 0.004 - -

Table 5.1: Tukey multiple comparisons of means 95% family-wise confidence level
for Figure 5.13

Figure 5.14: Box-plot of Adhesion Molecule Upregulation Rate vs TLOs formed
per 40x40 micron simulation space, illustrating the change in the number of discrete
TLOs or tertiary lymphoid tissue aggregates forming as the rate of adhesion molecule
up-regulation increases. n=100.

in Table 5.1. X in these plots refers to ‘Adhesion Molecule Upregulation Rate’, called

‘adhesionLevelIncrement’ in the stroma parameters table in Figure 5.7.

Figure 5.14 demonstrates the change in tissue surface area vs adhesion molecule

up-regulation rate. This graph indicates that there is a minimum requirement for the
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Df Sum Sq Mean Sq F Value Pr (>F)

Ind 9 6.648e9 738675885 70.33 <2e16 ***
Residuals 990 1.040e+10 10502671 - -

Table 5.2: Tukey multiple comparisons of means 95% family-wise confidence level
for Figure 5.14.

Parameter Value p-value (adj) Significance

X1-X0.001 1 None
X0.5-X0.01 0.999 None
X0.1-X0.01 0.999 None
X1-X0.1 0.999 None
X0.1-X0.001 0.999 None
X0.0001-X0.000075 0.999 None
X0.5-X0.1 0.998 None
X1-X0.01 0.997 None
X0.01-X0.001 0.984 None
X1-X0.5 0.965 None
X0.0001-X0.00005 0.955 None
X0.5-X0.001 0.898 None
X0.5-X0.000075 0.878 None
X0.01-X0.000075 0.657 None
X0.000075-X0.00005 0.555 None
X0.5-X0.0001 0.389 None
X0.1-X0.000075 0.358 None
X0.01-X0.0001 0.181 None
X1-X0.000075 0.144 None
X0.001-X0.000075 7.721E-2 None
X0.1-X0.0001 5.875E-2 None
X0.00005-X0.000025 3.809E-2 *
X1-X0.0001 1.47837E-2 *
X0.5-X0.00005 1.250E-2 *
X0.001-X0.0001 6.217E-3 *
X0.01-X0.00005 2.963E-3 **
X0.1-X0.00005 4.827E-4 **
X0.0001-X0.000025 2.524E-4 **
X1-X0.00005 6.490E-5 ***
X0.001-X0.00005 1.970E-5 ***
X0.000075-X0.000025 5.599E-6 *****
X0.000025-X0.00001 0 *****
X0.00005-X0.00001 0 *****
X0.000075-X0.00001 0 *****
X0.0001-X0.00001 0 *****
X0.001-X0.00001 0 *****
X0.01-X0.00001 0 *****
X0.1-X0.00001 0 *****
X0.5-X0.00001 0 *****
X1-X0.00001 0 *****
X0.001-X0.000025 0 *****
X0.01-X0.000025 0 *****
X0.1-X0.000025 0 *****
X0.5-X0.000025 0 *****
X1-X0.000025 0 *****

Table 5.3: Adjusted p-values for change in TLO area as a function of Adhesion
Molecule up-regulation rate from Figure 5.14. * = p<0.05, ** = p<40.005, *** =

p<0.0005, **** = p<0.00005.
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level of adhesion molecules expressed in order to support TLT formation, although

it appears there is not a strong dependency on the expression level in terms of tissue

area, the adjusted p-values calculated from a Tukey test and a one-way ANOVA do

indicate a large degree of significance between different parameter samples when con-

sidering their entire distribution. Although statistical significance is demonstrated,

it is unclear whether this translates to biological significance, given the consistent

median and quartiles across the adhesion molecule up-regulation rates evaluated. A

second threshold around a X = 0.01, which enables significantly larger TLT patches

to form, demonstrated by the large increase in variance for the six highest sampled

parameter values (further illustrated by the data in Table 5.3, adjusted p-values at

zero for many parameters).
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Df Sum Sq Mean Sq F Value Pr (>F)

Ind 9 2166 240.72 110.7 <2e16 ***
Residuals 990 2154 2.18 - -

Table 5.4: Tukey multiple comparisons of means 95% family-wise confidence level
for Figure 5.15

Figure 5.15: Box-plot of ‘Adhesion Molecule Upregulation Rate’ vs TLOs formed
per 40x40 micron simulation space, illustrating the change in the number of discrete
TLOs or tertiary lymphoid tissue aggregates forming as the rate of adhesion molecule
up-regulation increases. The lines above the boxes indicate statistical significance,
where ticks above a box indicate p<0.05 with respect to the line start point. All
parameters are significant with respect to X=0.0001 and X=0.00025. n=100. X,
‘Adhesion Molecule Upregulation Rate’ is the linear rate at which adhesion molecule
expression is upregulated on stromal cells following lymphocyte contact.

Figure 5.15 provides additional evidence that there exists a minimum threshold

of adhesion molecule expression by stroma required for TLT induction, but beyond

that, there is no correlation with the number of discrete TLOs formed, and as seen

in Figure 5.14, there is a weak correlation with median TLT tissue area.



CHAPTER 5. TLT MODEL AND SIMULATION ANALYSIS 209

5.5 Model Sensitivity

A complete sensitivity analysis of NeoSim has not been completed at this stage,

but is currently under-way for further publication of model results. However, at

this stage the author can provide qualitative commentary on observed sensitivity

of the model. In terms of the principal output of spatial structure formed at Day

15, the model is highly insensitive to parameter perturbation. This is believed

to be representative of the domain, in which autoimmune processes are known to

be extremely robust and resilient to change through external influences such as

therapeutic interventions. Even highly implausible changes to the system, such as

allowing B cells to enter from Day 0 and restricting T cells to enter from Day 5, thus

reversing what is observed in vivo, does not prevent the self-organisation process,

it merely extends the time taken to form by 1 to 2 days of simulated time. The

section above explores the change in model response as the rate of adhesion molecule

expression changes are modulated, and it can be seen that changes over an order

of magnitude are required to see notable changes in TLT structure, and the vast

majority of parameterisations still result in structures that are qualitatively similar

to TLT structures as described in Chapter 3

The exception to this observed sensitivity lies with the receptor recycling ODE.

The receptor internalisation rate and recycling rate are the most sensitive parameter

within the model, and together have a profound effect on the stability of chemokine

gradients that form as a result of lymphocyte–stroma crosstalk. Further investiga-

tion is necessary to constrain these values, and will likely require additional in vivo

experimentation to assist in appropriate parameterisation. Anecdotally, discussions

with other modellers that have incorporated receptor recycling have observed simi-

lar levels of sensitivity. The lack of quantified values within the domain makes this

aspect of the model non-trivial to make robust.
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5.6 Summary

This chapter determined that the theory of TLT formation in Sjörgen’s syndrome

developed in Chapter 3, and developed into a mathematical and computational

model in Chapter 4, is consistent with the 15 day formation process observed in vivo.

The application of IHC microscopy emulation further demonstrated the similarity

between structures that form in NeoSim are qualitatively similar to in vivo sections

of TLT tissue in a murine model of Sjörgen’s syndrome. Further work on sensitivity

and robustness analyses are on-going to provide additional support the evidence-

based and argument-driven validation of NeoSim provided in this thesis, and this

will appear in a future publication.

Furthermore, adhesion molecules were identified as having a potent role in the

regulation of TLT morphology. This may present an interesting and novel avenue

for investigation of a means of disrupting the formation process in a manner use-

ful for therapeutic intervention. The following chapter is therefore concerned with

testing existing therapeutics in silico to determine the usefulness of the model in de-

termining therapeutic efficacy, which subsequently permits investigation of a novel

therapeutic approach in treating Sjörgen’s syndrome, the anti-VLA4 antibody na-

talizumab.



Chapter 6

Evaluating Therapeutic

Intervention in TLT Formation in

silico

We now evaluate the efficacy of three candidate biologic therapies in silico, allow-

ing determination of optimal dosing and combination therapies. Furthermore, we

make the case for applying model-driven experimentation combining our TLT for-

mation simulation with experiments to identify mechanisms driving lymphoid tissue

formation and function, and we discuss potential applications of this experimental

paradigm to identify novel therapeutic targets for TLT pathology. This leads us to

propose that anti-VLA4 therapy is a suitable candidate worthy of further investiga-

tion in vivo.

The use of Kohonen networks (or ‘Self Organising Maps’/SOMs) permits projec-

tion of component planes providing a surrogate for efficacy, in particular by quanti-

fying the change in FDC population size over different experimental groups. Simula-

tion results are projected into a Unified Distance Matrix, enabling unsupervised clus-

tering and visualisation of how subtle changes in the stromal population phenotype

distribution resulting from biologic interventions can be stratified by the variance this

causes in the reduced dimensionality projection represented by the U-Matrix. Justifi-

211
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cation of our predictions with respect to efficacy are supported by various component

plane projections quantifying relationships between efficacy, intervention, timing and

dosage.

Anti-TNFα, Anti-VLA4 and baminercept interventions were examined as candi-

date therapies for treatment of TLT pathology in Sjörgen’s syndrome, and the combi-

nation therapy of anti-VLA4 and anti-TNFα are also included. Clinical trials failed

to find any significant benefit from anti-TNF therapy, and this also reflected in our

in silico evaluation (discussed in Section 6.4.1). The following table (Figure 6.1)

describes each intervention examined, the relative dose range and the time-point at

which the intervention is introduced into the simulation. Intervention at day 5 in

our acute 15 day in silico model provides a limited model for prediction of therapies

that remain very effective in well-established disease.

Figure 6.1: List of therapeutic interventions included in QSP-Machine Learning
driven analysis of simulation results. Precise parameterisation data are provided in
Figure 6.2 below.

Experiments using a murine model of TLT induction and anti-VLA4 are on-

going in an attempt to provide experimental evidence of its suitability as a candidate

therapeutic. Our data also suggest that anti-TNFα therapy in addition to anti-VLA4

may be beneficial in those who receive prompt diagnosis — established disease is likely
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to be resistant to anti-TNF therapy as chronic autoimmunity establishes and TLT

becomes self-sustaining through positive feedback.

6.1 Extending Existing Simulation Platforms

We have previously discussed the issue of extending a complex systems model to

explore the role of particular pathways (?). The changes made to accommodate any

intervention, and all assumptions and abstractions made during implementation of

the intervention must be explicitly declared. Unlike the modifications we made

to ARTIMMUS in ? and ? in which novel pathways were added to the model,

in this instance we focused upon the manipulation of existing signalling pathways

to determine the effect of various biologic therapies. The modelling methodology

used to implement each of the biologic therapies evaluated are described in the

following sections. Section 6.1.1 describes implementation of a TNF blockade within

NeoSim, Section 6.1.2 describes the incorporation of baminercept, and Section 6.1.3

describes how VLA4 blockade (i.e. natalizumab) is incorporated into the model and

simulation.

6.1.1 Anti-TNF Intervention Methodology

Inflammation is represented in the model as a probability that each stromal cell be-

comes inflamed/activated at any given time step, p(canDifferentiate) as defined in

the finite-state machine derivation of the stromal cell Markov chain in Figure 4.13.

As can be seen in the probabilistic guard described in Figure 4.13, a Monte Carlo

sampling of the value of It determines at each time-step whether each stromal cell

is capable of differentiation into lymphoid phenotypes S2-S4. The probability value

is determined by Equation 6.1 below, originally introduced as a Markov chain pa-

rameter in Table 4.1:

p(canDifferentiate) = It = I0e
−λ∆T , (6.1)
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where It is the inflammation level at time t, λ is the decay constant and ∆T is the

time-step length. The initial conditions for this equation are defined by the param-

eters in Appendix B, Figure B.2. Inflammatory factors trigger the self-sustaining

and self-organising lymphocyte swarm resulting in TLT formation. Incorporating

anti-TNF into the model requires that an additional two parameters be defined,

anti-TNF dose and the time-point at which it is introduced, collectively termed

αt, determining the degree to which the probability value is reduced in response to

anti-TNF signalling. Thus Equation 6.1 is extended to become Equation 6.2:

It = (I0e
−λ∆T )(1− αt). (6.2)

By exploring results with immediate and delayed interventions, and a range of

doses, we can begin to determine precise potential treatment regimes. Anti-TNF

has been evaluated against placebo in clinical trials with no significant improvement

in the treatment group.

6.1.2 Baminercept (LT-β Receptor Fusion Protein) Inter-

vention Methodology

Baminercept is a fusion protein lymphotoxin-beta receptor (LT-βR), lymphotoxin is

known to have an important role in the initiation of lymphoid neogenesis alongside

TNF-α and IL-13. As it is available as a pharmaceutical for use in humans, Baminer-

cept is an attractive candidate therapy. Baminercept reached Phase II clinical trials

(U.S. Clinical Trial Identifier ‘NCT01552681’, https://clinicaltrials.gov/

ct2/show/NCT01552681) prior to termination due to lack of efficacy, therefore

we can predict a priori that Baminercept will not have a significant effect on FDC

population size, GC formation and general capacity to resolve TLT pathology.

https://clinicaltrials.gov/ct2/show/NCT01552681
https://clinicaltrials.gov/ct2/show/NCT01552681
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6.1.3 Anti-VLA4 Intervention Methodology

VLA-4 is expressed by lymphocytes and enables them to adhere to stromal cell

adhesion molecules. By modulating the Monte Carlo-sampled parameter value, it is

possible to emulate a VLA-4 blockade by reducing expression levels. Lymphocytes

that are not bound to stroma cannot stimulate it to differentiate, and therefore it is

plausible that reducing stroma-lymphocyte cross-talk may help reduce acute TLT

pathology and as such anti-VLA4 was chosen as our third candidate intervention.

6.1.4 Combination and Time-Delayed Interventions

Combination therapies can be simulated by enabling multiple interventions simul-

taneously. By incorporating a dose start time, delayed interventions are possible,

i.e. only beginning the therapeutic intervention after 5 days of untreated disease

pathology.

6.1.5 Model Parameterisation for Interventions

The following figure (6.2) provides a list of the additional parameters created to

model the role of anti-TNF and anti-VLA4, and the values used that correspond

to the qualitative descriptors of dose used in Figure 6.1. Note that implementation

of anti-LTβ (baminercept) does not depend on new parameters, but modulates the

existing parameter, ‘inflammationLevel ’. Simulation initial conditions and parame-

terisation remain at the baseline levels as defined in Appendix B for all interventions.

Figure 6.2: Table of therapeutic intervention-related parameters for biologics anti-
TNF, anti-VLA4 (natalizumab), and anti-LTβ (baminercept)
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6.2 Clustering and Stratification using Kohonen

Networks and the Unified Distance Matrix

The Kohonen map in Figure 6.3 shows all simulation results described in the table

from Figure 6.1 following dimensionality reduction with 1) all available data and 2)

only normalised stromal ratios utilised. The area of the pie chart drawn within each

node is directly proportional to the number of simulation results placed at that node.

Simulation results with the same colours (and therefore interventions) will tend to

naturally cluster together as they share latent properties. Note that the key metric

for interpreting simulation responses across different interventions is observation of

simulation runs from each intervention stratifying into separate regions within the

Kohonen network, along with observation of surrogate measures of disease severity

and stromal cell populations within those regions.

Figure 6.3: Kohonen Map (Self-organising Map) showing all simulated interventions
clustered into a 64 node input layer arranged as an 8x8 hexagonal grid using 500
iterations and a Gaussian neighbourhood, repeated with all stromal phenotypic
data (Left) and only relative data, such as FRC-to-FDC ratio (Right). Clustering
is more efficient when data are restricted to relative attributes, as including the
additional parameters such as absolute cell numbers for each phenotype (in which
the total varies in every simulation run) requires more parameters associated with
each experiment to be effectively clustered by the artificial neural network. The
data and neural network applied in these two maps are identical.



CHAPTER 6. IN SILICO THERAPEUTIC INTERVENTIONS AND TLT 217

6.2.1 Model Outputs Observed

Model outputs observed in this chapter are the absolute and relative population sizes

of S1 (stromal progenitor), S2 (localised precursor), S3 (FRC-like), and S4 (FDC-

like) stromal cells. The principal output providing a surrogate disease activity is

the population of FDC-like cells, as these are required to support B-cell follicles and

germinal centre reactions. Therefore a reduction in the population size of FDC-like

cells is indicative of lower disease severity. These data are acquired by interrogating

the CDS data structure developed in Section 4.1 and described in Figure 4.8, the

contents of which are output every 12 hours of simulated time.

6.3 Summary of Interventions and Observed Ef-

fects

The Unified Distance Matrix, as introduced in Section 5.3, is calculated for the set

of all simulation runs for each therapeutic intervention (Figure 6.4). In Figure 6.4,

light grey depicts more closely spaced node vectors and dark grey indicate more

widely separated node vectors (that is, distance on the map is not the ’codebook

vector’ distance: the distance between nodes (hexagonal elements) is based on the

similarity within their underlying data). Thus, darker regions separating lighter

areas may therefore be seen as ‘extended’ boundaries between plotted data points,

implying greater separation if a set of samples is segregated by a dark grey line on

the hexagonal grid. In this sense, Kohonen maps derived from Kohonen networks are

essentially a non-linear generalisation of principal component analysis. The samples

generally well cluster into groups based on the intervention applied, despite being

an unsupervised analysis with relatively low sample size of n=10.

The mean difference in final stromal phenotype distribution between each of the

intervention strategies can be visualised using a horizontal bar graph, as illustrated

in Figure 6.5. It can clearly be seen that only high VLA-4 blockade can cause a
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Figure 6.4: Kohonen Map U-Matrix for all therapies, combination therapies and
delayed interventions simulated. The grey-scale tone map represents the Euclidean
distance between each simulation sample.

significant reduction in FDC population size. Lower-dose VLA-4 blockade appears

to increase the ratio of FRC to FDC populations, whereas high doses significantly

increases the population of localised stromal precursors that have not adopted an

inflammatory lymphoid phenotype (the LSP population, or state ‘S2’). TNF block-

ade reduces the FRC population size and the overall level of inflammation, however

anti-TNF therapy did not significantly affect FDC population size.

The ratio of FDC to FRC stromal cell population sizes could be a useful surrogate

measure of efficacy, as any decrease in this ratio would suggest an increase in FRCs

over FDCs – as is seen in VLA-4 blockade (Figure 6.5). To examine the change in

this ratio and the ratio of inflamed, activated stromal cells, a bar graph for each

of the three biologic therapies can be drawn examining the relative FDC and FRC

percentage population sizes (Figure 6.6). The most evident difference from baseline
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Figure 6.5: Horizontal cumulative bar graph showing the stromal cell phenotype
(Stromal Progenitor Cell, Localised Stromal Precursor, Fibroblastic Reticular Cell,
Follicular Dendritic Cell) distribution for each of five interventions vs baseline control
simulation.

outcomes is observed with the VLA-4 blockade, showing a large reduction in mean

FDC population size, a modest decrease in FRC population size and a significant

increase in the FRC to FDC ratio (together, this is indicative within the domain

under study of reduced GC activity and therefore disease severity, the proxy for

which in our simulation is the change in relative FDC population size).

Figure 6.6: Bar graph of FDC/FRC stroma percentages and ratio for TNFα, VLA-4
and Baminercept biologic therapeutics evaluated in silico.
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One platform model definition of inflammation is the percentage of stromal cells

that have begun to develop a differentiated lymphoid phenotype, as this number

is directly proportional to initial inflammation level/local TNF-α concentration –

described as an exponential decay ODE, each stromal cell in the network sequen-

tially evaluates whether it has adopted an inflammatory phenotype according to a

stochastic guard every 2 minute time-step. A bar chart was plotted using absolute

and normalised (relative) values for inflammation based on this definition, shown in

Figure 6.7. Such abstract notions of inflammation can be useful to identify effect

magnitudes and key changes in observables within abstract simulations, and provide

indications of what may be suitable for further exploration. For example, later in-

vestigations reveal that TNF blockade is rather ineffective, particularly compared to

VLA-4 blockade, despite the latter’s negligible effect on inflammation in the model

when viewed from this perspective.

Figure 6.7: Bar graph of mean (re)normalised inflammation for 5 interventions in
silico vs baseline control simulation. Inflammation is defined here as the means of the
normalised ratio (across all experiments) of lymphoid stroma (LSP, FRC, FDC) to
SPC (Stromal Progenitor Cells). The renormalisation is a standard rescaling of these
values after the mean per experiment has been computed, hence the renormalised
inflammation for TNF blockade is 0 because it was lowest. n=10 per sample

Feature-mapping by projecting component planes on clustered Kohonen maps
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produced using artificial neural networks permits an assessment of the magnitude

and relative effect size of different therapeutic interventions of single and dual bi-

ologic therapies. In simple terms, if simulation results including interventions are

well separated by some definition, and there is a clear relationship between the test

groups and the feature chosen for mapping in the component plane – such as rel-

ative FDC population size as a surrogate measure of clinical efficacy, it should be

very apparent by plotting feature maps comparing all of the interventions against

baseline and each other. Interpreting these data can present difficulty or a learning

curve initially due to the densely concentrated information spread over many charts.

There is a clear correlation between unsupervised clusters, the applied intervention

and the value of the projected component - percentage of stroma with an FDC phe-

notype at the end of each simulation run. In the case of Figure 6.8, there is a clear

relationship between anti-VLA4 therapeutic intervention and lower FDC population

sizes - demonstrated by the overlaid heat-map illustrating the dose-dependent role

of anti-VLA4 in decreasing the FDC population size. It is worth noting that while

we know the absolute change in phenotype distribution is relatively small (from

Figure 6.6), it appears to be critical enough to prevent the formation of densely

aggregated TLT structures – that is, a relatively small deviation from homeostasis

is responsible for the resulting dysregulation and autoimmune processes.

The Kohonen map shown in Figure 6.9 shows the same data points projected

against FRC population size, with a very approximately inverse relationship to the

FDC heat-map in Figure 6.8. Baminercept appears to notably reduce FRC popu-

lation size, whilst – as observed from Figure 6.6, anti-VLA4 slightly increases FRC

population size at the expense of the FDC population size, or alternatively put, bi-

ases lymphoid stromal develop to preferentially adopt an FRC-like stroma, or ‘T-cell

stroma’, phenotype.

When the simulation results are projected against the entire percentage of stroma

that had adopted a lymphoid phenotype at the simulation end – one definition of
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Figure 6.8: Kohonen Feature Map (Self-organising feature map) of all simulated
interventions clustered and visualised against the mean percentage of stroma per
run with an FDC phenotype at TEND. An unsupervised learning Kohonen network
with random map initialization, a 20x20 hexagonal grid and 1000 iterations pro-
duces a generalised non-linear equivalent to principal component analysis (PCA)
with projected output data (FDC population percent) as a grey-scale level. This
is an excellent technique for visualising high-dimensional data in low dimensions
while preserving the toplogy of the underlying data through use of competitive,
neighbourhood learning rather than traditional machine learning ‘error correction’
methodologies, n=10 per sample.

inflammation within the context of this model, we note that there is not much

variance between samples, however there is a notable drop with the combination

therapy intervention in which both anti-VLA4 and anti-TNF are given together.

A randomly initialised network of 10x10 nodes is used to create an FDC-like

stroma feature map in Figure 6.11 that clearly highlights the superior capacity of

anti-VLA4 treated samples to resist the development of FDC-like stromal networks

and the associated autoimmune response.
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Figure 6.9: Kohonen Feature Map (Self-organising feature map) of all simulated in-
terventions clustered and visualised against the mean FRC population size of stroma
with an FRC phenotype at TEND (population size in units of ‘stromal cell elements’:
individual occupied hexagonal grid elements, of which up to 24 elements stochas-
tically constitute one stromal cell, within the Cellular Data Structure described in
Section 4.7.2.
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Figure 6.10: Kohonen Feature Map (Self-organising feature map) of all simulated
interventions clustered and visualised against the percentage of stroma that has
adopted an inflamed lymphoid phenotype per run by TEND.
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Figure 6.11: Kohonen Feature Map (Self-organising feature map) of all simulated
interventions clustered and visualised against the mean percentage of stroma per
run with any lymphoid phenotype (LPC, FRC, FDC) at TEND. n=10 per sample.
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6.4 Evaluating Efficacy through Feature Mapping

using Unsupervised Machine Learning

To better understand how these approaches can be used to understand potential

treatment strategies, it will be helpful to look at a smaller number of sample types

such that the plots are easier to interpret, therefore we will now examine Anti-TNF

and Anti-VLA4 against the ‘control sample’ – baseline simulation results without

any therapeutic intervention – and determine the relative predicted effect and effi-

cacy.

6.4.1 Efficacy of TNF-Blockade in Reducing TLT Formation

and Associated Pathology

This section evaluates the anti-TNF therapeutic intervention with respect to the

simulation baseline (no therapeutic intervention). Firstly, we calculate the Unified

Distance Matrix codebook values for the control and experimental group, shown in

Figure 6.12. Clear boundaries between the baseline simulation samples and those

that include the anti-TNF therapy indicate that there is not sufficient aleatory un-

certainty to prevent the use of feature mapping of component planes in determining

efficacy from Kohonen maps.

Feature mapping the FDC-like and FRC-like stromal phenotype percentages

results in the maps shown in Figures 6.13 and 6.14 respectively. There is no statisti-

cally significant relationship between FDC-like population size in anti-TNF treated

samples as compared to baseline results. Anti-TNF therapy results in a modest de-

cline in FRC relative population size compared to baseline. This might suggest that

anti-TNF is a more suitable therapeutic in T-cell mediated autoimmunity, but has

negligible effect on FDC-like population and therefore the presence of B cell follicles

that could support GC reactions and the autoantibody response.
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Figure 6.12: TNF blockade vs baseline U-Matrix: clear boundaries between the
TNF blockade and the baseline control datasets indicate these samples can be used
to reliably predict efficacy of TNF blockade in TLT formation.

The TNF blockade has resulted in a notably lower overall percentage of inflamed

stromal cells, however those that do remain preferentially adopt FDC-like pheno-

types – this suggests that the tissue can still support substantial B-cell follicles with

GC reactions, despite the observed lower inflammation (also seen in Figure 6.7).

This can be seen in the inflammation feature plot of Figure 6.16 and the previously

defined FDC-FRC ratio metric of GC activity, and its inverse.
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Figure 6.13: Kohonen Feature Map (Self-organising feature map) of TNF blockade
vs baseline control, clustered and visualised against the mean percentage of stroma
per run with an FDC-like phenotype at TEND. A greater percentage of stromal
area has adopted an FDC-like phenotype during the TNF blockade compared to the
baseline control. n=10 per sample

Figure 6.14: Kohonen Feature Map (Self-organising feature map) of TNF blockade
vs baseline control, clustered and visualised against the mean percentage of stroma
per run with an FRC phenotype at TEND. A notably lower percentage of stromal
area has adopted an FRC phenotype during the TNF blockade compared to the
baseline control. n=10 per sample
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Figure 6.15: Kohonen Feature Map (Self-organising feature map) of TNF blockade
vs baseline control, clustered and visualised against the mean percentage of stroma
per run with an FRC phenotype at TEND. n=10

Figure 6.16: Kohonen Feature Map (Self-organising feature map) of TNF blockade
vs baseline control, clustered and visualised against the mean percentage of stroma
per run with an inflamed, lymphoid phenotype at TEND. n=10
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6.4.2 Efficacy of TNF-Blockade in Reducing TLT Formation

and Associated Pathology

This section evaluates the anti-VLA4 therapeutic intervention with respect to the

simulation baseline (no therapeutic intervention). We can re-calculate the codebook

vectors and ensure proper clustering of intervention and baseline samples. Feature

mapping of the percentage of stroma with A) a lymphoid phenotype and B) either an

FRC or FDC-like phenotype. The clear dose dependent clustering and relationship

to the inflammation surrogate measures utilised provides further evidence of efficacy

of anti-VLA4 treatment in Sjögren’s syndrome within the context of this in silico

model. There have been no clinical trials of the use of anti-VLA4 in Sjögren’s

syndrome, however we believe the mechanistic and in silico evidence arising from

the unsupervised neural (Kohonen) network analysis is sufficiently high to warrant

further studies of this biologic in vivo within the context of murine models.

The difference in absolute stromal population size can be seen in the boxplot in

Figure 6.17. The absolute stromal population size falls to a minute fraction of the

baseline median, despite maintaining the same distribution of stromal phenotype

population sizes. The Kohonen feature map illustrating the relationship between

Anti-VLA4 dose received and stromal inflammation level, shown in Figure 6.18,

clearly shows a dose-response relationship for the three dose values evaluated (‘an-

tiVLA4Level’ = 0.80, 0.96 and 0.99) in which higher anti-VLA4 doses result in

further reduction of FDC-like cells, and inflamed (FRC-like and FDC-like) stroma

generally. With three doses, it is not possible to determine a dose-response curve or

accurately assess the non-linearity of the dose-response effect, although the author

notes anecdotally that only high values of the parameter ‘antiVLA4Level’ had a

large impact on FDC level. It should also noted that the relationship between the

disease severity metric (FDC-like stroma population size) and actual disease sever-

ity is also unknown, which means a dose-response curve plotted with these metrics

would be of limited relevance.
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Figure 6.17: Boxplot of FDC-like distribution over multiple simulation runs com-
paring baseline behaviour to strong VLA-4 blockade. FDC-like stromal cells are
greatly reduced during VLA-4 blockade, with a long-tailed distribution and signifi-
cantly reduced median FDC-like stroma differentiation at TEND.
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Figure 6.18: Kohonen network feature map showing the percentage lymphoid stroma
(FRC or FDC-like) and percentage FDC-like stroma component planes for VLA-4
blockade interventions of three doses. n=10
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6.4.3 Importance of Timing in Therapy Efficacy for Anti-

TNF and Anti-VLA4

In order to evaluate the importance of timing when receiving anti-VLA4, Anti-TNF

or a combination therapy, the unified distance matrix is calculated for samples with

the intervention effective from T0 and from 5 days into the development process,

shown in Figure 6.19. Kohonen feature maps were created illustrating changes in the

FDC-like and FRC-like population sizes respectively in Figures 6.20 and 6.21. Given

the role of TNF-α in triggering the lymphoid neogenesis process, and the systems’

capacity for self-organisation, one may predict that delayed interventions of anti-

TNF serve no useful purpose in this context as tissue will already be established.

Anti-TNF was observed to have no effect as a delayed intervention. The likely re-

sponse to a delayed anti-VLA4 therapy is less straightforward as adhesion continues

to hold an important role in TLT pathology even when inflammatory markers are

not significant (in the context of TLT pathology in Sjögren’s syndrome. This may

not be the case in TLT pathologies in primarily T-cell mediated autoimmune dis-

orders such as multiple sclerosis or rheumatoid arthritis due to the supposed lesser

dependence on B cells and germinal centre reactions producing autoantibodies in

mediating tissue damage.
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Figure 6.19: TNF blockade at Days 0 and 5 vs Baseline U-Matrix: there is largely
clear stratification of TNF blockade at day 0 and the baseline control, however
the map cannot clearly segregate simulation runs in the data between the baseline
simulation and a TNF blockade introduced at Day 5 of the TLT development process.
That there is no significant difference between these (indeed several runs occupy the
same node with zero codebook distance) is indicative that blocking inflammatory
signals after inducement of the tissue cannot effectively reverse it. This is likely
to be the reason that results of anti-TNFa and baminercept therapies have been
disappointing (??), early intervention is key. The U-Matrix, however, represents
differences between all parameters of multi-dimensional data; there may be some
mechanistic or clinical effect that can be identified using feature maps with surrogate
outcomes as the component plane (see Figures 6.20 and 6.21.
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Figure 6.20: Kohonen Feature Map (Self-organising feature map) of TNF block-
ade at days 0 and 5 vs baseline control, clustered and visualised against the mean
percentage of stroma per run with an FDC-like phenotype at TEND. A greater
percentage of stromal area has adopted an FDC-like phenotype during the TNF
blockade at day 0 compared to the baseline control, and there does seem to be a
limited separation for a day 5 intervention, although it is much closer to baseline
FDC-like levels than if the blockade is initiated 5 days earlier. n=10.
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Figure 6.21: Kohonen Feature Map (Self-organising feature map) of TNF blockade
at days 0 and 5 vs baseline control, clustered and visualised against the mean per-
centage of stroma per run with an FRC phenotype at TEND. A greater percentage of
stromal area has adopted an FRC phenotype during baseline control than compared
to the TNF blockade at day 0, however there is significant spread in FRC values for
interventions initiated at day 5 with no meaningful distinction against the baseline
control values. n=10.
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6.5 Evaluating Efficacy of VLA-4 Blockade In Vivo

Following generation of the prediction that anti-VLA4 will reduce the population

of FDC-like stromal cells, and thus reduce the capacity for the tissue to support

B-cell follicles and germinal centre reactions, we collaborated with an external lab

to evaluate the efficacy of VLA-4 blockade in the murine model of inducible sub-

mandibular TLT. It can be seen in Figure 6.22 shows the exocrine gland of a mouse

treated at day 8 of the 15 day TLT formation process with A) phosphate buffer

solution (PBS, the control group) and B) anti-VLA4 antibody. It can clearly be

seen that there is major reduction in CD19+ cells (B cells) in the active sample as

compared to the control. Further in vivo experimentation is in progress to provide

additional validation of the model prediction, the results presented in this section

should be treated as preliminary. The intervention procedure is illustrated at the

top of Figure 6.22, with IHC micrograph of the murine salivary gland 15 days after

pathology induction, showing control (A) and intervention with anti-VLA4 at day

8 (B).

For comparative purposes, the NeoSim model output showing FRC-like (pink)

and FDC-like (teal) stromal cells at day 15, following anti-VLA4 treatment (an-

tiVLA4Level = 0.99 and antiVLA4TimePoint = 1152 time steps) is presented in

Figure 6.23. There is notable reduction in FDC-like stroma, and therefore a pro-

portional reduction in the presence of B-cell follicles.

A qualitative assessment of these in vivo and in silico results suggests that

the VLA-4 blockade is more successful in vivo than the in silico model predicts

when the intervention occurs at day 8. Reasons for this could be related to the

pharmacokinetic–pharmacodynamic properties of the antibody used, and also due

to the lack of plasticity in the stromal cell differentiation model employed in NeoSim.

That is, an FDC-like cell cannot ‘regress’ into an FRC-like phenotype under any cir-

cumstances in NeoSim, although it is possible that FDC-like stroma adopts an FRC-

like phenotype if insufficient stimulation is received. There is presently insufficient
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Figure 6.22: Murine model of Sjögren’s syndrome treated on day 8 of 15 with (A)
control, phosphate buffer solution (PBS), and (B) anti-VLA4 antibody, demon-
strating efficacy of VLA-4 blockade in reducing lymphoid follicles (Data from ?,
experimentation performed by Christopher Buckley et al). CD19+ (green) are B
cells, CD3+ (red) are T cells, DAPI (purple) stains all nucleic cells.
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Figure 6.23: NeoSim run treated on day 8 of 15 with (A) anti-VLA4 (0.96), and
(B) at baseline, demonstrating efficacy of anti-VLA4 in reducing lymphoid follicles.
Red is S3/FRC-like Stroma, Green is S4/FDC-like Stroma.

evidence in the domain to determine whether this is the case.

6.6 Summary and Discussion

The best outcome does appear to result from the simultaneous and early combi-

nation of anti-TNF and anti-VLA4 therapies, however we lack safety information

with regards to toxicology and complex non-linear effects when using multiple bio-

logic therapies together, which could potentially result in severe immunosuppression.

Anti-VLA4 alone is used in the treatment of irritible bowel disease (as natalizumab)

and as such is known to have a reasonable safety profile. Anti-VLA4 has distin-

guished itself as a candidate therapy for the treatment of TLT pathology in Sjögren’s

syndrome, a model prediction with preliminary in vivo confirmation. Anti-VLA4

appears to result in a reduction in the relative population size of FDC-like stromal

cells and an increase in FRC-like stromal cell population size. The use of Koho-

nen networks, U-Matrices and Feature Mapping/Component Plane Projection are

found to be valuable tools in the analysis of higher-dimensional simulation result

data, based on the highly preliminary analysis contained within this chapter using

relatively small sample sizes.
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Kohonen networks proved to be a valuable means of visualising the change in

efficacy surrogate as dosage and intervention time-points were varied. Kohonen

networks have received little attention in biomedical science or pharmacology, how-

ever in ? they were used to visualise latent structures in pharmaceutical prepara-

tions, and the authors found that latent properties ‘were clearly visualized by self-

organising feature maps’, and that Kohonen networks successfully clustered variables

of interest into similar groups.

Future developments with regard to this technique include identifying latent

classes of individuals based on their similarity, permitting clustering and classifica-

tion based on the unique stochastic pathology of the model system, identifying latent

properties such as disease severity through the use of disease surrogates. The use of

Kohonen networks may offer an improvement over traditional means of evaluating

the extent of the role of aleatory uncertainty has on system dynamics. Larger sam-

ple sizes, permitted through the availability of increased computational resources,

will offer improved statistical power and potentially more nuanced clustering and

sample stratification using U-Matrices.

Preliminary in vivo results validating the prediction that VLA-4 blockade is a

potentially viable therapeutic intervention in Sjögren’s syndrome, indicate that anti-

VLA4 is indeed capable of significantly reducing the presence of B-cell follicular

structures and has the potential to reduce disease activity. Further in vivo inves-

tigation is needed to assess the extent to which this occurs as compared to other

biologic therapies recently identified as potentially ameliorating Sjögren’s syndrome,

such as rituximab (anti-CD20) (?).



Chapter 7

Discussion

The thesis has presented the development of ‘NeoSim’ by the present author. NeoSim

is a hybridised complex systems model and simulation that successfully reproduces

lymphocyte and stromal dynamics over a 15 day induction and tissue formation

process. NeoSim provides a useful tool in quantitative systems pharmacology for

the evaluation of various therapeutics for the treatment of TLT pathology and asso-

ciated immune disorders: NeoSim comprises eight ‘sub-models’ including ordinary

and partial differential equations, Markov chains, formal grammar, and other mod-

elling techniques. The model is made comprehensible through use of the hybridisa-

tion schema notation developed in Chapter 4, and was successfully integrated into

a software simulation tool. NeoSim has qualitatively reproduced clinical trial results

with regard to anti-TNF and baminercept treatment, and provides strong theoretical

evidence in support of anti-VLA4 biologics as an effective therapeutic strategy to

disrupt the formation process. Furthermore, in vivo experimentation has validated

that anti-VLA4 does reduce inflammatory activity and TLT formation in an acute

murine model of Sjögren’s syndrome, warranting further investigation due to the lack

of current therapies in treating this disease.

This thesis began with the development of methods for emulating techniques in

experimental biology, and these were applied in a case study to a pre-existing agent-

based simulation of Peyer’s patch formation. Following this, the focus has been upon

TLT formation and potential means of disrupting this process. Therefore a biological

241
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domain model describing the state of the art, best understanding of TLT formation

was compiled, using the UML and additional modelling tools, in collaboration with

domain experts and opinion leaders; this model was then translated into a Platform-

Independent model with a formal specification and Simulation Platform written in

Java. Finally, three candidate biologic therapeutics were evaluated for their efficacy

in reducing FDC stroma population size with various dosing regimes and several

predictions regarding TLT pathology and its treatments have been made.

A common rhetoric is that models ought to be made as simple as possible, but no

simpler. This is not necessarily true of modelling methodology itself: it is important

that the implementation of a model and its means of analysis are sufficiently com-

plex to enable us to answer questions that are asked of the model. By determining

the most appropriate representation for each aspect of the model individually, we

can ensure that all abstractions made are for the sake of simplifying the biological

domain to improve model usefulness, and not merely due to constraints placed on

the system by the chosen modelling methodology. For instance, the model presented

in Chapters 3 and 4 is very simple in some sense – it comprises three cell types, two

diffusive chemokines, and a handful of intercellular signals. However, the imple-

mentation combines agent-based modelling with Markov chains, cellular automata,

generative grammars, and ordinary/partial differential equations.

The development of a ‘hybrid modelling paradigm’ that formalised the hybridis-

ation of different computational and mathematical modelling techniques enables ab-

straction for the purpose of increasing domain simplicity to improving model out-

comes, and reduce the need to utilise abstraction as a means of increasing simulation

tractability and feasibility at the cost of granularity at scales of interest and the ca-

pacity of models to answer the questions we wish to ask of them.

5 principle thesis aims were outlined in Section 1.5, these are re-produced below:

1. Derive a hypothesis-driven model of tertiary lymphoid tissue (TLT) formation

during autoimmune disease for use as a case study in applying the result of
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aims 2 and 3 below.

2. Development of a schema and novel paradigm for developing a highly integrated

hybrid multiscale model.

3. Development of improved methods for visualising simulation outputs that are

analogous to those utilised in experimental biology.

4. Determine the veracity of the model hypothesis describing the minimum re-

quirements for TLT formation.

5. Utilize the TLT formation model to evaluate the efficacy of therapeutic inter-

ventions for Sjögren’s syndrome in silico.

Chapters 3, 4 and 5 taken together satisfy aim 1 through the production of a soft-

ware TLT simulator (termed ‘NeoSim’). Chapter 4 satisfies aim 2 in providing clear

descriptions of complex hybrid models. Aim 3 was met by the case study in Chapter

2 on the emulation of experimental techniques including flow cytometry and gene

expression analysis. Aim 4 is met by virtue of the development of a functional sim-

ulation of TLT formation that confirms the veracity of our minimum requirements

hypothesis. Aim 5 is satisfied by the substance of Chapter 6, in which five inter-

vention strategies with three biologic therapeutics were evaluated, and one of those

candidates, anti-VLA4, stood out as a particularly promising therapy with respect to

efficacy in resolving TLT formation. This prediction was validated through prelimi-

nary in vivo investigation of anti-VLA4 in a murine model of Sjögren’s syndrome.

Well-defined multi-scale models will have great capacity for capturing complex dis-

ease processes, ensuring every element of the model is appropriately captured without

compromise due to constraints in the modelling methodology employed. This has im-

portant applications in developing models that can aid in understanding pathophysi-

ology, and furthermore, evaluate the efficacy of therapeutic intervention strategies –

both known and those predicted by the model. There is therefore great potential with

the hybrid model paradigm to improve and accelerate the drug development process.

This aspect is explored in Chapter 6, which replicates the results found in existing
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Figure 7.1: This figure illustrates advancements made in applying the CoSMoS
framework as shown in Fig 1.13 to modelling complex biological systems, in-
corporating large-scale model hybridisation and experimental technique emula-
tion/visualisation. The framework consists of the iterative process of Domain-
Platform-Simulation-Results modelling.

clinical trials, and proposes untested therapeutics that show a significant improve-

ment over current therapies in Sjögren’s syndrome through modulation of tertiary

lymphoid tissue morphology and structure.

7.1 Summary of Contributions

This section briefly summarises the contributions made to the field of complex sys-

tems modelling in immunology and quantitative systems pharmacology as a result

of the endeavours described within this thesis.

The CoSMoS modelling framework and supporting tools were presented in Fig-

ure 1.13. This process has been extended to include the additional visualisation,

analysis and hybridisation tools and techniques that have been developed during
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the production of NeoSim and this thesis; this is presented in Figure 7.1. The ovals

show tools and techniques used to support the utilisation of this framework dur-

ing biological model development: i) describing biological systems using the unified

modelling language (?), ii) describing the evidence base and providing an argumen-

tation structure that the model is fit for purpose using GSN (?) with Artoo (?),

iii) statistical analysis of simulation results using the SPARTAN package (?) in R,

iv) ODE/Kinetic model parameter sampling using ASPASIA (Dyson, et al. unpub-

lished), v) model hybridisation through deconstruction of the model into component

entities and reconstruction using the most applicable technique for that component

in isolation (Chapter 4), vi) defining and developing model outputs using the hybridi-

sation schema to combine data structures (Section 4.8), vii) emulating experimental

techniques within the simulation platform and performing bioinformatics analysis

of model outputs at the results model process stage (Chapter 2 and ?), and vii)

applying Kohonen networks and other deep learning strategies to evaluate complex

simulation results and assess the effect of interventions such as efficacy evaluation

for therapeutic agents. Contributions resulting from work contained in this thesis

are highlighted in red in Figure 7.1.

7.1.1 Visualisation and Machine Learning in Bottom-Up

Simulation Analysis

Models and simulations of complex biological systems are becoming increasingly

sophisticated, and with the generation of ever more ‘omics’ data, the capacity for

simulations to develop and test hypothesis in silico is ever-growing. However, the

growth of computational resources and data availability has significantly outpaced

the development of modelling methodologies and analysis techniques that are ca-

pable of maximally leveraging these resources. We present strategies for combining

models that capture phenomena on different scales and at various levels of granular-

ity into integrated ‘overarching’ models that can make effective use of computational

resources. Furthermore, by taking inspiration from experimental biology, to develop
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techniques for effective interrogation of the vastly complex ‘results models’ that

modern simulations produce, and to improve the communicability of in silico mod-

els across multidisciplinary teams of computer scientists, engineers, biologists and

clinicians, such that their results can achieve maximum impact. Visualisation is an

important aid for both model analysis, and model communication – the importance

of the latter cannot be understated – biological models presented using arcane sta-

tistical analyses and obtuse methodologies are unlikely to be fully understood by

opinion leaders outside of computational modelling fields (i.e. computer science),

increasing the likelihood that important results and observations may go unnoticed,

Chapter 2 therefore proposes a standard for models being effectively communicable

as well as being demonstrably fit-for-purpose and addressing relevant, well-defined

research questions.

The utilisation of machine learning applied to high-dimensional biological data

including sources such as emulated flow cytometry and gene expression analysis

permits a more formally grounded link between the results model and the domain

model. By transforming simulation results into a structure ‘homomorphic’ to those

used in experimental biology. Due to the large number of simulation runs and

data points involved in these types of stochastic simulation, interpreting FACS or

gene expression data additionally requires the integration of data science techniques

once the results have been generated in order to fully interpret the model. Koho-

nen networks have presented themselves as a viable means of stratifying simulation

results according intervention-induced therapy, utilising Composite Planes to map

clustered simulation data to simulation outputs (e.g. FDC population size change

as a surrogate for GC reactions and level of auto-Ab response).

7.1.2 Tertiary Lymphoid Tissues: Formation and Thera-

peutic Interventions

Our hypothesis stated that TLT formation occurs as a ‘self-organising’ emergent

structure in Sjögren’s syndrome following priming of mesenchymal stroma due to
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the presence inflammatory cytokines IL-13 and TNFα, mediated via two differential

feedback loops of T and B chemokine expression induction, lymphocyte migration

and further stimulation by T and B cells, causing development of lymphoid stromal

phenotypes from tissue-resident progenitors. This was determined to be consistent

insomuch that the cellular dynamics described in Chapter 3, when implemented as an

executable simulation as described in Chapter 4, reproduced the 15-day development

process. We consider this to be a powerful means of testing the veracity of hypotheses

that cannot currently be tested with the best available technology. In addition to

veracity confirmation, and reproduction of the negative results in clinical trials of

efficacy of baminercept and anti-TNF in treating Sjögren’s syndrome, predictions

regarding unknown aspects of the domain can be tested experimentally using in

vivo disease models — such as the efficacy of anti-VLA4 therapy in resolving TLT

pathology based on in silico experimentation, and for which in vivo experiments are

currently underway to evaluate this.

Several inferences and predictions can be made based on the in silico therapeutic

interventions applied to NeoSim. Anti-VLA4 presents itself as a potentially viable

candidate for the treatment of TLT pathology in Sjögren’s syndrome, showing a sig-

nificantly greater reduction in FDC population size by reducing lymphocyte-stroma

cross-talk, which we hypothesise restricts the capacity of the pathophysiological

system to develop a functional auto-antibody response and therefore cause tissue

damage. Neither baminercept or anti-TNF presented themselves as viable candi-

dates due to lack of evidence of efficacy, a finding supported by clinical trials. We

found that delayed treatment of anti-VLA4 can still provide a significant benefit,

especially at higher doses. There is a strong dose-response relationship in terms of

the relationship between anti-VLA4 dose and the resulting reduction in FDC-like

stroma. It was found that adding anti-TNF to anti-VLA4 therapy in silico provides

a minor additional benefit, most likely by suppressing the total number of stromal

cells available to adopt a lymphoid phenotype. Toxicology studies may be neces-

sary to determine the safety profile of anti-VLA4 biologics at higher doses, and in
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particular when they are used in combination with anti-TNF, as potent immuno-

suppression with clinical manifestation of symptoms related to immunodeficiency

would be a significant possibility.Anti-TNF therapy provides no meaningful bene-

fit in isolation unless at unrealistically high doses, given at the same time as TLT

induction. No reduction in FDC population was found in delayed interventions for

anti-TNF.

NeoSim is constructed from a theoretical model of TLT formation, as described in

Chapter 3, which itself is derived from limited qPCR and flow cytometry analysis of

in vitro human mesenchymal stem cells stimulated with inflammatory cytokines and

lymphocytes. NeoSim therefore effectively demonstrates that the veracity of theo-

retical models of pathophysiological processes can be determined with unidentifiable

models that utilise ‘sloppy’ parameters. The in vivo confirmation of the prediction

that anti-VLA4 ablates B-cell follicular structures additionally demonstrates that

such models can also have significant predictive capacity.

7.1.3 Model Hybridisation: Extending the Limitations of

Simulation

Presently, limited model hybridisation has taken place in which agent-based mod-

els and differential equation systems have been integrated explicitly (?), however

this has been on a smaller scale and without any formalised means of describ-

ing the interconnections between each ‘sub-model’ that comprise the overarching

model. With the hybrid models described in ?, ?, and ?, for example, hybridisa-

tion is applied along compartmental lines - that is, a model may contain multiple

tissue compartments, and each may be modelled using a different mathematical

technique – whereas in the hybridisation framework proposed within this thesis,

hybridisation occurs based on the ‘de-composition’ of the domain model into its

constituent components separately described using the most appropriate technique

given our research questions. As the complexity of hybridisation increases, maintain-

ing the communicability of models will require the establishment of such a formalised
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methodology. The motivation for the work underlying this thesis is therefore funda-

mentally to ensure that model development and analysis techniques keep pace with

improvements in data availability and computational resources, and that one can

continue to ask complex questions of complex systems, by enabling multi-scale hy-

brid model development that utilises an arbitrarily large number of methodologies

to construct the model, while maintaining the ability to communicate the model

platform in terms of each individual model and its connections to others.

Figure 7.2: Figure describing hybridisation in the tuberculosis model described in ?.
Whilst the diagram used here successfully communicates the two spatial compart-
ments and the mathematics that connect them, it does not clearly delineate separate
models in terms of data flowing between the ABM and ODE-system. Figure taken
from ?.

This thesis addressed the need for a flexible schema that permits the hybridis-

ation of multiple biological ‘sub-models’ constructed using various modelling tech-

niques, which may address phenomena occurring on different time and length scales,

into an integrated model and executable simulation. Furthermore, we provide strate-
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Figure 7.3: Figure describing hybridisation in the tuberculosis model described in
?. This diagram is much simpler as ABM specifics can be described elsewhere using
the UML but communicates the same process of positive feedback driving disease
pathology.

gies for the development of more sophisticated results models with strong links to the

domain, through the production of novel simulation outputs that are grounded in —

but go beyond — the methodologies of experimental biology. Through the combi-

nation of novel hybridised, multiscale models and results analogous to experimental

methods, the ultimate aim is to derive a robust framework for the development of

in silico models of highly complex biological phenomena and disease processes that

address processes occurring from the molecular to the tissue level; such models then

present themselves as useful scientific tools in medicine and pharmacology for the

evaluation of intervention strategies against complex disease processes.
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7.1.4 Generalisation of Methodologies Developed

This thesis has only been concerned with the application of the methodologies dis-

cussed within the biological domain. The quantification and visualisation techniques

developed in Chapter 2 are only applicable to models ultimately grounded in results

from experimental biology or biomedical sciences. However, the concept of emulating

experimental methods from the domain-under-study to improve model communica-

bility and to derive further insights into model dynamics, should extend to other

domains. For example, molecular dynamics simulations could theoretically be ex-

tended to produce outputs utilised in physical chemistry such as nuclear magnetic

resonance and crystallography. Such considerations are beyond the scope of this

thesis.

Regarding the hybrid modelling paradigm developed in Chapter 4, this approach

to modelling easily generalises in a domain-agnostic manner to any system suffi-

ciently complex to warrant the integration of varied mathematical and computa-

tional techniques in order to achieve a fit-for-purpose description of the domain. In-

deed, the generalised schema introduced in Figure 4.2 (Section sec:hybridparadigm)

is domain-agnostic and applicable to any domain for which such complex-systems

modelling is deemed an appropriate tool.

NeoSim itself is specifically intended to describe the formation process of TLT in

Sjögren’s syndrome, with the intention of determining the veracity of the theory of

TLT formation derived in Chapter 3, and to investigate potential avenues for thera-

peutic intervention that can disrupt this formation process as explored in Chapter 6.

NeoSim is designed to describe the process in a theoretical sense, and not to gener-

alise to specific patients. Such in silico experimental capacity would be dependent

upon data availability across a large cohort of patients on a scale that is presently

not feasible. The methodologies applied to develop NeoSim, however, generalise to

any pathophysiological process for which consistent theories and hypotheses can be

derived, even if data available for parameterisation are relatively sparse.
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7.2 Future Developments and Further Experimen-

tation

The NeoSim software implementation will be made publicly available at the York

Computational Immunology Lab website at www.york.ac.uk/ycil. Two key

future developments, and a natural progression from the work described within

this thesis, are software tools related to the modelling of therapeutic intervention

strategy efficacy and to the production of data structures and outputs conducive to

analysis from a bioinformatics, or ’top-down’ perspective. Firstly, as illustrated in

Figure 7.4, a proposed, domain-specific software tool-kit that can utilise reflection

to determine the molecular processes included within a model, then produce and

evaluate therapeutic interventions that provide appropriate agonistic or antagonistic

responses. An informal proposed schema is presented in Figure 7.4

Figure 7.4: Proposed software module for automated incorporation of interven-
tion strategies into hybrid complex systems-based models of different diseases un-
der study. Automated incorporation of intervention strategies into hybrid complex
systems-based models and simulations of any pathology of interest.

Secondly, we propose that the collection of methods and scripts utilised in Chap-

ter 2 be developed and refined into a broad toolkit that permits in situ visualisation

and emulation of experimental techniques. Outputs from this would be useful in

providing a bridge between the abstract statistical evaluation of effect magnitudes

www.york.ac.uk/ycil
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measured by Spartan, and the ‘wet-laboratory’ investigation that led to ’top-down’

high-dimensionality data collection. This is depicted in Figure 7.5.
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Figure 7.5: Proposed software toolkit for automated bioinformatic data structure
generation and high-throughput image analysis. Note that parameterisation of the
‘Simulation’ track of this figure is dependent upon the specific modelling methodol-
ogy and data availability for the domain-under-study.



Appendices

255



Appendix A

Model Summary

This section contains a concise summary of NeoSim, a Platform Model describing

the minimum requirements for TLT formation in Sjögren’s syndrome. The specifics

of each sub-model, including the relative time-scales they operate on, are described

in each model’s section herein.

A.1 Hybrid Model Summary

This section summarises the hybrid nature of the TLT formation platform model de-

veloped in Chapter 4, showing how model components are integrated at a schematic

level, and the integrated class diagram of the resulting software simulation.

256
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Figure A.1: Simplified hybridisation scheme demonstrating how each of the seven
sub-models that comprise the platform model share information to represent TLT
development as a whole. Underlined numbers indicate the number of time-steps
that occur within that sub-model with respect to other sub-models, relative to the
agent-based model, labelled ‘1/1’. For example, the PDE iterates 100 times while
the remainder of the system is held quasi-static, and as such is labelled ‘100/1’.
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A.2 TLT Platform Model State Machines

These UML state machine diagrams describe the behaviour of T cells, B cells and

Stroma. For further exposition on the T and B cell state machines the reader is

referred to their full description in Section 4.3.1.1. For the stromal cell, which

is implemented in the simulator within the context of an agent-based model, but

formally defined as a Markov model, the reader is referred to section 4.7.3.

Figure A.3: UML Finite State Machine Platform Model diagram describing the role
of T lymphocytes in TLT formation.



APPENDIX A. MODEL SUMMARY 260

Figure A.4: UML Finite State Machine Platform Model diagram describing the role
of B lymphocytes in TLT formation.
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Figure A.5: UML Finite State Machine Platform Model diagram describing the role
of stromal precursor cells in TLT formation, including differentiation into FRC-like
and FDC-like phenotypes.
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A.2.1 Stromal Cell Markov Model Description

The Markov Model defining the Platform description of Stromal Cells is illustrated

in A.6

The table below (A.1) defines the parameters used in this Markov Model.

Parameter
Name

Value
Hybridised

With
Monte Carlo Method

Triggered By
Event

Time-Scale

p( d[LSP] ) I0e
−λ∆T CA Stromal CA evaluating ODE 10 Minutes

p( d[FRC] ) 0.003 ABM + CA T-Cell adhered to Stroma 2 Minutes
p( d[FDC] ) 0.000001 ABM + CA B-Cell adhered to Stroma 2 Minutes
1 - p(canDifferentiate) 0.2 N/A Initiated at T=0 Once

Table A.1: Table defining the stromal differentiation Markov model probabilities
and the sub-model with which each is hybridised. Interactions with the ABM and
CA dictate when transitions will be evaluated using Monte Carlo methods for each

stromal cell within the simulation model. The numerical probabilities provided
were determined through calibration.
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A.3 Chemokine Diffusion

Discretised chemokine diffusion equation (equation A.1 as implemented for T-cell

chemokines (CCL19) and B-cell chemokines (CXCL13). The diffusion of chemokines

operates on a different time-scale to the T cell, B cell and Stromal cell agents, the

rest of the model is treated as quasi-static while the diffusion equation is iterated 100

times, to account for the approximately two orders of magnitude difference between

molecular and cellular motion:

φx,y(t+ 1) = (((φx,y(t)−
6D∆t · φx,y(t)

∆x2
) +

D∆t

∆x2

i=6∑
i=1

φi(t))− φi(t)e−λ∆t) + s (A.1)

φx,y(t + 1) is the chemokine concentration at point (x, y) at the following time-

step from φx,y(t). ∆t is the difference in time between t and t+ 1. D is the diffusion

co-efficient, and λ is the decay constant. The secretion rate of new chemokines

by stromal cells is defined as s, the value is dependent on the number of contacts

each stromal cell has had with lymphocytes and is defined in the state machine

diagrams in Section A.2, defined as cxcl13ExpressionLevel and tccaExpressionLevel

for B cell and T cell chemokines respectively. This discretised equation operates on

a 40x40 hexagonally-packed square grid, the ’6’ thus refers to the six boundaries

each hexagon shares with its neighbours. The grid is non-toroidal, and chemokines

that diffuse beyond the grid are removed from the simulation.

A.4 Lymphocyte Chemokine Receptor Internali-

sation

B and T cells express receptors for CXCL13 and CCL19, termed CXCR5 and CCR7

respectively. When chemokines bind to these receptors, they cause the lympho-

cytes to move in the direction of the chemokine gradient, and the receptor-ligand

(CXCL13-CXCR5 and CCL19-CCR7) is internalised into the cell. This section
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describes the discretised equations implemented on T and B cells to model and sim-

ulate this phenomenon. For the ODE derivation and detailed exposition the reader

is referred to Section 4.5.

Equation A.2 describes the change in chemokine receptor expression levels on

lymphocytes. r(t) is the cell-surface expression level of chemokine at time t. ψ

is the number of receptors that have been internalised and degraded, σ is the re-

ceptor quantity recycled, s represents the addition of chemokine receptors to the

intracellular pool due to the cell’s production of new receptors. Receptor values

are feature-scaled (normalised to the range [0,1]) where 0 is no receptors and 1 is

the maximum possible number of receptors. This permits parameterisation in the

absence of biological data measuring precise cell-surface numbers of receptors. n is a

scaling parameter to modulate the rate of internalisation by calibration to observed

phenomena in vivo due to lack of data regarding the rate of recycling, and g is a

random number in the range [0,1] sampled from a Gaussian distribution using the

Mersenne twister (?) psuedo-random number generator. q is the local chemokine

level, equal to φx,y(t) at the location (x, y) of the T or B cell, calculated from the

chemokine diffusion equation described in Section A.3.

r(t+ 1) =

(
r(t)− ψgnqr(t)

Q

)
+ σ + S (A.2)

Internalised chemokine needs to be removed from the environment. Equation A.1

handles the secretion, diffusion and decay of chemokine, but not loss due to inter-

nalisation. This is instead achieved by determining the total number of chemokine

molecules that have been internalised, I, shown in Equation A.3:

I = ψ
gnqr(t)

Q
+ σ

gnqr(t)

Q
(A.3)

This quantity is then removed from the hexagonally-packed square grid by per-

forming the calculation described in equation A.4 below. Let c be the change in

chemokine level due to diffusion and stromal cell secretion, defined by the PDE
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in Section 4.4. This effectively couples the receptor internalisation and recycling

ODE-derived model with the chemokine secretion, diffusion and decay PDE-derived

model described above in Section A.3

q(t+ 1, x, y) = q(t, x, y) + c− I (A.4)

A.5 Chemotaxis Model

When a T or B cell is in the state ‘currentlyChemotactic’ as described in Figures A.3

and A.4, the random motion is biased towards the direction of the gradient of CCL19

(T Cell chemokine) and CXCL13 (B cell chemokine), respectively. This is achieved

by constructing a probability distribution from the chemokine gradient, such that the

probability a cell will move in one of the six directions of the underlying hexagonal

grid that contains chemokine concentration data is defined in equation A.5

p(Cell moves up) = cup/C

p(Cell moves down) = cdown/C

p(Cell moves upper left) = cupperleft/C

p(Cell moves upper right) = cupperright/C

p(Cell moves lower left) = clowerleft/C

p(Cell moves lower right) = clowerright/C

(A.5)

Where cup is the concentration of chemokine in the hexagon above the hexagonal

element the cell currently lies in, cdown is the concentration of the hexagonal element

below, and so on. As lymphocytes exist on their own, continuous space grid, once the

general direction based on the chemokine concentration has been defined, a specific

angle of motion needs to be determined. Each of the six directions contains a range

60 degrees (360/6), thus a random angle is selected between 0 and 60 degrees as

described in Figure A.7
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Figure A.7: Figure illustrating the selection of direction for continuous Lymphocytes
following determination of the discrete direction to move based on the hexagonal
grid that contains chemokine concentrations. The lymphocyte model entity selects
at random an angle in the 60 degree range of possible directions once a particular
hexagon has been selected through probabilistic sampling according to equation 4.1
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Model Parameters

This appendix details the Domain Model and Platform Model parameters, their

values, and sources.

B.1 Domain Model

This section summarises the parameters contained within the domain model.

Figure B.1: Table of identified Domain Model parameters.
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B.2 Platform Model

Figure B.2: Table of ‘System-wide’ parameters including those defining model initial
conditions.
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Figure B.3: Table of chemokine model-related parameters.
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Figure B.4: Table of stromal Cell-related parameters.
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Figure B.5: Table of lymphocyte-related parameters.
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B.2.1 Therapeutic Intervention Parameters

Figure B.6: Table of therapeutic intervention-related parameters for biologics anti-
TNF, anti-VLA4 (natalizumab), and anti-LTβ (baminercept).



References

K. Alden. Simulation and statistical techniques to explore lymphoid tissue organo-
genesis. PhD thesis, University of York, 2012a.

K. Alden. Simulation and statistical techniques to explore lymphoid tissue organo-
genesis. 2012b.

K. Alden, P. Andrews, J. Timmis, H. Veiga-Fernandes, and M. Coles. Towards
argument-driven validation of an in silico model of immune tissue organogenesis.
Artificial Immune Systems, pages 66–70, 2011.

K. Alden, M. Read, J. Timmis, P. Andrews, H. Veiga-Fernandes, and M. Coles.
spartan: A comprehensive tool for understanding uncertainty in simulations of
biological systems. Submitted to PLoS Computational Biology, 2012a.

K. Alden, J. Timmis, P. Andrews, H. Veiga-Fernandes, and M. Coles. Pairing
experimentation and computational modeling to understand the role of tissue
inducer cells in the development of lymphoid organs. Frontiers in Immunology, 3,
2012b.

K. Alden, M. Read, J. Timmis, P. S. Andrews, H. Veiga-Fernandes, and M. Coles.
Spartan: a comprehensive tool for understanding uncertainty in simulations of
biological systems. PLoS Comput Biol, 9(2):e1002916, 2013.

K. Alden, P. S. Andrews, F. A. Polack, H. Veiga-Fernandes, M. C. Coles, and J. Tim-
mis. Using argument notation to engineer biological simulations with increased
confidence. Journal of The Royal Society Interface, 12(104):20141059, 2015.

K. Alden, J. Timmis, P. Andrews, H. Veiga-Fernandes, and M. Coles. Extending and
applying spartan to perform temporal sensitivity analyses for predicting changes
in influential biological pathways in computational models. 2016.

C. D. Allen, T. Okada, H. L. Tang, and J. G. Cyster. Imaging of germinal center
selection events during affinity maturation. Science, 315(5811):528–531, 2007.

S. Allerheiligen. Next-generation model-based drug discovery and development:
quantitative and systems pharmacology. Clinical Pharmacology & Therapeutics,
88(1), 2010.

S. Allerheiligen. Impact of modeling and simulation: myth or fact? Clinical phar-
macology and therapeutics, 96(4):413–415, 2014.

F. Aloisi and R. Pujol-Borrell. Lymphoid neogenesis in chronic inflammatory dis-
eases. Nature Reviews Immunology, 6(3):205–217, 2006.

274



REFERENCES 275

P. W. Anderson et al. More is different. Science, 177(4047):393–396, 1972.

R. Anderson, R. May, and S. Gupta. Non-linear phenomena in hostparasite inter-
actions. Parasitology, 99(S1):S59–S79, 1989.

P. S. Andrews, F. Polack, A. T. Sampson, J. Timmis, L. Scott, and M. Coles. Simu-
lating biology: towards understanding what the simulation shows. In Proceedings
of the 2008 Workshop on Complex Systems Modelling and Simulation, York, UK,
pages 93–123, 2008.

P. S. Andrews, F. A. Polack, A. T. Sampson, S. Stepney, and J. Timmis. The
cosmos process version 0.1: A process for the modelling and simulation of complex
systems. University of York Technical Report YCS–2010, 453, 2010.

S. T. Arron, R. M. Ribeiro, A. Gettie, R. Bohm, J. Blanchard, J. Yu, A. S. Perelson,
D. D. Ho, and L. Zhang. Impact of thymectomy on the peripheral t cell pool in
rhesus macaques before and after infection with simian immunodeficiency virus.
European journal of immunology, 35(1):46–55, 2005.

M. Ashyraliyev, Y. Fomekong-Nanfack, J. A. Kaandorp, and J. G. Blom. Systems
biology: parameter estimation for biochemical models. Febs Journal, 276(4):886–
902, 2009.

S. Asmussen and P. W. Glynn. Stochastic simulation: algorithms and analysis,
volume 57. Springer Science & Business Media, 2007.

E. Astorri, M. Bombardieri, S. Gabba, M. Peakman, P. Pozzilli, and C. Pitzalis.
Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in
autoimmune nonobese diabetic mice: cellular and molecular characterization of
tertiary lymphoid structures in pancreatic islets. The Journal of Immunology, 185
(6):3359–3368, 2010.

G. S. Ayton, W. G. Noid, and G. A. Voth. Multiscale modeling of biomolecular
systems: in serial and in parallel. Current opinion in structural biology, 17(2):
192–198, 2007.

A. N. Baer, G. Noaiseh, A. Parke, A. Coca, T. Utset, M. C. Genovese, D. J. Wallace,
J. Mcnamara, K. Boyle, L. Keyes-elstein, et al. The clinical efficacy and safety
of baminercept, a lymphotoxin-beta receptor fusion protein, in primary sjögren’s
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