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Abstract 

The reduction of NOx, soot and other emissions in aero or industrial gas turbines are engage 

by the concept of new combustion system such as the lean premixed pre-vaporized system. 

Which brings with it several engineering solutions such as combustion instabilities, 

flashback and autoignition.  An experimental test rig named Sheffield Rapid Compression 

Machine (Shef-RCM) is designed to investigate the autoignition chemistry of alternative 

fuels relevant to gas turbine plant and to handle high boiling point long chain hydrocarbon 

fuels. 

The Shef-RCM incorporates a hydraulic stopping mechanism, piston release mechanism, an 

optimal crevice piston design and a reactor chamber is designed which utilises the direct 

test chamber method for easy admittance of fuels. The machine is pneumatically driven 

and hydraulically stopped. The novelty in the design of the Shef-RCM is the introduction of 

a piston release mechanism (brake) pneumatically operated use to hold the reactor piston 

in position at its bottom dead centre. 

A computational fluid dynamics study on crevice piston was undertaken to produce the 

best-optimized crevice piston head design that will suppress the roll-up vortex to enhances 

the homogeneity of the temperature field of  the reactor chamber. The simulation used a  2-

Dimensional computational moving mesh  axisymmetric in the commercial code of Ansys 

fluent.  The model adopted  for  this calculation was the laminar flow.  Appropriate choice 

of the model parameter was taken into consideration during the simulation to reduce 

errors caused by a poor mesh quality. These parametric studies examine the time step size 

and the mesh density, which was been deemed necessary for running the simulation to 

handle errors of negative cell volume. The parameters maintained for the model are a 

constant stroke length of 142 mm with a volume clearance height of 17 mm. Further 

optimisation of  a 282 mm3   crevice volume on the width resulted to five different crevice 

widths of 3 mm, 5 mm, 7mm, 9 mm and 12 mm respectively. The widths of the piston head 

crevice of 5mm gave a better result regarding the peak pressure profile and maintained a 

homogeneous temperature field at the end of the TDC at post compression time of about 

40ms. 

Performance characterization of the Shef-RCM, using inert gases, N-Heptane and Jet A-1 

showed that the experimental data obtained was highly reproducible and repeatable. The 

machine is vibration free, allows for fast compression, less than 35 ms, an obtainable 

compressed gas pressure of 22 bar.  The estimation of the compressed gas temperature at 

the top dead centre using numerical modelling was 698 K; the heat loss implemented in the 

model used an effective volume approach, which showed a perfect match for the model with 

experiment. 

Ignition delay time measurement for Jet A-1 are reported for low to intermediate 

temperatures regime (734 ≤ TC ≥ 815)K, compressed gas pressure, PC = 6 and 10 bar and 

equivalent ratios, ф= 0.5, 0.75 and 1.0 in air. Jet A-1 exhibited Arrhenius behaviour at 6 bar 

and 10 bar except for some suspected traces of NTC at  ф = 0.5,which needed to be fully 
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established. No evident of Negative Temperature Coefficients (NTC) behaviour at a higher 

pressure of 10 bar. The kinetic modelling conducted for Jet A-1 used Ranzi et al.[1] model 

with Dooley et al. [2] and Aachen[3]  surrogate mixture. At a compressed pressure of 6 bar, 

ф= 0.75, the model predicted a shorter ignition delay time and displayed a two stage ignition 

delay time for Jet A-1 fuel, and the model was in agreement with the experiment. The Shef-

RCM facility has also been used to measure the combustion behaviour of Banner-Solvent at 

low to intermediate temperature regime (718 ≤ TC ≥ 916) K  at compressed pressure, PC =  of 

6 and 10 bar, and equivalence ratios, ф= 0.5, 0.75 and 1.0 in  air. Various diluent mixtures 

were carried out to alter the end gas temperature, it was found that ignition delay within 

the temperature range of 718 – 916 K exhibited NTC behaviour at lean condition and 

stoichiometric. Banner-Solvent reacts faster compare to Jet A-1, and this showed some 

trend of Negative Temperature Coefficient behaviour at a compressed gas pressure of 6 bar. 

Experimental measurement of the ignition delay response of UCO-HEFA at low to 

intermediate temperature regime (680 ≤ TC ≥ 777) K at compressed gas pressure, PC =  6 and 

10 bar, and equivalence ratios, ф= 0.5, 0.75 and 1.0 in air was studied. The effects of 

temperature, pressure, and equivalence ratio and oxygen concentration on the ignition 

delay time was investigated. The overall reactivity of the three fuels showed that Banner-

Solvent had showed a higher reactivity than Jet A-1 and UCO-HEFA at 10 bar compressed 

gas pressure. At 6 bar compressed gas pressure, UCO-HEFA showed some signs of NTC 

behaviour.  The uncertainty for the three fuels was considered and this was seen to be 

within the limits compared in literature. The global correlation for Jet A-1 and UCO-HEFA 

were derived for both fuels. 
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Chapter 1.  Introduction 

1.0 Background Information 

The development of alternative fuels and diversification from conventional fossil fuels 

depends on the sustainability of the new fuels. Economic factors to consider are fuel cost, 

adapting to new technological advancements, and the related infrastructural changes.  

Environmental factors consist of greenhouse gas emissions, land use, and air and water 

quality. An alternative jet fuel must be readily available yet not result in the shortage of 

natural resources. Shortly, liquid hydrocarbon fuels will still dominate the transportation 

and aviation sector[4]. Alternative jet fuels such as synthetic fuels, biofuels, alcohol fuels, 

liquid hydrogen, etc. may combat greenhouse emissions[5], reduces fuel import 

dependency and ensure the security of supply and decrease costs for energy value.  They 

are most important sustainable fuel, looks promising and useful for limiting greenhouse 

gas emissions[6]. They are considered as ‘drop-in’ jet fuels and are potential alternative 

fuels in the near future.  These ‘drop-in’ are substituted for the conventional fossil fuels 

that could adequately replace them and requires no modification of the existing 

infrastructures. However, in this work, the ‘drop-in’ jet fuels are restricted to hydrocarbon-

carbon based ‘drop-in’ jet fuels that have energy content compared with the conventional 

jet fuels. 

Synthetic jet fuels derived from the Fischer-Tropsch (FT) process and non-synthetic and 

bio-jet fuels (HRJ) derived from biomass have good carbon emission gains compared 

toconventional jet fuels. However, if demand for biomass fuels increases there are worries 

that they will competefor farmland with food[7]. Governments and the international 

aviation community have instituted programsthat can produce sustainable drop-in 

synthetic jet fuels. An example is ‘Initiatives Towards Sustainable Kerosene for Aviation’ 

(ITAKA), which has produced a Synthetic Paraffin Kerosene (SPK) known as HEFA. This 

fuel has economic benefits as well as limiting or reducing the greenhouse gases (GHG)[8] 

emissions. The organisation also ensures that the drop-in fuels produced should be 

sustainable and can be made available for testing in the current aviation systems and 

during normal flight operations in Europe[8]. ITAKA has explored the possible production 
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route then based fuels on vegetable oils and fats from feedstock such as oil seeds, algae or 

used cooking oil  [9, 10]. 

1.1 Processing pathway 

Researchers have investigated the thermochemical (liquefaction, hydrotreating, 

pyrolysis), and enzymatic conversion technologies of alternative jet fuels. The 

thermochemical pathway is based on high-temperature oxygen gasification, developed by 

German scientist Fischer-Tropsch in the early 1900’s[11]. Synthetics jet fuels are derived 

from feedstock that comes from non-renewable fossil sources such as natural gas and coal 

(Synthetic fuels).  The feedstock is processed through gasification to produce hydrogen and 

carbon monoxide referred as the synthetic gas. These gases are then converted into liquid 

hydrocarbon through Fisher-Tropsch (FT) process. The FT process of fuel derived from 

natural gas is referred to as Gas-to-liquid (GTL), and that derived from coal is coal-to-liquid 

(CTL). 

Non-synthetic jet fuels are derived from renewable biological sources, such as crops, 

vegetable oil, animal fat  (biofuels)[12]. The most common synthetic jet fuel process is 

based on the Fisher–Tropsch (F–T)[13] and bio-derived hydro-processed renewable Jet 

(HRJ)[14]. The main routes are (1) hydrotreating processing of lipid (bio-jet fuel) and (2) 

synthetic process of natural gas or coal (synthetic jet fuels)[8]. Within the limit of this 

work, the only hydrocarbon-based jet fuels produced via hydroprocessing and Fischer-

Tropsch permitted by ASTM[15]  would be given further consideration. 

1.1.1 Hydroprocess  Fatty Acids. 

The oil from animals and plants are known as biomass oil and can be used as a  

hydrocarbon feedstock for the production of alternative jet fuels. Bio-jet fuels are produced 

through hydroprocessing of the biomass oil and are referred to as Hydroprocessed 

Renewable Jet (HRJ)[16]. The process eliminates the chemically bound oxygen and by the 

addition of hydrogen which gives a suitable molecular weight constituent for jet fuels. 

Biomass oil is made up of triglycerides. The fats are processed to fully saturated 

hydrocarbons by the addition of oxygen and double-carbon bonded with hydrogen. These 

hydrocarbons are then cracked and isomerised to produce normal, and isoparaffinic 
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hydrocarbons, which are the primaryconstituents of diesel and jet fuel. This method is 

combined with existing fossil fuel refining facilities and has similar costs to petroleum 

refining. The first work on hydroprocessing of biomass oil was done in  1986, which 

describes the reaction of soy oil with hydrogen using silica and alumina catalysis[17]. The 

fatty acid was then hydrocracked, to yield a straight chain hydrocarbon comparable to the 

conventional hydrocarbon fuels [18]. The processing of other feedstocks has also been 

reported for example rapeseed [19], cottonseed[20]. The HEFA SPK fuels produced from 

this process are similar to FT SPK, and it does not contain aromatics. Approval was given 

in 2011[15] for the use of HEFA SPK and blends of 50/50 petroleum-derived jet fuels [21]. 

HRJ composition depends on the feedstock, but they are mainly made up of iso-paraffins 

with a small percentage of normal paraffin, the carbon numbers range from C9-C16.  Figure 

1-1 shows the hydroprocessing of vegetable oil. The composition of hydroprocessed or 

Synthetic Paraffin Kerosene (SPK) and that of the conventionally refined fuels are 

different. They have a combination of two (normal and iso-) or three (normal, iso- and 

cyclo-) that constitute the primary structure of fuel. 

 

                                           Figure 1-1: Hydroprocessing of vegetable oil[22] 

 

1.1.2 Fischer-Tropsch Process 

During the World War II, Franz Fischer and Han Tropsch developed the  Fisched process. 

The process was designed to convert coal to liquid fuel to capitalise on Germany’s large 

coal resources[23]. The FT technology was able to provide Germany’s with 9% of its military 

aircraft with fuels, and 25% of its automotive fuel came from coal feedstock[24].  Jet fuels 

produced from this process depends on the feedstock used. The method uses chain 

building and needs synthesis gas as its feedstock. If coal is used as the feedstock, then the 
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process is referred to coal-to-liquid (CTL). Similarly, for Biomass, biomass-to-liquid (BTL) 

and natural gas, gas-to-liquid (GTL).  

The process mainly makes straight chain hydrocarbons; the end product depends on the 

hydrogen to carbon monoxide ratio, the catalyst and the process conditions. F-T 

treatedfuels are chemically similar to conventional kerosene jet fuels and can be used as a 

substitute. They have low viscosity at ambient temperature, thermally stable and have 

high energy density.  In comparison with conventional jet fuel, they have demonstrated to 

have higher efficiencies[25].  The first approval of synthetic fuel was that of CTL from Sasol 

[26]  in South Africa. It was in  September 2009 that a  50% blends of generic FT fuels with 

Jet A-1 was approved  by the American Society for Testing and Materials (ASTM) in its new 

D7566 standards[27].  

Sulphur and nitrogen containing compounds and aromatics are not present in FT fuels 

but found in conventional jet fuels. Aromatic-free fuels have numerous advantages that 

they emit of fewer particulates and burn cleaner in aircraft engines than the conventional 

fuels[28, 29]. However synthetic fuels suffer from the high cost of production and  CO2 

emission from the manufacturing process. They can also provide inadequate lubrication, 

lower volumetric heat content(fuel density specification) and result in elastomer leakage 

due to lack of aromatics, which reduces seal swell[25]. Blending with Jet A-1 avoids seal 

issues although the advantage of lower emission is minimised. If the CO2   production were 

captured and stored from the manufacturing process, then the fuel might help GHG 

emission reduction.   

1.2 Potential Alternative Fuels 

During the energy crisis in 1973, when fuel prices increased drastically the need to reduce 

dependence on fossil fuels has been the primary driver for the introduction of alternative 

fuel. his section will briefly discuss the potential of other alternative fuel sources for road 

and air transport. 
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1.2.1 Cryogenic Fuels 

These fuels refer to gases at normal ambient conditions that are cooled to their  

condensationpoint and kept as low-temperature liquids. Typical examples are liquid 

hydrogen and liquid methane. These fuels have high gravimetric energy content, but the  

low density that leads to low volumetric energy content.  

1.2.1.1 Hydrogen 

A number of feedstocks can be used in the production of hydrogen. Examples are fossil fuel 

sources from natural gas and coal, and renewable sources from biomass processed using 

renewable energy such as sunlight, hydropower and wind energy. Hydrogen can be 

produced by chemical, biological, electrolytic, photolytic and thermochemical means. 

Each technology is in a different stage of development, and each offers unique 

opportunities, benefits, and challenges. The benefits are its combustion is free from 

emission like CO2, SOx, CO, HC, but thermal NOx is formed a when burnt at a higher 

temperature, this can be overcome using a lean technology. It produces a clean when 

burned with oxygen for generating thrust. The combustion temperature is approximately 

2300 K, which has a higher burning velocity than conventional jet fuels[30, 31].  

In aircraft engines, it could be used as a potential jet fuel[32] but has technical challenges. 

It requirements a more intricate fuel control system for operations like storage of high 

pressured liquid hydrogen, cooling of the fuel and its warming for use.  Modifications 

would be imperative in aircraft structures to accommodate these fuels. It should be kept 

at 24 K in aircraft to maintain its liquid form, and this process absorbs energy. Likewise 

maintaining the hydrogen’s liquid could require the usage of more heavy and complex fuel 

tanks. Liquid hydrogen has a  high energy density per unit mass (weight), but its 

volumetric energy density is one-quarter that of jet fuel. The storage tanks for hydrogen as 

a cryogenic liquid would increase the weight of large commercial aircraft by over 10%.  The 

liquid hydrogen fuel is in pressurised form; it cannot be stored in the wings because 

complications may arise in heat exchangers and fuel pump when using liquid hydrogen 

fuels[33]. A fuel distribution network would be necessary to accommodate liquid 

hydrogen. 
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1.2.2 Bio-Derived Fuels 

Bio-derived fuels are an alternative raw material for gas turbine engines. Typical examples 

are the bio-ethanol and biodiesel, which have been used  as blended components for 

gasoline and diesel fuels respectively[34]. Because of the desire to diversify energy sources, 

their usage is likely to expand in the near future. 

1.2.2.1 Bio-ethanol 

The fermentation of corn, sugar or sucrose, which contain about 60-70% starch produces 

ethanol.  The process of fermentation in sugar an anaerobic biological process where it’s 

been converted to alcohol by the action of microorganisms, normally yeast. Ethanol is the 

result of alcohol. Ethanol boils at  78˚C and contains about 35% oxygen by weight. It has a 

lower gravimetric energy content and more volatile than kerosene, which boils over the 

range of 150˚ to 300˚C[35]. It's clean burning characteristics extend turbine life, possibly by 

double[36]. It’s intermolecular hydrogen bonding means that ethanol has a higher heat of 

vaporisation than hydrocarbons, which impacts on fuel vaporisation and atomization. t 

has a low vapour pressure and miscible with water and also have a  rapid evaporation; 

these factors can create handling issues[36]. Furthermore, there are safety issues as it 

burns with an invisible flame outside the turbine, which might be harmful[37]. Blends of 

ethanol with diesel have been shown to have a significant reduction in the emission of 

particulate matter(PM)[38]. Fang et al.[39] concluded that ethanol blends with diesel 

reduce NOx emissions. They also found that emission of UHC and CO was higher asof the 

high latent heat of vaporisation lead to complete combustion in adiesel engine[39]. 

1.2.2.2 Biodiesel 

Biodiesel can be produced from animal fat and vegetable oils using the process shown in 

Figure 1-2. The final product is FAME (fatty acid methyl esters). 
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                                 Figure 1-2;  Show Transesterification   Process[25] 

 

The setback of using FAME as a commercial fuel is its propensity to freeze at normal 

operating cruise temperatures and its high viscosity, which could impact on atomization. 

The thermal stability of FAME and its blends are still under investigation. Furthermore, it 

has been shown that running a pure diesel on engines produces high levels  of NOx, soot, 

UHC and CO emission compare to a blended ethanol biodiesel fuel [40]. 

 

1.2.3 Alcohol to Jet (ATJ). 

Alcohol can be produced which serves as a starting material for conversion into jet fuel.  

There are two methods: 

1. Using microorganism to the convert carbon monoxide into alcohol. 

2. Biomass product containing sugar can be fermented. 

ATJ is made through alcohol oligomerization; this includes connecting short-chain 

alcohol molecules together to produce a range of jet-fuel hydrocarbons. The volume of 

ATJ produced from this processes is low and, this is not encouraging for large-scale 

production 
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1.3 Approval Process 

Aviation jet fuels must be compatible with existing aircraft engines, fuel handling, and 

storage infrastructure before been considered as “drop-in” fuels. Since the aircraft engines 

and infrastructure must not change, fuel properties must be specified to ensure safety and 

reliable fleet operation. Alternative jet fuels should be compared with the current jet fuels 

before integrating them into the existing infrastructure. For this to happen,  they have to 

be certified fit for use as a single fuel or blended with conventional jet fuels as detailed in 

the DEFSTAN 91-91[41].  

The specification controls the product quality through a series of laboratory test to 

ascertain if fuels met a minimum standard[42]. The tests are not restricted to gas turbine 

performance alone but also make available an assurance built on extensive operational 

experience.  Considering drop-in product refined from non-conventional sources like 

biomass and coal, these products may meet the specification pass off test, but the 

performance in a gas turbine is not known.  The facts remain that the specification 

provides only information on quality control of the crude product and not the suitability 

of an alternative jet fuel in gas turbine operation. A typical example isresidual heavy 

metals which are not considered within the specification but cause damage in the hot 

section of a gas turbine and the absence of certain hydrocarbon groups which can hinder 

the fuel system performance[43].  

The suitability of a drop-in product is assessed through Fit For Purpose analysis and 

specification property pass off test.  Fit for purpose test describes the performances of 

fuels in airframe and engine fuel systems.  It considers assessing the additive 

compatibility, materials, seal swell and lubricity[43]. When the detailed information is 

established, approval is given, if only the fuel has no negative influence on the Fit For 

Purpose properties, specification testing and engine component fuel system. Full-scale 

endurance testing may be recommended before engine manufacturer’s approval is finally 

granted [6]. Once this is done the product enters into the fuel specification. Figure 1-3, 

shows the gas turbine fuel approval protocol.  
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                             Figure 1-3: Gas turbine fuel approval protocol[6] 

 

 Two international recognised bodies monitor and approve aviation Jet fuels and blends. 

The British Ministry of Defence (MOD), whose duty is to set the condition in the defence 

standard 91-91(DS91-91)[44] and the American Specification for Testing and Materials 

(ASTM), responsible for the establishing the requirements for aviation turbine fuels[45]. 

Both agencies are actively involved in endorsing new turbine engine fuels blend 

components, and this has produced results such as the approval of Sasol Synthetic fuel 

produced from Fisher-Tropsch(FT) to be used as  50% blends with the conventional jet A-1 

fuels at Johannesburg International Airport[43].  

Currently, certified alternative jet fuels consist mostly of n-paraffinic and isoparaffinic 

compounds with negligible aromatic and sulphur contents. The blends were necessary 

because synthetic fuels have low aromatic content, this issue has raised concern about the 

seals in the aircraft engine, which shrinks because of a relatively low aromatic content in 

the fuel. For this reason, the aromatic content of synthetic fuel blends is presently peaked 
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at 8%, but this value has not been scientifically proven.  The maximum blend limit of SPK 

with conventionally refined jet fuel set by the certifying bodies early discussed at 50%  

because there was no experience at that time with blends of greater than 50% SPK with 

refined jet fuel[46]. The refinement process determines the exact difference between 

normal, iso and cyclic found in fuel and it varied depending on the raw sources used in the 

process[25].  The high hydrogen to carbon ratio for n- and isoparaffin gives a high heat to 

weight ratio, and a clean burn compares to the conventional jet fuels, a crucial criterion 

for appraising the viability of these fuels. The effect of cycloparaffin in jet fuel is that it 

reduces the hydrogen to carbon ratio which reduces the heat release per unit weight as 

this helps in reducing the fuel freeze point which is an important parameter for high 

altitude flight[25]. 

 

1.4 Motives for Diversification into Use of Alternative Fuels. 

The use of petroleum-based fuels has been the preferred means of fuelling gas turbine since 

the early days of their designs[47]. It is readily available, easy to handle, offers good 

performance. Industrialisation in the world today’s is increasing, which has led to a 

progressive increase in the demand for conventional fossil fuel[48]. Presently, the 

estimation of oil consumed by aviation sector is about 5 million barrels per day, which 

represents 5.8% of the world total oil consumption[49]. The sources of this fossil fuel are 

becoming exhausted, and a  major contributor to greenhouse gases (GHG) emission, which 

has a negative effect on the climate[50]. The industry over-reliance on conventional fossil 

fuels has raised concerns over the future supply, security and operational cost[51, 52]. This 

move is equally concerned about the cost and insecurity of the conventional fossil fuel in 

comparison to the growing population and demand for these fuels in the nearest future[51, 

52].  
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1.4.1 Political Crisis and Depletion of Natural Resources  

The projection of world population as estimated by the United Nations is to increase from 

6.5 billion to about 9 billion, and it has been estimated to reach 11 billion by 2050[53]. The 

fear of depletion of natural resources is alarming because of the rapid growth in 

population size and the high demand for energy has drastically increased, mounting more 

pressure on the exploitation of the conventional fuels. Global conventional oil supply is 

currently at political risk and shortages are inevitable unless a drastic change occurs in 

the supply of conventional hydrocarbon fuels. In the nearest future, the sources for 

traditional fuels including petroleum will soon decline[53]. The decline of conventional 

crude is practical examined by using Hubbert peak oil theory[54]. Hubbert suggested that 

the production rate in a new oil field would continue to increase with infrastructure setup 

until a maximum output is reached. Then at a stage, the pressure of the oilwell would be 

reduced,this effect lowers the extraction rate[54]. The maximum production point reached 

is referred to as peak oil. However, such time at which this occurs is difficult to evaluate.  

In contrast, oil company’s claims that sufficient reserves  that are not yet tapped exist to 

meet global demand for decades, sampled opinions have it that production has or is about 

to peak.  Kjartad et al.[55]  findings reveal from their estimates that the resources appear 

to be sufficient to meet demand up to 2030. Because these fuels are typically not renewable, 

society is concerned that at a certain time the demand of these fuels would be more than 

the supply, triggering a considerable world crisis. Industrialist also agreed that the 

majority of oil fields situated in the Middle East of the world are confronted with problems 

with a political crisis. Africa oil producing countries are not left out in the political crisis 

scenario, for instance,  Nigeria which is the largest producer of oil in Africa are presently 

faced with a political and religious crisis, which has reduced the production rate from 2.7 

million barrel to about 1.2 million barrel a day. This shortfall cannot be replaced with other 

conventional sources. However, countries need to take a drastic step in securing and 

creating new alternatives fuels to avoid unrest, fear and differences resulting from the 

world dependence on fuel supply from the Middle East and politically troubled regions in 

the world. The depletion of petroleum resources is one of the contributing factors that 

have led to a renewed interest in alternative energy sources and innovating 

environmentally viable[6].  
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1.4.2 Air quality issues  

Currently, the leading sector with significant growth in demand for oil is the air transport; 

also, there are high demands for global jet fuels by emerging economical countries, such 

as China, USA and India. This demand in response to atmospheric pollution, which affects 

public health because of the harmful increase in air and land traffic emissions. Air and 

ground transportation produces the same type of emissions; this includes carbon 

monoxide (CO), sulphur oxides (SOx), nitrogen oxides (NOx), carbon dioxide (CO2), 

unburned hydrocarbons (UHC), and particulate matters (PM).  These emissions from air 

and land transport are classified as greenhouse gases (GHG), this causes global climate 

change. Although aviation sector contributes, a small amount of pollutant compared to 

other sectors but estimated to account for 2-3% of CO2 emissions[49]. Because of the rapid 

growth in the aviation sector in the nearest future, its emission will reflect a greater 

portion than other does[56]. According to  Penner et al.[57], the airliners fly within the 

stratosphere where emissions in this zone are more devastating and have a considerable 

impact on the climate change. The effect of Green House Gas emissions from fossil fuels 

combustion on climate change is a critical issue and the long-term effect on human 

existence.  The effects on human beings are airborne, which causes respiratory illnesses, 

complex cardiovascular diseases and devastating effect of sulphur, which causes acid rain 

that could damage infrastructures.  A Recent study also shows that the impact associated 

with aviation emission degrade surface air quality and the Particulate Matter (PM) 

precursor gases (SOx and NOx) plays a significant role related to the direct emission of 

primary PM. The challenges to handle different environmental and energy needs is 

decarbonizing the energy chain and finding clean, viable source of fuel. This requires 

consented effort by airliners, government and aircraft manufacturer collectively setting 

up an initiative for the promotion and development of alternative fuels.  

1.4.3 Exorbitant Price Issues 

The price differences compared with conventional jet fuel in the short term is a setback 

that paves ways for the deployment of alternative fuels in aviation. This setback could be 

managed by setting up a mechanism to reward industries buying these fuels as 

environmental benefits to bridge the price gap for airlines wanting to buy fuels[58]. Also, 
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the renewable energy policies in most countries are very tight. Stipulation of technical 

requirements for fuels is stringent. Thus, it is imperative that policies also consider the 

use of supporting measures for sustainable alternative fuels in aviation. In 2001, European 

Commission launched an initiative to facilitate the commercialization of bio-derived fuel 

in Europe. This initiative was a road map to achieve by 2020 an annual production of two 

million tonnes of biofuel for aviation[59]. This task looks challenging due to strict fuel 

specification like the fuel freezing point, flash point, energy density and flammability 

limit[60, 61]. In 2006, the USA Commercial Aviation Alternative Fuel Initiative(CAAFI) 

was launched, which incorporated government, industry, academia and non-profit 

organisation working collectively for the purpose of securing a stable fuel supply, 

involving in research and analysis of the fuel and air manufactures improving on aircraft 

operations. This initiative made tremendous progress, information on the results was 

shared through a conference to stakeholders and various aviation supply chains. This 

process focussed on commercialisation, environment impact and fuel certification. In 

2009, a program was initiated by the European Commission called ‘Sustainable Way for 

Alternative Fuels and Energy in Aviation’ (SWAFEA) was designed to explore the 

usefulness and the effect of using alternative fuels with an aim to support EU air transport 

policy.  In that year a breakthrough of  ‘drop-in’ fuels as sustainable alternative fuels in 

aviation was then approved. In 2013, a  Corporate Biofuel Program was launched by KLM; 

this provided KLM  customers with the chance to enumerate their air travel footprint by 

contributing to the acquisition of sustainable fuel, instead of purchasing carbon credits to 

offset staff travel.  In July 2011, introducing synthetic fuels up to 50% synthesised 

hydrocarbon into the fuel specification was approved[62]. In March 2013, ITAKA initiated 

the first series of intercontinental flight using a blend of 20% of HEFA made from used 

cooking oil. All these efforts were gear towards providing sustainability in the production 

of alternative aviation fuels.  

The conversion of coal, gas or biomass has been made possible through the advancement 

of process technologies. Refinement of biomass product as an alternative feedstock is 

necessary, because of its potential to reduce emission, and improve savings, unlike fossil 

feedstocks, which are not a renewable resource, thus subjected to peak supply issues. 

These fuels need approval, which is achieved by extensive testing. These provide liquid 
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hydrocarbons as potential drop-in alternative products, which have similar properties to 

Jet A-1, fully compatible with existing systems and use with no limitations in aircraft 

operations.    

1.4.4 Technical Requirements 

The introduction of lean-premixed or lean premixed pre-vaporise combustors which 

replace diffusion flame combustors is the latest development in the gas turbine 

industry[63, 64]. These new combustors are proposed for both land and air based gas 

turbine engines as a means of reducing NOx and improving efficiency. This results in 

significant challenges for the fuels, particularly, on the technical requirements like the 

flash point, freezing point, energy density and autoigntion[45]. The combustion properties 

of fuel have high responsiveness to a fuel composition, temperature, equivalence ratio and 

pressure. In turn, this affects engine performancethrough ignition, relight and blow out 

limits. This is driving research into autoignition chemistry, extinction limits and flame 

propagation. Regulatory requirements for low emissions from gas turbine power plant  

have increased during the past ten years. The expectation of a new aircraft engines is to 

perform with maximum combustion efficiency as well as providing stability and low 

emissions. This has increased the need for low NOx turbine engines. The dry low emission 

(DLE) system has achieved success when used with natural gas to meet emission 

requirement[65]. However, the complexities the fuelling system low emission engine have 

made the burning of liquid fuels a challenge.  

LPP combustors provide low pollutant emissions while burning liquid fuels[66]. Jet fuel 

hasa short ignition delay time when heated, andpre-ignition can occur in the chamber 

making it difficult to use in an LPP combustor[67]. Several approaches have been 

investigated in the literature[68-71] to remedy this. These methods attempt to achieve low 

NOx emissions by designing premixer and combustors that permit rapid mixing and 

combustion before the onset of spontaneous ignition of the fuel can occur[66]. An 

alternative approach is directly  spray fuel into the premixer so that the liquid fuel 

droplets vaporise and mix with air at lean conditions[72, 73]. 
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1.4.4.1 Combustion in Gas Turbines  

A gas turbine engine emits pollutants such as carbon monoxide (CO), nitrogen oxides 

(NOx), particulate matter, sulphur and unburned hydrocarbons (UHC). NOx formation in 

gas turbine plant is the result of high temperatures heating, in the combustor. Other 

pollutants like CO, UHC and particulate matter are the result of insufficient oxygen to 

complete the combustion process. The operating point of the combustor defined regarding 

temperature, pressure, time and concentration can influence the extent of pollutant 

emissions in gas turbines. Figure 1-4, shows the main component of a conventional gas 

turbine combustor. Fuel and air are introduced separately into the combustion chamber 

and burn with a diffusion flame. 

 

 

                              Figure 1-4: Schematic picture of a conventional combustor[74]. 

 

Gas turbine combustors are categorised into tubular, annular and can-annular. Each type 

has its advantages regarding size and structural strength. The combustion chamber is 

where the combustion and  release of heat take place. The essential part of a combustor 

are the air swirler, casing, diffuser, flame tubes, fuel nozzles and ignitor. Air swirlers 

achieve better fuel-air mixing and flame stabilisation. The diffuser mounted at the 
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entrance of the combustor reduces the velocity of air entering the combustor and recover  

the dynamic pressure. The general function of the combustor is to minimise the pressure 

drop across the combustor. The combustor is primarily made up of three zones; primary, 

intermediate and dilution zones. The primary zone accommodate one-fourth of the airflow 

into the combustor is used to support the combustion processes. The intermediate or 

secondary zone dilutes the hot gases reducing their temperature regulating the flame 

pattern and cooling the liner walls of the combustor.  

1.4.4.2 Lean premixed combustion   

Lean premixed combustion is designed to maintain low and uniform temperature flame. 

This results in a reduction of NOx and soot emission, improved durability and 

performance, and fuel flexibility[75, 76].  However, improved efficiency is achieved with 

higher temperatures, but this enhances formation of the NOx formation. Reducing the 

oxygen concentration reduces the NOx, resulting in carbon monoxide (CO) and unburnt 

hydrocarbon (UHC) emissions due to incomplete combustion. To attain an ultra-low NOx 

emission a more controlled technology is required. One of the problems of LPP combustors 

is the issue of longer residence times[77, 78] and combustion instability[79].  

 

                                Figure 1-5: Schematic diagram of an LPP combustor[72] 
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Figure 1-5, shows a schematic diagram of an LPP combustor. The combustor operates near 

the lean blowout limit, reducing the flame temperature. To achieve this the fuel and air 

are premixed before the onset of combustion[76]. Air from the compressor flows through 

the pre-diffuser before being discharged into the annular section of the combustor. The 

holes in walls of the combustor admit air into the annulus to dilute the hot combustion 

gases. Enhanced cooling is achieved via the strip trip at the outer liner of the walls. The 

cooled air from the annulus then passesinto a  plenum from which it enters the premixer. 

Within the premixer, air passes through axial swirlers andmixes with vaporised fuel; the 

exiting fuel-air charge is deposited into the primary zone by other axial swirlers, where it 

is ignited and burned. Due to the high pressures and temperatures, the fuels/air mixture 

may spontaneously ignite generating unsteadiness in the combustor[80]. This can cause 

catastrophic failure of the combustor components. Understanding the spontaneous 

autoignition is paramount in the design of a viable combustor. These combustors are also 

susceptible to the thermo-acoustic instabilities, LPP combustors operate fuel lean 

conditions, where the rate of combustion is actively driven by fuel-air ratio. If there is a 

drop in the fuel-air ratio significantly, local extinctions can occur. This instability initiates 

combustor unsteadiness. 

1.4.4.3 Lean Direct Injection. 

In an attempt way to control, the short ignition delay associated with LPP, the use of lean 

direct injection (LDI) has potential. The difference between the LLP and LDI is not having 

a premix duct attached upstream of the combustion chamber. LDI may cause non-uniform 

combustion and create local hot spotsincreasing NOx. 

1.4.4.4 Lean Premixed Trapped Vortex Combustor (LPTVC) 

Another proposed method of premixed combustion in gas turbines is the trapped vortex 

combustor (TVC) first proposed by Hsu et al.[81] in 1993. The stabilisation of flame is 

achieved  with recirculation zones to provide a continuous ignition source, which 

enhances the mixing of hot combustion products with the incoming fuel and air mixture. 

This process results in a significant pressure drop since most of the combustion occurs in 

the recirculation zone while a flameless regime is achieved[82]. 
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Tapped vortex combustors have the following advantages, 

▪ It improves flame stability and flammability limits. 

▪ It allows operation at the high excess air premixed regime and supports high-speed 

injections that help to avoid flashback in combustors. 

▪ It is compatible with the combustion of a variety of fuels with medium and low 

calorific value. 

▪ Very low NOx emissions are achieved without dilution and post-combustion 

treatments. 

 

1.5 Research Objectives 

The objective of this work is to measure the autoignition properties of liquid fuels relevant 

to the practical gas turbine conditions. This requires an experimental test rig that can 

replicate the physical and chemical environment of the combustor. In this work, a rapid 

compression machine was designed and manufactured. It compresses fuel-air mixture 

under adiabatic conditions, replicating a single stroke event in Spark Ignition (SI) engines. 

These can provide data for the study of the chemical kinetics at gas turbine like conditions. 

The following are specific objectives of the research work: 

 To develop a Rapid Compression Machine that will provide ignition delay times of 

aviation fuels relevant to gas turbine conditions (elevated pressure and low to 

intermediate temperature). 

 Validation of the experimental data with the existing models found in the 

literature. 

 Test synthetic-derived aviation fuels and compare with the conventional jet fuel. 
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1.6 Layout of the Thesis 

The whole thesis divided into the following chapters: 

 Chapter 1:  This introduces a practical problem faced by the aviation industry, 

which also highlights the importance of this study.  The processing pathway for 

alternative fuels was discussed, and potential alternative fuels were considered. An 

approval process of synthetic fuel was looked was discussed. The modification to 

diversification into the use of alternative fuels was mentioned. Detailed research 

objectives and procedures used, in addition to the framework of the thesis are 

presented. 

 Chapter 2: This chapter presents a comprehensive literature review on the 

historical design of rapid compression machine; the progress in rapid compression 

technology; single piston RCM, twin piston RCM, the camshaft connection RCM, 

the hydraulic braking mechanism and the design of combustion chamber and 

charge preparation approach. Another instrument for studying RCM was 

considered like the shock tubes, flow reactors, well-stirred reactor and the static 

reactor.  Furthermore, this chapter also contains the study of the current fuels, the 

core concepts of auto ignition, the basic concept of chemical kinetics and surrogate 

fuels as a representative of alternative aviation fuel. 

 Chapter 3:  Presented in chapter 3, are the details on the experimental facility and 

techniques. This includes the design and development of the current rapid 

compression machine; the optimised reactor piston design, hydraulic damping 

mechanism, the pneumatic driving cylinder, the reactor combustion, piston 

trajectory of the RCM, direct premixed charge preparation chamber, mixture 

preparation, the triggering system and data acquisition and the uncertainty 

associated with the rig. The novelty of the piston-released mechanism is discussed, 

the experimental procedures of the machine and finally, conclusion. 

 Chapter 4:  This chapter presents computational aerodynamics studies of  Rapid 

Compression Machine: Here the model discussed in details, e.g., the solver used, 

and mesh generation. The parametric study carried out on the time step size and 

mesh independence conducted. The effect of using differing Piston head 

configuration in an RCM is considered looking at the flat piston and the optimised 
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crevice head configuration. The effect of further design optimisation of the piston 

crevice and conclusion. 

 

 Chapter 5:  This chapter presents, the characterization and auto ignition 

performance of fuels using the RCM; the chapter started with the introduction, 

then looked at the experimental characterization, considers the reactive and non-

reactive test, the definition of ignition delay. Numerical modelling: examined the 

homogeneity and peak temperature field of the reactor chamber, the heat loss 

model was applied using the effective volume approach. Results: considered the 

characterization of the reactive and non-reactive experiment, model comparison 

with experiment, global ignition delay correlation was determined, numerical 

model and then conclusion. 

 Chapter 6: Autoignition study of Banner-Solvent in RCM; the chapter examines the 

procedures for conducting the test, experimental repeatability of Banner Solvent, 

the influence  of temperature, pressure and equivalence ratio on the ignition delay 

of Banner-Solvent; comparison of  Jet A-1  with literature, comparison of Jet A-1 

with Banner-Solvent and finally conclusion and conclusion. 

 Chapter 7:  Present the measurement of ignition delay of UCO-HEFA; the 

experimental conditions and the experimental repeatability was presented. 

References to the experimental procedures were given. Discussion on the 

experimental result focusses on experimental repeatability, the influences of 

compressed gas temperature, compressed gas pressure, equivalence ratio and 

varying oxygen concentration on ignition delay. Comparison of UCO-HEFA with 

Jet A-1 and Banner-Solvent was discussed. The ignition correlation for Banner 

Solvent was determined and conclusion of the chapter drawn. 

 Chapter 8: Conclusions drawn based on the results and discussions in previous 

chapters.  A  brief summary of recommendations for future improvement of the 

present design.  This chapter also provides keys findings with recommendations 

for future work. 
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Chapter 2.      Literature Review 

2.1 Introduction. 

This section presents a review of the literature regarding the development of a rapid 

compression machines from the 1914’s.  

2.2 Historical Development of Rapid Compression Machine (RCM). 

The historical evolution of the rapid compression machine started in the early 1900’s when 

the first RCM  was designed by Falk[83]. He used the adiabatic compression apparatus to 

investigate the ignition temperature of homogeneous hydrogen-oxygen mixtures. The 

machine was driven by the momentum transfer of the falling weight and flywheel driven 

crank[84]. The device lacked a stopping mechanism to bring the piston to a halt, so the 

reactor piston did not maintain a steady volume at the end of compression stroke. Hemp 

seals were use lubricated with lanoline. Falk was able to characterise the autoignition of 

the temperature of H2/O2[83]. Figure 2-1 shows a picture of RCM designed by Falk. 

 

                       Figure 2-1: A picture of the RCM designed by Falk[83]. 

 

A few years later the first optically accessible RCM   was built by  Dixon et al.[85].  The RCM 

was driven by falling pendulum, which drove a piston horizontally into a glass tube filled 

with premixed gases. The stroke was adjusted by varying the stopping height of the 

pendulum.  They noted that some time elapsed between the end of the motion of the piston 
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and the start of the flame. They referred to this as the pre-flame period now known as 

ignition delay time[86]. 

In 1914, Dixon and Crofts[86] built a modified version of the Falk’s machine where a falling 

weight drove a piston vertically into a cylinder producing results on H2/O2[86].  They 

changed the cylinder width to stop significant cooling from the walls, and the piston 

movement was gas-tight without lubricant meeting the gas mixtures. Despite these 

changes made, two issues remained; firstly, there was no apparatus installed to haul the 

piston at the end of the stroke and, secondly, there were difficulties in measuring the in 

the cylinder[86]. 

In 1917, Cassel[87] designed a rapid compression machine to compress gas mixtures 

without piston rebound. He observed that rebound of the piston at the end of compression 

resulted in a cooling of the gas, which would eventually quench ignition. The rebound was 

avoided by a set of brake shoes install to secure the falling weight, which was falling into 

the piston. Also, the generated energy was dissipated by a set of lead washers[87]. 

In 1922 and 1926 Tizard and Pye [88] built an RCM whose piston was driven by a flywheel 

with a crank and connecting rod similar to that of the I.C engine. The machine used a 

unique setup for moving and locking the piston at its maximum compression. The 

connecting rod and the crank arm operated by a clutch. The piston was secured at the top 

dead centre by the rigid connection of the connecting rod. They were able to measure in-

cylinder pressure through the use pressure sensor. They investigated the autoignition of 

premixed gases and observed that the heat loss from their pressure trace had an effect on 

the thermodynamic state before the onset of ignition. They concluded that RCM 

experiments were not truly adiabatic and they attributed it to heat loss to the cylinder 

wall and fluid motion. They were able to build a model to account for heat loss in the 

cylinder[88]. 

In 1929, Pignot built a machine based on Dixon’s design. In his design, the stroke length 

was adjustable. The reaction chamber was fitted with a heating tape, and a thermocouple 

was positioned in the chamber to measure its initial temperature. Their piston was halted 
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at the end of compression using spring-loaded clamps that snapped into a groove; however, 

this was an inefficient way of preventing the piston from rebounding. 

In 1930, Fenning and Cotton[89] carried out a series of experiments to determine ignition 

temperatures using Tizard and Pye’s RCM[90].  They found that their results were not 

reproducible which they attributed to friction in the moving parts of the piston and fine 

particles suspended in the reaction chamber. This issue was overcome by replacing the 

upper cylinder with a mild steel plate to which a rubber bulb was clamped. However, their 

results were still not reproducible, and they later found that the issue was with the rubber 

bulb, which absorbed the test gas. 

During the late 30’s and the early 40’s, Jost and Roegener[91] and Scheuermayer and 

Steigerwald[92] described an experiment using compressed air to push the piston along 

the cylinder. They were able to achieve a velocity up to 60 m/s but stopping the piston 

without rebound, or mechanical fracture was not resolved. 

Leary et al.[93] and Taylor[94] designed the M.I.T rapid compression machine, which 

overcame the issue of rebound or mechanical fracture by using a gas-cushioning device to 

brake and arrest the piston. An achievable compression time of 10 ms was achieved 

without piston damage. Nitrogen was used to drive and brake the driving piston. 

In the early 1960’s another rapid compression machine was designed in M.I.T by 

Rogowski[95]. This comprises of three pistons in three cylinders arranged along a common 

shaft. One piston is driven pneumatically; the second one moves through the hydraulic 

fluid, and the third one compresses the mixture under study. With this arrangement, the 

piston was brought to rest maintaining a constant volume. 

From the 1960’s numerous designs of RCM appeared all adopting, one or two features from 

the previous designs and modifying them to suit their condition of operations.  

In 1969, Affleck and Thomas[84] developed an opposed-piston rapid compression machine, 

which they used to study the pre-flame reactions. This was adopted from Rogowski’s [95] 

ideas; the piston was pneumatically driven and stopped by hydraulic means using an in-

line design.  A compression time of 10 ms was achieved with a piston diameter of 1.5 inches. 
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In 1974, Rife and Heywood [96] studied diesel combustion, and Matekunuas [97] studied 

the SI engine combustion in 1979. Both adopted the same principle design of Rogowski [95]. 

Zigan[98] investigated diesel combustion in an RCM.  He used compressed air to drive a 

piston mounted on a common shaft with the compression piston. A compression time of 

130 ms wasrecorded with a stroke length of 750 mm; a mechanical device was used to halt 

the piston at the end of compression. 

In 1980, Beeley, Griffiths and Gray[99] investigated the spontaneous ignition of isopropyl 

nitrate on a rapid compression machine, that was initially built by Shell and based on 

Affleck and Thomas design. This was first known rapid compression machine to 

incorporate a creviced piston head design was made in the early 1990’s by Park[100] which 

was used to suppress the roll up vortex from the wall of the chamber. 

In 2004, University of Michigan built a free-piston rapid compression machine. It 

consisted of a driver section of length 5.54 m. The test manifold was made of four 

components, extension section; which provided the contact surface used to halt the 

motion of the sabot, the converging section, thermocouple manifold and instrumented 

section.  The designed sabot was in two parts, an acetal resin body and an ultra-high 

molecular weight polyethene replaceable nose cone.  Spring-loaded U-rings sealed the 

sabot to the test section. The machine is charged with inert gas for running the driver 

section. A globe valve connecting the driver section was used to release high-pressure gas, 

which actuated the sabot onward down the driven section, compressing the test gas ahead 

of it.  Compression ratios between 16 and 37 were achieved in approximately 100 ms 

compression time. A compressed gas pressure of 20 bars and temperature of 1000 K for 

nitrogen, 2000 K for argon could be achieved.  

Also in 2004, an  RCM was built in Japan in Keio University by Lim et al.[101], this used air 

as the driving force and hydraulic oil to decelerate the piston and bring it to a halt and 

maintained a constant volume at the end of compression. 

At the University of Pierre et, Marie Curie an RCM was built in 2007 by Guibert et al.[102]. 

The chamber diameter was 40 mm while the length of the chamber ranged between 30-50 

mm. Their RCM had a high compression ratio,16, with a short compression time 29 ms. 
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Fast compression was achieved by a hydraulic system and controlled by a multistage servo 

valve permitting accurate piston motion control. The design had optical access, and the 

combustion chamber included the turbulence control using a grid fastened between the 

pre-compression and combustion chambers.  

In 2012, Casey[103] designed an RCM, which used the direct test chamber(DTC) approach, 

enabling efficient gas-phase testing of non-volatile fuels that may not otherwise be tested 

with the traditional large batch mixture analysis approach.  The large batch approach has 

a mixing tank separate from the reaction chamber. The fuel is manually injection into this 

mixing tank maintained at a temperature close to reaction chamber temperature. Batch 

chambers also have stirrers that provide mixing before metering of the mixture into the 

reaction chamber. The DTC method means the mixture is injected directly into the 

combustion chamber not being held at high temperature where cracking might occur and 

it eliminates the potentialof fuel condensing in the process of transferring to the chamber.  

In 2015, John[104] developed a rapid compression controlled expansion machine. The 

machine was pneumatically, driven with a custom-designed cam, which governed the 

volumetric compression and expansion of the combustion chamber.  To control the rate 

of heat loss in his rig through volumetric expansion, the machine was fitted with cam 

assembly are modulated to incorporate different cams with unique compression and 

expansion profiles. A table showing various designs of RCM is shown in  Table 2-1.
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Table 2-1: Table showing design feature and experimental conditions 

Facility/ 

Affiliation 
𝑷𝒄 (bar) CR 

Compression 

time (ms) 
Piston control 

Chamber 
charge 

preparatio
n approach 

Key Features 

University of 
Sheffield 

(Shef-RCM). 

22 bar 8.9 – 13.6 25 - 32 ms 

 

Pneumatically  
driven, 
hydraulically 
stopped, 
Pneumatic pin 
release mechanism 

DTC, Manual 

injection. 

Creviced piston, 
Adjustable 
stroke, and 
clearance. 
Detachable 
combustion 
chamber Michigan State 

University[105] 
20 bar Flat 

piston 4-17  
and 
crevice 
piston 4.8 - 
21 

< 30 ms Pneumatically 
driven, 
hydraulically 
stopped. 

 

DTC, spray 
ignition and 
Aerosol Wet-
compression 

Creviced piston, 
Adjustable 
stroke, and 
clearance, 
Optically  
accessed 

Marquette 
University[104] 

40 bar 4 - 17 30 – 50ms Pneumatically 
driven, 
hydraulically 
stopped, cam 
driven 

DTC, spray 
ignition. 

Creviced piston, 
Adjustable 
stroke, and 
clearance, 
Optically  
accessed 

Case Western  
Reserve  
University[106] 

>50bar 

 

Flat 
piston-21 
creviced 
piston- 15.1 

25-40 ms Pneumatically 
driven, 
hydraulically 
stopped 

Mixing tank Creviced piston, 
Adjustable 
stroke, and 
clearance, 
Optically  
accessed 

University of 

Leeds[99] 

20 bar <14.6 22 ms Pneumatically 
driven, 
hydraulically 
stopped 

Mixing tank Creviced piston, 
Adjustable 
stroke, and 
clearance, 
Optically 
accessed. 

University of 

Ireland, 

Galaway[84] 

40 bar 13.4 22 ms Dual-opposed 
piston 
configuration. 
Pneumatically 
driven 
hydraulically 
stopped. 

Mixing tank Creviced piston, 

Adjustable 
Stroke. 

University of 

Michigan[107] 

20 bar 16 – 37 100 ms Sabot deformation Mixing tank Optically 

accessed, Gas 

sampling. 

University of 
Connecticut[10
5] 

70 bar 7 - 15 30 - 45 Pneumatically 

driven, 

hydraulically 

stopped 

Mixing tank Creviced piston, 
Adjustable 
stroke and 
clearance, 
Optically 
accessed Gas 
Sampling. University of 

Lille-Science 
and 
Technology[108
] 

40 bar 9.8 20 - 70 Pneumatically 
driven, stopped by 
cam. 

Mixing tank Creviced piston, 
Adjustable 
stroke and 
clearance, 
Optically 
accessed, Gas 
Sampling. MIT[100] 40 bar 12.5 – 16.5 15 ms Pneumatically 

driven, 
hydraulically 
stopped 

Mixing tank Creviced piston, 
Adjustable 
stroke. 
Detachable 
combustion 
chamber 
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2.3 Progress in Rapid Compression Machine Technology 

Rapid compression machine design started with a vertical single piston apparatus with no 

braking mechanism. Today technologies are used which differs in chamber design, stopping 

mechanism and the number of pistons. Modern designs  of RCM’s have incorporated 

multiple features, for example; an optically assessed windows for the measurement of 

species concentration [84, 109], optimised piston crevice[110, 111], adjustable stroke[109], 

hydraulic damper[111], cam operated piston[104, 109], and the DTC preparatory 

techniques[104, 105]. The five main categories of RCM will be discussed here: single piston 

RCM, twin piston RCM, the camshaft connection RCM, the hydraulic braking mechanism 

and design of combustion chamber [112]. 

2.3.1 Single Piston RCM 

The single piston RCM could be a horizontal [104, 106] or vertical[113] single apparatus run 

by the expansion compressed gas or piston driven by compressed gas/air. Figure 2.2 and 2.3 

shows the horizontal and vertical RCM. Most designs are fired by the expansion of 

compressed gas [83, 85].  

 

 

Figure 2-2: shows a horizontal Rapid Compression Machine from University of 

Connecticut[106, 114] 
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                       Figure 2-3: Sectional view of a vertical RCM from MIT[113] 

 

In any RCM design, fast compression is essential to prevent heat loss during compression 

and in the post-compression phases. So they are pneumatically driven, and hydraulically 

stopped. RCMs are limited by compression ratio and speed.  The maximum compression 

time taken in RCM is less than 100ms[107]. The control of the piston velocity is necessary as 

this is achieved by venting oil through a small orifice in the hydraulic chamber. The piston 

is held in position at its bottom dead centre (BDC) in two ways; by using a pressurised oil 

hydraulic unit that keeps the piston seated and using an air pressurised pneumatic pin. The 

piston design plays a significant role in maintaining the homogeneity of the chamber.  

Lee and Hochgreb[113] performed a computational study on the aerodynamics in the 

combustion chamber. They found out that the piston rolls up a cold layer of mixture on the 

wall during compression to form a vortex. This can be avoided by designing a special crevice 

behind the piston head.  Wurmel and Simmie[115] performed further studies and that 10% 

of thecombustion chamber volume was found to be the optimal crevice volume for trapping 

the cold boundary layer.  
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2.3.2 Twin piston RCM 

Figure 2-4 shows the twin piston RCM. It consists of two similar mechanisms connected 

opposing each other. The machine was first designed by Shell-Thornton in 1968 and then 

later modified in the early 1990’s[115].   

 

                                                      Figure 2-4: Twin piston RCM[115] 

 

The twin piston design reduces of compression time to below 17 ms.  This type of RCM is 

more complicated as it required that the two pistons be synchronised. Unequal balancing 

or alignment of the shaft could increase the vibration of the system influencing the results. 

 

2.3.3 The Camshaft connection RCM 

The camshaft connection RCMs has the actuator and combustion chamber aligned at right 

angles. The motion is transmitted through a linear cam mechanism, which governs the 

trajectory of the reactor piston and brings it to a stop at the end of compression.  

The advantage of this type of RCM is that the cam permits control over the conditions 

during compression and post-compression stage[109, 116]. This orientation allows the 

stroke, and combustion chamber volume trajectory to be changed by using different cams 

with unique profiles[104]. Figures 2-5, shows the top view of RCM with camshaft 

connections. 
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                Figure 2-5: Shows top view plan  of RCM with Camshaft orientation[104] 

 

2.3.4 The hydraulic braking mechanism 

Piston speed and control is essential in RCM design as this is governed by the fluid 

dynamics and mechanics. The expansion of air or gas in the driving section builds up a force 

behind the reactor piston accelerating it. The piston is controlled by hydraulic fluid (oil).  

These hydraulic mechanisms can both hold the piston in its initial position and haltit so 

that no rebound occurs. This is achieved using a hydraulic damping unit.  The unit consists 

of a piston ring and groove arrangement where a hydraulic piston ring is machine at the 

surface in steps giving way to small clearance on the peripheral face of the hydraulic piston 

ring[99, 105, 106, 111]. This allows the high pressure of oil in the trap groove to vent through 

the small clearances on the ring surface decelerating the reactor piston until itis 

maintained at a constant volume at TDC.  

2.3.5 Design of combustion chamber and charge preparation Approach 

The design of combustion chambers varies between RCMs. The combustion chamber is one 

of the largest components, and houses measuring sensors. Some chambers are fixed[105, 

106] while others have an adjustable chamber[104]. Typical sensors and ports are a dynamic 

pressure transducer, static pressure transducer, thermocouples, an inlet port for admitting 

fuel-air mixtures and a window for visualisation of species in the chamber.There are two 

kinds of combustion chamber design used in RCM; the direct test chamber(DTC)[104, 105] 

and the non-direct test chamber type(NDTC)[84, 95, 100, 106, 117]. Most commonly found is 

the non-direct test chamber type. This design has its charge mixture prepared in a mixing 

tank maintained at the temperature of the combustion chamber. The advantage of this is 

that the charge mixture composition does not vary during the test condition since large 

volumes of charge mixtures are prepared in the mixing tank. In the mixing tank, the 

preheat temperature is kept at the saturation temperature of the fuel to ensure complete 

vaporisation. However, condensation of the charged mixture may occur along the piping 

leading to the inlet port of the combustion chamber changing the fuel air ratio. This can 

happen if the piping network is not properly insulated and the temperature of the pipe 

isnot maintained with that of the mixing tank.  In DTC, the charge mixture is directly 
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admitted into the combustion chamber.  The heating of the reactor chamber is also 

essential to maintaining temperature uniformity of the combustion chamber walls. The 

heating equipment varies depending on the shape of the combustion chamber. Typically, 

heat tape and 6-band heaters are wrapped around the combustion chamber and insulated 

to control the initial temperature of the mixtures. 

2.4 Other Instrument for measuring Autoignition Delay. 

Besides the rapid compression machines, other devices are used. The next section would 

briefly discuss the experimental tools. 

2.4.1 Shock Tube 

In shock tubes, the generation of the shock wave is used to compress (almost instantly) a 

test gas mixture.  Higher pressures and temperature are achieved than that found in flow 

reactors and well-stirred reactors. Temperatures in the range of 500 to 3000 K can be 

achieved for pressures ranging from 1 - 50 bar, rapidly occurring chemical reactions that 

occur between 0.03 to 5.0 ms can be measured. 

The device has two compartments, driver and the driven compartment. It is made up of a 

long metal cylinder and contains two gas volumes separated by a thin diaphragm.  

The driven compartment contains the charged mixture, while the driver compartment 

maintains the gas at high pressure, where the gas is compressing the driven section.  This 

gas is of low molecular weight to give a high speed of sound. The diaphragm bursts at a 

particular pressure admitting the driver gas to rapidly compress the driven gas with a 

shockwave.    The burst can be achieved by either high pressurising the driver section or 

igniting it. Typical diaphragm materials are a metal foil or glass paper[118].   

After the diaphragm is burst, the driver gas expands, and a travelling shock wave is 

generated. The charged mixture is initial shock heated as the wave travels through  and 

further heated by the reflected shock from the back wall of the reaction. The charge is 

rapidly heated, and its temperature and pressure maintained for up to 5 ms.  Most shock 

tubes also have optical access to the collection of laser-based intermediate species data[119]. 

Species concentrations may be captured using a GC/MS systems [120]. A pictorial diagram 

of a high-pressure shock tube from combustion and Energy System Laboratory at 

Rensselaer Polytechnic Institute[121] is shown in figure 2-6. 
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                         Figure 2-6: A Pictorial diagram of the High-Pressure Shock Tube[121]. 

 

The temperature and pressure a shock tube can attain vary from rig to rig. 

Sivaramakrishnan et al. could achieve a pressure and temperature up to 550 bar and 2800 

K, while rig reported by De Toni et al.[122] ] attains a reflected-shock pressure up to 500 bar. 

Lately, development in shock tubes design has been made which introduces an aerosol 

shock that can handle non-volatile fuels[123]. In this design, a fuel aerosol in an oxidizer 

including diluent bath gas is used. The fuel aerosol is rapidly heated by the initial shock, 

vaporised, and diffusively mixed before the advent of the reflected shock. A gas-phase test 

then proceeds after the reflected shock.  

In shock tubes, the ignition delay time is defined as the elapsed time between the arrival of 

the shock wave at the driven section end wall and the onset of ignition at that same 

location.  The start of ignition is identified by the rapid growth in electronically excited OH 

(OH*)  emission that occurs at ignition.  Conventionally, the ignition point is defined by 

extrapolating the peak in the slope of the measured OH* emission signal to the baseline pre-

shock value. The observation of the OH*  emission around at 306  nm with appropriate 

sensors and optical filters[124].Figure 2-7 shows the ignition delay measurement from shock 

tube. 
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                       Figure 2-7: Shows the ignition delay measurement from Shock Tubes 

 

One of the limits of shock tube is that due to interference from boundary layer effects and 

reflected waves, observation times are limited to less than 5 ms. Therefore, the 

experimental conditions are constrained to pressure and temperature regimes where 

chemical induction times are very short. 

 

2.4.2 Flow Reactor 

A flow reactor brings reactive mixture to required temperature and pressure and then 

allows it to travel  down a tube as the reaction takes place. It is used to investigate reactions 

at low to high temperatures in the range of 500 – 1500 K at pressures up to 15 bar. Flow 

reactor experiments are conducted by first mixing fuel, oxidizer and diluent gases upstream 

of the reaction chamber vessel, or within the reactor. The mixture residence times in the 

heated reaction chamber span from 0.1 to 10 seconds, limiting the apparatus for 

investigating combustion phenomena such as an ignition process. The mixture is diluted 

with inert gas, which minimises gas thermal and compositional stratification within the 

reaction chamber. The core gas is a sample as chemical explosion progress and analysed by 

GC/MS systems to get species concentration data of stable intermediates. Figure 2-8 shows 

a schematic of the variable pressure flow reactor. 
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Figure 2-8: shows a diagram of variable pressure flow reactor in Princeton University[125]. 

 

2.4.3 Well-Stirred Reactors. 

Well-stirred reactors (WSR) are instruments used to achieve a perfect mixing inside a 

reactor, see Figure 2-9.  They have a fixed volume with an inlet and outlet port. They are 

operated at steady state and constant pressure. WSRs typically employ high-velocity inlet-

jet approaches giving high-intensity turbulent mixing. Species concentrations and 

temperature are assumed to be uniformly distributed. The rapid mixing results in sample 

conditions that are purely kinetically controlled. The composition of exiting mixture is a 

function of residence time. There are three characteristic times in WSR.  

A significant issue with stirred reactors is the achievement of sufficiently rapid mixing. At 

high temperatures, most combustion reactions are very fast and chemical time constants 

may be comparable to mixing time. Under these conditions, experimental results are 

mixing influenced. One of the advantages of WSR is that it can operate with low dilution 

and short residence times, and this permits the study of reactions at higher temperatures 

than flow reactors.  A high degree of dilution is still used to reduce temperature gradients 

and heat release. A typical example is the study of Dagaut et al.[126] where they investigated 

n-heptane oxidation in a jet-stirred reactor in the temperature range of 550 K to 1150 K and 

a pressure of up to 40 bar. The mixture was highly dilute (0.1% fuel) this was necessary to 

reduce the temperature gradients, control heat release inside the reactor and maintain a 

steady state. Since these reactors operate under steady state condition, information 

regarding time evolution of chemical reactions is not readily available. Several studies on 

the oxidation of various hydrocarbons and oxygenated compound[127] have been 

conducted both experimental[128-132] and numerically[133-135] using WSR. 
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                                  Figure 2-9: Pictorial view of Well-stirred reactor[133] 

 

2.4.4 Static Reactor 

Static reactors are a simplified constant volume apparatus used to study slow reactions 

characterised by low and intermediate temperature oxidation chemistry. The device 

consists of a spherical vessel filled with the reactive mixture and located inside a 

temperature-controlled compartment. This compartment could be an oven or a 

thermostatic bath that maintains the gas phase reactants at the desired temperature.  The 

evolution of reaction is checked by measuring the change in pressure or by detecting 

concentrations as a function of time for one or several species from withdrawn, quenched 

gas samples. In most cases, another vessel is used to premix the gaseous fuel-oxidizer 

reactant and admitted to the evacuated preheated reaction vessel by way of a valve[136]. 

The hypothesis associated with static reactors is that the reacting mixture is homogeneous. 

To adhere to this, the characteristic reaction times in static reactor experiments should be 

longer than characteristic diffusion times. This constraint places significant limitations on 

the operating range of static reactors (typically lower than 750 K), which results in 

comparatively long experimental timescales. Therefore, static reactors are frequently 

useful for comparatively slow reactions. Experimental studies  have been performed on the 

oxidation of alkene using static reactor over the temperature range of 670-770 K[137-139] 

and on the oxidation of propane at low and intermediate temperature [140-142]. Due to its 

high sensitivity to surface effects under conditions of long reaction times, static reactor 

experiments are not useful for quantitative analysis compares with alternative techniques. 
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2.5 Current Fuels Studied 

In the course of the research work three fuels would be considered in this study, 

conventional Jet A-1, which serves as a baseline fuel; used cooking oil(UCO-HEFA) 

processed through an F-T process (HEFA), and a Banner solvent comprises a  blend of five 

hydrocarbon species (decane, dodecane, undecane, tridecane, and tetradecane). 

 

2.5.1 Current Fuel Formulation 

In this study, the hydrogen-carbon content by (% mass) was used to determine the average 

molecular weight as described in page 102 of  Lucas [143] work. Table 2.2 shows the fuel 

formulation data derived from the GC analysis of the fuels. The formulation data in figure 

2-2 were obtained using the GC*GC data in Figures 2-9, 2-10 and 2-11. This was necessary to 

determine the correct equivalent ratio accurately. The hydrocarbons identified within the 

fuel samples were classified based on their chemical structures as per Table 2-3. 

 

Table 2-2: Jet fuel Formulation data 

Formulation Data Jet Fuel 
(FST-265638) 

Used cooking oil 
(FST-265640) 

Banner Solvent 

Molecular 
formula 

 

  

 

  

 

  
M.W(g/mol) 166.0 160.3 167 
Total C(g) 142.93 135.86 141.09 

Total H(g) 23.07 24.42 25.70 

Cx(mol) 11.89 11.31 11.745 
Hy(mol) 22.89 24.23 25.49 

%C 86.1 84.76 84.49 

%H 13.9 15.23 18.21 

HC Ratio 1.92 2.14 2.17 

Specific Gravity 0.8067 0.7596 
 

0.755 

DCN 43.74 56.38 75 
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Table 2-3: shows hydrocarbon identification base on their chemical structures[144]. 

 

 

2.5.1.1 Estimation of Average Molecular Formulae  

The fuel average molecular formulae must be determined so that the required equivalence 

ratios can be prepared.  This is estimated through an approach which uses input from the 

distillation and specific gravity data to calculate the average molecular weight of single and 

blended fuels[145].  In this method coupling of the fuel specification data describing the 

hydrogen content was used to determine the average molecular formula of fuels. Rao[145] 

proposed this where he correlated the average molecular weight (M) as a function of the 

boiling point (Tb) as shown below. 

   M = (
𝑇𝑏

𝐴
)
𝐵

        2-1 

 From Equation 2-1, the parameter A and B are calculated based on the molal average boiling 

point,𝑇𝑀. 
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2.5.2 Jet A-1  

Jet A-1 consists of various classes of hydrocarbon [146]. It is mainly derived from crude oil 

and composed of hundreds of aliphatic and aromatic hydrocarbon compounds with carbon 

chain length of C8-C16. Principal components are normal alkanes, branched alkanes, 

cycloalkanes, aromatics, and alkenes. A survey has shown that the average composition of 

Jet fuel worldwide contains 58% alkanes, 21% cycloalkanes, 13% aromatics[147].   

Jet fuels contain a significant amount of naphthenes, which enhances storage and thermal 

stability[60]. Additional chemical additives improves the thermal stability and storage of 

fuel; a typical example is the JP-8 +100[148]. Because the naphthenes undergo endothermic 

fuel decomposition at low temperatures, it can act as a heat sink for the cooling withthe jet 

engines[149]. The presence of aromatics the fuel influences autoignition at low 

temperature. Because jet fuel is associated with the production of soot, they are limited to 

20-25% and naphthalene content to 3% in volume. For economic reasons, the aromatic 

contents  have increased since the 1960s[150].  Each hydrocarbon group within the fuel has 

a different common oxidation characteristic.  Roubaud et al.[151] carried out work in a rapid 

compression machine, and that toluene, m-xylene and p-xylene could not auto-ignite below 

16 bars, while o-xylene and n-butyl benzene were able to auto-ignite at 10 bars in 50ms.  

Alkanes are relatively reactive while cycloalkane and aromatics are less so. The compounds 

of the highest concentration are n-alkanes. The characteristics of an aviation jet fuel are 

determined by operational needs, and they are typically developed to have good 

combustion characteristics combined with desired physical properties. There are three 

types of conventional jet fuels[152]: (i) a kerosene type (ii) a high flash point kerosene, and 

(iii) a broad cut. International civilian aviation companies mostly use the kerosene type Jet 

A-1.  

Table 2-5, shows the main characteristics of JP-8 and Jet A-1 reported by various authors in 

the literature[149, 152-155]. This includes the average composition of chemical families and 

the average chemical formula for kerosene (Jet A, Jet A-1, TR0, JP8), which differs from one 

source to another. 

 

 

 

 

 

 

 



39 

 

 

Table 2-4: Characteristic Properties of Kerosene Jet Fuel[60]. 

Property 
JP-8 
[149] 

JP-
8[154] 

JP-8/Jet A-
1[153] 

Jet 
A[154] JP-8[155] 

Kerosene[
152] 

Molecular weight  152  162   
Approximate 
formula  C10.9H20.9 C11H21 C11.6H22   
Number of C atoms 
in the fuel  10.9 11 11.6  9-13 

H/C ratio  1.92 1.91 1.9  1.9-2.1 

Boiling range 
140–
300 

Average 
204 165–265 

Average 
216  140–280 

Specific gravity at 
15C 0.81  0.81   0.77–0.83 

Av. Composition in 
vol%       

Aromatics 20  18  

18(monoaro.)C2
(diaro.) 10–20 

Cycloalkanes 20  20  20 20–30 

Paraffin 58  60  

28(n-par.)C29(i-
par.) 50–65 

Olefins 2  2   0 

       
 

It is often necessary to use a surrogate model fuel for simulating a fuels oxidation. 

Therefore, n-decane is primarily used as a surrogate to study practical jet fuels such as 

kerosene[156] and diesel[157]. A study[158] on n-decane oxidation at atmospheric pressure 

showed that the primary product measured were also found in kerosene oxidation [159]. In 

other studies using a high-pressure jet-stirred reactor [156], both n decane and kerosene 

showed very similar oxidation rates [156, 160] Similarly for premixed flames [161]. 

 Military fuels are blends of JP-8 and JP-5[162]. JP-8 is a conventional petroleum-derived jet 

fuel widely used by the U.S. military. The JP-5, which is naphtha-typed fuel made by 

blending straight-run kerosene stream with lower boiling distillates to fit the ASTM 

specifications. The primary difference in the two blends is that JP-8 has a lower freezing 

point (−47 °C), an additive package that includes corrosion inhibitors, icing inhibitors, and 

lubricants and ability to handle high heat.  

 Figure 2-9: shows the GC x GC analysis of the present jet A-1 fuel used in this work. The 

primary constituents are Cyclo-paraffin 40.79% by weight, n-paraffin 19.35% by weight, iso-

paraffin 20.57% by weight and aromatic 19.25% by weight. 
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Figure 2-9: Showing the GC x GC analysis of a conventional Jet A-1 fuel (FST-265638) 

composition. 

 

2.5.3 Banner Solvent 

Banner solvent are purely n-paraffinic fuels with a molecular formula of 𝐶𝑛𝐻2𝑛+ 2 consisting 

of five major component namely: n-Decane, n-Undecane, n-Dodecane, n-Tridecane and, n-

Tetradecane. Figure 2-10, shows the GC x GC analysis of the solvent fuel. At present, there 

is dearth information on ignition time of Banner-solvent. The understanding of chemical 

and physical properties of the fuel is relevant for the development of kinetic model and 

vital to combustor designers.  

 

                          Figure 2-10: Showing the GC x GC analysis of a typical Banner Solvent. 
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2.5.4 Used cooking oil (UCO-HEFA) 

Figure 2-11, shows the GC x GC trace of the UCO-HEFA studied in this work. It contains 

mostly n-paraffinic and isoparaffinic compounds with negligible aromatic. The relative 

proportion of each type of molecule is 19.47% n-paraffins,71.34% iso-paraffins,0.56% 

cycloparaffins,6% naphthenes and about 1.9% aromatics by weight. 

 

 

 

         Figure 2-11: Showing the GC x  GC  analysis of a typical UCO-HEFA fuel composition 

 

2.6 Basic Concept of Autoignition  

Auto-ignition is one of the fundamental properties of combustion, which has a significant 

impact on engine emission and performance[163]. The onset of autoignition is driven by the 

temperature, pressure and chemical kinetics of the system[164].  It initiates when the slow 

thermal reactions have sufficient chain-branching components to support and accelerate 

oxidation. The initiation starts with a group of reactions abstracting H atom or 

decomposing hydrocarbon molecules into a highly reactive intermediate species (radicals). 

It then proceeds by propagation reactions, where the built-up radicals react to form 

products and more radicals. The increase in reaction rate and the increasing radicals’ 

concentration build on themselves and in due course lead to a rapid, explosive rise in 

radical concentration and oxidation rate. Chain branching reactions occur where more 

radicals are produced in a reaction than are absorbed accelerating the reaction rate 

significantly. Eventually, the radical concentration is suppressed by termination reactions, 

which transform the active radical to stable product[165, 166]. This process releases heat 
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thereby increasing the temperature of the system. The reaction rates are dependent on the 

pressure and temperature. 

When autoignition occurs, the rate at which energy is liberated by the chemical oxidation 

reaction exceeds the rate energy at which it is dissipated by heat loss.  This increases the 

temperature of the mixture, and in turn the oxidation chemistry rate. 

 

 

Figure 2-12: illustrates the basic definition of ignition delay of a single stage ignition. P (t) is 

the pressure as a function of time, and P′(t) is the time derivative of the pressure as a 

function of time. 

 

Figure 2-12  illustrates the basic definition of autoignition delay, which is the time from the 

end of a rapid increase in pressure, and temperature to the spontaneous ignition of the fuel 

mixture. The accurate prediction of autoignition times with their dependence on pressure, 

temperature, and composition is essential for the application of advanced engine 

technologies.  However, autoignition is sensitive to chain branching and chain terminating 

reactions and thusdepends on the chemical structure of the fuel. 

2.6.1 Ignition Limits 

The lean ignition limit is the minimum concentration of fuel and air mixture in its vapour 

state and under specified condition below, which external ignition cannot initiate a self-

propagating reaction. Ignition limits can be classified into two, the strong and the weak 

ignition limit[167]. The strong limit occurs over high temperatures and generates a blast 

wave, while the weak or mild ignition limit occurs at lower temperatures where the 

initiation of the reaction at many loci merge to form a smooth front. 

Explosion limits for hydrocarbon fuels are illustrated in the P-T explosion diagram shown 

in Fig. 2-13. When pressure is low the system is characterised by a slow reaction, where 

ignition does not occur, the collisions and the production rate of chain carriers are 
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subsequently low.  The reactive species formed in the gas phase by chemical reaction 

diffuses to the wall and form a stable species. Diffusion is inversely proportional to the 

density of the gas, so can occur with relative ease at low pressure. With increasing pressure, 

a threshold value is reached (first ignition limit), where the gas molecules are energised, 

and the production rate of the chain carrier reaction increases leading to a spontaneous 

ignition. The first explosion limit is governed by the chemical nature of the vessel and the 

limit of circumstantial processes of chain branching in the gas phase and that of chain 

termination to the surface. As it proceeds, the reaction is slow without observing any 

ignition. 

In the second explosion limit, which is characterised by chain branching and chain 

termination in the gas phase. The chain branching reactions produce a radical pool, which 

is the basis for the explosion. The three-body reactions compete with branching reaction to 

produces weak reactive radical (hydroperoxyl radical). This reaction illustrates a typical 

chain termination and is slightly independent on temperature. 

In the third explosion, the limit is controlled by the competitive nature of the heat 

production by the chemical reaction and the heat losses to the vessel wall. At this point, as 

pressure increases the heat production rate, also increases per volume and a transition to 

the explosion occurs. The multistage ignition is seen as the region where ignition proceeds 

after the emission of short light pulses, and this occurs at a low temperature[164]. 

 

 

Figure 2-13: shows the Ignition limit (P-T explosion diagram) for hydrocarbon fuels [163]. 
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2.7 Basic Concept of Chemical Kinetics  

Chemical kinetics describes the sequence a chemical system follows during the 

transformation of reactant into a product. The time it takes for a reactant to get to the 

product state is of importance. The backbone of chemical kinetic is the rate of the reaction. 

Avery[168], defined the rate of reaction as the change of measurable quantity related to the 

reaction system. It can be expressed as a change in concentration of some species with time. 

This illustrated with the following bimolecular reactions. 

aA + bB →  cC + dD                                                                             2-2 

      

Here A, B are reactants and C, D are the products. The letters a, b and c, d represent numbers 

that ensure the equations are balanced. The rate of reaction term of species concentration 

is  

  Rate =  
−1

𝑎

𝑑[𝐴]

𝑑𝑡
= 

−1

𝑏

𝑑[𝐵]

𝑑𝑡
= 

1

𝑐

𝑑[𝐶]

𝑑𝑡
= 

1

𝑑

𝑑[𝐷]

𝑑𝑡
                                                           2-3 

    

 

The rate of reaction is proportional to the concentration of its reactants and expresses the 

proportionality between the rate of reaction and concentration of the reactant written in 

the form 

    Rate α [𝐴]𝑥[𝐵]𝑦                                                                                    2-4 

    

    Rate =𝐾𝑓 [𝐴]𝑥[𝐵]𝑦                                                                                2-5 

    

Where x and y are the exponents on the concentrations of A and B. In this rate law,  𝐾𝑓   is 

the rate constant and the exponents x and y are the order of the reaction with respect to A 

and B. The order of reaction is the summation of the exponents x and y. The rate can be 

further expressed as [169]. 

    
−1

𝑎

𝑑[𝐴]

𝑑𝑡
 =  𝐾𝑓 [𝐴]𝑎[𝐵]𝑏                                                                          2-6 

     

 

 Arrhenius  showed  that the rate of a reaction is associated with the temperature  
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    𝐾𝑓  =   𝑨 ∗ 𝒆𝒙𝒑 [− 
𝑬𝒂

𝑹𝑻
]                                                         2-7 

  

Where K is the rate coefficient, 𝑨 is the pre-exponential factor or collision frequency factor, 

R is the universal gas constant and T, is the temperature, and  𝑬𝒂  is the activation energy. 

Reactions that proceed break the reactant chemical bond with a higher kinetic energy than 

that needed [170].  This barrier is prescribe by the activation energy shown in figure 2-14 

 

                        Figure 2-14: shows the schematic diagram of a chemical reaction [191]. 

 

The difference between the reactant and product is referred to ∆H. Where H, is the enthalpy. 

The expression 𝒆𝒙𝒑 [− 
𝑬𝒂

𝑹𝑻
] reflects on the fraction of molecules that have higher kinetic 

energy than the activation energy. Pressure influences the rate of reaction by subsequently 

increasing the molar concentration, which eventually increases the collision of the state. 

More recently, the Arrhenius has been modified by introducing a parameter b into equation 

(2-8) which expresses the dependence of collision frequency on temperature. 

   𝐾𝑓  = 𝑨. 𝑻
𝒃 ∗ 𝒆𝒙𝒑 [− 

𝑬𝒂

𝑹𝑻
]                                                                    2-8 

     

The ignition delay depends exponentially on the reciprocal temperature that exhibits 

Arrhenius temperature dependence[164, 171].  

 

2.7.1  Hydrocarbon Oxidation and Mechanisms 

When hydrocarbon fuels are heating in the presence of air, they undergo a complex 

sequence of elementary chemical reactions. The hydrocarbon oxidation process can be 

separated into three distinct temperature regimes [172]. 

1. A low-temperature regime where the dominant branching agent is alkyl peroxy 

radicals. 

2.  The intermediate temperature regime dominated by  hydroperoxyl radical 

3. The high-temperature regime, the hydroxyl and atomic oxygen and hydrogen 

radicals are dominant. 
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Each regime is dominated by reactions involving different radical species and different 

pathways. The boundaries between each regime are influenced by the pressure, 

temperature and equivalent ratio.  Figure 2-15, illustrates these the three distinct oxidation 

pathway schemes adopted as presented by Miller et al.[173] A brief description of the three 

distinct temperature regime given in the next section. 

 

Figure 2-15: showing the three temperature regimes (low, intermediate and high) for an 

Alkane Oxidation [115]. 

 

In figure 2-15, illustrates the basic oxidation pathway regime for hydrocarbon fuels. At the 

boundary between the intermediate and high-temperature regime the reaction (H + O2) is 

neutral. Above this line, the branching reaction (H + O2 →OH +O), dominates below at low 

temperature, termination reaction (H + O2+ M  → 𝐻𝑂2 + M), and is dominated.  The 

intermediate temperature regimes are classify as the negative temperature coefficient 

(NTC) state. Here, the intermediate regimes degenerate chain branching reactions starts to 

dominate the chain branching reactions at low temperature regime. Whereas the neutrality 

of the peroxy radical is link to the boundary, between the low and intermediate 

temperature regime. 

 

2.7.1.1  Low-Temperature Regime 

In low-temperature regime, the compressed gas temperature of the unburned gases is below 

900 K. A schematic diagram is shown in figure 2-16, the branching pathway of low-

temperature chemistry. The process starts with the abstraction of H atoms from the 

hydrocarbon RH, producing an alkyl radical R.  

The alkyl radical reacts rapidly with 𝑂2  to produce the alkylperoxy radical RO2.   In kinetic 

study, the R + 𝑂2 reaction displays behaviour that is much more complicated. With a 

slightly increased temperature, the alkylperoxy radical becomes thermally unstable and 
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can impact on the progress of autoigntion.  The alkyl and 𝑂2 reactants can form back by the 

dissociation of RO2. Even at room temperature the conjugate alkene and HO2 can be 

produced by RO2 but is terminated as the pressure increases[174, 175].  HO2 is a stable 

unreactive molecule and its only means of production is the through the direct elimination 

of HO2 from  RO2, which has been  demonstrated through theoretically[176, 177] and 

experimentally[178-180]. The removal of  HO2  produces  H2O2  and which is stable up to  1100 

K,  this avenue is chain terminating at low temperature. The occurrence of this behaviour 

and the loss of  𝑅𝑂2  a chain carrier is partly responsible for the negative temperature 

coefficient that causes the decrease in reactivity with increasing temperature as observed 

in the oxidation of several hydrocarbons. The progress of alkylperoxy radical isomerization 

yields via a ring-like intermediate transition state containing 5, 6, 7, or 8 atoms. The rate of 

each H atom transfer depends on the number of atoms in this transition state ring and the 

sort of C–H  bond that is broken during this intramolecular H atom isomerization[172, 181]. 

The high reactivity of alkanes at low temperature is attributed to the formation of 

hydroperoxides, which are degenerate branching agents that abstracts an H atom from 

within the  RO2 species to produce a hydroperoxyalkyl radical, QOOH[182].  The QOOH 

formed is a substituted alkyl radical, with the unpaired electron formally located at a 

carbon atom; it is subject to attack by a second 𝑂2 molecule to yield 𝑂2QOOH. These further 

react by a second internal isomerization (H abstraction) and dissociation to produce 

multiple radicals (e.g. 2 OH radicals and an oxy radical) and a chain branching pathway at 

low temperature and this process strongly promotes the oxidation of alkanes below 900 K. 

 

 

Figure 2-16: shows the chemical kinetics pathway for low-temperature oxidation of alkane 

[131]. 
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2.7.1.2 Negative Temperature Coefficient (NTC) 

In 1938 Pease was one of the few scientists to observed NTC during his study on the 

oxidation of propane using both flow and static systems[183]. This phenomenon holds 

significant importance in the non-isothermal oxidation of alkanes.  When the temperature 

exceeds ( < 650 K) degenerate chain branching develops and oxidation is principally by OH 

radicals. These are exothermically reactive, and the system itself begins to self-heat. As the 

temperature increases the turnover temperature is achieved, which indicates the beginning 

of the NTC regime[184]. The alkyl peroxy becomes unstable and reacts reversely to the 

oxidation of alkyl radicals. The equilibrium position of R + O2 ↔ RO2 begins to shift back to 

the reactant where the formation of 𝐻𝑂2 radicals and the conjugated alkene is more 

favoured compared to that of alkyl peroxy radicals. This eventually leads to slowing down 

of the chain branching of the reaction[185, 186]. The decomposition of QOOH radicals into 

cyclic ethers, aldehydes or ketone and OH radicals or by β-scission into HO2 radicals and 

conjugated alkenes also decreases the reactivity in that regime.  

 

2.7.1.3 Intermediate Temperature Regime 

Within the intermediate temperature regime (800-1000 K) as the pressure increases the 

turnover temperature shift towards higher values where the NTC region suddenly begins 

to vanish. The dominated HO2  radical’s produces H2O2  decomposes rapidly to OH radical 

as they  formed and is  the driver for the chain branching reaction.  

 

2.7.1.4 High-Temperature Regime 

At high temperatures greater than 1000 K, the chain initiation reactions are predominantly 

the decomposition reactions in addition to the H-atom abstraction reactions. Hydrocarbon 

lumps are short lived to undergo β-scission to yield a smaller olefin and another radical. 

The decomposition not only involve fuel molecules but the alkyl, alkenyl, and olefins, which 

are the major branching mechanism. At higher temperatures, the internal H atom 

isomerisation dominates, while other smaller oxygenated species such as 𝐶𝐻2𝑂 and CO 

along with olefins and smaller alkanes take over as the main participants of the subsequent 

oxidation reactions[172].  

 

2.7.2 Surrogate Fuel as a Representative of Alternative Aviation Fuel. 

2.7.3 The concept of Surrogate Fuels. 

The complexities of jet and alternative fuels mean that a direct engine simulation of the 

chemical kinetic behaviour is not feasible[187]. Therefore, commercial fuels are described 

using a limited number of representative compounds; these are called  surrogate mixtures 

[188]. In this way, it is possible to describe the chemical oxidational process 
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computationally, and well-defined experiments can be performed. The physical and 

chemical properties of an aviation jet fuel should be reproduced by using surrogate fuels. 

There aretwo types of surrogates; physical surrogates designed to produce the physical 

properties of aviation fuels and the chemical surrogates intended to have a similar 

chemical composition of the aviation fuels. Surrogates that have both the same physical 

and chemical properties as the aviation fuel are referred to as comprehensive surrogates.  

In a gas turbine process, the combustion processes are composed of several stages, 

including the premixed combustion phase, ignition delay period and the mixing-controlled 

combustion or diffusion burn phase[189]. The ignition of the injected liquid fuel is governed 

by the physical and chemical process during the ignition delay period, and it is necessary 

for surrogates to describe a range of real fuel properties[153, 190].   

The ignitability of the fuel is referred to as the derived cetane number (DCN), which 

measures the ignition quality of fuels. 

2.7.4 Surrogate Formulations. 

Various methods have been designed to determine the critical component of surrogate of 

the different real fuels [191-193] and surrogate proposed for Jet A[194, 195] and FT fuels[196, 

197]. Typical property targets are 

(1) The average molecular weight(MW) 

(2) The threshold sooting index(TSI) 

(3) The hydrogen to carbon ratio(H/C) 

(4) The derived cetane number (DCN). 

 

With these four basic properties, no detailed chemical analysis of the real fuel is required, 

but the chemical structure must be reflected in the selection of surrogate fuel components. 

Two surrogates are a first generation surrogate comprising of n-decane/iso-

octane/toluene[194] and a second generation surrogate n-dodecane /iso-octane /n-propyl 

benzene /1,3,5 trimethylbenzene[198]. The first generation surrogate mixture could not 

replicate TSI and its average molecular weight commercial fuel.  This led to the second-

generation surrogate component, which matched Jet fuels. 

A surrogate blend Optimizer (SBO) tool was used by Naik et al.,[196] to decide the best 

surrogate blend composition to model FT fuels. Their match combination of the properties 

such as H/C molar ratio,  Cetane number, lower heating value, density, and actual boiling 

point curve. Their result showed that the surrogate fuels with the detailed kinetic model 

were able to precisely predict the combustion properties of the commercial FT jet fuels 

[196]. 

A comprehensive study was carried out by Edwards and Maurice[153] on various classes of 

a surrogate. They said that the kinetic mechanism used for the surrogate must include a 

proper description of chemical interactions among the components. In a situation, where  
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single-phase heat transfer is to be studied without chemical reaction a single component 

with the same critical temperature was recommended for use as a surrogate. N-dodecane, 

for instance, has physical properties similar to JP-8/JetA-1 and JP-7[153] whereas other 

properties such as mixing, injection and fuel vaporisation without a chemical reaction 

requires a multi-component surrogate to match the distillation curve. 
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Chapter 3. Experimental Facility and Technique. 

3.1 Developmental Overview of Sheffield Rapid Compression Machine (Shef-

RCM) 

The primary design consideration in the development of a rapid compression is its ability 

to compress fast, yet bring the piston to a halt at top dead centre (TDC). Thus minimisesthe 

heat loss from gases to the wall of the cylinder and also avoids vibrations that would distort 

the experimental data [100, 199]. A diagram of the present Shef-RCM shown in figure 3-1. The 

SRCM consists of three chambers and four pistons. Two rods run from the front of the 

pneumatic driving piston to the rear of the reactor piston so that they move as one unit. 

The machine was mounted horizontally on a steel frame. 

 

Figure 3-1: Schematic diagram of the University of Sheffield RCM (Shef-RCM). 

The entire length of the rig was 2.1 m long and weighed about 40 kg; it was mounted on a 

heavy steel base frame of 75 kg to minimise vibrations. The rapid compression machine 

incorporated as hydraulic stopping mechanism, and optimised crevice design. The device 

was pneumatically driven. The connectingshafts had a standard outer diameter (OD) of 25 

mm. The piston stroke was measured by the use of a linear variable differential transformer 

(LVDT) mounted on a parallel platform with the RCM. It was connected to a reference plate 

before the piston release mechanism.  Heating tape (Omegalux) was wrapped around the 

reaction chamber to maintain a constant wall temperature. The chamber temperature read 

was from a PID controller connected to the K-type thermocouple located at the end of the 

reaction chamber. An optimised piston head crevice was used based on Mittal’s design[115, 

200].  

Fuel was injectedwith a syringe through a septum into the reaction chamber. The 

pneumatic pins were charged with compressed air between 3 to 5 bar, before the runs 

wereinitiated. A solenoid valve was used to control the pneumatic pin release mechanism 

(brake). When the solenoid valve was triggered, the compressed air pressure in the system 

dropped and the pneumatic pins were released.  The obtainable compressed pressure at 

TDC ranged between 5 – 22 bar.  The RCM compression time varied between 25 - 35 ms with 
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a stroke length of 138 – 145 mm and compression ratios of between 6.5 – 13.8. The stroke was 

fine by moving the reaction chamber over 5 mm in its holding bolt slot.  In addition, the 

thread on the shaft lock has 1.5 diameter pitch, which could be turned to slightly adjust the 

length of the stroke. The key features of the rig are discussed below. Figure 3-2 shows the 

snap shot of the present rig. 

 

 

        Figure 3-2: A photograph of the University of Sheffield RCM (Shef-RCM) test facility. 

 

3.2 Driving Section of the Shef-RCM 

The driving section of the rig was a single acting actuator (Norgren PRA/182/100/M/600). 

The pneumatic chamber was 890mm long with a bore of 100mm and a maximum stroke 

length of 160 mm. The charging pressure could be regulated from 1 to 11 bars. The rear of 

this cylinder connected to 8mm OD pipe via a ball valve an air compressor (SXC 4), which 

could supply up to 11 bars pressure.  The rig was fitted with two pressure gauges one for the 

pneumatic cylinder, the other for the piston pin release mechanism (PPRM). The 

pressurised air supply was passed through a filter to remove moisture and contaminate and 

to ensure dry air was in the chamber.  

The ideal of the Shef-RCM design was to use a bigger driver piston to move a smaller one in 

the reactor chamber. Thushigh pressures are achieved in the reaction chamber with a lower 

pressure on the driver piston. The moving parts were kept as light as possible to reduce 

their inertia. The pneumatic chamber function is to store compressed air until it is required 

to drive the piston. The outstroke of the cylinder is determined by the product of the 

effective area of the piston to the working pressure. The force generated was found using 
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   Thrust F = 
𝝅𝑫𝟐𝑷

𝟒𝟎
                                                                   3-1 

      

Where D is the cylinder bore in millimetre, P is the Pressure in the bar and F is the thrust 

in Newtons. The thrust generated so far assuming a driving pressure of 5 bar driving 

pressure is 392.7N. 

 

3.3 Combustion Chamber Design 

The combustor chamber received the air-fuel mixture and is where the burning takes place. 

It designed to withstand the pressures of 100 bar. The equation for the hoop stress created 

by an internal pressure is  

               𝝈𝜽 = 
𝑷𝒓

𝟐𝒕
        1.1 

Where 𝜎𝜃 is the hoop stress, r is the internal radius of the cylindrical tube, t is the wall 

thickness, P is the internal pressure after combustion in the chamber. The diameter of the 

cylinder tube can be seen in figure 3-3. 

 

                            Figure 3-3: shows the diameter of the cylindrical tube in mm. 

 

For a cylinder of internal diameter 40 mm and outer diameter 54.94 mm. The maximum 

stress the chamber would experience at 100 bars was 26.77MPa. This much less than the 

yield stress of mild steel (250MPa).  

The combustion chamber made up of a cylindrical tube held in stainless steel blocks at the 

end of the chamber. Figure 3-4, shows the design of the combustion chamber and its unit. 

The blocks were machined with a bore diameter of 40mm and thickness of 6. 6mm.The steel 

tube had an outer diameter of 40mm, a length of 190mm with a wall thickness of 7.47mm. 

The steel tube fitted into the blocks to form the chamber’s assembly. A carbonised copper 

gasket was fitted in the recess of the chamber block to seal the chamber. Bolts (M10) held 

the rig together.  
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         (a) 

 

   (b) 

 

Figure 3-4: showing the three ports (a) front view and (b) isometric view of the end 

combustion chamber. 

 

The end of the combustion chamber had three ports to accommodate sensing devices and 

fuel injection shown in figure 3-4. A thermocouple was used for measuring the initial 
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temperature of the chamber. The other three ports were: the pressure transducer for 

capturing the dynamic pressure: fuel injection port for admitting fuels with the needle 

valve.  The needle valve had two functions: it allowed compressed air into the chamber for 

retracting of the piston, and it serves the purpose of shutting off the opening before the rig 

run. Figure 3-5 shows the assembled view of the combustion chamber and this cross 

sectional view. 

 

 

Figure 3-5: showing the Isometric and Sectional view design of the Combustion Chamber 

Unit. 

 

3.3.1 Combustion Chamber Volume Estimation. 

A known combustion chamber volume is required to accurately meter the right amount of 

fuel into the reactor chamber. The chamber volume was estimated using the ideal gas 

equation.  

                             𝑃𝑉 = 𝑛𝑅𝑢𝑇                                                                   3-2 

      

Where P is the pressure, V is the volume of the chamber, n is the number of moles, 𝑅𝑢 is 

the universal gas constant.  

The following assumptions made were: 

1. Nitrogen behave like an ideal gas  

2. The temperature of the combustion chamber remained constant. 
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 In order to measure its volume combustion chamber was vacuumed down and injectedwith 

50 ml nitrogen gas.  Pressure readings were taken using a pressure transducer (Kistler 

4045A5, 0-5bar absolute pressure) at every 600s. 

 

                            Table 3-1: Combustion chamber volume calculation 

Test 1      

Time(s) Pressure(bars)   
Volume 
(ml)   

0 0.8881 V1 129.80     

600 0.8875 V2 129.71     

612 0.6407 V3 179.80     

1212 0.6432 V4 179.10     

      
Av. leak 
rate 0.39 ml 

Test 2           

Time(s) Pressure(bars)         

0 0.8883 V1 129.48     

600 0.8877 V2 129.39     

612 0.6404 V3 179.48     

1212 0.642 V4 179.03     

      
Av. leak 
rate 0.27 ml 

Test 3           

Time(s) Pressure(bars)         

0 0.8859 V1 129.28     

600 0.887 V2 129.12     

612 0.6394 V3 179.12     

1212 0.6412 V4 178.62     

      Av. leak  0.33 ml 

      
final 
volume  179.47   

 

Three sets of measurements were obtained a volume of 179 ml determined as shown in Table 

3-1.  Figure 3-6 shows, the leaks rate in the combustion chamber. It was estimated to be 

0.33ml amounting to about 0.18% of the entire volume and was considered negligible.  

.  
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                       Figure 3-6: Pressure-Time for reactor chamber volume calculation. 

 

3.4 Hydraulic Damping Mechanism 

The decelerationand stopping of the piston are achieved by the hydraulic unit that was 

made up of a ring and groove enclosed in a cylinder filled with hydraulic oil (SAE 10). Figure 

3-7 shows a schematic of the hydraulic damping device containing the casing, shaft, piston 

ring and groove. The hydraulic chamber had a bore diameter of 100mm and lengthof 

400mm. The hydraulic piston ring and groove were made from stainless steel and attached 

to the shaft.   To enhance the speed of the piston, four holes of 5mm bore were drilled on 

the hydraulic piston ring position.  

 

 

                     Figure 3-7: Schematic Drawing of the Hydraulic Damping Mechanism 
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In this present RCM design, the desire was that the piston should reach the TDC as short a 

time as possible to minimise heat loss from the reactants to the reactor chamber walls. That 

meant the driving pressure should be made as high as possible so that the maximum piston 

velocity was achieved. Higher piston speeds required a higher deceleration at the end of 

compression this was achieved by venting the hydraulic oil through the steps on the 

hydraulic piston ring and the surface on the front of the hydraulic groove. There are three 

methods of hydraulic damping: (1) Using the annular clearance method, (2) orifice method 

and (3) the valve deceleration method. 

The first two methods use piston movement to initiate a restriction to the oil flow out of 

the cylinder towards the end of the stroke. While the last one dampens its piston through 

restricting oil flow by the use valve that is operated using a cam. The method adopted for 

this design was the annular clearance type. The oil in the hydraulic chamber is not 

pressurised [104-106, 111], but the chamber unit is filled with hydraulic oil and the 

load/piston itself is pressurised from the rear of the pneumatic chamber.  

 

 

                  (a) 

 

(b) 

Figure 3-8: (a).shows the exploded isometric view of the Hydraulic Ring and Groove. (b) 

Shows the sectional view of the Hydraulic Ring and Groove. 
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From figure 3-8, the exploded view shows hydraulic piston ring and groove, which has three 

steps machined on its surface with a length of 10 mm. The damping of the reactor piston is 

achieved by venting of the oil in the groove as the hydraulic ring moves into the cylindrical 

cavity of the hydraulic groove. At the full-length of the stroke, the deceleration of the 

reactor piston is control by by-pass of oil flow through the annular gap machined on the 

face of the hydraulic ring. The ring and groove clearance were made small less than 0.4mm 

so that the force builds up exiting in the groove is small thereby providing a braking force 

that eventually slows down the piston until it comes to rest as the hydraulic piston ring 

finally settles in the groove. Detailed drawing of the piston ring and groove are found in the 

appendices 5 and 6. 

The design of damping mechanism [104-106, 201]  required attention to obtain an acceptable 

result and if poorly designed may lead to piston reshoot or recoil leading to reaction 

chamber volume expansion at it maximum compression. This was achieved by trial and 

error, repeatedly machining a step ring on the periphery surface of the hydraulic piston 

ring until an acceptable deceleration was produced. The final result had three stepped 

surfaces.  Experimentally this is accomplished by machining a step surface on the hydraulic 

pistongiving a decreasing annular gap between the hydraulic ring and the groove. The 

damping design could be used at two driving pressures of 4, and 5 bar. Step sizes of (62.9, 

62.8, 62.7, and 62.6) mm were tried. The results of usingdifferent step surfaces and 

combinations for the driving pressures of 4 and 5 bar are shown in figure 3-9 and figure 3 -

10. 

4 bar Driving Pressure 

 

(a) 
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(b) 

 

 

(C) 

Figure 3-9: shows the pressure trace for the hydraulic damping using three-step sizing for 

four  driving pressure. (a) One step, (b) two steps, and (c) three Steps. 
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5 bar Driving Pressure 

 

(a) 

 

 

(b) 
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(c) 

Figure 3-10: shows the pressure trace for the hydraulic damping using three-step sizing for 

five driving pressure. (a) One step, (b) two steps, and (c) three Steps. 

 

 

3.5 Piston release mechanism 

A pneumatically driven piston release mechanism (brake) was designed for the RCM. The 

piston release mechanism consists of a rectangular block, which holds the compact 

pneumatic cylinders. When retracting the reactor piston, the switch controlling the 

solenoid valve is depressed. Compressed air flows through the pneumatic line, which forces 

the reactor piston is repositioned at its bottom dead centre (BDC). When the reactor piston 

seats in its position, the pins are then released by depressing the switch, which releases the 

pins as it locks against the chamfered slot of the shaft lock. Thereby holding the reactor 

piston in its start position (BDC). The piston release mechanism is the main control of the 

rig. It acts as the break, which holds and releases the reactor piston in its initial start 

position. Once the control switch button is depressed, the compact cylinder is releasedfrom 

its pins, and the pre-charged driver cylinder drives the shaft forward. The operating 

pressure of the pin release mechanism is between 3-5 bars.  Figure 3-11, shows the exploded 

view of the piston release mechanism.  
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                                     Figure 3-11: Piston release mechanism. 

                                                

 

3.6 Piston Design 

The piston inside the combustion chamber compressed a fuel/oxidizer mixture to high 

pressure and temperature. A reactor piston should have sufficient strength and stiffness 

and be thermal stability with low thermal conductivity, a low  expansion coefficient and be 

lightweight. Aluminium alloy 6082-T6 drawn tube is used.  The piston diameter was 39.6mm 

and 50mm long. The clearance from the wall of the cylinder to the surface of the piston was 

0.2mm. Since aluminium expands when heated, sufficient clearance was required to 

maintain free movement. To obtain the highest compression speed possible, the piston 

needed to as light as possible. The piston was hollowed out to reduce its weight and to have 

a uniformly distributed stress throughout the entire body. The piston crown is subjected to 

high combustion temperatures. The piston weighed about 122 grams. Sectional views of the 

two piston designs are shown in figure 3-12. 
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         Figure 3-12: Shows the sectional view of the Flat and Crevice Piston Design. 

 

The Viton piston seals used were produced by Martin Rubbers Company, UK. The 

dimensions of the Viton seals are 29, 41, 10 mm. Viton was used at it could withstand the 

high temperatures in the rig.  Figure 3-13 shows the Viton seals used for the present rig. 

 

 

 

                                            Figure 3-13: Pictorial view of Viton seals. 

 

 

3.6.1 Piston Stroke and Velocity Profile. 

The stroke of the piston is obtained by the use of the Linear Variable Displacement 

Transducer (LVDT), (model DCTH 4000C).  The LVDT is an electro-mechanical transducer 
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that converts the linear motion of the object to the corresponding electrical signal. This is 

mounted on a flat surface of the rig placed side by side with the hydraulic unit. When the 

reactor piston is released, the reference plate, which is coupled to LVDT moves and pull 

along the core of the LVDT. The displacement is then recorded as the piston moves from 

bottom dead to top dead centre.  The reference plate has a reflective paper rapped on its 

surface, and an optical sensor was mounted close to the reference plate.  The optical sensor 

was positioned in such a way that when the reflective plate moves the signal is seen by the 

optical sensor through the LabVIEW program. It was placed about 4mm from the surface 

of the reflective reference plate. A change in the output from the optical sensor was 

observed when the reference plate moved, and this was an indicative of the time of start of 

the reactor piston. The displacement profile of the reactor piston was logged using 

LabVIEW.  Figure 3-14 shows the plotted measurement of piston displacement/stroke with 

the LVDT instrument. 

 

 

Figure 3-14: showing the Piston Displacement/Stroke for three different driving pressure, 4, 

5 and 6 bars. 

 

The velocity profile could also be derived from raw experimental pressure trace as used by 

Mittal [202]. The process of compression is modelled  as polytropicprocess using the 

constant polytropic compression,𝛾 is expressed by the relationship 

 

                             
 𝑃𝑐

𝑃𝑖
 = (𝐶𝑅)𝛾                                                                                   3-3 
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Where Pi is the initial pressure, 𝑃𝑐 is the final compressed gas  pressure and CR is the 

chamber compression ratio. The instantaneous volume V(t) is given by the equation  

                                 V (t) =  𝑉𝑖 [
𝑃𝑖

𝑃(𝑡)
]
1
𝛾⁄
                                                                   3-4 

    

Where  𝑉𝑖     is the initial volume prior to start of compression and   P(t) is the experimental 

pressure data from the RCM. The velocity of the piston during compression, Velocity (t) can 

be determined by fitting a polynomial to the time history of the calculated volume of the 

chamber V (t).  

                                   Velocity (t) = 
𝑑𝑉

𝑑𝑡⁄

𝜋 𝐷2
4⁄

                                                               3-5 

     

Where   𝑑𝑉 𝑑𝑡⁄   is   the time change of the combustion chamber volume and  D  is the 

diameter of the chamber. The equations written in a simple python code use to calculate 

the velocity of the piston and the generated profile is then use in the CFD simulation. The 

calculated velocity profile for  4 bar driving pressure is illustrated in figure 3-15. 

 

 

                             Figure 3-15: showing the velocity profile 4 bar driving pressure. 

 

From figure 3-14, it shows that the piston initially starts from rest and travels with a 

constant velocity at a point, it follows a constant velocity before decelerating to rest at a 

constant rate. The section is divided into three-time period of the piston motion, which is 
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illustrated in equation 3-6. This equation is relevant for the numerical calculation where 

the parameters are used to model the compression stroke of the RCM.  

         

                𝒕𝒄𝒐𝒎𝒑 =  𝒕𝒂𝒄𝒄𝒆𝒍  +  𝒕𝒄𝒐𝒏𝒔𝒕 + 𝒕𝒅𝒆𝒄𝒆𝒍                                                            3-6 

Where  𝒕𝒄𝒐𝒎𝒑 overall  compression time, 𝒕𝒂𝒄𝒄𝒆𝒍   acceleration time, 𝒕𝒄𝒐𝒏𝒔𝒕 constant 

velocity time and  𝒕𝒅𝒆𝒄𝒆𝒍  deceleration time. 

 

3.7 Compression Time Measurement 

The computed compression time of the reactor piston is from the time optical sensor drops 

by 5 volt, which corresponds to the start time and the time when the LVDT peaks at TDC. 

Figure 3-16, shows how the start time of the reactor piston and the end time read from the 

optical sensor and the LVDT instruments. Figure 3-17 and 3-18 also shows 4 and 5 bar driving 

pressure with compression time of 32 and 28 ms. 

 

 

                    Figure 3-16: Shows the timing for the Optical sensor and the LVDT. 
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                     Figure 3-17: 4 bar driving pressure showing a compression time of 32 ms 

 

 

                          Figure 3-18: 5 bar driving pressure showing 28 ms compression time. 

 

3.8 Direct Premixed Charge Preparation 

The mixtures were prepared directly in the chamber method is used[104, 105]. Smaller 

residence times are experienced by the fuel compared to mixtures prepared in pre-chamber 

[117, 203, 204]. When a separate mixing chamber is used difficulties in controlling the 

temperature in the heated transfer line can cause thermal decomposition or condensation 

within the tubing of the transfer-heated line.  
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3.8.1 Fuel Evaporation and Mixing Time 

Differentmixing times 1, 1.5 and 2 hourswere tried.  Figure 3-19, shows the resulting pressure 

traces.  A mixing and evaporating time of 1.5 hoursused in this study. 

 

(a)                  (b) 

 

 

(C) 

Figure 3-19: Repeatability pressure test for different Timing. (a) 1-hour timing, (b)1.5-hour 

timing, (c) 2 hours timing. 

 

The result in figure 3-8 shows the repeatability test carried out with heptane/air mixture at 

stoichiometric and an initial temperature of 305 K. Figure 3-18b clearly showed to have a 

repeatable result at about 1.5 hour of timing than other tests after making four runs at the 

same conditions. The discrepancy in result of figure 3-8c could be attributed to errors in 

measuring instruments, the way the fuel was administered into the reactor chamber maybe 

the  fuel was not completely vaporised  or a slight variation in initial pressure  and 

temperature reading, which has led to non-repeatability of the result at 2 hours timing of 
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the mixtures. To avoid endlessly waiting for mixtures to homogenised and completely 

evaporated, the suitable time for the present rig is 1.5 hours. From literature other RCM 

likes Allan[105] approximately 2-4 minutes is possible in his rig for evaporation of injected 

fuel. This might be as a result that his rig has a fuel injector pump, which injects an 

atomised fuel spray at a very high pressure depending on the type of fuel injector or the 

model used. This high-pressure atomised spray helps to break down the fuel droplet into a 

tiny particle that enhances quick evaporation and promotes a high level of mixing. 

3.8.2 Mixture Preparation 

The fuel preparation was done manometrically by determining the mass of fuel, equivalent 

ratio, and the oxidizer ratio. The equivalent ratio is an informative parameter for 

determining mixture composition. The equivalent ratio calculation is shown in appendix 3 

of this work. All gasses used were obtained from Sigma-Aldrich at a higher purity of 99.5%. 

During the experiment, three Teflon FEP gas sampling bags of 10 litres capacity were used 

each for storing nitrogen, oxygen and argon gases. The required volume of the oxidizer was 

collected from the gas sampling bags using a 60 ml syringe. All the fuels used in the 

experiment was measured using a syringe of 25 microliter capacity.  In both cases, the 

injection was through a septum into the heated combustion chamber. Before injecting the 

fuel mixtures, the system is a vacuumed by with a BOC Edwards E2-M12 vacuum pump to a 

pressure of 0.9 bar. The chamber was flush with nitrogen to get rid of the 

previouscombustion products from the chamber with a final vacuuming for 15 minutes. The 

oxidizer and fuel were injected into the preheated chamber and left to remain in the 

chamber for one and a halfhours for vaporisation and mixing of the charge.   

3.9 Triggering System and Data Acquisition 

A Kistler 6009 piezoelectric sensor records the dynamic pressure trace. This is resistant to 

thermal shock. The charge signals were amplified and converted to a voltage by Kistler 5007 

charge amplifier. The voltage output signal sent to the NI-USB 9223 DAQ card reader logging 

at 100 KHz frequency while the absolute pressure measured by Kistler pressure transducer 

typed 4045A5 with a charge amplifier type 4611 SN.  All sensing devices except the 

thermocouple were connected to LabVIEW program.  Table 3-1, shows the charge 

amplifiersettings. 

 

                        Table 3-1: Shows the settings of Charge Amplifier (Kistler type 5007) 

Settings Values 

Time Constant Medium 

Scale 5 bar/volt 

Sensitivity 2.0 pC/bar 
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The initial temperature of the chamber is measured using the K-type thermocouple with 

1.5mm thickness connected to a PIV controller.  

3.9.1 LVDT Measurement and Calibration 

A slip block equipment was use for the calibration the LVDT. A slip block kit consists of 

standard measured stainless steel bar rectangular block in different dimensions. They are 

pieces of block measured in mm and more conveniently used to measure linear distance 

between two points. Two-measurement reading taken for both BDC and TDC and an average 

value determined. The initial position of BDC readings taken from the end of the reference 

plate when the reactor piston sat in its right position and the pneumatic pins holding the 

shaft lock at the centre of the block. The timing from both initial position at (BDC) and the 

final position (TDC) of the reactor piston are read with their corresponding voltage output 

values recorded from the LVDT.  The computed value inputted into the LabVIEW. 

 

3.10 Static Pressure Transducer and Calibration 

The static pressure was recorded using Kistler pressure transducer typed 4045A5, 0-5bar 

absolute pressure. It was calibrated with a Druck test calibrator model DPI 610. Figure 3-20, 

shows the result obtained from the calibration. 

 

 

Figure 3-20: Calibration of Static pressure transducer 

 



72 

 

3.11 Uncertainty in the Parameters in RCM Experiment 

The RCM is prone to some of the level of uncertainty because most of the initial physical 

values are directly measured, which are subject to errors of measurements.   

 

3.11.1 Uncertainty in the Stroke Measurement 

The systematic error in the stroke measurement is because of the error in the LVDT used 

to measure the displacement profile. The LVDT presently used was calibrated five years ago 

records shows that the LVDT was bought in 2011, this was necessary recalibrated to 

minimise the induced error. The charge signal from the LVDT reads in voltage that is 

acquire by an NI 9223 module mated to an NI cDAQ-9171 chassis monitored by the LabVIEW 

Virtual Instrument. The resolution of the DAQ is 16 bit on a ±10 range with four analogue 

inputs corresponding to a resolution regarding displacement of about 21.6134mm. The full 

scale of the uncertainty of the LVDT type DCTH400C is 0.17%. The stroke length use in this 

work is limited to 142.4mm amounting to an uncertainty of ±0.2 𝑚𝑚.Therefore the 

systematic uncertainty of the stroke length 𝑈𝑆 is set as 

    𝑈𝑆   =   𝑆𝑆 = 0.2mm                                                                          3-7 

The error found with stroke length is assumed to be normally distributed then the standard 

deviation of one-half of the manufacturer's specification is  𝜎𝑆𝑠 = 0.1 mm 

 

3.11.2  Uncertainty in the Initial Pressure 

The static pressure in the reactor chamber was measured using the Kistler type 4045A5 

with a range of 0-5 bar absolute. The charge amplifier models 4611 SN was connected with 

the sensor,  the pressure signal from the sensor was converted to a voltage signal. The error  

of the pressure sensor is always specified as a percentage of the full-scale range in that 

regard, the full-scale uncertainty is 0.1% indicating that the systematic uncertainty, 𝑆𝑃𝑜 of 

±0.005 bar. The random uncertainty due to the signal acquisition is negligible compared to 

the standard error in the pressure transducers. The systematic uncertainty in the initial 

pressure measurement amount given as: 

    𝑈𝑃𝑜  =  𝑆𝑃𝑜  = 0.005 bar                                                                       3-8 

 The standard deviation of the initial pressure measurement is denoted by  𝜎𝑃𝑜 ,then   from 

the measured parameter the standard deviation is one half of the manufactures 

specification is  𝜎𝑃𝑜 = 0.0025 bar. 

  

3.11.3  Uncertainty in the Initial Temperature 

The systematic error in the initial gas temperature results in the limits of standard error of 

the instrument K-type thermocouple used to measure the initial gas temperature of the 
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chamber. The brand of the k-type thermocouple is gotten from the Omega company with a 

manufacturer standard engineering specifications which tolerance is ‘greater than ±2.2oc 

or ±0.75%’ as rightly stated in the ASTM standard E230[205]. The maximum initial 

temperature used so far in this work is 408k, leads to an uncertainty of ±3 K. A digital 

CB100L controller is used to display the temperature, so there is negligibility of change in 

the process of A/D converter. The random uncertainty on the digital CB100L is due to the 

limit of display of the equipment process meter to regulate the process temperature, and 

this is about ±1.224 K. The overall uncertainty ( 𝑈𝑇𝑜  ) of the initial temperature is 

represented by the systematic uncertainty (𝑆𝑇𝑜) of the thermocouple and the random 

uncertainty (𝑅𝑇𝑜) due to the temperature measuring box which is given as 

   𝑈𝑇𝑜 =  √(𝑆𝑇𝑜)
2   +     (𝑅𝑇𝑜)

2                                                                  3-9 

   

            = √(3𝑘)2   +    (1.224𝑘)2  = 3.24 K                                                 3-10 

    

 The standard deviation of one-half of the manufacturer's specification,which is computed 

as  𝜎𝑇𝑜 = 1.62 K. 

3.11.4  Uncertainty in the Compressed Pressure 

The pressure sensor used to measure the dynamic pressure is the kistler type 6061 with a 

range of 0-200bar absolute. The charge amplifier type 5007 was used in connection with the 

pressure sensor, converts the pressure signal into a voltage signal. The full-scale 

uncertainty for the sensor type 6061 is 0.3% resulting in an uncertainty of ±0.6 bar. The 

uncertainties in the signal acquisition equipment are negligible compared to this 

uncertainty. The systematic uncertainty in the compressed pressure measurement is  

   𝑈𝑃𝑐  =  𝑆𝑃𝑜  = 0.6 bar                                                                                   3-11 

      

The uncertainty of the compressed gas pressure  is assumed normally distributed with the 

mean at the measured pressure. The standard deviation of the compressed pressure 

measurement is denoted by, 𝜎𝑃𝑐, the standard deviation of the compressed pressure is one 

half of the manufactures specification is 

  𝜎𝑃𝑐 = 0.3 bar                                                                                 3-12 

      

3.11.5  Uncertainty of Liquid Fuel Mass  

A microsyringe with a capacity of 50 microlitres is used to meter the liquid fuel into the 

chamber. It is measured on a digital Mettler PE 6000 scale before and after fuel injection to 



74 

 

determine the actual mass of fuel injected. Base on Bryan et al.[206] analysis the 

uncertainty in the measured mass has three components. First, the precision of scale. 

Second, the deviation from linearity. Thirdly, the repeatability of the measurement carried 

out on the RCM. With all these uncertainties, they are presumed to be distributed with the 

coverage factor of 2, which implies that the standard deviations are one-half of specified 

values[206]. Therefore the total standard deviation in the mass of the liquid fuel is 

considered by the sum in quadrature of the mentioned value of uncertainties[207]. So far, 

with this experiment, the weight of 50-micron syringe is 12g while with fuel plus syringe 

weights 12.1g at an equivalent ratio of 0.5-1.5. From the manufacturer manual 

documentation, the scale has a repeatability of 0.05g the precision of the scale is assume 

distributed with the standard deviation of 0.1g and the full-scale deviation from linearity is 

0.1g. The total estimation of standard deviation in the mass of the fuel determine by   

summing of the quadrature of the value, which gives;  

  𝜎𝑚  =  √2. (0.1
2 + 0.0252 + 0.052)                                                                          3-13 

           = 0.07 g  

3.11.6  Uncertainty in the compressed gas temperature 

The compressed gas temperature is not measured directly as discussed in section 5.2.1 of 

this work. This is because of the non-ideal issues like heat loss from the fluid to the wall, 

which could not be measured by a thermocouple because of the transient nature of the 

system. An adiabatic assumption is made and the end gas temperature estimated by 

numerical means. Based on the adiabatic core assumption the relation in equation 5-20, was 

used to numerically estimate the compressed gas temperature from the initial parameters 

like the initial pressure temperature, specific heat ratio and the compressed gas pressure 

at the end of compression.  With the known initial parameters an approximation is made  

to estimate the uncertainty in the compressed gas temperature[208] which is given as 

   
∆𝑻

𝑻
 = 
𝜸−𝟏

𝜸
× 

∆𝑷

𝑷
        3-14 

Where 
∆𝑻

𝑻
  is the fractional uncertainty in the compressed gas temperature, 

∆𝑷

𝑷
  fractional 

uncertainty in the initial pressure,  𝜸   is the specific heat ratio. Then the percentage error 

would be 
∆𝑻

𝑻
  * 100.    The uncertainty in the compressed gas temperature depends on these 

parameters but mostly on the initial pressure where contribution from initial temperature 

and compressed gas pressure is not substantial[110]. The sensitivity of pressure sensor 

should be read from the manufacturer’s manual since it has magnifying effect on the 

compressed gas pressure. Two pressure transducers are used in the present rig. one 

measure the static pressure Kistler type 4045A5 with a range of 0-5 bar absolute and the 

second kistler type 6061 with a range of 0-200 bar measures the dynamic pressure. The 

uncertainty in the static pressure have been stated in section 3.11.2 as 0.005 bar while 

systematic uncertainty in the dynamic pressure from section 3.11.4 is 0.6 bar. Therefore, the 
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overall uncertainty in pressure reading would be 0.605 bar.    

    

3.12 Experimental Procedure and Operations. 

It is imperative to give the procedures on how the RCM should be run to prevent machine 

damage or to incur fatal accident to personnel.  The power supply to the device is turned 

on from the switch box on the wall. Figure 3-20 and 3-21, shows the front and end section of 

the rig carrying the valves that regulates the flow of air/fluid  in the rig. The rig is charged 

with compressed air from the compressor. There are possibly two pressure gauges for 

monitoring the pressure of the rig. One for the pneumatic cylinder while the other is for 

pin release mechanism. The pin release mechanism is charged with air by setting the 

desired pressure to 3 bar. Once the pin release mechanism is charged, the line is at high 

pressure. For compressed air to get into the pneumatic cylinder vent 1, vent 2 and  V1, must 

be shut and pressure gauge for the cylinder regulated to 4 bars. The next step regulates the 

front section of the rig, which also carries some valves that need to be isolated.  

 

                                                      Figure 3-20: Front section of the rig 

 

The end section of the rig is shown in figure 3-21. It starts with first, vacuuming the reactor 

chamber to the required pressure. At this point, two vacuum pumps are used to 

complement each other so that the better vacuum could be obtained. Diaphragm pump 

model VP 100 is connected to the line carrying the valve(V4), the other BOC Edward E2-M12 

vacuum pump is connected to the line with the valve(6). During vacuuming, the VP 100 

pump is first used  V6 and V3 remain closed and SV, V5 is left open. When BOC Edward E2-

M12 vacuum pump is then used V4, V3 remain closed while SV, V5 is open. After vacuuming 

is done, the next stage is to preheat the reactor chamber to an initial temperature, which 
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ranges from 115 -135 K. All the valves remain closed except SV.  The fuel and air mixture are 

introduced into the chamber and left for 1.5 hours to vaporise and attain homogeneous 

mixture.   

At this point, the rig is ready for firing and the switch pressed, which releases the pin 

mechanism allowing the piston to move linearly under the force of the driver cylinder. The 

residuals from combustion were cleared from the chambers using the VP 100 vacuum pump 

while opening V3 and V6 remain closed. Additionally, compressed air at 2 bar is allowed to 

flow through SV flushings/cleaning the chamber of the remnant residual gases. At this 

point V4, V6 remain closed while SV and V5 remain open. 

The piston is retracted into its position by setting the pressure gauge to 2 bar, shutting off 

V2, V4, and V6 remain closed vent 1 & 2, SV and V5 remain opened. In retracting the piston, 

the pressure gauge is set to 0.7 bar of compressed air with the help of a reference arm the 

piston is retracted by pushing the piston back to initial position. The procedure repeated 

for subsequent experimental runs.  

 

Figure 3-21: End section of the rig. 

 

3.13 Conclusion 

The Rapid Compression Machine was finally designed to operate over a wide range of 

experimental conditions.  The final operating configuration is given in Table 3-2. 

            Table 3-2: Shows the operating characteristic of the present Shef-RCM 
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Stroke Length 138 - 145mm 

Cylinder Bore Diameter 40mm 

Compression Ratio 6.5 – 13.8 

Compression time 25 - 35 ms 

Piston Head Configuration Optimised Crevice 

Chamber Clearance Height 6.6 -15mm 
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Chapter 4. Computational Aerodynamics study of a Rapid 

Compression Machine. 

4.1 Introduction 

One of the challenges confronting the use of RCM’s is that complex fluid dynamics features 

exists in the reaction chamber.  These feature result from the piston motion; a roll up vortex 

is formed creating a non-uniform temperature profile in the chamber [209-213]. The gases 

in the relatively cold boundary layer mix with the hot core gas resulting in a distribution 

of temperatures. Figure 4-0 depicts the creation of a roll-up vortex in the chamber. A 

common assumption is that there is an adiabatic core in the RCM, which means the 

temperature can be calculated.  In this context, the ‘Core Area’ is referred to the region 

where the bulk gases exist in the combustion chamber and are not influenced by heat loss.  

The temperature distribution with the combustion chamber is typically controlled with the 

use of a crevice on the edge of the piston, which suppresses vortex formation [115, 211, 213].  

 

 

Figure 4-0: illustration of the roll-up vortex in the combustion chamber during the 

compression stroke[214]. 

 

The design of the crevice depends on the boundary layer thickness which itself depends on 

the conditions during compression[115]. During the compression stage of RCM certain level 

of turbulence[215],  is generated in the reaction chamber this could mix of the core gases 

with the cooler thermal boundary layer. This has the effect of inducing a mean strain on 

the gases that might eventually amplify any turbulence present in the chamber before the 

onset of compression[215].  The effect of the initial turbulence is likely to be low at a reduced 

compression ratio.   



79 

 

Temperature uniformity can be improved if the geometric parameters of the RCM are 

manipulated. For example, by using a combination of shorter stroke and larger 

clearances[216].  

Modelling studies have been performed by Wurmel et al.[115] where they compared the 

pressure traces obtained using laminar and turbulent flow. There was an agreement for N2, 

Ar, and O2, but He deviated because of its high thermal diffusivity [115]. They went on to 

conclude that using monoatomic diluent enables high temperature to be achieved 

compared to the diatomic diluent, because of its high specific heat.   The diluent gases may 

also change the third body collision of the efficiency of the dilute gas. This was investigated 

by Di et al.[217], where they studied the effect of dilution composition on the ignition delay 

on the chemical dilution and thermal effect. Mittal and Sung[218] compared laminar and 

turbulent flow simulations with experiments. They observed that using a crevice piston, 

the temperature profile matched with the simulated maximum temperature from their 

CFD for both laminar and turbulent cases up to 100 ms. They further suggested that the 

fluid flow features in RCM can be modelled assuming a laminar flow[218].   

In this work, extensive CFD work has been performed to optimise of piston crevice design 

regarding its volume, length, width and the geometry of channel connecting the crevice and 

the chamber[115].  The CFD work aimed to determine an optimised creviced piston head 

that would maintain a uniform temperature profile in the reaction chamber.  

4.2  Computational Specification 

The RCM has a cylindrical combustion chamber of 40 mm bore. The combustion chamber 

is oriented with the piston moving horizontally. A variable stroke between 138-142 mm was 

achievable, giving a compression ratio between 7.5 -13.5. 

A transient 2-D computational mesh was used, axisymmetric symmetry was assumed, and 

the resolution increased near the walls.  Modelling was performed using Ansys Fluent. The 

actual machine was not truly symmetrical, because of the inlet manifold, air inlet port,  and 

pressure transducers have modifiedthe geometry. 

 No slip is assumed at the cylindrical wall boundary, a uniform wall temperature of 

298Kwas also assumed.  The compression time was approximately 30 ms from an initial 

pressure of  0.7 bar. The thermal properties were generated from the NIST[219] database and 

specified as temperature dependent polynomials. 

The governing equations for the model are the conservation of energy,momentum and 

mass.  The laminar flow model was adopted as it has been shown that it can adequately 

describe the experimental pressure history and velocity field inside a rapid compression 

machine[218, 220, 221]. The segregated implicit solver with pressure-implicit split-operator 

(PISO) algorithm[222] was used for pressure-velocity coupling. The pressure staggering 

option (PRESTO) was chosen as it prevents errors from the interpolation and pressure  

gradient assumptions on boundaries are prevented [223].   
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This scheme works better for problems with high body forces (swirl) and the second order 

upwind discretization for density and momentum. The second order upwind scheme 

changes a differential equation into an algebraic equation by Taylor series. It is more 

preferred than the first order scheme because it is more accurate. However, is more 

computationally expensive. The Navier-Stokes equation is solved along with the energy and 

species transport equations for all species. This evaluates a set of equations dependent on 

the input in fluent are represented by the following equations based on the 2D modelling. 

𝝏𝝆

𝝏𝒕
  +  𝛁. (𝝆𝒖)   = 𝟎                                                                                        4-1 

                    

   𝝏𝒖

𝝏𝒕
  + (𝒖. 𝛁)𝒖 =   − 

𝟏

𝝆
𝛁𝒑 + 

𝝁

𝝆
𝛁𝟐𝒖 + 𝑭                                                    4-2 

𝝆(
𝝏𝑬

𝝏𝒕
  + 𝒖. 𝛁𝑬) − 𝛁. (𝒌𝑯 𝛁𝑻)  + 𝒑𝛁.𝒖 = 𝟎                                          4-3 

  

 

Where u is the velocity field vector, T  is the temperature, p is the pressure, E is the internal 

energy, 𝜌 is the density,𝜇 is the viscosity,𝐾𝐻 is the heat conduction coefficient and F is the 

force per unit mass.  This equations 4-1, 4-2 and 4-3 are the continuity, momentum and, 

energy equation respectively. The above equation cannot be solve to give analytical result   

but can be solve in a discretized form.  The Ansys fluent operate in a fashion by developing 

a result using the finite volume method and integrating the above equation to give the 

desired result.   

4.2.1 CFD Model Development 

The Ansys suite was used throughout, and the Design Modeller was used to createthe 

geometry, meshing for, mesh generation and Fluent to solve governing equations and 

analyse the results. The experimental apparatus had some recesses at the top end of the 

combustion chamber; these were simplified the model to avoid using 3D.  An estimated 

volume wasincluded in the geometry. 

The simplified 2-D axisymmetric is shown in figure 4-2. The actual BDC and TDC volumes 

of 1.93x10-4 m3 and 1.8 x10-5 m3 were maintained giving a compression ratio of 10.7 and a 

stroke length of 142 mm. The underlying computational mesh in this research is not static 

but dynamic. This means that it is subject to changes in its structure, shape, refinement 

level, and nodal connectivity throughout the simulation.   

4.2.2  Mesh Generation 

The mesh was generated using Ansys fluent. It was made up of   26,042 cells, consisting of a 

250 x 90 meshes with additional cells describing the clearance between the piston and the 
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chamber wall. Techniques such as mapped facing, sizing and bias were applied to the mesh 

model to achieve refinement at the walls, cylinder head, and the piston face. 

The internal boundary of the chamber was mapped with a controlled rectangular 

structured mesh which was controlled by regulating the sizing and applying a bias factor. 

The aim of this was to capture the roll up vortex generated because of the movement of the 

piston. A bias factor of 20 was applied towards the walls and 10 on the piston face.  

                                           

4.2.3 Thermodynamic Properties and Heat Transfer. 

The knowledge of thermodynamic properties of the chemical species is essential for 

calculating the rate of temperature change of the system. The properties of chemical species 

are based on experimental data generally tabulated as a function of temperature. Examples 

of these thermodynamics data tables are found in the literature [224-226]. These properties 

are by default inbuilt into the Ansys database in the form of NASA polynomials. These 

polynomials are the linear least-squares fit to the thermodynamic data of species; this  work 

was done by Gordon and McBride[227]. The thermodynamic properties or data typically 

take two seven-term polynomial coefficients. One region for low temperature, 300 to 1000 

K and the second region of the coefficient for higher temperature from 1000 K to 5000 K. 

The NASA polynomials have the following form 

             
𝐶𝑝

𝑅
= 𝑎1 + 𝑎2𝑇 + 𝑎3𝑇

2 + 𝑎4𝑇
3 + 𝑎5𝑇

4 +  𝑎6𝑇
5                                                                4-4 
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     𝑅𝑇
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𝑎2

2
𝑇 + 

𝑎3

3
𝑇2 + 

𝑎4

4
𝑇3 +  

𝑎5

5
𝑇4 +  

𝑎6

𝑇
                                                       4-5 

                                                    

              
𝑆0

𝑅
= 𝑎1𝑙𝑛𝑇 + 𝑎2𝑇 + 

𝑎3

2
𝑇2 +

𝑎4

3
𝑇3 + 

𝑎5

4
𝑇4 + 𝑎7                                                       4-6 

                 

Where  𝑎1, 𝑎2,…., 𝑎7 are the numerical coefficient [228]. 

4.3  Parametric Studies. 

The parametric study is conducted in this report allows appropriate choice of model 

parameters to be made in the simulation. These parameters are the time step sizes and the 

mesh density. In a transient problem, it is important to ascertain the appropriate time step 

sizes for a solution. This is done by conducting a sensitivity test to see at what crank angle 

size is best fit for a solution to run conveniently without negative cell volume error 

occurring and also to save computational time.  

4.3.1 Time Step Size 

In a transient computation, the time between each set of calculation is called the time step, 

which is defined by the crank angle size.  In this model, the total time step is 180 crank 
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angle.  Since it is a single stroke event, it compresses to a constant volume.  A mesh 

sensitivity study was carried out using four different angles for every time step.  The highest 

step size (δt) was 0.25 and subsequent time step was generated by dividing by a factor of 2 

to get the following 0.0125, 0.0625, 0.03125 and 0.015625. It is observed that time step greater 

than 0.03125 resulted in negative cell volume error. This error is because of the fluid domain 

changing without the mesh adapting to the changing geometry, thereby deleting/merging 

of cells adjacent to the moving piston.  

To limit the computational time as well as avoiding convergence problems with the use of 

higher time step. A compression time of 30.8ms corresponding to the time-step size of 

22.57µs was chosen for both compression stroke and post compression period in all the CFD 

simulations in this report. 

4.3.2  Mesh independence 

The number of cells was considered important as it can affect the accuracy of the 

aerodynamic flow profile in the combustion chamber.  A study was conducted to reduce 

errors caused by a poor mesh quality and to save computational time by 

runningunnecessarily fine mesh. Figure 4-1, shows the sensitivity of the mesh. 

 

            Figure 4-1: The sensitivity of mesh on the core pressure of the reaction chamber. 

 

It shows that by varying the mesh density between 19000 and 35000 cells.  The properties 

do not have any effect on the output  results, so mesh within this range is considered proper 

running of the simulation. 

4.4 Effect of Using Piston Head Configuration in a Rapid Compression Machine. 

One of the issues of using a flat piston head is the generation of roll up a vortex in front of 

the piston face, which continue to emerge from the core region in the post-compression 

period[210, 212, 213, 229]. This roll up vortex increases the rate of transport of energy 

to/from the cold boundary layer gas out of/from the core region thereby causing an uneven 
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temperature profile.  Variation in heat transfer and aerodynamics inside the cylinder can 

affect the ignition delay time making seemingly similar experimental setups produce 

different results.    

4.4.1  Flat Piston Head Simulation. 

The simulation of the geometry involves a transient 2-dimension computational mesh 

created using the commercial Package Ansys Fluent 16.1, assuming axisymmetric nature. 

The initial boundary conditions of simulation from the beginning of the compression event 

specified with no slip condition at the cylindrical wall boundary. The gas maintained at a 

uniform wall temperature of 298 K with a compression time of approximately 30ms. The 

development of temperature field with flat piston head was simulated with unreactive gas, 

nitrogen.  The initial temperature and pressure are  𝑇0 = 298 𝐾 and   𝑃0 =  1 𝑏𝑎𝑟 

Figure 4-2, shows a typical computational grid before and at the end of the stroke. The mesh 

shown to consist of 26,042 cells, fine grids were used on the walls and piston face and coarse 

meshes in between the piston and the top dead centre (TDC) to adequately capture the fluid 

flow taking place in the chambers.   

 

               (a) 

 

            (b) 

Figure 4-2: shows 2D computational grid for Flat Piston (a) before compression (b) after 

compression for a flat piston head. 
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4.5 Optimisation of Piston Head Crevice Design 

The object of the crevice on the periphery of the piston is to suppress the boundary layers 

and prevent mixing of the cool boundary layer gas with the hot adiabatic core and thereby 

providing a homogeneous temperature field in the reaction chamber. Four differentcrevice 

designs were considered and compared. The simulations were conducted usingnitrogen as 

the test gas.  Bath gases such helium and other monoatomic gas are commonly used for 

such tests, but because helium has a high specific heat capacity, it is not always 

recommended to be employed in the characterization of RCM[115].  

The use of creviced piston head reduces the final compressed temperature and pressure in 

the reactor chamber.  An additional issue of mass flow of gases into the crevice could be 

avoided by having a chamfered piston head. This undesirable effect could adequately be 

handled by designing optimal crevices to overcome the shortfall in using a crevice piston.  

An effort to overcome such additional mass flow into the crevice was studied. This uses 

crevice containment by disengaging the crevice from the main reaction zone with a seal at 

the end of compression stroke. Thus preventing the mass flow into the crevice when 

ignition takes place in the chamber and also the possibility of gaining in the reduction of 

pressure drop in the reaction chamber[230].  

4.5.1 Crevice with flat Channel Design. 

Crevice volumes ranging from 282 - 1410 𝑚𝑚3 (2-10% in relative to the overall reaction 

chamber volume) were examine.  The clearance between the crevice and the cylinder wall 

was kept constant at 0.2 mm and the volumes varied.  Figure 4-3, shows the sketch and 

isometric view of the piston with the flat channel. 

 

 

(a)                                                                                            (b) 

Figure 4-3: shows (a). The diagram of the crevice region of the piston with a flat face (b). 

Isometric view of the crevice head design with flat channel piston showing the crevice 

volume. 
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The length of the section connecting the chambers and the crevice is called the channel.  

From literature, it was established that longer channels increased the cooling of the 

boundary layer gas entering the piston head crevice and there was no noticeable gas 

temperature change for a channel of 4 and 5 mm[115]. Based this evidence, the design 

adopted a channel length of 4mm. The volume and the depth of the channel were varied 

which was adopted from Lee’s work [113]. Table 4-1 shows the crevices used. 

 

Table 4-1: Shows the crevice dimension in mm. 

 Crevice 

volume 

(𝑚𝑚3) 

Crevice 

Number 

The clearance 

between piston 

and crevice. 

 The height 

of crevice. 

                 a 

Channel 

length. 

 b 

 Crevice 

Channel.          

c 

        

2 

282 1 0.2 2.53 4 14 

       

4 

564 2 0.2 3.58 4 14 

       

6 

846 3 0.2 4.39 4 14 

       

8 

1128 4 0.2 5.06 4 14 

      

10 

1410 5 0.2 5.66 4 14 

 

4.5.2 Piston Crevice with an Angle Channel Design. 

The calculation was also performed testing an angled channel crevice design. This is 

designed to provide an unrestricted mass flow out of the reaction chamber into the crevice 

but restrict the flow from the channel back into the reaction chamber. In this case, the 

measured chamfered angle was  150   and the same condition applied to the flat channel was 

adopted for the angle head crevice. Figure 4-4, shows the design of the piston head. 
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(a)                                                                         (b) 

Figure 4-4: shows (a). The diagram of the crevice region of the piston (b). an isometric view 

of the angle channel design showing the crevice volume.   

 

Table 4-2: shows the angled channel crevice volume in mm. 

Crevice 

number 

Crevie 

volume 

(𝑚𝑚3) 

Percent

age by 

volume 

Clearan

ce 

between 

piston 

and wall 

Inclined 

Angle. 

 

a b 

 

 

c 

Height 

of 

Crevice 

 

d 

1 282 2 0.2 150 2.53 4 14 

2 564 4 0.2 150 3.58 4 14 

3 846 6 0.2 150 4.39 4 14 

4 1128 8 0.2 150 5.06 4 14 

5 1410 10 0.2 150 5.66 4 14 

 

Table 4.2 shows for the angled channel crevice head with all dimensions are in mm. All the 

crevice volumes with angled channels were shown to contain the cool gases at a post-
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compression time of 20ms, while maintaining a homogenous temperature field. With the 

crevice volume of 282 mm3, the peak   temperature at TDC recorded is 653 K while that of 

the 1410 mm3  is 621 K. 

4.6 Influence of Piston Crevice Height on Pressure Profile. 

The effect of crevice height is studied using the optimal crevice volume of 282 mm3.  This 

was considered the optimal volume.  Five different crevice lengths were tested. Table 4-3, 

shows the crevice angled channel volume dimensions tested. 

 

Table 4-3: The dimensions of the angled channel crevice volume in mm. 

Crevice Crevice 

Volume 

(𝑚𝑚3) 

Clearance 

btw 

piston 

and 

cylinder 

wall. 

                                                 

 

a    

 

                      

d 

Channel 

length. 

b 

The 

height of 

crevice. 

c 

        A 282 0.2 150 5.47 4 3 

       B 282 0.2 150 4.23 4 5 

       C 282 0.2 150 3.58 4 7 

       D 282 0.2 150 3.16 4 9 

      E 282 0.2 150 2.74 4 12 

 

 

4.7 Computational Result and Discussions. 

4.7.1 Flat Piston Modelling  

Figure 4-5, show the simulated temperature and velocity field.  The scraping of the cold 

boundary layer from the walls into the reaction chamber and the build-up of the roll up a 

vortex in the adiabatic core region can be clearly seen in figure 4-5a.  The build-up of cold 

gasprogresses and spans the chamber at 16.1 ms.  This result is similar to that of other 

workers [231, 232].  
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Figure 4-5: simulated velocity and temperature profile for Flat piston head at 𝑇𝑖 = 298 K, 𝑃𝑖= 

1 bar. (a). Compression time at TDC (b). 9.2 ms after post compression time (c). 16.11 ms after 

post compression time. 

  (b) 

      (c) 
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4.7.2 Piston crevice without a chamfered 

Shown in Figure 4.6, the temperature profile at 0 ms compression time and post 

compression time of 20 ms. The simple crevice design could not hold the cold gases 

scrapped from the wall into the crevice. This is because of the pressure difference between 

the core chamber and the crevice volume there is gas flow back into the adiabatic core 

region of the chamber.  

 

(a) 

 

(b) 
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(c) 

 

(d) 
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 (e) 

Figure 4-6: calculated temperature field at 0ms compression time and 20ms post 

compression time, using different sizes of crevice volume. (a) 2% (b) 4% (c) 6 % (d) 8% (e) 10%   

of the entire chamber volume at TDC. 

 

4.7.3 Piston crevice with Angle Head. 

The angled crevice with 2% of the entire chamber volume, 282 𝑚𝑚3, was the best at 

suppressing the boundary layer and providing uniform temperature field with a minimum 

drop in temperature and pressure.  The final compressed pressure and temperature was 

16bar and 620 K while the other crevices (b-d) had lower compressed pressure and 

temperature than (a) as shown in figure 4-7. 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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 (e) 

Figure 4-7: Shows the contour of temperature profile of piston crevice head with angled 

channel. (a) volume 282 mm3 (b) volume 564 mm3 (c) volume 846 mm3 (d) volume 1128 

mm3(e) volume 1410 mm3. 

 

4.7.4 Influence of Piston Crevice Height. 

Optimisation of the piston with five different crevice lengths was carried out. A  5 mm 

height was found to be the best in minimising the pressure. Figure 4-8 shows the contours 

of temperature profiles for all the crevice lengths.   

Crevice A has the highest compressed temperature of 679.6 K, but some cool gases forcing 

their way back into the core region as the volume was not sufficient to contain the cold 

gases. 

Crevice B suppressed the roll-up vortex with the end of compressed pressure and achieveda 

temperature of 647 K and 19.5 bar. Subsequent crevices (C, D, E) contained the vortex. The  

compressedpressure and temperature as shown in figure 4-8. 
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Crevice A 

 

Crevice B 

 

 

Crevice C 

 

 

 

Crevice D 
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Crevice E 

Figure 4-8: Shows the contour of the temperature profile for piston crevice head with 

varying height. (a)3 mm (b) 5 mm (c) 7 mm (d) 9 mm (e) 12 mm. 

 

Figure 4-9, shows the temperature and pressure histories for different crevice heights. The 

EOC pressure with a crevice height of 5 mm is 20.5 bar while that at 14 mm was 18.6 bar. 

Therefore, 2 bar was achieved by the optimisationofthe crevice which is a difference of 17.7 

K.   

 

  

(a) 
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(b) 

 

Figure 4-9: shows (a) temperature profile (b) pressure profile at 𝑇𝑖=298 K, 𝑃𝑖= 1016.6 mb, with 

improved crevice height. 

 

Figure 4-10, shows the validation of the experimental pressure trace with the CFD model at 

EOC pressure of 15 bar at a stroke length of 142 mm. Nitrogen gas was used at an initial 

temperature of 299 K. The experimental pressure trace has a slightly higher pressure than 

the CFD model. This is because the dead volume was underestimated in the CFD model. 

However, there is good agreement between the traces. Figure 4-11, shows the corresponding 

predicted the temperature at the EOC at 15 bar from the CFD corresponding a compressed 

gas temperature of 615 K. 
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             Figure 4-10: Comparison of Experimental pressure trace with the CFD Model 

 

 

 

          Figure 4-11: End of compressed gas temperature corresponding to PC =15 bar, TC = 615. 

 

4.7.5 Conclusions 

The CFD modelling was able to demonstrate that RCMs with a flat piston head generates a 

roll-up vortex, which would distort the ignition study of fuels. This can be avoided by 

machining a crevice on the peripheral surface of the piston. Trapping thecold gases [233].  
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 Wurmel et al.[234] concluded from their CFD simulation, that crevice volume of 8.5-12.5%  

of the entire chamber volume was optimal. However, from his study, the optimum crevice 

volume was 2% of the overall chamber volume. The discrepancy is likely to be due the 

differences in the chamber cross-sectional area. There was good agreement between the 

experimental pressure trace and the CFD model matching the pressure trace give a 

corresponding temperature of the EOC temperature. 
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Chapter 5. Performance Characterization and Ignition Chemistry in a 

Rapid Compression Machine. 

5.1 Introduction. 

One way of accessing the suitability of a rapid compression machine for mechanism 

validation is to conduct characterization experimental tests. This provides and overview of 

its performance and credibility of generating a broad range of experimental conditions. 

These measurements should be repeatable and reproducible. The Shef-RCM was subjected 

to a wide range of operating conditions. In this study, non-reactive experiment were 

conducted using nitrogen and argon while the reactive test are carried out using heptane- 

and Jet A-1 air mixtures.  Five runs performed for each gases and the pressure traces overlap 

each other showing slightly to be repeatable. The pressure traces shown are raw data 

obtained from the experiment and are free from any disturbances, which means that the 

damping mechanism worked. 

 

5.1.1 Definition of Ignition Delay 

Figure 5-1; shows typical shows the pressure history, P(t), and its first derivative profile, 

measured from the Shef-RCM for n-heptane/air mixture. The ignition delay definition 

appears to have two peak pressure rises signifying the two-stage ignition of n-heptane 

oxidation. The time zero corresponds to the end of compression, EOC pressure of 15 bar and 

temperature of 679 K.  In Figure 5-1, the first-stage ignition delay, 𝝉𝟏  is the time from the 

end of compression to the first peak in the time derivative of the pressure. The second-stage 

ignition delay 𝝉𝟐 , is define as the time duration between the end of and the highest rate of 

pressure rise due to the second stage of ignition[235]. The overall ignition delay, 𝝉 is the 

time from the end of compression to the highest peak in the time derivative of the pressure, 

which gives the sum of the two interval as 

                                                   𝝉   =  𝝉𝟏 + 𝝉𝟐        5-1 
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Figure 5-1: Illustrate the definition of ignition delay used in this study. P(t) is the pressure 

as a function of time, and P′(t) is the time derivative of the pressure as a function of time. 

 

Ignition delay trends are most commonly shown on a 1000/T vs. delay time plot. Inverse 

temperature is represented on the x-axis so; high temperature behaviour is shown to the 

left and low temperature to the right. Along the y-axis, is the ignition delay time in 

milliseconds. The scale is logarithmic therefore; each division indicates a 10 fold increase 

in delay that highlights the high temperature sensitivity of the chemical reactions involved. 

5.2 Numerical Modelling. 

Kinetic modelling is usually conducted with zero-dimensional (0-D) code such Sandia 

Senkin code[236] in conjunction with CHEMKIN[237] and Cantera/Python interface. 

However, these are designed to model idealistic conditions, which are different from those 

found in a rapid compression machine. To account for the deviation from the ideal 

processes, a phenomenon such as heat loss from the fluid to walls of the chamber and the 

vortex has to be accounted for in the simulation.  This is achieved by assuming the adiabatic 

core hypothesis[230, 238], which takes into account both compression stroke and post-

compression heat loss.  This theory assumes that no mixing occurs between the hot core 

region and the cold boundary layer. The only time heat loss influences the core region is by 

the expansion of the core region caused by the cooling of the boundary layer as the piston 

compresses to a constant volume to the end of the stroke. An empirically determined heat 

loss parameter derived from non-reactive pressure history is added to the simulation.  One 

way of obtaining the volume expansion is to perform an experiment on an inert mixture 

having the same heat capacity, thermal conductivity, Initial temperature and initial 

pressure as the reactive mixture under study. The empirically derived approach only 

performs well if a well-defined homogenous core is sustained which requires an optimised 

piston head crevice design, which handles the multidimensional effect such as heat loss 

and roll up vortexes by Lee et al.[113]. 
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 The numerical modelling of the present RCM is carried out using first the Sandia SENKIN 

code [236] in conjunction with  Sandia CHEMKIN[237] package for solving gas phase 

kinetics problems.  This models the time evolution of a closed, homogeneous, adiabatic 

system. There are two methods of solving this problem: firstly, the volume is given in the 

CHEMKIN input file (VTIM keyword) as a function of time; secondly, constant volume I 

assumed (CONV keyword). Using VTIM the effect of the compression stroke and post-

compression heat loss can be considered using VTIM. The equations governing reactions in 

the system are the mass continuity and energy equations. For a closed system with no mass 

crossing the boundary, total mass remains constant. The mass, M, of the system is given in 

equation (5-2).  

    𝒎 = ∑ 𝒎𝒌
𝑲
𝒌=𝟏                     5-2 

      

    
𝒅𝒎

𝒅𝒕
 = 0                     5-3 

       

Where t is the time, 𝑚𝑘 is the mass of the Kth species and K is the total number of species 

in the mixture. The individual species are produced and destroyed based on 

                 
𝒅𝒎𝒌

𝒅𝒕
= 𝑽𝝎̇𝒌𝑾𝒌    k = 1, 2… k     5-4 

              

Where  𝜔̇𝑘 is the molar production rate of the kth species, 𝑊𝑘 is the molecular weight of the 

kth specie, V is the volume of the system. The total mass is constant then the mass fraction 

for the kth species is: 

𝒅𝒀𝒌

𝒅𝒕
= 𝒗𝝎̇𝒌𝑾𝒌       k = 1, 2… K               5-5 

  

 

𝒀𝒌 = 
𝒎𝒌

𝒎
  is the mass fraction of the kth species, 𝒗 = 

𝑽

𝒎
  is the specific volume, 𝑊𝑘 is the 

molecular weight and 𝑣 is specific volume. 𝜔̇𝑘 is the net rate of increase of the species k.  

The temperature of the mixture is found by considering the 1st law of thermodynamics. For 

a closed system with no heat transfer, the 1st law reduces to equation 5-6. 

𝒅𝒆 + 𝒑𝒅𝒗 = 𝟎                   5-6 

              

Where e is the internal energy per mass and p is the pressure. The internal energy per unit 

mass is given by  𝑒 = ∑ 𝑒𝑘𝑌𝑘
𝐾
𝑘=1  , where 𝑒𝑘 is the internal energy of the kth species. 

Differentiating the internal energy of the mixture gives 
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          𝒅𝒆 = ∑ 𝒀𝒌𝒅𝒆𝒌 +∑ 𝒆𝒌𝒅𝒀𝒌
𝑲
𝒌=𝟏

𝑲
𝒌=𝟏                           5-7 

         

For calorically perfect gases, the change in energy per unit mass is 𝑑𝑒𝑘 = 𝑐𝑣,𝑘𝑑𝑇. Where 𝑐𝑣,𝑘 

is the specific heat at constant volume of the kth species and T is the mixture temperature.  

Overall specific heat for the mixture is:  

                                 𝒄𝒗 = ∑ 𝒀𝒌𝒄𝒗,𝒌
𝑲
𝒌=𝟏                      5-8 

    

Combining (5-7) and (5-8) with the 1st law (5-6) we get: 

   𝒄𝒗
𝒅𝑻

𝒅𝒕
+ ∑ 𝒆𝒌

𝒅𝒀𝒌

𝒅𝒕
+ 𝒑

𝒅𝒗

𝒅𝒕
= 𝟎𝑲

𝒌=𝟏                   5-9 

     

Replacing species production rate  
𝑑𝑌𝑘

𝑑𝑡
 in the above with equation 5-5: 

   𝒄𝒗
𝒅𝑻

𝒅𝒕
+ 𝒑

𝒅𝒗

𝒅𝒕
+ 𝒗∑ 𝒆𝒌𝝎̇𝒌𝑾𝒌

𝑲
𝒌=𝟏 = 𝟎                5-10 

    

 

Equation (5-5) and (5-10) is used to solve problems where the volume either is fixed or is a 

known function of time. Pressure is computed from the ideal gas equation of state, as 

   

     𝒑 =  
𝝆𝑹𝑻

𝑾̅̅̅
                 5-11 

     

Where R   is the universal gas constant, 𝑊̅ is the mean molecular weight of the mixture and 

𝜌 is the mass density. The specific volume change rate is specify as a function of time is 

given as  

     V (t) = 
𝑽(𝒕)

𝒎
                 5-12 

     

     
𝒅𝒗

𝒅𝒕 
= 

𝟏

𝒎

𝒅𝑽

𝒅𝒕
                5-13 

     

 For a mixture at constant pressure, the 1st law reduces to the condition of constant 

enthalpy (ℎ). The differentiated equation for enthalpy is: 
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          𝒅𝒉 = 𝒅𝒆 + 𝒗𝒅𝒑 + 𝒑𝒅𝒗                5-14 

     

When combining with (2.8) and removing the 𝑑𝑝 term: 

 

  𝒅𝒉 = 𝟎                 5-15 

      

Total enthalpy is then: 

   𝒉 = ∑ 𝒀𝒌𝒉𝒌
𝑲
𝒌=𝟏                 5-16 

    

 The energy equation (2.8) becomes: 

  𝒄𝒑
𝒅𝑻

𝒅𝒕
+ 𝒗∑ 𝒉𝒌𝝎̇𝒌𝑾𝒌

𝑲
𝒌=𝟏 = 𝟎                    5-17 

     

 

Cantera was also used in the modelling of the present Shef-RCM. It is more easily 

manipulated and modified. Details of the present code used for this simulation is found in 

Appendix 1 and 2. 

 Cantera[239] is a collection of object-oriented open source software package tools which is 

used for solving chemical kinetic, thermodynamics and transport problems.  It is capable 

of addressing large kinetics mechanisms, compute equilibrium solutions. The framework is 

easily modified and operate on different interfaces written in codes such asPython, Matlab, 

FORTRAN, and C++. Cantera is designed with built-in combustion engine models, which 

accommodate a polynomial coefficient function that describes piston velocity profiles. 

Users can utilise time-dependent reactor networks following a general reactor model that 

includes various sub-models with specific conditions including constant pressure reactors 

and ideal gas reactors. In the course of this work, Cantera has been utilised for the 

simulation, using the experimental pressure trace to determine the RCM piston velocity. 

This profile serves as a foundation for fitting a high order polynomial describing the piston 

velocity that is used to describe the motion of the reactor piston during the numerical 

simulation. The Python code developed to calculate the reactor piston velocity is included 

in appendix 1. 
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5.2.1 Homogeneity and Estimation of Temperature Field of the Reaction Chamber 

The temperature inhomogeneity occurs in the reaction chamber due to the formation of 

roll-up vortices with resulting heat lost from the core region to the walls of the chamber.  

In order to achieve a homogenous temperature region, an optimised piston head crevice 

was designed using CFD modelling (Chapter 4). The compression is so rapid (of the order of 

milliseconds) making it problematic to measure the temperature directly. An intrusive 

device such as thermocouples cannot measure the transient nature of heat loss since it is 

very rapid and the level of responsiveness of the thermocouple is low. Non-intrusive optical 

approaches require an extensive calibration and difficult to set up.  Therefore, the 

temperature is determined indirectly by applying ‘adiabatic core hypotheses’[106, 200, 240]. 

This approach has been validated by computational[202] and experimental methods[241, 

242]. If the compression process is truly adiabatic, the adiabatic temperature at TDC,𝑇𝑎𝑐, 

would be calculated as 

    ∫
𝟏

𝜸−𝟏

𝑻𝒂𝒄
𝑻𝒊

𝒅𝑻

𝑻
 = ln (CR)                                 5-18 

             

    ∫
𝟏

𝜸−𝟏

𝑻𝒂𝒄
𝑻𝒊

𝒅𝑻

𝑻
 = ln (

𝑷𝒂𝒄

𝑷𝒊
)                                    5-19 

           

Where 𝑃𝑎𝑐, 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝜸 is the specific heat ratio and CR 

is the compression ratio. The actual temperature and pressure from the experiment are 

lower due to heat loss to the reactor chamber wall.  Then temperature at TDC, 𝑇𝑐  is obtain 

by the adiabatic core hypothesis according to the relation 

                                           ∫
𝜸

𝜸−𝟏

𝑻𝒄
𝑻𝒊

∗   
𝒅𝑻

𝑻
 = 𝒍𝒏 (

𝑷𝒄

𝑷𝒊
)                      5-20 

 

Where 𝑃𝑖 is the initial pressure,  𝑃𝑐 is the compressed pressure, 𝑇𝑖 is the initial temperature, 

𝛾 is the specific ratio. The temperature  𝑇𝑐 cannot be calculated directly, because the specific 

heat ratio used in the Equation (5-18), (5-19) and (5-20) which are unknown function of 

temperature and mixture composition. This cannot be integrated directly to get  TC, if an 

assumption were made that the composition is fixed and the specific heats are 

parameterised with linear fit, the stages of solving this problem would be wearisome.  

The easiest way of solving TC was numerically integration using Cantera. Base on the 

equation 5-20, gamma is not constant during the compression stroke the pressure is 

fluctuating between set points. Instead of using a relationship based on constant specific 

heat, which gives wrong values of the compressed temperature since gamma is not constant 

during the compression process. A parameterised thermodynamics data is used to locate 

which set points corresponds to the new pressure and entropy. With the thermodynamics 

data in place, Cantera is cable of solving the nonlinear equation. Therefore, the end of 
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compressed gas temperature, Tc, is estimated. A mechanism file that contains the 

mechanism input and thermodynamic data are read into Cantera, which make use of the 

properties during the simulation. The code is found in appendix 4.For the purpose of this 

work three mechanisms was chosen and used to estimate the compressed gas temperatures 

for Jet A-1;  Dooley surrogate[194], UCO-HEFA; Dagaut surrogate[243], and  banner solvent; 

Aachen surrogate was developed by Honnet et al.,[3]. 

5.2.2 Heat Loss Model 

Heat loss occurs predominantly through convection as the heated gas transfers heat to the 

walls.  The heat transfer coefficient is related to the thermal conductivity𝜆 and the 

thickness of the thermal boundary layer   𝛿ℎ. 

    𝒉𝒄  = 
𝝀

𝜹𝒉
                    5-21 

      

Where    𝛿ℎ   is determine from Nusselt  number Nu 

                                                      𝑵𝒖 =
𝑫

𝜹𝒉
  =

𝒉𝒄 𝑫

𝝀
                   5-22 

                              

 

The Nusselt number depends on the Reynolds and Prandtl numbers. 

                                          Nu = 𝟎. 𝟑𝟑𝟐𝑹𝒆𝒍
𝟏

𝟐
𝑷𝒓

𝟏

𝟑                  5-23 

      

Where 𝑅𝑒𝑙 is the flow Reynolds Number and Pr is the Prandtl  number respectively.  

                                            𝑹𝒆𝒍 =
𝝆𝒖𝒍

𝝁
                       5-24 

                      

                                           𝑷𝒓 =
𝑪𝒑𝝁

𝝀
                      5-25 

          

Where 𝜌 is the fluid density, u is the flow velocity, L is the characteristic length,  𝐶𝑝 is the 

specific heat of fluid, and  𝜇 is the dynamic viscosity of fluid. 

The heat loss in engines involves estimating the instantaneous heat transfer coefficient 

[244] and also RCM’s [245, 246]. Thereare three types of heat loss models: single zone[247], 

the multi-zone heat loss[248] models and the volume expansion model[249, 250]. The single 
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zone heat model based on the first law of thermodynamics assuming the ideal gas behaviour  

written in the form  

    
𝒅𝑸𝒄

𝒅𝒕
 = 
𝑪𝒗𝑽

𝑹𝒖
 
𝒅𝑷

𝒅𝒕
 −  

𝑸𝒘

𝒅𝒕   
                5-26 

    

Where  
𝒅𝑸𝒄

𝒅𝒕
  is the apparent heat release rate (AHRR) from combustion, 𝑪𝒗  is the constant 

volume heat capacity of the gas mixtures, V is the volume at TDC, 𝑹𝒖 is the the universal 

gas constant,
𝒅𝒑

𝒅𝒕   
  is the time derivative of the experimental pressure trace and 

𝒅𝑸𝒘

𝒅𝒕
  is the 

rate of heat loss to the wall. All the parameters are determined directly from experiment 

except, 𝑪𝒗 which is the dependent on the reactor chamber temperature and experimental 

pressure trace, which is estimated from the ideal gas law. Therefore, the convective heat 

transfer rate to the cylinder walls and piston during compression is describe using the heat 

transfer coefficient that is given as 

    
𝒅𝑸𝒘

𝒅𝒕
 = 𝒉𝒄A (𝑻 − 𝑻𝒘)t                  5-27 

     

 

Equation 5-27 is based on Newton’s law of cooling for convective losses; it shows that the 

convective heat losses are directly proportional to the variation between the mean gas 

temperature and the wall temperature,   𝑻𝐰. Where A is the internal surface area of the 

reaction chamber, T is the mean gas temperature,  ℎ𝑐 is the instantaneous heat transfer 

coefficient and t is the total compression time of the RCM.  Correlations[251-253] have been 

proposed in order to predict the  heat loss on the basis of heat transfer measurement from 

experiment and used in the modelling of in-cylinder heat transfer.  

In the multi-zone heat loss model, the RCM is split into zones where momentum, 

conservation of mass and energy are applied to calculate the heat loss rate from the 

adiabatic core. The idea of the model is to account for the physical processes within the 

region of the RCM that account for the heat loss[248].  

     
𝒅𝑽

𝒅𝒕𝑯𝑹𝑴
 = −

𝑽

𝜸
  [
𝟏

𝑷

𝒅𝑷

𝒅𝒕
−

𝟏

𝑵

𝒅𝑵

𝒅𝒕
+ 

𝟏

𝑪𝒑𝑻

𝟏

𝑵
 ∑ 𝒖𝒋

𝑵𝒔𝒑
𝒋=𝟏

𝒅𝒏𝒋

𝒅𝒕
]                       5-28 

 

The advantage of this model is the thermochemistry effects are adequately captured which 

is pertinent for fuels with cold flame type behaviour. It is assumed that the heat loss in 

theRCM only occurs within a thin boundary layer. The model assumes the compression is 

an isentropic process and specifies an effective volume term[238]. This approach was 

adopted here as it’s more convenient and less expensive than other models such 

asestimating the instantaneous heat coefficient [247, 254]. 
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5.2.2.1  Effective Volume Approach 

The effective volume approach accounts for the heat loss from the gas to the reactor 

chamber wall during the compression and post compression period of the experiment. 

However, during  two-stage ignition, the multi-dimensional effects cannot be neglected, 

leading to a higher pressure rise in the first-stage ignition and a shorter total ignition 

delay[202, 249]. 

 Goldsborough et al.,[248] proposed MZM where he divided the reactor chamber and piston 

regions into four zones. It includes the reaction chamber, the piston gap, the crevice 

volume, and the ring pack used to seal the piston in the reaction chamber.  Whilst this 

approach has been shown to be better than 0D modelling difficulties in modelling heat loss 

to the wall, andassociated pressure drop which link to chemical processes and heat release 

introduces more uncertainties to the model. 

To make the heat loss problem amenable to modelling the following experimental 

conditions are required: 

 

1. A crevice piston to contain the cold boundary gases into the crevice zone as this 

enhances a homogenous environment. 

2. The heat loss from the RCM is confirmed to a thin boundary layer at the chamber 

wall.  

3. The piston motion should be rapid as possible and quickly brought to rest at the end 

of its stroke (TDC).  

The core region can then be represented as an ‘effective volume,' 𝑉𝑒𝑓𝑓  which is as a function 

of time. Practically an empirically determined parameter, 𝑉𝑎𝑑𝑑  ,  account for the heat loss 

effect in RCM which is  added to the actual time dependent geometric volume of the 

combustion chamber, 𝑉𝑔.  In  the  post compression period, where t > 0, polynomials fit, 

𝑉𝑝(𝑡),   fitted to the effective volume expansion during the post compression stages of the 

experiments. Then the effective volume at post compression is taken as the product of the 

effective volume at TDC (t = 0) and the fitted volume expansion which is in turn used to 

simulate the experiment[255]. 

   𝑽𝒆𝒇𝒇 (t) = 𝑽𝒈(𝒕)   +   𝑽𝒂𝒅𝒅   t ≤ 0    5-29 

    

   𝑽𝒆𝒇𝒇(𝒕)  = 𝑽𝒆𝒇𝒇(𝟎) 𝑽𝒑(𝒕)                t > 0    5-30 

    

The critical parameter for the heat transfer model, 𝑉𝑎𝑑𝑑,   and the polynomial function 𝑉𝑝(𝑡). 

These key parameters can be resolved from the pressure trace of the non-reactive test, 

which is use to simulate the corresponding reactive case. The polynomial fit, 𝑉𝑝(𝑡),  is curved 

fit to a volume expansion trace given below. 
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   𝑽𝒆𝒙𝒑(𝒕) = (
𝑷(𝟎)

𝑷(𝒕)
)
𝟏
𝜸⁄
  t ≥ 𝟎    5-31 

5.3 Results and Discussion 

5.3.1 Experimental Characterization: Non-Reactive Experiment  

Characterization tests were necessary to know the capability of the current machine 

regarding its operating pressure, temperature. The present machine achieved the end of 

compression pressures, for flat and crevice pistons, to be approximately 22 and 18 bar 

respectively as shown Figure 5-2.  

 

                Figure 5-2:  Obtainable pressure trace for  Shef-RCM ( Flat and Crevice Piston). 

 

Non-reactive tests were carried out by expanding inert gas (nitrogen) in the reactor 

chamber. The tests were carried out by retracting the piston to its BDC, and the pressure of 

the pneumatic driving chamber was charged to 4 bar.  The reactor chamber is then first 

vacuum then inert gas charged into the chamber through the septum while the valve was 

closed.  The raw experimental pressure trace data obtained from the LabVIEW represented 

as pressure versus time history shown in figure 5-3. Pressure traces for four experiment of 

nitrogen at an initial pressure of 0.7 bar and argon at an initial pressure of 0.7bar are shown.  

The repeatability was considered good.  



109 

 

 

Figure 5-3: illustrates a repeatability of four experimental pressure trace of nitrogen and 

argon. Colour line – Nitrogen pressure trace and Black lines-Argon pressure trace at an 

initial pressure of 0.7 bar. 

 

5.3.2 Experimental Characterization: Reactive Experiment. 

The repeatability for the reactive experiment is demonstrated with two fuels. One a high 

volatility n-heptane and another with low volatility Jet A-1.  Five different runs were done 

at an equivalent ratio of 1.0.  The objective of these tests wasto demonstrate the capability 

of the rig in producing repeatable results. Shown in figure 5-4, are the n-heptane tests.   

Figure 5-5 shows the Jet A-1/air tests.  Both pressure traces overlapped each other and the 

reactive experiment demonstrates a repeatable and reproducible experimental pressure 

trace.  The heptane experiment was conducted at stoichiometric condition at 1 bar, initial 

temperature of 310 K. The uncertainty in heptane ignition delay time for the five runs is 

21.98±0.5 ms and based on the section 3.11.6 the formula was used to estimate the 

uncertainty in the compressed gas temperature to be 619.8 ± 5K and error in the 

compressed gas pressure is 16.6 ± 0.3 bar. 

For   Jet A-1, conditions for the experiment are initial pressure of 0.5 bar, initial temperature 

408 K and = 1.0. The uncertainty in the compressed gas pressure is 10.12± 0.2 bar. The 

uncertainty in the ignition delay time is 13.2± 1 ms while the uncertainty in the compressed 

gas temperature is 729± 6 K. 



110 

 

 

Figure 5-4: Demonstration of experimental repeatability of n-heptane data. Molar 

composition: n𝐶7𝐻16/𝑂2/𝑁2 =1/11/41.36. Conditions: 𝑃𝑐=15.6 bar;   𝑇𝑖= 310 K;    

 

 

Figure 5-5: Demonstration of experimental repeatability for Jet A-1 and air at equivalent 

ratio of 1.0. Conditions: 𝑃𝑐 = 10.7 𝑏𝑎𝑟; 𝑇𝑖 =  408 K. 

                                                                            

5.3.2.1 Influence of temperature on Jet A-1 ignition delay. 

 Figure 5-6, shows the pressure trace of ignition delay of Jet A-1 at 6 bar at various EOC 

temperatures ranging from 697 – 781 K and at an equivalence ratios of 0.75 and 1.0. The 

ignition delay reduced as the EOC temperature increased. At these conditions, no negative 

temperature coefficient (NTC) was observed and the detection of second-stage heat release 

was not seen.  Figure 5-6, shows the measured ignition delay as a function of the compressed 
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temperature. The black rectangle represents the experimental data while the broken red 

lines are a linear the least square fit to the data. 

 

(a) 

 

                          (b) 

Figure 5-6: Experimental pressure trace at various EOC temperature for Jet A-1/air mixture 

at an equivalent ratio of 1.0 at 𝑃𝑐 =  6 bar. Conditions: oxidizer to mass ratio of 14.6.(a) at 

= 1.0 (b) at = 0.75. 

 



112 

 

 

Figure 5-7: Measured ignition delay as a function of compressed gas temperature, at  6 bar 

for Jet A-1/air mixture corresponding to (a).  = 1.0, oxidizer to mass ratio of 14.6. 

 

5.3.2.2 Influence of Pressure on the Ignition delay 

Comparison of the effect of pressure on ignition delay is represented in figure 5-8,  the 

ignition delays for the Jet A-1/air mixture at a compressed gas temperature range of 734 – 

796 K. At 6 and 10 bar the ignition delay exhibited an inverse dependence on the compressed 

gas pressures, no NTC behaviour was detected. It can be seen that both pressures converge 

at higher temperature and as the pressure is increase from 6 to 10 bar there is a reduction 

in ignition delay clearing showing that increasing the peak pressure leads to a reduction in 

the ignition delay. 
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Figure 5-8: Influence of pressure on ignition delay post compression pressure of 6 bar and 

10 bar for Jet A-1/air mixture corresponding to  = 0.75, .molar ratio: O2  : N2 = 1 : 3.76. 

5.3.2.3 Influence of Equivalent Ratio on Ignition delay  

Shown in Figure 5-9, is the influence of equivalence ratio on the ignition delay timesfor Jet 

A-1/air mixtures at pressures of 6 and 10 bar and temperature range of 730 – 815 K. There is 

an inverse dependence on the equivalence ratio, which shows that ignition delays are 

shorter with increasing equivalence ratio up to the stoichiometric conditions tested. At a 

compressed gas pressure of 10 bar at  ф = 0.75;  The test at compressed gas pressure of 6 bar 

at  ф = 0.75 and ф = 1.0 also showed no evidence of NTC behaviour. While at 6 bar, the same 

trend is observed where the ignition delay time gets shorter with an increase in the 

equivalent ratio. In Figure 5-9a there seems to be a convergence of ignition delay at an 

equivalence ratio of 0.75 and 1.0 at lower compressed gas temperature, but as the 

temperature and equivalence ratio increases the ignition delay diverges and a 

corresponding reduction in the ignition delay appears. A linear fit shown in Figure 5-9 was 

fitted on the data using Origin software. 

 



114 

 

 

   (a) 

 

 

 

    (b) 

Figure 5-9: Measured ignition delay as a function of compressed gas temperature, at post 

compression pressure at(a)10 bar and (b).6bar for Jet A-1/air mixture corresponding to  = 

0.75 – 1.0, oxidizer to mass ratio of 14.6. 
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5.3.3 Ignition Delay Correlation 

 Within the low temperature range 697-781 K studied at ф = 1.0 and EOC pressure of 6 and 10 

bar, a single stage ignition time with no negative temperature coefficient was observed. This 

behaviour can be reduced to a single correlation  

  𝝉𝒊𝒈𝒏𝒊𝒕𝒊𝒐𝒏 = 𝑨 ∗ 𝑷𝒄
𝒃 𝒄

𝒆𝒙𝒑(
𝑻𝒂

𝑻𝒄
⁄ )                               5-32 

Where A, b, c, Ta are the optimisation parameters representing the pre-exponential factor, 

and the pressure exponent respectively. The  𝛕𝒊𝐠𝐧𝐢𝐭𝐢𝐨𝐧   in milliseconds, 𝑃𝑐   in bar and  𝑇𝑐    in 

Kelvin.  The region where the ignition delay display a linear behaviour are normally fitted 

using a linear logarithmic correlation and assuming the correlation to be constant 

variation coefficient[256]. However, equation 5-32, is linearized by taking the natural 

logarithm of both sides resulting to the equation 5-33 shown below. 

               Ln ( ) = ln (A) – b*ln (P) – c*ln ( 𝑻𝒂
𝑻𝒄
⁄   5-33 

The coefficients estimated using the linear multiple regression analysis. Various authors in 

the past have come up with different correlation models describing the ignition delay time 

for hydrocarbon fuels[159, 257, 258].  However, the equation 5-33 is limited to the Arrhenius 

behaviour of ignition delay time[122].  Figure 5-10 shows, the Global Correlation for Jet A-1 

(FST-265638). The correlation is scaled to PC = 10 bar and ф = 1.0 using the correlation 

parameters giving the following. 

            𝛕𝐢𝐠𝐧𝐢𝐭𝐢𝐨𝐧 = 𝟗. 𝟎𝟑𝟕 ∗ 𝟏𝟎
−𝟓𝐏𝐜

−𝟎.𝟔𝟗𝟕 −𝟎.𝟏
𝐞𝐱𝐩 (𝟏𝟎, 𝟎𝟏𝟖 𝐓𝐜

⁄ )                                                              5-34 

 

 

                       Figure 5-10: Global Correlation for Jet A-1 (FST-265638) Aviation Fuel. 
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5.3.4 Comparison of Experiment with Literature 

There has been a previous experimental study on Jet A-1 and JP-8 autoignition [2, 259, 260]. 

This work complements the existing data in the low to intermediate temperature range. 

The figure 5-11, shows the comparison of the current RCM with other RCMs and shock tube 

at various EOC pressure at 5,7, 20 and 22  bar, at  = 1.0 with an oxidizer to fuel ratio of 14.6. 

Slight variations in different test rigs make it difficult to compare experimental data sets, 

but it is more useful to analyse the overall data set existing within the data to judge its 

consistency. The plot displays two compressed gas pressure of 6 and 10 bar at 

stoichiometric conditions with other works. An error data from De Toni et al.[259] was used 

to access the rig.  The ignition data from the present rig was found within the error bar of 

De Toni experiment and slightly a bit above De Toni error bar. A slight deviation was 

expected, because the data collected from the current rig was point data rather than 

averagely computed data. Secondly, the approach in fuelling the rig could have been 

another possible cause of deviated results. Errors in measuring fuel/air mixtures are 

imminent.  The micro-syringe used in injecting the fuels may not be reliable as this could 

lead to fuels dropping at the side of the chamber in the process of injection, which affect 

the evaporation rate and homogenous mixture in the chamber. Presently,  the rig is in its 

first stage of development automated apparatus like fuel injector and flow meter for the gas 

line have not yet been installed.  Despite this, the results are consistent with other rigs 

shown, have a similar trend and have reliable data. However, from the plot in Figure 5-11, it 

indicates the current rig can have a reprodcible results. Further results from the literature 

shows to have a two-stage ignition delay, which was not observed with the current rig at the 

condition studied. This could be because the present rig had not sufficiently explored a 

wider range of compressed gas temperature to capture the two stage ignition in the low 

temperature regime. Moreover, combustion characteristics are well known to be activated 

in the low-temperature regime. The Jet A  fuels in literature ignite faster than the current 

study Jet A-1. This shows that different Jet fuels exhibit different ignition behaviour despite 

the fact that at very low temperature, the kinetic for paraffinic fuel  is controlled by the low-

temperature chain branching: 

 R + O ↔ RO2 ↔ QOOH (+O2) ↔OOQOOH 2OH + product                                            5-35 

This reaction pathway is driven by the R +O2 ↔RO2 equilibrium and also the rate of 

isomerization RO2↔QOOH , and the ignition delay of jet fuel could be attributed to variation 

in the concentration of the n-paraffins, cyclo-paraffins, iso-paraffins and the aromatic 

content[261]. The reactivity of Jet fuels is driven by the n-paraffins. From literature Dooley 

et al.[2] and Casey et al.[262] used similar Jet A fuel (POSF 4658) in their RCMs experiment, 

which shows that their fuel composition n-paraffin has a higher value of  38.6% as recorded 

from the GC-MS analysis. Judging from the plot in Figure 5-11, where a higher reactivity is 

observed than the present rig, this could be because of the higher percentage of their n-

paraffins than the Jet A-1 fuel used in the present rig, which has 19.25% n-paraffins.  Dooley 
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et al.[2] shows to exhibit a faster ignition than the current study while  Casey et 

al.[262]ignition delay times reported second stage ignition delay time with an Arrhenius 

like-behaviour. The overall ignition delay time for De Toni et al.[259] is shown to have a 

weak pressure dependence of ignition delay while the shock tube (ST) data reported by 

Dooley et al.[2] demonstrated a strong pressure reliance on the ignition delay time. 

 

             Figure 5-11: Experimental comparison current rig data with literature for Jet Fuel. 

 

5.3.5 Numerical Modelling: Model Comparison with Experiment 

The effective volume, 𝑽𝒆𝒇𝒇 , is the geometrical volume of the combustion chamber including 

the dead volumes due to the ports and pressure transducer.  The effective volume during 

the post-compression period was modelled as an adiabatic expansion process resulting to a 

time dependent volume expansion profile, 𝑉𝑒𝑥𝑝.  Polynomials were fitted to the effective 

volume during compression and post compression period as shown in figures 5-12(a) and 5-

13(a).  These fitted volume polynomials were used to provide the final expansion trace, 

which serves as an input data for the heat loss parameter in the simulation. The volume 

expansion rate for argon and nitrogen gases were different because of the specific heat 

value. Argon has a higher thermal conductivity than nitrogen so argon losses more heat 

than nitrogen at the end of compression as  Figure 5-14, shows the comparison between the 

experimental data (Red solid line) and the model (black line). There is a good agreement of 

the model with the experimental results at both compression and post compression stage.  

The reactive experiment illustrates N-heptane oxidation in Figure 5-15. The experimental 

pressure trace (black solid and broken line) and model (coloured broken line) for a reactive 

mixture n-heptane mixture at the stoichiometric condition. Before any reactive test is 



118 

 

carried out, a non-reactive test with the same mixture heat capacity is run to mimic the 

reactive test at post compression stage, which is used to facilitate the heat transfer model. 

The Skeletal Kinetic mechanism of n-heptane oxidation is taken from loung, et al.[263]. 

From the plot, the experimental pressure trace shows a perfect match with the model at 

compression and post compression. However, regarding ignition delay time the model 

predicted a longer ignition delay of about 61ms almost three times of the experiment 

ignition delay.  This was expected, as more validation of the test would be required to help 

improve the mechanism further.  Due to the time constraint of this work, the detailed 

experiment was not carried out on N-heptane combustion besides the work was mainly 

focussing on higher hydrocarbon fuels that the present rig was designed for. The essence of 

N-heptane model was to show the agreement of the model with an experiment in matching 

the pressure trace at compression and post compression stage and estimating the end of 

compressed temperature. 

 

      (a) 
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(b) 

Figure 5-12: shows the (a).Effective Volume profile as a function of time and (b).the 

volume expansion trace for Argon non-reactive modelling. Red broken lines – indicate 

the high degree polynomial fit to the data. The blue line – effective volume profile. 

 

        (a) 
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                                                                                          (b) 

Figure 5-13: shows the (a).Effective Volume profile as a function of time and (b).the volume 

expansion trace for Nitrogen non-reactive modelling. Red broken lines – indicate the high 

degree polynomial fit to the data. The blue line – effective volume profile. 

 

 

Figure 5-14: Non-reactive model comparison with experimental pressure traces. Initial 

conditions: argon –: 𝑃𝑖= 1 bar,   𝑇𝑖 = 300 K. Coloured line – experimental pressure. Black line 

– model prediction. 



121 

 

 

 

(a) 

 

 

(b) 

Figure 5-15: (a) non reactive test with Cantera model (b)Comparison of model with 

experimental pressure profile for a reactive n-Heptane mixture at stoichiometric. Molar 

composition: n-𝐶6𝐻14/𝑂2/𝑁2 =1/11/41.36. Initial conditions: 𝑃𝑖 =1.0 bar,   𝑇𝑖= 315 K. Solid and 

broken black line – experiment. 
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5.3.5.1  Kinetic Mechanism Selection and Modelling. 

The current aviation fuel formulation earlier stated in section 2.4 of this work has its 

formulation as 19.35% n-paraffin, 20.57% iso-paraffin, 40.79% cyclo-paraffin, 15.55% Alkyl 

Monoaromatics and 3.7% Cyclic Monoaromatics by weight.  

The molecular formula 𝐶11.89𝐻22.89 ,Av the erage mmolecular weight of 166g/mol, H/C 1.9 and 

DCN 43.74. The jet A-1 autoignition delay times were compared the two surrogate mixture 

model from Honnet et al.,[3] (the ‘Aachen’ mixture) and the second generation of Dooley et 

al.,[2]. 

These 2nd generation models have successfully emulated the Jet-A POSF 4658 fuel and JP-8 

POSF 5699 fuels and surrogates[2]. The Aachen surrogate was developed by Honnet et al.,[3] 

and has a composition of 80% n-decane and 20% 1,2,4-trimethylbenzene by volume, and by 

weight (77.2 and 22.8% molar basis, respectively). This mechanism was designed using 

previously developed chemical-kinetic models which have components of n-decane and 1, 

2, 4-trimethylbenzene. The n-decane mechanism was formulated by Bikas and Peters [264]  

and validated against experimental data from ST[265] and JSR[160].   

 

5.3.5.2 Comparison of Experiment with Model. 

The simulations of the Jet A-1 experiments were carried out using Cantera incorporating 

the heat loss parameter during the compression stroke by adding an empirically 

determined effective volume.  Also, the heat loss after the end of compression was 

accounted by ‘adiabatic core expansion’ approach. The comparison is made for 6 bar, the 

molar ratio of O2 : N2 = 1: 3.76 at ф= 0.75 and 1.0 in the temperature range of 727-771 K. In 

figure 5-16, both surrogate mixtures show a two-stage ignition delay time, which is an 

indicative of low-temperature chemistry.When considering both surrogate mixtures, their 

first stage ignition delay time was in agreement. The first stage ignition had a reduction in 

the ignition delay with an increase in temperature.  The Dooley mixture showed NTC 

behaviour. There was no NTC behaviour observed in Aachen mixture. The model seems to 

be more reactive than the experiment predicting a less ignition delay time than the 

experiment.  

In figure 5-17, with an increased fuel concentration at an equivalence ratio of 1.0, the overall 

ignition showed a decrease in their ignition delay time for both mixtures, and they 

experience a similar trend no NTC was observed. The model ignition delay time seems to 

more reactive at ф= 0.75 than an experiment. The effect of equivalence ratio on the ignition 

delay is quite clear while maintaining the oxygen concentration constant increasing the 

fuel concentration increased the reactivity in the temperature range investigated. It 

revealed from the study that similar ignition delays at low temperature occur as the fuel 

concentration increased. 
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Figure 5-16: Comparison of Model with Experiment at 6 bar at EOC pressure at 6 bar, ф= 0.75. 

Molar ratio: O2:N2 = 1: 3.76. Green colour fill-Experiment, red colour and rectangle unfilled 

-Dooley mixture indicating 1st stage and total IDT. Aachen mixture-triangle is indicating 1st 

stage and total IDT. 

 

 

Figure 5-17: Comparison of Model with Experiment at 6 bar at EOC pressure at 6 bar,  

1.0. Molar ratio: O2:N2 = 1: 3.76. Green colour fill-Experiment, red colour and rectangle 

unfilled -Dooley mixture indicating 1st stage and total IDT. Aachen mixture-triangle is 

indicating 1st stage and total IDT. 
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5.4 Conclusion. 

The performance of the rig was ascertained by the characterisation of the present rig   

conducting a  non-reactive using nitrogen and argon gases and a reactive test using light 

hydrocarbon fuel (heptane) and heavy hydrocarbon fuel Jet A-1. The compressed 

temperature was computed numerical using Cantera. A heat loss term was incorporated 

into the modelling before and after the compression accounted for by adiabatic core 

expansion approach.  A repeatability test was conducted for the non-reactive experiment; 

demonstrating that the pressure trace was consistent over the operating range. The 

maximum peak pressure of the rig was 20 bar, and a corresponding estimated peak 

temperature of 960 K.   

Reactive tests using heptane and Jet A-1   at the stoichiometric condition were performed. 

The ignition delay time measurement shows to be repeatable . In addition, combustion 

modelling using Cantera and incorporating the heat loss term.  The model predicted an 

increase of about 68% ignition delay longer than the experimental data for heptane/air 

combustion.   

The ignition delay of Jet A-1/air oxidation was measured at 6, and 10 bar,  0.75 and 1.0 

over a temperature range of 697 – 781 K.  A study on the influence of pressure, temperature, 

and equivalence ratio was carried out. It was found that an increase in the pressure, 

temperature or increase in equivalence ratio could result in a reduction in the measured 

ignition delay time. The uncertainty in the ignition delay time, compressed gas temperature 

and the pressure was also considered for Jet A-1 and heptane fuel. 

The present experimental rig has been characterised and was found capable of providing 

experimental ignition delay times for heavy hydrocarbon fuels. 
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Chapter 6. Autoignition Study of Banner-Solvent in RCM. 

6.1 Introduction 

To meet the demands of the growing population and industrial gas companies developer in 

term of energy usage and assurance of having a steady supply of fuels to respond to their 

needs.  This has propelled the needs to explore more into the combustion properties of new 

generation fuels to updating the existing archives on the chemical and physical properties 

of this new generation fuel for onward certification and approval. Before any fuel final gets 

to the stage of approval, it has passed through rigorous testing before being certificated. 

Banner Solvent has been classified as a new first generation synthetic fuel because of its 

good potential as a fuel, if carefully examined and investigated. They need to be proven 

technically and commercially viable fuel options, which could be a market in certain part 

of in the next century. Banner Solvent consists of five component of hydrocarbon mainly 

n-paraffinic. They are linear alkanes such as n-decane, n-dodecane, n-undecane, Tridecane 

and tetradecane. They are considered as a representative class of hydrocarbon existing in 

surrogate aviation fuels. 

6.2 Experimental Procedures 

All gases used in the experiments as a reactant is of purity: O2: 99.993%, N2: 99.999%, Ar: 

99.995% was obtained from BOC and Banner fuel from Banner Company, UK. The 

procedures for the Banner solvent are as follows. Before initiating any runs, the reactor 

chamber is vacuum using BOC Edward E2-M12 vacuum pump, and the fuel and air 

composition are prepared based on the molar composition before charging the chamber. In 

this first phase of the Shef-RCM design, the gas lines set up are omitted because of time 

constraint rather the charging of the reactor chamber is manually done. Therefore, gases 

mixtures (pure oxygen, nitrogen and argon)  are stored in a Teflon FEP gas sampling bags 

with a capacity approximately 600 ml. The required composition is extracted using a 60ml 

syringe for the gas and a 50ml micro-syringe for the fuel. Fuel/air mixture introduced into 

the heated combustion chamber from the inlet port located at the rear of the reactor 

chamber through a septum and allowed to homogenise for about one and half hour. For this 

experiment, four and five bar driving pressure is used behind the driving section to propel 

the reactor piston then actuated by the release of the PPRM, which releases the piston to 

compresses the fuel-air mixture ahead of the piston to an elevated pressure and 

temperature. The recording of the events and the pressure trace are logs onto the  LabVIEW. 

The piston is retracted to its initial position (BDC) then flushing of the chamber with 

pressurising air for 5 minutes. The reactor chamber and the micro syringe are clean with 

propanol solution then the chamber is flushed again with pressurise air and finally vacuum 

making it ready for the next chamber charging. 
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                       Table 6-1: Mixture composition for Banner solvent experiment. 

  

             Mole Fractions 
Equivalenc
e Ratio 

EOC Pressure 

Mixture # 

Banner Solvent 

  

Ar 

 

Approximately 

 

1 0.005928 0.2088 0.7853 0 0.5 6 ,10 

2 0.008866 0.2081 0.783 0 0.75 6,10 

3 0.011786 0.2075 0.7807 0 1 6 

4 0.005928 0.2088 0.5891 0.1964 0.5 6 

5 0.008866 0.2081 0.5874 1958 0.75 6 

6 0.011786 0.2075 0.5857 0.1952 1 6 

7 0.005928 0.2088 0.3927 0.3927 0.5 6 

8 0.008866 0.2081 0.3927 0.3927 0.75 6 

9 0.011784 0.2075 0.3927 0.3927 1 6 

 

6.3 Experimental Repeatability of Banner Solvent 

Figure 6 -1, shows the repeatability test of Banner Solvent conducted at an equivalence ratio 

of  = 0.5 at dilution molar ratio of N2/(O2 +N2) =0.79.  A total of five different runs were 

made of the same condition was performed at 6 bar compressed gas pressure and initial 

temperature of 393 K. The pressure trace was seen to overlap each other showing to have a 

repeatable result. The uncertainty was also considered, the uncertainty in the compressed 

gas pressure was 5.87 ± 0.1 bar, the ignition delay time recorded 7.72 ± 0.3 ms and the 

compressed gas temperature is 760.3 ± 10 K. 
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Figure 6-1: Experimental repeatability for Banner Solvent at a compressed gas pressure of 6 

bar. 

 

6.4 Experimental Results 

The combustion of Banner-Solvent in air mixture is  measured over a compressed gas 

temperature range of 722 - 836 K, at pressures of 6 and 10 bar, and for equivalence ratios of 

0.5, 0.75, and 1.0.  The charge is prepared in a synthetic dry air, 21%O2 and 78% N2. The 

compressed gas temperature and pressures are obtained by varying the initial temperature 

and pressure and maintaining a compression ratio 8.8. The initial temperature for the 

experiment ranges of 115 - 135 oC, this temperature range was chosen to ensure complete 

vaporisation of the fuel as early investigated by Casy[105]. Table 6-1 shows, the composition 

of Banner solvent mixtures used in this work. 

The mass of fuel, oxidizer ratio and equivalence ratio are specified by determining the 

mixture composition. To meter the right proportion of air-fuel mixture the estimated 

volume is required, which has been discussed in section 3.3.1. The mixture compositions 

are varied by changing the composition of the diluent gas (N2 and Ar ratio) in the reacting 

mixture and altering the dilute composition to get the desired temperature at the end of 

the stroke. The initial temperature of the chamber ranges from a minimum temperature of 

115 K to a maximum of 135 K.  
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6.4.1 Influence of temperature on Banner-Solvent ignition delay time. 

Figure 6-2, clearly shows the influence of temperature on the ignition delay time for Banner-

Solvent at a compressed gas pressure of 6 and 10 bar,  0.5  in an oxidizer consisting of 

O2 : N2 = 1: 3.76 and at compressed gas temperature of 749 – 781 K.   

Figure 6-2(a) shows the pressure trace as a function of time and the time 0 corresponds to 

the end of compression. The figure shows at 10 bar, the experimental pressure trace 

decreases in ignition delay as the EOC temperature is increased. At 754 K a weak two-stage 

ignition delay was slightly observed, an indicative of a low-temperature chemistry.  

Figure 6-2 (b) shows the ignition delay time as a function of temperature. The ignition delay 

clearly displayed an Arrhenius-like temperature dependence with no NTC behaviour.  In 

Figure 6-3 (a) shows, the pressure trace as a function of time and compressed gas 

temperature ranges from 745 – 799 K. At 6 bar, there was an indication of NTC  at about 747 

K,   increasing compressed temperature with corresponding increase in ignition delay times 

but this has to be investigated with more experiments. 

 

 

(a) 
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                                                                                  (b) 

Figure 6-2: Influence of temperature on ignition delay time at 10 bar,  0.5, Molar ratio: 

O2:N2 = 1: 3.76 (a) experimental pressure trace (b) ignition delay time as a function of 

temperature. 

 

 

 

(a) 
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                                                                                       (b) 

Figure 6-3: Influence of temperature on ignition delay time at 6 bar,  0.5, Molar ratio: 

O2:N2 = 1: 3.76 (a) experimental pressure trace (b) ignition delay time as a function of 

temperature. 

 

6.4.2 Influence of Equivalence ratio on Banner-Solvent ignition delay time. 

The experimental result for Banner solvent is shown in figure 6-4. It was investigated by 

varying equivalence ratio at 0.5 < ф> 1.0, the compressed gas pressure of 6 and 10 bar and 

varying diluent molar ratios to alter the peak temperature.  

In Figure 6-4(a) the compressed gas temperature ranges from 718 – 772 K and pressure of 6 

bar.  It showed that at ф = 0.5 and 0.75, there were some traces of   NTC behaviour observed 

with increasing ignition delay times at varying compressed gas temperature. Increasing the 

equivalent ratio from 0.5 to 0.75 there was a slight reduction in the ignition delay time as 

shown in the plot. Further, increase in the equivalent ratio 1.0 lead to a further reduction 

in the equivalent ratio. At ф = 1.0 Arrhenius-like temperature dependence behaviour with 

no NTC was predominant. 

Figure 6-4(b) considered compressed gas temperature ranging from 746 – 796 K and pressure 

of 6 bar. It is evident that increase in the equivalence ratios lead to a reduction in the 

ignition delay and some traces of NTC was initiated. The Same behaviour was also observed 

in Figure 6-4(c).  

A further test was conduction by varying the diluent gas mixture to obtain the varying end 

of gas temperature in the chamber. The gas temperature ranges from 718 – 916 K   as shown 

in Figure 6-4(d). It is clear seen that within temperature range while varying ф = 0.5 – 1.0, 

NTC behaviour was prominent and seen. 
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At a higher pressure of 10 bar and compressed gas temperature ranging from 733 – 812 K as 

shown in Figure 6-4(e) no NTC behaviour was seen but displayed an Arrhenius dependence 

on the temperature at the condition studied. Both experiments showed the influence of 

increasing fuel concentration with a reduction in the ignition delay time that is the faster 

the ignition process.  Curran et al.[266] observed such trend in their study. Within the low 

to the intermediate regime, increasing the fuel concentration increases the alkyl-

hydroperoxides radical’s pools production that results in shorter ignition delay times. The 

build of the radical pool eventually drives the rapid reactions relating with the ignition. 

 

(a) 

 

(b) 
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(c) 

 

 

(d) 
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         (e) 

Figure 6-4: Experimentally measured ignition delay of Banner-Solvent at 6 bar with 

(a).Molar ratio:  𝑂2 :  𝑁2=  1 : 3.76, (b). Diluent molar ratio:  𝑂2 :  𝑁2: Ar =  1: 2.82 : 0.94 , (C). 

Diluent molar ratio: 𝑂2 :  𝑁2: Ar =  1: 2.82:0.94,(d) varying diluent molar ratio(e). at 10 bar 

Molar ratio:  𝑂2 :  𝑁2=  1 : 3.76. 

 

6.4.3 Influence of Pressure on combustion of Banner-Solvent  

Figure 6-5, shows the ignition delays for the Banner-Solvent/air mixture at a compressed 

pressure of 6 and 10 bar, a temperature range of 722 – 781 K at 0.5 and molar ratio: O2 : 

N2 = 1: 1.376.  The ignition delay displayed an inverse dependence on the compressed gas 

pressure at 10 bar with no  NTC  behaviour.  While 6 bar experiment clearly showed NTC 

behaviour with increasing compressed gas temperature. The decomposition of the alkyl 

hydroperoxyl radical (QOOH) and an oxygen addition reaction (QOOH + O2) with ensuing 

chain branching. The reaction pathways are highly pressure-dependent and as the QOOH 

decomposition, the pathways activate in the NTC region. 

 



134 

 

 

Figure 6-5: Influence of pressure on ignition delay time post compression pressure of 6 bar 

and 10 bar, 0.5  for Banner-Solvent/air mixture corresponding to ф = 0.5, Molar ratio: O2 

: N2 = 1 : 1.376. 

 

6.4.4 Comparison of Combustion of Jet A-1 with Banner-Solvent. 

Comparison of Jet A-1 and Banner-Solvent, as illustrated in Figure 6-6, show a transition 

from low temperature to intermediate temperature ignition, with negative temperature 

coefficient (NTC), observed for 6 bar at varying compressed temperature( 727 - 786 K) and 

ф= 0.5.  

The Banner-Solvent experiments showed traces of  NTC behaviour at a temperature above 

727 K. The solvent exhibited a shorter ignition delay times compare to Jet A-1.  The reason 

is that the solvent is composed of purely n-paraffinic hydrocarbon that has high reactivity 

with potentially accelerated radical generation via the low-temperature chain branching 

mechanism. Because of n-paraffinic structure, they have a large number of secondary C-H 

bonds; these bonds maintain RO2 stability and accelerated isomerization compare to the 

Jet A-1. However, from the formulation of the current Jet A-1, it has a higher content of 

cycloparaffin about 40.79% refer to section 2.5.1 for the precise formulation. The low-

temperature ignition of cycloparaffin is less due to the formation and isomerization 

pathway. The cyclic and distribution of hydrogen reduces the hydrogen available to the 

(1,5)H-shift whereas holding enough hydrogen for the (1,4) H-shift in the isomerization of 

the peroxy radicals. At low-temperature regime, this results in a much lower reactivity and 

a larger olefin production[267], which directly lengthen the ignition delay time of the 

present Jet A-1 fuel. 
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     (a) 

 

(b) 

    Figure 6-6: Comparison of Jet A-1 with Banner-Solvent at(a),(b) 10 bar, 0.5. Molar ratio: 

O2 : N2 = 1: 3.76. 

 

 

             



136 

 

6.5  Conclusion and Discussions 

The ignition delay times have been measured for the lean and stoichiometric mixtures of 

Banner-Solvent with air ( 0.5, 0.75, 1.0) at pressures of 6 and 10 bar while varying 

compressed temperature in the range of 718 – 916 K.  The measurements are performed in a 

newly designed Shef-RCM at an initial heating temperature ranges of 115oC – 135 oC. The 

experimental data lie in the low to the intermediate regime. Closer examination of the 

combustion of Banner-Solvent shows that the ignition delay time was most dominated in 

the NTC region at a lower pressure of 6 bar. While at 10 bar an Arrhenius behaviour as a 

function of pressure and temperature was observed. At 754 K, a scanty two-stage ignition 

delay also found for 10 bar indicating a cold flame temperature, which diminishes as the 

compressed temperature, was increased. 

The influence of increasing fuel concentration, temperature and pressure have shown on 

ignition delay of Banner-Solvent by a decrease in overall ignition delay times. Increasing 

fuel concentration and pressure increase the reactivity resulting in a shorter ignition delay 

times. When comparing the ignition delay times of Banner solvent with Jet A-1, it was seen 

that the Banner solvent is more reactivity than the Jet A-1, this difference was attributed 

the composition of Jet A-1, which has a higher content of cycloparaffin and aromatics. The 

low-temperature ignition of cycloparaffin is lower due to the formation and isomerization 

pathway. This attribute to the low reactivity and longer ignition delay time of Jet A-1.The 

present result provide combustion kinetic data for the validation and refinement of 

Banner-Solvent for kinetic mechanisms development. 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 

 

Chapter 7. Autoignition Study of Used Cooking Oil (UCO-HEFA) 

7.1 Experimental Conditions 

An experimental investigation of UCO-HEFA/oxidizer mixtures  was conducted in the range 

of low to intermediate temperature region with an equivalence ratios of ф = 0.5 – 1.0, 

dilution molar composition of N2/(O2 +N2) =0.79 – 0.90, compressed gas pressures and 

temperature of PC = 6 - 10 bar, and TC = 701–777 K. The chamber was preheated to an elevated 

initial temperature, ranging from 115-135 K.  

 Table 7-1, shows the mixture composition for the experimental condition studied. The 

initial gas temperature is changed to vary the compressed gas temperature at the end of the 

stroke and to maintain a constant compression ratio of 8.8. Also investigated are the 

influences of varying equivalence ratios and oxygen concentrations. 

        Table 7-1: Mixture composition for UCO-HEFA ignition delay experiment 

      Molar Composition (%) 
Equivalenc

e Ratio 
EOC Pressure 

Mixture # UCO 
  

 

Approximately 

 

1 0.60 20.89 78.52 0.5 10 

2 0.899 20.81 78.29 0.75 6,10 

3 1.19 20.75 78.06 1.0 6,10 

4 1.78 20.63 77.59 1.5 6 

5 0.60 9.94 89.19 0.5 10 

6 0.899 9.91 89.19 0.75 10 

7 1.19 9.88 88.92 1.0 10 
 

7.2 Experimental Repeatability 

Figure 7-1, shows the repeatability test of Used cooking oil (UCO-HEFA) conducted at an 

equivalence ratio of 0.5 at dilution molar ratio of N2/(O2 +N2) =0.79. Five different 

experiments of the same condition were performed at 6 bar compressed gas pressure. The 

repeatability was similar with that obtained from Jet A-1.  
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               Figure 7-1: Experimental Repeatability of UCO-HEFA at 6 bar compressed pressure 

7.3 Experimental Procedure. 

The procedures for running UCO-HEFA in the present rig is similar to that mention in 

section 6.2. 

7.3.1 Influence of compressed gas temperature on ignition delay times 

Figure 7-2, shows the effect of compressed gas temperature on UCO-HEFA/air mixture at 

compressed gas pressure of 10 bar, ф = 0.5. The oxidizer molar composition is described by 

N2/(O2 +N2), is fixed at 0.79. Figure 7-2(a) illustrates the pressure trace with varying TC while 

Figure 7-2(b) shows the influence of compressed gas temperature on the ignition delay time 

of UCO. The effect of increasing the compressed gas temperature shows a reduction in the 

ignition delay time. No NTC region was observed with the temperature range at this 

condition. 
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      (a) 

 

 

             (b) 

Figure 7-2: Influence of compressed gas  temperature on ignition delay time of UCO at 10 

bar, ф= 0.5, Molar concentration: Fuel = 0.6%,O2 = 20.89%, N2 =78.52%  (a) experimental 

pressure trace (b) ignition delay time as a function of compressed gas temperature. 
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7.3.2 Influence of Pressure on combustion of UCO-HEFA 

The experimental condition considered here are compressed gas pressure of 6 and 10 bar, ф 

= 1.0. The oxidizer molar composition, represented by N2/(O2 +N2), is fixed at 0.79. Figure 7-

3 displays the influence of pressure on the ignition of UCO-HEFA. This shows a slight 

reduction in the ignition delay time as the pressure is increased from 6 to 10 bar compressed 

gas pressure. At a lower pressure of 6 bar, it is seen that no NTC occurred within that stage, 

but a subsequent increase in the compressed gas pressure brought about increase 

temperature and reactivity of UCO-HEFA. At a higher pressure of 10 bar,  reactivity occurs 

as the temperature increases. Signs of NTC trend were observed due to the low-temperature 

chain branching pathway when added oxygen to an alkyl radical R + 𝑂2 ↔   𝑅𝑂2 as it passes 

through reaction process. At low temperature, from the equation 𝑅𝑂2 is favoured in the 

equilibrium[268, 269]. However, as the compressed gas temperature proceed further than 

739 K the equilibrium shift towards the reactant and the competition of with R + 𝑂2 𝐻𝑂2

alkene, turns relevant. The production of 𝐻𝑂2 radicals rather than OH through chain-

branching pathway controls the reactivity and display NTC behaviour. 

 

Figure 7-3: Influence of pressure on combustion of UCO-HEFA  at 6 bar and 10 bar, ф= 1.0, 

for UCO/air mixture corresponding. Molar concentration: Fuel = 1.19%, O2 = 20.75%, N2 

=78.06%. 

 

7.3.3 Influence of Equivalence Ratio on the combustion of UCO-HEFA 

The experimental ignition delay times for UCO/air mixture in Figure 7-4, was investigated 

at varying equivalence ratio at 0.5 < ф> 1.0, compressed gas pressure of  10 bar, molar 

composition of the oxidizer, represented by N2/(O2 +N2),  was fixed at 0.90. The ignition delay 

plot displayed in Figure 7-4, showed no NTC behaviour at 10 bar but illustrated an Arrhenius 
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dependence on temperature at the condition studied. The experiment showed the effect of 

increasing fuel concentration with a decrease in the ignition delay time that is the faster 

reactivity because of increased equivalence ratio. 

 

 

Figure 7-4: Effect of equivalence ratio on measured ignition delay time of UCO at 10 bar. 

 

7.3.4 Influence of Oxygen Mole Fraction on combustion of UCO-HEFA. 

The experimental ignition delay times for UCO-HEFA/air mixture in figure 7-5, was 

investigated by keeping equivalence ratio at ф = 0.5, compressed gas pressure of 10bar  and 

fuel loading condition constant at 0.6% while varying the molar composition of the 

oxidizer, N2/ (O2 +N2). The experiments were performed with oxygen molar concentration 

of 9.9 and 20.9 %. These are compared in Figure 7-5. This investigation agrees with the 

previous study [204] that decreasing oxygen mole percentage while keeping equivalence 

ratio and mole fraction constant lead to prolonging ignition delay time. 
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           Figure 7-5: influence of Oxygen mole fraction on combustion of UCO-HEFA. 

 

7.3.5 Comparison of UCO-HEFA with Banner solvent and Jet A-1. 

Comparison of the ignition delay of a solvent (Banner-Solvent), a synthetic fuel (UCO-

HEFA) and a conventional fuel (Jet A-1) at 10 and 6 bar  are presented in Figure 7-6 and 

Figure 7-7.  

Figure 7-6(a) shows the experimental condition of PC = 10 bar, ф= 0.5 molar oxidizer ratio 

N2/ (O2 +N2) =0.79. At a compressed gas temperature of 748 – 812 K shown in figure 7-6(a)   the 

there was no two stage ignition found in Banner solvent and Jet A-1, and with no NTC 

behaviour was observed. This  means they exhibited an Arrhenius reliance on the 

temperature at the present condition studied. The reactivity of Banner solvent was faster 

than Jet A-1 at a reduced compressed gas temperature. However, as the gas temperature 

increases the ignition delay of banner solvent was faster about twice  times that of Jet A-1. 

Still, in Figure 7-6(a), UCO-HEFA had a longer ignition delay than banner solvent at 777.6 K, 

but as the temperature gets lowered some signs of NTC behaviour was observed which made 

the combustion of UCO-HEFA unpredictable and eventually experience shorter ignition 

delay than banner solvent. The Arrhenius behaviour is not observed by the fuels, and the 

reaction becomes faster with a reduced ignition delay.The result shows that at low to 

intermediate temperature regime (748 – 812 K), chemical restructuring occurs in the UCO-

HEFA fuel. This cannot be fully admitted that it is in the NTC region until a more 

comprehensive test is conducted within the compressed gas temperature limits as earlier 

stated.  

In Figure 7-6(b), the ignition delay at the compressed gas temperature of 733 – 796 K was 

considered, the equivalence ratio of 0.75. As the equivalence ratio is increased, the three 

fuels were seen to exhibit Arrhenius behaviour dependant on temperature as it is increased 

led to a reduction in the ignition delay time. Banner solvent has the fastest reactivity and 
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Jet A-1 the least. The hierarchy of reactivity from Figure 7-6(b) has shown that Banner > 

UCO-HEFA > Jet A-1.  

 Figure 7-7(a) reveals that the experimental condition of PC = 6 bar, ф= 0.75 and 1.0, molar 

oxidizer ratio N2/ (O2 +N2) = 0.79 at compressed temperature of 708 K – 787 K. A single stage 

ignition was observed for Jet A-1 fuels and no NTC behaviour, increase in temperature lead 

to reduction in the ignition delay. UCO_HEFA and Banner-Solvent had a shorter ignition 

delay compare with Jet A-1. This same response was also observed in Figure 7-7(b). It is seen 

that the low-temperature chemistry affected the ignition delay of UCO-HEFA which made 

the ignition delay shorter than that of banner solvent and at a higher compressed gas 

temperature the ignition delay become longer than banner solvent. At low temperature,  

RO2 is favoured in the equilibrium[268, 269] as the compressed gas temperature proceed 

further the equilibrium shift towards the reactant and the competition of with R + O2 

HO2 alkene turns relevant then more  of HO2 Radicals are produced rather than OH  

through chain-branching pathway controls the reactivity which begins to display NTC 

behaviour.  

The combustion of fuels could be assessed base on the Derived Cetane Number shown in 

section 2.5.1 making reference to diesel compression; the diesel ignition properties are rated 

by primary reference fuel via the Cetane number test[270].  Fuels component with low 

Cetane number is resistant to ignition while a high Cetane number is more reactive fuels. 

The DCN of Jet A-1 is 43.74, UCO-HEFA-5638 and Banner-Solvent are 75.69 judging by the 

DCN values, the reactivity of the fuel is in agreement with the experiment. Banner-Solvent 

has the shortest ignition delay at the similar condition, which correlates to the one with 

the highest Cetane index. 

However, considering the composition of individual fuels as it affects the ignition delay. 

The structure of the current Jet A-1 has 40.79% cycloparaffins and 20.57% iso-paraffins in its 

component. At low temperatures, cyclo-components has considerable lower reactivity than 

the n-paraffin, this partly due to the isomerization pathways and olefin formation. Jet A-1 

having the least reactivity may be attributed to cycloparaffin and the aromatic content in 

its composition. High level of aromatics in fuel contributes to a loss in responsiveness 

under a low-temperature condition. This result from the build-up of a significant amount 

of stabilised benzylic radicals because of the favourable initial hydrogen abstraction 

pathway that scavenges free radicals, which slows down combustion chemistry[271]. The 

current UCO-HEFA contains mainly iso-paraffins about 71.34% and n-paraffin 19.47 % and 

some trace of aromatics. However, UCO-HEFA has shorter ignition delay than Jet A-1. 

Looking again at the composition of UCO-HEFA mainly n- and iso-paraffins. This has high 

reactivity associating with their potential for rapid, radical production through the low-

temperature chain branching mechanism due to a large number of secondary C–H  bonds 

providing relative RO2 stability and rapid RO2 ↔ QOOH  isomerization, compared to Jet A-

1. 
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Banner-Solvent is purely n-paraffinic without any trace of aromatics, so their reactivity is 

driven by n-paraffin. Figure 7-6(b) have it that Banner-Solvent has the fastest reactivity 

compare to Jet A-1 and UCO-HEFA. Further investigation of Banner solvent is needed to 

ascertain, which species of the n-paraffin family is responsible for its high reactivity. A 

linear fit shown in Figure 7-6 was fitted on the data using Origin software. 

 

(a) 

 

(b) 

Figure 7-6: Comparison of UCO ignition delay with Jet A-1 and Banner-solvent at 

compressed gas pressure of PC = 10 bar, = 0.5 and molar concentration =0.79. 
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(a) 

 

 

(b) 

Figure 7-7: Comparison of UCO ignition delay with Jet A-1 and Banner-solvent at PC = 6 bar 

(a) = 0.75, (b)  = 1.0 and molar concentration =0.79. 
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7.3.6 Ignition Delay Correlation 

At the low temperature range 697-778 k studied at ф = 0.5-1.0, compressed gas pressure of 

10bar and molar composition of the oxidizer, N2/ (O2 +N2) = 0.9 .The behaviours from the 

experimental data have been reduced to a single correlation that can conveniently express 

the ignition delay time regarding temperature, pressure and equivalence ratio. Thus, 

correlations that describe the total ignition delay time for UCO-HEFA is given as  

 𝝉𝒊𝒈𝒏𝒊𝒕𝒊𝒐𝒏 = 𝟎. 𝟗𝟗𝟓 ∗ 𝑷𝒄
𝟎.𝟎𝟎𝟔 𝟎.𝟏

𝒆𝒙𝒑 (𝟐𝟐, 𝟎𝟔𝟕 𝑻𝒄
⁄ )                                                  7-1 

 

 

                                        Figure 7-8: Global correlation for UCO-HEFA 

 

The correlation is scaled to PC = 10 bar and ф = 1.0 using the correlation procedure in section 

5.3.3. Equation 7-1 gives the global correlation for UCO-HEFA. 

 

7.4 Conclusion and Discussion 

An experimental measurement of UCO-HEFA/ air mixtures was carried out  in an RCM in 

the range of low to the intermediate temperature region. With an equivalence ratios of ф = 

0.5 – 1.0, dilution molar ratios of N2/(O2 +N2) =0.79–0.90, compressed gas pressures and 

temperature of PC =6 - 10 bar, and TC = 701–777 K. The compressed gas temperature was 

varied to have different end gas temperature, while maintaining a constant compression 

ratio of 8.8. Repeatability test with the UCO-HEFA was done to confirm the repeatability 

and reproducible of the present rig to build confident on the generated data. Also 

investigated are the effects of varying equivalence ratios, pressure, and temperature and 
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oxygen concentrations. The increase in temperature, pressure and equivalence ratio have 

shown a decrease in the ignition delay time at measured compressed gas pressure at 10 bar. 

Decreasing oxygen mole percentage, while keeping equivalence ratio and mole fraction 

constant lead to prolonging ignition delay time. At compressed gas pressure of 10 bar UCO-

HEFA, shows Arrhenius dependent on the temperature at the condition study with no 2-

stage ignition delay. Comparison of UCO-HEFA with Jet A-1 and Banner-Solvent revealed 

that Banner-Solvent has the fastest reactivity while Jet A was the list in the reactivity table. 

A derived global correlation was defined for UCO-HEFA. 
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Chapter 8. Conclusion and Proposed Future Work 

The fear of depletion of natural resources is alarming because of the rapid growth in 

population size and the high demand for energy has drastically increased more pressure on 

the exploitation of the fossil fuels. Global conventional oil supply is currently at political 

risk and shortages are inevitable unless a drastic change occurs in the supply of 

conventional hydrocarbon fuels. This shortfall cannot be replaced with other conventional 

sources. However, a drastic step is needed in securing and creating new alternatives fuels 

not to be vulnerable to unrest, fear and differences resulting from the world dependence on 

conventional fuels. 

 The emissions from these fuels are classified as greenhouse gases (GHG), which causes 

global climate change. Aviation industries contribute, a small amount of pollutant 

compared to other sector but estimated to account for 2-3% of CO2 emission[49]. Because of 

the rapid growth in the aviation sector in the nearest future, its emission will reflect a 

greater portion than land transport does[56]. 

One way of reducing emission and improving efficiency in the industrial aero-derived gas 

turbine is to change the combustion system to a more promising system like the lean 

premixed system. These technologies have brought forth a premixed design with longer 

residence times and additional concern such as combustion instabilities, flashback and 

autoignition. In developing an aircraft combustor of aircraft, it is  imperative knowing 

chemistry of autoignition delay time, which entails burning of fuels at different operating 

conditions. Damage to combustors and engines could be avoided if the autoignition delay 

data is handled, this gives a pre-knowledge of the ignition delay time taken by fuels before 

the onset of combustion. Autoignition delay time measured is driven by the pressure and 

temperature and the composition of the given fuel-air mixture.  There is presently a dearth 

of information on alternative fuels, and this has instrumented the design of a novel 

apparatus to test alternative fuel relevant to gas turbine plant and handle high boiling 

point long chain hydrocarbon fuels.  

The Shef-RCM includes hydraulic stopping mechanism, piston release mechanism; 

optimise crevice design and the reaction chamber designed for easy admittance of direct 

injection of fuels. In the design of the hydraulic unit, the hydraulic piston ring and the 

groove was optimise with three steps on the peripheral surface of the hydraulic ring. This 

was perfectly done which prevented rebounded of the reactor piston and maintained the 

piston in a steady position at the tail end of the stroke. An optimal piston crevice was 

designed from the CFD result, which showed that the present piston could contain the roll 

up vortex from the walls of cylinder. The novel feature of the rig is the design of a pin release 

mechanism. This mechanism helps in holding the reactor piston in position at its bottom 

dead center. This design is unique which distinguish it from other RCM in literature. The 
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basic principle of the mechanism is that  force of equal magnitude is applied to the pins 

that holds the reactor piston in position. The machine is vibration freed, allows for fast 

compression less than 35 ms and an obtainable compressed gas pressure of 22 bar. 

 The device is air  driven and hydraulically stopped. It is designed to mimics a single stroke 

compression process in an internal combustion engine. The physic behind the rig is that it 

compresses fuel/air mixture isentropically, the temperature, pressure and mixture 

composition and can be varied over a range of experimental conditions.  

Performance characterization of the Shef-RCM was carried out using non-reactive and 

reactive experiment result shows that the experimental data obtained is highly  repeatable. 

The compressed gas temperature at the end of the stroke has been an issue this  could not 

be measured directly reasons based on slow response of thermocouples. The most 

appropriate way is estimating this temperature through   numerical modelling; also, the 

heat loss in Shef-RCM was model using an effective volume approach, this has a perfectly 

matched model with experiment.  

Ignition delay times measurement for Jet A-1 was reported for low to intermediate 

temperatures regime (697 ≤ TC ≥ 811), compressed pressure, PC = 6 and 10 bar and equivalent 

ratio ratios, ф= 0.5, 0.75 and 1.0 in air. Jet A-1 exhibit  NTC behaviour at a higher pressure of 

10 bar at ф= 0.75.  Ranzi et al.[1] model with Dooley et al. [2] and Aachen[3] surrogate mixture 

was used for the kinetic modelling. At a compressed pressure of 6 bar, ф= 0.75, the model 

predicted shorter ignition delay time and displayed a two stage ignition delay time for Jet 

A-1 fuel, and the model was fairly in agreement with the experiment considering the overall 

ignition delay. A globally derived correlation for Jet A-1 and UCO-HEFA generated.   

The facility was used to measure the ignition behaviour of Banner-Solvent at low to 

intermediate temperature regime (680≤ TC ≥ 836) at compressed gas pressure, PC =  of 6 and 

10 bar, and equivalence ratios, ф= 0.5, 0.75 and 1.0 in the air. Banner-Solvent had high 

reactivity compare to Jet A-1 prominently exhibited the NTC behaviour mostly at a 

compressed pressure of 6 bar. 

Experimental measurement of the ignition delay behaviour of UCO-HEFA at low to 

intermediate temperature regime (680≤ TC ≥ 777) at compressed gas pressure, PC =  of 6 and 

10 bar, and equivalence ratios, ф= 0.5, 0.75 and 1.0 in the air. The influence of temperature, 

pressure, and equivalence ratio and oxygen concentration on the ignition delay were 

studied in this work. The overall reactivity of the three fuels showed that Banner-Solvent 

had higher reactivity than Jet A-1 and UCO-HEFA at 10 bar compressed gas temperature. At 

compressed gas pressure of 6 bar, UCO-HEFA exhibited the NTC behaviour. 
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8.1 Contribution to Knowledge 

The input to the understanding of this research work is categorised into two forms: 

(1) The design aspect: In literature, the method of holding the reactor piston via 

pressurised hydraulic oil in the hydraulic chamber unit has been the usual approach 

to date. A new concept is used in Shef-RCM design, which enhances the method by 

introducing the application of piston release mechanism (brake) pneumatically 

operated use to hold the reactor piston in position at its BDC. This concept is unique, 

and this distinguishes Shef-RCM design from other RCM’s designs. 

(2) Chemical Kinetics Aspect: 

There is presently a dearth of information on alternative fuels particularly for Jet A-

1, Banner-Solvent and UCO-HEFA. This present experimental data would be useful 

for improving the existing kinetic models and build archives of autoignition delay 

data for the validation of chemical kinetic models. 

(3) Precisely in gas turbine engines, it is attractive to run at lean conditions, which 

achieves reductions in NOx emissions. There is sparse information on the effect of 

fuel composition on autoignition delay time. 

 

8.2 Future Work 

The present design of the Shef-RCM has been successful. However, it still needs further 

development to improve on the performances of the current design. A couple of equipment 

installation could not be achieved, because of the time constraint and these would 

recommend for further consideration.  

(1) The concept adopted for the chamber design is the direct premixed charge 

preparation. These have numerous advantages as earlier stated in section 3.1.5 of 

this work. At present, the charging of the reaction chamber with the fuel-air mixture 

is manually done as this increase the uncertainty of fuel injected into the chamber. 

From the study carried out on residence time for the homogenous mixture. It shows 

that 1.5 hours is the established time for the homogenous mixture of fuel and air 

before firing the experimental rig. The installation of the injector  pump would have 

taken a shorter time of about 2 – 4 minute if installed as recommended by Casey in 

his design. Therefore, I would recommend that a high-pressure injector of about 500 

to 2000 bar be installed to enhance proper atomization of fuel and mixing thereby 

reducing residence time and attaining homogeneous mixture of the fuel and air 

mixture in a shorter time. 

(2) The Shef-RCM lacks a gas line supply to the reactor chamber. The installation of this 

gas line equipment is relevant as this helps in minimising uncertainty in the 

mixture composition preparation up to 10%. Also, this enhances proper metering 

the right volume of air-fuel mixture into the combustion chamber. 

(3) The combustion chamber needs to be redesigned to provide room for the 

transparent window at the end of the chamber for visualisation of combustible 
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product and flame analysis. If this provision could be made, then it would trigger 

the study of flame in addition to autoignition delay time. 
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Appendix 1 Cantera Code for determining the Piston Velocity for 

Cantera Simulation. 

This code is used to determine the velocity profile of the present rig, the velocity profile is 

used as an input data in Cantera and Senkin in prescribing the piston trajectory. 

#---------------------------------------------------------------# 

Import python libraries sys, numeric python tools and csv                

#---------------------------------------------------------------# 

 

from numpy import * 

import matplotlib.pyplot as plt 

import numpy as np 

import csv 

import os 

 

 

#---------------------------------------------------------------# 

 Reading in the data from the text file and converting them to numeric 

array 

#---------------------------------------------------------------# 

profile = np.loadtxt('volume_profile.txt') 

time = (np.array(profile[272])) 

vol = np.array(profile[:,1]) 

 

#---------------------------------------------------------------# 

Setting parameters and identification of index at the top dead center 

#---------------------------------------------------------------# 

 

D = 1.0     # Diameter of the chamber  

tdc = vol.argmin() 

print (tdc) 

print (time[tdc]) 

print (time[tdc]/(1e-5)) 

print (vol[tdc]) 

 

#---------------------------------------------------------------# 

Splitting of the volume time profile into two stages Pre-compression 

stage and post-compression stage, also getting the chamber volume as 

a function of time.  

#---------------------------------------------------------------# 

 

volBTDC = vol[:(tdc + 1)] 

volATDC = vol[(tdc + 1):] 

tB = time[:(tdc + 1)] 

tA = time[(tdc + 1):] 

 

#---------------------------------------------------------------# 

fitting polynomial to the time history of the calculated volume.        

#---------------------------------------------------------------# 

 

volBTDCfit = polyfit(tB, volBTDC, 5) 

polyBTDC = poly1d(volBTDCfit) 

volATDCfit = polyfit(tA, volATDC, 10) 

polyATDC = poly1d(volATDCfit) 

print (polyATDC) 

 

plt.figure(1)   

plt.plot(time,vol,'.', tB, polyBTDC(tB), tA, polyATDC(tA)) 

plt.xlabel('Time (s)',fontsize=11) 

plt.ylabel('volume (cm^3)',fontsize=11) 

#plt.xlim(-0.03, 100) 

#plt.ylim(0, 200) 

plt.grid(False) 

plt.savefig('Effective_volume.png', dpi=400, orientation='legal', 

papertype='letter') 
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#---------------------------------------------------------------# 

The polynomial fits are now used to calculate the time derivative      

of the volume profile, dV/dt,                                           

#---------------------------------------------------------------# 

 

VBTDC = polyBTDC(tB) 

VATDC = polyATDC(tA) 

dt = time[1] - time[0]  # Calculate time step 

#---------------------------------------------------------------# 

Calculate the time derivative of the volume profile                    

#---------------------------------------------------------------# 

 

dVBTDC = gradient(VBTDC)/dt 

dVATDC = gradient(VATDC)/dt 

dV = append(dVBTDC,dVATDC) 

 

#---------------------------------------------------------------# 

Calculate the piston velocity based on the volume profile               

#---------------------------------------------------------------# 

 

uBTDC = (4.0 * dVBTDC / (np.pi * D**2)) 

uATDC = (4.0 * dVATDC / (np.pi * D**2)) 

dV = append(uBTDC,uATDC) 

 

#---------------------------------------------------------------# 

Getting the fits for the velocity profile data                            

#---------------------------------------------------------------# 

 

uBTDCfit = polyfit(tB, uBTDC, 5) 

polyuBTDC = poly1d(uBTDCfit) 

 

uATDCfit = polyfit(tA, uATDC, 7) 

polyuATDC = poly1d(uATDCfit) 

#print (polyuBTDC) 

#print (polyuATDC) 

 

plt.figure(2)  

plt.plot(tB, uBTDC,'.', tB, polyuBTDC(tB),'.') 

plt.xlabel('Time(ms)',fontsize=11) 

plt.ylabel('velocity (m/s)',fontsize=11) 

#plt.xlim(-0.03, 0) 

#plt.ylim(-10, 2) 

plt.grid(True) 

plt.savefig('vel_profile.png', dpi=400, orientation='legal', 

papertype='letter') 

 

 

 

#---------------------------------------------------------------# 

write data to file                                                     

#---------------------------------------------------------------# 

savetxt('velcoeff_ATDC.dat',uATDCfit, delimiter="",  fmt="%12.16G") 

savetxt('velcoeff_BTDC.dat',uBTDCfit, delimiter="",  fmt="%12.16G") 

uATDCfit_rev = uATDCfit[::-1] 

uBTDCfit_rev = uBTDCfit[::-1] 

volATDCfit_rev = volATDCfit[::-1] 

savetxt('velcoeff_BTDC_rev.dat',uBTDCfit_rev, fmt="%12.16G") 

savetxt('velcoeff_ATDC_rev.dat',uATDCfit_rev, fmt="%12.16G") 
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Appendix 2 Cantera Code for Determining the Ignition Delay 

Simulation. 

 The Simulation is done by prescribing the Velocity Profile base on the Effective Volume 

Profile. The result of the output file is save as .csv file. 

import cantera as ct 

import matplotlib.pyplot as plt 

from numpy import * 

import numpy as np 

import sys 

import os 

 

# Read in polynomial coefficients for the expansion trace 

a_input = np.loadtxt('expfit_rev.dat') 

a = a_input.tolist() 

 

t = 0.0 

n = 0.0 

n_steps = 2970 

dt = 1e-05 

stroke = 0.1422 

cl = 0.0075               

dia = 0.04 

vadd = 0.0000201 

taccel = 0.020470  

tdecel = 0.0058 

 

tcomp = 0.0297 

tconst = tcomp - taccel - tdecel 

t2 = taccel + tconst 

volstart = (3.14/4.0 * dia**2)*(stroke+cl) + vadd 

vmax = stroke/(((taccel+tdecel)/2.0)+ tconst) 

 

# velocity for three stages of compression 

v_A = 3.14/4.0 *(dia**2)* (vmax * t/taccel) 

v_C = 3.14/4.0 *((dia**2) * vmax) 

v_D = 3.14/4.0 *(dia**2)*(vmax - vmax/tdecel * (t-t2)) 
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outfile = open('Non_react_data.csv', 'w') 

csvfile = csv.writer(outfile) 

csvfile.writerow(['time(s)','temperature (K)','pressure(Bar)','volume (m3)','velocity (m/s)']) 

print('%10s %10s %10s  %10s %14s' % ('t [s]','T [K]','P [bar]','vol [m3]', 'vel [m/s]')) 

 

tout = [] 

vout = [] 

velout = [] 

Tout = [] 

Pout = [] 

 

#Take in the chemical kinetics mechanism 

gas = ct.Solution('chem.cti') 

air = ct.Solution('air.xml') 

gas.TPX =  393.0, 0.7744*ct.one_atm, ' C10H22:0.019922915,N2:0.980077085' 

r = ct.IdealGasReactor(gas, energy='on', volume = volstart)  

env = ct.Reservoir(contents=gas, name='environment') 

wall = ct.Wall(r, env,  velocity=v_A) 

sim = ct.ReactorNet([r]) 

 

for n in range(n_steps):  

    if t <= taccel: 

        wall.set_velocity(v_A) 

        t += dt 

        sim.advance(t) 

        disp = vmax * (t**2/2.0/taccel) 

        v_A = -3.14/4.0 *(dia**2)* (vmax * t/taccel) 

        volume = volstart - (3.14/4.0 *(dia**2)*(disp)) 

        tout.append(t) 

        Tout.append(r.T) 

        Pout.append(1.e-5*r.thermo.P) 

        vout.append(r.volume) 

        velout.append(1000*v_A) 

        csvfile = csv.writer(outfile) 

        csvfile.writerow([t, r.T, 1.e-5*r.thermo.P, r.volume, 1000*v_A]) 

        print('%10.3f %10.3f %10.3f %10.3f %10.3f' % (t, r.T, 1.e-5*r.thermo.P, r.volume, v_A)) 
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    elif t > taccel and t <= t2: 

        wall.set_velocity(v_C) 

        t += dt 

        sim.advance(t) 

        disp = vmax * taccel/2.0 + (vmax *(t-taccel)) 

        v_C = -3.14/4.0 *((dia**2) * vmax) 

        volume = volstart - (3.14/4.0 *(dia**2)*(disp)) 

        tout.append(t) 

        Tout.append(r.T) 

        Pout.append(1.e-5*r.thermo.P) 

        vout.append(r.volume) 

        velout.append(1000*v_C) 

        csvfile = csv.writer(outfile) 

        csvfile.writerow([t, r.T, 1.e-5*r.thermo.P, r.volume, 1000*v_C]) 

        print('%10.3e %10.3f %10.3f %10.3f %10.3f' % (t, r.T, 1.e-5*r.thermo.P, r.volume, v_C)) 

     

    elif t > t2 and t <= tcomp: 

        wall.set_velocity(v_D) 

        t += dt 

        sim.advance(t) 

        disp = (vmax * taccel/2.0) + (vmax * tconst) 

        disp = (disp + vmax *(t-t2)) - (vmax *(t-t2)**2/tdecel/2.0) 

        v_D = 3.14/4.0 *(dia**2)*(vmax - vmax/tdecel * (t-t2)) 

        volume = volstart - (3.14/4.0 *(dia**2)*(disp)) 

        tout.append(t) 

        Tout.append(r.T) 

        Pout.append(1.e-5*r.thermo.P) 

        vout.append(r.volume) 

        velout.append(1000*v_D) 

        csvfile = csv.writer(outfile) 

        csvfile.writerow([t, r.T, 1.e-5*r.thermo.P, r.volume, 1000*v_D]) 

       print('%10.3e %10.3f %10.3f %10.3f %10.3f' % (t, r.T, 1.e-5*r.thermo.P, r.volume, v_D)) 

        vtdc = volume 

         

    elif  t > tcomp: 
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        sim.set_initial_time(t) 

        ta = (t - tcomp) 

        poly = a[0] + a[1]*ta + a[2]*ta**2 + a[3]*ta**3 + a[4]*ta**4 + a[5]*ta**5 + a[6]*ta**6 + 
a[7]*ta**7 + a[8]*ta**8 + a[9]*ta**9 + a[10]*ta**10  

        volume =  P.polymul(vtdc, poly)     

        dv = a[1] + 2*a[2]*ta + 3*a[3]*ta**2 + 4*a[4]*ta**3 +  5*a[5]*ta**4 +  6*a[6]*ta**5 + 
7*a[7]*ta**6 + 8*a[8]*ta**7 +  9*a[9]*ta**8 +  10*a[10]*ta**9     

        v_E = P.polymul(vtdc, dv) 

        wall.set_velocity(v_E) 

        t += dt 

        sim.advance(t)  

        tout.append(t) 

        Tout.append(r.T) 

        Pout.append(1.e-5*r.thermo.P) 

        vout.append(r.volume) 

        velout.append(v_E) 

        csvfile = csv.writer(outfile) 

        csvfile.writerow([t, r.T, 1.e-5*r.thermo.P, r.volume, v_E]) 

        print('%10.3f %10.3f %10.3f %10.3f %10.3f' %(t, r.T, 1.e-5*r.thermo.P, r.volume, v_E)) 
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Appendix 3: Formula for Determining the Volume of Fuel. 

The equivalent ratio is the ratio of the actual fuel/air ratio to the stoichiometric ratio. This 

is given as 

   = 
(𝐹 𝐴⁄ )

𝑎𝑐𝑡𝑢𝑎𝑙

(𝐹 𝐴⁄ )
𝑠𝑡𝑜𝑖𝑐ℎ

               a-8-1 

Or alternatively as 

   = 
(𝐴 𝐹⁄ )

𝑠𝑡𝑖𝑜𝑐ℎ

(𝐴 𝐹⁄ )
𝑎𝑐𝑡𝑢𝑎𝑙

          a-8-2 

Fuels are usually measured based on the conditions of lean  < 1, stoichiometric  = 1 and 

rich mixtures  > 1. 

With respect to the mass fraction of fuel, the fuel/air ratio stoichiometric is given as  

                                    (𝐹 𝐴⁄ )
𝑠𝑡𝑖𝑜𝑐ℎ

= (
𝑚𝑓

𝑚𝑎
⁄ )

𝑠𝑡𝑖𝑜𝑐ℎ
       a-8-3 

                                      (𝐹 𝐴⁄ )
𝑎𝑐𝑡𝑢𝑎𝑙

= (
𝑚𝑓

𝑚𝑎
⁄ )

𝑎𝑐𝑡𝑢𝑎𝑙
    a-8-4 

Where𝑚𝑓, 𝑚𝑎 is the mass fraction of fuel and air, in terms of air/fuel ratio 

                       (𝐴 𝐹⁄ )
𝑠𝑡𝑖𝑜𝑐ℎ

= (
𝑚𝑎

𝑚𝑓⁄ )
𝑠𝑡𝑖𝑜𝑐ℎ

    a-8-5 

    

                                       (𝐴 𝐹⁄ )
𝑎𝑐𝑡𝑢𝑎𝑙

= (
𝑚𝑎

𝑚𝑓
⁄ )

𝑎𝑐𝑡𝑢𝑎𝑙
    a-8-6 

If the fuel/air mixture behaves like an ideal gas at constant temperature  

   𝑃𝑉 = 𝑚𝑅𝑇        a-8-7 

Where P is the pressure is the volume, m is the mass, R is the gas constant and T is the 

temperature. Then the mass of fuel is  

   𝑚𝑓 =  
𝑃𝑉𝑓

𝑇𝑅𝑓
        a-8-8 

   

The mas of air  
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   𝑚𝑎 =  
𝑃𝑉𝑎

𝑇𝑅𝑎
        a-8-9 

The total volume of the chamber 𝑉𝑇, is the summation of  volume of fuel  𝑉𝑓 ,and the 

volume of air  𝑉𝑎 . 

  𝑉𝑇 = 𝑉𝑓 + 𝑉𝑎                       a--8-10 

Substituting equation a-8 and a-9 into equation a-6 

      (𝐴 𝐹⁄ )
𝑎𝑐𝑡𝑢𝑎𝑙

 =  (
𝑅𝑓𝑉𝑎

𝑉𝑓𝑅𝑎
)                      a-8-11 

Substituting equation a-10 into a-11, volume of fuel is then 

   𝑉𝑓 = {
𝑉𝑇 𝑅𝑓

    𝑅𝑓 + 𝑅𝑎(
𝐴
𝐹⁄ )
𝑎𝑐𝑡𝑢𝑎𝑙

}                      a-8-12 

From equation a-1 

   (𝐹 𝐴⁄ )
𝑎𝑐𝑡𝑢𝑎𝑙

= 
(𝐹 𝐴⁄ )

𝑠𝑡𝑖𝑜𝑐ℎ              a-8-13 

Substituting equation a-13 into equation a-12 and specific gas 𝑅 =  
𝑅𝑢

𝑀̅
, where  𝑅𝑢 is the 

universal gas constant(8.314 KJ/Kmol.K and 𝑀̅ is the molar mass of the gas. 

  𝑉𝑓 =  

{
 
 

 
 

𝑉𝑇

((
𝑀̅̅̅𝑓  (

𝐴
𝐹⁄ )
𝑠𝑡𝑖𝑜𝑐ℎ

∅ 𝑀̅̅̅𝑎
)+1)

}
 
 

 
 

     a-8-14 

The equivalence ratio is then computed from equation a-14 as  

  ∅ = {
𝑀̅𝑓 (

𝐴
𝐹⁄ )

𝑠𝑡𝑖𝑜𝑐ℎ

 𝑀̅𝑎(
𝑉𝑇
𝑉𝑓
 +1)

}      a-8-15 
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Appendix 4: Python/Cantera Code for Calculating TC. 

import cantera as ct 

import matplotlib.pyplot as plt 

import numpy as np 

import csv 

import sys 

import os 

 

profile = np.loadtxt('130degs.txt') 

gas = ct.Solution('ranzi.cti') 

gas.TPX = 403.0, 0.4682, 'IC8H18:0.002109404, NC10H22:0.001647972, NC12H26:0.002834512, 

O2:0.208615703,N2:0.784792408' 

S0 = gas.entropy_mass 

rho0 = gas.density 

 

 

P0 = 0.4682  # inital pressure (bar) 

T0 = 403.0        # initial temperature (K) 

V0 =  0.0001903   #initial volume (m3) 

R = 8.3145      # in  J/kmol, 

 

outfile = open('volume_trace.csv', 'w') 

csvfile = csv.writer(outfile) 

csvfile.writerow(['time(s)','temperature (K)','pressure(Bar)','volume (m3)']) 

print('%10s %10s %10s %14s' % ('t [s]','T [K]','P [bar]','vol [m3]')) 
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tm = [] 

tout = [] 

pout = [] 

vout = [] 

 

 

for line in profile: 

    P = float(line[1]) 

    time = float(line[0]) 

    gas.SP = S0, P 

    T_new = gas.T 

    V_new = V0 * rho0 / gas.density 

    #print  / save (P,T_new,V_new) 

    tm.append(time) 

    tout.append(T_new) 

    pout.append(P) 

    vout.append(V_new) 

    csvfile = csv.writer(outfile) 

    csvfile.writerow([time, T_new, P, V_new]) 

    print('%10.3e %10.3f %10.3f %10.3f' % (time, P, T_new, V_new)) 

 

outfile.close() 

print('Output written to file volume_trace.csv') 

print('Directory: '+os.getcwd()) 

fig = plt.figure() 

plt.subplot(2,2,1) 

plt.plot(tm, tout) 
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plt.xlabel('Time (s)') 

plt.ylabel('Temperature (K)') 

plt.grid(False) 

#plt.savefig('temperature.png', dpi=400, orientation='legal', papertype='letter') 

 

plt.subplot(2,2,2) 

plt.plot(tm, vout) 

plt.xlabel('Time (s)') 

plt.ylabel('Volume (m^3)') 

plt.grid(False) 

 

plt.subplot(2,2,3) 

plt.plot(tm, pout) 

plt.xlabel('Time (s)') 

plt.ylabel('Pressure (bar)') 

plt.grid(False) 

plt.tight_layout() 

fig.savefig('Converted_volume_figure.png') 

plt.show() 
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Appendix 5: Hydraulic Piston Ring Design 
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Appendix 6: Hydraulic Piston Groove 
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Appendix 7: Guard Assembly for Shaft Section 
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Appendix 8: Exploded View of Combustion chamber  
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Appendix 9: LabVIEW Code. 

 


