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i	

To	be	able	to	meet	the	growing	demand	for	food	and	ensure	food	security,	arable	

farming	 systems	 need	 to	 be	 made	 more	 sustainable.	 However,	 making	 arable	

farming	systems	more	sustainable	could	sometimes	mean	reductions	in	the	use	of	

productivity	 improving	 inputs	 such	 as	 fertiliser	 and	pesticide	 in	 order	 to	 reduce	

their	 impacts	 on	 the	 environment.	 This	 presents	 conflicting	 environmental	 and	

economic	 goals,	 which	 increase	 management	 complexities	 in	 sustainable	 arable	

farming	 systems.	 An	 arable	 farm	 level	model,	 consisting	 of	 four	modules,	 which	

combines	 mixed-integer,	 risk	 and	 goal-programming	 approaches,	 has	 been	

developed	 to	 capture	 many	 of	 the	 complexities	 in	 arable	 farming	 and	 optimise	

farm	profit,	risk	and	nitrate	leaching.	Statistical	validation	of	the	model	using	data	

from	the	Farm	Business	Survey	(FBS)	showed	a	good	association	between	model-

predicted	results	and	observed	farm	data.	Results	of	the	application	of	the	mixed-

integer	 weighted	 goal-programming	 module	 to	 estimate	 aggregate	 cost	 of	 non-

chemical	(spring	cropping)	control	of	black-grass	showed	that	in	the	short	run	the	

strategy	 could	 cost	 the	UK	arable	 farming	 sector,	 however	 there	 could	be	 a	 long	

term	 benefit	 of	 reductions	 in	 black-grass	 infestation.	 On	 per	 hectare	 basis,	 cost	

estimates	provide	 indication	of	possible	 farm	payment	 to	 incentivise	adoption	of	

the	 strategy.	 On	 individual	 farm	 basis,	 spring	 cropping	 could	 be	 beneficial	

dependent	on	the	soil	type,	rainfall	and	hectares	of	land	available	to	the	farm.	The	

application	 of	 the	 MOTAD	 module	 and	 randomly	 generated	 risk-aversion	

parameter	method	showed	that	arable	farmers	in	England	are	risk-averse	and	that	

farmers	in	different	regions	would	react	to	change	in	policy	differently	depending	

on	 their	 levels	 of	 risk-aversion.	 The	 results	 also	 showed	 the	 need	 for	 regional	

policies	and	relevance	of	the	model	in	policy	analysis.	The	model,	which	has	been	

developed	 as	 part	 of	 this	 research	 adds	 to	 the	 few	 arable	 farm	 level	 models	

identified	 in	 the	 UK	 and	 bridges	model	 capability	 gaps	 identified	 in	 arable	 farm	

modelling.	Given	available	data	for	calibration	and	validation,	results	generated	by	

the	model	can	be	applied	to	better	 inform	arable	 farming	and	policy	decisions	to	

enhance	 the	 development	 of	 robust	 and	 sustainable	 arable	 farming	 systems	 to	

ensure	food	security.		 	
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the	supervisory	team	and/or	collaborators.	As	a	result,	the	personal	pronoun	“we”	

is	used	in	this	thesis	(particularly	Chapters	2,	4,	and	5).		
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editorial	 advice	 from	 the	 supervisory	 team:	 Professor	 Robert	 Freckleton	 and	

Professor	 David	 Oglethorpe.	 Also,	 editorial	 advice	was	 given	 by	 Dr	 Dylan	 Childs	

who	assessed	it	when	the	chapter	was	submitted	as	a	literature	review	as	part	of	
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Chapter	2	is	a	version	of	a	conference	paper	submitted	to	89th	Conference	of	the	

Agricultural	 Economic	 Society.	 The	 idea	 including	 the	 model	 calibration,	 data	

collection	 and	 analysis	 was	 developed	 by	 the	 candidate	 with	 suggestions	 from	

Professor	Robert	Freckleton	and	Professor	David	Oglethorpe.	Also	the	chapter	was	

written	by	 the	candidate	with	general	editorial	advice	given	by	Professor	Robert	

Freckleton,	Professor	David	Oglethorpe	and	Dr	Helen	Hicks.	
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candidate	 with	 advice	 and	 suggestions	 from	 my	 supervisors,	 Professor	 Robert	

Freckleton	and	Professor	David	Oglethorpe.	Also,	in	terms	of	model	building	some	

suggestions	and	advice	were	given	by	Mr	Eric	Audsley	and	Dr	Ira	Cooke.	The	data	

collection	for	building	and	validating	the	model,	writing	of	model	codes	were	done	

entirely	 by	 the	 candidate.	 The	 chapter	 on	 model	 description	 and	 validation	

(Chapter	3)	was	written	by	the	candidate	with	advice	and	suggestion	on	review	of	

statistical	measures	of	association	and	general	editorial	advice	given	by	Professor	

Robert	Freckleton	and	Professor	David	Oglethorpe.	Editorial	advice	was	also	given	

by	Dr	Alexa	Varah,	who	offered	to	proofread	the	chapter	draft.	

Chapter	4	is	a	version	of	a	manuscript	by	Kwadjo	Ahodo,	David	Oglethorpe,	Helen	

Hicks	 and	Robert	 Freckleton,	 submitted	 to	 the	Agricultural	 Systems	 journal.	 The	

idea	 was	 suggested	 by	 Professor	 Robert	 Freckleton	 and	 developed	 by	 the	

candidate.	 The	 modelling	 and	 analysis	 were	 also	 done	 by	 the	 candidate	 with	
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suggestion	 on	 spring	 crop	 rotation	 constraint	 modelling	 by	 Professor	 David	

Oglethorpe.	The	data	on	black-grass	control	costs	and	yield	penalties	due	to	black-

grass	 infestation	were	supplied	by	Dr	Helen	Hicks	 from	her	work	on	Black-grass	

Resistance	Initiative	project.	The	chapter	was	written	mainly	by	the	candidate	with	

editorial	advice	given	by	Professor	Robert	Freckleton,	Professor	David	Oglethorpe	

and	Dr	Helen	Hicks.		

Chapter	5	is	a	version	manuscript	by	Kwadjo	Ahodo,	David	Oglethorpe	and	Robert	

Freckleton,	submitted	to	the	American	Journal	of	Agricultural	Economics.	The	idea	

was	 mainly	 developed	 by	 the	 candidate,	 with	 advice	 from	 Professor	 David	

Oglethorpe	 to	 focus	 on	 methodology	 and	 policy,	 and	 support	 from	 Professor	

Robert	 Freckleton.	 Data	 collection	 from	 the	 Farm	 Business	 Survey,	 modelling,	

model	 runs	 and	 analysis	 of	 results	 were	 done	 entirely	 by	 the	 candidate.	 The	

chapter	 was	 written	 mainly	 by	 the	 candidate	 with	 support,	 suggestions	 and	

editorial	 advice	 by	 Professor	David	Oglethorpe	 on	 the	 drafting	 of	 the	 section	 on	

utility	 theory	 and	 model	 application	 to	 policy	 analysis,	 and	 general	

comments/suggestions	and	editorial	advice	by	Professor	Robert	Freckleton.	

The	 general	 discussion	 (Chapter	 6)	 was	 written	 mainly	 by	 the	 candidate	 with	

editorial	advice	by	Professor	Robert	Freckleton	and	Professor	David	Oglethorpe.	
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This	 section	 presents	 a	 review	 of	 literature	 on	 arable	 farming	 systems	 modelling	

beginning	with	the	concept	of	sustainable	agriculture	as	the	foundation	for	the	need	

for	innovative	and	multifunctional	agricultural	systems.	It	continues	with	a	review	on	

sustainable	 farm	 management	 practices	 in	 soil/nutrient,	 pest/weed,	 water,	

machinery/labour	management	and	crop	rotation	as	well	as	the	policies	such	as	the	

Common	 Agricultural	 Policy	 (CAP),	 which	 influence	 farming	 decision.	 Some	 of	 the	

challenges,	 opportunities,	 objectives,	 constraints	 and	 complexities	 in	 sustainable	

arable	 farming	as	well	as	 the	main	research	aim	and	objectives	are	presented.	The	

section	also	presents	a	review	of	mathematical	programming/modelling	approaches	

beginning	 with	 the	 choice	 of	 mathematical	 programming,	 specifically	 linear	

programming	based	approaches	as	a	means	of	modelling	and	testing	out	innovative	

farming	 systems.	 This	 is	 followed	 by	 a	 review	 of	 existing	 farm	 models	 to	 identify	

model	capability	gaps	and	continues	with	the	research	framework,	research	aim	and	

thesis	chapter	specific	research	questions,	 identified	research	data	needs	and	finally	

the	key	messages.	

 

The	United	Nations	Department	of	Economic	and	Social	Affairs	 (UN-DESA,	2013)	

projected	the	world	population	to	increase	by	34%	by	2050,	meaning	that	demand	

for	 food	will	 continue	 to	 increase.	 However,	 as	 agricultural	 production	 becomes	

intensive	due	to	high	demand	for	food,	agricultural	inputs	also	increase	resulting	in	

externalities	 to	 the	 economy,	 environment	 as	 well	 as	 society.	 Externalities	 from	

agriculture	 such	 as	 nitrate	 leaching,	 pollution	 of	 water	 sources,	 emission	 of	

greenhouse	gases	(GHG),	depletion	of	soil	fertility	and	loss	of	biodiversity	(Tait	and	

Morris,	2000;	Tilman	et	al.,	2002;	Rodríguez	and	Wiegand,	2009;	Vasileiadis	et	al.,	

2011;	Skevas	et	al.,	2013;	Skevas	and	Lansink,	2014)	have	caused	society	to	raise	

concerns	over	how	 intensive	agriculture	affects	 the	natural	 environment,	 society	

and	the	economy,	and	the	need	for	more	sustainable	agricultural	systems	(Tait	and	

Morris,	 2000	 and	 Tilman	 et	 al.,	 2002).	 The	 emergence	 of	 the	 sustainable	

development	 concept	 (WCED,	 1987)	 has	 also	 promoted	 sustainable	 agriculture,	

which	 is	 being	 adopted	 by	 governments	 as	 part	 of	 agricultural	 policies	 or	

strategies	 (Gafsi	 et	 al.,	 2006;	 Defra,	 2011).	 This	 is	 because	 externalities	 from	
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agriculture	have	the	potential	to	reduce	agricultural	productivity,	food	security	as	

well	as	compromise	the	benefits	that	will	be	derived	from	the	environment	in	the	

future	(Perman	et	al.,	2011).		

The	 American	 Society	 of	 Agronomy	 (ASA,	 1989)	 defined	 sustainable	

agriculture	as	 “one,	 that	over	 the	 long	 term,	enhances	environmental	quality	and	

the	resources	based	on	which	agriculture	depends,	provides	for	basic	human	food	

and	fibre	needs,	is	economically	viable,	and	enhances	the	quality	of	life	for	farmers	

and	 society	 as	 a	 whole.”	 According	 to	 Hansen	 and	 Jones	 (1996)	 sustainable	

agriculture	is	“the	ability	of	farming	systems	to	continue	into	the	future”	whereas	

Tilman	et	al.	 (2002)	defined	it	as	“practices	that	meet	current	and	future	societal	

needs	for	food	and	fibre,	for	ecosystem	services,	and	for	healthy	lives,	and	that	do	

so	 by	 maximising	 the	 net	 benefit	 to	 society	 when	 all	 costs	 and	 benefits	 of	 the	

practices	 are	 considered.”	 From	 all	 the	 above	 definitions,	 it	 can	 be	 said	 that	

sustainable	agriculture	seeks	to	promote	environmental	(ecological)	well-being	of	

society	or	holistic	approach	to	food	production	with	economic,	environmental	and	

societal	goals.	Sustainable	agriculture	is	thus	multifunctional	(Rossing	et	al.,	2007).	

 Sustainable	farm	management	practices	

The	 shift	 from	 conventional	 to	 a	 more	 sustainable	 agriculture	 involves	 the	

adoption	 of	 sustainable	 management/agronomic	 practices.	 Sustainable	 farming	

practices	promote	efficiency	in	input	utilisation—efficiency	in	the	use	of	land/soil,	

fertiliser,	 water,	 pesticide,	 labour	 and	 machinery	 (ten	 Berge	 et	 al.,	 2000).	 Also,	

there	must	be	efficiency	in	farm	husbandry	practices	such	as	crop	rotation	and	soil	

tillage.	 There	 are	 measures	 or	 strategies,	 which	 can	 be	 adopted	 to	 ensure	

sustainability	 of	 arable	 farms	 (Tait	 and	 Morris,	 2000).	 This	 section	 therefore,	

focuses	 on	 practices,	 which	 enhance	 sustainable	 input	 use—efficient	 use	 of	

fertilisers,	pesticides,	water,	labour	and	machinery.	

1.1.1.1 Sustainable	land/soil	and	nutrient	management	and	fertiliser	use	

Land	or	soil	for	agriculture	is	very	important	in	arable	crop	production	because	the	

type	of	soil	on	a	particular	land,	and	the	location	of	the	land	can	influence	the	level	

or	the	scheduling	of	farm	operations,	input	use	and	yield	obtained	from	an	arable	

system.	 How	 the	 land	 is	 used	 can	 impact	 on	 the	 quality	 of	 the	 landscape	 and	
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biodiversity	 or	 its	 ecosystem	 functions	 (Doran,	 2002;	 Rounsevell	 et	 al.,	 2003;	

Audsley	et	al.,	2006).	 	Glendinning	(2009)	 found	that	 land	use	 is	one	of	 the	most	

important	factors	that	determine	system-wide	sustainability.	Soil	health	or	quality	

changes	over	time	as	a	result	of	natural	events	or	human	impact	however,	it	can	be	

enhanced	 by	 management	 and	 land	 use	 practices,	 which	 focus	 not	 only	 on	 the	

productivity	 function	 of	 soil	 but	 on	 multiple	 functions	 of	 soil	 (Doran	 and	 Zeiss,	

2000;	Doran,	2002).		

Nitrogen	is	the	most	dynamic	nutrient	due	to	its	being	water	soluble,	mobile	

and	easily	leached	in	the	soil	and	as	a	result	has	to	be	applied	annually	to	ensure	

enhanced	and	sustainable	yields	(de	Wit,	1992).	Nitrogen	use	efficiency	(NUE)1	is	

significant	 in	 cereal	 systems,	 which	 provide	 over	 60%	 of	 human	 dietary	 needs.	

Thus,	 there	 should	 be	 efficient	 nutrient	 management	 to	 reduce	 nutrient	 losses	

through	leaching,	erosion,	denitrification,	ammonia	and	nitrous	oxide	volatilisation	

(King,	 1990;	 Cassman	 et	 al.,	 2002).	 King	 (1990)	 recommended	 that	 maximising	

nitrogen	(N)	input	through	biological	N	fixation,	utilization	of	the	nutrients	present	

in	 the	 soil	 and	 the	 ability	 to	 recycle	 nutrients	 from	off-farm	 sources	 could	make	

agricultural	systems	more	sustainable.	Growing	crops	that	use	the	applied	nutrient	

efficiently	 can	 reduce	 nitrate	 leaching,	 or	 cover	 crops	 can	 be	 grown	 to	 reduce	

nutrient	loss	through	erosion,	leaching	and	volatilisation	(King,	1990;	Tilman	et	al.,	

2002).	 Crop	 rotations	 as	 part	 of	 the	 integrated	management	 practices	 has	 been	

found	 to	 enhance	 soil	 fertility	 and	 influence	 soil	 aggregation,	 bulk	 density,	

microbial	biomass	and	water	infiltration	and	extraction	(Francis	and	Clegg,	1990;	

Dogliotti	et	al.,	2003).	Growing	clover	crop	as	part	of	 the	rotation	can	reduce	the	

input	of	 fertiliser	as	well	 as	 farm	cost	 in	arable	 farming	systems	 (Williams	et	al.,	

2010)	(see	Section	1.1.1.5	for	more	benefits	of	crop	rotation).			

1.1.1.2 Sustainable	pest	management	and	pesticide	use	

Pests	such	as	weeds	compete	with	crops	for	soil	nutrients,	water	and	sunlight;	and	

other	 pests	 and	 diseases	 also	 destroy	 crops,	 hence	 reduce	 the	 yield	 or	 yield	

potential	of	arable	crops.	It	is	thus	imperative	to	prevent	or	control	pests	(weeds,	

																																																								
1	NUE	is	the	ratio	of	fertiliser	N	removed	from	the	field	by	the	crop	and	the	amount	of	fertiliser	N	

applied.	
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insects,	 fungi,	rodents)	 in	arable	systems.	The	normal	practice	over	the	years	has	

been	the	use	of	chemicals	(pesticides	and	herbicides)	to	control	pests,	resulting	in	

pollution	of	water	 sources	or	 the	environment	 (Wijnands,	1997;	Carvalho,	2006;	

EC,	 2007).	 The	 European	 Commission’s	 (EC,	 2008)	 proposed	 strategy	 to	 ensure	

safer	 use	 of	 pesticides	 became	mandatory	 in	 2014	 and	 it	 requires	 each	member	

state	 creating	 the	 conditions	 necessary	 for	 implementing	 Integrated	 Pest	

Management	(IPM)	system.		

	The	IPM	system	prescribes	minimum,	or	sometimes	no	use	of	chemicals	or	

prevents	 the	 use	 of	 chemicals	 with	 certain	 active	 ingredients	 or	 substances	

(Wijnands,	 1997;	 Hillocks,	 2012).	 Hillocks	 (2012)	 provided	 some	 possible	 IPM	

alternatives	 to	 pesticides.	 Bürger	 et	 al.	 (2012)	 found	 that	 winter	 wheat	 fields	

managed	 by	 IPM	 strategies	 such	 as	 late	 seeding	 and	 resistant	 cultivars	 were	

treated	with	 lower	 pesticide	 intensity.	 Integrated	Weed	Management	 (IWM)	 has	

also	been	created	as	part	of	IPM	to	promote	sustainable	ways	of	managing	weeds	

(Chikowo	 et	 al.,	 2009;	 Pardo	 et	 al.,	 2010).	 One	 of	 the	 sustainable	 means	 of	

managing	weeds	and	pests	with	less	or	without	chemicals	is	through	crop	rotation	

to	break	the	reproductive	cycle	of	disease	pathogens,	 insects	and	weeds	 (Francis	

and	Clegg,	1990;	Salassi	et	al.,	2013).	The	use	of	crop	rotation	with	spring	crops	is	

also	being	encouraged	as	non-chemical	means	of	controlling	weeds	such	as	black-

grass	which	has	developed	and	continue	to	develop	resistance	to	many	herbicidal	

active	 ingredients	 (Moss	 and	 Lutman,	 2013).	 	 Although,	 the	 adoption	 of	 such	

strategy	 could	 reduce	 arable	 farm	 profit	 in	 the	 short	 term,	 it	 has	 a	 long	 term	

benefit	of	reducing	weed	infestation	and	reducing	chemical	cost	(see	Chapter	4).					

1.1.1.3 Sustainable	water	use	and	irrigation	

Water	is	a	very	important	resource	in	arable	crop	production	and	in	areas	of	low	

rainfalls	 or	 soils	 with	 poor	 water	 retention	 capacity	 irrigation	 is	 used	 to	

supplement	 rainfall.	 One	 strategy	 of	 sustainable	 water	 use	 in	 arable	 farming	

systems	is	by	achieving	irrigation	efficiency	(see	Figure	1-1	for	pathway	to	achieve	

irrigation	efficiency)	through	efficient	irrigation	scheduling.	Irrigation	efficiency	is	

about	putting	the	right	amount	of	water	onto	crops	in	the	right	place	and	the	right	

time	 with	 minimal	 wastage	 (Knox	 and	 Kay,	 2008).	 However,	 according	 to	

Anadranistakis	et	al.	(2000)	factors	such	as	atmospheric	demand	for	water	vapour,	
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plant	 traits	 and	 soil	 characteristics	 should	 be	 considered	 for	 proper	 irrigation	

scheduling	 to	 achieve	 efficiency.	 About	 80%	 of	 UK	 farmers	 use	 judgements	 not	

based	 on	 measurements	 in	 deciding	 when	 to	 irrigate,	 but	 such	 judgements	 are	

prone	 to	 consideration	 errors	 (Defra,	 2011;	 McBurney,	 2011).	 For	 crops	 like	

potatoes,	 poorly	 timed	 irrigation	 can	 result	 in	 potato	 crops	 developing	 scabs;	

whereas	 over	 irrigation	 can	 cause	 wastage	 of	 water,	 labour	 and	 energy	

(Mackerron,	 1993;	 Hess	 et	 al.,	 2009).	 In	 England,	 demonstrating	 irrigation	

efficiency	 is	 now	 a	 requisite	 for	 renewing	 irrigation	 water	 abstraction	 licence	

(Knox	et	al.,	2012).		

	
Source:	Re-drawn	from	Knox	and	Kay	(2008)	and	Knox	et	al.	(2012)	

Figure	1-1:	Pathway	to	achieve	irrigation	efficiency	

1.1.1.4 Sustainable	labour	and	machinery	use	

Sustainable	crop	production	also	depends	on	efficient	labour	and	machinery	use	in	

order	 to	 achieve	 the	 desired	 yields	 and	 possibly	 reduce	 carbon	 emission	 (from	

machinery).	 This	 can	 be	 achieved	 through	 better	 knowledge	 of	 the	 production	

process,	a	considerable	management	effort	and	an	efficient	planning	or	 timing	of	

all	 farm	 operations	 (de	 Wit,	 1979).	 Also,	 methods	 for	 increasing	 machinery	

efficiency	 should	 be	 enhanced	 against	 its	 detrimental	 effect	 on	 biodiversity	

(Rodríguez	 and	 Wiegand,	 2009).	 Management	 practices	 adopted	 by	 farmers	 as	

well	 as	 the	 prevailing	 weather	 conditions	 and	 soil	 type	 can	 affect	 labour	 and	

machinery	use	efficiency	 in	arable	systems	(Pardo	et	al.,	2010).	For	example,	 the	

soil	 type	and	rainfall	 can	affect	 timing	of	ploughing	due	 to	 their	 influence	on	 the	

work	rate	and	the	workable	hours	available	to	the	farmer.	Efficient	crop	rotation,	

Understanding	your	system	

Optimise	performance	of	your	
irrigation	network	and	equipment	

Demonstrate	‘best	practice’	

Efficient	irrigation	

Optimise	your	soil	and	water	
management	practices	
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soil	management,	water	management	etc.	can	impact	positively	on	efficient	labour	

and	machinery	use	efficiency.		Pardo	et	al.	(2010)	found	that	farms	implementing	

reduced	 tillage	 benefit	 from	 lower	 labour	 requirement	 and	 Rodriguez	 and	

Wiegand	(2009)	found	that	machinery	efficiency	could	also	be	achieved	with	local	

operators	of	machinery	who	have	much	information	about	the	farm	areas.	

1.1.1.5 Crop	rotation	and	sustainable	arable	crop	production	

Over	 the	 years,	 farmers	 worldwide	 have	 practised	 crop	 rotation	 and	 with	 the	

myriad	benefits	associated	with	it,	proper	and	efficient	crop	rotation	plans	can	be	

very	 significant	 or	pivotal	 in	 sustainable	 arable	 farming	 systems.	The	benefits	 of	

crop	 rotation	 in	 farming	 systems	 have	 been	 well	 documented	 (e.g.	 Francis	 and	

Clegg,	1990;	Dogliotti	et	al.,	2003;	Baldwin,	2006;	Schonhart	et	al.,	2011;	APRODEV,	

2012;	 Salassi	 et	 al.,	 2013).	 These	 benefits	 cut	 across	 all	 aspects	 of	 the	 farming	

system—crop	 rotation	 has	 agronomic	 and	 economic	 as	 well	 as	 environmental	

benefits	 and	 as	 a	 result	 influences	 the	 sustainability	 of	 agricultural	 systems	

(Baldwin,	2006;	Schonhart	et	al.,	2011;	APRODEV,	2012).	In	the	case	of	soil	quality,	

crop	 rotation	has	 the	potential	 to	 increase	 the	 soil	 organic	matter,	 soil	 structure	

improvement,	soil	degradation	reduction,	translating	into	long-term	higher	yields	

and	greater	farm	profitability	(APRODEV,	2012).	Crop	rotation	also	influences	soil	

aggregation,	bulk	density,	microbial	biomass	and	water	infiltration	and	extraction	

(Francis	and	Clegg,	1990;	Dogliotti	et	al.,	2003).	The	improvements	in	soil	organic	

matter	also	have	the	potential	to	reduce	the	use	of	synthetic	fertiliser,	which	is	one	

of	the	objectives	in	sustainable	arable	farming	system.		Crop	rotation	can	be	used	

to	control	weeds,	pests	and	diseases	by	breaking	the	reproductive	cycle	of	diseases	

pathogens,	insects	and	weeds	(Francis	and	Clegg,	1990;	APRODEV,	2012;	Salassi	et	

al.,	2013;	HGCA,	2014).	Crop	rotation	also	 impacts	positively	on	the	environment	

by	reducing	greenhouse	gas	emission	(GHG)	and	water	pollution,	and	in	terms	of	

economic	or	financial	benefits,	crop	rotation	affects	farm	income	and	cost	through	

changes	in	yield	and	input	variation	(Schonhart	et	al.,	2011;	APRODEV,	2012).		

According	 to	Schonhart	et	al.	 (2011)	diversifying	crops	however,	can	 limit	

economies	 of	 scale	 and	 can	 result	 in	 reductions	 in	 expected	 farm	 net	 revenues.	

Notwithstanding,	 the	benefits	of	crop	rotation	summarised	 in	Figure	1-2	 indicate		

the	 importance	 of	 crop	 rotation	 in	 sustainable	 arable	 farming	 systems.	 Due	 to	
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these	 benefits,	 crop	 rotation	 has	 either	 been	 explicitly	 or	 implicitly	modelled	 in	

farm	models	using	different	approaches	to	support	the	decision	of	farmers	as	well	

as	policy	makers	at	different	scales	 (e.g.	El-Nazer	and	McCarl,	1986;	Annetts	and	

Audsley,	2002;	Rounsevell	et	al.,	2003;	Detlefesen	and	Jensen,	2007;	Schonhart	et	

al.,	 2011;	 Salassi	 et	 al.,	 2013).	 	 Examples	 of	 crop	 rotation	 models	 are	 ROTAT	

(Digliotti	 et	 al.,	 2003),	 ROTOR	 (Bachinger	 and	 Zander,	 2007)	 and	 CropRota	

(Schonhart	et	al.,	2011).	

	
Source:	Based	on	information	from	APRODEV	(2012)	

Figure	1-2:	Benefits	of	crop	rotation		

	

1.1.1.6 Policies	 associated	 with	 sustainable	 agriculture:	 Common	
Agricultural	Policy	(CAP)	reforms	

In	1962,	the	CAP	was	launched	as	a	partnership	between	agriculture	and	society—

between	Europe	and	its	farmers	to	improve	agricultural	productivity	in	order	for	

consumers	to	have	stable	supply	of	affordable	food	and	ensuring	that	EU	farmers	

make	a	reasonable	living	(EU,	2012;	Balaceanu,	2013).	Since	its	launch,	the	CAP	has	

undergone	many	reforms	(see	Figure	1-3	for	a	summary	of	CAP	reforms	from	1962	

to	2015)	by	moving	 the	CAP	 from	product	 to	producer	 support	and	now	a	more	

land-based	 approach,	 which	 provides	 safety	 net	 for	 farmers,	 environmental	

integration	improvements	and	rural	development	support	(EU,	2013).		
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Source:	Drawn	with	information	from	Defra	(2014)	and	EU	(2012,	2013)	

Figure	1-3:	Reforms	to	the	Common	Agricultural	Policy	(CAP)	

	

In	 the	UK,	 agricultural	 support	 to	 farmers	 is	mainly	provided	 through	 the	

CAP	(Nix,	2014).	One	of	the	major	reforms	to	the	CAP,	decoupling	was	introduced	

in	 2005.	 With	 this	 reform,	 farm	 payment	 was	 delinked	 from	 what	 was	 being	

produced	on	 the	 farm	and	 led	 to	 the	 introduction	of	 the	Single	Payment	Scheme	

(SPS)	to	support	farm	businesses.	The	eligibility	for	the	single	payment	was	linked	

to	 the	 Statutory	 Management	 Requirements	 and	 keeping	 the	 land	 in	 ‘Good	

Agricultural	and	Environmental	Condition’	 (Nix,	2014).	 In	 terms	of	crop	rotation,	

the	reform	post	2013	requires	that	on	an	arable	area	between	10ha	and	30ha	and	

a	 minimum	 of	 two	 crops	 are	 required	 (Nix,	 2014).	 In	 2015	 the	 Single	 Farm	

Payment	 (SFP)	 was	 replaced	 with	 the	 Basic	 Farm	 Payment,	 which	 includes	 the	

‘greening’	rules	to	promote	crop	diversification	(Defra,	2014;	RPA,	2015,	2016).		
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 Challenges,	 opportunities,	 objectives,	 constraints,	 complexities	 and	
trade-offs	examples	in	sustainable	arable	farming	systems		

With	 the	 focus	 of	 sustainable	 agriculture	 being	 increasing	 productivity	 (food	

production	 and	 profitability)	 whiles	 reducing	 its	 impact	 on	 the	 environment	 as	

well	as	serving	as	a	source	of	livelihood	especially	in	rural	areas,	the	opportunities	

associated	with	sustainable	farming	systems	can	be	said	to	include	the	provision	of	

ecosystem	 services,	 improvements	 in	 environmental	 quality	 indicators	 such	 as	

water	quality,	and	the	provision	of	 jobs	and	improvements	 in	the	rural	economy.	

Thus	in	the	UK,	the	emergence	of	the	sustainable	development	concept	has	driven	

the	 need	 for	 a	 more	 sustainable	 agriculture	 or	 farming	 systems,	 which	 are	

environmentally	 or	 ecologically	 responsible	 and	 still	 produce	 affordable	 food	

(Living	 Countryside,	 2014).	 In	 2002,	 the	 UK	 Sustainable	 Farming	 and	 Food	

Strategy	 (SFFS)	 was	 published	 and	 the	 overall	 aim	 of	 the	 strategy	 consists	 of	

economics,	social	and	environmental	outcomes	(summarised	in	Figure	1-4)	(Defra,	

2002;	2006).	With	farmers	seen	as	custodians	of	the	farm	environment,	subsidies	

(farm	payments)	 received	by	arable	 farmers	 in	 the	UK	as	part	of	 the	 sustainable	

farming	 strategy,	 have	 been	 linked	 to	 the	 satisfaction	 of	 Statutory	 Management	

Requirements	 and	 keeping	 of	 farmland	 in	 Good	 Agricultural	 and	 Environmental	

Condition	 (Nix	 2014).	 An	 arable	 farm	 in	 the	 UK	 has	 to	 achieve	 sustainability	 by	

integrating	 economic,	 ecological	 and	 social	 aspects	 of	 sustainability,	 or	 in	 other	

words	 a	 sustainable	 arable	 farm	 in	 the	 UK	 must	 combine	 both	 economic	 and	

environmental	goals	without	losing	sight	of	social	aspects	(Ikerd	et	al.,	1998;	den	

Biggelaar	and	Suvedi,	2000).	
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Source:	Based	on	information	from	Defra	(2002;	2006)	

Figure	1-4:	Outcomes	of	the	UK	Sustainable	Farming	and	Food	Strategy	(SFFS)	

	

However,	 the	conflicting	nature	of	simultaneously	achieving	the	economic,	

environmental	 and	 social	 objectives	 in	 sustainable	 farming	 systems	 pose	 big	

challenges	 (Pannell,	 1999,	 Godfray	 et	 al.,	 2010).	 Economically,	 a	 sustainable	

farming	system	should	be	able	to	provide	sustainable	 income	to	farmers	through	

the	 provision	 of	 sustainable	 crop	 yield	 levels.	 However,	 to	 reduce	 the	

environmental	 impact,	 there	 is	 the	 need	 for	 efficient	 input	 use,	 which	 may	

sometimes	require	reduction	in	inputs	such	as	fertilisers	and	chemical,	which	are	

used	 to	 safeguard	 crop	 yield	 even	 in	 light	 of	 soil	 fertility	 and	 weed	 infestation	

problems.	 Thus	 environmentally,	 the	 challenge	 is	 to	 reduce	 externalities	 such	 as	

nitrate	 leaching	 and	 diffuse	 pollution	whiles	maintaining	 yield	 levels	 to	 provide	

stable	income	for	farmers.	The	primary	aim	of	farming	is	to	produce	food	and	thus	

a	sustainable	 farming	system	should	be	able	 to	provide	 food	to	 feed	 the	growing	

population.		

The	world’s	 population	 projected	 to	 increase	 by	 34%	 by	 2050,	 the	 social	

challenge	in	sustainable	farming	is	to	produce	enough	food	to	ensure	food	security	

for	growing	population	whiles	 improving	 incomes	 levels	of	 farmers	and	reducing	

environmental	impact.	With	stagnant	yield	potential	being	the	main	impediment	of	
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arable	farming	systems	underpinned	by	sustainable	agricultural	principles	(Tilman	

et	al.,	2002),	the	question	is	how	can	the	growing	population	be	fed	(or	ensure	food	

security)	 with	 farming	 systems	 underpinned	 by	 sustainable	 agricultural	

principles?	 For	 example,	 how	 can	 cereals	 (e.g.	 wheat)	 be	 produced	 with	 less	

application	of	nitrogen	(N)	fertiliser	and	chemicals,	which	are	vital	in	arable	crop	

production?	 Reducing	 nitrogen	 application	 will	 reduce	 yield	 and	 applying	 more	

nitrogen	in	order	to	increase	yield	can	cause	nitrate	leaching,	which	pollutes	water	

sources	 and	 eventually	 affect	 aquatic	 biodiversity.	 Also,	 reducing	 chemical	 input	

could	lead	to	lower	yield	levels	due	to	weed	infestation.	Thus	the	overall	 issue	in	

sustainable	 farming	 is	 the	 simultaneous	 achievement	 of	 conflicting	 economic,	

environmental	 and	 social	 objectives,	 which	 are	 themselves	 constraints	 to	 one	

another	and	increase	the	complexities	in	sustainable	farming	systems.	

Some	 of	 the	 farmers’	 objectives	 in	 sustainable	 arable	 systems	 are	

maximising	 profit,	 minimising	 risk	 associated	 with	 different	 cropping	 systems,	

dealing	 with	 crop	 management	 complexities,	 maximising	 organic	 matter	 (OM)	

balance,	 minimising	 labour	 cost	 and	minimising	 nitrogen	 losses	 through	 nitrate	

leaching.	 Thus,	 the	 arable	 farming	 objective	 could	 be	 high	 financial	 return	 and	

environmental	 goals	 to	 safeguard	 the	 sustainability	 of	 the	 system	 (Groot	 et	 al.,	

2012).	 The	 move	 from	 conventional	 to	 a	 more	 sustainable	 agriculture	 could	 be	

associated	with	risks	and	makes	some	farmers	risk-averse.	Rounsevell	et	al.	(2003)	

found	farmers’	risk	revealed	in	the	choice	of	crop	division	and	techniques	through	

diversification	 and	 adoption	 of	 crops	 with	 low	 profit	 variability.	 The	 results	

generated	by	the	risk	model	application	 in	Chapter	5	also	reflect	 the	 influence	of	

risk	 aversion	 on	 crop	 choices	 and	 diversification.	 Sustainable	 arable	 farming	

objective	 could	 sometimes	 be	 a	 trade-off	 between	 profit	 maximisation	 and	 risk	

minimisation.	

Arable	 farming	 objectives	 are	 affected	 by	 many	 constraints:	 economic,	

biophysical	 or	 environmental,	 legislative,	 pests	 (e.g.	weeds),	 inputs,	 soil	 types	 as	

well	as	farm	operations	(Pretty	and	Bharucha,	2014).	The	use	of	fewer	inputs	such	

as	fertiliser,	pesticides	and	water	in	sustainable	agriculture	is	itself	a	constraint	to	

farmers.	Farmers	willing	to	 increase	farm	size	may	be	constrained	by	availability	

of	land;	farmers	shifting	to	new	cropping	systems	could	be	constrained	by	soil	type	
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as	well	as	the	skills	(agronomic	knowledge)	needed	for	the	new	system.	The	type	

of	soil	and	prevailing	weather	conditions	(e.g.	rainfall	pattern)	affect	the	workable	

hours	 as	 well	 as	 influence	 the	 scheduling	 of	 farm	 operations	 (Rounsevell	 et	 al.,	

2003).	This	could	increase	labour	and	machinery	cost	and	hence	reduces	farmers’	

profit.	 Again,	 the	 location	 of	 a	 farm,	 environmental	 factors,	 risk	 of	 diseases,	

fertiliser	and	labour	requirements	affect	the	performance	and	profitability	of	farms	

(Rounsevell	et	al.,		2003).		

Complexities	exist	in	sustainable	arable	systems	in	terms	of	inputs	use,	soil	

types	 and	 soil	 processes,	 farm	 management	 practices	 and	 the	 number	 of	 crops	

grown	(Cooke	et	al.,	2013).	Annetts	and	Audsley	(2002)	gave	an	example	of	such	

complexities	with	 respect	 to	 timing	 of	 farm	 operations	 as	 follows:	 farmers	 have	

best	 times	 to	 grow	winter	 wheat	 in	 order	 to	 obtain	 a	 higher	 yield	 because	 late	

planting	of	the	crop	may	result	in	low	yield	but	will	decrease	the	use	of	chemicals.	

Less	 use	 of	 chemicals	 is	 beneficial	 to	 the	 environment	 and	 cost	 saving	 for	 the	

farmer.	Late	planting	also	increases	the	risk	of	nitrate	(which	could	have	been	used	

by	crops)	leaching	from	the	soil.	Early	cropping	can	lead	to	higher	yields	however,	

this	 is	dependent	on	the	climate,	which	in	turn	affects	the	workability	of	the	soil.	

Williams	et	al.	 (2003)	also	 found	that	slurry	spreading	 increases	ammonia	 losses	

however,	switching	to	slurry	injection	reduced	ammonia	volatilisation	by	7%,	net	

profit	by	£13/ha	and	slightly	increased	leaching	by	2%.	Also,	rapid	incorporation	

after	broadcasting	was	more	effective	and	reduced	ammonia	emission	by	17%	but	

reduced	profit	by	£17/ha	and	 increased	 leaching	and	nitrous	oxide	emissions	by	

3%	and	2%	respectively.	The	IWM-based	cropping	systems	(e.g.	spring	cropping	to	

control	 black-grass)	 have	 been	 found	 to	 reduce	 herbicides	 usage	 and	 potential	

environmental	 impact	 however,	 it	 can	 increase	 the	 system’s	 complexities	 and	

impact	 on	 labour	 and	 profitability	 (Pardo	 et	 al.,	 2010).	 The	 constraints	 and	

complexities	in	arable	farming	can	influence	the	trade-offs	made	by	farmers.	Groot	

et	 al.	 (2012)	 found	 trade-offs	 between	 operating	 profit	 and	 labour	 balance	 and	

between	OM	balance	and	N	losses	with	the	lower	labour	balance	often	associated	

with	lower	soil	N	losses.	

In	 terms	 of	 analysis	 and	 evaluation	 of	 sustainable	 farming	 systems,	

modelling	 approaches	 through	 the	 use	 of	mathematical	 programming	 have	 been	
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found	to	be	 fit	 for	purpose	due	to	their	ability	 to	allow	for	the	consideration	and	

analysis	of	multiple	objectives	and	conflicting	resource	use,	complexities	as	well	as	

policy	analysis	(Hazell	and	Norton,	1986).	Thus	the	overall	aim	of	the	research	is	to	

develop	a	modelling	tool	that	can	be	used	for	evaluating	the	and	economic	as	well	

as	 environmental	 (ecological)	 viability	 and	 riskiness	 of	 alternative	 cropping	

systems	 that	may	 be	 adopted	 to	 deal	with	 increased	 pressure	 on	 input	 use.	 The	

study	 focuses	 on	 commercial	 arable	 farming	 systems	 due	 to	 their	 economic	

importance	 as	 well	 as	 their	 impact	 of	 the	 environment.	 Also,	 the	 scope	 of	 the	

research	 is	 at	 the	 farm	 level.	 As	 part	 of	 the	 overall	 research	 aim,	 other	 specific	

objectives	have	been	set	with	specific	research	questions	(see	Section	1.6	 for	 the	

thesis	chapter	specific	research	questions).	

In	 sustainable	 farming,	 efficient	 input	 use	 is	 vital	 in	 that	 the	 manner	 in	

which	 inputs	 are	 used	 determine	 the	 farming	 outcome.	 For	 example,	 achieving	

efficiency	 in	 N	 fertiliser	 use	 can	 impact	 crop	 yield	 and	 nitrate	 leaching.	 Farm	

location	 determines	 the	 soil	 type	 and	 the	 prevailing	weather	 condition	 and	 as	 a	

result	 the	 location	of	a	 farm	can	 influence	 farming	outcomes.	Also,	as	part	of	 the	

effort	to	make	farming	systems	more	sustainable,	policies	have	been	formulated	to	

guide	farming.	Thus	input,	farm	and	policy	factors	can	influence	the	sustainability	

arable	 farming	 in	 terms	of	 impact	on	 the	achievement	of	 the	socio-economic	and	

environmental	goals.	One	of	the	specific	objectives	is	therefore	to	investigate	how	

variations	 in	 input,	 output,	 farm	 and	 policy	 factors	 impact	 on	 farm	 profit,	

management	complexities	and	risk.	

Weed	infestation	can	impact	negatively	on	the	sustainable	farming	effort	in	

the	 sense	 that	 weeds	 compete	 with	 crops	 and	 reduce	 crop	 yield,	 and	 with	 the	

common	approach	to	weed	management	being	chemical	application,	achievement	

of	 the	 environmental	 objective	 of	 sustainable	 farming	 in	 terms	 of	 minimising	

pesticide	use	can	be	impeded.	For	arable	farming	systems	to	be	sustainable	there	is	

the	need	to	develop	sustainable	weed	management	strategies	to	achieve	the	socio-

economic	 goal	 of	 producing	 more	 food	 to	 ensure	 food	 security	 whiles	 reducing	

environmental	 impact	of	water	pollution	through	 intensive	herbicide	application.	

One	of	such	strategies	 is	 the	use	of	 spring	cropping	 in	 the	control	of	black-grass,	

which	 is	 a	 very	 important	 weed	 in	 UK	 arable	 farming.	 Another	 objective	 of	 the	
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research	 is	 therefore	 to	 investigate	 how	 the	 use	 of	 spring	 cropping	 as	 a	 weed	

control	strategy	impact	on	arable	farming	economic	and	risk	outcomes.	

The	move	 to	make	arable	 farming	 systems	more	 sustainable	 is	 associated	

with	 risk	 in	 that	 new	 farming	 strategies,	 innovation	 and	 technologies	 with	

unknown	 or	 uncertain	 outcomes	 have	 to	 be	 adopted.	 In	 some	 instances,	 inputs	

such	 as	 fertiliser	 and	 chemicals	 used	 by	 farmers	 to	 safeguard	 yield	 have	 to	 be	

reduced	 in	 order	 to	 achieve	 the	 environmental	 objective	 of	 sustainable	 farming.	

How	 such	 strategies	 are	 adopted	 can	 be	 influenced	 by	 the	 level	 of	 risk	 aversion	

behaviour	of	farmers.	Thus	the	issue	of	risk	aversion	or	risk	in	general	is	important	

in	 sustainable	 farming.	Risk	 aversion	 and	 cropping	decision	 of	 arable	 farmers	 in	

England	are	therefore	investigated	as	part	of	the	research	objectives.	

 Section	summary/conclusion	

To	 be	 able	 to	 feed	 the	 growing	 population,	 there	 is	 the	 need	 to	 shift	 from	

conventional	 agriculture,	 which	 normally	 results	 in	 externalities	 to	 the	

environment,	 economy	 and	 society,	 to	 a	more	 sustainable	 one.	 Thus,	 developing	

multifunctional	 farming	 systems	 should	 be	 underpinned	 by	 the	 principles	 of	

sustainability,	 which	 will	 enhance	 the	 production	 of	 more	 and	 quality	 food	 to	

ensure	 food	 security,	 without	 damaging	 the	 environment	 for	 both	 current	 and	

future	 generations.	 Arable	 farming	 systems	 underpinned	 by	 principles	 of	

sustainability	 rely	 on	 sustainable	management	 of	 soil,	 fertiliser,	 pest	 (weed)	 and	

pesticide,	 labour	and	machinery	use	as	well	 as	efficient	 crop	rotation	and	policy,	

which	 in	 turn	 affect	 efficient	 and	 sometimes	 limited	 use	 of	 farming	 inputs.	

Variations	in	soil	types	also	influence	the	crop	selection,	fertiliser	use,	labour	and	

machinery	 use	 and	 hence	 farm	 productivity	 and	 revenue.	 Again,	 sustainable	

farming	systems	are	associated	with	stagnant	yield	potential	and	this	coupled	with	

the	 rising	 food	 demand	 due	 to	 population	 increase	 can	 impede	 the	 move	 from	

conventional	 systems	 to	 more	 sustainable	 ones.	 These	 raise	 pertinent	 research	

questions	with	respect	to	multifunctional	arable	farming	systems	underpinned	by	

sustainability	 principles.	 For	 example,	 how	 do	 variations	 in	 soil	 types,	 farm	

inputs/outputs	 and	 policy	 affect	 arable	 farming	 objectives/goals	 such	 as	 profit	

maximisation	 and	 risk	 minimisation?	 Also,	 how	 does	 the	 adoption	 farm	

management	 strategies	 such	 as	 weed	 management	 strategies	 impact	 on	 farm	
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revenue?	 How	 does	 the	 risk	 aversion	 of	 arable	 farmers	 influence	 crop	 selection	

due	to	associated	farm	management	practices?			

There	 is	 the	 need	 for	 continuous	 research	 using	mathematical	 modelling	

approaches,	 which	 are	 relatively	 less	 expensive	 and	 can	 capture	 many	 of	 the	

complexities	 and	 farm	management	 strategies	 as	 well	 as	 policies	 to	 answer	 the	

research	questions	 in	order	to	better	 inform	arable	 farming	decisions	and	policy.	

In	UK	context,	the	use	of	mathematical	modelling	approaches,	particularly	goal	and	

risk	 programming	 approaches	 to	 investigate	 and	 answer	 the	 research	 questions	

such	as	 the	ones	asked	above	and	 in	 the	 thesis	are	 still	 lacking.	Thus	 the	overall	

aim	of	the	research	is	to	develop	a	modelling	tool	that	can	be	used	for	evaluating	

the	 economic	 as	 well	 as	 environmental	 viability	 and	 riskiness	 of	 alternative	

cropping	 systems	 that	may	be	 adopted	 to	deal	with	 increased	pressure	on	 input	

use.			

	

 

Complexities	 exist	 in	 arable	 farming	 systems	 and	with	 the	 aim	of	making	 arable	

farming	systems	more	sustainable,	there	is	the	need	for	analysing	and	testing	out	

new	 and	 innovative	 farming	 systems	 to	 improve	 farming	 productivity,	 reduce	

environmental	impact	and	risk	and	ensure	food	security	as	well	as	inform	policies,	

which	 influence	 what	 and	 how	 farmers	 should	 farm.	 Testing	 out	 or	 analysing	

farming	 systems	 can	 be	 done	 using	 field	 trials	 however,	 such	 trials	 could	 be	

expensive	 and	 as	 result	 there	 is	 need	 for	 simulating	 experiments	 and	 farming	

systems	using	modelling	 approaches.	Modelling	 approaches	 such	 as	 econometric	

models	and	artificial	intelligence	can	be	useful	in	analysing	or	testing	innovations	

in	 arable	 farming	 systems	 and	 as	with	 field	 trials,	 although	 they	may	 have	 their	

strengths,	 they	 have	 some	 limitations	 in	 terms	 of	 farm	 level	 or	 farming	 systems	

modelling.	 Econometric	 approaches	may	 suffer	 from	data	 difficulties	 in	 terms	 of	

capturing	data	on	resources	shared	by	competing	crops	and	changes	in	economic	

structure	 in	 terms	 of	 production	 technologies,	 policies	 and	 prices	 (Hazell	 and	

Norton,	1986).	 	For	example,	 in	Chapter	2	 the	effect	of	price	variation	and	single	

farm	 payment	 (SFP)	 on	 farm	 profit	 are	 demonstrated	 by	 simulating	 changes	 in	
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crop	prices	and	farming	inputs	with	and	without	the	SFP,	taking	into	consideration	

constraints	 to	 farming	activities.	Results	 from	such	simulation	may	be	difficult	 to	

obtain	with	 econometric	 approaches.	 In	 the	 case	of	 artificial	 intelligence	 (AI),	 its	

approaches	may	have	to	be	coupled	with	mathematical	programming	approaches	

to	 achieve	 the	 real	 advantage	 of	 AI	 (McBride	 and	 O’Leary,	 1993;	 Vossen	 et	 al.,	

1999).	The	disadvantages	of	such	coupling	approaches	have	been	listed	in	McBride	

and	O’Leary	(1993).	For	example,	coupling	AI	and	mathematical	programming	may	

mean	 replacing	 the	 role	 an	 operational	 research	 analyst	 plays	 in	 terms	 of	 data	

gathering,	 formulation	 and	 interpreting	 results	 and	 in	 terms	of	 farming	 systems,	

certain	 changes	 in	 factors,	 which	 affect	 farming	 may	 not	 be	 recognised	 by	 a	

modelling	 approach	 based	 on	 AI.	 This	 could	 lead	 to	 reformulation	 of	 the	 whole	

problem	in	order	to	incorporate	such	changes,	which	may	be	time	consuming.		

The	 limitations	 of	 the	 above	 methods	 make	 mathematical	 modelling	

(programming)	 more	 appropriate	 method	 in	 testing	 and	 analysing	 farming	

systems	 because	 its	 structure	 suit	 production	 economic	 theory	 (Fragoso	 et	 al.,	

2008).	 Mathematical	 modelling	 also	 provides	 a	 framework	 for	 organising	

quantitative	 information	about	 the	supply	side	of	agriculture	be	 it	at	 the	 farm	or	

sector	level	and	in	the	case	of	the	farm	level,	it	is	useful	in	terms	of	evaluating	the	

implications	 of	 different	 resource	 endowments,	 improved	 or	 new	 farming	

strategies	 (Hazell	 and	 Norton,	 1986).	 Again,	 the	 availability	 of	 well-known	 and	

applied	mathematical	modelling	approaches	(see	examples	 in	Kaiser	and	Messer,	

2010)	makes	it	possible	to	draw	on	the	strengths	of	different	approaches	as	well	as	

already	existing	models	to	create	robust	models	for	farm	analysis.	The	features	of	

mathematical	programming	models	make	interpretability	of	their	results	relatively	

easy	compared	to	approaches	like	AI,	which	has	limited	applications	with	respect	

to	 farm	 level	 optimisation	 modelling	 and	 econometric	 models,	 which	 are	

unsuitable	for	constrained	optimisation.		

Thus	 in	 this	 study,	 mathematical	 modelling	 (programming)	 method	 is	

adopted	 to	 answer	 pertinent	 research	 questions	 with	 respect	 to	 arable	 farming	

systems	 due	 to	 the	 fact	 that	 apart	 from	 the	 advantages	 highlighted	 above,	 with	

mathematical	 modelling,	 multiple	 objectives	 in	 arable	 farming	 systems	 can	 be	

investigated	(e.g.	Annetts	and	Audsley,	2002;	Cooke	et	al.,	2013).	Also,	to	develop	a	



	
	 	

17	

sustainable	farming	system,	integrated	modelling	approaches	should	be	adopted	to	

encompass	 both	 the	 ecological	 or	 environmental	 and	 socio-economic	 aspects	 of	

agriculture	 or	 land	 use	 (Cooke	 et	 al.,	 2009),	 hence	 the	 use	 of	 mathematical	

modelling	to	optimise	multiple	farming	goals.	

	

 

The	choice	of	modelling	approach	is	influenced	by	the	outcome	the	researcher	or	

the	modeller	is	seeking,	as	well	as	the	capability	of	the	particular	approach	being	

adopted.	 Mathematical	 programming	 models	 can	 be	 deterministic	 or	 stochastic,	

dynamic	or	static,	mechanistic	or	empirical,	and	these	types	of	models	can	either	

be	linear	or	non-linear	(Chalabi,	1998;	Thornley	and	France,	2007).	Models	used	to	

describe	agricultural	systems	are	mainly	mechanistic	or	empirical	(Chalabi,	1998).	

Table	1-1	presents	a	comparison	of	mechanistic	and	empirical	models	in	terms	of	

their	 capabilities.	 Non-linear	 models,	 compared	 to	 their	 linear	 counterparts	 are	

less	restrictive	because	the	equations	may	have	both	 linear	and	non-linear	 forms	

(Kaiser	 and	 Messer,	 2011).	 Figure	 1-5	 shows	 some	 of	 the	 MMAs	 applied	 in	

agricultural	 land	 use	 modelling	 with	 examples	 of	 approaches	 under	 linear	 and	

non-linear	models.	Table	1-2	also	shows	some	of	the	practical	application	of	MMAs	

found	 in	 literature.	 The	 user	 groups	 of	 the	model/approaches	were	 determined	

based	on	what	the	model	or	 the	approach	could	be	used	for.	Farmers	(F)	means	

the	 output	 of	 the	 model	 can	 inform	 farmer	 decision	 or	 assist	 farmer	 decision-

making;	Policy	(P)	means	it	can	assist	policy	makers	or	provide	policy	makers	with	

information	 during	 policy	 formulation	 and	Others	 (O)	 means	 it	 can	 be	 used	 by	

other	researchers	or	modellers.	The	double	plus	(++)	means	the	main	user	group	

and	a	plus	(+)	means	it	can	provide	information	to	the	user	group.	
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Table	1-1:	Comparison	of	mechanistic	and	empirical	models	

Mechanistic	models	 Empirical	models	

They	 can	 simulate	 systems	 behaviour	 outside	
the	 range	 of	 observed	 data	 in	 ways	 consistent	
with	established	scientific	understanding.	

Prediction	 of	 the	 future	 is	 based	 on	 an	
extrapolation	 of	 historical	 time	 series	 of	
observed	 past	 behaviour	 and	 description	 of	
past	technologies.	

Good	 for	 investigating	 important	 biological	
relationships	by	carrying	out	sensitivity	analysis	
on	the	model	parameters.	

They	 do	 not	 have	 close	 link	 with	 the	 physical	
systems.	

	

They	 are	 usually	 defined	 by	 many	 parameters,	
which	are	often	highly	correlated.	

Have	 simpler	 structure,	 less	 number	 of	
parameters.	

They	cannot	be	used	easily	for	optimisation	and	
control	purposes.	

They	 are	 easier	 to	 use	 for	 optimisation	 and	
control	purposes.	

Source:	Chalabi	(1998)	and	Janssen	and	van	Ittersum	(2007)	
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Figure	1-5:	Mathematical	modelling	approaches		

	

 Linear	programming	(LP)	models	

Since	its	use	was	reported	by	Heady	(1954)	LP	application	in	agriculture	to	assist	

in	 the	 decision	making	 process	 of	 farmers	 and	 policy	makers	 has	 been	 popular.	

According	 to	 Acs	 et	 al.	 (2010)	 LP	 provides	 a	 means	 to	 examine	 the	micro-level	

effect	 of	 policy	 changes	 on	 farmers’	 behaviour	 across	 different	 farm	 types.	 In	

general,	 all	 LP	models	 have	 in	 them	 four	 general	 properties	 (Kaiser	 and	Messer,	

2011):	 the	 objective	 to	 be	 optimised,	 the	 constraints	 restricting	 the	 activities,	

linearity	of	all	equations	and	non-negativity	of	all	activities	or	decisions	variables.	

The	 assumptions	 of	 LP	 are	 summarised	 by	 Hazell	 and	 Norton	 (1986)	 as:	

optimisation,	 fixedness,	 finiteness,	 determinism,	 continuity,	 homogeneity,	
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additivity	and	proportionality.	A	generalised	LP	model	for	an	arable	farmer	who	is	

seeking	to	maximise	gross	margin	can	be	expressed	as	follows:	

	 (1-1)	

	

Subject	to:	

(1-2)	
										

(1-3)	

	

Where	Z	is	the	gross	margin	to	be	optimised	(maximised),	xj	is	level	of	jth	activity,	

cj	 is	the	gross	margin	of	the	jth	activity,	aij	 is	the	ith	resources	needed	to	produce	

the	jth	activity	and	bi	is	amount	of	resources	available	to	the	farmer.	

LP	has	been	applied	in	arable	farming	systems	modelling	to	identify	optimum	

farming	objectives	 such	 as	profit	 and	 crop	management	 complexity	 (e.g.	Annetts	

and	 Audsley,	 2002;	 Rounsevell	 et	 al.,	 2003;	 Audsley	 et	 al.,	 2006).	 Although	 the	

application	of	LP	is	very	popular,	it	has	some	limitations	in	terms	of	the	linearity	of	

constraints	 and	 fixed	 input-output	 coefficients	 and	 computational	 problems	 of	

infeasibility,	 unboundedness	 and	 degeneracy	 (Kaiser	 and	 Messer,	 2011;	

Osgathorpe	et	 al.,	 2011).	These	 limitations	of	 LP	have	 led	 to	 the	development	of	

other	modelling	approaches.	

 Integer	programming	(IP)	models	

Integer	programming	(IP)	is	similar	to	LP	however,	IP	has	been	developed	to	deal	

with	 the	 problem	 of	 infeasibility,	 which	 may	 occur	 in	 rounding	 activities	 up	 or	

down	 in	 LP	 problems	 (Kaiser	 and	 Messer,	 2011).	 With	 IP	 all	 (all-integer	

programming)	or	some	of	the	variables	(mixed-integer	programming,	MIP)	can	be	

integers.	Like	LP,	IP	models	also	have	objective	functions	to	be	optimised	subject	to	

constraints	however,	IP	has	some	advantages	over	LP	(see	Butterworth,	1985).	IP	

can	 produce	 an	 optimum	 plus	 one	 or	more	 suboptimal	 solutions	 to	 select	 from,	

whereas	LP	produces	a	single	optimal	solution.	There	are	three	main	approaches	
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to	 solving	 linear	 IP	 problems	 (Genova	 and	 Guliashki,	 2011):	 cutting	 planes	

approach,	 which	 is	 an	 algorithm	 based	 on	 polyhedral	 combinatorics,	 the	

enumerative	 approaches	 (branch-and-bound,	 branch-and-cut	 and	 branch-and-

price)	and	the	relaxation	and	decomposition	approaches.	According	to	Kaiser	and	

Messer	 (2011)	 the	 branch-and-bound	 approach	 is	 the	most	 effective	 IP	 solution.	

With	 the	 branch-and-bound,	 the	maximum	percentage	 error	 estimated	 based	 on	

the	upper	 and	 lower	bound	optimal	 solutions	 give	maximum	possible	 error	 (see	

Kaiser	 and	 Messer	 (2011)	 for	 the	 steps	 involved	 in	 the	 branch-and-bound	

approach).	IP	(MIP)	approaches	have	been	applied	in	farming	systems	or	land	use	

modelling	(e.g.	Makowski	et	al.,	2001;	Viaggi	et	al.,	2010;	Cooke	et	al.,	2013).	The	

model	described	in	Chapter	3	uses	an	MIP	approach.	

 Multi-criteria	decision	making	(MCDM)		

In	sustainable	arable	farming	systems,	farmers	(decision	makers)	normally	have	to	

make	trade-offs	among	different	goals	or	objectives.	For	example,	an	arable	farmer	

is	 faced	 with	 multiple	 goals	 of	 maximising	 profits,	 minimising	 risks,	 reducing	

nitrate	leaching	and	herbicide	use.	One	of	the	tools	able	to	capture	these	different	

goals	simultaneously	is	the	MCDM	approach.	Schniederjans	(1995)	defined	MCDM	

as	a	“means	to	solving	decision	problems	that	involve	multiple	objectives”.		MCDM	

models	 were	 developed	 to	 deal	 with	 the	 single	 objective	 limitations	 of	

programming	 models	 such	 as	 LP	 (Oglethorpe,	 2010).	 Examples	 of	 MCDM	

approaches	 are	 multiple	 objective	 programming	 (MOP),	 compromise	

programming	(CP)	and	goal	programming	(GP).		

According	 to	El-Gayar	 and	Leung	 (2001)	MOP	 is	 recommended	when	 two	

objectives	are	being	considered,	however,	CP	is	recommended	when	the	number	of	

objectives	 is	 greater	 and	 targets	 are	 unknown	 because	 it	 searches	 for	 a	 best	

compromised	solution	among	the	effective	solutions	and	presents	it	to	the	planner.	

Goal	 programming	 (GP)	 on	 the	 other	hand	 is	 applied	 in	 a	 situation	 in	which	 the	

decision	 maker	 faces	 multiple	 goals	 because	 it	 optimises	 multiple	 goals	

simultaneously	 by	 minimising	 the	 deviations	 in	 the	 levels	 of	 targets	

(Schniederjans,	 1995;	 El-Gayar	 and	 Leung,	 2001;	 Kaiser	 and	 Messer,	 2011).	 GP	

does	 this	 through	 the	 summation	 of	 positive	 and	 negative	 deviation	 variables	
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allowing	 for	 either	 over	 or	 under	 achievement	 of	 goals	 (see	 Kaiser	 and	Messer,	

2011).	

With	GP,	goals	are	specified	or	targets	are	set	and	the	GP	solution	gives	the	

optimum	solution	close	to	the	target	or	goals.	The	possibility	of	underachievement	

of	a	maximisation	goal	target	or	the	overachievement	of	minimisation	goal	targets	

is	 sometimes	 seen	 as	 a	 limitation	 of	 the	 GP	 approach.	 Notwithstanding,	 GP	 has	

been	 applied	 extensively	 in	 agriculture	 and	 land	 use	 planning	 or	modelling	 (e.g.	

Tamiz	et	al.,	1998;	Tiwari	et	al.,	1999;	El-Gayar	and	Leung,	2001;	ten	Berge	et	al.,	

2000;	 Oglethorpe,	 2010).	 In	 Chapter	 4	 a	 mixed-integer	 weighted	 goal-

programming	model	is	applied	to	investigate	effect	of	controlling	black-grass	with	

spring	cropping	on	farm	profit.	

 Positive	Mathematical	programming	(PMP)	

The	PMP	 is	 an	 approach	 introduced	by	Howitt	 (1995)	 to	 calibrate	programming	

models.	The	emergence	of	the	PMP	was	due	to	the	fact	that	the	predictive	accuracy	

of	 early	 explicit	 models	 was	 found	 to	 be	 limited,	 lack	 of	 validation	 of	 existing	

models	(Heckelei	and	Britz,	2005)	and	its	popularity	is	due	to	the	fact	that	it	can	be	

constructed	 from	minimal	 data	 set	 (Howitt,	 1995).	 PMP	makes	 supply	 response	

agricultural	 models	 more	 realistic	 by	 allowing	 perfect	 calibration	 to	 observed	

based	 year	 and	 avoiding	 the	 provision	 of	 a	 more	 smooth	 simulation	 response	

compared	to	LP	models	(Helming,	2005;	Heckelei	et	al.,	2012).	According	to	Cooke	

et	 al.	 (2013)	 some	 aspects	 of	 the	 system	 that	 are	 difficult	 to	 quantify	 may	 get	

incorporated	in	the	error	term	in	PMP	models	however,	this	limits	the	ability	of	the	

model	 to	make	 predictions	 of	 the	 reference	 data.	 PMP	 calibration	 starts	with	 an	

optimisation	 LP	 problem.	 The	 two	 steps	 of	 model	 calibration	 using	 PMP	 is	

summarised	 as	 follows	 (see	Heckelei	 and	Britz,	 2000;	Heckelei	 and	Britz,	 2005):	

Step	1:	The	LP	model	is	extended	by	adding	calibration	constraints	with	associated	

dual	values.	 Step	2:	The	dual	values	of	 the	constraints	are	employed	 to	 specify	a	

non-linear	objective	function	to	make	the	marginal	cost	of	the	preferable	activities	

equal	to	their	respective	prices	at	the	base	year.	Examples	of	PMP	application	can	

be	 found	 in	Howitt	 (1995);	Heckelei	 and	Britz	 (2000);	 Preckel	 et	 al.	 (2002)	 and	

Heckelei	et	al.	(2012).	
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 Risk	programming	(RP)	

The	existence	of	risk	in	arable	farming	systems	influence	farmers’	decision	making	

and	 due	 to	 the	 risk-averse	 nature	 of	 arable	 farmers,	 they	 normally	 choose	 farm	

plans	 that	provide	a	 satisfactory	 level	 of	 security	 (Hazell	 and	Norton,	1986).	 For	

instance,	an	arable	farmer	may	choose	cropping	systems	which	are	less	risky	over	

those	which	are	riskier	(e.g.	potato	production).	Risk	programming	models	applied	

in	 farming	 system	 modelling	 include	 quadratic	 risk	 programming,	 QRP	 (mean-

variance	 analysis),	 minimisation	 of	 total	 absolute	 deviation	 (MOTAD	 or	 target	

MOTAD),	chance-constrained	programming	and	discrete	sequential	programming	

(Kaiser	and	Messer,	2011).	The	most	RP	applications	 in	agriculture	are	based	on	

the	 MOTAD	 or	 the	 mean-variance	 decision	 criteria	 (Tauer,	 1983).	 MOTAD	 was	

developed	as	an	approximation	of	expected	value-variance	(Hazell,	1971)	and	 its	

solution	can	be	generated	by	LP	algorithms	(McCarl	and	Önal,	1989).	 In	MOTAD,	

linear	approximation	of	expected	variability	is	used	instead	of	non-linear	variance-

covariance	measure	of	risk.	The	objective	function	is	linearized	through	the	use	of	

mean	absolute	deviation	(MAD)	(Hazell	and	Norton,	1986;	Adesina	and	Ouattara,	

2000).	Although	the	linear	approximation	may	be	less	effective	than	with	quadratic	

programming	(Kaiser	and	Messer,	2011),	 in	some	instances	where	the	enterprise	

income	 distributions	 are	 skewed,	 the	 MAD	 may	 outperform	 sample	 variance	 in	

quadratic	programming	(Hazell	and	Norton,	1986;	Adesina	and	Ouattara,	2000).		

MOTAD	results	 are	not	 second-degree	 stochastic	dominant2	 and	as	 a	 result	

Tauer	(1983)	developed	the	target	MOTAD,	a	two-attribute	risk	and	return	model,	

which	 has	 additional	 constraint	 that	 sets	 a	 target.	 Notwithstanding,	MOTAD	 has	

been	 used	 extensively	 to	 model	 risk	 in	 farming	 systems	 especially	 in	 situations	

where	solvers	 for	quadratic	programming	are	not	available	or	difficult	 to	obtain.	

Examples	of	MOTAD	and	other	RP	model	applications	in	farming	system	modelling	

can	be	found	in	Dorward	(1999);	Adesina	and	Ouattara	(2000)	and	Flaten	and	Lien	

(2007),	Others	can	be	found	in	Martins	and	Marques	(2007),	Visagie	et	al.	(2007)	

																																																								
2	Under	the	Second-degree	Stochastic	Dominance	(SSD)	concept,	a	decision	maker’s	choice	between	two	risky	
alternatives	 is	 predicted	 without	 a	 prior	 knowledge	 of	 the	 decision	 maker’s	 utility	 function	 except	 that	 it	

displays	 risk	 aversion.	 The	 necessary	 and	 sufficient	 conditions	 on	 the	 two	 risky	 prospects	 are	 provided	 in	

order	for	one	to	be	preferred	or	indifferent	to	the	other	by	all	risk	averse	decision	makers	(Meyer,	1977).	
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and	Cooke	et	al.	(2013).	In	Chapter	5	a	mixed-integer	MOTAD	model	is	applied	to	

investigate	arable	farmers	risk	aversion	in	England.	

 Dynamic/recursive	programming	

The	 dynamic	 nature	 of	 some	 aspects	 of	 arable	 farming	 has	 influenced	 the	

development	 and	 application	 of	 dynamic	 programming	 (DP).	 Dynamic	

programming	 is	 used	 to	 solve	 large	 and	 complicated	problems	by	dividing	 them	

into	smaller	sub-problems	and	the	approach	begins	by	looking	at	the	final	stage	or	

period	and	then	work	back	to	the	initial	or	current	period	(Barnard	and	Nix,	1973).	

Dynamic	 programming	 has	 some	 advantages	 over	 traditional	 LP	 in	 that	 it	 can	

handle	non-linear	and	integer	problem,	incorporate	stochastic	elements	as	well	as	

has	advantage	in	solving	inventory	and	decision-tree	type	problems	(Barnard	and	

Nix,	 1973;	 Kaiser	 and	Messer,	 2011).	 Thus	DP	 can	 be	 said	 to	 relax	 the	 linearity,	

divisibility	and	deterministic	assumptions	of	LP	(Kaiser	and	Messer,	2011).		

However,	unlike	LP	models,	DP	models	are	very	difficult	to	generalise	and	it	

also	 suffers	 from	 curse	 of	 dimensionality	 as	 the	 number	 of	 computations	 can	

increase	 exponentially	 with	 increase	 in	 the	 number	 of	 stages	 or	 state	 variables	

(Barnard	and	Nix,	1973;	Kaiser	and	Messer,	2011).	Thus	constructing	a	DP	model	

for	an	arable	system,	incorporating	more	stages	or	periods	can	be	tedious	and	time	

consuming.		

In	some	instances,	DP	may	be	applied	without	the	introduction	of	the	element	

of	time	and	in	such	situation,	DP	can	best	be	described	as	a	recursive	programming	

(Kaiser	 and	 Messer,	 2011).	 Recursive	 programming	 deals	 with	 sequences	 of	

interrelated	decisions	however,	the	approach	does	not	seek	to	devise	optimal	rules	

for	decision-making	but	 explains	only	 the	 changes	 that	occurs	 (Barnard	and	Nix,	

1973).	 Notwithstanding,	 the	 drawbacks	 associated	 with	 DP	 and	 recursive	

programming,	examples	of	 their	application	can	be	 found	 in	agricultural	 systems	

modelling	 (e.g.	 Pandey	 and	 Medd,	 1991;	 Wallace	 and	 Moss,	 2002;	 Viaggi	 et	 al.,	

2010;	Kennedy,	2012;	Shrestha	et	al.,	2015;	Liu	et	al.,	2016).	
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 Stochastic	programming		

Uncertainty	 exist	 in	 agriculture	 due	 to	 factors	 the	 existence	 of	 factors,	 which	

farmers	do	not	have	control	over.	For	example,	 farmers	do	not	have	control	over	

rainfall,	 which	 influence	 farm	 operation	 scheduling	 as	 well	 as	 crop	 yield.	 Also,	

farmers	do	not	have	control	over	the	farm	input	and	output	prices.	Thus	in	some	

instances,	there	is	the	need	to	capture	uncertainty	and	variability	associated	with	

input,	weather	and	other	factors,	which	introduce	risk	in	farming.	This	can	be	done	

through	 the	 application	 of	 stochastic	 programming,	 which	 allows	 for	 the	

consideration	 of	 uncertainty	 as	 well	 as	 probability	 distribution	 associated	 with	

data	(Shapiro	and	Philpott,	2007).	This	means	stochastic	programming	can	be	said	

to	relax	the	deterministic	assumption	of	in	LP	models.		

However,	 the	 drawback	 of	 stochastic	 programming	 is	 that	 probability	

distributions	 has	 to	 be	 estimated	 for	 items	 in	 the	 model	 matrix	 likely	 to	 be	

associated	 with	 random	 variation	 and	 this	 can	 be	 tedious	 and	 time	 consuming	

(Barnard	 and	 Nix,	 1973).	 Also,	 stochastic	 programming	 models	 tend	 to	 be	

complicated	 (Kall	 and	 Wallace,	 1994).	 Examples	 of	 stochastic	 programming	

approaches	 with	 respect	 to	 agricultural	 systems	 van	 be	 found	 in:	 Jacquet	 and	

Pluvinage	(1997),	Clancy	et	al.	(2012)	and	Finneran	et	al.	(2012).	
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Table	1-2:	Practical	examples	of	mathematical	modelling	approaches		

References/study	
location	

Modelling	
approaches/model	
name	

Scale/	
level	

Objectives	
	

Constraints	 Agricultural/land	use	
activities	

End	user	groups	
F	 P	 O	

Cooke	et	al.	(2013)	
	
UK	

Mixed-integer	
programming	
	
farmR	

Farm	 Multiple	objectives:	
Profit	
Risk	minimisation	
Crop	management	
complexity	preferences	

Cropping	area	(land)	
Sequenced	operation	
Crop	rotation	
Labour	and	machinery	
Soil	type	and	rainfall	
Workable	hours		
	

Arable	farming	systems	 ++	 +	 +	

Salassi	et	al.		(2013)	
	
USA	

LP	
Crop	rotation	network	
flow	model	
	
MOTAD	(Target	
MOTAD)	
	

Farm		 Net	returns	maximisation	 Equal	area	for	each	
crop	in	the	rotation	
Limit	on	crop	area	
Risk	constraint	

Arable	cropping	systems	 +	 	 +	

Bergez	et	al.	(2012)	
	
France	

Integration	of	bio-
decision	models	
Dynamic	models	
Simulation	
	
MODERATO	
	

Farm	and	
Regional	

Water	use	optimisation	 Equipment	constraints	
Resource	constraints	
Regulatory	or	human	
constraints	

Cropping	systems	 ++	 ++	 +	

Groot	et	al.	(2012)	
	
Netherlands	

Multiple	objective	
programming	
	
FarmDESIGN	
	
	
	

Farm	level	 Multiple	objectives:	
maximisation	of	profit	and	
organic	matter	balance.	
	
Minimisation	of	labour	
requirement	and	N	losses	

Crop	areas	
Feed	balance	
Frequency	of	
cultivation	
Crop	rotation	
Labour	requirement	

Mixed	organic	farming	 ++	 ++	 +	

Howitt	et	al.	(2012)	
	
USA	
	

PMP	
	
SWAP	

Regional	
(State)	

Regional	profits	
maximisation	through	land	
and	water	optimisation	
	

Resource	availability:	
Land		
Water	

Agricultural	and	
environmental	water	
systems	

	 ++	 +	
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Table	1-2	Continued	

References/study	
location	

Modelling	
approaches/model	
name	

Scale/	
level	

Objectives	
	

Constraints	 Agricultural/land	 use	
activities	

End	user	groups	
F	 P	 O	

Osgathorpe	et	al.	(2011)	
	
UK	(Scotland)	
	

Multiple	objective	
programming		
	

Farm	 Multiple	objective:	
Gross	margin	
maximisation	
Biodiversity	(bumble	bee	
conservation)	

Labour	availability	
Labour	requirement	
Fertiliser	and	fodder	
requirement	
Subsidy	payment	
constraints	
Rotational	constraints	
	

Crofting	
Arable	and	livestock	
systems	
Grazing	

+	 ++	 +	

Viaggi	et	al.		(2010)	
	
Italy	

Dynamic	Integer	
programming	
	
Simulation	

Farm	 Multiple	objectives:	
Household	worth	
Consumption	
Uncertainty	
Debt-asset	ratio	
Diversification	
	

Labour	
Investment	on	capital	
Payments	
Policy	

Arable	cropping	systems	 +	 ++	 +	

Matthews	(2006)	
	
Website:	
http://www.macaulay.ac.
uk/PALM/	
	

Simulation	modelling	
	
PALM	

Landscape	 Economic	and	
environmental	

No	constraint	were	
explicitly	stated	

Farming	systems	
Landscape	
Livestock	

	 ++	 +	

Berntsen	et	al.	(2003)	
	
Denmark	

LP	
Scenario	modelling	
Simulation	
	
FASSET	
	

Farm		 Economic	and	
environmental	

Total	arable	area	
Space	for	animals	
Crop	sequence	
	

Arable	cropping	systems	
Pig	production	

+	 ++	 +	

Dogliotti	et	al.		(2003)	
	
Netherlands	

LP	
Crop	rotation	model	
Prototyping	of	Dutch	
organic	arable	farming	
Simulation	
	
ROTAT	

Farm	 Multiple	objectives:		
Gross	margin	
maximisation		
Environmental:	crop	
rotation	to	reduce	
pesticide	use,	reduce	
erosion	

Agronomic	principles	and	
farmer	specific	constraints	

Arable	cropping	systems	 ++	 +	 +	
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Table	1-2	Continued	

References/study	
location	

Modelling	
approaches/model	
name	

Scale/	
level	

Objectives	
	

Constraints	 Agricultural/land	use	
activities	

End	user	groups	
F	 P	 O	

Rounsevell	et	al.	(2003)	
	
UK	

LP	
Spatial	modelling	(GIS)	
Simulation	
	
SFARMOD	
ACCESS	
	

Regional	 Profit	maximisation	 Resource	constraints	
Operation	sequencing	
Crop	rotation	

Arable	cropping	systems	 ++	 ++	 +	

Annetts	and	Audsley	
(2002)	
	
UK	

LP	
Scenario	modelling	
	
SFARMOD	

Farm	 Multiple	objectives:	
Economic	and	
environmental	objectives	

Machinery	time	
Cropping	area	(land)	
Crop	rotation	
Livestock	grazing	and	feed	
	

Arable	cropping	and	
livestock	systems	
	

++	 ++	 +	

El-Gayar	and	Leung	
(2001)	
	
Egypt	
	

Multi-criteria	decision	
making	(MCDM)	model	
	
CP	
WGP	

Regional	 Regional	availability	of	
protein	
Employment	
Foreign	exchange	
earnings	
	

Resource	constraints:	
Land		
Labour	
Water	
Capital		

Aquaculture	 +	 ++	 +	

Makowski	et	al.	(2001)	
	
Netherlands	
	
	

Mixed	Integer	Linear	
Programming	(MILP)	

Farm	 Multiple	objectives:	
Economic	(gross	margin)	
and	environmental	

Cropping	area	
Crop	frequencies	
Crop	sequencing	
Mineral	balance,	Labour	
	

Cropping	systems	
Fallow	

+	 +	 ++	

ten	Berge	et	al.	(2000)	
	
Netherlands	

Multiple	Goal	LP	(MGLP)	
	
The	model	is	a	
prototype	farm	model	
	

Farm	 Multiple	objectives:	
Economic	(Gross	margin)	
Environmental	(nitrogen	
and	phosphorus	
surpluses)	
	

No	rented	land	
Reduced	nitrogen	and	
pesticide	use	

Arable	cropping	systems	
Bulb	production	systems	
Dairy	systems	

+	 ++	 +	

Zander	and	Kächele	
(1999)	
	
Germany	
	

Multiple	goal	LP	(MGLP)	
	
MODAM	

Regional	 Multiple	objectives:	
Economic	and	ecological	
goals	
	

Other	goals	serve	as	
constraints	

Arable	cropping	and	
livestock	systems	

+	 ++	 +	
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Table	1-2	Continued	 	 	 	 	 	 	 	 	

References/study	
location	

Modelling	
approaches/model	
name	

Scale/	
level	

Objectives	
	

Constraints	 Agricultural/land	use	
activities	

End	user	groups	
F	 P	 O	

Howitt	(1995)	
	
USA	

Positive	mathematical	
programming	(PMP)		
	
Non-linear	optimisation	
	

Farm	
Regional	
Sectorial	
	

Gross	Margin	 Land	 Arable	cropping	systems	 	 	 ++	

McCarl	and	Onal	(1989)	
	
USA	

Non	LP	(NLP)	and	LP	
Linear	Approximation	
Separable	programming	
	
MOTAD	
	

Farm	 Profit	maximisation	 Tractor	times	
Sequenced	operation	

Arable	cropping	systems	 	 	 +	
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 Section	summary/conclusion	

Myriad	 of	 MMAs	 exist	 in	 agricultural	 land	 use	 modelling	 however,	 the	 choice	

depends	 on	 the	 modelling	 objective	 as	 well	 as	 the	 capabilities	 of	 the	 modelling	

approach.	 Different	 modelling	 approaches	 have	 their	 strengths	 and	 weaknesses	

(limitations).	 LP	 models	 are	 more	 popular	 as	 far	 as	 optimisation	 of	 farming	

objectives	 is	 concerned	 however,	 it	 has	 limitations,	 which	makes	 its	 application	

unsuitable	 in	certain	scenarios.	LP	 is	restrictive	due	to	 its	 linearity	of	constraints	

and	fixed	input-output	coefficient,	it	is	also	associated	with	problem	of	infeasibility.	

The	limitations	of	LP	led	to	the	development	of	other	approaches.	IP	deals	with	the	

problem	of	infeasibility	in	LP	models	due	to	rounding	up	and	down	of	activities.	IP	

can	 incorporate	 integers	 into	 the	model	 and	 can	 also	 produce	 both	 optimal	 and	

suboptimal	 solutions.	MCDM	modelling	 approaches	 such	 as	 GP	 is	 able	 to	 handle	

multiple	 objectives	 simultaneously	 and	 this	 makes	 it	 suitable	 for	 modelling	

multiple	 arable	 farming	 objectives.	 However,	 there	 is	 the	 possibility	 of	 over	 or	

under	achievement	of	goals.		RP	approaches	such	as	MOTAD	deals	with	the	linear	

approximation	 of	 expected	 value-variance.	 Although	 approximation	 can	 be	 less	

effective,	 in	 a	 situation	 where	 solvers	 for	 quadratic	 risk	 programming	 are	 not	

available	or	difficult	to	obtain,	MOTAD	models	are	more	suitable	since	they	can	be	

solved	by	LP	solvers.	PMP	is	able	to	calibrate	programming	models,	and	one	of	its	

strength	is	that	it	can	be	constructed	from	minimal	data	but	the	data	needs	to	be	of	

good	 quality,	 and	 also,	 there	 is	 the	 possibility	 of	 the	 PMP	model	 failing	 to	make	

predictions	of	the	reference	data.	

Existing	 MMAs	 have	 their	 strength	 and	 limitations	 and	 therefore	 when	

developing	a	robust	multifunctional	farming	system	models,	there	is	the	need	for	a	

modelling	 approach,	which	 draws	 on	 the	 strength	 of	 different	MMAs	 to	 create	 a	

more	robust	model.		With	the	main	research	aim	of	developing	a	farm	level	model	

to	 evaluate	 economic	 as	 well	 as	 environmental	 and	 riskiness	 of	 alternative	

cropping	 systems,	 an	 arable	 farm	model,	which	draws	on	 the	 strength	of	mixed-

integer,	weighted	goal	and	risk	(MOTAD)	programming	approaches	 is	developed.	

Also,	as	part	of	the	thesis	aims,	the	model	is	applied	in	Chapter	4	to	investigate	and	

answer	 research	 questions	 on	 the	 economic	 viability	 (and	 risk)	 of	 using	 crop	

rotation	with	 spring	 cropping	 to	 control	 black-grass	 (weed).	 	 	 The	model	 is	 also	

applied	in	Chapter	5	to	investigate	and	answer	research	questions	on	risk	aversion	
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behaviour	 of	 arable	 farmers	 in	 England	 (see	 Section	 1.7	 for	 research	 and	 thesis	

aims).		

	

 

This	section	presents	some	of	the	existing	models	related	to	agricultural	land	use,	

which	have	been	created	based	on	some	of	 the	MMAs	shown	above.	The	 level	of	

interactions	of	the	models	were	assessed	based	solely	on	information	in	literature	

in	 terms	of	what	 the	model	 is	used	or	has	been	used	 for.	 Few	of	 the	models	 are	

introduced	 below	 this	 section	 (see	 Table	 1-6	 under	 Chapter	 Appendix	 for	 other	

examples)	 and	Table	1-3	 shows	models	 identified	with	 their	 level	 of	 interaction.	

The	information	presented	about	the	models	is	mainly	brief	description	however,	

references	are	provided,	which	can	be	referred	to	for	more	information.	

The	 four	 levels	 of	 interaction	 are	 shown	 below.	 The	 plus	 (+)	 means	 the	

model	falls	under	that	level	of	interaction.	

1. Policy—agricultural	 land	 use	 level	 (P-L):	 	means	models	 can	 predict	 or	

simulate	changes	in	agricultural	land	use	due	to	changes	to	policy.	

2. Land	 use—environment	 level	 (L-E):	 means	model	 can	 show	 or	 simulate	

how	 changes	 in	 land	 use	 or	 type	 of	 land	 use	 (activities)	 affect	 the	

environment.	

3. Climate—agricultural	 land	 use	 level	 (C-L):	 means	 model	 can	 show	 or	

simulate	the	changes	in	agricultural	land	use	due	to	variability	in	climate.	

4. Modelling	 framework	 (MF):	 means	 whether	 or	 not	 the	 model	 is	 a	

modelling	framework	or	provides	a	framework	for	building	other	models.	
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Table	1-3:	Existing	model	examples	and	their	levels	of	interaction	

Model	 Model	type/class	 Level	of	interaction	

	 P-L	 L-E	 C-L	 MF	

SFARMOD	(Silsoe	Whole	Farm	Model)	 Comparative-static	 +	 +	 +	 	

MODAM	(Multi-objective	Decision	support	tool	for	Agro-
ecosystem	Management)	

Comparative-static	
(MCDM)	

+	 +	 +	 	

FSSIM	(Farm	System	Simulator)	 Comparative-static	 +	 +	 +	 	

CAPRI	(Common	Agricultural	Policy	Regionalised	Impact	
analysis)	

Recursive	dynamic/	
Comparative-static	

+	 +	 	 	

SEAMLESS-IF	(Environmental	and	Agricultural	
Modelling:	Linking	European	Science	and	Society	
Integrated	Framework)	

Comparative-static/	

Dynamic	

+	 +	 +	 +	

ROTAT	(a	tool	for	generating	crop	rotation)	 Comparative-static	 	 +	 	 	

ROTOR	(crop	ROTation	in	ORganic	farming	systems)	 Comparative-static	 +	 +	 	 	

SWAP	(California	Statewide	Agricultural	Production	
Model)	

Comparative	static	 +	 +	 +	 	

FASSET	(Farm	ASSEssment	Tool)	 Dynamic	 +	 +	 	 	

PALM	(People	and	Landscape	Model)	 Dynamic	 +	 +	 +	 	

MODERATO	 Dynamic	 +	 	 	 	

FarmDESIGN	 Comparative-static	 +	 +	 	 	

	

 SFARMOD	(Silsoe	Whole	Farm	Model)	

This	is	a	multiple	objective	LP	model	developed	for	a	variety	of	farming	scenarios	

including	 UK	 and	 European	 arable	 and	 mixed	 arable	 and	 livestock	 farms	 for	

farmers	 and	 decision	 makers	 to	 determine	 the	 best	 cropping,	 machinery	 and	

labour	 options.	 	 It	 is	 particularly	 for	 looking	 at	 future	 climate	 and	 economic	

scenarios	 and	 their	 impact	 on	 land	 use,	 and	 has	 a	 comprehensive	 database.	

References:	 Annetts	 and	 Audsley	 (2002);	 Williams	 et	 al.	 (2003);	 Audsley	 et	 al.	

(2006);	Cranfield	University	(2013).		
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 MODAM		

MODAM	(Multi-Objective	Decision	support	tool	for	Agro-ecosystem	Management)	

is	 a	 multiple-criterion	 decision-making	 LP	 used	 on	 multiple-objective	 land	 use	

issues.	It	is	an	instrument,	which	can	generate	a	solution	for	competing	groups	and	

land	users;	and	it	allows	the	depiction	of	economic	and	ecological	spatial	problems	

at	 variable	 scales.	 MODAM	 served	 as	 interface	 and	 focused	 in	 interdisciplinary	

research	during	its	development.	References:	Zander	and	Kächele	(1999);	Janssen	

and	van	Ittersum	(2007);	Schuler	and	Sattler	(2010).	

 FSSIM	(Farm	System	Simulator)	

The	FSSIM	is	an	optimisation	model	developed	as	part	of	the	integrated	modelling	

framework	 of	 the	 System	 for	 Environmental	 and	Agricultural	Modelling:	 Linking	

European	 Science	 and	 Society	 (SEAMLESS)	 project	 and	 its	 target	 is	 integrated	

assessment	 of	 agricultural	 systems	 in	 27	 member	 states	 of	 the	 EU.	 	 It	 has	

components	 representing	 farmer	 objectives,	 risk,	 policies,	 calibration,	 current	

activities,	 alternative	 activities	 and	 different	 activity	 types.	 It	 uses	 the	 estimated	

prices	and	calculates	supply	responses	of	farms	to	price	shocks	in	a	selection	of	EU	

27	regions	and	enable	detailed	regional	integrated	assessment	of	agricultural	and	

environmental	policies,	innovations	on	farming	practices	and	the	sustainability	of	

farming	systems.	References:	Janssen	et	al.	(2010);	Louhichi	et	al.	(2010).	

 ScotFarm	model	

The	ScotFarm	is	a	dynamic	farm	level	model	with	generic	linear	programming	set	

up	 to	 optimise	 net	 farm	margin.	 The	model	 consists	 of	 four	modules:	 livestock,	

crop,	 feed	 and	 grass	 modules.	 The	 livestock	 module	 consists	 of	 dairy,	 beef	 and	

sheep	 production	 systems.	 The	 feed	 module	 determines	 monthly	 feed	

requirements	for	each	of	the	animals	on	a	farm	based	on	type,	age	and	production	

cost	 of	 the	 animal.	 The	 crop	module	 assumes	 that	 decision	making	 is	 based	 on	

yield	 and	 gross	 margin	 whereas	 the	 grass	 module	 divides	 fixed	 total	 land	 into	

arable,	grassland	and	rough	grazing.	The	model	outputs	include	farm	margin,	land	

use,	animal	numbers,	 feed	use,	production	 level,	 cost	of	production	and	marginal	

costs.	References:	Shrestha	et	al.	(2015);	SRUC3.	

																																																								
3	Scottish	Rural	College	(SRUC):	https://www.sruc.ac.uk/downloads/file/3167/scotfarm		
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 MEETA	(Managing	Energy	and	Environment	Trade-offs	in	Agriculture)	
model	

The	 MEETA	 model,	 developed	 by	 researchers	 at	 the	 University	 of	 Nottingham	

combines	 bio-economic	 modelling	 and	 life	 cycle	 analysis	 (LCA)	 approaches	 to	

investigate	the	trade-offs	between	energy,	emissions	and	finances	at	the	farm	level	

in	England.	The	model	 is	a	 linear	programming	optimisation	model,	which	uses	a	

single	year	time	frame	to	represent	multi-year	cropping	and	rotational	aspects	in	

arable	 farming	 and	 its	 outputs	 include	 optimal	 crop	 areas,	 farm	 gross	 margin,	

greenhouse	 gas	 emission	 and	 net	 energy	 generated	 from	 the	 farm.	 References:	

Glithero	et	al.	(2012);	Glithero	et	al.	(2015).	

 Section	summary/conclusion	

From	the	review	of	the	existing	models,	it	can	be	said	that	each	of	the	models	has	

its	 strength	and	 limitations,	 specific	 objectives	 and	 targets	different	user	 groups.	

Some	 of	 the	models	 can	 be	 classified	 as	 biophysical	 and	 others	 as	 bio-economic	

models,	which	can	 inform	farmers’	decision	as	well	as	policy	making	at	 the	 farm,	

regional	and	sectorial	levels.	Combination	of	biophysical	and	bio-economic	models	

can	result	in	more	robust	arable	farming	system	model.	In	terms	of	research	gaps,	

from	literature,	it	has	been	observed	that	the	models	identified	have	specific	focus	

and	target	different	user	groups,	hence	variation	in	their	capabilities.	For	example,	

SFARMOD	was	 found	 to	 be	 based	 on	 formulating	 LP	 as	 a	multi-objective	model	

however,	such	formulation	could	be	prone	to	generating	 infeasible	results	due	to	

the	fact	that	other	objectives	expressed	as	inequality	constraints	must	be	enforced.	

Other	models	such	as	ROTAT	and	ROTOR	focus	mainly	on	crop	rotation	and	even	

those	 designed	 for	 multiple	 farming	 objectives	 such	 as	 MODAM	 and	 FASSET	

normally	focus	on	environmental	indicators	such	as	nitrate	leaching,	pesticide	and	

fertiliser	 use	 and	 soil	 erosion.	 Comparisons4	 of	 the	 capabilities	 of	 the	 models	

identified	 and	 linked	 to	 research	questions	 (see	Table	1-4)	 indicate	 that	 there	 is	

still	model	capability	gap.	With	respect	to	the	overall	research	and	thesis	aims,	not	

many	models	exist	 in	which	risks	 in	arable	systems	are	explicitly	modelled.	Also,	

not	 many	 models	 evaluating	 the	 economic	 and	 environmental	 (ecological)	

																																																								
4	The	capabilities	of	models	were	identified	based	primarily	on	literature.	
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objectives—specifically	profit	 and	nitrate	 leaching	using	goal	programming	were	

identified.	

The	 main	 gaps	 identified	 are	 that	 not	 many	 of	 the	 models	 identified	

modelled	arable	systems	at	 the	 farm	level	and	focused	on	optimising	farm	profit,	

nitrate	 leaching	 and	 explicitly	 incorporated	 risk	 especially	 in	 UK	 context.	 For	

example,	while	 the	ScotFarm	(Shrestha	et	al.,	2015)	has	dynamic	element	to	 it,	 it	

does	 not	 explicitly	 incorporate	 risk	 and	 also	 does	 not	 take	 into	 consideration	

timeliness	penalty	due	to	sub-optimal	operations	and	rotations.	Also,	depending	on	

the	modeller’s	objective,	some	of	the	models	are	combined	with	others	in	order	to	

achieve	the	desired	outcomes	(e.g.	Rounsevell	et	al.,	2003;	Bergez	et	al.,	2012).			

With	the	research	gaps	identified	coupled	with	the	thesis	aims	(see	Section	

1.7),	 there	 is	 the	need	 for	 research	 to	develop	 a	 robust	 arable	 farm	 level	model,	

which	draws	on	the	strengths	of	different	mathematical	modelling	approaches	and	

existing	 models.	 An	 arable	 farm	 level	 model,	 which	 combines	 mixed-integer,	

weighted	 goal	 and	 MOTAD	 (risk)	 programming	 approaches	 and	 draws	 on	 the	

strengths	of	other	existing	models	 is	developed	 to	optimise	 three	arable	 farming	

objectives	(profit	maximisation,	nitrate	 leaching	and	risk	minimisation).	Thus	the	

model	has	the	capability	to	evaluate	economic	benefits	(profit),	farmers’	risks	and	

ecological/environmental	 benefits	 (nitrate	 leaching	 minimisation).	 The	 model	 is	

applied	 in	Chapters	4	 and	5	 to	 address	 research	questions	with	 respect	 to	weed	

control	 and	 risk	aversion	 (see	Section	1.6	 	 for	 research	questions	 for	Chapters	4	

and	5).	
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Table	1-4:	Comparison	of	capabilities	of	identified	models	to	study	objectives	

Model	 Model	capability5	 Research	Questions*	
	 	 C2	 C4	 C5	
SFARMOD	 Determination	of	cropping,	labour	and	machinery,	which	

optimises	 multiple	 objectives	 of	 profit,	 risk	 and	
environmental	burdens	or	criteria.	
	

+	 -	 -	

farmR	 Determine	 cropping,	 labour	 and	 machinery	 which	
optimises	profit,	risk	and	crop	complexities	
	

+	 -	 +	

MODAM	 Economic	and	ecological	benefits	of	farming	systems	
Simulation	 of	 trade-offs	 scenarios	 of	 economic	 and	
ecological	outcomes	of	farming	systems	
	

+	
	
	

-	
	
	

-	
	
	

FSSIM	 Assessment	of	agricultural	and	environmental	policies	on	
farm	performance	and	sustainable	indicators	at	the	farm	
level.	Optimisation	of	farm	income	and	risk.	
	

+	 -	 +	

FASSET	 Comparison	 with	 experimental	 data	 and	 exploring	
consequences	 of	 environmental	 and	 management	
changes	 for	 farm	 productivity	 and	 environmental	
impacts.	
	

-	 -	 -	

FarmDESIGN	 Configuration	 of	 farm	 types	 to	 show	 alternative	 farms	
with	best	economic	and	environmental	benefits	
Generating	 results	 of	 trade-offs	 between	 environmental	
and	economic	benefits	
	

+	
	
	
	
	

-	
	
	
	

-	
	
	
	

PALM	 Simulation	 of	 flows	 of	 carbon,	 water,	 N	 through	 and	
within	household	as	well	as	economic	and	labour	flows.	
	

-	 -	 -	

SWAP	 Optimisation	 of	 water	 use	 in	 agricultural	 production	 at	
the	state	level	

-	 -	 -	

MODERATO	 Simulations	of	irrigation	block	functioning.	
	

-	 -	 -	

CAPRI	 Assessment	 of	 the	 effect	 of	 the	 common	 agricultural	
policy	(CAP)	at	the	EU	level	
	

-	 -	 -	

A	plus	 (+)	 indicates	 that	 the	model	 is	 capable	 of	 generating	 a	 result	 on	 answers	 similar	 to	what	 a	 research	
objectives	 seek;	 a	 minus	 (-)	 means	 model	 not	 capable	 of	 generating	 results	 similar	 to	 what	 the	 research	
objectives	seek.	*	C2	=	Research	questions	asked	under	Chapters	2((1)	How	do	changes	 in	rainfall	at	a	 farm	
location	 and	 moving	 from	 one	 soil	 type	 to	 the	 other	 affect	 farming	 objectives?	 (2)	 How	 do	 changes	 in	 N	
fertiliser	under	different	soil	 types	and	rainfall	affect	the	arable	farming	objectives?	(3)	Can	increase	in	crop	
prices	influence	farmers	to	apply	N	above	N	max	and	forgo	the	Single	Farm	Payment	(SFP)	if	farmers	have	the	
right	to	do	so?	(4)	Is	there	any	difference	in	the	objectives	of	farms	applying	the	N	max	and	receiving	the	SFP	
and	those	who	may	apply	above	the	N	max	and	forgo	the	SFP?).	C4	=	Research	questions	asked	under	Chapters	
4	((1)	What	is	the	aggregate	cost	of	black-grass	control	to	the	UK	arable	farming	sector	using	winter	wheat—
spring	barley	rotation?	(2)	What	 is	the	aggregate	cost	of	black-grass	control	to	the	UK	arable	farming	sector	
using	 winter	 wheat—spring	 beans	 rotation?	 (3)	 Is	 there	 any	 effect	 of	 controlling	 black-grass	 with	 spring	
cropping	on	farm	risk?	(4)	What	are	the	effects	of	controlling	black-grass	with	spring	cropping	on	farm	costs?).	
C5	=	Research	questions	asked	under	Chapters	5	((1)	Are	arable	farmers	in	England	risk	averse?	(2)	Are	there	
any	differences	in	risk	aversion	across	regions	in	England?	(3)	Do	the	levels	of	risk	aversion	influence	cropping	
decisions?	(4)	What	is	the	effect	of	policy	change	on	farmers	with	different	levels	of	risk	aversion?).	

																																																								
5	The	capabilities	of	models	were	identified	based	primarily	on	literature.		
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The	 main	 objective	 of	 sustainable	 arable	 farming	 systems	 or	 arable	 farming	

systems	for	multiple	benefits	is	to	increase	food	production	to	ensure	food	security	

whiles	reducing	the	negative	externalities	 from	farming	systems	due	to	 intensive	

input	 use.	 However,	 farming	 systems	 underpinned	 by	 sustainable	 farming	

principles	 may	 be	 associated	 with	 lower	 productivity	 and	 high	 risk	 due	 to	

reductions	in	the	use	of	inputs	such	as	fertiliser	and	chemicals,	which	are	used	by	

farmers	 to	safeguard	crop	yield	but	could	 impact	negatively	on	 the	environment.	

Thus	for	such	farming	systems	to	be	adopted,	there	are	questions	that	need	to	be	

answered	or	addressed	in	terms	of	how	inputs,	output	and	policy	variations	affect	

arable	 farming	 outcomes;	 how	 adoption	 of	 sustainable	 farming	 strategies	 affect	

farming	outcomes	and	how	the	risk	aversion	behaviour	of	arable	farmers	influence	

cropping	 decisions	 and	 reaction	 to	 policy	 change.	 To	 be	 able	 to	 address	 such	

questions,	 a	 research	 framework	 through	 the	 use	 of	 mathematical	

modelling/programming	approach	is	used.		

The	research	framework	(simplified	in	Figure	1-6)	begins	with	exploration	

and	review	of	literature	(in	Chapter	1)	based	on	which	the	overall	research	aim	as	

well	as	the	research	questions	is	set.	The	exploration	and	literature	review	stage	is	

used	 to	 identify	 the	 type	 of	 inputs	 used	 in	 arable	 farming	 systems,	 farm	

managements/agronomic	 practices	 adopted	 by	 arable	 farmers,	 as	 well	 as	

environmental/farm	 specific,	 policy	 and	 environmental	 factors	 which	 influence	

farmer’s	decision	on	input	combination.	That	is,	the	framework	identifies	the	input	

used	by	arable	farmers	(e.g.	land,	seed,	labour,	machinery/fuel,	and	fertiliser),	the	

environmental/farm	 specific	 factors	 (e.g.	 soil	 type	 and	 rainfall),	 policy	 and	

economic	factors	(e.g.	nitrate	vulnerable	zones	directive,	farming	subsidies	(single	

farm	 payment,	 now	 basic	 farm	 payment),	 input	 and	 crop	 prices)	 and	 farm	

management	practices	(e.g.	crop	rotation,	sequential	operations).	The	level	of	farm	

inputs	such	as	fertilisers	and	chemicals	safeguard	crop	yields	whereas	seed	rates	

determine	the	crop	population	on	the	field	and	hence	potential	yield.	The	area	of	

land	available	to	the	farmer	determines	the	scale	of	production	and	hence	possible	

crop	 rotation	plan	 that	 can	be	adopted.	Farm/environmental	 factors	 such	as	 soil	

types	and	rainfall	influence	farm	planning	and	could	result	in	timeliness	penalties	
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as	well	as	determine	 the	 levels	of	other	 inputs	such	as	 fertilisers	 that	need	 to	be	

applied.	 Farm	policies	 influence	how	and	what	 farmers	 should	produce	whereas	

prevailing	crop	prices	influence	farming	decisions.	Consideration	of	such	factors	in	

farm	 analysis	 is	 vital	 and	 thus	 the	 effects	 of	 some	 of	 the	 factors	 identified	 on	

farming	objectives	are	further	investigated	in	Chapter	2	using	sensitivity	analysis.		

As	 part	 of	 research	 framework	 existing	 mathematical	 programming	

approaches	 are	 identified	 and	 the	 information	 informs	 the	 development	 of	 a	

suitable	model,	which	draws	on	the	strength	of	existing	approaches	and	models	to	

select	 and	 analyse	 multifunctional	 farming	 systems.	 The	 interactions	 between	

inputs,	the	farm	factors	and	farm	practices	identified	constitute	an	arable	farming	

system,	 and	 based	 on	 these	 the	 data	 needed	 for	 the	 research	 (farm	 data)	 are	

identified	and	collected.	An	arable	farm	level	model	consisting	of	 four	modules	 is	

thus	 developed	 (see	 Chapter	 3	 for	 more	 details)	 to	 help	 answer	 some	 of	 the	

questions	raised	above.	The	model	 is	defined	 to	generate	 the	data	 (results)	 from	

the	farm	data	(a	secondary	data).	The	model	is	validated	with	a	different	data	set	

from	 the	 Farm	 Business	 Survey	 (FBS)	 and	 the	 predicted	 results	 compared	with	

observed	data	as	presented	in	Chapter	3.	With	some	of	the	problems	in	sustainable	

arable	 farming	 identified	 as	 unknown	 outcomes	 of	 some	 adopted	 farming	

strategies,	 the	model	mixed-integer	 goal	 programming	model	 is	 then	 applied	 to	

investigate	 and	 answer	 questions	 with	 respect	 to	 the	 effect	 of	 using	 spring	

cropping	 as	 a	 black-grass	 (weed)	 control	 strategy	 on	 farm	 income	 and	 risk	 (see	

Chapter	4).	 	Also,	with	 risk	 aversion	behaviour	of	 farmers	vital	 in	 farm	planning	

and	decision	making	in	farming,	a	mixed-integer	risk	(MOTAD)	model	is	applied	to	

investigate	and	answer	questions	on	how	risk	aversion	influence	cropping	decision	

and	how	farmer	may	react	to	policy	change	(see	Chapter	5).		
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The	overall	aim	of	the	research	is	to	develop	a	modelling	tool	that	can	be	used	for	

evaluating	 the	 and	 economic	 as	 well	 as	 environmental	 (ecological)	 viability	 and	

riskiness	 of	 alternative	 cropping	 systems	 that	 may	 be	 adopted	 to	 deal	 with	

increased	 pressure	 on	 input	 use.	 Although	 the	 overall	 research	 aim	 is	 as	 stated	

above,	in	this	thesis	some	research	questions	were	answered	as	part	of	the	overall	

research	and	thesis	aims.	

Chapter	 2:	 Investigation	 of	 factors	 affecting	 arable	 farming	 profit,	 crop	

complexity	and	risk	under	the	single	farm	payment	policy	

In	 Chapter	 2,	 the	 effect	 of	 some	of	 the	 factors	 related	 to	 arable	 farming	 systems	

(identified	through	literature	review)	on	the	goals	or	objectives	of	arable	farming	

are	 investigated	 under	 the	 single	 farm	 payments	 policy	 through	 a	 sensitivity	

analysis	 with	 a	 focus	 on	 nitrate	 vulnerable	 zones.	 This	 is	 done	 under	 an	

assumption	that	farmers	have	been	given	the	right	to	apply	N	fertiliser	above	the	

prescribed	N	limits	and	forgo	the	single	farm	payment	if	they	choose	to	do	so.		

The	following	research	questions	are	answered:	

1. How	do	changes	in	rainfall	at	a	farm	location	and	moving	from	one	soil	type	

to	the	other	affect	farming	objectives?	

2. How	do	changes	in	N	fertiliser	under	different	soil	types	and	rainfall	affect	

the	arable	farming	objectives?	

3. Can	increase	in	crop	prices	influence	farmers	to	apply	N	above	N	max	and	

forgo	the	Single	Farm	Payment	(SFP)	if	farmers	have	the	right	to	do	so?		

4. Is	 there	 any	difference	 in	 the	objectives	 of	 farms	 applying	 the	N	max	 and	

receiving	the	SFP	and	those	who	may	apply	above	the	N	max	and	forgo	the	

SFP?		

Chapter	3:	Arable	farm	models	for	optimising	farm	profit,	nitrate	leaching	and	

risk:	Model	description,	verification	and	validation	

Models	need	to	be	validated	to	give	potential	model	users	some	level	of	confidence.	

Thus	 in	Chapter	3	 the	model	built	based	on	 the	overall	 research	aim	 is	validated	
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through	 statistical	 validation	 using	 the	 Farm	Business	 Survey	 (FBS)	 data	 of	 281	

lowland	arable	farms.		

The	following	research	questions	are	answered:	

1. What	is	the	degree	of	association	between	model	predicted	crop	areas	and	

observed	crop	areas	(land	use)?	

2. What	 is	 the	 degree	 of	 association	 between	 model	 predicted	 fertiliser	

amounts	and	observed	fertiliser	amounts	(input	use)?	

3. What	is	the	degree	of	association	between	model	predicted	revenues/costs	

and	observed	revenues/cost?	

Chapter	4:	Sustainable	weed	control	with	rotational	management:	Estimating	

the	 aggregate	 cost	 of	 controlling	 black-grass	 (Alopecurus	myosuroides)	with	

spring	cropping	in	UK	arable	farming	

Weed	management	is	very	important	in	arable	farming	systems	due	to	their	impact	

on	farm	productivity.	In	the	UK	the	control	of	black-grass	through	chemical	means	

normally	become	ineffective	due	to	the	weed	constantly	developing	resistance	to	a	

variety	of	herbicidal	active	ingredients.	As	a	result,	the	use	of	non-chemical	control	

strategies	such	as	spring	cropping	is	being	encouraged	to	ensure	sustainable	weed	

management	 in	 arable	 fields.	 Thus	 in	 Chapter	 4,	 the	 mixed-integer	 goal	

programming	module	of	the	model	developed	as	part	of	the	overall	research	aim	is	

applied	 to	 estimate	 the	 aggregate	 cost	 of	 black-grass	 control	 using	 crop	 rotation	

with	spring	cropping.	

The	following	research	questions	are	answered:	

1. What	is	the	aggregate	cost	of	black-grass	control	to	the	UK	arable	farming	

sector	using	winter	wheat—spring	barley	rotation?	

2. What	is	the	aggregate	cost	of	black-grass	control	to	the	UK	arable	farming	

sector	using	winter	wheat—spring	beans	rotation?	

3. Is	 there	any	effect	of	controlling	black-grass	with	spring	cropping	on	farm	

risk?	

4. What	are	the	effects	of	controlling	black-grass	with	spring	cropping	on	farm	

costs?	
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5. Is	there	any	policy	implication	of	the	results?	

Chapter	 5:	 Risk	 in	 agriculture:	 Modelling	 spatially-referenced	 farmer	 risk	

behaviour	using	an	evolved	mixed-integer	MOTAD	approach	

Risk	 aversion	 influences	 farming	 decision	 and	 policy	 and	 thus	 in	 Chapter	 5	 the	

mixed-integer	MOTAD	module	of	 the	model	developed	as	part	of	 this	 research	 is	

applied	 to	 estimate	 risk	 aversion	 coefficients	 using	 data	 of	 arable	 farmers	 in	

England	 and	 randomly	 generated	 risk	 aversion	 parameters.	 Also,	 policy	 analysis	

relevance	of	 the	method	applied	as	well	as	 the	 reaction	 to	policy	 changes	due	 to	

differences	in	risk	aversion	is	demonstrated.	

The	following	questions	are	answered:	

1. Are	arable	farmers	in	England	risk	averse?	

2. Are	there	any	differences	in	risk	aversion	across	regions	in	England?	

3. Do	the	levels	of	risk	aversion	influence	cropping	decisions?	

4. What	 is	 the	effect	of	policy	change	on	 farmers	with	different	 levels	of	risk	

aversion?	

	

 

This	section	presents	the	research	data	needs	informed	by	data	used	in	the	models	

identified	 through	 literature	 review.	 The	 research	 used	 farm	 management	 data	

(FMD)	 mainly	 from	 farm	 management	 literature	 and	 existing	 models,	

supplemented	by	data	 from	 the	UK	Farm	Business	Survey	 (FBS)	and	biophysical	

data	from	existing	models.	Some	of	the	data	identified	in	the	other	models	were	at	

the	farm	level	whereas	others	were	at	the	regional	 level.	 	Other	model	data	were	

from	pilot	or	experimental	 farms	(see	Table	1-7	under	Chapter	Appendix	 for	 the	

data	used	in	some	of	the	models	identified).	The	research	data	needs	in	relation	to	

the	overall	research	aim	and	thesis	aims/research	questions	under	Section	1.6	are	

summarised	in	Table	1-5.		
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Table	1-5:	Data	needs,	sources	and	collection	methods	in	relation	to	research	questions	

Overall	aim	of	
research/thesis	aims	

Data	needs	 Data	sources	 Methods	of	
collection	

Overall	aim	of	the	research	 	 	 	
Develop	a	farm	level	mathematical	
(optimisation)	model	that	can	be	
used	to	evaluate	economic	as	well	
as	ecological/environmental	
viability	and	riskiness	of	
alternative	cropping	systems.		

Farm	management	data,	e.g.	
yield,	price	and	cost	data,	
subsidy	payments	

Soil	type,	Rainfall	data	

Machine	work	rate	for	farm	
operations	

Workable	hours	

Model	formulation	and	
programming	information	

Farm	
management	
pocket	book,	
Farm	Business	
Survey	(FBS),	
agriculture	
literature,	
existing	model	
data	(e.g.	farmR	
model	data)	

Literature	review,	
Secondary	data,	
Communication	
with	model	
development	
experts	

	

Thesis	aims/research	questions	 	 	 	

1	 Chapter	2:	What	are	the	
factors	affecting	arable	
farming	objectives?	

Data	on	N	fertiliser	limits	in	
Nitrate	Vulnerable	Zones	

Defra,	farmR	
Model	and	data	

Literature	review,	
Secondary	data	

2	 Chapter	3:	What	are	the	
degrees	of	association	
between	model	predicted	
results	and	observed	data?	

Farm	output	data,	Farm	and	
crop	area	data,	soil	type	and	
rainfall.	Information	on	
validation	

FBS,	Met	Office,	
Soilscapes®	
website	

Literature	review,	
Secondary	data	

	

3	 Chapter	4:	What	is	the	
aggregate	cost	of	black-
grass	control	with	spring	
crops	in	UK	arable	farming?	

Data	on	input	use,	farm	
output	data,	soil	type,	
rainfall,	rotation	plans	

FBS,	Farm	
management	
pocket	books,	
Data	from	farmR	
model	

Literature	review,	
Secondary	data	

BGRI	project	
(http://bgri.info/)	

4	 Chapter	5:	How	do	farmers’	
risk-aversion	behaviours	
influence	their	decision?	
	

Data/information	on	
farmers	risk	preferences,	
crop	yield	and	price	data,	
soil	type	and	rainfall	data	

Literature,	FBS	
data,	Met	office,	
Soilscapes®	
website	

Literature	review,	
Secondary	data	

	

 

• Sustainable	 farming	 systems	 rely	 on	 efficient	 farm	management	 practices	

and	 resource	 use.	 Therefore,	 the	 development	 of	 robust	 multifunctional	

arable	 farming	 systems	 should	 be	 underpinned	 by	 the	 principles	 of	

sustainability.	This	will	enhance	the	production	of	more	and	quality	food	to	

ensure	 food	 security	without	 damaging	 the	 environment	 for	 both	 current	

and	future	generations.	

• Efficient	crop	rotation	can	be	pivotal	in	sustainable	arable	farming	systems.	
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• Complexities	 exist	 in	 arable	 farming	 systems	 in	 terms	 of	 field	 operations,	

input	 use,	 farm	management	 practices,	 and	 farm	 outputs.	 Arable	 farming	

systems	 are	 also	 associated	 with	 risks	 in	 terms	 of	 crop	 type,	 yield	 and	

prices,	 adoption	 of	 new	 farming	 systems	 and	 technology.	 Trade-offs	 are	

normally	 between	 economic	 and	 environmental	 goals	 as	well	 as	 between	

farm	income	and	risk.	

• Different	 types	of	mathematical	modelling	 approaches	 exist,	 and	 each	has	

its	 strength	 and	 limitations.	 When	 modelling	 arable	 farming	 systems,	

different	approaches	can	be	combined	to	draw	on	their	strengths	 in	order	

to	develop	a	more	robust	model.	

• In	the	case	of	the	UK,	not	many	arable	farm	models	based	on	optimisation	

approaches	were	identified	and	even	those	identified,	it	was	the	SFARMOD,	

which	was	 found	 to	 have	 included	 environmental	 aspects	 such	 as	 nitrate	

leaching.	 There	 is	 thus	 model	 capability	 gap	 and	 the	 need	 for	 further	

research.		
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Table	1-6:	Model	packages/framework	examples	

References	 Model	 Model	information	
van	Ittersum	et	al.	(2008)	
	
SEAMLESS	 Project:	 www.seamless-
ip.org	

SEAMLESS-IF	
(Environmental	and	
Agricultural	Modelling:	
Linking	European	Science	
and	Society	Integrated	
Framework)	
	

This	is	a	modelling	framework	part	which	aims	at	integrated	framework	to	support	integrated	assessment	of	
agricultural	 systems	 at	 different	 scales,	 and	 to	 provide	 analytical	 capabilities	 for	 economic,	 environmental,	
social	and	institutional	aspects	of	agricultural	systems.	Thus,	it	focuses	on	agricultural	land-use	activities	and	
their	 interactions	 with	 the	 environment,	 economy	 and	 rural	 development.	 	 Its	 components	 include	 a	
quantitative	model,	database,	indicators	and	software	infrastructure.	
	

Britz	et	al.	(2007)	 CAPRI	 It	is	a	EU	quantitative	agricultural	sector	modelling	system	with	the	main	objective	of	assessing	the	effect	of	
the	 CAP	 policy	 instruments	 at	 the	 EU,	 member	 state	 and	 sub-national	 levels.	 	 It	 consists	 of	 databases,	 a	
methodology,	software	for	implementation	and	development,	maintenance	and	applications	team.	CAPRI	also	
allows	the	comparability	of	its	results.		
The	model	reports	are	presented	in	interactive	maps	and	the	technical	solution	is	based	on	GAMS	modelling	
language.	The	graphical	user	interface	(GUI)	is	now	in	C,	interacting	with	FORTRAN	code	and	libraries,	which	
deal	with	database	management.	
	

Dogliotti	et	al.	(2003)	 ROTAT	 This	was	designed	to	generate	crop	rotation	based	on	agronomic	criteria	and	it	does	that	by	combining	crops	
from	a	predefined	list	to	generate	all	possible	rotations.	The	possible	number	of	crop	combinations	is	limited	
by	 a	 number	 of	 user-controlled	 filters,	 which	 are	 designed	 based	 on	 expert	 knowledge	 to	 eliminate	 crop	
successions,	 which	 are	 agronomically	 feasible.	 If	 no	 limitations	 are	 imposed,	 ROTAT	 can	 generate	 71,824	
rotations	varying	from	one	to	six	years.	
	

Backinger	and	Zander	(2007)	 ROTOR	 ROTOR	targets	nitrogen	(N),	weed	management	and	phytosanitory	issues	using	rule-based	static	approach.	It	
has	some	similarities	with	ROTAT.	ROTOR	works	by	putting	together	a	set	of	crop	production	activities	semi-
automatically	from	a	site	and	crop	specific	field	operations	using	a	database.	It	then	generates	all	the	possible	
sequences	 of	 crop	 production	 activities	 from	within	 the	 crop	 generation	module,	 linked	 to	 3-8	 year	 initial	
crop	rotations.	
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Table	1-6	Continued	

References	 Model	 Model	information	
Berntsen	et	al.	(2003)	
	
FASSET	website:	http://www.fasset.dk/	
	
	

FASSET	 This	is	a	whole	farm	dynamic	model	used	to	evaluate	results	of	changes	in	regulations,	management,	prices	
and	subsidies	on	a	 range	of	 indicators	 for	 sustainability	at	 the	 farm	 level.	 It	has	 two	major	components—
planning	 (based	on	LP)	and	simulation	modules.	The	planning	module	generates	management	plans	 to	be	
implemented	 annually	 and	 simulated	 afterwards.	 The	 simulation	 results	 are	 used	 as	 environmental	 and	
economic	indicators.	The	simulation	is	implemented	in	C++.	
	

Howitt	et	al.	(2010)	
Howitt	et	al.	(2012)	

SWAP	 It	 is	a	PMP	model	of	California	 irrigated	agriculture,	which	 is	multi-input	and	output	model	of	agricultural	
production.	The	model	can	calibrate	itself	using	PMP	to	a	base	year	of	land	use	and	input	allocation	data	by	
using	exogenous	elasticities	and	assumed	profit	maximisation	behaviour	of	farmers.	The	model	covers	more	
than	93%	of	 irrigated	agriculture	 in	California.	 In	SWAP,	non-linear	cost	 function	is	calibrated	to	observed	
values	of	 input	use	in	agricultural	production.	It	 is	written	in	the	GAM	software	language	and	solved	using	
the	non-linear	third	party	solver,	CONOPT-3.	Through	SWAP,	water	managers	and	policy	makers	get	insight	
into	the	economics	of	water	use	and	agricultural	production	at	the	state	level.	
	

Matthews	(2006)	
	
Website:	
http://www.macaulay.ac.uk/PALM/	

PALM	 It	 is	 an	 object-oriented	 programming,	 which	 consists	 of	 a	 number	 of	 agents	 representing	 households,	
landscape	and	livestock.	The	landscape	is	made	up	to	a	number	of	similar	land	units,	each	represented	by	an	
object	 containing	 data,	 methods	 and	 properties	 applicable	 to	 the	 field.	 The	 model	 is	 spatially	 explicit;	
operates	at	the	landscape	level	and	it	is	constructed	as	a	number	of	nested	classes	and	simulates	the	flows	of	
carbon,	water	 and	N	 through	 and	within	 households	 as	well	 as	 economic	 and	 labour	 flows.	 The	model	 is	
written	in	Delphi	and	runs	on	a	daily	time-step	using	daily	weather	data	as	driving	variables.	
	

Bergez	et	al.	(2001)	
Bergez	et	al.	(2012)	

MODERATO	 This	is	bio-decisional	model	developed	to	simulate	an	irrigation	block	functioning	and	for	irrigation	advisors	
to	 address	 irrigation	 at	 the	 block	 level	 with	 limited	 amount	 of	 irrigation	 water.	 It	 includes	 the	 main	
constraints	related	to	irrigation	and	simulates	the	plant-soil	system	with	a	dynamic	biophysical	model	taking	
into	 consideration	 the	 in-field	 variability	 that	 results	 for	 sequentially	 irrigating	 the	 plots	 in	 a	 block	 of	
irrigation.	
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Table	1-7:	Data	used	in	existing	models	

Reference	 Model	 Data	used	in	model	 Data	
availability	

Remarks	

Annetts	and	Audsley	
(2002);	Rounsevell	et	al.	
(2003)	
	

SFARMOD	 MAFF	 data	 (based	 on	 annual	 census	 data,	
secondary	crop	data,	soil	data	
	

-	 MAFF	data	not	available	but	crop	data	can	be	obtained	from	FBS,	FMD.		

Cooke	et	al.	(2013)	 farmR	 FBS	 (149	 low	 land	 arable	 farms	 in	 England	
and	Wales)	
	
Farmer	 interview	 (stated	 preferences	 on	
risk)	
	

+	
	
	
-	

FBS	data	can	be	parameterised	at	the	farm	level	
	
	
Data	on	farmers	preferences	on	risk	needed	(not	used).	

Zander	 and	 Kächele	
(1999)	
	

MODAM	 Farm	data	from	different	regions	
	Data	 from	 32	 farms	 in	 one	 region	 and	 40	
farms	in	another	region	
	

-	 Data	pertains	to	Germany	but	can	inform	research	data	needs	

Louhichi	et	al.	(2010)	 FSSIM	 Farm	 Accountancy	 Data	 Network	 (FADN)	
data	
	
Farm	survey	data	
	

+	
	
	
-	

FADN	can	be	obtained	when	needed	and	can	be	parameterised	at	the	farm	
level.	
	
Survey	data	specific	for	France	and	Netherlands	

Howitt	et	al.	(2012)	
	

SWAP	 Agricultural	production	data	from	27	regions	
in	California	
	

-	 Data	 may	 not	 be	 applicable	 in	 the	 UK	 but	 its	 information	 can	 inform	
research	data	needs	

Berntsen	et	al.	(2003)	
	

FASSET	 Data	from	Danish	Farm	Account	Statistics	 +	 Data	shares	some	similarities	with	the	FBS	but	it	pertains	to	Denmark	

Dogliotti	et	al.		(2003)	
	

ROTAT	 Farm	data	from	10	pilot	farms	 -	 Data	was	obtained	from	experimental	farms		

Note:	The	plus	 (+)	 in	data	availability	 column	 indicates	 that	some	components	of	 the	model	data	are	similar	 to	some	components	of	 the	Farm	Business	Survey	(FBS)	and	can	be	

obtained.	The	minus	(-)	indicates	data	does	not	pertain	to	the	UK,	but	either	informs	research	data	needs	or	may	not	be	possible	to	obtain.	
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“That's	what	the	Single	Farm	Payment	is	all	about.	If	farmers	got	that	payment	

on	time,	maybe	they	could	afford	tractors	with	lower	emission	engines	and	

that	sort	of	thing.”	

																																																										―	Richard	Haddock	
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In	 the	 preceding	 chapter,	 a	 review	 of	 literature	 on	 sustainable	 agriculture	 was	

conducted	 to	 identify	 some	 of	 the	 farm	 management	 practices	 and	 policies,	

objective/goals,	 complexities	and	 trade-off	examples	 related	 to	 sustainable	 farming	

systems,	which	can	be	incorporated	into	farm	models.	Also	a	review	of	mathematical	

programming	 approaches	 and	 existing	 models	 was	 conducted	 to	 identify	 gaps	 in	

modelling	 approaches	 and	 model	 capabilities.	 The	 review	 showed	 the	 existence	 of	

modelling	 approaches	 and	 model	 capability	 gaps	 and	 in	 the	 UK	 context,	 with	

exception	 of	 the	 SFARMOD	 and	 farmR	models,	 not	many	 arable	 farm	 level	models	

were	identified.	Thus	there	is	the	need	for	research	to	develop	a	model,	which	draws	

on	 the	 strength	 of	 the	modelling	 approaches	 and	 existing	models	 and	 incorporate	

some	of	the	factors	of	production	and	farm	management	practices	identified.	

Again	as	part	of	the	model	development	aim	of	this	research,	in	this	chapter,	

some	 of	 the	 factors	 related	 to	 arable	 farming	 systems	 such	 as	 soil	 type,	 rainfall,	

nitrogen	 fertiliser	 application,	 crop	 price,	 Single	 Farm	 Payment	 (SFP),	 identified	

through	 literature	 review	 are	 further	 investigated	 quantitatively	 in	 the	 context	 of	

Nitrate	 Vulnerable	 Zones	 (NVZs)	 and	 under	 different	 soil-rainfall	 interactions	 to	

examine	 their	 effect	 on	 arable	 objectives.	 The	 selected	 factors	 normally	 serve	 as	

model	parameters	or	constraints	in	farm	models	and	impact	on	model	results,	hence	

the	need	to	investigate	their	effect	on	farming	objectives.	Also,	in	terms	of	sensitivity	

analysis	studies	with	respect	to	the	selected	factors,	 farming	objective,	optimisation	

models,	soil-rainfall	interaction,	NVZs	and	SFP,	not	many	were	identified	especially	in	

UK	 context,	 hence	 the	 need	 for	 the	 study.	 	 Part	 of	 the	 aim	 of	 this	 chapter	 is	 to	

investigate	whether	or	not	farmers	will	be	better	off	applying	more	nitrogen	fertiliser	

above	 the	 prescribed	 amounts	 for	 NVZs	 to	 increase	 crop	 yield	 if	 they	 are	 given	

permission	to	forfeit	the	SFP	and	apply	more	nitrogen	fertiliser.		

A	version	of	the	study	presented	in	this	chapter	was	submitted,	accepted	and	

presented	 at	 the	 89th	Annual	 Conference	 of	 the	Agricultural	 Economics	 Society	 on	

13th	April	2015.		
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Kwadjo	Ahodo,	Robert	P.	Freckleton,	David	Oglethorpe	
	
	

In	this	chapter	we	investigate	the	effect	of	variations	in	soil	type,	rainfall,	nitrogen	

(N)	fertiliser	amount	and	crop	prices	on	the	objectives	of	arable	farms	operating	in	

Nitrogen	Vulnerable	Zones	 (NVZs)	and	receiving	 the	Single	Farm	Payment	 (SFP).	

Sensitivity	 analysis	 was	 carried	 out	 using	 a	 mixed-integer	 programming	 (MIP)	

arable	 farm	 model	 (farmR).	 The	 farmR	 model	 estimates	 three	 arable	 farming	

objectives	of	interest:	farm	profit,	crop	complexity	and	risk.	Applying	the	2014	SFP	

flat	 rate	 and	 the	 maximum	 N	 limits	 (N	 max)	 values	 (prescribed	 in	 the	 NVZ	

guidelines)	to	each	crop,	N	max	was	varied	under	different	soil	types	and	rainfall	

interactions.	Crop	prices	were	also	varied	to	illustrate	the	effectiveness	of	the	SFP	

under	a	scenario	of	high	crop	prices.	The	results	showed	that	although	applying	N	

above	N	max	 increases	 farm	productivity	 under	 all	 soil	 and	 rainfall	 interactions,	

under	a	scenario	where	farmers	have	been	given	the	right	do	so	and	forgo	the	SFP,	

would	reduce	farm	productivity	and	increase	risk.	The	SFP	thus	acts	as	a	payment	

for	 the	 opportunity	 cost	 to	 farms	 for	 not	 being	 able	 to	 apply	 N	 above	 N	 max.	

However,	 under	 a	 scenario	 of	 crop	 price	 increases,	 applying	 above	 N	 max	 and	

forfeiting	the	SFP	could	generate	higher	productivity	than	at	the	N	max	level.		

	

 

Agricultural	policy	instruments	have	been	designed	to	regulate	production,	make	it	

more	 efficient	 and	 sustainable	 by	 promoting	 efficient	 input	 use	 or	 to	 provide	

financial	 support	 to	 farmers.	 Regulation,	 government	 intervention	 or	 changing	

policy	 in	 agriculture	 is	 probably	 the	most	 critical	 driver	 in	 agricultural	 land	 use	

due	 to	 its	 influence	on	what	and	how	farmers	can	produce	(Halloran	and	Archer	

2008;	Angus	et	al.,	2009).	In	the	UK,	one	such	policy	instrument	is	the	Single	Farm	

Payment	 (SFP)	 under	 the	 Common	 Agricultural	 Policy	 (CAP),	 which	 provides	
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financial	support	to	arable	farmers.	In	order	to	receive	this	payment,	farmers	are	

required	 to	 adopt	 environmentally	 friendly	 agronomic	 practices	 or	 technologies	

with	 the	 aim	 of	 making	 arable	 farming	more	 sustainable.	 For	 arable	 farmers	 to	

receive	 the	 SFP,	 some	 Statutory	 Management	 Requirements	 (SMRs)	 have	 to	 be	

satisfied	and	the	farmland	has	to	be	kept	in	Good	Agricultural	and	Environmental	

Condition	(GAEC)	(Nix,	2014).	

Under	some	circumstances	GAEC	can	only	be	achieved	if	the	application	of	

inputs	such	as	nitrogen	(N)	 fertiliser	 is	restricted.	 In	NVZs	there	are	 limits	 to	the	

amount	 of	 N	 that	 can	 be	 applied	 (Defra,	 2013).	 However,	 reduced	 N	 inputs	 can	

clearly	lead	to	reduced	crop	yields	and	hence	profit	margins.	Thus,	shifting	to	more	

sustainable	 arable	 farming	 systems	 through	 the	 adoption	 of	 new	 agronomic	

technologies	 or	 practices	 under	 the	 SFP	 policy	 could	 influence	 input	 as	 well	 as	

outputs	levels,	which	in	turn	could	influence	the	farming	objectives	whether	profit	

or	non-profit	(Clark	et	al.,	1999;	Halloran	and	Archer,	2008;	Hanson	et	al.,	2008).	

Bojnec	 and	 Latruffe	 (2013)	 found	 that	 the	 provision	 of	 subsidies	was	 negatively	

related	to	the	technical	efficiency	but	positively	related	to	farm	profitability.	In	this	

study,	the	effects	of	variations	in	soil	types,	rainfall,	N	amounts	and	crop	prices	on	

the	objectives	of	arable	farms	in	NVZs	receiving	the	SFP	are	investigated.		

Apart	 from	 policies	 such	 as	 SFP	 influencing	 the	 farming	 decision	 through	

the	 adoption	 of	 SMRs	 and	 GAEC,	 farm	 specific	 and	 climatic	 factors	 such	 as	 soil	

types	 and	 rainfall	 and	 economic	 factors	 such	 as	 crop	 prices	 could	 also	 influence	

input	 use.	 In	 NVZs,	 to	 receive	 the	 SFP,	 farmers	 are	 constrained	 by	maximum	 N	

amounts	 limits	 (N	 max)	 prescribed	 in	 the	 NVZ	 guidelines	 although	 some	 farms	

may	be	allowed	to	apply	slightly	above	N	max	(Defra,	2013).	Factors	such	as	soil	

type,	 prevailing	 rainfall	 could	 determine	 the	 amount	 of	 N	 to	 apply	 and	 in	 turn	

influence	 farmers	 to	 apply	 either	 above	 or	 below	 the	 N	 max.	 This	 implies	 that	

under	the	SFP	scheme,	variation	in	N	amount	influenced	by	the	above-mentioned	

factors	 could	 impact	 on	 farm	 productivity	 or	 farming	 objectives.	 Also,	 economic	

factors	 such	 as	 crop	 prices	 have	 direct	 relationship	 with	 farm	 productivity	 and	

therefore	 could	 influence	 farmers’	 decision	 on	 input	 use.	 Again,	 variation	 or	

volatility	 in	 crop	 prices	 can	 increase	 the	 risk	 faced	 by	 farmers	 (Harwood	 et.	 al.,	

1999).	 Thus,	 how	 do	 variations	 in	 these	 factors	 affect	 the	 arable	 farming	
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objectives?	 How	 different	 are	 the	 objectives	 of	 farms	 applying	 the	 N	 max	 and	

receiving	 the	 SFP	 and	 those	who	may	 apply	 above	 the	N	max	 and	 forgo	 the	 SFP	

assuming	farmers	have	been	given	the	right	to	do	so?	Can	increase	in	crop	prices	

influence	 farmers	 to	apply	N	above	N	max	and	 forgo	 the	SFP	 if	 farmers	have	 the	

right	to	do	so?		

Soil	types	and	rainfall	are	farm	location	specific	and	affect	the	scheduling	of	

farm	operations	leading	to	yield	reductions	due	to	timeliness	penalties	(Webster	et	

al.,	 1977;	 Reith	 et	 al.,	 1984;	 Rounsevell	 et	 al.,	 2003;	 Cooke	 et	 al.,	 2013).	 Soil	

characteristics	such	as	soil	depth,	water	holding/retention	capacity,	bulk	density,	

nutrient	levels	and	organic	matter	define	the	soil	type,	which	in	turn	determines	its	

suitability	for	supporting	certain	farm	enterprise	(Draycott	and	Bugg	1982;	Reith	

et	al.,	1984).	Variations	in	rainfall	have	been	found	to	cause	variations	in	yield	and	

hence	 affect	 farm	profitability	 and	make	 farming	 business	 risky	 (Peterson	 et	 al.,	

1990;	Rao	et	al.,	2011;	Brown	et	al.,	2013).	With	the	effects	of	climate	change	and	

soil	degradation	on	rainfall	patterns	and	soil	fertility	respectively,	it	is	important	to	

understand	mechanistically	how	changes	in	rainfall	at	a	farm	location	and	moving	

from	one	soil	type	to	the	other	affect	farming	objectives.	

Changes	in	fertiliser	amounts	have	been	found	to	affect	crop	yield,	which	is	

a	 significant	 determinant	 of	 farm	 profit	 (e.g.	 Greenwood	 et	 al.,	 2001;	 Sylvester-

Bradley	et	al.,	2008;	Zhang	et	al.,	2009;	Jannoura	et	al.,	2014).	However,	the	effect	

of	 fertiliser	 on	 crop	yields	has	 a	diminishing	 effect	with	 increasing	use.	 From	an	

economic	 viewpoint,	 in	 order	 to	maximise	 profit,	marginal	 revenue	 obtained	 for	

applying	fertiliser	on	a	crop	must	equal	the	marginal	cost	of	applying	the	fertiliser	

(Farquharson,	 2006).	 Thus,	 in	 this	 chapter	 we	 seek	 answers	 to	 the	 following	

question:	 how	 do	 changes	 in	 N	 fertiliser	 under	 different	 soil	 types	 and	 rainfall	

affect	the	arable	farming	objectives?		

The	 effects	 of	 soil	 types,	 rainfall	 and	 N	 fertiliser	 on	 farming	 objectives	

especially	 through	 crop	 yield	 variability	 detailed	 by	 other	 studies	 are	 normally	

tested	using	field	experiments	(e.g.	Sylvester-Bradley	et	al.,	2008),	biophysical	crop	

response	 (e.g.	 Zhang	 et	 al.,	 2009)	 or	 econometric/statistical	 (e.g.	 Browne	 et	 al.,	

2013)	models.	Such	analyses,	based	on	the	results	of	field	trials	and	data,	are	useful	
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in	highlighting	possible	short-term	effects,	but	less	useful	in	generating	long-term	

predictions	or	considering	the	effects	of	varying	multiple	parameters	at	the	same	

time.	However,	optimisation	or	 linear	programming	based	 farm	models	have	 the	

capability	to	generate	long-term	predictions	by	capturing	many	of	the	complexities	

in	 arable	 farming	 systems	 and	 also	 providing	 a	 framework	 for	 organising	

quantitative	 information	 about	 the	 supply	 side	 of	 agriculture	 at	 different	 levels	

(Hazell	 and	 Norton,	 1986).	 Again,	 with	 farm	models	 a	 much	 wider	 spectrum	 of	

alternative	 conditions	 as	 well	 as	 external	 factors	 such	 as	 policy	 and	 farm	

environment	can	be	examined	mathematically	(ten	Berge	et	al.,	2000).		

Farm	models	have	been	developed	as	part	of	the	efforts	to	promote	efficient	

farm	management	to	help	in	decision-making	at	the	farm	as	well	as	to	explore	the	

effects	 of	 changing	 external	 factors.	 Such	models	 include	 arable	 farming	 system	

factors	as	parameters.	 It	 is	 therefore	 imperative	 to	 investigate	how	 these	 factors	

affect	 the	 farming	objectives	with	respect	 to	 the	arable	 farming	objectives.	 In	 the	

farmR	model,	fertiliser	amount	serves	as	an	input	parameter	with	N	fertiliser	used	

in	 the	 determination	 of	 simulated	 crop	 yields	 with	 exception	 yield	 for	 the	

leguminous	 crops.	 Soil	 types	 and	 rainfall	 serve	 as	 constraint	 parameters,	 which	

affect	 the	sequencing	of	crop	rotation,	 farm	operations	and	scheduling	 leading	to	

yield	 reduction	 due	 to	 rotational	 and	 timeliness	 penalties.	 Thus,	 changes	 in	 the	

parameters	 in	 farmR	can	result	 in	 the	variations	of	 the	arable	 farming	objectives	

estimated	by	the	model.	

In	summary,	variations	in	soil	type,	rainfall,	N	fertiliser	and	crop	prices	have	

been	found	to	influence	farm	productivity	and	hence	farming	objectives.	Fertiliser	

amount	 can	 affect	 the	 arable	 farming	 objectives	 through	 yield	 and	 farm	 cost	

variability.	There	is	therefore	the	need	to	investigate	the	effect	of	 its	variation	on	

the	arable	farming	objectives.	Although	the	literatures	reviewed	above	give	insight	

or	some	evidence	into	how	variations	in	the	above-mentioned	factors	affect	arable	

farming	productivity	and	hence	 the	 farming	objectives,	 the	 findings	are	normally	

based	on	field	experiments	which	seek	to	measure	effect	on	crop	yield.	Also,	with	

respect	 to	 the	 SFP,	 studies	 that	 link	 it	 to	 the	 interactions	 and	 variations	 in	 the	

above-mentioned	 factors	 are	 still	 lacking.	 Therefore,	 investigating	 the	 effect	 of	

farm	and	economic	 factors	on	the	arable	 farming	objectives	under	 farm	payment	
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policy	using	an	arable	 farm	model	(farmR)	fit	 the	purpose	of	 this	chapter.	 In	this	

chapter,	 we	 attempt	 to	 answer	 the	 questions	 raised	 above.	 The	 study	 research	

questions	can	be	summarised	as	follows:	

1. How	do	changes	in	rainfall	at	a	farm	location	and	moving	from	one	soil	type	

to	the	other	affect	farming	objectives?	

2. How	do	changes	in	N	fertiliser	under	different	soil	types	and	rainfall	affect	

the	arable	farming	objectives?	

3. Can	increase	in	crop	prices	influence	farmers	to	apply	N	above	N	max	and	

forgo	the	SFP	if	farmers	have	the	right	to	do	so?		

4. Is	 there	 any	difference	 in	 the	objectives	 of	 farms	 applying	 the	N	max	 and	

receiving	the	SFP	and	those	who	may	apply	above	the	N	max	and	forgo	the	

SFP?		

	

 

 FarmR	model	structure	

This	section	gives	a	brief	description	of	 the	 farmR	model.	Detailed	description	of	

the	model	design	and	description	of	 the	model	objectives	and	parameters	can	be	

found	 in	 Cooke	 et	 al.	 (2013).	 The	 farmR	model	 is	 a	mixed-integer	 programming	

(MIP)	 implementation	 of	 previous	 models	 by	 Annetts	 and	 Audsley	 (2002)	 and	

Rounsevell	 et	 al.	 	 (2003).	 It	 is	 based	 on	 the	 assumption	 that	 a	 selected	 decision	

optimises	a	weighted	contribution	of	all	relevant	objectives.	The	model	optimises	

the	overall	farmers’	utility,	which	comprises	multiple	objectives	and	each	objective	

is	 the	 sum	 of	 contribution	 from	 each	 of	 the	 quantities	 of	 the	 various	 units.	 The	

three	main	objectives	investigated	by	Cooke	et	al.	(2013)	were	adopted:	profit,	risk	

and	 crop	 complexity,	 which	 according	 to	 Cooke	 et	 al.	 were	 ranked	 as	 the	 three	

most	 important	 objectives	 respectively	 by	 farmers.	 The	model	 is	 summarised	 in	

Figure	 2-1	 below	 in	 terms	 of	 the	 assumptions,	 objectives	 and	 constraints	which	

come	together	to	form	the	model	as	well	as	the	model	type	of	output	generated	by	

the	model.	
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Figure	2-1:	Flow	diagram	representation	of	the	farmR	model	

	

	

MODEL ASSUMPTIONS
• A	selected	decision	optimises	expected	

contribution	of	all	objectives.
• Crop	yields	(t/ha)	are	functions	of	N	

fertiliser	rate	(kg/ha)	 and/or	soil	type
• Gross	margin	(£/ha)	 =	Output	(£/ha)	 less	

Variable	Cost	(£/ha)
• Subsidy	payment	(£/ha)	 	=	Pre	2005	farm	

payment	based	on	the	type	of	enterprise
• Variable	cost	(£/ha)	comprises	seed,	

fertiliser	and	chemical	 costs
• Operations	cost	(£/ha)	=	fuel	 cost	based	on	

machine	work	rate
• Work	rates	(h/ha)	are	 function	of	soil	type,	

seed	rates	fertiliser	rates,	crop	yields	and	
machine	sizes.

• Sub-optimal	operations	and	rotations	are	
associated	with	timeliness	and	rotational	
penalties	expressed	as	cost	(£/ha).

• Fixed	cost	(£)	=	Annual	depreciation,	
repair	and	labour	costs.

• Profit	(£)	=	Gross	margin	less	operation	
and	fixed	cost.

• Risk	(£)	=	Standard	deviation	in	income.
• All	 farms	are	operating	 in	nitrate	

vulnerable	zones	(NVZs).
• The	regulator	of	NVZs	has	given	farmers	

the	choice	to	increases	prescribed	N	
fertiliser	levels	 (Nmax)	 by	more	than	10%	
and	forgo	the	SFP.

• Sensitivity	analysis	is	carried	out	by	
varying	parameters	with	respect	to	crops	
simultaneously.

MODEL CONSTRAINTS
• Workable	hours	

constraints
• Sequential	 and	non-

sequential	operations	
constraints

• Crop	sequencing	
constraints

• Crop	proportion	
constraints

• Total	 land	area	
constraints

MODEL OBJECTIVES
• Maximise	 farm	profit.
• Minimise	risk	

(deviation	in	income)
• Minimise	crop	

management	
complexities.

FARMR	MODEL (MIXED-INTEGER RISK (MOTAD)	MODEL)

DATABASE MODEL SOLVER

MODEL OUTPUT
Farm	profit
MOTAD	risk

Crop	complexity
Crop	plan

Rotation	matrix
Machine/labour	numbers
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The	profit	objective	was	defined	in	farmR	as	the	annual	net	gross	margin—

the	 sum	 of	 gross	margin	 of	 each	 crop	 less	 the	 cost	 of	 operations,	machines	 and	

labour	 for	each	crop,	subject	 to	series	of	constraints	(see	Rounsevell	et	al.,	2003;	

Cooke	et	al.,	2013),	subject	to	constraints	similar	to	the	constraints	under	Section	

3.3.		The	objective	can	be	stated	as	follows:		

(2-1)	

	

Where	Gi	is	the	gross	margin	for	the	ith	crop,	ai	is	the	area	of	crop	i,	Cijk	is	the	cost	of	

the	jth	operation	on	the	ith	crop	in	period	k	and	xijk	is	the	area	of	jth	operation	on	

the	ith	crop	in	period	k.	Cm	is	the	cost	of	machinery	and	labour	required	to	perform	

field	operations	and	nm	is	the	number	of	machines	of	types	m	required	to	perform	

the	field	operations.		

It	should	be	noted	that	the	gross	margin	estimates	are	based	on	crop	yield	

values,	 estimated	 using	 response	 functions,	 which	 take	 into	 consideration	 soil	

types	and	N	fertiliser	amounts.		For	the	legume	crops	the	yield	response	curve	took	

into	consideration	only	soil	type.	Also,	for	crops	such	as	ware	potatoes	and	sugar	

beet,	 the	 response	 functions	 were	 based	 on	 N	 fertiliser	 amounts.	 The	 response	

function	 for	 all	 the	 crops	 (with	 exception	 of	 legumes)	 based	 on	 heavy	 soil	 and	

under	different	levels	of	N	fertiliser	rates	are	shown	in	Figure	2-2	below.	
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Figure	 2-2:	 Response	 function	 based	 on	which	 the	 crop	 yield	 in	 the	 farmR	model	were	
estimated.		

	

	The	risk	minimisation	objective	was	based	on	the	principle	of	minimisation	

of	 total	 absolute	 deviation	 (MOTAD)	 (Tauer,	 1983;	 McCarl	 and	 Önal,	 1989)	 in	

profits.	 It	 is	 the	 summation	of	 the	product	 of	 ith	 crop	 area	 (a)	 and	 the	 standard	

deviation	in	output	per	hectare	for	the	ith	crop	(σ),	multiplied	by	a	constant	factor	

(λ=1)	 (Cooke	et.	al.,	2013).	The	λ=1	gave	 the	best	model	 fit	when	 the	model	was	

run	under	different	values	of	λ	ranging	from	0.5	to	2	at	an	interval	of	0.5	(Cooke	et.	

al.,	2013).	The	risk	objective	can	be	stated	as:	

(2-2)	

	

	The	 risk	 values	 are	 linked	 to	 farmer	 satisfaction	 and	 represent	 the	best	 or	

worst	possible	farm	income	deviation	a	farmer	would	expect	over	a	5-year	period.	

The	 number	 of	 crop	 types	 grown	 is	 associated	 with	 a	 number	 of	 different	

operations	and	a	level	of	difficulty	in	farm	management.	Thus	in	the	farmR	model	

crop	complexity	was	less	formally	defined	as	the	level	of	difficulty	associated	with	

running	 a	 number	 of	 crop	 enterprises	 and	 operations	 simultaneously	within	 the	

farm	and	were	derived	based	on	farmer	interviews	(Cooke	et	al.,	2013).	
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In	 terms	 of	 validation,	 the	 output	 of	 the	 farmR	 socioeconomic	model	was	

compared	 with	 empirical	 data	 using	 the	 Farm	 Business	 Survey.	 For	 farmers’	

preferences	on	profit,	risk	and	crop	complexity,	an	interview	was	conducted	using	

multi-criteria	decision	analysis	 framework	with	47	 farmers	 in	England	 (Cooke	et	

al.,	 2013).	 From	 the	 responses	 of	 the	 survey	 and	 through	 a	 recalibrated	 utility	

function,	 achieving	 0%	 satisfaction	 meant	 a	 profit	 of	 £60,000	 and	 100%	

satisfaction	 meant	 £180,000	 based	 on	 250	 ha	 farm.	 This	 implies	 that	 as	 profit	

increases	from	£60,000,	farmers’	satisfaction	begin	to	rise.	

The	 crops	 used	 in	 farmR	 and	 adopted	 in	 this	 chapter	 were	 winter	 wheat,	

spring	and	winter	beans,	spring	and	winter	barley,	ware	potatoes,	winter	oilseed	

rape	 (here	 after	 WOSR)	 and	 sugar	 beet.	 Also,	 set-aside	 land	 was	 included.	 The	

model	 codes	 were	 written	 in	 Java	 programming	 languages	 and	 initially	

implemented	as	a	package	in	the	open	source	statistical	environment,	R.	The	model	

still	runs	using	R	but	on	a	Linux	Ubuntu	Virtual	Machine	and	it	uses	the	COIN-LP	

numerical	 library	 (http://www.coin-or.org/)	 to	 solve	 the	 underlying	MIP	model.	

The	 farm	 R	 model	 codes	 can	 be	 found	 through	 the	 following	 link:	

https://bitbucket.org/iracooke/javawfm.	 The	 farmR	 package	 being	 command	

based,	made	it	suitable	for	the	purpose	of	this	chapter	in	the	sense	that	the	XML	file	

which	contains	the	parameters	can	be	written	into	to	change	any	of	the	parameters	

of	interest.		

 Sensitivity	analysis		

Each	 parameter	 or	 combination	 of	 parameters	 in	 farmR	 contributes	 to	 the	

production	of	an	output	and	with	sensitivity	analysis,	any	or	all	of	the	parameters	

of	 interest	can	be	varied	(Pannell,	1997).	The	sensitivity	analysis	was	carried	out	

following	 approaches	 and	 strategies	 in	 line	 with	 the	 ones	 suggested	 in	 Pannell	

(1997).		To	be	able	to	achieve	the	aim	of	this	chapter	using	sensitivity	analysis,	the	

following	assumptions	were	made:	

1. We	assumed	that	all	arable	farms	are	operating	in	NVZs	and	have	to	comply	

with	 the	SMRs	and	GAEC	as	well	 as	apply	 the	N	max	amounts	 in	order	 to	

receive	 the	 SFP.	 However,	 some	 farms	 may	 be	 allowed	 to	 apply	 slightly	

above	the	N	max	(see	Defra,	2013)	and	as	a	result,	in	this	study,	we	assumed	
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that	farmers	in	NVZs	are	only	allowed	10%	above	the	N	max	limit	and	that	

farms	increasing	the	N	amount	above	10%	would	lose	the	SFP.		

2. We	 assumed	 further	 that	 the	 regulator	 of	 the	 NVZ	 directive	 has	 given	

farmers	who	want	to	increase	N	max	more	than	10%	the	right	to	do	so	and	

forgo	the	SFP.	

3. In	 order	 to	 simplify	 the	 analysis,	 N	 amounts	 and	 prices	 of	 all	 crops	were	

varied	 simultaneously	 even	 though	 in	 reality	 a	 farmer	 may	 decide	 the	 N	

amount	of	which	crop	to	alter	or	prices	of	different	crops	may	not	increase	

by	the	same	margin.	

 Parameter	selection	and	range	of	variation	specification	

In	NVZs,	 arable	 farmers	have	 to	 follow	certain	guidelines	 in	order	 to	 receive	 the	

SFP.	As	part	of	the	guidelines,	farmers	are	required	to	apply	N	up	to	the	prescribed	

N	 max	 however,	 the	 type	 of	 soil	 and	 prevailing	 rainfall	 could	 also	 influence	 N	

application.	 While	 the	 type	 of	 soil	 could	 determine	 the	 amount	 of	 N	 to	 apply,	

rainfall	could	influence	the	scheduling	of	N	application.	This	means	that	soil	type-

rainfall-N	 interactions	 could	 influence	 farming	 decision	 and	 hence	 farming	

objectives.	 The	 three	 factors	were	 therefore	 selected	 and	 varied.	 In	 terms	of	 the	

range	of	variation,	the	N	max	amount	for	each	crop	was	varied	between	-20%	and	

+50%.	To	 illustrate	how	economic	 factors	 affecting	 the	 farming	objectives	under	

SFP,	crop	prices	were	varied	to	determine	whether	or	not	increase	in	crop	prices	

could	influence	farmers	to	apply	N	above	N	max	and	forgo	the	SFP.	Crop	prices	in	

the	model	were	increased	from	5%	to	30%	by	setting	N	amount	at	40%	above	N	

max	and	SFP	to	zero.	The	range	of	variation	for	crop	prices	was	informed	by	wheat	

price	projection	by	Willenbockel	(2011).	Table	2-1	shows	the	three	soil	types	and	

three	rainfall	classes	(used	in	Defra,	2010)	and	the	N	max	amounts	chosen	for	the	

sensitivity	analysis.		
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Table	2-1:	Parameters	used	for	the	sensitivity	analysis	

Parameters	 Crops	 N	max	limit	(kg	N/ha)	

N	fertiliser	amount	

Spring	barley	(SBAR)	 150	

Winter	barley	(WBAR)	 180	

Winter	beans	(WBEA)	 0	

Spring	beans	(SBEA)	 0	

Winter	wheat	(WWHT)	 220	

Sugar	beet	(SBEE)	 120	

Ware	potatoes	(WPOT)	 270	
Winter	oilseed	rape	(WSOR)	 250	

	 	 	

Soil/rainfall	 Soil	types/rainfall	amounts	 Assigned	values	

Soil	type	
Light	soil	(LS)	 0.5	

Medium	soil	(MS)	 1.5	

Heavy	soil	(HS)	 2.5	

Rainfall	

Low	rainfall	(mm)	(LR)	 550	

Moderate	rainfall	(mm)	(MR)	 650	

High	rainfall	(mm)	(HR)	 750	

	

 Factor	variations/interactions	and	model	runs	

To	 ensure	 soil-rainfall-N	 interactions,	 N	 max	 was	 varied	 under	 soil	 and	 rainfall	

interactions,	 with	 and	 without	 SFP	 to	 compare	 variations	 in	 the	 arable	 farming	

objectives.	 In	 all	 nine	 soil	 type-rainfall	 interactions	 were	 generated.	 The	 N	max	

data	were	obtained	 from	Defra	 (2013)	whereas	 the	soil	 types	and	rainfall	values	

were	based	on	 information	 from	the	 farmR	model	(Cooke	et	al.,	2013)	and	Defra	

(2010)	respectively.	In	farmR,	soil	types	ranged	from	0.5	through	2.5	representing	

specific	soil	types	from	light	through	heavy	soils	(Audsley	et	al.,	2008;	Rounsevell	

et.	al.,	2003)	and	out	of	these	soil	types,	the	three	shown	in	Table	2-1	above	were	

selected.	Crop	price	data	were	obtained	from	the	farmR	model.	In	order	to	capture	

the	 SPF	 in	 the	 farmR	model,	 the	 2014	 flat	 rate	 for	 lowland	 farmers	 in	 England	

(£207/ha)	(Nix,	2014)	was	applied	to	each	crop	enterprise	and	the	model	was	run	

under	each	soil	 type-rainfall	 interaction	 for	each	variation	 in	N	amount	and	crop	

price.		
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 Effect	of	N	variations	under	light	soil	and	rainfall	interactions	

An	increase	in	N	amount	under	all	light	soil	and	rainfall	interactions	increased	the	

profit	 however,	 increasing	 the	 N	 max	 by	 more	 than	 10%	 and	 forgoing	 the	 SFP	

reduced	the	profit	(see	Figure	2-3).	For	example,	applying	N	max	and	receiving	the	

SFP	 generated	 a	 profit	 of	 £169,265	 however,	 increasing	 N	 max	 by	 40%	 and	

forfeiting	 the	 SFP	 reduced	profit	 to	 £127,976	 (24%	decrease).	 The	 results	 imply	

that	although	there	is	room	for	arable	farmers	to	increase	farm	productivity	(yield	

and	hence	profit)	by	applying	N	above	N	max,	doing	so	will	 reduce	profits	 (farm	

income)	due	to	loss	of	the	SFP.		

Crop	 complexity	 remained	 unchanged	 at	 four	 indicating	 that	 under	 light	

soils	and	rainfall	interactions,	with	or	without	the	SFP	the	number	of	crop	selected	

by	farmers	may	not	be	affected	by	N	variations.	The	risk	increased	with	increase	in	

N	 under	 all	 interactions	meaning	 that	 risks	 associated	with	N	 levels	 equal	 to	 or	

below	Nmax	are	lower.	This	result	can	be	related	to	the	finding	of	Monjardino	et	al.	

(2013)	that,	higher	N	rates	contributed	to	higher	yields	but	were	associated	with	

higher	yield	variance	translating	into	higher	economic	risk.	Thus,	aiming	to	receive	

the	SFP	by	applying	below	or	up	to	the	N	max	could	reduce	farm	risk.		

	
	

Figure	2-3:	Variations	 in	 arable	 farming	objectives	due	 to	N	 fertiliser	 amount	 variations	

under	 light	 soil-rainfall	 interactions.	 The	 dashed	 red,	 blue	 and	 black	 lines	 represent	 the	

profit	levels	assuming	farmers	are	still	receiving	SFP	after	increasing	Nmax	above	10%.	
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 	Effect	of	N	variations	under	medium	soil	and	rainfall	interactions	

Applying	N	max	under	medium	soil	and	low	rainfall	interaction	generated	a	profit	

of	£136,794	(lower	than	profit	under	light	soil	at	N	max	level)	whereas	increasing	

N	max	by	40%	reduced	the	profit	to	£93,373	(32%	reduction)	(see	Figure	2-4).	The	

result	 shows	 that	 compared	 to	 light	 soils,	 farms	operating	on	medium	soils	have	

lower	profits	and	the	implication	is	that	such	farms	will	be	better	off	operating	at	N	

max	 level	 and	 receiving	 the	SFP	even	 if	 farmers	have	 the	 right	 to	 apply	above	N	

max.	

Again,	crop	complexity	remained	mainly	unchanged	by	increasing	N	max	by	

40%.	Since	farms	receive	SFP	irrespective	of	the	crop	grown,	it	is	possible	that	on	a	

medium	soil	the	number	of	crops	selected	by	farms	may	not	depend	on	whether	or	

not	farms	receive	SFP.	Increasing	the	N	max	by	40%	increased	the	risk	by	4%	and	

this	may	be	due	 to	 the	 fact	 that	 the	estimation	of	 the	MOTAD	risk	was	based	on	

farm	output	 (yield	and	price)	and	 that	any	 increase	 in	 farm	output	will	 translate	

into	increase	in	the	associated	risk	(Monjardino	et	al.,	2013).	Thus,	farmers	will	be	

better	off	by	at	most	fertilising	crops	at	the	N	max	level	associated	with	low	risk.		

	
	

Figure	2-4:	Variations	 in	 arable	 farming	objectives	due	 to	N	 fertiliser	 amount	 variations	

under	medium	 soil-rainfall	 interactions.	 The	 dashed	 red,	 blue	 and	 black	 lines	 represent	

the	 profit	 levels	 assuming	 farmers	 are	 still	 receiving	 SFP	 after	 increasing	 Nmax	 above	

10%.	
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 Effect	of	N	variations	under	heavy	soil	and	rainfall	interactions	

Applying	N	max	 generated	 a	 profit	 of	 £85,237	whereas	 increasing	 the	N	max	by	

30%	reduced	profit	 to	£39,243	 (54%	decrease)	 (see	Figure	2-5).	With	or	without	

SFP,	 farms	 operating	 on	 heavy	 soils	 recorded	 the	 lowest	 profits.	 Thus,	 under	 a	

scenario	of	no	SFP,	farms	on	heavy	soils	would	be	worse-off.		A	30%	increase	in	N	

max	under	heavy	soil	and	low	rainfall	changed	crop	complexity	from	six	to	seven	

but	remained	unchanged	under	heavy	soil	and	moderate	rainfall.	Under	heavy	soil	

and	 high	 rainfall,	 it	 reduced	 from	 seven	 to	 six.	 The	 changes	 in	 crop	 complexity	

were	mainly	driven	by	the	interactions	of	heavy	soil,	rainfall	and	N	fertiliser,	which	

determine	 the	 types	of	crops	 to	be	grown	and	not	due	 to	receipt	of	 the	SFP.	The	

risks	 associated	 with	 N	 max	 levels	 were	 lower	 than	 risks	 associated	 with	

increasing	N	max	by	30%.	For	example,	the	risk	for	applying	N	max	was	£144,202	

whereas	 that	 of	 30%	 increase	 in	 N	 max	 was	 £148,496	 (3%	 increase).	 The	

implication	is	that	applying	the	N	max	on	a	heavy	soil	and	receiving	the	SFP	would	

be	associated	with	lower	risk.	The	SFP	can	therefore	be	said	to	reduce	farm	risk.	

	
	
	
Figure	2-5:	Variations	 in	 arable	 farming	objectives	due	 to	N	 fertiliser	 amount	 variations	

under	heavy	soil-rainfall	 interactions.	The	dashed	red,	blue	and	black	lines	represent	the	

profit	levels	assuming	farmers	are	still	receiving	SFP	after	increasing	Nmax	above	10%.	
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 Effect	of	crop	prices	on	farming	objectives	under	the	SFP	

This	 section	 illustrates	 how	 economic	 factors	 such	 as	 crop	 prices	 affect	 farming	

objectives	with	respect	to	the	SFP.	Under	heavy	soil	and	higher	rainfall	interaction,	

the	results	(see	Figure	2-6)	showed	that	with	15%	increase	in	crop	prices,	applying	

40%	above	N	max	and	 losing	 the	SFP,	 farm	profit	 (£91,695)	was	higher	 than	the	

profit	 (at	 the	 base	 crop	 prices)	 for	 applying	 the	 N	 max	 and	 receiving	 the	 SFP	

(£72,260).	 Under	 the	 same	 scenario,	 crop	 complexity	 was	 lower	 (six)	 however,	

MOTAD	 risk	 was	 higher	 (£171,209)	 than	 the	 risk	 at	 the	 base	 crop	 prices	

(£149,159).	The	implication	is	that	higher	crop	prices	can	influence	farmers	more	

than	the	other	factors	to	apply	N	above	the	N	max	level	and	forgo	the	SFP	if	they	

are	given	the	right	to	do	so,	since	doing	so	will	increase	farm	productivity	(profit)	

and	reduce	management	complexity	than	applying	N	max	and	receiving	the	SFP.	

	
	
Figure	2-6:	Variations	 in	arable	 farming	objectives	due	to	N	amount	and	crop	price	(red,	

blue	 and	black	dotted	 lines)	 variations	under	heavy	 soil-rainfall	 interaction.	The	dashed	

red,	 blue	 and	black	 lines	 represent	 the	profit	 levels	 assuming	 farmers	 are	 still	 receiving	

SFP	after	increasing	Nmax	above	10%.	
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In	this	chapter,	we	have	investigated	the	effect	of	variations	in	soil	type,	rainfall,	N	

fertiliser	 amount	 and	 crop	 prices	 on	 the	 objectives	 of	 arable	 farms	 operating	 in	

Nitrogen	Vulnerable	Zones	 (NVZs)	and	receiving	 the	Single	Farm	Payment	 (SFP).	

Sensitivity	 analysis	 was	 carried	 out	 using	 a	 mixed-integer	 programming	 (MIP)	

arable	farm	model	(farmR)	under	an	assumption	that	farmers	in	NVZs	have	been	

given	options	to	apply	prescribed	N	fertiliser	(N	max)	amounts	and	receive	the	SFP	

but	can	apply	above	N	max	and	 forgo	 the	SFP.	The	model	estimates	 three	arable	

farming	 objectives:	 profit	 maximisation,	 crop	 complexity	 and	 risk	 minimisation.	

Applying	 the	 2014	 SFP	 flat	 rate	 for	 lowland	 farmers	 in	 England	 to	 all	 crop	

enterprises	 and	 the	maximum	N	 limits	 (N	max)	 values	 to	 each	 crop,	 N	max	 and	

crop	prices	were	varied	under	different	soil	types	and	rainfall	interactions.			

We	showed	that	the	profits	of	farms	applying	the	N	max	and	receiving	the	

SFP	were	higher	than	that	of	farms	applying	above	the	N	max	and	losing	the	SFP,	

and	that	farms	on	heavy	soils	would	be	worse-off.	There	were	more	variations	in	

crop	complexity	under	heavy	soil	and	rainfall	interactions.	The	risk	increased	with	

increase	in	N	under	all	interactions	implying	that	risks	at	N	max	level	or	below	are	

lower.	 We	 also	 showed	 that	 farms	 in	 NVZs	 have	 potential	 to	 increase	 farm	

productivity	 by	 applying	 N	 above	 N	max	 under	 all	 soil	 and	 rainfall	 interactions	

however,	doing	so	and	 forgoing	 the	SFP	reduces	 farm	productivity	and	 increases	

farm	risk.	There	is	thus	an	opportunity	cost	to	farms	for	not	being	able	to	apply	N	

above	 N	 max	 to	 increase	 productivity	 however,	 the	 SFP	 acts	 as	 a	 payment	

(compensation)	 for	 the	 opportunity	 cost	 to	 farmer	 to	 cut	 nitrate	 leaching	 by	

applying	 low	 levels	 of	 N.	 The	 SFP	 can	 be	 said	 to	 bring	 some	 form	 of	 Pareto	

efficiency	 in	 that	 farms	 benefit	 through	 the	 SFP	 scheme	 and	 society	 also	 benefit	

from	an	environment	with	less	nitrate	pollution.	However,	increase	in	crop	prices	

could	 influence	 farmers	 to	 increase	N	amount	above	N	max	and	 forgo	 the	SFP	 in	

the	sense	that	increase	in	crop	prices	contributed	more	to	farm	profit	than	the	SFP.	

The	implication	is	that	although	the	SFP	may	be	a	good	support	or	compensation	

scheme,	 its	 effectiveness	 could	 be	 affected	 due	 to	 the	 influence	 of	 the	 factors	

considered	 especially	 crop	 prices	 on	 farming	 decisions	 and	 hence	 the	 farming	

objectives.	 Going	 forward,	 future	 farm	 payments	 could	 be	 estimated	 taking	 the	
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factors	looked	at	into	consideration.	Also,	more	discussions	as	well	as	research	on	

the	 formulation	 of	 a	 payment	 scheme	 linked	 to	 variations	 in	 soil	 types,	 climate	

(rainfall)	and	prevailing	crop	prices	are	needed	to	better	inform	both	farmers	and	

policy	makers.	
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“You	can't	plow	a	field	simply	by	turning	it	over	in	your	mind.”	

																																																																							―	Gordon	B.	Hinckley	
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In	 Chapter	 2	 the	 effect	 of	 some	 of	 the	 factors	 related	 to	 arable	 farming	 systems	

identified	through	literature	review	(e.g.	soil,	rainfall,	crop	prices,	N	fertiliser	amount	

and	Single	Farm	Payment	(SFP))	on	arable	farming	objectives	have	been	investigated	

using	 a	 mixed-integer	 arable	 farm	 model	 and	 sensitivity	 analysis.	 This	 was	 done	

under	 an	 assumption	 that	 farmers	 in	NVZs	 have	 been	 given	 the	 option	 to	 apply	N	

fertiliser	 above	 the	 prescribed	 amount	 and	 forgo	 the	 SFP.	 The	 factors	 under	

consideration	normally	serve	as	parameters	or	constraints	in	arable	farm	models	and	

hence	 the	 reason	 for	 investigating	 their	 effect	 on	arable	 farming	goals.	The	 results	

show	 that	 given	 the	 option,	 farmers	 in	 NVZs	 would	 lose	 revenue	 by	 applying	 N	

fertiliser	 above	 the	 prescribed	 amount	 and	 forfeiting	 the	 SFP	 and	 that	 farmers	 on	

heavy	 soils	 would	 be	 worse	 off.	 Also,	 risk	 levels	 were	 found	 to	 be	 lower	 at	 the	

prescribed	N	fertiliser	amount.	Thus	farmers	are	better	off	applying	the	prescribed	N	

fertiliser	 amounts	 and	 receiving	 the	 SFP.	 The	 SFP	 can	 be	 said	 to	 pay	 for	 the	

opportunity	 cost	 of	 farmers	 in	 NVZs	 not	 being	 able	 to	 apply	 more	 N	 fertiliser	 to	

increase	 yield	 and	 thus	 bring	 some	 sort	 of	 Pareto	 efficiency.	 Also,	 variations	 in	 the	

factors	 considered	 were	 found	 to	 influence	 arable	 farming	 objectives	 and	 hence	

farming	decision.	Thus	there	is	the	need	for	continuous	research	to	develop	a	model	

taking	 into	 consideration	 the	 factors	 considered	 in	 order	 to	 better	 analyse	 arable	

farming	systems.	

In	this	chapter,	an	arable	farm	level	model	developed	incorporating	some	of	the	

factors	 and	 farming	 objectives	 identified	 and	 investigated	 in	 the	 two	 preceding	

chapters	 is	 described,	 verified	 and	 validated.	 The	 model	 draws	 on	 the	 strength	 of	

some	of	the	modelling	approaches	and	existing	models	by	combining	mixed-integer,	

goal	 and	 risk	 programming	 approaches.	 The	 model	 is	 validated	 using	 the	 Farm	

Business	Survey	(FBS)	data	of	281	farms	and	predictive	validation.	Validation	results	

showed	 good	 association	 between	model	 predicted	 results	 and	 observed	 data.	 The	

model	 consists	 of	 four	modules,	which	 can	be	used	as	 stand-alone	models	and	 thus	

add	and	offer	alternatives	to	the	 few	arable	 farm	models	 in	UK	context.	Two	of	 the	

modules,	 the	mixed-integer	weighted	goal	programming	and	mixed-integer	MOTAD	

models	 are	 applied	 in	 the	 next	 two	 chapters	 respectively	 to	 answer	 research	
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questions	on	two	issues	found	to	be	important	in	arable	farming	systems,	black-grass	

(weed)	control	and	risk	aversion.	

	

The	increased	demand	for	food	has	led	to	intense	input	use	in	agriculture	and	this	

has	 driven	 the	 need	 for	 more	 sustainable	 farming	 systems,	 which	 are	 more	

productive	 and	 environmentally	 friendly.	 However,	 increasing	 productivity	 and	

reducing	 the	 environmental	 impact	 or	 risk	 are	 conflicting	 farming	 objectives,	

which	create	complexities	in	sustainable	farming	systems.	Thus,	there	is	the	need	

to	 investigate	 some	 of	 these	 complexities	 using	 models.	 As	 part	 of	 the	 overall	

research	aim,	an	arable	farm	level	model	consisting	of	four	modules	is	developed	

using	mixed-integer,	weighted	goal	and	risk	programming	approaches	to	optimise	

three	 arable	 farming	 objectives:	 profit	 maximisation,	 nitrate	 leaching	 and	 risk	

minimisation.	 In	 this	 chapter,	 the	model	 is	 described,	 evaluated	and	validated	 to	

investigate	 the	 degree	 of	 association	 between	 model	 predicted	 results	 and	

observed	farming	data.	The	model	is	validated	using	predictive	validation	and	data	

for	281	farms	in	the	Farm	Business	Survey.	Aggregate	level	comparison	of	model	

results	 and	 observed	 data	 using	 statistical	 measures	 of	 association	 showed	

positive	association	between	model	predicted	and	observed	crop	areas.	However,	

estimates	of	 the	 coefficient	of	 residual	mass	 (CRM)	 showed	 some	 level	of	under-

predictions	of	 crop	areas	by	 the	models	whereas	estimates	of	 the	mean	absolute	

error	 (MAE)	 ranged	 between	 0.42	 and	 0.58.	 In	 general,	 the	 model	 makes	 good	

predictions	 of	 crop	 areas	 (land	 use),	 fertiliser	 amounts	 (input	 use)	 and	 farm	

revenues/costs.	 Comparison	 of	 the	 modules	 however,	 showed	 that	 modules	 in	

which	 risk	was	 incorporated	made	 relatively	 better	predictions	 than	 the	ones	 in	

which	risk	was	not	explicitly	incorporated.	With	model	calibration	and	validation	

seen	 as	 continuous	 processes	 in	 model	 development,	 continued	 calibration	

followed	by	validation	and	updating	of	models	with	detailed	data	 could	 enhance	

their	predictive	powers	and	performance.	
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 Background	

The	 increased	 demand	 for	 food	 due	 to	 population	 increase	 has	 intensified	

agriculture	(Tilman	et	al.,	2002;	Tilman	et	al.,	2011)	and	this	has	driven	the	need	

for	 more	 sustainable	 agricultural	 or	 farming	 systems,	 which	 are	 more	

environmentally	 or	 ecologically	 responsible	 and	 still	 produce	 affordable	

wholesome	 food	 (Living	 Countryside,	 2014).	 However,	 sustainable	 agricultural	

principles	 could	 impact	 on	 farm	 productivity	 (Tilman	 et	 al.,	 2002)	 because	 such	

principles	 prioritise	 the	 efficient	 use	 of	 resources,	which	 could	 sometimes	mean	

reduced	levels	of	inputs	(Pretty,	2008).	Reductions	in	inputs	such	as	nitrogen	(N)	

fertiliser	could	affect	crop	yield	which	in	turn	could	cause	variations	in	farm	profits	

and	possibly	make	the	farming	business	riskier.	Also,	excessive	or	inefficient	use	of	

fertiliser	could	lead	to	negative	agricultural	externalities	or	impacts	such	as	nitrate	

leaching	 (Addiscott	 et	 al.,	 1991).	 Thus,	 farmers	 applying	 sustainable	 farming	

principles	 are	 faced	 with	 myriad	 conflicting	 objectives	 to	 meet	 their	 goal	 of	

profitable	 and	 sustainable	 food	 production	 (Wallace	 and	 Moss,	 2002).	 Many	 of	

these	 conflicting	 objectives	 or	 complexities	 in	 farming	 systems	 can	 be	 captured	

and	 investigated	 using	mathematical	models	 through	 linear	 programming	 based	

approaches	(e.g.	Annetts	and	Audsley,	2002;	Cooke	et	al.,	2013).		

Since	 linear	 programming	 (LP)	 was	 first	 reported	 by	 Heady	 (1954),	 its	

application	 in	 agriculture	 to	 help	 in	 the	 decision	making	 process	 of	 farmers	 and	

policy	makers	has	been	popular.	This	is	because	LP	provides	a	means	to	examine	

the	micro-level	effect	of	changes	in	policy	and	other	factors	on	farmers’	behaviour	

across	different	farm	types	(Acs	et	al.,	2010).	In	general,	all	LP	models	have	in	them	

four	properties	as	listed	in	Kaiser	and	Messer	(2011):	the	objective	to	be	optimised	

(minimised	or	maximised),	the	constraints	restricting	the	activities,	linearity	of	all	

equations	 and	 non-negativity	 of	 all	 activities	 or	 decisions	 variables.	 The	 key	

assumptions	 of	 LP	 can	 be	 summarised	 as:	 optimisation,	 fixedness,	 finiteness,	

determinism,	 continuity,	 homogeneity,	 additivity	 and	proportionality	 (Hazell	 and	

Norton,	 1986).	 Although	 LP	 is	 popular	 and	 has	 been	 extensively	 applied	 in	

agricultural	land	use	(e.g.	Annetts	and	Audsley,	2002;	Rounsevell	et	al.,	2003),	due	

to	integer	or	binary	nature	of	some	management	actions	there	may	be	problems	of	
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infeasibility	 as	 a	 result	 of	 rounding	up	or	 down	of	 activities	 (Kaiser	 and	Messer,	

2011;	Osgathorpe	et	al.,	2011).	For	example,	in	machine	or	labour	selection,	an	LP	

model	may	select	3.5	tractors	or	0.6	farmer,	which	although	may	serve	as	a	guide	

in	farm	planning,	may	not	be	realistic.	With	mixed-integer	programming	(MIP)	the	

problem	 of	 infeasibility	 due	 to	 rounding	 of	 activities	 associated	 with	 LP	 can	 be	

overcome	 (Butterworth,	 1985;	 Kaiser	 and	 Messer,	 2011).	 Mixed-integer	

programming	 models	 are	 similar	 to	 LP	 models	 but	 have	 an	 extra	 constraint	

ensuring	that	some	of	the	activities	are	chosen	as	integers	and	thus	overcome	the	

problem	of	infeasibility	due	to	rounding	of	activities.		

To	be	able	to	make	trade-offs	between	economic	and	environmental	goals	or	

conflicting	goals	as	well	as	deal	with	the	single	objective	limitation	of	LP,	the	multi-

criteria	decision	making	(MCDM)	modelling	approach	can	be	applied.	The	MCDM	

approach	 based	 on	 goal	 programming	 (GP)	 has	 been	 used	 extensively	 in	

agricultural	land	use	or	farming	systems	modelling	(e.g.	ten	Berge	et	al.,	2000;	El-

Gayer	 and	 Leung,	 2001;	 Oglethorpe,	 2010).	 With	 GP,	 the	 conflicting	 goals	 or	

objectives	faced	by	arable	farmers	can	be	optimised	simultaneously	by	minimizing	

the	 deviations	 in	 goal	 targets.	 Also,	 in	 terms	 of	 modelling	 farm	 risk,	 one	 of	 the	

approaches	 that	 has	 been	 widely	 used,	 is	 the	 minimisation	 of	 total	 absolute	

deviation	 (MOTAD)	 (e.g.	 Hazell,	 1971;	 Adesina	 and	Ouattara,	 2000;	 Cooke	 et	 al.,	

2013).	Hazell	(1971)	developed	MOTAD	as	a	linear	approximation	of	the	expected	

value-variance	approach,	which	is	a	quadratic	risk	programming	(QRP)	approach.	

The	MOTAD	approach	 gained	prominence	 in	 farm	 risk	modelling	due	 to	 the	 fact	

that	it	solution	can	be	generated	by	LP	or	MIP	algorithms	(McCarl	and	Onal,	1989)	

and	in	particular	situations	where	the	enterprise	income	distributions	are	skewed,	

the	mean	absolute	deviation	(MAD)	in	MOTAD	may	outperform	sample	variance	in	

QRP	(Hazell	and	Norton,	1986;	Adesina	and	Ouattara,	2000).	

	 In	 the	UK	 context,	 two	main	 existing	 arable	 farm	models	were	 identified.	

The	 first	one	 is	 the	Silsoe	Farm	Model	 (SFARMOD)	 (Annetts	and	Audsley,	2002),	

which	 is	 a	 multiple	 objective	 LP	 model	 developed	 for	 a	 variety	 of	 farming	

scenarios.	 The	 second	 is	 the	 farmR	model	 (Cooke	 et	 al.,	 2013),	which	 is	 an	MIP	

implementation	 of	 the	 SFARMOD,	 but	 explicitly	 incorporate	 risk	 (MOTAD).	

Although	 some	 of	 the	 formulations	 and	 data	 from	 the	 above	 two	 models	 were	
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adopted	 and	 adapted	 to	 build	 the	 model	 described	 in	 this	 chapter	 (for	 the	

purposes	 of	 convenience	 referred	 to	 as	 SAFMOD),	 there	 are	 some	 differences	

influenced	by	 the	 intended	use	of	 the	model.	The	SFARMOD	optimises	profit	and	

environmental	outcome	(nitrate	leaching),	however	it	is	an	LP	model	and	does	not	

explicitly	incorporate	risk.	The	farmR	model,	although	an	MIP	model	and	explicitly	

incorporates	risk	(MOTAD),	does	not	use	a	GP	approach	and	does	not	optimise	any	

environmental	outcome	or	objective.	The	SAFMOD	combines	the	MIP	and	weighted	

goal-programming	 (WGP)	 approaches	 as	 well	 as	 the	 MOTAD	 to	 optimise	 profit,	

nitrate	 leaching	 and	 risk.	 In	 terms	 of	 subsidy,	 unlike	 the	 SFARMOD	 and	 farmR,	

which	implemented	the	pre	2005	farm	payment	scheme	based	on	the	type	of	crop	

grown,	 the	 SAFMOD	 implemented	 the	 Single	 Farm	 Payment	 (SFP)	 scheme	 by	

applying	 the	 flat	 rate	 for	 lowland	 farms	 in	 England	 to	 all	 crop	 enterprises	 or	

activities.	

 Model	verification	and	validation	

Models	 are	 developed	 to	 mimic	 real	 systems	 and	 as	 a	 result	 during	 model	

development	 many	 of	 the	 significant	 features	 and/or	 complexities	 of	 the	 real	

systems	 are	 captured	 in	 the	 model.	 To	 give	 the	 model	 users	 some	 level	 of	

confidence	 in	 using	 the	 models,	 models	 are	 verified	 and	 validated.	 Model	

verification	 is	 concerned	 with	 whether	 or	 not	 the	 model	 is	 doing	 what	 it	 was	

intended	 to	 do	 with	 sufficient	 accuracy	 (Gass,	 1983;	 Balci,	 1996).	 Thus	 model	

verification	deals	with	building	the	model	correctly—for	example	the	accuracy	of	

transforming	 the	mathematical	model	 formulation	 into	 a	model	 specification	 via	

computer	code	(Balci,	1996).	Also,	solving	a	 linear	programming	model	with	two	

different	solvers	to	ensure	consistency	in	the	model	results	can	be	considered	as	a	

form	of	model	verification.	Validation,	on	the	other	hand,	is	concerned	mainly	with	

the	 degree	 to	 which	 the	 model	 compares	 with	 reality	 or	 the	 real	 system	 being	

modelled.	 Model	 validation	 is	 thus	 a	 significant	 part	 or	 stage	 of	 optimisation	

modelling	 in	 the	 sense	 that	 it	 improves	 the	 relevancy	 of	 models	 as	 well	 as	

strengthens	 the	 theoretical	 basis	 for	 modelling	 (McCarl,	 1984;	 Wallach	 and	

Goffinet,	 1989;	 McCarl	 and	 Apland,	 1986;	Wossink,	 1993;	 Kelijnen	 and	 Sargent,	

2000).	There	are	 two	main	methods	or	 approaches	 through	which	mathematical	
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programming	models	 can	be	validated:	validation	by	construct	and	validation	by	

results.		

Validation	 by	 construct	 is	 concerned	 with	 whether	 or	 not	 the	 right	

procedures	 were	 used	 in	 building	 the	 model	 (McCarl	 and	 Spreen,	 1997).	 This	

implies	 that	 model	 description	 can	 be	 considered	 to	 be	 a	 form	 of	 validation	 by	

construct	 in	 the	 sense	 that	 how	 the	 model	 was	 formulated	 as	 well	 as	 how	 the	

model	 parameters	 and	 coefficients	 were	 estimated	 is	 shown.	 	 For	 example,	 to	

ensure	that	the	fertiliser	amounts	used	in	building	the	model	conform	with	reality,	

the	 amounts	 used	 were	 based	 on	 the	 fertiliser	 recommended	 amounts	 in	 Defra	

(2010)	and	providing	such	 information	 in	 the	model	description	allows	potential	

users	 to	 judge	 whether	 or	 not	 the	 model	 was	 built	 using	 credible	 data.	 With	

validation	by	construct,	the	validity	of	the	model	is	assumed,	not	tested,	and	thus	

does	 not	 appear	 to	 be	 satisfying	 (McCarl	 and	 Spreen,	 1997).	 This	 limitation	 of	

validation	by	construct	makes	it	necessary	for	validation	by	results,	which	is	seen	

to	be	a	higher-level	validation	approach	than	validation	by	construct.	

Under	validation	by	results	the	model	results	are	compared	with	real	world	

outcomes	 (McCarl	 and	 Apland,	 1986;	 McCarl	 and	 Spreen,	 1997).	 McCarl	 and	

Spreen	(1997)	listed	different	experiments	that	can	be	carried	out	under	validation	

by	results	however,	prediction	experiment	(hereafter	predictive	validation)	is	the	

most	 common	 validation	 by	 results	 experiment.	 Predictive	 validation	 involves	

fixing	the	problem	or	model	data	at	real	world	values	and	then	solving	the	model	

to	 generate	 results.	 These	 results	 are	 then	 compared	 with	 real	 world	 data	 to	

investigate	 the	 degree	 of	 association	 using	 statistical	 measures	 or	 indicators	 of	

association.	Thus	predictive	validation	requires	historical	data	(Balci,	1996).			

 Review	of	statistical	measures	of	association	

The	main	 purpose	 of	 predictive	 validation	 is	 to	 compare	 the	model	 results	with	

real	 world	 data	 and	 thus	 statistical	 measures	 or	 indicators	 of	 association	 are	

mainly	 used	 to	 show	 the	 degree	 of	 association	 between	 the	 model’s	 predicted	

results	 and	 the	 real	world	data.	Different	 statistical	measures	 or	 indicators	 have	

been	 used	 or	 suggested	 in	 literature	 to	 compare	 model	 data	 to	 experimental,	

observed	or	historical	data	 (see	 for	example:	McCarl	and	Spreen,	1997;	Gaiser	et	
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al.,	2010;	Nousiainen	et	al.,	2011;	Franko	et	al.,	2011;	Cooke	et	al.,	2013;	Razzaghi	

et	 al.,	 2013;	 Gueymard,	 2014;	 Maniruzzaman	 et	 al.,	 2015;	 Hussain	 and	 Al-Alili,	

2016).	 A	 review	 of	 the	 literature	 to	 identify	 statistical	 measures	 of	 association	

applied	 in	 model	 validation	 (see	 Table	 3-1	 for	 review	 results)	 found	 indicators	

such	 as	 correlation	 coefficients,	 coefficient	 of	 determination	 (R2),	 root	 means	

square	error	or	difference	(RMSE)	and	mean	absolute	error	(MAE).	The	coefficient	

of	 residual	mass	 (CRM),	 although	 not	 used	 extensively,	 was	 found	 to	 be	 a	 good	

indicator	of	over-	and	under-prediction	by	models.		Graphical	approaches	such	as	

scatterplots	with	 regression	 lines,	 boxplots	 and	histograms	have	 been	 suggested	

and	used	(e.g.	Klein	et	al.,	2012;	Fatnassi	et	al.,	2013;	Sargent,	2013;	Cooke	et	al.,	

2013).	 Other	 approaches	 such	 as	 Nash-Sutcliffe’s	 model	 efficiency	 (NSE),	

Willmott’s	 index	of	agreement	(WIA)	and	Legates’s	coefficient	of	efficiency	(LCE)	

have	been	used	to	measure	overall	model	performance	(e.g.	Gueymard,	2014).		
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Table	3-1:	Results	of	literature	review	to	identify	statistical	approaches	to	measure	association	between	predicted	and	observed	data	

Reference	 Associated	
model	

Statistical	Measures	of	Association	Used	or	Suggested*	 Remarks	

R	
(r
)	

ρ	 R2
	

N
SE
	

W
IA
	

LC
E	

RM
SE
	

M
AE
	

CR
M
	

M
BE
	

RE
	

SS
D
	

K-
S	

K-
W
	

SB
F	

L-
T	

D
IC
	

S-
T	

H
-T
	

Gr
ap
hs
	

U	

	

Gornott	and	
Wechsung	
(2016)	

Statistical	crop	
yield	models
	 	

+	 +	 	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
The	paper	presented	statistical	crop	yield	models	for	
winter	wheat	and	silage	maize	

Hussain	and	Al-
Alili	(2016)	

Solar	radiation	
models	 	 	 +	 	 	 	 +	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	

The	paper	mentioned	RMSE,	MAE	and	R2	as	metrics	
for	evaluating	solar	radiation	model	performance	

Giovanna	et	al.	
(2016)	 	 	

A	model	on	
rainfall	and	
landslide	 	 	 +	 	 	 	 	 	 	 	 	 	 	 +	 	 +	 	 	 	 	 	

The	 paper	 presented	 an	 automated	method	 for	 the	
selection	 of	 rainfall	 data	 responsible	 for	 shallow	
landslide	initiation	which	mimics	expert	judgement	

Maniruzzaman	
et	al.	(2015)	

AquaCrop	
Model	

	 	 +	 +	 +	 	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

The	 paper	 presented	 the	 calibration	 and	 validation	
of	 the	 AquaCrop	 model	 under	 different	 irrigation	
regimes	

Gueymard	
(2014)	

Solar	radiation	
modelling	

	 	 +	 +	 +	 +	 +	 +	 	 +	 	 	 +	 	 +	 	 	 	 	 	 	

The	 paper	 reviewed	 validation	 methodologies	 and	
statistical	 performance	 of	 modelled	 solar	 radiation	
data	

Pulvento	et	al.	
(2013)	

SALTMED	
model	 	 	 +	 	 	 	 +	 	 +	 	 	 	 	 	 	 	 	 	 	 +	 	

SALTMED	model	 for	 integrated	 irrigation,	 crop	 and	
field	management.	Model	was	applied	to	irrigation	in	
Italy	

Razzaghi	et	al.	
(2013)	

SALTMED	
model	 	 	 	 	 	 	 +	 +	 	 +	 +	 	 	 	 	 	 	 	 	 	 	

Model	was	 applied	 in	Denmark.	 Statistical	methods	
were	used	to	compare	measured	and	simulated	soil	
water	content.	
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Table	3-1	(Continued)	

Reference	 Associated	
model	

Statistical	Measures	of	Association	Used	or	Suggested*	 Remarks	
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Sargent	(2013)	 	 General	
Modelling	
Approaches	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 +	
The	 paper	 discussed	 model	 verification	 and	
validation	 as	 part	 of	 model	 development	
process	

Cooke	et	al.	
(2013)	

farmR	Model	
	 +	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 +	 +	

farmR	 model	 is	 a	 mixed-integer	 linear	
programming	 arable	 farm	 model	 which	
optimises	profit,	risk	and	crop	complexity	

Fatnassi	et	al.	
(2013)	 	

Climate	
simulation	
model	 	 	

	 	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 	
The	model	is	a	dynamic	for	simulating	climate	
conditions	in	a	green	house	

Abedinpour	et	
al.	(2012)	

AquaCrop	
	 	 +	 +	 	 	 +	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	

AquaCrop	is	a	crop	growth	model	

Klein	et	al.	
(2012)	

Process-based	
crop	model	 	 	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	

The	paper	used	 the	FADN	data	 to	 calibrate	a	
crop	model	

Franko	et	al.	
(2011)	

Soil	organic	
matter	model	 +	 	 	 	 	 	 +	 +	 	 	 	 +	 	 	 	 	 	 	 	 	 	 The	paper	described	a	carbon	balance	model	

Karunarantne	et	
al.	(2011)	

FAO-AquaCrop	
model	 	 	 +	 	 	 	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

The	 FAO-AquaCrop	 model	 is	 a	 model	 for	
irrigation	

Nousiainen	et	al.	
(2011)	

Dairy	farm	
nutrient	
management	
model	 	

	 	 +	 	 	 	 +	 	 	 	 	 	 	 	 	 	 	 	 	 +	 	

The	paper	presented	a	nutrient	management	
model	for	dairy	farms	

Gaiser	et	al.	
(2010)	

The	EPIC	model	

	 	 +	 +	 	 	 +	 +	 	 +	 +	 	 	 	 	 	 	 	 	 	 	

The	Environmental	Policy	 Integrated	Climate	
(EPIC)	model	 is	 a	 field	 scale	model	 designed	
to	 simulate	 drainage	 but	 can	 be	 as	 a	 crop	
growth	
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Table	3-1	(Continued)	

Reference	 Associated	
model	

Statistical	Measures	of	Association	Used	or	Suggested*	 Remarks	
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)	

ρ	 R2
	

N
SE
	

W
IA
	

LC
E	

RM
SE
	

M
AE
	

CR
M
	

M
BE
	

RE
	

SS
D
	

K-
S	

K-
W
	

SB
F	

L-
T	

D
IC
	

S-
T	

H
-T
	

Gr
ap
h

s	 U	

Henninger	et	al.	
(2010)	

Computational	
models	in	
biomechanics	

+	 +	 +	 	 	 	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
The	 paper	 presented	 validation	 in	 the	
context	of	computational	biomechanics	

Krause	et	al.	(2005)	 Hydrological	
models	 	 	 +	 +	 +	 	 	 	 	 	 	 	 	 	 +	 	 	 	 	 	 	

Paper	 investigates	 the	 utility	 of	 efficiency	
criteria	for	evaluating	hydrological	models	

Zheng	and	Agresti	
(2000)	

Generalized	
linear	models	 +	 +	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 	 	 	 	

The	 paper	 studies	 summary	 measures	 of	
the	predictive	power	of	generalized	linear	
models	

McCarl	and	Spreen	
(1997)	

Model	validation	
approaches	 +	 +	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 +	

The	paper	reviewed	validation	approaches	
for	linear	programming	based	models	

Carley	(1996)	 Computational	
models	 +	 	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 	 	

*	R	(r)	=	Pearson’s	correlation	coefficient;	ρ	=	Spearman	correlation	coefficient;	R2	=	Coefficient	of	determination;	NSE	=	Nash-Sutcliffe’s	efficiency;	WIA	=	Willmott’s	index	of	agreement;	

LCE	=	Legates’s	coefficient	of	efficiency;	RMSE	=	Root	means	square	error;	MAE	=	Mean	absolute	error;	CRM	=	Coefficient	of	residual	mass;	MBE	=	Mean	bias	error;	RE	=	Relative	error;	

SSD	=	Sum	of	square	difference;	K-S	=	Kolmogorov-Smirnov	test;	K-W	=	Kruskal-Wallis	test	for	median;	SBF	=	Slope	of	best	fit;	L-T	=	Levene’s	test	for	variance	values;		DIC	=	Deviance	

information	criterion;	S-T	=	Sign	test;	H-T	=	Hypothesis	testing	(to	compare	means	and	variances);	Graphs	=	mainly	scatter	plots	with	regression	line	(including	boxplot	and	histogram).	

The	plus	(+)	indicate	the	statistical	measure	was	applied	or	suggested	in	paper;	U	Theil’s	U.	
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Indicators	 such	 as	 RMSE	 and	 MAE	 (referred	 to	 as	 deviance	 measures)	

measure	dispersion	of	individual	points	and	provide	the	most	rigorous	and	useful	

information	 about	 overall	 model	 performance	 (Stunder	 and	 Sethuraman,	 1986;	

Gueymard,	2014).	 	A	value	of	zero	is	for	a	perfect	model	and	thus	the	smaller	the	

value	and	the	closer	to	zero,	the	better.	The	CRM	shows	the	tendency	of	the	model	

to	 under-	 or	 over-predict,	 a	 positive	 value	 indicates	 under-prediction	whereas	 a	

negative	 estimate	 means	 over-prediction	 (Pulvento	 et	 al.,	 2013).	 In	 the	 case	 of	

indicators	 such	 as	 R2,	 correlation	 coefficients,	 NSE,	WIA	 and	 LCE	 (referred	 to	 as	

measures	 of	 agreement),	 a	 value	 of	 one	 is	 for	 a	 perfect	model	 and	 thus	 a	 value	

close	 to	 one	 is	 preferred.	 Also,	 NSE	 ranges	 from	 -∞	 to	 1.	 An	 NSE	 of	 zero	 is	 an	

indication	that	model	predictions	are	as	accurate	as	the	mean	of	the	observed	data	

whereas	a	negative	NSE	indicates	that	the	observed	mean	is	a	better	predictor	than	

the	model	(Legates	and	McCabe,	2013).		Mayer	and	Butler	(1993)	proposed	NSE	as	

the	best	overall	measure	of	model	performance.	In	the	case	of	WIA,	a	higher	WIA	

for	a	model	means	 there	 is	 lower	error	 in	a	model	 compared	 to	others	 (Stunder	

and	Sethuraman,	1986).		

In	 this	 chapter,	 we	 describe	 a	 farm-level	 mathematical	 model,	 which	

combines	mixed-integer,	 goal	 and	 risk	programming	or	modelling	 approaches	 to	

optimise	 three	 arable	 farming	 objectives:	 maximise	 profit,	 minimise	 nitrate	

leaching	and	minimise	risk	(deviation	in	farm	income).	We	also	verify	and	validate	

the	 model	 using	 predictive	 validation	 and	 compare	 the	 predicted	 results	 with	

observed	 data	 using	 some	 of	 the	 statistical	measures	 of	 association	 identified	 in	

literature	 (correlation	 coefficients,	 R2,	 MAE,	 RMSE,	 CRM,	 NSE,	 WIA,	 LCE	 and	

regression	analysis).	For	the	purposes	of	convenience,	the	model	will	be	referred	

to	 as	 Sheffield	 Arable	 Farm	 Model	 (hereafter	 SAFMOD).	 The	 research	 question	

related	to	the	validation	can	be	summarised	as	follows:	

1. What	is	the	degree	of	association	between	model	predicted	crop	areas	and	

observed	crop	areas	(land	use)?	

2. What	 is	 the	 degree	 of	 association	 between	 model	 predicted	 fertiliser	

amounts	and	observed	fertiliser	amounts	(input	use)?	

3. What	is	the	degree	of	association	between	model	predicted	revenues/costs	

and	observed	revenues/cost?	
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 Model	outline	and	description	of	components	

Many	linear	programming	(LP)	models	have	been	applied	in	agricultural	land	use	

research	however,	such	models	normally	optimise	a	single	objective	and	also	there	

may	be	a	problem	of	infeasibility	due	to	rounding	up	or	down	of	activities.	Due	to	

these	limitations,	other	approaches	such	as	the	mixed	integer	programming	(MIP)	

and	goal	programming	(GP)	were	developed.	The	MIP	approach	was	developed	to	

overcome	the	problem	of	infeasibility	due	to	rounding	of	activities	whereas	the	GP	

was	developed	 to	overcome	 the	 single	objective	 limitation	of	 the	LP.	 In	 terms	of	

incorporating	 farm	 risk,	 the	 minimisation	 of	 total	 absolute	 deviation	 (MOTAD)	

approach,	 which	 is	 a	 linear	 approximation	 of	 quadratic	 risk	 programming,	 is	

convenient	since	its	solution	can	be	generated	using	LP	and	MIP	algorithms,	and	in	

situations	where	solvers	for	quadratic	programming	may	not	be	readily	available.	

Thus	 the	 SAFMOD	was	 developed	 drawing	 on	 the	 strengths	 of	 the	MIP,	 GP	 and	

MOTAD	approaches.	Figure	3-1	shows	a	flow	chart	linking	various	components	of	

the	SAFMOD.	

The	SAFMOD	was	developed	based	on	the	assumption	that	the	soil	type	and	

weather	(rainfall)	influence	farm	planning	and	input	use.	Thus	the	SAFMOD	is	run	

by	 first	 setting	 the	 soil	 type	and	 rainfall	 amount.	Unlike	 the	 farmR	model,	 in	 the	

SAFMOD,	 the	 soil	 type	 is	 used	 to	 determine	 N	 fertiliser	 rates,	 which	 in	 turn	

determine	the	yield	for	each	crop	in	the	model.	Variation	is	soil	type	thus	influence	

variable	cost	through	fertiliser	costs	as	well	as	farm	output,	income	deviation	and	

nitrate	 leaching	 estimates.	With	 the	 assumption	 that	 soil	 type	 and	 rainfall	 affect	

farm	operation	scheduling,	both	factors	are	used	to	determine	the	workable	hours	

available	to	the	farmer	to	carry	out	farm	operations.		

In	 the	 SAFMOD,	 the	 soil	 type	 and	 all	 other	 information	 and	 initial	 data,	

informed	by	the	model	assumptions	(summarised	in	Figure	3-1)	are	stored	in	CSV	

files	 from	which	other	model	 input	parameters	such	as	gross	margin,	work	rates	

and	risk	are	estimated	and	stored	in	CSV	files.	The	information	from	the	CSV	files	

are	 used	 to	 construct	 the	 model	 matrix	 (see	 Section	 3.4	 for	 model	 parameter	

estimates).	 The	 SAFMOD	was	developed	using	 the	R	programming	 language	 and	
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the	 model	 codes	 can	 be	 found	 on	 GitHub	 through	 the	 following	 link:	

https://github.com/kwadjoahodo/SAFMOD/blob/master/SAFMOD.R	

	

Figure	3-1:	Flowchart	of	the	SAFMOD	showing	the	links	among	various	components	
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The	 SAFMOD	 consists	 of	 four	modules	 (shown	 in	 Figure	 3-1)	 which	 share	

common	structural	constraints	as	well	as	parameter	estimates	(see	Section	3.3	and	

Section	3.4).	Each	of	the	modules	can	be	used	as	a	standalone	model.	The	first	and	

second	modules	 are	mixed-integer	 linear	programming	 (MILP)	models	 for	 profit	

maximisation	and	nitrate	leaching	minimisation	respectively.	The	third	module	is	a	

mixed-integer	MOTAD	 (MIMOTAD)	model	 for	 the	 risk	minimisation	 objective.	 In	

the	case	of	GP	models	targets	need	to	be	set	for	the	different	goals	and	therefore	

the	idea	of	the	first	three	modules	is	to	evaluate	targets	to	inform	the	target	levels	

for	 the	 different	 goals	 in	 the	 fourth	 module	 (the	 mixed-integer	 weighted	 goal	

programming	 (MIWGP)	model).	 Descriptions	 of	 the	 four	modules	 are	 presented	

below.	Some	of	the	formulation	approaches	used	in	the	SFARMOD	and	farmR	were	

adopted.	Also,	adapted	versions	of	relevant	algebraic	expressions	used	in	Annetts	

and	 Audsley	 (2002);	 Rounsevell	 et	 al.	 (2003)	 and	 Cooke	 et	 al.	 (2013)	 were	

adopted.		

3.2.1.1 Module	one:	Mixed-integer	profit	maximisation	model	

Module	one	of	SAFMOD	optimises	expected	farm	profit,	the	value	of	which	informs	

the	profit	target	level	that	can	be	set	in	the	fourth	module.	The	module	is	based	on	

the	 assumption	 that	 the	 farmer	 is	 risk	neutral	 and	 thus	 interested	 in	 only	profit	

maximisation.	Module	one	can	also	be	used	to	select	crop	plans	as	well	as	machine	

combinations	in	a	situation	where	profit	maximisation	needs	to	be	considered	as	a	

single	objective	(for	a	risk	neutral	farmer).	The	profit	maximisation	objective	can	

be	stated	as	follows	subject	to	a	series	of	constraints	described	under	Section	3.3.	

	(3-1)	

	

(3-2)	

	

Where	OBJprofit	is	the	profit	to	be	optimised,		!i	is	the	mean	expected	gross	margin	

for	the	ith	crop,	ai	is	the	area	of	crop	i	and	it	is	equal	to	sum	of	the	area	of	first	(yi1k)	

operation	 carried	 on	 crop	 i	 in	 period	 k	 (Eq.	 (3-2)),	 Cijk	 is	 the	 cost	 of	 the	 jth	

operation	on	the	ith	crop	in	period	k	and	yijk	is	the	area	of	jth	operation	on	the	ith	
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crop	in	period	k.	Cm	is	the	annual	cost	of	machines	of	type	m	(annual	depreciation,	

repair	cost	and	annual	labour	cost)	required	to	perform	field	operations	and	nm	is	

the	number	of	machines	of	type	m	(calculated	by	the	model)	required	to	perform	

the	 field	 operations.	 The	 model	 assumes	 one	 farmer	 (integer6)	 in	 addition	 to	

machine	 and	 labour	 numbers,	 which	 are	 also	 integers	 but	 can	 be	 set	 as	 non-

integers	depending	on	the	aim	of	the	model	user.	It	should	be	noted	that	the	cost	of	

operation	 includes	 any	 adjustment	 to	 reduction	 in	 yield	 due	 to	 improper	 or	

suboptimal	timing	of	farm	operation	and	rotations.		

3.2.1.2 Module	two:	Mixed-integer	nitrate	leaching	minimisation	model	

Module	two	represents	the	nitrate	leaching	minimisation	model,	the	value	of	which	

also	informs	the	nitrate-leaching	target	in	module	four.	Module	2	was	based	on	the	

assumption	that	farmer	is	more	concerned	with	reducing	nitrate	leaching	subject	

to	 profit	 maximisation	 constraint.	 Nitrate	 leaching	 (kg	 N/ha)	 is	 a	 function	 of	

nitrogen	 (N)	 amount	 in	 the	 soil	 (N	 applied	 +	 atmospheric	 deposited	 N	 +	 soil	 N	

supplied),	 N	 uptake	 by	 crops,	 ammonia	 (NH3)	 and	 nitrous	 oxide	 (N2O)	

volatilisation.	 The	 objective	 function	 for	 the	 nitrate	 leaching	model	was	 adopted	

from	Annetts	and	Audsley	(2002)	but	was	adapted	due	to	 lack	of	data	on	nitrate	

leaching	 with	 respect	 to	 farm	 operation	 types.	 As	 a	 result,	 the	 nitrate	 leaching	

model	 presented	 minimises	 the	 base	 nitrate	 leaching	 with	 respect	 to	 the	 crops	

grown	using	the	N	balance	approach	(Wossink,	1993)	however,	the	formulation	of	

the	 model	 makes	 it	 possible	 to	 make	 any	 future	 adjustments	 to	 incorporate	

changes	in	nitrate	leaching	due	to	carrying	out	farm	operations	and	crop	rotation	

should	data	become	available.	Thus,	 the	objective	function	of	the	nitrate	 leaching	

model	can	be	stated	as:		

(3-3)	

	

Where	OBJnitrate-leaching	is	the	nitrate	leaching	to	be	optimised,	8#9 	is	the	base	nitrate	

leaching	from	the	ith	crop	per	hectare	and	ai	is	as	defined	under	Eq.(3-2).	Although	

the	 nitrate	 leaching	model	 is	 formulated	 to	 optimise	 nitrate	 leaching	 as	 a	 single	

																																																								
6	The	model	assumes	1	farmer,	which	is	set	as	integer	and	thus	primarily	makes	the	model	a	mixed-
integer	model.	The	other	machine/labour	numbers	calculated	by	the	model	are	also	set	as	integers.	
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objective,	 there	 is	 a	 possibility	 to	 include	 the	 profit	 objective	 as	 a	 constraint	 by	

setting	a	profit	target	and	solving	the	model	as	a	multi-objective	MIP	model.	

3.2.1.3 Module	three:	Mixed-integer	risk	minimisation	(MIMOTAD)	model	

Module	 three	 represents	 the	 risk	 minimisation	 model	 using	 the	 MOTAD	

programming	 approach.	 	 The	 third	 module	 was	 based	 on	 assumption	 that	 the	

arable	 farmer	 is	 risk	 averse	 and	 is	 interested	 in	 maximising	 profit	 subject	 to	

minimising	 deviation	 in	 income	 (risk).	 MOTAD	 is	 a	 linear	 approximation	 of	 the	

quadratic	programming	 (QR)	approach	and	unlike	 the	QR,	 it	uses	mean	absolute	

deviation	(MAD)	instead	of	variance	(Hazell,	1971;	Hardaker	et	al.,	1997;	Hardaker	

et	 al.,	 2004).	 Thus	 MOTAD	 is	 a	 linear	 approximation	 of	 expected	 farm	 income	

variability	 (Kaiser	 and	 Messer,	 2011)	 and	 the	 formulation	 makes	 it	 possible	 to	

solve	 a	 MOTAD	 problem	 with	 LP	 and	 MIP	 algorithms.	 The	 MOTAD	 model	 (Eq.	

(3-4))	 maximises	 expected	 income	 subject	 to	 Eq.	 (3-5),	 (3-6)	 and	 constraints	

presented	under	Section	3.3.			

	(3-4)	

	

(3-5)	

	

(3-6)	

	

Where	!#A 	is	the	gross	margin	of	the	ith	crop	under	qth	state	of	nature	and	!B	is	the	

mean	 expected	 gross	margin,	 dq	 is	 an	 s	 by	 1	 vector	 of	 activity	 levels	measuring	

negative	 income	 deviations	 under	 qth	 state	 of	 nature,	 pq	 is	 a	 1	 by	 s	 vector	 of	

probabilities	 of	 the	 qth	 state	 of	 nature	 and	Mn	 is	 a	 measure	 of	 mean	 absolute	

deviation	 (MAD)	 or	 risk,	which	 can	 be	 parametrically	 varied.	 The	 total	 states	 of	

nature	(s)	=	5	(based	on	5-year	price	data).	The	value	of	Mn	set	reflects	the	level	of	

risk	aversion.	Although	the	risk	model	was	formulated	to	parameterise	Mn	directly,	

Mn	can	be	set	at	its	highest	value	with	weight	attached	to	it	and	parameterise	the	

weight	as	a	measure	of	risk	aversion	coefficient	or	parameter.	Also,	in	the	MOTAD	
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model,	 nitrate	 leaching	 objective	 was	 incorporated	 as	 a	 constraint	 and	 thus	 the	

model	maximises	profit	subject	to	risk	and	nitrate	leaching	minimisation,	however	

the	nitrate	leaching	objective	target	value	can	be	set	to	zero	and	the	model	solved	

to	 optimise	 profit	 subject	 to	 income	 deviation(risk)	 constraint	 as	 applied	 in	

Chapter	5.	

3.2.1.4 Module	4:	Mixed-integer	weighted	goal	programming	model	

Mixed-integer	 linear	 programming	 models	 can	 be	 formulated	 as	 multi-objective	

models	 (e.g.	 Annetts	 and	 Audsley,	 2002;	 Cooke	 et	 al.,	 2013)	 or,	 in	 the	 case	 of	

modules	 two	 and	 three,	 by	 maximising	 or	 minimising	 one	 objective	 whilst	 the	

other	 objectives	 are	 expressed	 as	 inequality	 constraints	 or	 whilst	 the	 weight	

attached	 to	 the	 other	 objective	 is	 reduced.	 However,	 there	 can	 be	 limitations	

associated	 with	 such	 formulations	 because	 each	 objective	 expressed	 as	 a	

constraint	must	be	enforced,	otherwise	there	is	a	potential	of	the	model	generating	

an	 infeasible	 solution	 (Hazell	 and	 Norton,	 1986;	 Zgajnar	 and	 Kavcic,	 2011).	 To	

overcome	such	limitations,	a	mixed-integer	weighted	goal-programming	(MIWGP)	

model	was	 formulated	 to	 optimise	 the	 three	 objectives	 simultaneously	 based	 on	

assumptions	 that	 the	 arable	 farmer	 is	 interested	 in	 maximising	 profit	 whiles	

minimising	nitrate	 leaching	 and	 risk.	Modules	1,	 2	 and	3	 are	 linked	 to	Module	4	

based	 on	 assumption	 that	 their	 objective	 function	 estimates	 inform	 the	 goal	

targets	 in	 the	 MIWGP	 module.	 The	 MIWGP	 (represented	 by	 Module	 4)	 allows	

trade-offs	to	be	made	between	the	goals	especially	between	the	economic	(profit)	

and	environmental	(nitrate	leaching)	goals	or	between	profit	and	risk	goals	and	all	

the	 goals	 can	 be	 optimised	 simultaneously	 without	 the	 possibility	 of	 generating	

infeasible	 solutions.	 A	 typical	 goal-programming	 (GP)	 model	 minimises	 the	

deviations	from	goal	targets	and	can	generally	be	expressed	mathematically	as:	

	(3-7)	
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Where	 D	 is	 the	 total	 deviation	 to	 be	 minimised,	 Gg(a)	 is	 a	 linear	 function	 or	

objective	(goal)	of	a,	which	is	a	vector	of	decision	variables,	Tg	is	the	target	set	for	

the	gth	objective	or	goal	informed	by	results	from	modules	one	through	three,	_@<	

and	 _@a 	 represent	 the	 negative	 (under-achievement)	 and	 positive(over-

achievement)	 deviations	 from	 goal	 targets	 whereas	 ug	 and	 vg	 are	 the	 relative	

weights	attached	to	the	deviation	variables	respectively	and	Cons	 is	a	set	of	rigid	

constraints	(shown	under	Section	3.3).	The	weighting	scheme	described	in	Kaiser	

and	Messer	(2010)	was	adopted	but	the	weights	were	normalised	with	respect	to	

the	goal	 targets	(Romero	and	Rehman,	2003)	due	to	different	units	 for	economic	

and	 environmental	 goals.	 The	 function,	 Gg(a)	 represents	 each	 of	 the	 objective	

functions	or	goals	represented	by	Eq.	(3-9),	(3-10)	and	(3-11).	It	should	be	noted	

that	for	GP	problems	the	goals	serve	as	constraints	but	are	expressed	as	equations	

rather	than	inequalities.	Thus	the	WGP	model	can	be	stated	as:	

	(3-8)	

	

Subject	to	the	goals	below	and	the	set	of	constraints	described	under	Section	3.3.	

Goal	1:	Maximise	profit		

(3-9)	

	

Goal	2:	Minimise	nitrate	leaching		

(3-10)	

	

Goal	3:	Minimise	risk	(deviation	in	profit	or	income)		

(3-11)	

	

Where	ai	 is	 the	area	of	 the	 ith	crop,	σi	 is	 the	deviation	 in	 income	for	 the	 ith	crop	

under	 all	 states	 of	 nature.	 Due	 to	 the	 problem	 of	 infeasibility	 in	 an	 attempt	 to	
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incorporate	the	MOTAD	model	formulation	(Section	3.2.1.3)	 into	the	WGP	model,	

the	standard	deviations	in	income	for	the	crops	were	used	as	measures	of	risk	in	

the	risk	minimisation	goal	instead	of	income	deviations	under	qth	state	of	nature.	

For	maximisation	 goals,	 under-achievements	 are	 undesirable	 or	 detrimental	 and	

therefore	the	minimisation	of	the	deviation	is	focused	on	the	negative	deviations,	

whereas	 for	minimisation	 goals	 over-achievements	 are	 undesirable	 and	 positive	

deviations	are	detrimental,	hence	the	focus	of	the	minimisation	in	the	GP	objective	

function.	Thus	 the	objective	 function,	Eq.	 	 (3-8)	 can	be	 revised	and	 stated	as	Eq.		

(3-12).		

	(3-12)	

	

 

Decision-making	 in	 arable	 farming	 is	 affected	 by	 a	myriad	 of	 constraints	 and	 to	

capture	 these	 in	 the	SAFMOD,	 the	 constraints	presented	below	were	assumed	 to	

impact	 on	 arable	 farming	 decisions.	 Also,	 the	 constraints	 presented	 below	 are	

imposed	in	all	the	four	modules	but	with	some	modification	in	model	application	

in	Chapter	4.		

 Resource	constraints	

Resource	endowment	of	arable	farms	influence	the	decision	taken	by	farmers	and	

that	a	 farmer	can	only	work	with	amount	of	resource	available	 to	him/her.	Thus	

this	 constraint	was	 imposed	 to	 ensure	 that	 the	 amount	 of	 a	 resource	 needed	 to	

carry	 out	 an	 operation	 on	 a	 crop	 does	 not	 exceed	 the	 amount	 of	 the	 resource	

available.	The	resource	type	considered	is	the	number	of	workable	hours	available	

in	 a	 period	 to	 carry	 out	 an	 operation	 and	 it	 should	 be	 noted	 that	 different	

operations	 have	 different	 workability	 type	 and	 hence	 different	 workable	 hours	

apply	 to	 different	 operations.	 The	 constraint	 thus	 ensures	 that	 the	 number	 of	

hours	a	farmer	can	work	cannot	exceed	the	workable	hours	available	in	a	period.	

The	constraint	can	be	expressed	as:	

(3-13)	
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Where,	s#5)6	 is	 the	work	rate	of	operation	 j	 carried	on	crop	 i	using	a	machine	of	

type	m	in	period	k	and		'#5) 	area	of	operation	j	carried	on	a	crop	i	in	period	k.	t6)u 	

is	 the	amount	of	 resource	(workable	hours)	available	 in	period	k	 to	carry	out	an	

operation	with	workability	type	w	using	machine	of	type	m	and	76	the	number	of	

machine	type	m	calculated	by	the	model.			

 Sequential	and	non-sequential	operation	constraints	

In	 arable	 farming	 some	 operations	 must	 first	 be	 performed	 before	 another	

operation	can	be	performed,	whereas	others	are	carried	based	on	the	crop	growth	

stages.	 To	 capture	 this	 in	 the	model,	 a	 sequential	 and	 non-sequential	 operation	

constraints	 were	 imposed.	 The	 sequential	 operation	 constraint	 ensures	 that	 an	

operation	is	not	performed	before	its	preceding	operation	and	that	the	area	of	the	

successor	operation	(j)	cannot	exceed	the	area	of	the	preceding	operation	(j-1).	For	

example,	 a	 crop	 has	 to	 be	 planted	 before	 it	 can	 be	 harvested	 and	 the	 harvested	

area	cannot	exceed	the	area	planted.	Table	3-12	(see	the	chapter	Appendix)	shows	

a	 matrix	 of	 crops	 and	 the	 sequential	 operations.	 In	 terms	 of	 cost	 of	 operation,	

sequential	operation	constraint	ensures	that	the	model	selects	not	only	operations	

with	least	costs	but	operations	that	can	generate	optimal	profit.	The	constraint	can	

be	expressed	as	follows:		

	 (3-14)	

	

Where,	K	belongs	to	a	set	of	periods	in	which	an	operation	can	be	carried	out	on	a	

crop.	For	non-sequential	operations,	which	are	carried	out	based	on	the	stages	of	

crop	development	Eq.	(3-15)	ensures	that	the	total	area	of	each	operation	is	equal	

to	the	total	crop	area.		

(3-15)	

	

 Crop	sequencing	or	rotational	constraint	

In	 sustainable	 arable	 farming	 systems,	 crop	 rotation	 or	 sequencing	 is	 vital	

however,	 some	 crop	 sequences	 are	deemed	beneficial	 than	others—that	 is	 some	

crop	sequences	are	seen	as	optimal	and	other	sub-optimal	and	attract	penalties	(%		
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yield	 loss).	 The	 yield	 penalty	 is	 imposed	 in	 the	 objective	 function	 of	 the	 profit	

maximisation	 in	 the	column	corresponding	 to	 the	crop	sequence.	This	 constraint	

was	imposed	to	ensure	that	the	total	area	of	a	successor	crop	is	equal	to	the	area	of	

the	 last	 operation	 of	 the	 predecessor	 crop.	 For	 example,	 if	 a	 farmer	 decided	 to	

grow	 winter	 wheat	 after	 oilseed	 rape,	 the	 area	 of	 winter	 wheat	 grown	 cannot	

exceed	the	area	of	oilseed	rape	harvested.	This	can	be	expressed	as	follows:		

	(3-16)	

	

(3-17)	

	

Where,	 K#>) 	 is	 the	 area	 of	 crop	 c	 taking	 over	 from	 (following)	 crop	 i	 in	 period	k	

whereas	'#Å) 	is	the	area	of	last	or	final	operation	J	carried	out	on	crop	i	in	period	k.	

The	 constraint	 represented	 by	 Eq.	 (3-17)	 ensures	 that	 the	 area	 of	 the	 first	

operation	 of	 crop	 c	 in	 period	k	 ('>())	 does	 not	 exceed	 rick.	With	 respect	 to	 non-

sequential	first	operations,	the	constraint	although	less	restrictive	is	similar	to	Eq.	

(3-17)	 and	 is	 required	 in	 a	 situation	 where	 there	 are	 no	 periods	 overlapping	

between	the	 last	operation	of	 the	predecessor	crop	and	the	 first	operation	of	 the	

successor.		

 Crop	area	and	total	cropping	area	constraints	

One	 of	 the	 resources,	 which	 influence	 arable	 farming	 business	 decisions	 is	 the	

availability	of	 land.	The	hectors	of	 land	allocated	to	a	crop	mainly	depend	on	the	

amount	of	land	available	to	the	farmer.	Also,	the	total	area	land	allocated	to	a	crop	

may	 be	 determined	 by	 factors	 such	 as	 quota	 systems,	 prevailing	 prices	 and	

availability	of	land.	Thus	the	other	constraints	considered	are	crop	area	and	total	

cropping	 area	 constraints.	 The	 crop	 area	 constraint	 puts	 a	 limit	 on	 the	 area	 of	

certain	crops.	Sugar	beet	has	a	quota	imposed	limiting	the	area	a	farmer	is	allowed	

to	 grow.	 As	 part	 of	 farm	 planning	 strategies,	 some	 farmers	 may	 decide	 the	

proportion	 of	 the	 farm	 area	 allocated	 to	 certain	 crops.	 Thus	 in	 this	 study,	

limitations	 are	 put	 on	 the	 area	 of	 potatoes	 (wpot),	 winter	 oilseed	 rape	 (wosr),	
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legumes	(field	beans)	and	sugar	beet	(sbeet)	(see	Eq.		(3-18)	to	Eq.	(3-21)).	In	the	

case	 of	 legumes,	 the	model	was	 constrained	 to	 select	 some	minimum	amount	 of	

beans	 crops	 however,	 this	 constraint	 can	 be	 changed	 or	 removed.	 The	 crop	

proportions	were	formulated	in	such	a	manner	that	 it	ensures	that	crops	such	as	

winter	 oilseed	 rape	 and	 sugar	 beet	 appear	 in	 the	 rotation	 cycle	 1	 in	 3	 years,	

reflecting	some	of	the	pest	management	principles	of	breaking	disease	cycles	using	

crop	 rotation.	 Also,	 to	 capture	 the	 ‘greening’	 rules	 with	 respect	 to	 crop	

diversification	 as	 part	 of	 the	 Common	 Agricultural	 Policy	 (CAP)	 reforms	 (Defra,	

2014a),	 the	 crop	proportion	was	 formulated	 in	 such	a	way	 that	no	one	crop	can	

take	more	than	75%	of	the	crop	area	and	that	there	will	be	at	least	two	crops	in	a	

rotation.	 However,	 the	 model	 can	 also	 be	 set	 up	 to	 analyse	 mono-cropping	

scenarios.		

	(3-18)	

	

(3-19)	

	

(3-20)	

	

(3-21)	

	

The	total	cropping	area	constraint	ensures	the	sum	of	areas	of	all	crops	 is	

less	than	or	equal	to	the	total	area	cropped	and	for	the	purposes	of	this	study	the	

total	 cropped	 area	 considered	 was	 250	 ha.	 The	 total	 area	 constraint	 can	 be	

considered	 as	 a	 land	 use	 constraint	 because	 it	 ensures	 that	 the	 area	 of	 land	

occupied	by	a	crop	or	between	crops,	at	any	time,	must	be	no	more	than	the	total	

area	of	 land	available	 for	crops.	The	constraint	can	be	expressed	algebraically	as	

below	where	ai	is	the	area	of	the	ith	crop:	

	(3-22)	
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The	selection,	 inclusion	and	estimation	of	model	parameters	and	coefficients	has	

been	borne	out	of	the	fact	that	a	 farm	planning	model	should	ideally	contain	 just	

sufficient	to	enable	the	planning	scenarios	encompassed	realistically	(Barnard	and	

Nix,	1973).	This	 consideration	 is	 key	 in	LP	based	modelling	 in	order	not	 to	over	

constrain	 the	 model	 and	 generate	 infeasible	 or	 unrealistic	 results.	 Thus	 in	 the	

SAFMOD,	components	of	model	parameter/coefficient	estimates	considered	to	be	

common	in	farm	planning	analysis	were	captured,	estimated	and	incorporated	into	

the	model	and	these	are	estimated	and	stored	in	CSV	files.	As	with	all	models,	such	

information	 need	 to	 be	 updated	 from	 time	 to	 time	 and	 model	 recalibrated	 to	

enhance	the	accuracy	of	the	model.		

 Crop	yield	estimates	

Nitrogen	fertiliser	and	soil	types	have	bigger	impact	on	crop	yields	and	thus	in	the	

SAFMOD,	 crop	 yields	 were	 estimated	 based	 yield-response,	 which	 take	 into	

consideration	soil	type	and	N	fertiliser	rates.	The	response	function	allows	for	the	

depiction	 of	 the	 diminishing	 effect	 N	 fertiliser	 application	 on	 crop	 growth	 and	

yield.	The	response	functions	were	adopted	from	the	farmR	model	however,	unlike	

the	 farmR	model,	 in	 the	 SAFMOD,	 the	 soil	 type	 determines	 the	 N	 fertiliser	 rate	

which	 is	 a	 variable	 in	 the	 response	 function	 as	 well	 as	 serves	 a	 variable	 in	 the	

response	function.	Also,	in	the	SAFMOD	the	N	fertiliser	rates	used	to	estimate	crop	

yields	 were	 based	 on	 the	 recommended	 N	 fertiliser	 rates	 in	 Defra	 (2010).	 The	

response	functions	are	shown	in	Figure	3-2.	For	crops	such	as	sugar	beet	and	ware	

potato,	 the	 response	 function	 was	 based	 on	 N	 fertiliser	 rate	 where	 as	 for	 the	

legumes	they	are	based	on	only	 the	soil	 type.	The	response	 function	of	 the	other	

crops	such	as	winter	wheat	shown	in	the	Figure	3-2	below	were	based	on	heavy	

soil.	
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Note:	For	 the	 legume	crops	 the	 response	 functions	were	based	on	variation	 in	 soil	 type.	The	 soil	
types	are	represented	by	indices	ranging	from	0.5	through	2.5	at	interval	of	0.25	representing	light	
soil	through	heavy	soil.	

Figure	3-2:	Yield	response	function	of	crops	used	in	the	SAFMOD.	

	

 Expected	gross	margins	and	income	deviation	(risk)	estimates	

The	expected	gross	margin	 (!#)	 for	each	crop	 i	was	estimated	based	on	a	5-year	

historical	price	data	from	2009	to	2013	(Defra,	2014b).		The	prices	were	adjusted	

for	 inflation	 using	 deflator	 series	 from	HM	Treasury	 (2014).	 The	 expected	 gross	

margin	was	estimated	as	follows:		

(3-23)	

	

Where,	Yi	=	yield	(t/ha)	of	 the	 ith	crop	estimated	as	a	 function	of	soil	 type	and	N	

fertiliser	amount	as	indicated	above,	çé#A=	price	(£/t)	of	crop	i	under	qth	state	of	

nature	 (total	 of	 number	 of	 states	 of	 nature,	 s=5),	 FEi	 =	 fertiliser	 (N,	 P,	 K)	 cost	

(£/ha),	 SCi	 =	 seed	 cost	 (£/ha),	 OCi	 =	 other	 costs	 (£/ha)	 including	 chemical	 and	

sundry	costs	of	the	ith	crop	and	Subsidy	=	Single	Farm	Payment	(SFP)	value	(£/ha)	
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for	lowland	farms	(Nix,	2014).	It	should	be	noted	that	for	sugar	beet,	transport	cost	

was	 also	 considered	 and	 added	 to	 the	 variable	 cost.	 Table	 3-14	 (see	 chapter	

Appendix)	shows	example	data	for	gross	margin	estimate	for	each	of	the	crops.		

In	the	SAFMOD	risk	estimates	are	based	on	deviations	in	income.	Thus	the	

risk	captured	 in	 the	MOTAD	and	MIWGP	modules	are	assumed	 to	be	output	risk	

and	 although	 there	 is	 the	 possibility	 of	 input	 risks,	 it	 is	 assumed	 that	 such	 risks	

translate	into	output	risk	through	crop	yield	levels,	hence	the	focus	on	output	risk.	

The	 income	 deviations	 (mean	 absolute	 deviation	 and	 standard	 deviation	

estimates)	 used	 in	 the	MOTAD	 and	WGP	models	 as	 representative	 of	 risk	 were	

therefore	 estimated	 using	 the	 gross	 margins	 under	 qth	 state	 of	 nature	 for	 each	

crop.	The	income	deviations	are	shown	in	Table	3-15	(see	chapter	Appendix).	

 Nitrate	leaching	estimates	

The	 nitrate	 (NO3-)	 leaching	 was	 estimated	 by	 adopting	 the	 N	 balance	 approach	

used	 in	 Wossink	 (1993).	 The	 approach	 takes	 into	 consideration	 the	 amount	 of	

fertiliser	 N	 applied	 or	 fixed	 (inorganic	 and/or	 organic)	 (NApp),	 atmospheric	 N	

deposition	 (NDepo),	 crop	 N	 uptake	 (NUptake)	 and	 fertiliser	 evapotranspiration.	

However,	 in	 this	 study,	 the	 fertiliser	 evapotranspiration	 was	 replaced	 with	 the	

volatilisation	 of	 ammonia	 (Vol(NH3))	 and	 nitrous	 oxide	 (Vol(N2O))	 and	 emission	

factors	 of	 2%	 and	 0.5%	 were	 assumed	 for	 Vol(NH3)	 and	 Vol(N2O)	 respectively	

(Professor	Roger	Sylvester-Bradley,	pers.	comm.).	The	NDepo	value	was	the	average	

of	 atmospheric	 deposited	 N	 values	 obtained	 from	 the	 Air	 Pollution	 Information	

System7	(APIS)	using	the	grid	references	for	187	arable	fields	of	farms	in	England.	

Also	the	Soil	N	Supply	(SNS)	was	taken	into	consideration	in	the	estimation	of	total	

N	to	the	soil.	The	SNS	used	for	the	estimation	of	nitrate	leaching	(kg	N/ha),	NLeach	

was	 80kg/ha,	 the	 amount	 of	 SNS	 used	 to	 estimate	 the	 N	 uptake	 efficiency	 or	 N	

capture	in	Sylvester-Bradley	and	Kindred	(2009).	It	also	reflects	the	SNS	for	soils	

with	Soil	N	Supply	Index	(SNSI)	of	one8	in	Defra	(2010).	The	values	for	NUptake	were	

estimated	by	multiplying	the	total	N	to	the	soil	by	the	N	uptake	efficiency.	Thus	the	

N	leaching	estimates	are	influenced	by	N	uptake	by	crops.	Based	on	the	N	uptake	

efficiencies	used,	crops	such	as	sugar	beet,	potatoes,	and	winter	OSR	were	found	to		

																																																								
7	APIS	website:	http://www.apis.ac.uk/search-by-location		
8	The	recommended	N	amounts	used	in	the	study	were	based	on	soils	with	SNSI	of	1.	
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have	higher	N	uptake	and	hence	low	N	leaching	estimates	(see	Table	3-2).	Again,	in	

the	case	of	sugar	beet,	the	N	leaching	estimate	was	found	to	be	negative	due	to	the	

higher	N	uptake	efficiency	data	used	although	in	reality	some	amount	of	N	leaching	

may	occur	on	sugar	beet	fields.	The	estimates	for	set-aside	were	mainly	based	on	

the	 atmospheric	 deposition	 and	 SNS	 values.	 The	 estimation	 of	 NLeach	 can	 be	

expressed	as:	

(3-24)	
	

(3-25)	
	
	

Where,	NLeaching(GW)	is	the	N	leaching	to	groundwater	below	a	depth	of	1m	adopted	

from	Wossink	(1993).	According	to	Cardenas	et	al.	(2013)	the	default	values	used	

by	 the	 IPCC	 in	 estimating	 the	 fraction	 of	N	 leached	 from	 the	 application	 of	 both	

organic	and	inorganic	N	is	30%	(0.3).	Thus	the	0.2	factor	used	by	Wossink	(1993)	

was	 replaced	with	 a	 factor	 of	 0.3.	 Again,	 using	 a	 formula	 in	Wossink	 (1993)	 the	

NO3-	 amounts	 in	 g/l	 were	 estimated	 using	 the	 NLeaching(GW),	 taking	 into	

consideration	 the	 annual	 rainfall	 amount	 (mm)	 and	 this	 is	 shown	by	 Eq.	 (3-26).	

The	NLeaching(GW)	values	were	used	as	representative	nitrate	 leaching	values	 in	 the	

nitrate	leaching	objective	function	and	the	optimum	value	converted	to	NO3-	(g/l)	

using	 Eq.	 (3-26).	 The	 nitrate	 leaching	 estimates	 are	 linked	 to	 soil	 type—the	 soil	

type	 determines	 the	 fertiliser	 amounts	 for	 each	 crop	 based	 on	 recommended	

amounts	in	Defra	(2010).	The	conversion	by	Eq.	(3-26)	also	links	the	NO3-	(g/l)	to	

rainfall	amount.	

	

(3-26)	
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Table	3-2:	Base	N	leaching	(kg	N/ha)	estimates	for	crops	and	set-aside	used	in	the	model	

Crops	 N	Applied	
of	Fixed	
(kg/ha)	

Total	N	
(kg/ha)	

N	Uptake	
Efficiency		

N	
Uptake	
(kg	/ha)		

Vol(NH3)	
(kg/ha)	

Vol(N2O)	
(kg/ha)	

N	
Leaching	
(GW)	(kg	
N/ha/yr)	

Winter	wheat	 220	 320	 0.65	 208.00	 6.40	 1.60	 31.20	
Spring	wheat	 180	 280	 0.68	 190.40	 5.60	 1.40	 24.78	
Winter	barley	 170	 270	 0.54	 145.80	 5.40	 1.35	 35.24	
Spring	barley	 140	 240	 0.39	 93.60	 4.80	 1.20	 42.12	
Winter	beans	 285	 385	 0.51	 196.35	 7.70	 1.93	 53.71	
Spring	beans	 285	 385	 0.51	 196.35	 7.70	 1.93	 53.71	
Ware	potatoes	 220	 320	 0.81	 259.20	 6.40	 1.60	 15.84	
Winter	OSR	 190	 290	 0.85	 246.50	 5.80	 1.45	 10.88	
Sugar	beet	 100	 200	 1.07	 214.00	 4.00	 1.00	 -5.70	
Set-aside*	 --	 100	 --	 --	 2.00	 0.50	 29.25	

Note:	N	deposition	(20	kg	N/ha/yr)	and	SNS	(80	kg/ha)	were	added	to	the	N	applied	to	estimate	the	N	update.	

*	 N	 amount	 was	 based	 on	 N	 deposition	 and	 SNS	 values.	 N	 Fertiliser	 amounts	 are	 based	 on	 recommended	

amounts	for	a	heavy	soil	

	

 Work	rates,	operations	and	fixed	costs		

The	work	 rate	 (h/ha)	 of	machine	 types	 carrying	 out	 operations	were	 estimated	

based	on	 factors	 such	as	machine	 size,	 soil	 type,	 fertiliser	or	 seed	amounts,	 crop	

yield.	For	example,	the	work	rate	of	a	combine	harvester	depends	on	the	crop	yield	

and	 the	 size	 of	 the	 combine	 in	 terms	 of	 power.	 The	work	 rate	 for	 earth-moving	

operations	 such	as	ploughing	 took	 into	 consideration	 soil	 type.	The	 formulae	 for	

estimating	 the	work	 rates	were	 obtained	 from	Chamen	 and	Audsley	 (1993)	 and	

are	similar	to	the	ones	used	by	Cooke	et	al.	(2013)	to	build	the	farmR	model.		

The	operation	cost	 took	 into	consideration	 fuel	cost	(Eq.	 (3-27))	based	on	

work	 rates,	 fuel	 consumption,	 and	 fuel	 price.	 Also,	 with	 the	 possibility	 farmers	

hiring	seasonal	or	temporary	labour,	variable	labour	cost	was	assumed	to	be	part	

of	 operations	 cost	 and	 as	 a	 result,	 variable	 labour	 cost	 was	 estimated	 using	 an	

hourly	wage	rate	(£/h)	and	added	to	the	fuel	cost.	For	operations	such	as	planting	

and	harvesting	which	attract	timeliness	penalties,	the	respective	periodic	penalties	

(mainly	yield	loss)	were	estimated	in	terms	of	cost	(£/ha)	and	added	to	the	cost	of	

operation.	 Supposing	 the	 penalty	 for	 harvesting	 winter	 wheat	 in	 a	 sub-optimal	

period	is	5%	and	the	average	yield	and	price	are	10t/ha	and	£110/t	respectively,	
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the	 timeliness	penalty	cost	 (£/ha)	will	be	£55/ha	(0.05	´	10t/ha	´	£110/t).	This	

value	is	then	added	to	the	cost	of	harvesting	in	that	period.	

(3-27)	

	

The	 fixed	 cost	 (FC)	 considered	 in	 the	 study	 consists	 of	 the	 annual	 labour	

cost	 (ALC)	 and	 annual	 machinery	 cost	 (MC).	 With	 the	 SAFMOD	 set	 up	 to	 select	

labour	numbers,	which	are	assumed	to	be	permanent	labour	or	workforce,	the	ALC	

was	applied	to	this	type	of	labour	and	hence	why	it	was	considered	under	FC.	The	

MC	 consists	 of	 mainly	 annual	 depreciation	 (ADep)	 and	 annual	 repair	 and	

maintenance	 costs	 (RCost).	 These	 were	 estimated	 based	 on	 costs	 or	 prices	 of	

machinery	 (MaC),	 rate	 of	 depreciation	 (DR),	 repair	 cost	 rate	 (RCR)	 and	

replacement	 years	 (n).	 Estimates	 could	 be	 adjusted	 for	 inflation	 and	 to	 take	

interest	 rate	 (IR)	 into	 consideration,	 ADep	 was	 estimated	 using	 the	 capital	

recovery	 factor	 (CRF)	 (Eq.	 (3-28)	 and	 (3-30))	 however,	 in	 a	 situation	 where	

interest	rate	is	zero,	the	ADep	is	recalculated	based	on	Eq.	(3-29)	where	Dep	is	the	

total	depreciation.	RCost	was	estimated	based	Eq.	(3-31)	and	the	MC	based	on	Eq.		

(3-32).	The	FC	can	therefore	be	expressed	as	MC	+	ALC.	In	the	model,	the	total	fixed	

cost	is	calculated	using	the	machine	and	labour	numbers	estimated	by	the	model.	

For	 example,	 supposing	 the	MC	 for	 tractor	 is	 £12,000,	 ALC	 is	 £18,000	 and	 the	

tractor	and	 labour	numbers	selected	by	the	model	are	2	and	3	respectively,	 then	

the	total	FC	will	be	£78,000	(2´£12,000	+	3´£18,000).	Equation	shown	by	Eq.	3-28	

to	Eq.	3-31	obtained	from	Iowa	State	University	Extension	and	Outreach	website:	

https://www.extension.iastate.edu/agdm/crops/pdf/a3-29.pdf.		

(3-28)	

	

(3-29)	

	

(3-30)	

	

	ùiûN = (iûN	×	4éî) + (P"4	×	•é)	

	4éî =
•é(1 + •é):

(1 + •é): − 1	
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7 	
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(3-31)	

	

	(3-32)	

	

The	 machine	 types	 and	 data	 applied	 in	 estimating	 the	MC	 are	 shown	 in	

Table	3-16	in	Chapter	Appendix.	The	work	rate,	operation	and	fixed	cost	estimates	

by	the	SAFMOD	are	based	on	the	assumed	machine	sizes	and	prices.	In	the	context	

of	 the	mixed-integer	programming	approach,	 the	SAFMOD	may	 select	 two	of	 the	

100kW	tractors	assumed	and	used	 to	develop	 the	model.	However,	 it	 is	possible	

that	 in	 reality	 a	 farmer	 with	 a	 bigger	 farm	 size	 may	 use	 one	 big	 tractor,	 say	 a	

150kW	tractor	(1.5	of	100kW),	which	may	be	give	faster	work	rates	and	possible	

relatively	cheaper	than	two	100kW	tractors.	Thus	there	could	be	economy	of	scale	

and	with	the	possibility	of	updating	the	machine	sizes	in	SAFMOD,	the	model	can	

be	updated	to	take	into	consideration	bigger	machine	sizes.	Also,	with	the	machine	

numbers	 in	LP	models	serving	as	guide	 in	machinery	selection	and	planning,	 the	

machine	 number	 selected	 by	 the	 SAFMOD	based	 on	 the	machine	 types	 assumed	

(Table	3-16),	can	serve	as	guide	in	machinery	planning	in	arable	farms	although	in	

reality	 other	 sizes	 of	 machine	 can	 be	 selected	 by	 the	 farmer	 to	 better	 optimise	

profit.	

 Workable	hours	

Following	Annetts	and	Audsley	(2002)	and	Cooke	et	al.	(2013),	the	cropping	year	

was	 divided	 into	 26	 two-week	 periods	 to	 allow	 for	 the	 analysis	 of	 timeliness	

penalties.	 Workable	 hours	 (WHs)	 represent	 the	 number	 of	 hours	 available	 in	 a	

period	 for	 a	 farmer	 to	 work.	 The	WHs	 were	 estimated	 based	 on	 the	 land	 type	

indicator	 (LTI)	 formula	 (Tillet	 and	Audsley,	1987)	which	 is	 a	 function	of	 the	 soil	

type	(ST),	annual	rainfall	(AR)	and	the	day	number	in	the	year	(d)	(for	example	1st	

January	 is	 considered	 as	 day	 1).	 The	LTI	 formula	makes	 it	 possible	 to	 solve	 the	

models	using	different	soil	types	and	rainfall	levels	and	hence	why	it	was	adopted.	

The	estimated	WHs	were	multiplied	by	a	 factor	of	0.85	(adopted	 from	the	 farmR	

model	by	Cooke	et	al.	(2013))	to	factor	in	unproductive	times.		

é4Jdß = P"4	×é4é	

	P4 = ùiûN + é4Jdß	
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With	 differences	 in	 the	workability	 of	 different	 operations,	 the	WHs	were	

revised	 based	 on	 the	 type	 of	 operation	 (Tillet	 and	 Audsley,	 1987).	 For	 example,	

spraying	 has	 a	 workability	 of	 60%,	 thus	 if	 the	 estimated	 WH	 =	 40h,	 then	 with	

respect	to	spraying	the	WH	will	be	24h	(40	×	0.6).	The	LTI	adopted	from	Tillet	and	

Audsley	(1987)	can	be	expressed	as:		

(3-33)	

Where,	

ST	=	Soil	type	(soil	type	represented	by	indices	from	0.5	to	2.5	at	interval	of	0.25	to	

represent	light	soils	through	to	heavy	soils),	AR	=	Annual	rainfall	(mm).	

 Yield	and	rotational	penalties	

Sub-optimal	operations	and	rotations	could	attract	yield	penalties	 (%	yield	 loss),	

Oypen	 and	 Rypen	 respectively.	 For	 example,	 the	 optimum	 time	 for	 planting	 winter	

wheat	is	between	late	September	and	early	October	however,	planting	in	early	or	

late	 December	 could	 attract	 a	 penalty	 of	 about	 15%.	 Legumes	 (e.g.	 beans)	

following	 winter	 wheat	 attracts	 no	 penalty	 and	 thus	 considered	 as	 optimal	

rotation.	 Winter	 wheat	 following	 a	 barley	 crop	 is	 considered	 as	 sub-optimal	

rotation	and	could	attract	a	penalty	of	about	11%.	The	yield	penalty	with	respect	

to	sub-optimal	operations	could	range	from	zero	to	over	20%	and	the	yield	penalty	

with	respect	to	sub-optimal	rotation	could	range	from	zero	to	100%	(rotations	or	

crop	sequences	not	allowed).		For	sub-optimal	operations,	the	yield	penalties	were	

expressed	 as	 cost	 (Oypen	 ×	 crop	 yield	 ×	 crop	 price)	 and	 added	 to	 the	 cost	 of	

operation	 in	 the	 respective	 periods	 (as	 illustrated	 under	 Section	3.4.4).	 For	 sub-

optimal	crop	rotations	or	crop	sequences,	the	yield	penalties	(Rypen	×	crop	yield	×	

crop	price)	were	assigned	to	the	respective	crop	sequence	or	rotations	as	costs	in	

the	profit	maximisation	objective	 function.	Thus	 the	penalty	 takes	effect	 if	a	sub-

optimal	crop	sequence	is	selected	by	the	model.	

In	terms	of	the	MOTAD	model,	it	is	formulated	in	such	a	manner	that	profit	

is	maximised	subject	to	minimising	risk	and	as	a	result	the	effect	of	yield	penalty	

either	 due	 to	 sub-optimal	 operations	 or	 crop	 sequences	 reflects	 in	 the	 profit	

maximisation	objective	function	but	not	in	the	income	deviation	estimates.	This	is	

due	to	the	fact	that	the	risk	(income	deviation)	estimates	in	the	MOTAD	model	are	

	tb• = 20.6¨o − 89¨ + 212	

	¨ = (1.257 − 0.257sb)ùé + 0.762(sb − 1)	
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based	on	historical	and	as	a	result	does	take	into	consideration	yield	and	rotational	

penalty.	 The	 effect	 of	 yield	 penalty	 however,	 influence	 the	 risk	 estimates	 of	 the	

model	 indirectly	 through	 its	direct	effect	on	 the	profit	estimates	by	 the	objective	

function.	

	

 

The	data	used	in	estimating	the	model	parameters	and	coefficients	were	primarily	

secondary	 data	 from	 farm	 management	 books	 and	 other	 existing	 models	

(primarily	the	farmR	model).	These	included	data	such	as	farm	input	and	output,	

soil,	 rotational	 penalties	 as	 well	 as	 information	 and	 assumptions	 used	 in	

developing	the	model	and	estimating	model	parameters.	The	different	data	types	

are	 presented	 in	 Table	 3-13	 (see	 the	 chapter	 Appendix).	With	 some	 of	 the	 data	

adopted	from	the	farmR	model,	 the	sources	of	such	data	are	stated	as	farmR	and	

the	original	references	cited	by	Cooke	et	al.	(2013).	

	

 

This	 section	 presents	 an	 example	 of	 the	 results	 generated	 by	 the	 SAFMOD—the	

mixed-integer	goal-programming	module.	The	model	codes	were	written	in	the	R	

programming	language	(R	Core	Team,	2015)	and	solved	by	the	R	version	of	GNU9	

(Gnu's	 Not	 Unix)	 Linear	 Programming	 Kit10	 (Rglpk).	 The	 codes	 for	 the	 mixed-

integer	 goal-programming	model	 can	 be	 found	 on	 GitHub	 through	 the	 following	

link:	 https://github.com/kwadjoahodo/SAFMOD/blob/master/SAFMOD.R.	 The	

example	results	shown	in	Figure	3-3	were	generated	based	on	a	heavy	soil,	rainfall	

of	600mm	and	fixed	cost	estimates	taking	into	account	an	interest	rate	of	0.5%.		

																																																								
9	GNU:	https://www.gnu.org/gnu/gnu.html		
10	GLPK:	http://www.gnu.org/software/glpk/	
Rglpk:	https://cran.r-project.org/web/packages/Rglpk/Rglpk.pdf	
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Figure	3-3:	Model	result	example	generated	using	the	mixed-integer	

weighted	goal	programming	module	in	SAFMOD	

	

A	
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Part	 A	 of	 Figure	 3-3	 shows	 information	 on	 the	 overall	 deviation	 (the	 objective	

function	 (in	 percentage),	 the	 goal	 weights,	 targets,	 levels	 of	 goals	 achieved	 and	

deviations	 from	 goals	 targets.	 For	 example,	 a	 weight	 of	 1	was	 put	 on	 the	 profit	

maximisation	goal	with	a	 target	of	£120,000.	The	goal	was	achieved	and	 thus	no	

deviation	 from	 goal	 target.	 Part	 B	 shows	 the	 crop	 proportions	 whereas	 Part	 C	

shows	 the	 rotation	matrix.	 In	 terms	of	 the	 crop	plan,	 the	 time	horizon	 is	 infinity	

however,	the	length	of	the	crop	cycle	depends	on	the	model	solution.	The	rotation	

matrix	 reflects	 the	 distribution	 of	 crops	 in	 fields	 with	 the	 crops	 in	 the	 rows,	

successor	 crops	 and	 the	 ones	 in	 the	 columns	 being	 the	 predecessor	 crops.	 The	

results	 contained	 in	 the	 rotation	 or	 crop	 sequence	matrix	 thus	 contains	 implicit	

rotations	or	crop	sequences	rather	than	explicit	fixed	period	rotation.	For	example,	

for	the	250ha	farm,	the	crop	sequences	from	Part	C	can	be	read	as	shown	in	Table	

3-3.	 Part	D	 shows	 the	machines/labour	 numbers	 and	 the	 total	 annual	 fixed	 cost	

estimate	whereas	Part	 E	 gives	 additional	 information	 on	 the	whether	 or	 not	 the	

goal	targets	were	achieved,	over	or	under	achieved.	

Table	3-3:	Crop	sequences	information	contained	in	the	rotation	matrix	generated	by	the	

SAFMOD	

Crop	sequence*	 Field	Area	(ha)	
WWHT	after	WBAR	 32	
WWHT	after	SBAR	 18	
WWHT	after	WBEA	 16	
WWHT	after	WPOT	 30	
WWHT	after	WOSR	 21	
WBAR	after	WWHT	 32	
SBAR	after	WPOT	 18	
WBEA	after	WWHT	 16	
WPOT	after	WWHT	 48	
WOSR	after	WWHT	 21	
*	 WWHT=Winter	 wheat;	 WBAR=Winter	 barley;	 SBAR=Spring	 barley;	 WBEA=Winter	 beans;	 WPOT=Ware	

potatoes;	WOSR=Winter	oilseed	rape	
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Before	 carrying	 out	 the	 model	 validation,	 model	 verification	 was	 carried	 out	 to	

ensure	consistency	in	the	results	generated	by	the	models.	The	default	models	are	

solved	 using	 the	 R	 programming	 software	 (R	 Core	 Team,	 2015)	 version	 of	 GNU	

Linear	 Programming	 Kit	 (Rglpk)	 however,	 to	 ensure	 consistency	 in	 the	 model	

results,	 the	 models	 were	 also	 solved	 using	 the	 R	 version	 of	 the	 COIN-OR	

(Computational	 Infrastructure	 for	 Operations	 Research)	 Symphony11	

(Rsymphony)	 and	 the	 results	 were	 compared.	 Both	 solvers	 generated	 the	 same	

results.	To	be	able	to	compare	the	model	results	with	real	farm	data,	the	validation	

by	result	approach,	which	encompasses	predictive	validation	(McCarl	and	Spreen,	

1997)	 was	 adopted.	 Predictive	 validation	 is	 the	 most	 common	 validation	

experiment,	which	makes	 it	 possible	 to	 fix	 the	model	 data	 or	parameters	 at	 real	

system	 data	 levels	 and	 run	 the	 model,	 after	 which	 the	 results	 are	 compared	 to	

respective	 real	 data	 (McCarl	 and	 Spreen,	 1997).	 Thus	 to	 carry	 out	 predictive	

validation,	historical	or	real	data	are	needed	and	for	the	purposes	of	this	study,	the	

Farm	Business	Survey	(FBS)	data	for	arable	farms	in	England	and	Wales	were	used	

(see	Section	3.8	for	farm	selection	criteria).	The	steps	for	the	validation	by	results	

can	be	summarised	by	Figure	3-4	(designed	based	on	information	from	McCarl	and	

Spreen,	 1997)	 assuming	 all	 model	 solutions	 generated	 via	 the	 validation	

experiment	are	optimal.	

																																																								
11	Symphony:	https://projects.coin-or.org/SYMPHONY	
Rsymphony:	https://cran.r-project.org/web/packages/Rsymphony/Rsymphony.pdf		
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Figure	3-4:	Steps	for	model	validation	by	results	
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To	perform	a	predictive	validation,	empirical	data—the	2009-2013	Farm	Business	

Survey	 (FBS)	 data	 were	 obtained	 from	 the	 UK	 Data	 Archive	 (UKDA)	 and	 used.	

These	 data	 were	 filtered	 by	 selecting	 farm	 at	 an	 altitude	 of	 less	 than	 300m	

(lowland	arable	farms)	and	with	arable	crops	and	set-aside12	areas	of	greater	than	

or	equal	to	100ha.	Farms	with	missing	data	for	three	or	more	years	with	respect	to	

the	arable	crop	and	set-aside	areas	were	excluded.	Thus	281	 farms	 located	 in	all	

the	 FBS	 defined	 regions	 in	 England	 and	 Wales13	 were	 used	 for	 the	 model	

validation.	 Since	 the	 yield	 values	 from	 the	 default	 model	 were	 functions	 of	 soil	

types	and	N	 fertiliser	amounts,	 in	a	situation	where	 the	yield	data	of	 farms	were	

missing	or	farms	did	not	grow	particular	crops,	the	yields	were	estimated	using	the	

soil	 type	 and	 the	 respective	 recommended	 N	 fertiliser	 amounts	 obtained	 from	

Defra	(2010).	The	resultant	data	were	time-averaged	(2009	to	2013)	crop	yields,	

farm	areas,	gross	margins	and	profit	levels	and	fertiliser	quantities	for	each	of	the	

281	farms	selected.	Other	data	were	fertiliser	cost,	seed	cost	and	fuel	cost.	 In	the	

model,	workable	hours	were	estimated	based	on	soil	types	and	rainfall	amount.	As	

a	result,	the	dominant	soil	types	(obtained	from	Soilscapes14)	for	counties	in	which	

the	farms	are	located	were	used	as	representative	soil	types	for	the	selected	farms.	

Also	the	rainfall	amounts	for	the	FBS-defined	regions15	in	which	farms	are	located	

were	used	as	representative	rainfall	amounts	for	the	selected	farms.	This	was	done	

to	be	able	to	estimate	the	workable	hours	for	each	of	the	281	farms	based	on	their	

representative	soil	types	and	rainfall	amounts.	

	

	

	

																																																								
12	Set-aside	areas	were	areas	of	un-cropped	arable	land	and	areas	of	voluntary	set-aside.	
13	The	selected	 farms	 from	Wales	as	 the	result	of	 the	criteria	were	 from	two	counties	whereas	 in	
England	farm	selected	fell	under	all	the	FBS	defined	regions.	
14	Soilscapes:	http://www.landis.org.uk/soilscapes/	
15	Regional	rainfall	were	obtained	from	Met	Office:	
http://www.metoffice.gov.uk/climate/uk/summaries/datasets	
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The	time-averaged	crop	yields	and	farm	arable	areas	were	used	as	model	input	for	

the	validation.	The	models	were	then	calibrated	or	set	up	to	allow	for	the	use	of	the	

time-averaged	 crop	 yields,	 arable	 areas,	 soil	 types	 and	 rainfall	 amounts	 for	 each	

farm	as	model	inputs	while	holding	all	other	parameters	constant.	This	means	the	

models	were	calibrated	by	 fixing	crop	yields	and	 farm	areas	at	 the	observed	FBS	

yield	 and	 farm	 area	 values.	 Soil	 types	 and	 rainfall	 amounts	 were	 fixed	 at	 farm-

specific	values	obtained	from	Soilscapes	and	Met	Office	respectively	based	on	their	

FBS-defined	 counties	 or	 regions,	 and	 the	 models	 were	 run	 for	 each	 of	 the	 281	

farms.		

In	the	case	of	the	risk	(MOTAD)	model,	it	was	run	setting	the	Mean	Absolute	

Deviation	(MAD)	to	£20,000,	due	to	the	fact	it	gave	the	best	fit	when	predicted	and	

observed	crop	areas	were	compared.	In	terms	of	the	weighted	goal-programming	

model	the	set	of	weights	and	goals	which	gave	the	best	fit	in	terms	of	predicted	and	

observed	 crop	 areas	 comparison	 (weight	 for	 profit	 maximisation	 =	 0.8,	 nitrate	

leaching	minimisation	=	1,	 risk	minimisation	=	0.05),	were	adopted	and	used	 for	

the	validation.	 It	 is	 also	possible	 that	other	 set	of	weights	and	goal	 targets	 could	

give	better	model	fit.	

To	be	 able	 to	 conduct	 aggregate	 level	 comparison	using	 farm	average	 crop	

yields	and	areas	as	model	input,	the	soil	type	and	rainfall	were	set	at	heavy	soil	and	

600mm	 respectively.	 This	 type	 of	 aggregate	 level	 comparison	was	 conducted	 to	

enable	 the	 models	 to	 be	 solved	 once,	 for	 the	 ‘average’	 farm	 and	 the	 result	

compared	to	average	data.	Heavy	soil	and	rainfall	amount	of	600mm	were	found	to	

give	the	best	fit	in	terms	of	comparing	predicted	and	observed	crop	areas	when	the	

models	were	run	at	different	soil	types	and	rainfall	levels.			

After	 model	 runs,	 the	 results	 of	 the	 models	 were	 then	 compared	 to	 the	

observed	FBS	data	using	 statistical	measures	of	 association	 such	as	Pearson	and	

Spearman	 correlation	 coefficients,	 coefficient	 of	 determination	 (regression	

analysis),	MAE	and	RMSE.	Other	 statistical	measures	of	 association	applied	were	

NIA,	WIA,	LCE,	CRM	and	t-test.	
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After	model	 calibration	 and	model	 runs,	 the	model	 results	were	 then	 compared	

with	the	observed	FBS	data	to	measure	the	degree	of	association	using	statistical	

indicators	and	graphical	approaches.	According	to	Loague	and	Green	(1991)	model	

evaluation	 (validation)	 should	 include	 both	 statistical	 criteria	 and	 graphical	

displays	in	that	both	approaches	can	be	used	to	compare	the	performance	between	

alternative	 models,	 hence	 these	 two	 approaches	 were	 adopted.	 Statistical	

measures	 are	 useful	 for	 quantitative	 evaluation	 of	 model	 performance	 whereas	

graphical	 displays	 are	 useful	 for	 showing	 trends	 and	 types	 of	 error	 distribution	

patterns	which	may	 not	 be	 able	 to	 be	 shown	using	 statistical	measures	 (Loague	

and	 Green,	 1991).	 Some	 of	 the	 statistical	 measures	 or	 indicators	 of	 association	

identified	 through	 the	 review	 of	 measures	 of	 association	 (see	 Table	 3-1)	 were	

adopted	and	applied	in	the	model	validation	and	these	are	expressed	by	Eq.	(3-34)	

to		(3-39)	with	a	regression	model	expressed	by	Eq.	(3-40).	Ol	is	the	observed	data	

for	 the	 lth	 observation	 of	 the	 parameter	 of	 interest	 (e.g.	 crop	 areas),	 Pl	 is	 the	

model-predicted	 result	 (data)	of	 the	 lth	observation	of	 the	parameter	of	 interest	

(e.g.	model	predicted	or	 generated	 crop	 areas),	Oav	 and	Pav	 are	 the	means	of	 the	

observed	and	predicted	data	respectively	and	N	is	the	number	of	observations.	For	

the	regression	model	shown	by	Eq.	(3-40),	α	is	the	intercept,	β	is	the	slope	(slope	

of	best	fit	line),	and	ε	is	the	error	term.	
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(3-38)	

	

	(3-39)	

	
	
	

(3-40)	

	
	
	

(3-41)	

	
	

For	a	perfect	association,	 the	slope	of	 the	regression	 line	would	be	equal	 to	

one	and	the	intercept	would	be	expected	to	be	zero	(Smith	and	Rose,	1995).	Thus	

the	slope	was	tested	on	a	null	hypothesis	(H0)	that	the	slope	is	equal	to	one	against	

the	alternative	hypothesis	(H1)	that	it	is	different	from	one	whereas	the	intercept	

was	 tested	 to	 find	 out	 whether	 or	 not	 it	 was	 significantly	 different	 from	 zero.		

Testing	 the	 hypothesis	 that	 the	 intercept	 is	 not	 different	 from	 zero	 is	 not	 very	

useful	 if	 the	slope	is	significantly	different	 from	one	(Smith	and	Rose,	1995).	The	

hypotheses	for	the	t-tests	can	be	summarised	as	follows:		

For	the	intercept:	

• H0:	Intercept	(α)	=	0;	H1:	Intercept	(α)	≠	0	

For	the	slope:	

• H0:	Slope	(β)	=	1;	H1:	Slope	(β)	≠	1.	

	

The	model	results	were	compared	with	the	observed	FBS	data	by	aggregating	

across	 farms	 as	 well	 as	 at	 the	 level	 of	 individual	 farms.	 The	 aggregate-level	

comparison	was	in	two	forms.	The	first	aggregate	level	of	comparison	(referred	to	

as	AL-1)	was	conducted	by	comparing	the	model	result	obtained	from	running	the	

models	using	farm	average	area	and	crop	yields	with	average	observed	data.	The	

AL-1	comparison	was	applied	to	crop	area	comparison.	The	second	aggregate	level	

comparison	 (referred	 to	as	AL-2)	was	 conducted	using	 the	average	of	 the	model	
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results	obtained	by	running	the	models	for	each	of	the	281	farms	and	the	average	

observed	 data.	 For	 example,	 to	 find	 the	 degrees	 of	 association	 between	 crops	

areas,	the	averages	of	the	crops	areas	obtained	from	running	the	model	for	the	281	

farms	and	the	average	crops	areas	from	the	FBS	data	for	the	281	farms	were	used.	

For	 crop	areas,	 this	 resulted	 in	10	data	points,	 reflecting	 the	nine	 crops	and	set-

aside	in	the	model.		

Aggregate	level	comparisons	were	conducted	for	crop	areas	(representative	

of	arable	farm	landscape),	 fertiliser	amounts	(representative	of	resource	or	input	

use)	and	gross	margin,	profit,	 fertiliser	seed	and	fuel	cost	(representative	of	farm	

finances).	 The	AL-1	 comparison	was	done	purposely	 to	 compare	 its	 results	with	

the	AL-2	results	and	also	to	be	able	to	investigate	changes	in	crop	selection	for	the	

‘average’	 farm	 under	 all	 four	 models.	 The	 individual-level	 comparison	 was	

conducted	by	comparing	the	values	of	each	individual	farm	with	the	FBS	data	using	

all	 the	 281	 observations.	 With	 the	 individual-level	 comparison,	 variables	 were	

compared	 one	 at	 a	 time.	 For	 example,	 predicted	 winter	 wheat	 areas	 were	

compared	with	observed	winter	wheat	areas	instead	of	comparing	the	area	of	all	

crops	at	the	same	time.	Table	3-4	shows	all	the	variables,	which	were	predicted	by	

the	models	and	were	compared	to	FBS	data.			

Table	3-4:	Matrix	of	all	the	observed	and	model	predicted	variables	compared.		

Model	
Type/Observed	
Data	

Predicted/Observed	Variables*	
Crop	
Areas	

Gross	
Margin	

Profit	 Fixed	
Cost	

Labour	
cost	

Fertiliser,	
Seed	and	
Fuel	Cost	

Fertiliser	
amounts	

Pure	Profit	
Model	

+	 +	 +	 +	 +	 +	 +	

Nitrate	Leaching	
Model	

+	 +	 +	 +	 +	 +	 +	

Risk	(MOTAD)	
Model	

+	 +	 +	 +	 +	 +	 +	

WGP	Model	 +	 +	 +	 +	 +	 +	 +	
FBS	Data	 +	 +	 +	 +	 +	 +	 +	
*	 The	 plus	 (+)	 indicates	 that	 the	 variable	 is	 part	 of	 set	 of	 variables	 considered	 for	 comparison.
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 Aggregate-level	 comparisons	 between	 observed	 and	 predicted	 crop	
areas	

The	 estimates	 of	 correlation	 and	 coefficient	 of	 determination	 for	 the	 aggregate-

level	 comparison	 using	 average	 farm	 data	 (AL-1)	 showed	 positive	 association	

between	 predicted	 and	 observed	 crop	 areas	 especially	 under	 the	 risk	 (MOTAD)	

and	WGP	models	(r	=	0.91	(p-value	=	0.00),	ρ	=	0.67	(p-value	=	0.03),	R2	=	0.83)	

(see	 Figure	 3-5	 (c1)	 and	 (d1)).	 The	model	 performance	 indicators	 also	 showed	

comparatively	good	model	performance	under	MOTAD	and	WGP	models	 (NSE	=	

0.80,	WIA	=	0.95,	LCE	=	0.47).	However,	RMSE,	MAE	and	CRM	estimates	showed	

the	 existence	 of	 bias	 as	well	 as	 under-predictions	 in	 the	model	 predictions.	 The	

relatively	high	RMSE	estimates	 than	 the	MAE	estimates	 can	be	 attributed	 to	 the	

squaring	of	the	errors	(see	Eq.	(3-35)).		

Although	winter	wheat	was	the	dominant	crop,	it	was	under-predicted	by	all	

the	four	models	especially	the	profit	and	nitrate	 leaching	models	(see	Figure	3-5	

(a2)	to	(d2)).		Other	crops	such	as	winter	OSR	were	also	under-predicted	however,	

crops	such	as	winter	barley	and	potatoes	were	over-predicted	 in	 the	pure	profit	

and	nitrate	leaching	models.	This	may	be	due	to	the	fact	that	in	pure	profit	models,	

farmers	 are	 assumed	 to	 be	 indifferent	 to	 risk	 and	 hence	 the	model	 mimics	 the	

behaviour	 of	 such	 farmers	 by	 selecting	 high	 profit	 generating	 crops	 without	

considerations	 to	 the	associated	risks.	This	also	reflects	 in	 the	results	of	 the	risk	

module	application	in	Chapter	5	in	which	under	risk	neutral	more	land	is	allocated	

to	high	risk	crops	such	as	potatoes.	Thus	 in	the	MOTAD	and	WGP	models,	which	

incorporated	risk	minimisation	objectives,	high-risk	crops	 such	as	potatoes	gave	

way	to	set-aside,	which	is	considered	risk-free	in	the	crop	plan.	As	a	result,	unlike	

the	 profit	 and	 nitrate	 leaching	models,	 in	 the	MOTAD	 and	WGP	models,	 potato	

area	 was	 under-predicted	 whereas	 set-aside	 was	 over-predicted.	 The	 positive	

CRM	 estimates	 (see	 Figure	 3-4	 (a2)	 to	 (d2))	 suggest	 under-prediction	 of	 crop	

areas	by	all	four	models.		
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Note:	 For	 the	 Risk	 Model,	 MAD	 was	 set	 at	 £20,000,	 WGP	 Weights:	 Profit	 maximisation	 =	 0.8	 (Target	 =	
£76,000),	 Nitrate	 leaching	 minimisation	 =	 1	 (Target	 =	 10000	 kg	 N),	 Risk	 minimisation	 =	 0.05	 (Target	 =	
£20,000).	 The	 solid	 line	 represents	 a	 perfect	 association.	 The	 error	 bars	 represent	 deviations	 in	 model	
predicted	and	observed	crop	areas.		

Figure	3-5:	Comparison	between	 relative	observed	 crop	areas	and	crop	areas	predicted	

by	the	four	different	models	(AL-1).			
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The	 non-zero	 and	 positive	 slopes	 values	 (see	 Table	 3-5)	 are	 also	 an	

indication	 of	 positive	 associations	 between	 predicted	 and	 observed	 data.	 The	

results	of	 the	t-test	(Table	3-5)	under	all	models	also	showed	that	the	 intercepts	

and	the	slopes	were	respectively	not	significantly	different	from	zero	and	one.		

Table	3-5:	Results	of	t-test	on	intercept	and	slope	for	regression	of	observed	(FBS)	data	on	
model	predicted	data	at	the	aggregate	level.		

Model	
Output	

Pure	Profit	Model	 Nitrate	Leaching	
Model	

Risk		(MOTAD)	
Model	*	

WGP	Model	**	

α	 β	 α	 β	 α	 β	 α	 β	
Crop	Areas	
(ha)	(AL-1)	

4.22	
(0.42)	
{0.68}	

0.93	
(-0.31)	
{0.77}	

4.40	
(0.42)	
{0.68}	

0.92	
(-0.342)	
{0.742}	

6.30	
(0.93)	
{0.38}	

0.86	
(-1.04)	
{0.33}	

6.30	
(0.93)	
{0.38}	

0.86	
(-1.04)	
{0.33}	

	
Crop	Areas	
(ha)(AL-2)	

-0.00	
(-0.04)	
{0.97}	

1.12	
(0.57)	
{0.58}	

-0.01	
(-0.46)	
{0.65}	

1.25	
(1.10)	
{0.30}	

-0.00	
(-0.14)	
{0.89}	

1.26	
(1.23)	
{0.25}	

-0.00	
(-0.06)	
{0.95}	

1.12	
(0.49)	
{0.63}	

	
Fertiliser	
Amounts		
(kg/ha)	
	

-2.37	
(-0.12)	
{0.91}	

1.01	
(0.06)	
{0.95}	

-2.37	
(-0.12)	
{0.91}	

1.01	
(0.06)	
{0.95}	

-0.61	
(-0.04)	
{0.97}	

1.06	
(0.68)	
{0.53}	

-1.73	
(-0.09)	
{0.93}	

1.09	
(0.85)	
{0.44}	

Revenue/	
Cost	(£/ha)	
	

103.83	
(0.63)	
{0.54}	

1.03	
(0.06)	
{0.96}	

106.51	
(0.65)	
{0.54}	

1.01	
(-0.03)	
{0.98}	

102.35	
(0.68)	
{0.51}	

1.02	
(0.05)	
{0.96}	

138.24	
(0.81)	
{0.44}	

0.99	
(-0.03)	
{0.98}	

*	MAD	=	£20,000,	**	Weights:	Profit	maximisation	=	0.8	(Target	=	£76,000),	Nitrate	leaching	minimisation	=	1	

(Target	=	10000	kg	N),	Risk	minimisation	=	0.05	(Target	=	£20,000).	Note:	The	values	in	parentheses	are	the	t-

values	whereas	the	values	in	curly	brackets	are	the	corresponding	p-values	for	both	the	intercept	(α)	and	the	

slope	(β).	

	

The	estimates	of	the	Pearson	correlation	tests	for	the	second	aggregate	level	

comparisons	 of	 observed	 and	 predicted	 crop	 areas	 using	 the	 average	 observed	

crop	 areas	 and	 averages	 of	 the	 crop	 areas	 predicted	 by	 the	models	 for	 the	 281	

farms	(AL-2),	also	showed	positive	relationship	(see	Figure	3-6).	The	estimates	for	

the	 Pearson	 correlation	 tests	 were	 significant	 however,	 the	 estimates	 for	 the	

Spearman	correlation	tests	were	not	significant	under	all	four	models	apart	from	

the	 estimate	 under	 the	 MOTAD	 model,	 which	 was	 near	 significant	 (ρ=0.57;	 p-

value=0.09).	 	 This	 reflects	 the	 poor	 prediction	 of	 the	 rank	 order	 of	 crops	 apart	

from	winter	wheat	 (the	dominant	 crop).	 The	MOTAD	model	 also	 gave	 relatively	

the	best	R2	estimates	(R2=0.81).		
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Note:	 For	 the	 Risk	 Model,	 MAD	 was	 set	 at	 £20,000,	 WGP	 Weights:	 Profit	 maximisation	 =	 0.8	 (Target	 =	
£76,000),	 Nitrate	 leaching	 minimisation	 =	 1	 (Target	 =	 10000	 kg	 N),	 Risk	 minimisation	 =	 0.05	 (Target	 =	
£20,000).	 The	 solid	 line	 represents	 a	 perfect	 association.	 The	 error	 bars	 represent	 deviations	 in	 model	
predicted	and	observed	crop	areas.		

Figure	3-6:	Comparison	between	 relative	observed	 crop	areas	and	crop	areas	predicted	

by	the	four	different	models	(AL-2).		
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The	AL-2	comparison	also	showed	under-prediction	of	crops,	with	set-aside	

being	over-predicted.	This	may	be	due	to	the	fact	that	quite	a	reasonable	number	

of	 farms	 in	 the	 FBS	 recorded	 crop	 yields	 far	 lower	 than	 the	 respective	 average	

yield	and	also	the	fact	that	the	model	was	run	for	each	individual	farm	using	their	

time-averaged	crop	yields	and	area.	Thus	in	a	situation	where	yields	for	dominant	

crops	such	as	winter	wheat	were	very	low,	the	model	allocated	more	land	to	set-

aside	and	hence	 set-aside	being	over-predicted.	The	 results	of	 the	 t-test	 showed	

the	 intercepts	 and	 slopes	 to	be	 respectively	not	 significantly	different	 from	zero	

and	one.	Also,	model	performance	measures	such	as	NSE	and	WIA	were	relatively	

high	(NSE	range:	0.71–0.76,	WIA	range:	0.90–0.92).	The	deviance	measures	(MAE	

and	RMSE)	(Figure	3-6	(a2)	–	(d2))	reflect	the	variability	in	model	predicted	farm	

areas,	which	were	influenced	by	variability	in	crop	yields	of	farms.		

 	Aggregate-level	 comparisons	 between	 observed	 and	 predicted	
fertiliser	amounts	

The	 aggregate-level	 comparison	 of	 observed	 and	 predicted	 fertiliser	 amounts	

showed	a	positive	association	between	predicted	and	observed	fertiliser	amounts.	

The	estimates	 for	 the	Pearson	correlation	 tests	under	all	 four	models	were	high	

and	 statistically	 significant	 (r	 =	 0.99;	 p-value	 =	 0.01,	 R2	 =	 0.98)	 however,	 the	

estimates	 for	 the	 Spearman	 correlation	 test	 were	 near	 significant	 (ρ	 =	 1.00;	 p-

value	=0.08).	The	results	of	the	t-test	(see	Table	3-5)	showed	the	intercepts	to	be	

not	significantly	different	from	zero	and	the	slopes	not	significantly	different	from	

one.	Model	performance	indicators	also	showed	good	model	performance	in	terms	

of	fertiliser	prediction	(NSE:	range	=	0.96–0.98,	WIA	=	0.99)	(see	Figure	3-6	(a2)	to	

(d2)).		The	deviance	measures	(MAE	and	RMSE)	were	close	to	zero	indicating	the	

closeness	 of	 the	 predicted	 fertiliser	 amounts	 to	 observed	 amounts.	 In	 general,	

there	 was	 some	 over-prediction	 of	 fertiliser	 amounts	 by	 the	 profit	 and	 nitrate-

leaching	 models	 (CRM	 <	 0)	 however,	 nitrogen	 fertiliser	 amounts	 were	 under-

predicted.	The	MOTAD	and	WPG	models	under-predicted	fertiliser	amounts	(CRM	

>	0).		
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Note:	 For	 the	 Risk	 Model,	 MAD	 was	 set	 at	 £20,000,	 WGP	 Weights:	 Profit	 maximisation	 =	 0.8	 (Target	 =	
£76,000),	 Nitrate	 leaching	 minimisation	 =	 1	 (Target	 =	 10000	 kg	 N),	 Risk	 minimisation	 =	 0.05	 (Target	 =	
£20,000).	 The	 solid	 line	 represents	 a	 perfect	 association.	 The	 error	 bars	 represent	 deviations	 in	 model	
predicted	and	observed	crop	areas.		

Figure	 3-7:	 Comparison	 between	 observed	 fertiliser	 amounts	 and	 fertiliser	 amounts	

predicted	by	the	four	different	models	(AL-2).		
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 Aggregate-level	 comparisons	 between	 observed	 and	 predicted	 farm	
revenues	and	costs	

The	statistical	measures	of	association	based	on	 the	coefficient	of	determination	

showed	some	degree	of	 association	between	predicted	 farm	revenues/costs	 and	

observed	farm	revenues/costs	(R2	between	0.41	and	0.53).	The	estimates	for	the	

Pearson	 correlation	 test	 were	 not	 statistically	 significant	 (see	 Figure	 3-8)	 with	

exception	 of	 estimates	 under	 the	 profit,	 nitrate	 leaching	 and	 MOTAD	 models,	

which	were	near	significant	(p-value	between	0.06	and	0.08).	Also	estimates	of	the	

Spearman	correlation	 test	were	not	 statistically	 significant	with	 the	exception	of	

the	 estimate	 under	 the	 profit	model	 (ρ	 =	 0.78;	 p-value	 =	 0.05)	 and	 the	 nitrate-

leaching	model	(ρ	=	0.82;	p-value	=	0.03).	The	deviance	measures	showed	bias	in	

model	prediction	of	revenues/costs	and	the	CRM	estimates	under	all	four	models	

showed	under-prediction.	The	positive	model	performance	 indicators	 (NSE,	WIA	

and	LCE),	although	low,	are	an	indication	of	some	degree	of	association	between	

predicted	and	observed	revenue/cost.	The	results	of	the	t-test	(see	Table	3-5)	with	

respect	 to	 revenues	 and	 costs	 showed	 that	 the	 slopes	 were	 not	 significantly	

different	from	one	and	the	intercepts	were	not	significantly	different	from	zero.	
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Note:	 For	 the	 Risk	 Model,	 MAD	 was	 set	 at	 £20,000,	 WGP	 Weights:	 Profit	 maximisation	 =	 0.8	 (Target	 =	
£76,000),	 Nitrate	 leaching	 minimisation	 =	 1	 (Target	 =	 10000	 kg	 N),	 Risk	 minimisation	 =	 0.05	 (Target	 =	
£20,000).	 The	 solid	 line	 represents	 a	 perfect	 association.	 The	 error	 bars	 represent	 deviations	 in	 model	
predicted	and	observed	crop	areas.		

Figure	 3-8:	 Comparison	 between	 observed	 farm	 revenue/cost	 and	 revenue/cost	

predicted	by	the	four	different	models	(AL-2).			
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 Individual-level	 comparisons	 between	 predicted	 and	 observed	 crop	
areas	

Comparisons	between	predicted	and	observed	crop	areas	showed	various	degrees	

of	association.	These	are	reflected	in	the	estimates	for	correlation	and	coefficient	

of	 determination	 under	 all	 models.	 Relatively	 good	 degrees	 of	 association	were	

observed	under	crops/activities	such	as	winter	wheat,	potatoes,	winter	OSR	and	

set-aside	 (see	 Table	 3-6).	 In	 general,	 the	 results	 of	 the	 t-test	 (Table	 3-7)	 on	 the	

other	hand	showed	that	the	slopes	and	intercept	were	different	from	one	and	zero	

respectively.		

Table	3-6:	Correlation	and	coefficient	of	determination	estimates	for	comparing	predicted	

crop	areas	to	observed	crop	areas	at	the	individual	level.		

Crops	 Pure	Profit	Model	 Nitrate	Leaching	
Model	

Risk		(MOTAD)	Model	
*	

WGP	Model	**	

r	 ρ	 R2	 r	 ρ	 R2	 r	 ρ	 R2	 r	 ρ	 R2	
Winter	
wheat	

0.84	
(0.00)	

0.66	
(0.00)	

0.70	
0.84	

(0.00)	
0.65	

(0.00)	
0.70	

0.53	
(0.00)	

0.55	
(0.00)	

0.28	
0.58	

(0.00)	
0.54	

(0.00)	
0.34	

Spring	
wheat	

0.10	
(0.11)	

-0.13	
(0.04)	

0.01	
0.08	

(0.16)	
-0.15	
(0.01)	

0.01	
0.01	

(0.66)	
-0.11	
(0.08)	

0.00	
0.11	

(0.06)	
0.03	

(0.67)	
0.01	

Winter	
barley	

0.29	
(0.00)	

0.03	
(0.85)	

0.08	
0.28	

(0.00)	
-0.01	
(0.85)	

0.08	
0.06	

(0.37)	
0.03	

(0.67)	
0.00	

0.21	
(0.00)	

0.02	
(0.70)	

0.05	

Spring	
barley	

0.18	
(0.00)	

0.07	
(0.26)	

0.03	
0.19	

(0.00)	
0.08	

(0.18)	
0.04	

0.05	
(0.43)	

0.04	
(0.55)	

0.00	
0.12	

(0.05)	
0.02		

(0.77)	
0.01	

Winter	
beans	

0.15	
(0.01)	

0.13	
(0.03)	

0.02	
0.16	

(0.01)	
0.20	

(0.00)	
0.03	

0.31	
(0.00)	

0.11	
(0.00)	

0.11	
0.19	

(0.00)	
0.13	

(0.00)	
0.04	

Spring	
beans	

0.22	
(0.00)	

0.23	
(0.00)	

0.05	
0.22	

(0.00)	
0.23	

(0.00)	
0.05	

0.39	
(0.00)	

0.24	
(0.00)	

0.15	
0.22	

(0.00)	
0.23	

(0.00)	
0.05	

Ware	
potatoes	

0.59	
(0.00)	

0.32	
(0.00)	

0.35	
0.59	

(0.00)	
0.30	

(0.00)	
0.34	

0.38	
(0.00)	

0.45	
(0.00)	

0.14	
0.22	

(0.00)	
0.24	

(0.00)	
0.05	

Winter	
OSR	

0.66	
(0.00)	

0.51	
(0.00)	

0.44	
0.65	

(0.00)	
0.50	

(0.00)	
0.42	

0.57	
(0.00)	

0.44	
(0.00)	

0.33	
0.58	

(0.00)	
0.51	

(0.00)	
0.34	

Sugar	
beet	

0.37	
(0.00)	

0.41	
(0.00)	

0.14	
0.37	

(0.00)	
0.41	

(0.00)	
0.13	

0.30	
(0.00)	

0.27	
(0.00)	

0.09	
0.70	

(0.00)	
0.53	

(0.00)	
0.49	

Set-
aside	

0.41	
(0.00)	

0.16	
(0.01)	

0.17	
0.41	

(0.00)	
0.16	

(0.01)	
0.17	

-0.02	
(0.79)	

0.06	
(0.36)	

0.00	
0.33	

(0.00)	
0.12	

(0.04)	
0.11	

*	MAD	=	£20,000,	**	Weights:	Profit	maximisation	=	0.8	(Target	=	£76,000),	Nitrate	leaching	minimisation	=	1	

(Target	=	10000	kg	N),	Risk	minimisation	=	0.05	(Target	=	£20,000).	Note:	Values	in	parenthesis	represent	the	

p-values.	
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Table	3-7:	Results	of	 the	 t-test	on	 the	 intercept	and	slope	of	 the	 regression	of	observed	

crop	areas	on	predicted	crop	areas	at	the	individual	level.		

Crops	 Pure	Profit	Model	 Nitrate	Leaching	
Model	

Risk		(MOTAD)	Model	
*	

WGP	Model	**	

α	 β	 α	 β	 α	 β	 α	 β	
Winter		
wheat	

10.69	
	(1.63)	
{0.10}	

1.26	
	(5.58)	
{0.00}	

17.90	
	(2.82)	
{0.01}	

1.25	
	(5.19)	
{0.00}	

41.73	
	(5.93)	
{0.00}	

0.80	
	(-2.46)	
{0.01}	

27.35	
	(2.48)	
{0.01}	

1.32	
	(2.91)	
{0.00}	

Spring		
wheat	

6.99	
	(4.54)	
{0.00}	

0.11	
	(-12.60)	
{0.00}	

6.89	
	(4.29)	
{0.00}	

0.10	
	(-13.42)	
{0.00}	

6.22	
	(-4.07)	
{0.00}	

0.02	
	(-17.68)	
{0.00}	

7.14	
	(4.86)	
{0.00}	

0.04	
	(-48.24)	
{0.00}	

Winter		
barley	

12.83	
	(5.12)	
{0.00}	

0.18	
	(-21.29)	
{0.00}	

13.49	
	(5.48)	
{0.00}	

0.18	
	(-21.76)	
{0.00}	

16.54	
	(6.10)	
{0.00}	

0.07	
	(-11.85)	
{0.00}	

14.65	
	(5.56)	
{0.00}	

0.19	
	(-15.17)	
{0.00}	

Spring		
barley	

19.83	
	(7.29)	
{0.00}	

1.11	
	(0.31)	
{0.75}	

19.94	
	(7.46)	
{0.00}	

1.20	
	(0.55)	
{0.58}	

17.77	
	(9.72)	
{0.00}	

0.54	
	(-0.67)	
{0.50}	

21.33	
	(7.96)	
{0.00}	

1.73	
	(0.85)	
{0.40}	

Winter		
beans	

11.49	
	(6.06)	
{0.00}	

0.20	
	(-9.89)	
{0.00}	

11.24	
	(6.11)	
{0.00}	

0.22	
	(-9.74)	
{0.00}	

0.47	
	(0.17)	
{0.86}	

1.02	
	(0.11)	
{0.91}	

9.81	
	(4.91)	
{0.00}	

0.31	
	(-7.48)	
{0.00}	

Spring		
beans	

9.51	
	(4.98)	
{0.00}	

0.34	
	(-7.30)	
{0.00}	

9.52	
	(4.99)	
{0.00}	

0.34	
	(-7.30)	
{0.00}	

-1.39	
	(-0.55)	
{0.58}	

1.26	
	(1.35)	
{0.18}	

9.53	
	(4.99)	
{0.00}	

0.34	
	(-7.31)	
{0.00}	

Ware		
potatoes	

-1.75	
	(-1.10)	
{0.27}	

0.37	
	(-20.47)	
{0.00}	

-1.99	
	(-1.25)	
{0.21}	

0.37	
	(-20.35)	
{0.00}	

1.76	
	(2.25)	
{0.03}	

0.36	
	(-11.60)	
{0.00}	

4.83	
	(2.60)	
{0.01}	

0.26	
	(-10.82)	
{0.00}	

Winter		
OSR	

24.07	
	(8.49)	
{0.00}	

0.78	
	(-4.12)	
{0.00}	

20.13	
	(6.5)	
{0.00}	

0.79	
	(-3.66)	
{0.00}	

21.43	
	(8.78)	
{0.00}	

0.74	
	(-3.89)	
{0.00}	

27.21	
	(8.79)	
{0.00}	

0.62	
	(-7.13)	
{0.00}	

Sugar		
beet	

13.34	
	(4.99)	
{0.00}	

0.58	
	(-4.89)	
{0.00}	

13.34	
	(4.99)	
{0.00}	

0.58	
	(-4.89)	
{0.00}	

5.80	
	(5.19)	
{0.00}	

0.14	
	(-29.56)	
{0.00}	

6.27	
	(2.94)	
{0.00}	

0.43	
	(-21.90)	
{0.00}	

Set-aside	
10.11	
	(4.50)	
{0.00}	

0.23	
	(-23.68)	
{0.00}	

10.33	
	(4.64)	
{0.00}	

0.24	
	(-23.30)	
{0.00}	

13.75	
	(8.43)	
{0.00}	

-0.01	
	(-26.64)	
{0.00}	

9.78	
	(3.92)	
{0.00}	

0.21	
	(-22.20)	
{0.00}	

*	MAD	=	£20,000,	**	Weights:	Profit	maximisation	=	0.8	(Target	=	£76,000),	Nitrate	leaching	minimisation	=	1	

(Target	 =	 10000	 kg	N),	 Risk	minimisation	 =	 0.05	 (Target	 =	 £20,000).	 The	 values	 in	 parentheses	 are	 the	 t-

values	whereas	the	values	in	curly	brackets	are	the	corresponding	p-values	for	both	the	intercept	(α)	and	the	

slope	(β).	The	values	in	bold	represent	t-test	results	which	show	that	the	slope	and	intercept	were	different	

from	one	and	zero	respectively.	
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 Individual-level	 comparisons	 between	 predicted	 and	 observed	
fertiliser	amounts	

Comparing	predicted	 fertiliser	amounts	with	FBS	 fertiliser	amounts	showed	that	

the	models	 predicted	 fertiliser	 amounts	 very	well.	 The	 estimates	 for	 correlation	

and	 R2	 showed	 good	 association	 between	 observed	 and	 predicted	 fertiliser	

amounts	under	all	four	models	(r	>	0.64,	ρ	>	0.46;	p-value	=	0.00,	R2	between	0.40	

and	 0.80)	 (see	 Table	 3-8).	 Also,	 the	 non-zero	 slopes	 from	 the	 regression	 of	

predicted	 fertiliser	 amounts	 versus	 observed	 fertiliser	 amounts	 showed	 the	

existence	 of	 a	 positive	 relationship	 (see	 Table	 3-9)	 between	 predicted	 and	

observed	fertiliser	amounts.	However,	the	results	of	the	t-tests	(Table	3-9)	showed	

that	 the	 intercept	and	slope	of	 the	predicted	and	observed	 fertiliser	amounts	 for	

each	of	the	fertiliser	types	were	different	from	zero	and	one	respectively.		

Table	3-8:	Correlation	and	coefficient	of	determination	estimates	for	comparing	predicted	

fertiliser	amounts	to	observed	fertiliser	amounts	at	the	individual	level.		

Fertiliser	
Type	

Pure	Profit	Model	 Nitrate	Leaching	
Model	

Risk	(MOTAD)	
Model	*	

WGP	Model	**	

r	 ρ	 R2	 r	 ρ	 R2	 r	 ρ	 R2	 r	 ρ	 R2	
N	
fertiliser	

0.83	
(0.00)	

0.77	
(0.00)	

0.70	
0.83	

(0.00)	
0.77	

(0.00)	
0.70	

0.74	
(0.00)	

0.69	
(0.00)	

0.55	
0.85	

(0.00)	
0.76	

(0.00)	
0.72	

P	
fertiliser	

0.77	
(0.00)	

0.61	
(0.00)	

0.60	
0.78	

(0.00)	
0.61	

(0.00)	
0.60	

0.64	
(0.00)	

0.48	
(0.00)	

0.41	
0.79	

(0.00)	
0.62	

(0.00)	
0.63	

K	
fertiliser	

0.78	
(0.00)	

0.56	
(0.00)	

0.61	
0.78	

(0.00)	
0.54	

(0.00)	
0.61	

0.64	
(0.00)	

0.46	
(0.00)	

0.40	
0.79	

(0.00)	
0.56	

(0.00)	
0.63	

NPK	
fertiliser	

0.87	
(0.00)	

0.78	
(0.00)	

0.76	
0.87	

(0.00)	
0.78	

(0.00)	
0.76	

0.78	
(0.00)	

0.69	
(0.00)	

0.61	
0.89	

(0.00)	
0.78	

(0.00)	
0.80	

*	MAD	=	£20,000,	**	Weights:	Profit	maximisation	=	0.8	(Target	=	£76,000),	Nitrate	leaching	minimisation	=	1	

(Target	=	10000	kg	N),	Risk	minimisation	=	0.05	(Target	=	£20,000).	Note:	Values	in	parenthesis	represent	the	

p-values.	
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Table	3-9:	Results	of	 the	 t-test	on	 the	 intercept	and	slope	of	 the	 regression	of	observed	

fertiliser	amounts	on	predicted	fertiliser	amounts	at	the	individual	level.		

Fertiliser		
Type	

Pure	Profit	Model	 Nitrate	Leaching	
Model	

Risk		(MOTAD)	
Model	*	

WGP	Model	**	

α	 β	 α	 β	 α	 β	 α	 β	

N	fertiliser	
38.55	
	(5.44)	
{0.00}	

0.84	
	(-460)	
{0.00}	

36.93	
	(5.20)	
{0.00}	

0.85	
	(-4.48)	
{0.00}	

40.72	
	(4.83)	
{0.00}	

0.90	
	(-1.97)	
{0.05}	

30.20	
	(4.33)	
{0.00}	

0.98	
	(-0.57)	
{0.57}	

P	fertiliser	
17.42	
	(4.83)	
{0.00}	

0.59	
	(-14.10)	
{0.00}	

17.02	
	(4.70)	
{0.00}	

0.60	
	(-14.03)	
{0.00}	

11.70	
	(2.29)	
{0.02}	

0.75	
	(-4.30)	
{0.00}	

13.08	
	(3.64)	
{0.00}	

0.72	
	(-8.53)	
{0.00}	

K	fertiliser	
22.93	
	(5.14)	
{0.00}	

0.60	
	(-14.32)	
{0.00}	

22.74	
	(5.07)	
{0.00}	

0.60	
	(-14.27)	
{0.00}	

22.47	
	(3.70)	
{0.00}	

0.72	
	(-5.03)	
{0.00}	

18.95	
	(4.22)	
{0.00}	

0.72	
	(-8.59)	
{0.00}	

NPK	fertiliser	
74.63	
	(6.49)	
{0.00}	

0.70	
	(-12.72)	
{0.00}	

72.38	
	(6.29)	
{0.00}	

0.70	
	(-12.63)	
{0.00}	

64.03	
	(4.24)	
{0.00}	

0.82	
	(-4.24)	
{0.00}	

56.13	
	(5.17)	
{0.00}	

0.84	
	(-6.45)	
{0.00}	

*	MAD	=	£20,000,	**	Weights:	Profit	maximisation	=	0.8	(Target	=	£76,000),	Nitrate	leaching	minimisation	=	1	

(Target	 =	 10000	 kg	N),	 Risk	minimisation	 =	 0.05	 (Target	 =	 £20,000).	 The	 values	 in	 parentheses	 are	 the	 t-

values	whereas	the	values	in	curly	brackets	are	the	corresponding	p-values	for	both	the	intercept	(α)	and	the	

slope	(β).	The	values	in	bold	represent	t-test	results	which	show	that	the	slope	and	intercept	were	different	

from	one	and	zero	respectively.	

	

 Individual-level	 comparisons	 between	 predicted	 and	 observed	 farm	
revenues	and	costs	

Various	 degrees	 of	 association	 were	 found	 between	 predicted	 farm	

revenues/costs	 and	 FBS	 revenues/costs	 when	 they	were	 compared	 at	 the	 farm	

individual	level.	The	associations	are	reflected	in	the	estimates	for	correlation	and	

R2	 (see	 Table	 3-10).	 Comparatively	 the	 r,	 ρ	 and	 R2	 estimates	 under	 the	MOTAD	

model	were	relatively	low	however	the	estimates	for	Spearman	correlation	were	

relatively	high	especially	for	fertiliser	cost,	fuel	cost,	fixed	cost	and	gross	margin.	

The	 results	 of	 the	 t-test	 (see	Table	 3-11)	 showed	 that	 the	 intercepts	 and	 slopes	

were	different	from	zero	and	one	respectively,	with	the	exception	of	a	few	(shown	

in	 bold	 in	 Table	 3-11)	 which	 showed	 that	 the	 intercept	 and	 slope	 were	 not	

different	from	zero	and	one	respectively.	
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Table	 3-10:	 Correlation	 and	 coefficient	 of	 determination	 estimates	 for	 comparing	

predicted	farm	revenues/costs	with	observed	farm	revenue/cost	at	the	individual	level.		

Revenue/	
Cost	
Type	

Pure	Profit	Model	 Nitrate	 Leaching	
Model	

Risk	 	 (MOTAD)	
Model	*	

WGP	Model	**	

r	 ρ	 R2	 r	 ρ	 R2	 r	 ρ	 R2	 r	 ρ	 R2	

Gross	
margin	

0.71	
(0.00)	

0.70	
(0.00)	

0.50	
0.71	

(0.00)	
0.70	

(0.00)	
0.50	

0.37	
(0.00)	

0.59	
(0.00)	

0.14	
0.72	

(0.00)	
0.71	

(0.00)	
0.52	

Profit	 0.58	
(0.00)	

0.43	
(0.00)	

0.34	
0.58	

(0.00)	
0.43	

(0.00)	
0.34	

0.27	
(0.00)	

0.35	
(0.00)	

0.07	
0.44	

(0.00)	
0.43	

(0.00)	
0.19	

Fixed	
cost	

0.71	
(0.00)	

0.64	
(0.00)	

0.51	
0.71	

(0.00)	
0.64	

(0.00)	
0.51	

0.48	
(0.00)	

0.51	
(0.00)	

0.23	
0.74	

(0.00)	
0.66	

(0.00)	
0.55	

Labour	
cost	

0.29	
(0.00)	

0.43	
(0.00)	

0.08	
0.32	

(0.00)	
0.45	

(0.00)	
0.10	

0.03	
(0.62)	

0.23	
(0.00)	

0.00	
0.33	

(0.00)	
0.44	

(0.00)	
0.11	

Fertiliser	
cost	

0.85	
(0.00)	

0.80	
(0.00)	

0.73	
0.85	

(0.00)	
0.80	

(0.00)	
0.73	

0.66	
(0.00)	

0.71	
(0.00)	

0.43	
0.86	

(0.00)	
0.79	

(0.00)	
0.74	

Seed	cost	 0.46	
(0.00)	

0.73	
(0.00)	

0.21	
0.46	

(0.00)	
0.72	

(0.00)	
0.21	

0.10	
(0.10)	

0.63	
(0.00)	

0.01	
0.49	

(0.00)	
0.74	

(0.00)	
0.24	

Fuel	cost	 0.80	
(0.00)	

0.65	
(0.00)	

0.64	
0.81	

(0.00)	
0.64	

(0.00)	
0.65	

0.43	
(0.00)	

0.50	
(0.00)	

0.18	
0.76	

(0.00)	
0.63	

(0.00)	
0.58	

*	MAD	=	£20,000,	**	Weights:	Profit	maximisation	=	0.8	(Target	=	£76,000),	Nitrate	leaching	minimisation	=	1	

(Target	=	10000	kg	N),	Risk	minimisation	=	0.05	(Target	=	£20,000).	Note:	Values	in	parenthesis	represent	the	

p-values.	
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Table	3-11:	Results	of	the	t-test	on	the	intercept	and	slope	of	the	regression	of	observed	

farm	revenue/cost	on	predicted	farm	revenue/cost	at	individual	level.		

Revenue/	
Cost	Type	

Pure	Profit	Model	 Nitrate	Leaching	
Model	

Risk		(MOTAD)	
Model	*	

WGP	Model	**	

α	 β	 α	 β	 α	 β	 α	 β	
Gross	
margin	

164.59	
	(1.66)	
{0.10}	

1.67	
	(6.72)	
{0.00}	

162.77	
	(1.64)	
{0.10}	

1.68	
	(6.72)	
{0.00}	

210.88	
	(1.30)	
{0.20}	

1.56	
	(2.29)	
{0.02}	

-151.21	
	(-1.39)	
{0.17}	

2.63	
	(10.70)	
{0.00}	

Profit	
140.92	
	(5.56)	
{0.00}	

0.81	
	(-2.77)	
{0.01}	

142.85	
	(5.64)	
{0.00}	

0.81	
	(-2.81)	
{0.01}	

148.61	
	(6.91)	
{0.00}	

0.59	
	(-3.07)	
{0.00}	

204.46	
	(7.42)	
{0.00}	

1.58	
	(2.99)	
{0.00}	

Fixed	cost	
2.39	

	(0.09)	
{0.93}	

0.62	
	(-10.54)	
{0.00}	

-0.23	
	(-0.01)	
{0.99}	

0.62	
	(-10.47)	
{0.00}	

-18.99	
	(-0.41)	
{0.68}	

0.65	
	(-4.61)	
{0.00}	

-18.28	
	(0.74)	
{0.46}	

0.69	
	(-8.12)	
{0.00}	

Labour	cost	
239.31	
	(4.73)	
{0.00}	

0.25	
	(-15.38)	
{0.00}	

225.80	
	(4.48)	
{0.00}	

0.30	
	(-13.30)	
{0.00}	

297.17	
	(3.40)	
{0.00}	

0.29	
	(-1.24)	
{0.22}	

206.15	
	(4.02)	
{0.00}	

0.62	
	(-3.42)	
{0.00}	

Fertiliser	
cost	

29.40	
	(3.23)	
{0.00}	

0.77	
	(-7.95)	
{0.00}	

27.93	
	(3.05)	
{0.00}	

0.78	
	(-7.86)	
{0.00}	

47.36	
	(3.56)	
{0.00}	

0.77	
	(-4.13)	
{0.00}	

18.38	
	(2.03)	
{0.04}	

0.91	
	(-2.85)	
{0.01}	

Seed	cost	
18.33	
	(0.80)	
{0.42}	

0.96	
	(-0.32)	
{0.75}	

16.77	
	(0.72)	
{0.47}	

0.97	
	(-0.31)	
{0.76}	

100.45	
	(3.27)	
{0.00}	

0.31	
	(-3.53)	
{0.00}	

33.55	
	(1.59)	
{0.11}	

0.85	
	(-1.65)	
{0.10}	

Fuel	cost	
10.90	
	(1.84)	
{0.07}	

0.81	
	(-5.09)	
{0.00}	

7.44	
	(1.26)	
{0.21}	

0.86	
	(-3.84)	
{0.00}	

64.59	
	(10.28)	
{0.00}	

0.23	
	(-24.71)	
{0.00}	

64.24	
	(12.90)	
{0.00}	

0.15	
	(-115.0)	
{0.00}	

*	MAD	=	£20,000,	**	Weights:	Profit	maximisation	=	0.8	(Target	=	£76,000),	Nitrate	leaching	minimisation	=	1	

(Target	 =	 10000	 kg	N),	 Risk	minimisation	 =	 0.05	 (Target	 =	 £20,000).	 The	 values	 in	 parentheses	 are	 the	 t-

values	whereas	the	values	in	curly	brackets	are	the	corresponding	p-values	for	both	the	intercept	(α)	and	the	

slope	(β).	The	values	in	bold	represent	t-test	results	which	show	that	the	slope	and	intercept	were	different	

from	one	and	zero	respectively.	

	
	
	

 

In	 this	 chapter,	 four	 variants	 of	 arable	 farm	 models	 developed	 as	 part	 of	 the	

overall	 research	 aim	 have	 been	 described.	 These	 models	 were	 built	 combining	

mixed-integer,	goal	and	risk	programming	approaches	and	using	data	such	as	farm	

management,	 soil	 and	subsidy	payments	data.	Also,	using	a	different	 set	of	data,	

the	 Farm	 Business	 Survey	 (FBS)	 data	 from	 281	 lowland	 arable	 farms	 and	 a	

predictive	 validation	 approach,	 the	 models	 have	 been	 validated.	 We	 have	

conducted	comparisons	of	the	modelled	results	with	the	observed	results	at	both	

aggregate	 and	 individual	 farm	 level.	 The	 aggregate-level	 comparison	 showed	 a	

positive	 relationship	 between	predicted	 and	 observed	 crop	 areas	with	 better	 fit	

observed	under	the	MOTAD	and	WGP	models,	which	explicitly	incorporated	farm	
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risk.	 The	 individual	 level	 comparisons	 showed	 various	 degrees	 of	 association	

between	predicted	and	observed	crop	areas.		

Optimisation	models	based	on	 linear	programming	and	related	approaches	

have	been	developed	to	investigate	issues	relating	to	agricultural	land	use	(e.g.	ten	

Berge	et	al.,	2002;	Annetts	and	Audsley,	2002;	Rounsevell	et	al.,	2003;	Oglethorpe,	

2010;	 Osgathorpe	 et	 al.,	 2011;	 Cooke	 et	 al.,	 2013).	 Although	 some	 of	 the	

approaches	and/or	formulations	used	by	Annetts	and	Audsley	(2002)	and	Cook	et	

al.	 (2013)	were	adopted	 in	developing	the	models	presented	 in	 this	 thesis,	 there	

are	 some	 differences	 between	 our	 model	 and	 theirs,	 especially	 our	 multiple	

objective	 models	 (MOTAD	 and	 WGP).	 The	 models	 developed	 by	 Annetts	 and	

Audsley	 (2002)	 and	 Cooke	 et	 al.,	 (2013)	 were	 multiple	 objective	 linear/mixed-

integer	models,	which	may	be	prone	to	generating	infeasible	solutions	due	to	the	

expression	 of	 other	 goals	 as	 inequality	 constraints	which	must	 be	 enforced.	We	

developed	 the	 mixed-integer	 WGP	 model	 in	 which	 goals	 or	 objectives	 serve	 as	

constraints	but	are	expressed	as	equations,	and	explicitly	incorporate	risk.		

Unlike	 Cooke	 et	 al.	 (2013),	 in	 our	 MOTAD	 and	WGP	models	 the	 expected	

deviation	 in	 income	acts	as	a	model	 input	 to	allow	potential	users	 to	 input	 their	

own	deviation	(risk)	values	as	well	as	run	the	model	at	different	income	deviation	

(risk)	 levels	 to	 observe	 the	 effect	 on	 crop	 plan	 and	 the	 farming	 objectives.	 The	

machine	 numbers	 selected	 by	 our	 models	 are	 integers16	 and	 although	 integer	

machine	 numbers	 may	 lead	 to	 high	 fixed	 cost	 and	 lower	 profit	 estimates,	 the	

problem	of	infeasibility	due	to	rounding	up	or	down	of	optimal	machine	numbers	

is	 prevented.	 However,	 depending	 on	 the	 user’s	 objective,	 the	 machine/labour	

numbers	can	be	set	as	non-integers.	

Again,	unlike	Annetts	and	Audsley	(2002),	 the	nitrate	 leaching	estimates	 in	

our	models	were	based	on	the	N	balance	approach	used	by	Wossink	(1993)	and	

uses	data	which	are	relatively	not	difficult	to	update.	This	approach	was	adopted	

due	 to	 the	 possibility	 of	 linking	 nitrate-leaching	 estimates	 (kg	 N/ha)	 to	 the	

recommended	 fertiliser	 amounts	 for	 crops	 in	 Defra	 (2010)	 using	 the	 soil	 type.	

Also,	it	makes	it	possible	to	convert	nitrate	estimates	in	kg	N/ha	to	amounts	(g/l),	
																																																								
16	The	model	can	still	be	solved	to	generate	non-integer	machine	numbers	if	non-integer	machine	
numbers	are	preferred.		
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which	 leach	 into	ground	water	at	a	depth	of	one	metre	using	 the	annual	 rainfall	

amount.		

Validation	 of	 models	 has	 been	 conducted	 as	 part	 of	 model	 development	

process	to	increase	the	confidence	level	of	potential	model	users	(e.g.	Abedingpour	

et	 al.,	 2012;	 Cooke	 et	 al.,	 2013;	 Gueymard,	 2014).	 The	models	 presented	 in	 this	

chapter	 were	 validated	 using	 predictive	 validation	 which	 is	 the	 most	 common	

form	of	validation	(McCarl	and	Spreen,	1997)	and	the	model	results	compared	to	

observed	 data	 for	 281	 arable	 farms	 using	 statistical	 measures	 of	 association.	 A	

similar	approach	was	used	by	Cooke	et	al.	however,	they	used	150	farms	and	also	

no	 comparison	 was	 done	 between	 predicted	 and	 observed	 variables	 such	 as	

fertiliser	 quantities	 and	 farm	 costs	 and	 revenues.	 Also	 the	 main	 statistical	

measures	 of	 association	 they	 applied	 were	 primarily	 regression	 analysis	 and	

Spearman	correlation.		

In	 comparing	 our	 model	 results	 to	 the	 observed	 FBS	 data,	 statistical	

measures	such	as	correlation	coefficients,	coefficient	of	determination	and	t-test	in	

addition	to	mean	absolute	error	(MAE)	and	root	mean	square	error	(RMSE)	which	

measure	 dispersion	 of	 individual	 points	 (Gueymard,	 2014)	 were	 applied.	 The	

Nash-Sutcliffe’s	model	efficiency	 (NSE)	proposed	by	Mayer	and	Butler	 (1993)	as	

the	 best	 overall	 measure	 of	 model	 performance	 was	 also	 applied	 to	 measure	

model	 performance.	 In	 addition	 to	 the	 above	measures	was	 a	 graphical	method	

(scatter	 plots	 with	 regression	 line)	 to	 observe	 biases	 and	 trends.	 Each	 of	 the	

statistical	 measures	 of	 association	 has	 its	 strengths	 and	 weaknesses.	 Thus	 the	

inclusion	of	more	statistical	measures	was	to	draw	on	their	strengths	and	present	

results	that	will	give	potential	users	of	the	models	or	proponents	of	the	different	

measures	of	association	better	understanding	of	the	accuracy	or	predictive	power	

of	 our	 models.	 For	 example,	 correlation	 coefficients	 show	 the	 presence	 of	

relationships	 between	 predicted	 and	 observed	 data	 whereas	 NSE	 and	 the	

coefficient	 of	 residual	 mass	 (CRM)	 show	 the	 efficiency	 with	 which	 the	 models	

predict	 and	 whether	 the	 models	 over-	 or	 under-predict	 respectively.	 Thus	

combining	 these	 different	 measures	 can	 give	 different	 information	 about	 the	

model,	 which	 better	 informs	 potential	 users	 about	 the	 accuracy	 and	 predictive	

powers	of	the	models.	
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The	 aggregate-level	 comparisons	 both	 gave	 better	 fits	 as	 far	 as	 crop	 area	

comparisons	 were	 concerned.	 The	 aggregate	 level	 comparisons	 based	 on	 the	

result	 for	the	 ‘average’	 farm	(AL-1)	made	it	possible	to	see	better	the	changes	 in	

crop	 plan	 under	 each	 model.	 Pearson	 correlation	 shows	 the	 linear	 association	

between	 two	 values	 and	 according	 to	 Loague	 and	 Green	 (1991),	 part	 of	 the	

operational	examination	of	models	 is	the	assessment	of	models’	precision,	which	

is	 the	degree	 to	which	 the	model-predicted	values	 approach	a	 linear	 function	of	

the	observed	data.	Thus	with	relatively	high	linear	correlation,	it	can	be	said	that	

the	 models	 predict	 with	 relatively	 good	 precision.	 	 Winter	 wheat	 was	 the	

dominant	crop	and	models	predicted	it	more	accurately	than	the	other	crops.	Thus	

the	poor	 correlation	based	on	 ranking	of	 crops	 is	 because	 the	 rank	order	of	 the	

other	crops	is	not	predicted	well.	From	a	farmer	behaviour	perspective,	it	is	likely	

that	winter	wheat	may	be	chosen	first	and	choice	of	the	next	crop	may	be	context	

dependent.	 	 In	 terms	of	model	 comparison,	 the	MOTAD	model	 (and	WGP	under	

AL-1	 comparison)	 gave	 better	 fits	 than	 pure	 profit	 and	 nitrate	 leaching	models.	

Cooke	et	 al.	 (2013)	 found	 a	 similar	 result	when	 the	 farmR	model	was	 validated	

and	attributed	it	to	the	inclusion	of	risk	preferences	of	farmers.			

The	 individual	 level	 comparison	 showed	 various	 degrees	 of	 association	

between	predicted	and	observed	crop	areas	reflecting	how	dominant	some	of	the	

crops	 are	 in	 the	 arable	 landscape	 (e.g.	 winter	 wheat).	 Cooke	 et	 al.	 (2013)	 also	

found	 various	 degrees	 of	 association	 in	 their	 individual-level	 comparison	 when	

predicted	crop	areas	were	regressed	on	crop	gross	margins.	The	 individual	 level	

comparison	 of	 farm	 revenues/costs	 also	 showed	 various	 degrees	 of	 association	

with	a	high	degree	of	association	for	fertiliser	costs.	The	good	linear	relationship	

between	 predicted	 and	 observed	 fertiliser	 amounts	 is	 an	 indication	 of	 the	

precision	with	which	the	models	predict	fertiliser	amounts.	This	is	because	model	

precision	indicates	how	model	results	approach	a	linear	function	of	the	observed	

data	(Loague	and	Green,	1991).		

The	result	for	fertiliser	cost	is	not	surprising	considering	the	good	prediction	

of	fertiliser	amounts,	which	determine	the	fertiliser	cost.	The	results	for	fixed	and	

fuel	costs	may	be	due	 to	 the	 fact	 that	 there	 is	some	high	degree	of	accuracy	and	

precision	 associated	with	machine	 numbers	 selected	 by	 the	models.	 The	 results	
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for	 gross	 margin	 may	 be	 a	 reflection	 of	 the	 accuracy	 with	 which	 the	 models	

predicted	 crop	 areas,	 seed	 and	 fertiliser	 costs.	 The	 low	 estimates	 under	 the	

MOTAD	model	may	be	due	to	the	fact	that	in	a	MOTAD	model	profit	is	maximised	

subject	 to	 the	 risk	 minimisation	 constraint,	 which	 may	 result	 in	 more	 crop	

diversification,	 which	 in	 turn	 has	 the	 potential	 to	 affect	 the	 estimation	 of	 farm	

revenues	or	costs.		

In	 terms	of	 the	models’	predictive	powers,	 results	 showed	 that	 the	models	

predicted	crop	areas	and	fertiliser	amounts	better	than	the	farm	revenues/costs.	

The	better	prediction	of	crop	areas	can	be	attributed	 to	 the	 fact	 that	 the	models	

were	developed	to	select	optimal	crop	plans	and	that	factors	such	as	soil	type	and	

rainfall	 which	 influence	 efficient	 farm	 planning	 were	 captured	 and	 modelled,	

hence	 the	 better	 prediction	 of	 crop	 areas.	 The	 better	 prediction	 of	 fertiliser	

amounts	 by	 the	models	 could	 also	 be	due	 to	 the	 fact	 that	 the	 fertiliser	 amounts	

used	in	building	the	model	were	the	recommended	rates	from	Defra	(2010),	which	

are	also	the	recommended	rates	guiding	fertiliser	application	by	arable	farmers	in	

the	FBS	and	hence	the	small	deviations	between	predicted	and	observed	amounts.		

The	 severe	under-prediction	of	 gross	margin	 and	profit	may	be	due	 to	 the	

variability	 in	 crop	 prices	 due	 to	 factors	 which	 the	 farmers	 do	 not	 have	 control	

over.	Again,	 in	terms	of	the	under-prediction	of	profit,	 it	may	also	be	due	to	high	

fixed	cost	estimates	due	to	integer	machine	numbers	selected	by	the	models	and	

the	costs	(prices)	of	machines	selected	to	build	the	models.	Comparatively,	profit	

estimates	by	mixed-integer	programming	(MIP)	models	are	normally	 lower	 than	

estimates	by	traditional	 linear	programming	models	due	to	the	extra	constraints	

to	force	the	models	to	select	some	activities	as	integers	and	with	our	models	being	

MIP,	profit	estimates	are	likely	to	be	low,	hence	the	under-prediction.	Labour	costs	

were	 also	 under-predicted	 and	 again	 this	 reflects	 the	 variability	 in	 the	 labour	

requirements	 by	 different	 farms,	 which	 are	 influenced	 by	 factors	 that	were	 not	

captured	 in	 the	 models	 as	 well	 as	 the	 integer	 labour	 numbers	 selected	 by	 the	

models.	However,	there	was	fairly	good	prediction	of	fertiliser	cost,	seed	cost	and	

fuel	cost.	In	terms	of	individual-level	comparison,	there	were	positive	correlations	

between	 the	 predicted	 and	 observed	 revenues/costs	 reflecting	 the	 predictive	

power	of	the	models	with	respect	to	farm	revenues	and	costs.	
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	In	 general,	 the	 models	 predicted	 crop	 areas	 and	 fertiliser	 amount	 better	

than	 farm	revenues/costs.	The	results	of	 the	validation	reflect	 the	strengths	and	

weaknesses	 of	 the	models	 in	 predicting	 crop	 areas,	 fertiliser	 amounts	 and	 farm	

revenues/costs	however,	some	degrees	of	positive	association	or	correlation	were	

observed	between	model	predictions	and	FBS	data.	This	implies	that	based	on	the	

information/assumptions	and	data	used	and	model	specification,	 the	models	can	

make	 reasonably	 good	 predictions	 of	 crop	 areas	 as	 well	 as	 fertiliser	 amounts,	

which	 can	 provide	 insight	 into	 arable	 farming	 decision-making.	 However,	 with	

model	 calibration	 and	 validation	 seen	 as	 continuous	 processes	 in	 model	

development,	continued	calibration	followed	by	validation	and	updating	of	models	

with	detailed	data	could	enhance	their	predictive	powers	and	performance.	
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Table	3-12:	Crops	and	sequential	operation	matrix.		

Crop	 Sequential	Operations	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

Winter	wheat	 	 +	 +	 		 +	 +	 		 +	 +	 +	 	 	 	
Spring	wheat	 	 +	 +	 		 +	 +	 		 		 +	 +	 	 	 	
Winter	barley	 	 +	 +	 		 +	 +	 		 +	 +	 +	 	 	 	
Spring	barley	 	 +	 +	 		 +	 +	 		 		 +	 +	 	 	 	
Winter	beans	 	 +	 +	 		 +	 +	 		 +	 +	 		 	 	 	
Spring	barley	 	 +	 +	 		 +	 		 		 		 +	 		 	 	 	
Ware	potatoes	 	 	 +	 +	 +	 	 +	 	 	 	 +	 	 	

Winter	oilseed	rape	 	 +	 +	 		 +	 		 		 		 +	 		 	 	 	
Sugar	beet	 	 		 +	 +	 +	 		 		 		 	 		 	 +	 	
Set-aside	 +	 		 +	 		 		 		 		 		 		 		 	 	 +	

1	=	Start;	2	=	P/K	Fertiliser	Spreading;	3	=	Ploughing;	4	=	Harrowing;	5	=	Planting;	6	=	Rolling;	7	=	Ridging;	8	=	

Spraying;	9	=	Combine	harvesting;	10	=	Baling;	11	=	Potato	harvesting;	12	=	Sugar	beet	harvesting;	13	=	End.	

Note:	The	plus	(+)	means	the	operation	is	part	of	a	set	of	operations	for	a	crop.	

	
Table	3-13:	Model	data	and	sources.	Some	data	were	obtained	from	the	farmR	model	and	

in	such	instance	data	sources	is	listed	as	farmR	model	data	

Data	 Unit	 Source	 Remarks	

Annual	labour	cost	 £/annum	 Nix	(2014)	 	

Crop	rotation	constraint	due	to	
disease	

Number	
of	years	

farmR	model	data		
Toosey	(1988)	
Jellings	and	Fuller	(1995)	
	

	

Crop	prices	 £/t	 Defra	(2014b)	 Agricultural	Price	Indices	

Crop	yields	 t/ha	 farmR	model	
Based	on	formulae	used	in	
the	farmR	model	

Fertiliser	amounts	 kg/ha	 Defra	(2010)	 Fertiliser	Manual	(RB209)	
Fertiliser	costs/prices	 £/kg	 ABC	(2014)	 Agro	Business	Consultants	
Fuel	price	(Red	Tractor	Diesel)	 £/l	 ABC	(2014)	 Agro	Business	Consultants	
Machinery	depreciation	rates	 %	 farmR	model	data	 	
Machinery	repair/maintenance	
cost	rates	

%		 farmR	model	data	 	

Machinery	replacement	rate	 Years	 farmR	model	data	 	
Penalties	for	suboptimal	timing	of	
operation	

%	 farmR	model	data	 	

Penalties	due	successive	cropping	 %	 farmR	model	data	 	
Seed	amounts	 kg/ha	 Toosey	(1988)	 	
Seed	cost/price	 £/kg	 ABC	(2014)	 Agro	Business	Consultants	
Soil	type	indices	 	 farmR	model	data	 	
Rotational	penalties	 %	 farmR	model	data	 	
Workable	hours	 hr	 Tillett	and	Audsley	(1987)	 	
Work	rates	for	crop	operations	 hr/ha	 Chamen	and	Audsley	(1993)	 	
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Table	3-14:	Data	for	gross	margin	and	MOTAD		(standard	deviation)	risk	estimates	

Input/output	
Data*	

Unit	 Crops	
WWHT	 SWHT	 WBAR	 SBAR	 WBEA	 SBEA	 WPOT	 WOSR	 SBEE	 SETA	

N	fertiliser	
amount	 kg/ha	 220	 180	 170	 140	 0	 0	 220	 190	 100	 --	
N	fertiliser	
price	 £/kg	 0.8	 0.8	 0.8	 0.8	 0.8	 0.8	 0.8	 0.8	 0.8	 --	
P	fertiliser	
amount	 kg/ha	 95	 80	 95	 80	 70	 70	 210	 80	 80	 --	
P	fertiliser	
price	 £/kg	 0.63	 0.63	 0.63	 0.63	 0.63	 0.63	 0.63	 0.63	 0.63	 --	
K	fertiliser	
amount	 kg/ha	 115	 100	 115	 100	 70	 70	 330	 70	 130	 --	
K	fertiliser	
price	 £/kg	 0.47	 0.47	 0.47	 0.47	 0.47	 0.47	 0.47	 0.47	 0.47	 --	
Seed	amount		 kg/ha	 185	 195	 175	 175	 200	 225	 2800	 7	 6	 --	
Seed	price	 £/kg	 0.4	 0.38	 0.37	 0.38	 0.41	 0.43	 0.25	 7.37	 91	 --	
Yield		 t/ha	 10.56	 6.76	 8.1	 6.28	 5.75	 4.82	 39.53	 3.22	 65.27	 --	
Crop	price	 £/ha	 163	 163	 151	 151	 142	 142	 167	 358	 33	 --	
Subsidy	SFP	 £/ha	 207	 207	 207	 207	 207	 207	 207	 207	 207	 207	
Sugar	beet	
transport	
cost	 £/t	 --	 --	 --	 --	 --	 --	 --	 --	 5	 --	
Sundry	cost	 £/ha	 211	 140	 154	 108	 98	 92	 2262	 193	 220	 30	
Variable	cost		 £/ha	 574.9	 455.5	 468.7	 383.9	 257	 265.8	 3425.4	 479.9	 1283.9	 30	
Output	 £/ha	 1723.4	 1103.2	 1466	 1136.8	 818.8	 686.2	 6617.4	 1152	 2141	 207	
Gross	margin	 £/ha	 1356	 855	 1204	 960	 769	 627	 3399	 879	 1064	 177	
MOTAD	
Risk**	 £/ha	 246	 158	 223	 173	 150	 126	 959	 189	 54	 0	
*	 Fertiliser	 amounts	 were	 based	 on	 recommended	 amounts	 for	 a	 heavy	 soil.	 **	 MOTAD	 risk	 estimates	 are	 standard	

deviations	 estimates	 applied	 as	 representative	of	 risk	 in	 the	 goal	 programming	model.	WWHT	=	Winter	wheat;	 SWHT	=	

Spring	wheat;	WBAR	=	Winter	barley;	SBAR	=	Spring	barley;	WBEA	=	Winter	beans;	SBEA	=	Spring	beans;	WPOT	=	Ware	

potatoes;	WOSR	=	Winter	oilseed	rape;	SBEE	=	Sugar	beet;	SETA	=	Set-aside.	

	

Table	3-15:	Deviations	in	gross	margin	for	the	MOTAD	model	

Year	 WWHT	 SWHT	 WBAR	 SBAR	 WBEA	 SBEA	 WPOT	 WOSR	 SBEE	 SETA	
1	 -371.9	 -238.5	 -315.65	 -244.9	 -192	 -160.75	 -608.4	 -92.89	 13.15	 0	
2	 92.1	 59.5	 97.35	 75.1	 -54	 -44.75	 -450.4	 220.11	 -51.85	 0	
3	 124.1	 79.5	 235.35	 182.1	 26	 23.25	 260.6	 139.11	 -51.85	 0	
4	 261.1	 167.5	 122.35	 94.1	 222	 186.25	 1565.6	 -8.89	 13.15	 0	
5	 -107.9	 -69.5	 -137.65	 -106.9	 -3	 -1.75	 -767.4	 -256.89	 78.15	 0	
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Table	3-16:	Machine	types	and	fixed/labour	costs	

Machine	 Capacity	 Cost	
(Price)	

(£)	

Depreciation	
Rate	(%)	

Replace	
Year	

Depreciation	
(£)	

Repair	
Cost	
Rate	
(£)	

Repai
r	Cost	
(£)	

Annual	
Cost	
(£)	

Tractor	 100kW	 50,000	 22	 5	 7,972	 12.05	 6,025	 13,997	
Power	
harrow	

3-4m	 16,000	 14	 4	 3,492	 5	 800	 4,292	

Sprayer	 1400	l	 21,000	 18	 7	 2,533	 6.8	 1,428	 3,961	
Combine	
harvester	

125kW	 95,000	 18	 7	 11,459	 5.8	 5,510	 16,969	

Baler	 --	 14,000	 11	 7	 1,827	 5.5	 770	 2,597	
Potato	
harvester	

2	row	
tailed	

80,000	 18	 7	 9,650	 6	 4,800	 14,450	

Sugar	beet	
harvester	

2	row	
tailed	

70,000	 18	 7	 8,443	 5	 3,500	 11,943	

Annual	labour	
cost	

--	 --	 --	 --	 --	 --	 --	 21,945	

Note:	 Estimates	 were	 done	 taking	 into	 consideration	 an	 interest	 rate	 of	 0.5%.	 Annual	 labour	 cost	 was	

obtained	from	Nix	(2014).	Prices/cost	of	machines	were	obtained	from	ABC	(2014).	In	the	context	of	mixed	

integer	programing,	 the	model	selects	 integer	machine	numbers,	 for	example	the	model	may	select	2	of	 the	

100kW	tractors	whereas	in	reality	a	farmer	with	a	smaller	farm	may	need	a	smaller	tractor	say	50kW	(0.5	of	

100kW)	or	a	farmer	with	a	bigger	farm	size	may	need	a	150kW	tractor	(1.5	of	100kW).	Similar	explanation	

cam	be	given	 to	 the	other	machine	 types	as	well	 as	 labour	numbers.	However,	 since	 the	machine	numbers	

generated	by	the	model	serve	as	a	guide	in	farm	planning,	the	machine	numbers	generated	by	the	model	can	

be	said	to	be	give	good	indication	of	machine	selection.	
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“A	weed	is	a	plant	that	has	mastered	every	survival	skill	except	for	learning	

how	to	grow	in	rows.”	

																																																―	Doug	Larson	
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In	Chapter	3,	an	arable	farm	level	model	informed	by	information	from	the	first	two	

chapters	 is	 described,	 verified	 and	 validated.	 Some	 of	 the	 factors	 and	 farm	

management	 practices	 identified	 and	 investigated	 in	 Chapters	 1	 and	 2	were	 taken	

into	 consideration	 as	 constraints	 and	 parameters	 to	 build	 the	 model	 described	 in	

Chapter	3.	The	model	was	validated	using	predictive	 validation	and	Farm	Business	

Survey	 (FBS)	 data	 for	 281	 lowland	 farms.	 The	 results	 of	 the	 validation	 through	

statistical	measures	of	association	showed	good	association	between	model	predicted	

results	 and	 observed	 data.	Modules	 in	which	 risk	was	 explicitly	 incorporated	 gave	

relatively	better	prediction	than	the	ones	in	which	risk	was	not	explicitly	modelled.	

In	 this	 chapter,	 one	 of	 the	modules	 in	which	 risk	was	 explicitly	modelled,	 the	

mixed-integer	weighted	goal-programming	model	is	applied	to	investigate	the	effect	

of	using	spring	cropping	to	control	black-grass,	which	is	an	important	annual	grass	

weed	in	UK	arable	farming.	The	study	was	primarily	influenced	by	the	need	to	make	

arable	 systems	more	 sustainable	 with	 less	 or	 if	 possible	 no	 reliance	 on	 chemicals.	

With	the	potential	of	spring	cropping	reducing	black-grass	population	or	infestation,	

and	hence	reduce	chemical	input	and	cost,	the	incorporation	of	winter	crop—spring	

crop	 rotation	 or	 sequence	 in	 crop	 plans	 is	 being	 encouraged.	 The	 study	 was	 also	

partly	influenced	by	the	Black-grass	Resistance	Initiative	(BGRI)	project.	Again,	in	UK	

context,	no	study	was	found	to	have	used	the	approach	or	the	method	adopted	in	this	

chapter	as	far	as	investigations	on	black-grass	control	strategies	using	optimisation	

or	comparative	static	models	are	concerned.		

Results	show	that	at	the	aggregate	level,	spring	cropping	as	black-grass	control	

measure	 could	 cost	 the	 UK	 arable	 farming	 sector	 however,	 at	 the	 individual	 farm	

level,	 there	 could	 be	 cost	 (reduction	 in	 profit)	 or	 benefit	 (increase	 in	 profit)	

depending	of	the	farm’s	characteristics	such	as	soil	type,	rainfall	pattern	and	area	of	

land	available	to	the	farm.	The	policy	implication	of	the	results	is	that	the	estimates	

(on	per	hectare	basis)	give	insight	into	possible	farm	payment	to	incentivise	adoption	

of	winter	wheat—spring	crop	rotation	as	a	black-grass	control	strategy	and	possibly	

reduce	chemical	input	in	arable	farming	systems.		

A	version	of	the	study	in	this	chapter	was	submitted	to	Agricultural	Systems.	
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Kwadjo	Ahodo,	David	Oglethorpe,	Helen	L.	Hicks,	Robert	P.	Freckleton	

	

Black-grass	 is	 the	 most	 significant	 grass	 weed	 in	 UK	 arable	 farming	 and	

widespread	 herbicide	 resistance	 frequently	 renders	 chemical	 applications	

ineffective.	High	infestations	of	the	weed	can	cause	substantial	yield	losses	and	in	

the	 UK	 potential	 wheat	 yield	 losses	 from	 black-grass	 are	 estimated	 to	 lead	 to	

revenue	 losses	 ranging	 from	 around	 £57/ha	 to	 £422/ha.	 	 As	 a	 result,	 the	 use	 of	

non-chemical	control	measures	such	as	rotation	of	winter	wheat	with	spring	crops	

is	 being	 promoted	 alongside	 chemical	 control	 in	 order	 to	 reduce	 black-grass	

infestation	 and	 herbicide	 cost.	 However,	 this	 strategy	 incurs	 a	 financial	 penalty	

because	 spring	 crops	are	also	associated	with	 lower	yields.	 	There	 is	 therefore	a	

trade-off	 between	 reduced	 herbicide	 use	 and	 decreased	 yield	 penalties,	 and	 the	

reduced	 profit	 from	 spring	 crops.	Here	we	 investigate	 these	 costs	 of	 black-grass	

control	using	a	 farm	 level	mixed-integer	goal-programming	model.	We	use	Farm	

Business	 Survey	data	 for	745	 farms	 to	parameterise	 the	model	 to	determine	 the	

optimal	profit	when	spring	cropping	is	used	to	control	black-grass,	compared	with	

only	chemical	control.	We	find	that	in	the	short-term	the	loss	of	profit	from	spring	

cropping	outweighs	the	benefits	in	terms	of	reduced	herbicide	usage	and	reduced	

yield	 penalties.	 Our	 results	 show	 that	 under	 a	 scenario	 of	 low	 black-grass	

infestation,	 controlling	 black-grass	 with	 a	 winter	 wheat—spring	 barley	 rotation	

could	 cost	 UK	 arable	 farming	 about	 £286	 million	 (£82/ha)	 whereas	 controlling	

black-grass	 with	 winter	 wheat—spring	 beans	 rotation	 could	 cost	 UK	 arable	

farming	about	£650	million	(£187/ha).	Under	a	scenario	of	a	very	high	black-grass	

infestation,	 controlling	 black-grass	 with	 winter	 wheat—spring	 barley	 rotation	

could	cost	UK	arable	farming	about	£35	million	(£10/ha)	whereas	winter	wheat—

spring	beans	rotation	could	cost	UK	arable	farming	about	£87	million	(£25/ha).	In	

a	policy	context,	these	cost	estimates	indicate	possible	policy	payments	needed	to	
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incentivise	 adoption	 of	 spring	 cropping	 as	 a	 black-grass	 control	 measure	

depending	 on	 the	 level	 of	 infestation.	 Our	 results	 also	 suggest	 that	 if	 spring	

cropping	is	to	be	a	successful	strategy	then	the	benefits	to	farmers	will	be	in	terms	

of	 long-term	 reductions	 in	 weed	 densities,	 but	 at	 the	 expense	 of	 short-term	

profitability.			

	

 

The	world’s	population	has	been	projected	to	increase	by	34%	by	2050	(UN-

DESA,	2013),	meaning	that	demand	for	food	will	continue	to	increase.	Agricultural	

production	thus	needs	to	be	intensified	in	order	to	meet	the	growing	food	demand.	

However,	 such	 intensification	can	result	 in	externalities	 to	 the	environment	such	

as	pollution	of	water	sources	due	to	increased	use	of	 inputs	such	as	pesticides	to	

safeguard	crop	yields	and	hence	productivity	(Vasileiadis	et	al.,	2011;	Skevas	et	al.,	

2013;	 Skevas	 and	 Lansink,	 2014).	 This	 has	 led	 to	 the	 need	 to	make	 agricultural	

systems	 more	 sustainable	 (Pandey	 et	 al.,	 1993).	 However,	 sustainability	 of	

agricultural	 systems	 such	 as	 arable	 systems	 cannot	 be	 achieved	 without	 the	

adoption	of	efficient	or	sustainable	pest	management	or	control	strategies	because	

pests	affect	the	sustainability	of	 farming	systems	(Gilioli	et	al.,	2016).	Some	pests	

compete	with	 arable	 crops	 for	 soil	 nutrients,	water	 and	 sunlight	whereas	 others	

feed	 on	 crops	 as	 well	 as	 damage	 the	 crop	 physiology	 and	 thus	 serious	 pest	

infestations	can	reduce	the	yield	potential	of	arable	crops	(Flint	and	van	den	Bosch,	

1981;	Mumford,	1981;	Sells,	1995)	and	make	arable	systems	unsustainable	as	well	

as	threaten	food	security.	

The	common	practice	over	the	years	has	been	the	use	of	chemicals	to	control	

pests,	 resulting	 in	 pollution	 of	 water	 sources	 and	 the	 environment	 as	 well	 as	

impact	on	human	health	(Wijnands,	1997;	Cuyno	et	al.,	2001;	Carvalho,	2006;	EC,	

2007;	Chalak	et	al.,	2008;	Lodovichi	et	al.,	2013;	Kouser	and	Qaim,	2015;	Yaguana	

et	 al.,	 2016).	 As	 a	 result,	 the	 European	 Commission’s	 (EC,	 2008)	 proposed	 a	

strategy	to	ensure	safer	use	of	pesticides.		The	strategy	became	mandatory	in	2014	

and	 it	 requires	 each	 member	 state	 to	 create	 the	 conditions	 necessary	 for	

implementing	 the	 Integrated	 Pest	 Management	 (IPM)	 system.	 The	 IPM	 system	
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involves	 the	use	of	multiple	 strategies	 for	optimizing	 the	 control	of	 all	 classes	of	

pests	 in	 an	 ecologically	 and	 economically	 sound	manner	 (Ehler,	 2006).	 The	 IPM	

system	promotes	the	use	of	pest	management	strategies	that	relies	heavily	on	non-

chemical	pest	management	 strategies	or	 cultural	practices	and	 thus	 it	prescribes	

minimum	or	 sometimes	no	use	of	 chemicals;	 prevents	 the	use	of	 chemicals	with	

certain	active	ingredients	or	substances	(Flint	and	van	den	Bosch,	1981;	Wijnands,	

1997;	Sandler,	2010;	Whitehouse,	2011;	Hillocks,	2012;	Ahuja	et	al.,	2015;	Yaguana	

et	 al.,	 2016).	 Examples	 of	 IPM	 practices	 are	 planned	 rotation,	 improving	 field	

margins,	the	cultivation	of	insect	resistant	crop	varieties	and	adjustments	in	timing	

of	operations	(Bailey	et	al.,	2009).	

As	part	of	the	IPM,	the	Integrated	Weed	Management	(IWM)	system	has	been	

created	to	promote	a	sustainable	means	of	managing	weeds	(Chikowo	et	al.,	2009;	

Pardo	et	al.,	2010).	Like	 the	 IPM,	 the	 IWM	principles	promote	 the	use	of	cultural	

practices	 to	 control	 weeds,	 limits	 weed	 infestations	 with	 low	 or	 no	 reliance	 on	

herbicides	and	if	possible	without	any	side	effects	on	the	productivity	and	the	total	

system	 economic	 performance	 (Chikowo	 et	 al.,	 2009).	 Practices	 recommended	

under	the	IWM	system	include	the	use	of	tillage	practices	(e.g.	ploughing),	cultural	

practices	(e.g.	delayed	sowing)	and	crop	rotation	(with	spring	cropping)	(Moss	and	

Hull,	 2012;	 Lutman	 et	 al.,	 2013;	 HGCA,	 2014a;	 Bayer,	 2015).	 Adoption	 of	 IWM	

strategies	 are	 associated	 with	 opportunity	 costs	 in	 terms	 of	 how	 much	 farm	

revenues	may	be	lost	due	to	reductions	in	yield.	There	can	also	be	opportunity	cost	

in	terms	of	what	costs	may	be	saved	or	incurred	due	to	changes	in	input	use	or	the	

inclusion	 of	 a	 farm	 operation	 or	 a	 cultural	 practice	 and	 how	much	 deviation	 in	

farmers’	 income	 (risk)	 may	 occur	 due	 to	 the	 risk	 associated	 with	 crop	 types.	

However,	 experimental	 investigations	 on	 the	 effectiveness	 of	 IWM	 strategies	 on	

weeds	do	not	focus	on	such	costs.	

There	are	numerous	weed	species	found	on	arable	fields	in	the	UK	depending	

on	 the	 crop	 type	 and	 other	 factors	 such	 as	 soil	 type.	 Black-grass	 (Alopecurus	

myosuroides	 Huds.)	 is	 the	 most	 important	 annual	 grass	 weeds	 in	 the	 UK	 and	

Europe	(Lutman	et	al.,	2013).	It	is	a	very	competitive	grass	weed	with	the	ability	to	

produce	 large	 quantities	 of	 seeds	 to	 enhance	 its	 proliferation	 and	 can	 cause	

substantial	 yield	 reduction	 in	 arable	 crops	 especially	 in	 autumn	 (winter)	 sown	



	 	

	157	

crops	(Gerowitt,	2003;	Lutman	et	al.,	2013;	Keshtkar	et	al.,	2015).	The	above	traits	

of	black-grass	coupled	with	the	frequency	of	growing	autumn	sown	crops	in	the	UK	

contribute	to	the	increase	in	black-grass	infestations,	which	require	a	high	level	of	

control	(HGCA,	2008;	Lutman	et	al.,	2013;	Bayer,	2015;	Keshtkar	et	al.,	2015).	As	

with	most	 pests,	 the	 control	 of	 black-grass	 in	 arable	 farming	 over	 the	 years	 has	

been	primarily	through	the	use	of	chemicals.	However,	it	has	developed	resistance	

to	 a	 number	 of	 herbicidal	 active	 ingredients	 which	 has	 made	 control	 through	

herbicide	 application	 ineffective	 and	 unreliable,	 making	 black-grass	 the	 number	

one	 herbicide	 resistant	weed	 in	 Europe	 (Moss	 et	 al.,	 2007;	 Lutman	 et	 al.,	 2013;	

Bajwa,	 2014;	 Matzrafi	 et	 al.,	 2014;	 Keshtkar	 et	 al.,	 2015).	 Clearly,	 further	 (and	

potentially	 futile)	 application	 of	 herbicide	 adds	 to	 negative	 impacts	 on	 the	

environment	 (Wu,	 2001;	 Chikowo	 et	 al.,	 2009;	 Pardo	 et	 al.,	 2010;	 Beltran	 et	 al.,	

2012;	 Deytieux	 et	 al.,	 2012;	 Bajwa,	 2014)	 and	 the	 continued	 presence	 of	 black-

grass	has	a	significant	impact	on	crop	yields.	Black-grass	populations	as	low	as	8-

12	 plants/m2	 has	 the	 potential	 to	 reduce	 winter	 wheat	 yield	 by	 2-5%	 whereas	

populations	of	about	300	plants/m2	can	reduce	yields	by	37%	(Bayer,	2015).	For	

example,	 at	an	average	yield	 level	of	10.39	 t/ha	 for	winter	wheat	 (AHDB	control	

mean	in	2015)	and	feed	wheat	price	of	£110/t,	this	could	lead	to	costs	to	the	sector	

of	 between	 £57/ha	 to	 £422/ha	 assuming	 5%	 and	 37%	 yield	 reduction	

respectively.	We	therefore	have	a	major	agricultural	economic	issue	to	deal	with—

the	need	for	a	response	to	alternative	crop	husbandry	to	mitigate	black-grass	and	

the	need	to	re-balance	the	financial	consequences	of	yield	loss	through	black-grass	

infestation.			

IWM	 strategies	 for	 black-grass	 control	 include	 tillage	 practices	 (e.g.	

ploughing),	cultural	practices	(e.g.	delayed	sowing)	and	crop	rotation	(with	spring	

cropping)	(Moss	and	Hull,	2012;	Lutman	et	al.,	2013;	HGCA,	2014a;	Bayer,	2015).	

However,	 this	 study	 focuses	 on	 the	 control	 of	 black-grass	 using	 crop	 rotation,	

specifically	mandating	spring	cropping	instead	of	winter	cropping	to	control	black-

grass.	The	focus	on	crop	rotation	with	spring	cropping	is	primarily	due	to	the	fact	

that	 crop	 rotation	 with	 spring	 cropping	 is	 beneficial	 in	 several	 respects	 for	 the	

sustainability	of	agricultural	systems	(Schönhart	et	al.,	2011;	HGCA,	2014a).	
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Also,	the	focus	on	spring	cropping	was	made	because	the	choice	of	crops	in	a	

rotation	sets	the	basis	for	every	weed	management	strategy	(HGCA,	2014a).	Again,	

among	 the	 set	 of	 non-chemical	 black-grass	 control	 strategies,	 crop	 rotation	with	

spring	 cropping	 has	 been	 found	 to	 be	 more	 effective	 in	 reducing	 black-grass	

population	 or	 densities	 (Gerowitt,	 2003;	 Bajwa,	 2014).	 In	 some	 trials,	 sowing	

spring	barley	and	spring	wheat	resulted	 in	between	78%	and	96%	reductions	 in	

black-grass	 population	 relative	 to	 sowing	winter	 crops	whereas	 delayed	 sowing	

resulted	 in	about	39%	reduction	(Moss	and	Hull,	2012;	Lutman	et	al.,	2013)	(see	

Figure	 4-1	 for	 the	 percentage	 reduction	 in	 black-grass	 population	 from	 the	

application	of	different	methods	of	non-chemical	control).	This	is	because	as	black-

grass	 germinates	 primarily	 in	 the	 autumn	 (and	 does	 not	 grow	 in	 spring-sown	

crops),	 winter-sown	 crops	 (mainly	 cereals)	 tend	 to	 favour	 the	weed,	 as	 there	 is	

limited	opportunity	 for	weed	 control	 once	 the	 crop	 is	 established.	 In	 addition	 to	

the	 above,	 crop	 rotations	 with	 spring	 crops	 have	 been	 found	 to	 spread	 the	

workload	on	arable	fields	across	the	year,	impact	upon	weed	species	and	numbers	

and,	in	addition,	can	be	beneficial	for	biodiversity	(HGCA,	2014a).	The	inclusion	of	

spring	crops	into	the	arable	farm	rotation	is	thus	being	encouraged	since	it	allows	

for	the	autumn	germination	of	black-grass	to	be	killed	off	before	establishment	of	

spring-sown	 crops.	 Hence,	 the	 focus	 of	 spring	 cropping	 as	 a	 black-grass	 control	

strategy	 in	 the	 study	 is	primarily	due	 to	 its	 effectiveness	 in	 reducing	black-grass	

population	compared	to	other	non-chemical	weed	strategies	such	as	ploughing	and	

delayed	sowing,	and	also	additional	benefits	such	as	benefit	to	biodiversity	that	the	

other	management	tools	do	not	have.		
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Source:	Bayer	and	Syngenta17.	Note:	The	reduction	in	black-grass	population	under	fallowing	is	on	
per	year	basis.	
	
Figure	4-1:	Reduction	in	black-grass	population	due	to	application	of	different	methods	of	

non-chemical	control	

	

However,	spring	crops	also	tend	to	be	associated	with	lower	yields	and	lower	

economic	 returns:	 winter	 wheat	 tends	 to	 dominate	 production	 in	 many	 areas	

because	it	is	a	more	profitable	crop.		Thus,	the	adoption	of	such	black-grass	control	

measure	 could	be	 associated	with	 opportunity	 cost	 in	 terms	of	 how	much	profit	

could	 be	 lost	 or	 how	 much	 savings	 could	 be	 made	 on	 chemical	 cost	 due	 to	

switching	from	a	winter	crop	to	a	spring	crop.	This	can	be	demonstrated	using	data	

from	 Nix	 (2014)—the	 gross	 margin	 for	 winter	 wheat	 and	 spring	 barley	 are	

£833/ha	 and	 £647/ha	 respectively	 whereas	 their	 respective	 herbicide	 costs	 are	

£70/ha	 and	 £48/ha.	 Switching	 from	 winter	 wheat	 to	 spring	 barley	 as	 part	 of	

measures	 to	 control	 black-grass	 reduces	 gross	 margin	 by	 £183/ha	 whereas	

herbicide	cost	reduces	by	£22/ha.	Thus	following	a	winter	crop	with	a	spring	crop	

is	likely	to	reduce	herbicide	input	and	cost	but	with	a	bigger	reduction	in	revenue	

due	to	lower	yields	associated	with	spring	crops	(Pardo	et	al.,	2010;	Moss	and	Hull,	

																																																								
17	Bayer:	
http://cropscience.bayer.co.uk/mediafile/261469/m27018_bgtf_cereals_brochure_a6_aw.pdf	
	
Syngenta:	https://www.syngenta.co.uk/black-grass/cultural		
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2012,	Bayer,	2015).	This	means	that	each	system	will	be	associated	with	different	

levels	of	economic	returns	and	hence	risk.	These	need	to	be	evaluated	against	the	

benefits	 of	 a	 reduction	 in	 black-grass	 infestation	 the	 system	 creates	 and	 the	

associated	 reduction	 in	 herbicide	 application	 costs.	 The	 following	 research	

questions	are	therefore	asked:	

1. What	is	the	aggregate	cost	of	black-grass	control	to	the	UK	arable	farming	

sector	using	winter	wheat—spring	barley	rotation?	

2. What	is	the	aggregate	cost	of	black-grass	control	to	the	UK	arable	farming	

sector	using	winter	wheat—spring	beans	rotation?	

3. Is	 there	any	effect	of	controlling	black-grass	with	spring	cropping	on	farm	

risk?	

4. What	 is	 the	effect	of	 controlling	black-grass	with	spring	cropping	on	 farm	

costs?	

5. Is	there	any	policy	implication	of	the	results?	

Investigations	 on	 the	 effect	 of	 spring	 cropping	 on	 black-grass	 control	 are	

normally	 based	 on	 population	 monitoring	 in	 field	 experiments	 (e.g.	 Gerowitt,	

2003;	Chikowo	et	al.,	2009;	Deytieux	et	al.,	2012;	Moss	and	Hull,	2012;	Keshtkar	et	

al.,	2015).	However,	mathematical	farm	models	based	on	linear	programming	and	

related	approaches	can	serve	as	an	alternative	to	field	experiments,	which	may	be	

expensive	 and	 time	 consuming.	 Such	 approaches	 have	 the	 capability	 to	 capture	

many	 of	 the	 complexities	 associated	 with	 arable	 farming	 weed	 management	

strategies	 through	 the	 imposition	 of	 winter	 crop—spring	 crop	 sequence	 or	

rotational	 constraints.	 Some	 studies	 (e.g.	 Pardo	et	 al.,	 2010;	Beltran	et	 al.,	 2012)	

have	used	dynamic	farm-modelling	approaches	to	 investigate	non-chemical	weed	

management	strategies	under	the	IWM	however,	none	of	 these	studies	estimated	

the	 cost	 of	 black-grass	 control	 at	 the	 national	 scale	 using	 non-chemical	 means.	

Also,	approaches	like	dynamic	programming	although	suitable	for	handling	multi-

period	problems,	may	be	time	consuming	especially	in	situations	where	there	are	

more	stages	or	state	variables	under	consideration	(Kaiser	and	Messer,	2011)	and	

unlike	 linear	programming,	 in	some	instances	dynamic	programming	approaches	

are	 likely	 to	 generate	 solutions	 for	 sub-problems,	 which	 may	 just	 be	 local	

optimums.		
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Although	as	profit	maximisers	 farmers	may	be	unwilling	 to	adopt	practices	

that	 might	 reduce	 farm	 profit	 or	 increase	 farm	 risk,	 it	 is	 well	 understood	 that	

farmer	 decision-making	 is	more	 adequately	 represented	 by	 a	 utility	maximising	

framework	where	income	and	risk	(in	the	form	of	income	variation)	are	traded	off	

under	 the	 optimal	 farm	 plan	 (Pope	 and	 Just,	 1991;	 Oglethorpe,	 1995;	Hennessy,	

1998;	 Tiedemann	 and	 Latacz-Lohmann,	 2013).	 This	 study	 uses	 a	 mixed-integer	

weighted	goal-programming	to	model	the	economic/management	consequences	in	

terms	of	the	opportunity	cost	of	using	spring	crop	rotations	to	manage	black-grass	

at	 the	 farm	 scale.	With	 the	main	 focus	 of	 the	 study	 on	 comparing	 the	 economic	

outcomes	of	 two	cropping	plans	as	part	of	black-grass	management	strategy,	 the	

use	of	the	comparative	static	mixed-integer	programming	model	can	be	said	to	be	

fit	for	purpose.	The	study	also	seeks	to	determine	the	consequences	or	opportunity	

costs	of	adopting	spring	crop	rotation	at	the	national	scale	through	aggregate-level	

modelling	and	the	consequence	of	this	on	the	level	of	risk	(measured	by	deviation	

in	income)	to	which	arable	farmers	will	be	exposed.	The	novelty	of	this	study	and	

the	result	presented	lies	in	the	approach	adopted	and	the	aggregation	of	the	cost	at	

the	 national	 level.	 Although	 similar	 approaches	 have	 been	 used	 to	 explicitly	 or	

implicitly	 model	 different	 weed	 management	 strategies,	 in	 terms	 of	 using	 a	

comparative	 static	 linear	 programming	 based	 approach	 to	 model	 black-grass	

control	 strategies,	 our	 results	 are	 novel	 because	 there	 has	 been	 no	 previous	

analysis	of	the	economics	of	controlling	black-grass	using	rotational	management	

at	farm	or	national	scale.		

	

 

 Farming	scenario	

The	study	considers	a	scenario	of	an	arable	farm	growing	four	crops:	winter	wheat	

(Triticum	aestivum	L.),	spring	barley	(Hordeum	vulgare	L.),	spring	beans	(Vicia	faba	

L.)	 and	 winter	 oilseed	 rape	 (Brassica	 napus	 L.).	 Although	 crops	 such	 as	 winter	

barley	and	spring	wheat	are	 important	 in	UK	arable	 farming,	 the	selection	of	 the	

above	four	crops	was	primarily	driven	by	Black-Grass	Resistance	Initiative	(BGRI)	

project	 (http://bgri.info/)	 survey,	 which	 found	 the	 four	 crops	 to	 be	 common	

among	 the	 farms	 surveyed	 (Dr	Helen	Hicks	pers.	 comm.).	 That	 is,	 the	 four	 crops	
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selected	 encompasses	 the	 main	 crops	 grown	 in	 the	 UK	 and	 used	 as	 part	 of	

rotational	management.	The	selection	of	the	four	crops	was	also	partly	due	to	the	

frequency	of	black-grass	infestation	on	winter	wheat	fields	and	the	need	for	winter	

wheat—spring	 crop	 sequences/rotations	 as	part	 of	 the	 control	 strategies.	 Spring	

wheat	was	not	selected	due	to	the	fact	that	winter	wheat—spring	wheat	rotation	

or	sequence	was	seen	to	be	akin	to	continuous	winter	wheat	cropping.	

Each	of	the	crops	has	a	set	of	sequential	and	non-sequential	farm	operations	

carried	out	in	the	farm	year.	The	farm	season	is	divided	into	26	two-week	periods	

to	 allow	 for	 the	 consideration	 for	 timeliness	 penalties	 (see	 Figure	 4-2	 for	 the	

operation	types).	Also,	the	consideration	of	single	year	(with	multiple	within	year	

periods)	 was	 made	 to	 focus	 on	 the	 comparison	 of	 two	 cropping	 plan	 scenarios	

within	the	farm	season.	With	the	primary	aim	of	this	chapter	being	to	estimate	or	

investigate	the	cost	of	black-grass	control	using	spring	crops	in	the	rotation,	other	

non-chemical	 control	 strategies	 such	 as	 non-inversion	 and	 zero	 tillage	were	 not	

considered.	The	main	focus	is	to	investigate	the	effect	of	arable	farmers	switching	

from	winter	 crops	 (specifically	 winter	 wheat)	 to	 spring	 crops	 (as	 part	 of	 black-

grass	control	measures)	on	farm	revenue.		

The	workable	hours	available	to	the	farm	to	carry	out	each	operation	in	each	

period	depend	on	the	soil	 type	and	rainfall	pattern	at	the	farm	location.	Also,	 the	

rate	at	which	earth	moving	operations	such	as	ploughing	are	carried	out	depends	

on	 the	 soil	 type	whereas	work	 rate	 of	 operations	 such	 as	 planting	 and	 combine	

harvesting	depend	on	the	seed	amount	and	crop	yield	respectively.	The	work	rates	

of	both	types	of	operations	depend	on	the	size	of	machines	owned	by	the	farm	(see	

Table	3-16	in	Chapter	3	Appendix).	The	dominant	soil	type	at	the	farm	determines	

the	 fertiliser	 amounts	 applied	 to	 each	 crop	 and	 this	 is	 done	 by	 linking	 the	

recommended	fertiliser	amounts	in	Defra	(2010)	to	soil	type	and	thus	a	change	in	

soil	type	alter	the	fertiliser	amounts	to	crops.		



	 	

	163	

	

Note:	The	operations	with	(ns)	are	non-sequential	operations.	The	shaded	squares	with	1’s	means	operations	

carried	out	in	year	1	of	the	crop	season	and	the	squares	with	2’s	means	operations	carried	in	year	2	of	the	crop	

season.	 The	 squares	with	 circles	 represent	 the	 optimal	 periods	 in	which	 the	 operations	 can	 be	 carried	 out	

without	 yield,	 rotational	 or	 timeliness	 penalties.	 FE	 =	 Spreading	 of	 phosphorous/potassium	 fertiliser,	 PO	 =	

Ploughing,	PL	=	Planting,	RO	=	Rolling,	SP	=	Spraying,	CO	=	Combine	harvesting,	BA	=	Baling,	FE	(ns)	=	Nitrogen	

fertiliser	application	(non-sequential),	SP	=	Spraying	(non-sequential).	

	
Figure	4-2:	Sequential	and	non-sequential	farm	operations	of	winter	wheat,	spring	barley,	

spring	beans	and	winter	oilseed	rape	

Crop	rotation	is	characterised	by	a	crop	cycle	whereas	crop	sequence	is	about	

the	order	of	appearance	of	crops	on	the	same	hector	of	land	during	a	fixed	period	

(Dury	et	al.,	2012).	With	respect	to	the	four	crops	being	considered	in	this	study,	

the	crop	rotation	can	be	described	to	be	a	4-year	crop	cycle,	which	can	be	repeated	

by	the	farmer	at	the	end	of	the	cycle.	In	this	study	we	focus	on	the	crop	sequence	in	

the	rotation	by	looking	at	mandatory	winter	wheat-spring	barley	or	spring	beans	

sequence	 as	 part	 of	 the	 black-grass	 control	 strategies.	 Farms	 practising	 crop	

rotation	normally	decide	the	hectare	of	land	(a	field)	allocated	to	a	crop	as	well	as	

the	deciding	the	crop	successions.	For	example,	after	harvesting	winter	wheat	on	a	

field	a	 farmer	will	decide	 the	next	 crop	 to	grow—this	 could	be	another	wheat,	 a	

winter	or	a	spring	crop	depending	on	the	objective	of	the	farmer	or	consideration	

of	other	factors	such	as	soil	types,	expected	revenue,	weather	and	risk	(Dury	et	al.,	

FE FE	
(ns)

PO PL RO SP SP	
(ns)

CO FE FE	
(ns)

PO PL RO SP	
(ns)

CO BA FE PO PL SP	
(ns)

CO FE FE	
(ns)

PO PL SP	
(ns)

CO

01	JAN	-	15	JAN p1 2 p1 2 2 p1 2 p1
15	JAN	-	29	JAN p2 2 p2 2 2 p2 2 p2
29	JAN	-	11	FEB p3 2 p3 2 2 p3 2 p3
12	FEB	-	25	FEB p4 2 p4 2 2 p4 2 2 p4 2
26	FEB	-	11	MAR p5 2 2 p5 2 2 2 p5 2 2 p5 2 2
12	MAR	-	25	MAR p6 2 2 p6 2 2 2 p6 2 2 p6 2 2
26	MAR	-	08	APR p7 2 2 p7 2 2 2 2 p7 2 p7 2
09	APR	-	22	APR p8 2 2 p8 2 2 2 p8 p8 2 2
23	APR	-	06	MAY p9 2 p9 2 2 p9 2 p9 2
07	MAY	-	20	MAY p10 2 p10 2 p10 2 p10
21	MAY	-	03	JUN p11 p11 p11 p11
04	JUN	-	18	JUN p12 p12 p12 2 p12
18	JUN	-	01	JUL p13 p13 p13 2 p13
01	JUL	-	16	JUL p14 p14 p14 p14
16	JUL	-	29	JUL p15 p15 p15 p15 2
30	JUL	-	12	AUG p16 1 1 p16 1 p16 1 p16 1 1 1 2
13	AUG	-	26	AUG p17 1 1 2 p17 1 2 2 p17 1 p17 1 1 1
27	AUG	-	09	SEP p18 1 1 2 p18 1 2 2 p18 1 2 p18 1 1 1
10	SEP	-	23	SEP p19 1 1 1 1 p19 1 2 p19 1 2 p19 1 1 1
24	SEP	-	08	OCT p20 1 1 1 1 p20 1 1 p20 1 1 p20 1 1
08	OCT	-	21	OCT p21 1 1 1 1 p21 1 1 p21 1 1 p21 1 1 1
22	OCT	-	04	NOV p22 1 1 1 1 1 p22 1 1 p22 1 1 p22 1 1 1
05	NOV	-	18	NOV p23 1 1 1 1 1 p23 1 1 p23 1 1 p23 1 1 1
19	NOV	-	02	DEC p24 1 1 1 1 p24 1 p24 1 p24 1 1
03	DEC	-		16	DEC p25 1 1 1 1 p25 1 p25 1 p25 1
16	DEC	-	31	DEC p26 1 1 1 1 p26 1 p26 1 p26 1

WINTER	WHEATPERIOD SPRING	BARLEY SPRING	BEANS WINTER	OILSEED	RAPE
FARM	OPERATIONS FARM	OPERATIONSFARM	OPERATIONS FARM	OPERATIONS
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2012).	With	 the	possibility	 of	 farmers	 repeating	 the	 crop	 cycle	 or	 rotation	plans	

over	 a	 long	 period,	 this	 study	 is	 not	 focused	 on	 long	 term	 rotation	 plans	 or	 the	

length	of	the	rotation	but	on	rotation	plans	in	which	every	hectare	of	winter	wheat	

harvested	must	be	 followed	by	a	 spring	 crop	 (in	 the	 context	of	 this	 study	 spring	

barley	or	spring	beans).	

Two	cropping	plan	options	are	thus	considered	and	compared	in	this	study.	

Option	1	is	a	scenario	of	a	farm	growing	four	crops	on	four	different	fields:	winter	

wheat	 (WWHT),	 spring	 barley	 (SBAR),	 spring	 beans	 (SBEA)	 and	 winter	 oilseed	

rape	 (WOSR).	With	winter	wheat	being	 the	dominant	arable	 crop	 in	 the	UK,	 it	 is	

assumed	that	farmers	are	likely	to	allocate	bigger	proportion	or	more	fields	of	the	

total	farm	land	to	winter	wheat	and	the	rest	allocated	to	the	other	crops.	In	terms	

of	crop	sequence	or	succession	it	is	assumed	that	each	crop	can	be	grown	on	any	of	

the	fields	A,	B,	C	and	D	(as	shown	by	the	arrows	in	Figure	4-3	(a))	after	harvesting	

any	of	the	crops	without	necessarily	following	winter	wheat	with	a	spring	crop	or	

allocating	the	same	or	more	hectares	of	 land	to	a	spring	crop	than	winter	wheat.	

However,	WOSR—SBEA	or	SBEA—WOSR	sequences	are	not	encouraged	since	such	

sequences	could	encourage	possible	disease	build	up	and	subsequently	yield	loss.		
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Figure	 4-3:	 Cropping	 plan	 scenarios.	 Under	 Option	 2	 every	 winter	 wheat	 harvested	 is	

followed	by	either	SBAR	or	SBEA	(shown	by	thick	arrow	lines).	

	

Winter	wheat—spring	 crop	 sequence	has	been	 found	 to	 reduce	black-grass	

infestation	 and	 as	 a	 result	 it	 is	 being	 promoted	 as	 a	 non-chemical	 black-grass	

control	strategy.	To	capture	this,	the	farmer	adopts	Option	2	(as	shown	in	Figure	4-

3	 (b))	 in	 which	 a	 mandatory	 winter	 wheat—spring	 barley	 or	 spring	 beans	

sequence	is	assumed.	Using	Figure	4-3,	the	main	difference	between	Option	1	and	

2	is	that	for	example,	under	Option	1,	a	farmer	may	not	use	all	the	area	of	field	A	

allocated	to	WWHT	to	grow	spring	barley	or	spring	beans	whereas	under	Option	2,	

the	farmer	has	to	use	all	the	area	of	field	A	or	more	(use	of	parts	of	other	fields)	to	

grow	either	spring	barley	or	spring	beans	after	harvesting	WWHT.	

How	the	adoption	of	Option	2	as	a	black-grass	control	measure	by	a	farmer	

impact	on	 farm	revenue	and	 farm	costs	as	well	 as	 risk	 is	 the	 focus	of	 this	 study.	

Thus	the	focus	is	not	on	the	length	of	the	rotation	or	long	term	rotation	predictions	

or	 on	 black-grass	 population	 dynamics	 but	 on	 the	 adoption	 of	 a	 cropping	 plan,	

which	involves	mandatory	winter	wheat—spring	barley	or	spring	beans	sequence	

as	 black-grass	 control	 measure.	 As	 a	 result,	 the	 comparative	 static	 optimisation	

model,	which	is	applied	in	this	chapter	is	set	up	to	generate	annual	cropping	plans	

A	
WWHT	

D	
WOSR	

C	
SBEA	

B	
SBAR	

A	
WWHT	

D	
WOSR	

C	
SBEA	

B	
SBAR	

(a)	Option	1	 (b)	Option	2	
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with	 implicit	 rotations,	 which	 if	 adopted,	 crops	 can	 be	 rotated	 or	 sequenced	 on	

field	basis	either	by	following	Option	1	or	Option	2.	This	approach	was	adopted	to	

make	it	possible	to	compare	profit	margins	of	two	cropping	plans—profit	margin	

of	Option	2	 (chosen	 as	 a	 black-grass	 control	measure)	 and	 the	profit	margins	 of	

Option	1.		

4.2.1.1 Modelling	black-grass	infestation	

Although	it	is	acknowledged	that	the	issues	concerning	black-grass	infestation	is	of	

dynamic	nature	and	that	the	benefit	of	a	control	measure	applied	in	one	year	may	

reflect	 in	subsequent	years,	with	the	 focus	of	 the	study	on	the	comparison	of	 the	

economic	 outcomes	 of	 two	 cropping	 plans	 that	 can	 be	 adopted	 as	 part	 of	 black-

grass	 control	 strategies,	 black-grass	 population	 dynamics	 or	 infestation	 is	

therefore	not	explicitly	modelled	and	hence	the	use	of	static	single	year	model.	The	

effect	 of	 black-grass	 infestation	 is	 modelled	 through	 scenarios	 of	 winter	 wheat	

yield	 reductions	 under	 different	 levels	 of	 infestation	 (see	 Table	 4-3	 for	 yield	

penalties	under	different	levels	of	black-grass	infestation	on	winter	wheat	fields).	

This	was	done	to	make	it	possible	to	observe	the	level	of	infestation	after	which	it	

will	be	more	beneficial	to	switch	to	spring	cropping,	considering	low	profitability	

associated	with	spring	cropping.	

 The	mixed-integer	weighted	goal	programming	model	

Linear	programming	models	can	serve	as	an	alternative	to	field	experiments	when	

it	comes	quantifying	the	cost	of	adopting	a	rotation	plan	through	the	estimation	of	

the	differences	in	optimum	profits	 for	alternative	crop	or	rotation	plans.	Many	of	

the	 weed	 management	 strategies	 can	 be	 captured	 in	 linear	 programming	 (LP)	

models	to	investigate	the	amount	of	profit	lost	through	the	adoption	of	strategies	

such	 as	 winter	 crop—spring	 crop	 sequences.	 Also,	 some	 dynamics	 can	 be	

introduced	 into	 mixed-integer	 and	 goal	 programming	 models	 by	 dividing	 the	

cropping	season	into	multi-periods	and	incorporating	them	into	the	model	(McCarl	

and	Spreen,	1997).	

Linear	 or	mixed-integer	 programming	models	 can	 be	 formulated	 as	multi-

objective	 models	 (e.g.	 Annetts	 and	 Audsley,	 2002;	 Cooke	 et	 al.,	 2013)	 by	

maximizing	or	minimizing	one	objective	whiles	the	other	objectives	are	expressed	
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as	inequality	constraints.	However,	such	formulations	may	have	a	limitation	in	the	

sense	 that	 each	 goal	 expressed	 as	 inequality	 constraint	 must	 be	 enforced,	

otherwise	will	result	 in	infeasible	solution	(Hazell	and	Norton,	1986;	Zgajnar	and	

Kavcic,	 2011).	 To	overcome	 this	 limitation,	 a	weighted	 goal-programming	model	

was	applied	to	optimise	goals	simultaneously.		

A	typical	goal	programming	(GP)	minimises	the	deviations	from	goal	targets	

(Barnett	et	al.,	1982;	Romero	and	Rehman,	1984)	and	can	generally	be	expressed	

mathematically	as:	

(4-1)	

	

subject	to	_@ ` + F@< − F@a = b@,				` ∈ 4J7d	

F@<, F@a, ` ≥ 0	

Where	 D	 represents	 total	 deviation	 to	 be	 minimised,	 Gg(a)	 is	 a	 linear	

function	 or	 objective	 (goal)	 of	 a	 (see	 Eq.	 	 (4-3)	 and	 (4-4))	 which	 is	 a	 vector	 of	

decision	 variables	 Tg	 is	 the	 target	 set	 for	 the	 gth	 objective	 or	 goal,	 F@<	 and	 F@a 	

represent	 the	 negative	 (under-achievement)	 and	 positive	 (over-achievement)	

deviations	from	goal	targets	whereas	ug	and	vg	are	the	relative	weights	attached	to	

the	deviation	variables	respectively	and	Cons	is	a	set	of	constraints	(e.g.	constraints	

under	Section	4.2.3).	For	maximisation	goals,	the	minimisation	of	the	deviation	is	

focused	 on	 the	 negative	 deviations	 whereas	 for	 minimisation	 goals	 positive	

deviations	are	the	focus	of	the	minimisation	in	the	GP	objective	function.	

In	 this	 chapter	 the	 mixed-integer	 weighted	 goal-programming	 (MIWGP)	

module	 of	 the	 SAFMOD	was	 applied	 to	 investigate	 the	 effect	 of	 the	 adoption	 of	

winter	 wheat—spring	 crop	 sequence	 on	 farm	 revenues	 and	 costs.	 The	 model	

allows	weights	and	goal	targets	to	be	set	to	optimize	three	arable	farming	goals	by	

selecting	optimum	crop	plan	and	machines/labour	numbers	(see	Figure	4-4	for	the	

flow	chart	showing	the	outline	of	the	MIGWP	model	and	associated	assumptions).		

Model	 codes	 can	 also	 be	 found	 via	 the	 following	 link:	

https://github.com/kwadjoahodo/SAFMOD	

Minimise	i = 	&(k@F@< + l@
?

@m(

F@a)	
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Figure	4-4:	Flowchart	showing	the	outline	of	the	MIWGP	model.	

	

MODEL ASSUMPTIONS
• Spring	cropping	(winter	wheat—spring	barley	and	winter	

wheat—spring	beans	sequences)	 reduces	black-grass	
infestation.

• Black-grass	 infestation	reduces	winter	wheat	yield.
• Long	term	benefit	of	spring	cropping	in	terms	of	yield	

improvement	is	not	taken	into	consideration	due	to	focus	on	
annual	modelling.

• Black-grass	population	dynamics	is	not	modelled.
• Effect	of	black-grass	is	assumed	 to	be	%	reduction	in	winter	

wheat	yield	under	different	levels	of	infestation.
• Farming	season	is	divided	into	26	two-week	periods.
• Soil	type	and	rainfall	for	each	farm	determine	 the	workable	

hours	of	each	period	in	which	farm	operations	are	carried	
out.

• Data	 for	the	study	are	5-year	average	data	for	each	of	the	745	
selected	 farms.

• Two	cropping	plans	are	compared:	one	without	winter	
wheat—spring	crop	sequence	 (Option	1)	and	one	with	
winter	wheat—spring	crop	sequence	(Option	2).

• Crop	yields	for	each	farm	(t/ha)	are	 functions	of	N	fertiliser	
rate	 (kg/ha)	and/or	soil	type.

• Gross	margin	(£/ha)	 =	Output	(£/ha)	 less	Variable	 Cost	
(£/ha)

• Subsidy	payment	(£/ha)	 	=	Pre	2005	farm	payment	based	on	
the	type	of	enterprise

• Variable	cost	(£/ha)	comprises	seed,	fertiliser,	chemical	 	&	
sundry	costs

• Operations	cost	(£/ha)	=	fuel	 cost	are	based	on	machine	
work	rate.

• Work	rates	(h/ha)	are	 function	of	soil	type,	seed	rates	
fertiliser	rates,	crop	yields	and	machine	sizes.

• Sub-optimal	operations	and	rotations	are	associated	with	
timeliness	and	rotational	penalties	expressed	as	cost	(£/ha).

• Fixed	cost	(£)	=	Annual	depreciation,	repair	and	labour	costs.
• Profit	(£)	=	Gross	margin	less	operation	and	fixed	cost.
• Risk	(£)	=	Standard	deviation	in	income.
• Aggregate	 study	estimates	are	based	on	sum	of	weighted	

model	estimates	across	farms.

MODEL CONSTRAINTS
• Workable	hours	

constraints
• Sequential	 and	non-

sequential	operations	
constraints

• Winter	wheat—spring	
barley		OR	winter	
wheat—spring		beans	
sequencing	constraints

• Total	 land	area	
constraints

MODEL/STUDY OBJECTIVES
• Maximise	 farm	profit

by	putting	more	
weight	on	profit	goal	
and	setting	 the	goal	
target	high.

• Minimise	risk	
(standard	deviation	in	
income)	by	putting	low	
weight	on	the	 risk	goal.

MIWGP	(MIXED-INTEGER WEIGHTED GOAL PROGRAMMING MODEL

MODEL SOLVER
(RGLPK)

MODEL OUTPUT
• Profits for Options 1 & 2 Crop Plans
• Risk for Options 1 & 2 Crop Plans
• Costs for Options 1 & 2 Crop Plans

Model	Data		
&	Matrices							
(CSV	Files)

STUDY RESULTS ESTIMATES
• Weighted Aggregate Profits, Risks &

Costs for Options 1 & 2 Crop Plans

COMPARISON OF OPTIONS 1	&	2	ESTIMATES
• If	Option	2	Profit	>	Option	1	Profit	=	

Gain	or	Benefit.
• If	Option	2	Profit	<	Option	1	Profit	=	

Cost.
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The	 choice	 of	 the	 MIWGP	 model	 which	 considers	 a	 single	 year	 planning	

horizon	but	with	discrete	within	year	periods	was	driven	by	the	fact	that	the	focus	

of	the	study	was	not	on	black-grass	population	dynamics	but	on	the	analysis	of	the	

annual	economic	(short	term)	benefit/cost	of	cropping	plans	that	can	be	adopted	

to	 control	 black-grass	 although	 it	 is	 acknowledged	 that	 the	 adoption	 of	 such	

cropping	plans	in	one	year	may	have	long	term	benefit	in	subsequent	year(s).	Also,	

with	 the	costs	and	benefits	of	a	crop	plan	normally	 incurred	within	 the	cropping	

season	 (normally	 a	 year),	 comparative	 economic	 analysis	 of	 different	 cropping	

plans	 or	 enterprises	 (e.g.	 gross	 margin	 analysis	 or	 farm	 budget)	 are	 normally	

carried	out	on	annual	basis	and	thus	 the	application	of	 the	MIWGP	model	 in	 this	

chapter	was	found	to	be	fit	for	purpose.		

The	MIWGP	model	has	10	activities	(9	crops18	and	set-aside)	(see	Chapter	3	

Appendix	for	list	of	crops)	but	was	set	up	to	select	four	crops:	winter	wheat,	spring	

barley,	 spring	 beans	 and	 winter	 oilseed	 rape.	 These	 crops	 were	 found	 to	 be	

common	among	farmers	when	a	black-grass	survey	was	conducted	in	England	as	

part	of	a	BGRI	project	as	crop	set	use	by	farmers	for	black-grass	management.		The	

model	assumes	that	there	is	always	one	farmer	(integer)	in	addition	to	the	labour	

numbers	 selected	 by	 the	 model	 and	 thus	 basically	 makes	 the	 model	 a	 mixed-

integer.	 Also,	 the	 model	 can	 be	 set	 up	 to	 select	 integer	 machine	 and	 labour	

numbers.	 The	 decision	 variables	 are	 the	 crop	 types	 (cropping	 plan).	 The	model	

originally	optimises	three	arable	farming	goals:	maximise	profit,	minimise	nitrate	

leaching	and	minimise	risk	however,	the	results	on	nitrate-leaching	goal	were	not	

presented	 in	 this	 study.	 This	 was	 due	 to	 the	 fact	 the	 focus	 was	 on	 profit	

maximisation	and	to	some	extent	risk	since	they	both	depend	on	crop	yields	and	

prices.	The	risk	minimisation	goal	was	based	on	the	minimisation	of	total	absolute	

deviation	(MOTAD)	approach	developed	by	Hazell	(1971).	The	overall	model	thus	

combines	mixed-integer,	 goal	programming	and	MOTAD	approaches.	Although,	 a	

MOTAD	 model	 could	 have	 been	 applied,	 with	 the	 primary	 focus	 on	 profit	

maximisation	and	some	consideration	to	risk,	 the	MIWGP	model	serves	the	same	

purpose	 as	 a	 typical	MOTAD	model	 in	which	 the	mean	 absolute	 deviation	 is	 set	

																																																								
18	 The	 crops/activities	 are:	 winter	 and	 spring	 wheat	 (Triticum	 aestivum	 L.),	 winter	 and	 spring	
barley	 (Hordeum	 vulgare	 L.),	 winter	 and	 spring	 beans	 (Vicia	 faba	 L.),	 ware	 potatoes	 (Solanum	
tuberosum	L.),	winter	oilseed	rape	(Brassica	napus	L.)	and	sugar	beet	(Beta	vulgaris	L.).	
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high,	hence	fit	for	purpose.	The	model	was	programmed	using	the	R	programming	

language	(R	Core	Team,	2015).	

The	MIWGP	model	can	be	expressed	mathematically	as	shown	by	Eq.	(4-2)	

subject	 to	 Eq.	 	 (4-3)	 and	 (4-4)	 and	 a	 set	 of	 constraints	 under	 Section	 4.2.3.	 The	

algebraic	 expressions	 shown	 by	 Eq.	 (4-2)	 to	 (4-6)	 were	 adapted	 versions	 of	

expressions	 used	 by	 Annetts	 and	 Audsley	 (2002),	 Rounsevell	 et	 al.	 (2003)	 and	

Cooke	et	al.	(2013).	

	(4-2)	

Subject	to:		

Goal	1:	Profit	maximisation		

	(4-3)	

	

Where	!i	is	the	expected	gross	margin	for	the	ith	crop,	ai	is	the	area	of	crop	i	and	it	

is	equal	to	sum	of	the	area	of	 first	or	 last	operation	carried	on	a	crop	 i,	Cijk	 is	 the	

cost	 of	 the	 jth	 operation	 on	 the	 ith	 crop	 in	 period	 k	 and	 yijk	 is	 the	 area	 of	 jth	

operation	 on	 the	 ith	 crop	 in	 period	 k.	 Cm	 is	 the	 cost	 of	 machinery	 and	 labour	

required	to	perform	field	operations	and	nm	is	the	number	of	machines	of	types	m	

required	to	perform	the	field	operations.		

Goal	2:	Risk	minimisation	

(4-4)	

	

Where	σi	is	the	standard	deviation	in	income	for	the	ith	crop.		

 Model	constraints		

4.2.3.1 Resource	constraints	

This	 constraint	 ensures	 that	 the	 amount	 of	 a	 resource	 needed	 to	 carry	 out	 an	

operation	on	 a	 crop	does	not	 exceed	 the	 amount	 of	 the	 resource	 available.	 Thus	

this	constraint	ensures	efficiency	in	resource	use.	The	resource	type	considered	is		

		Minimise	i = 	k(F(< + loFoa	
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the	number	of	workable	hours	available	in	a	period	and	it	is	determined	using	the	

farm’s	soil	type	and	rainfall.			

(4-5)	

	

Where,	s#5)6	 is	 the	work	rate	of	operation	 j	 carried	on	crop	 i	using	a	machine	of	

type	m	in	period	k	and		'#5) 	area	of	operation	j	carried	on	a	crop	i	period	k.	t6)u 	is	

the	 amount	 of	 resource	 (workable	 hours)	 available	 in	 period	 k	 to	 carry	 out	 an	

operation	with	workability	 type	w	 using	machine	 type	m	 and	76	 the	 number	 of	

machine	type	m	calculated	by	the	model.	

4.2.3.2 Sequential	and	non-sequential	operation	constraints	

The	 sequential	 operation	 constraint	 ensures	 that	 an	 operation	 is	 not	 performed	

before	its	preceding	operation	and	that	the	area	of	the	successor	operation	cannot	

exceed	the	area	of	the	preceding	operation.	For	example,	before	a	crop	is	harvested	

it	has	 to	be	planted	or	sown	 first	and	 the	area	harvested	cannot	exceed	 the	area	

planted.	The	constraint	can	be	expressed	as	follows:		

	 	 (4-6)	

	

Where,	K	belongs	to	a	set	of	periods	in	which	an	operation	can	be	carried	out	on	a	

crop.	Under	Eq.	(4-6),	yijk	is	the	area	of	successor	operation	j	carried	on	the	ith	crop	

in	period	k,	yi(j-1)k	 is	 the	area	of	the	preceding	operation	 j-1	carried	out	on	the	 ith	

crop	 in	 period	 k.	 For	 non-sequential	 operations,	 total	 area	 of	 each	 operation	 is	

equal	to	the	total	crop	area.	

4.2.3.3 Winter	wheat—spring	crop	sequence	constraint	

To	 achieve	 the	 aim	 of	 this	 chapter,	 this	 new	 constraint	 was	 imposed.	 	 The	

constraint	 was	 enforced	 to	 ensure	 either	 a	 mandatory	 winter	 wheat—spring	

barley	 or	 winter	 wheat—spring	 beans	 sequences.	 Supposing	 the	 area	 of	 winter	

wheat	=	a1,	area	of	spring	barley	=	a2	and	area	of	spring	beans	=	a3,	the	new	winter	

wheat—spring	crop	sequence	constraints	can	be	stated	as	shown	below	(Eq.	(4-7))	

and	 under	 a	 scenario	 of	 ensuring	 winter	 wheat—spring	 beans	 sequence,	 a2	 is	
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replaced	with	a3.	For	example,	when	the	model	 is	run	under	a	scenario	of	winter	

wheat—spring	 barley	 rotation,	 the	 winter	 wheat—spring	 beans	 sequence	 or	

rotation	 constraint	 is	 not	 enforced	 and	 vice	 versa).	 This	 means	 that	 the	 winter	

wheat—spring	barley	and	winter	wheat—spring	beans	sequence	constraints	were	

not	enforced	simultaneously.		

(4-7)	

	

4.2.3.4 Total	cropping	area	constraint	

The	total	cropping	area	constraint	ensures	the	sum	of	areas	of	all	crops	is	equal	to	

the	total	area	cropped.		The	total	area	can	be	considered	as	land	use	constraint	in	

the	sense	that	it	ensures	that	the	area	of	land	occupied	by	a	crop	or	between	crops	

at	 any	 time	 must	 be	 no	 more	 than	 the	 area	 of	 land	 available	 for	 crops.	 The	

constraint	can	be	expressed	as:		

(4-8)	

	

 Modelling	sub-optimal	operations	and	rotations	

In	 arable	 farming,	 the	 timing	 of	 farm	 operations	 such	 as	 ploughing,	 planting,	

spraying	and	harvesting	are	crucial	in	weed	management.	To	incorporate	efficient	

timing	of	farm	operation	in	the	MIWGP	model,	the	farming	season	was	divided	into	

26	two-week	periods.	Although	in	a	strategic	farm	planning	this	fine	detail	may	not	

be	 considered	 or	 needed,	 the	 two-week	 periods	 make	 it	 possible	 to	 take	 into	

consideration	the	analysis	or	the	inclusion	of	timeliness	penalties	with	respect	to	

optimal	and	sub-optimal	periods	in	which	farm	operations	of	each	crop	are	carried	

out.	 Also,	 it	 has	 to	 be	 noted	 that	 the	 time	 horizon	 considered	 is	 assumed	 to	 be	

infinity	with	the	length	of	the	crop	cycle	dependent	on	the	model	solution	(number	

of	 crops	 selected	 by	 the	 model).	 Sub-optimal	 operations	 and	 rotations	 can	

encourage	 black-grass	 emergence	 or	 infestation	 as	 well	 as	 result	 in	 crop	 yield	

reductions.	To	capture	 this	 in	 the	model,	penalties	were	 imposed	on	sub-optimal	

operations	 (mainly	 planting	 and	 harvesting)	 and	 rotations	 (e.g.	 wheat-barley	

sequence).	 To	 take	 into	 consideration	 the	 influence	 of	 variation	 in	 weather	 on	

&"#
#

= Total	cropping	area		

"( − "o ≤ 0		
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workable	 hours,	 which	 in	 turn	 influence	 the	 periods	 in	 which	 operations	 are	

carried	 out	 and	 the	 possibility	 of	 operation	 being	 carried	 out	 in	 a	 sub-optimal	

period,	 the	model	was	 run	 for	 each	 of	 the	 farms	 selected	 using	 their	 respective	

annual	 rainfall	 figures.	 Thus	 depending	 on	 the	 annual	 rainfall	 value	 at	 which	

maximisation	model	 is	 run,	 it	 is	possible	some	of	 the	periods	 in	which	operation	

are	carried	out	could	be	sub-optimal.	The	yield	penalty	(yield	loss)	with	respect	to	

sub-optimal	operations	could	range	from	zero	to	over	20%	whereas	the	yield	loss	

with	 respect	 to	 sub-optimal	 rotation	 could	 range	 from	 zero	 to	 100%	 (forbidden	

crop	 sequence).	 For	 example,	 the	 optimum	 time	 for	 sowing	 winter	 wheat	 is	

between	 late	 September	 and	 early	 October	 however,	 if	 sown	 in	 early	 or	 late	

December	 could	 attract	 a	 yield	 penalty	 of	 about	 15%	 whereas	 spring	 barley	

following	 winter	 wheat	 could	 attract	 a	 penalty	 of	 about	 11%.	 For	 sub-optimal	

operations,	the	yield	penalties	were	expressed	as	cost	per	hectare	(yield	penalty	×	

crop	 yield	 ×	 crop	 price)	 and	 added	 to	 the	 cost	 of	 operation	 in	 the	 respective	

periods	in	the	objective	function.		

 Model	validation	

The	model	described	above	was	validated	using	prediction	validation	(McCarl	and	

Spreen,	1997)	and	2009-2013	Farm	Business	Survey	(FBS)	data	 for	281	 lowland	

arable	 farms	 in	 England	 and	 Wales	 with	 crop	 yields,	 farm	 area,	 soil	 types	 and	

rainfall	as	data	inputs.	The	soil	type	was	used	to	determine	the	fertiliser	amounts	

for	each	crop,	and	both	 the	annual	 rainfall	and	soil	data	were	used	 to	determine	

the	 workable	 hours	 using	 land	 indicator	 type	 function	 under	 Section	 3.4.5	 in	

Chapter	3.	After	model	runs,	aggregate	level	comparison	of	model	results	(e.g.	crop	

areas,	 fertiliser	 amounts	 and	 farm	 revenues/costs)	 and	 observed	 FBS	 data	 was	

carried	out	using	statistical	measures	of	association	(see	examples	in	Gaiser	et	al.	

(2010);	Pulvento	et	al.	(2013)	and	Gueymard	(2014)).	The	nine	crops	and	set-aside	

(including	the	crops	used	in	this	study)	originally	used	to	develop	the	model	were	

compared	 to	 observed	 data	 (see	 Chapter	 3	 for	 more	 information	 on	 model	

validation).	The	results	of	 the	aggregate-level	comparison	are	presented	 in	Table	

4-1.	Measures	of	association	such	as	the	root	mean	square	error	(RMSE)	and	mean	

absolute	 error	 (MAE)	 showed	 some	 level	 of	 bias	 in	 the	 model	 predictions.	

However,	under	 the	comparison	of	 crop	areas	 (and	 fertiliser	amounts)	estimates	
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such	 as	 the	 Pearson	 correlation	 (r),	 Spearman	 correlation	 (ρ),	 coefficient	 of	

determination	 (R2)	 showed	positive	 association.	Nash-Sutcliffe’s	model	 efficiency	

(NSE),	Willmott’s	 index	of	agreement	(WIA)	and	Legates’s	coefficient	of	efficiency	

(LCE)	showed	positive	association	between	model	generated	results	and	observed	

data.	 Also,	 the	 results	 of	 the	 t-test	 on	 the	 intercept	 and	 slope	 of	 regressing	 the	

observed	data	on	predicted	results	showed	that	the	intercept	and	slope	were	not	

different	 from	zero	and	one	 respectively.	The	Coefficient	of	 residual	mass	 (CRM)	

showed	some	under-prediction	by	the	model.	Comparatively	the	model	predicted	

crop	areas	and	fertiliser	amounts	better	than	farm	revenues/costs	and	this	may	be	

due	to	the	variability	in	labour	and	fixed	cost	which	may	be	due	to	factors	that	may	

not	 have	 been	 explicitly	 captured.	 On	 individual	 crop	 basis,	 based	 on	 Pearson	

correlation	 coefficient	 estimates,	 relatively	 better	 positive	 relationships	 were	

observed	 between	model	 predicted	winter	wheat	 and	winter	 oilseed	 rape	 areas	

compared	to	that	of	spring	barley	and	spring	beans.	Thus	at	the	aggregate	level,	the	

model	predicts	crop	areas	better	than	at	the	individual	crop	level.	

Table	 4-1:	Model	 validation	 results	 of	 the	 comparison	 between	 predicted	 and	 observed	

crop	areas,	fertiliser	amounts	and	farm	revenues/costs.		

Measures	of	Association	 Measures	of	Association	Estimates	
Crop	areas	 Fertiliser	amounts	 Farm	revenues/costs	

r	 0.91***	 0.99***	 0.64	
ρ	 0.67**	 1.00	 0.54	
R2	 0.83	 0.98	 0.41	
MAE	 0.42	 0.09	 0.59	
RMSE	 0.53	 0.12	 0.83	
NSE	 0.80	 0.96	 0.26	
WIA	 0.95	 0.99	 0.69	
LCE	 0.47	 0.82	 0.09	
CRM	 0.07	 0.07	 0.37	
Intercept	 				0.02	(0.99)		

{0.34}	
								-1.73	(0.09)	

{0.93}	
											138.24	
(0.81){0.44}		

Slope	 0.85	(-1.08)	{0.30}	 1.09	(0.85){0.44}	 0.99	(-0.03){0.98}	

***	Significant	at	1%;	**	Significant	at	5%;	For	LCE	the	values	are	normally	low	compared	to	NSE	and	WIA	due	

to	the	higher	magnitude	of	the	denominator.	For	the	t-test	on	the	intercept	and	slope	the	values	in	parentheses	

are	 the	 t-estimates	 and	 the	 values	 curly	 brackets	 are	 the	 p-values.	 Farm	 revenues/costs	 consist	 of	 gross	

margin	profit,	seed,	fertiliser,	fuel,	labour	and	fixed	costs.	Fertiliser	types	are	N,	P,	K	and	NPK.	
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 Economic	evaluation	components	

The	 economic	 evaluation	 was	 based	 on	 gross	 margin	 estimates,	 which	 were	

defined	 as	 output	 plus	 subsidy	 less	 fertiliser,	 seed,	 black-grass	 herbicide	 and	

sundry	costs.		The	output	estimates	were	based	on	crop	yields	and	prices	whereas	

the	subsidy	was	based	on	Single	Farm	Payments	values	and	the	sundry	costs	were	

obtained	from	Nix	(2014).	The	descriptive	statistics	of	the	yield	and	price	data	are	

presented	in	Table	4-7	in	the	Chapter	Appendix.	The	fertiliser	cost	estimates	were	

based	on	recommended	amounts	in	Defra	(2010)	and	were	determined	through	a	

sub-model,	 which	 uses	 soil	 type	 to	 select	 fertiliser	 amount	 for	 crops.	 The	 seed	

amounts	were	based	of	seed	rates	obtained	from	Toosey	(1988).	The	black-grass	

control	costs	for	each	of	the	crops	were	chemical	costs	only	(shown	in	Table	4-2)	

estimated	 using	 2015	 prices	 (Dr	 Helen	 Hicks19	 pers.	 comm.).	 The	 costs	 were	

average	estimates	based	on	all	fields	of	a	typical	240ha	arable	farm	with	a	five-year	

rotation.		

Table	4-2:	Black-grass	chemical	control	cost	(£/ha)	

Crop	 Black-grass	Control	Cost	(£/ha)	

Winter	wheat	 178	

Spring	barley	 84	

Spring	beans	 96	

Winter	oilseed	rape	 112	

Source:	Black-Grass	Resistance	Initiative	(BGRI)	Project	(http://bgri.info/)	

	

Farm	 profit	 optimised	 by	 the	 model	 was	 defined	 as	 the	 gross	 margin	 less	

operations	 cost	 and	 cost	 of	 machinery	 and	 labour.	 The	 operations	 costs	 were	

functions	 of	 work	 rates	 for	 machines,	 which	 in	 turn	 were	 functions	 of	 machine	

sizes,	fertiliser	amounts,	seed	rates,	crop	yields	and	soil	type	as	well	as	fuel	price.	

For	 example,	 work	 rate	 for	 spraying	 was	 a	 function	 of	 spraying	 tank	 capacity	

whereas	work	rate	for	combine	harvesting	was	determined	by	crop	yield	and	size	

of	combine	harvester.	The	functions	 for	estimating	the	work	rates	were	obtained	

from	 the	 farmR	model	 (Cooke	 et	 al.,	 2103)	 and	 Chamen	 and	 Audsley	 (1993).	 It	

																																																								
19	 The	 data	 were	 obtained	 from	 a	 farmer	 through	 a	 farm	 survey	 as	 part	 of	 the	 Black-Grass	
Resistance	Initiative	(BGRI)	Project	(http://bgri.info/)	
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should	be	noted	that	the	operations	cost	took	into	consideration	yield	penalties	for	

sub-optimal	operations.	The	fixed	cost	estimates	were	based	on	annual	machinery	

cost	 (consist	of	annual	depreciation	and	repair	cost)	and	annual	 labour	cost	 (see	

Table	 3-16	 in	 Chapter	 3	 Appendix	 for	machine	 types	 selected	 for	 the	 study	 and	

annual	 fixed	cost	estimates).	Due	to	 lack	of	data	on	machine	numbers	for	each	of	

the	 farms	 selected	 and	 used	 for	 the	 study,	 the	 total	 fixed	 cost	 estimate	 for	 each	

farm	was	based	on	 the	 optimal	machine/labour	numbers	 selected	by	 the	model,	

which	in	turn	depended	on	the	optimal	crop	plan	for	the	farm	(also	selected	by	the	

model).	

 Model	data,	calibration	and	model	runs	

To	 be	 able	 to	 estimate	 the	 aggregate	 cost	 of	 controlling	 black-grass	with	 spring	

crops,	crop	yield,	price	and	arable	area	data	as	well	as	soil	type	and	rainfall	of	745	

farms	 in	 the	 2013/14	 Farm	 Business	 Survey	 (FBS)	 were	 used	 as	 model	 inputs.	

That	is	the	data	used	were	2013	FBS	data	for	the	selected	745	based	on	which	the	

model	was	run.	The	farms	consisted	of	farms	at	altitudes	<300m,	300mm—600m	

and	 >600m	with	 arable	 area	 of	 greater	 than	 or	 equal	 to	 40ha	 (minimum	 area	 =	

40ha	 and	maximum	area	=	1931ha).	 	 Based	on	 the	 criteria	 used	 in	 selecting	 the	

farms,	 it	 is	 possible	 that	 this	 sample	 may	 include	 some	 of	 the	 farms	 used	 in	

validating	 the	 model.	 The	 soil	 type20	 data	 were	 based	 on	 dominant	 soil	 types	

obtained	for	FBS	defined	counties	in	which	farms	are	located	whereas	the	rainfall	

data	were	based	on	average	rainfall21	 for	FBS	defined	regions	in	which	farms	are	

located.		

With	 the	 focus	 of	 the	 chapter	 on	 effect	 of	 spring	 cropping	 as	 black-grass	

control	 measure	 on	 farm	 revenue,	 highest	 weight	 (weight	 =	 1)	 was	 put	 on	 the	

profit	 maximisation	 goal.	 Also	 since	 a	 goal-programming	 model	 minimises	 the	

deviation	 from	a	goal	 target,	 the	profit	 goal	 target	was	 set	very	high	 (£800,000).	

This	was	done	based	on	the	assumption	that	arable	farmers	are	profit	maximisers	

but	are	also	 concerned	about	 income	deviation	 (risk)	 levels.	Thus	 the	weight	 for	

the	risk	minimisation	goals	was	set	relatively	very	small	(weight	=	0.1	and	the	risk	

																																																								
20	Soil	data	were	obtained	from	Soilscapes:	http://www.landis.org.uk/soilscapes/	
21	Rainfall	data	obtained	from	Met	Office:	
http://www.metoffice.gov.uk/climate/uk/summaries/datasets	
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target	 was	 set	 at	 £22,000	 with	 possible	 over-achievement	 of	 goal	 target).	 The	

weights	on	both	goals	were	normalised	by	dividing	by	their	respective	targets.	The	

model	was	set	up	again	to	use	the	crop	yields	and	prices,	farm	area,	soil	type	and	

rainfall	as	model	inputs.		

The	crop	yields	and	prices	for	each	farm	were	used	to	estimate	farm	outputs,	

out	of	which	the	gross	margins	for	each	of	the	farms	were	estimated.	It	should	be	

noted	 that	 the	data	 for	 each	 farm	were	 the	2013	FBS	data	 and	 thus	not	 average	

estimates.	 For	 example,	 the	 yield	 values	 used	 in	 estimating	 the	 gross	margin	 for	

farms	were	actual	yield	data	for	farm	for	the	year	2013.	The	Table	4-7	shows	the	

descriptive	 statistics	 of	 the	 individual	 farm	 data	 used	 as	 model	 inputs.	 The	 soil	

types	and	rainfall	figures	for	each	farm	were	used	to	estimate	the	workable	hours	

in	each	of	the	26	two-week	period	using	the	land	indicator	type	function	in	Tillett	

and	 Audsley	 (1987)	 (see	 Section	 3.4.5).	 Also,	 the	 soil	 types	 determined	 the	

fertiliser	 amount	of	 each	 crop	and	 thus	 linked	 to	 the	estimation	of	 fertiliser	 cost	

and	hence	variable	costs	for	each	crop.		

To	 take	 into	consideration	 the	 impact	of	black-grass	on	winter	wheat	yield,	

yield	losses	under	for	different	black-grass	infestation	levels	were	considered	(see	

Table	4-3).	The	yield	loss	estimates	were	averages	across	10	fields	based	2014	and	

2015	winter	wheat	harvests	based	on	a	black-grass	survey	carried	out	on	farms	in	

England22	(Dr	Helen	Hicks,	pers.	comm.).	For	each	field,	yield	maps	were	overlaid	

with	20m×20m	weed	survey	grid	to	relate	wheat	yield	to	weed	density.	For	each	

field,	 mean	 yield	 across	 grid	 squares	 in	 each	 density	 state	 was	 estimated.	 	 To	

control	 for	 variation	 in	 yield	between	 fields,	 the	maximum	mean	yield	 loss	 from	

the	 five	density	states	was	selected	as	100%,	and	percentage	yield	calculated	 for	

each	density	state	relative	to	this.	The	data	on	yield	loss	shown	in	Table	4-3	were	

adopted	due	to	inability	to	obtain	a	UK	level	data.	

	

	

	
																																																								
22	 The	 10	 fields	 were	 from	 farms	 in	 four	 counties	 in	 England:	 Northamptonshire,	 Oxfordshire,	
Warwickshire	and	Yorkshire.	
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Table	 4-3:	 Yield	 reduction	 of	 winter	 wheat	 at	 different	 four	 levels	 of	 black-grass	

infestation	

Level	of	Infestation	 Black-grass	Density	
(Plants	per	400	(20×20)	m2)	

Reduction	in		
Winter	Wheat	Yield	(%)	

No/low		 1-160	 0	
Medium		 161-450	 3	
High		 451-1450	 12	
Very	high	 >1450	 24	

Source:	BGRI	Project	(http://bgri.info/)	

	

The	model	was	 then	run	 for	each	of	 the	745	 farms	to	generate	crop	plans	

similar	 to	Option	1,	without	enforcing	constraint	under	Eq.	 (4-8).	The	model	 run	

was	done	under	 all	 levels	 of	 black-grass	 infestation	 (one	 level	 of	 infestation	 at	 a	

time)	 to	 take	 into	 consideration	 reductions	 in	winter	wheat	 yields	 due	 to	 black-

grass.	This	means	that	to	generate	result	for	Option1,	the	model	was	run	without	

imposing	mandatory	winter	wheat—spring	barley	or	winter	wheat—spring	beans	

rotation	 (sequence)	 constraints.	 The	model	was	 run	 again	 for	 each	 farm	by	 first	

imposing	 only	 the	 mandatory	 winter	 wheat—spring	 barley	 sequence	 constraint	

(Option	2).	The	process	was	repeated	by	imposing	only	the	winter	wheat—spring	

beans	 constraint	 (also	 Option	 2)	 without	 imposing	 the	 winter	 wheat—spring	

barley	sequence	constraint.		

 Aggregation	of	model	results	

To	 the	 achieve	 the	 aim	 of	 aggregating	 the	 cost	 of	 adopting	 spring	 cropping	 as	 a	

black-grass	 control	 strategy	 in	 the	 UK,	 the	 model	 generated	 results	 were	

aggregated	 across	 farms.	 It	 is	 acknowledged	 that	 they	may	 be	 biases	 associated	

with	aggregation	with	respect	to	linear	programming	approaches	and	also	due	to	

variability	 is	 farm	 classes	 (see	 for	 example	Buckwell	 and	Hazell,	 1972;	Önal	 and	

McCarl,	1989).	However,	the	current	approach	gives	an	indication	of	the	impact	of	

spring	cropping	as	a	black-grass	control	strategy	on	farm	revenue	in	the	UK	arable	

farming	 sector.	 Although	 running	 the	model	 for	 each	 farm	using	 the	 farm’s	 own	

data	and	aggregating	results	post	optimally	and	weighting	the	aggregate	estimates	

to	 bring	 them	 as	 close	 as	 possible	 to	 UK	 national	 level	 (as	 is	 the	 case	 in	 this	

chapter)	could	to	reduce	aggregation	bias,	it	is	also	acknowledged	that	the	choice	
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of	the	four	crops	may	affect	the	accuracy	of	aggregated	estimates.	Notwithstanding,	

in	 the	context	of	 the	 four	crops,	which	are	essentially	 the	crops	grown	 in	 the	UK	

and	 used	 as	 part	 of	 rotational	 management,	 the	 aggregate	 estimates	 give	 an	

indication	of	 the	potential	effect	of	spring	cropping	as	a	black-grass	management	

tool	on	farm	revenue	at	the	national	level.		

To	estimate	the	aggregate	cost/benefit,	the	differences	in	optimum	profits	for	

Options	1	and	2	were	estimated	and	aggregated	as	either	the	cost	(loss	of	profit)	or	

benefit	 (increase	 in	 profit)	 of	 black-grass	 control	 with	 either	 spring	 barley	 or	

spring	beans.	For	example,	 to	estimate	 the	aggregate	cost	with	 respect	 to	winter	

wheat-spring	barley	rotation	under	a	level	of	infestation,	the	differences	between	

Option	 1	 and	 Option	 2	 were	 estimated	 for	 each	 farm	 after	 which	 they	 were	

summed	 (aggregated)	 across	 farms	 (745	 farms).	 In	 order	 to	 reduce	 possible	

aggregation	bias	and	bring	the	aggregate	cost	estimate	as	close	as	possible	to	the	

UK	 level,	 each	 farm	 estimate	was	weighted	 using	 the	 sample	weight	 assigned	 to	

each	farm	in	the	FBS.	For	each	spring	cropping	sequence	and	under	each	level	of	

infestation,	 the	 aggregate	 cost	 can	 be	 estimated	 as	 shown	 in	 Eq.	 (4-9)	 (see	

illustration	 of	 calculation	 in	 Box	 4-1	 under	 Chapter	 Appendix),	 where	OP1z	 and	

OP2z	are	the	profits	generated	by	the	ith	farm	for	choosing	Option	1	and	Option	2	

crop	plans	respectively,	wtz	is	sampling	weight	assigned	to	the	ith	farm	in	the	FBS	

data	and	F	 is	 the	number	of	 farms.	Also,	other	model	estimates	presented	under	

Section	4.3	were	weighted.	

(4-9)	
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Although	the	model	was	run	for	four	levels	of	black-grass	infestations,	the	results	

presented	 here	 focus	 primarily	 on	 zero/low	 and	 very	 high	 levels	 of	 black-grass	

infestations.	Descriptive	statistics	of	model	estimates	under	the	different	levels	of	

infestation	and	under	Options	1	and	2	are	shown	in	Table	4-8	to	Table	4-10	in	the	

chapter	Appendix.	

 The	cost	of	black-grass	control	with	spring	barley	

Table	4-4	shows	the	aggregate	cost	estimates	of	controlling	black-grass	with	spring	

barley.	 	Our	headline	 estimates	 are	 that	 controlling	black-grass	with	 a	 crop	plan	

(based	 on	 the	 selected	 four	 crops)	 including	 a	mandatory	winter	wheat—spring	

barley	 rotation	 under	 a	 scenario	 of	 low	 black-grass	 infestation	 could	 cost	 UK	

arable	 farming	 about	£286	million	whereas	under	 a	 scenario	of	 very	high	black-

grass	 infestation,	 adoption	 of	 winter	 wheat—spring	 barley	 rotation	 as	 a	 black-

grass	 control	 strategy	 could	 cost	 UK	 arable	 farming	 about	 £35	 million.	 	 These	

equate	 to	 per	 hectare	 costs	 of	 approximately	 £82/ha	 and	 £10/ha	 respectively.		

Implementing	 a	 winter	 wheat—spring	 barley	 rotation	 after	 a	 low	 black-grass	

infestation	 reduced	 profit	 by	 25.30%	 (from	 £1,129,791,000	 to	 £843,920,000	

(£326/ha	to	£243/ha))	and	under	very	high	 infestation,	profit	reduced	by	7.49%	

(from	£461,931,000	to	£427,349,000	(£116/ha	to	£107/ha))	(see	Table	4-4).		

The	MOTAD	 estimated	 risk	 also	 reduced	 by	 5.17%	 (from	 £687,162,000	 to	

£685,583,000	 (£225/ha	 to	 £213/ha)	 whereas	 under	 very	 high	 infestation	 risk	

reduced	 by	 0.23%	 (from	 £687,162,000	 to	 £685,583,000	 (£198/ha	 to	 £197/ha).	

The	 reduction	 was	 mainly	 due	 to	 lower	 income	 deviation	 estimates	 associated	

with	 spring	 barley	 as	well	 as	winter	OSR,	which	was	 selected	 in	 addition	 to	 the	

winter	wheat—spring	barley	rotation.	The	results	also	show	that	controlling	black-

grass	with	spring	cropping	could	reduce	 farm	risk.	However,	under	a	scenario	of	

very	 high	 infestation	 the	 reduction	may	be	 negligible	 due	 to	 the	 fact	 that	 spring	

cropping	did	not	 result	 in	 a	bigger	 reduction	 in	profit.	The	 lower	 levels	of	profit	

observed	were	mainly	due	to	yield	reductions	in	winter	wheat	yield	due	to	black-

grass	infestation.	
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In	terms	of	costs,	all	variable	cost	components	reduced.	For	example,	under	

low	black-grass	infestation,	N	fertiliser	and	black-grass	chemical	(herbicide)	costs	

reduced	 by	 9.63%	 (from	 £651,062,000	 to	 £588,350,000	 (£188/ha	 to	 £170/ha))	

and	 15.63%	 (from	 £614,135,000	 to	 £518,173,000	 (£177/ha	 to	 £149/ha))	

respectively.	Under	very	high	infestation,	N	fertiliser	and	black-grass	control	costs	

reduced	 by	 3.73%	 (from	 £584,409,000	 to	 £562,588,000	 (£169/ha	 to	 £162/ha))	

whereas	 black-grass	 control	 (herbicide)	 cost	 reduced	 by	 6.45%	 (from	

£509,732,000	 to	 £479,853,000	 (£147/ha	 to	 £138/ha)).	 The	 reduction	 in	 N	

fertiliser	 and	 herbicide	 costs	was	 due	 to	 lower	N	 fertiliser	 and	 chemical	 control	

cost	 associated	 with	 spring	 barley.	 These	 have	 obvious	 environmental	 benefits.		

The	 relatively	 lower	 reduction	 in	 herbicide	 cost	 under	 very	high	 infestation	was	

due	to	the	fact	that	there	was	not	much	change	in	the	crop	plan	(under	Option	1)	

when	winter	wheat—spring	barley	was	imposed.	Operations	and	fixed	costs	on	the	

other	hand	increased	by	7.10%	(from	£1,160,147,000	to	£1,242,547,000	(£335/ha	

to	£358/ha))	and	1.79%	(£1,538,744,000	to	£1,566,280,000	(£444/ha	to	£452/ha)	

respectively	 under	 low	 infestation.	 Under	 very	 high	 infestation,	 operations	 cost	

increased	 by	 2.61%	 (from	 £1,282,282,000	 to	 £1,315,802,000	 (£370/ha	 to	

£380/ha))	 and	 fixed	 cost	 increased	 by	 1.15%	 (from	 £1,554,583,000	 to	

£1,572,475,000	 (£448/ha	 to	 £454/ha))	 respectively.	 The	 increase	 in	 operations	

cost	was	due	to	the	fact	that	with	the	implementation	of	the	winter	wheat—spring	

barley	rotation,	some	land	was	allocated	to	winter	OSR	and	for	some	farms,	spring	

beans.	Both	spring	beans	and	winter	OSR	have	slower	work	rate	with	 respect	 to	

combine	 harvesting	 and	 as	 a	 result	 relatively	 more	 time	 is	 spent	 on	 the	 field	

harvesting,	 leading	 to	 increase	 in	 operations	 cost.	Also	 the	harvesting	periods	of	

winter	wheat	and	spring	barley	overlap,	meaning	that	more	machines/labour	are	

needed	in	order	to	perform	harvesting	within	the	optimal	periods	and	as	a	result	

lead	to	increase	in	fixed	cost.		
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Table	 4-4:	 Aggregate	 revenues/costs	 estimates	 of	 controlling	 black-grass	with	winter	wheat—spring	 barley	 rotation	 under	 four	 levels	 of	 black-grass	

infestations.		

Revenue/Cost	
Components			
(and	Risk)	

Row		
No.	

Explanation	 Weighted	Estimates	
Zero/Low	Infestation	 Medium	Infestation	 High	Infestation	 Very	High	Infestation	

Option_1(a)	
(£‘000)	

Option_2(b)	
(£‘000)	

Option_1(a)		
(£‘000)	

Option_2(b)	
(£‘000)	

Option_1(a)	
(£‘000)	

Option_2(b)	
(£‘000)	

Option_1(a)	
(£‘000)	

Option_2(b)	
(£‘000)	

Output	 R1	 Yield	×	Price	 5,410,305	 4,974,317	 5,278,981	 4,908,165	 4,937,771	 4,723,395	 4,596,412	 4,523,713	
Output	+	Subsidy	 R2	 R1+Subsidy	 6,277,119	 5,841,131	 6,145,780	 5,774,964	 5,804,581	 5,590,198	 5,463,216	 5,390,535	
N	Fertiliser	Cost	 R3	 		 651,062	 588,350	 643,804	 585,884	 619,968	 577,652	 584,409	 562,588	
P	Fertiliser	Cost	 R4	 		 236,200	 225,999	 234,922	 225,544	 230,938	 224,005	 224,733	 221,187	
K	Fertiliser	Cost	 R5	 		 209,882	 199,823	 208,373	 199,163	 204,058	 197,090	 197,011	 193,374	
Seed	Cost	 R6	 		 293,145	 282,980	 291,634	 282,421	 287,412	 280,444	 280,343	 276,850	
Black-grass	
Herbicide	Cost	

R7	 		 614,135	 518,173	 602,654	 514,487	 566,123	 501,283	 509,732	 476,853	

Sundry	Cost	 R8	 		 443,991	 373,064	 435,727	 370,513	 409,054	 361,238	 368,202	 344,002	
Variable	Cost	 R9	 R3+R4+R5+

R6+R7+R8	
2,448,415	 2,188,387	 2,417,111	 2,178,011	 2,317,552	 2,141,711	 2,164,430	 2,074,855	

Gross	Margin	 R10	 R2-R9	 3,828,704	 3,652,746	 3,728,670	 3,596,952	 3,487,029	 3,448,487	 3,298,786	 3,315,681	
Cost	of	Farm	
Operations	

R11	 		 1,160,147	 1,242,547	 1,173,065	 1,249,123	 1,212,628	 1,272,019	 1,282,282	 1,315,802	

Gross	Profit		 R12	 R10-R11	 2,668,534	 2,410,199	 2,555,636	 2,347,882	 2,274,380	 2,176,486	 2,016,515	 1,999,824	
Fixed	Cost	 R13	 		 1,538,744	 1,566,280	 1,533,824	 1,565,004	 1,535,590	 1,565,123	 1,554,583	 1,572,475	
Profit	 R14	 R12-R13	 1,129,791	 843,920	

(-285,870)	
1,021,814	 782,878	

(-238,936)	
738,790	 611,364	

(-127,426)	
461,931	 427,349	

(-34,583)	
MOTAD	Risk	 R15	 Deviation	in	

income	
780,359	 740,026	 764,178	 731,499	 723,165	 708,088	 687,162	 685,583	

Note:	The	values	in	parentheses	are	the	differences	in	profits	(b-a).	Option	1	represents	a	crop	plan	in	which	the	farmer	can	allocate	a	bigger	proportion	of	farm	land	to	any	of	the	four	crops	

(winter	wheat,	spring	barley,	spring	beans	and	winter	oilseed	rape)	whereas	Option	2	represents	a	crop	plan	with	mandatory	winter	wheat—spring	barley	rotation.	
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 The	cost	of	black-grass	control	with	spring	beans	

Table	4-5	shows	the	aggregate	cost	estimates	of	controlling	black-grass	with	
spring	 beans.	 	 Our	 headline	 estimates	 (based	 on	 the	 selected	 four	 crops)	 in	 this	
instance	are	that	adopting	a	winter	wheat—spring	beans	rotation	as	a	black-grass	
control	 measure	 under	 a	 scenario	 of	 low	 black-grass	 infestation	 could	 cost	 UK	
arable	 farming	 about	 £650	million	 (£187/ha)	whereas	 under	 a	 scenario	 of	 very	
high	 infestation,	 the	 strategy	 could	 cost	 UK	 arable	 farming	 about	 £87	 million	
(£25/ha).	These	results	show	that	it	will	cost	UK	arable	farming	more	by	adopting	
winter	wheat—spring	beans	rotation	than	adopting	winter	wheat—spring	barley	
rotation	however	under	a	scenario	of	very	high	infestation,	winter	wheat—spring	
beans	 rotation	 could	 result	 in	 lower	 profit	 loss	 than	 under	 low	 black-grass	
infestation.	 Implementing	 winter	 wheat—spring	 beans	 rotation	 resulted	 in	
57.51%	 reduction	 in	 profit	 (from	 £1,129,791,000	 to	 £480,078,000	 (£326/ha	 to	
£138/ha))	 under	 low	 black-grass	 infestation	 (see	 Table	 5).	 Under	 very	 high	
infestation,	 profit	 reduced	 by	 18.94%	 (from	 £461,931,000	 to	 £374,462,000	
(£133/ha	to	£108/ha)).	

Under	a	scenario	of	 low	black-grass	 infestation,	MOTAD	estimated	risk	also	
reduced	 by	 6.81%	 (from	 £780,359,000	 to	 £727,217,000	 (£225/ha	 to	 £210/ha))	
but	 increased	 by	 2.92%	 (from	 £687,162,000	 to	 £707,201,000	 (£198/ha	 to	
£204/ha))	 under	 very	 high	 infestation.	 The	 increase	 in	 risk	 under	 very	 high	
infestation	 was	 due	 to	 the	 crop	 combinations	 selected	 by	 the	 model	 after	 the	
winter	wheat—spring	 beans	 rotation	 constraint	was	 imposed.	 The	 gross	margin	
estimate	 associated	 with	 spring	 beans	 was	 relatively	 lower	 than	 that	 of	 spring	
barley	 and	 as	 a	 result,	 with	 imposition	 of	 winter	 wheat-spring	 beans	 sequence,	
more	 land	was	allocated	to	spring	barley	which	 is	associated	with	relatively	high	
risk	and	hence	the	increase	in	the	MOTAD	risk.	

In	terms	of	costs,	variable	cost	components	reduced.	For	example,	under	low	
infestation,	 N	 fertiliser	 cost	 reduced	 by	 25.61%	 (from	 £651,062,000	 to	
£484,341,000	(£188/ha	to	£140/ha))	whereas	black-grass	herbicide	cost	reduced	
by	 32.02%	 (from	 £614,135,000	 to	 £417,504,000	 (£177/ha	 to	 £120/ha)).	 Under	
very	 high	 infestation,	 N	 fertiliser	 reduced	 by	 15.29%	 (from	 £584,409,000	 to	
£495,054,000	(£169/ha	to	£143/ha)	and	chemical	control	cost	reduced	by	21.42%	
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(from	 £509,732,000	 to	 £400,534,000	 (£147/ha	 to	 £116/ha)).	 Again,	 these	 have	
obvious	 environmental	 benefits.	 	 The	 bigger	 reduction	 in	 N	 fertiliser	 and	 black-
grass	 herbicide	 costs	 can	 be	 attributed	 to	 the	 fact	 that	 spring	 beans	 has	 no	 N	
fertiliser	 requirement	 and	 also	 the	 other	 crops	 (spring	 barley	 and	 winter	 OSR)	
selected	 in	 addition	 to	 the	 winter	 wheat—spring	 beans	 rotation	 have	 lower	 N	
fertiliser	requirements	and	black-grass	chemical	cost	than	winter	wheat,	hence	the	
reduction.	Again,	the	relatively	 lower	reduction	in	herbicide	cost	under	very	high	
infestation	was	due	 to	 the	 fact	 that	 there	was	not	much	 change	 in	 the	 crop	plan	
(under	 Option	 1)	 when	 winter	 wheat—spring	 beans	 was	 imposed.	 Farm	
operations	 and	 fixed	 costs	 increased	 by	 25.16%	 (from	 £1,160,147,000	 to	
£1,452,088,000	 (£335/ha	 to	 £419/ha))	 and	 5.55%	 (from	 £1,538,744,000	 to	
£1,624,074,000	(£444/ha	to	£468/ha))	respectively	under	 low	infestation.	Under	
very	high	 infestation,	operations	cost	 increased	by	14.01%	(from	£1,282,282,000	
to	£1,461,879,000	(£370/ha	to	£422/ha))	and	fixed	cost	increased	by	6.38%	(from	
£1,554,583,000	 to	 £1,653,802,000	 (£448/ha	 to	 £477/ha)).	 Comparatively,	 the	
bigger	increases	in	operations	and	fixed	costs	(than	under	spring	barley)	were	due	
to	the	selection	of	some	amount	of	winter	OSR	in	addition	to	the	winter	wheat—
spring	beans	rotation.	 In	 terms	of	harvesting	work	rate,	spring	beans	and	winter	
OSR	have	slower	work	rate,	leading	to	higher	operations	costs.	Also,	the	harvesting	
periods	 of	 winter	 wheat,	 spring	 beans	 and	 spring	 barley	 overlap	 meaning	 that	
more	machines/labour	 are	 needed	 to	 perform	 the	 operations,	 leading	 to	 higher	
fixed	cost	and	hence	bigger	reduction	in	profit.		
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Table	 4-5:	 	 Aggregate	 revenues/costs	 estimates	 of	 controlling	 black-grass	 with	 winter	 wheat—spring	 beans	 rotation	 under	 four	 levels	 of	 black-grass	

infestations.		

Revenue/Cost	
Components			
(and	Risk)	

Row		
No.	

Explanation	 Weighted	Estimates	

Zero/Low	Infestation	 Medium	Infestation	 High	Infestation	 Very	High	Infestation	

Option_1(a)	
(£‘000)	

Option_2(b)	
(£‘000)	

Option_1(a)		
(£‘000)	

Option_2(b)	
(£‘000)	

Option_1(a)	
(£‘000)	

Option_2(b)	
(£‘000)	

Option_1(a)	
(£‘000)	

Option_2(b)	
(£‘000)	

Output	 R1	 Yield	×	Price	 5,410,305	 4,565,631	 5,278,981	 4,545,237	 4,937,771	 4,507,318	 4,596,412	 4,472,760	
Output	+	Subsidy	 R2	 R1+Subsidy	 6,277,119	 5,432,456	 6,145,780	 5,412,049	 5,804,581	 5,374,117	 5,463,216	 5,339,571	
N	Fertiliser	Cost	 R3	 		 651,062	 484,341	 643,804	 485,963	 619,968	 490,508	 584,409	 495,054	

P	Fertiliser	Cost	 R4	 		 236,200	 212,246	 234,922	 212,164	 230,938	 211,870	 224,733	 211,600	
K	Fertiliser	Cost	 R5	 		 209,882	 181,441	 208,373	 181,445	 204,058	 181,543	 197,011	 181,453	

Seed	Cost	 R6	 		 293,145	 279,647	 291,634	 278,542	 287,412	 275,153	 280,343	 271,911	

Black-grass	
Herbicide	Cost	

R7	 		 614,135	 417,504	 602,654	 415,209	 566,123	 407,355	 509,732	 400,534	

Sundry	Cost	 R8	 		 443,991	 300,972	 435,727	 299,347	 409,054	 293,655	 368,202	 288,873	

Variable	Cost	 R9	 R3+R4+R5+R
6+R7+R8	

2,448,415	 1,876,150	 2,417,111	 1,872,668	 2,317,552	 1,860,082	 2,164,430	 1,849,422	

Gross	Margin	 R10	 R2-R9	 3,828,704	 3,556,308	 3,728,670	 3,539,383	 3,487,029	 3,514,036	 3,298,786	 3,490,150	

Cost	of	Farm	
Operations	

R11	 		 1,160,147	 1,452,088	 1,173,065	 1,453,900	 1,212,628	 1,457,446	 1,282,282	 1,461,879	

Gross	Profit		 R12	 R10-R11	 2,668,534	 2,104,146	 2,555,636	 2,085,461	 2,274,380	 2,056,633	 2,016,515	 2,028,264	

Fixed	Cost	 R13	 		 1,538,744	 1,624,074	 1,533,824	 1,624,067	 1,535,590	 1,640,454	 1,554,583	 1,653,802	

Profit	 R14	 R12-R13	 1,129,791	 480,074	
(-649,717)	

1,021,814	 461,396	
(-560,418)	

738,790	 416,179	
(-322,610)	

461,931	 374,462	
(-87,469)	

MOTAD	Risk	 R15	 Deviation	in	
income	

780,359	 727,217	 764,178	 723,510	 723,165	 714,712	 687,162	 707,201	

Note:	The	values	in	parentheses	are	the	differences	in	profits	(b-a).	Option	1	represents	a	crop	plan	in	which	the	farmer	can	allocate	a	bigger	proportion	of	farm	land	to	any	of	the	four	crops	

(winter	wheat,	spring	barley,	spring	beans	and	winter	oilseed	rape)	whereas	Option	2	represents	a	crop	plan	with	mandatory	winter	wheat—spring	beans	rotation.	
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 The	cost/benefit	of	black-grass	control	at	individual	farm	level	

The	aim	of	 this	section	 is	 to	show	the	cost	 (benefit)	of	controlling	black-grass	at	

individual	farm	level.	The	results	of	two	farms	labelled	Farm	1	and	Farm2	are	used	

for	 the	 illustration	 (see	 Table	 4-6).	 The	 results	 show	 that,	 although	 at	 the	

aggregate	level,	using	winter	wheat—spring	crop	rotation	as	a	black-grass	control	

measure	could	cost	the	arable	sector,	at	 the	 individual	 farm	level,	 there	could	be	

either	 reductions	 (costs)	 or	 increase	 (benefits	 or	 gains)	 in	 farm	 revenue	

depending	 on	 the	 location	 of	 the	 farm	 and	 the	 hectares	 of	 land	 available	 to	 the	

farm.	

The	dominant	soil	type	for	Farm	1	is	a	light	soil	whereas	that	of	Farm	2	is	a	

heavy	soil.	 In	 terms	of	 rainfall,	 Farm	1	 is	 located	at	an	area	of	moderate	 rainfall	

and	Farm	2	is	located	at	an	area	of	high	rainfall.	Thus	in	terms	of	workable	hours,	

Farm	 1	 will	 have	 relatively	 more	 time	 available	 to	 perform	 farm	 operations	

whereas	Farm	2	may	be	restricted.	The	area	of	Farm1	is	smaller	than	that	of	Farm	

2	 and	with	 profit	maximisation	 objective,	 Farm	 1	may	 be	 restricted	 in	 terms	 of	

allocating	land	to	all	crops.	This	is	reflected	in	the	cropping	pattern	of	Farms	1	and	

2	 (see	 Table	 4-6).	 Under	 Option	 1	 for	 Farm	 1,	 about	 97%	 (127ha)	 of	 the	 land	

(131ha)	was	allocated	to	winter	wheat,	which	is	the	most	profitable	crop	whereas	

under	 Farm	 2	 (with	 bigger	 farm	 area)	 land	 is	 allocated	 to	 all	 the	 four	 crops	 in	

order	to	maximise	profit,	with	about	45%	(119ha)	of	farm	area	(267ha)	allocated	

to	winter	wheat.	

Under	 Option	 2	 for	 Farm	 1,	 to	 be	 able	 to	 adopt	 a	 winter	 wheat—spring	

barley	 sequence	 as	 black-grass	 control	 measure	 and	 maximise	 profit,	 57ha	 of	

winter	wheat	must	be	cropped	(70ha	or	55%	less	of	127ha)	however,	under	Farm	

2,	104	ha	(15	ha	or	13%	less	of	119	ha)	has	to	be	cropped.	Thus	there	is	no	drastic	

reduction	in	in	the	area	of	winter	wheat,	which	is	the	most	profitable	crop	and	this	

coupled	with	 the	 selection	of	 all	 the	 other	 crops,	 associated	with	 lower	 variable	

costs	 resulted	 in	 the	 increase	 in	 gross	 margin	 (profit)	 instead	 of	 reduction	

observed	under	Farm	1.	
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Table	 4-6:	 Revenues/costs	 estimates	 of	 controlling	 black-grass	 with	 winter	 wheat—

spring	barley	rotation	under	low	level	of	black-grass	infestations	

Revenue/	
Cost	
Components			
(and	Risk)	

Row		
	

Explanation	 Unit	 Farm	1	 Farm	2	
Option	1	 Option	2	 Option	1	 Option	2	

Output	 R1	 Yield	×	Price	 £	 154,957	 138,320	 290,531	 289,899	
Output	+	
Subsidy	

R2	 R1+Subsidy	 £	 182,074	 165,416	 345,800	 345,168	

N	Fertiliser	
Cost	

R3	 		 £	 13,250	 9,610	 37,733	 36,162	

P	Fertiliser	
Cost	

R4	 		 £	 7,784	 7,034	 14,499	 14,329	

K	Fertiliser	
Cost	

R5	 		 £	 7,004	 6,323	 12,627	 12,464	

Seed	Cost	 R6	 		 £	 9,776	 9,633	 18,416	 18,488	
Black-grass	
Herbicide	
Cost	

R7	 		 £	 23,023	 16,570	 34,901	 33,582	

Sundry	Cost	 R8	 		 £	 16,640	 11,747	 25,281	 24,269	
Variable	Cost	 R9	 R3+R4+R5+

R6+R7+R8	
£	 77,476	 60,917	 143,457	 139,295	

Gross	Margin	 R10	 R2-R9	 £	 104,597	 104,499	 202,343	 205,873	
Cost	of	Farm	
Operations	

R11	 		 £	 33,140	 32,560	 82,226	 83,683	

Gross	Profit		 R12	 R10-R11	 £	 71,455	 72,023	 120,109	 122,182	
Fixed	Cost	 R13	 		 £	 31,426	 39,577	 108,151	 109,440	
Profit	 R14	 R12-R13	 £	 40,029	 32,446	

(-7,583)	
11,958	 12,742	

(783)	
MOTAD	Risk	 R15	 Deviation	in	

income	
£	 22,000	 21,759	 45,713	 46,018	

	 	 	 	 	 	 	 	
Cropping		 	 	 ha	 	 	 	 	
Winter	wheat	 	 	 	 127	 57	 119	 104	
Spring	barley	 	 	 	 0	 57	 94	 104	
Spring	beans	 	 	 	 4	 17	 13	 18	
Winter	OSR	 	 	 	 0	 0	 41	 40	
	 	 	 	 	 	 	 	
Farm	Information	 	 	 	 	 	 	
Farm	area	 	 	 ha	 131	 267	
Soil	type	 	 	 	 Light	soil	 Heavy	soil	
Rainfall	 	 	 mm	 769	 1294	

	

Under	Farm	1,	using	winter	wheat—spring	barley	rotation	as	a	black-grass	

control	 reduced	 profit	 by	 £7,583	 (a	 cost)	 whereas	 under	 Farm	 2	 profit	 was	

increased	by	£783	(a	gain	or	benefit)	however,	risk	increased	under	Farm	2.	The	

increase	in	risk	may	be	due	to	the	fact	that	the	estimate	of	risk	is	linked	to	gross	

margin	 estimates	 and	 hence	 increase	 in	 gross	 margin	 is	 likely	 to	 be	 associated	

with	increase	in	risk.	The	increase	in	risk	may	also	imply	that	the	bigger	farm	area	

available	for	a	farmer	to	work	on,	the	more	risk	the	farmer	is	exposed	to.	A	farmer	
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whose	primary	aim	is	to	maximise	profit	with	little	consideration	to	risk	is	likely	

to	 accommodate	 high	 risk	 so	 as	 to	maximise	 profit	 (this	 is	 also	 reflected	 in	 the	

results	presented	in	Chapter	5).	 In	terms	of	herbicide	cost,	 for	Farm1,	 it	reduced	

by	28%	(from	£23,023	to	£16,570)	whereas	under	Farm	2,	it	reduced	by	about	4%	

(from	£34,901	to	£33,582).	This	was	as	a	result	of	the	allocation	of	land	to	all	four	

crops	under	Farm	2	and	hence	contributed	to	the	smaller	reduction	in	black-grass	

control	 cost.	 The	 reductions	 in	 herbicide	 cost	 shows	 the	 possibility	 of	 gains	 in	

terms	of	cost	savings	by	controlling	black-grass	with	spring	cropping	however,	in	

the	 case	 of	 Farm	1,	 the	 reduction	was	 not	 big	 enough	 to	 offset	 the	 reduction	 in	

profit.		

The	above	results	show	that	on	individual	farm	basis,	the	effect	(in	terms	of	

profit	 loss	 or	 gain)	 of	 using	 winter-wheat	 spring	 crops	 rotation	 or	 sequence	 to	

control	 black-grass	 may	 be	 different	 across	 farms	 depending	 on	 the	 farm	

characteristics	 such	 as	 soil	 type,	 rainfall	 and	 total	 area	 of	 land	 or	 cropping	 area	

available	to	the	farm.	

	

 

In	this	chapter,	we	have	used	a	farm	level	mixed-integer	goal	programming	model	

and	 Farm	 Business	 Survey	 data	 for	 745	 farms	 to	 investigate	 the	 aggregate	 cost	

(loss	 of	 profit)	 of	 controlling	 black-grass	 with	 spring	 cropping	 in	 UK	 arable	

farming.	 Results	 showed	 that	 in	 the	 short	 term,	 controlling	 black-grass	 with	 a	

winter	wheat—spring	barley	rotation	under	a	low	black-grass	infestation	scenario	

could	 cost	 UK	 arable	 farming	 about	 £286	million	 (£82/ha)	 whereas	 controlling	

black-grass	 with	 winter	 wheat—spring	 beans	 could	 cost	 UK	 arable	 about	 £650	

million	(£187/ha).		Under	a	scenario	of	very	high	black-grass	infestation,	adopting	

winter	wheat—spring	barley	rotation	as	a	black-grass	control	strategy	could	cost	

UK	arable	farming	about	£35	million	(£10/ha)	whereas	adopting	a	winter	wheat—

spring	 beans	 rotation	 could	 cost	 about	 £87	million	 (£25/ha).	 The	 results	 show	

that	after	a	very	high	black-grass	infestation	on	a	winter	wheat	field,	switching	to	

spring	cropping	could	be	relatively	‘beneficial’	in	the	sense	that	loss	of	profit	due	

to	mandatory	winter	wheat—spring	 crop	 rotation	was	 lower.	Also,	 although	 the	
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overall	effect	showed	as	a	reduction	in	profit,	there	could	be	reductions	in	variable	

costs	and	in	some	cases	reduction	in	farm	risk,	and	on	individual	farm	basis,	there	

could	 be	 gains	 depending	 on	 the	 location	 of	 farm	 and	 the	 land	 available	 to	 the	

farm.	 Again,	 since	 spring	 cropping	 has	 the	 potential	 to	 reduce	 black-grass	

infestation,	it	possible	that	there	can	be	improvements	in	yield	due	to	reductions	

in	 black-grass	 population	 in	 the	 long	 run	 and	 that	 it	 is	 possible	 that	 spring	

cropping	can	be	beneficial	to	UK	arable	farming	in	the	long	run.		

Investigating	the	effect	of	spring	cropping	on	black-grass	has	normally	been	

based	 on	 field	 experiments	 (e.g.	 Chauvel	 et	 al.,	 2001;	 Moss	 and	 Hull,	 2012;	

Keshtkar	 et	 al.,	 2015).	However,	 such	 experiments	 could	 be	 expensive	 and	 time	

consuming	thus	making	mathematical	models	the	best	alternative.	Although	some	

studies	 were	 found	 to	 have	 applied	 mathematical	 models	 to	 investigate	 weed	

management	 strategies	 with	 respect	 to	 the	 IWM	 (e.g.	 Pandey	 and	 Medd,	 1991;	

Swinton	and	King,	1994;	Wu,	2001;	Pannell	et	al.,	2004;	Pardo	et	al.,	2010;	Beltran	

et	al.,	2012),	the	models	found	were	based	on	dynamic	programming	approaches	

which	 although	may	be	more	 appropriate	 especially	 in	 the	 context	 of	modelling	

population	 dynamics,	 may	 be	 associated	 with	 a	 limitation	 of	 generating	

complicated	 model	 with	 solutions	 for	 sub-problems	 that	 may	 just	 be	 local	

optimum	 but	 not	 global	 optimum.	 Also,	 none	 of	 the	 studies	 cited	 estimated	 the	

cost	of	adopting	a	non-chemical	black-grass	control	measure	at	the	national	scale.		

In	this	study	we	developed	a	farm	level	model	combining	mixed-integer,	goal	and	

risk	 programming	 approaches,	 incorporating	 some	 of	 the	 weed	 management	

strategies	 through	 the	 modelling	 of	 optimal	 and	 sub-optimal	 operations	 and	

winter	 wheat—spring	 barley	 or	 spring	 beans	 rotations	 or	 sequences.	 In	 linear	

programming	based	models,	dynamics	can	be	incorporated	through	the	modelling	

of	 multi-periods	 in	 which	 activities	 or	 operations	 are	 carried	 out	 (McCarl	 and	

Spreen,	1997).	Thus	in	our	model,	the	crop	season	was	divided	into	26	two-week	

periods	to	incorporate	some	within	year	dynamics,	which	are	important	in	annual	

farm	 planning	 and	 cropping	 and	 to	 allow	 for	 timeliness	 penalties	 but	 without	

dividing	the	main	objective	(problem)	into	sub-problems	(which	was	not	required	

due	to	focus	of	the	study).	In	this	study,	four	crops	and	some	specific	farm	(tillage)	

operations	and	assumptions	were	adopted.	As	with	models,	the	accuracy	of	results	
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is	normally	 influenced	by	 the	model	 formulation	and	 the	quality	of	data	used	 in	

building	the	model.	Although	these	may	serve	as	a	limitation	of	the	model	and	by	

extension	 the	 study	 in	 the	 case	 of	 the	 aggregation,	 the	 results	 presented	 give	

insight	 into	the	effect	of	the	adoption	of	 farm	management	strategies	on	farming	

objective,	 specifically	 profit	maximisation	 and	 to	 some	 extent	 risk	minimisation	

objectives	in	arable	farming.	

The	results	of	the	aggregate	cost	of	black-grass	control	with	spring	cropping	

showed	 that	 in	 the	 short	 term,	 UK	 arable	 farming	 can	 lose	 profit	 by	 adopting	

winter	wheat—spring	barley	or	spring	beans	rotation,	although	under	a	scenario	

of	 very	 high	 black-grass	 infestation	 in	winter	wheat	 fields,	 loss	 of	 profit	 due	 to	

switching	 to	 spring	 cropping	 could	 be	 lower.	 The	 overall	 effect	 of	 controlling	

black-grass	with	spring	cropping	resulted	 in	profit	reduction	due	to	 lower	yields	

or	profitability	associated	with	spring	crops	as	well	as	winter	OSR	(Nix,	2014).	The	

lower	profitability	associated	with	spring	crops	makes	arable	farmers	reluctant	to	

adopt	 such	 a	 non-chemical	 weed	 management	 strategy	 under	 the	 IWM	 system	

(Chikowo	et	al.,	2009).		Also,	the	reduction	in	profit	was	partly	due	to	the	increase	

in	 operations	 and	 fixed	 cost	 due	 to	 the	 crop	 combination	 and	 the	 implication	 is	

that	the	crops	selected	by	farmers	could	have	a	great	influence	on	the	profitability	

of	their	farm	enterprise	through	associated	labour	and	machinery	costs	(Barnard	

and	Nix,	 1973;	Kay,	 1981).	 For	 example,	with	 the	 implementation	 of	mandatory	

winter	wheat—spring	beans	 rotation,	 some	 amount	 of	 spring	barley	 and	winter	

OSR	 were	 also	 selected.	 However,	 winter	 wheat	 and	 spring	 barley	 have	

overlapping	 harvesting	 periods	 (mid-August	 to	 early-September)	 with	

overlapping	 optimal	 harvesting	 period	 (mid-August	 to	 late-August).	 Also	 the	

optimal	 harvesting	 period	 of	 spring	 beans	 (late-August	 to	 early-September)	

overlap	with	the	harvesting	periods	of	winter	wheat	and	spring	barley.	Thus	to	be	

able	to	perform	harvesting	operations	within	these	periods	 in	order	not	to	 incur	

yield	penalties	 and	 also	perform	 some	ploughing	 to	 start	 the	 establishment	 of	 a	

new	 crop,	more	machines/labour	 are	 required	 leading	 to	 higher	 operations	 and	

fixed	 costs.	 To	 improve	 the	 profitability,	 there	 is	 the	 need	 to	 choose	 a	 cropping	

plan	 or	 system	 aimed	 at	 reducing	 labour	 and	machinery	 costs	 through	 efficient	

labour	 and	 machinery	 planning	 but	 promotes	 profitability	 (Barnard	 and	 Nix,	
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1973).	The	implication	is	that	if	arable	farmers	were	to	adopt	spring	cropping	to	

control	 black-grass,	 the	 strategy	 needs	 to	 be	 combined	 with	 efficient	 timing	 or	

planning	of	operations	and	machinery/labour	use	especially	 in	periods	 in	which	

labour	 requirements	 are	 high	 and	 this	 can	 be	 very	 effective	 and	 improve	 farm	

profits.	

Comparison	 of	 the	 spring	 barley	 and	 spring	 beans	 results	 shows	 that	 in	

terms	 of	 black-grass	 control,	 spring	 barley	 can	 be	 said	 to	 be	 better	 than	 spring	

beans	with	respect	to	the	relatively	lower	aggregate	cost	estimates	associated	with	

the	winter	wheat—spring	barley	rotation.	This	 is	a	reflection	of	 the	 fact	 that	 the	

choice	 of	 crop	 in	 the	 rotation	 is	 very	 significant	 in	 weed	 management	 (HGCA,	

2014a).	 The	 severity	 and	 distribution	 of	 black-grass	 in	 Europe	 are	 determined	

mainly	by	soil	types	and	cropping	systems	(Moss,	2013).	Thus	selecting	the	right	

spring	 crop	 with	 consideration	 to	 the	 farm’s	 situation	 (HGCA,	 2014b)	 can	 be	

biologically	and	economically	viable	as	far	as	reductions	in	black-grass	population	

and	profit	maximisation	are	concerned.		

The	 increase	 in	 profit	 observed	 at	 the	 individual	 farm	 level	 implies	 that	

depending	on	the	farm’s	situation	based	on	factors	such	as	soil	type	and	prevailing	

rainfall	pattern	and	 the	hectares	of	 land	available	 to	 the	 farm,	 controlling	black-

grass	 with	 spring	 cropping	 can	 be	 economically	 beneficial	 and	 in	 some	 cases	

reduce	 farm	 risk	 in	 terms	 reduction	 in	 deviations	 in	 income.	 To	 some	 arable	

farmers,	 controlling	 black-grass	 with	 spring	 crops	 has	 the	 potential	 to	 be	

profitable	 due	 to	 the	 associated	 lower	 variable	 costs	 and	 the	 increasing	 cost	 of	

chemical	control	associated	with	winter	crops	(Bayer,	2016).	With	the	inability	of	

black-grass	 developing	 resistance	 to	 non-chemical	 control,	 drawing	 on	 the	

benefits	 of	 other	 non-chemical	 control	measures	 such	 as	 ploughing	 and	delayed	

sowing	 in	 addition	 to	 rotation	 plans	 such	 as	 the	 ones	 shown	 by	Option	 2	 could	

make	black-grass	control	with	spring	cropping	very	effective	(Moss	and	Lutman,	

2013;	 HGCA,	 2014b)	 and	 reduce	 chemical	 inputs	 which	 in	 turn	 could	 improve	

profitability	 and	 benefit	 the	 environment.	 Thus	 depending	 on	 a	 farm’s	 situation	

and	 with	 the	 help	 of	 agronomist,	 winter	 wheat—spring	 barley	 or	 spring	 beans	

sequences	 could	 be	 adopted	 as	 part	 of	 a	 package	 of	 black-grass	 management	
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strategies	 especially	 farm	 which	 normally	 grow	 the	 four	 crops	 adopted	 for	 the	

study.	

It	is	important	to	view	the	impact	of	this	modelling	in	a	policy	context.		The	

eradication	or	mitigation	of	black-grass	is	a	major	challenge	and	in	terms	of	food	

security	 and	 environmental	 protection,	 its	management	provides	positive	public	

goods.	 	 The	 provision	 of	 positive	 externalities	 from	 agriculture	 have	 generally	

been	encouraged	through	the	adoption	of	the	provider	gets	principle	(Hanley	and	

Oglethorpe,	1997;	Hanley	et	al.,	 1998)	and	so	 the	aggregate	per	hectare	 costs	of	

black-grass	management	provide	us	with	an	estimate	of	possible	policy	payments	

needed	 to	 incentivise	 adoption	 of	 the	 system	 needed	 to	 generate	 those	 positive	

externalities.	 	 Although	 it	 is	 acknowledged	 that	 spring	 cropping	 reduces	 black-

grass	 population	 and	 that	 reduction	 in	 infestation	 in	 one	 year	 can	 lead	 to	

improvement	in	yield	in	subsequent	years,	the	£82/ha	estimate	based	on	the	four	

crops	selected	for	the	study	suggests	a	cost	to	UK	arable	farming		for	the	adoption	

of	winter	wheat—spring	 barley	 sequence	 or	 rotation	 and	 thus	would	 represent	

such	 a	 possible	 payment	 level	 if	 farmers	 were	 to	 adopt	 spring	 cropping	 after	

incidence	of	 zero	or	 low	black-grass	 infestation.	 	However,	with	 relatively	 lower	

loss	of	profit	under	a	scenario	of	very	high	black-grass	infestations	on	winter	crop	

fields,	 farmers	may	be	better	of	switching	to	spring	cropping	and	such	payments	

to	incentivise	adoption	may	not	be	required.	

The	overall	effect	of	 controlling	black-grass	with	spring	crops	resulted	 in	a	

reduction	in	profit	in	the	short	term,	which	could	affect	the	adoption	of	such	non-

chemical	 strategy	 by	 arable	 farmers.	 However,	 with	 EU	 Sustainable	 Use	 of	

Pesticides	 Directive	 requiring	 arable	 farmers	 to	 give	 priority	 to	 non-chemical	

methods	 of	 plant	 protection	 (HGCA,	 2014b),	 continuous	 research	 using	 linear	

programming	 based	 optimisation	 approaches	 to	 come	 up	 with	 optimal	 profit	

estimates	 of	 different	 spring	 cropping	 strategies	 to	 control	 black-grass	 could	

encourage	 farmers	 to	 adopt	 such	 non-chemical	 black	 grass	 control	 measure	 as	

part	of	a	package	of	weed	control	strategies.	Also,	future	research	with	a	combined	

linear	or	goal	programming	and	dynamic	programming	 (focusing	on	black-grass	

population	dynamics)	approaches	in	addition	to	the	inclusion	of	more	crops	could	

also	lead	to	more	robust	estimates	to	better	inform	policy	to	incentivise	farmers	to	
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adopt	spring	cropping,	particularly	winter	wheat—spring	barley	or	spring	beans	

rotation	as	a	black-grass	control	measure.		
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Table	 4-7:	 Summary	 rainfall,	 farm	area,	 crop	 yield	 and	price	 data	 for	 farms	used	 in	 the	
study	

Variable	 Unit	 Mean	 Standard	deviation	

Annual	Rainfall	 mm	 856.3	 236.7	
Area	 ha	 186.5	 219.7	
Winter	wheat	yield	 t/ha	 7.8	 1.6	
Spring	barley	yield	 t/ha	 5.7	 1.0	
Spring	beans	yield	 t/ha	 3.7	 0.8	
Winter	OSR	yield	 t/ha	 3.1	 0.7	
Winter	wheat	price	 £/t	 163.1	 22.4	
Spring	barley	price £/t	 150.7	 16.3	
Spring	beans	price	 £/t	 220.8	 17.2	
Winter	OSR	price	 £/t	 342.1	 26.2	
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Box	4-1:	Illustration	of	aggregate	cost	estimates	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

The	estimation	of	aggregate	cost	is	illustrated	below	with	results	for	10	farms	under	low	infestation
The	Option	2	is	winter	wheat-spring	barley	sequence

Profit	Option	1 Profit	Option	2 Weight Weighted	
Profit	Option	1

Weighted	
Profit	Option	2

Difference

D F E
A	×	C B	×	C F			̶	D

Farm	1 40,029 32,446 23.12 925,379 750,074 -175,305
Farm	2 46,180 25,738 23.71 1,094,937 610,241 -484,696
Farm	3 24,063 7,285 2.33 56,054 16,970 -39,084
Farm	4 20,575 12,856 15.78 324,739 202,902 -121,838
Farm	5 126,009 57,938 40.51 5,104,061 2,346,790 -2,757,271
Farm	6 43,758 41,530 32.85 1,437,606 1,364,417 -73,188
Farm	7 87,580 70,613 13.27 1,162,357 937,174 -225,183
Farm	8 57,913 58,019 13.66 791,116 792,567 1,451
Farm	9 -10,827 -10,827 31.64 -342,558 -342,558 0
Farm	10 27,569 27,569 10.71 295,329 295,329 0

Aggregate	Cost	(Sum	of	Column	E	values	for	Farms	1	to	10) -3,875,115

Farms

A B C
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Table	 4-8:	 Weighted	 mean	 and	 standard	 deviation	 estimates	 of	 model	 results	 for	 745	

under	Option	1	crop	plan		

Model	Estimates	
Low	infestation	 Medium	infestation	 High	infestation	 Very	high	infestation	

Mean	 Sd	 Mean	 Sd	 Mean	 Sd	 Mean	 Sd	
Output	 240,167	 280,177	 234,338	 273,287	 219,191	 257,799	 204,038	 240,398	

Output	+	
Subsidy	

278,646	 322,910	 272,815	 316,064	 257,669	 300,685	 242,516	 283,355	

N	Fertiliser	Cost	 28,901	 32,744	 28,579	 32,418	 27,521	 31,340	 25,942	 30,103	

P	Fertiliser	Cost	 10,485	 11,828	 10,428	 11,768	 10,251	 11,588	 9,976	 11,375	

K	Fertiliser	Cost	 9,317	 10,557	 9,250	 10,491	 9,058	 10,323	 8,745	 10,087	

Seed	Cost	 13,013	 14,687	 12,946	 14,614	 12,758	 14,438	 12,445	 14,195	

Black-grass	
Herbicide	Cost	

27,262	 30,913	 26,752	 30,392	 25,131	 28,835	 22,627	 26,870	

Sundry	Cost	 19,709	 22,329	 19,342	 21,955	 18,158	 20,815	 16,345	 19,381	

Variable	Cost	 108,687	 122,745	 107,297	 121,299	 102,878	 116,860	 96,081	 111,541	

Gross	Margin	 169,959	 202,687	 165,518	 197,549	 154,792	 187,617	 146,435	 176,316	

Cost	of	Farm	
Operations	

51,500	 57,996	 52,073	 58,712	 53,829	 60,828	 56,921	 63,448	

Gross	Profit		 118,458	 148,178	 113,446	 142,223	 100,961	 129,863	 89,514	 115,997	

Fixed	Cost	 68,306	 77,640	 68,087	 77,376	 68,166	 78,696	 69,009	 78,916	

Profit	 50,152	 79,556	 45,359	 74,002	 32,795	 61,463	 20,505	 49,098	

MOTAD	Risk	 34,641	 39,457	 33,922	 38,531	 32,102	 36,471	 30,504	 34,508	

Sd	=	Standard	deviation.	The	unit	for	all	estimates	are	£.	
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Table	 4-9:	 Weighted	 mean	 and	 standard	 deviation	 estimates	 of	 model	 results	 for	 745	

under	Option	2	crop	plan	with	mandatory	winter	wheat-spring	barley	rotation	

Model	Estimates	 Low	infestation	 Medium	infestation	 High	infestation	 Very	high	infestation	

Mean	 Sd	 Mean	 Sd	 Mean	 Sd	 Mean	 Sd	

Output	 220,813	 259,998	 217,877	 256,381	 209,675	 246,977	 200,811	 236,222	

Output	+	
Subsidy	

259,292	 302,981	 256,355	 299,371	 248,153	 289,967	 239,290	 279,177	

N	Fertiliser	Cost	 26,117	 29,945	 26,008	 29,878	 25,642	 29,215	 24,974	 28,700	

P	Fertiliser	Cost	 10,032	 11,397	 10,012	 11,384	 9,944	 11,268	 9,819	 11,158	

K	Fertiliser	Cost	 8,870	 10,146	 8,841	 10,132	 8,749	 10,017	 8,584	 9,853	

Seed	Cost	 12,562	 14,272	 12,537	 14,257	 12,449	 14,136	 12,290	 13,965	

Black-grass	
Herbicide	Cost	

23,002	 26,452	 22,838	 26,353	 22,252	 25,384	 21,168	 24,479	

Sundry	Cost	 16,561	 19,009	 16,447	 18,940	 16,036	 18,243	 15,270	 17,625	

Variable	Cost	 97,144	 111,117	 96,683	 110,821	 95,072	 108,031	 92,104	 105,528	

Gross	Margin	 162,148	 193,788	 159,671	 190,681	 153,081	 184,938	 147,185	 177,122	

Cost	of	Farm	
Operations	

55,157	 61,325	 55,449	 61,475	 56,466	 63,134	 58,409	 65,089	

Gross	Profit		 106,990	 134,955	 104,224	 131,678	 96,616	 124,363	 88,774	 115,040	

Fixed	Cost	 69,528	 78,815	 69,472	 78,870	 69,477	 80,190	 69,803	 79,663	

Profit	 37,462	 64,387	 34,752	 61,346	 27,139	 54,212	 18,970	 47,949	

MOTAD	Risk	 32,850	 37,569	 32,472	 37,065	 31,433	 35,735	 30,433	 34,486	

Sd	=	Standard	deviation.	The	unit	for	all	estimates	are	£.	
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Table	 4-10:	Weighted	mean	 and	 standard	 deviation	 estimates	 of	model	 results	 for	 745	

under	Option	2	crop	plan	with	mandatory	winter	wheat-spring	beans	rotation	

Model	Estimates	 Low	infestation	 Medium	infestation	 High	infestation	 Very	high	infestation	

Mean	 Sd	 Mean	 Sd	 Mean	 Sd	 Mean	 Sd	

Output	 202,671	 237,825	 201,766	 236,150	 200,083	 235,185	 198,549	 233,625	

Output	+	
Subsidy	

241,150	 280,741	 240,245	 279,086	 238,561	 278,093	 237,027	 276,491	

N	Fertiliser	Cost	 21,500	 24,315	 21,572	 24,399	 21,774	 24,773	 21,976	 24,915	

P	Fertiliser	Cost	 9,422	 10,652	 9,418	 10,648	 9,405	 10,628	 9,393	 10,623	

K	Fertiliser	Cost	 8,054	 9,175	 8,054	 9,177	 8,059	 9,206	 8,055	 9,206	

Seed	Cost	 12,414	 14,091	 12,365	 14,032	 12,214	 13,759	 12,070	 13,671	

Black-grass	
Herbicide	Cost	

18,533	 20,856	 18,431	 20,723	 18,083	 20,080	 17,780	 19,900	

Sundry	Cost	 13,360	 14,990	 13,288	 14,893	 13,036	 14,422	 12,823	 14,294	

Variable	Cost	 83,284	 93,898	 83,129	 93,708	 82,570	 92,692	 82,097	 92,448	

Gross	Margin	 157,867	 188,566	 157,116	 187,109	 155,990	 187,413	 154,930	 186,208	

Cost	of	Farm	
Operations	

64,459	 72,633	 64,540	 72,802	 64,697	 72,854	 64,894	 72,910	

Gross	Profit		 93,404	 119,178	 92,575	 117,461	 91,295	 118,049	 90,036	 117,052	

Fixed	Cost	 72,094	 80,847	 72,093	 80,672	 72,821	 83,640	 73,413	 84,108	

Profit	 21,311	 50,629	 20,482	 49,336	 18,474	 47,649	 16,623	 47,311	

MOTAD	Risk	 32,282	 36,805	 32,117	 36,505	 31,727	 35,930	 31,393	 35,626	

Sd	=	Standard	deviation.	The	unit	for	all	estimates	are	£.	
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“Only	those	who	will	risk	going	too	far	can	possibly	find	out	how	far	it	is	
possible	to	go.”		

																																									―	T.S.	Eliot	
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In	the	preceding	chapter,	the	mixed-integer	weighted	goal-programming	model	was	

applied	to	investigate	spring	cropping	as	a	black-grass	control	measure.	The	model	

was	parameterised	using	data	for	745	farms	selected	from	the	FBS	to	investigate	the	

cost	 (or	 gain)	 of	 controlling	 black-grass	with	 spring	 cropping,	 particularly	winter	

wheat—spring	 crop	 sequence	 or	 rotation.	 The	 results	 show	 that	 at	 the	 aggregate	

(national)	level,	the	strategy	could	cost	the	UK	arable	sector	between	£35	and	£286	

million	 for	 adopting	winter	wheat—spring	 barley	 sequence	 to	 control	 black-grass	

whereas	adopting	winter	wheat—spring	beans	sequence	could	cost	between	£87	and	

£650	million	depending	on	the	level	of	infestation.	However,	on	individual	farm	basis,	

there	could	be	benefits	(increase	in	profit)	as	well	as	cost	(loss	of	profit)	depending	

on	 the	 farm’s	 soil	 type,	 rainfall	 level,	 and	 area	 of	 land	 available	 to	 the	 farm.	 The	

policy	 implication	 is	 that	 the	 aggregate	 level	 results	 on	 per	 hectare	 bases	 give	

indication	 of	 possible	 farm	 payment	 to	 incentivise	 the	 adoption	 of	 the	 strategy	 as	

part	of	the	black-grass	control	package.	

Risk	 aversion	 behaviour	 of	 arable	 farmers	 also	 influence	 farmers	 decision-

making.	For	example,	a	farmer’s	level	of	risk	aversion	can	influence	their	adoption	of	

new	technologies,	innovation	or	sustainable	farm	management	strategies	such	crop	

rotation	with	winter	crop—spring	crop	sequence	to	control	black-grass.	Thus	risk	is	

very	 significant	 in	 sustainable	 arable	 farming.	 In	 this	 chapter,	 a	 mixed-integer	

MOTAD	 model	 and	 a	 randomly	 generated	 risk	 aversion	 parameter	 method	 are	

applied	 to	 investigate	and	evaluate	absolute	 risk	aversion	coefficient	and	cropping	

decision.	Also,	 the	model	 is	applied	 to	 investigate	a	scenario	of	how	 farmers	would	

react	 to	policy	change	depending	on	 their	 level	of	 risk	aversion.	Although	different	

approaches	 have	 been	 applied	 to	 investigate	 farmers	 risk	 aversion,	 no	 study	 was	

found	 in	 UK	 context	 to	 have	 applied	 the	 methodology	 adopted	 in	 this	 study.	 The	

results	show	levels	of	risk	aversion	across	regions	in	England.	The	policy	implication	

of	the	results	is	that	arable	farm	policies	can	be	regionalised,	tailored	to	farmers’	risk	

aversion.	

A	 version	 of	 the	 study	 presented	was	 submitted	 to	 the	American	 Journal	 of	

Agricultural	Economics	for	publication.		
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Incorporation	of	 risk	 into	 farm	models	has	become	accepted	as	vital	 in	 terms	of	

approximating	 more	 closely	 to	 real-world	 farm	 decision-making	 and	 improving	

the	predictive	power	of	models.		In	terms	of	policy,	sustainability	goals	associated	

with	 direct	 farm	 or	 subsidy	 payments	 to	 replace	 risk-reducing	 inputs	 such	 as	

fertiliser	affect	the	balance	of	income-variance	relationships	and	create	awareness	

of	the	risks	associated	with	alternative	farm	plans.	Farm	models	need	to	be	able	to	

estimate	where	 risk	 exists	 and	 incorporate	how	decisions	might	be	 taken	 in	 the	

context	 of	 that	 risk.	 	 A	 conceptual,	 methodological	 and	 empirical	 framework	 is	

developed	to	achieve	this	and	fill	a	gap	 in	the	 literature.	 	A	mathematical	mixed-

integer	MOTAD	model,	which	 allows	 the	 generation	 of	 a	 portfolio	 of	 alternative	

farm	 plans	 and	 an	 efficient	 expected	 income-variance	 (E-V)	 frontier	 using	

randomly	 generated	 risk	 aversion	 parameters	 is	 built	 and	 validated.	 	 Model-

predicted	 farm	 plans	 were	 compared	 with	 real-world	 observed	 farm-level	 land	

use	to	estimate	spatial	differences	in	risk-attitude.	 	Results	showed	risk-aversion	

among	arable	farmers	across	regions	in	England.	An	analysis	of	a	shift	 in	market	

prices	 to	 illustrate	 policy	 relevance	 shows	 how	 the	model	 provides	 a	means	 of	

estimating	spatially	referenced	risk	farmer	typologies,	which	could	be	valuable	in	

promoting	regional	agricultural	policy.		
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Risk	is	inevitable	in	agriculture	and	the	call	to	make	conventional	arable	systems	

to	 more	 sustainable	 even	 exposes	 farmers	 to	 more	 risk	 (Lien	 et	 al.,	 2007;	

Berentsen	and	van	Asseldonk,	2016).	This	 is	because	 sustainable	arable	 farming	

systems	 are	 underpinned	 by	 sustainable	 farming	 principles,	 which	 promotes	

efficient	use	of,	and	sometimes	reductions	 in	 the	amounts	of	vital	 inputs	such	as	

fertilizers	and	pesticides	normally	used	by	 farmers	 to	 safeguard	 crop	yields	and	

farm	productivity	 (Berentsen	 and	 van	Asseldonk,	 2016).	 Although	 reductions	 in	

such	 inputs	could	be	beneficial	 to	the	environment	through	reductions	 in	nitrate	

leaching	 and	 pollution	 of	 water	 sources,	 it	 can	 also	 impact	 negatively	 on	 crop	

yields	 and	 hence	 farm	 productivity.	 Also,	 the	 adoption	 of	 sustainable	 principles	

may	 mean	 adopting	 new	 farm	 management	 strategies	 and	 technologies,	 which	

may	or	may	not	be	driven	by	regulations	(policy)	in	order	to	achieve	the	desired	

results	 but	 may	 be	 associated	 with	 unproven	 benefits	 on	 farm	 productivity,	

exposing	 farmers	 to	 risk.	 The	 implication	 is	 that	 sustainable	 arable	 systems,	

although	 seen	 as	 beneficial	 to	 the	 environment,	 could	 increase	 the	 risk	 and	

uncertainties	in	the	arable	farming	business.		

Hardaker	 et	 al.	 (2015)	 grouped	 the	 types	 and	 sources	 of	 risk	 in	 farming	

under	 the	 following	main	headings:	 institutional,	 personal,	 production	and	price	

or	market	risks.	Institutional	risk	concerns	the	type	of	policy	guiding	or	guarding	

agricultural	 practices	 can	 present	 farmers	 with	 institutional	 risks.	 For	 example,	

the	 nitrate	 directive	 prescribes	 maximum	 N	 fertiliser	 amounts	 to	 be	 applied	 in	

Nitrate	Vulnerable	Zones	(NVZs)	(Defra,	2013)	and	this	can	impact	on	crop	yields.	

However,	 subsidy	payments	 (another	policy)	 such	 as	 single	 farm	payments	may	

also	 serve	 as	 a	 payment	 for	 the	 opportunity	 cost	 for	 not	 applying	 above	 the	

maximum	 N	 fertiliser	 limits.	 Also,	 the	 banning	 of	 certain	 herbicidal	 active	

ingredients	 can	 constrain	 the	 weed	 management	 efforts	 of	 arable	 farmers.	

Personal	risks	are	concerned	with	the	farmer	or	the	farm	workers—for	example,	

incorrect	 application	 of	 an	 input	 (e.g.	 fertiliser)	 by	 a	 farmer	 can	 cause	 losses	 in	

production.	 Again,	 the	 adoption	 of	 an	 improved	 but	 untested	 technology	 by	 an	

arable	 farmer	 as	 part	 of	 efforts	 to	 make	 the	 farm	 more	 sustainable	 may	 be	

associated	with	risk	(Hardaker,	et	al.,	2015).	
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Arable	 farmers	 are	 also	 exposed	 to	 production	 risks	 through	 variability	 in	

weather	and	incidence	of	pests	and	diseases	(Hardaker,	et	al.,	2015;	Berentsen	and	

van	 Asseldonk,	 2016).	 For	 example,	 high	 infestation	 of	 black-grass	 can	 cause	

substantial	 yield	 reduction	 in	 winter	 wheat	 yield	 and	 hence	 farm	 productivity	

(Bayer,	2015).	The	variability	or	volatility	in	crop	prices	(as	reflected	in	Figure	5-

1)	 as	 well	 as	 input	 prices,	 coupled	 with	 the	 fact	 that	 farmers	 are	 price	 takers,	

exposes	 them	 to	 price	 or	 market	 risk.	 With	 the	 other	 types	 of	 risks	 such	 as	

weather,	 pest	 and	 diseases	 or	 risk	 associated	 with	 inputs	 translating	 into	

production	 risk	 through	 variability	 in	 crop	 yield,	 the	 study	 presented	 in	 this	

chapter	primarily	focus	on	production	(yield)	and	price	risk.		

	
Source:	 Based	 on	 data	 from	 the	 Defra’s	 Agricultural	 Price	 Indices	
(https://www.gov.uk/government/statistics/agricultural-price-indices).	

	
Figure	5-1:	Prices	of	wheat,	barley,	potatoes	and	oilseed	rape	from	January	1998	to	March	
2017.	
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The	inevitability	of	risk	in	agriculture	means	the	consideration	of	risk	in	farm	

planning	 or	 farm	 planning	 analysis	 is	 crucial.	 Incorporation	 of	 risk	 into	 farm	

simulation	modelling	has	become	accepted	as	crucial	to	approximate	more	closely	

to	 real-world	 farm	 decision-making	 (Charness	 et	 al.,	 2013;	 Hazell	 et	 al.,	 1983;	

Hardaker	et	al.,	2015).		Ignoring	risk-averse	behaviour	of	farmers	in	farm	planning	

models	 can	 lead	 to	biased	model	 estimates	 (Hazell	et	 al.,	 1983;	Hardaker,	 2000;	

Hardaker	 et	 al.,	 2015).	 Incorporating	 risk	 aversion	 or	 preference	 of	 farmers	 in	

farm	 planning	 models	 has	 been	 found	 to	 improve	 predictive	 power	 of	 models	

(Hazell	et	al.,	1983;	Oglethorpe,	1995;	Cooke	et	al.,	2013).		In	a	policy	context,	the	

increasing	 pressure	 to	 combine	 productivity	 goals	 with	 sustainability	 goals	 in	

farming	systems	exacerbates	the	problem	of	risk	when	pressure	mounts	to	replace	

risk-reducing	inputs,	such	as	pesticides	and	fertilisers,	with	more	sustainable	but	

economically	riskier	husbandry	options	such	as	organic,	rotationally-restricted	or	

simply	 lower-input	 systems	 (Lien	 et	 al.,	 2007;	 Berentsen	 and	 van	 Asseldonk,	

2016).		It	is	thus	important	that	the	discipline	continues	to	advance	our	ability	to	

understand,	 represent	 and	 simulate	 agricultural	 risk	 and	 do	 so	 whilst	 also	

improving	model	transferability	and	applicability	to	spatially-specific	problems.	

A	 crucial	 component	 of	 usefully	 understanding	 risk	 for	 any	 kind	 of	 policy	

application	is	to	know	the	extent	to	which	farmers	are	affected	by	their	exposure	

to	risk.		Knowing	where	risk	exists	and	incorporating	those	risks	into	a	modelling	

framework	is	one	thing,	appreciating	how	decisions	might	be	taken	in	the	context	

of	 that	 risk	 is	 another.	 	 Ideally,	 as	well	 as	 being	 able	 to	model	 alternative	 risky	

farm	 plans	 we	 need	 to	 know	 farmers’	 attitude	 to	 risk	 and	 elicit	 their	 risk	

preferences	since	 this	will	 influence	how	farm	decisions	are	 taken	and	decisions	

relating	 to	 the	 overall	 strategy	 of	 the	 farm	 business	 in	 general	 (Kingwell,	 1994;	

Charness	et	al.,	2013;	Hardaker	et	al.,	2015,	Saqib	et	al.,	2016).			

Much	attention	has	been	paid	in	literature	to	farmers’	risk	aversion,	attitudes	

toward	risk	or	farm	risk	in	general	through	the	use	of	farm	planning	models	and	

other	approaches	(e.g.	Hazell,	1971;	Hazell	et	al.,	1983;	Elamin	and	Rogers,	1992;	

Oglethorpe,	1995;	Adesina	and	Ouattara,	2000;	Lien,	2002,	Gardebroek,	2006;	Lien	

et	 al.,	 2007;	 Acs	 et	 al.,	 2009;	 Brick	 et	 al.,	 2012;	 Cooke	 et	 al.,	 2013;	 Saqib	 et	 al.,	

2016).	 	Also,	 the	 incorporation	of	 farmers’	risk	aversion	or	attitude	towards	risk	
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into	 risk	models	 has	 normally	 been	 through	 either	 direct	 elicitation	 (e.g.	 Dillon	

and	Scandizzo,	1978;	Binswanger,	1980;	Oglethorpe,	1995;	Harrison	et	al.,	2007;	

Brick	et	al.,	2012;	Charness	et	al.,	2013)	or	through	indirect	approaches	(listed	in	

McCarl	and	Spreen,	1997)	which	can	be	used	to	identify	or	approximate	farmers’	

risk	aversion.	 	However,	in	terms	of	the	indirect	approaches	not	many	have	been	

applied	 in	 conjunction	 with	 risk	 models	 where	 a	 robust	 predictive	 decision	

framework	is	thus	created	(Hazell	et	al.,	1983;	Elamin	and	Rogers,	1992).			

In	 this	 chapter	 a	 conceptual,	 methodological	 and	 empirical	 framework	 is	

developed	 to	 bridge	 this	 gap	 in	 the	 literature	 by	 combining	 and	 advancing	

approaches	used	by	Hazell	et	 al.	 (1983),	 Elamin	 and	Rogers	 (1992)	 through	 the	

application	of	a	mathematical	mixed-integer	MOTAD	model	(hereafter	MIMOTAD)	

which	 allows	 the	 generation	 of	 a	 portfolio	 of	 alternative	 farm	plans	which	 offer	

alternative	risky	options.		From	this	set	an	efficient	expected	income-variance	(E-

V)	frontier	is	generated	using	randomly	generated	non-deterministic	risk	aversion	

parameters	 and	 by	 comparing	 estimated	 farm	 plans	 with	 real-world	 observed	

farm-level	land	use	and	identify	spatial	differences	in	risk-attitude.	 	Although	the	

model	utilises	data	from	the	UK,	the	principles	of	its	construction,	testing	and	use	

are	 entirely	 transferable,	 unlike	 many	 existing	 risk	 elicitation	 examples.	 	 The	

method	 is	 highly	 policy	 relevant	 in	 that	 it	 suggests,	 and	 provides	 a	 means	 to	

create,	the	existence	of	spatially-referenced	risk	farmer	typologies,	which	could	be	

valuable	in	the	promotion	of	regional	agricultural	policy.		

Although	 other	 risk	 programming	 approaches	 such	 as	 quadratic	 and	

stochastic	programming	exist	and	may	have	some	advantages	over	MOTAD,	which	

is	a	 linear	approximation	of	the	quadratic	programming	(QR),	MOTAD	continued	

to	be	used	for	modelling	risk	in	farming	systems	(e.g.	Adesina	and	Ouattara,	2000;	

Ogurtsov	et	al.,	2008;	Cooke	et	al.,	2013)	and	thus	fit	for	purpose	as	far	as	the	aim	

of	this	chapter	is	concerned.	Quadratic	programming	(QR)	assumes	farmer’s	utility	

function	 to	 be	 quadratic,	 an	 assumption	 regarded	 as	 unacceptable	 in	 that	

quadratic	are	not	increasing	at	all	points	and	also	quadratic	utility	function	implies	

increasing	absolute	risk	aversion	(Hardaker	et	al.,	2015).	Another	assumption	to	

validate	 QR,	 which	 is	 seen	 as	 a	 drawback	 for	 QR	 is	 that	 the	 distribution	 of	 net	

revenues	 is	 normal	 in	 that	 the	 distribution	 of	 farm	 revenues	 is	 unlikely	 to	 be	
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normal	 due	 to	 variability	 in	 revenues	 (Hardaker	 et	 al.,	 2015).	 	 With	 the	

distribution	 of	 farm	 revenues	 normally	 skewed,	 it	 has	 been	 found	 that	 in	 such	

instance,	 the	mean	absolute	deviation	used	as	 a	measure	of	 risk	 in	MOTAD	may	

outperform	 the	 sample	 variance	 used	 as	 a	 measure	 of	 risk	 in	 QR	 (Hazell	 and	

Norton,	1986).	Thus	QR	can	be	said	 to	be	weak	under	 the	normality	assumption	

(Barnard	 and	 Nix,	 1973)	 thus	 making	 MOTAD	 fit	 for	 purpose	 especially	 in	

situations	where	the	measurement	of	risk	is	based	on	deviations	in	income,	which	

in	turn	is	based	on	historical	data	of	 income	data,	which	are	likely	to	be	skewed.	

Stochastic	programming	has	been	found	to	have	advantages	over	QR	and	MOTAD	

in	that	 it	can	better	handle	random	variation	(Barnard	and	Nix,	1973).	However,	

stochastic	 programming	 can	 be	 complicated	 due	 to	 estimation	 of	 probability	

distribution	for	all	items	in	the	model	matrix	likely	to	be	associated	with	random	

variation	and	as	a	result	making	 it	 to	complicated	and	time	consuming	(Barnard	

and	 Nix,	 1973;	 Kall	 and	Wallace,	 1994).	 Thus	with	 the	 focus	 of	 this	 chapter	 on	

production	and	price	risk,	which	are	based	on	historical	farm	income	data	likely	to	

be	 skewed,	 coupled	with	 the	 fact	 the	 construction	of	MOTAD	model	 is	 relatively	

less	 time	 consuming	 but	 offer	 a	 better	 alternative	 to	 other	 risk	 modelling	

approaches,	the	MOTAD	approach	is	found	to	be	fit	 for	purpose	in	terms	of	farm	

level	risk	modelling.		

	

 

	Assuming	all	feasible	farm	plans	produce	or	yield	the	same	expected	income	

over	 time,	 a	 risk-averse	 farmer	will	 seek	 to	 adopt	 the	 farm	plan	 that	minimises	

variance	(risk)	given	the	expected	income	(Hazell,	1971).		The	utility	function	of	a	

risk-averse	decision-maker	has	a	negative	rate	of	change	of	marginal	utility	with	

respect	to	wealth	whereas	for	a	risk-neutral	decision-maker,	the	rate	of	change	of	

marginal	utility	is	zero	(Arrow,	1965;	Hardaker	et	al.,	2015).	This	implies	that	for	a	

risk-averse	 farmer,	expected	utility	will	decrease	as	 the	 level	of	payoff	 increases	

(Hardaker	et	al.,	2015).	

Variance	 (V)	 level	 can	 be	 parameterised	 to	 generate	 associated	 expected	

income	(E)	 levels	with	associated	V’s	to	derive	efficient	set	of	E-V	farm	plans	for	
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the	risk-averse	 farmer.	The	part	of	 the	derived	E-V	 frontier	at	which	 the	highest	

level	of	income	is	attained	represents	the	farm	plan	at	which	the	maximum	profit	

exists	and	only	one	farm	plan	can	generate	that	expected	income.	Different	levels	

of	 E	 can	 be	 generated	 by	 different	 farm	 plans	 with	 associated	 V	 levels.	

Parameterisation	 of	 E-V	 pairs	 is	 considered	 as	 a	more	 appropriate	 approach	 to	

estimate	 the	possible	 impacts	of	risk-free	environmental	policies	with	respect	 to	

shifts	in	the	efficient	E-V	set	(Hope	and	Lingard,	1992).		However,	the	application	

of	 this	 approach	 to	 analyse	 potential	 policy	 impacts	 critically	 depends	 on	

knowledge	 of	 where	 on	 that	 portfolio	 of	 E-V	 efficient	 farm	 plans	 the	 farmer	 is	

currently	producing.	 	 Estimating	 this	point	on	 the	E-V	 frontier	 can	 lead	 to	more	

convincing	decisions	regarding	the	success	of	such	policies.	 	Again,	knowledge	of	

the	farm	plan	which	maximises	the	utility	derived	from	varying	E-V	pairs	allows	a	

better	 assessment	 of	 risk	 minimising	 techniques	 within	 farm-level	 planning	

problems,	 through	 comparison	 with	 observed	 farm	 plans	 (Lin	 et	 al.,	 1974;	

Oglethorpe,	1995;	Kreitler	et	al.,	2014).			

Agri-environmental	 policies	 associated	 with	 sustainable	 agriculture	

normally	 involve	 direct	 payments	 to	 farmers	 for	 the	 generation	 of	 positive	

externalities	derived	through	the	adoption	of	less	intensive	farm	plans	(based	on	

the	 ‘provider	 gets	policy’,	Hanley	et	 al.,	 1999).	 	 Farmers	 receiving	direct	 income	

payments	mean	that	a	certain	proportion	of	their	income	is	generated	effectively	

'risk-free'	and	introduction	of	this	would	adjust	the	shape	of	the	E-V	frontier.		The	

implication	 would	 be	 the	 policy	 having	 different	 impacts	 for	 different	 farmers	

depending	 on	where	 they	 positioned	 on	 the	 E-V	 frontier	 based	 to	 their	 level	 of	

risk-aversion.	 This	 is	 illustrated	 in	 Figure	 5-2where	 the	 inclusion	 of	 a	 ‘risk-free’	

option	available	for	less	intensive,	profit-suboptimal	farm	plans	‘tilted	out’	the	E-V	

efficient	farm	plans	from	0P	to	EsP.		

The	 risk-averse	 farmer	will	 rationally	 produce	 at	 the	 point	 where	 her/his	

utility	 for	 an	 E-V	 pair	 is	maximised.	 This	 represents	 the	 point	 at	which	 the	 E-V	

frontier	 lies	 tangent	 to	 their	 highest	 attainable	 iso-utility	 curve,	 which	 in	 turn	

depends	on	 the	 level	of	 the	 farmer’s	 risk	aversion.	 	 If	 the	producer	displayed	an	

iso-utility	curve	as	described	by	I21-23	then	the	shift	in	the	E-V	frontier	would	have	

little	or	no	effect	on	the	farm	plan	adopted	by	the	farmer,	 implying	that	the	risk-
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free	 agri-environment	 option	 would	 not	 be	 adopted.	 	 However,	 if	 the	 producer	

displayed	an	iso-utility	curve	as	described	by	I11-13	then	the	shift	in	the	E-V	frontier	

from	0P	to	EsP	would	cause	a	change	in	the	farm	plan	and	at	least	part	of	the	agri-

environment	option	would	be	adopted.	

	

Figure	5-2:	Shift	in	an	E-V	frontier	by	incorporation	of	a	risk-free	enterprise	

	

In	order	to	simulate	this	phenomenon	of	maximised	utility,	there	is	the	need	

to	 recreate	 the	 risky	portfolio	 of	 farm	plans	 facing	 a	 farmer	 and	 simultaneously	

establish	 how	 the	 farmer	will	 select	 from	 those	 plans	 according	 to	 her/his	 risk	

preference	or	risk	aversion	level.		This	requires	the	estimation	of	farm-specific	E-V	

frontiers	 and	 subsequently	 the	 estimation	 of	 risk-aversion	 points	 on	 those	 E-V	

frontiers.	The	estimation	of	risk-aversion	points	on	E-V	frontiers	can	be	achieved	
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by	either	the	direct	and	primary	elicitation	of	farmer-specific	utility	functions	(e.g.	

Oglethorpe,	 1995)	 or	 through	 indirect	 modelling	 approaches	 (e.g.	 Hazell	 et	 al.,	

1983;	Elamin	and	Rogers,	1992).	 	 In	 the	 indirect	approaches,	a	model	capable	of	

generating	efficient	E-V	pairs	is	calibrated	to	represent	a	particular	situation	and	

identify	which	risk-aversion	parameter	best	enables	the	model	to	most	accurately	

match	observed	land	use.	The	risk	aversion	parameter	is	essentially	estimated	by	

making	inferences	from	observed	economic	behaviour	(Lien,	2002).	This	indirect	

approach	is	thus	adopted	in	this	chapter.	Although	the	‘parent’	model	(SAFMOD)	is	

described	in	Chapter	3,	Section	5.3	explains	the	development	of	the	mixed-integer	

MOTAD	model	as	a	stand-alone	model	capable	of	generating	efficient	E-V	pairs	to	

represent	 different	 representative	 farm	 situation.	 Using	 data	 from	 the	 UK	 Farm	

Business	 Survey,	 the	 model	 is	 applied	 to	 generate	 results,	 based	 on	 which	 the	

coefficients	 of	 absolute	 risk	 aversion	 are	 estimated	 and	 demonstrate	 how	 risk	

aversion	affects	farm	choice.	Finally,	an	example	and	analysis	of	an	induced	shift	in	

the	 E-V	 frontier	 are	 presented	 to	 show	 the	 spatial	 differences	 in	 land	 use	 in	

response	 to	 variation	 in	 crop	 prices	 caused	 by	 policy	 change.	 The	 research	

questions	of	this	study	can	therefore	be	summarised	as	follows:	

1. Are	arable	farmers	in	England	risk	averse?	

2. Are	there	any	differences	in	risk	aversion	across	regions	in	England?	

3. Do	the	levels	of	risk	aversion	influence	cropping	decisions?	

4. What	is	the	effect	of	policy	change	on	farmers	with	different	 levels	of	risk	

aversion?	

 

 Minimisation	of	total	absolute	deviation	(MOTAD)	model	

The	 incorporation	 of	 risk	 into	 agricultural	 land-use	mathematical	 programming	

models	 have	 normally	 been	 through	 the	 use	 of	 risk	 programming	 approaches,	

mainly	 quadratic	 risk	 programming	 (QRP)	 (e.g.	Markowitz,	 1952;	 Freund,	 1956;	

Lien,	 2002)	 and	 its	 linear	 approximation	 version,	 the	 minimisation	 of	 total	

absolute	deviation	 (MOTAD)	 (Hazell,	 1971;	Adesina	and	Ouattara,	2000;	 Stott	et	

al.,	 2003;	 Börner,	 2006;	 Cooke	 et	 al.,	 2013;	 Osaki	 and	Batalha,	 2014)	 as	well	 as	

stochastic	 programming	 (Acs	 et	 al.,	 2009;	 Hazell	 et	 al.,	 2015).	 In	 QRP,	 expected	

income	is	maximised	subject	to	the	constraint	on	income	variance	through	the	use	
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of	 a	 variance-covariance	matrix	 and	 assumes	 a	 quadratic	 utility	 function	 of	 the	

decision	maker.	However,	in	MOTAD	the	variance	is	replaced	with	mean	absolute	

deviation	 (Mn)	 or	 in	 some	 formulations,	 the	 standard	 deviation.	 Another	

assumption	 to	 validate	 QRP	 is	 that	 the	 distribution	 of	 total	 income	 is	 normal	

(Ogurtsov	 et	 al.,	 2008)	 however,	 in	 agriculture	 the	 distribution	 of	 income	 is	

normally	 skewed	 (Hardaker	 et	 al.,	 2004).	 Although	 QRP	 models	 are	 said	 to	

generate	 more	 efficient	 solutions	 than	 MOTAD,	 MOTAD	 is	 still	 relevant	 and	

continued	 to	 be	 used	 in	 farm	 risk	modelling	 (e.g.	 Cooke	 et	 al.,	 2013;	 Osaki	 and	

Batalha,	 2014)	 and	 in	 instances	 where	 the	 enterprise	 income	 distributions	 are	

skewed,	the	mean	absolute	deviation	in	MOTAD	may	outperform	sample	variance		

in	QRP	 (Hazell	 and	Norton,	 1986;	 Adesina	 and	Ouattara,	 2000)	 and	 thus	makes	

application	 of	 MOTAD	 in	 model	 farm	 risk	 (deviation	 in	 income)	 also	 fit	 for	

purpose.		

In	 this	 study,	 a	 mixed-integer	 MOTAD	 model23	 (hereafter	 MIMOTAD)	

developed	using	 the	R	programming	 software	 (R	Core	Team,	 2015)	 (see	 for	 the	

flowchart	summarising	the	model	outline	and	associated	assumption)	is	applied	to	

investigate	farmers’	risk	version	and	cropping	decisions	and	subsequently	used	to	

estimate	(approximate)	coefficient	of	absolute	risk	aversion	for	arable	farmers	in	

the	 England	 under	 the	 expected	 value-variance	 (E-V)	 framework.	 This	 is	 done	

based	on	the	assumption	that	the	farmer	(the	decision	maker)	wants	to	maximise	

her	or	his	expected	utility	based	on	the	linear	utility	function	shown	by	Eq.	(5-1),	

which	is	the	expected	income	(E)	(defined	by	Eq.		(5-2))	less	half	of	the	coefficient	

of	 absolute	 aversion	 (Ra)	 multiplied	 by	 the	 variance	 (V)	 in	 income.	 Eq.	 (5-1)	

basically	 estimates	 the	 certainty	 equivalent	 from	 the	 expected	 income	 (E)	

discounted	 by	 the	 risk	 premium	 (0.5RaV).	 The	 magnitude	 of	 Ra	 determines	 the	

importance	 the	 farmer	 attaches	 to	 risk	 and	 hence	 the	 farmer’s	 level	 of	 risk	

aversion.	That	is,	it	reflects	how	much	E	the	farmer	is	willing	to	forgo	in	order	to	

reduce	V.	Also,	the	use	of	Eq.	(5-1)	means	a	 linear	utility	function	is	assumed	for	

the	farmer	or	decision	maker.	

	(5-1)	

																																																								
23	Model	codes	can	be	found	via	the	following	link:	https://github.com/kwadjoahodo/SAFMOD		

! = # − 12'()	
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Figure	 5-3:	 Flowchart	 showing	 the	 outline	 of	 the	 MIMOTAD	 model	 and	 associated	
assumption.	

	

MODEL ASSUMPTIONS
• Decision	by	farmers	are	based	on	historical	or	past	event	and	

that	variability	in	yield	and	prices	in	previous	farming	
seasons	influence	 farming	or	cropping	decision.	

• Farmers	are	assumed	 to	measure	risk	based	on	deviation	in	
their	farm	income	from	previous	years.	

• A	linear	utility	function	based	on	! = # − %
&'() is	assumed	

in	the	study	(Where	U =	utility,	E =	expected	 income,	Ra	=	
absolute	 risk	aversion	coefficient,	V =	variance).	

• Farming	season	is	divided	into	26	two-week	periods.
• Soil	type	and	rainfall	for	each	region	determine	 the	workable	

hours	of	each	period	in	which	farm	operations	are	carried	
out.

• Yield	and	price	data	for	the	study	are		average	data	based	on	
5-year	data	 for	each	region	from	2009/10	to	2013/14.

• Risk	aversion	parameters	(Φ )	are	determined	using	
randomly	generated	 values	and	are	associated	with	mean	
absolute	deviation	(MAD)	estimates.

• Absolute	risk	aversion	coefficients	are	estimated	under	the	E-
V	framework	using	income	(E	 )	and	variance	(V)	
corresponding	to	Φ and	MAD	values.

• Risk	aversion	is	defined	as	Φ	>	0	or	Ra	>	0.	NOTE:Φ and	Ra	
estimates	 for	regions	are	NOT	comparable.

• Gross	margin	(£/ha)	 =	Output	(£/ha)	 less	Variable	 Cost	
(£/ha)

• Subsidy	payment	(£/ha)	 	=	Pre	2005	farm	payment	based	on	
the	type	of	enterprise.	All	farms	are	assumed	 to	receive	the	
payment.

• Variable	cost	(£/ha)	comprises	seed,	fertiliser,	chemical	 	&	
sundry	costs

• Operations	cost	(£/ha)	=	fuel	 cost	are	based	on	machine	
work	rate.

• Work	rates	(h/ha)	are	 function	of	soil	type,	seed	rates	
fertiliser	rates,	crop	yields	and	machine	sizes.

• Sub-optimal	operations	and	rotations	are	associated	with	
timeliness	and	rotational	penalties	expressed	as	cost	(£/ha).

• Fixed	cost	(£)	=	Annual	depreciation,	repair	and	labour	costs.
• Profit	(£)	=	Gross	margin	less	operation	and	fixed	cost.
• Risk	(£)	=	Mean	absolute	deviation	or	Variance.

MODEL CONSTRAINTS
• Workable	hours	constraints
• Sequential	 and	non-

sequential	operations	
constraints

• Crop	sequencing	constraints
• Crop	proportion	constraints
• Total	 land	area	constraints.

MODEL OBJECTIVES
• Maximise	 farm	profit.
• Minimise	risk	(mean	

absolute	deviation)

MIMOTAD	(MIXED-INTEGER MOTAD MODEL)

MODEL SOLVER
(RGLPK)

MODEL OUTPUT
• Profits
• Risk (Mean Absolute Deviation)
• Risk Aversion Parameters (Φ)
• Crop Plans

Model	Data		
&	Matrices							
(CSV	Files)

SELECTION OF REPRESENTATIVE Φ	 AND RA AND DEVELOPMENT OF
E-V FRONTIER FOR REGIONS

• Comparison of model generated crop plans to real crop
plan data

• Estimation of Mean Absolute Error (MAE) corresponding
to each Φ and crop plan

• Φ with the lowest MAE = representativeΦ for the region.
• Representative Ra is estimated using E and V values

corresponding to representative Φ and E and V values
corresponding to the risk neutral (Φ =0) results.

• Construction of E-V frontier using V values derived from
MAD results.



	 	

	217	

Although	MOTAD	is	a	linear	approximation	of	expected	value-variance	(E-V)	

(Hazell,	1971)	and	generates	income-mean	absolute	deviation	(E-M)	frontier,	the	

Mn	in	MOTAD	can	be	converted	to	V	(Kaiser	and	Messer,	2010)	to	generate	an	E-V	

frontier	based	on	which	an	approximated	absolute	risk	aversion	coefficient	can	be	

estimated	from	the	ratio	of	the	income	(E)	and	variance	(V).	The	MIMOTAD	model	

maximises	 expected	 income	 (farm	 profit)	 subject	 to	 deviation	 in	 income	

(measured	 by	Mn)	 (Eq.	 (5-3)	 and	 	 (5-4))	 and	 a	 set	 of	 constraints	 under	 Section	

5.3.2.	 The	 model	 formulation	 is	 an	 adapted	 formulation	 from	 Hardaker	 (1997)	

(based	 on	 the	 linear	 approximation	 of	 Freund	 (1956)	 formulation)	 and	 can	 be	

stated	as	follows:	

	(5-2)	

	

(5-3)	

	

	(5-4)	

	

Where		#* 	is	the	mean	expected	gross	margin,	ai	is	the	area	of	crop	i	and	it	is	equal	
to	sum	of	the	area	of	first	or	last	operation	carried	on	a	crop	i,	Cijk	is	the	cost	of	the	

jth	operation	on	the	ith	crop	in	period	k	and	yijk	is	the	area	of	jth	operation	on	the	

ith	crop	 in	period	k.	Cm	 is	 the	cost	of	machinery	and	 labour	required	 to	perform	

field	operations	and	nm	is	the	number	of	machines	of	types	m	required	to	perform	

the	 field	 operations.	 #*+ 	 is	 the	 gross	 margin	 of	 the	 ith	 crop	 under	 qth	 state	 of	
nature	 and,	 dq	 is	 an	 s	 by	 1	 vector	 of	 activity	 levels	 measuring	 negative	 income	

deviations	under	qth	state	of	nature,	pq	is	a	1	by	s	vector	of	probabilities	of	the	qth	

state	 of	 nature	 and	Mn	 is	 a	measure	 of	mean	 absolute	 deviation	 (MAD)	 or	 risk,	

which	can	be	parametrically	varied.	

In	 the	 MIMOTAD	 model,	 Mn	 is	 parametrically	 varied	 and	 the	 magnitude	

reflects	 the	 level	 of	 risk	 aversion.	 When	Mn	 is	 set	 at	 its	 highest	 possible	 value,	

MIMOTAD	is	solved	as	a	pure	profit	maximisation	model	(representing	the	income	

for	the	risk-neutral	farmer).	However,	to	be	able	to	parameterise	Mn	using	weights	
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(represented	by	Φ)	to	serve	as	risk	aversion	parameter,	Eq.	(5-4)	was	modified	to	

get	Eq.	(5-5).		

	(5-5)	

	

The	risk	aversion	parameter	(Φ)	is	then	parameterised	until	no	solution	of	interest	

can	 be	 generated	 (Hardaker	 et	 al.,	 2015).	 When	 Φ	 is	 zero	 (reflecting	 no	 risk	

aversion	or	risk	neutral),	the	highest	values	for	both	Mn	and	expected	income	are	

obtained	and	the	model	 is	solved	as	a	pure	profit	maximisation	model	(Hazell	et	

al.,	 1983).	 When	 Φ	 is	 at	 its	 highest	 possible	 value	 (reflecting	 extreme	 risk	

aversion),	 the	 lowest	 possible	 values	 are	 obtained	 for	 both	 Mn	 and	 expected	

income.		

 Model	constraints	

The	constraints	considered	in	MIMOTAD	are	resource,	sequential/non-sequential	

operations	 and	 crop	 sequencing	 or	 rotational	 constraints.	 Other	 constraints	

considered	are	total	cropping	area	and	crop	area	or	proportion	constraints.	

The	 resource	 (workable	 hours)	 constraint	 (Eq.	 	 (5-6))	 ensures	 that	 the	

amount	of	a	resource	needed	to	carry	out	an	operation	on	a	crop	does	not	exceed	

the	 amount	 of	 the	 resource	 available.	 Thus	 this	 constraint	 ensures	 resource	use	

efficiency.	

	(5-6)	

	

Where,	T*OPR	 is	the	work	rate	of	operation	 j	carried	on	crop	 i	using	a	machine	of	
type	m	in	period	k	and	Q*OP 	area	of	operation	j	carried	on	a	crop	i	period	k.	URPV 	is	
the	 amount	 of	 resource	 (workable	 hours)	 available	 in	 period	 k	 to	 carry	 out	 an	

operation	with	workability	 type	w	 using	machine	 type	m	and	SR	 the	number	of	
machine	type	m	calculated	by	the	model.	

The	 sequential	 operation	 constraint	 (Eq.	 (5-7))	 ensures	 that	 a	 successor	

operation	is	not	carried	out	until	its	preceding	operation	has	been	carried	out	and	

that	the	area	of	the	successor	operation	must	be	equal	to	the	area	of	the	preceding	
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operation.	 For	 example,	 a	 crop	 cannot	 be	 harvested	 until	 it	 has	 been	 planted	

(sown)	and	the	area	harvested	must	be	equal	to	the	area	planted.	The	constraint	

can	be	expressed	as	follows:		

	

(5-7)	

	

Where,	K	belongs	to	a	set	of	periods	in	which	an	operation	can	be	carried	out	on	a	

crop.	For	non-sequential	operations,	which	are	carried	out	based	on	the	stages	of	

crop	development,		

(5-8)	

	

The	crop	sequencing/rotational	constraint	(Eq.		(5-9))	ensures	that	the	total	

area	 of	 a	 successor	 crop	 is	 equal	 to	 the	 area	 of	 the	 last	 operation	 of	 the	

predecessor	crop.	This	can	be	expressed	as	follows:		

	(5-9)	

	

(5-10)	

	

Where,	8*eP 	 is	 the	 area	 of	 crop	 c	 taking	 over	 from	 (following)	 crop	 i	 in	 period	k	
whereas	Q*fP 	is	the	area	of	last	or	final	operation	J	carried	out	on	crop	i	in	period	k.	
The	 constraint	 represented	 by	 Eq.	 (5-10)	 ensures	 that	 the	 area	 of	 the	 first	

operation	of	crop	c	in	period	k	(QegP)	does	not	exceed	rick.		

In	the	MIMOTAD	model,	limitations/constraints	are	put	on	the	areas	of	crops	

such	as	potatoes,	winter	oilseed	rape	and/or	legumes	(field	beans),	however	there	

is	more	flexibility	in	the	rotation	plan	selected	by	the	model.	The	crop	proportions	

were	 formulated	 in	 such	 a	 manner	 to	 reflect	 some	 of	 the	 pest	 management	

principles	 of	 breaking	 disease	 cycles	 using	 crop	 rotation.	 For	 example,	 the	

proportion	of	winter	oilseed	rape	is	less	than	or	equal	to	1/3	of	the	total	land	area	
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to	appear	1	in	3	years	in	the	rotation.	Again,	the	crop	proportions	were	formulated	

to	 capture	 the	 ‘greening’	 rules	of	 the	Common	Agricultural	Policy	 (Defra,	 2014),	

which	ensures	that	no	one	crop	can	take	more	than	75%	of	the	crop	area.	The	total	

area	constraint	ensures	the	sum	of	areas	of	all	crops	is	equal	to	the	total	cropping	

area	available	to	the	farmer.		

 Validation	of	the	MIMOTAD	model	

The	 MIMOTAD	 model	 was	 verified	 and	 validated	 validation	 by	 results	 through	

predictive	 validation	 (McCarl	 and	 Spreen,	 1997).	 The	 verification	 was	 done	 by	

solving	 the	model	with	 two	different	 solvers	 to	 check	consistency	on	 the	 results	

generated	by	the	model.		The	predictive	validation	was	carried	out	using	UK	Farm	

Business	 Survey	 (FBS)	data	 from	2009	 to	2013	 for	281	 lowland	arable	 farms	 in	

England	 and	 Wales	 with	 crop	 yields,	 farm	 area,	 soil	 types	 and	 rainfall	 as	 data	

inputs	 (see	 Section	3.7	 of	 Chapter	 3	 for	more	 information	 on	model	 validation).	

Aggregate	level	comparison	of	model	results	(crop	areas)	and	observed	FBS	data	

was	carried	out	using	statistical	measures	of	association	(see	examples	in	Gaiser	et	

al.	(2010);	Pulvento	et	al.	(2013)	and	Gueymard	(2014))	and	results	are	presented	

in	Table	5-1.		

Table	5-1:	Model	validation	comparison	between	predicted	and	observed	crop	areas	

Measures	of	association	 Estimates	
r	 0.91{0.01}	
ρ	 0.67	{0.05}	
R2	 0.83	
MAE	 0.42	
RMSE	 0.53	
NSE	 0.80	
WIA	 0.95	
LCE	 0.47	
CRM	 0.07	
Intercept	 0.02	(0.99)	{0.34}	
Slope	 0.85	(-1.08)	{0.30}	
Sample	size	for	all	estimates	=	10	based	on	the	number	of	activities	(9	crops	plus	set-aside)	in	the	model.	LCE	

values	are	normally	low	compared	to	NSE	and	WIA	due	to	the	higher	magnitude	of	the	denominator.	Values	in	

parentheses:	in	brackets	are	t-statistics	and	in	braces	are	p-values.	

	

	



	 	

	221	

Although	 measures	 of	 association	 such	 as	 the	 root	 mean	 square	 error	

(RMSE)	and	mean	absolute	error	(MAE)	showed	some	 level	of	bias	 in	 the	model	

predictions,	 estimates	 such	as	 the	Pearson	 correlation	 (r),	 Spearman	 correlation	

(ρ),	 coefficient	 of	 determination	 (R2),	 Nash-Sutcliffe’s	 model	 efficiency	 (NSE),	

Willmott’s	 index	of	agreement	(WIA)	and	Legates’s	coefficient	of	efficiency	(LCE)	

showed	 positive	 association	 between	 predicted	 crop	 areas	 and	 observed	 crop	

areas.	The	results	of	 t-test	on	the	 intercept	and	slope	of	regressing	the	observed	

crop	areas	on	predicted	crop	areas	showed	that	the	intercept	and	slope	were	not	

different	from	zero	and	one	respectively.			

 Identification	of	risk	aversion	parameters		

There	are	different	approaches	or	methods	of	eliciting	risk	aversion	coefficient	or	

parameter	from	farmers.	McCarl	and	Spreen	(1997)	listed	six	different	approaches	

for	specifying	the	risk	aversion	parameter.	These	involve	developing	the	efficient	

frontier	by	 solving	 for	many	 risk	 aversion	parameters.	Also,	 an	 efficient	 frontier	

can	 be	 developed	 and	 presented	 to	 farmers	 to	 pick	 acceptable	 points.	 Again,	 an	

approach	in	which	some	sort	of	gambling	game	is	played	with	farmers	by	asking	

them	 to	 choose	 between	 two	 options,	 after	which	 a	 coin	 is	 tossed	 to	 determine	

whether	or	not	the	outcome	is	bad	or	good	and	the	results	used	to	estimate	risk	

aversion	 coefficients	 for	 farmers	 (e.g.	 Dillon	 and	 Scandizzo,	 1978;	 Binswanger,	

1980).	 However,	 such	 direct	 elicitation	 approach	 can	 be	 time	 consuming	 and	

expensive.		

Charness	 et	 al.	 (2013)	 also	 reviewed	 other	 elicitation	 approaches	 and	

although	 such	 approaches	 and	 the	 others	 mentioned	 above	 may	 have	 their	

associated	 advantages,	 the	 approach	 applied	 in	 this	 study	 is	 relatively	 not	

complicated	 and	 not	 associated	 with	 any	 financial	 constraints.	 The	 approach	

adopted	 in	 this	 chapter	 is	 similar	 to	 the	 one	 suggested	 in	 McCarl	 and	 Spreen	

(1997)	and	applied	by	Simmons	and	Pomareda	(1975),	Brink	and	McCarl	(1978)	

and	 Hazell	 et	 al.	 (1983)	 however,	 their	 estimated	 representative	 risk	 aversion	

parameters	were	not	randomly	generated.	Also,	as	part	of	our	approach,	the	arable	

farming	 system	 is	 modelled	 in	 detail	 to	 reflect	 the	 real	 decision	 environment	

which	farmers	face.	The	adopted	approach	was	primarily	due	to	time	and	financial	

constraints	 for	 direct	 elicitation	 through	 Binswanger’s	 approach	 or	 generating	



	 	

	222	

efficient	frontier	and	presenting	to	farmers	to	pick	acceptable	points.	The	model	is	

solved	for	different	randomly	generated	risk	aversion	parameters	(Φ)	after	which	

the	cropping	at	Φ	points	representing	change	of	basis	are	selected	and	compared	

with	 observed	 cropping.	 The	 level	 of	 deviation	 or	 association	 is	 then	measured	

using	 statistical	 estimates	 such	 as	 the	mean	 absolute	 deviation	 or	 error	 (MAE).	

Also,	 the	 means	 and	 standard	 deviations	 of	 model	 results	 (cropping)	 at	 the	

selected	 points	 and	 observed	 cropping	 were	 compared.	 However,	 the	

determination	of	the	representative	Φ	was	based	on	the	minimum	MAE	value.		

 Data,	evaluation	of	model	components	and	model	runs	

The	 two	 main	 objectives	 in	 the	 MIMOTAD	 model	 are	 expected	 farm	 profit	

maximisation,	 which	 is	 gross	 margin	 less	 farm	 operation	 and	 machinery	 and	

labour	costs,	and	risk	(deviation)	in	income	measured	by	mean	absolute	deviation.	

Crop	yield	and	price	data	were	obtained	from	2009/10	to	2013/14	Farm	Business	

Survey	 (FBS)	 for	 three	 FBS	 defined	 regions	 in	 England	 (North	 England,	 East	

England	 and	 West	 England)	 to	 estimate	 output	 (yield	 ×	 price)	 (see	 chapter	

Appendix	for	price	and	yield	data).	The	crop	prices	were	adjusted	for	inflation	to	

2016	prices	using	HM	Treasury	(2016)	deflator	series.	The	gross	margin	is	defined	

as	 output	 (plus	 Single	Farm	Payment,	 SFP)	 less	 fertiliser,	 seed	 and	 sundry	 costs	

including	chemical	costs.	The	SFP	value	and	the	sundry	costs	were	obtained	from	

Nix	(2014).	The	fertiliser	costs	are	based	on	Defra	(2010)	recommended	fertiliser	

amount,	 determined	 by	 soil	 type,	whereas	 seed	 costs	were	 based	 on	 seed	 rates	

from	Toosey	(1988).	Gross	margins	under	qth	state	of	nature	were	generated	for	

the	 three	 regions.	 The	 mean	 gross	 margins	 and	 subsequently	 the	 deviations	 in	

income	were	estimated.	

The	 operations	 costs	were	 functions	 of	work	 rates	 for	machines,	which	 in	

turn	were	 functions	of	machine	 sizes,	 fertiliser	 amounts,	 seed	 rates,	 crop	 yields,	

soil	type	and	fuel	price.	The	operations	cost	took	into	consideration	yield	penalties	

for	 sub-optimal	 operations	 and	 rotations.	 The	 fixed	 cost	 (annual	machinery	 and	

labour	 cost)	 estimates	 were	 based	 on	 annual	 depreciation,	 repair/maintenance	

and	annual	labour	costs.		
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Following	Hazell	et	al.	(1983),	each	of	the	three	regions	(North	England,	East	

England	and	West	England)	was	treated	as	a	single	 farm	and	the	model	was	run	

for	each	region	by	using	the	representative	soil	type,	rainfall	amount	and	average	

total	cropping	area.	The	crop	areas	are	average	crops	areas	for	farms	with	arable	

areas	 greater	 or	 equal	 to	 40ha	 from	2009/10	 to	 2013/14	 crop	 years.	 Table	 5-2	

shows	 the	 observed	 average	 crop	 areas,	 representative	 soil	 types	 and	 rainfall	

amounts	for	the	three	regions	selected.		

Table	5-2:	Observed	average	crop	areas,	representative	soil	types	and	annual	rainfall	for	

the	selected	regions.	

Crops	 Average	Regional	Crop	Areas	(ha)	
North	England	 East	England	 West	England	

Winter	wheat	 67.0	 118.6	 69.8	
Spring	wheat	 25.1	 28.0	 19.9	
Winter	barley	 34.6	 37.1	 27.0	
Spring	barley	 34.1	 42.0	 34.7	
Beans*	 21.6	 31.2	 26.4	
Ware	potatoes	 22.5	 49.3	 28.6	
Winter	oilseed	rape	 33.2	 60.5	 49.4	
Sugar	beet	 15.7	 53.9	 --	
Total	area		 254	 421	 256	
	 	 	 	
Soil	type	 Heavy	soil		

(Index	=	2)	
Heavy	soil		
(Index	=	2)	

Medium	soil		
(Index	=	1.5)	

Rainfall	(mm)	 944	 613	 1223	
*	Beans	consist	of	winter	and	spring	beans			

	

The	model	 was	 run	 in	 a	 non-deterministic	 manner,	 essentially	 run	 10000	

times	for	each	of	the	three	regions	using	entirely	randomly24	generated	Φ	values	

from	zero	(reflecting	risk	neutral)	to	its	possible	highest	value	(reflecting	extreme	

risk	aversion).	The	resultant	MAD’s	were	then	converted	to	standard	deviation	(σ)	

using	the	Fisher	constant	in	Eq.	(5-11)	(Hazell	and	Norton,	1986)	and	squaring	σ	

to	 obtain	 the	 variance	 (V)	 (Kaiser	 and	 Messer,	 2010).	 The	 number	 of	 states	 of	

nature,	s	is	equal	to	5.	

	

																																																								
24	 The	 Φ	 values	 were	 randomly	 generated	 using	 the	 uniform	 distribution	 random	 number	
generator	function	in	the	R	programming	language.	
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(5-11)	

	

The	model	generated	cropping	at	each	Φ	value	was	compared	with	observed	

cropping	 applying	 the	 statistical	 approaches	 shown	 below,	 where	 Oi	 is	 the	

observed	area	for	the	ith	crop,	Pi	is	the	model	generated	area	for	the	ith	crop,	Oav	

and	Pav	 are	 the	means	of	 the	observed	and	model	data	 respectively	and	N	 is	 the	

number	 of	 observations.	MAE	 =	 mean	 absolute	 error	 (deviation),	 RMSE	 =	 root	

mean	square	error,	mWIA	=	modified	Willmott’s	 index	of	agreement	 (Willmott	et	

al.,	 2012).	 The	Φ	 values	 at	 which	 the	 lowest	MAE	 estimate	 was	 obtained	 were	

chosen	as	representative	risk	aversion	parameter	for	each	region.		

(5-12)	

	

	

(5-13)	

	

		

(5-14)	

	

	

 Estimation	of	 the	 coefficient	of	 absolute	 risk	aversion	under	 the	E-V	
framework	

The	approximate	coefficients	of	absolute	 risk	aversion	 (Ra)	were	estimated	

for	 each	 of	 the	 points	 on	 the	 generated	 E-V	 frontier	 corresponding	 to	 the	

representative	Φ	 values,	which	 gave	 the	 lowest	MAE	 estimates	using	Eq.	 (5-15),	

(adapted	from	Lien,	2002).	With	MIMOTAD	formulated	to	set	the	measure	of	risk	

at	 its	 possible	 highest	 value	 and	 then	 progressively	 reduced	 until	 no	 further	

solutions	 of	 interest	 are	 found	 (Hardaker,	 1997;	 2004;	 2015)	 and	 as	 a	 result	 in	

estimating	Ra,	Ern	 and	Vrn	 are	 the	 highest	 expected	 income	 (E)	 and	 variance	 (V)	

respectively	corresponding	to	the	risk	neutral	solution	were	used.	Thus	Eq.	(5-15)	

was	fit	for	purpose.	El	and	Vl	are	the	 lth	E	and	V	respectively	on	the	E-V	frontier.		

=o# = 1
F(p q

∑ |t* − F*|u
*vg

w x	

y = 	=oz× | ^}
2(^ − 1)~

�.Å
, ) = yÇ	

	

'=T# = 1
F(p

É∑ (t* − F*)Çu
*vg

w 	

aÑÖo = 	1 − ∑ |t* − F*|u
*vg

2∑ |F* − F(p|u
*vg

	



	 	

	225	

The	certainty	equivalent	(CE),	risk	premium	(RP)	and	proportional	risk	premium	

(PRP)	(Eq.	(5-16)-(5-18))	were	estimated	to	help	 in	the	analysis	of	risk	attitudes	

across	 the	 regions.	 The	 PRP	 is	 the	 proportion	 of	 the	 expected	 payoff	 of	 a	 risky	

prospect	that	the	decision	maker	(farmer)	would	be	willing	to	pay	to	trade	away	

all	 the	 risk	 for	 a	 sure	 thing	 (Hardaker,	 2000).	 To	 determine	 whether	 or	 not	

farmers	in	a	particular	region	are	risk	averse,	a	simple	rule	was	developed.	For	a	

risk	neutral	farmer,	Ra	=	0;	and	for	a	risk	averse	farmer,	Ra	>	0.	Thus,	regions	with	

estimated	 Ra	 values	 (as	 well	 as	 identified	 Φ	 values)	 greater	 than	 zero	 were	

described	as	risk	averse.	

(5-15)	

	

	

(5-16)	

	

(5-17)	

	

(5-18)	

	

Where	Ra	 is	 the	measure	 of	 absolute	 risk	 aversion,	Ern	 and	Vrn	 are	 the	 expected	

income	and	variance	respectively	corresponding	to	the	risk	neutral	solution,	Ei	and	

Vi	respectively	are	the	expected	income	and	variance	corresponding	to	the	ith	risk	

aversion	 parameter	 (Φ),	 E	 and	 V	 are	 respectively	 the	 expected	 income	 and	

variance	for	the	selected	or	representative	risk	aversion	parameter	or	Ra.	RP	is	the	

risk	premium,	CE	is	the	certainty	equivalent	which	is	also	a	measure	of	utility	(U).		
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 Estimated	risk	aversion	parameters	and	cropping	decisions	

The	 risk	 aversion	 coefficients	 show	 that	 arable	 farmers	 in	North,	East	 and	West	

England	are	risk	averse	(Φ	and	Ra	>0).	The	results	of	the	three	regions	are	shown	

in	 Table	 5-3.	 The	 representative	 risk	 aversion	 parameter	 (Φ)	 at	 which	 the	

comparison	of	the	model	generated	crop	areas	and	observed	crop	areas	gave	the	

best-fit	were	Φ=0.30	(Ra	=	0.000012,	MAE	=	0.29),	Φ=0.54	(Ra	=	0.0000064,	MAE	=	

0.12)	and	Φ=0.14	(Ra	=	0.0000090,	MAE	=	0.27)	respectively	 for	North,	East	and	

West	 England.	 It	 should	 be	 noted	 that	 the	 risk	 aversion	 parameters	 and	 the	

absolute	risk	aversion	coefficients	for	the	three	regions	presented	in	Table	5-3	and	

are	 not	 comparable.	 For	 each	 region,	RP	 was	 lowest	 at	 the	 highest	 level	 of	 risk	

aversion	 meaning	 risk	 premium	 decreases	 with	 increase	 in	 risk.	 Also,	 the	 PRP	

estimates	 were	 highest	 at	 the	 highest	 level	 of	 risk-aversion	 implying	 that	 for	 a	

more	 risk-averse	 arable	 farmer,	 a	 bigger	 proportion	 of	 her/his	 income	 will	 be	

absorbed	by	their	risk	premiums	to	achieve	the	CE.		

In	terms	of	cropping,	the	results	of	all	regions	show	risk	aversion	(Φ	or	Ra)	

influenced	 cropping	 patterns.	 In	 the	 case	 of	 North	 England,	 the	 areas	 of	 spring	

wheat	 and	 sugar	 beet	 increased	 from	 0.0ha	 (Φ=0)	 to	 51.8ha	 and	 63.5ha	

respectively	 at	 Φ=0.67	 (Ra=0.000031).	 The	 lowest	 coefficient	 of	 variation	

estimates	 (CV=0.05)	 for	 spring	wheat	 is	 also	 a	 reflection	 that	 it	 was	 associated	

with	 low	 risk	 The	 area	 of	 spring	 barley	 and	ware	 potatoes	 reduced	 to	 0.0ha	 at	

Φ=0.67,	 indicating	possible	 large	 variances	 associated	with	 their	 revenues.	Thus	

such	 crops	may	 be	 considered	 high-risk	 crops	 and	 it	 is	 possible	 that	 not	 many	

farms	in	North	England	will	grow	them	especially	potatoes.	

For	 East	 England,	 areas	 of	 crops	 such	 as	 spring	 wheat	 and	 sugar	 beet	

increased	 from	 0.0ha	 (Φ=0)	 to	 188.4ha	 and	 105.2ha	 respectively	 (Φ=0.81	 and	

Ra=0.000019).	 The	 results	 suggest	 that	 these	 crops	may	 be	 associated	with	 low	

risk.	 Thus	 it	 is	 possible	 that	 in	 a	 situation	 where	 the	 areas	 of	 dominant	 or	

profitable	crops	such	winter	wheat	and	ware	potatoes	drastically	reduce	at	higher	

risk	aversion	levels,	land	may	be	allocated	to	spring	wheat	or	sugar	beet.	Areas	of	

spring	 barley	 and	 ware	 potatoes	 however,	 reduced	 to	 0.0ha	 at	 Φ=0.81	

(Ra=0.000019)	 reflecting	 the	 possibility	 of	 large	 variances	 associated	with	 their	
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revenues.	 As	 with	 Northern	 England,	 area	 of	 beans	 remained	 unchanged.	 Some	

hectares	 of	 land	 (22.0ha)	 were	 not	 cropped	 or	 utilised	 under	 extreme	 risk	

aversion	(Φ=0.81).	

Under	West	England,	 the	biggest	 spring	wheat	 area	 (45.8ha)	was	obtained	

under	the	highest	Φ	value	(Φ=0.48;	Ra=0.000042).	It	was	found	that	spring	wheat	

revenues	correlated	negatively	with	revenues	of	all	the	other	crops,	meaning	that	

as	 the	areas	of	most	of	 the	other	 crops	 (e.g.	ware	potatoes,	winter	oilseed	 rape)	

reduce	under	high	levels	of	risk	aversion,	it	is	likely	land	will	be	allocated	to	spring	

wheat.		Unlike	the	other	regions,	the	area	of	winter	barley	increased	from	55.6ha	

to	 83.4ha	 as	 risk	 aversion	 increased.	 This	 may	 be	 due	 to	 the	 fact	 that	 in	West	

England,	 no	 farm	 was	 found	 to	 grow	 sugar	 beet	 and	 as	 a	 result	 crops	 such	 as	

winter	 barley	 may	 become	 the	 alternative	 less	 risky	 crop.	 The	 area	 of	 beans,	

although	 remained	 unchanged	 under	 lower	 risk	 aversion	 levels,	 increased	 to	

25.2ha	the	highest	level	of	risk	aversion	(Φ=0.48).		

	



	 	

	228	

Table	5-3:	Result	of	the	comparison	of	model	generated	crop	areas	with	observed	crops	areas	in	North,	East	and	West	England	under	different	risk	

aversion	coefficients.		

Results	 Risk	Aversion	Parameter	
North	England	 East	England	 West	England	

Φ	=	0	 Φ	=	0.303	 Φ	=	0.669	 Observed	
Cropping	

(ha)	

Φ	=	0	 Φ	=	0.540	 Φ	=	0.814*	 Observed	
Cropping	

(ha)	

Φ	=	0	 Φ	=	0.144	 Φ	=	0.482	 Observed	
Cropping	

(ha)	
Farm	Income,	E	(£)	 62,049	 50,351	 7,241	 --	 204,984	 153,447	 19,247	 --	 90,871	 86,970	 26,653	 --	
MAD	(£)	 44,956	 32,069	 15,232	 --	 102,756	 47,890	 19,331	 --	 46,923	 41,943	 25,376	 --	
σ	(£)	 62,995	 44,936	 21,344	 --	 143,986	 67,106	 27,087	 --	 65,751	 58,772	 35,558	 --	
V	(£2’	106)	 3,968.37	 2,019.24	 455.57	 --	 20,731.97	 4,503.22	 733.71	 --	 4,323.19	 3,454.15	 1,264.37	 --	
CV		 1.02	 0.89	 2.95	 --	 0.70	 0.44	 1.41	 --	 0.72	 0.68	 1.33	 --	
Ra	 0.00	 0.0000120	 0.0000312	 --	 0.00	 0.0000064	 0.0000186	 --	 0.00	 0.0000090	 0.0000420	 --	
	CE	(£)	 62,049	 38,232	 133	 --	 204,984	 139,146	 12,433	 --	 90,871	 71,465	 108	 --	
RP	 0.00	 12,119	 7,108	 --	 0.00	 14,301	 6,814	 --	 0.00	 15,505	 26,545	 --	
PRP	 0.00	 0.24	 0.98	 --	 0.00	 0.09	 0.35	 --	 0.00	 0.18	 1.00	 --	
	 	 	 	 	 	 	 	 	 	 	 	 	
Cropping	(ha)	 	 	 	 	 	 	 	 	 	 	 	 	
Winter	wheat	 65.5	 59.5	 74.0	 67.0	 92.6	 119.1	 11.0	 118.6	 55.6	 74.9	 62.8	 69.8	
Spring	wheat	 0.0	 16.8	 51.8	 25.1	 0.0	 45.9	 188.4	 28.0	 0.0	 0.0	 45.8	 19.9	
Winter	barley	 38.3	 60.4	 22.3	 34.6	 66.3	 40.7	 34.5	 37.1	 55.6	 45.0	 83.4	 27.0	
Spring	barley	 42.3	 21.3	 0.0	 34.1	 88.5	 28.9	 0.0	 42.0	 45.8	 34.8	 0.0	 34.7	
Beans	 15.8	 15.8	 15.8	 21.6	 26.4	 26.4	 26.4	 31.2	 16.0	 16.0	 25.2	 26.4	
Ware	potatoes	 44.4	 30.2	 0.0	 22.5	 105.2	 50.7	 17.1	 49.3	 45.8	 40.3	 11.9	 28.6	
Winter	OSR	 47.6	 36.5	 26.6	 33.2	 42.0	 62.1	 16.3	 60.5	 37.3	 45.0	 26.8	 49.4	
Sugar	beet	 0.0	 13.4	 63.5	 15.7	 0.0	 47.3	 105.2	 53.9	 --	 --	 --	 --	
	 	 	 	 	 	 	 	 	 	 	 	 	
Measure	of	Dispersion/Association	 	 	 	 	 	 	 	 	 	
Mean	 31.73	 31.73	 31.73	 31.73	 52.57	 52.57	 49.86	 52.57	 36.54	 36.54	 36.54	 36.54	
Standard	deviation	 23.83	 19.05	 28.24	 15.81	 41.71	 29.20	 64.63	 28.90	 21.04	 23.77	 29.26	 17.36	
MAE	 0.38	 0.29	 0.64	 	 0.62	 0.12	 1.06	 	 0.44	 0.27	 0.64	 	
RMSE	 0.46	 0.36	 0.78	 	 0.70	 0.16	 1.42	 	 0.47	 0.33	 0.79	 	
mWIA	 0.43	 0.56	 0.03	 	 0.13	 0.84	 -0.32	 	 0.38	 0.62	 0.11	 	
*	For	East	of	England,	22.0ha	of	farm	area	was	unused.		The	column	in	bold	represents	the	risk	aversion	parameter	value	at	which	the	comparison	of	model	generated	cropping	and	

observed	cropping	gave	the	best-fit	and	minimum	deviation	(error).	V	=	variance,	CV	=	Coefficient	of	variation,	CE	=	Certainty	equivalent,	RP	=	Risk	premium,	PRP	=	Proportional	risk	

premium,	MAE	=	Mean	absolute	error,	RMSE	=	Root	mean	square	error,	mWIA	=	Modified	Willmott’s	index	of	agreement.	
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 Risk	aversion	behaviour	across	regions	

The	 risk	 aversion	 parameters	 (Φ)	 identified	 based	 on	 the	 risk	 optimal	 solutions	

ranged	 from	 0.14	 to	 0.54.	 The	 corresponding	 Ra	 estimates	 based	 of	 Eq.	 (5-15)	

ranged	from	0.0000064	to	0.0000140.	Although	the	Ra	estimates	(Ra>0)	show	risk-

aversion	of	arable	 farmers	 in	all	 regions,	 the	differences	 in	 the	shapes	of	 the	E-V	

frontier	 as	 well	 as	 the	 positioning	 of	 the	 points	 showing	 the	 Ra	 estimates	 (see	

Figure	5-4),	reflect	the	differences	in	the	risk	aversion	levels	across	the	regions25.		

	

Figure	5-4:	E-V	 frontier	showing	the	absolute	risk	aversion	estimates	 for	North	England,	

East	England	and	West	England.		

	

Table	5-4	shows	a	summary	of	the	risk	optimal	solutions	with	the	Φ,	Ra	and	

other	 estimates.	 The	 estimates	 of	 the	 PRP	 show	 that	 for	 arable	 farmers	 in	 East	

England,	 a	 relatively	 smaller	 proportion	 of	 their	 income	 would	 be	 absorbed	 in	

their	risk	premium	in	order	to	achieve	the	CE.	This	 is	reflected	in	the	lowest	PRP	

estimate	 (PRP=0.09).	 The	 smaller	 estimates	 of	 the	 PRP	 also	 reflect	 how	 risk	

efficient	 arable	 farmers	 in	East	England	may	be	 and	 this	 is	 because	 a	 lower	PRP	

means	 CE	 forms	 the	 biggest	 proportion	 of	 the	 expected	 income	 (about	 91%	 or	

0.91,	which	is	1-PRP).	

	

																																																								
25	Due	to	differences	in	exposure	to	risk	in	different	regions,	 it	should	be	noted	that	risk	aversion	
parameters	 or	 absolute	 risk	 aversion	 estimates	 across	 region	 are	 not	 comparable	 and	 the	
presentation	 under	 Section	 5.4.2	 is	 mainly	 based	 on	 convenience	 as	 farm	 far	 observing	 the	
differences	in	the	shape	of	E-V	and	discussion	of	the	results	are	concerned.	
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Table	 5-4:	 Summary	 of	 regional	 results	 showing	 estimated	 absolute	 risk	 aversion	

coefficients	

Risk	 Aversion	
Estimates	

Regions	
North	England	 East	England	 West	England	

Φ	 0.303	 0.540	 0.144	
Farm	Income,	E	(£)	 50,351	 153,447	 86,970	
MAD	(£)	 32,069	 47,890	 41,943	
σ	(£)	 44,936	 67,106	 58,772	
V	(£2’	106)	 2,019.24	 4,503.22	 3,454.15	
CV		 0.89	 0.44	 0.68	
Ra	 0.0000120	 0.0000064	 0.0000090	
CE	(£)	 38,232	 139,146	 71,465	
RP	 12,119	 14,301	 15,505	
PRP	 0.24	 0.09	 0.18	
Note:	 The	 risk	 aversion	 parameters	 and	 absolute	 risk	 aversion	 coefficients	 estimates	
presented	in	the	Table	for	the	three	regions	are	not	comparable.		

	

 Use	of	the	model	to	illustrate	policy	application	

Of	 interest	under	 this	 section	 is	 the	 relative	difference	 in	 the	 extent	 a	market	or	

policy	 shift	 might	 have	 on	 farm	 situations	 displaying	 different	 levels	 of	 risk	

aversion.	 In	 this	 analysis,	 the	model	 calibrations	 for	 East	 and	West	 England	 are	

exposed	 to	 an	 external	 market	 shock	 by	 reducing	 crop	 prices	 by	 20%.	 	 This	

scenario	is	picked	to	represent	a	different	kind	of	shift	in	the	E-V	frontier	from	the	

one	illustrated	in	Section	5.2.		The	scenario	is	intended	to	represent	a	situation	not	

dissimilar	to	the	immediate	effect	of	Brexit	(i.e.	the	decision	made	in	June	2016	for	

Britain	to	exit	the	European	Union)	on	the	sterling	exchange	rate.		Crops	sold	in	the	

UK	(i.e.	crops	not	exported)	effectively	took	an	approximate	20%	reduction	in	real	

value	when	compared	to	world	prices	in	the	immediate	economic	aftermath.			

The	effect	of	the	reduction	in	the	prices	of	all	crops,	other	things	being	equal,	

is	 to	 shift	 the	 E-V	 frontier	 to	 the	 right	 and	 this	 results	 in	 all	 feasible	 farm	plans	

suddenly	making	 less	 expected	 income	with	 relative	 variance	or	 risk	 staying	 the	

same.		This	is	shown	in	Figure	5-5	where	the	maximum	attainable	profit	falls	from	

P1	to	P2	with	the	iso-utility	curves	for	the	East	of	England	represented	by	IE1	and	IE2	

and	the	iso-utility	curves	for	the	West	of	England	represented	by	IW1	and	IW2.		
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Figure	5-5:	Shift	in	an	E-V	Frontier	through	a	blanket	crop	price	reduction	

	

With	 the	 relative	 curvature	 of	 the	 E-V	 frontier	 different	 at	 each	 iso-utility	

curve,	 the	 uniform	 shift	 in	 the	 E-V	 frontier	 has	 different	 consequences	 for	 each	

farmer	because	different	 ratios	of	 expected	 income	are	 traded	 for	variance.	 	The	

farm	plans	associated	with	these	shifts	estimated	by	the	model	are	shown	in	Table	

5-5.	

The	 results	 are	 intuitive	 in	 that	 the	 reduction	 in	 prices,	 other	 things	 being	

equal,	means	that	per	dollar,	each	farmer	is	exposed	to	more	risk.		The	more	risk-

averse	 farmer	would	therefore	be	expected	to	have	a	more	dramatic	response	to	

the	market	change.		The	East	of	England	model	predicts	a	reduction	in	the	areas	of	

spring	wheat	and	sugar	beet	with	increase	in	the	area	of	barley	production.		This	is	

interesting	in	that	this	shift	 is	accompanied	by	an	intensification	of	NPK	fertiliser	
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use,	which	 is	 a	 bad	 outcome	 for	 agri-environmental	 objectives	 and	 is	 caused	 by	

attempts	 to	 secure	 similar	 levels	 of	 expected	 income	 through	 farm	 plans	 with	

relatively	 greater	 risk.	 	 In	 the	 case	 of	 West	 of	 England,	 the	 changes	 are	 less	

dramatic,	but	follow	a	similar	pattern	with	reduction	in	areas	of	winter	wheat	and	

increase	in	area	of	spring	barley.		However,	the	intensity	of	NPK	fertiliser	use	does	

not	 change.	 	 This	 shows,	 however,	 the	 beneficial	 use	 of	 the	model	 in	market	 or	

policy	 analysis—the	 same	 policy	will	 have	 different	 outcomes	 dependent	 on	 the	

level	of	risk	aversion.		The	formulation	of	the	model	means	with	the	availability	of	

data	 to	 calibrate	 it	 to	 represent	 different	 farm	 situations,	 it	 can	 be	 applied	 to	

estimate	 the	 risk	 preference	 and	 utility	 maximising	 farm	 plans	 for	 any	 farmer	

representative	group	and	test	 the	 impact	of	a	change	 in	market	or	policy	on	that	

group.	

Table	5-5:	Farm	plans	associated	with	crop	price	reductions	

Land	Use	(ha)	
East	of	England	 West	of	England	

Change	in	Crop	Prices	 Change	in	Crop	Prices	

-20%	 0%	 %	Change	 -20%	 0%	 %	Change	

Winter	wheat	 138.9	 119.1	 17%	 62.4	 74.9	 -17%	

Spring	wheat	 0	 45.9	 -100%	 0	 0	 -	

Winter	barley	 61.2	 40.7	 50%	 46.4	 45	 3%	

Spring	barley	 51.1	 28.9	 77%	 42.9	 34.8	 23%	

Beans	 27.8	 26.4	 5%	 16	 16	 0%	

Ware	potatoes	 58.6	 50.7	 16%	 42.9	 40.3	 6%	

Winter	OSR	 61.2	 62.1	 -1%	 45.3	 45	 1%	

Sugar	beet	 22.1	 47.3	 -53%	 0	 0	 -	

NPK	intensity	(kg/ha)	 416.7	 404.9	 3%	 423.6	 424.3	 0%	

	

	

 

In	 this	 chapter,	 we	 have	 applied	 a	 mixed-integer	 MOTAD	 model	 and	 data	

from	the	UK	Farm	Business	Survey	(FBS)	 to	 investigate	and	estimate	 farmer	risk	

aversion	 in	 England.	 The	 results	 show	 that	 arable	 farmers	 in	 England	 are	 risk-

averse.	 The	 representative	 absolute	 risk	 aversion	 coefficient	 estimates	 were	

0.000012,	 0.0000064	 and	 0.0000090	 respectively	 for	 North,	 East	 and	 West	

England.	 In	 each	 region,	 variations	 in	 risk	 aversion	 influenced	 cropping	patterns	
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and	hence	cropping	decisions.	Also,	 results	 show	that	 in	a	 situation	of	a	possible	

change	in	policy,	farmers	may	react	to	or	be	affected	differently	depending	on	their	

levels	of	risk-aversion.		

MOTAD	models	 have	 been	 used	 extensively	 to	model	 risk	 at	 the	 farm	 (e.g.	

Hazell,	 1971;	Adesina	 and	Ouattara,	 2000;	Cooke	et	 al.,	 2013,	Osaki	 and	Batalha,	

2014).	MOTAD	has	been	criticised	as	not	being	able	to	generate	efficient	solutions	

as	QRP,	stochastic	programming	(SP)	or	the	direct	maximisation	of	expected	utility	

(DMEU)	 approaches	 (Hardaker	 et	 al.,	 2015)	 however,	 despite	 the	 limitation,	 it	

continues	to	be	used	in	farm	planning	model	to	explicitly	model	risk.	This	is	due	to	

the	drawback	associated	with	QRP,	SP	and	DMEU	approaches.	The	QRP	approach	

assumes	quadratic	utility	function,	an	assumption	regarded	as	unacceptable;	it	also	

assumes	 normal	 distribution	 of	 farm	 revenues,	 which	 are	 normally	 skewed	

(Hardaker	et	al.,	2015).	Stochastic	programming	although	is	 found	to	be	superior	

to	 QRP	 and	 MOTAD	 is	 complicated	 in	 that	 probability	 distribution	 of	 all	 model	

items	associated	with	random	variation	needs	 to	be	estimated	(Barnard	and	Nix,	

1973).	The	DMEU	approach	(Lambert	and	McCarl,	1985)	 is	also	considered	to	be	

superior	to	the	aforementioned	approaches	however,	it	can	be	applied	only	when	

an	individual	decision-maker’s	utility	function	is	available	(Hardaker	et	al.,	2015).		

Another	reason	for	the	suitability	and	continuous	attractiveness	of	MOTAD	to	

farm	 risk	 modellers	 is	 the	 possibility	 of	 solving	 MOTAD	 problems	 using	 linear	

programming	(LP)	algorithms,	which	is	the	most	commonly	used	and	best-known	

mathematical	 programming	 approach	 (Stott	 et	 al.,	 2003)	 or	 computational	

convenience	(Hardaker	et	al.,	2015)	and	in	a	situation	where	it	may	be	impossible	

or	 difficult	 to	 obtain	 a	 suitable	 solver	 for	 a	 QRP	 or	 solvers	 for	 QRP	may	 not	 be	

readily	available,	MOTAD	will	be	a	very	good	alternative.	Also,	the	mean	absolute	

deviation	in	MOTAD	performs	better	than	the	sample	variance	in	QRP	in	instances	

where	enterprise	income	distributions	are	skewed	(Hazell	and	Norton,	1986),	and	

with	the	distribution	of	agriculture	incomes	normally	skewed,	the	use	of	MOTAD	in	

farm	 risk	 modelling	 can	 be	 said	 to	 be	 still	 relevant	 and	 fit	 for	 purpose.	 Again,	

production	 and	 price	 risks	 are	 common	 with	 arable	 farming	 systems	 and	 with	

MOTAD	 being	 one	 of	 the	 most	 widely	 used	 methods	 for	 analysing	 such	 risks	

(Börner,	2006),	the	application	of	MOTAD	in	this	study	can	be	said	to	be	relevant.		
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Drawing	on	the	strengths	or	advantages	of	MOTAD,	a	mixed-integer	MOTAD	

model	was	developed	and	applied	 to	 estimate	absolute	 risk	aversion	 coefficients	

for	different	typologies	of	farmer	and	cropping	decision.	The	adopted	approach	is	

an	advancement	of	the	approaches	used	by	Hazell	et	al.	(1983),	Elamin	and	Rogers	

(1992)	in	that	the	risk	aversion	parameters	based	on	which	absolute	risk	aversion	

coefficients	 are	 estimated	 and	 efficient	 E-V	 frontier	 developed	 are	 randomly	

generated.	 Although	 direct	 elicitation	 approaches	 to	 deriving	 risk	 aversion	

parameters	may	 have	 their	 advantages,	 they	may	 be	 expensive,	 time	 consuming	

and	associated	with	biases.	They	also	may	fail	to	achieve	intended	purpose	and	in	

such	instances	the	derivation	of	risk	aversion	parameters	may	have	to	be	through	

parameterisation	 of	 the	model	 as	 was	 the	 case	 for	 Börner	 (2006).	 Thus,	 in	 this	

study	 the	model	 parameterisation	 approach	was	 adopted	 but	 through	 randomly	

generated	 risk	 aversion	 parameters	 to	 investigate	 risk	 behaviour	 and	 cropping	

decisions	of	 arable	 farmers.	This	 approach	was	 found	 to	be	 less	 time	 consuming	

and	 not	 associated	 with	 financial	 constraint	 or	 burdens,	 biases	 (normally	

associated	with	direct	methods)	and	thus	fit	for	purpose	in	this	study.	

The	absolute	risk	aversion	coefficient	estimates	imply	that	arable	farmers	in	

England	 can	 be	 said	 to	 be	 risk-averse.	 The	 estimates	 of	 the	 proportional	 risk	

premium	 suggest	 that	 for	 arable	 farmers	 in	 England,	 not	 a	 bigger	 proportion	 of	

their	 income	 would	 be	 sacrificed	 in	 risk	 premium	 in	 order	 to	 achieve	 risk	

efficiency.	 This	 is	 a	 reflection	 of	 risk	 aversion	 (Hardaker,	 2000;	 Hardaker	 et	 al.,	

2015).	In	terms	of	cropping,	the	areas	of	crops	such	as	spring	wheat	and	sugar	beet	

were	 found	 to	 increase	when	 the	 level	of	 risk-aversion	 increased,	 indicating	 that	

such	crops	may	be	associated	with	low	risk	(Hazell,	et	al.,	1983).	This	suggests	that	

a	risk	neutral	arable	farmer	may	not	select	sugar	beet	as	part	of	her/his	crop	plan.	

The	 areas	 of	 crops	 such	 as	 spring	 barley	 and	 potatoes	 were	 however	 found	 to	

reduce	as	risk-aversion	increased	meaning	that	their	revenues	may	be	associated	

with	 large	 variances	 (Hazell	 et	 al.,	 1983).	 The	 revenues	 of	 crops	 such	 as	winter	

wheat,	winter	barley,	ware	potatoes	and	winter	oilseed	rape	correlated	positively	

with	most	 other	 crops	 and	 according	 to	Hazell	 et	 al.	 (1983),	 such	 crops	 tend	 to	

have	 lower	outputs	under	 risk-averse	behaviour.	At	 extreme	 risk	aversion	 levels	

some	 hectares	 of	 land	 were	 not	 utilised	 under	 East	 England,	 which	 had	
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comparatively	 bigger	 average	 farm	 areas.	 The	 implication	 is,	 it	 is	 possible	

depending	on	the	prevailing	crop	prices	that	an	extremely	risk-averse	farmer	with	

bigger	farm	area	may	not	utilise	all	her/his	farmland.	

The	approach	we	adopted	in	this	study	thus	presents	a	framework,	which	can	

estimate	the	different	risk	preferences	of	different	typologies	of	farmers	relying	on	

the	 best	 fit	 of	 model	 results	 to	 their	 existing	 or	 observed	 land	 use.	 	 The	

representative	 farmers	are	classified	by	region	although,	 typologies	of	 farm	type,	

size,	 or	 income	 group	 could	 have	 similarly	 been	used	 as	 done	by	 (Kehkha	 et	 al.,	

2005).	 	What	is	crucial	is	that	there	is	now	a	system	whereby	the	impact	on	farm	

plans	 of	 any	 market	 or	 policy	 shifts	 can	 be	 estimated	 across	 those	 typologies	

through	the	use	of	MOTAD	methodology,	which	is	based	on	LP	approach	(the	best-

known	 mathematical	 programming	 approach).	 	 It	 has	 been	 shown	 that	 if,	 for	

example,	 there	 was	 a	 reduction	 in	 wholesale	 prices	 for	 all	 crops	 caused	 by	 a	

currency	 devaluation,	 the	 impact	 of	 this	 on	 the	 different	 types	 of	 farms	 with	

different	 risk	 aversion	 characteristics	 could	 be	 examined.	 	 This	 is	 a	 valuable	

feature	 for	 any	 model,	 which	 may	 need	 to	 consider	 either	 the	 impacts	 of	

regionalised	agricultural	policy	or	 the	 impacts	of	national	or	 international	policy	

on	different	regions.		

Although	it	is	acknowledged	that	the	accuracy	of	the	results	may	be	affected	

by	 the	 limitations	 of	 the	 approach	 adopted	 in	 this	 study	 through	 model	

specification	and	the	limitations	of	MOTAD,	the	results	do	give	insight	into	whether	

or	not	arable	farmers	in	different	regions	exhibit	different	risk-averse	behaviours.		

In	a	policy	 formulation	context,	 the	policy	maker	or	planner	gaining	such	 insight	

into	 the	 risk	 aversion	 behaviour	 of	 arable	 farmers	 will	 be	 able	 to	 devise	

increasingly	effective	policies—ones	which	avoid	creating	more	risk	(Hardaker	et	

al.,	2015)	or	mitigating	risk	so	as	to	not	create	unintended	consequences	such	as	

input-use	 intensification.	 	 Policies	 which	 introduce	 forms	 of	 direct	 (risk-free)	

payment	 may	 improve	 sustainability	 outcomes,	 however	 those	 policies	 may	 be	

more	enhanced	if	farmers	with	greater	risk	aversion	are	targeted.		As	shown	in	the	

analysis,	such	a	policy	might	have	greater	effect	if	implemented	in	the	East	rather	

than	 the	West	 of	 England.	 	 The	model	which	 has	 been	developed	 as	 part	 of	 this	

study	is	entirely	transferable	and	given	available	data	for	calibration,	it	provides	a	
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conceptual,	methodological	and	empirical	framework,	which	bridges	an	important	

gap	in	the	literature	and	advances	modelling	capability.	
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Table	5-6:	Price	data	for	North,	East	and	West	England	from	2009	to	2013	

Year	 Crops	

Winter	
wheat	

Spring	
wheat	

Winter	
barley	

Spring	
barley	

Bea
ns	

Ware	
potatoes	

Winter	
OSR	

Sugar	
beet	

2009	 124	 213	 116	 116	 164	 127	 274	 36	

2010	 168	 271	 141	 167	 224	 178	 318	 33	
2011	 175	 242	 165	 194	 233	 129	 386	 33	
2012	 197	 264	 187	 207	 305	 246	 389	 32	
2013	 174	 204	 157	 158	 185	 163	 316	 32	
	 	 	 	 	 	 	 	 	
Mean	 168	 239	 153	 168	 222	 169	 337	 33	
Standard	
deviation	

27	 30	 27	 35	 54	 48	 50	 2	
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Table	5-7:	Yield	data	for	North	England	from	2009	to	2013	

Year	 Crops	

Winter	
wheat	

Spring	
wheat	

Winter	
barley	

Spring	
barley	

Bea
ns	

Ware	
potatoes	

Winter	
OSR	

Sugar	
beet	

2009	 8.0	 5.4	 6.9	 5.6	 4.1	 36.4	 3.4	 57.3	
2010	 8.3	 4.0	 7.1	 5.2	 3.4	 34.3	 3.7	 56.8	
2011	 8.2	 4.8	 7.1	 5.4	 4.4	 42.2	 4.3	 61.0	
2012	 6.6	 4.1	 6.5	 4.7	 3.5	 25.2	 3.2	 55.1	
2013	 7.4	 5.7	 6.7	 5.8	 3.7	 37.4	 2.8	 72.9	
	 	 	 	 	 	 	 	 	
Mean	 7.7	 4.8	 6.9	 5.3	 3.8	 35.1	 3.5	 60.6	
Standard	
deviation	

0.71	 0.76	 0.26	 0.42	 0.42	 6.25	 0.56	 7.19	

	

	

Table	5-8:	Yield	data	for	East	England	from	2009	to	2013	

Year	 Crops	

Winter	
wheat	

Spring	
wheat	

Winter	
barley	

Spring	
barley	

Bea
ns	

Ware	
potatoes	

Winter	
OSR	

Sugar	
beet	

2009	 8.4	 4.7	 6.7	 6.0	 3.7	 38.5	 3.6	 64.6	
2010	 8.0	 3.9	 6.8	 5.0	 2.9	 38.2	 3.6	 56.1	
2011	 8.0	 3.9	 6.0	 4.9	 3.5	 38.1	 3.9	 68.7	
2012	 6.9	 5.0	 6.7	 5.1	 3.8	 34.1	 3.5	 61.4	
2013	 7.8	 5.3	 6.8	 5.8	 3.7	 37.8	 3.1	 66.5	
	 	 	 	 	 	 	 	 	
Mean	 7.8	 4.6	 6.6	 5.4	 3.5	 37.3	 3.5	 63.5	
Standard	
deviation	

0.56	 0.64	 0.34	 0.50	 0.36	 1.83	 0.29	 4.91	

	

Table	5-9:	Yield	data	for	West	England	from	2009	to	2013	

Year	 Crops	

Winter	
wheat	

Spring	
wheat	

Winter	
barley	

Spring	
barley	

Bean
s	

Ware	
potatoes	

Winter	
OSR	

2009	 7.8	 5.0	 6.6	 5.9	 2.8	 40.1	 3.5	

2010	 7.7	 3.5	 6.9	 5.1	 2.7	 42.7	 4.0	

2011	 8.5	 3.8	 7.1	 5.8	 3.4	 41.6	 4.3	
2012	 5.9	 3.0	 6.1	 4.4	 3.3	 27.9	 3.3	
2013	 7.2	 4.5	 6.6	 5.9	 3.5	 38.7	 3.1	
	 	 	 	 	 	 	 	
Mean	 7.4	 4.0	 6.7	 5.4	 3.1	 38.2	 3.6	
Standard	
deviation	

0.97	 0.80	 0.38	 0.66	 0.36	 5.95	 0.50	
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“It's	clear	that	agriculture,	done	right,	is	the	best	means	the	world	has	today	to	

simultaneously	tackle	food	security,	poverty	and	environmental	degradation.”	

																													―	Irene	Rosenfeld	
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Complexities	 exist	 in	 sustainable	 arable	 farming	 systems	 due	 to	 the	 associated	

conflicting	 farming	 objectives	 and	 constraints.	 To	 able	 to	 increase	 agriculture	

productivity	to	ensure	food	security	whilst	minimising	impact	on	the	environment,	

it	 is	 imperative	 to	 investigate	 agricultural	 systems	 underpinned	 by	 sustainable	

principles	 to	 identify	 efficient	 and	 sustainable	 farming	 strategies.	 With	

mathematical	models,	many	of	the	complexities	can	be	captured	and	investigated	

and	results	used	to	inform	farm	management	and	policy	decisions.	Thus	the	main	

aim	of	 the	research	was	 to	develop	a	 farm	 level	mathematical	model	 that	can	be	

used	 for	 evaluating	 economic	 as	well	 as	 environmental	 viability	 and	 riskiness	 of	

alternative	cropping	systems	that	may	be	adopted	to	deal	with	increased	pressure	

on	 input	 use.	 To	 begin	 the	 model	 development,	 a	 review	 of	 literature	 was	

conducted	 (Chapter	 1).	 The	 literature	 review	 identified	 some	 of	 the	 farm	

management	 and	 cultural	 practices,	 farm	 inputs	 and	 policies	 as	well	 as	 farming	

objectives,	 which	 are	 normally	 modelled	 or	 parameterised	 in	 farm	models.	 The	

review	 of	 mathematical	 modelling	 approaches	 identified	 gaps	 in	 models	 and	

modelling	approaches	capabilities	to	inform	the	development	of	a	robust	model.		

Chapter	2	builds	on	the	review	of	 literature	by	 investigating	the	 impact	of	

some	of	the	farm	inputs/outputs	and	policies	on	arable	farming	objectives	(profit	

maximisation	 and	 risk	 minimisation)	 identified	 through	 literature	 review.	 The	

results	showed	the	effect	of	variation	in	farm	inputs/outputs	and	policy	on	arable	

farming	objectives	and	for	farm	located	in	the	Nitrate	Vulnerable	Zones,	the	single	

farm	payment	serves	as	a	payment	for	the	opportunity	cost	for	farmers	not	being	

able	to	apply	nitrogen	fertiliser	above	the	prescribed	amount.	The	results	obtained	

from	 Chapter	 2	 and	 the	 information	 gathered	 through	 the	 literature	 review	

informed	the	development	of	an	arable	farm	level	model	which	combined	mixed-

integer,	 goal	 and	 risk	programming	approaches	 to	optimise	 farm	profit,	 risk	and	

nitrate	 leaching.	 The	model	 is	 described	 and	 validated	with	 data	 from	 the	 Farm	

Business	 Survey	 in	 Chapter	 3.	 The	 model	 was	 then	 applied	 to	 investigate	 two	
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issues	considered	to	be	significant	 in	arable	 farming	systems:	black-grass	(weed)	

control	and	farmers	risk	aversion	or	risk	behaviour	of	arable	farmers.		

The	model	was	 first	applied	 to	 investigate	 the	 impact	of	 the	adoption	of	a	

non-chemical	 control	 of	 black-grass	 using	 spring	 cropping	 on	 farm	profit	 and	 to	

some	 extent	 risk	 (Chapter	 4).	 This	 study	 is	 a	 novel	 contribution	 to	 literature	 in	

terms	of	using	linear	programming	based	(comparative	static)	model	to	investigate	

the	 effect	 of	 spring	 cropping,	particularly	winter	wheat—spring	barley	or	 spring	

beans	 rotation	 as	 a	 black-grass	 control	 measure	 on	 farm	 revenues.	 The	 results	

show	a	reduction	in	farm	revenue	in	the	short	term	but	with	potential	reductions	

in	black-grass	infestation	in	the	long	term.	The	implication	is	that	adoption	of	some	

sustainable	farming	strategies	(such	as	weed	management	strategies)	and	change	

in	 policy	 can	 make	 arable	 farming	 a	 risky	 business	 through	 reductions	 in	 farm	

revenue.		

Thus	the	model	(risk	(MOTAD)	programming	module)	was	applied	again	to	

investigate	 risk	 behaviour	 of	 arable	 farmers	 in	 England	 (Chapter	 5).	 Again,	 this	

study	is	a	novel	contribution	to	literature	in	terms	of	using	a	randomly	generated	

risk	 aversion	parameters	method	 and	 a	MOTAD	model	 to	 estimate	 absolute	 risk	

aversion	 coefficient	 under	 the	 E-V	 framework	 as	 well	 as	 investigating	 cropping	

under	 risk.	 The	 results	 show	 that	 arable	 farmers	 in	England	 are	 risk	 averse	 and	

that	farmers	would	react	to	changes	in	policy	as	well	as	input	use	differently	due	to	

differences	in	their	levels	of	risk	aversion.	The	application	of	the	model	also	shows	

its	 policy	 analysis	 relevance.	 Model	 applications	 to	 answer	 specific	 research	

questions	have	been	summarised	in	Table	6-1	below.	
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Table	6-1:	Model		applications	and	specific	research	questions	addressed	

Aims/Objective	and	Specific	Research	Questions	 Inputs	Applied		 Tools	Applied		 Outputs		

	
A. Investigation	of	factors	affecting	arable	farming	profit,	

crop	complexity	and	risk	under	the	single	farm	payment	
policy.	

	

Specific	research	questions:	
1. How	do	changes	in	rainfall	at	a	farm	location	and	moving	
from	one	soil	type	to	the	other	affect	farming	objectives?	

2. How	do	changes	in	N	fertiliser	under	different	soil	types	
and	rainfall	affect	the	arable	farming	objectives?	

3. Can	increase	in	crop	prices	influence	farmers	to	apply	N	
above	N	max	and	forgo	the	Single	Farm	Payment	(SFP)	if	

farmers	have	the	right	to	do	so?		

4. Is	there	any	difference	in	the	objectives	of	farms	applying	
the	N	max	and	receiving	the	SFP	and	those	who	may	apply	

above	the	N	max	and	forgo	the	SFP?		

	

1. Farm	inputs	(e.g.	
fertiliser,	seed,	chemical,	

machinery	and	labour)	

	

2. Farm/environmental	
factors	(e.g.	soil	type,	

rainfall)	

	

3. Economic	and	policy	
factors	(e.g.	input	and	

crop	prices,	subsidies)	

	

	

Modified	farmR	model	(farmR	

model	was	modified	to	

include	apply	the	single	farm	

payment	(SFP)	not	explicitly	

modelled.	

	

Variations	in:	

1. Farm	Profit	
2. Risk	(standard	
deviation	in	income)	

3. Crop	complexity	
	

	

	
B. Description,	verification	and	validation	of	an	arable	

farm	models	for	optimising	farm	profit,	nitrate	leaching	
and	risk.	

	

Specific	research	questions:	
1. What	is	the	degree	of	association	between	model	predicted	
crop	areas	and	observed	crop	areas	(land	use)?	

2. What	is	the	degree	of	association	between	model	predicted	
fertiliser	amounts	and	observed	fertiliser	amounts	(input	

use)?	

3. What	is	the	degree	of	association	between	model	predicted	
revenues/costs	and	observed	revenues/cost?	

	

1. Farm	inputs	(e.g.	
fertiliser,	seed,	chemical,	

machinery	and	labour)	

	

2. Farm/environmental	
factors	(e.g.	soil	type,	

rainfall)	

	

3. Economic	and	policy	
factors	(e.g.	input	and	

crop	prices,	subsidies)	

	

SAFMOD	Model	consisting	of:	

1. Mixed-integer	profit	
model	

2. Mixed-integer	nitrate	
leaching	model	

3. Mixed-integer	risk	
(MOTAD)	model	

4. Mixed-integer	weighted	
goal-programming	model	

	

Estimation	of:		

1. Farm	profit	
2. Risk	(mean	absolute	
deviation	&	standard	

deviation	in	income)	

3. Nitrate	leaching		
4. Crop	plan	(crop	areas)	
5. Farm	Costs	
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Table	6-1	Continued	

Aims/Objective	and	Specific	Research	Questions	 Inputs	Applied		 Tools	Applied		 Outputs		

	
C. Estimating	the	aggregate	cost	of	controlling	black-grass	

(Alopecurus	myosuroides)	with	spring	cropping	in	UK	
arable	farming.	

	

Specific	research	questions:	
1. What	is	the	aggregate	cost	of	black-grass	control	to	the	UK	
arable	farming	sector	using	winter	wheat—spring	barley	

rotation?	

2. What	is	the	aggregate	cost	of	black-grass	control	to	the	UK	
arable	farming	sector	using	winter	wheat—spring	beans	

rotation?	

3. Is	there	any	effect	of	controlling	black-grass	with	spring	
cropping	on	farm	risk?	

4. What	are	the	effects	of	controlling	black-grass	with	spring	
cropping	on	farm	costs?	

	

1. Farm	inputs	(e.g.	
fertiliser,	seed,	chemical,	

machinery	and	labour)	

	

2. Farm/environmental	
factors	(e.g.	soil	type,	

rainfall)	

	

3. Economic	and	policy	
factors	(e.g.	input	and	

crop	prices,	subsidies)	

	

	

SAFMOD	module	4:	

	

Mixed-integer	weighted		

goal-programming	model	

	

Estimation	and		

comparison	of	aggregate:	

1. Farm	profits	
2. Risks	(standard	
deviations	in	income)	

3. Crop	areas	
4. Fertiliser	costs	
5. Seed	costs	
6. Herbicide	costs	
7. Fixed	costs	

	
D. Model	spatially-referenced	farmer	risk	behaviour	using	

an	evolved	mixed-integer	MOTAD	approach.	
	

Specific	research	questions:	
1. Are	arable	farmers	in	England	risk	averse?	
2. Are	there	any	differences	in	risk	aversion	across	regions	in	
England?	

3. Do	the	levels	of	risk	aversion	influence	cropping	decisions?	
4. What	is	the	effect	of	policy	change	on	farmers	with	different	
levels	of	risk	aversion?	

	

	

1. Farm	inputs	(e.g.	
fertiliser,	seed,	chemical,	

machinery	and	labour)	

	

2. Farm/environmental	
factors	(e.g.	soil	type,	

rainfall)	

	

3. Economic	and	policy	
factors	(e.g.	input	and	

crop	prices,	subsidies)	

	

SAFMOD	module	3:	

	

Mixed-integer	risk	(MOTAD)	

Programming	model	

	

Estimation	of:	

1. Farm	profits	
2. Risk	(mean	absolute	
deviation	and	variance)	

3. Crop	plans	
4. Risk	aversion	
parameters/absolute	

risk	aversion	

	

Development	of	an	E-V	

frontier	
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The	model	described,	validated	and	applied	in	this	study,	was	developed	drawing	

on	 the	 strength	of	 different	mathematical	 programming	 approaches	 and	 existing	

models	so	as	the	fill	 the	gaps	identified	on	model	capabilities	(Section	1.4.6).	The	

model	consists	of	 four	modules	(see	Section	3.2.1)	and	draws	on	the	strengths	of	

mixed-integer,	 risk	 and	 goal-programming	 approaches	 to	 optimise	 farm	 profit,	

nitrate-leaching	and	risk	employing	data	from	existing	models,	farm	management	

and	related	literature.	Each	module	has	been	validated	using	data	of	281	lowland	

arable	 farms	 from	 the	 Farm	 Business	 Survey	 (FBS)	 and	 statistical	 measures	 of	

association	to	test	the	degree	of	association	between	model	results	and	observed	

farm	 data	 (Chapter	 3).	 The	 validation	 showed	 good	 association	 between	model-

generated	 crop	 areas	 and	 observed	 crop	 areas,	 and	 between	 model-estimated	

fertiliser	 amounts	 and	 observed	 fertiliser	 amounts.	 Better	 predictions	 were	

observed	 under	modules	 in	which	 risk	was	 explicitly	 incorporated	 or	modelled.	

Hazell	et	al.	(1983)	and	Cooke	et	al.	(2013)	found	the	incorporation	of	farmers’	risk	

preference	to	improve	the	predictive	power	of	models.	

Different	mathematical	modelling	approaches	have	been	applied	extensively	

to	model	agricultural	systems	and	land	use	(e.g.	Brink	and	McCarl,	1978;	Annetts	

and	Audsley,	2002;	Rounsevell	et	al.,	2003;	Cooke	et	al.,	2013).	However,	in	the	UK	

not	many	arable	 farm	mathematical	programming	models	based	on	optimisation	

approaches	 were	 identified.	 Two	 main	 models	 were	 identified:	 The	 Silsoe	 farm	

model	(SFARMOD)	(Annetts	and	Audsley,	2002)	and	the	farmR	model	(Cooke	et	al.,	

2013),	which	 is	 itself	a	mixed-integer	programming	(MIP)	 implementation	of	 the	

SFARMOD	but	explicitly	incorporate	risk.	Again,	in	UK	context,	no	arable	farm	level	

mathematical	 programming	model	 was	 found	 to	 consist	 of	 four	modules,	 which	

can	be	applied	as	stand-alone	models	as	has	been	demonstrated	in	Chapters	4	and	

5.	Thus	 the	SAFMOD	adds	 to	 the	 few	models	 (not	modular)	 identified	 in	 the	UK.	

Although	some	of	the	formulations	and	data	from	the	above	two	models	(especially	

farmR)	were	adopted	in	developing	the	SAFMOD,	there	are	some	differences.	The	

SFARMOD	is	a	multiple	objective	 linear	programming	(not	mixed-integer)	model,	

which	 optimises	 profit	 and	 environmental	 outcomes	 (nitrate-leaching	 and	

pesticide	 use).	 The	 farmR	 is	 a	 mixed-integer	 programming	 implementation	 of	
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SFARMOD	 however,	 it	 explicitly	 incorporate	 risk	 and	 does	 not	 optimise	 any	

environmental	outcome.	

Unlike	 the	 SFARMOD	 and	 the	 farmR	 models,	 SAFMOD	 consists	 of	 four	

different	 modules.	 The	 first	 module	 is	 a	 mixed-integer	 model,	 which	maximises	

farm	profit	by	selecting	optimal	crop	sequences	and	machine/labour	numbers.	The	

module	 can	 be	 more	 applicable	 is	 a	 situation	 where	 the	 focus	 is	 only	 on	 profit	

maximisation	 as	 a	 single	 objective	 without	 consideration	 to	 other	 objectives.	

Module	two	is	a	mixed-integer	nitrate-leaching	minimisation	model.	Although	it	is	

designed	as	a	pure	nitrate-leaching	minimisation	model,	profit	target	can	be	set	as	

a	constraint	and	the	model	can	be	solved	optimising	nitrate-leaching	subject	to	the	

profit	 target	 to	 carry	 out	 trade-off	 analysis	 of	 economic	 and	 environmental	

outcomes.	Again,	unlike	the	SFARMOD,	the	nitrate-leaching	estimates	 in	SAFMOD	

were	based	on	the	nitrogen	(N)	balance	approach	adopted	from	Wossink	(1993).	

This	 approach	 is	 based	 on	 N	 fertiliser	 requirement	 of	 crops,	 soil	 N	 supply	 and	

atmospheric	 deposited	 N,	 and	 thus	 makes	 it	 relatively	 easy	 to	 update	 through	

changes	in	total	N	input	determined	by	the	soil	type.	However,	due	to	lack	of	data	

on	 changes	 in	 nitrate-leaching	 amounts	 with	 respect	 to	 farm	 operation	 and	

rotation	 types,	 SAFMOD	 only	 optimises	 nitrate-leaching	 using	 base	 nitrate-

leaching	estimates	per	crop.	This	is	seen	as	a	limitation	of	the	model	in	estimating	

nitrate	 leaching,	 however,	 with	 availability	 of	 the	 data	 on	 changes	 in	 nitrate-

leaching	 amounts	 due	 to	 operation	 and	 rotation	 types,	 the	 model	 can	 be	 easily	

updated.		

The	 third	 module	 is	 a	 mixed-integer	 risk	 model	 based	 on	 the	 MOTAD	

approach.	 It	 is	 similar	 to	 the	 farmR	model	 however,	 farmR	was	 formulated	 as	 a	

multiple	objective	mixed-integer	model.	The	risk	model	in	SAFMOD	is	formulated	

as	 a	 typical	MOTAD	model	 to	parameterise	 the	 risk	 level	 (Hardaker	et	al.,	 1997)	

and	weight	can	be	attached	to	the	risk	level	to	serve	as	a	measure	of	risk	aversion.	

Such	 a	 formulation	 generates	 typical	 expected	 mean	 income-mean	 absolute	

deviation	(E-M)	frontier	or	expected	mean-variance	(E-V)	(as	shown	in	Chapter	5).	

Again,	unlike	farmR,	the	MOTAD	model	in	SAFMOD	incorporate	income	deviation	

matrix	as	constraint,	which	is	an	original	feature	of	a	MOTAD	model.	The	MOTAD	

model	 incorporates	 a	 nitrate-leaching	 minimisation	 objective	 (not	 included	 in	
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farmR)	as	a	constraint	and	the	model	can	be	solved	to	maximise	profit,	minimise	

risk	and	nitrate	leaching.	The	nitrate-leaching	objective	can	be	set	to	zero	and	the	

model	solved	as	a	pure	MOTAD	model.	To	overcome	the	single	objective	limitation	

of	 LP	 approach	 as	 well	 as	 some	 of	 the	 limitations	 linear	 programming	 based	

models	and	hence	the	models	above,	a	weighted	goal-programming	model	(fourth	

module)	 (applied	 in	 Chapter	 4)	 was	 developed	 to	 optimise	 the	 three	 objectives	

simultaneously	by	setting	goal	targets	and	attaching	weight.	This	model	is	different	

from	both	SFARMOD	and	farmR	in	that	it	is	a	goal-programming	model.		

The	comparison	of	the	SAFMOD	to	the	farmR	and	SFARMOD	are	summarised	

in	 the	 Table	 6-2	 below	 and	 it	 can	 be	 observed	 that	 apart	 from	 some	 of	 the	

differences	 highlighted	 above	 the	 SAFMOD	 offers	 other	 options	 that	 farmR	 and	

SFARMOD	are	unable	offer	in	their	current	state.	In	terms	of	machine	and	labour	

numbers,	 SAFMOD	 is	 able	 to	 select	 integer	 machine	 and	 labour	 number,	 which	

farmR	and	SFARMOD	are	unable	to.	Thus	the	continuity	assumption	in	LP	is	much	

relaxed	 in	 SAFMOD	 than	 in	 the	other	models.	With	 the	 type	of	 soil	 significant	 in	

arable	farming	systems,	unlike	the	other	models,	in	SAFMOD	the	soil	type	is	linked	

to	the	recommended	fertiliser	rates	of	crops	by	Defra.		In	terms	of	incorporation	of	

policy,	 the	 SAFMOD	 incorporates	 the	 subsidy	 payment	 based	 on	 the	 single	 farm	

payment	scheme	and	thus	makes	it	easy	for	future	updating	of	SAFMOD	to	capture	

the	newly	introduced	basic	farm	payment.	Also,	the	crop	proportion	modelling	in	

SAFMOD	 unlike	 the	 other	 models	 capture	 the	 CAP’s	 ‘greening’	 rule	 for	 crop	

diversification,	which	ensures	that	at	least	there	must	be	two	crops	in	rotation	and	

that	no	one	crop	can	 take	more	 than	70%	of	 the	cropping	area.	The	approach	 to	

modelling	 crop	 rotation	 can	be	 based	 on	 absolute	 crop	 areas	 or	 proportion	 (see	

Barnard	 and	 Nix,	 1973)	 and	 the	 SAFMOD	 offers	 the	 options	 to	 choose	 between	

approaches.		

Thus	 through	 the	 SAFMOD	 different	 assumptions	 are	 applied	 and	 several	

mathematical	 programming	 approaches	 are	 combined	 to	 create	 a	 robust	 arable	

farm	 level	 model,	 which	 offers	 four	 variants	 of	 arable	 farm	 level	 mathematical	

programming	models,	which	are	capable	of	being	applied	to	achieve	thorough	and	

deep	assessment	more	than	any	one	of	the	few	arable	farm	level	models,	based	on	

mathematical	 programming	 identified	 in	 the	 UK.	 Thus	 the	 gap	 identified	 with	
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respect	to	model	capability	under	Section	1.4.6	can	be	said	to	have	been	filled	or	

partly	filled	with	development	of	the	SAFMOD.	

Table	6-2:	Comparison	of	the	SAFMOD	and	SFARMOD	and	farmR	models	

Criteria	for	Comparison	
Models	

SAFMOD	 farmR	 SFARMOD	

A. Modelling	Approaches	 	 	 	

1. Mixed-integer	programming		 +	 +	 -	

2. Risk	(MOTAD)	programming	 +	 +	 -	

3. Weighted	goal-programming	 +	 -	 -	

	 	 	 	

B. Modules	 	 	 	

1. Standalone	pure	profit	model	 +	 -	 -	

2. Standalone	pure	nitrate	leaching	model	 +	 -	 -	
3. Standalone	MOTAD	model	with	income	deviation	

matrix	as	constraint	 +	 -	 -	

4. Standalone	weighted	goal	programming	model		 +	 -	 -	

	 	 	 	

C. Objectives	optimised		 	 	 	

1. Farm	profit	 +	 +	 +	

2. Risk	(Deviation	in	income)	 +	 +	 -	

3. 	Nitrate	leaching		 +	 -	 +	

	 	 	 	

D. Selection	of	integer	machine	and	labour	numbers		 +	 -	 -	
E. Determination	of	fertiliser	rates	of	crops	by	soil	
type	

+	 -	 -	

F. Modelling	of	single	farm	payment	(SFP)	 +	 -	 -	
G. Modelling	of	crop	proportions	to	reflect	CAP’s	
Greening	rule.	

+	 -	 -	

H. Option	for	running	model	for	mono-cropping	
scenario	

+	 -	 -	

I. Different	options	for	modelling	crop	rotation	 +	 -	 -	

J. Option	for	setting	risk	target	in	risk	model	 +	 -	 -	
K. Nitrate	leaching	model	based	on	N	balance	
approach			

+	 -	 -	

L. Inclusion	of	nitrate	leaching	minimisation	
objective	(constraint)	in	risk	model	

+	 -	 -	

Plus	(+)	sign	means	the	model	uses	the	mathematical	modelling	approach,	optimise	an	object	or	has	

the	capability	to	perform	such	function	whereas	minus	(-)	sign	means	otherwise.	
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Assessing	the	SAFMOD	under	levels	of	interaction,	it	can	be	said	to	fall	under	three	

of	the	levels	of	interaction	shown	under	Section	1.4	and	in	Table	6-3.		

Table	6-3:	Levels	of	interaction	of	the	SAFMOD	

Model	 Type	 Levels	of	Interaction	

Policy—Agricultural	

Land	Use	Level		

(P-L)	

Land	use—

Environment	Level	

(L-E)	

Climate—

Agricultural	Land	

Use	Level	(C-L)	

SAFMOD	 Comparative	static	

(Dynamics	is	

introduced	into	the	

model	through	

discrete	within	year	

periods)	

+	 +	 +	

Note:	The	plus	(+)	means	the	model	falls	under	that	level	of	interaction.	

Under	 the	 policy—agricultural	 land	 use	 interaction	 level,	 the	 model	 can	

predict	 or	 simulate	 changes	 in	 agricultural	 land	 use	 due	 to	 changes	 in	 policy.	 In	

terms	of	farm	payment	policy,	the	model	captured	the	single	farm	payment	policy	

(Nix,	 2014)	 and	 the	 proportion	 or	 the	 limitations	 put	 on	 crop	 areas	 reflect	 the	

‘greening’	rules	(Defra,	2014)	as	part	of	the	farm	payment	policy.	Changes	in	farm	

payments	(policy)	can	be	simulated	or	parameterised	to	observe	changes	in	crop	

plans	 or	 land	 use.	 The	 results	 generated	 through	model	 application	 (Chapter	 4)	

also	provide	indication	of	possible	farm	payment	to	incentivise	adoption	of	spring	

cropping	as	a	black-grass	control	measure.	Again,	in	Chapter	5	the	MOTAD	module	

was	applied	to	illustrate	policy	application	(Section	5.4.3)	by	looking	at	the	effect	

Brexit	 on	 the	 sterling	 and	 it	 subsequent	 effect	 on	 farmers’	 decision,	 attitude	

towards	 risk	 and	 land	 use.	 Thus	 SAFMOD	 can	 be	 used	 to	 simulate	 changes	 in	

cropping	(land	use)	due	to	changes	in	policy.		

In	 terms	 of	 land	 use—environment	 interaction	 level,	 the	 SAFMOD	 can	

simulate	 how	 changes	 in	 land	 use	 affect	 the	 environment.	 For	 example,	

parameterising	 the	 N	 fertiliser	 amounts	 influences	 cropping,	 which	 in	 turn	 can	

determine	 the	 level	of	nitrate-leaching	 into	underground	water.	Under	 climate—

agricultural	 land	 use	 interaction	 level,	 SAFMOD	 can	 show	 how	 variability	 in	

climate	affect	land	use.	SAFMOD	incorporates	rainfall	to	estimate	workable	hours.	

Variation	in	rainfall	can	be	simulated	to	observe	changes	in	crop	plans	selected	by	
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the	model	 (land	use),	meaning	 that	 SAFMOD	 is	 capable	 of	 simulating	 changes	 in	

land	use	due	to	changes	in	climate.	Although	there	are	some	differences,	SAFMOD	

shares	 similar	 levels	 of	 interaction	 with	 models	 such	 as	 MODAM	 (Zander	 and	

Kächele,	 1999),	 SFARMOD	 (Annetts	 and	 Audsley,	 2002),	 SWAP	 (Howitt	 et	 al.,	

2010)	and	FSSIM	(Louhichi	et	al.,	2010).	Again	in	UK	context,	SAFMOD	adds	to	the	

few	models,	which	can	be	applied	to	carry	out	scenario	modelling	with	respect	to	

the	levels	of	interactions	above.	

	

 

Arable	 farming	 systems	 are	 affected	 by	 a	 variety	 of	 factors—input	 and	 output,	

farm	specific	and	environmental	factors	and	policy	(Harwood	et	al.,	1999;	Olesen	

and	Bindi,	 2002;	 Bojnec	 and	 Lattruffe,	 2013;	Brown	 et	 al.,	 2013;	 Jannoura	et	 al.,	

2014).	These	factors	need	to	be	 investigated	to	assess	their	 impact.	 In	Chapter	2,	

sensitivity	analysis	(Pannell,	1997)	was	conducted	to	investigate	impact	of	some	of	

these	factors	on	profit,	risk	and	management	complexity	arable	farms	operating	in	

Nitrate	 Vulnerable	 Zones	 (NVZs)	 and	 receiving	 the	 Single	 Farm	 Payment	 (SFP).	

This	was	done	under	 the	assumption	 that	 farmers	have	been	given	 the	option	of	

forfeiting	the	SFP	and	applying	N	fertiliser	above	the	prescribed	amounts	(Nmax).	

Results	 showed	 that	 farmers	could	obtain	higher	yields	by	applying	above	Nmax	

however,	forfeiting	the	SFP	would	result	in	reductions	in	farm	income	and	increase	

in	risk.	The	SFP	was	found	to	act	as	payment	for	the	opportunity	cost	to	 farmers	

for	 being	 constrained	by	 the	Nitrate	Directive	 (ND)	 (EU,	 2016)	 through	 the	NVZ	

rules	to	apply	Nmax.	The	 implication	is	that	the	ND	influence	fertiliser	 input	use,	

which	in	turn	influences	crop	selection,	whereas	the	SFP	pays	for	the	opportunity	

cost	due	to	the	constraint.	Thus	both	ND	and	SFP	(policies)	can	be	said	to	influence	

how	 and	 what	 to	 produce	 (Angus	 et	 al.,	 2009).	 With	 respect	 to	 the	 approach	

adopted,	the	farming	objectives,	the	SFP	and	NVZs,	no	study	was	found	have	used	

similar	approach.	For	example,	with	respect	 to	the	SFP,	studies	that	 link	 it	 to	 the	

interactions	and	variations	in	factors	such	as	rainfall	and	soil	type	was	found	to	be	

lacking.	 This	 gap	 is	 thus	 filled	 through	 the	 approach	 adopted	 and	 hence	

contribution	to	knowledge.	
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Farm	models	are	essentially	developed	to	mimic	real	farming	systems	(Robertson	

et	 al.,	 2012)	 and	 some	 models	 are	 developed	 to	 inform	 farming	 decisions	 and	

others,	policy	decisions	(Janssen	and	van	Ittersum,	2007;	Robertson	et	al.,	2012).	

For	a	model	to	perform	its	intended	function,	keys	aspects	of	the	real	systems	are	

captured	and	modelled.	The	two	modules	of	SAFMOD	were	thus	applied	to	answer	

research	questions	in	Chapters	4	and	5.		

 Sustainable	weed	management	strategies	in	arable	farming	

Weeds	compete	with	crops	for	nutrients	and	sunlight	and	reduce	yield	potential	of	

crops	(Baligar	et	al.,	2001).	The	weed	control	measure	which	has	been	used	over	

the	years	is	the	use	of	herbicides	however,	weeds	such	as	black-grass	continue	to	

develop	 resistance	 to	 these	 chemicals	 which	 impact	 negatively	 on	 the	

environment.	 There	 is	 thus	 the	 need	 for	 non-chemical	 control	measures	 to	 help	

reduce	chemical	input	use	(Bond	and	Grundy,	2001;	Rask	and	Kristoffersen,	2007).	

One	of	such	non-chemical	strategies	was	investigated	in	Chapter	4.	The	weighted	

goal-programming	module	was	 applied	 to	 estimate	 aggregate	 cost	 of	 controlling	

black-grass	with	spring	crop	rotation.	The	results	can	 inform	farming	decision	 in	

terms	of	effect	of	the	strategy	on	farming	costs	and	benefits	in	terms	of	reductions	

in	 black-grass	 infestation	 in	 the	 long	 run.	 The	 aggregate	 cost	 estimates	 on	 per	

hectare	basis	give	indication	of	possible	farm	payment	to	incentivise	the	adoption	

of	spring	cropping	(particularly	spring	barley)	to	manage	black-grass	in	UK	arable	

farming.	 This	 study	 is	 a	 novel	 contribution	 to	 literature	 in	 terms	 of	 using	 linear	

programming	based	(comparative	static)	model	to	investigate	the	effect	of	spring	

cropping,	 specifically	winter	wheat—spring	 barley	 or	 spring	 beans	 rotation	 as	 a	

black-grass	 control	measure	on	 farm	revenues.	Although	 it	 is	 acknowledged	 that	

there	may	be	some	biases	in	the	model	estimates	influenced	by	model	formulation	

and	the	farm	data	used,	the	results	of	the	study	provide	insight	into	potential	short	

and	long	term	benefits	of	spring	cropping	as	a	black-grass	control	measure.	
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 Risk	aversion	in	arable	farming	

Risk	consideration	is	significant	in	arable	farming	in	that	information	on	farmers’	

risk-aversion	has	been	found	to	influence	land	use	and	thus	vital	for	both	farm	and	

policy	planning	(Hardaker	et	al.,	2015).	Also,	incorporating	risk	in	farm	model	has	

been	found	to	improve	predictive	power	of	model	(Cooke	et	al.,	2013).	In	Chapter	

5,	the	effect	of	farmer	risk-aversion	on	cropping	patterns	(Hazell	et	al.,	1983)	and	

hence	the	intensity	of	input	use,	are	shown.	Certain	crops	are	selected	based	on	the	

farmer’s	level	of	risk-aversion	and	the	‘riskiness’	associated	with	the	crops	due	to	

the	 variability	 their	 yields	 and	 prices	 (Hazell	 et	 al.,	 1983,	 Adesina	 and	Ouattara,	

2000).	 Illustration	 of	 policy	 application	 of	 the	 risk	 module	 showed	 how	 arable	

farmers	would	react	to	policy	change	depending	on	their	level	of	risk-aversion	or	

where	they	are	‘sat’	on	the	efficient	E-V	frontier.	These	findings	can	inform	farming	

decisions	 as	 far	 as	 crop	 selection	 is	 concerned.	 In	 terms	 of	 policy,	 the	 results	

showed	policy	analysis	relevance	of	the	model	and	the	need	for	regionalised	policy	

since	farmers	are	likely	to	react	to	changes	in	policy	differently	depending	on	their	

level	of	risk-aversion,	influenced	by	where	they	are	located.	Many	approaches	have	

been	 applied	 in	 eliciting	 farmers	 absolute	 risk	 aversion,	 however,	 no	 study	was	

found	to	have	used	randomly	generated	risk	aversion	parameters	and	MOTAD	to	

develop	and	E-V	frontier	as	well	as	estimate	absolute	risk	aversion	coefficients	for	

different	 regions	 in	 England.	 This	 study	 thus	 filled	 this	 gap	 and	 the	 novel	

contribution	to	knowledge	lies	in	the	methodology.	

	

 

As	 part	 of	 the	main	 research	 aim,	 an	 arable	 farm	 level	 has	 been	 created,	 which	

offer	four	variants	of	whole	arable	farm	models	capable	of	being	applied	to	carry	

out	 thorough	assessment	 as	 far	 as	 farm	 systems	analysis	 is	 concerned.	Although	

results	 generated	 through	 the	 model	 application	 based	 on	 assumptions	 set,	

mathematical	programming	and	data	used	can	serve	as	guides	in	decision-making	

in	arable	 farming,	as	with	all	mathematical	programming	models,	 they	cannot	be	

devoid	 of	 limitations	 or	 drawbacks.	 It	 is	 acknowledged	 that	 mathematical	

programming	models	based	on	comparative	static	approach	may	fail	to	capture	the	

dynamic	nature	of	some	aspects	of	 the	arable	 farming	systems.	 In	such	 instances	
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dynamic/recursive	 or	 stochastic	 programming	 approaches	 be	 more	 suitable.	

However,	 with	 farming	 decision	 normally	 taken	 within	 year,	 farming	 analysis	

based	on	an	LP	model	for	a	single	year	with	discrete	within	year	periods	(as	in	the	

case	of	SAFMOD)	can	generate	reasonable	or	satisfactory	results	fit	for	purpose	in	

farm	systems	analysis.	

In	Chapter	4,	 the	weighted	goal-programming	model	 is	applied	 to	carry	out	

an	economic	assessment	of	spring	cropping	as	black-grass	management	strategy.	

Although	 the	 study	 results	 provide	 indication	 about	 the	 possible	 economic	

outcome	of	adopting	the	strategy,	some	limitations	are	acknowledged.	Firstly,	with	

spring	cropping	capable	of	reducing	black-grass	population,	the	implication	is	that	

there	can	be	benefits	 in	 terms	of	 long	 terms	of	 improvement	or	 increase	 in	yield	

(and	hence	farm	revenue)	in	subsequent	years(s).	The	consideration	of	such	long	

term	benefit,	although	is	out	of	the	scope	of	the	study	due	to	focus	on	comparison	

of	the	cost/benefits	of	two	cropping	plans,	elimination	of	such	long	term	benefit	is	

acknowledged	as	a	 limitation	 in	 the	analysis	and	hence	a	 limitation	of	 the	 study.	

Secondly,	in	black-grass	management,	the	decision	taken	in	one	year	may	influence	

decision-making	 in	 another	 year.	 This	 means	 the	 incorporation	 of	 black-grass	

population	dynamics	through	dynamic	programming	approaches	can	be	very	vital	

and	thus	ignoring	such	dynamic	nature	of	the	problem	could	affect	the	robustness	

of	 the	 results	and	hence	acknowledged	as	another	 limitation.	Thirdly,	 four	 crops	

were	selected	for	the	study	(winter	wheat,	spring	barley,	spring	beans	and	winter	

oilseed	 rape)	 meaning	 that	 other	 crops	 of	 economic	 importance	 such	 as	 winter	

barley	are	eliminated	and	thus	could	affect	the	accuracy	of	the	aggregate	estimates.	

Finally,	aggregate	bias	is	one	of	the	problems	in	LP	approach	(Buckwell	and	Hazell,	

1972)	due	to	differences	in	characteristics	among	farmers.	Thus	with	use	of	data	of	

farms	 of	 different	 sizes,	 although	 the	model	was	 run	 for	 each	 farm	 based	 on	 its	

own	data,	there	can	still	be	existence	of	possible	aggregation	error	and	this	can	be	

seen	as	another	limitation	of	the	aggregation	approach	and	hence	limitation	of	the	

study.	

In	 Chapter	 5,	 a	 mixed-integer	 MOTAD	 model	 was	 applied	 to	 evaluate	 risk	

aversion	parameters	of	arable	farmers	under	the	E-V	framework.	Limitation	of	the	

study	 is	 acknowledged	 through	 the	 limitations	 associated	 with	 the	 MOTAD	
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approach	(Hardaker	et	al.,	2015)	although	MOTAD	deals	with	the	single	objective	

limitation	 of	 linear	 programming.	 One	 of	 the	 well-known	 approaches	 in	 risk	

programming	 is	 quadratic	 programming	 (QR)	 with	 some	 advances	 in	 risk	

programming	 approaches	 through	 the	 use	 of	 stochastic	 and	 the	maximisation	 of	

direct	utility	programming	approaches	(Hardaker	et	al.,	2015).	Although	there	are	

similarities	between	these	approaches	and	MOTAD	in	terms	of	the	structure	of	the	

technical	 constraints	 and	 are	 also	 associated	 with	 limitations,	 they	 have	 been	

found	 to	 generate	 more	 risk	 efficient	 crop	 plans	 than	 MOTAD	 (Hardaker	 et	 al.,	

2015).	The	mean	absolute	deviation	in	MOTAD	has	been	found	to	outperform	the	

sample	 variance	 in	 QR	 in	 instances	 where	 the	 distribution	 of	 farm	 income	 is	

skewed	 (Hazell	 and	 Norton,	 1986)	 however,	 choosing	 MOTAD	 over	 approaches	

such	as	stochastic	simulation	programming	means	ignoring	the	random	variation	

in	 so	 many	 factors	 which	 influence	 the	 arable	 and	 are	 associated	 with	 random	

variation.	 Thus	 this	 limitation	 of	 the	 MOTAD	 approach	 may	 translate	 into	 the	

limitation	of	the	study.	

	

 

 Pesticide	minimisation	and	further	nitrate	leaching	modelling	

Negative	externalities	are	associated	with	arable	farming	due	to	the	intensive	use	

of	 risk-reducing	 inputs	 such	 as	 fertiliser	 and	 pesticides	 (Skevas	 and	 Lansink,	

2014).	Although	the	SAFMOD	optimises	nitrate-leaching	using	base	estimates	 for	

crops,	 with	 the	 availability	 of	 data,	 future	 updating	 of	 the	 model	 to	 take	 into	

consideration	 nitrate-leaching	 with	 respect	 to	 farm	 operation	 and	 rotation	

sequences	(Annetts	and	Audsley,	2002)	could	lead	to	more	robust	nitrate	leaching	

estimates.	Also,	with	the	effect	of	pest	on	arable	farming	productivity	(Sinden	et	al.,	

2004;	 Popp	 et	 al.,	 2013),	 coupled	 with	 arable	 farmers	 being	 identified	 as	 risk-

averse	 (Chapter	5)	 and	are	 likely	 to	 apply	pesticide	 to	 safeguard	yield,	 it	will	 be	

imperative	 in	 future	 to	 update	 the	model	 to	 incorporate	 pesticide	minimisation	

objective	 especially	 with	 respect	 to	 black-grass	 population	 dynamics	 and	

management.	This	 could	aid	 in	 the	prediction	of	 robust	optimal	 crop/farm	plans	

for	weed	management.	
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 Further	validation	with	regional	or	county	level	data	

The	validation	 (Chapter	3)	 and	model	 application	 (Chapter	5)	 show	 the	effect	 of	

incorporating	 risk	 in	 the	 predictive	 power	 of	models	 (Hazell	 et	 al.,	 1983).	 Going	

forward,	model	can	be	calibrated	for	different	counties	in	the	UK	to	predict	optimal	

crops	plans	as	well	as	investigate	the	effect	of	policy	change	on	farms	in	different	

regions	or	counties	depending	on	their	risk-aversion	levels.	

 Environmental	and	economic	goals	trade-off	modelling	

The	 trade-off	 in	 sustainable	 arable	 farming	 systems	 is	 primarily	 between	

environmental	 and	 economic	 objectives	 (Tilman	 et	 al.,	 2002).	 Thus	 the	 goal-

programming	 model	 can	 be	 calibrated	 to	 generate	 trade-offs	 between	 these	

objectives	under	different	environmental	and	economic	scenarios	to	select	optimal	

farm	plans	to	inform	farming	decisions.	Also,	sensitivity	analysis	of	all	farm	inputs	

and	outputs,	policy,	farm	and	environmental	parameters	to	investigate	their	effect	

on	crop	selection	in	order	to	better	inform	farming	decision.		

 Livestock	system	modelling	

The	 livestock	sector	contributes	 immensely	 to	 total	agricultural	output	 in	 the	UK	

(Thornton,	 2010;	 Defra,	 2015).	 Also,	 the	 livestock	 sector	 contributes	 to	 the	

negative	externalities	from	agriculture	(McMichael	et	al.,	2007;	Garnett,	2009;	Gill	

et	 al.,	 2010)	 to	 the	 environment.	 Thus,	 going	 forward,	 it	 will	 be	 imperative	 to	

extend	 the	SAFMOD	to	 include	 livestock	 farm	 level	modelling.	With	 this,	a	better	

assessment	 of	 wholly	 livestock	 farming	 or	 mixed	 farming	 systems	 can	 be	

conducted	 to	 effectively	 inform	 farming	 and	 policy	 decisions.	 Through	 the	

inclusion	of	livestock	systems,	farm	manure	analysis	can	be	incorporated	into	the	

SAFMOD.	

 Dynamic/stochastic	modelling		

With	dynamic	nature	of	some	aspect	of	arable	farming	systems	as	well	as	random	

variation	 associated	 the	 factors	 such	 as	weather,	 price,	which	 influence	 decision	

making	 in	 arable	 farming,	 future	 updating	 of	 the	 SAFMOD	 to	 capture	 such	

dynamics	 can	be	vital	 in	 the	model’s	predictive	power.	Also,	 combining	SAFMOD	

with	 black-grass	 population	 dynamics	 can	 go	 a	 long	 way	 in	 generating	 robust	

results,	which	can	effectively	 inform	black-grass	management	decisions	 in	arable	
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farming.	In	terms	of	risk	modelling,	stochastic	programming	although	complicated,	

can	be	applied	to	develop	a	risk	model	more	capable	of	capturing	random	variation	

associated	with	arable	farming	factors	better.	

	

 

Mathematical	 programming	models	 have	 the	 capabilities	 to	 capture	many	 of	 the	

complexities	 in	 arable	 farming	 systems.	 In	 this	 research,	 an	 arable	 farm	 level	

model,	 which	 consists	 of	 four	 modules,	 has	 been	 developed	 and	 validated.	 The	

model	adds	four	variants	of	arable	farm	models	to	the	few	farm	models	identified	

in	 the	 UK	 by	 drawing	 on	 the	 strengths	 of	 different	 mathematical	 modelling	

approaches.	The	model	thus	offers	an	ensemble	of	arable	farm	level	mathematical	

programming	 modelling	 tools,	 which	 can	 be	 used	 to	 carry	 out	 thorough	

assessment	in	arable	farming	system	than	any	one	of	the	model	identified	could	do	

especially	in	the	UK	context.	Through	this	model,	the	aggregate	cost	of	black-grass	

control	 with	 spring	 cropping	 has	 been	 investigated	 and	 estimated	 for	 the	 UK	

arable	 farming	sector.	The	per	hectare	estimates	give	 indication	of	possible	 farm	

payments	to	incentivise	adoption	of	spring	cropping	as	a	black-grass	management	

strategy.	Again	through	the	model,	a	randomly	generated	risk-aversion	parameter	

method	has	been	applied	to	estimate	absolute	risk-aversion	coefficient	under	the	

E-V	framework	for	arable	farmers	in	England.		Policy	application	illustration	of	the	

model	 shows	 the	 relevance	 of	 the	 model	 in	 policy	 analysis	 and	 the	 need	 for	

regional	policies	tailored	to	risk	aversion.	In	this	thesis,	it	has	been	demonstrated	

that	mathematical	modelling	approach	can	be	applied	to	analyse	different	aspects	

of,	 as	well	 as	 innovations	 in	 arable	 farming	 systems.	 Although	 effectiveness	 of	 a	

model	lies	in	its	specification	and	the	quality	of	data	used,	with	availability	of	data	

and	 continuous	 validation	 of	 the	 model,	 results	 generated	 by	 the	 model	 can	

effectively	 inform	 farming	 and	 policy	 decisions	 to	 enhance	 the	 development	 of	

robust	and	sustainable	arable	farming	systems	for	multiple	benefits	to	ensure	food	

security	and	safeguard	the	environment.		
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