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Abstract 

There is an ever-increasing use of sustainable, bio-derived feedstocks in fuel 

oils including hydrogenated vegetable oil (HVO) from agricultural or recycled 

sources. HVO fuels consist of a narrow alkane distribution mainly octadecane 

(C18) and hexadecane (C16). Such fuels crystallise easily, which can lead to 

vehicle failures in cold weather conditions. This thesis examines the interplay 

between crystallisation kinetics, crystal structure and phase behaviour using 

model C18/C16 alkane mixtures.  

Computational systematic search modelling in combination with high 

resolution synchrotron X-ray powder data yields its crystallographic structure 

for C18 and C16 together with their volume thermal expansion coefficients: 

4.39 ± (1.94) × 10−4  ˚C-1 and 4.17 ± (2.48) × 10−4  ˚C-1. Morphological 

analysis of C18 crystals reveals a plate-like morphology dominated by the 

{001} habit plane with smaller side faces (depending upon supersaturation). 

Analysis of C18/C16 binary phase diagram reveals five single phases (liquid, 

R1, Mdcp, Op and T18) and five three-phase-equilibrium invariants (eutectic and 

peritectic at high temperature, eutectoid and peritectoid at low temperature). 

Kinetic studies reveal the crossover behaviour of the R1 existed in a transient 

to metastable to stable phase, which the stability is affected by both 

composition and alkane chain length.  

Studies of the ternary C18/C16/kerosene system reveal a variety of different 

structures with compositions close to that of its pure components forming 

solid-solution in triclinic structures, whilst high relative fractions result in its 

formation of multiple phases (triclinic and two higher symmetry structures). 

Rotator induced crystallisation observed in melt phase crystallisation is also 

formed in solution crystallisation but only for C18/C16 mixtures with its 

metastability depending on the composition.  

Solubility studies reveal the closest to the ideal condition with highest solubility 

in n-dodecane followed by kerosene and toluene respectively. Calculated 

activity coefficients reflect the non-identical phase formation in the solution 

phase with higher deviations for C18 molar compositions of x=0.1, 0.5-0.7. 

Solvents type is not found to have any significant effect on its solid for 

structure behaviour for C18/C16 mixtures. 

Crystallisation of C18/C16 mixtures for most compositions in the three 

solvents are found to be mediated by progressive nucleation mechanism. 

Cases of instantaneous nucleation are also seen in particularly compositions 

with higher C18 concentration. Progressive nucleation reveals well correlated 
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with wider metastable zone width and concomitant larger interfacial tension 

(1.33-1.64  
𝑚𝐽

𝑚2 ). Higher solubility is found to accelerate the instantaneous 

nucleation by increasing effective solute concentration, whilst inhibit the 

progressive nucleation by causing larger interfacial tension.  
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Summary: 

A general description of the background and motivation of this work will be 

first introduced. Followed by the defined research question and objectives 

and how these could be accomplished by a brief delivery plan. Finally, 

management of this project and an outline of the thesis structure will be 

given. 
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1.1 Industrial Background 

Increasing concerns with the shortage of feedstock availability of non-

renewable petroleum product and greenhouse emissions have caused 

increasing demand for a search for alternative energy sources. Fuels derived 

from biomass lipids such as vegetable oils and animal fats have received 

increasing attention [1, 2]. Different conversion processes of triglycerides 

(vegetable or animal fats) using different bio-feedstocks will yield fuels with 

different compositions and properties. The most dominant of these bio-fuels 

is biodiesel which is defined as a Fatty Acid Methyl Ester (FAME) obtained by 

a trans-esterification process of triglycerides with alcohol (Figure 1.1) [3]. 

 

 

Figure 1.1 Chemical reactions of trans-esterification process of 
triglyceride to methyl esters [4]. 

 

Alternatively, hydrotreatment of vegetable oil (HVO) [5] is another way to 

produce “renewable diesel fuels” used as a blending component for 

petrodiesel fuels having a similar composition to petrodiesel with a very high 

cetane number (80-100) and great fuel properties. Typically, the products of 

HVO fuels are mixtures of hydrocarbons (n-alkanes) and by-products are 

propane, water, CO and CO2. The advantages of the HVO often referred as 

the second generation of biodiesel, are its compatibility with diesel and the 

flexibility of feedstock. A series of complicated chemical reactions were 

induced during the conversion process given in Figure 1.2. First of all, the 

unsaturated double bonds in triglycerides were hydrogenated with hydrogen. 

After that, the removal of oxygen, n-alkanes with an even carbon chain parity, 

i.e. octadecane (C18) and hexadecane (C16) could be obtained as the main 

components of the HVO fuels [6]. 
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Figure 1.2 Scheme for hydrogenation reactions of triglycerides to 
normal alkanes [7].  

 

Technologically, the cold flow properties of the hydrocarbon fuels like HVO 

and diesel are undesirable due to the high crystallisation temperatures of long 

chain compounds. The high molecular weight alkanes become saturated 

during cooling, which precipitates and acts as a nucleus for further 

crystallisation. Due to the interactions between the methylene groups in the 

chains rather than the slow-growing end groups, diesel fuel crystallises as 

plate-like crystals. At low temperatures, the flat plate-like wax crystals (Figure 

1.3) form and melt together which can block the filters causing the low 

operability of vehicles in cold climate regions. The studies on additives to 

modify crystal shape and crystallisation temperature on the mixture of diesel 

fuel have been investigated for many years. Conventional additives can partly 

destabilise the fast-growing faces of these wax crystals and produce more 

compact habits in which the crystals are usually needle-like in shape and 

much reduced in size [8, 9]. However, the consequence of variance 

distribution of carbon number blending with this HVO into the traditional diesel 

has altered the crystallisation mechanism of this “new” fuel which means there 

is a necessity for the development of novel additives. A few attempts have 

been made to determine the structure of isolated petroleum waxes and to 

understand the nature of crystallisation when mixed back into dewaxed oil or 

solvent in known proportions. The mechanism of additive action has been 

explained in terms of crystal formation. However, the knowledge of the 

composition of HVO (mainly C18 and C16) in terms of its crystallisation 

behaviour as a mixture of diesel is inadequate. No attempt appears to have 

been made to understand the changes that occur in the lattice structure of this 

new fuel when they are forming gels and also the effects of the nature of the 

solvents. 
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To be able to cope with new and changing demands from the economic sector, 

it is vital that an overall understanding of the crystallisation behaviour of these 

fuels associated with their structure, morphology, solubility and kinetic 

behaviour is studied. As a result of that, this research aims to understand the 

crystallisation of model C18/C16 alkane mixtures through examination of their 

melt and solution states. 

 

 

Figure 1.3 The wax crystal morphology for n-alkane crystallised from 
diesel fuel into plate-like crystals [10]. 

 

1.2 Research Aims and Objectives 

As a result of these issues, this project aims to understand the interplay 

between crystallisation kinetics, crystal structure and phase behaviour in 

biofuels derived from HVO feedstock solutions, notably the octadecane (C18) 

and hexadecane (C16) mixtures. The question underlying this PhD research 

is: 

 

How does the addition of C18/C16 binary mixtures influence the crystallisation 

of diesel fuel and how does this relate to the structural properties of the 

crystals. 
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This research can be delivered through the following objectives: 

 Determine the phase diagram and corresponding crystal structures of 

binary mixtures of C18/C16 measured as a function of composition for 

both in melt and solutions. 

 Establish the solubility and solution ideality in representative model 

solvents, i.e. dodecane, toluene and kerosene. 

 Characterise the nucleation and growth kinetics of binary mixtures of 

C18/C16 measured as a function of solvent and composition. 

 Study the morphologies and growth rates of C16/C18 mixtures as a 

function of supersaturation in representative solvents, i.e. n-dodecane, 

toluene and kerosene. 

 Apply the characterisation methods developed in the above studies 

into blended diesel & biodiesel fuel systems. 

 

To accomplish these objectives, a delivery plan for this PhD work has been 

developed as outlined below: 

 

 

Figure 1.4 Thesis delivery plan route 

 



- 6 - 

1.3 Project Management 

This research project is supported by industrial sponsorship from Infineum UK 

Ltd. The majority of the research work has been carried out at the Institute of 

Particle Science and Engineering at the University of Leeds. This research 

work was carried out under the supervision of Professor Kevin Roberts and 

supported by Dr Xiaojun Lai from the University of Leeds. My supervisor from 

our industrial partners was Dr Ken Lewtas, and Dr Iain More and Prof Peter 

Dowding from Infineum UK Ltd. 

The structure prediction of octadecane carried out in Chapter 5 was carried 

out in collaboration with Dr Robert Hammond from the University of Leeds and 

Prof Jim Kaduk from American Crystallography Association (ACA) Summer 

School provided training in crystal structure analysing methods. Development 

of the poly-thermal technique for analysing solubility and crystallisation kinetics in 

Chapters 8 and 9 was carried out in collaboration with Dr Diana Camacho-Corzo 

from the University of Leeds. The collection and analysis of crystallisation data 

in toluene solvent were supported by a supervised MEng student Mr Peter 

Lloyd Kaskiewicz. 

The high resolution X-ray diffraction data using a STOE diffractometer was 

collected with the help of Dr Peter Hutchins (Infineum) and was carried out in 

the Organic Chemistry Laboratory of University of College London (UCL). The 

synchrotron high resolution X-ray diffraction at beamline I11 was carried out 

with Dr Peter Hutchins and I11 beamline scientist Chiu Tang. 

1.4 Report Structure 

This report is divided into ten chapters as listed in Figure 1.3. Following this 

introduction, Chapter 1 will be the literature review summarised in two 

chapters. Chapter 2 will be a review of basic knowledge about crystallisation 

science, crystallisation in solution phase and characteristic methods theory. 

Chapter 3 will describe the previous study of crystallisation science of n-

alkanes. Chapter 4 will be an overview of materials and methods including the 

materials, equipment and methodologies. 

The results and discussion of this study will be divided into five chapters from 

Chapter 5 to Chapter 9 around the research of C18/C16 binary mixtures 

crystallisation behaviour in different crystallisation environments using various 

techniques. The Conclusions and Recommendations for Future Work will be 

given in the final chapter, Chapter 10. 
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Figure 1.5 Schematic of the report layout 
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Summary: 

Reviews the fundamental knowledge of crystallisation science from crystal 

chemistry, crystallography, morphology, phase equilibria, solubility and 

nucleation. Together with a review of the theory of characteristic techniques 

as employed in this research. 

 



- 9 - 

2.1 Introduction 

This chapter will introduce the fundamental knowledge of crystallisation 

science from crystal chemistry and crystallography to solution solubility and 

nucleation kinetics. In addition, the theory of characteristic techniques will be 

reviewed at the end of this chapter. 

2.2  Crystals and their Structures 

2.2.1 Crystallography 

 

Crystals are referred to as three-dimensional repeating patterns of the ordered 

arrangement of motifs, i.e. atoms, ions or molecules. For the purpose of 

simplification, the motifs in the crystal are imagined by the points with an 

identical environment in a 3-dimensional pattern which is known as a lattice. 

Within it, the smallest repeat is a parallelepipe defined as the unit cell. In 

Figure 2.1, a 3-dimensional unit cell is described as in crystallographic co-

ordinate axes (x, y, and z). The lengths of unit cells parallel to the reference 

axes are (a, b, c) together with the interaxial angles which are (α, β, γ) these 

are the six lattice parameters [11]. 

 

 

Figure 2.1:  A representative unit cell with crystallographic axes (x, y, 
and z) and lattice parameters (a, b, c, α, β, γ) [11]. 

 

In order to describe the periodicity of crystals, one other element besides the 

lattice repetition is used, which is symmetry. Most crystals can show some 

degree of symmetry in appearance and this can be used to classify the 
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crystals. For the entire unit cell, there are four types of macroscopic symmetry 

elements: rotation axes, mirror planes, inversion centre, rotation-inversion 

axes. On one hand, microscopic symmetry is usually used to describe the 

arrangement of the atomic or molecular positions [12]. While some crystals 

may have more than one symmetry element, for instance, cubic unit cells, 

others may have none [13]. 

In total, there are 32 possible symmetry elements which can be combined in 

the crystalline bodies as mentioned above. These so called 32 point groups 

can be classified into seven crystal systems including cubic, tetragonal, 

orthorhombic, rhombohedral, hexagonal, monoclinic, and triclinic as shown in 

Figure 2.2. 

 

Figure 2.2:  Representation of seven possible crystal unit cells [13] 

 

Due to the identical environment of the space lattices in a crystal, there are 14 

different space lattices, known as “Bravais Lattice” based on the seven crystal 

systems as shown in Figure 2.3. 

 

 

Figure 2.3:  The fourteen possible space lattice called Bravais Lattices 
[14] 

 

 Cubic                Tetragonal            Orthorhombic        Rhombohedral          Hexagonal               Monoclinic                      Triclinic 

  Simple               Body-centred         Face-centred              Simple            Body-centred            Simple                Body-centred 

 cubic (P)               cubic (I)                cubic (F)             tetragonal (P)       tetragonal (I)     orthorhombic (P)     orthorhombic (I)

   Base-centred           Face-centred        Rhombohedral       Hexagonal (P)              Simple                  Base-centred                 Triclinic (P) 

orthorhombic (C)    orthorhombic (F)             (R)                                                monoclinic (P)          monoclinic (C)
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2.2.2 Planes and Miller Indices 

Crystallographic planes are described by a set of indices referred to as Miller 

indices. The crystallographic axes in the plane are fractional intercepts. The 

reciprocals of the intercepts are defined as (h, k, l) values in the Miller indices. 

An example of a plane with assigned Miller indices (100) is shown in Figure 

2.4. The plane has an intercept on the x-axis which is equal to one, the surface 

is parallel to the y-axis and z-axis with infinity intercepts. Therefore the 

resultant fractional intercepts are (1,∞,∞) and with regarded Miller indices are 

(1,0,0). 

 

 

 

 

Figure 2.4:  Representation of planes together with their Miller indices 
for a cubic cell [15] 
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2.2.3 Crystal Chemistry and Polymorphism 

 

The chemistry of a crystal is subject to forces acting between its molecules or 

particles along with their physical properties, such as size, shape and 

rotational capacity, all of which affect the crystal structure. Intermolecular 

bonding plays a key role in the properties of a crystal, with both strong 

(hydrogen and ionic bonds) and weak (Van der Waals and dipole-dipole 

interactions) as well as short (Van der Waals and hydrogen bonds) and long 

(dipole-dipole and ionic bonds) range interactions between molecules having 

a great effect on mechanical and thermal properties. Organic solids are held 

together by relatively weak forces, therefore the intensity of these interactions 

has an effect on the structure itself, with the isotropic behaviour leading to the 

lowest possible bond length as the molecules maximise the bonding strength. 

 

Polymorphism is defined as a solid material existing in multiple forms of 

structural crystalline, referred to as polymorphs, which are chemically identical 

but with varied physicochemical properties, i.e. solubility, thermodynamic 

properties, conductivity and thermal expansion. Polymorphs with different 

lattice parameters are normally environmentally dependent on factors such as 

temperature, solvent nature and the effect of impurities. A different degree of 

stability is associated with different polymorphs referred as a metastable form 

(least stable) which is crystallised first according to Ostwald’s rule. While the 

stability of the metastable phase can be varied from seconds to longer-lived, 

the transition of polymorphs including the metastable form of organic material 

is highly relative to the change of intermolecular interactions with resultant 

packing and conformational differences. 

 

2.2.4 Crystal Morphology 

 

The external shape of a crystal defines the crystal morphology and habit. 

Different crystal faces have different growth rates and relative orientation due 

to different functional group attachment energy. This is in relation to the 

strength of the intermolecular interactions in specific crystallographic 

directions in directing growth rates. 
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The final crystalline shape of the particle is the slowest growing face. Overall, 

the growth rate of crystal faces depends on the structure, impurity 

supersaturation and solvent type [16]. Crystal morphology is particularly 

important to the fuel and biofuel industry using additives and impurities to 

inhibit the growth of specific faces and modify the plate-like crystals to needle-

like and improve the flowability. 

 

2.3 Phase Equilibria 

2.3.1 The Phase Rule 

A phase is a homogeneous part of a system with identical physical nature. 

Any system comprising multiple phases is defined as a heterogeneous 

system. The thermodynamic equilibrium follows Gibb’s phase rule, 𝐹 = 𝐶 −

𝑃 + 2  where F is the number of freedom degrees, C is the number of 

components and P is the number of phases. The main variables which can 

affect the phase number in a system are temperature, pressure or 

concentrations. Without changing the number of phases, however, one or 

more variables can be independently changed, the number is defined as 

degrees of freedom in a phase diagram. Whilst the number of components in 

a system is chemically dependent and is always fixed. 

An example of a one-component system of water, ice and vapour, as three 

phases are in equilibrium with C=1, P=3 and F=0. Therefore, no variables can 

be changed without phase transformation and the system will be defined as 

invariant. 

2.3.2 Two Component Phase Diagram 

A phase diagram showing conditions at which thermodynamically distinct 

phases can exist at equilibrium in the system with certain variables such as 

temperature, concentration and pressure. For normal crystallisation 

processes, the main attention will be on the temperature and component 

concentration effects. Thus the phase changes can be represented on a 

temperature-composition (T-X) diagram at constant pressure. The phase rule 

is therefore reduced to F=C-P+1. Simple types of two-component solid phase 

in eutectic and solid solution are given in Figure 2.5 to illustrate that 

information can be obtained from a phase diagram. 

A solid solution is two phases behaving like a homogeneous liquid solution 

with complete miscibility in the solid phase (Figure 2.5a). TA and TB are the 
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melting point of the single components of A and B, respectively. All 

compositions of the two mixtures have melting temperatures between TA and 

TB, notably as a temperature range rather than a point. The onset point of 

melting is the liquidus point, defined at the beginning of liquid formation, and 

whereas the end point is the last solid which becomes liquid and is defined as 

the solidus point. In between the liquidus and solidus points are solid and 

liquid mixtures. For example point O, denotes a liquid of composition C in 

equilibrium with a solid solution of composition D. To determine the amount of 

solid and liquid existing at this point, the lever rule can be applied by 

measuring the distances of OC, OD, and CD: mass of solid (with composition 

D) = [x/(x + y)],  while the mass of liquid (with composition C) = [y/(x + y)]. 

Another extreme condition is one where the two mixed solids are entirely 

insoluble, which is called the eutectic system and this is shown in Figure 2.5b. 

The temperatures above the liquidus line of the two components are 

completely soluble liquid while at the temperature below the solidus line they 

are a mixture of crystals A and B. The melting temperatures of all the 

compositions are reduced and the onset points are identical at the eutectic 

temperature TE. The eutectic point (E) can be distinguished as the only 

composition of mixture components where melting occurs immediately at one 

point. The system is invariant, in which three phases of liquid, crystal A and B 

are in equilibrium with C=2, P=3 and F=0 according to the reduced phase rule. 

 

 

Figure 2.5:  Simple two-component phase diagram with temperature 
versus composition (T-X): (a) Solid solution type; (b) Eutectic 

mixture. 
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2.4 Solutions, Solubility and Supersaturation 

2.4.1 Melts, Solutions and Solubility 

 

A solution is a homogeneous mixture of two or more components including 

gaseous, liquid and solid. It is conventionally known as solvents and solutions 

within a liquid solution. Strictly, a liquid phase that is close to its freezing point 

should be referred to as a melt phase, this also includes multiple substances 

that are homogenously mixed in liquid and will crystallise out at different 

temperatures towards a cooling process. A solution is formed which involves 

the solute separating into ions or molecules, and each ion or molecule is 

surrounded by molecules of solvent, the interaction between the solute 

particles and the solvent molecules is called solvation. The enthalpy change 

in solution during dissolution will first involve internal energy to break the 

intermolecular bonds between solvent-solvent and solute-solute interaction 

respectively. In addition, energy will be released when new bonds are formed 

between solute-solvent molecules [13]. 

When excess solid is mixed with a solvent at a constant temperature, the solid 

will dissolve until equilibrium is established. The composition of this saturated 

solution is the equilibrium solubility at that temperature. The solubility of a 

substance fundamentally depends on the physical and chemical properties of 

the solute and solvent, i.e. particle size. In common, the solubility of a solution 

will increase with increasing temperature. A disconnected point of the 

solubility curve indicates the phase transition point as well [17]. 

 

2.3.2 Ideal and Non-ideal Solutions 

An ideal solution is in terms of the molecular interaction from solute-solvent 

molecules being the same as the solute-solute and solvent-solvent molecules 

in the solution [13]. Even though the critical ideal solution is unrealistic, this 

definition can still be used as a reference of the ideality of a solvent. For an 

ideal solution, the solubility can be calculated by Van’t Hoff’s equation: 

 

ln 𝑥 =  
∆𝐻𝑓

𝑅
[

1

𝑇𝑓
−

1

𝑇
] 

(2.1) 
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where, 

x is the mole fraction of the solute in the solution, 

T is the solution temperature (K), 

𝑇𝑓 is the melting temperature of the solute (K), 

∆𝐻𝑓 is the molar enthalpy of melting of the solute (J mol-1 ), 

R is the gas constant (J mol-1 K-1). 

 

The solubility of an ideal solution at any temperature can be calculated by the 

known melting temperature and the enthalpy of fusion. However, this solubility 

curve is not related to any specific solution. Since ∆𝐻𝑓 is equal to 𝑇𝑓 multiple 

∆𝑆𝑓 which is the entropy of fusion. The Van’t Hoff equation can be substituted 

into: 

ln 𝑥 =  −
∆𝐻𝑓

𝑅𝑇
+

∆𝑆𝑓

𝑅
   

(2.2) 

In addition, a plot of ln𝑥 versus 
1

𝑇
 for ideal and experimental solubility provides 

a useful tool of how the system behaves with respect to the solute and the 

solvent. As the slope of this plot should be the value of −
∆𝐻𝑓

𝑅
 for the ideal 

solution, otherwise the solution shows non-ideality. In this case, the change in 

enthalpy and entropy of the mixing solution have to be taken into account. 

Equation (2.2) should be changed as: 

 

ln 𝑥 =  −
∆𝐻𝑑𝑖𝑠𝑠

𝑅𝑇
+

∆𝑆𝑑𝑖𝑠𝑠

𝑅
        

(2.3) 

where ∆𝐻𝑑𝑖𝑠𝑠 and ∆𝑆𝑑𝑖𝑠𝑠 are the molar enthalpy and entropy of dissolution of 

solute. 

Also, in the mixing process, the Gibbs free energy can be approached with 

the entropy and enthalpy changed in the dissolution as: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆          

(2.4) 
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For an ideal solution, the Gibbs free energy of mixing two liquids can be 

assumed as: 

∆𝐺 = 𝑅𝑇𝑙𝑛𝑎      

(2.5) 

where, 𝑎 is the mole fraction of one component in the ideal solution. The 

enthalpy change for an ideal solution is zero, thus from Equation (2.4), the 

entropy change during the mixing is: 

 

𝑆 = −𝑅 ln 𝑎    

(2.6) 

The activity coefficient (γ) is a concept to describe the offset of real solution 

behaviour with the ideal one. For example, the free energy change for a non-

ideal solution can be modified by the appropriate activity coefficient as (γ𝑥). 

In other words: 

𝑎 = 𝛾𝑥  

(2.7) 

𝛾 =
𝑎

𝑥
    

(2.8) 

The activity coefficient (γ) can be obtained from Equation (2.1) applying the 

Van’t Hoff equation as: 

 

ln(𝑥𝛾) =
∆𝐻𝑓

𝑅
[

1

𝑇𝑓
−

1

𝑇
]  

(2.9) 
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2.3.3 Supersaturation 

A solution could actually dissolve more material than the normal solubility as 

measured in an equilibrium condition. This is known as supersaturation which 

is the driving force of crystallisation which could be achieved from changes in 

solubility of the solution in two different ways, by cooling or by solvent 

evaporation, as shown in Figure 2.6, at a temperature of TA, concentration of 

the solution is under the solubility curve which means the solution is under-

saturated. If the change in the solution is either cooling down to TB or 

increasing the concentration to CB’ it will be just saturated. Further, going to 

the point of TC or CC’, the concentration of solution exceeds the equilibrium 

solubility tending to supersaturation. 

 

The supersaturation can be described in terms of concentration driving force: 

∆𝐶 = 𝐶 − 𝐶𝑒 

(2.10) 

Where: 𝐶 is the solution concentration at a specific temperature and 𝐶𝑒 is the 

concentration at equilibrium with that temperature. From a thermodynamic 

point of view, it can be expressed using the supersaturation ratio in Equation 

(2.11), which is commonly expressed as a relative supersaturation ratio (2.12). 

 

𝑆 =
𝐶

𝐶𝑒
 

(2.11) 

∆𝐶

𝐶𝑒
= 𝑆 − 1 

(2.12) 

The state of supersaturation is an essential stage to form the nucleation in 

order to start the crystallisation process. To classify supersaturated solution 

in which the primary nucleation could occur, Oswald [18] introduced the labile 

region and metastable region in which spontaneous crystallisation happens or 

not respectively. Under the solubility curve, the stable zone which is 
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unsaturated where the crystallisation is impossible. The significance of MSZ 

and the experimental method to measure the MSZW will be introduced in the 

following section. 

 

 

Figure 2.6:  A representation of solubility and supersolubility curves 
with the three regions include: labile, metastable and stable [13]. 

 

2.5 Crystallisation Kinetics 

2.5.1 Nucleation 

 

The supersaturation condition of a solution is not sufficient to form crystals; it 

must begin with some mini solid bodies, i.e. embryos, nuclei or seeds that act 

as the centre of crystallisation [13]. 

Nucleation is defined as the process where solute molecules aggregate to 

form clusters or nuclei and start to grow after overcoming the energy barrier 

of cluster stability. This process is classically divided into two stages: primary 

and secondary nucleation which can be distinguished by the presence of 

crystalline or seed crystal. Furthermore, the primary nucleation can be split 

into homogeneous and heterogeneous nucleation. The first one is 

spontaneous nucleation whereas the later one is nucleation induced by other 

substances. 
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Figure 2.7:  Nucleation classification [13] 

 

2.5.1.1 Homogeneous nucleation 

 

Solute molecules in the supersaturation coagulate to form a cluster which has 

the tendency to re-dissolve back into the solution. If enough molecules come 

together to form an embryo where lattices start to form and reach the critical 

cluster size can be called a nucleus which is likely to form additional 

bimolecules into it to make it stable like the scheme in Figure 2.8. 

 

 

Figure 2.8:  Scheme shows the bimolecular addition process [13] 

 

The critical nucleus is going to perform either a crystal lattice, which is going 

to be a macromolecular crystal or a liquid state with no order lattice structure. 

This is better illustrated by the classical theory of free energy in Figure 2.9. 

The overall change in free energy (ΔG) during nucleation is illustrated by 

Equations (2.13) and (2.14). 
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∆𝐺 = ∆𝐺𝑆 + ∆𝐺𝑉     

(2.13) 

∆𝐺 = 4𝜋𝑟2𝛾 + 4
3⁄ 𝜋𝑟3∆𝐺𝑣   

(2.14) 

ΔG is equal to the sum of the surface and volume free energy of ΔGS and ΔGV 

respectively. ΔGS increases with new solid phase per unit surface area and 

ΔGV, which is the volume free energy. 𝛾 is the interfacial tension between the 

crystal and the surrounding liquid interphase. ΔGS is dependent on a 

magnitude of  𝑟2 which is the radius of the sphere and ΔGV is 𝑟3 dependence. 

 

 

Figure 2.9:  Free energy change corresponding to a critical nucleus 
size [13] 
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As the opposite effect on the surface and volume given in Figure 2.9, the total 

excess of free energy can attain maximum value at the critical radius (rc). The 

tendency of a newborn nucleus depends on its radius size and should result 

in a reduction of total free energy. A nucleus prefers to dissolve to achieve the 

reduction of free energy if the nucleus is smaller than rc, as the free energy is 

decreasing with the reducing of radius size. Conversely, for a nucleus larger 

than rc, the growing of a nucleus can result in a decrease of free energy, 

therefore, the nucleus will prefer to grow and become stable. The critical 

radius of nucleus assumed as a 3-D sphere can be calculated based on the 

equation below, 

 

𝑟𝑐 =
2𝛾𝜔

𝑘𝑇𝑙𝑛(1 + 𝜎)
       

(2.15) 

Where 𝛾 is the surface energy, 𝜔 is the molecular volume, 𝑘 is the Boltzmann 

constant, 𝜎  is the supersaturation. Thus, the radius of the nucleus is 

decreased with the increase of supersaturion which means the high 

supersaturation will make the nucleation easier due to a smaller size being 

needed. The nucleation rate e.g. the number of nuclei formed by unit time by 

unit volume can be expressed: 

𝐽 = 𝑘𝐽𝑒𝑥𝑝 [−
16𝜋𝛾3𝑣0

2

3𝑘3𝑇3(𝑙𝑛𝑆)2
] 

(2.16) 

Parameter of 𝑘𝐽 can be related to attachment frequency of monomers to the 

nucleus (𝑓∗), concentration of nucleation sites (C0) and the zeldovich factor Z 

by expression (2.17). The attachment frequency of monomers is controlled by 

two factors from volume diffusion and interface transfer.  

𝐽 = 𝑧𝑓∗𝐶0𝑒𝑥𝑝 (−
𝑊∗

𝑘𝑇
) 

(2.17) 
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2.5.1.2 Heterogeneous nucleation 

Primary nucleation may also be initiated by suspended particles of foreign 

substances, and this mechanism is generally known as heterogeneous 

nucleation (HEN) [1, 14]. Foreign particles provide a surface for nucleation, 

decreasing the interfacial tensions to be overcome for nucleation to occur. 

Thus, the nucleation work decreases and nucleation rates drastically increase. 

The homogeneous nucleation interfacial tension 𝛾 is related to the effective 

heterogeneous interfacial tension 𝛾𝑒𝑓𝑓 by 𝛾𝑒𝑓𝑓 = ψ × 𝛾𝑒𝑓𝑓. Where the activity 

factor 𝜓 ranges between 0 and 1 and is associated with the contact angle 

between the nucleus and the heterogeneous particle. 

 

2.5.2 Methods to assess nucleation kinetics using the poly-

thermal method 

The characteristics of the crystallisation process are not only related to the 

chemical property of the solution, it also depends on the kinetics which is 

related to the MSZW as the driving force of the process. As discussed in the 

previous section, from Figure 2.6 it can be seen that the metastable zone is 

the region between the equilibrium solubility curve and the supersaturation 

curve.  The supersaturation is determined by the concentration driving force 

as in Equation (2.16) [19]: 

∆𝐶 = 𝐶 − 𝐶𝑒   

(2.16) 

where, supersaturation is (Δc), 𝐶  solution’s concentration and 𝐶𝑒  solution’s 

equilibrium concentration. The MSZW which is the maximum supersaturation 

is a useful parameter as it can be related to the nucleation rate, J, from the 

empirical law through Equation (2.17): 

 

𝐽 = 𝑘(∆𝑐𝑚𝑎𝑥)𝑛 

(2.17) 

where: k is the nucleation constant, n is the nucleation order. As the 

supersaturation (Δc) can be related to the supercooling (ΔT) defined in 

Equation (2.18) through Equation 2.19: 

∆𝑇 = 𝑇𝑒 − 𝑇   

(2.18) 
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∆𝑐 = (
𝑑𝑐0

𝑑𝑇
) ∆𝑇 

 (2.19) 

where 𝑑𝑐0/𝑑𝑇 dc is the slope of the solubility curve at the given temperature 

T, and combination of Equations (2.17) and (2.19) gives the following 

relationship: 

𝐽 = 𝑘𝑛 ((
𝑑𝑐0

𝑑𝑇
) ∆𝑇)

𝑛

 

(2.20) 

T is induction time or MSZW can be influenced by a crystallisation 

environment, i.e. solution temperature [20], impurities [21] and stirring rate 

[22]. Moreover, the cooling rate has shown the most relative factor discovered 

by Bonnin [23] in crystallisation MSZW and thus can be referred as ΔTmax. 

According to Nyvlt’s equation, it suggests that there is a linear relationship 

between cooling rate (q) and critical undercooling (ΔTmax). A poly-thermal 

method to determine the MSZW by a known concentration solution at a 

specified cooling rate according to Nyvlt approach is introduced in the 

following section. 

Nyvlt [24] and Nielsen [25] assumed that at the early stage of nucleation, the 

rate of nucleation changes to the same as that of supersaturation rate by 

cooling which can be expressed as: 

𝐽 = 𝜀 (
𝑑𝑐0

𝑑𝑇
) 𝑞        

(2.21) 

Where q is the cooling rate at supersaturation, connect with the empirical law 

in Equation (2.19): 

𝜀 (
𝑑𝑐0

𝑑𝑇
) 𝑞 = 𝑘𝑛 ((

𝑑𝑐0

𝑑𝑇
) ∆𝑇)

𝑛

     

(2.22) 

By taking the logarithms of this equation we can obtain the linear relationship 

of cooling rate (q) and supercooling (∆𝑇𝑐) with a slope which is the nucleation 

order (n). 

 

log 𝑞 = (𝑛 − 1) log
𝑑𝐶𝑒

𝑑𝑇
− log 𝜀 + log 𝐾𝑛 + 𝑛 log ∆𝑇𝑐   

(2.23) 



- 25 - 

From the poly-thermal method, a solution under cooling control at a stable 

cooling and heating rate is used to increase the temperature to the solution to 

detect the dissolution temperature. Similarly, the crystallisation temperature 

was detected when cooling this temperature to form the crystals. From 

Equation (2.18) the maximum undercooling can be taken to be equal to the 

temperature of dissolution minus the crystallisation temperature. 

Later on, Kubota [26] suggested that the measured critical undercooling 

related to the equipment sensitivity on the onset point of crystal formed. He 

then assumed the MSZW from experimental measurements are from the 

onset point where the nucleus accumulated to some extent. By this 

assumption, ln 𝑞  and ln ∆𝑇𝑐  is still in a linear relationship. Over recent 

decades, Sangwal [27] employed classical theory to derive a linear 

relationship from 1/(∆𝑇𝑐)2 and ln 𝑞. 

More recently, Kolmogorov-Johnson-Mehl-Avrami (KJMA) takes account of 

the initial fraction of crystallised volume or the number of nucleated crystallites 

[28]. Based on this, the Kaschiev, Borissova, Hammond and Roberts (KBHR) 

[29, 30] approach allows from a poly-thermal data, which can determine the 

important kinetic parameters, gives an insight understanding of nucleation and 

growth process. It also differs two nucleation mechanisms from instantaneous 

(IN) that all crystals would form once such super-cooling has been reached 

notably as C0 (the initial concentration) and progressive nucleation (PN) that 

crystals are continuously forming during the cooling process [31].  

KBHR employed the dependence of critical undercooling (𝑢𝑐) on cooling rate 

with linear relationship in ln-ln co-ordinates which revealed the nucleation 

mechanism from IN or PN within the inequalities of 𝑢𝑐 were smaller than 0.1 

and 𝑎𝑢𝑐 being smaller than 1, where 𝑎 is the dimensionless molecular latent 

heat of crystallisation, shown in Equation (2.26), where: 𝜆 – is the molecular 

latent heat of crystallisation, k – Boltzmann constant. A slope of ln𝑢𝑐-lnq is 

larger than three indicating a PN mechanism, while a slope is smaller than 

three indicating an IN ruled nucleation. Critical undercooling 𝑢𝑐  can be 

determined: 

 

∆𝑇 = 𝑇𝑒 − 𝑇   

(2.24) 

Relative critical undercooling (𝑢𝑐) which is a dimensionless parameter can 

be further determined: 
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𝑢𝑐 =
∆𝑇

𝑇𝑒
 

(2.25) 

𝑎 =
𝜆

𝑘𝑇𝑒
 

  (2.26) 

For the cases of PN, critical undercooling and the cooling rate can be 

correlated with lnq with non-linear least squares fit from Equation (2.27). 

ln 𝑞 = ln 𝑞0 + 𝑎1 ln 𝑢𝑐 −
𝑎2

(1 − 𝑢𝑐)𝑢𝑐
2
 

(2.27) 

Where: 𝑎1 = 3, 𝑎2 = b and 𝑞0 is given by Equations (2.28) and (2.29): 

𝑏 =
𝑘𝑛𝑣𝑜

2𝛾𝑒𝑓𝑓
3

𝑘𝑇𝑒𝜆2
 

(2.28) 

Where: 𝑘𝑛 – nucleus shape factor, 𝑣𝑜 – volume occupied by a solute molecule 

in the crystal, 𝛾𝑒𝑓𝑓 – nucleus effective interfacial tension. 

 

𝑞𝑜 =
𝑉𝐾𝐽𝑇𝑒

𝑁2𝑏
 

(2.29) 

Where: V – volume of solution, 𝐾𝐽 – nucleation rate constant. 

Crystal growth related to 𝑎1, 𝑎2 is proportional or equal to b and 𝑞𝑜 is subject 

to both nucleation and growth parameters. 

This method also allows for the determination of the critical radius of the 

nucleus (𝑟𝑐) as well as the number of molecules within that nucleus (𝑖𝑐), shown 

by Equations (2.30) and (2.31), respectively. 

 

𝑟𝑐 =
2𝛾𝑒𝑓𝑓𝑣𝑜

𝜆𝑢
 

(2.30) 

𝑖𝑐 =
2𝑏𝑘𝑇𝑒

𝜆𝑢3
 

(2.31) 
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2.6 Crystallisation Characteristic Techniques 

2.6.1 Differential scanning calorimetry (DSC) 

 

Phase transformation and/or chemical reactions are mostly accompanied by 

changes in enthalpy. DSC is a thermo-analytical technique used for phase 

change observation and the associated energetic changes. 

The principle of DSC can be regarded as the measurement of the heat 

difference between the sample and one reference placed in the same situation 

as a function of temperature. The instrument can detect the temperature 

difference between the sample and reference during heating or cooling and 

converts this through calibrating the amount of heat added to, or removed 

from, the sample at the sample temperature to compensate for the 

temperature difference.  

The typical result of one experiment is represented by a curve of heat flux as 

a function of temperature as shown in Figure 2.10. Peaks having two different 

directions can be achieved as the positive and negative peak regarding the 

exothermic and endothermic reactions in the sample during the experiment. 

In the evaluation window, the data regarding melting and crystallisation 

temperatures and the corresponding heat of fusion can be evaluated by the 

selection of the peak area. Need to be noted, only a pure sample gives a sharp 

peak, while an impure sample would show a broader peak, an indefinite start 

and a blunt maximum. 
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Figure 2.10:  Typical DSC curve: heat flow as a function of temperature 

[32] 

 

2.6.2 X-rays and Diffraction 

 

X-radiation, known as X-ray, is a form of electromagnetic radiation having a 

wavelength (λ) in the range of 10-2 to 102 nanometres and energies around 

200 𝑒𝑉 to 106 𝑒𝑉. The energy of each quantum, E is related to its frequency 

𝑣 in Equation (2.31). Since λ is related to the frequency and the speed of the 

light, thus the wavelength of the x-ray can be given by the energy as shown 

in Equation (2.32). 

 

𝑬 = 𝒉𝒗   
(2.31) 

𝝀 =
𝒉𝒄

𝑬
  

(2.32) 
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2.6.2.1 X-ray tube 

 

X-rays are generated from a tube, as shown in Figure 2.11, which consists of 

two metal targets enclosed in a vacuum tube. A large amount of electric 

current will be passed through the cathode which is made of a tungsten 

filament and heated to produce a source of the electron beam. The high 

electrical potentials between the cathode and the anode pull electrons from 

the cathode and accelerate towards the anode. The interaction of the 

electrons in the anode results in the emission of a continuous Bremsstrahlung 

spectrum and also characteristic X-rays from the target material. Beryllium is 

used for the window as it transmits X-rays well resulting in an increase in the 

intensity of the beam source. 

 

 

Figure 2.11:  Schematic of a modern x-ray tube [33]. 

 

2.6.2.2 Filters and Monochromators 

 

A typical x-ray spectrum is shown in Figure 2.12. It consists several 

components including the continuous spectrum represented by the high 

background and the characteristic lines nominated by the sharp peaks. These 

characteristic lines are useful in normal diffraction work, namely Kα and Kβ. 

The Kα X-rays on the right hand are amplified to resolve the two close 

wavelengths of Kα1 and Kα2 components.  

The most diffraction experiments require an X-ray radiation which is 

monochromatic or as close as possible. The intensity of the undesirable lines 

(Kβ) can be effectively reduced by passing through a filter made up of 

materials having absorption edge in between of Kα and Kβ wavelength of the 
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target metal. For example, a nickel filter can be used for copper, and zirconium 

for molybdenum. 

Modern diffractometers, alternately use a single-crystal monochromator to 

diffract the selected radiation to achieve a narrower wavelength distribution, 

graphite and silicon are commonly used. The principle of monochromator 

obeys the Bragg’s law, with a particular lattice spacing of the monochromatic 

crystal, differing wavelengths radiation are diffracted at different angles.  

 

 

Figure 2.12:  X-ray spectrum of Kα and Kβ and the Kα1 and Kα2.  

 

2.6.2.3 Diffraction 

 

When two waves are in the same space, they can either be constructive 

interference or destructive interference due to the two waves being in phase 

or anti-phase respectively. For example, in Figure 2.13, if two waves having 

the same frequency and amplitude are in phase, the resultant wave showed 

the same frequency but twice their amplitude. Whereas if the two waves are 

in the same frequency and amplitude but are out of phase then the resultant 

wave is completely zero amplitude. 
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Figure 2.13:  Illustration of the superposition of two waves in 
constructive interference (Right) and destructive inherence (left). 
[https://en.wikipedia.org/wiki/Interference_(wave_propagation)] 

 

The incident radiation is absorbed and then re-emitted in a different direction 

which is known as scattering. Interference is the superposition of two or more 

of these scattered waves, producing a resultant wave that is the sum of the 

overlapping wave contributions. Diffraction is constructive interference of 

more than one scattered wave. There is no real physical difference between 

constructive interference and diffraction [34]. 

 

2.6.2.4 Bragg’s Law 

 

As mentioned previously, scattering waves from many of atoms can interfere 

and be constructive waves, then we can get the specific directions of these 

diffracted waves. Bragg’s law relates these directions with the wavelength of 

incident X-rays and the spacing of the atomic planes. 

In order for the waves to interfere constructively, the difference in the travel 

path must be equal to integer multiples of the wavelength. When this 

constructive interference occurs, a diffracted beam of X-rays will leave the 

crystal at an angle equal to that of the incident beam. To illustrate this feature, 

consider the schematic diagram given in Figure 2.14. In this, we see a crystal 

with crystal lattice planar distances d, where the path length difference 

between the ray paths ABC and A'B'C' is an integer multiple of the wavelength, 

constructive interference will occur for a combination of that specific 

wavelength, crystal lattice planar spacing and angle of incidence (θ). Each 

https://en.wikipedia.org/wiki/Interference_(wave_propagation)
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rational plane of atoms in a crystal will undergo diffraction at a single, unique 

angle for X-rays of a fixed wavelength. 

The general relationship between the wavelength of the incident X-rays, angle 

of incidence and spacing between the crystal lattice planes of atoms is known 

as Bragg's Law, 

𝐧𝛌 = 𝟐𝐝𝐬𝐢𝐧𝛉   
(2.33) 

Where n (an integer) is the "order" of reflection, λ is the wavelength of the 

incident X-rays, d is the inter-planar spacing of the crystal and θ is the angle 

of incidence. 

 

 

Figure 2.14:  Diffraction of x-rays from crystal planes [35]. 

 

2.6.3 Powder X-ray diffraction (PXRD) 

Powder samples of many small crystallites, which are randomly oriented 

scattered by monochromatic X-rays. The pattern is plotted by peak intensity 

versus measuring the angle of two theta. Each peak intensity is accounting 

from all the scattering intensities of atoms a specific set of planes at the certain 

detect angle that satisfies Bragg law.  Two common modes of PXRD are used 

as reflection mode and transmission mode depending on the geometry of rig 

set-up.  

At the condition of failure growing large single crystal, a good quality of PXRD 

pattern can be utilised for structure solution by Rietveld refinement.  The 
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structural parameters are refined to minimise the difference from calculated 

intensity and collected intensities by a least-squares refinement. The quality 

of the fitting is normally qualified by R factors including 𝑅𝑤𝑝  which is the 

weighted R-factor. The lower of this values can be regarded as the small 

difference. 𝑅𝑒𝑥𝑝 is the statically expected value. Another important factor is 

𝜒2 (𝑔𝑜𝑓), referred as 𝑅𝑤𝑝/𝑅𝑒𝑥𝑝 which is ideally equal to one. 

Pawley method entitled Unit-cell refinement from powder diffraction scans to 

refine cell parameters from the whole pattern providing a starting point for the 

application of Rietveld refinement. In the Pawley method, diffraction profiles 

could be fitted with only the following parameters: 

 I (hkl): Intensity of each reflection with indices hkl; 

 A,B,C,D,E,F: Unit cell metric tensor parameters; 

 2θzero: Instrumental zero error; 

 U, V, W: Peak width parameters. 

Many of the parameters are identical to those used in a Rietveld refinement 

program, but the significant difference is the intensity of the peaks is 

calculated from the structure factors, F(hkl), which are themselves calculated 

from the parameters of the model structure. 

 

2.6.4 Synchrotron Radiation 

Studies using laboratory X-ray sources are with drawbacks with beam 

divergence, limited angular resolution or long scan time. All of these factors 

will result in issues, such as the error peak positions, shape and intensities, 

which will challenge the structure determination especially using powder 

diffraction data. In the case of normal alkanes with low-symmetry structures 

crystallising in plate-like crystals, which tend to twin around the long chain c-

axis, are essentially needed to be examined by powerful synchrotron 

radiation.  

Current work has enabled the use of synchrotron radiation to accomplish 

structure determination with benefit high polarised beam, wide angular and 

high resolution. The instrumentation factors are straightforward to correct with 

standard values all well set-up. In addition, the high flux photon energy of such 

beamline enabled the in-situ crystallisation to be undertaken with seconds 

scale scanning time, especially in a solution environment with high 

background.   
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2.7 Conclusions 

This chapter has reviewed the fundamental knowledge on crystallisation 

science. The crystal structure was initially introduced by defining the lattice 

and unit cell parameters, then the directions and planes of crystals, followed 

by the symmetry and defined crystal systems. Subsequently, the introduction 

of solution science, including concepts of the solution, solubility, ideality 

calculation in a thermodynamic way and solution supersaturation, which is the 

metastable zone width. In the end, the process after supersaturation solution, 

which is the crystallisation driving force of nucleation, was introduced. Here, 

the homogenous nucleation was highlighted and the poly-thermal method 

used to determine the MSZW was described with nucleation assessment 

methods which is the theory employed for the studies in Chapter 9. 
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Chapter 3. Normal Alkanes Crystallographic Structures, 

Thermodynamic and Crystallisation Properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: 

This chapter will present the review of studies for normal alkanes and their 

homologue mixtures in terms of structure, thermodynamics and 

crystallisation kinetics and morphology. 
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3.1 Introduction 

Normal alkanes have been intensively studied for decades, not only because 

they are important from the scientific point of view as a base unit for more 

complex polymers, lipids and membranes, but they are also the common 

contributor materials in life with diesel fuels. Previous studies regarding the 

structural behaviour and rich polymorphic nature of the normal alkanes will be 

reviewed. Much attention has been given to the mixture phases as the most 

common existence condition over the last 10 years. Therefore, a general 

summary of literature studies of solubility and crystallisation kinetics is also 

provided. 

Some previously published review papers need to be noted. For example, 

Mnyukh [36], in 1960, presented the early studies of n-alkanes configuration 

and structures. Based on a large number of publications Turner [37], in 1971, 

wrote a review paper regarding the phase transition studies of pure n-alkanes 

and their mixtures. A comprehensive review paper including the work on 

thermodynamic properties, structural behaviour and crystallisation of single 

and mixed alkanes was published by Dirand in 2002 [38]. 

 

3.2  Normal Alkane Configuration and Structures 

3.2.1 Configuration 

 

The most stable configuration for the chain of carbon and hydrogen atoms is 

a flat zigzag arrangement known as the all-trans type, whereas the molecular 

chain can be hindered to rotate along the main carbon axis with resultant 

conformational defects [36]. 

In the stable all-trans configuration, the closely packed molecular chains are 

aligned to the c-axis referred to as the long spacing of the crystalline. 

Therefore, it is useful to verify chain lengths and packing arrangements for 

pure component and also provide impurity checks for homologue preference 

[39]. Ideally, the c-axis length should be linearly increased as a function of 

chain length. Otherwise, disordering or phase transition might occur. 
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3.2.2 Phase structures 

 

The earliest crystallographic studies of alkanes started from the work of Muller 

[40] using the powder X-ray diffraction (PXRD) method, and Broadhurst [41] 

summarised that almost all the present pure n-alkanes could be crystallised 

in three crystal structures (triclinic, orthorhombic and monoclinic). Craig, in 

1994 [42] confirmed the unit cell parameters using high resolution synchrotron 

PXRD within homologue series from C13H28 to C60H122 of even and odd 

alkanes. The polymorphic behaviour of even alkanes has been observed as 

increasing the carbon number along with raising structural symmetry from 

triclinic (P-1) for [12 ≤ 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ 26]  to monoclinic (P21/a) for [28 ≤

𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ 36] to orthorhombic (Pca21) for (C36H74, C46H94, C50H102 and 

C60H122). Polytypic orthorhombic (Pbca) unit cells have been found in C38H78, 

C40H82 and C44H90. Odd alkanes were confirmed as having the Pbcm 

orthorhombic structure. Figure 3.1 shows the representative diagrams of 

molecular arrangements in the triclinic (a), monoclinic (b) and orthorhombic 

structures (c). Apart from these all-trans configurations, fully ordered phases, 

end-gauche defects packing phase also appears as reported from authors 

[43-46] who determined a modification crystalline phase of C25H52 with 

monoclinic A-face-centre unit cells (Aa) based on an orthorhombic sub-cell. 

 

Figure 3.1 Representative diagrams of molecular arrangements in the 
triclinic (a), monoclinic (b) and orthorhombic structures (c).[47] 
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Rotator phases are one of the typical phases in crystals, which have a long-

range positional order in three dimensions without having a long-range order 

in the rotational degree of freedom of the molecule along its long axis [48]. 

The rotator phases are present between the liquid phase and the low 

temperature ordered crystal phase, giving a weakly ordered crystalline phase. 

Unlike the fully crystalline phases, the rotator phases are characterised by 

relatively significant changes in their structural constants as a function of 

temperature. The rotator phases of alkanes are representative of all weakly 

ordered phases where the interaction energies are weak and a large number 

of phases can occur related to subtle entropic effects which are insignificant 

when the interaction terms in the free energy are strong. 

In summary of previous studies [49-51], five rotator phases have been 

identified. The RII phase has molecules that are untilted with respect to the 

layers, which are self-packed in a hexagonal lattice with a tri-layer stacking 

sequence, which is also denoted as rhombohedral (RH). Also, the RI phase is 

untilted but contains a rectangular distorted hexagonal lattice and bi-layer 

stacking sequence, which is also referred to as face centred orthorhombic 

(FCO). Furthermore, the RIII and RIV phases are tilted triclinic and tilted 

monoclinic, respectively. From work performed by Sirota et al. [48], a fifth 

phase was characterised, RV, which is the tilted version of RI. When any 

combination of the rotator phases occurs, the order with respect to decreasing 

temperature is RIV-RIII-RII-RI-RV. 

For even number alkanes, Denivolo [50] and Sirota [52] pointed out that, n=22, 

24 and 26 exhibits a phase transition between liquid (L) and rotator phase (R2) 

which can be observed by either heating or cooling processes. For lower n of 

C20H42, the rotator phase only appears in decreasing temperature as a 

metastable phase prior to the transformation from liquid to triclinic. At last, the 

rotator phase is not observable from the XRD experiment in C18H38 or C16H34. 

Moreover, Sirota [53, 54] suggested that the rotator phase even occurs in 

crystallisation of C18H38 and C16H34 as a transient metastable phase observed 

from in-situ synchrotron X-ray diffraction on crystallisation of the supercooled 

melt. The stability of the rotator phase associated with alkane chain length is 

explained as a crossover from stable to long-lived metastability, and to 

transient metastability as shown in Figure 3.2. 
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Figure 3.2:  Chain length dependent phase diagram of transition 
temperatures with respect to even alkane chain number from 

(n=14 to 24) corresponding to the L-R-T transitions [54]. 

 

Meanwhile, thermal analysis of n-alkanes by DSC from Srivastava [55] 

showed consistent observations. The rotator phase was observed with an 

additional thermal peak corresponding to L-R transition and its stability 

depends on the chain length and even-odd structural nature, as illustrated in 

Figure 3.3. A solid-solid phase transitional peak can be observed in the 

thermal plot towards either heating or cooling in longer n alkane C24H50 while 

it only exists as a small exothermic peak towards cooling of C22H46. For 

C20H42, it only exists for a short period presented as an incompletable peak 

shape. The odd number alkane of C23H48 showed the rotator phase both from 

cooling and heating processes involved with two transitional peaks referring 

to the liquid to rotator phase and rotator phase to ordered crystalline, 

respectively.  
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Figure 3.3:  DSC traces from heating and cooling processes of even 
number alkanes of C20H42, C22H46, C24H50 and odd number alkane 

of C23H48. [55] 

 

 

3.3 Structural Behaviour of Mixtures of n-alkanes 

Homologues 

N-alkane mixtures are subject to thermodynamic rules which govern phase 

stability, miscibility, molecular size and phase equilibria with respect to the 

mixtures. For binary mixtures, the miscibility in the solid phase is influenced 

by the carbon number difference and odd-even effect. That means when the 

carbon number difference is larger than five, the homologues tend to 

segregate in the solid phase to form lamellae composed of single 

homologues, as summarised by Kravchenko [56], which can be used to 

differentiate the nature of mixing type from continuous solid solution, eutectic 

type or immiscible solid. Solid solution can only be formed if the solid phase 

displays the same crystal structure and space group. In other words, the 
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intermediate solid solution of the mixture components will be present if their 

Gibbs free energies are lower than those of the pure components. 

 

Binary mixtures between homologous have been significantly studied as a 

function of compositions and temperatures to reveal the complex polymorphic 

behaviour [57, 58]. Early studies were the work from Piper et al., Kravchenko 

[56], Smith, and Mazee [59] Luth [60], who employed a combination of 

calorimetry and x-ray methods on homologues alkanes. They proposed a 

continuous solid solution in the high temperature (HT) region and various 

behaviour in a low temperature (LT) region with three orthorhombic 

intermediate phases. Structure solution by a single crystal method was used 

to determine the high temperature solid solution (𝛽0) and the dominant low 

temperature phase (β’’) by Gerson [61] from the C24-C26 mixture. The HT 

temperature 𝛽0  is a disordered phase with isostructure to the R1 (Fmmm, 

Z=4)[62, 63] which always exists in odd number alkanes. The ‘‘β’’ at LT is an 

ordered crystalline with an orthorhombic (Bb21m, Z=4) structure. However, in 

the following study on C24/C26 mixtures from Achour-Boudjema [64], some 

disagreed diffraction peaks from the Bb21m structure were found. More phases 

at low temperature were distinguished by Rajabalee [65] correspnding to the 

crystalline structures with defects in binary systems, i.e. Oi (Pcam, Z=4) which 

was the first observed for C23 by Smith, Odci (Pnam, Z=4 ) which was 

determined by Nozaki [66] for C23, Mdci(Aa) from C27 which was determined 

by Rajabalee [67, 68] and Op(Pca21) which can be obtained from longer chain 

alkane of C36 with unit cell determined by Teare [69] and Craig [42]. 

 

Phase transitions are not easy to detect between these intermediate solid 

solution phases as their structures are closely similar and have a long c-axis 

which demands a detectable low angle diffractometer. Also, the correlated 

energy change is expected to be small and is not easy to measure using 

thermal analysis. Nevertheless, the Mdci structure specialises in the peak split 

nature of the diffraction lines due to the monoclinic symmetry of Aa. Moreover, 

the decreased intensity of 00L reflections can be caused by an increase in 

end-gauche defects (gt) as the intensities of the 00L reflections reflect the 

degree of order of the methyl layer. 
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3.4 Solubility and Crystallisation Kinetics and Morphology 

The solubility of pure normal alkane in organic solvents was found to decrease 

with the increased Cn number from the studies of Domanska and Rolinska 

[70] for C20, C24, C26 and C28 in pure light hydrocarbons. Provost [71] 

observed the consistent behaviour of C23, C25, C26 and C28 in C7 which has 

a different nature of the solvent, i.e. linear, aromatic and cyclic solvents with 

respect to heptane, toluene and methylcyclohexane. He also concluded that 

the solvent nature has no obvious influence on the solute solubility. Gerson 

[72] measured the saturation temperature which was increased as in longer 

chain length of n-alkanes between C18 to C23, indicating a lower solubility. 

Low temperatures from odd number alkanes compared with the one from the 

even n-alkanes relative to their chain length suggests that the triclinic stable 

phase dissolved at higher temperatures upon heating due to the 

intermolecular force being lower in the packing of the orthorhombic cell. The 

saturation temperature difference between even and odd alkanes becomes 

less pronounced as chain length increases. This converging behaviour shows 

the end group CH3 decreases the role of intermolecular force. Both enthalpy 

and entropy of dissolution from C18 to C23 are approximately in the linear 

trend without any difference from even-odd structural effects. 

Binary mixtures of n-alkane homologues (∆Cn=1 or 2) in a light solvent, which 

is a ternary system has been studied regarding structural behaviour, solubility 

and nucleation kinetics. Early studies from Luth with C20/C22 in n-dodecane 

solution suggested that three phases of orthorhombic, are exhibited within the 

structure of the even-even binary mixtures when the percentage of the longer 

homologues exceeds 60%. Such behaviour is not evident in similar mixtures 

crystallised from the melt [73]. It is suggested that the different phases 

correspond to microcrystalline segments within the wax mixture induced into 

the high and low temperature orthorhombic states. Previously a ternary 

system of C26/C28 in C7 was carried out by Provost [71, 74] Cn/Cn’ (∆=1 or 

2) in light solvent, intermediate solid solution of the two Cn as a single pseudo 

component (𝛽") which is isostructural to the orthorhombic intermediate sold 

solution in the C26/C28. 

Nucleation kinetics [75-77] and interfacial tension [78] were measured which 

is the resistance (undercooling) to crystal nucleation under near equilibrium 

conditions originating mainly from the crystal-melt interfacial tension. Taggart 

[77] examined nucleation kinetics associated with the melt phase 

crystallisation of n-alkanes in the range of C13 to C32 and their mixtures using 

differential thermal analysis (DSC) presenting the kinetically metastable zone 
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widths (MSZW) on crystallisation form, the melt was found to reflect alkane 

structure and chain length dependence. 

Previously studies on measurements of interfacial tension from liquid of n-

alkanes [78], solutions of C20 and homologue mixtures (C18 to C22) in 

dodecane [79], C22 in n-dodecane solution with variation in solution 

concentrations from molar fraction of 10%, 15% and 20% [80], both 

homogeneous nucleation and heterogeneous nucleation mechanism were 

observed from C24 in dodecane [81]. 

Surface freezing was detected as a phenomenon that an ordered layer at the 

surface of disordered liquid observable in chain alkane [82, 83] at 

temperatures up to 3°C above the freezing point in the layer are hexagonally 

packed from C16 to C50. 

Crystal morphology [84, 85] studies of n-alkanes are with dominant faces of 

{001}, however, it is limited with its less contrast from the solvent environment 

due to the single crystal observation and instrumentation for collection of the 

micrographs. 

 

3.5 Conclusions 

This chapter presented a literature review from the configuration and packing 

and structures within normal alkanes, this included the disordered rotator 

phase. Mixed alkanes could have an essential effect on the polymorphic 

behaviour which is reviewed and addressed on even homologue phase 

diagrams. Solubility and crystallisation kinetics and morphological properties 

which are essential to the study were also reviewed. 
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Chapter 4  

Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: 

Detailed information about the materials and sample preparation methods 

used in this thesis is provide. Followed by the equipment set-up and the 

methodologies for the experimental work and related data analysis. 
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4.1 Introduction 

This chapter covers the methodology used in the analysis of this research. 

Here, information about the chemicals and solvents as used in the following 

experimental methods is explained first. The focus will be the experimental 

methods with a variety of techniques and data processing. 

Thermal analysis is first employed to examine the binary mixtures of 

octadecane and hexadecane in melt phase crystallisation. Powder X-ray 

diffraction is utilised to determine the phase behaviour and structural 

information within different mixture compositions and crystallisation 

environments. Solubility and nucleation kinetic studies, as a function of 

solvents and compositions, are also carried out utilising the turbidimetric 

technique with a poly-thermal method. Finally, an optical microscopic with an 

in-situ growth cell is used to determine crystal morphology behaviour.  

4.2 Materials 

4.2.1 Supplied Chemicals and Solvents 

Chemical mixtures of n-hexadecane (C16) and n-octadecane (C18) were 

studied as the major compounds in HVO fuels.  Three different solvents were 

selected to simulate the hydrocarbon fuels environment: normal alkane (n-

dodecane), aromatic (toluene) and a mixture of the two former cases 

(kerosene). Detailed information about these materials is listed in Table 4.1. 

Kerosene was supplied by Infineum Ltd. with the compositions provided in  

Table 4.2. 

 

Table 4.1 Properties of C16 and C18 chemicals and solvents used in this 
research 

Chemical Name Formula Synonym Purity 
Density 
g/mL at 
25 °C 

MW 
g/mol 

Supplier 

n-Hexadecane C16H34 C16 ≥99% 0.773 226.44 
Sigma-
Aldrich 

n-Octadecane C18H38 C18 99% 0.777 254.49 
Sigma-
Aldrich 

n-dodecane C12H26 C12 99% 0.750 170.33 
Sigma-
Aldrich 

Toluene C7H8 N.A. 99% 0.865 92.14 
Sigma-
Aldrich 

Kerosene N.A. N.A. 99% 0.815 167.90 
Infineum 

Ltd. 
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Table 4.2 Composition information of Kerosene as supplied by Infineum Ltd. 

Molecular Type  % wt 

Paraffins 39.33 

Naphthenes 42.41 

Alkyl benzenes 7.62 

Benzocycloparaffins 6.79 

Naphthalenes 3.43 

Biphenyls/acenaphthenes 0.27 

Fluorenes 0.15 

Phenanthrenes 0.00 

 

4.2.2 Binary Mixture Sample Preparation 

Binary mixed samples of C18 and C16 were prepared by weighing each one 

according to the appropriate mole ratios. A shaker with the temperature being 

controlled by a water bath was then used to prepare homogeneous mixing 

liquids as heated up above the melting point. 

 

4.3 Experimental Methodology 

4.3.1 DSC Thermal Analysis 

 

 

Figure 4.1:  Differential Scanning Calorimeter (DSC) from Mettler Toledo® 
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Calorimetric measurements were carried out to determine phase transition 

temperatures and associated heat fusion enthalpy changes using a 

conventional DSC (Mettler Toledo® DSC 1) running in a high purity nitrogen 

atmosphere as seen in Figure 4.1. The instrument consists of two crucibles 

sitting on their own sensor where the reference sample and the experimental 

sample respectively, are placed. A computer monitors the temperature and 

regulates the heat flow throughout the programme which is defined in 

advance. 

Samples (3 to 5 mg) were initially hermetically sealed into Al-40 𝜇𝑙 standard 

pans and run by a pre-programmed poly-thermal heating/cooling process in a 

temperature range that allows measurements of all phase transitions. For 

each composition of binary melts, three fresh samples were prepared and 

examined over two sequences of heating and cooling cycles to ensure 

accuracy and stability. The peaks, observed from the DSC curves, 

corresponding to solid/solid and solid/liquid transitions were then evaluated by 

the STARe software purchased from Mettler Ltd. 

 

4.3.1.1 Calibration 

 

Calibration and adjustment were achieved referencing samples of In and Zn. 

Tau lag adjustment was performed to calibrate the error of melting point as 

increasing heating rate could cause thermal inertia arising from the heat 

capacities and thermal resistances. Table 4.3 lists the melting temperatures 

and enthalpies of reference material Indium after calibration and adjustment 

at three different heating rates of 5, 10 and 20 °C/min. 

 

Table 4.3 Melting temperatures and enthalpies of reference sample of 
Indium at different heating rates 

Heating Rate 

°C/min 

Onset 

°C 

Peak 

°C 

End 

°C 

∆H 

J/g 

5 156.41 156.76 157.96 -28.3 

10 156.64 156.95 158.6 -28.21 

20 156.26 157.08 160.24 -27.98 
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4.3.1.2 Measurements 

 

Temperature and enthalpy determination 

Binary phase diagram determination was carried out on 21 binary mixture 

samples varying from the molar ratio (x) of C18 in the mixture. Thermal data 

from liquid-solid and solid-solid phase transitions were examined from the 

heating process to avoid a supercooling effect. A relatively slow heating rate 

of 1°C/min was employed to ensure approximate thermodynamic equilibrium 

conditions. 

The temperature ranges determined were then explored by 

temperature-dependent powder X-ray diffraction analysis in order to 

characterise the structural evolution and to confirm the temperatures of these 

transformations. 

 

 

 

Nucleation kinetics determination 

Samples of single components of C18 and C16 and their binary solid solution 

at a composition of 0.4C18 were selected to carry out further nucleation 

kinetics studies. The exothermic and endothermic peak temperatures from 

these samples were determined by poly-thermal cooling and heating 

processes using five heating/cooling rates (0.25, 0.5, 1.0, 3.2, 5.0 °C/min) and 

four heating/cooling rates (0.25, 0.5, 1.0, 3.2 °C/min) for single and binary 

samples, respectively. 
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4.3.2  Powder X-ray Diffraction 

The crystallographic studies were carried out in three different facilities to 

achieve various tasks. 

 

4.3.2.1 Lab source: High resolution XRD with transmission geometry  

 

 

Figure 4.2:  Powder diffractometer with high resolution transmission mode 
from STOE©. 

 

Isothermal experiments accomplished using a high resolution STOE STADI-

P with transmission geometry (Figure 4.2) and a pure Cu Κ𝛼1 radiation with 

λ=1.54056 Å by a Ge (111) monochromator with generator energy of 40 Kev, 

30 mA. XRD patterns were collected by a PSD (position sensitive detector) 

with scanning range from 0 to 80.0° in 2θ range with a step size of 0.495°. 

Samples (C16, 0.3 C18, 0.5 C18, 0.7 C18 and C18) were prepared in a 

borosilicate glass capillary with 0.7 mm diameter and mounted on a rotation 

sample stage equipped with cryosteam (Oxford Cryosystems Ltd) cooling by 

liquid nitrogen. This transmission cell with sample stage rationing in 360 

degrees would reduce the texture/preferred orientation of the crystals. 
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Two patterns were collected during the cooling process. One was in the HT 

region, just below the melting point by slowly cooling from room temperature 

at 1°C/min, and a step time of 25 s/s was used. Followed by crash cooling to 

the LT region at -30°C, where another one was collected with a scan speed 

90 s/s. 

 

4.3.2.2 Lab source: Temperature dependent PXRD with reflection mode 

 

 

Figure 4.3:  Phillips X’Pert Pro MPD diffractometer with a cold stage sample 
environment 

Temperature dependent XRD experiments were carried out on the Philips 

X’Pert Pro MPD with reflection geometry for the purpose of phase 

identification for binary C18/C16 mixtures. The diffractometer has a stationary, 

centrally placed, X-ray tube with (para-focusing) line focus and (parallel beam) 

point focus (Figure 4.3) using Cu Κα  radiation with λ=1.54 Å  wavelength 

source at a power of 40 Kev, 40 mA. A nickel filter was inserted to remove 𝐾𝛽 

from X-ray lines, no monochromatic is installed to remove Κ𝛼2 . 

15 binary mixture samples referred to the determination of the binary phase 

diagram and were examined with compositions of C16, 0.05C18, 0.1C18, 

0.2C18, 0.25C18, 0.3C18, 0.4C18, 0.4C18, 0.5C18, 0.6C18, 0.65C18, 

0.7C18, 0.8C18, 0.9C18 and C18. Pre-melted liquid samples were held in the 

sample holder with a rectangular dimension of approximately 2 𝑐𝑚 × 2 𝑐𝑚 × 2 
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cm at 40°C until equilibrium condition was reached and then the sample was 

cooled down to -30°C at a cooling rate of 10°C/min. XRD patterns were 

collected at the selected temperatures according to the thermal analysis from 

LT to HT at a heating rate of 2°C/min with a step size of 0.07° over 5 to 40° in 

2θ. A cold sample stage facilitated with liquid nitrogen was applied for cooling 

crystallisation purposes. All measurements were computer controlled and pre-

programmed for the purpose of running consecutively. 

 

4.3.2.3 Synchrotron: High resolution X-ray Powder Diffraction 

 

 

Figure 4.4:  Experimental layout of I11 beamline showing the five arms for 
MAC detectors mounted on the 2θ circle, the sample in capillary 
mounted on a rotational stage, beam pipe and the PSD detector 

mounted on δ circle [86]. 

 

Time-resolved and high resolution powder diffraction data were collected at 

beamline I11 from Diamond Light Source (DLS) in the UK. The 

monochromatic incident beam was calibrated using a high-quality Si powder 

standard. Cooling was controlled by an Oxford Instruments CryojetHT©. 

Heating was provided by a water bath. Samples in liquid phase were 

introduced into a 0.7 mm borosilicate glass capillary and sealed with a flame 

mounted on brass holders and spun at 1250 r.p.m during the data collection. 
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A fast position sensitive detector (PSD) of λ=0.82578 Å using Mythen-2 Si 

modules with a 90 degree aperture was used to collect diffraction data (a few 

seconds per pattern) during a cooling crystallisation process from 40 to -40°C 

at a cooling rate of 1.5°C /min with a binned step size of 0.004°. At the end of 

cooling, at -40°C, five MAC (multi-analysing crystal) detectors covering a full 

2θ scan range from 0 – 150° degrees were used to collect high-quality data 

for half an hour using an incident wavelength of 0.825678 Å. The data was 

subsequently binned in 0.001° steps and summed to a single PXRD pattern. 

 

4.3.3  Turbidimetric Measurements 

 

A turbidimetric technique to measure crystallisation experiments using the 

Avantium© Crystal 16 System which contains multiple small scale reactors 

which allow 1 ml vial solution measurements. 

4.3.3.1 Avantium Crystal 16® 

 

 

Figure 4.5:  Apparatus of the Avantium Crystal 16® 

[www.crystallizationsystems.com/pharma/crystal16/] 

 

Avantium Crystal 16 is a multiple variable temperature reactors at its 1 mL 

scale and applies the turbidimetric technique to detect the cloudy and clear 

points of a solution associated with crystallisation and dissolution 

phenomenon. As seen in Figure 4.5, this automatic crystallisation equipment 

can hold 16 (4 × 4) standard HPLC vials. It has 4 parallel units containing 4 

individually heated aluminium reactor blocks. Each unit can be heated and 

cooled by a specific programme (heating rate from 0 to 20◦C/min and a 

temperature range of -15 to 100◦C). 

http://www.crystallizationsystems.com/pharma/crystal16/
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Crystallisation and dissolution temperatures were analysed according to the 

solution turbidity profile as the temperature at which the transmission falls from 

100% to 0% due to the precipitation or the transmission increasing to 100% 

from 0% meaning the dissolution of the solids. 

 

4.3.3.2 Calibration test for Avantium Crystal 16 

 

As there is no temperature probe inserted into the solution in the 1 ml vial, it 

is essential to test the difference between the actual temperatures obtained 

from Crystal 16 and the real values. 

The calibration was carried out using vials with fresh solvent as employed in 

this experiment and placed into the unit blocks. A programme was set up on 

the Crystal 16 to cool down the solutions to certain temperatures of 10◦C, -

5◦C, -10◦C (within experimental range). A FLUKE 50 series portable digital 

thermometer was placed directly into the solutions to measure the real time 

temperature over several repetitions. The resultant difference is negligible 

within our temperature range measurements which confirmed the sensitivity 

and accuracy of Crystal 16. 

4.3.3.3 Sample preparation 

 

11 binary mixed samples of differing molar ratios varying from 10% of C18 in 

each C16/C18 samples were first prepared. For each composition of the 

C16/C18 mixture solution in four concentrations (192, 231, 269, 308 g/l), (231, 

269, 308, 350 g/l) and (300, 350, 400, 450 g/l) for solvents of dodecane, 

kerosene and toluene respectively. The homogeneously mixed solutions were 

then induced to the 1 ml scale transparent vials with mini magnetic stirrers. 

4.3.3.4 A poly-thermal method 

 

A poly-thermal heating segment was programmed to 1 ml scale solution to 

detect the onset temperature of dissolution and crystallisation by a heating up 

and cooling down the process. In this experiment, the heating cycle was first 

increased to 40°C above the expected dissolution temperature and then 

decreased down to -15°C which is the lowest temperature of Crystal 16. 

Similarly, the crystallisation temperature of the sample needed to be above 

this limitation which is detectable. Additionally, constant holding was applied 
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to the top/bottom temperature for half an hour to ensure complete 

homogenization. The four heating/cooling rates used were 0.25, 1, 2 and 

3.2°C/min for all three solvents with 5 sequences of cycle repeats to obtain 

good quality data. It needs to be noted that constant stirring was applied to all 

1 ml vials at a speed of 300 r.p.m. 

A typical profile as obtained from Crystal 16 using the poly-thermal method is 

displayed in Figure 4.6 and Figure 4.7 highlighting the detection of the onset 

of cloud point and clear point with associated temperatures of dissolution 

(Tdiss) and crystallisation (Tc). 

 

Figure 4.6:  Poly-thermal profile for temperature and transmission against 
the time for measuring the cloud and clear points of the solution. 
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Figure 4.7:  A turbidity result of a solution through a poly-thermal 
process. 

 

4.3.3.5 Processing raw data 

 

The turbidimetric method was successfully used in all 3 solvents (n-dodecane, 

kerosene and toluene) to detect the cloudy points and clear points of each 

composition of C16/C18 mixtures with 4 different concentrations using 4 

different cooling rates. 

The resulting plotted average value of Tdiss and Tc were obtained from five 

repeats of the heating/cooling processes as a function of cooling rates (q). By 

fitting a straight line to these points, the MSZW as a function of cooling rate 

was obtained. By the extrapolation of the dissolution tendency and 

crystallisation tendency fitting linear lines to the cooling rate as 0 °C/min, the 

equilibrium saturation and supersaturation temperatures could be obtained 

respectively and solubility-supersolubility curves could be constructed.  

Figure 4.8 shows an example of the plots and the fitting linear lines of MSZW 

as a function of cooling rate. Figure 4.9 is an example of the solubility-

supersolubility curve by plotting concentration against the extrapolated values 

of equilibrium saturation and supersaturation temperatures. 
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Figure 4.8:  Plots of Tdiss and Tc as a function of cooling rate (q). The 
best linear fitting for each plot was listed with the equation as 

y=ax +b and the fitting accuracy factor R square. 
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Figure 4.9:  Equilibrium solubility/supersolubility curves for C18 in 
dodecane solution. The points were obtained from the 

extrapolation of the linear fitting from Tdiss and Tc as a function of 
cooling rates from each concentration. The fitting curves are fitted 

by the polynomial equation in order 2. 

 

4.3.4 Morphology Determination 

 

Single crystals of the thin plate-like alkanes were attempted to grow using an 

in-situ growth cell with temperature controlled by a water bath to reach certain 

supersaturation. The morphology was captured by an optical microscopic with 

a QImaging/QICAM camera. Detailed information for the set-up is explained 

in Figure 4.10 (a and b). 

A sample of C18 was prepared in a solution of n-dodecane with 400 g/l 

concentration and injected and sealed in a sample cuvette cell which was 

stabilised inside a glass window area. Circulating water would surround the 

cuvette cell to keep the temperature homogenous. A single crystal was 

obtained and captured by the camera within the observation area by moving 

to an appropriate position. The dimension of the growth is approximately 

around 10 𝑐𝑚 × 12 𝑐𝑚 × 1.5 𝑐𝑚 with a rectangular shape. 

As the sample metastable zone width was determined from solubility and 

supersolubility measurements as introduced in section 4.3.3. Crystal 
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morphology was observed at 4 different supersaturation ratios of 𝝈 = 𝟎. 𝟎𝟑𝟔,

𝑻 = 𝟏𝟐. 𝟐 ℃ , 𝝈 = 𝟎. 𝟎𝟒𝟓, 𝑻 = 𝟏𝟐. 𝟏 ℃  and 𝜎 = 0.08, 𝑇 = 11.7 ℃ , within the 

MSZW from 𝑇𝑑𝑖𝑠𝑠 = 13 °𝐶 to 𝑇𝑐 = 11.7 °𝐶. 

 

 

Figure 4.10:  In-situ growth microscopic cell: a) whole set up with 
Olympus BX51 optical microscopic. b) Enlargement of growth cell. 
Individual parts are 1) Sample cuvette cell. 2) Glass window area. 

3) Crystal morphology observation area. 4) QImaging/QICAM 
camera. 5) Huber Ministat 125 circulation bath. 

 

4.3.5 Data analysis 

4.3.5.1 Indexing and Pawley and Rietveld refinement 

 

All PXRD data collected from three different diffractometers processing was 

carried out using an academic version of Topas5.0 [87]. The peak positions 

(initial 20 reflections) of high resolution XRD of C16 and C18 collected from 

I11 were indexed using LSI-Index with an indexing algorithm based on the 

iterative use of least squares [88]. 

The unit cell parameters were refined from peak positions of the experimental 

pattern by Pawley fitting [89]. For this, a pseudo-Voight (PV) function was 

utilised to model the peak shape. The emission profile, background, 

instrument factors such as diffractometer radius and axial divergence were 

provided. Corrections were refined for zero-point, Lorentz-polarisation (LP) 

factor and absorption. In addition, phase level variables (Lorentzian crystallite 
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size, Gaussian microstrain, preferred orientation and anisotropic factor by 

spherical harmonics) were refined. The fitting factors (Rp, Rwp and Gof) were 

generated to give an indication of the fitting from experimental and predicted. 

The refined unit cell parameters were employed in the trial structure 

determination using a molecular modelling method. The profile parameters 

obtained were used as a reasonable starting point for Rietveld refinement to 

refine the structure of calculated to experimental data. To ensure sensible 

configuration, certain restraints were applied before refining the atomic 

coordinates. To keep the alkane chain configuration, bond distance of C-C 

and bond angle of C-C-C was restrained to regular dimension. The alkane 

chain was additionally restrained to be planar (flatten). Penalty weighting was 

applied to keep the carbon atoms in reasonable positions. Isotropic 

displacement parameters of carbon atoms and hydrogen atoms were also 

refined. 

The refined structure was further viewed in the programme of Mercury [90] to 

examine all the atoms were in reasonable positions and attached to each 

other. Distances of each C-C and angles of C-C-C were calculated. Geometry 

optimisation was accomplished using Material Studio software with fixed unit 

cell parameters and space group. Finally, lattice energy was calculated using 

the Habit programme as implemented in Mercury. 

TOPAS implements a normalised symmetrized spherical harmonics function. 

The expansion is simply a series that is a function hkl values. The series is 

normalised such that the maximum value of each component is one. Typically 

usage is preferred orientation correction or description of anisotropic line 

shapes.  

 

4.3.5.2 Applying molecular modelling techniques to structure 

determination 

The computational software of the Material Studio was initially employed to 

build up the molecular structure of the asymmetry unit and followed by energy 

optimisation using a Compass force field. Following this, a systematic search 

[91-94] was employed based on the grid search by motifs in a direct space for 

the appropriate unit cell to be used as a trial structure for Rietveld refinement. 

The motifs, which can be referred as searchers, check the possible 

configurations with rotations and translations to locate the trial structures. A 

truncated lattice is constructed based on reducing the radial cut-off distances, 

which is known as the pre-screen step. Only sensible structures will be used 
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by filtration of improbable cell arrangement. The sensible structures can be 

ranked using lattice energies or the goodness of fit [95] from simulated and 

observed powder X-ray data. 

The lattice energy used for C18 in this study was the implicit hydrogen 

potential parameters in the Dreiding [96] Potential for methyl, C33, and 

methylene, C32, carbon atoms in the C18 chain. 

 

4.3.5.3 Thermal expansion calculation 

The lattice parameters obtained from the “Pawley-fit” programme using 

TOPAS software with good residual factor Rwp were used to calculate the 

molecular volume thermal expansion coefficient [97] by Equations (4.1) and 

(4.2). 

Strain (𝜖) caused by the thermal effect on the length (𝑙) can expressed by 

equation, the change in measured length (𝑑𝑙): 

 

𝜖 =
𝑑𝑙

𝑙
 

  (4.1) 

The thermal expansion coefficient (𝛼) can be calculated from the change of 

strain and temperature (𝑑𝑇): 

𝜶 =
𝒅𝒍

𝒍

𝟏

𝒅𝑻
 

(4.2) 

 

4.3.5.4 Solubility assessment by Van’t Hoff plots and ideality 

calculation 

As introduced previously in section 2.3.2, for an ideal solution, the solubility is 

no relation to the solvent and can be calculated by Equation 2.3 which is 

derived from the Van’t Hoff Equation 2.4. The heat value of ∆𝐻𝑓 and 𝑇𝑓 used 

in this equation were provided by the results of DSC measurements towards 

a slow heating process for all the binary mixtures including pure C16 and 

C18.The equilibrium saturation temperature for each concentration was 

obtained from the solubility curve as the extrapolation of measured dissolution 

temperature to 0°C/min. As the mass concentration of each solution is known, 
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the solubility in the real condition is calculated by the mass concentration 

expressed as the mole fraction (x) of solute with solvent. 

Plot the logarithm of the solution molar fraction (lnx) against the reciprocal of 

the equilibrium saturation (1/T) should be a linear relationship known as the 

Van’t Hoff plots. For a specified concentration of the solution, by plotting the 

ideal solubility plot with the real one shows the deviation behaviour of this 

solution to the ideal mode shown in Figure 4.11 presented as an example. 

 

Figure 4.11:  Van’t Hoff plot with the ideal and experimental solubility. 
The best fitting linear line for each was fitted by the equation as 

y=ax+b. 

 

The dissolution enthalpy and entropy can be estimated from the experimental 

Van’t Hoff plots by the slope (a) and intercept (b) value from the best linear 

fitting equation. The deviation behaviour from real solution and the ideal 

solution can be estimated by the calculation of activity coefficient (Υ): 

 

ϒ =
𝑥𝑖𝑑𝑒𝑎𝑙

𝑥𝑟𝑒𝑎𝑙
 

(4.3) 

Thus the ideality property of the solution can be accessed using the value of 

activity coefficient given by Υ = 1 is an ideal solution and Υ < 1 indicating that 

the solubility of the solution is higher than ideal concentrations. Whereas the 
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solution behaves non-ideally when Υ > 1 in which the solubility is lower than 

the ideal solution. 

 

4.3.5.5 Morphology analysis  

The single crystal morphologies of C18 grown in kerosene at three 

supersaturations were predicted and analysed by a recently published 

methodology. Crystallographic lattice parameters of C18 determined in 

section (5.22) were initially utilised to predict all the possible Miller indices 

using Bravais, Friedel, Donnay and Harker [98] (BFDH) approach by Material 

Studio. According to the BFDH law, the planes with larger lattice distance (d) 

possess higher morphological importance with larger crystal facets which will 

appear as the final habit with lowest growth rates.  

Zone axis is subsequently introduced to group the lattice planes into specified 

group axis [u v w]. The lattice planes in each zone axis having an equal 

projection on 2 dimensions of x, y-axis. The lowest order planes (h k l) in each 

zone axis were pair-wised to each other which was input into the 

crystallographic information file (.cif) morphology simulation with the 

predominant (001) plane using Mercury software.  

Finally, comparison of the internal angles of each prediction-projection from 

the experimental observation onto the simulated morphologies to obtain the 

potential solution pairs for the experimental pair. Then cross checking by 

correlating the pairs to match with each other can reduce the number of 

potentials.  

 

4.3.6 Conclusions 

Materials used in these experiments for the melt phase and solution phase 

studies were listed in terms of characteristic information and the quantities in 

different molar ratios. The thermal technique of DSC was employed as a 

routine to determine the phase transition temperatures and enthalpy in melt 

crystallisation analysis. Solubility and supersolubility measurements were 

successfully carried out by using the turbidimetric poly-thermal method using 

Crystal 16. The raw data process and analysis method were presented with 

example figures. Powder diffraction was carried out on three different 

instruments which were introduced and also included was the Topas software 

with relative setting parameters. The set-up of a crystal growth cell on a 
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microscope to observe the morphology of a single crystal of C18 as a 

representative alkane sample was also introduced. 
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Chapter 5   Structure and Morphologies Properties of 

Octadecane and Hexadecane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: 

High-resolution powder X-ray diffraction data is collected from C18 and C16 

for structure analysis in combination with computational prediction method. 

Thermal expansion analysis is also presented with lattice volume coefficients 

calculated. In addition, experimental morphological observations are indexed 

and predicted according to the determined structure. 
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5.1 Introduction  

This part of study serves as a start point for the analysis of octadecane (C18) 

and hexadecane (C16) system, which is essential to determine the structural 

and polymorphic behaviour of these two pure materials. The crystallography 

information for octadecane is available from early studies conducted from the 

years of 1948 to 1972 by means of the single crystal method at room 

temperature [40, 60, 99]. Hexadecane structure was determined from powder 

X-ray diffraction data by using laboratory source [100] in 2004. However, the 

structural behaviour of these two components is still not well defined as 

associated with temperatures, especially at lower temperatures.  

In this study, high resolution synchrotron powder X-ray diffraction was 

essentially applied due to the low symmetry nature of these studied organic 

molecules. Here, we demonstrated the structure prediction by a computational 

systematic search method and the reliability to determine structure from 

powder data. In-situ XRD in real time crystallisation study was also applied to 

monitor the phase behaviour and thermal expansion properties. Additionally, 

to build up the insight of the structure, crystal morphology measurements were 

also carried out with predictions using the determined structure. This is 

particularly important for morphology modification as to make the crystals 

flowable in vehicle engines.  

 

5.2 Octadecane (C18) 

5.2.1 Unit Cell Parameter Determination 

 

The low temperature (-40 °C) collected XRD pattern of C18 normalised from 

five multi-analysing crystal (MAC) detectors is detail presented in Figure 5.1, 

highlighting the sharp peak width and exceptional angular resolution by 

synchrotron radiation of Diamond light source (DLS). In addition, the 

indexation planes of the major reflections by TOPAS software [88] are 

provided in Figure 5.1. Table 5.1 presents the resultant unit cell parameters 

and relative Rwp value obtained from “Pawley fit” [89] method by refining the 

indexing prediction to the diffraction pattern.  
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Figure 5.1 High resolution synchrotron XRD pattern of C18 at -40 °C 
collected on beamline of I11, DLS. Together with the indexation 

(hkl) of the most important reflections. The resultant lattice 
parameters are given in Table 5.1. 

 

Table 5.1 Lattice parameters of C18 at low temperature (-40 °C) 
together with the Rwp value determined from “Pawley fit” 

refinement by Topas. 

a/Å 4.225 

b/Å 4.771 

c/Å 23.49 

α/° 78.988 

β/° 84.541 

γ/° 73.574 

V/Å𝟑 445.386 

Rwp/% 4.7 
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5.2.2 Structure Refinement 

 

According to the symmetry of triclinic lattice, an initial molecular model of the 

asymmetry molecule was generated with atomic positions and unit cell 

parameters which were just determined. The generated asymmetric molecular 

model is a start point for application of structure solution using a grid 

systematic search method.  

 

5.2.2.1 Systematic search 

 

The parameters selected for running the systematic search programme are 

given in Table 5.2. In this search, the asymmetric model was necessarily 

considered from only three rotational degrees of freedom in three directions, 

with the angular range of 0 to 360° in a step size of 5°. A distance cut-off 

criteria of 3.0 Å and lattice energy cut-off of -48 KJ/mol were also included at 

the initial pre-screening stage.  

 

Table 5.2 Parameters employed in the systematic search for trial 
packing motifs for the triclinic phase of C18. 

Search parameters Range of values Increment employed 

Rotation about 𝑎 axis (°) 0-360 5 

Rotation about 𝑏 axis (°) 0-360 5 

Rotation about 𝑐 axis (°) 0-360 5 

Control parameters  

High lattice energy cut-off -48 KJ/mol 

Short distance cut-off 3.0 Å 
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Table 5.3 Summary of results of the systematic search for trial packing 
motifs for the triclinic phase of C18. 

Total number of configurations tried 373248 

Total number of failed configurations  373096 

Failures on non-bonded distance criteria 279626 

Failures on lattice energy criteria 93522 

Failures on XRD fit criteria  93570 

Failures on both energy and XRD fit criteria 93470 

Successful configurations on energy 100 

Successful configurations on XRD fit 52 

Total number of successful configurations  152 

 

The results after searching procedure for the best trial structure are presented 

in Table 5.3. This systematic search started with 373248 packing 

arrangements reduced significantly by distance criteria which were the pre-

screen step. Overall, only 100 structures were accepted with lattice energy 

calculation and only 52 structures were accepted with XRD fit. It is worth 

noting that the best trial structure as ranked from the energy calculation was 

not consistent with the top one regarding XRD fit. For the purpose of 

comparison of different start points, both of the top ranked structures were 

further processed with further Rietveld refinement.  

 

 

 

 

 

 



- 69 - 

5.2.2.2 Rietveld refinement 

 

The best trial structure based on lattice energy calculation could not fit the 

XRD data by Rietveld refinement under reasonable restraints as applied to 

bond length and angle. The successful fit was obtained with best trail structure 

regarding the XRD fit. The best fit plot from the structure after Rietveld 

refinement [101] by TOPAS software and energy optimisation by COMPASS 

force field [102] is given in Figure 5.2. The first reflection peaks of (001) and 

(002) showed highly asymmetry behaviour due to the extreme axial 

divergence at low angles and were excluded from the Rietveld refinement. 

The fractional coordinates of carbon atoms in the asymmetric unit are given 

in Table 5.4.  

 

 

Figure 5.2 Rietveld refinement of C18 in the range of 5 to 34° 2θ with λ = 

0.825678 Å with different scale of amplified according to the 

intensity of the reflection peaks. Observed (𝝄), calculated (  ̶), 
difference ( ̶ ) and positions of calculated reflections (ˡ).  
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Table 5.4 Fractional coordinates of carbon atoms of C18 at -40 °C and 
relative isotropic displacement parameters in the asymmetric unit 

of triclinic structure after Rietveld refinement  

  x/Å y/Å z/Å Uiso/Å 

C1 0.05359 -0.12679 0.02543 0.04433 

C2 0.09368 -0.02148 0.08108 0.04433 

C3 0.2245 -0.26938 0.1313 0.04433 

C4 0.27581 -0.1623 0.18589 0.04433 

C5 0.40724 -0.41286 0.23534 0.04433 

C6 0.45808 -0.31021 0.29028 0.04433 

C7 0.58972 -0.56203 0.33942 0.04433 

C8 0.63741 -0.46003 0.3948 0.04433 

C9 0.77068 -0.71543 0.44306 0.04433 

 

Table 5.5 Fractional coordinates of carbon atoms of C18 at room 
temperature and relative isotropic displacement parameters in the 

asymmetric unit of triclinic structure after Rietveld refinement 

  x/Å y/Å z/Å Uiso/Å 

C1 
0.07497 -0.12629 0.02426 0.04433 

C2 
0.10943 -0.0207 0.08034 0.04433 

C3 
0.25925 -0.27321 0.12888 0.04433 

C4 
0.29316 -0.16745 0.18496 0.04433 

C5 
0.44269 -0.41976 0.23357 0.04433 

C6 
0.47539 -0.31369 0.28968 0.04433 

C7 
0.62451 -0.56584 0.33835 0.04433 

C8 
0.65578 -0.46042 0.39461 0.04433 

C9 
0.80496 -0.71433 0.44272 0.04433 

 

For the purpose of comparison of structures from PXRD data and single 

crystal result from Nyburg [60], the XRD data at room temperature (RT) 

detected by a PSD detector with limited collection time was utilised to 

determine the structure by Rietveld refinement using the low-temperature 

structure from this work. The fractional coordinates of carbon atoms in the 

asymmetric unit are given in Table 5.5.  

Furthermore, lattice energies were calculated using a programme called 

HABIT [103] applied with Williams Forcefield [104]. These calculations are 

listed in Table 5.6 together with the associated molecular geometry 

information obtained from the Mercury with averaged bond angles of C-C-C 



- 71 - 

and bond length of C-C are also provided. Finally, the relative reduce cell [105] 

parameters were also calculated based on the theory of Niggli [106].  

 

Table 5.6 Crystallographic data of C18 from the best-fit Rietveld 
refinement at different temperature together with detailed 
information from single crystal structure from Nyburg. In 

quotation is the calculated reduce cell obtained from Avogadro 
[107] programme according to Niggli theory. 

 
This work  

-40 °C 

This work  

RT 

Nyburg_1972 

RT 

a/Å 4.224 (4.224) 4.291 (4.291) 4.285 (4.285) 

b/Å 4.771 (4.771) 4.826 (4.826) 4.82 (4.82) 

c/Å 23.488 (23.056) 23.476 (23.065) 24.898 (23.068) 

α/° 78.982 (90.700) 79.208 (91.067) 85.15 (91.102) 

β/° 84.548 (92.199) 84.485 (92.017) 67.8 (92.081) 

γ/° 73.600 (106.400) 72.562 (107.437) 72.7 (107.300) 

V/Å𝟑 445.26 455.11 454.35 

C-C-C/° 113.9  113.1 114.9  

C-C/ Å 1.520  1.532 1.508  

𝑹𝒘𝒑 /% 10.46 8.16 8 

𝑹𝒑/% 6.79 4.99 8 

Gof (𝝌𝟐) 2.15 28.19 NA 

Number of 

reflections 
337 345 NA 

Number of 

independent 

parameters 

63 48 NA 

2θ range/° 5-34 5-34 NA 

Dc/ g cm-3 0.95 0.93 0.93 

Lattice 

energy/ KJ 

mol-1 

-136 -134 -135  
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The final Rietveld refinement of C18 at -40 °C indicates a success of the 

solved structure as seen from Figure 5.2 together with the relatively low value 

of Rwp and goodness fit value that close to the one from the simulation with a 

wide angular range of XRD data (Table 5.6). The packing of this structure as 

shown in Figure 5.3 is sensible with molecular geometry and is in good 

agreement with literature with averaged C-C bond length of 1.520 Å and bond 

angle C-C-C of 113.9°. Moreover, it is proved by the low lattice energy (-136 

KJ mol-1) indicating a high stability of this structure.  

The determined room temperature (RT) structure of C18 from this work shows 

consistency with the low temperature structure as seen from the atomic 

positions (Table 5.5) and from the unit cell parameters (Table 5.6) except the 

expanding axis lengths which are caused by the thermal effect. It is worth 

noting that the Rwp value from Rietveld refinement of room temperature 

diffraction data is smaller than the fit at -40 °C but with poor value of goodness 

fit which is 28.19 rather than the more ideal case at LT which is closer to one. 

This is possibly due to the wider step size and shorter scanning time with 

resultant diffraction pattern having a reduced resolution with fewer variables 

can be refined. Hence, the insufficient resolution powder diffraction data would 

affect the structure determination to some extent.  

From the comparison in Table 5.6, the molecular structures determined using 

PXRD and single XRD have shown close molecular volumes and minimum 

geometry difference at RT. Exceptions are found in Nyburg [60] configuration 

with a larger C-C-C bond angle (114.9°) and shorter bond length of C-C 

(1.508  Å). The lattice energy is nearly the same with the two structures, 

whereas the lattice parameters are quite different in terms of c axis length and 

α, β angles. In this case, the reduce cell calculation is applied to each lattice. 

As a result, the reduced cell from the structure determined in this work is in 

good agreement with the one determined by Nyburg at RT.  
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Figure 5.3 Packing of the C18 unit cell along with c-axis (a) and b-axis 
(b).  
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5.2.3 Thermal Expansion  

An overview of crystallographic diffractions collected from in-situ SPXD 

(synchrotron powder X-ray diffraction) during continuous cooling from the 

early stage of solidification to the very low temperature at -40 ˚C is shown in 

Figure 5.4. The polymorphic behaviour of C18 was not observable over the 

temperature range as discovered in this work. Preferred orientation character 

was clearly seen from high-intensity reflection planes of (011) and (012) at 2θ 

around 10.5˚. Because of the wide angular range of the collected XRD 

patterns and a large amount of collection number as scanned with 2 ˚C 

intervals within a temperature range of 20 ˚C to -40 ˚C, 30 plots in total are 

presented resulting that it is technically impossible to present all the 

information clearly. Hence, as highlighted, these parts with interests with 

respect to low angle (00L) reflections, amorphous content and thermally peak 

shift behaviour, are enlarged and presented in following Figures of 5.5, 5.6 

and 5.7 (a-c).  

High amorphous content represented by a large diffuse peak under diffraction 

peaks around 2θ of 10.5˚ exists at the beginning of crystallisation at 23.04 ˚C 

as shown in Figure 5.5. This could indicate the disordering packing exists at 

high temperature near the onset of crystallisation. Interestingly, the broad 

peak is observable even before crystallisation within the liquid phase. Due to 

the relatively d-spacing is approximately 4.5 Å, which is corresponding to the 

lateral interchain attraction. Interpretation can be made from this as the 

interchain interaction is actually formed prior to the solid formation [73]. The 

disordering behaviour can also be achieved as the diffraction patterns at low 

angles have shown splitting (00L) peaks at the early stage of crystallisation 

(Figure 5.6).  
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Figure 5.4 In-situ SPXD patterns for pure C18 collected from 21.21˚C to 
-40.17 ˚C with 2 ˚C intervals during cooling process at 1.67 ˚C /min.  

 

 

 

Figure 5.5 Diffraction pattern of C18 at the onset of crystallisation 
shows a large broad amorphous content. This is also observed 
within diffraction pattern prior to crystallisation in a liquid state.  
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Figure 5.6 Low angle (00L) diffraction patterns collected from the early 
stage of crystallisation (21.21 ˚C and 15.6 ˚C) and the bottom 

temperature at -40 ˚C. 

 

Thermal expansion properties of the fully ordered crystalline with decreasing 

temperature shows anisotropic behaviour as the peak shift is not 

standardised. It is larger for some reflections (e.g., (110) than others (e.g., 

(002)). The enlargement of typical peak shifts are shown in Figure 5.7 (a-c) 

with the summarised main thermal effects of diffraction peaks shifts i.e.(a) low-

intensity peak position twisted from higher angle to lower angle side from the 

nearest higher intensity peak; Two close peaks might be converged (b) or 

splitting behaviour from the broad peaks (c). These various changes within 

the reflections during cooling might result in different habit faces of crystal 

growth from various supersaturations.  
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Figure 5.7 The enlargement of typical reflection peaks, as position shift 
not standardised from thermal effects: (a) twisted (b) converged 

(c) splitting. 

 

Further inspection on thermal expansion properties was carried out with unit 

cell parameters determined to investigate the effects of each direction and the 

total volume of the lattice. The stack XRD patterns as a function of 

temperature were analysed with lattice parameters determined using “Pawley 

fit” by the programme of Topas by indexation of the unit cell determined in this 

work. The high quality of unit cell fitting was achieved with relatively low values 

of Rwp averaged at 4.09% (±0.44) and Rp averaged at 2.69% (±0.23). The 

resultant lattice parameters in six dimensions of unit cell plotted as a function 

of temperature are given in Figure 5.8. No significant change in volume of the 

unit cell was observed in this work, which again confirms that polymorphic 

behaviour or disorder phase did not exist. The thermal expansion coefficient 

of the volume of  C18 triclinic cell over the temperature range -40 ˚C to 21 ˚C 

was calculated to be 4.17± (2.48) ×  10−4 ˚C-1.  
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Figure 5.8 Unit cell parameters (a, b c axis and α, β, γ angels) obtained 
from “Pawley fit” using TOPAS software are plotted as a function 

of temperature for C18. 

 

 

Figure 5.9 Volume of C18 unit cell obtained from “Pawley fit” using 
TOPAS software are plotted as a function of temperature.  
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As seen from Figure 5.8, the unit cell directions of a, b axis and α, γ angels 

have shown linear expansion as increasing temperatures from -40 °C which 

can be regarded as the reference temperature. However, both c axis and β 

angle showed a negative increase trend and irregular behaviour at a high-

temperature region near the onset of crystallisation. This can be explained 

due to the nature of low symmetry of triclinic unit cell, angles between each 

axis are with distinct thermal changes as a result of anisotropic behaviour. 

Totally, the lattice volume of C18 was thermally expanded positively in a near 

linear trend as a function of temperature (Figure 5.9).  

As the thermal expansion of a certain lattice direction demonstrates how easy 

or difficult it is to thermally expand the plane, this can be related to the specific 

intermolecular interactions which run in that direction. This is seen from the c-

axis is not thermally expanded but changes with disordering effects, which 

can be correlated to the relatively low angle peaks (00L)  are not shifting with 

temperature changes. By considering the splitting nature and higher 

amorphous content, it can be concluded the existence of disordering 

phenomenon from early stage crystallisation of C18 at high temperature 

region. Differentially, a and b axis thermally expanded regularly in a linear 

trend, as referred to the intermolecular attraction from the methylene groups 

along lamellae interchains, is stronger than the interaction between end 

methyl group along c-axis.   

 

5.2.4 Morphological Analysis  

 

Crystal growth work had faced extreme difficulties, i.e. small MSZW, fast 

growth rate and difficult to observe faceted crystals with sufficient equilibrium 

time. Overall, morphology measurements of C18 crystallised in n-dodecane 

(400 g/l) solution as shown in Figure 5.10, typical [84, 108] n-alkane dominate 

face of {001} has been obtained in three different supersaturations of 𝜎 =

0.036, 𝑇 = 12.2 ℃ , 𝜎 = 0.045, 𝑇 = 12.1 ℃  and 𝜎 = 0.08, 𝑇 = 11.7 ℃ , within 

the MSZW from 𝑇𝑑𝑖𝑠𝑠 = 13 °𝐶 to 𝑇𝑐 = 11.7 °𝐶. At low supersaturation of 𝜎 =

0.036, hexagonal shape of the crystal suggests a hexagonal rotator phase 𝑅2 

which is known as existing in longer chain of even alkanes prior to the inherent 

triclinic phase formation [48]. Shape collected at 𝜎 = 0.045 is of an irregular 

polygon shape and the parallelogram shape of typical triclinic crystals were 

only observed at higher supersaturation of 𝜎 = 0.08 . These morphologies 
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however are having non-identical smaller faces in comparison with the longer 

chain homologue alkane of n-docasane [109], even though the two 

components have identical triclinic structures (P-1). Hence, independent 

indexation for all these crystals were carried out by BFDH morphological 

predication utilising structure of C18 as just determined.  

 

 

Figure 5.10 Experimental morphology pictures of C18 in 
supersaturated n-dodecane solutions with three different 

supersaturations: 𝝈 = 𝟎. 𝟎𝟑𝟔, 𝑻 = 𝟏𝟐. 𝟐 ℃ (a); 𝝈 = 𝟎. 𝟎𝟒𝟓, 𝑻 =
𝟏𝟐. 𝟏 ℃ (b); 𝝈 = 𝟎. 𝟎𝟖, 𝑻 = 𝟏𝟏. 𝟕 ℃ (c). 

 

From the analysis of BFDH prediction by the software of Material Studio, 100 

morphological faces (ℎ𝑘𝑙) were revealed with their relative values of d spacing 

and distance to centre of the crystal. This includes the predominant face (001) 

as indexed for the largest facet area (73%) and the largest d spacing of 

(23.04 Å) which could be directly indexed to the largest face for each crystal. 

Other predications (ℎ𝑘𝑙) need further assessments to interpret the appropriate 

faces for experimental observation. According to the introduced methodology 

(4.3.5), the rest 99 uncertain planes were grouped into thirteen zones axis as 

listed in Table 5.7. Within each group, representatives ( ℎ𝑘𝑙 ) are also 

presented with corresponding d spacing range. Full list table from BFDH is 

provided in Appendix A.  
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Table 5.7 List of thirteen groups of zone axis with their representative 

planes (𝒉𝒌𝒍) and respective inter-planer d spacing. 

Group Zone axis [uvw] 
Representative 

plane (hkl) 
dhkl 

1 [010] 

(010) 

(021) 

(031) 

4.60 

2.28 

      1.53 

2 [100] 

(100) 

(201) 

(302) 

3.80 

1.96 

1.31 

3 [110] 
(110) 

(221) 

3.47 

1.77 

4 [1-10] 
(1-10) 

(1-11) 

2.59 

2.65 

5 [120] 
(120) 

(121) 

2.28 

2.32 

6 [210] 
(210) 

(211) 

1.97 

2.03 

7 [1-20] (1-20) 1.76 

8 [2-10] (2-10) 1.60 

9 [130] (130) 1.59 

10 [230] (230) 1.41 

11 [310] (310) 1.32 

12 [321] (321) 1.30 

13 [1-31] (1-31) 1.31 

 

Pair-wise the thirteen (hkl) planes from zone axis analysis (Table 5.7), 

success pair candidates are listed in Table 5.8 and 5.9 for supersaturation of 

𝜎 = 0.036 and 𝜎 = 0.045 respectively with the correlated matching faces (A, 

B and C) according to designation of experimental crystal morphological faces 

as shown in Figure 5.11 (a) and (b). 

As cross-checked with each pair of (AB), (AC) and (BC), potential solutions of 

A, B and C for 𝜎 = 0.036 are (010) (321) (2-10) and (130) (2-10) (321). The 

best solution is selected to be (010) (321) (2-10) due to the regarded “A” face 

of (130) with a shorter d spacing which indicates higher growth rate hence 

lower importance than the selected one of (010). At 𝜎 = 0.045 the unique 

solution matching all the pairs is solution of (1-20) (100) (230) for the designate 

faces of A B and C. The resultant potential is a unique solution of (-110) (130) 

from the pair-wise analysis for the parallelogram shape at high 

supersaturation of 𝜎 = 0.08 
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Regarding the potential solution faces of (hkl) and predominant face of (001), 

resultant morphological predictions are observed with a further modification of 

the perpendicular distances from the centre of the crystal to the edge of the 

faces, which gives the compatible length of each face to the experimental 

observation. Hence, Figure 5.11 also compares the most likely morphology 

from prediction with the micrograph taken from experimental crystals at three 

different supersaturations and the respect Miller indices are given with the 

predictions.  

 

Table 5.8 List of pair-wise planes matching the internal angel from 

experimental crystals at 𝝈 = 𝟎. 𝟎𝟑𝟔, 𝑻 = 𝟏𝟐. 𝟐 ℃. The potential 
solutions of the morphological planes are presented with the best 
solution highlighted. Planes designated are shown in Figure 5.9 

(a). 

AB AC BC 

(010) (2-10) 

(1-10) (310) 

(120) (1-31) 

(130) (321) 

(010)  (-100) 

(1-10) (-1-20) 

(010) (321) 

(130) (2-10) 

(010) (110) 

(100) (1-31) 

(120) (310) 

(2-10) (321) 

Potential solutions 

A C B 

(010) (321) (2-10) 

(130) (2-10) (321) 

 

Table 5.9 List of pair-wise planes matching the internal angel from 

experimental crystals 𝝈 = 𝟎. 𝟎𝟒𝟓, 𝑻 = 𝟏𝟐. 𝟏 ℃. The unique potential 
solution is presented of the morphological predication. Planes 

designated are shown in Figure 5.9 (b). 

AB AC BC 

 [1-20] [100] 

 [210]  [2-10] 

 [1-20] [130] 

[1-20] [230] 

[310][1-31] 

[230] [100] 

[1-20] [310] 

Potential unique solution 

A  C B 

(1-20) (230) (100) 
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Figure 5.11 BFDH morphology prediction (left hand) with Miller indices 
obtained from the best solutions according to the experimental 

morphology (right hand) in three different supersaturation (a) 𝝈 =
𝟎. 𝟎𝟑𝟔, 𝑻 = 𝟏𝟐. 𝟐 ℃ (b) 𝝈 = 𝟎. 𝟎𝟒𝟓, 𝑻 = 𝟏𝟐. 𝟏 ℃ (c) 𝝈 = 𝟎. 𝟎𝟖, 𝑻 =

𝟏𝟏. 𝟕 ℃ 
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5.3 Hexadecane 

The presented structure of C16 at low temperature (-40 °C) was accomplished 

during the attendance in ACA crystallography school with help from Prof Jim 

Kaduk. The structure solution utilised indexation of the unit cell and Rietveld 

refinement by GSAS [110] software. Further Rietveld refinements using 

TOPAS software utilising the determined structure to experimental data both 

collected at 0 °C and -40 °C are presented and discussed in following section 

(5.3.1).  

The low temperature (-40 °C) collected XRD pattern of C16 from the MAC 

detectors is detail presented in Figure 5.12 with the indexation results of the 

major peaks. 

 

 

Figure 5.12 High resolution synchrotron XRD pattern of C16 at -40 °C 
collected on I11 of Diamond Light Source. Together with the 

indexation results of the high-intensity reflections.  
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5.3.1 Structure Refinement  

 

The final Rietveld refinement of C16 crystallised at -40 °C with the calculated 

and experimental observation of XRD patterns are shown in Figure 5.13 

representing the good agreement with the observed structure. The molecular 

structure and intermolecular packing along b-axis and c-axis are given in 

Figure 5.14. The refined structures for C16 at -40 °C and 0 °C with fractional 

coordinates of carbon atoms are given in Table 5.10 and 5.11. The respected 

crystallographic and fitting data are summarised in Table 5.12. 

Crystallographic cell dimension parameters of a, b and c are smaller than 

crystal determined just below crystallisation due to the thermal effects. 

Averaged C-C and C-H bond length is 1.531 ( ± 0.001) Å  and 1.098 

( ± 0.049)  Å . Averaged bond angles of C-C-C (110.4°) is consistent with 

structure published from Me´tivaud [100]. The H-H intermolecular contract 

between the adjacent chains is averaged at 2.624 (0.004) Å. C-C-C-C torsion 

angle is 175.0 (±-1.9) ° which slightly deviates from the ideal 180° for the all-

trans configuration. 

 

Figure 5.13 Rietveld refinement of C16 in the range of 5 to 34° 2θ with λ 

= 0.825678 Å with different scale of amplified according to the 

intensity of the reflection peaks. Observed (𝝄), calculated (  ̶), 
difference ( ̶ ) and positions of calculated reflections (ˡ).  
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Figure 5.14 Packing of C16 unit cell along c-axis (a) and b-axis (b). 
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Table 5.10 Fractional coordinates of carbon atoms of C16 at -40 °C and 
relative isotropic displacement parameters in the asymmetric unit 

of triclinic structure after Rietveld refinement 

  x/Å y/Å z/Å Uiso/Å 

C1 0.7794 0.2782 -0.43106 0.0363 

C2 0.6152 0.0605 -0.37914 0.0363 

C3 0.5738 0.2294 -0.31776 0.0363 

C4 0.4381 0.0119 -0.26388 0.0363 

C5 0.3627 0.1715 -0.20354 0.0363 

C6 0.2407 -0.0402 -0.14786 0.0363 

C7 0.1925 0.1282 -0.08659 0.0363 

C8 0.0269 -0.0735 -0.03191 0.0363 

 

 

 

 

Table 5.11 Fractional coordinates of carbon atoms of C16 at 0 °C and 
relative isotropic displacement parameters in the asymmetric unit 

of triclinic structure after Rietveld refinement 

  x/Å y/Å z/Å Uiso/Å 

C1 0.77053 0.27413 -0.43126 0.0363 

C2 0.61846 0.05715 -0.37841 0.0363 

C3 0.57799 0.22708 -0.31671 0.0363 

C4 0.42793 0.00849 -0.2633 0.0363 

C5 0.38323 0.1785 -0.20196 0.0363 

C6 0.23234 -0.03931 -0.14837 0.0363 

C7 0.19309 0.13284 -0.08662 0.0363 

C8 0.04317 -0.08246 -0.03318 0.0363 
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Table 5.12 Crystallographic data of C16 from the best-fit Rietveld 
refinement at different temperature together with detailed 

information from lab PXRD crystal structure from Me´tivaud. In 
quotation is the calculated reduce cell obtained from Avogadro 

programme according to Niggli theory 

 
This work  

-40 °C 

This work  

0 °C 

Me´tivaud  

0 °C 

a/Å 4.229 (4.229) 4.276 (4.276) 4.270 (4.270) 

b/Å 4.773 (4.773) 4.810 (4.809) 4.811 (4.811) 

c/Å 20.623 (20.623) 20.640 (20.637) 22.345 (20.633) 

α/° 90.789 (90.789) 91.085 (91.081) 84.541 (91.032) 

β/° 90.297 (90.297) 90.155 (90.156) 67.428 (90.103) 

γ/° 
106.368 

(106.368) 

107.089 

(107.088) 

72.996  

(107.004) 

V/Å𝟑 399.32 405.791 405.211 

C-C-C/° 110.4  108.882 113.12 

C-C/ Å 1.531  1.539  1.532 

𝑹𝒘𝒑 /% 10.08 5.96 8 

𝑹𝒑/% 6.64 3.58 8 

Gof (𝝌𝟐) 2.16 19.61 NA 

Number of 

reflections 
304 308 NA 

Number of 

independent 

parameters 

63 82 NA 

2θ range/° 
5-34 

(λ=0.82568°) 

5-45 

(λ=0.82578°) 

3-60 

(λ=1.56°) 

Dc/ g cm-3 0.94 0.93 0.93 

 

5.3.2 Thermal Expansion  

 

As expected, thermal expansion properties of shorter chain homologue 

component of C16 are consistent with observations from C18. Analysis from 

in-situ crystallisation as shown in Figure 5.15, again, indicates isomorphism 

nature of C16 with the triclinic structure formed in the studied temperature 

range (13.7 °C to -40.1 °C). Low angle reflections (00L) were enhanced with 

peak intensities increased in relative to the rest reflections. The high content 

of amorphous was also observed from diffraction pattern at the onset of 

crystallisation around 2θ of 10.5˚. Additionally, anisotropic peak shift 

behaviour is also similar to C18 reflections (Figure 5.7). 
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The resultant unit cell parameters as a function of temperature are plotted in 

Figure 5.16 with the high quality of “Pawley fit” analysis indicated by low 

values of Rwp averaged at 6.82 % (±0.44) and Rp averaged at 4.18 % (±0.27). 

The thermal expansion coefficient of triclinic cell of C16 over temperature 

range -40 ˚C to 13.7 ˚C was calculated to be (4.39±1.94) ×  10−4  ˚C-1 in 

volume. This value is very close to the triclinic cell from C18 of (4.17±2.48) 

×  10−4  ˚C-1 which is a lower value of deviation from C16 indicating the 

disordering effects are reduced as the chain length decreases. This can also 

be reflected from Figure 5.16 with the more regular linear trend of thermal 

expansion plots is observed from C16 unit cell especially the c-axis direction.  

 

 

Figure 5.15 In-situ SPXD patterns for pure C16 collected from 13.72 °C 
to -40 °C with 2 °C intervals during cooling process at 1.67 °C/min. 
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Figure 5.16 Unit cell parameters (a, b c axis and α, β, γ angels) obtained 
from “Pawley fit” using Topas software are plotted as a function 

temperature for C16 

 

 

Figure 5.17 Volume of C16 unit cell obtained from “Pawley fit” using 
TOPAS software are plotted as a function temperature. 
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5.4 Discussions  

A reasonable trial structure indeed makes the refinement much easier and 

more sensible since the best configuration has been selected from a large 

number of possibilities in respect of both lattice energy and XRD fit. In this 

case, we have proved this point as only certain bond restraints and spherical 

harmonics corrections for preferred orientation and anisotropic factor had 

been applied during Rietveld refinement to determine the final structure. In 

other words, it has not been corrected far away from the beginning of the 

selected best trial structure obtained from the systematic search. The benefit 

of the lattice energy calculation is taken into account with the intermolecular 

bonding of both methylene and methyl groups with reasonable packing 

arrangement of the molecular configuration. Whereas for the Rietveld 

refinement, hydrogen positions which are not recognised might result in ideal 

simulation between the structure with experimental XRD data but unrealistic 

packing arrangement.  

From both alkanes of C18 and C16, even though the good agreement is 

observed from the determined structures and literature work, the room 

temperature structures from the literature are not applicable to the low 

temperature data (-40 °C) collected with high resolution synchrotron XRD in 

MAC detector with minimum step size. This could be interpreted by the reason 

of thermal expansion effect with resultant more reflection peaks at -40 °C as 

seen from the dynamic diffraction plots in Figure 5.7 (a-c).  

It was known that the even alkane crystallising with triclinic structure with 

inverse centre symmetry rather than the orthorhombic structure with a mirror 

symmetry in odd number alkane is caused by the effect of end methyl group 

attractions [77]. However, it is weak with resultant c-axis not linearly thermal 

expanded but showing disordering especially happened at an early stage of 

crystallisation. The hypothesis can be made with surface molecules freezing 

first with end group packed ideally in the orthorhombic symmetry.  

From the crystal growth studies of C18 carried out in this work together with  

the previous results of C22, it can be illustrated that the morphological 

behaviour of the even carbon number homologue molecule of C16 could be 

similar, to some extent, with irregular polygon or hexagonal shape crystals at 

lower supersaturation and parallelogram shape habits at high supersaturation 

solutions.  
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5.5 Conclusions 

This chapter presents structure determination of C18 crystallised in melt 

phase at a low temperature of -40 °C and room temperature. Computational 

prediction systematic search in combination with high resolution synchrotron 

powder diffraction data are confirmed to be reliable to determine the structure 

as indicated by a good agreement with the single crystal method but with 

benefit in simple sample preparation.  

The stack plots of time-resolved synchrotron X-ray diffraction reveals the 

polymorphic behaviour notably a rotator phase with positional disordering 

along the c-axis, is not observable from this study. Nevertheless, at the 

beginning of crystallisation, disordering effects are shown with low angle 

peaks splitting and high amorphous content represented by a broad peak at a 

d spacing of 4.5 Å. This is also observed even in liquid phase suggested by 

the existence of pre-ordering clusters prior to the solid formation due to the 

methylene group interaction between inter-chain molecules. The rotator 

phase is not detectable, which could stem from that the phase is not stable 

enough during the poly-thermal cooling process. The isothermal method can 

be used in the future study.  

Thermal expansion coefficient in lattice volume of C18 (4.17±2.48 × 10−4 ˚C-

1) and C16 (4.39±1.94×  10−4 ˚C-1) crystals are with close values which were 

determined from unit cell parameters from the time-resolved XRD. Also, the 

anisotropic character of crystals is observed as the variable thermal expansion 

behaviour from different axial directions and angles.  

Crystal growth studies of C18 carried out in three supersaturations (𝝈 =

0.036, 0.045 𝑎𝑛𝑑 0.08) in n-dodecane solution reveal a plate-like morphology 

dominated by the {001} habit plane with smaller side faces changing with 

supersaturations. Morphological indexation of the observed crystals are 

predicted using BFDH in combination with zone axis method with faces the 

observed smaller faces (010) (321) (2-10) for 𝜎 = 0.036, (1-20) (230) (100) 

for 𝜎 = 0.045 , (-110) (130) for  𝜎 = 0.08 . Attachment of energy ( 𝐸𝑎𝑡𝑡 ) 

calculation is suggested to confirm these findings in future studies. 

Hexadecane shows consistency with the homologue molecule of C18 in 

association with polymorphic behaviour and thermal expansion properties 

except for the reduced disordering effects along the c-axis. The structure 

determined only using Rietveld refinement shows good simulation with values 

of Rwp (0.01) and goodness fit (2.16). However, as the hydrogen positions 

could not be recognised in Rietveld refinement which is the same issue from 
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the previous study of Me´tivaud [100], lattice energy calculations need to be 

taken into account for future work by systematic search.  
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Phase Behaviour and Crystallisation Kinetics in Octadecane 

and Hexadecane Binary System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: 

This chapter characterises the binary system of octadecane (C18) and 

hexadecane (C16) in melt phase crystallisation carried out using a 

combination of energetic and structural analysis. 
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6.1 Introduction 

Following the structural and morphological studies of pure components of C18 

and C16, this chapter will present results from the characterisation of C18/C16 

binary mixtures in terms of their phase behaviour and kinetics. 

Thermal analysis (DSC) is initially employed to study the heating/cooling rates 

effects on single and binary mixture components. Consequently, a relatively 

slow heating/cooling rate is employed to determine the temperature and 

enthalpy of phase transitions for 21 binary mixture samples. Additionally, a 

rotator phase is discovered from C18 during the cooling process. The stability 

of this phase is further studied using impurity compositions. 

The phase transitions determined from the heating process are further 

discovered by powder X-ray diffraction (XRD). The evolution of the newborn 

phases from mixing of C18/C16 in high temperature (HT) and low temperature 

(LT) regions are first identified and characterised. Furthermore, structural 

behaviour as a function of temperature for each composition of mixtures is 

identified from the relative reflection peak positions using temperature 

dependent XRD. Hence, the overall equilibrium binary phase diagram of 

C18/C16 as a function of mixture compositions is presented with phase 

transition temperatures obtained from thermal analysis, and the phases 

involved during the temperature ranges determined are resolved through XRD 

analysis. 

In comparison with equilibrium conditions, crash cooling effects on the 

formation phase of binary mixtures are also studied to indicate the importance 

of kinetics on the phase formation of binary mixtures. The kinetics are further 

studied by application of the “KBHR” approach (2.5.2) to access nucleation 

mechanisms and obtain important kinetic parameters. 
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6.2 Thermal Analysis 

 Influence of Heating/Cooling Rates 

The effect of heating/cooling rates on solid-liquid phase transitions was 

investigated on three samples: pure components of C16 and C18 representing 

the triclinic phase; a binary mixture of 0.4C18 representing the solid solution 

rotator phase (R1). Quantitative measurements were performed using three 

individual samples and two cycles of repeats. The full-set data in terms of 

crystallisation and melting temperatures (onset, peak and end points) as 

evaluated and integrated from DSC curves are given in Table 6.1 which 

illustrates the consistent repeatability from this experiment. For simplicity, 

DSC curves exclusive from the specialisation (exceptions would be expressed 

later) will just show one representative plot from all the repeats in the following 

figures of this chapter. 

 

Table 6.1 Phase transition temperatures and enthalpies of C16 from 
two cycle sequences and three fresh sample repeats. The 

negligible values of standard deviation (Std) show the consistent 
repeatability of the DSC measurements 

 
Crystallisation Melting   

q 
(°C/min) 

Onset 
(°C) 

Peak 
(°C) 

End 
(°C) 

∆H 
(J/g) 

Onset 
(°C) 

Peak 
(°C) 

End 
(°C) 

∆Hm 
(J/g) 

Mszw 
(°C) 

0.25 15.85 16.39 15.65 207.64 17.99 18.60 18.98 -207.76 2.75 

  15.90 16.41 15.66 207.69 17.99 18.61 18.99 -207.91 2.71 

  16.07 16.52 15.85 202.33 17.96 18.66 18.95 -204.83 2.59 

  16.05 16.49 15.83 204.03 17.95 18.74 18.94 -205.86 2.69 

  16.05 16.67 15.85 204.98 17.92 18.52 18.87 -205.46 2.47 

  16.02 16.64 15.81 205.03 17.93 18.46 18.88 -205.88 2.44 

Ave.  15.99 16.52 15.78 205.28 17.96 18.60 18.94 -206.28 2.61 

Std. 0.09 0.12 0.09 2.09 0.03 0.10 0.05 1.26 0.13 

0.50 15.91 16.38 15.53 210.35 17.94 18.77 19.33 -211.28 2.86 

  15.96 16.47 15.61 210.47 17.96 18.80 19.33 -211.96 2.84 

  15.99 16.36 15.57 205.39 17.99 18.89 19.45 -208.23 2.90 

  15.95 16.26 15.45 205.84 17.94 19.09 19.31 -206.05 3.14 

  15.93 16.56 15.61 207.69 17.90 18.74 19.07 -207.77 2.81 

  15.89 16.53 15.58 206.30 17.90 18.59 19.09 -208.21 2.70 

Ave  15.94 16.43 15.56 207.67 17.94 18.81 19.26 -208.92 2.88 

Std. 0.04 0.11 0.06 2.26 0.03 0.17 0.15 2.25 0.15 

1.00 15.87 16.18 15.00 199.10 17.99 19.26 20.20 -199.76 3.39 

  15.81 16.13 14.93 198.58 17.98 19.28 20.18 -199.52 3.47 

  15.93 16.32 15.22 190.92 17.97 19.13 19.94 -191.44 3.20 

  15.97 16.35 15.22 190.69 17.99 19.09 19.96 -191.82 3.12 

  15.94 16.64 15.43 215.21 17.92 18.77 19.54 -214.63 2.83 

  15.91 16.62 15.42 214.40 17.93 18.79 19.61 -214.53 2.88 

Ave.  15.91 16.37 15.20 201.48 17.96 19.05 19.91 -201.95 3.15 

Std. 0.06 0.22 0.21 10.93 0.03 0.22 0.28 10.42 0.26 

3.20 15.75 15.78 13.86 209.49 17.65 19.46 21.14 -210.98 3.71 

  15.73 15.73 13.86 209.31 17.63 19.63 21.15 -211.05 3.90 

  15.72 15.59 13.99 190.72 17.70 19.42 20.82 -192.14 3.70 
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  15.67 15.81 14.09 190.22 17.70 19.42 20.79 -192.29 3.75 

  15.68 15.89 13.86 199.87 17.61 19.44 21.17 -201.72 3.76 

Ave.  15.71 15.76 13.93 199.92 17.66 19.47 21.01 -201.64 3.76 

Std. 0.03 0.11 0.10 9.47 0.04 0.09 0.19 9.40 0.08 

5.00 15.67 15.66 13.22 209.88 17.93 20.20 22.26 -212.41 4.53 

  15.63 15.75 13.25 209.50 17.93 20.28 22.25 -211.89 4.65 

  15.69 15.50 13.18 215.13 18.00 20.09 22.46 -215.88 4.40 

  15.60 15.57 13.19 213.32 17.98 20.09 22.55 -216.28 4.49 

  15.84 15.79 13.32 217.09 17.94 20.08 22.20 -218.53 4.24 

  15.78 15.72 13.32 217.06 17.93 20.07 22.18 -218.60 4.29 

Ave.  15.70 15.67 13.25 213.66 17.95 20.14 22.32 -215.60 4.43 

Std. 0.09 0.11 0.06 3.38 0.03 0.09 0.15 2.90 0.15 

 

A pure component example is shown in Figure 6.1 with a set of DSC curves 

from sample C16 examined at 5 heating/cooling rates (0.25, 0.5, 1, 3.2 and 5 

°C/min) with a temperature range from 10 to 24°C. A binary mixture sample 

of 0.4C18 is presented in Figure 6.2 with 4 heating/cooling rates (0.25, 0.5, 1 

and 3.2 °C/min) in the temperature range of 10 to 24°C. 

 

 

Figure 6.1:  DSC curves plotted with normalised heat flow versus 
sample temperature from C16 collected at various heating/cooling 

rates 
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Figure 6.2:  DSC curves plotted with scaled normalisation heat flow 
versus sample temperature from 0.4C18 collected at various 

heating/cooling rates. 

 

From all the curves, there was only one major peak observed from either the 

cooling or heating process representing the crystallisation or melting of liquid-

solid phase transition. While the shape of the transition peak was varied not 

only from the transition phenomenon referred to crystallisation or melting but 

also the scanning rate. Crystallisation usually occurred with a sharp onset in 

comparison with an indistinct start of melting phenomenon, even though for a 

high purity sample (C16 or C18). The broad shape of the melting peak can be 

explained by the nature of normal alkanes with a long chain of c-axis and 

lamella packing [36]. Nevertheless, increasing the heating/cooling rates, the 

shape of the peaks from both reactions became broader due to the larger 

temperature gradient inside the sample. Generally, from this study and 

previous work, a heating/cooling rate of 5°C/min can be defined as the 

limitation for normal alkanes that gives better resolution and results for thermal 

energetic measurements [111]. In addition, supercooling was obtained in pure 

samples, as seen in Figure 6.1, lower crystallisation temperature due to the 

involvement of the nucleation process and that the onset point was decreased 
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with increasing the cooling rate. The associated nucleation kinetics study will 

be further discussed.  It should be noted that the triclinic phase formation of 

C16 or C18, involved an exothermic peak inclining to higher temperature 

direction along with the cooling process. This is because a large amount of 

energy can be released accompanied by a phase transition from liquid to 

triclinic crystalline which is densely packed and stabilised. This typical peak 

shape is always presented from a thermal analysis of normal alkanes once a 

triclinic phase crystallisation is comprised [55]. 

Regardless of the sharp exothermic peak shape observed from pure 

components with rapid phase transition reaction, both crystallisation and 

melting processes involved a large temperature range and a long period for 

the binary mixture sample of 0.4C18 as shown in Figure 6.2. The progression 

of the liquid phase to the solid phase for a mixture component happened 

gradually in a poly-thermal temperature range comprising diffusion from both 

solid-solid and solid-liquid phases to achieve equilibrium composition at the 

end point of cooling. Thus relatively slow cooling rates were essential such as 

0.25, 0.5 and 1°C/min with the sharp onset of solidification following a long tail 

of wide temperature ranges as required for the diffusion process. Whereas the 

faster cooling rate of 3.2°C/min showed an arc-shaped exothermic peak that 

could give a different composition under equilibrium conditions. As a result, 

the data collected at 3.2°C/min was not appropriate for further nucleation 

kinetic assessment. Furthermore, adjacent melting and crystallisation points 

were detected implying a negligible supercooling was needed to overcome 

the energy barrier from nucleation. This distinct behaviour of the C18/C16 

binary mixture can be explained by the formation of solid solution R1 which is 

a disordered rotator phase rather than the inherent triclinic structure, low 

energy involved from crystallisation which is demonstrated by the observation 

of a regular straight exothermic peak. 

The onset point is taken to be the crystallisation temperature while for the 

melting process it is the peak point, due to the sharp onset peak only be 

observable from the crystallisation transaction. Averaged values of 

crystallisation (Tc) and melting temperatures (Tm) and resultant heat 

enthalpies and MSZWs with their standard deviations are listed in Table 6.2 

and plotted in Figure 6.3 (a, b and c) for C16, 0.4C18 and C18, respectively. 
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Linear line fitting was applied to all plots with correlation coefficients 𝑅2 that 

could indicate good fits for all three samples. Equlibriium Tm determined from 

these extraplation lines back to the zero heating rate for sample C16, 0.4C18 

and C18 were 18.63°C, 18.94°C and 28.28°C, respectively. 

The dependence of Tc and Tm on cooling/heating rates was also demonstrated 

in Figure 6.3 (a) and (b) which both show flat Tc-q and Tm-q lines for sample 

C16 and C18 indicating the crystallisation process will be more 

thermodynamically controlled; while (c) shows a kinetic control on both cooling 

and heating rates for binary mixture 0.4C18. As seen in Table 6.2, MSZW and 

enthalpies as measured from these three components reflected the chain 

length and structural dependence. Small MSZWs and enthalpies were 

obtained from binary mixture 0.4C18 with a disordered rotator phase. For a 

single component of C16 and C18, the MSZW decreased with the increase in 

chain length. Meanwhile, the enthalpy of the triclinic phase formation was also 

increased. 

 

Table 6.2 Averaged temperatures of crystallisation (Tc) and melting (Tm) 
with their standard deviations as a function of cooling/heating 
rates. The resultant MSZW as obtained from Tm-Tc was also 

presented. 

 
Crystallisation  Melting 

q(°C/min) Tc(°C) std 
∆H 

(J/g) 
std 

Tm 

(°C) 
std 

∆Hm 

(J/g) 
std 

MSZW 

(°C) 
 

 C16 

0.25 15.99 0.09 205.28 2.09 18.60 0.10 -206.28 1.26 2.61 

0.5 15.94 0.04 207.67 2.26 18.81 0.17 -208.92 2.25 2.88 

1 15.91 0.06 201.48 10.93 19.05 0.22 -201.95 10.42 3.15 

3.2 15.71 0.03 199.92 9.47 19.47 0.09 -201.64 9.40 3.76 

5 15.70 0.09 213.66 3.38 20.14 0.09 -215.60 2.90 4.43 
 

 0.4C18 

0.25 18.84 0.01 158.71 0.22 19.00 0.03 -156.93 1.24 0.16 

0.5 18.79 0.02 144.90 0.35 19.10 0.01 -146.67 1.44 0.31 

1 18.74 0.01 155.52 1.94 19.22 0.01 -153.80 0.20 0.48 
 

 C18 

0.25 26.66 0.01 208.85 9.21 28.27 0.11 -208.81 8.07 1.61 

0.5 26.64 0.07 199.21 10.66 28.34 0.03 -202.95 11.79 1.71 

1 26.52 0.12 210.51 2.73 28.71 0.14 -208.70 4.33 2.19 

3.2 26.44 0.04 228.98 12.26 29.28 0.09 -231.45 11.83 2.84 

5 26.21 0.19 215.00 1.20 29.66 0.22 -215.60 2.36 3.45 
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Figure 6.3:  Plots of onset/peak points of crystallisation/melting 
temperatures and their standard deviations versus 

cooling/heating rates. a) Pure C16, b) 0.4C18 and c) Pure C18. 

 

 Temperature and Enthalpy Determination of Phase 
Transitions 

 

To observe phase transition temperatures and enthalpies, 21 binary mixed 

samples were examined by calorimetric measurements of DSC. A set of 

thermograms of the mixed samples is shown in Figure 6.4 from - 20 to 30°C 

at a heating rate of 1˚C/min. The main large peak observed in the HT region 

for each composition is relative to the transition from solid to liquid referred to 

as the melting peak. Normal alkanes of C18 and C16 with carbon number 

differences smaller than four are expected [56] to be completely soluble in the 

solid phase which forms in a solid solution. However, multiple phases of solid 

solution could be detected across the overall mixture samples as the melt 

peak shape varied from compositions: samples rich in C16 or C18 were in 

sharp and high peaks, whereas samples having equalised percentage of both 

components were in broad and short peaks. Overall, two equilibrium invariants 

were observed with respect to eutectic reaction for compositions from 
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0.05C18 to 0.2C18 having the same onset point of melting at 16˚C and for 

compositions from 0.8C18 and 0.85C18 notably by an extra peak observed at 

the melt peak shoulder indicating the existence of peritectic equilibrium 

invariant located around 26˚C. It needs to be noted that 0.1C18 was found to 

be the eutectic composition due to the sharp melting peak that was 

comparable to the pure components whereas others always had broader 

peaks with a period of melting [112]. 

In addition, some relatively smaller peaks were observed at low temperatures 

(LT) with respect to the solid-solid phase transitions which is enlarged and 

shown in Figure 6.5 for compositions from 0.05C18 to 0.7C18. The 

polymorphism transformation between the solid phase at HT and LT regions 

was accompanied by subtle packing and structural difference as a result of 

smaller energy changes. This would be the reason that the peak shape for the 

solid-solid phase transition at LT was not as sharp and regular as the solid to 

liquid phase transitions at HT. Melting transition occurred in a wide 

temperature range and was possibly due to the slow diffusion in the solid 

phase of the mass transfer from different compositions. Thus, the peak point 

instead of the onset was more appropriate to be taken as the transition 

temperature for the solid-solid phase transition. Two equilibrium invariants 

(eutectoid and peritectoid) were achieved located around - 10.5˚C and - 13˚C, 

respectively. In addition to the observation of three solid-solid phase 

transitions for sample 0.45C18, it can be concluded that the presence of 

discontinuous phase formation at LT. The outcome from our studies supports 

the idea from the latest work [113] of normal alkanes and against the earlier 

observation from Mazee [59] which proposed a single phase region at LT. 

The integrated results of averaged values and their standard deviations are 

listed in Table 6.3 and Table 6.4 for transitions peaks observed from the HT 

and LT regions respectively. The onset, peak and end points of the solid to 

liquid phase transitions and resultant enthalpies are listed in Table 6.3 for the 

determination of phase boundary for liquidus and solidus lines. The solidus 

points were the onset of melting transitions, therefore below the solidus line 

will be all solid phase. The liquidus temperatures were calculated using the 

“Shape factor” empirical method to determine the actual end temperatures of 

binary phase mixtures from DSC analysis [112]. For binary mixtures, the 
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melting phenomenon is no longer isothermal, so the peak width increases 

except the eutectic composition like 0.1C18 which has a lowest melting 

temperature (peak) and the liquidus point as shown in Table 6.3. These 

observed phase transitions would be further investigated by PXRD from the 

temperature range determined. 
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Figure 6.4:  DSC thermograms towards heating for C16/C18 binary mixtures from 21 compositions collected from -20˚C to 
30˚C. The two equilibrium invariants (Eutectic and Peritectic) with compositions having an identical onset melting point 

at HT region are shown with dashed lines. The LT region phase transitions are enlarged as shown in Figure 6.5. 

Peritectic 

Eutectic 
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Figure 6.5:  Enlarged thermograms from - 20˚C to 15˚C for compositions from 0.05C18 to 0.7C18 representing the solid-solid 
phase transitions at LT region. The two equilibrium invariants (Eutectoid and Peritectoid) with compositions having 

identical transition temperature at LT region are shown with dashed lines. 
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Table 6.3 Onset, Peak and Endpoints as integrated from the solid to 
liquid transitions and resultant heat enthalpy for 21 samples of 

binary mixtures. E and P represent to eutectic and peritectic 
invariants, respectively. 

X C18 Liquidus 

°C 

Onset (Solidus) 

°C 

Peak 

°C 

End 

°C 

Enthalpy 

J/g 

0 18.52 17.96 ±0.03 19.05 ±0.22 19.91 ±0.28 -201.95 ± 10.42 

0.05 16.65 15.86E ±0.01 17.22 ±0.07 18.04 ±0.10 -150.77 ±1.01 

0.1 16.07 16.07E ±0.01 16.79 ±0.02 17.46 ±0.11 -140.15 ±4.07 

0.15 16.51 15.89E ±0.04 17.31 ±0.08 17.90 ±0.12 -133.62 ±4.83 

0.2 16.59 16.17 ±0.02 17.35 ±0.03 17.98 ±0.02 -149.24 ±4.25 

0.25 17.19 15.97 ±0.02 18.01 ±0.08 18.58 ±0.06 -139.97 ±0.27 

0.3 17.50 16.28 ±0.02 18.26 ±0.01 18.90 ±0.07 -143.06 ±3.15 

0.35 17.84 16.02 ±0.05 18.68 ±0.01 19.23 ±0.03 -145.87 ±10.47 

0.4 18.68 16.65 ±0.09 19.47 ±0.03 20.08 ±0.06 -141.82 ±1.26 

0.45 19.39 16.49 ±0.04 20.10 ±0.05 20.78 ±0.08 -138.16 ±1.06 

0.5 20.02 17.30 ±0.05 20.67 ±0.05 21.42 ±0.01 -137.11 ±2.22 

0.55 20.35 17.88 ±0.02 21.17 ±0.01 21.75 ±0.01 -152.13 ±13.07 

0.6 21.33 18.66 ±0.04 21.99 ±0.01 22.72 ±0.02 -140.32 ±4.19 

0.65 21.76 19.39 ±0.07 22.56 ±0.02 23.16 ±0.04 -154.88 ±9.27 

0.7 22.62 20.49 ±0.09 23.36 ±0.03 24.02 ±0.03 -143.62 ±1.83 

0.8 23.96 22.28 ±0.08 24.69P ±0.03 25.36 ±0.04 -178.23 ±1.75 

0.85 25.16 22.59 ±0.05 25.58P ±0.01 26.55 ±0.01 -171.98 ±3.33 

0.9 25.94P 24.01 ±0.02 26.76 ±0.04 27.34 ±0.02 -191.56 ±4.02 

0.95 27.07 26.01 ±0.03 27.90 ±0.06 28.46 ±0.06 -189.64 ±6.04 

0.98 27.29 26.73 ±0.03 27.98 ±0.03 28.69 ±0.03 -208.33 ±2.20 

1 28.04 27.70 ±0.07  28.71 ±0.14  29.43 ±0.13  -208.7 ±4.33  
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Table 6.4 Peak points of solid-solid phase transitions for compositions 

from 0.05C18 to 0.85C18 at LT; E☆ represents eutectoid invariant; 

P☆ represents peritectoid invariant. 

X C18 Oder-R 

°C 

S-S 

°C 

TE 

°C 

S-S 

°C 

0.05 7.41 ±0.07         
 

  

0.1 -3.60 ±0.20         
 

  

0.15 -9.67 ±0.09     -12.99E☆ 
±0.07 

 
  

0.2         -13.03E☆ 
±0.01 

 
  

0.25         -12.97E☆ 
±0.02 

 
  

0.3 -11.37 ±0.06     -13.01E☆ 
±0.02 

 
  

0.35         -10.94P☆ 
±0.04 -13.46 ±0.02 

0.4         -10.37P☆ 
±0.11 -13.29 ±0.03 

0.45 -8.55 ±0.01     -10.83P☆ 
±0.02 -13.45 ±0.06 

0.5 -6.58 ±0.06     -10.79P☆ 
±0.07 -12.75 ±0.24 

0.55 -5.05 ±0.03     -10.62P☆ 
±0.55 

 
  

0.6 -2.86 ±0.04 -5.93 ±0.14     
 

  

0.65 6.43 ±0.14 -1.26 ±0.04     -5.19 ±0.32 

0.7 11.54 ±0.07         
 

  

0.8 20.18 ±0.04         
 

  

0.85 24.72 ±0.19         
 

  

 

 

 Crossover Observation from Transient to Metastable to 
Stable Phase of R1 

 

As previously mentioned the repeatability from two cycles of the 

heating/cooling processes, the exceptional observation was found for C18 

with second cooling differing from the first one which involved a solid phase 

transaction. As seen in Figure 6.6(a), the second cycle of cooling had an 

overlapping exothermic twin peak. The minor one was for phase transition 

from isotropic liquid crystallised into a low energy phase with a small half 

shaped peak. However, the solid phase formed was not stable and directly 

transferred into a triclinic phase with a sharp peak and typical tilt which is 

evidence of the high energy triclinic phase formation. A similar observation 

was also found for 0.98C18 as shown in Figure 6.6(b), the different behaviour 

in two cycles of crystallisation indicating a solid-solid transition represented by 

the additional exothermic peak in an integrated shape. 
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Figure 6.6:  DSC traces from two cycles (red and black lines) of 
heating/cooling processes at 1˚C/min within a temperature range of 

23˚C to 30˚C with phase transition peaks from exothermic (upper side) 
and endothermic (downside) reactions. The non-repeatable exothermic 

peaks from two cycles towards cooling are indicative of a transient 
state of the rotator phase state with C18 (a) and 0.98C18 (b). 

 

Since the rotator phase formation could be the essential role of the nucleation 

kinetics mechanism [53, 54], increasing the amount of impurity of C16 in C18 

from 0.95C18 to 0.8C18 was performed with two cycles of heating/cooling as 

shown in Figure 6.7. Nevertheless, the non-repeatable behaviour of two 

cycles of cooling from the rotator phase transition observed from C18 and 

0.98C18 (Figure 6.6), the rotator phase appeared to be a metastable phase 

which could be detected from both cycles of cooling as increasing the amount 

of impurity to 0.95C18. A small melting peak of this rotator phase could be 

observed represented by a shoulder for 0.85C18, while a small fully shaped 

peak for 0.8C18 turned out to be a stable phase seen in Figure 6.7. 
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Figure 6.7:  DSC curves of binary mixtures of 0.8C18, 0.85C18, 0.9C18 
and 0.95C18 from two cycles heating/cooling processes at 1˚C/min 
from 2 to 30˚C with phase transition peaks from exothermic (upper 

side) and endothermic (downside) reactions. Identical thermal 
traces from two cycles measurements indicating the state of 

rotator phase is stabilised and no longer a transient state. 

 

There is no doubt of chain length dependence on phase structure of normal 

alkanes [77]. This could be explained by the energy of a crystal should be 

broken down into two components, which are dependent on the lateral 

interaction of the chain molecules, the other on the interaction of the ends [36]. 

The relative values of these would alter changing to a shorter molecule, and 

this would produce a change in the crystal structure. This perhaps is the same 

reason for the phenomenon that the rotator phase induced nucleation 

crossover from the transient state to long-lived metastablity as increasing the 

chain length studied from synchrotron XRD experiments [53, 54]. Especially, 

C18 reacts as a coherent set regarding the long life transient state to a 

metastable rotator phase which is not clearly defined from previous thermal 

analysis and regarded as there being no rotator phase involved. Interesting, 

in this study using DSC had identified C18 crystallised with a single 
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exothermic peak for the liquid to triclinic crystallisation and a twin peak with 

the rotator to triclinic phase transition on the second sequence of cooling. 

Moreover, the transient state of the rotator phase is not only influenced by 

normal alkane chain length but also the composition of homologue impurities, 

i.e. a shorter chain of C16 is not observable with any rotator phase. As a result, 

the metastability of rotator phase formation alters from transient to metastable 

to stable as the amount of homologue impurity increases. 

 

6.3 Phase Identification from PXRD Analysis 

 Disordered Phase at High Temperature Region (HT) 

 

As introduced from the thermal analysis, C18/C16 binary mixtures could form 

a solid solution which is a new phase and it is a lower energy structure in 

comparison with the inherent triclinic phase. This phase has been studied for 

a long time from many homologues alkane mixtures which are a disordered 

rotator phase (R1) [113]. It is the most common disordered phase in single odd 

number alkane and homologue mixtures while it did not exist in single even 

carbon number ones. In order to study the structure of C18/C16 solid solution, 

based on the DSC results, three compositions of 0.3C18, 0.5C18 and 0.7C18 

were collected with a high resolution XRD scanned from 2 to 80° in 2θ. 

Figure 6.8 shows an example of the high resolution XRD pattern for the 

composition of 0.3C18 collected at 5°C with the best fit from the “Pawley fit” 

and indexation peaks. Low angle (00l) peaks were detected by this 

transmission mode XRD with a rotational sample stage that highly reduced 

the texture effects. There were only two low-intensity peaks observed at high 

angles and no reflections presented beyond 40° in 2θ. This behaviour 

confirms this rotator only has an ordered packing with lamellar interchain 

packing and no long range order. Also, the high amorphous diffusion seen at 

20° in 2θ was an indication of the poorer crystalline order corresponding to the 

interchain separation which was also observed in previous alkanes 

homologue studies [42, 72, 73]. 
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Newborn unit cell parameters and refinement parameters are presented in 

Table 6.5, together with the literature parameters in Table 6.6. As expected, 

R1 unit cell packing was with four molecules in a bilayer with the c-axis length 

close to the calculation of chain length from the mixture composition. Rwp and 

Rp values are in a reasonable range for organic component fitting (<10%). The 

previous study for the C18/C16 solid solution of R1 phase is from Wang [114] 

with a mixture composition of 0.65C18 at 18°C where they proposed a unit 

cell with a c-axis of 97.95 angstroms which is not sensible for the packing 

preferences of R1 in binary mixtures. The reason for the wrong analysis could 

be due to no reflection peaks being observed for (00L) which could give the 

packing information and rough c-axis length. It needs to be noted that 0.5C18 

has a shorter c-axis length and smaller molecular volume than the rest of the 

compositions. Hence, it seems that the length of the c-axis and molecular 

volume are not strongly related to the calculated chain length from the mixture, 

but more related to the packing with defects in the end methyl group. This 

could also be explained by the lower enthalpy fusion of 0.5C18 as compared 

with 0.3C18 and 0.7C18 from DSC (Table 6.3) which indicated that 0.5C18 

has a rotator crystalline which can be more disordered with more defects.  
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Figure 6.8:  Example of “Pawley fit” of sample 0.3C18 from 
experimentally collected XRD scan at 5°C; determined 

background; calculated reflection pattern from the determined unit 
cell; the difference between the experimental and calculated data 

is also shown. 

 

Table 6.5 Unit cell parameters of R1 from C16/C18 mixture obtained 
from STOE© and refined by TOPAS [87] 

Sample 
Temp. 

°C 

Space 

group 
a/ Å b/ Å c/ Å α/° β/° γ/° V/Å𝟑 

Rwp 

% 

Rp 

% 

0.3C18 5 
Fmmm 

Z=4 
5.048 7.657 47.54 90 90 90 459.385 7.0 4.07 

0.5C18 10 
Fmmm 

Z=4 
5.038 7.534 46.24 90 90 90 438.838 9.7 6.2 

0.7C18 10 
Fmmm 

Z=4 
5.046 7.66 48.75 90 90 90 471.076 7.5 4.9 

 

Table 6.6 Literature determined unit parameters of R1 

Phase Author Sample 
Space 
group 

a/ Å b/ Å c/ Å α/ ° β/ ° γ/ ° T/ °C 

R1 Wang[114] 0.65C18 
Fmmm 
(Z=4) 

8.17 4.92 97.95 90 90 90 18 

R1 Luth[115] 0.28C22 
Fmmm 
(Z=4) 

5.02 7.711 58.1 90 90 90 RT 



- 114 - 

 Intermediate Ordered Crystalline Phases in the Low-
Temperature Region (LT) 

 

In addition to the newborn phase of R1 from the solid solution of C18/C16 at 

HT, some more intermediate structures of Mdcp and Op [65, 113], as observed 

from DSC at LT were also detected from XRD measurements at an isothermal 

temperature of - 30°C, as shown in Figure 6.9. First of all, diffraction patterns 

of the single phase of triclinic for C16 and C18 with its reflection peaks were 

detected in the bottom and top of Figure 6.9 respectively. The mixed sample 

0.05C18 with a minimum amount of homologue impurity was also crystallised 

with a triclinic solid solution. 

Secondly, it is easy to identify the high symmetry structural phases in the 

middle range with mixed molar compositions from 0.3C18 to 0.6C18. 

However, to distinguish from the two intermediate phases of Mdcp and Op is 

difficult due to the similar unit cell symmetry arising from the only difference 

being the end group packing arrangement between chain layers. Figure 6.10 

shows the similarity between the two intermediate phases with close c-axis 

length resulting in comparable reflections at low angles. Nevertheless, peak 

positions observed near 2θ of 36° and 38° are closer to the high angles 

direction which is relative to the Mdcp phase for 0.3C18 and 0.4C18, whereas 

peaks towards to low angles direction correspond to the Op phase for 0.6C18 

and 0.7C18. The peaks belong to middle compositions of 0.45C18 and 0.5C18 

which are located in the middle position of the previous two cases indicating 

mixture phases of Mdcp and Op. Overall, the high symmetry phases at LT are 

not easily distinguishable from XRD but as DSC curves clearly show, the 

eutectoid and peritectoid three-phase equilibrium invariants strongly 

demonstrate it is not a continuous solid solution. 

Last but not least, mixed samples with multiple phases were indexed with 

relative structures. An example of indexing triclinic and monoclinic phases for 

mixture sample of 0.1C18 is represented in Figure 6.11 from a Pawley fit 

using TOPAS software [87] which enabled recognition of individual peak 

position with an indexed plane to the respective structure. Refined unit cell 

parameters and fitting information are listed in Table 6.7. 
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Figure 6.9:  XRD patterns collected at - 30°C of C16/C18 binary 
mixtures with two theta range from 15 to 30° at a wavelength of 
1.54 angstrom:♦ T (P-1, Z=1), ♣ Mdcp (Aa, Z=4) and ♥ Op (Pca21, 

Z=4. 
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Figure 6.10:  Example illustrating the difference between pure solid 
solution Op or Mdcp and the mixture phases of both for mixture 

samples collected at - 30°C 

 

 

Figure 6.11:  Example of multiple phases “Pawley fit” of sample 0.1C18 
from experimental data collected at - 30°C; determined 

background; Calculated reflection pattern from the determined 
unit cell of T16 and Mdcp; Difference between the experimental 

and calculation data is also shown. 
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Table 6.7 Unit cell parameters determined from XRD patterns collected 
by X’pert and Pawley refinement using TOPAS software. 

Sample phase 
Space 

group 
a/ Å b/ Å c/ Å α/ ° β/ ° γ/ ° 

Rwp/ 

% 

Rp/ 

% 

C16 T16 
P-1, 

(Z=1) 
4.258 4.832 20.465 91.121 90.184 106.564 5.01 2.96 

0.05C18 T16 
P-1, 

(Z=1) 
4.205 4.775 20.339 90.126 91.140 106.115 4.40 2.82 

0.1C18 Mdcp 
Aa 

(Z=4) 
7.384 4.979 47.688 90 91.430 90 3.05 2.19 

 T16 
P-1, 

(Z=1) 
4.232 4.846 20.320 90.347 90.319 107.532 4.16 2.540 

0.15C18 Mdcp 
Aa 

(Z=4) 
7.397 4.991 47.858 90 91.333 90 1.94 1.38 

 T16 
P-1, 

(Z=1) 
4.194 4.798 20.877 89.855 91.645 106.676   

0.2C18 Mdcp 
Aa 

(Z=4) 
7.402 5.006 48.077 90 91.207 90 3.28 2.25 

 T16 
P-1, 

(Z=1) 
4.199 4.789 20.798 89.822 91.658 106.889   

0.3C18 Mdcp 
Aa 

(Z=4) 
7.378 4.974 47.433 90 90.99 90 5.61 3.95 

 T16 
P-1, 

(Z=1) 
4.256 4.813 20.616 91.115 89.648 107.205   

0.4C18 Mdcp 
Aa 

(Z=4) 
7.383 4.998 47.938 90 91.278 90 3.37 1.79 

0.45C18 Op 
Pca21 

(Z=4) 
7.309 4.993 46.850 90 90 90 3.90 2.93 

 Mdcp 
Aa 

(Z=4) 
7.382 4.759 47.489 90 94.130 90   

0.5C18 Op 
Pca21 

(Z=4) 
7.324 4.996 46.886 90 90 90 2.89 2.10 

 Mdcp 
Aa 

(Z=4) 
7.382 4.770 47.726 90 94.148 90   

0.6C18 Op 
Pca21 

(Z=4) 
7.391 4.993 47.525 90 90 90 6.08 3.76 

0.7C18 Op 
Pca21 

(Z=4) 
7.427 5.023 47.810 90 90 90 2.75 1.78 

 T18 
P-1, 

(Z=1) 
4.268 4.817 22.803 80.746 85.296 73.168   

0.8C18 Op 
Pca21 

(Z=4) 
7.435 5.021 47.828 90 90 90 3.36 2.05 

 T18 
P-1, 

(Z=1) 
4.265 4.816 22.844 80.401 85.180 73.506   

0.9C18 Op 
Pca21 

(Z=4) 
7.437 5.018 47.823 90 90 90 5.71 2.67 

 T18 
P-1, 

(Z=1) 
4.270 4.812 22.826 80.286 85.070 73.441   

C18 T18 
P-1, 

(Z=1) 
4.224 4.724 24.695 85.846 67.759 71.672 6.35 3.94 
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 Variable Temperature XRD Analysis 

 

Temperature dependent XRD were collected for binary mixture samples 

according to the phase transition temperatures as determined from DSC, the 

stack plots for representative compositions with fraction C18 of x=0.05, 0.1, 

0.15, 0.2, 0.3, 0.4, 0.45, 0.5, 0.6, 0.7 and 0.8 are shown in Figure 6.12. 

According to the single phase identification in 6.3.1 and 6.3.2 with indexed 

peak positions, the sequences of phase transitions as increasing temperature 

for each mixed sample are presented. The specific peak positions with respect 

to T, Mdcp, Op and R1 are marked with the following symbols: ♦ T (P-1, Z=1), • 

R1 (Fmmm, Z=4), ♣ Mdcp (Aa, Z=4) and ♥ Op (Pca21, Z=4). Notably, samples of 

0.45C18 and 0.5C18 with peak positions of Mdcp and Op which are hard to 

distinguish. According to the interpretation from DSC and isothermal XRD 

phase analysis at - 30°C, phase evolution is interpreted and presented 

(Figure 6.12) as a function of the temperature of these mixtures. It should be 

noted that the R1 phase (Fmmm) forms an obvious shift of (020) plane around 

23° in two theta due to the remarkable unit cell expansion of area (b/a) as the 

temperature increased [73]. 
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Figure 6.12:  Temperature dependent PXRD collected from X’Pert for 
C18/C16 binary with molar composition x= 0.05, 0.1, 0.15, 0.2, 0.3, 
0.4, 0.45, 0.5, 0.6, 0.7 and 0.8 of C18. Symbols: ♦ T (P-1, Z=1), • R1 

(Fmmm, Z=4), ♣ Mdcp (Aa, Z=4) and ♥ Op (Pca21, Z=4). 

 

6.4 Equilibrium Binary Phase Diagram of Octadecane and 
Hexadecane 

 

A complex phase diagram of C18/C16 had been determined from melting 

transition temperatures with associated structural information resolved by 

XRD patterns from 21 molar ratio compositions is shown in Figure 6.13. The 

boundary lines observed from the melting temperatures as measured by DSC 

with solvus lines representing the peak points, the solidus line was the onset 

point. The liquidus line was determined from the real end point calculated 

using the “peak shape” method. 

In between, five monophasic solid phases (liquid, R1, T16, Mdcp, Op and T18), 

two limited solid solution regions with respect to T16 and T18 which have the 

same structure of pure alkanes existed in mixtures having compositions next 

to the pure C16 and C18. The disordered R1 phase was observed in a large 
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composition and temperature range at HT. Mdcp and Op at LT referred to as 

the intermediate ordered phases that were obtained from mixing of two 

components with certain packing defects. These two phases are also 

observable in longer chain length of even alkanes. Thus mixing of alkanes 

helps generate new phases which only appear in longer chain molecules. 

Seven bi-phasic solid phases are presented in between the adjutant 

monophasic phases: T16+R1, T18+R1, Mdcp+R1, Op+R1, Mdcp+T16, Mdcp+Op and 

Op+T18. 

The phase diagram (Figure 6.13) immediately demonstrates the existence of 

two intermediate phases in the LT domain which is not a continuous solid 

solution as the presence of two solid three-phase-equilibrium lines as 

measured by DSC and proved by XRD analysis. In total, five three-phase-

equilibrium invariants are revealed. The eutectic reaction of the liquid phase 

crystallises into mixture phases of T16 and R1 at a constant temperature of TE 

around 16°C. The peritectic reaction of mixture phases of liquid and T18 

transform to R1 at TP around 25°C. At low temperatures, eutectoid and 

peritectoid equilibrium constants are also observed with respect to the 

transitions of Op↔Tp+Mdcp, R1+Op↔Mdcp and T18+R1↔Op, the last one which 

was not detectable from DSC. 
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Figure 6.13:  Experimental determined binary phase diagram of C16/C18 mixtures as a function of composition and 
temperature towards heating processes. Phase transition temperatures are determined by DSC represented by symbols 

of □ (Solid-liquid), □ (liquid-solid) and ○ (solid-solid). Structural evolution was determined from PXRD: ♦ T (P-1, Z=1), • 
R1 (Fmmm, Z=4), ♣ Mdcp (Aa, Z=4) and ♥ Op (Pca21, Z=4). In between of the adjacent monophasic phases are bi-phasic solid 
phases: Liquid+R1, T16+R1, T18+R1, Mdcp+R1, Op+R1, Mdcp+T16, Mdcp+Op and Op+T18. Three-phase-equilibrium invariants are 

represented by dash line (      ).
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6.5 Structural Analysis for Binary Mixture Formation by 
Rapid Quenching 

Structural behaviour of the disordered R1 phase at HT transforming into the 

ordered crystalline at LT associated with the effects of cooling kinetics was 

studied by crash cooling crystallisation to a low temperature of - 30°C. 

Collected XRD patterns for mixed samples of 0.3C18, 0.5C18 and 0.7C18 as 

crash cooled to - 30°C from R1 phase at HT, are shown in Figure 6.11 (a) and 

(b) with respect to the low angle and high angle reflections. As seen from 

Figure 6.14, crash cooled 0.7C18 crystallised in a mixture of triclinic phase 

indicated from the representative reflections at 19 and 20° in 2 theta, and the 

other one having similar reflection peaks from crash cooled samples of 0.5C18 

and 0.3C18 was high possibly phase of Op. The two samples of 0.5 C18 and 

0.3 C18 with reflections consistent with each other as seen from the XRD 

patterns collected from both low angle (a) and high angles (b). However, 

instead of a single phase of Op, a formation of mixture phases was present 

with close structures illustrated by the highlighted peaks from Figure 6.14. 

According to the equilibrium phase diagram determined in section 6.4, at LT, 

the composition of 0.7C18 crystallised into mixtures of T18 and Op, for 0.5C18 

are mixtures of Mdcp and Op, for 0.3C18 are T16 and Mdcp. Apparently, different 

phase behaviour was observed for 0.3C18 from equilibrium phase diagram 

and crash cooling conditions. Figure 6.15 (a) and (b) shows the XRD patterns 

in q vector both collected at - 30°C from diffractometers of Expert and STOE 

with respect to the equilibrium and crash cooling crystallisation. The crash 

cooled structure has no reflection peaks with respect to the triclinic phase as 

observed in equilibrium. Highlighted peaks are inconsistent positions with the 

Mdcp phase, while some extra peaks can also be observed indicating a second 

phase is also formed. This phase obtained here differs from the equilibrium 

determination phase diagram. The reason can be explained due to the 

crashed cooling process was without sufficient time for triclinic phase 

formation and therefore crystallised into the intermediate kinetically favoured 

phases of Mdcp and Op. This can also correlate to the DSC observation that 

the solid-solid transition which occurred in the LT region was a poly-thermal 

process with mass transportation. Thus, without sufficient time to transfer, it 

will result in a closer packing phase to the original R1 phase.
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Figure 6.14:  Collected XRD patterns for mixed samples of 0.3C18, 0.5C18 and 0.7C18 as crashed cooled to - 30°C from R1 
phase at HT; (a) low angle and (b) high angle reflections 
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Figure 6.15:  XRD patterns in q vector of sample 0.3C18 collected both at - 30°C from diffractometers of Expert and STOE 
with respect to the equilibrium and crash cooling crystallisation. (a) Low angles and (b) high angle reflections. ♣ Mdcp 

(Aa, Z=4); ♦ T (P-1, Z=1)
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6.6 Nucleation Kinetic Assessment Using the KBHR 

Approach 

The nucleation mechanism for a single component (C16 and C18) and binary 

mixture sample (0.4C18) was accessed by applying the KBHR [31] approach 

with values of relative critical undercooling 𝑢𝑐  and cooling rate 𝑞 . The 𝑢𝑐 

values of all three samples are within the limits specified by inequalities. 

Figure 6.16 (a, b and c) shows the plots of 𝑙𝑛𝑞 𝑣𝑠 𝑙𝑛𝑢𝑐 with the best linear fits 

with respect to samples of C16, 0.4C18 and C18. The slopes and their 

indicated nucleation mechanism and correlated coefficients 𝑅2 are presented 

in Table 6.8. According to the “rule of three” [29, 30], in the case of the pure 

component of C16 or C18, having a slope larger than three which indicated a 

progressive nucleation (PN) mechanism. In contrast, 0.4C18 binary mixture is 

suggested with crystallising through the instantaneous nucleation (IN) 

mechanism in which the slope was smaller than three. Single alkanes of C16 

and C18 as ruled by PN nucleation were further investigated by application of 

Equation (2.26). To obtain the relative values from this equation, 𝑙𝑛𝑞 𝑣𝑠 𝑢𝑐 

was plotted and fitted by a non-linear curve as shown in Figure 6.17 (a) and 

(b) for C16 and C18. The parameters obtained from the fitted expressions 

correlated coefficients 𝑅2 are listed in Table 6.8. The values of 𝑎2 which are 

equal to the value of b, were used to calculate the effective interfacial tension 

(𝑟𝑒𝑓𝑓) which are also presented in Table 6.8, using Equation (2.27). Within 

the equation, 𝑣0 of 0.406 nm3 and 0.456 nm3 were used for C16 and C18 

triclinic unit cells as determined from XRD analysis in 5.2.2 and 5.3.1, 

respectively; 𝑣0 = 0.459 nm3 was used for binary mixture 0.4 C18 of R1 phase 

determined in 6.3.1. Equilibrium temperature (Te) and the latent heat of λ were 

obtained previously from DSC measurements (Table 6.3); 𝑘𝑛 =
16

3
 𝜋  for 

spherical nuclei. 

Regardless of the solvent effects playing an important role on solution 

crystallisation, melt phase crystallisation is mainly controlled by the diffusion 

and internal lattice energy [116]. From the empirical nucleation (Equation 

2.16), the nucleation rate relates to the nucleation rate constant (KJ) and 

exponential factor associated with the interfacial tension. Where the KJ relates 
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to the concentration of available nucleation sites (C0) and the attachment 

frequency (f*) of molecules to the nucleus. As a consequence, interfacial 

tension is controlled by the lattice energy and attachment frequency which is 

a diffusion factor. 

 

 

Figure 6.16:  Nucleation mechanism assessment plot of 𝒍𝒏𝒒 𝒗𝒔 𝒍𝒏𝒖𝒄 for 

a) C16, b) 0.4C18 and c) C18 in melt phase crystallisation 
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Figure 6.17:  𝒍𝒏𝒒 𝒗𝒔 𝒖𝒄 for C16 with the best non-linear fit according to 

PN mechanism expression from KBHR for a) C16 and b) C18. 
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In the case of PN, the crystals are continuously nucleated during the process 

with high energy barrier before nucleation can succeed. It usually happened 

with a high energy structure with large MSZW and more controlled by a 

thermodynamic factor of interfacial tension. Thus, the expression to calculate 

the interfacial tension from the PN nucleation mechanism strongly involves 

the value of enthalpy of crystallisation. This then confirmed that the high 

energetic structure of triclinic from a pure component of C16 and C18 

crystallise from PN mechanism. 

On the other hand, solid solution formation played a typical was as impurity 

involvement which would decrease the required supercooling by increasing 

the surface area and decreasing the surface tension. In addition, solid solution 

nucleus first formed as a core and continuous crystallisation surrounding the 

previously formed nucleus cores and reacts as a heterogeneous nucleation 

mode which is usually through the IN mechanism. This then can be illustrated 

from IN nucleation controlled by diffusion rate from mass transfer which is 

more controlling than the surface tension. 

From Table 6.8 the interfacial tension value of C16 (2.05 
𝒎𝑱

𝒎𝟐
) is larger than C18 

(1.15 
𝒎𝑱

𝒎𝟐
) indicating C16 was more difficult to nucleate, thus a larger MSZW 

was obtained. 

 

Table 6.8:  Best linear fitting for 𝒍𝒏𝒒 𝒗𝒔 𝒍𝒏𝒖𝒄 results with corresponding 

nucleation mechanism for C16, C18 and binary mixture 0.4C18. 
Values obtained from non-linear fitting of 𝒍𝒏𝒒 𝒗𝒔 𝒖𝒄 are listed for 

sample of C16 and C18 crystallising in a PN nucleation 
mechanism. 

 

Sample Slope 
Nucleation 
mechanis

m 
𝑹𝟐 𝒂𝟏 

𝒂𝟐

= 𝒃 
Error lnq0 Error q0 𝜸 (

𝒎𝑱

𝒎𝟐
) 𝑹𝟐 

C16 25.5 PN 0.96 3 
1.02
E-03 

1.28E
-04 

21.45 1.44 
2.08
E+09 

2.05 
0.9
5 

C18 11.91 PN 0.89 3 
1.65
E-04 

3.80E
-05 

16.30 1.13 
1.20
E+07 

1.15 
0.8
9 

0.4C18 2.29 IN 0.99 N/A N/A N/A N/A N/A N/A N/A N/A 
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6.7 Conclusions 

In the binary phase diagram of C18/C16 mixtures are revealed as a function 

of mixture composition and temperature by energetic and structural analysis. 

In between the phase diagram, five monophasic solid phases existed, i.e. the 

liquid, R1, T16, Mdcp, Op and T18. In total five three-phase-equilibrium invariants 

are revealed including eutectic and peritectic, in a high temperature region 

and eutectoid and peritectoid transitions in a low temperature region. 

Lattice parameters of the disordered R1 phase are determined by indexation 

of the high resolution powder diffraction data showing the c-axis length of this 

R1 structure is not strongly related to the chain length of mixtures. However, 

the lower stability with lower enthalpy fusion will result in a shorter chain 

length. By further cooling at low temperatures, the multiple intermediate 

ordered phases are detected with high symmetry crystalline structures having 

very similar diffraction peaks for diffraction data. 

Thermal analysis of DSC heating/cooling examination on pure C16, C18 and 

mixtures rich in C18 shows the crossover behaviour of the R1 existing in a 

transient to metastable to stable phase, which again confirmed the stability of 

the R1 phase affected by both composition and alkane chain length. This 

induced rotator phase from nucleation is further studied in a solution state. 

As an alternative to the equilibrium phase behaviour, binary mixtures have 

shown a different phase formation by the crash cooling crystallisation method. 

The triclinic structure is difficult to form than the more packing similar phase 

of intermediate phases of Mdcp and Op.  
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   In-situ High Resolution XRD Studies 

of Phase Behaviour of the Octadecane, 

Hexadecane and Kerosene Solution Ternary 

System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: 

This chapter will address phase behaviour in the ternary system of 

octadecane/hexadecane/kerosene mixtures as a function of composition and 

temperature using in-situ synchrotron powder diffraction.  
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7.1  Introduction 

Normal alkanes have been intensively studied for decades in terms of phase 

diagram determination and thermal analysis. However, the solvent effect on 

the formation of solid solution homologue mixtures is rarely studied. In the 

previous chapter, we have fully characterised C18/C16 mixtures in melt phase 

crystallisation, following on from that, how the solvent influences solution 

conditions from in-situ crystallisation are essential to be researched further. 

This chapter addresses the application of in-situ synchrotron powder 

diffraction on real-time crystallisation studies for single and mixed alkanes in 

a solution of kerosene (308 g/l) which is a representative fuel solvent.  The 

structure refinement for a single component of C16 and C18 in kerosene and 

associated thermal expansion properties analysis were carried out. For mixed 

samples, the phase transition behaviour as a function of temperature and 

composition as crystallising in kerosene from a liquid phase at the early stage 

to the limited low temperature at LT (- 40°C) are illustrated. 

7.2 Isothermal Analysis at LT (- 40°C) 

  LT Phase Behaviour as a Function of Composition 

 

Isothermal structural characterisation as a function of C18 molar composition 

was carried out at the low temperature of - 40°C to determine the terminal 

phase behaviour and associated crystallographic parameters. High resolution 

diffraction patterns collected via the Multi-Analysing Crystal (MAC) detector 

for the mixed samples are represented in Figure 7.1, in which are the selected 

reflection regions referred to as “low angle” and “high angle”. The structural 

revolution versus composition could be separated into two sections: samples 

(C16, 0.1C18, 0.7C18 0.9C18 and C18) close to the pure component of C18 

or C16 at both sides; samples (0.3C18, 0.4C18 and 0.5C18) close to the 

equalised percentage of C18 and C16. Mixture samples within section one 

formed solid solution type in triclinic structure identical to the chain length of 

the dominant homologue. This could be illustrated from the identical indexed 

(00L) peaks at a low angle and also reflections in the high angle region. It 

should be noted that the peak number was reduced and had a broader shape 
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than the mixed sample of 0.1C18 in comparison with pure C16. This can be 

explained by a small amount of longer chain homologue of C18 could result 

in a disordering effect on the triclinic solid solution. 
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Figure 7.1:  Stack plot of high resolution XRD (MAC detector) with λ= 0.82568° at - 40°C for C18/C16 mixtures crystallising 
from kerosene; selected “low angles” with 2θ from 1 to 10° and “high angles” with 2θ from 20 to 32°. Single triclinic 

phase with low angles reflections indexed; the low angles region for mixtures of 0.3C18, 0.4C18 and 0.5C18 presenting 
multiple phases are enlarged and shown in Figure 7.3.
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Figure 7.2:  Set of (00L) peaks at low angle range for mixture samples 
crystallising from kerosene with molar compositions of x= 0.3, 0.4 

and 0.5) C18 in C16. Multiple phases were detected in all three 
samples, i.e. triclinic (T) and unknown phases (X1 and X2). 

 

On the other hand, 0.3C18, 0.4C18 and 0.5C18 were formed in multiple 

phases indicated by the triple number of low angle (00L) reflections as 

highlighted by red dashed lines and enlarged shown in Figure 7.2. 

Nevertheless, it was not difficult to distinguish that one of the mixed phases 

was triclinic, the indexations were also given for the relative diffraction peaks. 

The proportion of triclinic phase decreased with increasing the amount of 

longer homologue component of C18 as seen from the deduction intensity of 

its reflection peaks. Apart from this, two more new phases were also 

observed: (X1) was the one having higher intensity peaks and longer chain 

length as indicated from the (00L) reflections more towards to the low angle; 

limited amount of phase (X2) with similar long chain length represented by a 

small shoulder was detected next to reflection peaks of phase (X1). 
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Figure 7.3:  Stack XRD plot in q vector of 0.5C18 with the melt crystallisation crash cooling process at - 30°C collected using 
STOE lab diffractometer and 0.5C18 with kerosene crystallisation at - 40°C collected using high resolution synchrotron 

beamline. Selected reflections from the low angles (q from 0.21 to 1.89 Å) and high angles (q from 3.2 to 5.3 Å) regions. 
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The multiple phases of X1 and X2 are possibly the intermediate low 

temperature crystalline of orthorhombic with a space group Pca21 (Op) and 

monoclinic with a space group of Aa (Mdcp) obtained from the binary mixtures 

in the melt phase as discussed in Chapter 6. In Figure 7.3, it clearly shows 

the diffraction pattern of 0.5C18 crystallised from kerosene, except the 

obvious triclinic phase (referred to as T), having identical reflections (X1 and 

X2) as to the peak positions of its binary mixture at LT. This multiple phase 

behaviour with a set of (00L) peaks was also observed for C20/C22 mixtures 

in n-dodecane by Gerson [117] which were defined as three different 

orthorhombic phases without any further information relating to the unit cell 

parameters. 

To further confirm and determine the unit cell parameters for C18/C16 

mixtures crystallised in kerosene solution, experimentally collected XRD 

patterns at the limited low temperature of - 40°C were refined with respective 

phases by “Pawley fit”. The resultant crystallographic information and fitting 

parameters are given in Table 7.1. It should be noted, for sample 0.3C18, the 

X2 phase as shown in Figure 7.2 was hardly fitted with the proposed Op 

structure. In this case, only the X1 phase as referred to as the Mdcp structure 

together with the inherent triclinic phase which was employed during the 

Pawley refinement. As a good value of Rwp was obtained, this indicated that 

the X2 phase observed by the 00l reflections at low angles is in a limited 

amount for 0.3C18 crystallisation in kerosene. 
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Table 7.1 Unit cell parameters of C18/C16 mixtures crystallising from 
kerosene at - 40°C 

Sample phase 
Space 

group 
a/ Å b/ Å c/ Å α/° β/° γ/° Rwp/% 

C16 T16 
P-1 

(Z=1) 
4.228 4.773 20.621 90.786 90.281 106.47 9.0 

0.1C18 T16 
P-1 

(Z=1) 
4.239 4.820 21.092 89.999 90.617 107.244 4.28 

0.3C18 Mdcp 
Aa 

(Z=4) 
7.366 4.997 47.183 90 90.858 90 

 

 
T16 

P-1 

(Z=1) 
4.245 4.794 21.451 90.022 90.929 107.034 5.04 

0.4C18 Mdcp 
Aa 

(Z=4) 
7.279 4.852 48.120 90 93.822 90 

 

 
Op 

Pca21 

(Z=4) 
7.348 4.987 46.791 90 90 90 

 

 
Tp 

P-1 

(Z=1) 
4.246 4.789 21.443 90.107 91.332 107.048 5.05 

0.5C18 Mdcp 
Aa 

(Z=4) 
7.412 4.753 48.682 90 93.725 90 

 

 
Op 

Pca21 

(Z=4) 
7.352 4.981 48.814 90 90 90 

 

 
T18 

P-1 

(Z=1) 
4.232 4.784 21.449 90.263 90.995 106.815 5.05 

0.7C18 T18 
P-1 

(Z=1) 
4.217 4.775 23.452 79.026 84.779 73.299 3.59 

0.9C18 T18 
P-1 

(Z=1) 
4.223 4.770 23.484 78.982 84.566 73.521 4.07 
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 Structure Refinement 

 

The high resolution XRD data of C16 crystallised from solution at - 40°C is 

presented in Figure 7.4 as an example showing consistent reflections from 

the melt phase structure. Nevertheless, higher preferred orientation was 

observed, as seen from the high-intensity peaks (010) and (011) at 2θ around 

10.5°. Rietveld refinement of C16 and C18 crystallised from solution kerosene 

with calculated and experimental observation XRD patterns are given in 

Figures 7.5 and 7.6, respectively. The determined crystallographic cell 

dimension parameters of a, b and c were smaller than crystal determined in 

the melt phase, together with the detailed refinement data provided in Tables 

7.2 and 7.3 for C16 and C18 respectively. 

 

Figure 7.4:  High resolution synchrotron XRD pattern of C16 in 
Kerosene at -40°C collected on beamline I11 from Diamond Light 
Source. Low-intensity peaks are scaled up from 2θ of 15 to 40°. 
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Figure 7.5:  Rietveld refinement of C16 crystalline formed from 

Kerosene in the range of 5 to 35° 2θ with λ = 0.825678 Å with 
different scale of amplification according to the intensity of the 

reflection peaks. Observed (𝝄), calculated ( ̶ ), difference ( ̶ ) and 
positions of calculated reflections (ˡ) 

 

Figure 7.6:  Rietveld refinement of C18 crystalline formed from 

Kerosene in the range of 5 to 35° 2θ with λ = 0.825678 Å with 

different scale of amplification according to the intensity of the 

reflection peaks. Observed (𝝄), calculated ( ̶ ), difference ( ̶ ) and 
positions of calculated reflections (ˡ). 
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Table 7.2 Crystallographic data of C16 crystalline formed from 
Kerosene obtained from Rietveld refinement using Topas software 

 
C16 melt 

-40 °C 

C16 in Kerosene 

-40 °C 

a/Å 4.229 4.228 

b/Å 4.773 4.773 

c/Å 20.623 20.621 

α/° 90.789 90.786 

β/° 90.297 90.281 

γ/° 106.368 106.389 

V/Å𝟑 
399.32 399.23 

C-C-C/° 110.4 110.4 

C-C/ Å 1.531 1.531 

𝑹𝒘𝒑 /% 10.08 6.26 

𝑹𝒑/% 6.64 4.32 

Gof (𝝌𝟐) 2.16 1.50 

Number of 

reflections 304 304 

Number of 

independent 

parameters 
63 52 

2θ range/° 5-34 5-34 

Dc/ g cm-3 0.94 0.94 
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Table 7.3 Crystallographic data of C18 crystalline formed from 
Kerosene obtained from Rietveld refinement using Topas software 

 
C18 melt 

-40 °C 

C18 in Kerosene 

-40 °C 

a/Å 4.224 (4.224) 4.223 

b/Å 4.771 (4.771) 4.768 

c/Å 23.488 (23.056) 23.490 

α/° 78.982 (90.700) 78.979 

β/° 84.548 (92.199) 84.535 

γ/° 73.600 (106.400) 73.638 

V/Å𝟑 445.26 445.053 

C-C-C/° 113.9 112.959 

C-C/ Å 1.520 1.533 

𝑹𝒘𝒑 /% 10.46 6.18 

𝑹𝒑/% 6.79 3.96 

Gof (𝝌𝟐) 2.15 1.56 

Number of 

reflections 
337 337 

Number of 

independent 

parameters 

63 91 

2θ range/° 5-34 5-34 

Dc/ g cm-3 0.95 0.95 
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7.3 In-situ Dynamic Diffraction from Poly-thermal 
Crystallisation 

 Pure Octadecane and Hexadecane 

An overview of crystallographic diffractions collected from in-situ synchrotron 

powder X-ray diffraction (SPXD) during continuous cooling from the early 

stage of solidification to the very low temperature of - 40˚C for C18 and C16 

in kerosene are presented in Figures 7.7 and 7.8, respectively. The phase 

behaviour is consistent as in melt phase, the unique triclinic structure is 

observed at all temperatures. Preferred orientation can be clearly seen from 

high-intensity peaks around 10 to 15˚ in 2θ with high amorphous phase 

underneath the Bragg peaks. The smaller shoulder peak behaviour as 

observed from (00L) reflections (5.2.3) of C18 at the onset of crystallisation in 

melt phase is, however, not detectable from the solution phase. 

 

 

Figure 7.7:  In-situ SPXD patterns for C18/Kerosene collected from the 
onset of crystallisation at - 1.29˚C to a limited low temperature at - 

40.21˚C at 2˚C intervals during cooling at 1.67˚C /min. 
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Figure 7.8:  In-situ SPXD patterns for C16/Kerosene collected from the 
onset of crystallisation at - 10.97˚C to a limited low temperature at 

- 40.11˚C with 2˚C intervals during cooling at 1.67 ˚C /min. 

 

The unit cell parameters of triclinic as a function of temperature are 

determined from high quality “Pawley fit” analysis indicated by low values of 

Rwp averaged at 3.21(±1.43) % and Rp averaged at 0.53(±0.27) % for 

C18/Kerosene; Rwp averaged at 2.94(±0.28) % and Rp averaged at 2.28 

(±0.25) % for C16/Kerosene. 

C18/Kerosene shows a less ideal linear thermal expansion trend of unit cell 

parameters, as seen in Figures 7.9 and 7.10, as well as high errors of Rwp 

and Rp from the refinement. Particularly, for the beta angle, thermal expanding 

behaviour shows two regions (- 40 to - 20˚C) and (- 20 to - 1˚C) with positive 

and negative trends as temperature increased. While the middle temperature 

in between the two regions at a temperature of - 21˚C is at the breaking point 

of the two regions showing highly off trend behaviour. The volume thermal 

expansion coefficient of the triclinic cell of C18 was (3.54±3.10) ×  10−4 ˚C-1 

over the studied temperature range from - 40.21 to - 1.29˚C. 

For C16/Kerosene, the thermal expansion coefficient of the triclinic cell of 

C16/Kerosene over temperature range - 40.11˚C to - 10.97˚C was calculated 
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to be (4.24±3.25) × 10−4 ˚C- in volume. This value is very close to the triclinic 

cell from C18, whilst the lower value of deviation from C16 indicates the 

disordering effects are reduced with decreasing chain length. This can also 

be seen from Figures 7.11 and 7.12 with a more regular linear trend of 

thermal expansion from C16 unit cell parameters especially the c-axis 

direction. 

 

Figure 7.9:  Unit cell parameters (a, b c axis and α, β, γ angels) 
obtained from “Pawley fit” using Topas software are plotted as a 

function temperature for C18 in kerosene 

 

Figure 7.10:  Volume of C18 in kerosene unit cell obtained from 
“Pawley fit” using Topas software are plotted as a function 

temperature 
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Figure 7.11:  Unit cell parameters (a, b c axis and α, β, γ angels) 
obtained from “Pawley fit” using Topas software are plotted as a 

function of temperature for C16 in kerosene 

 

 

 

Figure 7.12:  Volume of C16 in kerosene unit cell obtained from 
“Pawley fit” using TOPAS software are plotted as a function of 

temperature. 
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 Octadecane and Hexadecane Mixtures 

Diffractions were detected at a small temperature interval (2°C) during the in-

situ crystallisation process to reveal the phase transition behaviour from liquid 

to low temperatures. The transitional behaviour of C18/C16 mixtures 

crystallising from kerosene varied with the composition of C18/C16 and 

controlled by the presence of an unstable rotator phase (R1) which is 

observed in the binary system of C18/C16 mixtures. 

 

7.3.2.1 Rotator phase induced crystallisation 

7.3.2.1.1 0.1C18/0.9C16/Kerosene 

In-situ XRD patterns collected from mixtures of 0.1C18 crystallising from 

kerosene are shown in Figure 7.13 from the onset of crystallisation at - 

14.65°C to - 40°C. High amorphous content existed along with the cooling 

even though at - 40°C. The indistinct triclinic phase was observed along the 

cooling at lower temperatures. However, the high temperature diffractions 

have shown the differential peak positions at low angles indicating a different 

phase formation which is enlarged and shown in Figure 7.14 for the early 

stage crystallisation from - 14.65 to - 18.45°C. 

The three diffraction peaks at 4.16, 11.33 and 12.69° in 2θ representing the 

R1 phase were first formed at - 14.65°C. From - 16.55°C, peaks for the T16 

phase began to form with simultaneous reduction of intensity of the peaks 

from the R1 phase and disappeared at - 20.32°C. The T16 was composed 

entirely of the phase along with further cooling to a terminal temperature at - 

40°C. From this, we could conclude that the mixture of 0.1 C18 in kerosene 

crystallised into a T16 solid solution as the terminal phase but early stage 

nucleation was induced by a rotator phase formation and it was not in a stable 

state as indicated by the rare number of reflections and short period of 

existence. 
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Figure 7.13:  In-situ SPXD patterns for 0.1 C18 in kerosene (308 g/l) 
collected from - 16.55 to - 40.10˚C at 2˚C intervals during cooling 

crystallisation at 1.67˚C /min 

 

Figure 7.14:  Stack plot in 2θ of 2 to 15° of early stage crystallisation 
from -14.65 to -18.45°C showing phase transition with reflection 

peak position changed from R (•) to T (♦). 
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7.3.2.1.2 0.3 C18/0.7 C16/Kerosene 

 

Multiple phase transitions can be seen from the full data set of in-situ SPXD 

in Figure 7.15 for mixtures of 0.3C18 in kerosene from the cooling process (-

12.82 to - 40°C). The appearance of the triclinic phase at - 27.91°C is easy to 

distinguish from both low angle (00L) peaks and typical reflections (010) and 

(011) around 10.5° in 2θ. Early stage crystallisation is enlarged and shown in 

Figure 7.16, the R1 phase was initially formed at - 14.68°C with reflections at 

11.3°, 11.7° and 12.6° in two theta. Following the appearance of peaks at 

11.4°, 11.8° and 11.9° and 12.8° for a new formed high-symmetry structure of 

Mdcp (see later) at - 18.46°C accompanied with the decreasing intensity of R1 

peaks which had completely disappeared at -20.42°C. 

 

 

Figure 7.15:  In-situ SPXD patterns for 0.3C18 in kerosene (308 g/l) 
collected from - 12.82˚C to - 40.11˚C with 2˚C intervals during 

cooling crystallisation at 1.67˚C /min. Symbol of ♣ represents for 
Mdcp structure; ♦: Triclinic structure. 
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Figure 7.16:  Stack plot in 2θ (11 to 15°) of 0.3C18 in kerosene early 
stage crystallisation from - 14.68 to - 22.42°C showing phase 

transition with reflection peak position changed from R1 (•) to Mdcp 
(♣). 

 

The high symmetrical structure formed is deduced to be either in Mdcp (Aa, 

Z=4) or Op (Pca21, Z=4) according to the isothermal X-ray diffraction at the low 

temperature - 40°C in section 7.2.1. Hence, the experimental data of this 

phase observed at - 20.42°C was refined with both structures of Mdcp and Op, 

as shown in Figure 7.17. The Mdcp phase is more likely to be the right structure 

as indicated by the enlarged reflections at approximately 12° in 2θ showing a 

double peak was consistent with the experimental observation, which is only 

one for the Op calculated pattern. 
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Figure 7.17:  A comparison of “Pawley fit” of Mdcp and Op lattice 
parameters to simulate XRD pattern of 0.3C18 in kerosene at - 

20.42°C. Scaled peaks have shown the main difference. 

 

7.3.2.1.3 0.4C18/0.6C16/Kerosene 

The full dataset for mixture sample 0.4 C18 in kerosene during the cooling 

process from the onset point of crystallisation of -12.8 to - 40°C is presented 

in Figure 7.18. Similarly to 0.3C18 in kerosene, high-symmetry structure was 

initially crystallised (-12.88°C) in the HT region followed by formation of the 

triclinic phase (- 29.9°C) and terminated with the mixture phases in the LT 

region (- 40°C). Peculiar peaks are also seen at low angles around 5° in 2θ 

which are highlighted in the amplified scale figure. Therefore, another phase 

(X2) apart from the high-symmetry structure (X1) was formed with slightly 

smaller c-axis length at - 22.28°C. 

Inspection in early stage crystallisation is shown in Figure 7.19, the R1 phase 

can also be seen with reflections of 11.3, and 12.6° in 2θ at -12.88°C. The 

appearance of peaks at 11.4, 11.8 and 12.8° were the three main peaks for 

the high symmetry phase (X1) at -14.74°C accompanied with removal of two 

peaks for R1. 
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Figure 7.18:  In-situ SPXD patterns for 0.4C18 in kerosene (308 g/l) 
collected from - 12.88 to - 40.04˚C with 2˚C intervals during cooling 

crystallisation at 1.67˚C /min. Scaled insert figure shows the 
appearance of the (X2) phase at - 24.19°C. Symbol ♦ represents the 

triclinic structure. 

 

Figure 7.19:  Stack plot in 2θ (11 to 13°) of 0.4 C18 in kerosene at early 
stage crystallisation from - 12.88 to - 18.59°C showing the phase 
transition with reflection peak position changed from R1 (•) to Op 

(♥). 
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The most possible structures of Mdcp and Op were both employed to fit the X1 

phase observed from 0.4C18 in kerosene at - 18.59°C, presented in Figure 

7.20. As seen from the enlarged figure, the two phases are quite close and 

both fit the experimental data, while the Mdcp simulation, having two peaks and 

no reflection with respect to 12 and 20 in 2θ, which are different in comparison 

with the experimental pattern. This illustrates the structure of Op was 

crystallised out as an X1 phase. 

 

 

Figure 7.20:  A comparison of “Pawley fit” of Mdcp and Op lattice 
parameters to simulate XRD pattern of 0.4C18 in kerosene at - 
20.42°C at the early stage of crystallisation. Scaled peaks have 

shown the main difference. 

 

7.3.2.1.4 0.5C18/0.5C16/kerosene 

 

Figure 7.21 provides the full data set of in-situ diffractions for 0.5C18 in 

kerosene during cooling from the onset point of -10.82°C to -40.11°C. Similarly 

to 0.3C18 and 0.4C18 in kerosene, high-symmetry structure crystallised in the 

HT region followed by the triclinic phase (- 31.64°C) to be a mixture dominant 

in the LT region. 
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Inspection of early stage crystallisation is given in Figure 7.22, the phase 

formation of R1 peaks was first observed around 11.5, and 12.6° in 2θ at - 

10.83°C. Consistent with the observation in 0.4C18/Kerosene, reflections of 

11.4, 11.8 and 12.8° also can be seen for 0.5C18 from kerosene crystallisation 

which was referred to as the X1 phase. It needs to be noted that the existence 

of this R1 phase was even more unstable with limited intensity and reflection 

peaks, see Figure 7.22. 

 

 

Figure 7.21:  In-situ SPXD patterns for 0.5C18 in kerosene (308 g/l) 
collected from - 10.80 to - 40.11˚C with 2˚C intervals during cooling 

crystallisation at 1.67˚C /min. Scaled inserted figure shows the 
appearance of the (X2) phase at – 25.92˚C. The symbol ♦ 

represents the triclinic structure. 
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Figure 7.22:  Stack plot in 2θ (10 to 14°) of 0.5C18 in kerosene at early 
stage crystallisation from - 10.82 to - 16.48°C showing phase 

transition with reflection peak position changed from R1 (•) to Op 
(♥). 

 

The diffraction pattern referred to the X1 phase of 0.5 C18/Kerosene was 

refined to the unit cell of Mdcp and Op as shown in Figure 7.23. From the 

comparisons of these two similar structures is unlikely to elucidate the 

difference. However, the Op structure is more likely to be the X1 phase as 

indicated by the lower Rwp fitting value from “Pawley fit”, as presented in Table 

7.4 together with the X1 phase simulation for XRD patterns of 0.3C18 and 

0.4C18 in kerosene solution at the early stage of crystallisation. 

Together with the comparison of fitting simulations in Figures 7.17, 7.20 and 

7.23 for samples of 0.3C18, 0.4C18 and 0.5C18 in kerosene solution and 

resultant fitting parameters of Rwp and Rp values in Table 7.4. It can be 

interpreted with 0.3C18/Kerosene crystallised with the Mdcp phase at - 20.42°C 

while 0.4C18 and 0.5C18 from kerosene were crystallised with Op at - 

18.59°C and - 16.48°C respectively.  
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Figure 7.23:  The comparison of “Pawley fit” of Mdcp and Op lattice 
parameters to simulate XRD pattern of 0.5C18 in kerosene at - 
16.48°C at the early stage of crystallisation. Scaled peaks have 

shown the main difference. 

 

Table 7.4  Comparison results (lattice parameters and Rwp, Rp values ) 
between Mdcp and Op as applied to fit X1 phase by “Pawley fit” for 
three samples at the early stage of crystallisation of composition 

0.3C18, 0.4C18 and 0.5 C18 in kerosene solution (308 g/l). 

Sample 
T °C Phase a/ Å b/ Å c/ Å α/° β/° γ/° Rwp% Rp% 

0.3C18 
-20.42 Mp 7.394 5.014 47.156 90 91.162 90 0.94 0.47 

  Op 7.412 5.018 47.292 90 90 90 1.17 0.54 

0.4C18 -18.59 Mp 7.421 5.010 48.211 90 91.427 90 1.18 0.71 

  op 7.401 5.006 47.884 90 90 90 0.77 0.43 

0.5C18 -16.48 Mp 7.411 5.005 48.804 90 90.499 90 1.27 0.57 

  Op 7.429 4.996 48.678 90 90 90 0.93 0.45 
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7.3.2.2 No rotator phase induced crystallisation 

 

Homogeneously mixed liquid of 0.7C18 and 0.9C18 mixtures were found to 

be crystallised into a solid solution with T18 structure without rotator phase 

involvement or any phase transition, as shown by the observed in-situ XRD 

patterns collected (-5.18 to - 40°C) and (- 1.38 to - 40°C) in Figure 7.24 and 

Figure 7.25, respectively. 

It can be concluded when longer chain C18 is dominant in the mixture it will 

lead the crystallisation into the inherent T18 phase. In this case, the formed 

solid solution is in the same structure and space group from the original C18, 

and the shorter chain C16 possibly acts as an inclusive small molecule inside 

of C18. 

 

 

Figure 7.24:  In-situ SPXD patterns for pure 0.7C18 in kerosene 
collected from - 5.18˚C to - 40.15˚C with 2˚C intervals during 

cooling crystallisation at 1.67˚C /min. 
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Figure 7.25:  In-situ SPXD patterns for pure 0.9C18 in kerosene solution 
collected from - 1.38˚C to - 40.19˚C with 2˚C intervals during 

cooling crystallisation at 1.67˚C/min. 

 

7.4 Ternary Phase Diagram of C18/C16/Kerosene (308 g/l) 

 

Structural evolution of C18/C16 mixtures in kerosene solution (308g/l) as a 

function of composition and temperature is shown in Figure 7.26 using in-situ 

high resolution PXRD during crystallisation at a slow cooling rate of 

1.67˚C/min. Previous studies of binary homologue alkane mixtures in a light 

solvent (ternary system) determined a consistent behaviour of solid solution 

R1 the same as the achievement from the respective melt phase (binary 

system) [72, 73]. However, with the help of the in-situ synchrotron PXRD with 

a small scanning interval of 2°C, the observed R1 phase in solution situation 

was not a stable phase with only a short period and small number of reflections 

in comparison with the high stability that existed in a large temperature and 

composition range in binary melt mixtures. 

The R1 phase in solution crystallisation is actually replaced by the intermediate 

ordered crystalline of Op or Mdcp. This can be confirmed by no observation of 
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the large a/b change with temperature increasing which is the typical character 

of the R1 phase. Moreover, the R1 phase observed from the melt phase 

mixture of 0.3C18 in 5.3.2.1, the high-intensity peaks are (111) and (020) while 

the highest peaks are (111) and (200) for the ordered structures of Op or Mdcp 

in the solution case. More importantly, the high disordering phase of R1 with 

the less long-range order in terms of atom positions with less high angle 

reflections, i.e. (200) and (131) while the fully ordered crystalline of Op has 

more reflections.  

 

 

Figure 7.26:  The structural revolution of C18 and C16 mixtures in 
kerosene solution (308 g/l) as a function of composition and 

temperature. Solid lines represent the phase boundary of first 
ordered crystalline, the boundary for the disordered R phase 

presented with a dashed line. 
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7.5 Conclusions 

High resolution diffraction patterns collected with the MAC detector have 

revealed a variety of structural behaviour of mixed samples of C18/C16 as a 

function of composition at a low temperature of - 40°C. Samples having 

compositions (C16,0.1C18, 0.7C18 0.9C18 and C18) close to pure 

component of C18 or C16 at both sides formed solid solution types in triclinic 

structure with respect to the chain length of the dominant homologue. 0.3C18, 

0.4C18 and 0.5C18 are multiple phases with the inherent triclinic structure and 

two high symmetry structures which are indicated as Mdcp and Op which were 

found in melt phase mixtures. 

The structure of C18 or C16 crystallising from kerosene solution was refined 

with the respective melt phase triclinic structure. Consistent with the melt 

phase observation, no polymorphic transition was observed in the solution 

crystallisation of C18 or C16 by in-situ cooling from liquid to - 40°C. However, 

thermal expansion of the molecular volume of the triclinic cell in a solution of 

these two components has shown some disordering from the non-ideal linear 

trend and large deviation. 

The mixed samples with compositions (x=0.1, 0.3, 0.4, 0.5C18) having the 

multiple phases are found to be induced by a rotator phase at the onset of 

crystallisation and further replaced by the ordered crystalline structures at 

lower temperatures. Moreover, the stability of this rotator phase is reduced, 

as increasing the composition of the longer chain C18 to 0.4C18 and 0.5C18 

which is possibly not observable during the dissolution process. Eventually, it 

is not present in the crystallisation of 0.7C18 and 0.9C18 as the longer chain 

C18 with triclinic structure is in dominant control. 

Conclusively, the rotator induced crystallisation observed in melt phase 

alkanes is also observable in solution crystallisation. However, it only existed 

for the mixtures with the longer chain compositions smaller than the equimolar 

which is inclusive. The metastability of this induced rotator phase also 

depends on the mixture compositions which is reduced as increasing the 

composition of longer chain homologue. 
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Solubility of Octadecane and Hexadecane 

Mixtures as a Function of Solution 

Environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the poly-thermal data from crystallisation of C18/C16 

mixtures in three representative solvents of n-dodecane, kerosene and toluene. 

Saturation temperatures are assessed as a function of C18/C16 mixture 

composition in three representative fuel solvents. Solution solubility, ideality and 

associated dissolution enthalpies are analysed using Vant’ Hoff plots. 
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8.1 Introduction 

Solubility assessment is always the first step to study and monitor a 

crystallisation process, especially for industrial applications. For C18/C16 

mixtures as the main components of HVO biofuels, the solubility has not been 

reported previously and is assessed in this study with three representative fuel 

solvents, i.e. dodecane, kerosene and toluene. 

Initially, equilibrium saturation temperatures (𝑇𝑒) and metastable zone widths 

(MSZW) are presented with respect to the composition of C18/C16 mixtures 

and the nature of the solvent. This is followed by activity coefficients, 

enthalpies (∆𝐻𝑑𝑖𝑠𝑠 ) and entropies (∆𝑆𝑑𝑖𝑠𝑠 ) of dissolution are calculated to 

access the solubility dependence on chain length, molecular structure and 

solvent interactions of the mixture components of C18/C16. In addition, the 

poly-thermal results will be utilised in further assessment of crystallisation 

kinetics in Chapter 9. 

 

8.2 Results Using the Poly-thermal Method 

Temperatures of crystallisation (Tc) and dissolution (Tdiss) as measured with 

four concentrations and four cooling/heating rates (q) obtained from poly-

thermal experiments of C18/C16 mixtures in 11 compositions are given in 

Tables 8.1, 8.2 and 8.3 with respect to the three solvents of n-dodecane, 

kerosene and toluene. An example of these results at a concentration of 

300g/l in toluene is displayed in Figure 8.1. 
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Figure 8.1:  Crystallisation (Tc) and dissolution (Tdiss) temperatures as a 
function of heating/cooling rate (q) for C18/C16 mixtures (eleven 

compositions varied in 10% molar concentration of C18) in toluene 
at a concentration of 300 g/l. Error bars are presented with 

standard deviation from five recycles of repeats 
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Table 8.1  Average temperatures of crystallisation 𝑻𝒄 and dissolution 𝑻𝒅𝒊𝒔𝒔 as a function of cooling rate and binary mixture 
composition of C18/C16 in n-dodecane solution at concentrations of 192, 231, 269, 308 g/l. STD: standard deviation of 

the measured 𝑻𝒄 and 𝑻𝒅𝒊𝒔𝒔 from 5 recycles of repeats. 

x C18 / 
q(◦C/mi

n) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

𝑻𝒄 (°C) 
STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

 STD 
(°C) 

𝑻𝒄 (°C) 
STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

C16:C18 (100:0)  C16:C18 (90:10) C16:C18 (80:20) C16:C18 (70:30) 
 192 g/l  192 g/l 192 g/l 192 g/l 

0.25 -8.88 0.51 -3.7 0.07 -13.26 0.09 -7.02  0.08 -12.74 0.05 -7.7 0 -11.93 0.04 -7.68 0.09 

1 -10.44 0.41 -0.2 0.21 -14.5 0.07 -3.38  0.13 -14.08 0.04 -4.78 0.19 -12.58 0.08 -3.58 0.19 

2 -11.48 0.61 3.36 0.4 -14.72 0.08 2.38  0.19 -14.8 0 -1.18 0.04 -13.42 0.08 -0.14 0.36 

3.2 -12.68 0.25 8.2 0.25 -14.88 0.04 6.36  0.32 -14.78 0.04 4.12 0.16 -14.06 0.09 3.22 0.5 
 231 g/l  231 g/l 231 g/l 231 g/l 

0.25 -6.26 0.67 -1.72 0.04 -11.12 0.11 -4.68  0.08 -10.44 0.05 -7.2 0 -9.63 0.04 -7.3 0.04 

1 -7.16 0.25 1.04 0.13 -12.46 0.05 -1.46  0.09 -11.68 0.04 -4.46 0.21 -10.48 0.11 -3.42 0.08 

2 -8.02 0.2 4.32 0.24 -12.98 0.08 3.78  0.19 -12.56 0.05 -0.66 0.15 -11.18 0.04 0.38 0.18 

3.2 -9.08 0.26 9.54 0.59 -13.64 0.11 7.12  0.45 -12.82 0.11 4.72 0.24 -12.2 0 3.96 0.54 
 269 g/l  269 g/l 269 g/l 269 g/l 

0.25 -3.94 0.44 -0.18 0.04 -9.42 0.08 -2.84  0.05 -8.86 0.05 -6.04 0.05 -7.8 0.07 -6.08 0.04 

1 -4.64 0.62 2.44 0.48 -10.34 0.09 -0.24  0.05 -10.16 0.05 -3.56 0.13 -8.54 0.05 -3.72 0.08 

2 -6.18 0.33 7.28 0.18 -10.48 0.18 4.46  0.09 -11.16 0.09 0.54 0.25 -9.2 0.07 0.2 0.07 

3.2 -6.92 0.37 10.6 0.58 -11.98 0.04 9.42  0.2 -11.14 0.13 4.96 0.13 -10.3 0.21 3.04 0.57 
 308 g/l  308 g/l 308 g/l 308 g/l 

0.25 -2.74 0.56 1.04 0.05 -8.3 0.07 -1.48  0.08 -7.24 0.05 -4.48 0.2 -6.54 0.05 -5.22 0.08 

1 -3.54 0.47 3.02 0.11 -9.12 0.04 0.36  0.09 -8.54 0.05 -3.12 0.11 -7.4 0.1 -3.38 0.08 

2 -5.02 0.22 8.08 0.08 -9.52 0.08 4.94  0.09 -9.48 0.11 0.98 0.18 -7.9 0.07 -0.62 0.13 

3.2 -6.12 0.54 11.42 0.36 -10.54 0.13 10.04  0.09 -9.76 0.15 5.3 0.26 -9.3 0 2.38 0.22 

  

 C16:C18 (60:40)  C16:C18 (50:50) C16:C18 (40:60) C16:C18 (30:70) 
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 192 g/l  192 g/l 192 g/l 192 g/l 

0.25 -10.34 0.13 -3.62 0.04 -6.46 0.32 -0.6  0.07 -3.14 0.13 1.28 0.04 -0.58 0.39 3.1 0 

1 -11.56 0.05 -2.88 0.13 -7.64 0.18 0.72  0.11 -4.22 0.19 2.34 0.05 -1.72 0.78 3.7 0.1 

2 -12.44 0.13 0.22 0.08 -8.88 0.39 2.5  0.2 -5.12 0.15 6.44 0.22 -2.1 0.14 7.18 0.11 

3.2 -13.18 0.13 4.58 0.27 -10.54 0.09 7.06  0.25 -7.18 0.04 12.04 0.18 -3.96 0.36 11.38 0.29 
 231 g/l  231 g/l 231 g/l 231 g/l 

0.25 -8.38 0.08 -1.8 0 -4.82 0.13 1.24  0.05 -1.66 0.23 2.9 0 0.6 0.27 4.8 0.07 

1 -9.42 0.11 -2.06 0.05 -5.76 0.26 2.22  0.15 -2.56 0.09 3.58 0.04 0.06 0.55 5.54 0.09 

2 -10.2 0.07 0.34 0.11 -7.34 0.18 4.98  0.18 -3.7 0.14 6.04 0.09 -0.58 0.08 8.42 0.29 

3.2 -10.32 0.22 3.64 0.15 -8.14 0.11 8.56  0.23 -4.46 0.17 10.02 0.27 -1.86 0.54 12.84 0.49 
 269 g/l  269 g/l 269 g/l 269 g/l 

0.25 -6.64 0.09 -0.6 0.07 -3.48 0.39 2.72  0.04 -0.1 0.16 4.5 0 2.68 0.28 6.2 0 

1 -7.6 0 -1.1 0.12 -4.38 0.11 3.34  0.09 -1.1 0.1 5.16 0.09 1.7 0.31 6.7 0.07 

2 -8 0 0.3 0.07 -5.76 0.17 6.02  0.08 -2.5 0.12 7.96 0.23 0.76 0.11 9.38 0.11 

3.2 -8.88 0.04 4.72 0.2 -6.48 0.19 8.88  0.2 -3.22 0.19 12.2 0.39 -0.06 0.15 12.68 0.36 
 308 g/l  308 g/l 308 g/l 308 g/l 

0.25 -5.24 0.05 0.34 0.05 -2.42 0.26 3.76  0.05 1.08 0.08 5.62 0.04 3.76 0.11 7.48 0.04 

1 -6.2 0 -0.42 0.08 -3.52 0.08 4.6  0.1 -0.06 0.15 6.18 0.04 2.42 0.4 8.42 0.04 

2 -7.12 0.11 0.58 0.04 -4.5 0.14 6.74  0.05 -0.96 0.09 7.62 0.22 1.88 0.04 10.4 0.28 

3.2 -7.32 0.16 3.1 0.19 -5.06 0.09 9.26  0.25 -2.52 0.2 13.02 0.11 1.02 0.22 13.7 0.21 
                  

 C16:C18 (20:80)  C16:C18 (10:90) C16:C18 (0:100)     

 192 g/l  192 g/l 192 g/l     

0.25 2 0.1 4.28 0.04 3.66 0.11 5.54  0.05 4.56 0.35 6.8 0     

1 1.12 0.08 5.18 0.13 2.94 0.29 6.8  0.1 3.16 0.55 7.8 0     

2 -0.32 0.27 8.4 0.12 2.28 0.18 9.7  0.14 1.88 0.26 11.9 0.24     

3.2 -1.22 0.18 13.38 0.18 0.82 0.38 14.08  0.37 1.38 0.52 14.86 0.28     

 231 g/l  231 g/l 231 g/l     

0.25 3.86 0.05 6.08 0.04 4.9 0.26 7.24  0.05 6.6 0.29 8.42 0.04     
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1 2.94 0.09 7.16 0.09 4.7 0.16 8.42  0.04 5.16 0.51 9.68 0.11     

2 1.88 0.16 9.72 0.16 4.04 0.17 10.64  0.26 4.2 0.2 12.46 0.27     

3.2 1.02 0.18 13.66 0.76 3.18 0.26 14.62  0.25 3.38 0.54 16.02 0.49     

 269 g/l  269 g/l 269 g/l     

0.25 5.36 0.09 7.54 0.05 6.84 0.11 8.7  0 8.1 0.23 10 0.07     

1 4.38 0.04 8.64 0.13 5.78 0.2 10.08  0.04 6.66 0.21 11.18 0.15     

2 3 0.35 10.2 0.22 4.94 0.09 11.74  0.26 5.54 0.29 13.68 0.16     

3.2 2.5 0.16 15.64 0.26 4.6 0.14 16.28  0.23 5.42 0.31 17.1 0.34     

 308 g/l  308 g/l 308 g/l     

0.25 6.42 0.04 8.72 0.04 7.74 0.36 10.04  0.05 9.5 0.1 11.16 0.05     

1 5.46 0.09 9.78 0.18 6.3 0.42 11.44  0.11 8.3 0.3 12.46 0.24     

2 4.4 0 11.24 0.11 5.66 0.13 14.08  0.22 7.3 0.46 14.98 0.15     

3.2 3.96 0.15 15.16 0.35 5.3 0.24 16.94  0.33 6.64 0.36 18.68 0.28     

 

Table 8.2  Average temperatures of crystallisation 𝑻𝒄 and dissolution 𝑻𝒅𝒊𝒔𝒔 as a function of cooling rate and binary mixture 
composition of C18/C16 in kerosene solution at concentrations of 231, 269, 308, 350 g/l. STD: standard deviation of the 

measured 𝑻𝒄 and 𝑻𝒅𝒊𝒔𝒔 from 5 recycles of repeats. 

x C18 / 

q(◦C/mi

n) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

C16:C18 (100:0) C16:C18 (90:10) C16:C18 (80:20) C16:C18 (70:30) 
 231 g/l 231 g/l 231 g/l 231 g/l 

0.25 -5.98 0.26 -2.68 0.04 -11.62 0.31 -5.78 0.04 -12.70 0.07 -8.14 0.05 -11.40 0.10 -9.06 0.11 

1 -6.54 0.42 -1.46 0.05 -12.14 0.18 -5.34 0.05 -13.18 0.04 -7.32 0.04 -12.16 0.05 -8.72 0.04 

2 -6.78 0.40 0.52 0.08 -13.24 0.18 -4.00 0.14 -13.82 0.04 -6.02 0.08 -12.98 0.22 -7.62 0.08 

3.2 -8.46 0.49 3.26 0.37 -14.46 0.05 -2.56 0.34 -14.52 0.04 -4.58 0.18 -14.34 0.05 -7.00 0.24 
 269 g/l 269 g/l 269 g/l 269 g/l 

0.25 -4.74 0.29 -1.22 0.04 -9.76 0.34 -4.00 0.14 -10.64 0.05 -5.98 0.04 -9.44 0.05 -7.40 0.07 

1 -4.46 0.56 0.04 0.05 -10.66 0.15 -3.64 0.05 -11.24 0.05 -5.52 0.13 -10.24 0.09 -6.76 0.11 
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2 -5.16 0.66 2.12 0.26 -11.44 0.22 -2.22 0.30 -11.86 0.15 -4.18 0.13 -11.02 0.11 -5.62 0.04 

3.2 -6.14 0.25 4.68 0.04 -12.50 0.00 -0.52 0.37 -13.04 0.13 -2.72 0.04 -12.24 0.22 -4.52 0.11 
 308 g/l 308 g/l 308 g/l 308 g/l 

0.25 -2.82 0.30 0.12 0.04 -8.42 0.26 -2.78 0.04 -9.10 0.00 -4.52 0.04 -7.88 0.04 -5.70 0.00 

1 -3.52 0.35 1.68 0.11 -9.24 0.05 -2.06 0.05 -9.58 0.04 -4.02 0.04 -8.68 0.08 -5.02 0.04 

2 -4.54 0.63 3.70 0.12 -10.06 0.13 -0.66 0.09 -10.34 0.11 -2.64 0.11 -9.28 0.15 -3.50 0.12 

3.2 -4.98 0.29 6.60 0.14 -12.50 0.00 1.42 0.20 -11.10 0.19 -1.44 0.17 -10.20 0.00 -2.10 0.17 
 350 g/l 350 g/l 350 g/l 350 g/l 

0.25 -1.92 0.43 1.16 0.05 -7.06 0.24 -1.68 0.04 -7.82 0.04 -3.56 0.05 -6.46 0.05 -4.54 0.05 

1 -2.18 0.60 2.66 0.15 -8.12 0.04 -0.92 0.04 -8.52 0.13 -3.06 0.09 -7.46 0.05 -3.92 0.08 

2 -3.20 0.47 5.36 0.09 -8.90 0.07 0.78 0.16 -9.14 0.05 -1.52 0.13 -8.10 0.14 -1.98 0.18 

3.2 -3.38 0.29 7.24 0.26 -9.88 0.04 2.54 0.26 -10.02 0.16 0.24 0.09 -9.12 0.04 0.02 0.19 
 

 C16:C18 (60:40) C16:C18 (50:50) C16:C18 (40:60) C16:C18 (30:70) 
 231 g/l 231 g/l 231 g/l 231 g/l 

0.25 -9.62 0.04 -3.80 0.00 -5.94 0.18 -0.56 0.09 -3.30 0.29 1.60 0.00 -0.96 0.24 3.18 0.04 

1 -10.38 0.04 -4.60 0.12 -7.24 0.15 -0.18 0.08 -4.22 0.29 2.20 0.10 -1.88 0.23 3.96 0.09 

2 -11.48 0.08 -5.00 0.10 -8.22 0.04 0.84 0.09 -5.42 0.20 3.40 0.10 -2.60 0.27 5.04 0.05 

3.2 -12.38 0.16 -4.76 0.26 -9.46 0.09 2.14 0.09 -6.60 0.23 5.00 0.14 -3.94 0.22 7.20 0.31 
 269 g/l 269 g/l 269 g/l 269 g/l 

0.25 -7.76 0.11 -2.80 0.10 -4.56 0.13 0.90 0.00 -1.82 0.28 3.14 0.05 0.46 0.09 4.54 0.09 

1 -8.52 0.08 -5.06 0.11 -5.66 0.13 1.36 0.05 -2.40 0.10 3.76 0.09 -0.44 0.17 5.42 0.04 

2 -9.62 0.04 -4.10 0.19 -6.68 0.13 2.52 0.13 -3.54 0.18 4.92 0.11 -1.50 0.20 6.58 0.13 

3.2 -10.48 0.08 -2.48 0.68 -7.70 0.12 3.78 0.11 -4.54 0.15 6.48 0.29 -2.46 0.25 8.72 0.29 
 308 g/l 308 g/l 308 g/l 308 g/l 

0.25 -6.28 0.08 -1.64 0.31 -3.58 0.16 2.10 0.00 -0.74 0.35 4.28 0.04 1.90 0.31 5.92 0.04 

1 -7.20 0.07 -2.38 0.16 -4.92 0.18 2.66 0.15 -1.50 0.25 4.88 0.04 1.28 0.18 6.84 0.13 

2 -7.90 0.07 -3.02 0.15 -5.54 0.09 3.66 0.18 -2.50 0.30 6.24 0.11 0.44 0.23 8.16 0.11 

3.2 -8.90 0.00 -1.28 0.13 -6.64 0.05 5.08 0.04 -3.46 0.09 8.44 0.15 -0.70 0.32 10.48 0.36 
 350 g/l 350 g/l 350 g/l 350 g/l 
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0.25 -4.90 0.07 -0.28 0.04 -2.56 0.11 3.34 0.05 0.44 0.21 5.38 0.04 3.36 0.11 7.10 0.00 

1 -5.90 0.00 -1.04 0.09 -3.90 0.14 3.94 0.09 -0.68 0.08 6.20 0.00 2.20 0.25 8.14 0.09 

2 -6.60 0.00 -0.30 0.10 -4.76 0.11 5.16 0.09 -1.56 0.23 7.60 0.12 1.20 0.25 9.76 0.17 

3.2 -7.36 0.22 0.52 0.24 -5.66 0.13 6.68 0.08 -2.38 0.16 9.02 0.16 0.28 0.11 11.70 0.14 
                 

 C16:C18 (20:80) C16:C18 (10:90) C16:C18 (0:100)     

 231 g/l 231 g/l 231 g/l     

0.25 1.02 0.63 4.64 0.05 3.22 0.26 6.00 0.00 4.94 0.30 7.42 0.04     

1 0.50 0.35 5.68 0.08 2.78 0.11 7.30 0.12 4.18 0.27 8.68 0.04     

2 0.00 0.41 6.98 0.16 2.00 0.37 8.64 0.29 3.20 0.24 10.52 0.13     

3.2 -1.18 0.22 9.50 0.31 0.70 0.35 10.96 0.42 2.46 0.43 13.00 0.32     

 269 g/l 269 g/l 269 g/l     

0.25 3.26 0.09 6.20 0.00 5.26 0.15 7.54 0.05 6.30 0.46 8.88 0.04     

1 2.30 0.23 7.32 0.04 4.46 0.18 8.96 0.09 5.70 0.40 10.42 0.11     

2 1.44 0.30 8.90 0.12 3.38 0.13 11.28 0.08 5.04 0.42 12.38 0.22     

3.2 0.24 0.38 11.50 0.30 2.48 0.22 12.84 0.33 4.24 0.47 14.64 0.15     

 308 g/l 308 g/l 308 g/l     

0.25 4.14 0.28 7.48 0.04 6.30 0.20 8.70 0.00 7.78 0.19 10.10 0.07     

1 3.64 0.23 8.70 0.00 5.80 0.21 10.32 0.13 7.10 0.52 11.56 0.09     

2 2.74 0.32 10.16 0.18 4.56 0.27 12.36 0.18 6.24 0.30 13.70 0.33     

3.2 2.32 0.04 12.92 0.22 3.20 0.32 14.54 0.18 5.56 0.25 16.46 0.13     

 350 g/l 350 g/l 350 g/l     

0.25 5.40 0.44 8.68 0.04 7.60 0.31 9.92 0.04 9.20 0.28 11.36 0.05     

1 4.82 0.08 10.02 0.04 6.90 0.14 11.60 0.00 8.38 0.16 12.80 0.12     

2 3.68 0.40 11.56 0.17 6.16 0.15 13.10 0.07 7.26 0.75 15.46 0.13     

3.2 2.84 0.48 14.18 0.25 5.38 0.16 15.46 0.26 6.98 0.16 18.18 0.16     
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Table 8.3  Average temperatures of crystallisation 𝑻𝒄 and dissolution 𝑻𝒅𝒊𝒔𝒔 as a function of cooling rate and binary mixture 
composition of C18/C16 in toluene solution at concentrations of 300, 350, 400, 350 g/l. STD: standard deviation of the 

measured 𝑻𝒄 and 𝑻𝒅𝒊𝒔𝒔 from 5 recycles of repeats. 

x C18 / 

q(◦C/mi

n) 

𝑻𝒄 (°C) 
STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

𝑻𝒄 
(°C) 

STD 
(°C) 

𝑻𝒅𝒊𝒔𝒔 
(°C) 

STD 
(°C) 

C16:C18 (100:0) C16:C18 (90:10) C16:C18 (80:20) C16:C18 (70:30) 
 300 g/l 300 g/l 300 g/l 300 g/l 

0.25 -5.83 0.21 -3.70 0.10 -10.52 0.24 -7.00 0.07 -12.72 0.08 -8.80 0.07 -11.97 0.06 -9.00 0.10 

1 -6.10 0.64 -2.14 0.24 -11.70 0.16 -6.26 0.15 -13.40 0.00 -7.92 0.13 -12.62 0.08 -8.52 0.26 

2 -6.74 0.43 -0.48 0.43 -12.14 0.29 -4.78 0.28 -14.12 0.19 -5.96 0.11 -12.94 0.11 -7.06 0.29 

3.2 -8.20 0.63 2.16 0.29 -12.80 0.00 -2.72 0.11 -14.26 0.22 -4.26 0.15 -13.48 0.00 -5.26 0.05 
 350 g/l 350 g/l 350 g/l 350 g/l 

0.25 -4.24 0.26 -2.30 0.00 -9.30 0.08 -5.74 0.05 -11.18 0.04 -7.46 0.05 -10.70 0.07 -7.88 0.04 

1 -4.42 0.33 -0.80 0.10 -10.60 0.23 -4.80 0.19 -12.02 0.08 -6.20 0.00 -11.00 0.19 -6.94 0.05 

2 -4.96 0.15 1.38 0.50 -11.02 0.16 -2.90 0.34 -12.20 0.12 -4.70 0.16 -11.48 0.13 -5.40 0.19 

3.2 -6.02 0.34 3.34 0.38 -11.46 0.11 -0.34 0.22 -13.10 0.14 -2.44 0.23 -12.48 0.18 -3.52 0.04 
 400 g/l 400 g/l 400 g/l 400 g/l 

0.25 -3.74 0.43 -1.62 0.26 -8.60 0.07 -4.46 0.05 -10.04 0.11 -6.46 0.05 -9.34 0.17 -6.90 0.07 

1 -3.56 0.30 0.14 0.05 -9.66 0.13 -3.70 0.19 -10.70 0.10 -5.26 0.09 -10.36 0.21 -5.80 0.16 

2 -4.14 0.11 1.82 0.53 -10.42 0.23 -1.74 0.34 -11.18 0.15 -3.36 0.17 -10.68 0.16 -3.96 0.05 

3.2 -4.74 0.13 4.40 0.74 -10.66 0.05 0.58 0.22 -11.70 0.07 -1.28 0.16 -11.24 0.40 -2.44 0.22 
 450 g/l 450 g/l 450 g/l 450 g/l 

0.25 -2.32 0.36 -0.46 0.05 -7.43 0.22 -3.62 0.08 -9.32 0.13 -5.54 0.15 -8.22 0.04 -6.08 0.04 

1 -2.98 0.36 1.16 0.09 -9.02 0.41 -2.68 0.04 -10.10 0.07 -4.32 0.04 -9.12 0.08 -4.88 0.08 

2 -3.06 0.18 2.82 0.08 -9.56 0.24 -1.00 0.14 -10.54 0.15 -2.50 0.07 -9.68 0.25 -2.56 0.13 

3.2 -3.98 0.11 6.00 0.31 -10.16 0.26 2.12 0.43 -11.70 0.07 -0.28 0.16 -10.62 0.18 -0.88 0.23 
 

 C16:C18 (60:40) C16:C18 (50:50) C16:C18 (40:60) C16:C18 (30:70) 
 300 g/l 300 g/l 300 g/l 300 g/l 

0.25 -9.76 0.15 -4.48 0.04 -6.13 0.15 -1.03 0.06 -3.60 0.20 0.58 0.04 -0.96 0.29 2.46 0.09 
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1 -10.98 0.08 -6.66 0.05 -7.30 0.14 -0.90 0.07 -4.84 0.09 1.24 0.11 -1.94 0.30 3.34 0.05 

2 -11.36 0.15 -5.70 0.14 -8.00 0.12 0.08 0.19 -5.08 0.22 2.54 0.15 -2.60 0.14 4.94 0.18 

3.2 -11.90 0.00 -5.00 0.35 -9.38 0.08 1.24 0.15 -6.14 0.25 4.36 0.22 -2.92 0.22 6.80 0.26 
 350 g/l 350 g/l 350 g/l 350 g/l 

0.25 -8.52 0.04 -3.36 0.05 -4.86 0.05 0.00 0.00 -2.46 0.29 1.86 0.05 0.25 0.10 3.42 0.11 

1 -9.40 0.10 -4.46 0.09 -6.08 0.13 0.24 0.05 -3.44 0.09 2.36 0.05 -1.04 0.15 4.54 0.05 

2 -9.80 0.07 -3.64 0.05 -6.92 0.04 1.42 0.13 -4.08 0.22 4.00 0.10 -1.66 0.15 5.90 0.10 

3.2 -10.72 0.13 -1.74 0.17 -8.06 0.05 2.64 0.17 -4.82 0.30 5.54 0.21 -2.40 0.12 7.80 0.12 
 400 g/l 400 g/l 400 g/l 400 g/l 

0.25 -7.52 0.08 -2.20 0.00 -4.18 0.13 0.90 0.00 -1.32 0.16 2.78 0.08 0.90 0.20 4.40 0.00 

1 -8.34 0.05 -2.78 0.13 -5.24 0.15 1.34 0.05 -2.24 0.15 3.56 0.05 0.04 0.05 5.44 0.05 

2 -8.90 0.09 -2.08 0.00 -5.72 0.13 2.36 0.09 -3.22 0.13 4.90 0.07 -0.62 0.22 7.34 0.21 

3.2 -9.70 0.16 -0.92 0.22 -6.96 0.05 3.74 0.13 -4.12 0.16 6.82 0.34 -1.72 0.29 9.02 0.16 
 450 g/l 450 g/l 450 g/l 450 g/l 

0.25 -6.82 0.10 -1.44 0.09 -3.32 0.15 1.64 0.05 -0.74 0.11 3.44 0.05 2.18 0.11 5.22 0.08 

1 -7.64 0.05 -1.92 0.11 -4.86 0.05 2.22 0.11 -1.64 0.09 4.22 0.11 0.86 0.11 6.40 0.00 

2 -8.22 0.19 -0.58 0.23 -5.60 0.19 3.32 0.04 -2.48 0.28 5.78 0.15 -0.28 0.11 8.38 0.18 

3.2 -9.46 0.21 1.68 0.25 -6.48 0.16 4.84 0.13 -4.00 0.00 8.54 0.22 -0.98 0.16 
10.2

0 
0.00 

                 

 C16:C18 (20:80) C16:C18 (10:90) C16:C18 (0:100)     

 300 g/l 300 g/l 300 g/l     

0.25 1.00 0.24 3.76 0.05 2.54 0.42 4.88 0.04 4.36 0.19 5.96      

1 0.18 0.13 4.86 0.11 1.93 0.17 6.08 0.11 3.06 0.51 7.04      

2 -0.20 0.42 6.40 0.37 0.73 0.48 8.14 0.22 2.58 0.60 8.94      

3.2 -1.48 0.19 9.16 0.22 0.24 0.34 10.92 0.45 1.90 0.62 11.54      

 350 g/l 350 g/l 350 g/l     

0.25 2.48 0.25 4.90 0.00 3.58 0.22 6.00 0.00 5.14 0.34 7.16      

1 1.64 0.21 6.32 0.11 3.00 0.25 7.72 0.15 4.50 0.31 8.78      

2 1.18 0.31 7.76 0.21 2.60 0.12 10.32 0.15 3.62 0.51 10.16      

3.2 -0.12 0.36 10.20 0.41 1.92 0.22 12.08 0.49 3.12 0.23 13.02      
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 400 g/l 400 g/l 400 g/l     

0.25 3.16 0.25 5.80 0.00 4.54 0.27 7.06 0.05 6.38 0.38 8.14      

1 2.52 0.22 7.08 0.11 4.20 0.12 8.54 0.15 5.20 0.58 9.86 0.17     

2 2.06 0.38 8.64 0.25 3.08 0.43 10.62 0.23 5.32 0.51 11.50 0.10     

3.2 1.02 0.24 11.64 0.09 2.96 0.28 13.50 0.17 4.50 0.21 13.82 0.32     

 450 g/l 450 g/l 450 g/l     

0.25 4.15 0.19 6.64 0.09 5.53 0.26 7.84 0.05 7.20 0.17 9.02 0.04     

1 2.82 0.26 8.20 0.00 4.86 0.48 9.34 0.15 6.18 0.61 10.74 0.09     

2 2.38 0.34 10.24 0.15 4.13 0.43 12.00 0.16 6.08 0.13 13.14 0.11     

3.2 1.94 0.25 12.28 0.13 3.22 0.13 14.02 0.33 5.08 0.26 15.36 0.25     
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The equilibrium saturation temperature (𝑇𝑒) and supersaturation temperature 

(𝑇𝑐,𝑙𝑖𝑚) at each concentration measurement were observed from extrapolation 

of the cooling rate to 0°C/min of 𝑇𝑐 − 𝑞 and 𝑇𝑑𝑖𝑠𝑠 − 𝑞 lines (4.4.2). All these 

values from C18/C16 mixtures, together with resultant equilibrium MSZW at 

the measured concentrations, are listed in Tables 8.4, 8.5 and 8.6 with 

respect to the three solvents, n-dodecane, kerosene and toluene. 

This enabled a solubility-supersolubility curve to be formed for each 

composition, giving a clear representation of how the change of composition 

affects the equilibrium saturation and crystallisation temperatures and 

resultant meta-stability. Typical examples of solubility-supersolubility curves 

showing C16, C18 and 0.5C18 (equimolar) binary mixtures in toluene give an 

overview of the meta-stable zone and the changes that occur with 

compositional effects, are given in Figure 8.2. It can be clearly seen that the 

mixture sample of 0.5C18 has an MSZW which is larger than the single 

component of C16 or C18 indicating greater supercooling is needed to 

overcome the nucleation barrier. 

 

Table 8.4  Solubility (𝑻𝒆) and supersolubility (𝑻𝒄,𝒍𝒊𝒎) data of C18/C16 

mixtures in n-dodecane solvent, together with the calculated 

equilibrium MSZW (∆𝑻) at each concentration. std: standard 
deviation from five recycles of repeats. 

Con. 
(g/l) 

𝑻𝒄,𝒍𝒊𝒎 

(°C) 
std 𝑻𝒆 

(°C) 
std 

∆𝑻 
(°C) 

std 
Con. 
(g/l) 

𝑻𝒄,𝒍𝒊𝒎 

(°C) 
std 𝑻𝒆 

(°C) 
std 

∆𝑻 
(°C) 

std 

C16 0.1C18 

192 -8.87 0.32 -4.49 0.11 4.37 0.58 192 -13.56 0.07 -7.87 0.11 5.68 0.16 

231 -6.11 0.44 -2.80 0.15 3.32 0.47 231 -11.27 0.08 -5.40 0.11 5.87 0.14 

269 -3.72 0.49 -1.02 0.34 2.70 0.04 269 -9.27 0.07 -4.11 0.09 5.16 0.12 

308 -2.46 0.66 -0.03 0.10 2.43 0.29 308 -8.21 0.05 -3.00 0.08 5.21 0.09 

0.2C18 0.3C18 

192 -13.04 0.06 -8.80 0.07 4.24 0.12 192 -11.82 0.07 -7.86 0.10 3.96 0.15 

231 -10.61 0.07 -8.41 0.15 2.21 0.21 231 -9.50 0.08 -7.69 0.14 1.81 0.21 

269 -9.11 0.07 -7.11 0.06 2.00 0.11 269 -7.63 0.11 -6.73 0.14 0.90 0.21 

308 -7.42 0.08 -5.86 0.14 1.56 0.17 308 -6.34 0.04 -5.89 0.09 0.45 0.12 

0.4C18 0.5C18 

192 -10.38 0.10 -5.05 0.05 5.33 0.12 192 -6.18 0.24 -1.71 0.11 4.47 0.15 

231 -8.54 0.10 -3.14 0.06 5.41 0.16 231 -4.65 0.13 0.15 0.07 4.80 0.11 

269 -6.63 0.06 -2.16 0.05 4.47 0.04 269 -3.35 0.19 1.73 0.09 5.08 0.27 

308 -5.34 0.08 -0.73 0.11 4.61 0.14 308 -2.45 0.18 3.01 0.12 5.46 0.27 

0.6C18 0.7C18 

192 -2.77 0.15 -0.54 0.03 2.23 0.18 192 -0.36 0.13 1.62 0.06 1.98 0.12 

231 -1.55 0.20 1.65 0.08 3.21 0.25 231 0.88 0.30 3.39 0.16 2.51 0.25 

269 0.00 0.05 3.13 0.13 3.12 0.14 269 2.75 0.24 5.05 0.07 2.30 0.27 

308 1.30 0.12 4.10 0.02 2.81 0.12 308 3.67 0.16 6.57 0.08 2.90 0.15 

0.8C18 0.9C18 
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192 2.20 0.10 2.71 0.12 0.52 0.15 192 3.94 0.18 4.29 0.09 0.36 0.26 

231 3.98 0.06 4.95 0.23 0.98 0.26 231 5.17 0.23 6.18 0.08 1.01 0.30 

269 5.41 0.04 6.16 0.09 0.75 0.12 269 6.74 0.10 7.63 0.07 0.89 0.16 

308 6.41 0.06 7.75 0.08 1.35 0.13 308 7.50 0.24 9.29 0.14 1.79 0.31 

C18        

192 4.47 0.50 5.68 0.09 1.22 0.52        

231 6.53 0.46 7.42 0.19 0.88 0.59        

269 7.87 0.31 9.05 0.13 1.19 0.36        

308 9.47 0.02 10.17 0.15 0.70 0.13        

 

Table 8.5  Solubility (𝑻𝒆) and supersolubility (𝑻𝒄,𝒍𝒊𝒎) data of C18/C16 

mixtures in kerosene solvent, together with the calculated 

equilibrium MSZW (∆𝑻) at each concentration. Std: standard 
deviation from five recycles of repeats. 

Con. 
(g/l) 

𝑻𝒄,𝒍𝒊𝒎 

(°C) 
std 𝑻𝒆 

(°C) 
std 

∆𝑻 
(°C) 

std 
Con. 
(g/l) 

𝑻𝒄,𝒍𝒊𝒎 

(°C) 
std 𝑻𝒆 

(°C) 
std ∆𝑻 (°C) std 

C16 0.1C18 

231 -5.66 0.33 -3.35 0.08 2.30 0.30 231 -11.28 0.22 -6.24 0.10 5.04 0.22 

269 -4.28 0.24 -1.85 0.07 2.44 0.23 269 -9.63 0.28 -4.57 0.10 5.06 0.30 

308 -2.76 0.19 -0.50 0.09 2.26 0.24 308 -7.88 0.17 -3.34 0.07 4.54 0.16 

350 -1.80 0.53 0.70 0.09 2.49 0.58 350 -7.00 0.18 -2.18 0.05 4.81 0.16 

0.2C18 0.3C18 

231 -12.56 0.05 -8.48 0.07 4.08 0.11 231 -11.14 0.07 -9.29 0.10 1.85 0.15 

269 -10.41 0.08 -6.44 0.06 3.97 0.14 269 -9.23 0.08 -7.68 0.14 1.56 0.21 

308 -8.92 0.07 -4.90 0.06 4.02 0.11 308 -7.78 0.11 -6.10 0.14 1.68 0.21 

350 -7.70 0.05 -4.12 0.04 3.58 0.04 350 -6.39 0.04 -5.19 0.09 1.20 0.12 

0.4C18 0.5C18 

231 -9.44 0.03 -4.05 0.09 5.39 0.08 231 -5.85 0.14 -0.95 0.08 4.90 0.21 

269 -7.59 0.09 -4.07 0.20 3.52 0.14 269 -4.46 0.08 0.52 0.03 4.98 0.07 

308 -6.18 0.08 -2.24 0.23 3.94 0.20 308 -3.59 0.09 1.73 0.07 5.33 0.11 

350 -4.89 0.08 -0.84 0.05 4.05 0.10 350 -2.59 0.05 2.92 0.05 5.52 0.04 

0.6C18 0.7C18 

231 -3.08 0.21 1.17 0.09 4.24 0.27 231 -0.77 0.19 2.67 0.12 3.43 0.20 

269 -1.55 0.23 2.73 0.12 4.28 0.28 269 0.61 0.12 4.05 0.09 3.44 0.20 

308 -0.56 0.18 3.66 0.06 4.22 0.22 308 2.15 0.32 5.37 0.13 3.22 0.41 

350 0.46 0.09 5.03 0.05 4.57 0.11 350 3.41 0.17 6.64 0.08 3.23 0.17 

0.8C18 0.9C18 

231 1.26 0.54 4.07 0.09 2.81 0.47 231 3.56 0.22 5.56 0.14 2.00 0.36 

269 3.43 0.14 5.59 0.08 2.17 0.15 269 5.43 0.18 7.20 0.08 1.77 0.22 

308 4.24 0.19 6.88 0.09 2.64 0.24 308 6.70 0.23 8.29 0.03 1.59 0.25 

350 5.62 0.40 8.14 0.03 2.52 0.41 350 7.71 0.24 9.56 0.08 1.85 0.18 

C18        

231 5.06 0.21 6.85 0.13 1.79 0.29        

269 6.44 0.39 8.44 0.10 2.00 0.39        

308 7.89 0.27 9.47 0.06 1.58 0.26        

350 9.20 0.22 10.66 0.11 1.46 0.26        
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Table 8.6  Solubility (𝑻𝒆) and supersolubility (𝑻𝒄,𝒍𝒊𝒎) data of C18/C16 

mixtures in toluene solvent, together with the calculated 

equilibrium MSZW (∆𝑻) at each concentration. std: standard 
deviation from five recycles of repeats. 

Con. 
(g/l) 

𝑻𝒄,𝒍𝒊𝒎 

(°C) 
std 𝑻𝒆 

(°C) 
std 

∆𝑻 
(°C) 

std 
Con. 
(g/l) 

𝑻𝒄,𝒍𝒊𝒎 

(°C) 
std 𝑻𝒆 

(°C) 
std 

∆𝑻 
(°C) 

std 

C16 0.1 C18 

300 -5.42 0.40 -4.20 0.15 1.22 0.53 300 -10.63 0.23 -7.56 0.12 3.07 0.31 

350 -3.92 0.32 -2.71 0.11 1.22 0.40 350 -9.51 0.26 -6.44 0.42 3.07 0.46 

400 -3.44 0.27 -2.04 0.35 1.39 0.26 400 -8.74 0.06 -5.16 0.20 3.59 0.20 

450 -2.26 0.39 -1.09 0.11 1.17 0.39 450 -7.66 0.25 -4.44 0.13 3.23 0.22 

0.2C18 0.3C18 

300 -12.78 0.06 -9.29 0.10 3.49 0.12 300 -11.97 0.21 -9.56 0.13 2.41 0.22 

350 -11.16 0.06 -7.92 0.10 3.24 0.12 350 -10.45 0.10 -8.34 0.06 2.11 0.15 

400 -10.03 0.12 -6.95 0.05 3.08 0.10 400 -9.45 0.20 -7.26 0.13 2.19 0.19 

450 -9.17 0.09 -6.05 0.12 3.13 0.17 450 -8.15 0.10 -6.55 0.09 1.60 0.11 

0.4C18 0.5C18 

300 -9.92 0.11 -5.47 0.13 4.45 0.18 300 -6.01 0.11 -1.46 0.09 4.55 0.05 

350 -8.84 0.09 -4.33 0.07 4.14 0.03 350 -4.79 0.08 -0.44 0.07 4.36 0.12 

400 -7.47 0.09 -2.80 0.05 4.67 0.11 400 -4.09 0.16 0.50 0.03 4.59 0.16 

450 -6.65 0.12 -2.40 0.12 4.25 0.21 450 -3.43 0.14 1.24 0.04 4.67 0.16 

0.6C18 0.7C18 

300 -3.65 0.13 0.09 0.15 3.74 0.19 300 -1.07 0.31 1.98 0.15 3.05 0.18 

350 -2.46 0.18 1.35 0.10 3.80 0.14 350 0.15 0.26 3.04 0.08 2.88 0.23 

400 -1.21 0.09 2.29 0.07 3.50 0.06 400 1.04 0.20 3.97 0.03 2.93 0.18 

450 -0.47 0.08 2.69 0.12 3.16 0.18 450 2.14 0.11 4.78 0.05 2.64 0.15 

0.8C18 0.9C18 

300 1.16 0.21 3.11 0.13 1.95 0.21 300 2.67 0.28 4.18 0.17 1.51 0.43 

350 2.65 0.24 4.45 0.15 1.80 0.29 350 3.65 0.25 5.65 0.20 2.01 0.33 

400 3.32 0.27 5.14 0.03 1.82 0.27 400 4.64 0.23 6.41 0.11 1.77 0.13 

450 3.93 0.46 6.25 0.08 2.32 0.47 450 5.68 0.27 7.34 0.11 1.66 0.30 

C18        

300 4.22 0.20 5.29 0.38 1.07 0.40        

350 5.21 0.19 6.66 0.12 1.45 0.27        

400 6.23 0.49 7.78 0.14 1.55 0.50        

450 7.18 0.31 8.58 0.12 1.40 0.26        

 

 

 

 

 



- 179 - 

 

Figure 8.2:  Solubility-supersolubility curves for samples of C16, C18 
and equimolar composition of both 0.5C18. Determined from 

extrapolation of the poly-thermal data from four concentrations 
(300, 350, 400 and 450 g/l). 

 

Overall, the concentration effect on meta-stability was rarely observable from 

the range studied (192g/l – 450 g/l) with three solvents. The only exceptions 

are shown in Figure 8.3 (a, b) in the solution of n-dodecane for mixtures of 

0.2C18 and 0.3C18, illustrated by the discontinuous solubility curve with the 

abnormal behaviour of the saturation temperature at the lowest concentration 

of 192 g/l. Considering the accuracy of these measurements, as collected in 

five cycles of repeats, this abnormal point could be referred to as a 

polymorphic phase formation with higher solubility. The hypothesis can be 

made that the solvent molecules are involved in crystallisation and act as a 

part of the formed crystals. For consistency, the phase has been studied for 

solubility determination, the saturation temperature of a possible polymorph at 

a concentration of 192 g/l for the two mixtures, has not been adopted in further 

studies of Van’t Hoff plots. 
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Figure 8.3:  Solubility-supersolubility curves for binary mixture 
samples a) 0.2C18 and b) 0.3C18 in n-dodecane solution 

determined from extrapolation of poly-thermal data from four 
concentrations (192, 231, 269 and 380 g/l). 
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8.3 Saturation Temperature 

The equilibrium saturation temperatures, together with their standard 

deviation from five cycles of repeats, are plotted as a function of molar 

composition for C18/C16 mixtures in three solvents of n-dodecane, kerosene 

and toluene as shown in Figure 8.4 (a, b and c), respectively. The resultant 

saturation patterns in four concentrations of each solvent are quite consistent. 

For the purpose of clarification, the inter-relationship between saturation 

temperature and mixture composition with associated structural changes is 

compared in terms of the single concentration of each solvent: 308 g/l for n-

dodecane or kerosene and 350 g/l for toluene (Figure 8.5). 

 

 

Figure 8.4:  Equilibrium saturation temperature patterns as a function 
of C18/C16 mixture composition in three solvents of (a) n-

dodecane with four concentrations of (192, 231, 269 and 308 g/l); 
(b) kerosene (231, 269, 308 and 350 g/l) and (c) toluene (300, 350, 

400 and 450 g/l) 

 

As seen from Figure 8.5, the saturation pattern trend versus mixture 

composition was in agreement within the three solvents, which indicates the 

structural behaviour could be solvent nature independent of this work. 

Moreover, the saturation temperature (𝑇𝑒) of pure C18 is largely higher than 

that of C16 due to the inter-chain interactions between –CH2 methylene group 

increasing as the chain length increases. Hence, more energy is required to 

break the lattice packing, which will increase the saturation temperature. This 
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result has been noted in many n-alkane solubility studies with solubility of pure 

Cn in organic solvents decreasing with Cn number increases [70, 72, 118]. 

Furthermore, there was an overall decline in 𝑇𝑒  for binary mixture samples 

over the temperature range with several transit points according to the slope 

changes of the saturation pattern. This could be explained by the formation of 

new phases within the binary mixtures were crystallised in structures with 

reduced stability and packing density. The possibly corresponding structures 

of the formed phases within these binary mixtures were given in Figure 8.5. 

With the help of in-situ X-ray diffraction studies (Chapter 7), the phases 

observed from C18/C16 mixtures crystallised in kerosene solution were 

resolved (Figure 7.26). 

Overall, the saturation pattern as a function of the composition can be 

separated into five sections associated with structural stability. Decreased 𝑇𝑒 

was observed with the addition of the longer chain alkane of C18 into C16 with 

limited molar fraction (x=0 to 0.1). Even though the C18/C16 mixtures formed 

into a solid solution which crystallised in the original triclinic structure of C16, 

chain length difference increased disordering in the lattice therefore 

decreasing the saturation temperature. From x=0.1 to 0.5 molar fraction of 

C18, the apparent lower values of 𝑇𝑒  are relative to the alert of packing 

arrangement from the high density structure of triclinic to much lower 

orthorhombic structures within these composition mixtures. Particularly, the 

highly disordered rotator phase (R1) observed in mixtures from x=0.1 to 0.3 

with resultant lowest 𝑇𝑒. Consequently this was replaced by a fully crystalline 

orthorhombic structure (Op) from x=0.3-0.5 mixtures. Within this section, 𝑇𝑒 

increased linearly with a steep slope as the proportion of C18 in mixtures rose. 

Afterwards (x=0.5-1.0), 𝑇𝑒  increased as chain length increased in a flatter 

linear trend indicating a phase change to the more dense lattice of triclinic 

which was identical to the longer chain alkane of C18. Although the phases 

between x=0.5 to 0.7 were not defined, these binary mixtures behaved like a 

connection between the less dense packed orthorhombic phase and high 

density triclinic structure, indicating a difference between the two packing 

arrangements declined as an increasing amount of longer chain molecules in 

the mixture eventually dominating the final structure. 
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Figure 8.5:  Patterns of equilibrium saturation temperatures (𝑻𝒆) as a 
function of C18/C16 mixture composition in three representative 
solvents: n-dodecane, kerosene (at concentration of 308 g/l) and 

toluene (350 g/l). The corresponding structural phases are 
presented as obtained from in-situ synchrotron X-ray diffraction 

analysis of C18/C16/kerosene in Chapter 7 (Figure 7.26). 

 

8.4 Van’t Hoff Analysis 

The solubility plots using the Van’t Hoff model (Equation (2.1)) for C18/C16 

mixtures in three solvents of n-dodecane, kerosene and toluene are shown in 

Figures 8.6, 8.7 and 8.8 respectively. The resultant solubility behaviour in 

relation to the compositional effects of binary mixtures was quite compatible 

with all three solvents which were consistent with the observation from 

saturation temperature patterns. Higher solubility was observed with 

components having a shorter chain length of C16 and binary mixtures with a 

C18 molar fraction from x=0.1 to 0.4 due to the formation of less stable 

phases. Interestingly, the mixture component of 0.4C18 had a solubility close 

to pure C16, indicating balanced effects from the structural packing 

arrangement and chain length differences. 
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Figure 8.6:  Solubility plots applied with Van’s Hoff model for C18/C16 
mixtures in n-dodecane.  Experimental solubility data derived by 

extrapolation of Tdiss-q lines at each concentration. 

 

 

Figure 8.7:  Solubility plots applied with Van’s Hoff’s model for C18/C16 
mixtures in kerosene.  Experimental solubility data derived by 

extrapolation of Tdiss-q lines at each concentration. 
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Figure 8.8:  Solubility plots applied with using Van’s Hoff model for 
C18/C16 mixtures in toluene.  Experimental solubility data was 
derived by extrapolation of Tdiss-q lines at each concentration. 

 

Furthermore, the Van’t Hoff plots were employed to access the ideality 

behaviour with respect to the solvent nature and compositional effects as 

compared to the non-solvent ideal condition. Examples of pure C16, C18 and 

equimolar composition component of 0.5C18 in three solvents of n-dodecane, 

kerosene and toluene are shown in Figure 8.9 (a-c). The non-ideal behaviour 

was observed from all three samples with solubility less than ideal in the three 

solvents studied. Among these, n-dodecane showed the best ideality with the 

highest solubility for all three samples. This was followed immediately by 

kerosene and was least ideal in toluene. This is due to the n-alkane solute 

being non-polar in nature, therefore it has the least solubility in the highest 

polar solvent of toluene. Hence, the solute will be more favourable to be 

dissolved in the hydrocarbon molecules of n-dodecane with the strongest 

solute-solvent interactions, resulting in the highest solubility and the closest to 

the ideal condition. Kerosene is a mixture solvent containing both hydrocarbon 

molecules and aromatic chemicals, then has a solubility between that of n-

dodecane and toluene. 

The calculated values of activity coefficients (𝚼), enthalpies and entropies of 

dissolution for C18/C16 mixtures in three solvents as derived from model 

solubility plots are provided in Table 8.7 and plotted as a function of mixture 

composition in Figures 8.10, 8.11 and 8.12, respectively. 
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Figure 8.9:  Van’t Hoff ideality plots for C18/C16 binary mixtures in 
three solvents of n-dodecane, kerosene and toluene. a) Pure C16. 

b) Pure C18. c) The equimolar composition of 0.5C18. The ideal 
solubility was calculated according to the enthalpy of fusion of 

each composition as provided by DSC measurements in Chapter 
6. 
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Table 8.7  Thermodynamic parameters derived from the Van’t Hoff plots for C18/C16 mixtures in three solvents of n-
dodecane, kerosene and toluene with high correlation R2 >0.97 from a linear fit of lnx versus 1/T except for mixture 

component of 0.4C18 in kerosene with R2= 0.79. Activity coefficient (𝚼) 

Composition: 

mol fraction 

C18 

∆Hdiss (KJ /mol) ∆Sdiss (KJ /K.mol) Activity coefficient (𝚼) 

Dodecane Kerosene Toluene Dodecane Kerosene Toluene Dodecane Kerosene Toluene 

0 -50.12 -49.90 -68.66 0.17 0.17 0.24 1.18-1.14 1.20-1.17 1.59-1.42 

0.1 -45.97 -49.17 -63.75 0.16 0.17 0.22 1.81-1.61 1.84-1.64 2.41-2.02 

0.2 -68.92 -43.43 -62.91 0.25 0.15 0.22 1.34-1.24 1.45-1.34 1.94-1.66 

0.3 -100.23 -46.34 -66.34 0.36 0.16 0.23 1.41-1.24 1.39-1.26 1.93-1.62 

0.4 -54.64 -51.91 -62.72 0.19 0.18 0.22 1.81-1.57 1.79-1.53 2.32-1.95 

0.5 -50.26 -54.00 -79.62 0.17 0.18 0.28 2.14-1.87 2.07-1.82 2.84-2.32 

0.6 -51.01 -56.02 -80.41 0.17 0.19 0.28 2.08-1.82 2.13-1.87 2.83-2.30 

0.7 -49.38 -54.02 -79.12 0.16 0.18 0.27 2.13-1.91 2.10-1.87 2.86-2.36 

0.8 -49.99 -53.73 -73.21 0.17 0.18 0.25 1.61-1.55 1.64-1.55 2.17-1.90 

0.9 -50.74 -55.85 -72.53 0.17 0.19 0.24 1.41-1.39 1.44-1.38 1.84-1.64 

1 -55.68 -59.29 -69.06 0.18 0.20 0.23 1.20-1.17 1.22-1.19 1.52-1.40 
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Figure 8.10:  Activity coefficient (𝚼) patterns as a function of C18/C16 mixture 
compositions in three representative solvents: n-dodecane, kerosene at 

concentration of 308 g/l and 350 g/l in toluene. Resultant structural 
phases are also presented as obtained from in-situ synchrotron X-ray 

diffraction analysis of C18/C16/kerosene in Chapter 7. 

 

Figure 8.10 reveals a consistent trend of activity coefficient pattern as a function of 

mixture composition in all three solvents and the highest deviation in toluene was due 

to the lowest solubility. Notably, in each solvent, two regions of mixtures have the 

protruding higher deviations: one is at a molar fraction of C18 x=0.1, and the other one 

is between x=0.5-0.7. As less than ideal, this means the solubility of the phases formed 

in solution largely deviates from the ideally non-solvent environment within these 

mixtures. Hence, a non-identical phase formation in solution crystallisation would be 

expected in comparison with the structural behaviour in the melt. Indeed, the 

component 0.1C18 formed a rotator phase of R1 structure from kerosene solution 

rather than mixed phases of triclinic (T) +R1 as determined in the melt (Chapter 6). For 

x=0.5-0.7 mixtures formed in a R1 solid solution from homogenous melt mixtures, while 

in solution, the stabilised R1 became a metastable phase and was likely not existed 

during the dissolution process which was replaced by the fully crystalline structures of 

Op or T. Whereas for samples of pure C16, 0.2C18, 0.3C18 and pure C18 having the 
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least deviation in each solvent, were possibly due to the identical structures with close 

stability to the phases formed in the melt environment. 

Unlike the usual observations obtained from solubility studies (𝑇𝑒, Van’t Hoff plots and 

activity coefficient), more variety in behaviour was found in enthalpies and entropies 

of dissolution with respect to the mixture composition and solution environment, 

Figure 8.11. The ∆Hdiss of related solvents should obey the solubility characteristics 

diametrically as the less solute-solvent molecular interactions, more energy would be 

required for dissolution reaction. Therefore, we could expect the ∆Hdiss was the highest 

in toluene and followed by kerosene and the least in n-dodecane. The normal order 

was observable for components of C18, C16 and mixtures with molar fractions of C18 

(x=0.1, 0.5 to 0.9) with fully crystalline crystals. Whereas, the mixtures between x=0.2-

0.4 formed in a disordered phase (R1) with least ∆Hdiss observed in kerosene. This 

was, however, in conflict with the least solubility which was actually in n-dodecane. 

For each solvent, samples with a composition of x=0.1-0.4 were expected to have 

lower values of ∆Hdiss as these components had lower solubility with the lower stability 

of the formed phases and, as a result, the energy required to break the intermolecular 

packing of solute molecules was reduced to some extent. The protruding point of 

0.3C18 in n-dodecane with extremely high ∆Hdiss and ∆𝑆𝑑𝑖𝑠𝑠.can possibly be explained 

by n-dodecane crystallising or highly ordering with strong packing force which resulted 

in high interaction energy. It can also be seen from the solubility Van’t Hoff plot (Figure 

8.6), in which the 0.3C18 composition has a solubility plot not parallel to others. 

The energy of ∆Hdiss includes an energy break in the intermolecular packing and 

mixing of the separated C16 and C18 molecules. In other words, it is not only affected 

by the structural stability but also the solvation enthalpy from mixing. For example, in 

kerosene for which the phase formed is known, the enthalpy reduced to x=0.2 from 

0.3, whereas 0.3C18 has the lowest stability and is due to the chain length is increased 

from 0.3C18 resulting in a higher energy of mixing being required. The increase from 

x=0.4 to 0.6 is due to the increased stability of the formed phase and relatively longer 

chain length of the structure. Dissolution enthalpy was expected to show structural 

behaviour from the discussion of Gerson’s observation in C20/C22 mixtures in n-

dodecane showing the maxima enthalpy reflecting phase change [72]. Consistency 

had been observed in our work on kerosene and n-dodecane, except the abnormal 

point of 0.3C18. However, in the aromatic solvent of toluene, the trend is special with 

0.4C18 having the lowest ∆Hdiss while maxima with x=0.5-0.7. Interpretation can also 

be made with dissolution enthalpy which could be more easily affected by the nature 

of the solution, especially involving disordering solutes. 
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Figure 8.11:  ∆𝑯𝒅𝒊𝒔𝒔 (a) and ∆𝑺𝒅𝒊𝒔𝒔 (b) patterns as a function of C18/C16 mixture 
compositions in three representative solvents: n-dodecane, kerosene at 

concentration of 308 g/l and 350 g/l in toluene. Resultant structural 
phases are also presented as obtained from in-situ synchrotron X-ray 

diffraction analysis of C18/C16/kerosene in Chapter 7. 
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8.5 Conclusions 

By a poly-thermal method, solubility is determined and assessed with saturation 

temperature and Van’t Hoff analysis for C18/C16 mixtures in three representative 

solvents of n-dodecane, kerosene and toluene. Solubility is found to be in good 

agreement with activity coefficients with higher solubility in n-dodecane and the closest 

to the ideal condition, followed by kerosene and toluene. The saturation temperature 

reveals the structural transition behaviour as a function of a mixture solubility with 

consistent behaviour in all three solvents. 

Furthermore, the activity coefficient is found to reflect the non-identical phase 

formation in solution crystallisation as the high deviation value was observed from the 

C18 molar composition of x=0.1, 0.5-0.7 in all three solvents. Dissolution enthalpy has 

some inconsistent behaviour in three solvents especially for the mixtures crystallised 

in disordered structures from x=0.2-0.4. 

We could conclude that the nature of solvents within this study has no major effect on 

the structural behaviour of C18/C16 mixtures. However, patterns of dissolution 

enthalpy could give more information than the saturation temperature in the case 

where mixture samples are formed continuously which is non-distinguishable from 

transmission detection, i.e. effects from disordering structures or multiple phase 

formations. Further in-situ XRD experiments are needed to reveal detailed information 

on structural behaviour in n-dodecane and toluene. 

 

 

 

 

 

 



- 192 - 

   Nucleation Kinetics and Mechanism of 

Octadecane and Hexadecane Mixtures as a Function 

of Solution Environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: 

The poly-thermal data obtained from crystallisation measurements of octadecane 

and hexadecane mixtures in three model solvents is further assessed by nucleation 

mechanism and kinetics. 
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9.1 Introduction 

Following the solubility and thermodynamic analysis of octadecane (C18) and 

hexadecane (C16) mixtures in solutions using a poly-thermal method, the metastability 

and associated nucleation kinetics are further assessed for the ternary system studied. 

The metastability is initially compared as a function of mixture composition of the 

solutes and the nature of the model solvents. Nucleation kinetics are studied using the 

KBHR approach employing the equilibrium solubility and crystallisation temperature 

from poly-thermal data and assessing the nucleation mechanism to derive the 

essential nucleation parameters. 

9.2 Metastable Zone Width (MSZW) 

Data for the MSZW as provided in Tables 8.4-8.6 (Chapter 8) was employed to plot 

the pattern as a function of C18/C16 mixture composition in three solvents of n-

dodecane (308 g/l), kerosene (308 g/l) and toluene (350 g/l), as shown in Figure 9.1. 

The respective structural information is provided from in-situ XRD measurements in 

kerosene (Chapter 7). The maxima MSZW for 0.1C18 and 0.5C18 in the solute 

corresponded to the endpoint of T16 and Op phases correlating to phase transition 

phenomenon. As the two mixtures had relatively low saturation temperatures, as 

determined in Chapter 8, the resultant greater MSZW could only be explained by the 

relatively lower temperature of crystallisation corresponding to a larger nucleation 

barrier. 

MSZW had more variable behaviour compared to the regular trend observed from 

saturation temperature as seen from Figure 9.1, the scatter data points had a linear 

trend which was less than ideal. Moreover, the saturation temperatures were always 

the highest in n-dodecane for all the mixture samples with the greatest solubility. 

However, n-dodecane had the largest MSZW for C18/C16 mixture within a 

composition range of x=0-0.1 and 0.4-0.5, while having the lowest for samples of 

x=0.1-0.4 and 0.5-1.0. Interestingly, the overall largest and narrowest MSZW were 

both observed in n-dodecane corresponding to compositions of 0.5C18 (5.5°C) and 

0.3C18 (0.5°C). 
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In conclusion, the driving force of crystallisation notably by MSZW was not only 

controlled by the structure of the phase formed but also by nucleation kinetics which 

was essentially assessed.  

 

 

Figure 9.1:  Equilibrium MSZW patterns as a function of composition for 
C18/C16 binary mixtures in three solvents of n-dodecane (308 g/l), 

kerosene (380 g/l) and toluene (350 g/l). Resultant structural phases are 
also presented as obtained from in-situ synchrotron X-ray diffraction 

analysis of C18/C16/kerosene in Chapter 7. 

 

9.3 Nucleation Mechanism and Kinetic Assessment 

The KBHR approach was applied in order to gain results for the nucleation kinetics. 

The relative critical undercooling (𝒖𝒄 ) data was initially calculated from Equation 

(2.24) employing values of equilibrium saturation temperatures (Te) and crystallisation 

temperatures (Tc) as provided in Tables 8.4-8.6 (Chapter 8). Table 9.1 (a-c) presents 

the calculated 𝒖𝒄 values as a function of cooling rate and solution concentration for 

C18/C16 mixtures crystallising from n-dodecane, kerosene and toluene respectively. 

All the values of 𝒖𝒄 are lower than 0.1, reaching the criteria of application of the KBHR 
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approach which required relatively low supersaturation solutions. The highlighted 𝒖𝒄 

values of 0.2C18 and 0.3C18 in n-dodecane at concentration of (192 g/l) were not 

taken into account for further discussion due to the high possibility of the presence of 

a different polymorph as observed from the variation solubility behaviour (Chapter 8). 

 

Table 9.1 (a-c) Relative critical undercooling (uc) as a function of cooling rate 
(q) and solution concentration of eleven compositions of C16/C18 mixture 

crystallising from three solvents: (a) n-Dodecane, (b) Kerosene and (c) 
Toluene. 

(a) n-Dodecane 

q (K/s) 
C16 0.1 C18 

192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 

0.004 0.016 0.013 0.011 0.010 0.020 0.021 0.020 0.020 

0.017 0.022 0.016 0.013 0.013 0.025 0.026 0.023 0.023 

0.033 0.026 0.019 0.019 0.018 0.026 0.028 0.024 0.024 

0.053 0.030 0.023 0.022 0.022 0.026 0.031 0.029 0.028 

q (K/s) 
0.2 C18 0.3 C18 

192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 

0.004 0.015 0.008 0.007 0.005 0.015 0.007 0.004 0.002 

0.017 0.020 0.012 0.011 0.010 0.018 0.011 0.007 0.006 

0.033 0.023 0.016 0.015 0.014 0.021 0.013 0.009 0.008 

0.053 0.023 0.017 0.015 0.015 0.023 0.017 0.013 0.013 

q (K/s) 
0.4 C18 0.5 C18 

192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 

0.004 0.020 0.019 0.017 0.017 0.018 0.018 0.019 0.020 

0.017 0.024 0.023 0.020 0.020 0.022 0.022 0.022 0.024 

0.033 0.028 0.026 0.022 0.023 0.026 0.027 0.027 0.027 

0.053 0.030 0.027 0.025 0.024 0.033 0.030 0.030 0.029 

q (K/s) 
0.6 C18 0.7 C18 

192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 

0.004 0.010 0.012 0.012 0.011 0.008 0.010 0.009 0.010 

0.017 0.014 0.015 0.015 0.015 0.012 0.012 0.012 0.015 

0.033 0.017 0.019 0.020 0.018 0.014 0.014 0.015 0.017 

0.053 0.024 0.022 0.023 0.024 0.020 0.019 0.018 0.020 

q (K/s) 
0.8 C18 0.9 C18 

192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 

0.004 0.003 0.004 0.003 0.005 0.002 0.005 0.003 0.005 

0.017 0.006 0.007 0.006 0.008 0.005 0.005 0.007 0.011 

0.033 0.011 0.011 0.011 0.012 0.007 0.008 0.010 0.013 

0.053 0.014 0.014 0.013 0.014 0.013 0.011 0.011 0.014 

q (K/s) 
C18       

192 (g/l) 231 (g/l) 269 (g/l) 308 (g/l)       

0.004 0.004 0.003 0.003 0.002       

0.017 0.009 0.008 0.008 0.007       

0.033 0.014 0.011 0.012 0.010       

0.053 0.015 0.014 0.013 0.012         
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(b) Kerosene  

q (K/s) 
C16 0.1 C18 

231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 

0.004 0.010 0.011 0.009 0.010 0.020 0.019 0.019 0.018 

0.017 0.012 0.010 0.011 0.011 0.022 0.023 0.022 0.022 

0.033 0.013 0.012 0.015 0.014 0.026 0.026 0.025 0.025 

0.053 0.019 0.016 0.016 0.015 0.031 0.030 0.034 0.028 

q (K/s) 
0.2 C18 0.3 C18 

231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 

0.004 0.016 0.016 0.016 0.014 0.008 0.007 0.007 0.005 

0.017 0.018 0.018 0.017 0.016 0.011 0.010 0.010 0.008 

0.033 0.020 0.020 0.020 0.019 0.014 0.013 0.012 0.011 

0.053 0.023 0.025 0.023 0.022 0.019 0.017 0.015 0.015 

q (K/s) 
0.4 C18 0.5 C18 

231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 

0.004 0.021 0.014 0.015 0.015 0.018 0.019 0.019 0.020 

0.017 0.024 0.017 0.018 0.019 0.023 0.023 0.024 0.025 

0.033 0.028 0.021 0.021 0.021 0.027 0.026 0.026 0.028 

0.053 0.031 0.024 0.025 0.024 0.031 0.030 0.030 0.031 

q (K/s) 
0.6 C18 0.7 C18 

231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 

0.004 0.016 0.016 0.016 0.017 0.013 0.013 0.012 0.012 

0.017 0.020 0.019 0.019 0.021 0.016 0.016 0.015 0.016 

0.033 0.024 0.023 0.022 0.024 0.019 0.020 0.018 0.019 

0.053 0.028 0.026 0.026 0.027 0.024 0.023 0.022 0.023 

q (K/s) 
0.8 C18 0.9 C18 

231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l) 

0.004 0.011 0.008 0.010 0.010 0.008 0.007 0.007 0.007 

0.017 0.013 0.012 0.012 0.012 0.010 0.010 0.009 0.009 

0.033 0.015 0.015 0.015 0.016 0.013 0.014 0.013 0.012 

0.053 0.019 0.019 0.016 0.019 0.017 0.017 0.018 0.015 

q (K/s) 
C18       

231 (g/l) 269 (g/l) 308 (g/l) 350 (g/l)       

0.004 0.007 0.008 0.006 0.005       

0.017 0.010 0.010 0.008 0.008       

0.033 0.013 0.012 0.011 0.012       

0.053 0.016 0.015 0.014 0.013         
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(c) Toluene 

q (K/s) 
C16 0.1 C18 

300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 

0.004 0.006 0.006 0.006 0.005 0.011 0.011 0.013 0.011 

0.017 0.007 0.006 0.006 0.007 0.016 0.016 0.017 0.017 

0.033 0.009 0.008 0.008 0.007 0.017 0.017 0.020 0.019 

0.053 0.015 0.012 0.010 0.011 0.020 0.019 0.021 0.021 

q (K/s) 
0.2 C18 0.3 C18 

300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 

0.004 0.013 0.012 0.012 0.012 0.009 0.009 0.008 0.006 

0.017 0.016 0.015 0.014 0.015 0.012 0.010 0.012 0.010 

0.033 0.018 0.016 0.016 0.017 0.013 0.012 0.013 0.012 

0.053 0.019 0.020 0.018 0.021 0.015 0.016 0.015 0.015 

q (K/s) 
0.4 C18 0.5 C18 

300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 

0.004 0.016 0.016 0.017 0.016 0.017 0.016 0.017 0.017 

0.017 0.021 0.019 0.021 0.019 0.022 0.021 0.021 0.022 

0.033 0.022 0.020 0.023 0.021 0.024 0.024 0.023 0.025 

0.053 0.024 0.024 0.026 0.026 0.029 0.028 0.027 0.028 

q (K/s) 
0.6 C18 0.7 C18 

300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 

0.004 0.014 0.014 0.013 0.012 0.011 0.010 0.011 0.009 

0.017 0.018 0.017 0.016 0.016 0.014 0.015 0.014 0.014 

0.033 0.019 0.020 0.020 0.019 0.017 0.017 0.017 0.018 

0.053 0.023 0.022 0.023 0.024 0.018 0.020 0.021 0.021 

q (K/s) 
0.8 C18 0.9 C18 

300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l) 

0.004 0.008 0.007 0.007 0.008 0.006 0.007 0.007 0.006 

0.017 0.011 0.010 0.009 0.012 0.008 0.010 0.008 0.009 

0.033 0.012 0.012 0.011 0.014 0.012 0.011 0.012 0.011 

0.053 0.017 0.016 0.015 0.015 0.014 0.013 0.012 0.015 

q (K/s) 
C18       

300 (g/l) 350 (g/l) 400 (g/l) 450 (g/l)       

0.004 0.003 0.005 0.005 0.005       

0.017 0.008 0.008 0.009 0.009       

0.033 0.010 0.011 0.009 0.009       

0.053 0.012 0.013 0.012 0.012         

 

From the values of 𝑢𝑐  it was possible to determine the nucleation mechanism by 

plotting ln 𝑞 against ln 𝑢𝑐 and fitting a straight line through the data points. The slope 

of this line provided an indication of the nucleation mechanism according to the “rule 

of three” a slope larger than three corresponds to progressive nucleation (PN) and a 

slope smaller than three corresponds to instantaneous nucleation (IN). Selected 

results of ln 𝑞 𝑣𝑠. ln 𝑢𝑐  fitting are shown in Figure 9.2 for the equi-molar sample of 

0.5C18 in toluene at concentrations of 300, 350, 400 and 450 g/l. The resulting slope 
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values and indicated nucleation mechanism together with the correlation values of R2 

are listed in Tables 9.2-9.4 with respect to the three solvents of n-dodecane, kerosene 

and toluene. The PN ruled nucleation process with thermodynamic factors limited the 

nucleation rate, which is essential to determine the important parameters. This was 

achieved using KBHR by applying Equation (2.26) to the poly-thermal data with a 

non-linear plot in ln 𝑞 −  𝑢𝑐 co-ordinates. From the best fit, three free parameters were 

derived (𝑎1, 𝑎2 and ln 𝑞𝑜) with correlation R2 values given in Tables 9.2-9.4 for the 

samples crystallised with PN nucleation in three solvents. Moreover, using the 

molecular volume and crystallisation enthalpy values (provided in Chapter 6) by 

Equation (2.27), the essential nucleation parameters for PN ruled crystallisation i.e. 

interfacial tension, nuclei radius and number were calculated and are presented in 

Table 9.5. 

 

 
Figure 9.2:  Plots 𝐥𝐧 𝒒 𝒗𝒔. 𝐥𝐧 𝒖𝒄 for equi-molar 0.5C18 mixture component in toluene 

solvent at concentrations of a) 300 g/l. b) 350 g/l. c) 400 g/l. d) 450 g/l. Together 
with the best linear fit and correlation R2 values. Data points obtained using the 

poly-thermal method as provided in Chapter 8. 
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As expected from the high fluctuating MSZW behaviour in n-dodecane, the resultant 

crystallisation was controlled by various nucleation mechanisms that were dependent 

on chain length, mixture composition and even the concentration of a solution, as seen 

from Table 9.2. The chain length had a dominant effect on this solvent with longer 

chain length molecules of pure C18 and binary mixtures with major compositions of 

C18 of x=0.8 and 0.9 ruled by an IN mechanism with ln 𝑞 − ln 𝑢𝑐 slope values smaller 

than three (1.45-2.66) over all four concentrations studied. In contrast, the PN 

nucleation mechanism was favoured in shorter chain components of C16 and mixtures 

with a small amount impurity of C18 (x=0.1). The associated structural behaviour 

tended to control from x=0.2 to 0.7 as the three transit points respectively for a 

nucleation mechanism observed at 0.2C18, 0.4C18 and 0.6C18 possibility correlated 

to the phase transition from T16-R1, R1-Op and Op-T18 respectively. Conclusively, 

triclinic phase components of pure C18 or C16 together with the mixtures of (x=0.1, 

0.8 and 0.9) were crystallised with the IN and PN mechanism depending on the effect 

of the chain length of the solute. Binary mixtures of 0.4C18 and 0.5C18 with Op 

structure were purely ruled by PN. For mixtures involving disordered R1, the nucleation 

mechanisms were mostly IN controlled with variation in lower concentration at 231 g/l. 

 

Table 9.2 Parameters derived from the KBHR approach from C16/C18 mixtures 
crystallising from a solution of n-dodecane: slope from 𝐥𝐧 𝒒 𝒗𝒔. 𝐥𝐧 𝒖𝒄 plots 
with indicated nucleation mechanism and correlation R2 values; parameters 
(𝒂𝟏, 𝒂𝟐 and 𝐥𝐧 𝒒𝒐) as obtained from fitting equation of 𝐥𝐧 𝒒 𝒗𝒔. 𝒖𝒄 according to 

Equation (2.26) and correlation R2 values. 

Con (g/l) Slope 
Nucleation 
mechanism 

R2 
 

𝒂𝟏 
 

𝒂𝟐 = 𝒃 

 

𝐥𝐧 𝐪𝟎 
 

 

𝒒
𝟎 (

𝑲
𝒔

)
 

 

R2 

C16 

192 4.15 PN 0.99 3 2.67E-04 7.89 2669.80 1.00 

231 4.29 PN 0.96 3 1.93E-04 8.88 7160.75 0.97 

269 3.33 PN 0.93 3 4.84E-05 8.74 6270.62 0.91 

308 2.99 PN 0.94 3 1.26E-05 8.67 5816.36 0.92 

0.1 C18 

192 8.93 PN 0.94 3 1.51E-03 9.86 19172.07 0.89 

231 7.09 PN 0.99 3 1.26E-03 8.84 6882.24 0.99 

269 6.35 PN 0.85 3 1.01E-03 9.16 9476.40 0.84 

308 7.34 PN 0.93 3 1.19E-03 9.59 14624.45 0.94 

0.2 C18 

231 3.14 PN 0.99 3 5.58E-06 9.20 9881.01 0.98 

269 2.77 IN 0.96      

308 2.33 IN 0.98      

0.3 C18 
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231 3.06 PN 0.98 3 9.03E-06 9.51 13557.02 0.97 

269 2.16 IN 0.98      

308 1.58 IN 0.98      

0.4C18 

192 5.97 PN 1.00 3 8.46E-04 8.51 4965.90 1.00 

231 7.60 PN 0.98 3 1.15E-03 9.41 12227.22 0.97 

269 6.48 PN 0.97 3 6.91E-04 9.43 12484.34 0.98 

308 6.35 PN 0.98 3 6.51E-04 9.23 10202.83 0.98 

0.5C18 

192 4.09 PN 0.95 3 3.24E-04 7.86 2584.77 0.95 

231 4.68 PN 0.95 3 4.67E-04 8.13 3383.38 0.95 

269 5.31 PN 0.96 3 6.51E-04 8.40 4438.76 0.96 

308 6.33 PN 0.99 3 9.21E-04 8.76 6365.89 1.00 

0.6C18 

192 2.73 IN 0.93      

231 4.05 PN 0.97  1.41E-04 8.84 6916.60 0.98 

269 3.65 PN 0.97  8.52E-05 8.59 5371.70 0.97 

308 3.30 PN 0.96  4.96E-05 8.58 5341.86 0.96 

0.7C18 

192 2.79 IN 0.93      

231 3.87 PN 0.88  9.99E-05 9.56 14123.99 0.87 

269 3.32 PN 0.96  2.60E-05 9.22 10085.26 0.99 

308 3.82 PN 0.99  7.07E-05 9.01 8143.70 0.99 

0.8C18 

192 1.45 IN 0.99      

231 1.97 IN 0.99      

269 1.60 IN 0.99      

308 2.36 IN 0.99      

0.9C18 

192 1.53 IN 0.98      

231 2.66 IN 0.84      

269 1.82 IN 0.99      

308 2.57 IN 0.97      

C18 

192 1.82 IN 0.99      

231 1.56 IN 0.99      

269 1.75 IN 0.97      

308 1.49 IN 0.99      

 

In kerosene solutions, consistent mechanism behaviour was obtained as in 

n-dodecane for a single alkane of C16 was PN controlled and C18 was mainly or 

nearly IN controlled, as indicated by the slope number, was very close to three 

indicating thermodynamic factor control in the system became less important whereas 

the kinetic factors were more controlling. For binary mixtures, most compositions were 

PN controlled including shorter chain C16 dominant ones (x=0.1 and 0.2) and close to 

equal molar compositions of (x=0.4, 0.5, 0.6, 0.7 and 0.8). Similarly, compositions 

close to the long-chain component of C18 were mainly or close to IN behaviour for 
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0.9C18. At last, a composition of 0.3C18 was mostly mediated by IN nucleation in 

kerosene, the same as in n-dodecane. 

Interestingly observation has been found in toluene solution, as shown in Table 9.4, 

both C16 and C18 crystallising by IN mechanism with smaller MSZW than the 

mixtures. Binary mixtures are mostly ruled by PN crystallisation, especially 

compositions of x=0.1, 0.2, 0.4 and 0.5C18 having a large number of slope for “rule of 

three”. It should be noted that 0.3C18 in toluene solution are more likely to be ruled by 

PN rather than IN as observed in n-dodecane and kerosene solutions, while as 

increasing the concentration, it is getting closer to being mediated by IN. Not 

surprisingly, for mixtures with a composition close to C18, the slope is closer to three 

and controlled by IN mechanism. 

 

Table 9.3 Parameters derived from the KBHR approach from C16/C18 mixtures 
crystallising from solution of kerosene: slope from 𝐥𝐧 𝒒 𝒗𝒔. 𝐥𝐧 𝒖𝒄 plots with 
indicated nucleation mechanism and correlation R square values; parameters 
(𝒂𝟏, 𝒂𝟐 and 𝐥𝐧 𝒒𝒐) as obtained from fitting equation of 𝐥𝐧 𝒒 𝒗𝒔. 𝒖𝒄 according to 

Equation (2.26) and correlation R square values. 

Con (g/l) Slope 
Nucleation 
mechanism 

R2 
 

𝒂𝟏 
 

𝒂𝟐 = 𝒃 
 

𝐥𝐧 𝐪𝟎 
 

 

𝒒
𝟎 (

𝑲
𝒔

)
 

 

R2 

C16 

231 3.52 PN 0.79 3 7.70E-05 9.60 14695.55 0.73 

269 3.63 PN 0.49 3 3.49E-05 9.59 14634.25 0.23 

308 3.68 PN 0.97 3 4.87E-05 9.59 14575.83 0.97 

350 4.70 PN 0.87 3 1.26E-04 10.21 27076.46 0.82 

0.1 C18 

231 5.53 PN 0.87 3 8.12E-04 9.86 19172.07 0.89 

269 6.03 PN 0.95 3 8.64E-04 8.84 6882.24 0.99 

308 4.03 PN 0.83 3 4.06E-04 9.16 9476.40 0.84 

350 5.67 PN 0.98 3 6.63E-04 9.59 14624.45 0.94 

0.2 C18 

231 6.87 PN 0.92 3 7.13E-04 9.99 21861.67 0.93 

269 5.46 PN 0.89 3 5.06E-04 9.28 10743.54 0.89 

308 6.22 PN 0.91 3 5.93E-04 9.69 16106.37 0.91 

350 5.47 PN 0.95 3 3.75E-04 9.50 13401.34 0.96 

0.3 C18 

231 2.90 IN 0.94 3 5.99E-06 9.25 10428.52 0.91 

269 2.70 IN 0.96 3     

308 3.11 PN 0.98 3 9.11E-06 9.82 18415.35 0.97 

350 2.31 IN 0.99 3     

0.4C18 

231 6.09 PN 0.94 3 9.94E-04 8.69 5944.73 0.94 

269 4.46 PN 0.95 3 2.43E-04 8.83 6852.17 0.96 

308 5.16 PN 0.97 3 3.92E-04 9.00 8074.61 0.98 

350 5.45 PN 0.99 3 4.19E-04 9.07 8703.50 1.00 

0.5C18 
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231 4.84 PN 0.98 3 5.12E-04 8.12 3345.09 0.99 

269 5.30 PN 0.98 3 6.28E-04 8.40 4449.87 0.99 

308 5.77 PN 0.98 3 7.77E-04 8.48 4837.24 0.99 

350 5.77 PN 0.99 3 8.13E-04 8.38 4341.30 1.00 

0.6C18 

231 4.50 PN 0.95 3 3.53E-04 8.37 4308.18 0.95 

269 5.07 PN 0.91 3 4.63E-04 8.83 6831.30 0.90 

308 5.15 PN 0.95 3 4.45E-04 8.89 7254.45 0.95 

350 5.36 PN 0.99 3 4.97E-04 8.71 6063.42 1.00 

0.7C18 

231 4.28 PN 0.94 3 2.10E-04 8.86 7054.42 0.95 

269 4.22 PN 0.97 3 1.87E-04 8.79 6566.33 0.97 

308 4.40 PN 0.91 3 1.92E-03 8.77 6460.49 0.97 

350 3.87 PN 0.99 3 1.11E-04 8.70 5996.67 1.00 

0.8C18 

231 4.52 PN 0.87 3 1.77E-04 9.78 17668.17 0.87 

269 3.10 PN 0.97 3 1.53E-05 9.17 9576.24 0.96 

308 4.66 PN 0.95 3 1.34E-04 9.98 21513.16 0.94 

350 3.63 PN 0.93 3 6.51E-05 9.31 11099.55 0.91 

0.9C18 

231 3.26 PN 0.87 3 3.36E-05 9.65 15595.22 0.82 

269 2.81 IN 0.97      

308 2.51 IN 0.89      

350 3.36 PN 0.97 3 2.11E-05 9.96 21113.33 0.97 

C18 

231 3.00 PN 0.98 3 4.55E-06 9.67 15874.35 0.97 

269 3.75 PN 0.96 3 4.58E-05 10.08 23862.18 0.96 

308 2.99 IN 0.98 3 2.97E-06 10.05 23237.21 0.97 

350 2.59 IN 0.98      

 

Table 9.4 Parameters derived from the KBHR approach from C16/C18 mixtures 
crystallising from solution of toluene: slope from 𝐥𝐧 𝒒 𝒗𝒔. 𝐥𝐧 𝒖𝒄 plots with 

indicated nucleation mechanism and correlation R square values; parameters 
(𝒂𝟏, 𝒂𝟐 and𝐥𝐧 𝒒𝒐) as obtained from fitting equation of 𝐥𝐧 𝒒 𝒗𝒔. 𝒖𝒄 according to 

Equation (2.26) and correlation R square values. 

Con 
(g/l) 

Slope 
Nucleation 
mechanism 

R2 
 

𝒂𝟏 
 

𝒂𝟐 = 𝒃 

 

𝐥𝐧 𝐪𝟎 
 

 

𝒒
𝟎 (

𝑲
𝒔

)
 

 

R2 

C16 

300 2.52 0.80 IN           

350 2.87 0.79 IN           

400 3.21 0.54 PN n/a  n/a    n/a   n/a  n/a   

450 3.05 0.92 PN n/a  n/a    n/a   n/a  n/a   

0.1 C18 

300 4.54 0.99 PN 3.00 1.5E-04 9.19 9843.93 0.98 

350 4.46 0.98 PN 3.00 1.3E-04 9.18 9729.23 0.96 

400 5.22 0.99 PN 3.00 2.7E-04 9.23 10148.69 0.98 

450 3.87 0.98 PN 3.00 8.5E-05 8.66 5776.19 0.96 

0.2 C18 

300 6.43 0.98 PN 3.00 4.1E-04 10.04 22818.57 0.98 

350 5.66 0.94 PN 3.00 3.1E-04 9.87 19349.08 0.94 

400 6.01 0.99 PN 3.00 3.0E-04 10.18 26444.67 1.00 

450 4.71 0.93 PN 3.00 2.3E-04 9.40 12127.13 0.94 
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0.3 C18 

300 5.37 0.98 PN 3.00 1.5E-04 10.48 35505.75 0.99 

350 4.15 0.83 PN 3.00 9.5E-05 10.27 28748.19 0.79 

400 3.98 0.99 PN 3.00 4.9E-05 9.84 18697.22 0.97 

450 2.93 0.99 IN           

0.4 C18 

300 7.83 0.99 PN 3.00 5.9E-04 9.22 10093.73 0.97 

350 6.87 0.93 PN 3.00 5.8E-04 9.50 13353.05 0.97 

400 7.13 0.96 PN 3.00 8.4E-04 9.53 13755.86 0.98 

450 5.41 0.91 PN 3.00 5.4E-04 9.06 8619.91 0.93 

0.5 C18 

300 4.93 0.96 PN 3.00 4.8E-04 8.43 4597.88 0.97 

350 5.60 0.95 PN 3.00 3.9E-04 8.42 4522.05 0.99 

400 4.77 0.98 PN 3.00 6.0E-04 8.89 7256.70 0.96 

450 4.92 1.00 PN 3.00 4.1E-04 8.29 3968.13 0.99 

0.6 C18 

300 5.02 0.96 PN 3.00 2.9E-04 9.06 8603.29 0.95 

350 5.38 0.99 PN 3.00 3.5E-04 9.23 10160.47 1.00 

400 4.41 0.97 PN 3.00 2.1E-04 8.86 7021.98 0.98 

450 3.80 0.93 PN 3.00 1.4E-04 8.72 6128.34 0.93 

0.7 C18 

300 4.88 1.00 PN 3.00 1.6E-04 9.56 14193.79 0.99 

350 3.86 1.00 PN 3.00 7.4E-05 9.02 8246.96 0.99 

400 4.18 0.96 PN 3.00 1.4E-04 9.25 10390.11 0.97 

450 3.17 1.00 PN 3.00 1.5E-05 8.72 6097.54 1.00 

0.8 C18 

300 3.34 0.93 PN 3.00 2.9E-05 9.75 17145.83 0.92 

350 3.09 0.94 PN 3.00 1.3E-05 9.72 16729.52 0.92 

400 3.50 0.94 PN 3.00 3.2E-05 10.13 25123.53 0.93 

450 3.46 0.98 PN 3.00 2.0E-05 9.50 13303.87 0.96 

0.9 C18 

300 2.70 0.96 IN           

350 4.43 0.96 PN 3.00 7.1E-05 10.58 39477.26 0.97 

400 3.46 0.89 PN 3.00 2.3E-05 10.33 30534.42 0.85 

450 3.11 0.96 PN 3.00 1.0E-05 9.98 21696.15 0.95 

C18 

300 1.95 0.98 IN           

350 2.92 0.98 IN           

400 2.94 0.91 IN           

450 2.80 0.95 IN           

 

As shown in Tables 9.5 to 9.7, relatively small interfacial tension values were 

observed, using Equation (2.27) with approximation values of molecular volume given 

in Appendix C, for C16 and C18 alkanes and their mixtures crystallised from three 

representative solvents: n-dodecane, kerosene and toluene. These parameters (0.27-

1.77 
𝑚𝐽

𝑚2
) using the novel approach of KBHR to study solution phase formation kinetics 

were quite successful as compared with previous data listed in Table 9.8. It was found 

that the addition of homologue alkane molecules enlarged values of interfacial tension 

as obtained with 0.1C18 increased approximately double number from pure C18. This 
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observation is consistent with a previous study by Gerson [119] who studied the 

composition role in saturation temperature and interfacial tension by the addition of 

10% molar ratio of C22 to C20 crystallising in n-dodecane. The resultant saturation 

temperature decreased by 4.5°C and increased more than double the initial interfacial 

tension by 0.75 to 1.97 
𝑚𝐽

𝑚2. 

 

Table 9.5 Interfacial tension, critical radius and number of molecules for 
nucleation of C16/C18 mixtures in n-dodecane solution 

Con. 
(g/L) 𝜸 (

𝒎𝑱

𝒎𝟐
) 𝒓∗ (𝒏𝒎) 𝒊∗ 

Con. 
(g/L) 

𝜸 (
𝒎𝑱

𝒎𝟐
) 𝒓∗ (𝒏𝒎) 𝒊∗ 

C16 0.1C18 

192 1.28 0.83-0.45  5.97-0.92 192 1.77 1.34-1.03  24.62-11.20 

231 1.15 0.95-0.53  9.01-1.51 231 1.67 1.21-0.84  17.89-5.98 

269 0.73 0.72-0.36  3.85-0.47 269 1.56 1.21-0.82  18.24-5.60 

308 0.47 0.50-0.22  1.28-0.11 308 1.64 1.29-0.91  21.97-7.63 

0.2C18 0.3C18 

192 1.13 1.17-0.77  15.07-4.31 192 1.21 1.25-0.82  18.62-5.25 

231 0.27 0.55-0.25  1.56-0.15 231 0.31 0.69-0.29  3.04-0.24 

0.4C18 0.5C18 

192 1.44 1.15-0.75  14.51-4.00 192 1.03 0.96-0.51  8.26-1.29 

231 1.60 1.30-0.95  20.87-8.12 231 1.17 1.04-0.62  10.69-2.30 

269 1.35 1.29-0.86  20.45-6.05 269 1.31 1.12-0.71  13.25-3.38 

308 1.33 1.27-0.87  19.18-6.15 308 1.47 1.21-0.82  16.86-5.13 

0.6C18 0.7C18 

231 0.80 1.04-0.57  10.74-1.71 231 0.80 1.06-0.56  11.23-1.68 

269 0.68 0.91-0.46  7.19-0.94 269 0.51 0.80-0.37  4.87-0.49 

308 0.57 0.82-0.37  5.15-0.49 308 0.71 0.95-0.48  8.14-1.06 

 

 

Table 9.6 Interfacial tension, critical radius and number of molecules for 
nucleation of C16/C18 mixtures in toluene solution  

Con. 
(g/L) 𝜸 (

𝒎𝑱

𝒎𝟐
) 𝒓∗ (𝒏𝒎) 𝒊∗ 

Con. 
(g/L) 

𝜸 (
𝒎𝑱

𝒎𝟐
) 𝒓∗ (𝒏𝒎) 𝒊∗ 

0.1C18 0.2C18 

300 0.78 1.16-0.66 14.89-2.69 300 1.15 1.36-0.94 23.69-7.79 

350 0.74 1.14-0.65 14.17-2.62 350 1.05 1.32-0.83 21.49-5.36 

400 0.96 1.24-0.77 17.83-4.37 400 1.04 1.38-0.90 24.61-6.78 

450 0.65 0.97-0.51 8.55-1.22 450 0.95 1.19-0.69 16.06-3.12 

0.3C18 0.4C18 

300 0.81 1.41-0.86 26.30-6.07 300 1.28 1.26-0.84 19.07-5.66 

350 0.69 1.23-0.70 17.56-3.26 350 1.27 1.29-0.85 20.42-5.75 
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400 0.55 1.12-0.59 13.41-1.92 400 1.44 1.30-0.89 20.99-6.72 

      
  
  

450 1.24 1.20-0.75 16.46-4.05 

0.5C18 0.6C18 

300 1.16 1.12-0.66 13.28-2.73 300 1.02 1.19-0.70 15.77-3.28 

350 1.08 1.11-0.64 12.79-2.50 350 1.09 1.23-0.76 17.66-4.15 

400 1.25 1.22-0.76 17.02-4.21 400 0.92 1.10-0.62 12.65-2.26 

450 1.10 1.10-0.65 12.62-2.60 450 0.80 1.00-0.51 9.48-1.28 

0.7C18 0.8C18 

300 0.94 1.18-0.71 15.48-3.34 300 0.57 0.90-0.41 6.76-0.66 

350 0.72 0.96-0.49 8.32-1.12 350 0.43 0.74-0.32 3.81-0.30 

400 0.89 1.07-0.58 11.71-1.84 400 0.59 1.00-0.48 9.42-1.04 

450 0.43 0.61-0.28 2.15-0.20 450 0.50 0.80-0.39 4.81-0.56 

0.9C18       

300 0.37 0.70-0.29 3.24-0.23       

350 0.81 1.21-0.67 16.56-2.86       

400 0.56 0.92-0.50 7.38-1.18       

450 0.42 0.72-0.32 3.55-0.31       

 
 

Table 9.7 Interfacial tension, critical radius and number of molecules for 
nucleation of C16/C18 mixtures in kerosene solution 

Con. 
(g/L) 𝜸 (

𝒎𝑱

𝒎𝟐
) 𝒓∗ (𝒏𝒎) 𝒊∗ 

Con. 
(g/L) 

𝜸 (
𝒎𝑱

𝒎𝟐
) 𝒓∗ (𝒏𝒎) 𝒊∗ 

C16 0.1C18 

231 0.85 0.92-0.47 8.17-1.11 231 1.38 1.13-0.74 13.81-3.87 

269 0.65 0.65-0.44  2.83-0.87 269 1.41 1.21-0.79  16.74-4.70 

308 0.73 0.91-0.47  7.83-1.09 308 1.10 0.97-0.54  8.55-1.46 

350 1.00 1.11-0.71  14.29-3.78 350 1.29 0.80-0.50  16.10-4.09 

0.2C18 0.3C18 

231 1.38 1.33-0.93  22.29-7.60 231 0.27 0.54-1.53 0.23-0.11 

269 1.23 1.21-0.77  16.54-4.26     

308 1.30 1.28-0.87  19.88-6.18 308 0.32 0.76-0.33 4.08-0.33 

350 1.12 0.90-0.56  18.58-4.58     

0.4C18 0.5C18 

231 1.52 1.16-0.78  14.82-4.43 231 1.20 1.06-0.62  11.39-2.30 

269 0.95 1.10-0.63  12.43-2.37 269 1.29 1.13-0.70  13.51-3.19 

308 1.12 1.19-0.72  15.77-3.52 308 1.39 1.16-0.74  14.88-3.80 

350 1.14 0.85-0.53  16.98-4.10 350 1.41 0.79-0.50  14.40-3.76 

0.6C18 0.7C18 

231 1.09 1.05-0.60  10.89-2.07 231 1.02 1.04-0.57  10.63-1.76 

269 1.20 1.14-0.71  13.86-3.40 269 0.98 1.02-0.56  9.95-1.67 

308 1.18 1.16-0.72  14.92-3.52 308 2.14 1.14-0.81  13.87-5.07 

350 1.23 0.83-0.51  14.95-3.55 350 0.83 0.78-0.40  8.00-1.10 

0.8C18 0.9C18 

231 1.04 1.13-0.66  13.77-2.70 231 0.63 0.83-0.40  5.44-0.61 

269 0.46 0.66-0.29  2.72-0.22     
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308 0.95 1.17-0.70  15.00-3.25     

350 0.75 0.85-0.44  7.41-1.02 350 0.54 0.87-0.41  6.16-0.64 

C18       

231 0.34 0.51-0.22  1.25-0.10       

269 0.74 1.00-0.51  9.22-1.22       

308 0.30 0.51-0.22  1.23-0.10       

 

Table 9.8 Previous studied data of interfacial tension of normal alkanes and 
their mixtures 

Compounds Reported 𝜸 (
𝒎𝑱

𝒎𝟐) 

C20 in n-dodecane [120] 0.389 

C22 in n-dodecane 0.217-0.493 

C20/C18 in n-dodecane 0.389 

C20/C19 in n-dodecane 0.775 

C20/C21 in n-dodecane [80] 1.713 

C20/C22 in n-dodecane 1.170 

 

9.4 Discussion 

The nucleation mechanism represented by the slope of ln 𝑞 𝑣𝑠. ln 𝑢𝑐 according to the 

“rule of three”, is further plotted as a function of mixture composition, as shown in 

Figure 9.3 for C18/C16 mixtures in three solvents of n-dodecane (308 g/l), kerosene 

(308 g/l) and toluene (350 g/l). The following discussion was built up at the 

representative concentration of the mixture solutes for each solvent, hence variations 

might exist for the full set of data in four concentrations. 
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Figure 9.3:  Nucleation mechanism, represented by the slope of 𝐥𝐧 𝒒 𝒗𝒔. 𝐥𝐧 𝒖𝒄 
according to the “rule of three”, for C18/C16 mixtures in three solvents of 

n-dodecane (308 g/l), kerosene (308 g/l) and toluene (350 g/l). 

 

Crystallisation of large proportions of binary mixture samples in three solvents was 

mediated by the PN nucleation mechanism with a slope larger than three which was 

more limited by the thermodynamic factor with respect to the associated interfacial 

tension. Nucleation kinetic behaviour as a function of solution environment and solute 

composition can be correlated to solution meta-stability (Figure 9.1), where the larger 

slope of nucleation mechanism which was PN rules crystallisation with a resultant 

large value of MSZW i.e. 0.1C18, 0.2C18, 0.4C18 and 0.5C18 mixture samples. In 

contrast, smaller MSZW components of C18, C16 having a slope smaller than three 

or close to three are IN ruled crystallisation as well as the mixtures having dominant 

compositions of long-chain alkane C18 i.e. 0.8C18 and 0.9C18 or disordered phase 

of 0.3C18. The nucleation will be more kinetically controlled, behaving like a 

heterogeneous nucleation mechanism. 

Alternatively, from the structural point of view, a composition of x=0.1 to 0.5 C18 

crystallised by a disordering rotator phase, the resultant interfacial tension of this 

phase changes as a function phase composition. This can be related to the disorder 

extent of the mixture rotator phase due to the 0.3C18 having the highest level of 
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disordering with the least interfacial tension. As a result, it is likely to be heterogeneous 

nucleation with an IN mechanism. Thus increasing disorder in the solid solution would 

result in a low saturation temperature and lower interfacial tension which will even alter 

the nucleation mechanism from PN to IN. 

 

Table 9.9 Interfacial tension values with mixture compositions are the most PN 
controlled components (large slope number from the rule of three fitting) 

in three model solvents. Unit of 𝚼 is 
𝒎𝑱

𝒎𝟐
. 

Sample 𝚼 (n-Dodecane) 𝚼 (Kerosene) 𝚼 (Toluene) 

0.1C18 1.64 1.10 0.74 

0.4C18 1.33 1.12 1.27 

0.5C18 1.47 1.39 1.08 

 

The most thermodynamically controlled mixtures of the three solvents are compared 

in terms of interfacial tension values at representative concentrations i.e. 308 g/l of n-

dodecane and kerosene, 350 g/l of kerosene as illustrated in Table 9.9. The interfacial 

tension is generally found with smaller values in toluene and greater values in 

solutions of n-dodecane and kerosene which is similar to these two solvents. This 

means mixtures with these compositions are easier to crystallise in toluene than the 

other two solvents. In other words, the solute will be more kinetically controlling as the 

solvent solubility decreases, which can be illustrated by the observation of C16 with 

nucleation mechanism transferred to IN in toluene from PN ruled in n-dodecane and 

kerosene. 

It seems that PN ruled samples are more thermodynamically controlled in n-dodecane 

with a large slope and interfacial tension while if IN controlled it is more kinetic also in 

n-dodecane with the smallest slope number. This can be explained by IN nucleation 

being highly kinetically limited controlling the concentration of available nuclei sites 

(𝐶0), low solubility with resultant low concentration of nuclei sites will inhibit the onset 

of nucleation. For a PN nucleation, thermodynamic factors in the nucleation rate 

classical equation are limited by interfacial tension which is g smaller in lower solubility 

solvent. 
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9.5 Conclusions 

The meta-stability of solution crystallisation is dominantly controlled by nucleation 

kinetics, i.e. PN ruled nucleation results in larger MSZW, thermodynamically controlled 

with larger values of interfacial tension. Whereas smaller MSZW is normally mediated 

by an IN mechanism. 

While the nucleation behaviour has a lot of controlling factors from chain length 

(surface and volume), structural stability and solvent interaction. This can be delivered 

from the following observations. Interfacial tension of solutes with a triclinic molecular 

structure is found to decrease as the chain length is increased. Increasing disorder in 

the solid solution would result in a low saturation temperature and lower interfacial 

tension which can even alter the nucleation mechanism from PN to IN. When a 

heterogeneous type nucleation (IN) is formed, the high solubility solvent will accelerate 

the process by increasing the effective concentration of homologue molecules. 

However, if there is homogeneous nucleation with high PN slopes, a lower solubility 

would result in lower interfacial tension from less interaction between solute and 

solvent. 
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 Conclusions and Future Work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: 

This chapter will conclude the outcomes from this work, reassessment of the aims and 

objectives of the thesis and suggestions for future work. 
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10.1  Conclusions of this Study 

This work has provided a fundamental study on the binary mixtures of octadecane 

(C18) and hexadecane (C16) homologues regarding their crystallisation behaviour as 

a function of mixture composition. This is examined by the influence of crystallisation 

environment, i.e. in melt phase and in three representative model fuels of n-dodecane, 

kerosene and toluene. 

The structure and morphology of a single component were initially determined in 

Chapter 5. The structure of C18 crystallised in the melt phase at a low temperature of 

- 40°C using computational systematic search modelling in combination with high 

resolution synchrotron powder diffraction data was confirmed to be reliable in 

determining the structure as indicated by a good agreement with the structure 

determined by the single crystal method from Nyburg [60] but with the benefit of 

simpler sample preparation methodologies. 

The existence of pre-ordering clusters prior to the solid formation due to the methylene 

group interaction between interchain molecules was detected by time-resolved 

synchrotron X-ray diffraction. Thermal expansion coefficients regarding the lattice 

volume of C18 (4.17±2.48 ×  10−4 ˚C-1) and C16 (4.39±1.94× 10−4 ˚C-1) crystals with 

close values determined from unit cell parameters from the time-resolved XRD. Also, 

the anisotropic character of crystals was shown with variable thermal expansion 

behaviour from different axial directions and angles. 

Crystal growth studies of C18 carried out in three supersaturations ( 𝜎 =

0.036, 0.045 𝑎𝑛𝑑 0.08 ) in n-dodecane solution revealed a plate-like morphology 

dominated by the {001}  habit plane with smaller side faces changing with 

supersaturations. Morphological indexation of the observed crystals are predicted 

using BFDH in combination with the zone axis method with the observed smaller faces 

(010) (321) (2-10) for 𝜎 = 0.036, (1-20) (230) (100) for 𝜎 = 0.045, (-110) (130) for 𝜎 =

0.08. 

Hexadecane presented consistency with homologue molecules of C18 in association 

with polymorphic behaviour and thermal expansion properties except for the reduced 

disordering effect in the c-axis. The structure determined using only Rietveld 

refinement shows good simulation with values of Rwp (0.01) and goodness of fit (2.16). 

However, as the hydrogen positions could not be recognised in Rietveld refinement 
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this is the same issue as in the previous study by Me´tivaud [100], lattice energy 

calculations need to be taken into account for future work by systematic search. 

Chapter 6 studied the C18/C16 mixtures in the melt phase in terms of thermodynamic 

properties and crystallisation kinetics. The binary phase diagram of C18/C16 was 

revealed using combination techniques of differential scanning calorimetry and 

powder X-ray diffraction. In between the phase diagram, five monophasic solid phases 

existed, i.e. the R1, T16, Mdcp, Op and T18. In total five three-phase-equilibrium invariants 

are revealed including eutectic and peritectic at high temperature regions and 

eutectoid and peritectoid transitions at low temperature regions. 

Kinetic studies using DSC, for the first time, observed the crossover behaviour of the 

R1 which existed in a transient to metastable to stable phase, the stability of the R1 

phase was affected by both the composition and alkane chain length. Alternatively, by 

crash cooling crystallisation, a binary mixture of R1 solid solution had difficulty to form 

in the high dense packing triclinic structure, which was rather transformed to the 

similarly packed intermediate phases of Mp and Op. 

Chapter 7 characterised the structure of the C18/C16 mixtures that crystallised from 

kerosene which was found to have a variety of structural behaviour of mixed samples 

as a function of compositions. At the limited temperature of - 40°C, compositions 

(C16,0.1C18, 0.7C18 0.9C18 and C18) close to pure components of C18 and C16 on 

both sides formed solid solutions in triclinic structure with respect to the chain length 

of the dominant homologue. 0.3C18, 0.4C18 and 0.5C18 were multiple phases with 

the inherent triclinic structure and two high symmetry structures which were indicated 

as Mdcp and Op with respect to the melt phase solid solution mixtures. 

The structure of C18 or C16 crystallising from kerosene solution was refined with the 

melt structure and had consistency with the melt phase. It also presented with an is 

polymorphism nature in solution crystallisation of C18 or C16 by in-situ cooling from 

liquid to - 40°C. However, the thermal expansion of the molecular volume of the triclinic 

cell in solution phases of these two components had shown some disordering as the 

non-ideal linear trend and larger deviation. 

The rotator induced crystallisation observed in melt phase alkanes was also found in 

solution crystallisation. However, it only existed for the mixtures with the longer chain 

compositions smaller than the equimolar (x=0.1, 0.3, 0.4, 0.5C18). The metastability 
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of this induced rotator phase was dependent on the mixture compositions which were 

reduced as the composition of the long chain homologue increased. 

Chapters 8 and 9 introduced a poly-thermal method to detect the crystallisation and 

dissolution temperatures for the C18/C16 mixtures in three model solvents of n-

dodecane, kerosene and toluene. In Chapter 8, solubility is determined and assessed 

with saturation temperature and Van’t Hoff analysis. It was found that solubility is in 

good agreement with the activity coefficient with higher solubility in n-dodecane and 

the closest to an ideal condition was followed by kerosene and toluene. The saturation 

temperature reveals the structural transition behaviour as a function of mixture 

solubility with consistent behaviour in all three solvents. The activity coefficient is found 

to reflect the non-identical phase formation in solution crystallisation as the high 

deviation value observed from the C18 molar composition of x=0.1, 0.5-0.7 in all three 

solvents. Dissolution enthalpy has some inconsistent behaviour in three solvents 

especially for the mixtures crystallised in disordered structures from x=0.2-0.4. 

Conclusively, the nature of solvents within this study has no major effect on the 

structural behaviour of C18/C16 mixtures. However, dissolution enthalpy could give 

more information than the saturation temperatures in the case where mixture samples 

are formed continuously which is non-distinguishable from transmission detection, i.e. 

effects from disordering structures or multiple phase formations. 

A comprehensive nucleation kinetics study using the KBHR approach based on the 

poly-thermal data was presented in Chapter 9. The meta-stability of solution 

crystallisation is dominantly controlled by nucleation kinetics, i.e. PN ruled nucleation 

resulting in larger MSZW, thermodynamically controlled with larger values of interfacial 

tension. Whereas smaller MSZW is normally mediated by the IN mechanism. 

Crystallisation of most binary mixture samples in three solvents was found to be 

mediated by the PN nucleation mechanism, which was more limited by the 

thermodynamic factor and associated interfacial tension. Cases of instantaneous 

nucleation were also seen in particular compositions with higher C18 concentration 

i.e. 0.8C18 and 0.9C18 or a disordered phase of 0.3C18. Relatively small interfacial 

tension values were observed for C16 and C18 alkanes and their mixtures crystallised 

from three representative solvents n-dodecane, kerosene and toluene. These 
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parameters (0.27-1.77 
𝑚𝐽

𝑚2) using the novel approach of KBHR to study solution phase 

formation kinetics were rather successful as compared with previous data. 

Nucleation behaviour was found to be affected by chain length (surface and volume), 

structural stability and solvent interaction. This can be delivered from the following 

observations. Interfacial tension of solutes with triclinic molecular structure was found 

to decrease with increasing the chain length. Increasing disorder in the solid solution 

would result in a low saturation temperature and lower interfacial tension which can 

also alter the nucleation review of aims and objectives. Higher solubility is found to 

accelerate the instantaneous nucleation by increasing effective solute concentration, 

whilst inhibiting the progressive nucleation by causing larger interfacial tension. 

10.2 Review of Aims and Objectives 

 Objective 1: the crystal structure determined by high resolution synchrotron 

powder data and computational modelling on single alkane of C18 which need 

to extend to C16 and binary mixture samples. 

 Objective 2: has been fully accomplished with a three solvent system. 

 Objective 3: nucleation and growth kinetics were achieved using a poly-thermal 

crystallisation method and application of the KBHR approach. Further 

calculations of nucleation rate can be carried out by known mass balances from 

the composition of crystallised solid and the solute composition in solution. 

 Objective 4: morphology and growth work was carried out with single alkane 

C18 in one representative solvent due to the time scale of these experiments 

and lack of metastability. This work can be extended to the mixture of solid 

solutions and other solvents. 

 Objective 5 has not been able to achieve in the limited time scale of the PhD. 

10.3  Suggestions for Future Work 

This work has concentrated on the understanding of crystal structures, solubility and 

associated nucleation kinetics with C18/C16 model components as a function of 

crystallisation environment. To accomplish all the objectives, it is important to apply 

the computational modelling of a systematic search of C16 and C18/C16 mixtures to 

confirm the structural behaviour which is certainly not sufficient as defined just by unit 
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cell parameters. The influence on crystal morphology will be extended from n-

dodecane to kerosene and toluene using in-situ growth cell and phase contrast 

microscopy. Meanwhile, the mixture structures in the different aromatic solvent of 

toluene essentially need to be determined. 

Crystallisation via a rotation phase from the high temperature region was found in the 

melt and solution phase in this thesis. Future work will be needed for a better 

understanding of nucleation with insight into structure behaviour in a liquid state. 

Expected results will reveal the early stages of molecular aggregation prior to the 

formation of nucleation clusters and how they assemble during nucleation and 

subsequent growth aiming to build up a structural picture of a nucleation event. Small 

angle X-ray scattering (SAXS) has been performed on cooled binary mixtures on the 

X27C beamline at the NSLS using a Q-range of 0.065 – 0.2 Å−𝟏. Scattering from 

samples (of C18) was weak and hence necessitated a 180 s exposure time. Two size 

regimes were observed: small structures (in the high Q region), and more extended 

structures in the low Q region (Figure 10.1). The increase in slope of scattering 

intensity as a function of the Q range from 0.06-0.1 A-1 is consistent with a change in 

molecular ordering prior to crystallisation (A) followed by a much more abrupt change 

at the onset of crystallisation (B). Structures in the high-Q region provide some 

evidence of the presence of pre-nucleation clustering (initiated from dimers). However, 

the data in this region was limited by resolution and did not yield structure of such 

intermediates. SANS experiment will complement the previous x-ray studies and will 

not only utilise the lower Q-range accessible at ILL (to 10-4 Å-1), but will use contrast 

variation (e.g. between h-C16/ C18 alkane (-0.43 x 10-6/Å2) and d-dodecane (~6.7 x 

10-6/Å2)) in order to allow accurate determination of form factors in both low and high 

Q-regions and allow characterisation of pre-nucleation structures. 
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Figure 10.1:  The integrated SAXS raw data for pure C18 during a poly-thermal 
cooling crystallisation process at a 0.1°C/min cooling rate, the figure is 

plotted in scattering counts as a function of q range (Å−𝟏) and cooling 
time (mins). 

 

Techniques developed from this model system could be extended to the real HVO 

fuels and the blended mixture of HVO in diesel fuel to fulfil the practical application. 

 

 

 

 

 

 

 

 

 

 

 



- 217 - 

List of References 

1. Kamm, B., P.R. Gruber, and M. Kamm, Biorefineries–industrial processes and 
products. Vol. 1-2. 2006: Wiley Online Library. 

2. Stevens, C. and R. Verhé, Renewable bioresources: scope and modification 
for non-food applications. 2004: John Wiley & Sons. 

3. Knothe, G., Dependence of biodiesel fuel properties on the structure of fatty 
acid alkyl esters. Fuel processing technology, 2005. 86(10): p. 1059-1070. 

4.  ; Available from: https://en.wikipedia.org/wiki/Fatty_acid_methyl_ester. 
5. Schenk, P.M., et al., Second generation biofuels: high-efficiency microalgae for 

biodiesel production. Bioenergy research, 2008. 1(1): p. 20-43. 

6. Huber, G.W. and A. Corma, Synergies between Bio‐and Oil Refineries for the 
Production of Fuels from Biomass. Angewandte Chemie International Edition, 
2007. 46(38): p. 7184-7201. 

7. Derr, D.L., et al., Method of manufacturing a catalyst and method for preparing 
fuel from renewable sources using the catalyst, 2012, Google Patents. 

8. Gürü, M., et al., Improvement of Diesel fuel properties by using additives. 
Energy Conversion and Management, 2002. 43(8): p. 1021-1025. 

9. Dunn, R.O., M.W. Shockley, and M.O. Bagby, Improving the low-temperature 
properties of alternative diesel fuels: Vegetable oil-derived methyl esters. 
Journal of the American Oil Chemists’ Society, 1996. 73(12): p. 1719-1728. 

10. Roberts, K.J., Diesel cold flow additive design 2009b.ppt, 2009. 
11. Mc Kie, D. and C. Mc Kie, Essentials of crystallography. 1986. 
12. Klug, H.P. and L.E. Alexander, X-ray diffraction procedures: for polycrystalline 

and amorphous materials. X-Ray Diffraction Procedures: For Polycrystalline 
and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, 
pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974., 1974. 1. 

13. Mullin, J.W., Crystallization. 4 ed. 2001: Butterworth-Heinemann. 
14. Tilley, R.J., Crystals and crystal structures. Vol. 2. 2006: John Wiley & Sons. 

24. 
15. Cullity, B.D., Elements of X-ray Diffraction. American Journal of Physics, 1957. 

25: p. 394-395. 
16. Sangwal, K., Additives and crystallization processes: from fundamentals to 

applications. 2007: John Wiley & Sons. 
17. Shinoda, K. and P. Becher, Principles of solution and solubility. Vol. 5. 1978: 

M. Dekker. 
18. Ostwald, W., Studies on formation and transformation of solid materials. Z. 

Phys. Chem, 1897. 22: p. 289-330. 
19. Zhang, Y. and Z. Li, Effects of Cooling Rate, Saturation Temperature, and 

Solvent on the Metastable Zone Width of Triethanolamine Hydrochloride. 
Industrial & Engineering Chemistry Research, 2011. 50(10): p. 6375-6381. 

20. KLEIN, J.-P., R. BOISTELLE, and J. DUGUA, Cristallisation industrielle. 
aspects pratiques. Techniques de l'ingénieur. Génie des procédés, 1994. 
3(J2788): p. J2788. 1-J2788. 31. 

21. Zhu, Y., et al., Influence of calcium ions on the crystallization of sodium 
bicarbonate. Journal of crystal growth, 2005. 275(1): p. e1333-e1339. 

22. Shi, R., Y. Huang, and L. Jiao, Crystallization kinetics of 2-chloro-4, 6-
dinitroresorcinol by batch cooling crystallization method. Chemical Engineering 
Communications, 2007. 194(9): p. 1176-1186. 



- 218 - 

23. Bonnin-Paris, J., et al., Determination of the metastable zone width of glycine 
aqueous solutions for batch crystallizations. Chemical Engineering 
Communications, 2011. 198(8): p. 1004-1017. 

24. Nývlt, J., Kinetics of nucleation in solutions. Journal of Crystal Growth, 1968. 3: 
p. 377-383. 

25. Nielsen, A.E., Kinetics of precipitation. 1964: Pergamon Press;[distributed in 
the Western Hemisphere by Macmillan, New York]. 

26. Kubota, N., A new interpretation of metastable zone widths measured for 
unseeded solutions. Journal of Crystal Growth, 2008. 310(3): p. 629-634. 

27. Sangwal, K., A novel self‐consistent Nývlt‐like equation for metastable zone 
width determined by the polythermal method. Crystal Research and 
Technology, 2009. 44(3): p. 231-247. 

28. Kashchiev, D. and A. Firoozabadi, Induction time in crystallization of gas 
hydrates. Journal of crystal growth, 2003. 250(3): p. 499-515. 

29. Kashchiev, D., et al., Effect of cooling rate on the critical undercooling for 
crystallization. Journal of Crystal Growth, 2010. 312(5): p. 698-704. 

30. Kashchiev, D., et al., Dependence of the critical undercooling for crystallization 
on the cooling rate. The Journal of Physical Chemistry B, 2010. 114(16): p. 
5441-5446. 

31. Corzo, D.M.C., et al., Nucleation mechanism and kinetics from the analysis of 
polythermal crystallisation data: methyl stearate from kerosene solutions. 
CrystEngComm, 2014. 16(6): p. 974-991. 

32. Kodre, K., et al., Research and Reviews: Journal of Pharmaceutical Analysis. 
33. Simmons, A.n.d. x-ray_tube. Available from: 

http://www.genesis.net.au/~ajs/projects/medical_physics/graphics/x-
ray_tube.jpg. 

34. Suryanarayana, C. and M.G. Norton, X-ray diffraction: a practical approach. 
1998: Springer. 

35. Stock, S. and B. Cullity, Elements of X-ray diffraction. Prentice Hall, Upper 
Saddle River, NJ, 2001. 

36. Mnyukh, Y.V., The structure of normal paraffins and of their solid solutions. 
Journal of Structural Chemistry, 1960. 1(3): p. 346-365. 

37. Turner, W.R., Normal alkanes. Industrial & Engineering Chemistry Product 
Research and Development, 1971. 10(3): p. 238-260. 

38. Dirand, M., et al., Normal Alkanes, Multialkane Synthetic Model Mixtures, and 
Real Petroleum Waxes:  Crystallographic Structures, Thermodynamic 
Properties, and Crystallization. Journal of Chemical & Engineering Data, 2002. 
47(2): p. 115-143. 

39. Ubbelohde, A.R., Structure and thermodynamic properties of long-chain 
compounds. Transactions of the Faraday Society, 1938. 34(0): p. 282-299. 

40. Müller, A. and K. Lonsdale, The low-temperature form of C18H38. Acta 
Crystallographica, 1948. 1(3): p. 129-131. 

41. Broadhurst, M.G., An analysis of the solid phase behavior of the normal 
paraffins. J. Res. Natl. Bur. Stand. A, 1962. 66: p. 241-249. 

42. Craig, S.R., et al., Investigation into the structures of some normal alkanes 
within the homologous series C13H28 to C60H122 using high-resolution 
synchrotron X-ray powder diffraction. Journal of Materials Chemistry, 1994. 
4(6): p. 977-981. 

http://www.genesis.net.au/~ajs/projects/medical_physics/graphics/x-ray_tube.jpg
http://www.genesis.net.au/~ajs/projects/medical_physics/graphics/x-ray_tube.jpg


- 219 - 

43. Roblès, L., et al., Mise au point sur le comportement énergétique et 
cristallographique des n-alcanes. II. Série de C$_{22}$H$_{46}$ à 
C$_{27}$H$_{56}$. J. Chim. Phys., 1998. 95(1): p. 92-111. 

44. Maroncelli, M., et al., Nonplanar conformers and the phase behavior of solid n-
alkanes. Journal of the American Chemical Society, 1982. 104(23): p. 6237-
6247. 

45. Piesczek, W., G. Strobl, and K. Malzahn, Packing of paraffin chains in the four 
stable modifications of n-tritriacontane. Acta Crystallographica Section B: 
Structural Crystallography and Crystal Chemistry, 1974. 30(5): p. 1278-1288. 

46. Snyder, R.G., et al., Phase transitions and nonplanar conformers in crystalline 
n-alkanes. Science, 1981. 214(4517): p. 188-190. 

47. Craig, S.R., Synchrotron Radiation Studies of the Structure of n-Alkanes and 
Homologous Mixtures, in Department of Pure and Applied Chemistry 1995, 
Univerity of Strathclyde. 

48. Sirota, E., et al., Rotator phases of the normal alkanes: An x‐ray scattering 
study. The Journal of chemical physics, 1993. 98(7): p. 5809-5824. 

49. Ungar, G., Structure of rotator phases in n-alkanes. The Journal of Physical 
Chemistry, 1983. 87(4): p. 689-695. 

50. Denicolò, I., J. Doucet, and A.F. Craievich, X‐ray study of the rotator phase of 

paraffins (III): Even‐numbered paraffins C18H38, C20H42, C22H46, C24H50, 
and C26H54. The Journal of Chemical Physics, 1983. 78(3): p. 1465-1469. 

51. Ungar, G. and N. Masic, Order in the rotator phase of n-alkanes. The Journal 
of Physical Chemistry, 1985. 89(6): p. 1036-1042. 

52. Sirota, E., et al., Rotator phases in mixtures of n-alkanes. The Journal of 
Physical Chemistry, 1995. 99(2): p. 798-804. 

53. Sirota, E. and A. Herhold, Transient phase-induced nucleation. Science, 1999. 
283(5401): p. 529-532. 

54. Sirota, E.B. and A.B. Herhold, Transient rotator phase induced nucleation in n-
alkane melts. Polymer, 2000. 41(25): p. 8781-8789. 

55. Srivastava, S., et al., Study of the temperature and enthalpy of thermally 
induced phase-transitions in n-alkanes, their mixtures and Fischer-Tropsch 
waxes. Petroleum Science And Technology, 2000. 18(5-6): p. 493-518. 

56. Kravchenko, V., The eutectics and solid solutions of paraffins. Acta 
Physicochim. URSS, 1946. 21: p. 335-344. 

57. Dorset, D.L. and R.G. Snyder, Crystal structure of modulated n-paraffin binary 
solids. The Journal of Physical Chemistry, 1996. 100(23): p. 9848-9853. 

58. Dorset, D.L., Crystal structure of an n-paraffin binary eutectic solid. An electron 
diffraction determination. The Journal of Physical Chemistry B, 1997. 101(25): 
p. 4870-4874. 

59. Mazee, W., Thermal analysis of normal alkanes. Analytica Chimica Acta, 1957. 
17: p. 97-106. 

60. Nyburg, S. and H. Lüth, n-Octadecane: A correction and refinement of the 
structure given by Hayashida. Acta Crystallographica Section B: Structural 
Crystallography and Crystal Chemistry, 1972. 28(10): p. 2992-2995. 

61. Gerson, A.R. and S. Nyburg, Structures of two binary n-alkane solid solutions. 
Acta Crystallographica Section B: Structural Science, 1994. 50(2): p. 252-256. 

62. Metivaud, V., et al., Complete determination of the solid (RI)-liquid equilibria of 
four consecutive n-alkane ternary systems in the range C14H30-C21H44 using 
only binary data. Canadian journal of chemistry, 1999. 77(3): p. 332-339. 



- 220 - 

63. Metivaud, V., et al., Solid-solid and solid-liquid equilibria in the heneicosane-
docosane binary system. Chemistry of materials, 1999. 11(1): p. 117-122. 

64. Achour-Boudjema, Z., M. Bouroukba, and M. Dirand, Binary phase diagram of 
molecular alloys of the consecutive even-numbered n-alkanes n-tetracosane 
(n-C 24 H 50) and n-hexacosane (n-C 26 H 54). Thermochimica acta, 1996. 
276: p. 243-256. 

65. Rajabalee, F., et al., New insights on the crystalline forms in binary systems of 
n-alkanes: Characterization of the solid ordered phases in the phase diagram 
tricosane+ pentacosane. Journal of Materials Research, 1999. 14(06): p. 2644-
2654. 

66. Nozaki, K., et al., Solid–solid phase transitions in n‐alkanes C23H48 and 
C25H52: X‐ray power diffraction study on new layer stacking in phase V. The 
Journal of Chemical Physics, 1995. 103(13): p. 5762-5766. 

67. Rajabalee, F., et al., Ordered Phases in n-Heptacosane (C27H56). Structure 
Determination of the Mdci Phase. Chemistry of Materials, 2002. 14(10): p. 
4081-4087. 

68. Rajabalee, F., et al., Perfect families of mixed crystals: the ‘‘ordered’’crystalline 
forms of n-alkanes. Physical Chemistry Chemical Physics, 2000. 2(6): p. 1345-
1350. 

69. Teare, P., The crystal structure of orthorhombic hexatriacontane, C36H74. Acta 
Crystallographica, 1959. 12(4): p. 294-300. 

70. Domańska, U. and J. Rolińska, Correlation of the solubility of even-numbered 
paraffins C20H42, C24H50, C26H54, C28H58 in pure hydrocarbons. Fluid 
Phase Equilibria, 1989. 45(1): p. 25-38. 

71. Ruffier-Meray, V., et al., Experimental determination and representation of 
binary and ternary diagrams of n-hexacosane, n-octacosane and n-heptane. 
Revue de l'Institut français du pétrole, 1998. 53(1): p. 27-33. 

72. Gerson, A.R., et al., The role of growth environment on the crystallization of 
normal alkanes in the homologous series from C18H38 to C29H60. Journal of 
crystal growth, 1993. 128(1-4): p. 1176-1181. 

73. Craig, S., et al., Investigation into the structures of binary-, tertiary-and 
quinternary-mixtures of n-alkanes and real diesel waxes using high-resolution 
synchrotron X-ray powder diffraction. Journal of Materials Chemistry, 1998. 
8(4): p. 859-869. 

74. Flöter, E., et al., The ternary system (n-heptane+ docosane+ tetracosane): the 
solubility of mixtures of docosane and tetracosane in heptane and data on solid-
liquid and solid-solid equilibria in the binary subsystem (docosane+ 
tetracosane). Journal of Chemical & Engineering Data, 1997. 42(3): p. 562-565. 

75. Turnbull, D. and R.L. Cormia, Kinetics of Crystal Nucleation in Some Normal 
Alkane Liquids. The Journal of Chemical Physics, 1961. 34(3): p. 820-831. 

76. Oliver, M.J. and P.D. Calvert, Homogeneous nucleation of n-alkanes measured 
by differential scanning calorimetry. Journal of Crystal Growth, 1975. 30(3): p. 
343-351. 

77. Taggart, A., et al., An examination of the nucleation kinetics of n-alkanes in the 
homologous series C13H28 to C32H66, and their relationship to structural type, 
associated with crystallization from stagnant melts. Langmuir, 1996. 12(23): p. 
5722-5728. 

78. Turnbull, D. and F. Spaepen, Crystal nucleation and the crystalmelt interfacial 
tension in linear hydrocarbons. Journal of Polymer Science: Polymer 
Symposia, 1978. 63(1): p. 237-243. 



- 221 - 

79. Roberts, K.J., J.N. Sherwood, and A. Stewart, The nucleation of n-eicosane 
crystals from solution in n-dodecane in the presence of homologous impurities. 
Journal of Crystal Growth, 1990. 102(3): p. 419-426. 

80. Gerson, A.R., K.J. Roberts, and J.N. Sherwood, An instrument for the 
examination of nucleation from solution and its application to the study of 
precipitation from diesel fuels and solutions ofn-alkanes. Powder Technology, 
1991. 65(1): p. 243-249. 

81. Chen, B., L. Brecevic, and J. Garside. Nucleation of tetracosane in hydrocarbon 
solvents. in 12th symposium on industrial crystallisation. 1993. 

82. Wu, X.Z., et al., Surface Freezing in Binary Mixtures of Alkanes: New Phases 
and Phase Transitions. Physical Review Letters, 1995. 75(7): p. 1332-1335. 

83. Wu, X.Z., et al., Surface crystallization of liquid normal-alkanes. Physical 
Review Letters, 1993. 70(7): p. 958-961. 

84. Bennema, P., et al., Morphology of orthorhombic long chain normal alkanes: 
theory and observations. Journal of Crystal Growth, 1992. 121(4): p. 679-696. 

85. Liu, X.-Y. and P. Bennema, On the morphology of crystals of triclinic even 
normal alkanes: theory and observation. Journal of Crystal Growth, 1994. 
135(1): p. 209-223. 

86. Thompson, S., et al., Beamline I11 at Diamond: A new instrument for high 
resolution powder diffraction. Review of scientific instruments, 2009. 80(7): p. 
075107. 

87. Coelho, A., TOPAS Academic: General Profile and Structure Analysis Software 
for Powder Diffraction Data. Bruker AXS, Karlsruhe, Germany, 2007. 

88. Coelho, A., Indexing of powder diffraction patterns by iterative use of singular 
value decomposition. Journal of Applied Crystallography, 2003. 36(1): p. 86-
95. 

89. Pawley, G., Unit-cell refinement from powder diffraction scans. Journal of 
Applied Crystallography, 1981. 14(6): p. 357-361. 

90. Macrae, C.F., et al., Mercury: visualization and analysis of crystal structures. 
Journal of Applied Crystallography, 2006. 39(3): p. 453-457. 

91. Hammond, R.B., et al., X-form metal-free phthalocyanine: Crystal structure 
determination using a combination of high-resolution X-ray powder diffraction 
and molecular modelling techniques. Journal of the Chemical Society, Perkin 
Transactions 2, 1996(8): p. 1527-1528. 

92. Hammond, R.B., et al., Computationally assisted structure determination for 
molecular materials from X-ray powder diffraction data. The Journal of Physical 
Chemistry B, 1997. 101(33): p. 6532-6536. 

93. Kutzke, H., et al., Metastable β-phase of benzophenone: independent structure 
determinations via X-ray powder diffraction and single crystal studies. Acta 
Crystallographica Section B: Structural Science, 2000. 56(3): p. 486-496. 

94. Harris, R.K., et al., Structural studies of the polymorphs of carbamazepine, its 
dihydrate, and two solvates. Organic process research & development, 2005. 
9(6): p. 902-910. 

95. Bentler, P.M. and D.G. Bonett, Significance tests and goodness of fit in the 
analysis of covariance structures. Psychological bulletin, 1980. 88(3): p. 588. 

96. Mayo, S.L., B.D. Olafson, and W.A. Goddard, DREIDING: a generic force field 
for molecular simulations. Journal of Physical chemistry, 1990. 94(26): p. 8897-
8909. 



- 222 - 

97. Okada, Y. and Y. Tokumaru, Precise determination of lattice parameter and 
thermal expansion coefficient of silicon between 300 and 1500 K. Journal of 
applied physics, 1984. 56(2): p. 314-320. 

98. Donnay, J.D.H. and D. Harker, A new law of crystal morphology extending the 
law of Bravais. Am. Mineral, 1937. 22(5): p. 446-467. 

99. Hayashida, T., Crystal Structure of Triclinic Form of n-Octadecane. Journal of 
the Physical Society of Japan, 1962. 17(2): p. 306-315. 

100. Métivaud, V., et al., Hexadecane (C16H34)+ 1-hexadecanol (C16H33OH) 
binary system: crystal structures of the components and experimental phase 
diagram. Application to thermal protection of liquids. Chemistry of materials, 
2005. 17(12): p. 3302-3310. 

101. Rietveld, H., A profile refinement method for nuclear and magnetic structures. 
Journal of applied Crystallography, 1969. 2(2): p. 65-71. 

102. Sun, H., COMPASS: an ab initio force-field optimized for condensed-phase 
applications overview with details on alkane and benzene compounds. The 
Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364. 

103. Clydesdale, G., R. Docherty, and K. Roberts, HABIT-a program for predicting 
the morphology of molecular crystals. Computer Physics Communications, 
1991. 64(2): p. 311-328. 

104. Cornell, W.D., et al., A second generation force field for the simulation of 
proteins, nucleic acids, and organic molecules. Journal of the American 
Chemical Society, 1995. 117(19): p. 5179-5197. 

105. Santoro, A.t. and A. Mighell, Determination of reduced cells. Acta 
Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and 
General Crystallography, 1970. 26(1): p. 124-127. 

106. Niggli, P., Krystallographische und strukturtheoretische Grundbegriffe. 
Handbuch der Experimentalphysik. Vol. 7. 1928: Akademische 
verlagsgesellschaft, Leipzig. 

107. Hanwell, M.D., et al., Avogadro: an advanced semantic chemical editor, 
visualization, and analysis platform. Journal of Cheminformatics, 2012. 4(1): p. 
17. 

108. Bennema, P., et al., Morphology of orthorhombic long chain normal alkanes: 
theory and observations. Journal of Crystal Growth, 1992. 121(4): p. 679-696. 

109. Camacho, D.M., et al., The crystal morphology and growth rates of triclinic N-
docosane crystallising from N-dodecane solutions. Journal of Crystal Growth, 
2015. 416: p. 47-56. 

110. Toby, B.H., EXPGUI, a graphical user interface for GSAS. Journal of applied 
crystallography, 2001. 34(2): p. 210-213. 

111. Kousksou, T., et al., Paraffin wax mixtures as phase change materials. Solar 
Energy Materials and Solar Cells, 2010. 94(12): p. 2158-2165. 

112. Courchinoux, R., et al., Use of the “shape factors” as an empirical method to 
determine the actual characteristic temperatures of binary phase diagrams by 
differential scanning calorimetry. Thermochimica Acta, 1988. 128: p. 45-53. 

113. Mondieig, D., et al., n-Alkane Binary Molecular Alloys. Chemistry of Materials, 
2004. 16(5): p. 786-798. 

114. Wang, L.P., et al., Size-Dependent Phase Behavior of the Hexadecane–
Octadecane System Confined in Nanoporous Glass. The Journal of Physical 
Chemistry C, 2014. 118(31): p. 18177-18186. 



- 223 - 

115. Lüth, H., et al., Crystallographic and calorimetric phase studies of the n-
eicosane, C20H42: n-docosane, C22H46 system. Molecular Crystals and 
Liquid Crystals, 1974. 27(3-4): p. 337-357. 

116. Matsuoka, M., et al., Purification of organic solid solutions by melt 
crystallization: comparison between layer and suspension crystallization. 
Journal of crystal growth, 1996. 166(1): p. 1035-1039. 

117. Gerson, A.R., K. Roberts, and J.N. Sherwood, X-ray diffraction studies of single 
and mixed n-alkanes in the homologous series C18H38 to C28H58. 1990: 
Daresbury Laboratory. 

118. Provost, E., et al., Solubility of Some n-Alkanes (C23, C25, C26, C28) in 
Heptane, Methylcyclohexane, and Toluene. Journal of Chemical & Engineering 
Data, 1998. 43(5): p. 745-749. 

119. Gerson, A.R., et al., Novel kinetic and structural studies of wax crystallisation. 
Journal of Crystal Growth, 1990. 99(1): p. 145-149. 

120. Roberts, K., J. Sherwood, and A. Stewart, The nucleation of n-eicosane crystals 
from solution in n-dodecane in the presence of homologous impurities. Journal 
of Crystal Growth, 1990. 102(3): p. 419-426. 

 



- 224 - 

List of Symbols 
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b Dimensionless thermodynamic parameter 
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C18 Octadecane 

𝐸𝑎𝑡𝑡 Attachment energy 
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𝑘𝐽 Nucleation rate constant (𝑚−3𝑠−1) 
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𝑇𝑒 Solution saturation (or equilibrium) temperature (𝐾) 

Δ𝑇 Undercooling (𝐾) 
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𝑢 Relative undercooling 
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𝑥 Mole fraction of C18 in C18/C16 mixtures  
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𝛾 Interfacial tension (𝐽𝑚−2) 
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Δ𝑆𝑚𝑖𝑥 Molar entropy of mixing (𝐽𝑚𝑜𝑙−1𝐾−1) 
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List of Abbreviation 

BFDH= Bravais-Friedel-Donnay-Harker model 

𝐶𝑁𝑇=Classical Nucleation Theory 

DLS= Diamond light source 

𝐷𝐼𝐶=Differential Interference Contrast 

DSC=Differential Scanning Calorimetry 

FAME=Fatty Acid Methyl Ester 

HVO=Hydrogenated vegetable oil 

H𝐸𝑁=Heterogeneous nucleation 

𝐻𝑂𝑁=Homogeneous nucleation 

HT=High temperature  

𝐼𝑁=Instantaneous nucleation 

KBHR=Kashchiev-Borissova-Hammond-Roberts approach 

𝐾𝐽𝑀𝐴=Kolmogorov-Johnson-Mehl-Avrami approach 

LT= Low temperature  

MSZW=Metastable Zone Width  

MPD=Multipurpose Diffractometer  

MAC= Multi-Analysing Crystal 

RT=Room temperature  

𝑃𝑁=Progressive nucleation 

PXRD=Powder X-ray diffraction  

PSD= Position sensitive detectors  

SPXD=Synchrotron powder X-ray diffraction  

SAXS=Small angle x-ray scattering 

SANS=Small angle neutron scattering 

RT= Room Temperature  
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Appendix A 

The full set of planes obtained from BFDH prediction using Material studio which are 

grouped according to the zone axis analysis method.  

Group 1    

hkl Mult dhkl distance 

{  0  1  0} 2 4.60 21.73026 

{  0  1 -1} 2 4.54 22.0289 

{  0  1  1} 2 4.49 22.28928 

{  0  1 -2} 2 4.32 23.15203 

{  0  1  2} 2 4.23 23.64521 

{  0  1 -3} 2 4.00 24.98874 

{  0  1  3} 2 3.90 25.67209 

{  0  2 -1} 2 2.30 43.5444 

{  0  2  1} 2 2.28 43.80861 

{  0  2 -3} 2 2.22 44.986 

{  0  2  3} 2 2.19 45.74908 

{  0  3 -1} 2 1.53 65.2025 

{  0  3  1} 2 1.53 65.46743 

{  0  3 -2} 2 1.53 65.50244 

{  0  3  2} 2 1.51 66.02885 

Group 2    

hkl Mult dhkl distance 

{  1  0  2} 2 4.09 24.45061 

{  1  0  3} 2 4.06 24.64951 

{  1  0  1} 2 4.00 25.01485 

{  1  0  0} 2 3.80 26.29313 

{  1  0 -1} 2 3.55 28.1885 

{  1  0 -2} 2 3.27 30.58643 

{  1  0 -3} 2 3.00 33.3788 

{  2  0  3} 2 2.03 49.27791 

{  2  0  1} 2 1.96 51.14005 

{  2  0 -1} 2 1.84 54.34153 

{  2  0 -3} 2 1.70 58.66348 

{  3  0  2} 2 1.31 76.09709 

Group 3    

hkl Mult dhkl distance 

{  1  1  2} 2 3.65 27.39809 

{  1  1  3} 2 3.61 27.68016 

{  1  1  1} 2 3.60 27.7992 

{  1  1  0} 2 3.47 28.85502 

{  1  1 -1} 2 3.28 30.49762 

{  1  1 -2} 2 3.06 32.63853 

{  1  1 -3} 2 2.84 35.1869 

{  2  2  3} 2 1.82 55.02785 

{  2  2  1} 2 1.77 56.49759 

{  2  2 -1} 2 1.69 59.21652 

{  2  2 -3} 2 1.59 63.02316 

Group 4    

hkl Mult dhkl distance 

{  1 -1  2} 2 2.68 37.27489 

{  1 -1  3} 2 2.68 37.32846 

{  1 -1  1} 2 2.65 37.72397 
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{  1 -1  0} 2 2.59 38.65817 

{  1 -1 -1} 2 2.50 40.04355 

{  1 -1 -2} 2 2.39 41.83533 

{  1 -1 -3} 2 2.27 43.98385 

Group 5    

hkl Mult dhkl distance 

{  1  2  2} 2 2.33 42.98705 

{  1  2  1} 2 2.32 43.17704 

{  1  2  3} 2 2.31 43.23416 

{  1  2  0} 2 2.28 43.79844 

{  1  2 -1} 2 2.23 44.83332 

{  1  2 -3} 2 2.08 48.02604 

Group 6    

hkl Mult dhkl distance 

{  2  1  3} 2 2.11 47.4972 

{  2  1  2} 2 2.07 48.21693 

{  2  1  1} 2 2.03 49.30961 

{  2  1  0} 2 1.97 50.75114 

{  2  1 -1} 2 1.90 52.51281 

{  2  1 -2} 2 1.83 54.56361 

{  2  1 -3} 2 1.76 56.87229 

Group 7    

hkl Mult dhkl distance 

{  1 -2  3} 2 1.79 55.88951 

{  1 -2  2} 2 1.79 55.90538 

{  1 -2  1} 2 1.78 56.2571 

{  1 -2  0} 2 1.76 56.93845 

{  1 -2 -1} 2 1.73 57.9378 

{  1 -2 -2} 2 1.69 59.23907 

{  1 -2 -3} 2 1.64 60.82287 

Group 8    

hkl Mult dhkl distance 

{  2 -1  3} 2 1.68 59.54031 

{  2 -1  2} 2 1.66 60.21193 

{  2 -1  1} 2 1.63 61.18481 

{  2 -1  0} 2 1.60 62.44487 

{  2 -1 -1} 2 1.56 63.97514 

{  2 -1 -2} 2 1.52 65.75675 

{  2 -1 -3} 2 1.48 67.7699 

Group 9    

hkl Mult dhkl distance 

{  1  3  2} 2 1.603436 62.36607 

{  1  3  1} 2 1.601256 62.45099 

{  1  3  3} 2 1.597884 62.58276 

{  1  3  0} 2 1.591436 62.83632 

{  1  3 -1} 2 1.574392 63.51658 

{  1  3 -2} 2 1.55081 64.48244 

{  1  3 -3} 2 1.521577 65.72131 

Group 10    

hkl Mult dhkl distance 

{  2  3  3} 2 1.451785 68.88072 

{  2  3  2} 2 1.44309 69.29576 

{  2  3  1} 2 1.42902 69.97804 
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{  2  3  0} 2 1.410042 70.91987 

{  2  3 -1} 2 1.38675 72.11106 

{  2  3 -2} 2 1.359813 73.5395 

{  2  3 -3} 2 1.329935 75.19167 
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Appendix B 

Table of phase transition temperatures and corresponding heat enthalpy of C18 by 

five cooling/heating rates from multiple experimental repeats.  

  Crystallisation Melting 

Cooling 
rate 

(C_min) 

Onset 
(C) 

Peak 
(C) 

End (C) ∆H (j_g) 
Onset 

(C) 
Peak 
(C) 

End (C) ∆H (j_g) 

0.25 26.66 26.92 26.29 198.23 27.57 28.45 28.68 -198.24 

  26.59 26.86 26.20 179.91 27.51 28.36 28.71 -198.67 

  26.61 27.10 26.29 211.98 27.58 28.19 28.86 -213.41 

  26.65 27.01 26.35 214.69 27.51 28.18 28.58 -212.98 

  26.67 26.99 26.37 213.62 27.52 28.28 28.52 -215.51 

  26.64 27.07 26.37 211.73 27.57 28.17 28.53 -214.06 

  26.66 26.97 26.34 208.85 27.54 28.27 28.65 -208.81 

  0.01 0.05 0.04 9.21 0.03 0.11 0.13 8.07 

0.5 26.50 26.83 26.12 192.18 27.58 28.36 28.74 -190.65 

  26.64 26.93 26.12 191.71 27.54 28.40 28.76 -191.40 

  26.71 26.94 26.25 201.64 27.60 28.32 28.71 -205.05 

  26.64 27.01 26.29 193.63 27.59 28.34 28.67 -197.53 

  26.65 27.05 26.19 216.88 27.54 28.34 28.80 -218.47 

  26.67 26.42 25.70 140.54 27.54 28.30 28.80 -214.62 

Average  26.64 26.95 26.19 199.21 27.57 28.34 28.75 -202.95 

Std 0.07 0.08 0.08 10.66 0.03 0.03 0.05 11.79 

1 26.60 26.63 25.67 169.39 27.52 28.74 29.43 -171.08 

  26.64 26.03 25.18 112.70 27.56 28.68 29.40 -170.69 

  26.63 25.93 24.65 86.93 27.66 28.88 29.48 -165.26 

      27.62 28.86 29.52 -167.29 

  26.37 26.52 25.47 166.71         

  26.58 26.12 25.28 132.66 27.50 28.56 29.21 -192.79 

      27.50 28.56 29.21 -193.41 

  26.41 26.72 25.68 193.08         

Average  26.52 26.40 25.46 176.39 27.56 28.71 29.38 -176.75 

Std 0.12 0.31 0.23 31.95 0.07 0.14 0.13 12.85 

3.2 26.42 26.17 24.36 214.99 27.45 29.30 30.76 -216.23 

  26.48 25.38 21.99 117.32 27.48 29.20 30.74 -216.23 

  26.40 26.07 24.37 237.86 27.49 29.35 30.75 -238.51 

  26.39 26.12 24.39 234.09 27.48 29.40 30.76 -237.34 

  26.48 25.43 25.22 108.66 27.52 29.20 30.66 -240.16 

  26.47 25.42 25.09 121.08 27.52 29.21 30.65 -240.20 

Average  26.44 25.77 24.24 228.98 27.49 29.28 30.72 -231.45 

Std 0.04 0.39 1.17 12.26 0.03 0.09 0.05 11.83 

                  

5 26.36 25.19 24.95 94.15 27.42 29.37 31.29 -213.50 

      27.38 29.63 31.41 -213.62 

  26.39 26.00 23.87 213.62         

  26.09    27.46 29.83 31.98 -217.41 

  26.00 25.58 23.08 215.80 27.46 29.82 31.99 -217.85 

Average  26.21 25.53 23.75 215.00 27.43 29.66 31.67 -215.60 

Std 0.19 0.35 0.88 1.20 0.04 0.22 0.37 2.36 
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Appendix C 

Table of the approximation values of molecular volume used in KBHR analysis   

Composition (x) of C18 in C16/C18 Molecular volume V(Å𝟑) 

0 403.365 

0.1-0.6 443.455 

0.7 443.712 

0.8 444.283 

0.9 448.036 

1.0 448.036 

 

 

 


