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Abstract 

Racing teams use numerous computational tools (CAD, FEA, CFD) to aid in the 

design of racing cars and the development of their performance. Computer 

simulation of racing car handling through Lap Time Simulation (LTS) packages 

complements these tools. It also allows teams to examine the effect of different 

vehicle parameter setups to optimise vehicle performance. In similarity with the 

automotive industry, time is limited and rapid development of new ideas and 

technology is essential. Thus, the use of a more sophisticated computer simulation 

would allow a team to gain a significant advantage over their competitors. 

As LTS are computationally intensive, previous packages have simulated a full lap 

using a quasi-static method which splits the path of the vehicle into segments. An 

analysis is then made of the vehicle at each segment point using the external forces 

acting on the vehicle. Due to the constant acceleration (i. e. steady state) assumption 

across each segment, this method does not take into account the effect of roll, pitch 

and yaw inertia as well as damping and tyre lag effects. Another aspect that is not 

accounted for is the variation in the fastest effective vehicle path along the circuit 

(i. e. racing line) due to change in driver control inputs or vehicle parameters. 

The overall aim of this thesis is to develop a transient LTS methodology, which 

adopts a strategy to vary the racing line taken in order to address the problems found 

with the existing quasi-static LTS packages. In parallel an investigation of the 

accuracy of vehicle models in relationship to racing car performance has been 

developed. 

The thesis begins with a study of racing car modelling techniques and a review of 

current LTS packages. A description is then given of the collection of vehicle 
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handling data from an actual racing car (along with attaining a vehicle parameter set) 

and the measured results displayed and discussed. 

The creation of two vehicle models, a simple and sophisticated version, is detailed 

and the measured results are compared to the simulated results of each vehicle 

model. It was found that the simple vehicle model does not fully represent the actual 

vehicle's lateral dynamic behaviour, although its steady state response was deemed 

to be accurate. The sophisticated vehicle model was seen to not only accurately 

predict the full range of lateral dynamic behaviour of the actual vehicle, but also the 

actual vehicle's longitudinal and combined lateral and longitudinal dynamic 

behaviour. 

To further investigate LTS techniques, a comparison study was made between 

various simulation approaches which indicated that the transient approach, although 

more complicated and time consuming, allows for more accurate tuning of a greater 

number of vehicle parameters. 

Finally, the creation of two simulation packages has been detailed and case studies 

are presented to provide further insight into the look and feel of the packages. The 

first package is a quasi-static approach based LTS package, where a case study is 

made into the sensitivity of overall lap time to a range of vehicle parameters. The 

second is a transient approach based simulation package which optimises the driver 

controls, varying the racing line taken by the vehicle and ensuring the manoeuvre is 

completed in the quickest time for that vehicle parameter set. This final Manoeuvre 

Time Minimisation package fulfils the overall aim of the thesis and a case study is 

made into the effect of front damping value on manoeuvre completion time. 
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1 Introduction 

1.1 Application of Vehicle Modelling to Racing Cars 

The nature of motorsport is to test the performance of a vehicle and driver 

combination on different types of courses, be they circuits or short runs. The best 

combination is the one that produces the shortest overall time over a number of laps 

around each course. Motorsport is highly competitive and races are won on margins 

of hundredths of a second. 

Racing cars are designed so that their components can be adjusted relatively easily in 

order to optimise the vehicle's setup on each individual circuit. There are normally a 

vast number of combinations that a team can use for each different vehicle setup and 

as such, getting the most out of the vehicle is a difficult and highly skilled task. In 

the past, this had been predominantly because the performance of the vehicle was 

only measured after the physical change had been undertaken and tested on the 

circuit. 

A racing team uses numerous computational tools (CAD, FEA, CFD) to aid with 

construction of the car and to develop the vehicle's performance. Computer 

simulation of racing car handling, through Lap Time Simulation (LTS) packages, 

complements these tools and allows teams to examine the effect of different vehicle 

parameter setups to optimise vehicle performance. As with the automotive industry, 

time is limited and rapid development of new ideas and technology is essential. 

Thus, the use of a more sophisticated computer simulation would allow a team to 

gain a significant advantage over their competitors. 
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In similarity to other computational tools, LTS is useful in both the initial design 

stage and the development stage. In the initial design phase, fundamental vehicle 

parameters can be optimised which cannot be changed later, e. g. centre of gravity 

position (centre of gravity may only be moved by a few percent using ballast). 

During the development stage, however, it can be used to optimise changeable 

vehicle parameters, e. g. spring rates. 

The use of handling simulations allows an expensive vehicle to be modelled at its 

limit of adhesion without risk of the vehicle being damaged or injury to the driver, as 

is the case with track testing. This does not mean that LTS completely replaces track 

testing, but complements it and can reduce the amount of time spent at the circuit. 

1.2 Use of Lap Time Simulation (LTS) Packages 

Typical use of vehicle handling and multi-body simulations involves studying the 

vehicle's behaviour when undertaking simple manoeuvres which may be well within 

the vehicle's limit of performance. LTS packages are similar to these, but they 

connect many manoeuvres together (to form a complete lap) and the vehicle is 

always travelling at its limit of performance. LTS is therefore an extension to the use 

of vehicle handling models and its main aim is to find the shortest possible time a 

vehicle with a certain parameter set can complete a given circuit. 

LTS packages have to simulate many manoeuvres for each lap of the circuit and as 

such they are highly processor intensive. As the level of sophistication of the model 

increases, a greater amount of processing power and run time is needed. One of the 

limitations to increasing model sophistication has been the CPU power available in 

the portable computers used to run simulations at the circuit. Computing power is 
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increasing and its costs are decreasing at an exponential rate as predicted by Moor's 

Law [2]. As a result, the use of highly sophisticated simulation on portable 

computers has become possible and simulation run times have dropped significantly. 

As these simulations are computationally intensive, previous packages simulate a full 

lap by splitting the path of the vehicle (found from recorded vehicle data) into 

segments (e. g., every lm) and an analysis is made of the vehicle at each segment 

point using the external forces acting on the vehicle. This simple simulation 

approach, where the circuit is idealised as a series of straights and constant radius 

turns, is a quasi-static method. 

Milliken et al [31 describe a commonly used method of finding the fastest lap time, 

which involves using the corners as limiting factors for the simulation. The 

maximum speed at which the vehicle can negotiate all the corners is found (which is 

independent of the straight speeds), therefore the speed the vehicle enters and leaves 

all the straights is known. From this, the vehicle's performance along the straights 

can then be found. 

Due to the constant acceleration (i. e. steady state) assumption across each segment, 

previous studies [4] have shown that this method does not take into account the 

effect of the vehicle's roll, pitch and yaw inertia, as well as damping effects and tyre 

lag. Another aspect that is not accounted for is the variation in the fastest effective 

vehicle path along the circuit (i. e. racing line) due to change in driver control inputs 

or vehicle parameters. The method basically assumes that the racing line found from 

the actual vehicle data is the fastest in all cases. 
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1.3 Aim of Research 

The overall aim of this research is to develop a transient lap time simulation 

methodology, which adopts a strategy to vary the racing line taken in order to 

address the problems found with the existing packages described above. In parallel 

an investigation of the accuracy of vehicle models in relationship to racing car 

performance will be developed. The main project objectives are listed below: 

" Review current approaches to racing car modelling and LTS. 

" Develop a vehicle model of a racing car and confirm its accuracy by 

comparison with measured results. 

" Measure detailed performance data from an actual vehicle, which will allow 

vehicle models to be validated for all vehicle operating conditions. 

" Create a LTS package that uses a quasi-static simulation approach. 

" Identify key areas in which current packages could be improved. 

" Develop the quasi-static package to incorporate transient effects and to 

include the ability to optimise the fastest line taken by the vehicle. 
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2 Literature Review 

2.1 Historical Development 

LTS techniques involve the analysis of a racing car's behaviour whilst accelerating, 

braking and cornering. This allows the optimisation of its performance to minimise 

the overall time taken to complete a lap on a given circuit. From the beginnings of 

motorsport, racing car teams have used measured sector and overall lap times to 

gauge vehicle performance. By 1954, Mercedes-Benz [5] created a simple hand 

calculation based LTS using sector times which were then aggregated to predict 

overall lap time. This produced a basic lap simulation with which vehicle 

performance could be predicted over the whole circuit for a range of different vehicle 

parameters. 

Until the advent of accessible digital computing in the 1980's, racing car 

performance prediction, for the most part, was based around simple hand derived 

equations of motion which were increasingly being solved by digital computers. An 

example of this was published in 1971 [6] and is the first published example of the 

use of g-g diagrams [3] and the quasi-static simulation approach. 

The quasi-static approach is defined as idealising the circuit as a series of segments 

consisting of straights and constant radius turns. The steady state solution to the 

vehicle's equations of motion is found at each of these track segments using the 

external forces acting on the vehicle. The quasi-static approach is normally used in 

conjunction with a method to find the fastest lap time, which involves using the 

corners as limiting factors for the simulation [3]. The maximum speed at which the 

vehicle can negotiate each corner's minimum path radius (i. e. the apex of each 
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corner) is found and thus the speed at which the vehicle enters and exits all the 

straights is known. The vehicle's performance along the straights can then be 

calculated. 

In 1982, the first commercially available digital LTS `RCSIM' was unveiled by 

Milliken Associates [3] which improved on earlier quasi-static packages by the use 

of a more sophisticated bicycle type vehicle model to estimate the vehicle's 

performance in each track segment. This package has seen continual development to 

the present day [3,7]. 

Over the last decade, computer technology and software has improved rapidly. This 

has been followed by an increasing availability of vehicle dynamics, mathematical 

modelling and multi-body software packages, which can be used to automatically 

generate a vehicle's equations of motion and simulate its performance. Additionally, 

tyre manufacturers have been able to produce more detailed and accurate tyre 

performance data across a greater range of operating conditions. To make this data 

more readily accessible, robust empirical tyre models have been developed (e. g. the 

Pacejka Magic Tyre Formula [8]). All of these factors have allowed teams to 

produce highly sophisticated vehicle models with greater ease than was previously 

possible. 

Over the last five years there has been a major increase in the number of LTS 

packages appearing. All but a few of these, however, have made use of the quasi- 

static simulation approach, which still allows a reasonably realistic prediction of 

vehicle performance. The most commercially successful and widely used, is the 

PiSim LTS package [2] which uses a generic vehicle model with only a few degrees 

of freedom (DOF). The main aim of the PiSim package is to enable teams to 
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minimise lap times and establish the sensitivity of the vehicle's performance to 

parameters changes. 

A major improvement in LTS techniques has only come about in 2001 with 

Casanova et al [9,10,11] developing a LTS package based on a transient simulation 

approach. The transient simulation approach is defined as simulating the vehicle's 

performance using a continuous time history and dynamic solution to the vehicle's 

equations of motion. The transient approaches found in the literature optimise the 

vehicle's control inputs to find the minimum lap time achievable with a given vehicle 

parameter set. This allows a more realistic prediction of vehicle performance and 

further details are reviewed in section 2.4. 

Development of LTS packages must be seen in the context of the more general area 

of vehicle performance analysis by computer simulation. It might be viewed as a 

subset, specialised to meet the needs of the racing car industry, whereas the majority 

of development has occurred in the broader automotive industry. Consequently, 

some of the general issues involved in the modelling of vehicle handling 

performance are first reviewed. These issues are then followed by an overview of 

the types of computer package used to generate the equations of motion in the 

vehicle model. This overview is then followed by a review of the development of 

packages specifically aimed at lap time simulation. 
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2.2 Review of Vehicle Modelling Issues 

Vehicle modelling involves idealising the actual vehicle system as a set of equations 

of motion. These equations can then be solved in a simulation to generate a 

prediction of the vehicle's performance. The models used in LTS packages and the 

racing car industry are based on those developed for the modelling of general road 

vehicles. This section (2.2) has been split into five sub-sections discussing: 

2.2.1 The vehicle model itself. 

2.2.2 The external forces affecting the system - tyre models. 

2.2.3 The external forces affecting the system - aerodynamic models. 

2.2.4 The sub-systems creating the longitudinal forces - powertrain models. 

2.2.5 The sub-systems creating the longitudinal forces - brake models. 

A compromise has to be reached between model sophistication and accuracy because 

an over-sophisticated model can significantly decrease productivity [12]. Accurate 

and comprehensive parameter sets also need to be determined. This can become 

complicated, because as the sophistication of the model increases, the detail and 

number of parameters needed is also increased [13]. 

2.2.1 Vehicle Models 

Dixon [14] describes a basic vehicle model where the vehicle is represented as a 

point mass with a single wheel below it. This model has two DOF which represent 

lateral and longitudinal acceleration. Unfortunately this does not represent the 

under/neutral/over steer behaviour of the vehicle as it yaws. 
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Milliken et al [3] illustrates that the yaw DOF can be added by extending the model 

to have two wheels, this is commonly known as a bicycle model as seen in figure 2.1. 

Both wheels on the front and rear axle are effectively combined into one. The 

vehicle's mass is assumed to be concentrated at its centre of gravity and a suitable 

value of inertia is used to represent the vehicle's yaw inertia. 

I 

Ground-Axed 
axis system, G 

/ 
I f 

Axis system A. 

moving with the 
vehicle 

r 

Y 

Y 

Figure 2.1 - Bicycle vehicle model 

To improve its accuracy and give a better estimation of the slip angles the tyres 

encounter, the bicycle model can then be extended to a four wheel model by adding a 

front and a rear axle, each with two wheels. An approximation can then be made for 

the load transfer in lateral and longitudinal directions by using a quasi-static 

approximation [3]. 

An even better approximation of load transfer can be made by modelling the 

dynamics of the vehicle's sprung mass. This is carried out by adding roll and pitch 

DOF to the model. Ellis [15] demonstrates this by splitting the car into three bodies: 

the front unsprung mass, the rear unsprung mass and the sprung mass. The sprung 
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mass is pin jointed and free to rotate about the vehicle roll and pitch axis. Its motion 

is opposed by torsional springs and dampers on both axes, which relate to the 

vehicle's actual suspension components. Suitable values of roll, pitch and yaw 

inertia are then assigned to the sprung mass body, with the body masses again 

assumed to be concentrated at the centre of gravity position of each body. A vertical 

DOF may also be given to the sprung mass body to model its ride behaviour but, this 

is not normally an important factor when modelling racing cars running on smooth 

surfaces. 

Crolla [16] shows that by making each wheel into a separate body with an extra DOF 

each for spin, camber and/or steer (once more with suitable inertia values), the 

modelling of powertrain/brake and suspension kinematics effects is possible. Using 

this approach, other effects may also be modelled such as steering system, axle and 

chassis compliance. 

2.2.2 Tyre Models 

To accurately predict the behaviour of a racing car, it is required to model the 

external forces acting on the vehicle as accurately as possible. At low speeds the 

main external forces acting on the vehicle are generated by the tyres. Racing cars are 

designed to operate at the peak of the tyre force curves. The tyre forces at limit 

handling, therefore, need to be modelled as accurately as possible. 

There are two main types of tyre model employed in vehicle handling simulations. 

The first is the physical model, where the tyre's response is derived from first 

principles. These range in complexity from a single longitudinal and lateral spring, 

to springs mounted radial around a hub, to the most complex finite element models 

that include details of the air, rubber, tread pattern and fabric and steel cords used in 
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the tyres construction. A physical model is normally used in a vehicle ride model as 

the vertical response of the vehicle is of primary concern. 

The second is the empirical model, where actual physical test data is used to describe 

the tyre's response. They are basically either a look up table or a function fitted to 

the measured data (which reduces the amount of data required). An empirical model 

is normally used in a vehicle handling model where the resultant lateral or 

longitudinal tyre force is of primary concern. 

Considering that tyres are made from several different materials, with highly an- 

isotropic material properties, their responses are very non-linear and it is difficult to 

derive an accurate and simple physical model [8]. The use of an empirical model, 

therefore, is the most efficient way to describe the tyre's response [131 in a vehicle 

handling model and will reduce simulation times. 

One of the most commonly used empirical tyre models for vehicle simulation is the 

Pacejka Magic Formula method [8]. The model uses measured tyre data to find the 

coefficients of a mathematical function that matches the actual tyre's response as 

given in equation (1). 

F= f{a, K, N} (1) 

where: 

a Tyre slip angle, rad 

K., Longitudinal slip ratio of tyre 

N: Normal force at tyre contact patch, N 

F: Force, N 
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From equation (1) it is evident that the forces produced by the tyre are primarily due 

to three main external inputs: 

" The slip angle at each tyre contact patch, which is dependent on the geometry 

of the vehicle and its longitudinal, lateral and yaw velocities. 

" The normal forces at the tyre contact patch, which are equal to the sum of the 

static force on the tyre, the aerodynamic downforce on the axle and the lateral 

and longitudinal load transfer due to the sprung mass rolling and/or pitching. 

9 The longitudinal slip ratio of the tyre which is defined [8] as being the ratio of 

the velocity of the tyre contact patch to the velocity of the vehicle at that 

point and is dependent on the torque being applied to the tyre by the brakes or 

powertrain. 

The camber angle of the tyre is another less significant factor and is the inclination of 

the longitudinal plane of the tyre to the road surface. This inclination produces a 

camber thrust [8] that offsets the lateral force produced by the tyre. The camber 

angle changes due to vehicle body rolling and/or bump and is controlled by the 

vehicle's suspension kinematics. 

There are other factors that affect the tyre's response to these inputs and these 

include change in static inflation pressure, temperature and wear. These factors only 

have a minor influence on the tyre's performance and there will be uncertainty about 

their exact values at any given time [3]. 

The last factor that is important in making the model realistic is the time response of 

the tyre. Pacejka et al have extended the model to take this into account [8] and it 
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takes the form of a first order lag applied to the slip angle or slip ratio to represent 

the time taken to build up the forces in the tyre. 

Other empirical models have been used to simulate tyre behaviour but these tend to 

contain large amounts of data [7] or are based on simplistic mathematical models 

[17]. Some empirical models have failed to take into account large slip angles and 

drivers have produced quicker lap times by `sliding' the vehicle at high slip angles 

[7]. Other authors have produced tyre lag models but these are either the same as the 

Pacejka's model [18] or unnecessarily over-sophisticated [19]. 

2.2.3 Aerodynamic Models 

The other set of external forces applied to the vehicle arises from the aerodynamic 

effects on its body as it moves through the air. This is normally modelled as a simple 

drag force acting at the centre of gravity and opposing longitudinal motion and two 

normal forces each acting at the centre of the front and rear axles (either upwards for 

lift or downwards for downforce). These forces are given by equation (2) and are 

dependent on the vehicle's frontal area and coefficient of lift or drag, which is 

measured in a wind tunnel or found using a CFD package [3], 

F= 
1 

pFAC. u 2 (2) 

where: 

u: Velocity of vehicle in al axis direction, ms'' 

FA: Frontal area of vehicle, m2 

C: Aerodynamic coefficient of lift or Aerodynamic coefficient of drag 

p. " Air mass density, kgm 3 
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An increase in sophistication is possible by using a parameter map to vary the 

aerodynamic coefficient depending on vehicle attitude or ride height. This method 

more accurately models the effects of the vehicle's aerodynamic devices which are 

sensitive to changes in these factors [20]. 

LTS packages have added separate models of individual aerodynamic devices to 

study the result of changing their design and orientation [21]. Unfortunately, 

modelling each device separately leads to inaccuracies when simulating the 

performance change to the whole vehicle. This is because the performance of an 

individual aerodynamic device is sensitive to the aerodynamic attributes of the entire 

vehicle [22]. 

2.2.4 Powertraln Models 

To generate longitudinal force from a tyre, a slip ratio is created at the contact patch 

by applying a torque about the tyres axis of spin, causing it to spin at a speed 

different to that dictated by the vehicle's velocity [8]. This torque is produced by 

either the braking or the powertrain systems. 

The simplest representation of the powertrain is a fixed maximum power value 

applied to the driven wheels [23]. To create a more detailed representation of the 

range of torques created by the powertrain, the engine can be modelled as a 

parameter map of torque against engine speed (found from experimental data) and 

the drivetrain modelled as a set of gear ratios of this torque. This model gives a high 

level of accuracy but with moderate sophistication to ensure efficient model running 

when compared to a full thermodynamic model of engine performance [24]. 
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Additionally, the amount of torque that is applied from the engine is dependent on 

the driver throttle input. It is rare that the engine parameter map has been extended 

to include throttle position, as race engines are designed to produce the largest torque 

possible and thus it is assumed the driver will demand 100% throttle. Therefore the 

throttle value is normally modelled as a percentage of the maximum torque available 

at a given engine speed. Even though this is a linear approximation, it still makes a 

reasonable approximation of the actual non-linear engine response. 

If large values of torque are produced by the engine or the powertrain rotational 

speeds are high, it may become necessary to model the powertrain's inertia or 

stiffness [25]. A differential (or differentials for more than one driven axle) can also 

be added into the model to account for the distribution of engine torque on an axle. 

Various types of differentials [3] have been modelled including locked, open or 

limited slip types (e. g. Salisbury, Torsen, etc. ). 

Many vehicles use control systems such as traction control, automatic gear selection, 

CVT and active differentials that limit the torque applied by the engine or vary the 

drivetrain ratios. These can also be modelled [261 as necessary. 

2.2.5 Brake Models 

All racing car braking systems use a hydraulic circuit and friction devices to 

transform the driver's control input of pedal force into a torque applied to each 

wheel. The brake pedal force is distributed between two master cylinders (one each 

for the front and rear hydraulic circuits) using a variable balance bar [3]. Brake discs 

with callipers or drum type systems can be simply modelled as friction devices [23] 

which derive axle torque from front or rear circuit pressures. Control systems (e. g. 

ABS) can also be modelled to limit torque applied to the wheel [27]. 
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2.3 Computer Simulation Packages 

All computer simulation packages relevant to multibody system dynamics problems 

use one of four different techniques to generate equations of motion to define the 

vehicle model. These techniques are described in table 2.1 along with an example of 

the main packages available [16]. As any LTS will involve the vehicle negotiating a 

considerable number of different straights and corners in each lap, the most 

applicable method will be the one that will allow the generation of not only an 

accurate but, efficient vehicle model that describes the vehicle's behaviour. 

Technique Leading Software Method of Equation Generation 
using this method 

Numeric Multibody ADAMS Equations are generated in numerical 
codes form. 

Symbolic Autosim Equations are generated in symbolic 
Multibody codes form. 

Purpose Built Carsim One generic model only available, as 
codes motion equations already defined. 

Simulation Toolkits MatLab Equations of motion pre-defined by the 
user. 

Table 2.1 - Methods of model generation. 

Generating the equations using numeric multibody codes creates large and inefficient 

models of the system [13]. Suitable models have been produced using software 

packages such as ADAMS [28]. This study highlighted the fact that accurate models 

could be produced but demanded a considerable investment of time and money to 

develop a sophisticated model. Furthermore, a significant amount of computer 

processing power would be necessary, because ADAMS has to reconstruct the 

equations of motion for each parameter change [29]. 
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Symbolic multibody codes are more efficient in generating the equations of motion 

used to define the vehicle model, which greatly reduces simulation times. The use of 

these software packages is limited and they have not really found widespread use 

throughout the industry. There are also no suitable purpose built codes available 

with a suitable racing car model, apart from inefficient numeric multibody based 

models. 

As most racing cars are of similar design, a set of pre-defined equations of motion 

can therefore be defined by the author and utilised in a simulation toolkit. MatLab is 

at present an industry standard and it is relatively simple to create a vehicle model 

using user generated equations of motion. This software package has been used 

throughout the work described in the thesis. There are a number of toolboxes 

available for MatLab, such as symbolic programming, data acquisition and 

optimisation routines, which will help with the development of the vehicle models 

and LTS package. 

2.4 Lap Time Simulation 

LTS packages tend to fall into two different categories, either those that are 

commercially available or those that have been developed by academic institutions or 

individuals for personal use (non-commercial). All but a few of these packages use a 

quasi-static simulation approach. In addition to these packages there are others that 

are either not well publicised or are solely the property of certain racing teams [30]. 

These private packages are not available for use by outside parties due to the 

confidential information they contain and the secrecy associated with the competitive 

nature of motorsport. The vehicle dynamic models used in commercially available 

packages are also ̀ locked' away in the source code of the software. The implications 
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of this are that in order to ascertain the level of sophistication of existing LTS 

packages, review has been restricted to the information contained in the literature. 

The main aim of any LTS package is to find the quickest possible time taken for a 

vehicle with a given parameter set to complete a lap of a circuit. The parameter set 

can then be varied to try to reduce this time. A LTS package works in the same way 

as many other engineering packages, involving three stages: 

1. Firstly the package initialises by gathering vehicle parameters from the user 

and attaining circuit data (trackmap) from the user and/or measured vehicle 

data (i. e. downloaded from a data-logging system). 

2. The lap simulation then takes place with the vehicle equations of motion 

being solved for the given vehicle parameter set and, using the quasi-static or 

the transient simulation approach, the minimum lap time is found. 

3. Finally, the performance of the vehicle around the circuit is displayed to the 

user and compared with measured data, if required, as shown in figure 2.2. 

iýýý 

Figure 2.2 - TAG Heuer vehicle data package. 
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The circuit trackmap consists of a set of path radii at fixed distances around the 

circuit and is normally found from lateral acceleration and forward velocity 

measured data. As the data logging equipment records data at a fixed time step, each 

fixed distance circuit segment point is found by linear interpolation between fixed 

time steps using the forward velocity data. Each segment path radius can then be 

found again, involving linear interpolation, using the lateral acceleration data and 

equation (3). 

u2 
Rir *= (3) 

r 

where: 

A: Acceleration, ms'2 

Rtrack: Path radius, m 

The track map can be extended to include three dimensional information, either by 

measuring the vehicle's vertical acceleration and using equation (3) to measure dips 

and crests along the track, or measuring the increase in the vehicle's static weight 

using pushrod load cells to give the track camber. To keep the track map two 

dimensional, these effects can be accounted for by increasing the tyre friction 

coefficient in this area of the track. Data can also entered by the user and may be 

found from other sources, e. g. survey data. 

A detailed description of the quasi-static simulation approach is given in sub-section 

2.4.1 as background to the LTS packages that are reviewed in the following two sub- 

sections 2.4.2 and 2.4.3. These have been split into commercial and non-commercial 

(developed by academic institutions or individuals) packages and are listed in order 

of increasing sophistication for each section. A detailed description of the transient 
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simulation approach that is used by the most sophisticated non-commercial LTS 

package will be made in the last sub-section. 

2.4.1 The Quasi-Static Simulation Approach 

Most LTS packages begin by finding the minimum path radius at each corner in the 

trackmap. This defines the corner apex (and minimum speed) points [3]. Steady 

state acceleration is assumed across each segment. At this corner apex point, 

therefore, it is assumed that the vehicle is maximising its lateral acceleration (i. e. not 

using any tyre grip to produce longitudinal acceleration). Its forward velocity at that 

point is then found by rearranging equation (3) and using the vehicle model. 

Care is taken to check whether the vehicle's performance in the corner is not power 

limited. This occurs when the engine power available is not great enough to 

overcome aerodynamic and tyre losses [14] and if this is the case the corner apex 

performance is limited by engine power. 

From this apex point the simulation increases forward velocity backwards down the 

previous straight (backwards marching) and forwards along the next straight 

(forwards marching) in steady state segments [31]. The time taken for the vehicle to 

complete each segment is minimised (i. e. greatest longitudinal acceleration) using a 

friction circle approach [3]. 

The friction circle approach assumes that any potential tyre grip not utilised in 

producing lateral acceleration can be used to produce longitudinal acceleration. This 

potential grip is found by drawing a plot of lateral force against longitudinal force for 

each tyre (which tends to be an ellipse) to find the available longitudinal force given 

lateral force being produced. So as path radius decreases away from the comer apex, 
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increasing amounts of tyre grip can be utilised in braking or engine acceleration. As 

in real life, the maximum amount of longitudinal force produced can be limited by 

the brake system design or available engine power. 

The steady state solution of the dynamic vehicle model equations for each segment is 

then found before moving on to the previous or next track segment. To save solving 

the same steady state equations more than once, parameter maps of vehicle 

performance (e. g. g-g diagrams) under all possible operating conditions can be 

employed [32]. These parameter maps are normally found before the main lap 

analysis, in the initialisation phase. 

The distance point on the straight where the backwards marching from the next 

corner meets the forwards marching from the previous corner is the straight's 

maximum velocity point. This is found for all the straights in the circuit and the data 

collated into a continuous matrix which is graphically displayed to the user. The sum 

of all segment times is equivalent to the total minimum lap time for that vehicle 

parameter set. 

Due to the constant acceleration assumption across each segment, previous studies 

[4] have shown that this method does not take into account the effect of roll, pitch 

and yaw inertia as well as damping and tyre lag effects. Another aspect that is not 

accounted for is the variation in the fastest effective vehicle path along the track (i. e. 

racing line) due to change in driver control inputs or vehicle parameters. The method 

basically assumes that the racing line found from the actual vehicle data is the fastest 

in all cases. 
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2.4.2 Review of Commercially Available LTS Packages 

Listed below, in order of increasing sophistication, are LTS packages that are 

presently available commercially. Most packages have seen widespread use in the 

lower levels of motorsport, with only PiSim and RaceSim being used in the top 

echelons of motorsport, where PiSim is, by far, the most widely used. All of the 

packages, apart from the ADAMS package, detailed in this section use the same 

quasi-static simulation approach detailed above to find the minimum lap time. 

IK (16&9) 0 01 Cy C 
RH (m) 08.17 -796E"05 -796E"05 
PP (in) 6236 78BE"10 768E. 10 

569E"14 569E"14 

-2540.14 -7W-14 
Boy Un4 I00 

Time Ai 0161 Speed AT Rod-Ys Speed Tone O. Wiant Vmn Vmaa SoWan 
(, ) (9) 1*) (MPH) (9) (0) (MPH) (s) ( H) (MPH) (MDI) Stales 

16 'J 11 . 1' 40 u4 1w U 
1 lA 

18 2300 

H 2250 - 
IR 12200 

19 2150 

Aý 2100 
, 19 

1 

205 0 
, 19 
168 0 2- 

1a 
"1 
B 18 

1950 
1000 2000 0 3000 4000 5000 6000 7000 

aU Distance (RI p1 
9 18 Mwsro 

2ma 
ý 230 0 
o- 232 4 

2333 O1 
2321 ýi 

M 226S 
2210 "I 
2198 
2188 
2187 
2189 "r 
2189 
218E II 
: 188 
2189 
2190 
2199 
2206 
221 9 
2192 

11 114 01i Am Al n: I<1.11 1u1n 1968 2198 -o- 
II 44 1)06 3?! S 2005 : 53 1990 2190 
t +F- u ^r 19N/ 251 11063 : 99 04 .' iý. i 1490 2190 II 

Figure 2.3 - RaceWare LTS package. 

RaceWare [33] produced by Vehicle Dynamics Performance Ltd - This package 

uses Microsoft Excel to handle all the data with a separate Visual Basic executable to 

control the simulation as shown in figure 2.3. The vehicle model used includes: 

" Simple bicycle model, with quasi-static load transfer approximation. 
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9 Tyre model is based on Pacejka Magic Färmula. 

" Single aerodynamic coefficients for front/rear lift and overall drag. 

" Powertrain in form of engine parameter map and gear ratios. 

9 Brake system is idealised to use maximum traction available. 

9 Two dimensional trackmap. 

Unfortunately, no attempt is made by the literature to judge the accuracy of the 

results. 

Figure 2.4 - Dynamic Response LTS package. 

Dynamic Response [34,35] produced by Pressplay Ltd - Used successfully by 

both Formula Ford and Touring Car teams around the world, see figure 2.4. The 

vehicle model used includes: 
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" Bicycle model extended to four wheel type vehicle model with quasi-static 

load transfer approximation. 

" Tyre model is based on Pacejka Magic Formula. 

" Aerodynamic coefficients can vary with change in ride height. 

9 Powertrain in form of engine parameter map and gear ratios. Differential 

model is included along with front or rear wheel drive models. 

9 Brake system is modelled in detail and takes into account brake heating and 

fade. 

9 Two dimensional trackmap. 

Accuracy of 2% (2 or 3 seconds on a2 minute lap) is claimed, which is backed up 

with examples in the literature [34]. 

LTS [3,7] produced by Milliken - Extended version of early 80's software 

package developed by Milliken Research Associates. It has been used successfully 

by Milliken Research Associates with good correlation but, each vehicle model is 

created specifically for each vehicle. The vehicle model used includes: 

" Bicycle model extended to four wheel type vehicle model with quasi-static 

load transfer approximation. 

" Tyre data in form of a look up table over a small range of slip angles. 

" Aerodynamic coefficients vary with change in ride height. 

" Powertrain in form of engine parameter map and gear ratios. Differential 

model is included along with front or rear wheel drive models. 

" Brake system is modelled in detail. 

" Suspension kinematic effects included in the model. 

" Three dimensional trackmap. 
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The literature shows a good correlation between measured and simulated results but, 

the simulation results were found to be lacking in some cases due to the limited range 

of slip angles employed in the tyre data [7]. No scales are given on the figures or 

values given, so it is assumed, due to the model sophistication, that the accuracy is of 

a similar order to the Dynamic Response package [34]. 
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Figure 2.5 - PiSim LTS package. 

PiSim [2,36,37,38,39] produced by Pi Corporation - Original version of PiSim, 

was released in early 1997. Pi has spent a significant amount of time on the Visual 

Basic user interface, see figure 2.5, and has kept simulation times short (under a 

minute) by encoding the main solution processing with the C programming language. 

The vehicle model used includes: 

" Bicycle model extended to four wheel type vehicle model with quasi-static 

load transfer approximation. 

9 Tyre model is based on Pacejka Magic Formula. 
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" Aerodynamic coefficients vary with change in ride height. 

" Powertrain in form of engine parameter map and gear ratios. Differential 

model is included along with front or rear wheel drive models. 

" Brake system is modelled in detail. 

" Suspension kinematic effects included in the model, as well as asymmetric 

chassis characteristics. 

" Atmospheric compensation for ambient conditions (aerodynamics and 

engine). 

" Three dimensional trackmap. 

Pi claim the package is accurate to within 0.2 seconds a lap and has been used 

successfully in many types of motorsport including both open wheeled racers and 

production based vehicles. Compared to claims made by the companies producing 

other packages and given the level of detail involved, this accuracy seems very 

doubtful. From discussions with Formula One teams, PiSim is only accurate to 

within one second on full lap times (90 seconds) and of similar accuracy to the 

Dynamic Response package [34]. 

RaceSim [31,40] produced by DATAS - Two simulations are possible, a standard 

quasi-static simulation approach employed for lap time minimisation whilst 

investigating parameter sensitivities and a transient simulation option that uses 

measured driver control inputs to `drive' the vehicle around the circuit, in a dynamic 

simulation. Although this approach calculates the transient vehicle response to 

driver inputs, its main shortcoming is that it does not allow effective vehicle 

parameter sensitivity studies in relation to minimum lap time, as vehicle performance 

is not optimised in relation to the parameter change due to vehicle control inputs 
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being fixed. A sophisticated user interface is provided [41], with short simulation 

times and the vehicle model used includes: 

" Seven DOF, four wheel vehicle model, which includes a vehicle lateral, 

longitudinal and yaw DOF and vehicle body ride, pitch, roll and chassis 

compliance in roll (gives front and rear chassis roll) DOF. 

" Tyre model is based on Pacejka Magic Formula, with first order tyre lag 

included. 

" Aerodynamic coefficients vary with change in ride height. 

" Powertrain in form of engine parameter map and gear ratios. Several 

differential models available, which include front/rear/all wheel drive models. 

An ABS, traction control, active differential and automatic gear selection 

models are also available. 

" Brake system is modelled as maximum torque that can be applied to wheel. 

" Suspension kinematic effects included in the model, as well as asymmetric 

chassis characteristics. A non-linear bump rubber can also be applied to any 

wheel. 

" Atmospheric compensation for ambient conditions (aerodynamics and 

engine). 

" Three dimensional trackmap. 

The package attempts to address the failings of the quasi-static simulation approach 

by approximating the effect of damping on vehicle performance. The approximation 

is carried out by assuming that on an actual vehicle, the ideal damping value would 

hold the tyre contact patch against the ground allowing the tyre to produce the 

maximum force possible (as measured using steady state tests, which produce the 
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empirical tyre data [8]). An estimation of the vehicle's damping performance against 

an idealised damping value is made using a very simple quarter car model, which is 

found in an initial simulation. This `grip modifier' is then used in the main quasi- 

static approach based LTS to degrade the force the tyre produces. This makes some 

attempt to address the influence of the dampers on vehicle performance but, still does 

not model the more important affect of sprung mass dynamics (i. e. the affect on 

corner entry or exit performance of dynamic load transfer). Unfortunately, no actual 

values of accuracy are given in the literature, but judging from its widespread use 

and high price tag, it probably attains a level of accuracy similar to the Dynamic 

Response package [34]. 

ADAMS Racecar Module [28,29] produced by Mechanical Dynamics 

Corporation - Mechanical Dynamics have produced a generic racing car vehicle 

model for their numeric multi-body dynamics package, ADAMS. This has been 

used by several teams successfully for LTS. A quasi-static simulation approach is 

not used, but instead, a driver model is used to estimate the optimum racing line 

around a circuit. This is done using the trackmap found from circuit survey data and 

geometrically finding the racing line that produces the smallest change in path radii. 

The driver model then attempts to follow the optimum racing line at the limit of the 

vehicle's performance. The generic ADAMS racing car vehicle model includes: 

" Detailed multi-body vehicle model including all suspension components and 

some compliances, 53 DOF in total. 

" Tyre model is based on Pacejka Magic Formula. 

" All suspension kinematics and non-linear effects are included in the model, as 

well as asymmetric chassis characteristics. 
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Features that are possible to add by the user, using the ADAMS simulation package: 

" Aerodynamic coefficients vary with change in ride height. 

" Powertrain in form of engine parameter map and gear ratios, including open 

or locked differential models. 

" Brake system is modelled as maximum torque that can be applied to wheel. 

" Two dimensional trackmap. 

These additional features are not straight forward enough to include in the vehicle 

model and require substantial experience to produce. ADAMS is also highly 

processor intensive and any simulation can take a significant amount of time. 

Although, a close correlation with actual data has been seen in the literature, no 

specific details were supplied or claims made [28]. 

2.4.3 Review of Non-Commercial LTS Packages 

The LTS packages described below have been developed by academic institutions 

and individuals as an investigation of a special case of vehicle dynamics. Most of 

the packages do not contain a graphical based user interface and all but three (HP- 

VEHSAP, North Carolina State and Cranfield package) use the quasi-static 

simulation approach. The same vehicle model detailed below is used in each case 

with exceptions detailed: 

" Simple bicycle model extended to a four wheel model, with quasi-static load 

transfer approximation. 

" Tyre model is based on Pacejka Magic Formula. 

" Single aerodynamic coefficients for front/rear lift and overall drag. 

" Powertrain in form of engine parameter map and gear ratios. 
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" Brake system is idealised to use maximum traction available. 

" Two dimensional trackmap. 

Michigan University, USA [17] -A simple package created in Fortran and 

specifically for an Indy racing car. It is a simplistic package designed for a simple 

oval course and makes some observations about comparing parameter changes. The 

literature makes no attempt to judge the accuracy of the results. 

Dominy et al [21] -A simple LTS package developed in the early 1980's to study 

aerodynamic effects. Some effort is made to validate the simulation results, which 

shows a reasonable level of accuracy, even with a linear tyre model. 

La Joie [42] -A simulation created using Fortran and, again, a detailed simulation is 

undertaken using a simplistic vehicle model. The literature makes no attempt is to 

judge the accuracy of the results. 

HP-VEHSAP [43] - In 1996, a comprehensive package was produced by Lugus 

Vehicle Technologies. Front/rear and all wheel drive powertrain models and a 

differential model are included. The LTS does not use the quasi-static simulation 

approach but finds the transient solution by employing a driver model to follow an 

optimum racing line at the limit of the vehicle's performance. Regrettably the driver 

model is not very effective in doing this and some oscillation in the vehicle path is 

seen. Once again the literature makes no attempt to judge the accuracy of the results. 

LapSim (44] by Reynard - An example of an `in house' developed package 

developed for use mainly with Indy car teams. Although the package is not 

commercially available it has seen use with many teams and has a sophisticated user 

interface and short simulation times. Vehicle model also includes: 
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" Locked differential model is included. 

" Suspension kinematic effects included in the model, as well as asymmetric 

chassis characteristics. 

" Three dimensional trackmap. 

No example results are published. 

University of North Carolina State, USA [45,46] - The vehicle model is 

specifically for a NCSU Legends racing car, which is raced on a short oval circuit. 

This does not use the quasi-static simulation approach instead, a path and speed 

following driver model is used to follow a racing line and speed profile defined by 

the user. An optimisation routine is included, which attempts to vary the driver 

longitudinal control inputs to minimise the lap time whilst not deviating from the 

prescribed path by too much. The vehicle model also includes: 

" Vehicle body roll, pitch and ride DOF. 

" Suspension kinematic effects included in the model, as well as asymmetric 

chassis characteristics. 

" Three dimensional trackmap. 

The package is not very accurate as details of overall lap time indicate a difference of 

3 seconds on a 20 second lap. An unsuccessful attempt was made in the literature at 

vehicle parameter optimisation (see section 2.5) and produced little change in lap 

time or parameter values. 

University of Brescia, Italy [32,47] - The latest package, detailed in reference [32], 

is similar in sophistication to the PiSim package with an advanced user interface and 

short simulation times. The vehicle model also includes: 
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" Aerodynamic coefficients vary with change in ride height. 

" Differential model is included along with front or rear wheel drive models. 

" Brake system is modelled in detail. 

" Suspension kinematic effects included in the model, as well as asymmetric 

chassis characteristics. 

" Three dimensional trackmap. 

The vehicle's cornering performance is found before the main lap simulation, to 

reduce run times, by forming parameter maps of the vehicle's performance in the 

form of g-g diagrams. No attempt is made in the literature to judge the accuracy of 

the results, but due to its sophistication, it must be of a similar level of accuracy as 

the Dynamic Response package. 

Cranfield [9,10,11] - The most significant progress so far has been made by 

Casanova et al who, in 2000, produced a series of papers describing work with the 

Benetton Formula One team in the production of a fully transient LTS package. The 

package used an optimisation routine which varied the vehicle's control inputs to 

minimise the time taken around the track. A more in-depth description of this 

simulation approach is given in sub-section 2.4.4. The vehicle model also includes: 

" Limited slip differential model is included. 

" Brake system is modelled in detail. 

Results are given in the literature [11], which show a close correlation to measured 

data. At present this package seems to offer the most accurate approximation to the 

actual vehicle's performance and addresses some of the problems of previous 

simulation approaches. 

32 



2.4.4 The Transient Simulation Approach 

This approach uses a non-linear numerical optimisation routine to adjust a driver 

control matrix. Whilst trying to minimise the manoeuvre time, the optimisation 

routine also ensures that the vehicle remains inside the track boundaries and limits 

the control inputs to realistic values [9,10,111. 

The driver control matrix consists of a steer wheel angle control value and a 

longitudinal control value that is initiated at regular distances along the manoeuvre 

(this is effectively a look-up table against distance of control values). The 

longitudinal value controls either throttle position or brake pedal force (as the driver 

does not usually press both pedals at the same time), i. e. It ranges from a value of +1 

= 100% throttle and no brake pedal force to 0= 0% throttle and no brake pedal force 

to -1 = 0% throttle and full brake pedal force. Both control values are limited to 

within realistic boundaries (maximum steer angle, maximum throttle, driver pedal 

force). The simulation approach method of operation is detailed in table 2.2. 

Even though a set of control points is used to optimise the performance of the vehicle 

that are at discrete distance points along the track, these points are then described in 

the form of a look up table and so form a continuous control time history for the 

vehicle. This means that the vehicle is continuously accelerating and its performance 

at any one point along the track is dependent on its performance in the previous point 

on the track due to damping, inertia and tyre lag effects. The vehicle racing line is 

also adjusted (as long as it remains inside the track boundaries) to the optimum line 

for the driver control inputs used for that vehicle parameter set. Therefore, this 

addresses many of the shortcomings of the quasi-static simulation approach. 
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1. User specifies initial velocity, control point density, vehicle parameters, 

vehicle control limits and track layout. Track layout is defined as a look 

up table against distance of centre line and track width at regular intervals. 

2. Circuit and control matrix are split into series of shorter manoeuvres (up to 

two or three comers in each manoeuvre) and each one is solved in turn. 

3. Optimisation routine begins, which is a constrained non-linear 

optimisation routine [48]. For each manoeuvre: 

a. User provides initial racing line and a path following, non- 

linear preview controller is used [9] to produce an initial guess 

for the driver control matrix (either line or initial control inputs 

can be taken from actual vehicle data). 

b. Run vehicle simulation with initial guess, vehicle simulation 

stops when reaches end of manoeuvre and returns time taken to 

reach this point. 

I 
c. Adjust control matrix and re-run vehicle simulation and check 

whether time taken to complete manoeuvre is reduced. 

d. Run constraint routine to check whether the previous solution 

remains within the track boundaries, if not solution is 

disregarded. 

e. Repeat (c) and (d) until no further improvement in time taken 

to complete manoeuvre is found and optimisation routine ends. 

f. Vehicle parameters at end of manoeuvre (e. g. forward velocity, 

etc. ) are used for initial values at beginning of next manoeuvre. 

4. Collate all manoeuvres into a single matrix and display final simulation 

results. Total lap time is the sum of individual manoeuvre times. 

Table 2.2 - Transient simulation approach method of operation. 
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2.5 Parameter Optimisation 

A further level of sophistication is possible with the optimisation of the vehicle 

parameters used in the LTS package. These are varied by a parameter optimisation 

routine which reruns the LTS for each combination, instead of leaving it for the user 

to do by trial and error. As there are many definable parameters with each having a 

large set of possibilities for a given vehicle setup, it is only practical to find the 

optimum combination of a few parameters for any given run. 

There are several methods by which parameter optimisation can be conducted. The 

most basic involves the user defining a set of parameter combinations for the routine 

to run through [42] (i. e. a batch file approach). A simple extension to this is in the 

application of design of experiment [491 or Taguchi matrix [50] techniques to these 

batch files. 

Other authors have utilised Pareto-minimum analysis techniques to find the optimum 

vehicle setup. This was done by Kasprzak et al [511 for a range of longitudinal 

centre of gravity positions and roll stiffness distributions. The minimum time was 

found for the vehicle to complete a small and a large steady state circle for every 

possible combination of these two parameters. The Pareto-minimum parameter set 

was found to be the set which gave the smallest total time for both circles. This was 

extended by Hacker et a) [52] to include a range of aerodynamic downforce 

distributions as well. In addition, Miano et al [531 approximated an eighteen DOF 

vehicle model using a Neural Network (to save computation time) and optimised a 

range of parameters using standard ISO test manoeuvres. All these studies reflect the 

large time scales involved in searching through every possible parameter 
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combination and consequently this method is highly inefficient when compared to 

numerical optimisation routines [48]. 

Yearstretch [54] has applied a genetic algorithm based numerical optimisation 

routine to complete the task of gear ratio parameter optimisation for an entire lap of a 

circuit. This was achieved with the use of a separate Excel program which executes 

the Dynamic Response LTS package [34,35J with the various parameter sets. It was 

seen that this technique efficiently found an optimum solution but was still highly 

time consuming. 

2.6 Conclusions 

This chapter has not only summarised the literature for the existing level of 

technology available in LTS packages, but also reviewed the state of racing car 

modelling and simulation. The following conclusions have been reached: 

9 The use of LTS packages has rapidly expanded in the last five years. 

" Vehicle performance can be estimated with many levels of model 

sophistication but, as LTS packages are computationally intensive, it is 

necessary to find the minimum sophistication of vehicle model that will 

provide a suitably accurate solution. 

" The most suitable tyre model is the empirical Pacejka Magic formula model. 

" Simple aerodynamic models based on measured coefficients provide 

appropriate levels of accuracy. 

" Powertrain models normally consist of maps of engine torque produced and 

the driveline as a series of ratios. If necessary, additional systems can be 

modelled, including differentials and control systems. 
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Braking systems can be modelled as hydraulic systems using friction devices. 

9 MatLab is the most effective software package to base a LTS package on due 

to its flexibility, extra toolboxes and author familiarisation with the package. 

" The quasi-static approach of using steady state assumptions across each track 

segment implies that the effect of roll, pitch and yaw inertia as well as 

damping and tyre lag is not taken into account. In addition, the use of only 

the measured vehicle line causes inaccuracies. 

" The transient approach accounts for some of the deficiencies of previous LTS 

packages even with the use of discrete control points. 

It is possible to use parameter optimisation routines in addition to an LTS 

package but it greatly increases the time for each investigation. 
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3 Racing Car Modelling 

3.1 Introduction 

As shown in the previous chapter, many levels of model sophistication are possible, 

however, as LTS packages are computationally intensive, it is necessary to find a 

suitable trade off between model sophistication and the quest for accuracy. As a 

consequence it was decided to begin with the creation of a simple seven DOF 

(longitudinal, lateral, yaw and four wheel spin DOF), four wheel model. This utilises 

a Pacejka combined slip tyre model and a quasi-static approximation for normal 

force at the contact patch. It also accounts for aerodynamic lift and drag and tyre 

rolling resistance. 

Whilst comparing the simple model against actual data, it was found that 

inaccuracies occurred [55]. Therefore, this simple model has been extended to a 

more sophisticated thirteen DOF (longitudinal, lateral, yaw, roll, pitch, four wheel 

spin, four tyre lag DOF). Again it is a four wheel model and utilises a Pacejka 

combined slip tyre model (but with lateral tyre lag) and also accounts for 

aerodynamic lift and drag and tyre rolling resistance. Both vehicle models are fully 

described below. 

The vehicle models described below have been created using MatLab and Simulink 

software for rapid model development, short simulation runtimes and efficient 

display of results. The vehicle models are created in Simulink and figure 3.1 shows 

how their modular design allows for the development of individual components (e. g. 

engine, tyres, etc. ). 
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Figure d. 1- Modular vehicle model design. 

To begin a simulation, a MatLab script based program loads the vehicle parameters, 

a driver control time history matrix and an initial velocity. The Simulink vehicle 

model is then called from the MatLab workspace, the simulation run and results 

returned to the workspace. The MatLab script then displays the simulation results or 

passes them to other MatLab scripts for post processing (e. g. frequency response, 

path error). Examples are given of the user interface routines in Chapter Seven. 
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3.2 Simple model 

3.2.1 Vehicle Model 

From reviewing the literature, an initial minimum level of sophistication was 

determined, which allowed all the major factors affecting vehicle performance to be 

adequately modelled. This simple vehicle model consisted of seven DOF 

(longitudinal, lateral, yaw and four wheel spin DOF) and has all four wheels 

modelled. The model utilised a Pacejka combined slip tyre model and a quasi-static 

approximation for normal force at the contact patch. It also accounted for 

aerodynamic lift and drag and tyre rolling resistance. 

The performance of the vehicle is modelled by assuming the mass of the vehicle is 

concentrated at the vehicle's centre of gravity and a suitable estimate of the vehicle's 

yaw inertia is used, as shown in figure 3.2. Appendix A shows the full derivation of 

the equations of motion of the vehicle model from first principles, using the inertial 

axis system in figure 3.2. The full model created in Simulink is shown in Appendix 

D. 

X /1& 

/Axis 
system . I, 

moving with the 
p vehicle 

6 

t. 

00 

at 

p Ground-fixed 
axis system. G 

LA V( I 
Figure 3.2 - The moving axis system, A. for a simple four wheel model. 
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The equations used to represent the vehicle's longitudinal, lateral and yaw response 

are given in equations (4), (5) and (6) respectively. These can be seen to be in the 

form of Newton's second law and due to the fact that the front wheels are steered the 

front wheel lateral force terms also appear in equation (4) along with the longitudinal 

tyre force terms. A similar thing happens in equation (5) (subscripts are defined in 

the nomenclature and shown in figure 3.2). 

EF, =cosSfFý, +cos8, F�-sinSýF -sinSfFy, +Fr, {+F*-112(pFACdu2)- 
4 

/4 

=m(ü-vr) 

4 

where Fd,.,, = p. N� cos art 

Fr=cosgF +cosg fF +sin8fFe+sinÖfF , +Fy, 1+Fy�=m(v+ur) (S) 

2: Mt (Fyfl + F)cosafa-(Fyi+Fy�ý = I. F (6) 

where: 

a: Centre of gravity distance from front axle, m (figure 3.2) 

b: Centre of gravity distance from rear axle, m (figure 3.2) 

lu: Yaw inertia of whole vehicle about a3 axis, kgm2 

m: mass, kg 

r: Rotational velocity about g3 axis, rads' (figure 3.2) 

u: Velocity of vehicle in at axis direction, ms" (figure 3.2) 

v: Velocity of vehicle in a2 axis direction, ms" (figure 3.2) 

4 Steered angle of front axle, rad (figure 3.2) 

x,: Coefficient of rolling resistance for a tyre 
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The equation used to represent the response of each wheel system is shown in 

equations (7) to (10). Figure 3.3 shows the axis system used for each wheel. 

Fýr, ý = le(bfi (7) 

Fýýr� =1pfrtvh (8) 

F:, ir�� =1, ý, idv i i9) 

F,.,, r,,,,, =1.,,, 05, (10) 

where: 

I., Spin inertia of wheel about its spin axis (axle), kgm2 

r,,; Radius of tyre, m 

a Rotational velocity of wheel about axle, rads"1 

Spin 
angle 

w, 
0 

Road r w, 
surface ' 

Figure 3.3 - Wheel axis system 

3.2.2 Tyre Model 

The slip angles at each tyre contact patch are dependent on the geometry of the 

vehicle and its longitudinal, lateral and yaw velocities. Using figure 3.4 the value of 

the slip angle at each tyre contact patch can be found and is defined as the 

longitudinal velocity of the tyre contact patch divided by the lateral velocity of the 

tyre contact patch, see equations (11) to (14). 
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where: 

t: Half the value of track of axle, m (figure 3.2) 
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Figure 3.4 - Tyre slip angles. 11 
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Figure 3.5 - Torques producing wheel longitudinal slip. 

The longitudinal slip ratio of a tyre is defined [8] as being the ratio of the velocity of 

the tyre contact patch to the velocity of the vehicle at that point. The rotational 

velocity of the wheel is found by integration of the sum of the torque being applied 

to the tyre by the powertrain or braking system and the torque being produced by the 

tyre at that time due to the slip ratio generated, see figure 3.5. The tyre's contact 

patch velocity can then be divided by the ground velocity at that point to give the slip 

ratio, see equations (15) to (18). 

K` rw r-Tb. A f -Ttfl Wt 
1 

(15) J 
IW u+tfr 

j1 
-(16) x fr = rw JTbrakf -- Tý 

. dt 
Iw lu_t, 

rJ 

K 
(rw jT"_ Tb, 

o ker -T rt 
'' 1w u+trr 

fT� - Ttra key - Tºrr 
. dt 

1 
(18) 

"ý "' IW u-t, r 

where: 

Tb, n, u: Torque produced by the brake at that wheel, Nm 

TT: Torque produced by the engine at that wheel, Nm 

T,: Torque produced by the tyre itself at that wheel, Nm 
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The tyre is modelled using the Pacejka Magic Formula [8], which is based on an 

empirical approach, described in the previous chapter. The resultant forces created 

by the tyre are derived from a set of coefficients which are obtained by direct 

measurement of the tyre. These coefficients (see Appendix C) define the tyres 

response to external factors which generate forces in the tyre (i. e. a, ic and N, in 

equation (1)). Pacejka [81 has shown that the response of the tyre is given by 

equations (19) and (20). The coefficients used in these equations are found from the 

measured tyre coefficients and the applied external inputs. 

F=D sin [C arctan f Bx - E(Bx - arctan Bx)}] -5 (19) 

where for lateral force x=a+S. and for longitudinal force x=K+S., (20) 

B: Stiffness factor for tyre magic formula equation 

C: Shape factor for tyre magic formula equation 

D: Peak value for tyre magic formula equation 

E: Curvature factor for tyre magic formula equation 

SH: Horizontal shift for tyre magic formula equation 

Sv: Vertical shift for tyre magic formula equation 

x: Variable 

3.2.3 Load Transfer Model 

A quasi-static approximation of lateral load transfer [31 has been used to calculate the 

normal force at the tyre contact patch and is dependent on static weight distribution, 

suspension roll stiffness distribution and aerodynamic downforce, see equations (21) 

to (26). 
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' 2t 

r 
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and also: 

g: Gravitational constant, ms'2 

h: Sprung mass centre of gravity distance from roll axis, m 

1: Wheelbase of car, m (figure 3.2) 

LLT.: Lateral load transfer, N 

ko: Sprung mass roll stiffness, Nmrad"1 

z,: Roll centre height, m 

3.2.4 Powertrain Model 

The engine has been modelled as a parameter map of engine speed against torque 

produced (this is found from experimental data and is at 100% throttle), see figure 

3.6. As the clutch is not modelled and the engine is modelled as linked directly to 

the road wheels (through the drivetrain), the parameter map is adjusted to give a 
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reasonable level of torque at low engine speeds. This accounts for the driver slipping 

the clutch from a stationary start to allow the engine speed to be high and give a 

reasonable level of torque. The simulation controls the level of torque applied using 

a throttle value that limits the engine torque value taken from the parameter map. 
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Figure 3.6 - Engine parameter map. 

12000 

The drivetrain is modelled as a set of six different ratios which increase the torque 

(and decrease the rotational velocity) from the engine. These ratios take into account 

the internal engine gear reductions and vehicle driveline ratios and a control function 

automatically changes up gear at 10,000 RPM or down gear at 5,000 RPM (stopping 

at ls` or 6 ̀h gear). These values are definable by the user and keeps the model in the 

optimum gear that will maximise the torque produced by the engine, any tighter a 

`rev range' was found to be unrealistic compared to the actual driver rev range 

utilised. 
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The torque is applied to the rear axle through a torque biasing (Torsen type) limited 

slip differential, which splits the torque between the rear wheels (biases) depending 

on the difference in rear wheel rotational velocities [56]. This initial simple model is 

quite basic and linearly takes torque from the inner wheel and applies it to the outer 

wheel up to the value of the bias ratio, depending on the difference in rotational 

velocities between the inner and outer wheels. 

Once the torque applied to the left and right hand rear wheels is determined, it can be 

used in equations (15) to (18) to derive the slip ratio and thus longitudinal force 

produced by the tyre. 

3.2.5 Braking Model 

The model is very basic and assumes that the braking system can lock the wheels at 

any speed, irrespective of its design. Therefore a front and rear (same for left or right 

side of vehicle) negative torque value is applied to each wheel. Again, a slip ratio 

can then be derived from equations (15) to (18) and thus longitudinal force produced 

by the tyre is found. 
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3.3 Sophisticated model 

3.3.1 Vehicle Model 

The vehicle is assumed to consist of three parts; a sprung mass body, a front 

unsprung mass body and a rear unsprung mass body. A suitable value for the second 

moment of area is assigned for the vehicle's yaw inertia and the sprung mass roll and 

pitch inertia values (the products of inertia are assumed small and negligible). Crolla 

[16] has shown that the equations of motion of the vehicle can be derived from first 

principles using a Lagrangian approach. This involves using a set of partial 

derivatives (Lagrange's equations) which contain the total kinetic, potential and 

dissipative energies of each of the components of the system and can be evaluated to 

give the equations of motion. 
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Figure 3.7 - The moving axis system, A for roll DOF. 
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Figure 3.8 - The moving axis system, B, for pitch DOF. 

Figures 3.2,3.7 and 3.8 shows the axis systems used to describe the vehicle. Two 

inertial frames of reference (axis system A and B) have been set up in a non inertial 

axis system G. The vehicle fixed reference system A moves in the ground fixed 

reference system G, whilst the unsprung mass fixed reference system B is free to 

rotate around at or a2 (i. e. roll about the vehicle fixed axis system ai axis or pitch 

around the vehicle fixed axis system a2 axis respectively). The equations that are 

used to represent the vehicle's performance are given below in equations (27) to (35) 

(longitudinal, lateral, yaw, roll, pitch and four wheel spin DOF) and are in a similar 

form to those for the simple model. The full derivation of these equations can be 

seen in Appendix B, with Appendix E displaying the Simulink model. 
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where: 

Irib: Pitch inertia of sprung mass about a2 axis, kgm2 

I,: Roll inertia of sprung mass about at axis, kgm2 

M: Moment, Nm 

0: Pitch angle of sprung mass, rad (figure 3.8) 

Roll angle of sprung mass, rad (figure 3.7) 
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3.3.2 Tyre Model 

The tyre model used is the same as in the simple model, except that the lag in lateral 

force produced by the tyre has been included in the model. This was introduced 

using a first order system [81 to lag the slip angle being fed into the tyre model and 

includes the result of normal force and longitudinal speed on the lagged response of 

the tyre (see equations (37) to (40)). 

_ 
u+tfr a, N., 

aý` 
v+ar 

-ýf No(u+tfr) 
dfl (37) 

u-tfr 
-5., 

)-( afNf, d 
v+ar No(u-tfr) f' (38) 

u+t, r a, Nºr 
d39 

v-br No(u+t, r) '' 
() 

a_u-t, r a, N� 
ä (40) 

" v-br No(u-t, r) 

where: 

m. Tyre lateral slip angle lag coefficient 

3.3.3 Load Transfer Model 

The normal forces at the tyre contact patch are proportional to the static weight 

distribution, the aerodynamic downforce on the axle and the lateral and longitudinal 

load transfer due to the sprung mass rolling and/or pitching (see equations (41) to 

(44)). 
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Nn 
(mb)+1pFAc2 

-Bk2a+qwcý. tf (41) 

Nh(mgbJý1pFAc2 -O-t1 (42) 

Nd =( 21a)+4 p. FA. C,,. u2+6kerb+*Ortº (43) 

N" =(mga)+4 p. FA. C,, u2+0 - ot, (44) 

where: 

ko: Sprung mass roll stiffness, Nmrad't 

k6 Sprung mass pitch stiffness, Nmrad" 

3.3.4 Powertrain Model 

The main difference between the simple and sophisticated models is the differential 

model used. The differential model takes the form of an empirical model which uses 

the same equation form as the Pacejka Tyre Formula (equation (15)) and varies the 

torque biasing value, up to a saturation value, given the difference in left and right 

wheel rotational velocities. The relationship is shown in figure 3.9 and the initial 

slope and final saturation value is controlled by a torque sensitivity and bias ratio 

value respectively. Not only is this model used for driving, but also braking, as the 

vehicle is modelled as having only one rear brake disc mounted on the differential 

housing (this design is peculiar to the Leeds Formula SAE car). The only other 

difference between the simple and sophisticated vehicle models is a gear change 

time, which is a user specified delay in applying engine torque after a gear change. 
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Figure 3.9 - Response of empirical torque biasing differential model. 

3.3.5 Braking Model 

The braking system schematic shown in figure 3.10 shows that the braking torques, 

Tb, a,,, are generated using a driver control input of pedal force. This force is 

distributed between the two master cylinders by the balance bar and each generates a 

pressure in the front and rear hydraulic circuits. The brake discs and callipers on the 

vehicle are modelled as friction devices which generate a torque by applying a force 

resisting wheel rotation at the calliper radius, see equation (45). Once the torque is 

found a slip ratio can then be derived using equations (15) to (18) and thus 

longitudinal force produced by the tyre. 
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Figure 3.10 - Schematic of a braking system using three brake discs, each with a 

four-pot calliper. 

where: 

_ 
Pedal(, upad )Balbar(Aý. 

alliper 

)realliper 

TGmkr 
dF Jixx 
`nslrr 

Aralliper: Total area of pistons in a calliper, m2 

Amasser: Area of master cylinder, m2 

Balbar: Brake system balance bar ratio 

Pedal: Brake pedal force ratio 

r,. a/jiper: Radius of calliper, m 

(45) 

p: Coefficient of friction between brake pad and disc 

As mentioned above, this particular model involves only one brake disc on the rear 

of the vehicle mounted to the differential casing. The negative bias ratio of the 

differential, therefore, can play an important roll in combined cornering and braking 

manoeuvres. The model is easily expandable to a more conventional 4 brake system. 
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3.4 Non-linear Path Following Preview Controller 

A non-linear path following preview controller has been created to enable closed 

loop steer angle control input estimations for following a given path, see figure 3.1. 

These estimations have then been employed in the transient approach for LTS as an 

initial guess for the vehicle control inputs used to initialise the optimisation routine. 

The scheme employed has been detailed by Casanova et al [9] and involves using a 

path previewing optical lever to find the correct steer angle needed to follow a given 

path. The optical lever can be seen in figure 3.11 and involves estimating the path 

error between the ideal path and preview points on a line drawn out, forward from 

the vehicle and along its longitudinal axis (i. e. an optical lever). These errors are 

then passed through a series of control gains and saturation functions (see figure 

3.12) to estimate the driver's steer angle input given by the current deviation from 

the ideal path and the approaching ideal path the vehicle is being required to follow. 

A more complete description of this method is given below. 
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The simulation is run with the vehicle undergoing constant forward velocity and an 

outline of the controller's method of operation is given below: 

1. Path description defined by user (or found from data logging measured data) 

and consists of matrix of path curvature, tangent angle to path, x position and 

y position (measured from a fixed axis) at fixed distance steps along the 

track's path. 

2. An optical lever is extended forward from the vehicle parallel to the vehicle's 

longitudinal axis. Preview points are placed at fixed distances, d, forward 

from the vehicle's centre of gravity. 

3. At any given point in the simulation, the vehicle's position and yaw angle is 

used to estimate the position of each preview point relative to the track. 

Using linear interpolation between the discrete points in the path description 

matrix, the path error, eq and e,, (perpendicular distance between preview 

point and path and error angle), is found for each preview point on the optical 

lever, see figure 3.11. 

4. A non-linear control scheme with saturation functions then uses these path 

errors to estimate the required steer angle. It does this by passing the errors 

through a gain and saturation matrix, see figure 3.12. The saturation matrix 

ensures the steer response for each path error value keeps within certain 

limits and prevents the vehicle oscillating about the correct path. 
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Figure 3.12 - Non-linear control scheme for path following. 

Empirical tuning of the gains and saturation limits was carried out. The preview 

controller was found to follow a given path with only a small error (below 0.5m 

lateral offset), even at high levels of lateral acceleration where the tyre response is 

highly non-linear. It has been used in the Manoeuvre Time Minimisation package to 

create an initial guess for the driver control matrix. 
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3.5 Conclusions 

The chapter details the development of two vehicle models, a simple seven DOF and 

a more sophisticated thirteen DOF model. The simple model contains a four wheel, 

single body system with lateral, longitudinal and yaw DOF. It uses a Pacejka Magic 

tyre formula combined slip model, with each wheel having a spin DOF and a quasi- 

static approximation of weight transfer. The effects of aerodynamic and tyre rolling 

resistance loads are also accounted for. Powertrain and basic braking and differential 

models have been included. 

The sophisticated vehicle model is a development of the simple model and includes a 

three body (front and rear unsprung masses and vehicle body sprung mass) system, 

which adds a roll and pitch DOF to the model. A tyre lag model, giving each tyre an 

extra degree of freedom, has been included with an improved differential and brake 

system models. 

Both models have been created in MatLab and Simulink and full derivations and 

model details are displayed in the Appendices. In addition to the vehicle models, a 

path following non-linear preview controller has been produced to enable an initial 

guess to be produced of vehicle control inputs. 
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4 Experimental Results 

4.1 Introduction 

Actual racing car handling performance data is essential in the assessment of the 

accuracy of the vehicle models. As an in-depth study of racing car handling has not 

previously been published, it was decided by the author to carry out this task as part 

of the research undertaken. This chapter details the collection of this racing car 

handling performance data, which was gathered in two separate phases. In each 

phase a different vehicle was used and care was taken to ensure the data collected 

was accurate by applying well-established vehicle testing procedures [3]. 

Phase One involved the collection of data detailing lateral dynamic handling 

behaviour [55,57]. This was used to validate the lateral, roll and yaw DOF, as well 

as lateral tyre, load transfer and aerodynamic areas of the vehicle models. The data 

logging equipment was developed in co-operation with Delft University [58] and the 

testing conducted in September 2000 using the University of Leeds F4 racing car. 

Phase Two involved the collection of longitudinal and combined lateral and 

longitudinal dynamic handling behaviour. This was used to not only validate the 

longitudinal and pitch DOF of the vehicle models, but also the complete model 

including powertrain, braking, tyre, load transfer and aerodynamic models. The data 

logging equipment was developed by the author and the testing conducted in July 

2001 using the University of Leeds F5 racing car. 
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The chapter also details the methods used for obtaining the parameter set for each 

vehicle. The measured results are summarised and discussed and details are given of 

any post-processing of data that occurred. 

4.2 Data Logging System 

The University of Leeds F4 (see Figure 4.1) and F5 racing cars were built for the 

Formula SAE/Student competitions. Each vehicle has a similar design and both are 

rear wheel drive and raced on tight, twisty circuits involving moderately low speeds 

(below 40 ms-1). Both use a restricted Honda CBR 600cc motorcycle engine, which 

drives a limited slip differential mounted on the rear axle. 

Figure 4.1 - Leeds University F4 racing car and data logging equipment locations. 
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In Phase One, the data logging system was constructed in cooperation with Koert De 

Kok [58] from Delft University and all of the equipment used was loaned by Delft 

University. Because of this, a time span of only a week was available to fit the 

system to the vehicle and conduct the tests. This fact and the reliance on the weather 

meant that there was no time for test repeats. 

Due to the short testing time frame, considerable effort went into the systems 

construction, observations of the vehicle model completing planned test manoeuvres 

were used to specify the parameters that were to be measured and the sensor ranges 

required. Other considerations made in regard to the sensor specifications and the 

data acquisition system design itself were cost, durability, weight, accuracy and 

attachment to the vehicle. Data logging and post processing software routines were 

developed in advance for rapid evaluation of the data, once measured, and the system 

took two days of the available week to fit to the vehicle. 

The system consisted of a Compaq Armada 1700 laptop running a Windows 95 

operating system with 96 MB of RAM. Eight analogue data channels were digitised 

using a National Instruments DAQCard-AI-16XE-50 data acquisition card. This 

PCMCIA card digitised the eight analogue channels using a 16 bit A/D converter. 

The sampling rate was set at 200 Hz (see below) and the channels were measured 

differentially (i. e. each signal was measured with respect to its measured reference 

signal). The digital data was recorded using a program written in Labview on the 

laptop's hard disk in a format readable by MatLab. To every measurement file an 

increment number was automatically added to the filename to make sure that data 

was not overwritten. The entire system weighed approximately 30 kg, which was 

acceptable in relation to the overall weight of the vehicle (300 kg). Finally, a readout 
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displaying the vehicle's forward velocity was used to allow the driver to try to 

maintain fixed forward velocities. The vehicle performance parameters measured 

and the types of sensor used are shown in table 4.1. 

Make and Channel Parameter Measured Sensor and Range 
Model 

Piezoelectric accelerometer Druck 3140 
1 Lateral acceleration 

-5g to +5g 

Linear potentiometer Penny and Giles 
2 Rack displacement 

0 to 150mm 129-56A 

Piezoelectric gyro Systron 
3 Yaw rate 

-64 to +64 degsl Gyrochip AQRS 

Piezoelectric gyro Systron 
4 Roll rate 

-64 to +64 degs'1 Gyrochip AQRS 

Correvit speed sensor Datron 
5 Longitudinal speed 150 msI Correvit S-CE 

Correvit speed sensor Datron 
6 Lateral speed 20 ms'1 Correvit S-CE 

7 Steering wheel angle Absolute encoder MIRA 

8 Steering wheel torque Strain Gauges MIRA 

Table 4.1 - Phase One sensors. 

In Phase Two, the data logging system was constructed with no outside assistance, 

using the experience gained in Phase One. Some of the sensors, in particularly the 

correvit, were loaned for only a short period of time (a week). This fact and the 

reliance on the weather again meant that there was no time for test repeats. 

The same techniques described above were employed to specify the parameters that 

were measured, the data acquisition system and the sensors used. Once again, 

limited time was available to fit the system to the vehicle and repair the vehicle faults 
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(see sub-section 4.5.2) as the car had to be shipped back from competition in the 

USA. 

The system consisted of a Pentium II, 600 MHz laptop running Windows NT with 

128 Mb RAM. Thirteen channels were digitised using a National Instruments 

DAQCard-6062E card. This PCMCIA card digitised the thirteen analogue channels 

using a 12 bit A/D converter. The sampling rate was set at 200 Hz (see below) and 

the channels were measured as referenced single ended signals (i. e. each signal was 

measured with respect to the card ground reference signal). The digital data was 

recorded on the laptop's hard disk using a program written in MatLab, which 

allowed the files to be created in the same format as Phase One (program listings are 

given in Appendix F) and again, file numbers were automatically incremented to 

avoid overwriting. This system weighed approximately 20 kg, which, being lighter, 

was even more suitable for use with the vehicle (F5 weight was 300 kg). The vehicle 

performance parameters measured and the types of sensor are shown in table 4.2. 

A case example of the development involved with the data acquisition system 

throughout the testing is the measurement of lateral and longitudinal velocity by the 

correvit sensor. In Phase One it was mounted at the rear of the vehicle, which was 

found to be flexible, changing the measured lateral and longitudinal velocity signals, 

during harsh manoeuvring. This is because the sensor is sensitive to its direction of 

travel and any angular offset produced an error in the measured data. Stiffening the 

mount during Phase One failed to completely eliminate the problem, so for Phase 

Two the sensor was solidly mounted to the front of the vehicle directly along its 

longitudinal access (see Figure 4.1). This significantly improved the data produced 

by the correvit. 
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Parameter Make and Channel Sensor Type Used 
Measured Model 

Piezoelectric accelerometer Entran EGCS 
1 Lateral acceleration 

-2g to +2g 

Longitudinal Piezoelectric accelerometer Entran EGCS 
2 

acceleration -2g to +2g 

Piezoelectric gyro Systron 
3 Yaw rate 

-64 to +64 degs'1 Gyrochip AQRS 

Piezoelectric gyro Systron 
4 Roll rate 

-64 to +64 degs'1 Gyrochip AQRS 
Piezoelectric gyro Systron 

5 Pitch rate 
-64 to +64 degs'1 Gyrochip AQRS 

Correvit speed sensor Datron 
6 Longitudinal speed 

150 msa " Correvit S-CE 
Correvit speed sensor Datron 

7 Lateral speed 
20 ms'' Correvit S-CE 

Rotational potentiometer RS 
8 Steering wheel angle 0 to 720 degrees 

Front brake line Piezoelectric pressure Druck PMP 317 
9 

pressure transducer 0 to 50 bar 

Rear brake line Piezoelectric pressure Druck PMP 317 
10 

pressure transducer 0 to 50 bar 

Front wheel Hall effect sensor 0 to 180 RS 
11 

rotational speed rads'1 

Hall effect sensor 0 to 12000 RS 
12 Engine speed 

rpm 
Rotational potentiometer Webber 

13 Throttle position 
0 to 50 degrees 

Table 4.2 - Phase Two sensors. 
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Due to the limited space and low weight of the vehicles, both data acquisition 

systems were small and compact and housed the laptop, the filters, the sensors and 

the power system in separate units which were distributed throughout each vehicle, 

see figure 4.1. The acceleration and gyro sensors were placed as close as possible to 

the centre of gravity, whilst the linear potentiometer was mounted to investigate the 

response of the steering system. In addition, a start/stop recording button and a data 

collection status L. E. D. were attached within easy reach and view of the driver. 

A high frequency filter was applied to the analogue sensor signals during 

measurement on the vehicle to eliminate high frequency noise. Crolla reports [16] 

that the maximum input frequency generated by the driver is approximately 5 Hz and 

that the maximum handling response of the vehicle system is also around 5 Hz. To 

make sure no vehicle response data was filtered out, the width of the pass band was 

set to 16 Hz and all frequencies higher than the 16 Hz boundary were filtered 

digitally using an identical lowpass filter for each channel. This kept all the signals 

at the same band width and introduced equal phase shifts for each channel. The filter 

type is always a trade-off between the width of the transition band (a frequency 

domain characteristic) and the settling time of the step response (a time domain 

characteristic) and so it was decided to use a Butterworth filter [59] for efficiency. 

The magnitude of the frequency response of a Butterworth filter is given in equation 

(46). 

B(jw) =1 In 
(46) 

1+O 
where: 

w: Signal frequency 

B(jco): Butterworth filter response 

n: Filter order 

66 



The stop band was set to filter out 99 % of all the frequency content of the signal 

above 16 Hz. Using these criteria the cut off frequency was found to be at least. 26 

Hz using a sample rate of 165 Hz. This value was rounded up to 30 Hz using a 

sample rate of 200 Hz. The characteristic behaviour of the filter was then found to 

be 99.67 % pass at 16 Hz and 0.81 % pass at 200 Hz. 

4.3 Obtaining the Vehicle Parameter Sets 

Before each testing phase, a vehicle parameter set, with data logging system 

attached, was measured for each vehicle. To ensure consistency in each phase of 

testing, vehicle parameters were kept constant throughout. The parameters measured 

and the method of collection are listed below: 

" Wheelbase, track, wheel radius, frontal area - measured. 

" Vehicle overall mass, centre of gravity lateral, longitudinal and vertical 

position - found using electronic balances [3], see figure 4.2 a). 

" Yaw inertia - found using a three point pendulum experiment and yaw gyro, 

see figure 4.2 b). Frequency of pendulum was found using measured yaw 

velocity given by gyro and from this the inertia of the pendulum was derived 

[14], i. e. the vehicle's yaw inertia. 

" Front/rear sprung mass roll stiffness and roll centre heights - calculated using 

a suspension kinematics package. 

" Coefficients of front/rear lift and overall vehicle drag - from wind tunnel 

measurement, see figure 4.2 c). The coefficient of drag of the F5 vehicle was 

found in Phase Two using the coast down manoeuvre (see the end of sub 

section 4.5.2). 
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" Tyre rolling resistance - also found using the coast down manoeuvre in Phase 

Two. 

9 Pacejka tyre model parameters - provided by Delft University [581. 

9 Engine torque curve - measured on an engine dynamometer, see figure 

4.2 d). 

9 Engine gear ratios - engine workshop manual. 

" Differential parameters - from Torsen literature [56]. 

" Brake system - system component specification detailed in company 

catalogue. Coefficient of friction of brake pad/disc interface provided by 

manufacturer. 

Figure 4.2 - Vehicle data set collection: a) Centre of gravity position, b) Yaw inertia, 

c) Aerodynamic coefficients, d) Engine torque curve. 
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4.4 Manoeuvres Undertaken 

During Phase One, when measuring the F4 vehicle's lateral dynamic behaviour, 

several manoeuvres were conducted at constant forward velocities. The manoeuvres 

not only measured the steady state performance of the vehicle, but also its transient 

response. To check for consistency each manoeuvre was repeated several times. 

The manoeuvres conducted were: 

" Steady state circle (constant path radius) manoeuvre - conducted for both left 

and right hand turns, from stationary up to the lateral acceleration limit of the 

vehicle by increasing the vehicle speed at a fixed steer angle. A complete 

recording (a sweep) made from start to finish and steady state `snapshots' 

were taken at fixed forward velocities up to the limit of the vehicle's 

performance. 

" J-turn (step steer input) manoeuvre - conducted for both left and right hand 

turns, at various constant forward velocities and degrees of steer input. 

" Double lane-change manoeuvre - at various constant forward velocities using 

ISO test standard [60] to describe the path boundaries. 

" Random steer input manoeuvre - conducted at a constant forward velocity, 

which enabled the frequency domain response of the vehicle to be derived 

from its time domain data. 

In Phase Two, to measure the F5 vehicle's longitudinal and combined (lateral and 

longitudinal) dynamic behaviour, several further manoeuvres were conducted. 

Again, each manoeuvre was repeated several times for consistency and the 

manoeuvres conducted were: 
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" Acceleration manoeuvre - standing start acceleration to maximum forward 

velocity in straight line. 

" Braking manoeuvre - from maximum forward velocity to a stop in straight 

line. 

" Coast down manoeuvre - from maximum forward velocity to stop in straight 

line, without any driver inputs. Carried out twice in opposite directions. 

" Hairpin manoeuvre - involved the vehicle negotiating a 180° hairpin type 

corner at the limit of its performance (braking into a corner and engine 

acceleration out of it). Conducted for both left and right hand corners. 

9 Slalom manoeuvre - weaving in and out of cones, with defined entry and exit 

gates and conducted at the limit of the vehicle's performance. 

4.5 Results of Testing 

Once the data had been recorded, further software filtering was required to attenuate 

high frequency noise that was superimposed on the low frequency vehicle responses 

that were being measured [16]. This noise was caused by high frequency vibrations 

in the vehicle body created by the engine and the tyre and road surface interaction. 

These filtering routines [59] can be seen in Appendix F and an example is given in 

figure 4.3 of the effect filtering has when applied to measured j-turn data. A 

Butterworth filter with a stop band of 7 Hz and a cut off frequency of 15 Hz was 

used. It can be seen that the filtering routines successfully remove the high 

frequency noise and allows the low frequency response of the vehicle to be 

examined. 
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Figure 4.3 - Effect of filtering on lateral acceleration response in a j-turn 

manoeuvre. 

Software filtering, however, was unable to attenuate the noise seen in the roll and 

pitch gyro measured data without affecting the underlying low frequency signal. The 

reason for this was that the gyros were measuring the small angular velocities seen in 

the stiffly sprung vehicle body (the maximum roll or pitch angles of the vehicles are 

approximately 1.5 degrees) and the noise generated in the vehicle body was of a 

similar magnitude to the angular velocities being measured. This noise also included 

low frequency signals, which masked the vehicle's body rotational responses that 

were being measured. Finally, as angular velocities were being measured, no steady 

state values could be extracted from the random noise. 
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4.5.1 Phase One Results 

Table 4.3 details the data collected in Phase One and gives an indication of the 

variations made between runs. 

Manoeuvre Number of Runs Measured Details Undertaken 
Stationary (with/without 

Calibration 30 engine running) and before 

each set of manoeuvre runs. 
For both left and right hand 

Steady state circle Y 
64 snapshots and 

turns up to the limit of 
manoeuvre 15 sweeps 

performance of the vehicle. 
For both left and right hand 

J-turn manoeuvre 40 turns at 10,11,12,13,15 

and 18 ms'1. 
Double lane-change 

15 At 15,26,27,28,29 ms". manoeuvre 
Random steer input At constant forward 

manoeuvre 
15 minutes of data collected velocity. 

Table 4.3 - Phase One testing results. 
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Figure 4.4 - Phase One steady state circle manoeuvre results. 

Figure 4.4 shows the steady state snapshot results taken in the first testing phase. 

Sixty four snapshots were taken over the full range of the vehicle's lateral 

acceleration response and both left and right hand circles have been combined on the 

same graph. A best fit line has been placed on the plot, as well as the snapshots 

(denoted by a cross), and the theoretical continuation of the data is given by the 

broken line. Maximum lateral acceleration achievable was 13.4 ms, 2 at a forward 

velocity of 15 ms-' on a 16.8 m path radius. It can be seen that the vehicle's handling 

balance is neutral up to its limit of performance but, exhibits terminal understeer at 

the limit, due to the increase in steer angle needed to increase lateral acceleration 

[16]. This trend is similar to the results published by Miano et al [53] for another 

unspecified racing car. 
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Figure 4.5 - Phase One measured yaw velocity (left) and lateral acceleration (rig/it) 

responses in a j-turn manoeuvre. 

Figure 4.5 shows the j-turn response of the vehicle for a 28 degree step steering 

wheel angle input at a forward velocity of 12 ms-1, which produced a lateral 

acceleration response of approximately 5.6 ms-2. Some overshoot is seen in both the 

yaw velocity and lateral acceleration responses but, this is quickly damped out in less 

than one oscillation. This compares favourably to the response given for a Ferrari by 

Crolla [16] (the Ferrari reached a much lower lateral acceleration of 3 ms-1) and the 

results again show similar properties to the results published by Miano et al [53] for 

another unspecified racing car, undergoing a different j-tum manoeuvre. 
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Figure 4.6 - Phase One measured yaw velocity (left) and lateral acceleration (right) 

responses in a lane-change manoeuvre. 
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Figure 4.6 shows the double lane-change manoeuvre response of the vehicle at a 

forward velocity of 28 ms-1, giving a peak lateral acceleration response of 

approximately 10 ms-2. As this manoeuvre is a standard ISO defined test it can be 

compared to the results presented by Miano et al [53] and shows that the vehicle has 

a similarly shaped response. Again, no analysis can be made on relative performance 

as non-dimensional axes were used and the type of vehicle was not specified, but the 

trends seen in the responses are similar. 
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Figure 4.8 - Phase One magnitude (left) and phase (right) frequency domain 

responses taken from measured lateral acceleration response of the F4 vehicle. 
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Figures 4.7 and 4.8 show the frequency domain response of the vehicle, which were 

found from the random steer input time domain measured data by applying the 

Welch spectral analysis method [59] to find the complex transfer function between 

the steer angle input and the yaw velocity and steer angle input and lateral 

acceleration responses. The transfer functions show the response of the vehicle for a 

given driver input and are split into gain and phase for simplicity. To reiterate the 

test procedure, the driver applies a varying frequency steer input, at a constant 

forward velocity and a relatively low lateral acceleration (in the linear response range 

of the car). 

To ensure an adequate amount of data had been collected with enough frequency 

content to cover the range of possible driver inputs, the measured responses were 

found to have a coherence of greater than 95% over the range of 0.2 to 4.5 Hz, which 

indicated that enough data had been gathered (15 minutes of data was collected). 

These routines can be seen in Appendix F. 

The frequency domain responses allow a further examination of the vehicle's 

response properties. Figure 4.7 shows that the magnitude of the yaw velocity 

response is nearly constant across the whole range of possible driver inputs with a 

steady increase in the phase lag of the vehicle's response as steer wheel angle input 

frequencies are increased. This is not the case for the lateral acceleration response 

seen in figure 4.8, with the magnitude only remaining constant until 1 Hz and then 

linearly reducing, whilst an increase in phase lag is seen in the vehicle's response for 

increasing input frequencies. 

Frequency response results are accepted as somewhat difficult to interpret, but flat 

gains are linked to consistency and small phase lags are linked to responsiveness 

[16]. Thus, the vehicle's response may be deemed to be desirable as the magnitudes 
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remain constant up until 1 Hz and the phase lags do not grow to greater than 70 

degrees. 

4.5.2 Phase Two Results 

Table 4.4 details the data collected in Phase Two and gives an indication of the 

variations made between runs. 

Manoeuvre 
Number of Runs Measured Details 

Undertaken 

Stationary (with/without 

Calibration 20 engine running) and before 

each set of manoeuvre runs. 
Acceleration Times measured over 90m 

40 
manoeuvre from standing start. 

Braking manoeuvre 20 To a stand still. 

One made uphill against 
Coast down 

2 wind and the other downhill 
manoeuvre 

with wind. 
Hairpin manoeuvre 30 Both left and right handed. 

Some runs made at constant 
Slalom manoeuvre 15 

forward velocity. 

Table 4.4 - Phase Two testing results. 

During Phase Two, it was found that all data had not been completely captured. This 

was due to errors made in the specification of some sensors and vehicle faults that 

occurred during testing. The problems encountered are listed below and the 

solutions in respect to the vehicle validation process given in the following chapter: 

" The vehicle suffered from electrical problems causing it to be underpowered 

compared to the engine parameter map that had been measured earlier. 
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" The measured engine and front wheel rotational speeds were found to be 

saturating at low speeds due to the frequency to voltage conversion circuit 

design. 

" The front and rear brake line pressure sensors saturated below, but close to, 

the maximum pressures attained in the braking system. 
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Figure 4.9 - Measured longitudinal acceleration (left) and longitudinal velocity 

(right) responses in a standing start acceleration manoeuvre. 

Figure 4.9 shows an acceleration manoeuvre, where the vehicle accelerates from a 

standstill to 25 ms-1. The sharp dips in longitudinal acceleration correspond to the 

gear change lag time and the vehicle reaches 6 ̀h gear. The 0 to 60 mph time is seen 

to be 5.7 seconds which was due to the electrical fault mentioned above. Without the 

fault, 0 to 60 mph times of 3.5 seconds have been recorded by stopwatch 

measurements of the vehicle's performance whilst undergoing the same test. 
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Figure 4.10 - Measured longitudinal acceleration (left) and longitudinal velocity 

(right) responses in a straight line braking manoeuvre. 

Figure 4.10 shows a braking manoeuvre from just over 26 ms-1 to a standstill at 

approximately -13 ms-2. This shows that the vehicle has an excellent braking 

response that allowed it to stop from 26 ms-1 to a standstill in approximately 2 

seconds. 
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Figure 4.11- Measured yaw velocity (left) and acceleration (right) responses for a 

hairpin manoeuvre. 

Figure 4.11 shows the vehicle negotiating a 180 degree hairpin at its limit of 

performance. The hairpin has a 12.5m path radius at its centre-line and 5m track 

width. Figure 4.11 demonstrates how the driver decreases the vehicle's longitudinal 

deceleration to zero, whilst building up its lateral acceleration to a maximum at the 

apex, the driver is also seen to increase longitudinal acceleration away from the apex, 
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whilst diminishing the lateral acceleration. Examining the g-g acceleration plot in 

figure 4.12 shows how the driver takes maximum advantage of the vehicle's possible 

performance envelope by staying close to the envelope's edge. 

The points where the vehicle performance envelope crosses each axis have been 

found from the steady state circle, straight line acceleration and braking manoeuvres. 

As such, these results are effectively steady state (or as close to steady state as 

possible with the longitudinal manoeuvring) values and so, whilst undergoing the 

transient hairpin manoeuvre the vehicle crosses this steady state performance limit 

line [3]. 
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Figure 4.12 - g-g diagram for hairpin manoeuvre. 

From observations and feedback from the driver, it was seen that the driver followed 

a racing line through the corner. The racing line is produced by a driving technique 

commonly referred to as `apexing', where the driver ensures that the vehicle's 
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minimum speed, maximum lateral acceleration and thus minimum path radius occurs 

at the apex of a corner [3]. Along with the subjective observations of the vehicle's 

path, the driver control inputs seen in figure 4.13, further implies the use of this 

driving technique and the corner apex is assumed to be reached at just under 31 

seconds, where the longitudinal controls are zero and lateral acceleration is at a 

maximum (see figure 4.11). 
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Figure 4.13 - Time history of measured control inputs in a hairpin manoeuvre. 

Figure 4.14 shows the vehicle negotiating a slalom manoeuvre containing five cones 

and an entry and exit gate. As expected, the driver is seen to wait until the final cone 

before accelerating out of the manoeuvre, at the limit of the vehicle's performance. 

The cones are also negotiated very close to the limit of the vehicle's performance 

with lateral acceleration peaking at approximately 13 ms-2. 
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Figure 4.14 - Measured yaw velocity (left) and acceleration (right) responses in a 

slalom manoeuvre. 

The only undesirable characteristic of the vehicle's dynamic behaviour can be seen 

as a short peak in the yaw velocity measured data of figures 4.11 and 4.14 at 34 and 

173.5 seconds respectively. Both of these peaks occur during corner exit, with the 

vehicle undergoing approximately 0.5g of lateral acceleration and with the driver 

applying a large amount of torque to the rear wheels to accelerate away from the 

corner as quickly as possible. The vehicle under test, the F5 vehicle, suffered from 

rear wheel lift off problems due to the suspension system design. This meant that 

these spikes are caused by the inner rear wheel undergoing a reduction in normal 

force (lift off) and due to the torque being applied to it, losing traction. This causes 

an immediate reduction in the lateral force being created by the rear axle and a sharp 

increase in the yaw velocity (i. e. the back end stepping out in an oversteer effect). 

This only happened instantaneously and did not lead to the vehicle going into an 

uncontrolled spin because of the driver's control inputs. Previous subjective 

observations had made the problem apparent but, the measured data now proves that 

there is wheel lift off and quantifies the reduction in performance that occurs, as a 

result. 
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Figure 4.15 - Coast down manoeuvre curve fitting results. 

The coast down manoeuvre allowed the identification of the F5 vehicle's 

aerodynamic drag and tyre rolling resistance coefficients. An optimisation routine 

was used to vary these parameters in an equation of motion of the vehicle coasting 

(equation (47)). The equation's response was then compared against measured data 

and the coefficients varied until the closest match was found, see figure 4.15. This 

was done for both Run One and Run Two and the results averaged to eliminate the 

effect of ambient wind conditions and track slope. The aerodynamic drag coefficient 

of 1.05 that was derived closely matches that found in the wind tunnel for the F4 

vehicle of 0.98 (which is nearly identical in design) and the tyre rolling resistance 

coefficient of 0.016 is identical to that quoted in literature for a similar tyre [14]. 

-qT _ 
(0.5. 

p. FA. Cd. u2) +(4"µrr. m. g) (47) 
m 
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4.6 Conclusions 

It can be seen that a large amount of vehicle handling data has successfully been 

recorded for a racing car in two testing phases, using purpose built data acquisition 

systems. The data not only describes the vehicle's individual lateral or longitudinal 

dynamic handling behaviour, but also combined lateral and longitudinal dynamic 

handling behaviour. These results represent a new contribution to published 

knowledge in the area of practical racing car handling measured data [55]. 

Overall, the data confirms that the vehicles have stable and responsive handling 

properties, which can reach a peak lateral acceleration of 13.4 ms`2, longitudinal 

engine acceleration of 10 ms" and a braking deceleration of -14 Ms-2 . The use of the 

driver applying the `apexing' technique to negotiate the hairpin manoeuvre at the 

limit of the vehicle's performance has also been shown. 

In addition, comprehensive parameter sets for the vehicles have been found and data 

filtering and handing routines produced. These results are critical in allowing a full 

validation of the vehicle models described in Chapter Three, by comparison of 

measured and simulated responses. 
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5 Model Validation 

5.1 Introduction 

The initial objective of the chapter is to judge the accuracy of the lateral dynamic 

behaviour of two different vehicle models. This is undertaken using a comparison 

study between the simple and sophisticated vehicle models that were detailed in 

Chapter Three and the measured data collected in the testing Phase One and detailed 

in Chapter Four. The second objective is to validate the sophisticated vehicle 

model's longitudinal and combined lateral and longitudinal dynamic responses using 

the data collected in the testing Phase Two, also detailed in Chapter Four. 

The test manoeuvres were simulated by the MatLab vehicle models and the vehicle 

parameter sets collected were used to represent the F4 and FS vehicles. The Phase 

One manoeuvres were simulated using the measured steer angle as a time history 

input to control the vehicle model at a constant forward velocity (which was also 

measured on the vehicle). 

An exception to this was the steady state simulated results, which were created by 

applying a constant steer angle and forward velocity. The lateral acceleration values 

were only recorded when the yaw acceleration had reduced to zero and this was done 

for increasing forward velocities up to the limit of the vehicle's lateral acceleration 

performance. 

The simulated frequency domain responses were found from the random steer input 

manoeuvre time domain responses using the Welch spectral analysis method [59] to 

find the complex transfer function between the steer input and the yaw velocity and 
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lateral acceleration responses. Phase Two manoeuvres were simulated using the 

measured control inputs (steer angle, front and rear brake line pressures and throttle 

position) as time history control inputs to the vehicle model, after specifying an 

initial forward velocity. 

5.2 Lateral Dynamic Behaviour Comparison Study 

This section details a comparison study between the Phase One measured results and 

the simple and sophisticated vehicle model simulated results. As detailed in the 

previous chapter, the steady state lateral acceleration response of the actual vehicle 

was measured using the steady state circle manoeuvre. The transient response of the 

actual vehicle was measured using the j-turn, lane-change and random steer 

manoeuvres. The j-turn and lane-change manoeuvres allow a comparison of the time 

domain responses, whilst the random steer manoeuvre allows a comparison of the 

frequency domain responses. 

5.2.1 Simple Vehicle Model 

The sub-section shows a comparison study between the Phase One measured results 

and the simple vehicle model simulated results. The study is used to find the 

accuracy of the vehicle model in predicting the actual vehicle's lateral performance 

and includes comparisons for the steady state circle, j-turn, lane-change and random 

steer manoeuvres. 
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Figure S. 1- Simple vehicle model and measured data, steady state responses. 
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Figure 5.2 - Simple vehicle model and measured data, j-turn manoeuvre yaw 

velocity (left) and lateral acceleration (right) responses. 
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Figure 5.3 - Simple vehicle model and measured data, lane-change manoeuvre 

yaw velocity (left) and lateral acceleration (right) responses. 
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Figure 5.5 - Simple vehicle model and measured data, frequency domain lateral 

acceleration magnitude (left) and phase (right) responses. 

From figure 5.1 it can be seen that the measured and simulated steady state responses 

closely match, except that the simulation makes a slight overestimation, which 

becomes greater at higher lateral accelerations. This inaccuracy is probably due to 

the quasi-static weight transfer approximation overestimating the lateral load 

transfer, causing the discrepancy to become larger with increasing lateral 

acceleration. The reason is due to the quasi-static approximation assuming all of the 

vehicle's mass, including the unsprung mass, is concentrated at the vehicle's centre 

of gravity. This means that the unsprung mass is assumed to be centred higher than 

it actually is causing a larger load transfer moment to be approximated. As this is 

directly proportional to lateral acceleration, the discrepancy increases with lateral 

acceleration [3]. 
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Figures 5.2 and 5.3 show a very good level of agreement between measured and 

simulated yaw velocity and lateral acceleration responses for the j-turn and lane- 

change manoeuvres. This indicates that the simple model accurately predicts the 

vehicle's transient performance but, examining the frequency domain responses in 

figures 5.4 and 5.5, shows that the yaw velocity and the lateral acceleration response 

agreement is poor above 1 Hz. 

Below 0.7 Hz, however, the vehicle model does slightly overestimate the measured 

lateral acceleration magnitude response by approximately 7%. This contradicts 

figure 5.1, but as low frequency steer inputs have been seen to be difficult to create 

using a driver [61], the author is inclined to trust the steady state results (which are 

simpler to produce) and are given in figure 5.1. The author can find no other reason 

why the difference occurs. 

The factors that influence the frequency domain response of the vehicle were 

previously investigated by Heydinger et al [62] where it was found that the low 

frequency range up to 0.5 Hz is influenced primarily by the vehicle's steady state 

response. The medium frequency range from 0.5 to 1.5 Hz is influenced by the 

sprung mass dynamics and some low frequency steering system effects. The high 

frequency response above 1.5 Hz is influenced by the tyre lag dynamics and the 

steering system response. 

The vehicle's steering system was designed to be sufficiently stiff so that it did not 

have an effect on the vehicle's handling behaviour. Torsional stiffness analysis and 

static experimentation reaffirmed the system's stiffness. To verify its dynamic 

response, the frequency domain response of the rack displacement in relation to the 
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steer wheel angle input was found and is shown in figure 5.6. The coherence of this 

measured data was found to be greater than 95% over the range of 0.2 to 6 Hz. 

Figure 5.6 - Measured steering system frequency domain magnitude (left) and 

phase (right) responses. 

The near constant response of the system across the full range of inputs shown in 

figure 5.6 implies that the steering system is sufficiently stiff and only has a minor 

effect on the response of the vehicle's handling behaviour, therefore it has correctly 

been modelled as a simple gain on steer wheel angle input. This is also true of the 

relationship between rack displacement and wheel steer angle which was found to be 

a nearly linear relationship using a suspension kinematics package [63] and has again 

found, through torsional stiffness analysis and static measurement, to be very stiff 

and modelled as a simple gain. 

Consequently, as the sprung mass roll and tyre lag dynamics are not accounted for in 

the vehicle model, these are likely to be the factors affecting the frequency domain 

lateral acceleration response and causing the inaccuracy. This simple model, 

therefore, may be used with confidence to simulate the vehicle's steady state 

response and transient manoeuvres below 1 Hz. Accordingly, it is suitable for use in 

a lap time simulation package that uses a quasi-static approximation of the vehicle's 
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performance, because only the steady state response of the vehicle model is found. 

In addition its simplicity relative to a more sophisticated vehicle model will give 

reduced simulation times. 

Although there is a high level of agreement between measured and simulated results, 

it can be seen that small inaccuracies still occur. These can be explained by three 

phenomena: 

1. As shown in the previous chapter, software filtering removes nearly all of the 

high frequency noise present in the data. There is, however, a small amount 

of low frequency noise present. This cannot be completely attenuated 

without affecting the responses that were being measured [59]. 

2. The software filtering conducted resulted in a small phase lag, which became 

more apparent at higher frequencies [59]. An attempt was made to minimise 

this phase lag by design of the filter. 

3. The actual vehicle's forward velocity did vary slightly during the testing, 

whereas it was kept constant in the simulations. The variation was, in each 

case, less than 2% and so will not have a significant impact on the measured 

results but caused minor discrepancies. 

5.2.2 Sophisticated Vehicle Model 

The sub-section shows a comparison study between the Phase One measured results 

and the sophisticated vehicle model simulated results. As with the previous sub- 

section the study is used to find the accuracy of the vehicle model in predicting the 

actual vehicle's lateral performance and includes comparisons for the steady state 

circle, j-turn, lane-change and random steer manoeuvres. 
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Figure 5.7 - Sophisticated vehicle model and measured data, steady state response. 
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Figure 5.8 - Sophisticated vehicle model and measured data, j-turn manoeuvre yaw 

velocity (left) and lateral acceleration (right) responses. 
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Figure 5.9 - Sophisticated vehicle model and measured data, lane-change 

manoeuvre yaw velocity (left) and lateral acceleration (right) responses. 
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Figure 5.10 - Sophisticated vehicle model and measured data, frequency domain 

yaw velocity magnitude (left) and phase (right) responses. 
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Figure 5.11- Sophisticated vehicle model and measured data, frequency domain 

lateral acceleration magnitude (left) and phase (right) responses. 

Figure 5.7 shows that the sophisticated vehicle model accurately predicts the steady 

state lateral acceleration response of the vehicle and an impressive level of 

agreement is in seen in figures 5.8 and 5.9 for the j-turn and lane-change 

manoeuvres. Furthermore, examining the sophisticated model frequency domain 

responses in figures 5.10 and 5.11, the yaw velocity and the lateral acceleration 

magnitude and phase responses have a high level of agreement. This is apart from 

the low frequency lateral acceleration magnitude response, which is again slightly 

over approximated by 7% and is probably due to the same reason given for the 

simple vehicle model. From these results, the sophisticated model can be seen to 
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accurately predict the vehicle's steady state and transient response for the full range 

of its lateral vehicle dynamic behaviour. 

This result is not the same as the result found for the simple model where the lateral 

acceleration response above 1 Hz was seen not to closely simulate the actual 

vehicle's response. It can be seen from Heydinger et al [62] that the sophisticated 

vehicle model has a larger range of agreement with the measured data due to the 

inclusion of the roll degree of freedom and the tyre lag model. The sophisticated 

vehicle model may therefore be used with confidence in a transient simulation 

package. 

Previous studies [9,10 , 111 have used the simple vehicle model in a transient 

simulation package. It can be seen from the comparisons presented above that the 

simple vehicle model does not fully represent the transient response of an actual 

vehicle. Therefore the use of the simple vehicle model reduces the accuracy of the 

transient simulation package presented by Casanova et al.. If the more sophisticated 

vehicle model was used, then the approximations made of racing car performance 

using this transient simulation package would be more accurate. 
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5.3 Longitudinal Dynamic Behaviour 

This section details a study between the Phase Two measured results and the 

sophisticated vehicle model simulated results. The study is used to find the accuracy 

of the vehicle model in predicting longitudinal dynamic behaviour. Only the 

sophisticated vehicle model's performance has been studied due to the more detailed 

powertrain and braking models used. 
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Figure 5.12 - Sophisticated vehicle model and measured data, standing start 

acceleration manoeuvre longitudinal acceleration (left) and 

longitudinal velocity (right) responses. 

Figure 5.12 shows the comparison between measured and simulated standing start 

acceleration runs. It can be seen that there is a close resemblance in both the 

acceleration and speed plots. There are differences, especially around the 6 ̀h gear 

area, which was due to an engine fault on the actual vehicle causing it to be 

underpowered. 

As there was only a limited time to take the measurements, the author was unable to 

solve the electrical problem with the vehicle's fuel system which altered the 

performance of the engine from the parameter map found previously on the engine 
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dynamometer. To account for this, the simulated engine output given by the 

parameter map was adjusted by applying a constant reduction factor but, this 

obviously does not fully account for the actual fault which caused a non-uniform 

decrease in engine performance. The reduction factor, however, was found to be 

constant for all the results taken, implying that a good estimation of measured 

vehicle performance was still being made by the vehicle model. 

During the manoeuvre, the driver varied the engine speed each gear change was 

made at (denoted as a dip in acceleration), since there was no change point indictor 

(or tachometer) on the actual vehicle. This was simulated by setting the gear change 

time to zero (giving a sharp vertical line) and, as the throttle control input was zero 

during a gear change, this simulated the actual change lag time and can be seen to 

coincide with the measured change lag time, producing a good approximation of the 

actual vehicle's gear changes. 
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Figure 5.13 - Sophisticated vehicle model and measured data, braking manoeuvre 

longitudinal acceleration (left) and longitudinal velocity (right) responses. 

Figure 5.13 shows a straight line braking manoeuvre to a stop and it can be seen that 

the measured and simulated responses closely match. A slight difference is seen and 

this was due to the brake line pressure sensors saturating below the maximum values 
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reached in the hydraulic circuits. To account for this, a constant increase factor was 

applied to the brake line pressure control inputs, this however did not quite model the 

non-uniform changes made by the driver whilst above the sensor saturation point. 

This factor was quantified using the original Excel spreadsheet used to design the 

vehicle's braking system (the spreadsheet has been verified to be accurate by the 

team). Thus, by assuming the hydraulic system saturated at the same pressure that 

the pressure sensors had, the author found that the same increase factor was needed 

to produce the same stop shown above. 

When studying the use of the brakes in other manoeuvres (low deceleration straight 

line braking and hairpin manoeuvres, see figure 5.14), where the pressure sensors 

have not saturated and the increase factor was not needed, the vehicle model still 

made by an accurate prediction of the vehicle's longitudinal performance. From 

these results, therefore, it is seen that the sophisticated vehicle model can accurately 

predict the longitudinal acceleration performance of a racing car. 
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5.4 Combined Lateral and Longitudinal Dynamic Behaviour 

This section details a comparison study between the Phase Two measured results and 

the sophisticated vehicle model simulated results. The study is used to find the 

accuracy of the vehicle model in predicting combined lateral and longitudinal 

performance. 
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Figure 5.14 - Sophisticated vehicle model and measured data, hairpin manoeuvre 

yaw velocity (left) and acceleration (right) responses. 

The hairpin manoeuvre is shown in Figure 5.14, for the control inputs displayed in 

Figure 4.4. A close resemblance can be seen between measured and simulated 

values but a difference again occurs is apparent for longitudinal acceleration whilst 

accelerating out of the corner (from six seconds onwards). This difference was 

caused by the electrical fault that reduced engine power during Phase Two and was 

discussed in sub-section 5.3. Below six seconds, the longitudinal acceleration match 

is good as the vehicle is traction limited and the driver is not applying the reduced 

maximum engine power. 
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Figure 5.1 5- Sophisticated vehicle model and measured data, slalom manoeuvre 

yaw velocity (left) and acceleration (right) responses. 

A slalom manoeuvre is shown in Figure 5.15 where the driver has accelerated away 

through the final two cones and a close resemblance can be seen between measured 

and simulated values. A slight difference is seen in the yaw velocity measured data 

of figure 5.14 and 5.15, a short peak is seen at 6 and 7.25 seconds respectively, 

which is not seen in the simulated data and is due to the F5 vehicle wheel lift off 

problem discussed in Chapter Four. This is not reflected in the simulated data as the 

vehicle model does not account for the effect of suspension kinematics and so does 

not simulate this effect. In producing the vehicle model, it has been assumed that the 

suspension system does not have a significant effect on the vehicle's performance 

and keeps the wheels at fixed camber angles in all situations. This is normally a 

good approximation when studying vehicles such as racing cars which only undergo 

small amounts of suspension movement but, as seen in this study can allow potential 

problems to be overlooked. 

From these results it is seen that the sophisticated vehicle model can be used with 

some confidence to predict combined lateral and longitudinal acceleration 

performance of a racing car. 
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5.5 Conclusions 

The chapter has shown that the simple vehicle model does not fully represent the 

lateral dynamic behaviour of a racing car, whereas the sophisticated model more 

accurately represents it due to the inclusion of the roll and tyre lag DOF. This 

conclusion is achieved by a comparison study between the lateral dynamic behaviour 

of the simple and sophisticated vehicle models that were detailed in Chapter Three 

and the data collected in the testing Phase One. The sophisticated vehicle model's 

longitudinal and combined lateral and longitudinal dynamic responses are also 

validated using the data collected in the testing Phase Two. Comparisons are given 

between measured and simulated data for the following manoeuvres: 

" Steady state circle manoeuvre. 

" J-turn manoeuvre. 

" Double lane-change manoeuvre. 

" Random steer manoeuvre. 

" Standing start acceleration manoeuvre. 

" Braking to a stand still manoeuvre. 

" Hairpin manoeuvre. 

" Slalom manoeuvre. 

It was deduced that the sophisticated vehicle model may be used with confidence in a 

LTS package using a transient approach, as it is accurate for the full range of lateral 

dynamic behaviour. The simple model, which is only accurate for low frequency and 

steady state responses, may be used in a LTS package using a quasi-static approach 

where the poor representation of the actual vehicle's transient response will not 

affect the solution results. Previous studies [9,10,11] have used the simple vehicle 
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model in a transient approach based LTS package. It can be seen, therefore, that the 

approximations that were made of racing car performance are not as accurate as 

when using the more sophisticated vehicle model. 

Now that the sophisticated vehicle model has been validated, it can be used with 

confidence to optimise, not only `tuneable' vehicle parameters such as the vehicle's 

sprung mass roll stiffness distribution, but also, fundamental design parameters such 

as the wheelbase, track, etc.. The range of comparisons shown in this chapter have 

contributed to the published body of knowledge on racing car performance prediction 

[55,57]. 
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6 Comparison of Simulation Approaches 

6.1 Introduction 

A comparison study has been conducted to evaluate the differences between the 

steady state, quasi-static and transient simulation approaches. In this study each 

approach has been used to simulate a vehicle negotiating two different simple 

manoeuvres in order to focus on the issues involved with each simulation approach. 

Each manoeuvre consists of straight with a 180° corner at the end in (the simulations 

ends at the apex point, mid way through the corner). The first manoeuvre is at a 

constant forward velocity, the second is the vehicle braking down from 30 ms" until 

it is travelling slow enough to allow it to negotiate the corner and arrive at the apex at 

its maximum lateral acceleration. Both manoeuvres are split into two different 

sections, the first section is where the vehicle is travelling in a straight line and the 

second, whilst the vehicle is cornering. All three approaches use the sophisticated 

vehicle model (detailed in Chapter Three) with the University of Leeds F4 vehicle 

parameter set. 

6.2 Steady State Simulation Approach 

The most basic approach is a steady state simulation approach where the vehicle's 

longitudinal and lateral acceleration performance is modelled separately (i. e. the 

vehicle brakes and then turns in) and kept at constant values. Thus, only the lateral 

acceleration performance of the vehicle is taken into account during cornering and 

remains constant for the duration of the section. 
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The steady state solution of a simulation occurs when the system is in equilibrium 

and time dependent variables are zero [14]. This can be found by calculation, for 

example, by removing all the time dependent variables. It can also be found through 

simulation by applying a step steer input at a fixed forward velocity to a dynamic 

model and leaving the simulation to settle down to its steady state values. 

The maximum forward velocity that the vehicle can negotiate the corner minimum 

path radius is found using a routine based on the Newton-Raphson iteration method 

[64]. The routine finds the steer angle which gives the vehicle's maximum steady 

state lateral acceleration for a given constant forward velocity. This simple 

optimisation routine is shown in equation (48), where xp+i is the new solution value 

based on the previous value X. This method proved to be very efficient, finding the 

solution to 2 decimal places in only four iterations. The forward velocity is then 

increased and the iteration routine run again until no solution can be found for that 

path radius or the lateral acceleration limit drops. As the simulation is steady state, 

the vehicle is modelled negotiating the corner at this fixed forward velocity, steer 

angle, path radius and maximum lateral acceleration. 

.f 
(x. ) 

xn+1 = xý + 77(Z) (48) 
n 

6.3 Quasi-Static Simulation Approach 

Current LTS packages use the quasi-static simulation approach [36], where the 

corner is split into a series of constant radius turns [34] each with a decreasing path 

radius (simulating an increase of steer angle towards the corner apex). There are 

approximately fifty segments which ensures that the time step is small and the 

simulation makes a closer approximation to real life. The vehicle's acceleration 
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across each path segment is found in the same way as with the steady state approach 

by allowing the simulation to settle down to its steady state values. 

The lateral tyre force needed to maintain this lateral acceleration and the remaining 

tyre force available is found using a friction circle approach [3]. The remaining tyre 

force is then used to derive the longitudinal acceleration of the vehicle. The 

minimum path radius and speed at the apex is found using the Newton-Raphson 

iteration routine described above. 

6.4 Transient Simulation Approach 

This approach is the closest approximation to what occurs in reality where the 

vehicle undergoes continuous non-steady linear or rotational accelerations [14]. In 

negotiating the corner in the first manoeuvre, a continuous control time history turns 

the dynamic vehicle model into the corner until it reaches its maximum steer angle 

and lateral acceleration at the corner apex. The maximum value at the apex is found 

using the Newton-Raphson iteration technique described above. 

In the second manoeuvre, the vehicle is braking and cornering at the same time. 

Again a continuous control time history turns the dynamic vehicle model into the 

corner until it reaches its maximum steer angle and lateral acceleration at the corner 

apex but, at the same time, a diminishing brake force is used to move the vehicle 

around the edge of the tyre friction circles, reducing its longitudinal deceleration to 

zero close to the apex of the corner. Both the quasi-static and transient manoeuvres 

use the same input values for brake pedal force and steer angle, which are shown in 

figure 6.1. 
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Figur e 6.1 - Driver input values for quasi-static and transient simulatio n 

approaches in combined braking and cornering manoeuvre. 

6.5 Results 

The Newton-Raphson iteration routine found the maximum forward velocity at the 

corner apex to be 15 ms-1 with a steer angle of 6.6° and 13.4 ms-2 steady state lateral 

acceleration, which corresponded to a 16m minimum path radius. 

Manoeuvre One (no braking) - Figure 6.2 shows a graph of lateral acceleration 

against time during the cornering section for each simulation approach. The steady 

state approach shows the vehicle being instantaneously at its peak constant lateral 

acceleration and minimum path radius. In contrast, the quasi-static and transient 

simulation gently builds up the lateral acceleration as the steer angle is increased to 

its optimum value, which is closer to what occurs in reality. It can be seen how the 

quasi-static approach makes discontinuous constant steady state approximations of 
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the vehicle's performance and diverges away from the transient approach's results as 

the vehicle reaches its peak lateral acceleration. The transient approach also takes 

into account the dynamic response of the vehicle as a small amount of oscillation 

about the steady state value occurs. As the quasi-static approach diverges from the 

transient approach's response in this area, it follows that it would make a poor 

approximation of the actual vehicle's dynamic response. 
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Figure 6.2 - Manoeuvre One: Graph of lateral acceleration versus time for all three 

simulation approaches. 

106 



Manoeuvre Two (Braking) - Figures 6.3 to 6.5 show graphs of the vehicle's lateral 

versus longitudinal acceleration, track position and forward velocity versus time in 

each simulation approach solution, during the cornering section. Again the steady 

state approach gives separate constant values for longitudinal and lateral acceleration 

as it is assumed to corner at constant speed. Due to the use of the same control 

inputs in each case, the quasi-static and transient approaches show similar results as 

the vehicle speed is decreased towards the corner apex and the lateral acceleration is 

built up, reaching a maximum near the apex. Thus the quasi-static and transient 

approaches, as opposed to the steady state approach, demonstrate how the driver in 

actuality uses combined accelerations to complete the corner. 
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The overall predicted time that each approach simulates the vehicle completing the 

manoeuvre is important, as this will affect any vehicle parameter comparison study. 

This only applies to the second manoeuvre where braking is involved because the 

first manoeuvre is simulated at constant speed and all three simulation approaches 

predict the vehicle completing the manoeuvre in the same time. Table 6.1 shows a 

comparison between the three different techniques in the second manoeuvre. 

Approach Steady state Quasi-static Transient 

Total predicted time taken to 2.85 2.73 2.71 
complete manoeuvre (s) 

Overall computational time involved 1.50 10.0 15.0 
in finding solution (s) 

Table 61 - Manoeuvre Two: predicted and computation time for each approach. 

In all three modelling strategies the time taken for the vehicle to reach the apex does 

not vary greatly and each followed similar paths. The greatest difference is seen with 

the steady state simulation approach where a longer predicted time is produced 

compared to the other two approaches, as it had to brake down to the minimum 

cornering speed much earlier. At first glance, these results imply that there may not 

be much difference produced by each approach when predicting overall lap times for 

a full lap. As the manoeuvre is only short, under 3 seconds, compared to a full lap, 

over 80 seconds, and the quasi static and transient approaches have used the same 

predefined driver inputs, the accumulated difference for a complete lap and the 

optimisation of the driver controls used in each strategy would probably produce a 

larger difference between approaches. Further to this the first parameter sensitivity 

study seen in the next chapter, where parameter sets only produced small differences 

109 



between predicted lap times. Therefore, these relatively small predicted time 

differences between approaches are more significant than they may first appear. 

The overall computational time involved with each approach varies greatly and can 

also be seen in table 6.1. The study has been conducted on a Pentium 11450 MHz 

processor with 128 Mb of RAM and it can be seen that the steady state simulation 

approach involves the shortest computation time, with the transient being the longest. 

The steady state approach, therefore, in producing shorter simulation times, would 

allow the race engineer to undertake a greater number of parameter investigations in 

a shorter overall computation time, but these results would not represent the vehicle 

as closely as those produced by other simulation approaches. 

Nevertheless, it should be noted, that reducing the number of segments in the quasi- 

static approach, would decrease its computation time but may not greatly reduce the 

accuracy of the simulation (a large number of segments have been used in this case 

to allow it to be directly compared with the transient approach). Finally, no attempt 

has been made to optimise the driver controls (a predefined set of driver controls has 

been used) as this would play an important role in the length of time taken to 

compute the minimum time solution, 
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6.6 Conclusions 

A comparison study has been conducted to evaluate the differences between the 

steady state, quasi-static and transient simulation approaches. Each approach has 

been used to simulate a vehicle negotiating a straight with a 180° corner at the end in 

two different manoeuvres. The first manoeuvre is at a constant forward velocity, the 

second is the vehicle braking down from 30 ms's until it is travelling slow enough to 

allow it to negotiate the corner and arrive at the apex at its maximum lateral 

acceleration. 

The results demonstrated that when compared to the transient approach, the quasi- 

static and steady state approaches make a poor approximation of the vehicle's 

dynamic response. In the second manoeuvre, the small differences seen in predicted 

manoeuvre completion times produced by each approach would probably produce a 

cumulative difference which would be significant over a full lap. 

It was also noted that the overall computation time between each approach varied 

greatly, with the transient approach taking the longest. The transient approach 

however, allows for more accurate tuning of a greater number of vehicle parameters 

as it also takes into account the dynamic response of the vehicle, which includes 

parameters that are not accounted for in the other simulation approaches. 
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7 Vehicle Parameter Sensitivity Studies 

7.1 Introduction 

Two different simulation packages have been developed by the author using the 

simulation approaches described in the literature review in Chapter Two. A quasi- 

static simulation approach based LTS package and a transient simulation approach 

based Manoeuvre Time Minimisation package. 

In this chapter, two examples are used as case studies to illustrate how parameter 

sensitivity studies can be carried out using these simulation packages. The case 

studies also give further insights into the use of these types of simulation packages 

and the relevance of the simulation approaches used in them to actual racing car 

performance prediction. 

The first case study, using the quasi-static simulation approach based LTS package, 

is the effect of a number of vehicle parameters on overall lap time. The second case 

study, using the transient simulation approach based Manoeuvre Time Minimisation 

package, is the effect of the front damping value on the time taken to complete a 

simple manoeuvre. Descriptions of the operation of the packages, including the 

graphical user interfaces used, are given and conclusions have been drawn on the 

relevance of the results to actual racing car performance prediction. 
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7.2 Quasi-Static Simulation 

The LTS package uses the simple vehicle model described in Chapter Three and the 

fastest time it takes to negotiate the corner and straight sections of the track was 

found using two separate methods. 
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Figure 7.1 - Forward velocity against simulated path radius for maximum vehicle 

steady state lateral accelerations. 

The vehicle's cornering performance was found from a performance map which is 

found before the main lap simulation, which reduced simulation computation times 

by stopping repeat simulations occurring [32]. Each corner section is treated as a 

steady state segment and the vehicle's performance was found by applying a step 

steer input to the dynamic vehicle model at a constant forward velocity, and waiting 

for the yaw acceleration to reduce to zero [65]. As the forward velocity is increased, 

the path radii followed at the maximum steady state lateral acceleration achievable is 

found. This corresponding path radius that the vehicle is negotiating then forms a 
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performance map against forward velocity, at maximum steady state lateral 

acceleration and is shown in figure 7.1 where it is used in the main lap simulation. 

Engine power limiting effects are also accounted for in the calculation, because at 

high speeds tyre drag greatly increases the minimum path radii the vehicle can 

negotiate. 

Once the limiting cornering speeds are found, the vehicle's performance along the 

straights was calculated. Instead of using a forward or backward marching approach 

[31], it was decided to solve the problem using the Newton-Raphson iteration routine 

[64]. In this case, the problem involved finding the length of time the vehicle 

underwent engine acceleration, i, before it had to begin to brake to allow it slow 

down enough to negotiate the following corner. The simple optimisation routine is 

shown in equation (48) and was detailed in Chapter 6. This method proved to again 

be very efficient due to its speed of convergence and found the solution to 2 decimal 

places in only four iterations. The full quasi-static LTS program listing can be seen 

in Appendix G. 

The parameter sensitivity study involved finding the sensitivity to overall lap time of 

various vehicle parameters. This is achieved by varying fourteen vehicle parameters 

by -10% and +10% from their baseline values and ranking them in order of 

effectiveness in minimising overall lap time. The study is conducted using the 

parameter set found for the Leeds University F4 racing car and it is simulated 

completing the circuit shown displayed on the graphical user interface in figure 7.2. 

The circuit is the one the vehicle is competed on in the USA except that a slalom 

section on straight thirteen involving five cones has been removed for simplicity and 

the fact that the track map is created by scaling from a circuit diagram. 
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Figure 7.2 - LTS graphical user interface. 

Figures 7.3 to 7.6 show the performance of the vehicle around the circuit for the 

baseline parameter set. The horizontal straight line areas of the plots below indicate 

the steady state cornering approximation used. The vehicle is simulated never 

undergoing combined lateral and longitudinal accelerations only purely lateral or 

longitudinally and this is shown in figure 7.4). As no data was recorded from the 

circuit, the trackmap has been created manually and the values found through 

measurement of a scale course map. Due to this, the corners are idealised as a 

constant path radius, rather than the `real' racing line, where the path radius is 

changing as the vehicle moves towards and away from the apex. 

The baseline simulation produced an overall lap time of 54.98 seconds, whereas the 

actual measured lap time was measured to be on average, around 60 seconds, which 

is 8% slower than those predicted in the simulation. The non-inclusion of the slalom 
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section and the steady state assumption idealising vehicle cornering performance are 

the main reasons for the difference. 
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Figure 7.6 - Engine speed versus distance. 
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Table 7.1 shows the results of the parameter sensitivity study, ranked in order from 1 

(the quickest) to 29 (the slowest), with the unchanged baseline values producing the 

5`h fastest time. As a total of 14 parameters are each varied twice by t 10% and the 

ranking includes the baseline vehicle parameter set, there are 29 ranking positions. 

The parameters used in the study are the main ones an engineer would use to tune the 

vehicle's performance and their baseline values and units can be found in Appendix 

C. As well, at 10% change was found to be within the realistic design limits of the 

actual car for these parameters. 

Parameter Varied Rank with 10% 
decrease 

Rank with 10% 
increase 

Lateral tyre friction coefficient 29 1 

Longitudinal tyre friction coefficient 9 2 

Engine torque 14 3 

Aerodynamic drag coefficient 4 10 

Baseline vehicle parameter set 5 

Centre of gravity height 8 6 

Front track 7 19 

Mass 23 11 

Wheelbase 12 28 

Aerodynamic front axle lift coefficient 20 13 

Aerodynamic rear axle lift coefficient 15 18 

Front roll rate 26 16 

Rear roll rate 17 24 

Rear track 25 21 

Centre of gravity distance from front axle 27 22 

Table 7.1- Overall lap time parameter sensitivity study results. 
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As expected, improvements were made by increasing the tyre friction coefficients or 

increasing torque produced by the engine or decreasing aerodynamic drag. It is seen 

that the lap time is most sensitive to the lateral tyre friction coefficient which 

produces not only the goickest but, slowest time as well. The overall time 

differences were small and this shows that small differences in lap time are important 

when conducting vehicle parameter investigations. 

Any variation in the other parameters produces a reduction in lap time and so their 

values are deemed to be close to their optimum values. There are three reasons why 

no performance improvement is seen when the parameters are increased or decreased 

and these are listed below along with the corresponding parameters. For all of these 

parameters there is a compromise value where the performance of the vehicle is 

maximised and the baseline F4 vehicle parameter set is seen, from the results, to 

contain values close to these optimums as it has already been `optimised' by the 

Leeds team by repetitive subjective testing. 

1. Any variation in load transfer between left and right (lateral acceleration) or 

front and rear (longitudinal acceleration) wheels during acceleration may 

reduce the overall force produced by the tyres due to the tyre's load 

sensitivity [3]. The tyre's load sensitivity implies that for increasing normal 

force on a tyre a greater amount of longitudinal and/or lateral force is 

produced by the tyre, but this gain diminishes as normal force increases. 

Therefore there is an optimum value for front track, rear track, wheelbase and 

centre of gravity height, where the forces produced by the left and right or 

front and rear tyres combine to produce a maximum value. 
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2. The handling balance of the baseline vehicle parameter set was seen to be 

close to neutral in Chapter Four. Any change in front roll rate, rear roll rate, 

front aerodynamic lift coefficient, rear aerodynamic lift coefficient and centre 

of gravity distance from front axle would change this, making the vehicle 

more over or under steer balanced and reducing the maximum lateral 

acceleration possible. This is because both the front and rear axles will not be 

maximising their lateral force potential at the same time. Moreover, lateral 

load transfer distribution has an effect on the vehicle's handling balance so 

the parameters mentioned in the first reason above may also affect the 

vehicle's handling balance. 

3. Reduction in overall mass will mean that there is less normal force on the 

tyres and so they produce less force, whereas increasing mass means there is 

more mass to be accelerated by the overall force that is produced. Therefore 

an optimum value exists where these two factors balance out. 

7.3 Transient Simulation 

To conduct the second parameter sensitivity study the author has used the transient 

simulation approach described in Chapter Two in conjunction with the sophisticated 

vehicle model described in Chapter Three, to create a Manoeuvre Time Minimisation 

package. The package finds the minimum time taken for a vehicle to complete a 

simple manoeuvre. 

It has been demonstrated previously (9,10,11] that this package could easily be 

expanded to find the minimum time for the vehicle to complete a full lap of a circuit 

by adding several of these simple manoeuvres together. The package has not been 

extended in this case as the author has not been able to obtain a trackmap of an actual 
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circuit. Instead the author has concentrated on the accuracy of the vehicle model 

used in the simulation and minimising the speed of finding the solution. 

As described in Chapter Two, the approach uses a constrained nonlinear optimisation 

routine, in this case, a sequential quadratic programming (SQP) method implemented 

through a Matlab sub-routine [48]. The routine minimises the manoeuvre 

completion time by adjusting the driver control matrix, within defined boundaries, 

whilst also having the constraint of keeping the vehicle inside the track boundaries. 

Full program listings are given in Appendix H. 

The method is referred to as SQP because at each major iteration step, a quadratic 

programming (QP) sub-problem is solved. The SQP is implemented in three stages 

at each major iteration step: 

" Update a Hessian matrix containing the Lagrangian function of the problem 

(used to solve QP sub problem). 

" Converge on solution to general problem by finding the quadratic 

programming problem solution. 

" Direction and distance away of new iterate solution found using line search 

and merit function calculations. 

A number of tests have been undertaken by the author to check the robustness of the 

results given by the Manoeuvre Time Minimisation package and these are detailed 

below and the studies are only summarised here due to the simplicity of the results: 

" To ensure that the package was able to optimise the vehicle's lateral dynamic 

behaviour, a steady state circle manoeuvre was used. The package 

successfully found the optimum steer angle, which maximised lateral 

acceleration and minimised the time taken to complete the circle. 
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" To ensure that the package was able to optimise the vehicle's longitudinal 

dynamic behaviour, a straight line acceleration manoeuvre was used. The 

package successfully found the optimum throttle position, which maximised 

longitudinal acceleration and minimised the time taken to complete the 

straight. 

" From these two studies where the solution was intuitive, it was found that the 

solution given is the actual solution minimum, i. e. does not find a local 

minimum solution, but the global minimum. 

" By re-running the same problem with the same input variables twice, it was 

found that the optimisation routine is stable as the same solution is reached 

each time. 

" Observing the results, it was found that the final solution was always within 

the vehicle control limits and track boundaries. 

" By varying the initial guess given for each manoeuvre it was found that a 

poor initial guess does not affect the final solution, only the time taken to 

reach it, as the same solution is reached each time. 

There are a number of internal parameters used in the optimisation routine which 

affect not only the speed of solution but also the accuracy of the results. The most 

appropriate values for these internal parameters was found by running simulations 

with various parameter values and studying the time to find the solution and 

comparing results. An example is given in figure 7.7, where the best compromise 

value for control point distance has been found to be 4m. Control point distance (i. e. 

the distance between the driver control matrix points on the vehicle path) is critical in 

the simulation as it is important to find a value that would ensure reasonable solution 

times without missing too much of the detail of the continuous optimum vehicle 
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control history. Figure 7.7 shows that the 4m setting is able to achieve this, whilst 

also producing reasonable simulation times, as it has half the number of variables to 

be optimised compared to the 2m setting. In addition, 6m was tried but this was seen 

to miss too much detail in the control history. Control point distance is obviously 

speed dependent and during higher speed manoeuvres a larger value would be used. 
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Figure 7.7 - Comparison of control point densities. 

A parameter sensitivity study of the effect the vehicle's front damping value has on 

the time to complete a simple manoeuvre has been conducted. The simple 

manoeuvre involved the Leeds University F4 car completing the right hand corner 

shown on the Manoeuvre Time Minimisation package's graphical user interface in 

figure 7.8. The corner has a 17.5m path radius along its centre line and 5m track 

width with a control point specified every 4m along the vehicle path. The package 

took 4 hours to find each parameter set solution on a Pentium PII 400 MHz computer 

with 128 Mb of RAM and running Windows NT operating system. 
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Figure 7.8 -Manoeuvre Time Minimisation package graphical user interface. 

A fixed linear damping value is used to represent the dampers used on the Leeds 

vehicle, even though standard racing car dampers have various damping values for 

bump and rebound at high and low speeds. This is because the road surface is 

smooth and so only low speed damping will play a part and the mountain bike 

dampers peculiar to the Leeds vehicle have similar rebound and bump 

characteristics, unlike the more commonly used racing car dampers. 

As the road surface has been assumed to be perfectly smooth in this example, the 

front damping value affects the rate of change of the lateral and longitudinal load 

transfer and will alter the transient handling balance of the vehicle as it enters or exits 

the corner [3]. As sprung mass roll and pitch velocities will be occurring 

simultaneously, the effect of the damper is to change the load (and load distribution) 

on the tyres during the transient corner entry and exit phases. This changes the 
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forces produced by the tyres, which in turn varies the transient handling balance of 

the vehicle. This effect is magnified by the longitudinal load transfer which pushes 

the transient handling balance of the vehicle to one extreme or the other. i. e. 

understeer under braking into the corner and oversteer under engine acceleration. 
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Figure 7.9 - Results of front damping sensitivity study. 

The initial guess had a solution of 7.17 seconds at a constant forward velocity of 

15 ms-'. In each case the package has significantly reduced the time taken to 

complete the manoeuvre. To make an examination of the results simpler, three of the 

solutions have been chosen to be discussed in detail and are circled on figure 7.9 (the 

damping values correspond to values measured on a dyno-mometer). The middle 

solution is the minimum solution, whilst the other two are either side, this gives a 

better idea of the trends that are occurring. Figures 7.10 and 7.11 shows how each of 

these solutions remain within the track boundary, whilst taking the racing line. 
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If a closer comparison is made between Figure 7.10 and 7.11, it can be seen that 

although the solutions remain within the path boundary, there appears to be a small 

error in the calculation of path error (distance from centre line of the track). This 

distance is calculated using the preview controller detailed in Chapter 3, which was 

produced by Casanova et al. [9] and is due to the method used to find the path error 

distance. 

The preview controller calculates the path error as a distance between the vehicle 

position and points at fixed distance along the track centre line, rather than the 

shortest distance between the vehicle position and track centre line. This method of 

calculation causes the small error due to the greater distance travelled by the vehicle 

in reaching that track position, rather than following the track centre line. The error 

begins to arise as the vehicle yaws and as long as the yaw angle remains relatively 

small. It means that the predicted path error is insensitive and not accurate close to 

the centre line (small path errors), but becomes more accurate as the vehicle 

approaches the track boundary. This ensures that the predicted vehicle's response 

remains within the path boundaries, as required. 

The method has been used at it fits in well with the structure of the preview 

controller and the estimation of the steer angle preview values. Calculating the 

shortest distance to give the actual path error could obviously increase accuracy. 

This would be slightly more complicated and would involve a more complex routine 

to find path error, but should not have a great impact on the speed of solution. 
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Figure 7.12 and 7.13 show how, for each solution, the package optimises the driver 

control matrix using combined lateral and longitudinal acceleration to maximise the 

vehicle's performance, moving the vehicle around the edge of its performance 

envelope. This mimics the technique demonstrated by an actual driver as earlier seen 

in Section 4.5.2. This method of balancing lateral and longitudinal acceleration as 

the vehicle approaches the apex has been accepted as the fastest method of 

negotiating a corner [3]. 
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The results indicate that a damping value of 792 Nsm-' is the optimum for 

completing the manoeuvre. In the vehicle model, the vehicle body has no vertical 

degree of freedom and the vehicle's suspension is modelled as a front and rear 

torsional spring and damper affecting body roll motion and a front and rear torsional 

spring and damper affecting body pitch motion. To try to quantify the relationship of 

the front linear damping value to the vehicle, the damping ratio, found from equation 

(49) for the front roll and pitch torsional spring stiffness and damping values, are 

shown in table 7.2 for the three solution values shown in the figures. 

Cdamp 

2 km 
(49) 

where: 

C&,,,, p: Damping value, Nsm-' 

k: Spring stiffness, Nm-' 

C: " Damping ratio 
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Linear Front 

Damping Value (Nsm'') 

Front Roll 

Damping Ratio 

Front Pitch 

Damping Ratio 

576 0.2 0.3 

792 0.275 0.42 

864 0.3 0.46 

Table 7.2 - Front roll and pitch damping ratios for various linear damping ratios. 

Examining figure 7.12, all the solutions show similar trends, but the main reason 

why the middle damping value has the fastest manoeuvre completion time is because 

it allows the vehicle to carry more speed into the corner and applies engine 

acceleration slightly sooner than in the other solutions. This, in turn, gives a higher 

corner exit speed, which carries the vehicle to the end of the manoeuvre in a quicker 

time. 

It can be seen from figure 7.12, that to allow the vehicle to enter the corner at a 

higher speed, the longitudinal acceleration plot for the middle damping value is quite 

uneven, which implies uneven longitudinal driver control input values. With the 

front pitch damping ratio at 0.42, it appears that this value is better at controlling the 

change in the longitudinal load transfer due to these uneven longitudinal control 

values. This ability to allow the uneven longitudinal control values is in contrast to 

the other damping values, which are not able to complete the manoeuvre with the 

optimum control matrix solution found for the middle damping value. 

The higher and lower damping values do not allow these uneven control values, 

because the lower damping value causes too much longitudinal load transfer to occur 

too quickly (i. e. it is under-damped) and thus pushing the transient handling balance 

of the vehicle more quickly to one extreme or the other which may cause the vehicle 

to go out of control or leave the track boundaries. On the other hand, the higher 
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damping value may cause the longitudinal load transfer response to be over-damped 

and this does not allow the tyres to build up lateral or longitudinal force fast enough 

to stop the vehicle from going out of control or leaving the racetrack. The higher 

damping value solution also produces the slowest time to complete the manoeuvre 

and so, the lower end of the damping range seems to be more desirable as it has to 

brake less and can apply the throttle sooner. 

Furthermore, referring to table 7.2, the front roll damping ratio does not seem to have 

as great an effect on the vehicle's performance. This is because, the front roll 

damping ratio does not change as drastically between the different linear damping 

settings, as seen with the pitch ratios. It probably does however, determine the 

transient handling balance of the vehicle and so the middle value is assumed to be the 

most appropriate value as it allows higher lateral accelerations to occur during corner 

entry and exit. 

Finally, the middle damping value solution undergoes the manoeuvre at a slightly 

higher lateral acceleration and takes slightly longer to reduce this higher lateral 

acceleration to zero. This means that it takes a slightly wider path to the other 

solutions by taking longer to make the transition from cornering to straight line 

running. This also allows the solution to maintain a slightly higher longitudinal 

acceleration, whilst the lateral acceleration is reduced. 
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7.4 Conclusions 

This chapter gives examples of the use of LTS packages by detailing two parameter 

sensitivity studies. In both cases the simulation approaches and packages used to 

conduct the parameter sensitivity studies have been fully detailed, together with user 

input/output features of the packages. 

The first parameter sensitivity study was to study the effect of various vehicle 

parameters on overall lap time and was conducted using a quasi-static simulation 

approach based LTS package. It was found that the vehicle was most sensitive to the 

lateral tyre friction coefficient and that most of the parameters in the baseline vehicle 

parameter set were already at their optimum values. 

The second parameter sensitivity study was on the effect of the front damping value 

on the time taken to complete a 90 degree right hand corner using a transient 

simulation approach based Manoeuvre Time Minimisation package. In developing 

the package, the internal parameters used in the package have been optimised and the 

robustness of the results examined. It was found that the results were realistic and 

the package optimised the vehicle control history in a similar manner to an actual 

driver [3]. It also found the minimum time taken to complete the manoeuvre in each 

case. A damping value of 792 Nsni 1 was found to produce the shortest time to 

complete the manoeuvre as it allowed more uneven longitudinal driver controls to 

occur, which meant more speed could be carried into the corner and the throttle 

applied sooner to accelerate the vehicle out of the corner at a higher speed. 

These case studies demonstrate the effectiveness of LTS packages in being able to 

optimise vehicle performance through varying the vehicle's parameters and showing 

their potential worth to racing teams. 
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8 Conclusions 

Overall the aims of this research project have been met; a simulation package based 

on a transient solution has been developed. The key features of this package are that 

it incorporates a strategy to optimise the racing line through a corner and the solution 

includes detailed transient effects in contrast to most previous LTS packages which 

use a quasi-static solution. The work has been presented to the automotive industry 

in several publications [4,55,57,65] during the course of the research project. 

Conclusions regarding the details of each stage of the research are outlined below. 

A comprehensive study of the literature has shown that computer simulation of 

racing car handling, through LTS packages, complements the numerous 

computational tools used by racing teams. These packages allow teams to examine 

the effect of different vehicle parameter setups to optimise vehicle performance. In 

similarity with the automotive industry, time is limited and rapid development of 

new ideas and technology is essential. Thus, the use of a more sophisticated 

computer simulation allows the team to gain a significant advantage over their 

competitors. LTS packages, however, are computationally intensive and the correct 

balance between simulation accuracy and computation time is crucial. 

The literature has also shown that nearly all existing packages have used the quasi- 

static simulation approach. It has been shown by the author that this method does 

not take into account the effect of roll, pitch and yaw inertia as well as damping and 

tyre lag effects, due to the constant acceleration assumption across each segment. 

Another aspect that is not accounted for is the variation in the fastest effective 

vehicle path along the track, i. e. racing line, due to change in driver control inputs or 
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vehicle parameters. The approach basically assumes that the racing line found from 

the actual vehicle data is the fastest in all cases. The only attempts to include 

transient effects have used a rather simple vehicle model [9,10,11]. 

The author in an attempt to investigate the accuracy of vehicle models in relationship 

to racing car performance has created two vehicle models, a simple seven DOF and a 

more sophisticated thirteen DOF model. The simple model contains a four wheel, 

single body system with lateral, longitudinal and yaw DOF. It uses a Pacejka Magic 

tyre formula combined slip model, with each wheel having a spin DOF and a quasi- 

static approximation of weight transfer. The effects of aerodynamic and tyre rolling 

resistance loads are also accounted for. Powertrain and basic braking and differential 

models have been included. 

The sophisticated vehicle model is a development of the simple model and includes a 

three body (front and rear unsprung masses and vehicle body sprung mass) system, 

which adds a roll and pitch DOF to the model. A tyre lag model, giving each tyre an 

extra degree of freedom, has been included with improved differential and brake 

system models. In addition to the vehicle models, a path following non-linear 

preview controller has been produced to enable an initial guess to be found of vehicle 

control inputs, for use in the transient simulation approach. 

To fully valide the vehicle models, a large amount of vehicle handling data has been 

successfully recorded for a racing car in two testing phases, using purpose built data 

acquisition systems. The data not only describes the vehicle's individual lateral or 

longitudinal dynamic handling behaviour, but also its combined lateral and 

longitudinal dynamic handling behaviour. Comprehensive parameter sets for the 

vehicles have also been found and data filtering and handling routines produced. 
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Judgements have been made on the vehicle's performance using the measured 

responses taken. 

The validation study has shown that the simple vehicle model does not fully 

represent the lateral dynamic behaviour of a racing car. The sophisticated model, 

however, does represent this due to the inclusion of the roll and tyre lag DOF. 

Additionally, the sophisticated vehicle model's longitudinal and combined lateral 

and longitudinal dynamic responses were found to closely correlate with the 

measured responses. 

It was concluded that the sophisticated vehicle model, therefore, may be used with 

confidence in a LTS package using a transient approach as it is accurate for the full 

range of lateral dynamic behaviour. The simple model, which is only accurate for 

low frequency and steady state responses, may be used in a LTS package using a 

quasi-static approach where the poor representation of the actual vehicle's transient 

response will not affect the solution results. 

To further investigate the various simulation approaches, a comparison study is made 

between the approaches which indicated that the transient approach, although more 

complicated and time consuming, would allow for more accurate tuning of a greater 

number of vehicle parameters. Examples of the use of LTS packages were then 

detailed in two parameter sensitivity studies. In both cases the simulation approaches 

and packages used to conduct the parameter sensitivity studies have been fully 

detailed. As well, the user input/output features of the packages have been shown. 

The first parameter sensitivity study was to investigate the effect of various vehicle 

parameters on overall lap time and was conducted using a quasi-static simulation 

approach based LTS package. It was found that the vehicle was most sensitive to 
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lateral tyre coefficient and that most of the parameters in the baseline vehicle 

parameter set were already at their optimum values. 

The second parameter sensitivity study was on the effect of the front damping value 

on the time taken to complete a 90 degree right hand corner using a transient 

simulation approach based Manoeuvre Time Minimisation package. In developing 

the package, the internal parameters used in the package have been optimised and the 

robustness of the results examined. It was found that the package produced a vehicle 

control history in a similar manner to an actual driver [3]. It also found the minimum 

time taken to complete the manoeuvre in each case. A damping value of 792 Nsm 1 

was found to produce the shortest time to complete the manoeuvre as it allowed more 

uneven longitudinal driver controls to occur. This meant that more speed could be 

carried into the corner and the throttle applied sooner to accelerate the vehicle out of 

the corner giving a shorter overall manoeuvre time. 

The research work presented in this thesis has extended previous work on LTS in 

three areas: 

1. Development of a package involving the transient solution using a relatively 

sophisticated vehicle model. 

2. Development of a technique to optimise the driver's racing line through a 

corner. 

3. Execution of two sets of experimental tests to obtain data against which to 

validate the predicted results from the models. 

Finally case studies have been carried out in order to demonstrate the potential use of 

the developed simulation packages for vehicle parameter selection and performance 

optimisation. 
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Appendix A 

Derivation of 7 DOF vehicle model equations of motion (before generalised forces 

are substituted) using Newtonian Approach. Final equation forms and the figures 

detailing the frames of reference are given in Section 3.2.1. 

Transformation table between vehicle fixed reference frame A and ground fixed 

frame G: 

a, a2 a3 

g1 cos`P - sinT 0 

g2 sind' cosP 0 

g3 0 0 1 

Linear momentum of vehicle expressed as: 

L= mua, +mva2 

Angular momentum expressed as: 

H=Ira3 

Their rates of change in A are: 

AdL 

dr ..... +mva2 

And: 

ýI 
dt = Ira3 

The rate of change of linear momentum in G is: 

GdL GJ 

+, 
7 A 

dt = dtý 

Where the last term is the cross product between the angular velocity of A relative to 

G and the linear momentum. 
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If: 

'fl' = ra3 

This leads to: 

G am` 
d =m(4 -vr)al +m(v+ur t2 

The rate of change of angular momentum in G is: 

GdH Gdll 
i_OgIAXII 

dt dt 

Thus: 

G 

=Ra3 dt 

Therefore, if the sums of the external forces in the a, and a2 directions are denoted 

by Z Fx and FY , and the sum of external torques about the a3 direction is 

denoted by MZ then the equations of motion can be written as: 

EFx =m(ü-vr) 

I Fy = m(v + ur) 

EMz =lur 

For each wheel system, the equation of motion can be written directly: 

Fe rl =1. fl o fl 

Foro =1�f1L)t 

F., re,,,, =1�, W,, 

Fx� r, Y� 
1�7 d)n 
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Appendix B 

Derivation of 13 DOF vehicle model equations of motion (before generalised forces 

are substituted) using MatLab Symbolic Toolbox based program. The listing below 

details the derivation of the results by first giving the symbolic toolbox commands, 

which are in bold, these are followed by the MatLab workspace output. Notes are 

also given which are preceded by % and are in italics. Final equation forms and the 

figures detailing the frames of reference are given in Section 3.3.1. 

% File creates Lagrangian 9DOF model in algebraic format 
% to find equations of motion for car 
% DOF are pitch, roll, yaw, lateral, longitudinal and 4x wheel spins 
% The 4 tyre lag DOF are given in Section 3.3.2 
% Uses symbolic toolbox 
% By B Siegler Created 12/12/00 
% Last modified 21/12/00 

% 1) Find rotation matrices between frames of reference 
% 2) Derive energies for each body 
% 3) Find general forces 
% 4) Find partial derivatives 
% 5) Form Lagrangian equation for each DOF 
% 6) Thus equations of motion are given before substitution of generalised 
% forces 

% Notes on dynamics: 
% Do not have to take into account height of unsprung mass due to being at 
% ground plane 
% Long and lat scrub derivatives are zero due to no suspension 
% Roll centre heights only affects scrub derivatives 

Notes on algebra: 
All reference frames are in capitals 
Partial derivatives denoted by b 
See end for main simplification of results 
See nomenclature for full listing of variable meanings 
Greek letters indicated by English name, i. e. 'P = psi 
dot addition to variable denotes time derivative of variable 
Psidot replaced with r 

% Subscript: front = fr, rear = re, followed by: right = ri, left = le 
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1) Find rotation matrices between frames of reference 

syms phi theta psi real; 

Syms command specifies variables phi, theta and psi as real numbers 

Create transformation (by rotation) matrix for sprung mass and unsprung 
mass reference frames. 

GtransA = [cos(psi) -sin(psi) 0;... 
sin(psi) cos(psi) 0;... 

001]; 

Due to inversed z-axis 

AtransG = simpie(inv(GtransA)) 

AtransG = 

[ cos(psi), sin(psi), 0] 
[ -sin(psi), cos(psi), 0] 
[ 0,0,1] 

BtransApitch = [cos(theta) 0 sin(theta);... 
010;... 

-sin(theta) 0 cos(theta)]; 

AtransBpitch = simpie(inv(BtransApitch)) 

AtransBpitch = 

[ cos(theta), 0, -sin(theta)] 
[ 0,1,0] 
[ sin(theta), 0, cos(theta)] 

BtransAroll = [1 00;... 
0 cos(phi) -sin(phi);... 
0 sin(phi) cos(phi)]; 

AtransBroll = simpie(inv(BtransAroll)) 

AtransBroll 

[ 1,0,0] 
[ 0, cos(phi), sin(phi)1 
[ 0, -sin(phi), cos(phi)] 
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AtransB = AtransBpitch*AtransBroll 

AtransB = 

cos(theta), sin(theta)*sin(phi), -sin(theta)*cos(phi)] 
0, cos(phi), sin(phi)] 

sin(theta), -cos(theta)*sin(phi), cos(theta)*cos(phi)] 

BtransA = BtransApitch*BtransAroll 

BtransA = 

cos(theta), sin(theta)*sin(phi), sin(theta)*cos(phi)] 
0, cos(phi), -sin(phi)] 

-sin(theta), cos(theta)*sin(phi), cos(theta)*cos(phi)] 

syms phidot thetadot r real; 

Velocities in ref frame A 

GrotBinA = [0 0 r] + [phidot 0 0]*BtransApitch +[0 thetadot 
0]*BtransAroll 

GrotBinA = 

(phidot*cos(theta), thetadot`cos(phi), r+phidot`sin(theta)-thetadot*sin(phi)) 

Velocities in ref frame B 

GrotBinB = [0 0 r]*AtransB + [phidot 0 0] + [0 thetadot 0] 

GrotBinB = 

(r*sin(theta)+phidot, -r*cos(theta)*sin(phi)+thetadot, r*cos (th eta)*cos (phi)) 

GrotBlnB = GrotBlnB*[1 0 0; 0 -1 0; 0 01] 

GrotBinB = 

[r*sin(theta)+phidot, r*cos(theta)*sin(phi)-thetadot, r`cos(theta)`cos(phi)] 

Finding the position and velocity of P= Position of C of G 

h is height of c of g above roll axis 

syms huv real; 
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PinB=[00-h]'; 

PinA = BtransA*PinB 

PinA = 

[ -sin (theta) *cos (phi)*h 
[ sin(phi)*h ] 
[ -cos(theta)*cos(phi)*h] 

Position of P in ref frame B 

Position of P in ref frame A 

velPinG =0+ cross(GrotBinA, PinA) + [u v 0]; 

Cross product for unsprung body fixed axis 

velPinG = simpie(simpie(simpie(velPinG))) 

Simple command simplifies results (collects like terms together, etc. ) 

velPinG = 

[-thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u, -(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos(phi)*h+phidot*cos(theta)^2*cos(phi)*h+v, 
phidot*cos(theta)*sin(phi)*h+thetadot*cos(phi)^2*sin(theta)*h) 

ub = velPinG*[1 0 0]' 

ub = 

Sprung mass velocities 

-thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u 

vb velPinG*[O 1 0]' % Sprung mass velocities 

vb = 

-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos(phi)*h+phidot*cos(theta)^2*cos(phi)*h+v 

wb = velPinG*j0 0 13' % Sprung mass velocities 

wb= 

phidot*cos(theta)*sin(phi)*h+thetadot*cos(phi)^2*sin(theta)*h 
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2) Derive energies for each body 

Parameters for sprung mass 

syms mb Ixxb Ixyb lxzb Ixyb lyyb lyzb lxzb lyzb Izzb rollstiff roiidamp 
pitchstiff pitchdamp g real; 

Parameters for unsprung mass 

syms mf mr lzzf lzzr ab real; 

% Parameters for wheel - spindot is wheel rotational velocity, (spin is wheel 
inertia about axle 

syms Ispin spindotfrri spindotfrle spindotrerl spindotrele spinfrri 
spinfrle spinrerl spinrele real; 

Kinetic Energy 

For Sprung Mass 
-°°------------------ 

% Rotational 

Inertia matrix to work out energies 

I= [Ixxb -Ixyb -Ixzb;... 
-Ixyb Iyyb -iyzb;... 
-Ixzb -lyzb Izzb]; 

Ixyb = lxzb = lyzb =0 due to small compared to main inertia values 
(and symmetry of the vehicle about the x-axis) 

KEbodyrot = 0.5*GrotB1nB*(I*GrotB1nB'); 

KEbodyrot = simpie(KEbodyrot) 

KEbodyrot = 

(1/2*r*sin(theta)+1/2*phidot)*(Ixxb*(r*sin(theta)+phidot)- 
Ixyb*(r*cos(theta)*sin(phi)-thetadot)- 
Ixzb*r*cos(theta)*cos(phi))+(1 /2*r*cos(theta)*sin(phi)-1 /2*thetadot)*(- 
Ixyb*(r*sin(theta)+phidot)+lyyb*(r*cos(theta)*sin(phi)-thetadot)- 
Iyzb*r*cos(theta)*cos(phi))+1 /2*r*cos(theta)*cos(phi)*(- 
Ixzb*(r*sin(theta)+phidot)-Iyzb*(r*cos(theta)*sin(ph1)- 
thetadot)+Izzb*r*cos(theta)*cos(phi)) 
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Translational 

KEbodytrans = 0.5*mb*((ub^2)+(vb^2)+(wb^2)); 

KEbodytrans = simple(KEbodytrans) 

KEbodytrans = 

1 /2*mb*((-thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u)^2+(-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos(phi)*h+phidot*cos(theta)^2*cos(phi)*h+v)^2+ 
(phidot*cos(theta)*sin(phi)*h+thetadot*cos(phi)A2*sin(theta)*h)^2) 

For Unsprung Mass 
-------------------------- 

of=u; 
ur = u; 
vf_v+a*r; 
yr =v- b*r; 

KEaxlef = 0.5*mf*((uf"2)+(vf^2)) +0.5*Izzf*(r^2); 

KEaxier = 0.5*mr*((ur^2)+(vrA2)) +0.5*lzzr*(r^2); 

% For wheels 
--------------- 

Position and velocities 

Pfrri = [a (tf/2) 0]; 
Pfrle = [a (tf/2) 0]; 
Prerl = [-b (-tr/2) 0]; 
Prele = [-b (-tr/2) 0]; 

Therefore KE's 

KEfrrl 1/2*ispln*(splndotfrrI"2); 
KEfrle = 1/2*Ispln*(splndotfrle"2); 
KErerl = 1/2*Ispln*(spindotrerIA2); 
KErele =1/2*Ispin*(spindotrele^2); 

Total KE 
----------- 

KE = simpie(simpie(KEfrrl + KEfrie + KErerl + KErele + KEaxlef + 
KEaxler + KEbodyrot + KEbodytrans)); 
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KE = simpie(simpie(KE)) 

KE = 

1/2*Ispin*spindotfrriA2+1/2*Ispin*spindotfrleA2+1/2*Ispin*spindotreri^2+1/2*Is 
pin*spindotrele^2+1/2*mf*(uA2+(v+a*r)^2)+1 /2*Izzf*rA2+1 /2*mr*(uA2+(v- 
b*r)^2)+1/2*Izzr*rA2+(1/2*r*sin(theta)+1/2*phidot)*(Ixxb*(r*sin(theta)+phidot)- 
Ixyb*(r*cos(theta)*sin(phi)-thetadot)- 
Ixzb*r*cos(theta)*cos(phi))+(1/2*r*cos(theta)*sin(phi)-1/2*thetadot)*(- 
Ixyb*(r*sin(theta)+phidot)+lyyb*(r*cos(theta)*sin(phi)-thetadot)- 
lyzb*r*cos(theta)*cos(phi))+1/2*r*cos(theta)*cos(phi)*(- 
Ixzb*(r*sin(theta)+phidot)-Iyzb*(r*cos(theta)*sin(phi)- 
thetadot)+Izzb*r*cos(theta)`cos(phi))+1 /2*m b*((- 
thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u)^2+(-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos(phi)*h+phidot*cos(theta)^2*cos(phi)*h+v)^2+ 
(phi dot*cos(theta)*sin (phi)*h+thetadot*cos(phi)^2*sin(theta)*h)^2) 

Potential Energy 

For Sprung Mass 
----------------------- 

PEgravity = mb*g*h*((1-cos(phi))+(1-cos(theta))) 

PEgravity = 

mb*g*h*(2-cos(phi)-cos(theta)) 

PEbody = 0.5*rollstiff*(phi112) + 0.5*p(tchstiff*(theta^2) - PEgravity 

PEbody = 

1/2*rolIstiff *phi^2+1/2*pitchstiff*thetaA2-mb*g*h*(2-cos(ph1)-cos (theta)) 

Dissipative Energy 

% For Sprung Mass 
---------------------- 

DEbody = 0.5*roI[dam p*(phIdot^2) + 0.5*pitchdamp*(thetadot^2) 

DEbody = 
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1/2*rol(damp*phidotA2+1/2*pitchdamp"thetadotA2 

None for Unsprung Mass and Wheels 
------------------------------------------------- 

PE = PEbody; 
DE = DEbody; 

---------------------------------------------------------- ---------------------------------------------------------- 

3) Find general forces 

syms Fxfrri Fxfrle Fxrerl Fxrele Fyfrrl Fyfrle Fyrerl Fyrele rwheel real; 

Qlongf = Fxfrrl + Fxfrle + Fxrerl + Fxrele; 

Qlatf = Fyfrrl + Fyfrle + Fyrerl + Fyrele; 

Qyawf = (Fyfrri + Fyfrle)*a - (Fyrerl + Fyrele)*b; 

Qrolif = 0; 

Qpitchf = 0; 

Qwheelfrrif = Fxfrri*rwheel; 

Qwheelfrlef = Fxfrle*rwheel; 

Qwheelrerif = Fxrerl*rwheel; 

Qwheelrerlf = Fxrele*rwheel; 

4) Find partial derivatives 

Lateral, longitudinal and yaw derivatives 

bKEbu = diff(KE, u) % I. e. =äE partial derivative 

Diff command differentiates KE equation with respect to u 

bKEbu = 

mf*u+m r*u+1 /2*mb*(-2*thetadot*cos(phi)A2*cos(theta)*h- 
2*(r+phidot*sin(theta)-thetadot*sin(phi))*sin(phi)*h+2*u) 
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bKEbv = diff(KE, v) 

bKEbv = 

1/2*mf*(2*v+2*a*r)+1 /2*mr*(2*v-2*b*r)+1/2*mb*(-2*(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos (phi)*h+2*phidot*cos(theta)A2*cos(phi)*h+2*v 

bKEbr = diff(KE, r) 

bKEbr = 

mf*(v+a*r)*a+izzf*r-m r*(v- 
b*r)*b+lzzr*r+1/2*sin(theta)*(Ixxb*(r*sin(theta)+phidot)- 
Ixyb*(r*cos(theta)*sin(phi)-thetadot)- 
Ixzb*r*cos(theta)*cos(phi))+(1 /2*r*sin(theta)+1 /2*phidot)*(Ixxb*sin(theta)- 
Ixyb*cos(theta)*sin(phi)-Ixzb*cos(theta)*cos(phi))+1 /2*cos(theta)*sin(phi)*(- 
Ixyb*(r*sin(theta)+phidot)+Iyyb*(r*cos(theta)*sin(phi)-thetadot)- 
lyzb*r*cos(theta)*cos (phi))+(1/2*r*cos(theta)*sin(phi)-1/2*thetadot)*(- 
Ixyb*sin(theta)+Iyyb*cos(theta)*sin(phi)- 
lyzb*cos(theta)*cos(phi))+1 /2*cos(theta)*cos(phi)*(-Ixzb*(r*sin(theta) +phidot)- 
Iyzb*(r*cos(theta)*sin(phi)- 
thetadot)+Izzb*r*cos(theta)*cos(phi))+1 /2*r*cos(theta)*cos(phi)*(- 
Ixzb*sin(theta)-Iyzb*cos(theta)*sin(phi)+Izzb*cos(theta)*cos (phi))+1/2*mb*(- 
2*(-thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u)*sin (phi)*h-2*(-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos (phi)*h+ph1dot*cos(theta)A2*cos(phi)*h+v)*sin 
(theta)*cos(phi)*h) 

Roll derivatives 

bKEbphldot = diff(KE, phidot) 

bKEbphidot = 

1/2*ixxb*(r*sin(theta)+phidot)-1/2*ixyb*(r*cos(theta)*sin(phi)-thetadot)- 
ixzb*r*cos(theta)*cos(phi)+(1/2*r*sin(theta)+1/2*phidot)*Ixxb- 
(1 /2*r*cos(theta)*sin(phi)-1 /2*thetadot)*Ixyb+1 /2*mb*(-2*(- 
thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u)*sin(theta)*sin(phi)*h+2*("(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos (phi)*h+phidot*cos(theta)A2*cos(phi)*h+v)*(- 
sin(theta)A2*cos(phi)*h+cos(theta)A2*cos(phi)*h)+2*(phidot*cos(theta)*sin (phi 
)*h+thetadot*cos(phi)A2*sin(theta)*h)*cos (theta)*sin (phi)*h) 
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bKEbphl = diff(KE, phi) 

bKEbphi 

(1/2*r*sin(theta)+1/2*phidot)*(- 
Ixyb*r*cos(theta)*cos(phi)+Ixzb*r*cos(theta)*sin(phi))+1/2*r*cos(theta) *cos (ph 
i)*(-Ixyb*(r*sin(theta)+phidot)+Iyyb*(r*cos(theta)*sin(phi)-thetadot)- 
Iyzb*r*cos(theta)*cos(phi))+(1/2*r*cos(theta)*sin(phi)- 
1 /2*thetadot)*(lyyb*r*cos(theta)*cos(phi)+Iyzb*r*cos(theta)*sin(phi))- 
1/2*r*cos(theta)*sin(phi)*(-Ixzb*(r*sin(theta)+phidot)- 
Iyzb*(r*cos(theta)*sin(phi)- 
thetadot)+Izzb*r*cos(theta)*cos(phi))+1/2*r*cos(theta)*cos(phi)*(- 
Iyzb*r*cos(theta)*cos(phi)-Izzb*r*cos(theta)*sin(phi))+1 /2*mb*(2*(- 
thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u)*(2*thetadot*cos(phi)*cos(theta)*h*sin(phi)+th 
etadot*cos(phi)*sin(phi)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*cos(phi)*h)+2*(-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin (theta)*cos(phi)*h+phidot*cos(theta)A2*cos(phi)*h+v)*(th 
etadot*cos(phi)A2*sin(theta)*h+(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin (theta)*sin (phi)*h- 
phidot*cos(theta)A2*sin(phi)*h)+2*(phidot*cos(theta)*sin (phi)*h+thetadot*cos( 
phi)^2*sin(theta)*h)*(phidot*cos(theta)*cos(phi)*h- 
2*thetadot*cos(phi)*sin (theta)*h*sin(phi))) 

bPEbphl = diff(PE, phl) 

bPEbphi = 

rollstiff*phi-mb*g*h*sin(phi) 

bDEbphldot = diff(DE, phidot) 

bDEbphidot = 

rolldamp*phidot 

Pitch derivatives 

bKEbthetadot = diff(KE, thetadot) 

bKEbthetadot = 

(1 /2*r*sin(theta)+1 /2*phidot)* Ixyb+1 /2*Ixyb*(r*sin(theta)+phidot)- 
1/2*lyyb*(r*cos(theta)*sin(phi)-thetadot)+Iyzb*r*cos(theta)*cos(phi)- 
(1 /2*r*cos(theta)*sin(phi)-1 /2*thetadot)*Iyyb+1 /2*mb*(2*(- 
thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u)*(-cos(phi)A2*cos(theta)*h+sin(phi)^2*h)+2*(- 
(r+phidot*sin(theta)- 
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thetadot*sin(phi))*sin(theta)*cos (phi)*h+phidot*cos(theta)A2*cos(phi)*h+v)*sin 
(phi)*sin (theta)*cos (phi)*h+2*(phidot*cos(theta)*sin(phi)*h+thetadot*cos(phi)^ 
2*sin(theta)*h)*cos(phi)A2*sin(theta)*h) 

bKEbtheta = diff(KE, theta) 

bKEbtheta = 

1/2*r*cos(theta)*(Ixxb*(r*sin(theta)+phidot) -Ixyb*(r*cos(theta)*sin(phi)- 
thetadot)- 
Ixzb*r*cos(theta)*cos(phi))+(1 /2*r*sin(theta)+1 /2*phidot)*(Ixxb*r*cos(theta)+Ix 
yb*r*sin(theta)*sin(phi)+Ixzb*r*sin(theta)*cos(phi))-1 /2*r*sin(theta)*sin(phi)*(- 
Ixyb*(r*sin(theta)+phidot)+Iyyb*(r*cos(theta)*sin(phi)-thetadot)- 
lyzb*r*cos(theta)*cos(phi))+(1 /2*r*cos(theta)*si n(phi)-1 /2*thetadot)*(- 
Ixyb*r*cos(theta)-Iyyb*r*sin(theta)*sin(phi)+Iyzb*r*sin(theta)*cos(phi))- 
1 /2*r*si n(theta)*cos(phi)*(-Ixzb*(r*si n(theta)+phidot)- 
Iyzb*(r*cos(theta)*sin(phi)- 
thetadot)+Izzb*r*cos(theta)*cos(phi))+1 /2*r*cos(theta)*cos(phi)*(- 
Ixzb*r*cos(theta)+Iyzb*r*sin(theta)*sin(phi)- 
Izzb*r*sin(theta)*cos(phi))+1 /2*mb*(2*(-thetadot*cos(phi)A2*cos(theta)*h- 
(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u)*(thetadot*cos(phi)A2*sin(theta)*h- 
phidot*cos(theta)*sin(phi)*h)+2*(-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos(phi)*h+phidot*cos(theta)A2*cos(phi)*h+v)*(- 
3*phidot*cos(theta)*sin(theta)*cos (phi)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*cos(theta)*cos (phi)*h)+2*(phidot*cos(theta)*sin (phi)*h+thet 
adot*cos(phi)A2*sin(theta)*h)*(- 
phidot*sin(theta)*sin (phi)*h+thetadot*cos(phi)A2*cos(theta)*h)) 

bPEbtheta = diff(PE, theta) 

bPEbtheta = 

pitchstiff*theta-mb*g*h*sin(theta) 

bDEbthetadot = diff(DE, thetadot) 

bDEbthetadot = 

pitchdamp*thetadot 

Wheel spin derivatives 

bKEbspinfrrl = diff(KE, spinfrri) 

bKEbspinfrri = 
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bKEbspinfrie = diff(KE, spinfrie) 

bKEbspinfrle = 

0 

bKEbspinrerl = diff(KE, spinreri) 

bKEbspinreri = 

0 

bKEbspinrele = diff(KE, spinrele) 

bKEbspinrele = 

0 

bKEbspindotfrri = diff(KE, spindotfrri) 

bKEbspindotfrri 

(spin*spindotfrri 

bKEbspindotfrle = diff(KE, spindotfrle) 

bKEbspindotfrle = 

(spin*spindotfrie 

bKEbspindotreri = diff(KE, spindotreri) 

bKEbspindotreri = 

Ispin*spindotreri 

bKEbspindotreie = diff(KE, spindotreie) 

bKEbspindotrele = 

(spin*spindotrele 

Find time derivatives 

Differentiation by time done by substituting u for udot, v for vdot, r for rdot, 
etc. using subs command (sin, cos functions updated as necessary) 
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syms bKEbutime bKEbvtime bKEbrtlme bKEbphidottime 
bKEbthetadottime bKEbspindotfrritime bKEbspindotfrletime 
bKEbspindotreletime bKEbspindotreritime real; 

Time derivatives of velocities 

syms udot vdot rdot phiddot thetaddot real 

bKEbutime 
subs(bKEbu, {u, v, r, thetadot, phidot}, {udot, vdot, rdot, thetaddot, phlddot}) 

bKEbutime = 

mf*udot+mr*udot+l /2*mb*(-2*thetaddot*cos(phi)^2*cos(theta)*h- 
(2*rdot+2*phiddot*sin(theta)-2*thetaddot*sin(phi))*sin(phi)*h+2*udot) 

bKEbvtime 
subs(bKEbv, {u, v, r, thetadot, phidot}, {udot, vdot, rdot, thetaddot, phiddot}) 

bKEbvtime = 

1 /2*mf*(2*vdot+2*a*rdot)+1 /2*mr*(2*vdot-2*b*rdot)+1 /2*mb*((-2*rdot- 
2*phiddot*sin(theta)+2*thetaddot*sin(phi))*sin (theta)*cos(phi)*h+2*phiddot*co 
s(theta)A2*cos(phi)*h+2*vdot) 

bKEbrtime = 
subs(bKEbr, {u, v, r, thetadot, phidot}, {udot, vdot, rdot, thetaddot, phiddot}) 

bKEbrtime = 

mf*(vdot+a*rdot)*a+Izzf*rdot-mr*(vdot- 
b*rdot)*b+Izzr*rdot+l /2*sin(theta)*(Ixxb*(rdot*sin(theta)+phiddot)- 
Ixyb*(rdot*cos(theta)*sin(phi)-thetaddot)- 
ixzb*rdot*cos(theta)*cos(phi))+(1/2*rdot*sin(theta)+1/2*phiddot)*(Ixxb*sin(thet 
a)-Ixyb*cos(theta)*sin(phi)- 
Ixzb*cos(theta)*cos(phi))+1/2*cos(theta)*sin(phi)*(- 
Ixyb*(rdot*sin(theta)+phiddot)+Iyyb*(rdot*cos(theta)*sin(phi)-thetaddot) - 
lyzb*rdot*cos(theta)*cos(phi))+(1/2*rdot*cos(theta)*sin(phi)-1/2*thetaddot)*(- 
Ixyb*sin(theta)+Iyyb*cos(theta)*sin(phi)- 
lyzb*cos(theta)*cos(phi))+1/2*cos(theta)*cos(phi)*(- 
Ixzb*(rdot*sin(theta) +phiddot)-lyzb*(rdot*cos(theta)*sin(phi)- 
thetaddot)+I zzb*rdot*cos(th eta)*cos (phi))+ 1 /2*rdot*cos(theta)*cos(phi)*(- 
Ixzb*sin(theta)- 
tyzb*cos(theta)*sin(phi)+Izzb*cos(theta)*cos(phi))+1/2*mb*((2*thetaddot*cos( 
phi)A2*cos(theta)*h+2*(rdot+phiddot*sin(theta)-thetaddot*sin(phi))*sin (phi)*h- 
2*udot)*sin(phi)*h-(2*(-rdot- 
phiddot*sin(theta)+thetaddot*sin(phi))*sin(theta)*cos(phi)*h+2*phiddot*cos(th 
eta)^2*cos(phi)*h+2*vdot)*sin(theta)*cos(phi)*h) 

158 



bKEbphidottime = 
subs(bKEbphidot, {u, v, r, thetadot, phidot}, {udot, vdot, rdot, thetaddot, phiddot}) 

bKEbphidottime = 

1 /2*Ixxb*(rdot*sin(theta)+phiddot)-1/2*Ixyb*(rdot*cos(theta)*sin(phi)- 
thetaddot)- 
Ixzb*rdot*cos(theta)*cos(phi)+(1 /2* rdot*si n (theta)+ 1 /2*phiddot)*Ixxb- 
(1/2*rdot*cos(theta)*sin(phi)- 
1 /2*thetaddot)*Ixyb+1 /2*mb*((2*thetaddot*cos (phi)A2*cos (theta)* h+2*(rdot+p 
hiddot*sin(theta)-thetaddot*sin(phi))*sin(phi)*h- 
2*udot)*sin(theta)*sin(phi)*h+(2*(-rdot- 
phiddot*sin(theta)+thetaddot*sin(phi))*sin (theta)*cos (phi)*h+2*phiddot*cos(th 
eta)A2*cos(phi)*h+2*vdot)*(- 
sin(theta)A2*cos(phi)*h+cos(theta)^2*cos(phi)*h)+(2*phiddot*cos(theta)*sin(p 
hi)*h+2*thetaddot*cos(phi)A2*sin(theta)*h)*cos(theta)*sin (phi)*h) 

bKEbthetadottime = 
subs(bKEbthetadot, {u, v, r, thetadot, phidot}, {udot, vdot, rdot, thetaddot, phiddot}) 

bKEbthetadottime = 

(1/2*rdot*sin(theta)+1/2*phiddot)*Ixyb+1/2*Ixyb*(rdot*sin(theta)+phiddot)- 
1/2*lyyb*(rdot*cos(theta)*sin(phi)-thetaddot)+lyzb*rdot*cos(theta)*cos(phi)- 
(1/2*rdot*cos(theta)*sin(phi)-1/2*thetaddot)*Iyyb+1 /2*mb*((- 
2*thetaddot*cos(phi)A2*cos(theta)*h-2*(rdot+phiddot*sin(theta)- 
thetaddot*sin(phi))*sin(phi)*h+2*udot)*(- 
cos(phi)A2*cos(theta)*h+sin(phi)^2*h)+(2*(-rdot- 
phiddot*sin(theta)+thetaddot*sin(phi))*sin(theta)*cos(phi)*h+2*phiddot*cos(th 
eta)A2*cos(phi)*h+2*vdot)*sin (phi)*sin(theta)*cos(phi)*h+(2*phiddot*cos(theta 
)*sin(phi)*h+2*thetaddot*cos(phi)A2*sin(theta)*h)*cos(phi)A2*sin(theta)*h) 

Wheel spin derivatives 

syms spinddotfrri spinddotfrie spinddotreri spinddotrele real; 

bKEbspindotfrritime = subs(bKEbspindotfrrl, spindotfrrl, splnddotfrri) 

bKEbspindotfrritime = 

Ispin*spinddotfrri 

bKEbspindotfrletime = subs(bKEbspindotfrle, splndotfrle, spinddotfrle) 

bKEbspindotfrletime = 

Ispin`spinddotfrle 
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bKEbspindotreritime = subs(bKEbspindotreri, spindotreri, spinddotreri) 

bKEbspindotreritime = 

(spin*spinddotreri 

bKEbspindotreietime = subs(bKEbspindotrele, spindotrele, spinddotrele) 

bKEbspindotreletime 

Ispin*spinddotrele 

5) Form Lagrangian equation for each DOF 

Along = bKEbutime - r*bKEbv 

Qlong = 

mf*udot+m r*udot+1 /2*mb*(-2*thetaddot*cos(phi)A2*cos(theta)*h- 
(2*rdot+2*phiddot*sin(theta)-2*thetaddot*sin(phi))*sin(phi)*h+2*udot)- 
r*(1/2*mf*(2*v+2*a*r)+1/2*mr*(2*v-2*b*r)+1 /2*mb*(-2*(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos(phi)*h+2*phidot*cos(theta)A2*cos(ph! )*h+2*v)) 

Qlat = bKEbvtime + r*bKEbu 

Qlat = 

1 /2*mf*(2*vdot+2*a*rdot)+1 /2*m r*(2*vdot-2*b*rdot)+1 /2*mb*(("2*rdot- 
2*phiddot*sin(theta)+2*thetaddot*sin(phi))*sin(theta)*cos(phi)*h+2*phiddot*co 
s(theta)A2*cos(phi)*h+2*vdot)+r*(mf*u+mr*u+1/2*mb*(- 
2*thetadot*cos(phi)A2*cos(theta)*h-2*(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+2*u)) 

Qyaw = bKEbrtlme + u*bKEbv - v*bKEbu 

Qyaw = 

mf*(vdot+a*rdot)*a+Izzf*rdot-mr`(vdot- 
b*rdot)*b+Izzr*rdot+l/2*sin(theta)*(Ixxb*(rdot*sin(theta)+phiddot)- 
Ixyb*(rdot*cos(theta)*sin(phi)-thetaddot)- 
Ixzb*rdot*cos(theta)*cos(phi))+(1 /2*rdot*sin(theta)+1 /2*phiddot)*(Ixxb*sin (thet 
a)-Ixyb*cos(theta)*sin(phi)- 
Ixzb*cos(theta)*cos(phi))+1/2*cos(theta)*sin(phi)*(- 
Ixyb*(rdot*sin(theta)+phiddot)+iyyb*(rdot*cos(theta)*sin(phi)-thetaddot)- 
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Iyzb*rdot*cos(theta)*cos(phi))+(1 /2*rdot*cos(theta)*sin (phi)-1 /2*thetaddot)*(- 
Ixyb*sin(theta)+Iyyb*cos(theta)*sin(phi)- 
Iyzb*cos(theta)*cos(phi))+1/2*cos(theta)*cos(phi)*(- 
Ixzb*(rdot*sin(theta)+phiddot)-Iyzb*(rdot*cos(theta)*sin(phi)- 
thetaddot)+Izzb*rdot*cos(theta)*cos(phi))+1 /2*rdot*cos(theta)*cos(phi)*(- 
Ixzb*sin(theta)- 
Iyzb*cos(theta)*sin(phi)+Izzb*cos(theta)*cos(phi))+1 /2*mb*((2*thetaddot*cos( 
phi)A2*cos(theta)*h+2*(rdot+phiddot*sin(theta)-thetaddot*sin(phi))*sin(phi)*h- 
2*udot)*sin(phi)*h-(2*(-rdot- 
phiddot*sin(theta)+thetaddot*sin(phi))*sin(theta)*cos(phi)*h+2*phiddot*cos(th 
eta)A2*cos(phi)*h+2*vdot)*sin(theta)*cos(phi)*h)+u*(1 /2*mf*(2*v+2*a*r)+1 /2* 
mr*(2*v-2*b*r)+1 /2*mb*(-2*(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos(phi)*h+2*phidot*cos(theta)^2*cos(phi)*h+2*v 
))-v*(mf*u+mr*u+1 /2*mb*(-2*thetadot*cos(phi)^2*cos(theta)*h- 
2*(r+phidot*sin(theta)-thetadot*sin(phi))*sin(phi)*h+2*u)) 

Groll = bKEbphidottime - bKEbphi + bPEbphl + bDEbphidot 

Qroll = 

1/2*Ixxb*(rdot*sin(theta)+phiddot)-1 /2*Ixyb*(rdot*cos(theta)*sin(phi)- 
thetaddot)- 
Ixzb*rdot*cos(theta)*cos(phi)+(1 /2*rdot*sin (theta)+1 /2*phiddot)* Ixxb- 
(1/2*rdot*cos(theta)*sin(phi)- 
1/2*thetaddot)*Ixyb+1/2*mb*((2*thetaddot*cos(phi)^2*cos(theta)*h+2*(rdot+p 
hiddot*sin(theta)-thetaddot*sin(phi))*sin(phi)*h- 
2*udot)*sin(theta)*sin (phi)*h+(2*(-rdot- 
phiddot*sin(theta)+thetaddot*sin(phi))*sin(theta)*cos(phi)*h+2*phiddot*cos(th 
eta)A2*cos(phi)*h+2*vdot)*(- 
sin(theta)A2*cos(phi)*h+cos(theta)^2*cos(phi)*h)+(2*phiddot*cos(theta)*sin (p 
hi)*h+2*thetaddot*cos(phi)^2*sin(theta)*h)*cos(theta)*sin(phi)*h)- 
(1 /2*r*sin(theta)+1 /2*phidot)*(- 
Ixyb*r*cos(theta)*cos (phi)+Ixzb*r*cos(theta)*sin(phi))- 
1/2*r*cos(theta)*cos(phi)*(- 
Ixyb*(r*sin(theta)+phidot)+lyyb*(r*cos(theta)*sin(phi)-thetadot)- 
lyzb*r*cos(theta)*cos (phi))-(1/2*r*cos(theta)*sin(phi)- 
1/2*thetadot)*(Iyyb*r*cos(theta)*cos(phi)+lyzb*r*cos(theta)*sin(phi))+1/2*r*co 
s(theta)*sin (phi)*(-Ixzb*(r*sin(theta)+phidot)-Iyzb*(r*cos(theta)*sin(phi)- 
thetadot)+Izzb*r*cos(theta)*cos(phi))-1/2*r*cos(theta)*cos(phi)*(- 
lyzb*r*cos(theta) *cos(phi)-Izzb*r*cos(theta)*sin(phi))-1 /2*mb*(2*(- 
thetadot*cos(phi)A2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin (phi)*h+u)*(2*thetadot*cos(phi)*cos (theta)*h*sin(ph1)+th 
etadot*cos(phi)*sin (phi)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*cos (phi)*h)+2*(-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin (theta)*cos (phi)*h+phidot*cos(theta)A2*cos(phi)*h+v)*(th 
etadot*cos(phi)A2*sin(theta)*h+(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin (theta)*sin (phi)*h* 
phidot*cos(theta)A2*sin(phi)*h)+2*(phidot*cos(theta)*sin(ph1)*h+thetadot*cos( 
phi)^2*sin(theta)*h)*(phidot*cos(theta)*cos(phi)*h- 
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2*thetadot*cos(phi)*sin(theta)*h*sin(phi)))+rolIstiff*phi- 
mb*g*h*sin(phi)+rolldamp*phidot 

Opitch = bKEbthetadottime - bKEbtheta + bPEbtheta + bDEbthetadot 

Qpitch = 

(1 /2*rdot*si n (theta)+1 /2*phiddot)*Ixyb+1 /2* Ixyb*(rdot*si n(theta)+ph i ddot)- 
1 /2*Iyyb*(rdot*cos(theta)*sin(phi)-thetaddot)+Iyzb*rdot*cos(theta)*cos(phi)- 
(1/2*rdot*cos(theta)*sin(phi)-1/2*thetaddot)*iyyb+1/2*mb*((- 
2*thetaddot*cos(phi)A2*cos(theta)*h-2*(rdot+phiddot*sin(theta)- 
thetaddot*sin(phi))*sin(phi)*h+2*udot)*(- 
cos(phi)A2*cos(theta)*h+sin(phi)^2*h)+(2*(-rdot- 
phiddot*sin(theta)+thetaddot*sin(phi))*sin(theta)*cos(phi)*h+2*phiddot*cos(th 
eta)A2*cos(phi)*h+2*vdot)*sin(phi)*sin(theta)*cos(phi)*h+(2*phiddot*cos(theta 
)*sin(phi)*h+2*thetaddot*cos(phi)A2*sin(theta)*h)*cos(phi)A2*sin(theta)*h)- 
1/2*r*cos(theta)*(Ixxb*(r*sin(theta)+phidot)-Ixyb*(r*cos(theta)*sin(phi)- 
thetadot)-Ixzb*r*cos(theta)*cos(phi))- 
(1/2*r*sin(theta)+1/2*phidot)*(Ixxb*r*cos(theta)+Ixyb*r*sin(theta)*sin(phi)+Ixz 
b*r*sin(theta)*cos(phi))+1/2*r*sin(theta)*sin(phi)*(- 
Ixyb*(r*sin(theta)+phidot)+Iyyb*(r*cos(theta)*sin(phi)-thetadot)- 
Iyzb*r*cos(theta)*cos(phi))-(1 /2*r*cos (theta) *s in (phi)- 1/2*thetadot)*(- 
Jxyb*r*cos(theta)- 
l yyb* r*s in (theta) *s in (phi)+I yzb* r* sin (theta) *cos (p h i))+ 1 /2* r*s in (th eta) *cos (phi) 
*(-Ixzb*(r*sin(theta)+phidot)-Iyzb*(r*cos(theta)*sin (phi)- 
thetadot)+Izzb*r*cos(theta)*cos(phi))-1/2*r*cos(theta)*cos(phi)*(- 
Ixzb*r*cos(theta)+Iyzb*r*sin(theta)*sin (phi)-Izzb*r*sin(theta)*cos(phi))- 
1/2*mb*(2*(-thetadot*cos(phi)^2*cos(theta)*h-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(phi)*h+u)*(thetadot*cos(phi)A2*sin(theta)*h- 
phidot*cos(theta)*si n(phi)*h)+2*(-(r+phidot*sin(theta)- 
thetadot*sin(phi))*sin(theta)*cos(phi)*h+phidot*cos(theta)^2*cos(phi)*h+v)*(- 
3*phidot*cos(theta)*sin (theta)*cos(phi)*h-(r+phIdot*sin(theta)- 
thetadot*sin(phi))*cos(theta)*cos(phi)*h)+2*(phidot*cos(theta) *sin (phi)*h+thet 
adot*cos(phi)A2*sin(theta)*h)*(- 
phidot*sin(theta)*sin(phi)*h+thetadot*cos(phi)A2*cos(theta)*h))+pitch stiff*thet 
a-mb*g*h*sin(theta)+pitchdamp*thetadot 

Owheetfrri = bKEbspindotfrritime - bKEbspinfrri 

Qwheelfrri = 

Ispin*spinddotfrri 

Qwheelfrle = bKEbspindotfrletime - bKEbspinfrle 

Qwheelfrle = 

Ispin*spinddotfrle 
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Qwheeireri = bKEbspindotreritime - bKEbspinreri 

Qwheelreri = 

Ispin*spinddotreri 

Qwheelrele = bKEbspindotreletime - bKEbspinrele 

Qwheelrele = 

(spin*spinddotrele 

6) Thus equations of motion are given 

Further simplifications: 

1) All 4th order (e. g. A2*A2) are negligible (go to zero) 
2) sin(angle) =0 and cos(angle) =1 using subs command 

% 3) Products of inertia are zero 

Qlongf = subs(Qlong, sin(theta), 0); 
Qlongf = subs(Qlongf, sin(phi), 0); 
Qlongf = subs(QIongf, sin(psi), psi); 
Qlongf = subs(Qlongf, cos(theta), 1); 
Qlongf = subs(Qiongf, cos(phi), 1); 
Qlongf = subs(Qiongf, cos(psi), 1) % Final simplified form 

Qlongf = 

mf*udot+mr*udot+1 /2*mb*(-2*thetaddot*h+2*udot)- 
r*(1/2*mf*(2*v+2*a*r)+1/2*mr*(2*v-2*b*r)+1/2*m(*(2rphidot*h62iv)) 

Qlatf = subs(Qlat, sin(theta), 0); 
Qlatf = subs(Qiatf, sin(phi), 0); 
Qlatf = subs(Qlatf, sin(psi), psi); 
Qlatf = subs(Qlatf, cos(theta), 1); 
Qlatf = subs(Qlatf, cos(phi), 1); 
Qlatf = subs(Qlatf, cos(psi), 1) % Final simplified form 

Qlatf = 

1/2*mf*(2*vdot+2*a*rdot)+1/2*mr*(2*vdot- 
2*b*rdot)+1/2*mb*(2*phiddot*h+2*vdot)+r*(mf*u+mr*u+1 /2*mb*(- 
2*thetadot*h+2*u)) 
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Qyawf = subs(Qyaw, sin(theta), O); 
Qyawf = subs(Qyawf, sin(phi), 0); 
Qyawf = subs(Qyawf, sin(psi), psi); 
Qyawf = subs(Qyawf, cos(theta), 1); 
Qyawf = subs(Qyawf, cos(phi), 1); 
Qyawf = subs(Qyawf, cos(psi), 1) % Final simplified form 

Qyawf = 

mf*(vdot+a*rdot)*a+izzf*rdot-m r*(vdot-b*rdot)*b+lzzr*rdot- 
Ixzb*phiddot+iyzb*thetaddot+Izzb*rdot+u*(1 /2*mf*(2*v+2*a*r)+1 /2*mr*(2*v- 
2*b*r)+1 /2*mb*(2*phidot*h+2*v))-v*(mf*u+m r*u+1 /2*mb*(-2*thetadot*h+2*u)) 

Orollf = subs(Qroll, sin(theta), 0); 
Orollf = subs(Qrollf, sin(phi), 0) - mb*g*h*phl; 

Simplification looses gravity term 
Orollf = subs(QroIIf, sin(psi), psi); 
Orollf = subs(Qrollf, cos(theta), 1); 
Qrollf = subs(QroIIf, cos(phi), 1); 
Orollf = subs(QroIIf, cos(psi), 1) % Final simplified form 

Qrollf = 

Ixxb*phiddot+ixyb*thetaddot- 
Ixzb*rdot+1/2*mb*(2*phiddot*h+2*vdot)*h+1/2*phidot*Ixyb*r-1 /2*r*(- 
Ixyb*phidot-Iyyb*thetadot-lyzb*r)+1/2*thetadot*lyyb*r+1/2*rA2*iyzb+mb*(- 
thetadot*h+u)*r*h+rollstiff *phi+roiidamp*phidot-mb*g*h*phi 

Qpitchf = subs(Qpitch, sin(theta), 0) - mb*g*h*theta; 
Simplification looses gravity term 

Qpitchf = subs(Qpitchf, sin(phl), 0); 
Qpltchf = subs(Qpitchf, sin(psi), psi); 
Qpitchf = subs(Qpitchf, cos(theta), 1); 
Qpltchf = subs(Qpitchf, cos(phi), 1); 
Qpitchf = subs(Qpitchf, cos(psl), 1) % Final simplified form 

Qpitchf = 

Ixyb*phiddot+Iyyb*thetaddot+lyzb*rdot-1/2*mb*(-2*thetaddot*h+2*udot)*h- 
1 /2*r*(Ixxb*phidot+Ixyb*thetadot-Ixzb*r)-1 /2*phidot* lxxb*r- 
1 /2*thetadot* Ixyb*r+1 /2*rA2*Ixzb+mb*(phi dot*h+v)*r*h+pitchstiff*thota+pitch d 
amp*thetadot-mb*g*h*theta 

Qwheelfrrif = Qwheelfrri % Final simplified form 

Qwheelfrrif 

Ispin*spinddotfrri 
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Qwheelfrief = Qwheelfrle % Final simplified form 

Qwheeifrlef = 

Ispin*spinddotfrle 

Owheelrerif = Qwheelreri % Final simplified form 

Qwheelrerif = 

Ispin*spinddotreri 

Qwheelrelef = Qwheelrele % Final simplified form 

Qwheelrelef = 

Is pin`spinddotreJe 

Generalised forces may now be substituted to form the equations seen in 
section 3.3.1. 
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Appendix C 

Vehicle parameter sets for use in handling models. Notes begin with % 

F4 Vehicle Parameter Set 

% Vehicle Data set for formula sae F4 car 
% Created by B Siegler 
% Last modified 12/7/01 

g=9.81; 

muchange = 1; 
% Decrease in coeff. of friction in certain part of circuit 
accfail = 1; 
% Driver ability to use all the available traction for engine 
acceleration 
brakefail = 1; 
% Driver ability to use all the available traction for braking 
driveeffic = 1; 
% Drivetrain efficiency 
latspin = 30; 
% Stop simulation if vehicle is about to go into a spin in m/s2 
brout = 0; 
% Forward velocity in m/s model will not drop below 

offground = 0; 
% Normal force in N where wheel is about to loose contact with the 

ground 

% Tyre lag parameters 

sigmamax = 0.027; % Maximum lag time of tyre slip angle response 
sigmagain = 3.3; % Gain on slip angle derivative factor 

% Mass and inertia values 

mf = 25; % Mass of front unsprung mass in kg 

mr = 25; % Mass of front unsprung mass in kg 

mb = 285.5; % Mass of sprung mass in kg 

m= mb + mf + mr; % Total mass of vehicle 

Izz = 212; % Yaw moment of inertia in Kgm2 of entire vehicle 
= Izzf + Izzr + Izzb + a^2mf + a^2mr 

Ixx = 35; % Roll moment of inertia in Kgm2 of sprung mass 
= Ixxb + h^2mb 

Iyy = 65; % Pitch moment of inertia in Kgm2 of sprung mass 
= Iyyb + h^2mb 

Iwheelfr = 0.21; % Moment of inertia for front wheel about spin axis 
Iwheelre = 0.21; % Moment of inertia for front wheel about spin axis 
Izzf = 8; % Moment of inertia for front axle about yaw axis 
Izzr = 8; % Moment of inertia for rear axle about yaw axis 
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Vehicle dimensions 

1=1.86; % Wheelbase in m 
a=0.98; % Centre of gravity distance from front wheels in m 
b= 1-a; % Centre of gravity distance from rear wheels in m 
h=0.336; % Centre of gravity height in m 
tf= 1.26; % Front track 
tr = 1.15; % Rear track 

Suspension parameters 

% Springs 

krf = 22070; % Front ride rate at wheel centre in N/m 
krr = 31500; % Rear ride rate at wheel centre in N/m 
antirollf = 10000; % Front antiroll bar roll rate at wheel centre 

in Nm/rad 
antirollr = 5000; % Rear antiroll bar roll rate at wheel centre 

in Nm/rad 
Ptyref = 0.827; % Tyre gauge pressure above atmospheric in bar 
ktyre = ((50*Ptyref)+140)*1000; % Tyre vertical rate N/m 
kphityref = 0.5*ktyre*(tf^2); % Front tyre roll rate in Nm/rad 
kphityrer = 0.5*ktyre*(tr^2); % Rear tyre roll rate in Nm/rad 
kthetatyref = ktyre*(a^2); % Front tyre pitch rate in Nm/rad 
kthetatyrer = ktyre*(b^2); % Rear tyre pitch rate in Nm/rad 

kwheelf = (ktyre*krf)/(ktyre - krf); % Front wheel rate 
kwheelr = (ktyre*krr)/(ktyre - krr); % Rear wheel rate 
springf = 0.5*kwheelf*(tf^2); % Front spring roll rate in Nm/rad 
springr = 0.5*kwheelr*(tr^2); % Rear spring roll rate in Nm/rad 
Pspringf = kwheelf*(a^2); % Front spring pitch rate in Nm/rad 
Pspringr = kwheelr*(b^2); % Rear spring pitch rate in Nm/rad 

kphif = ((springf + antirollf)*kphityref)/(kphityref + (springf + 
antirollf)); % Front roll rate Nm/rad 

kphir = ((springr + antirollr)*kphityrer)/(kphityrer + (springr + 
antirollr)); % Rear roll rate Nm/rad 

kthetaf = ((Pspringf*kthetatyref)/(kthetatyref + Pspringf); 
% Front pitch rate in Nm/rad 
kthetar = (Pspringr*kthetatyrer)/(kthetatyrer + Pspringr); 
% Rear pitch rate in Nm/rad 

rolistiff = (kphif + kphir); % Roll stiffness of sprung mass due 
to suspension in Nm/rad 

pitchstiff = (kthetaf + kthetar); % Pitch stiffness of sprung mass 
due to suspension in Nm/rad 

kf = kphif; % for quasi-static model 
kr = kphir; % for quasi-static model 

% Dampers 

kdampf = 720; % Front damper rate at wheel centre in Ns/m 
kdampr = 720; % Rear damper rate at wheel centre in Ns/m 
dampf = 0.5*kdampf*(tf^2); % Front damper roll rate in Nsm/rad 
dampr = 0.5*kdampr*(tr^2); % Rear damper roll rate in Nsm/rad 
Pdampf = kdampf*(a^2); % Front damper pitch rate in Nsm/rad 
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Pdampr = kdampr*(b^2); % Rear damper pitch rate in Nsm/rad 
pitchdamp = Pdampf + Pdampr + 500; % Pitch damping of sprung mass 

due to suspension 
rolldamp = dampf + dampr + 1000; % Roll damping of sprung mass 

due to suspension 
zf = 0.030; % Front roll centre height 
zr = 0.050; % Rear roll centre height 
deltamax = 30; % Maximum vehicle steer angle in degrees 
steeratio = 6; % Ratio of steering wheel angle/steered angle 

at road wheels 

% Aerodynamic data 

cd = 0.9; % Aero coeff. of drag 
fa = 0.8; % Frontal area of vehicle in m2 
clf = -0.14; % Front lift coeff. (+ve is downforce) 
clr = 0.17; % Rear lift coeff. (+ve is downforce) 
murres = 0.01; % Rolling resistance friction value per wheel 
mu = 1.3; % Friction coeff. 
p= 40000; % Engine power in Watts 
rho = 1.22; % Air mass density in Kg/m3 
brabi = 0.5; % Brake bias ratio to rear 

% Braking System 

radcalf = 0.082; 
radcalr = 0.103; 
Acalf = 0.001548; 
Acalr = 0.001548; 
mupad = 0.5; 
Amasterf = 0.0002375; 
Amasterr = 0.000306; 
ratiopedal = 4.5; 

balbaratio = 0.42; 

% Effective radius of front caliper (m) 
% Effective radius of rear caliper (m) 
% Area of caliper front (m2) 
% Area of caliper rear (m2) 
% Frictional coeff. at pad-disc interface 
% Area of master cylinder front (m2) 
% Area of master cylinder rear (m2) 
% Ratio = foot to pedal pivot 
distance/pushrod to pedal pivot distance 
% Balance bar ratio front to rear 

brakefr = (ratiopedal*balbaratio/Amasterf)*(radcalf*Acalf*mupad); 
% Foot wheel torque gain produced by a foot force in N 
brakere = (ratiopedal*balbaratio/Amasterf)*(radcalr*Acalr*mupad); 
% Foot wheel torque gain produced by a foot force in N 
maxbrake = 600; 
% Maximum force on brake pedal (i. e. will lock up at any speed) 

Ddiff = 0.35; % Maximum perecentage of torque transferred between 
rear wheels (bias ratio = 3.4 in this case) 
Bdiff = 0.09; % Differential sensitivity (controls difference in 
slip ratio at which max transfer occurs) 

% To make tyres be on other side of car 

turnround = ones(57,1); 
turnround(8,1) _ -1; 
turnround(13,1) = -1; 
turnround(14,1) -1; 
turnround(15,1) = -1; 
turnround(17,1) _ -1; 
turnround(40,1) _ -1; 
turnround(43,1) _ -1; 
turnround(44,1) _ -1; 
turnround(52,1) _ -1; 
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% Goodyear 20x6.5-13inch at l5psi provided by Delft 

pac=O; % Vector version of Pacejka coeffs. 

% Pure lateral coeffs. 

pac(1,1) = 1445; %FNOMIN 
pac(2,1) = 1.676; %PCY1 
pac(3,1) = -2.587; %PDY1 
pac(4,1) = 0.59325; %PDY2 
pac(5,1) = -3.8474; %PDY3 
pac(6,1) = -0.14887; %PEY1 
pac(7,1) = 0.56009; %PEY2 
pac(8,1) = 0.023786; %PEY3 
pac(9,1) = 4.1175; %PEY4 
pac(10,1) = -34.238; %PKY1 
pac(11,1) = 1.0867; %PKY2 
pac(12,1) = 0.73877; %PKY3 
pac(13,1) = 0.0058088; %PHY1 
pac(14,1) = -0.0007589; %PHY2 
pac(15,1) = 0.10852; %PHY3 
pac(16,1) = 0.041154; %PVY1 
pac(17,1) = -0.055694; %PVY2 
pac(18,1) = -0.72216; %PVY3 
pac(19,1) = 0.24275; %PVY4 
pac(20,1) = 0; % Camber angle 
pac(21,1) = 0.5385*muchange; 
% LMuX - Value of mu at road surface change from measured data 
(lambda MuY) 

% Pure longitudinal coeffs. 

pac(22,1) = 4361 ; %FNOMIN 
pac(23,1) = 1.6116 ; %PCX1 
pac(24,1) = 1.1005 ; %PDXl 
pac(25,1) = -0.0141 ; %PDX2 
pac(26,1) = 0.02261 ; %PEX1 
pac(27,1) = 0.16482 ; %PEX2 
pac(28,1) = 0.21884 ; %PEX3 
pac(29,1) = 0 ; %PEX4 
pac(30,1) = 18.385 ; %PKX1 
pac(31,1) = 1.5051 ; %PKX2 
pac(32,1) = 0.29119 ; %PKX3 
pac(33,1) = -0.000551 ; %PHX1 
pac(34,1) = 0.0001 ; %PHX2 
pac(35,1) = 0 ; %PVX1 
pac(36,1) = 0 ; %PVX2 
pac(37,1) = 1.25*muchange; 
% LMuX - Val ue of mu at road surface change from measured data 
(lambda MuY) 

% Combined lateral coeff. 

pac(38,1) = 6.1187; %rbyl 
pac(39,1) = 2.8069; %rby2 
pac(40,1) = -0.0091738; %rby3 
pac(41,1) = 1.004; %rcyl 
pac(42,1) = -0.035516; %rhyl 
pac(43,1) = 0.046621;, %rvyl 
pac(44,1) = 0.048196; %rvy2 
pac(45,1) = 0.54064; %rvy3 
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pac(46,1) = 11.444; 
pac(47,1) = 1.9; 
pac(48,1) = -10.734; 

% Combined longitudinal coeff. 

pac(49,1) = 10.395; 
pac(50,1) = -6.3236; 
pac(51,1) = 0.99326; 
pac(52,1) - -0.0029427; 

% Radius and stiffness 

pac(53,1) = 0.232; 
pac(54,1) = 1.9e5; %4; 
pac(55,1) = 500; 
pac(56,1) = 2.5; 
pac(57,1) = 700; 
parameter) found at 
rrad = pac(53,1); 

%rvy4 
%rvy5 
%rvy6 

%rbxl 
%rbx2 
%rcxl 
%rhxl 

% Unloaded tyre radius 
% Vertical tyre stiffness 
% Vertical tyre damping 
% Mass of tyre belt 
% Fnominal normal load sigma (lag 

% Wheel rolling radius (old model) 

% Engine Torque Curve (rpm & Nm) 

revs = 
(0; 2000; 2200; 2400; 2600; 2800; 3000; 3200; 3400; 3600; 3800; 4000; 4200; 4400; 
4600; 4800;... 
5000; 5200; 5400; 5600; 5800; 6000; 6200; 6400; 6600; 6800; 7000; 7200; 7400; 760 
0; 7800;... 
8000; 8200; 8400; 8600; 8800; 9000; 9200; 9400; 9600; 9800; 10000; 10200; 10400; 
10600;... 
10800; 11000; 11200; 11400; 11600; 11800; 12000; 12200; 12400; 12600; 12800; 13 
000; 13200]; 

torque 
[35; 35; 35; 35; 35; 35; 35; 35; 35; 35.89065817; 36.42507543; 36.90843949; 37.4 
322111; 37.91053851;... 
38.74605372; 39.14371019; 39.90764331; 40.0066144; 40.42108988; 41.732825 
3; 42.9540962; 44.0955414;... 
45.28046024; 46.39281449; 47.43630573; 48.41841514; 49.344404; 49,8115711 
3; 50.25348597; 50.67088502;... 
51.06810387; 51.44426752; 51.26611776; 51.09531392; 50,07702563; 50.77699 
768; 50.62845011; 50.64628912;... 
50.66336902; 50.67973726; 50.69543741; 50.70955414; 50.72405395; 50.73891 
475; 50.75141209; 50.35651097;... 
49.44093804; 48.55806415; 47.70616829; 44.98270371,41.72892152: 37.97133 
758; 34.03544951; 30.22729608;... 
26.24734607; 22.96651075; 19.7866242; 5.56745802]; 

% Standard box 

primred=1/1.863; 

GR1=1/2.928; % Gear ratios 1 to 6 
GR2=1/2.062; 
GR3=1/1.647; 
GR4=1/1.368; 
GR5=1/1.2; 
GR6=1/1.086; 
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engsprocket=14; % No. of teeth on engine sprocket 
drisprocket=52; % No. of teeth on final drive sprocket 

redline=11300; % rpm change-up engine speed 
changedown=7000; % rpm change down engine speed 
changetime =0.2; % Time to change gear 

Calculated values 

overl=GR1*engsprocket*primred/drisprocket; 
over2=GR2*engsprocket*primred/drisprocket; 
over3=GR3*engsprocket*primred/drisprocket; 
over4=GR4*engsprocket*primred/drisprocket; 
over5=GR5*engsprocket*primred/drisprocket; 
over6=GR6*engsprocket*primred/drisprocket; 

hdiff =h- (zf + ((a/1)*(zr-zf))); % Roll moment arm 

h= hdiff; 
% Due to fact wheels are in ground plane therefore h should be hdiff 
for 9dof model 
Ixxb = Ixx - h*h*mb; 
Iyyb = Iyy - 0.1*0.1*mb; % As pitch axis must be close to C of 0 

FS Vehicle Parameter Set 

% Vehicle Data set for formula sae F5 car 
% Created by B Siegler 19/7/01 
% Last modified 1/8/01 

g=9.81; 

muchange = 1; 
% Decrease in coeff. of friction in certain part of circuit 
accfail = 1; 
% Driver ability to use all the available traction for engine 
acceleration 
brakefail = 1; 
% Driver ability to use all the available traction for braking 
driveeffic = 1; 
% Drivetrain efficiency 
latspin = 30; 
% Stop simulation if vehicle is about to go into a spin in m/s2 
brout = 0.5; 
% Forward velocity in m/s model will not drop below 
offground = 0; 
% Normal force in N where wheel is about to loose contact with the 
ground 

% Tyre lag parameters 

sigmamax = 0.027; % Maximum lag time of tyre slip angle response 
sigmagain = 3.3; % Gain on slip angle derivative factor 
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% Mass and inertia values 

mf = 20.4; % Mass of front unsprung mass in kg 

mr = 20.4; % Mass of front unsprung mass in kg 
mb = 262.9; % Mass of sprung mass in kg 

m= mb + mf + mr; % Total mass of vehicle 
Izz = 200; % Yaw moment of inertia in Kgm2 of entire vehicle = 

Izzf + Izzr + Izzb + a^2mf + a^2mr 
Ixx = 35; % Roll moment of inertia in Kgm2 of sprung mass = 

Ixxb + h^2mb 
Iyy = 65; % Pitch moment of inertia in Kgm2 of sprung mass = 

Iyyb + h^2mb 
Iwheelfr = 0.21; % Moment of inertia for front wheel about spin axis 
Iwheelre = 0.21; % Moment of inertia for Rear wheel about spin axis 
Izzf = 8; % Moment of inertia for front axle about yaw axis 
Izzr = 8; % Moment of inertia for rear axle about yaw axis 

% Vehicle dimensions 

1=1.8; % Wheelbase in m 
a=0.98; % Centre of gravity distance from front wheels in m 
b= 1-a; % Centre of gravity distance from rear wheels in m 
h=0.336; % Centre of gravity height in m 
tf = 1.15; % Front track 
tr = 1.1; % Rear track 

% Suspension parameters 

% Springs 

kspringf = (350*9.81*1000)/(2.205*25.4); 
% Front side spring rate in N/m from lb/inch 
kspringr = (400*9.81*1000)/(2.205*25.4); 
% Rear side spring rate in N/m from lb/inch 
MRspringf = 0.68; % Front side spring motion ratio 
MRspringr = 0.68; % Rear side spring motion ratio 
krf = kspringf*(MRspringf^2); 
% Front ride rate at wheel centre in N/m 
krr = kspringr*(MRspringr^2); 
% Rear ride rate at wheel centre in N/m 
antirollf = 5000; 
% Front antiroll bar roll rate at wheel centre in Nm/rad 
antirollr = 0; 
% Rear antiroll bar roll rate at wheel centre in Nm/rad 

Ptyref = 0.827; % Tyre gauge pressure above atmospheric in bar 
ktyre = ((50*Ptyref)+140)*1000; % Tyre vertical rate N/m 
kphityref = 0.5*ktyre*(tf^2); % Front tyre roll rate in Nm/rad 
kphityrer = 0.5*ktyre*(trA2); % Rear tyre roll rate in Nm/rad 
kthetatyref = ktyre*(a^2); % Front tyre pitch rate in Nm/rad 
kthetatyrer = ktyre*(b^2); % Rear tyre pitch rate in Nm/rad 

kwheelf = (ktyre*krf)/(ktyre - krf); % Front wheel rate 
kwheelr = (ktyre*krr)/(ktyre - krr); % Rear wheel rate 
springf = 0.5*kwheelf*(tf^2); % Front spring roll rate in Nm/rad 
springr = 0.5*kwheelr*(tr^2); % Rear spring roll rate in Nm/rad 
Pspringf = kwheelf*(a^2); % Front spring pitch rate in Nm/rad 
Pspringr = kwheelr*(b^2); % Rear spring pitch rate in Nm/rad 

172 



kphif = ((springf + antirollf)*kphityref)/(kphityref + (springf + 
antirollf)); 
% Front roll rate Nm/rad 
kphir = ((springr + antirollr)*kphityrer)/(kphityrer + (springr + 
antirollr)); 
% Rear roll rate Nm/rad 
kthetaf = ((Pspringf*kthetatyref)/(kthetatyref + Pspringf); 
% Front pitch rate in Nm/rad 
kthetar = (Pspringr*kthetatyrer)/(kthetatyrer + Pspringr); 
% Rear pitch rate in Nm/rad 

rollstiff = (kphif + kphir); 
% Roll stiffness of sprung mass due to suspension in Nm/rad 
pitchstiff = (kthetaf + kthetar); 
% Pitch stiffness of sprung mass due to suspension in Nm/rad 

kf = kphif; % for quasi-static model 
kr = kphir; % for quasi-static model 

% Dampers 

damperf = 2000; % Front damper rate in Ns/m 
damperr = 2000; % Rear damper rate in Ns/m 
kdampf = damperf*(MRspringf^2); 
% Front ride rate at wheel centre in N/m 
kdampr = damperr*(MRspringr^2); 
% Rear ride rate at wheel centre in N/m 
dampf = 0.5*kdampf*(tf^2); % Front damper roll rate in Nsm/rad 
dampr = 0.5*kdampr*(tr^2); % Rear damper roll rate in Nsm/rad 
Pdampf = kdampf*(a^2); % Front damper pitch rate in 
Nsm/rad 
Pdampr = kdampr*(b^2); % Rear damper pitch rate in Nsm/rad 

pitchdamp = Pdampf + Pdampr; 
% Pitch damping of sprung mass due to suspension 
roildamp = dampf + dampr; 
% Roll damping of sprung mass due to suspension 

zf = 0.025; % Front roll centre height 
zr = 0.050; % Rear roll centre height 
deltamax = 30; % Maximum vehicle steer angle in degrees 
steeratio = 6; 
% Ratio of steering wheel angle/steered angle at road wheels 

% Aerodynamic data 

cd = 1.05; 
fa = 0.8; 
clf = -0.14; 
clr = 0.17; 
murres = 0.016; 
mu = 1.3; 
p= 40000; 
rho = 1.22; 
brabi = 0.5; 

% Braking System 

radcalf = 0.082; 
radcalr = 0.103; 
Acalf = 0.001548; 

Aero coeff. of drag 
Frontal area of vehicle in m2 
Front lift coeff. (+ve is downforce) 

% Rear lift coeff. (+ve is downforce) 
Rolling resistance friction value per wheel 
Friction coeff. 
Engine power in Watts 
Air mass density in Kg/m3 
Brake bias ratio to rear 

% Effective radius of front caliper (m) 
Effective radius of rear caliper (m) 
Area of caliper front (m2) 
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Acalr = 0.001548; 
mupad = 0.35; 
Amasterf = 0.0002375; 
Amasterr = 0.000306; 
ratiopedal = 4.5; 

balbaratio = 0.42; 

% Area of caliper rear (m2) 
% Frictional coeff. at pad-disc interface 
% Area of master cylinder front (m2) 
% Area of master cylinder rear (m2) 
% Ratio = foot to pedal pivot 

distance/pushrod to pedal pivot distance 
% Balance bar ratio front to rear 

brakefr = (ratiopedal*balbaratio/Amasterf)*(radcalf*Acalf*mupad); 
% Foot wheel torque gain produced by a foot force in N 
brakere = (ratiopedal*balbaratio/Amasterf)*(radcalr*Acalr*mupad); 
% Foot wheel torque gain produced by a foot force in N 
maxbrake = 600; 
% Maximum force on brake pedal (i. e. will lock up at any speed) 

Ddiff = 0.35; 
% Maximum perecentage of torque transferred between rear wheels 
(bias ratio = 3.4 in this case) 
Bdiff = 0.09; 
% Differential sensitivity (controls difference in slip ratio at 
which max transfer occurs) 

% To make tyres be on other side of car 

turnround = ones(57,1); 
turnround(8,1) = -1; 
turnround(13,1) -1; 
turnround(14,1) _ -1; 
turnround(16,1) _ -1; 
turnround(17,1) -1; 
turnround(40,1) _ -1; 
turnround(43,1) _ -1; 
turnround(44,1) _ -1; 
turnround(52,1) -1; 

% Goodyear 20x6.5-13inch at 15psi provided by Delft 

pac=O; % Vector version of Pacejka coeffs. 

% Pure lateral coeffs. 

pac(1,1) = 1445; %FNOMIN 
pac(2,1) = 1.676; %PCY1 
pac(3,1) _ -2.587; %PDY1 
pac(4,1) = 0.59325; %PDY2 
pac(5,1) = -3.8474; %PDY3 
pac(6,1) _ -0.14887; %PEY1 
pac(7,1) = 0.56009; %PEY2 
pac(8,1) = 0.023786; %PEY3 
pac(9,1) = 4.1175; %PEY4 
pac(10,1) _ -34.238; %PKY1 
pac(11,1) = 1.0867; %PKY2 
pac(12,1) = 0.73877; %PKY3 
pac(13,1) = 0.0058088; %PHY1 
pac(14,1) _ -0.0007589; %PHY2 
pac(15,1) = 0.10852; %PHY3 
pac(16,1) = 0.041154; %PVY1 
pac(17,1) = -0.055694; %PV'Y2 
pac(18,1) = -0.72216; %PVY3 
pac(19,1) = 0.24275; %PVY4 
pac(20,1) = 0; % Camber angle 
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pac(21,1) = 0.5385*muchange; 
% LMuX - Value of mu at road surface change from measured data 
(lambda MuY) 

% Pure longitudinal coeffs. 

pac(22,1) = 4361 
pac(23,1) = 1.6116 
pac(24,1) = 1.1005 
pac(25,1) = -0.0141 
pac(26,1) = 0.02261 
pac(27,1) = 0.16482 
pac(28,1) = 0.21884 
pac(29,1) =0 
pac(30,1) = 18.385 
pac(31,1) = 1.5051 
pac(32,1) = 0.29119 
pac(33,, 1) = -0.000551 
pac(34,1) = 0.0001 
pac(35,1) =0 
pac(36,1) =0 
pac(37,1) = 1.25*muchange; 
surface change from measured data 

% Combined lateral coeff. 

pac(38,1) = 6.1187; 
pac(39,1) = 2.8069; 
pac(40,1) = -0.0091738; 
pac(41,1) = 1.004; 
pac(42,1) = -0.035516; 
pac(43,1) = 0.046621; 
pac(44,1) = 0.048196; 
pac(45,1) = 0.54064; 
pac(46,1) = 11.444; 
pac(47,1) = 1.9; 
pac(48,1) = -10.734; 

% Combined longitudinal coeff. 

pac(49,1) = 10.395; 
pac(50,1) = -6.3236; 
pac(51,1) = 0.99326; 
pac(52,1) = -0.0029427; 

% Radius and stiffness 

pac(53,1) = 0.232; 
pac(54,1) = 1.9e5; 
pac(55,1) = 500; 
pac(56,1) = 2.5; 
pac(57,1) = 700; 
% Fnominal normal 
rrad = pac(53,1); 

%FNOMIN 
; %PCX1 

%PDX1 
%PDX2 
%PEX1 
%PEX2 
%PEX3 
%PEX4 

; %PKX1 
%PKX2 

; %PKX3 
; %PHX1 
; %PHX2 

%PVX1 
%PVX2 
% LMuX - Value of mu at road 

(lambda MuY) 

%rbyl 
%rby2 
%rby3 
%rcyl 
%rhyl 
%rvyl 
%rvy2 
%rvy3 
%rvy4 
%rvy5 
%rvy6 

%rbxl 
%rbx2 
%rcxl 
%rhxl 

% Unloaded tyre radius 
% Vertical tyre stiffness 
% Vertical tyre damping 
% Mass of tyre belt 

load sigma (lag parameter) found at 
% Wheel rolling radius (old model) 
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% Engine Torque Curve (rpm & Nm) 

load f5engine. mat % See figure 3.5, section 3.3.4 

% Standard box 

primred=1/1.863; 

GR1=1/2.928; % Gear ratios 1 to 6 
GR2=1/2.062; 
GR3=1/1.647; 
GR4=1/1.368; 
GR5=1/1.2; 
GR6=1/1.086; 

engsprocket=13; % =No. of teeth on engine sprocket 
drisprocket=60; % =No. of teeth on final drive sprocket 

redline=10250; 
% rpm change-up engine speed 
changedown=6500; % rpm change down engine speed 
changetime =0.2; % Time to change gear 

Calculated values 

overl=GR1*engsprocket*primred/drisprocket; 
over2=GR2*engsprocket*primred/drisprocket; 
over3=GR3*engsprocket*primred/drisprocket; 
over4=GR4*engsprocket*primred/drisprocket; 
over5=GR5*engsprocket*primred/drisprocket; 
over6=GR6*engsprocket*primred/drisprocket; 

hdiff =h- (zf + ((a/l)*(zr-zf))); % Roll moment arm 

h= hdiff; 
% Due to fact wheels are in ground plane therefore h should be hdiff 
for 9dof model 
Ixxb = Ixx - h*h*mb; 
Iyyb = Iyy - 0.1*0.1*mb; % As pitch axis must be close to C of G 
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Appendix D 

This appendix contains the 3 DOF Simulink model. The model is graphical based 

and is given in order or sub-system hierarchy, starting with the system overview. 

The colours do not have any particular meaning, but merely indicate groups of lines 

emanating from the same source. 
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Appendix E 

This appendix contains the 13 DOF Simulink model. The model is graphical based 

and is given in order or sub-system hierarchy, starting with the system overview. 

The colours do not have any particular meaning, but merely indicate groups of lines 

emanating from the same source. 
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Appendix F 

Data acquisition and handling routines created in Matlab script. Notes begin with % 

Data logging Program 

% Version 1 of the data logging program 
% for Phase 1+2 testing by B Siegler 
% Created 17/7/01 
% Last modified 9/8/01 

% For use with national instruments card 6062E 

% Initialise - create AI and allocate channels 

Al = analoginput('nidaq', 1); 
set(AI, 'InputType' , 'SingleEnded'); 

chan0 = addchannel(AI, 0); % Pitch Velocity extra sensor 
chanl = addchannel(AI, 1); % Trigger switch 
chan2 = addchannel(AI, 2); % Lateral Acc NOT ON 
chan3 = addchannel(AI, 3); % Longitudinal Acc 
chan4 = addchannel(AI, 4); % Front brake pressure 
chan5 = addchannel(AI, 5); % Rear brake pressure 
chan6 = addchannel(AI, 6); % Yaw velocity 
chan7 = addchannel(AI, 7); % Lateral velocity 
chan8 = addchannel(AI, 8); % Longitudinal velocity 
chan9 = addchannel(AI, 9); % Front wheel speed 
chanl0 = addchannel(AI, 10); % Engine speed 
chanll = addchannel(AI, 11); % Steer angle 
chanl2 = addchannel(AI, 12); % Throttle position 
chanl3 = addchannel(AI, 13); % Lateral Acceleration extra sensor 
chanl4 = addchannel(AI, 14); % Longitudinal Acceleration extra 
sensor 
chanl5 = addchannel(AI, 15); % Vertical Acceleration extra 
sensor 

set(chan9, 'InputRange' , (0 10)); % For f to V voltage range 
set(chanl0, 'InputRange ', [0 10)); % For f to V voltage range 

% Query user for values 

numtrigs = input('Specify number of runs in this session? '); 

duration = input('Specify length of each run in seconds? '); 

if (numtrigs*duration) > 245 
disp(["]); 

WARNING - maximum memory 
allocation at 200 HZ and 16 channels exceeded ssamasssmssmsso: ']); 

disp(["]); 

else 
end 
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Set values 

set(AI, 'SampleRate', 200); 
Actualrate = get(AI, 'SampleRate'); 
set(AI, 'SamplesPerTrigger', Actualrate*duration); 

set(AI, 'TriggerChannel' , chanl); 
set(AI, 'TriggerType' , 'Software'); %'HwAnalogPin'); 

set(AI, 'TriggerCondition' , 'Rising'); 
set(AI, 'TriggerConditionValue', 2.5); 

set(AI, 'TriggerRepeat' , numtrigs); 

% User inputs where to save data 

Warning will over write 
existing filenames 
disp(["]); 

[newmatfile, newpath] = uiputfile('*. mat', 'Save As'); 

cd(num2str(newpath)) 

% Run session 

start(AI) 
while strcmp(AI. Running, 'On'); 

end 

% Record data 

for i=1: 1: numtrigs 

(data, time] = getdata(AI); 

% Apply bias and gains to voltages to turn them into actual 
vehicle parameters 

% channel 2,0 to 5V with 2.5V offset is -2g to +2g 
channell = (data(:, 3)-2.5)*(4/5); %g 

% channel 3,0 to 5V with 2.5V offset is -2g to +2g 
channel2 = (data(:, 4)-2.5)*(4/5); %g 

% channel 4,0 to 5V is 0 bar to 50 bar 
channel3 = (data(:, 5))*(50/5); % bar 

% channel 5,0 to 5V 0 bar to 50 bar 
channel4 = (data(:, 6))*(50/5); % bar 

% channel 6,0 to 5V with 2.5V offset is -64 deg/sec to +64 
deg/sec 
channel5 = (data(:, 7)-2.5)*(128/5); % degree / sec 

% channel 7,0 to 5V is 0 to 55.6 m/s (200 kph) 
channel6 = (data(:, 8))*(55.6/5); % m/s 

% channel 8,0 to 5V with 2.5V offset is -6.94 m/s (25 kph) to 
+6.94 m/s (25 kph) 
channel? = (data(:, 9)-2.5)*(13.88/5); % m/s 
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% channel 9,0 to 12V is 181.79 rad/s (93.65 mph) 
channel8 = (data(:, 10))*(181.79/12); % rad/s - Saturates at 
10 V which is 151.49 rad/s (78 MPH) NO at 5V = 75 rad/s CARD 
SETUP PROBLEM 

% channel 10,0 to 12V is 13000 rpm 
channel9 = (data(:, 11))*(13000/12); % rpm - Saturates at 10 V 
which is 10800 RPM No at 5V 5400 RPM CARD SETUP PROBLEM 

% channel 11,0 to 5V is -281.25 deg to +281.25 deg 
channellO = (data(:, 12)-2.5)*(562.5/5); % degrees 

% channel 12,2 to 5V is 0% to 100% 
channelii = (data(:, 13)-2)*(100/3); % percent throttle 

% channel 14,0 to 5V with 2.5V offset is -5g to +5g 
channell2 = (data(:, 15)-2.5)*(10/5); %g 

% channel 13,0 to 5V with 2.5V offset is -5g to +5g 
channel13 = (data(:, 16)-2.5)*(10/5); %g 

% channel 0,0 to 5V with 2.5V offset is -5g to +5g 
channel14 = (data(:, 1)-2.5)*(10/5); %g 

% channel 14,0 to 5V with 2.5V offset is -180 deg/sec to +180 
deg/sec 
channel15 = (data(:, 14)-2.5)*(360/5); % deg/s 

save(num2str([newmatfile, num2str(i)]), 'channell', 'channel2', 'channel 
3', 'channel4', 'channel5', 'channel6', 'channel7', 'channel8l, 'channel9' 

, 'channell0', 'channelll', 'channell2', 'channell3', 'channell4', 'channe 
115', 'time', 'Actualrate') % save variables to file 

% Storage rate is 15 channels at 200 Hz = 25.2 kbyte mat file size 
per second of logging 

end 

% Termination: Plot the data and delete Al. 

disp(['Actual sample rate was ', num2str(Actualrate), ' Hz. ']); 
disp(['']); 
disp(['Memory availability: 

dagmem(AI) % Displays available memory 

delete(AI) 

y=1; 
n=0; 
runer = input('Do you wish to see results (y/n)? '); 

if runer > 0.5; 

dataplot2 

end 
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Data Handling Program 

% Plotting program for phase 1+2 data logging 
% Created by B Siegler 18/7/01 
% Last Modified 30/7/01 

clear; 

disp(['Data viewing file created by B Siegler, please select *. mat 
file to load: ']); 

[file dir] = uigetfile('c: \matlab\testing\data2\*. mat'); 
load([dir file]); 

N= (0: 1: (length(channell)-1)]'; 
T= time; 
t_start = time(1,1); 
t_end = time(length(time)); 

figure(1); 

% Not connected 

subplot(4,4,1); plot(T, channell); grid on; 
title('Latacc (g)'); axis([t_start t_end -2 2]); 

channel2 = channel2*1.24 + 0.04; % Long Acc sensor offset 

subplot(4,4,2); plot(T, channel2); grid on; 
title('Longacc (g)'); axis([t_start t_end -2 2]); 

subplot(4,4,3); plot(T, channel3); grid on; 
title('Front line Pressure (bar)'); axis((t_start tend 0 50]); 

subplot(4,4,4); plot(T, channel4); grid on; 
title('Rear line Pressure (bar)'); axis((t_start t_end 0 50]); 

channe15 = (channel5 + 1.5)*1.18; % Yaw vel sensor offset and 
gain from not being at C of G 

subplot(4,4,5); plot(T, channel5); grid on; 
title('Yaw Velocity (deg/s)'); axis([t_start tend -64 64]); 

% Swapping round lat and long velocity channels and adjustment for 
angular offset of correvit 

theta = -1.1; % Angular offset of correvit 
tempchan6 = channel6; 

channel6 = (((channel7)/(13.88/5))+2.5)*(55.6/5); 
% Correction from logvl 
channel6 = ((channel6*cos(theta*pi/180)) + 
(channel7*sin(theta*pi/180))) - 0.15; 

subplot(4,4,6); plot(T, channel6); grid on; 
title('Longitudinal Velocity (m/s)'); axis([t_start t_end 0 56]); 

channel? = ((tempchan6)/(55.6/5))*(13.88/5)-2.5-4.445; 
% Correction from logvl 
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channe17 = ((channel6*sin(theta*pi/180)) + 
(channel? *cos(theta*pi/180))); 

subplot(4,4,7); plot(T, channel7); grid on; 
title('Lateral Velocity (m/s)'); axis((t_start t_end -5.6 5.6]); 

%f to V circuit not working 

subplot(4,4,8); plot(T, channel8); grid on; 
title('Front left wheel speed (rad/s)'); axis((t start t_end 0 195]); 

%f to V circuit not working 

subplot(4,4,9); plot(T, channel9); grid on; 
title('Engine Speed (rpm)'); axis((t_start t 

_end 
0 13000]); 

channellO = channe110 + 66.8; % Steer wheel angle offset 

subplot(4,4,10); plot(T, channello); grid on; 
title('Steer Wheel Angle (deg)'); axis([t_start t_end -180 180]); 

subplot(4,4,11); plot(T, channelll); grid on; 
title('Throttle (%)'); axis([t start t_end 0 100]); 

%channel12 = channell2 - 0.045; % Lat acc sensor offset 

subplot(4,4,12); plot(T, channell2); grid on; 
title('Latacc (g)'); axis([t_start t_end -5 5]); 

channe113 = (-1*channell3) + 0.115; % Long acc sensor 2 offset 

subplot(4,4,13); plot(T, channell3); grid on; 
title('Longacc (g)'); axis([t_start tend -5 5]); 

channell4 = channell4 + 1.02; % Vert acc sensor offset 

subplot(4,4,14); plot(T, channell4); grid on; 
title('Vertacc (g)'); axis([t_start t_end -5 5)); 

channell5 = (channel15 - 2.5)*1.287; % Roll ang sensor offset 
and gain from not being at C of G 

subplot(4,4,15); plot(T, channell5); grid on; 
title('Roll Velocity (deg/s)'); axis([t_start tend -64 64)); 

% Filtering bit - replots everything using butterworth filter 
% at pass band 0-7 Hz and order 10 

[B, A] = butter(5,5/100); 

y-1; 
n=0; 
runer3 = input('Apply filter and replot results (y/n)? '); 

if runer3 > 0.5; 

channellf = filtfilt(B, A, channell); 
channel2f = filtfilt(B, A, channel2); 
channel3f = filtfilt(B, A, channel3); 
channel4f = filtfilt(B, A, channel4); 
channel5f = filtfilt(B, A, channel5); 
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channel6f = filtfilt(B, A, channel6); 
channel7f = filtfilt(B, A, channel7); 
channel8f = filtfilt(B, A, channel8); 
channel9f = filtfilt(B, A, channel9); 
channellOf = filtfilt(B, A, channellO); 
channelllf = filtfilt(B, A, channelll); 
channell2f = filtfilt(B, A, channell2); 
channell3f = filtfilt(B, A, channell3); 
channell4f = filtfilt(B, A, channe114); 
channell5f = filtfilt(B, A, channell5); 

figure(2); 

subplot(4,4,1); plot(T, channellf); grid on; 
title('Latacc (g)'); axis((t_start t_end -2 2]); 

subplot(4,4,2); plot(T, channel2f); grid on; 
title('Longacc (g)'); axis([t_start t_end -2 2]); 

subplot(4,4,3); plot(T, channel3f); grid on, 
title('Front line Pressure (bar)'); axis((t_start t 

_end 
0 50)); 

subplot(4,4,4); plot(T, channel4f); grid on; 
title('Rear line Pressure (bar)'); axis((t_start tend 0 50]); 

subplot(4,4,5); plot(T, channel5f); grid on; 
title('Yaw Velocity (deg/s)'); axis((t_start tend -64 64]); 

subplot(4,4,6); plot(T, channel6f); grid on; 
title('Longitudinal Velocity (m/s)'); axis([t_start tend 0 56]); 

subplot(4,4,7); plot(T, channel7f); grid on; 
title('Lateral Velocity (m/s)'); axis([t_start t_end -5.6 5.6]); 

subplot(4,4,8); plot(T, channel8f); grid on; 
title('Front left wheel speed (rad/s)'); axis((t_start t_end 0 
195]); 

subplot(4,4,9); plot(T, channel9f); grid on; 
title('Engine Speed (rpm)'); axis([t_start t_end 0 13000]); 

subplot(4,4,10); plot(T, channell0f); grid on; 
title('Steer Wheel Angle (deg)'); axis([t_start tend -180 180]); 

subplot(4,4,11); plot(T, channelllf); grid on; 
title('Throttle (%)'); axis((t_start tend 0 100]); 

subplot(4,4,12); plot(T, channell2f); grid on; 
title('Latacc (g)'); axis((t_start t_end -2 2]); 

subplot(4,4,13); plot(T, channell3f); grid on; 
title('Longacc (g)'); axis([t_start tend -2 21); 

subplot(4,4,14); plot(T, channe114f); grid on; 
title('Vertacc (g)'); axis([t_start t_end -2 2]); 

subplot(4,4,15); plot(T, channe115f); grid on; 
title('Pitch Velocity (deg/s)'); axis((t_start tend -64 64]); 

else 
end 
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Frequency Domain Program 

% Finds Measured data frequency domain response 
% by Blake Siegler 
% Created - 10/1/01 
% Last Modified - 6/6/01 
% random. mat to run!!! 

clear; 
tic 

dir='c: \matlab\testing\data\wednesday\random\'; 
file=('random']; 
load([dir file]); 
N=[0: 1: (length(channel_lr)-1)]'; 
T= N/200; 
timeint = (N/200); 
tend=length(channel_ir)/200; 

% Filters variables from actual data 
(B, A] = butter(7,10/100); 
channel_1fr = channel_lr; % filtfilt(B, A, channel_1r); 
channel_2fr = channel_2r; % filtfilt(B, A, channel_2r); 
channel_4fr = channel-4r; % filtfilt(B, A, channel_4r); 

% Plotting bit 

spectrum(channel_4r, channel_2fr*1.2,10000,0, hanning(10000), 200, 'line 
ar') ; 

figure(1) 
semilogx(fy2, (abs(P_yaw2(:, 4)))); 
title('For the transferfunction of steer angle to yaw velocity'); 
xlabel('Frequency (Hz)') 
ylabel('Magnitude (rad/s/degree)') 
grid 

figure(2) 
plot(fy2, P-yaw2(:, 5) ); 
title('For the coherence between input (steer angle) and output(yaw 
velocity)') 
xlabel('Frequency (Hz)') 
ylabel('Ratio (1 is OK)') 
grid 

figure (3) 
semilogx(fy2, ((180/pi)*angle(P. yaw2(:, 4)))); 
title('Phase For the transferfunction of steer angle to yaw 
velocity'); 
xlabel('Frequency (Hz)') 
ylabel('Phase (degrees)') 
grid 
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(P_Fz2, f2j = 
spectrum(channel_4r, channel_1fr, 10000,0, hanning(10000), 200, 'linear') 

figure(4) 
semilogx(f2, (abs(P_Fz2(:, 4)))); 
title('For the transferfunction of steer angle to latacc'); 
xlabel('Frequency (Hz)') 
ylabel('Magnitude (g/degree)') 
grid 

figure (5) 
plot(f2, P_Fz2(:, 5)); 
title('For the coherence between input (steer angle) and 
output(latacc)') 
xlabel('Frequency (Hz)') 
ylabel('Ratio (1 is OK)') 
grid 

figure(6) 
semilogx(f2, ((180/pi)*angle(P_Fz2(:, 4)))-180); 
title('Phase For the transferfunction of steer angle to latacc'); 
xlabel('Frequency (Hz)') 
ylabel('Phase (degrees)') 
grid 

disp(t'Time simulation took to run is ', num2str(toc/60), ' 
minutes. ']); 
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Appendix G 

Quasi-static simulation package MatLab based script program and Simulink models. 

Notes begin with % in MatLab script. 

LTS Version 4 graphical user interface 

function fig = lts4fig_fig() 
% This is the a Handle Graphics object 
% and its children. Note that handle values may change when these 
objects 
% are re-created. This may cause problems with any callbacks written 
to 
% depend on the value of the handle at the time the object was 
saved. 
% This problem is solved by saving the output as a FIG-file, 

% To reopen this object, just type the name of the M-file at the 
MATLAB 
% prompt. The M-file and its associated MAT-file must be on your 
path. 

% NOTE: certain newer features in MATLAB may not have been saved in 
this 
% M-file due to limitations of this format, which has been 
superseded by 
% FIG-files. Figures which have been annotated using the plot 
editor tools 
% are incompatible with the M-file/MAT-file format, and should be 
saved as 
% FIG-files. 

load lts4fig_fig 

hO = figure('Color', [0.752941176470588 0.752941176470588 
0.7529411764705881, ... 

'Colormap', matO, 
'FileName', 'C: \Matlab\ltsmk4\lts4fig. fig. m', 
'PaperPosition', [18 180 576 432], 
'PaperUnits', 'points', ... 
'Position', (172 102 802 625), 
'Tag', 'Figl', ... 
'ToolBar', 'none-1);, 

hl = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', [0.580392156862745 0.580392156862745 

0.580392156862745], 
'ListboxTop', O, 
'Position', (165.1034482758621 40.3448275862069 327.7241379310345 

91.24137931034484), 
... 

'Style', 'frame', ... 
'Tag', 'Frame2'); 

hl = uicontrol('Parent', hO, 
'Units', 'points', ... 
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'BackgroundColor', [0.580392156862745 0.580392156862745 
0.580392156862745], ... 

'ListboxTop', 0, 
'Position', matl, 
'Style', 'frame', 
'Tag', 'Framel'); 

hl = axes('Parent', hO, 
'Units', 'pixels', ... 
'Box', 'on', ... 
'CameraUpVector', (0 1 0], ... 
'Color', (1 1 11, ... 
'Colororder', mat2, ... 
'Position', (258 197 476 324], ... 
'Tag', 'Axesl', ... 
'XColor', [0 0 0], ... 
'XGrid', 'on', ... 
'YColor', (0 0 0], ... 
'YGrid', 'on', ... 
'ZColor', (0 0 0], ... 
'ZGrid', 'on'); 

h2 = line('Parent', hl, 
'Color', [0 0 1], ... 
'Tag', 'AxeslLinel', 
'XData', mat3, 
'YData', mat4); 

h2 = text('Parent', hl, 
'Color', (0 0 0], ... 
'HandleVisibility', 'off', ... 
'HorizontalAlignment', 'center', ... 
'Position', [-100.3157894736842 62.60061919504645 

17.32050807568877], ... 
'String', 'Map of track', 
'Tag', 'AxeslText36', ... 
'VerticalAlignment', 'bottom'); 

set(get(h2, 'Parent'), 'Title', h2); 
h2 = text('Parent', hl, ... 

'Color', [0 0 0], ... 
'HandleVisibility', 'off', ... 
'HorizontalAlignment', 'center', ... 
'Position', [-100.3157894736842 -68.91640866873064 

17.32050807568877], ... 
'String', 'Distance (m)', 
'Tag', 'AxeslText35', ... 
'VerticalAlignment', 'cap'); 

set(get(h2, 'Parent'), 'XLabel', h2); 
h2 = text('Parent', hl, ... 

'Color', [0 0 0], ... 
'HandleVisibility', 'off', ... 
'HorizontalAlignment', 'center', ... 
'Position', (-268.3157894736842 -0.5572755417956472 

17.32050807568877], .. 
'Rotation', 90, ... 
'String', 'Distance (m)', ... 
'Tag', 'AxeslText34', ... 
'VerticalAlignment', 'baseline'); 

set(get(h2, 'Parent'), 'YLabel', h2); 
h2 = text('Parent', hl, ... 

'Color', [0 0 0], ... 
'FontSize', 16, ... 
'String', '\leftarrowstart', ... 
'Tag', 'AxeslText33'); 
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h2 = text('Parent', hl, ... 
'Color', [0 0 01, ... 
'FontSize', 12, ... 
'Position', [-0.6450048174198725 3.39796120892083 0], ... 
'String', '\leftarrowl', 
'Tag', 'AxeslText32'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 01, ... 
'FontSize', 12, ... 
'Position', (-4.144707647391422 6.920916466033344 01, ... 'String', '\leftarrow2', ... 
'Tag', 'AxeslText31'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 01, """ 
'FontSize', 12, ... 
'Position', [-4.761082619814922 20.12594299573779 0), ... 
'String', '\leftarrow3', 
'Tag', 'AxeslText30'); 

h2 = text('Parent', hl, 
'Color', [0 0 0), 
'FontSize', 12, ... 
'Position', [-5.130181235132099 32.76146554458742 01, ... 
'String', '\leftarrow4', 
'Tag', 'AxeslText29'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], 
'FontSize', 12, ... 
'Position', [-13.73344958109397 42.02845098580508 0], ... 'String', '\leftarrow5', 
'Tag', 'AxeslText28'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 01, ... 
'FontSize', 12, ... 
'Position', [-22.83970368236792 50.79593637862712 0], ... 
'String', '\leftarrow6', ... 
'Tag', 'AxeslText27'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', (-47.26797534214111 51.63426853789934 0], ... 
'String', '\leftarrow7', 
'Tag', 'AxeslText26'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-74.84647242216116 48.26042655731247 0), ... 'String', '\leftarrow$', 
'Tag', 'AxeslText25'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-67.29326681288625 40.97320817090993 0), ... 'String', '\leftarrow9', ... 
'Tag', 'AxeslText24'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 01, ... 
'FontSize', 12, ... 
'Position', (-57.67609275956805 20.81729136696969 01, ... 'String', '\leftarrowl0', ... 'Tag', 'AxeslText23'); 

h2 = text('Parent', hl, ... 
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'Color', [0 0 01, ... 
'FontSize', 12, ... 
'Position', [-83.92924178434771 30.06013700556781 01, ... 
'String', '\leftarrowll', 
'Tag', 'AxeslText22'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-106.8682211450078 49.74000094793895 0], ... 
'String', '\leftarrowl2', 
'Tag', 'AxeslText21'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-167.1025173924605 29.8985318845701 0], ... 

h2 

h2 

h2 

h2 

h2 

h2 

h2 

h2 

'String', '\leftarrow13', 
'Tag', 'AxeslText20'); 

= text('Parent', hl, ... 
'Color', [0 0 01, ... 
'FontSize', 12, ... 
'Position', [-215.7093948088987 4.920901965096225 
'String', '\leftarrowl4', 
'Tag', 'AxeslTextl9'); 
= text('Parent', hl, 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-217.9325286500445 -14.51926661657105 
'String', '\leftarrowl5', 
'Tag', 'AxeslTextl8'); 

= text('Parent', hl, ... 
'Color', [0 0 01, ... 
'FontSize', 12, ... 
'Position', [-232.4329684623889 -40.16209562528933 
'String', '\leftarrowl6', 
'Tag', 'AxeslTextl7'); 

= text('Parent', hl, 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', (-199.3728475790666 -41.36190760930099 
'String', '\leftarrowl7', 
'Tag', 'AxeslTextl6'); 
= text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-183.6458560927395 -34.02096338550886 
'String', '\leftarrowl8', 
'Tag', 'AxeslTextl5'); 

= text (' Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-179.7222907340255 -23.78392409501955 
'String', '\leftarrow19', ... 
'Tag', 'AxeslText14'); 
= text('Parent', hi, ... 
'Color', (0 0 0], ... 
'FontSize', 12, ... 
'Position', mat5, ... 
'String', '\leftarrow20', ... 
'Tag', 'AxeslTextl3'); 

= text('Parent', hl, ... 
'Color', [0 0 0], ... 

o), 

o), 

o), ... 

0), ... 

o), ... 

0), ... 
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'FontSize', 12, ... 
'Position', [-156.0638134302138 -30.81157450985256 01, ... 'String', '\leftarrow2l', 
'Tag', 'AxeslTextl2'); 

h2 = text('Parent', hl, ... 
'Color', (0 0 0], ... 
'FontSize', 12, ... 
'Position', mat6, ... 
'String', '\leftarrow22', 
'Tag', 'AxeslTextll'); 

h2 = text('Parent', hl, ... 
'Color', (0 0 0], ... 
'FontSize', 12, ... 
'Position', (-113.7231480961271 -47.00832211412695 01, ... 'String', '\leftarrow23', 
'Tag', 'AxeslTextlO'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', (-69.01796747542328 -45.75509775018616 0], ... 'String', '\leftarrow24', 
'Tag', 'AxeslText9'); 

h2 = text('Parent', hl, 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-76.78655683455878 -32.98326969309914 0), ... 'String', '\leftarrow25', 
'Tag', 'AxeslText8'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', mat7, ... 
'String', '\leftarrow26', 
'Tag', 'AxeslText7'); 

h2 = text (' Parent', hl, 
'Color', [0 0 01, ... 
'FontSize', 12, ... 
'Position', [-45.00173204685374 -30.05803018833477 0], ... 'String', '\leftarrow27', ... 'Tag', 'AxeslText6'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0], ... 
'FontSize', 12, ... 
'Position', [-40.45393433297453 -54.95686968557935 0], ... 'String', '\leftarrow28', 
'Tag', 'AxeslText5'); 

h2 = text('Parent', hl, 
'Color', [0 0 0), ... 
'FontSize', 12, ... 
'Position', [-29.02244783803414 -44.35470864177537 01, ... 'String', '\leftarrow29', 
'Tag', 'Axes1Text4'); 

h2 = text('Parent', hl, ... 
'Color', [0 0 0), ... 
'FontSize', 12, ... 
'Position', [-18.46781038209989 -55.83847274555033 0), . 'String', '\leftarrow30', ... 
'Tag', 'AxeslText3'); 

h2 = text('Parent', hl, ... 'Color', (0 0 01, ... 
'FontSize', 12, ... 
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'Position', [-11.72136831485738 -24.12172064973028 0], ... 
'String', '\leftarrow3l', 
'Tag', 'AxeslText2'); 

h2 = text('Parent', hl, 
'Color', (0 0 01, ... 
'HandleVisibility', 'off', ... 
'HorizontalAlignment', 'right', 
'Position', (-412.9473684210526 98.63777089783284 

17.320508075688771, 
'Tag', 'AxeslTextl', 
'Visible', 'off'); 

set(get(h2, 'Parent'), 'ZLabel', h2); 
hl = uicontrol('Parent', hO, 

'Units', 'points', ... 
'BackgroundColor', [0.752941176470588 

0.752941176470588], ... 
'Callback', 'trackmap', 
'ListboxTop', O, ... 
'Position', (18 245.7931034482759 111. 

24.82758620689656], ... 
'String', 'Plot Map of Track', 
'Tag', 'Pushbuttonl', 
'Value', 1); 

hi = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', [1 1 11, 

0.752941176470588 

7241379310345 

'Position', (275.5862068965518 49.0344827586207 65.79310344827587 
59.58620689655174), 

'String', ' ', ... 
'Style', 'listbox', 
'Tag', 'Listboxl', ... 
'Value', 1); 

hl = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', (0.752941176470588 0.752941176470588 

0.752941176470588), 
'Callback', mat8, 
'ListboxTop', O, 
'Position', (18 216.896551724138 111.7241379310345 

24.82758620689656), ... 
'String', 'Run Cornering Analysis', ... 
'Tag', 'Pushbuttonl'); 

hl = uicontrol('Parent', hO, 

'Units', 'points', ... 
'BackgroundColor', [0.752941176470588 0.752941176470588 

0.7529411764705881, ... 
'Callback', 'ltsmk4', 
'ListboxTop', 0, ... 
'Position', [18 188.6896551724138 112.3448275862069 

24.206896551724141, ... 
'String', 'Run Lap Time Simulator', 
'Tag', 'Pushbuttoni'); 

hi = uicontrol('Parent', hO, .... 
'Units', 'points', ... 
'BackgroundColor', [0.580392156862745 0.580392156862745 

0.5803921568627451, 
... 

'Callback', mat9, ... 
'ListboxTop', 0, ... 
'Position', mat10, ... 
'String', 'Acceleration vs. Distance', ... 
'Style', 'checkbox', ... 
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'Tag', 'Checkboxl'); 
hl = uicontrol('Parent', h0, 

'Units', 'points', ... 
'BackgroundColor', [0.580392156862745 

0.5803921568627451, 
'Callback', matil, 
'ListboxTop', O, ... 
'Position', matl2, 
'String', 'Velocity vs. Distance', 
'Style', 'checkbox', 
'Tag', 'Checkboxl'); 

hi = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', [0.580392156862745 

0.5803921568627451, ... 
'Callback', matl3, ... 
'ListboxTop', O, ... 

0.580392156862745 

0.580392156862745 

'Position', [18.62068965517242 73.86206896551725 132.8275862068966 
31.0344827586207], ... 

'String', 'Gear No. vs. Distance', 
'Style', 'checkbox', 
'Tag', 'Checkboxl'); 

hl = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', [0.580392156862745 0.580392156862745 

0.5803921568627451, ... 
'Callback', mati4, 
'ListboxTop', 0, ... 
'Position', [ 18.62068965517242 43.44827586206898 133.448275862069 

31.0344827586207], ... 
'String', 'Engine Speed vs. Distance', ... 
'Style', 'checkbox', ... 
'Tag', 'Checkboxl'); 

hl = uicontrol('Parent', hO, ... 
'Units', 'points', ... 
'BackgroundColor', [0.752941176470588 0.752941176470588 

0.752941176470588], 
'FontSize', 16, ... 
'FontWeight', 'bold', ... 
'ListboxTop', O, ... 
'Position', [180.75 432 355.5 25.5], 
'String', 'Lap Time Simulator v4.00 Control Window, .,. 
'Style', 'text', ... 
'Tag', 'StaticTexti'); 

hi = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', [0.580392156862745 0.580392156862745 

0.580392156862745], 
... 

'FontSize', 12, ... 
'HorizontalAlignment', 'left', ... 
'ListboxTop', O, ... 
'Position', [18.62068965517242 273.7241379310345 107.3793103448276 

18], .. 
'String', 'Main Control Buttons', 
'Style', 'text', ... 
'Tag', 'StaticText2'); 

hi = uicontrol('Parent', hO, ... 
'Units', 'points', ... 
'BackgroundColor', (0.580392156862745 0.580392156862745 

0.580392156862745], ... 
'FontSize', 12, ... 
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'HorizontalAlignment', 'left', 
'ListboxTop', O, ... 
'Position', [19.86206896551725 160.1379310344828 107.3793103448276 

18], ... 
'String', 'Plot which figures? ', 
'Style', 'text', ... 
'Tag', 'StaticText2'); 

hl = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', (0.580392156862745 0.580392156862745 

0.580392156862745), ... 
'FontSize', 12, ... 
'HorizontalAlignment', 'left', 
'ListboxTop', O, ... 
'Position', matl5, ... 
'String', 'Vehicle Parameter Sets', 
'Style', 'text', ... 
'Tag', 'StaticText2'); 

hi = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', [0.580392156862745 0.580392156862745 

0.5803921568627451, ... 
'HorizontalAlignment', 'left', 
'ListboxTop', O, ... 
'Position', matl6, ... 
'String', 'Chassis: ', 
'Style', `text', ... 
'Tag', 'StaticText2'); 

hl = uicontrol('Parent', hO, ... 
'Units', 'points', ... 
'BackgroundColor', [0.580392156862745 0.580392156862745 

0.5803921568627451, .. " 
'HorizontalAlignment', 'left', 
'ListboxTop', O, ... 
'Position', matl7, ... 
'String', 'Driveline: ', 
'Style', 'text', ... 
'Tag', 'StaticText2'); 

hi = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackaroundColor', 10.580392156862745 0.580392156862745 

0.580392156862745], 
'HorizontalAlignment', 'left', ... 
'ListboxTop', O, ... 
'Position', matl8, 
'String', 'Aero: ', ... 
'Style', 'text', ... 
'Tag', 'StaticText2'); 

h1 = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', (0.752941176470588 0. 

0.752941176470588], ... 
'Callback', matl9, ... 
'ListboxTop', O, ... 
'Position', mat20, ... 
'String', 'Vehicle Data', 
'Tag', 'Pushbuttonl'); 

hl = uicontrol('Parent', hO, ... 
'Units', 'points', ... 

752941176470588 

'BackgroundColor', [0.752941176470588 0.752941176470588 
0.7529411764705881, ... 
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'Callback', mat21, ... 
'ListboxTop', 0, ... 
'Position', mat22, ... 
'String', 'Track Map', 
'Tag', 'Pushbuttonl'); 

hl = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', (0.580392156862745 0.580392156862745 

0.580392156862745], ... 
'Callback', ' ', """ 
'FontSize', 12, ... 
'HorizontalAlignment', 'left', ... 
'ListboxTop', O, ... 
'Position', (21.10344827586208 355.0344827586208 68.27586206896554 

16.137931034482761, ... 
'String', 'Load Data', 
'Style', 'text', . ". 
'Tag', 'StaticText2'); 

hi = uicontrol('Parent', hO, ... 
'Units', 'points', ... 
'BackgroundColor', (l 1 1], ... 
'Position', [347.5862068965518 49.0344827586207 65.17241379310346 

59.58620689655174], 
'String', ' ', 
'Style', 'listbox', 
'Tag', 'Listboxl', 
'Value', 1); 

hl = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', [l 1 11, 
'Position', [420.2068965517242 49.65517241379311 65.79310344827587 

58.96551724137932), ... 
'String', ' ', ... 
'Style', 'listbox', 
'Tag', 'Listboxl', ... 
'Value', 1); 

hi = uicontrol('Parent', hO, 
'Units', 'points', ... 
'BackgroundColor', [0.752941176470588 0.752941176470588 

0.752941176470588], 
'FontSize', 14, ... 
'HorizontalAlignment', 'left', ... 
'ListboxTop', O, ... 
'Position', (14.25 9.75 562.5 25.5], 

'String', 'Lap Time Simulator v4.00, last modified December 2000 
by Blake Siegler', 

'Style', 'text', ... 
'Tag', 'StaticTextl'); 

if nargout > 0, fig = h0; end 
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LTS Version 4 Main Program 

% Not So Simple Lap Time Simulator version 4 
% by Blake Siegler 
% Created - 24/7/99 
% Last Modified - 29/8/00 for matlab version 5.3 and simulink 3 
% Uses lts4fig. m to run program with ltsfig4. mat 
% Needs files acbr2. m, acc3. mdl, brake3. mdl, 
% runcorn. m, cornpow4. m, corn4. m, maxlat2. m, cb5solts. mdl and 
% engpow. mdl, trackmap. m, curve3. mdl, straight. mdl, huntrat. m 
% anging2. dll, delft3. dll, long3. dll, paclaco. dll, pacloco. dll 
% lts4fig_fig. m, lts4fig_fig. mat 

lts4fig. m to run!! 

% Features include: 

% Graphical User interface 
% Track editor 
% Lateral and longitudinal weight transfer 
%2 DOF freedom type handling model, max lat acc found by quasi 
steady state analysis 
% Pacejka lateral force tyre model 
% Aerodynamics at one ride-height with longitudinal and lateral 
models 
% Gear and drivetrain model 
% Maximum cornering speed model 
% Power limited cornering model 
% Driver braking, acceleration and cornering ability modelled 
% Can change value of coeff. of frcition on different parts of track 
% Definable gear change time 
% Driver model picks optimimum change up point for max torque at 
wheels 
% Pacejka longitudinal braking tyre model at optimum slip 
% Combined tyre model in new cornering model 

Global Parameters 

tic % Used to start timer and find simulated time 
tstep = 0.1; % Maximum time step in simulink simulations (corn2. m 
only!! ) 

% Matrix to define race track layout 
% First item has to be a corner 
% Straight/Corner Number... Path Radius (r=0 for striaght) in 
m... Length in m... fraction reduction in mu 
% All corners are taken as being in the same direction (right 
handed)!! 
% Can't handle straights that do not allow enough braking to next 
corner. 

% New Formula SAE endurance track without slalom 

% Loop to run it around the track 

siratr = size(racetrack, l); 

% Loop to test if corner and creates matrix whole = (distance 
velocity time accel gear revs] 
% and import = [corner-number velocity firat_row data_starts] 
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blone = 0; 
import = 0; 
first = 0; 
last = 0; 
whole = (0 0001 0); 

for blone = 1: 1: siratr 
first = size(whole, l); 

if abs(racetrack(blone, 2)) >0 
muchange = racetrack(blone, 4); 

pr = abs(racetrack(blone, 2)); 
dist = racetrack(blone, 3); 
[cory] = sim('runcorn', 100); % , [], [le-3,0.01, tstep]) 
last = last + size(corner, l); 

for slone=first: l: last; % Makes whole matrix 
whole(slone, l) = corner((slone-first+l), 1); 
whole(slone, 2) = corner((slone-first+l), 2); 
whole(slone, 3) = corner((slone-first+l), 3); 
whole(slone, 4) = corner((slone-first+l), 4); 
whole(slone, 5) = round(corner((slone-first+l), 5)); 
whole(slone, 6) = corner((slone-first+l), 6); 

end 
extra = last + 1; 
whole(extra, l) = 0; 
whole(extra, 2) = 0; 
whole(extra, 3) = 0; 
whole(extra, 4) = 0; 
whole (extra, 5) = 0; 
whole(extra, 6) = 0; 

import(blone, l) = blone; 
import(blone, 2) = corner(1,2); 
import(blone, 3) = last; 
import(blone, 4) = first; 

else 
import(blone, l) = blone; 
import(blone, 2) = 0; 
import(blone, 3) = 0; 
import(blone, 4) = 0; 

end 
end; 

% Loop to test if straight and creates matrix wholestra = (distance 
velocity time accel gear revs) 

huntrat; % Produces look up table of max slip ratio against 
normal force for tyre 

bltwo = 1; 
extra = siratr + 1; 
import(extra, l) = import(l, l); 
import(extra, 2) = import(1,2); 
import(extra, 3) = import(1,3); 
first = 0; 
last = 0; 
wholestra = (0 0001 0); 
vert = 0; 

for bltwo = 1: l: siratr 
first = size(wholestra, l); 

if abs(racetrack(bltwo, 2)) == 0 



length = racetrack(bltwo, 3); 
muchange = racetrack(bltwo, 4); 
before = bltwo -1; 
after = bitwo +1; 
accin = import(before, 2); 
brout = import(after, 2); 
acbr2; 
last = last + size(total, l); 

for slone=first: l: last; % Makes wholestra matrix 
wholestra(slone, l) = total((slone-first+l), 1); 
wholestra(slone, 2) = total((slone-first+l), 2); 
wholestra(slone, 3) = total((slone-first+l), 3); 
wholestra(slone, 4) = total((slone-first+l), 4); 
wholestra(slone, 5) = total((slone-first+l), 5); 
wholestra(slone, 6) = total((slone-first+l), 6); 

end 
extra = last + 1; 
wholestra(extra, l) = 0; 
wholestra(extra, 2) = 0; 
wholestra(extra, 3) = 0; 
wholestra(extra, 4) = 0; 
wholestra(extra, 5) = 0; 
wholestra(extra, 6) = 0; 
import(bltwo, 3) = last; 
import(bltwo, 4) = first; 

else 
end 

end; 

% Loop to combine whole and wholestra using import 

combined = size(whole, l) 
grandtotal = (0 00 0]; 
blthree = 1; 
amount = 0; 
tother = 1; 
first = 0; 
last = 0; 

+ size(wholestra, 1); 

for blthree = 1: l: siratr 
if import(blthree, 2) >0 

last = import(blthree, 3) 
first = import(blthree, 4) 

for slone = first: l: last 
amount = amount + 1; 
grandtotal(amount, 1) 

grandtotal(tother, 1); 
grandtotal(amount, 2) 
grandtotal(amount, 3) 

grandtotal(tother, 3); 
grandtotal(amount, 4) 
grandtotal(amount, 5) 
grandtotal(amount, 6) 

end 
tother = amount; 

else 
last = import(blthree, 3) 
first = import(blthree, 4) 

for slone = first: l: last 
amount = amount + 1; 

= whole(slone, l) + 

whole(slone, 2); 
= whole(slone, 3) + 

= whole(slone, 4); 
= whole(slone, 5); 
= whole(slone, 6); 
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grandtotal(amount, 1) 
grandtotal(tother, 1); 

grandtotal(amount, 2) 
grandtotal(amount, 3) 

grandtotal(tother, 3); 
grandtotal(amount, 4) 
grandtotal(amount, 5) 
grandtotal(amount, 6) 

end 
tother = amount; 

end 
end; 

Ploting bit 

z= size(grandtotal, l); 

= wholestra(slone, l) + 

= wholestra(slone, 2); 
= wholestra(slone, 3) + 

= wholestra(slone, 4); 
= fix(wholestra(slone, 5)); 
= wholestra(slone, 6); 

other = [0 0]; 
for x=1: 1: z 

other(x, l) = grandtotal(x, 4)/g; % accel in g 
other(x, 2) = grandtotal(x, 2)*2.25; % velocity in mph 

end; 
disp(['Time simulation took to run is ', num2str(toc), ' seconds. ']); 
disp(('Total simulated lap time is ', num2str(grandtotal(z, 3)), ' 
seconds. ']); 
disp(['Total distance covered in one lap is 
', num2str(grandtotal(z, l)), ' metres. ']); 

Corn4. m Program 

% New cornering model for LTS MK 4 
% Run before simulation to give look up table 
% Cornering Model Using 2DOF to find maximum lateral accel at 
particular forward velocity 

This implies a minimum path radius, a look up table of forward 
velocity against 

% Path Radius is produced to give fastest time around a given path 
% radius 
% by Blake Siegler 
% Created - 29/8/99 

Last Modified - 29/8/00 for matlab version 5.3 and simulink 3 
Needs files engpow. m, maxlat2. m cb5stolts. m and cornpow3. m to 

% run!!! 

% Cornering model loopy bit 

tic 
umin = 10; % Minimum speed loop run at 
umax = 40; % Maximum speed loop run at 40 
huntrat; % Produces look up table of max slip ratio against 
normal force for tyre 
damp = 1; 

pathrad = 0; 
blone = 1; 

for U= umin: 2: umax % Forward velocity 
get=2; % gear test loop to see which gear in and revs 
ygear(1,1) = (U/rrad/overl)*9.5493; 
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ygear(1,2) = (U/rrad/over2)*9.5493; 
ygear(1,3) = (U/rrad/over3)*9.5493; 
ygear(1,4) = (U/rrad/over4)*9.5493; 
ygear(1,5) = (U/rrad/over5)*9.5493; 
ygear(1,6) = (U/rrad/over6)*9.5493; 
agear=l; 
arev=ygear(l, l); 
for get=2: 1: 6; 

if ygear(l, get) > changedown; 
agear=get; 
arev=ygear(l, get); 

else 
agear=agear; 
arev=arev; 

end; 
end 
delta = 1; 
pathrad(l, 1) = 0; 
pathrad(1,2) = 0; 
pathrad(1,3) = 0; 
pathrad(1,4) = 0; 
maxlat2; 
pranswer((blone+2), 1) = U; 
pranswer((blone+2), 2) = pathrad(l, 1); 
pranswer((blone+2), 3) = pathrad(1,2); 
pranswer((blone+2), 4) = pathrad(1,3); 
pranswer((blone+2), 5) = pathrad(1,4); 
pranswer((blone+2), 6) = arev; 
pranswer((blone+2), 7) = agear; 
blone = blone + 1; 

end 

% Loop to ensure pranswer can be used as a lookup table by 
extrapolating pathrad if necessary 

bighow = size(pranswer, 1) - 1; 

for cornbltwo = 2: 1: bighow 
if pranswer(cornbltwo, 3) < pranswer((cornbltwo-1), 3); 

pranswer(cornbltwo, 3) _ (pranswer((cornbltwo-1), 3) + 
pranswer((cornbltwo+l), 3)) / 2; 

elseif pranswer((cornbltwo + 1), 3) < pranswer((cornbltwo), 3); 
pranswer(cornbltwo, 3) (pranswer((cornbltwo-1), 3) + 

pranswer((cornbltwo+l), 3)) / 2; 
else 
end 

end 

toc 
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Maxlat2. m Program 

% maxlat2. m runs a sweep of steer angle 
% and finds maximum lateral acceleration at particular speed. 
% Created 29/8/00 by Blake Siegler 
% Last Modified - 29/8/00 for matlab version 5.3 and simulink 3 
% Needs files engpow. m, cb5stolts. m and cornpow4. m to run!!! 

if delta > deltamax 
pathrad(2,1) = 0; 
pathrad(2,2) = 0; 
pathrad(2,3) = 0; 
pathrad(2,4) = 0; 

else 
[corn) = sim('cb5stolts', 10); 
cornmax = size(pr, i); 
pathrad(2,1) = delta; 
pathrad(2,2) = pr(cornmax); 
pathrad(2,3) = latacc(cornmax); 
pathrad(2,4) = yawacc(cornmax); 

end 

if pathrad(2,3) > pathrad(1,3) 
pathrad(l, l) = delta; 
pathrad(1,2) = pr(cornmax); 
pathrad(1,3) = latacc(cornmax); 
pathrad(1,4) = yawacc(cornmax); 
delta = delta + 1; 
maxlat2; 

else 
delta = pathrad(l, 1); 
cornpow4; 

end 
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Cornpow4. m program 

% Power Limited Cornering Program 4 
% Created by Blake Siegler 29/8/00 
% Last Modified - 29/8/00 for matlab version 5.3 and simulink 3 
% Uses engpow. mdl and cornstolts. mdl to run!!! 

(corn] = sim('cb5stolts', 10); 
cornmax = size(pr, 1); 
Dpower = U*(drag(cornmax)); 
[pow] = sim('engpow', 1); 

dfgd = [engpower(1,1) Dpower delta]; 

if engpower(l, l) < Dpower; 
delta = delta - 0.05; 
if delta >0 

cornpow4; 
else 

delta = 0; 
pr(cornmax) = 10000; 
latacc(cornmax) = 0; 
yawacc(cornmax) = 0; 

end 
end 

pathrad(1,1) = delta; 
pathrad(1,2) = pr(cornmax); 
pathrad(1,3) = latacc(cornmax); 
pathrad(1,4) = yawacc(cornmax); 
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ACBR2. m Program 

% Linear acceleration and brake model 
% This time using a Newton-Raphson iterative method 
% by Blake Siegler 

Created - 5/8/99 
Last Modified - 16/8/00 for matlab version 5.3 and simulink 3 
Needs files huntrat. m, acc3. m and brake3. m to run!! 
To run on its own un-percentage accin, brout and length and ploting 

bit and global parameters 

% length = 300; distance of straight in m 
% accin = 15; speed into straight in m/s 
% brout = 10; speed out of stright in m/s 

% Iterative loop which accelerates for n seconds and then brakes to 
brout 

n=0.3; % Length of first acceleration run iteration in 
seconds 
can = -1; 
total=[0 0 0]; 
lastot=l; 

ygear=0; 
loop =0; 

while can <0 
lastot = 1; 
total = 0; 
[accyj = sim('acc3', n); 

rubbish = 6; 
exit= size(accel, 1); 
extra=l; 
accelf = CO 0000 01 ; 

for filt = rubbish: l: exit; 
accelf(extra, l) = accel(filt, l); 
accelf(extra, 2) = accel(filt, 2); 
accelf(extra, 3) = accel(filt, 3); 
accelf(extra, 4) = accel(filt, 4); 
accelf(extra, 5) = accel(filt, 5); 
accelf(extra, 6) = accel(filt, 6); 
extra = extra + 1; 

end 
lastacc = 1; 
lastacc = size(accelf, l); 
brain = accel(lastacc, 2); 
[bray] = sim('brake3', 2*n); 
j=0; 
z 0; 
k 0; 
lastbra = l; 
lastbra = size(brake, l); 
z= lastacc + lastbra; 

for j=1: 1: z; % Makes total matrix 
if size(total, l) < lastacc 

total(j, 1) = accelf(j, 1); 
total(j, 2) - accelf(j, 2); 
total(j, 3) a accelf(j, 3); 

235 



total(j, 4) = accelf(j, 4); 

total(j, 5) = accelf(j, 5); 

total(j, 6) = accelf(j, 6); 

else 
k=j- lastacc; 
total(j, l) = brake(k, l) + accelf(lastacc, l); 

total(j, 2) = brake(k, 2); 
total(j, 3) = brake(k, 3) + accelf(lastacc, 3); 
total(j, 4) _ -brake(k, 4); 

get=2; 
gear test loop to see which gear in and revs 

agear=l; 
arev=ygear(k, l); 
previous=accelf(lastacc, 5); 
for get=2: 1: previous; 

if ygear(k, get) > changedown; 
agear=get; 
arev=ygear(k, get); 

else 
agear=agear; 
arev=arev; 

end; 
end; 

total(j, 5) = agear; 
total(j, 6) = arev; 

end 
end 

n=n- ((total(z, l)-length)/accelf(lastacc, 2)); 
% Newton-Rhapson iteration 

y=total(z, l); % distance travelled so far... 
ej = fix((1*(total(z, l) - length - loop))); 

% loop to find when iteration converges 
if sign(ej) <0 

can = -1; 
elseif sign(ej) >0 

can = -1; 
else can = 1; 
end; 
%loop = loop + 0.5 

end; 



Huntrat. m Program 

% Hunt finds the ratio which gives max long force. 
% Using Pacejka formula 
% by Blake Siegler 
% Created - 11/8/00 
% Last Modified - 16/8/00 

% Global Parameters 

% clear; 

raty = [0 0); 

% Program 

for n 6: 1: 14 

Z= 100*n; 

shx = pac(33,1); 
svx = Z*pac(35,1)*pac(37,1); 
cx = pac(23,1); 
mux = pac(24,1) * pac(37,1); 
dx = mux * Z; 
kx = pac(22,1) * pac(30,1); 
bx = kx/(cx*dx); 
ratio = 0; 
long = 0; 

while long < 0.999 
ratio = ratio + 0.001; 
ratio = ratio + shx; 
ex = pac(26,1)*(1 - (pac(29,1)*(sign(ratio)))); 
long = sin(cx*atan((bx*ratio) - ex*((bx*ratio) - 

atan(bx*ratio)))) + svx; 
end 

raty((n-5), 1) = Z; 
raty((n-5), 2) = ratio; 

end 
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Trackmap. m Program 

% Program to draw out track map in form of figure. 
% Created by B Siegler 17/7/00 
% Last modified 21/7/00 
% Needs simulink program curve3. mdl, straight. mdl and anging. m to 
run 

% Creates local co-ords of x against y for all manoeuvres 

howbig = size(racetrack, 1); 
tracmap = (0 0; 0.0000001 1); 
label = 10 0 0); 

n=1; 
oldx = tracmap(n, 1); 
oldy = tracmap(n, 2); 
newx = tracmap(n, 1); 
newy = tracmap(n, 2); 
extra = 0; 

for loopi = 1: 1: howbig 
n= size(tracmap, l); 
shiftx = tracmap(n, l); 
shifty = tracmap(n, 2); 

if abs(racetrack(loopl, 2)) >0 
pathrad = abs(racetrack(loopl, 2)); 
length = racetrack(loopl, 3); 
[curvy] = sim('curve3', 100); 

% delivers matrix anti and clock [x y] 
howbig2 = size(tracmap); 

% Rotation matrix to orientate next manoeuvre 

oldx = tracmap(n-1,1); 
oldy = tracmap(n-1,2); 
newx = tracmap(n, 1); 
newy = tracmap(n, 2); 
extra = 0; 

if and((newx-oldx<O), (newy-oldy>O)) 
extra = pi/2; 

elseif and((newx-oldx<O), (newy-oldy<O)) 
extra = pi; 

elseif and((newx-oldx>O), (newy-oldy<O)) 
extra = 1.5*pi; 

else 
extra = 0; 

end 

if eq(extra, 1.5*pi) 
ang = (atan(abs(newx-oldx)/abs(newy-oldy)) + extra); 

elseif eq(extra, pi/2) 
ang = (atan(abs(newx-oldx)/abs(newy-oldy)) + extra); 

else 
ang = (atan(abs(newy-oldy)/abs(newx-oldx)) + extra); 

end 

rotate = (cos(ang) sin(ang); -sin(ang) cos(ang)); 
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clock = clock*rotate; 
anti = anti*rotate; 

if racetrack(loopl, 2) >0 
for sloopl = 1: 1: (size(clock)) 

tracmap(n, i) = clock(sloopl, l) + shiftx; 
tracmap(n, 2) = clock(sloopl, 2) + shifty; 
n=n+1; 

end 

label((loopl+i), 1) = clock((round(sloopl/2)), I) + shiftx; 
label((loopl+l), 2) = clock((round(sloopl/2)), 2) + shifty; 
label((loopl+l), 3) = loops; 

else 
for sloops = 1: 1: (size(anti)) 

tracmap(n, l) = anti(sloopl, l) + shiftx; 
tracmap(n, 2) = anti(sloopl, 2) + shifty; 
n=n+1; 

end 

label((loopl+l), 1) = anti((round(sloopl/2)), 1) + shiftx; 
label((loopl+l), 2) = anti((round(sloopl/2)), 2) + shifty; 
label((loopl+l), 3) = loops; 

end 

else 

length = racetrack(loopl, 3); 
gradient = (newy-oldy)/(newx-oldx); 
[starty] = sim('straight', 100); 
% delivers matrix straight [x y] 

% Rotation matrix to orientate next manoeuvre 

oldx = tracmap(n-1,1); 
oldy = tracmap(n-1,2); 
newx = tracmap(n, 1); 
newy = tracmap(n, 2); 
extra = 0; 

if and((newx-oldx<O), (newy-oldy>O)) 
extra = pi/2; 

elseif and((newx-oldx<O), (newy-oldy<O)) 
extra = pi; 

elseif and((newx-oldx>O), (newy-oldy<O)) 
extra 

else 
extra = 0; 

end 

if eg(extra, 1.5*pi) 
ang = (atan(abs(newx-oldx)/abs(newy-oldy)) + extra); 

elseif eq(extra, pi/2) 
ang = (atan(abs(newx-oldx)/abs(newy-oldy)) + extra); 

else 
ang = (atan(abs(newy-oldy)/abs(newx-oldx)) + extra); 

end 

rotate = (cos(ang) sin(ang); -sin(ang) cos(ang)]; 
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straigh = straigh*rotate; 

for sloop2 = 1: 1: (size(straigh)) 
tracmap(n, 1) = straigh(sloop2,1) + shiftx; 
tracmap(n, 2) = straigh(sloop2,2) + shifty; 
n=n+1; 

end 

label((loopl+l), I) = straigh((round(sloop2/2)), 1) + shiftx; 
label((loopl+l), 2) = straigh((round(sloop2/2)), 2) + shifty; 
label((loopl+l), 3) = loopl; 

end 
end 

figure (1) 
plot (tracmap1), tracmap(:, 2)) 
title('Map of track') 
xlabel('Distance (m)') 
ylabel('Distance (m)') 
grid 
zoom 

text(0,0, '\leftarrowstart', 'fontsize', 16) 

for loop2 = 2: 1: size(label) 

text(label(loop2,1), label(loop2,2), ['\leftarrow', num2str(label(loop2 
'3))), 'fontsize', 12) 
end 

y=1; 
n=0; 
runer=input('is the map of the track correct (y/n)? '); 

if runer < 0.5; 
position = input('What is the number of the straight/corner that 

is wrong? '); 
radius = input('What is the value of the path radius in m 

(straight = 0, left handers = -ve)? '); 
long = input('What is the length of the path taken at this radius 

in m? '); 

racetrack(position, 2) = radius; 
racetrack(position, 3) = long; 

disp(['Track map updated replotting (remember to update inputted 
racetrack)... ')); 

trackmap; 
else 
end; 
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Tracks. m Program 

% List of tracks for use in LTS packages, Mark 1,2 and 2a 
% Column 1 Column 2 Column 3 Column 4 
% Number Path radius Length Percentage drop in friction 
% of maneuvre 0 for straight including circum 

racetrack = [1 100 314 1;... 
20 800 1;... 
3 200 314 1;... 
40 300 1;... 
5 300 200 1;... 
60 100 1;... 
7 50 150 1;... 
80 800 11 

%A Newer Formula SAE endurance track without slalom 

racetrack = [1 -4.78 5.00 1;... 
2 4.78 5.00 1;... 
3 0 21.51 1;... 
4 -4.78 3.8 1;... 
5 0 21.51 1;... 
6 -4.78 3.8 1;... 
7 0 45.41 1;... 
8 -4.78 13.34 1;... 
9 0 5.98 1... 
10 11.95 43.78 1;... 
11 0 23.90 1;... 
12 -28.68 38.03 1;... 
13 0 90.77 1;... 
14 -14.34 20.01 1;... 
15 14.34 20.01 1;... 
16 -14.34 45. 03 1;... 
17 0 30.85 1;... 
18 -4.78 4 1;.. . 
19 0 15.54 1;... 
20 11.95 36.52 1;... 
21 0 15.54 1;... 
22 -4.78 8.5 1;... 
23 0 80.12 1;... 
24 -4.78 11.26 1;... 
25 0 20.32 1;... 
26 22.71 89.14 1;... 
27 0 38.24 1;... 
28 -5.50 17.33 1;... 
29 5.50 17.33 1;... 
30 -5.50 17.33 1;... 
31 0 53.00 11 

% Steady state circle 

racetrack = El 8.55 53.72 11 

% Straight line run to 100m 

racetrack = [1 0.5 0.3 1;... 
20 135 11 
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Appendix H 

Transient approach based manoeuvre time minimisation package, MatLab script. 

Notes begin with %. 

Dof9opt2. m Program 

% Optimisation routine that finds optimum longacc and steer controls 
% for a given corner 
% Uses optimisation toolbox!! 
% Created 23/1/01 by Blake Siegler 
% Last modified 28/6/01 
% Needs files dof9ver8. mdl, dof9jturn2. m, dof9jturncon2. m, 
% pateror3. mdl, 
% drawcorn2. mdl, drawcorn. mdl, pathmaker4. mdl, prev2bet. mdl, 
% pathmabet4. mdl and fsaeüla. m to run!! 

clear 
tic 

Load Main Variables 

U= 15; % Initial fwd. vel. in m/s 
cpd = 4; % Control points ditance in m 

% Load Vehicle Variables 
. a... a_... _==o==oa==c=_. _o==a=cc=. _.... o... =cszmcc _aaýoazcszasxýS3ag 

deltagain = 1; % Too even out control matrix - also max value of 
delta allowed 
fsaeOla; % Loads all vehicle and tyre parameters 
brakeoff = 1; % Set to zero to remove rolling/aero resistence 
effects, 1 to have on (maintains fwd vel) 

Load Path Variables 

_=_===z==a_=acs=_azc_smm_sx==aza_aza=axmsa=xasxazamaaassszzmaammaamz 

% For Right Hand Turn starting at Sm 

patrad = 17.5; % path radius centre line in m 
width = 5; % track width in metres 
clcourse 5; %X position of centre line of track start 
position 
stralen = 40; % Length of Straights 
length = patrad*pi/2; % length of corner (180deg) 

Run Preview controller and produce path matrix 
accc=a==gym=_==m=_oacaoý==as=sa=a= aa aa======mama=mss= 

%Y = 1; 
%n = 0; 
pruner = input('Load path and run initial conditions (y/n)? '); 
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%if runer > 0.5; 

% Load circuit data - track centre line and width 

(corn] = sim('drawcorn2', 100); 

nosteps = stralen/0.1253; 

diststep = 0; 
diststep2 = 0; 
loop2 = 0; 
timestep = 0; 
inner =0; 

for loop. = 1: 1: (2*nosteps+size(outer, l)) 
timestep = 0.1253 + timestep; 
if loopl <= nosteps 

diststep = diststep + 0.1253; 
inner(loopi, l) = 0; 
inner(loopl, 2) = diststep; 
inner(loopl, 3) = timestep; 
inner(loopl, 4) = width; 

elseif and((loopl>nosteps), (loopl<=(nosteps+size(outer, l)))) 
loop2 = loop2 + 1; 
inner(loopl, l) = outer(loop2,1); 
inner(loopl, 2) = outer(loop2,2) + stralen; 
inner(loopl, 3) = timestep; 
inner(loopl, 4) = width; 

else 
diststep2 = diststep2 + 0.1253; 
inner(loopl, l) = patrad + diststep2; 
inner(loopl, 2) = stralen + patrad; 
inner(loopl, 3) = timestep; 
inner(loopl, 4) = width; 

end 
end 

% Run preview controller to get inital guess for delta 

huntrat; 
prevdist = U/7; % Distance between preview points 

fulldist = stralen*2 + length; 

ending = 100; % time when end at apex 
erxtra = 3; %5; % stops it being in the negative x bit 

% Gives centre line and track info. 
[maker] = sim('pathmaker4l, size(inner, l)*0.1253); % Makes the ideal 

path matrix to follow 

Change of inital guess 
casaaa=amacm=xos===a=a==a==_=aa=ýmmm axamaamemaaaaemx=mse===aria*sa*A 

Changes initial guess to closer approx., rather than track centre 
line 
% Load circuit data - track centre line and width 

patrad = 23; % path radius centre line in m 
width = 5; % track width in metres 
length = patrad*pi/2; % length of corner (180deg) 
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[corn] = sim('drawcorn2', 100); 

stralen = 33; %13 
nosteps = stralen/0.1253; 
diststep = 0; 
diststep2 = 0; 
loop2 = 0; 
timestep = 0; 
inner =0; 

for loopl = 1: 1: (2*nosteps+size(outer, l)) 
timestep = 0.1253 + timestep; 
if loopl <= nosteps 

diststep = diststep + 0.1253; 
inner(loopl, l) = 0; 
inner(loopl, 2) = diststep; 
inner(loopl, 3) = timestep; 
inner(loopl, 4) = width; 

elseif and((loopl>nosteps), (loopl<=(nosteps+size(outer, l)))) 
loop2 = loop2 + 1; 
inner(loopl, l) = outer(loop2,1); 
inner(loopl, 2) = outer(loop2,2) + stralen; 
inner(loopl, 3) = timestep; 
inner(loopl, 4) = width; 

else 
diststep2 = diststep2 + 0.1253; 
inner(loopl, l) = patrad + diststep2; 
inner(loopl, 2) = stralen + patrad; 
inner(loopl, 3) = timestep; 
inner(loopl, 4) = width; 

end 
end 

extrabet = 0; %-2; % moves path across 

% makes new path to follow betpath 
(maker) = sim('pathmabet4', size(inner, l)*0.1253); % Makes the ideal 

path matrix to follow 

OPTION = simset('AbsTol', le-6, 'RelTol', le-6); 

% now follows betpath 
(corn] = sim('prev2bet', ending); % Uses 3DOF preview controller as 
9DOF one doesn't work!! 

disp(['Initial guess took ', num2str(time(size(time, l))), ' seconds to 
complete manoeuvre. ']); 

% Discretenise control matrix and set up communication grid (every 
one metre) 

nextone = 0; 
nextone2 = 0; 
deltax = 0; 
timex 0; 

for loop3 = 1: 1: size(s, l) 
if nextone2 <= s(loop3,1) 

nextone2 = cpd + nextone2; 
nextone 1+ nextone; 
deltax(nextone, 1) = delta(loop3,1)/deltagain; 
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deltax(nextone, 2) = 0; 
timex(nextone, l) = time(loop3,1); 

else 
end 

end 

% Return variables back to origional value 

patrad = 17.5; % path radius centre line in m 
stralen = 40; 

%else 
%end; 

% Program 

% Calls jturn function that runs car using steer time history 

provided, stops when reaches 
% certain x-position and returns time (end of manoeuvre). 
% Jturn function needs: discrete time and steer history, fwd vel, 
path, x-stop position 

% Want to. 
% Minimise time to complete the manoeuvre 
% Keep to constraints on steer angle range 
% and path taken 

% options = 
optimset('LargeScale', 'off', 'Display', 'iter', 'tolfun', 0.001, 'tolcon' 

, 0.05, 'maxiter', 35, 'diffminchange', 0.05, 'diffmaxchange', 1, 'tolx', 0.0 
05); 
% Standard options 

% options = 
optimset('LargeScale', 'off', 'Display', 'iter', 'tolfun', 0.0001, 'tolcon 
', 0.005, 'maxiter', 35, 'diffminchange', 0.001, 'diffmaxchange', 0.5, 'tolx 
', 0.001); 
% Options set tight 

% options = 
optimset('LargeScale', 'off', 'Display', 'iter', 'tolfun', 0.1, 'tolcon', 0 

. 5, 'maxiter', 35, 'diffminchange', 0.05, 'diffmaxchange', 10, 'tolx', 0.05) 

options 
optimset('LargeScale', 'off', 'Display', 'iter', 'tolfun', 0.001, 'tolcon' 

, 0.01, 'maxiter', 35, 'diffminchange', 0.001, 'diffmaxchange', 0.5, 'tolx', 
0.001); 
% options on hybrid 
% tolfun = 0.01 

%ao==x==c. 
as-_a=s=a=aý_c=s=aosaeasmýasssaseaaszasmaa+aýaecaxsssaasassaeýayss 

options = 
optimset('LargeScale', 'off', 'Display', 'iter', 'tolfun', 0.001, 'tolcon' 

, 0.01, 'maxiter', 45, 'diffminchange', 0.01, 'diffmaxchange', l, 'tolx', 0.0 
1); 
%'tolfun', 0.00001 
% turn largescale on for other routines 

% Minimisation routine which calls maxlat2 which delivers back cost 
function 
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%dir='e: \matlab\9dof\resultopt\'; 
%file=['jturn3,1; % To load the path 
%load((dir file)); 

timex=timeint; 
deltax = xans; 

% Set boundary conditions for contorl matrix 

lb = [(zeros(size(deltax, l), l) - 10) (zeros(size(deltax, l), 1) - 1)); 
ub = [(zeros(size(deltax, l), l) + 10) (zeros(size(deltax, l), 1) + 1)]; 

lb(1,1) = 0; % Just to initialise 
lb(2,1) = 0; % Just to initialise 
lb(1,2) = 0; % Just to initialise 
lb(2,2) = 0; % Just to initialise 

ub(1,1) = 0; % Just to initialise 
ub(2,1) = 0; % Just to initialise 
ub(1,2) = 0; % Just to initialise 
ub(2,2) = 0; % Just to initialise 

_==c=x==_o; -==-a===c_==m_==aaa==c==_, __xxxm; sc=o=aoamxoazsz_=xssmmmx 

[xans, fval, exitflag, output] = 
fmincon('dof9jturn2', deltax, [], [], [], (], lb, ub, 'dof9jturncon2', option 
s, U, path, (stralen+patrad+clcourse), timex, erxtra, clcourse); 

xans 
fval 
%xans = deltax; 

% Plot final path 

xendl = stralen + patrad + clcourse; 
timeint = timex; 
delta = xans(:, 1); 
brakeint = xans(:, 2); 

fsaeOla; % Loads all vehicle and tyre parameters 
deltagain = 1; % Too even out control matrix 
brakeoff 1; 
% Set to zero to remove rolling/aero resistence effects, 1 to have 
on (maintains fwd vel) 

Rerun results to display results 
==coazzzzc=======zxaszzsozz=a=aaasazxzaacmmaxxramz=asýasmsmaeaeýaas: 

OPTIONS = simset('SrcWorkspace', 'current'); %, 'AbsTol', le- 
9, 'RelTol', le-9); % 'MaxStep', 0.005, 
(corn) = sim('dof9ver8', 50, OPTIONS); 

X1 x; 
Yl = Y; 

disp(['Final solution took 1'num2str(time(size(time, 3V))), ' seconds 
to complete manoeuvre. ')); 

246 



width = 5; % track width in metres 
patrad2 = patrad - width/2; % path radius in m 
length = patrad2*(pi/2); % length of corner (90deg) 
[corn) = sim('drawcorn', 100); 

% Adds straights onto corner 

inner(1,2) = inner(1,2) - stralen; 
outer(1,2) = outer(1,2) - stralen; 
endin = size(inner, l); 
inner(endin+1,1) = inner(endin, l) + stralen; 
inner(endin+1,2) = inner(endin, 2); 
outer(endin+1,1) = outer(endin, l) + stralen; 
outer(endin+1,2) = outer(endin, 2); 

figure (1) 
plot(xl(:, 1), yl(:, 1), path(:, 1), path(:, 2), '- 

. ', xpr2, ypr2, ': ', inner(:, 1)+ 
width/2, inner(:, 2)+stralen, 'k', outer(:, 1) + 
width/2, outer(:, 2)+stralen, 'k', 'linewidth', 2) 
legend('optimised path', 'centre line of track', 'original guess') 
title('Vehicle Position') 
xlabel('Distance (m)') 
ylabel('Distance (m)') 
grid 

figure(2) 
plot(time, latacc, ': ', tisae, longacc, time, u, '-. 1) 
legend('Lateral acc', 'Longitudinal acc', 'Fwd vel') 
title('Acceleration and Velocity versus Time') 
xlabel('Time (s)') 
ylabel('Acceleration (m/s2) or Forward Velocity (m/s)') 
grid 

distdiff = abs(s(size(s, l), l) - path(size(path, 1), 3)); 
distdiff = distdiff * 0.8; 

prevdist = 0; 
paterr = 0; 
OPTION = simset('MaxStep', 0.1, 'SrcWorkspace', 'current'); 
[corn3] = 
sim('pateror3', 2*s(size(s, 1), 1), OPTION); %(size(xl, 1)/10), OPTION); 

figure(3) 
plot(paterrdist, paterr) 
title('Vehicle Position') 
ylabel('Path error (m)') 
xlabel('Distance (m)') 
grid 

disp(['Time simulation took to run is ', num2str(toc/3600), ' 
hours. ')); 
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Do, f'9jturn2. m Program 

function F= dof9jturn2(deltal, Ul, path, xend, timel, erxtra, clcourse) 

% Jturn function used in conjunction with 
% optimisation function to find steer angle time history 
% to complete jturn manoeuvre in shortest time 
% Created by B. Siegler 23/1/01 
% Last modified 26/6/01 
% Needs files dof9ver8. mdl, fsaeüla. m to run!!!! 

% Have to load variables into this current workspace 

fsaeOla; % Loads all vehicle and tyre parameters 
deltagain = 1; % Too even out control matrix 
brakeoff = 1; % Set to zero to remove rolling/aero resistance 
effects, 1 to have on (maintains fwd vel) 
erxtra = 3; % stops it being in the negative x bit 

% Control Values 

xendi = xend; 
timeint = timet; 
delta = deltal(:, 1); 
brakeint = deltal(:, 2); 
U=Ul; 
ending = 20; 

% Program 

OPTIONS = simset('SrcWorkspace', 'current'); %, 'AbsTol', le- 
9, 'RelTol', le-9, 'MaxStep', 0.001) 
(corn] = sim('dof9ver8', ending, OPTIONS); 

timend = time(size(time, l)); 

% Bit to check for completion of maneouvre 

cheque = size(u, 1); 
cheque2 = -1; 
endone = size(u, 1); 

cheque = endone; 
if u(cheque, l) <= (brout) 

timend = abs(timend + (path(size(path, l), 3) +5- 
s(size(s, l), l))); % better linear solution to time penalty problem 

cheque2 = 0; 
elseif or(or((Nfr(cheque, l) <= (offground)), (Nfl(chegue, l) ca 

(offground))), or((Nrr(cheque, l) <= (of fground)), (Nrl(cheque, 1) <- 
(offground)))) 

timend = abs(timend + (path(size(path, l), 3) +5- 
s(size(s, l), 1))); % better linear solution to time penalty problem 

cheque2 = 1; 
elseif abs(latacc(cheque, l)) >_ (latspin) 

timend = abs(timend + (path(size(path, l), 3) +5- 
s(size(s, l), l))); % better linear solution to time penalty problem 

cheque2 = 2; 
else 

end 
F= timend; 
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Dof9jturncon2. m Program 

function [c, ceq] = 
dof9jturncon2(deltal, Ul, path, xend, timel, erxtra, clcourse) 

% Constraints function to keep in track boundary 
% Jturn function used in conjunction with 
% optimisation function to find steer angle time history 
% to complete jturn manoeuvre in shortest time 
% Created by B. Siegler 23/1/01 
% Last modified 8/5/01 
% Needs files dof9ver8. mdl, fsae0la. m, pateror3. mdl to runt!!! 

% Have to load variables into this current workspace 

fsaeOla; % Loads all vehicle and tyre parameters 
deltagain = 1; % Too even out control matrix brakeoff = 1; % Set 
to zero to remove rolling/aero resistence effects, 1 to have on 
(maintains fwd vel) 
erxtra = 3; % stops it being in the negative x bit 

% Control Values 

xendl = xend; 
timeint = timel; 
delta = deltal(:, l); 
brakeint = deltal(:, 2); 
U=U1; 
time2 = 0; 

% Program 

OPTIONS = simset('SrcWorkspace', 'current'); 
ending = 20; 
(corn] = sim('dof9ver8', ending, OPTIONS); 
timend = time(size(time, l)); 
X1 = x; 
Y1 = Y; 

if abs (timeint (size (timeint, 1)) - timend) > 1; 
distdiff = 0; 

else 
distdiff = abs(s(size(s, 1), 1) - path(size(path, 1), 3)); 
distdiff = distdiff * 0.8 

end 

Works out whether within track boundary 

prevdist = 0; 
paterr = 0; 
OPTION = simset('MaxStep', 0.1, 'SrcWorkspace', 'current'); 
(corn3] 
sim('pateror3', 2*s(size(s, l), 1), OPTION); %(size(xl, 1)/10), OPTION); 

% Nonlinear inequlaity constraints 

paterrr = 0; 
nextone = 1; 
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% Makes discrete matrix of error distance at control points 

for loop4 = 1: 1: size(paterr, l) 
if nextone <= size(timeint, l) 

if timeint(nextone, l) <= paterrtime(loop4,1); 
paterrr(nextone, l) = paterr(loop4,1); 

nextone =1+ nextone; 
else 

end 
else 
end 

end 

paterrrr = 0; 

if eq(size(paterrr, l), size(timeint, l)) 
paterrrr = paterrr; 

else 
for loops 1: 1: size(timeint, l) 

if loop5 <= size(paterrr, l) 
paterrrr(loop5,1) = paterrr(loop5,1); 

else 
paterrrr(loop5,1) = 0; 

end 
end 

end 

c= (abs(paterrrr) - 2.5); 

No nonlinear equality constraints 

ceq = (j; 
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