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Abstract 

 

The Auricular Branch of the Vagus Nerve (ABVN) is a sensory nerve that 

innervates select areas of the external auricular dermatome. Electrical 

stimulation of the auricular region innervated by the ABVN influences the 

autonomic nervous system, observed by changes in control of the heart in 

humans and animals. However, the pathways and mechanisms for these 

effects are unknown.  

This thesis investigated in rats the pathways mediating the effects of electrical 

stimulation of the external auricle, comparing an ABVN innervated site of the 

external ear (the tragus) to an area not reported to receive ABVN innervation, 

the earlobe. Injection of the neuronal tracer cholera toxin B chain (CTB) into 

the right tragus (n=4) and right earlobe (n=4) revealed a large degree of 

similarity in sensory afferent termination sites. Afferent terminals were 

predominantly labelled ipsilateral to the injection site, with the densest 

labelling within laminae III-IV of the dorsal horn of the upper cervical spinal 

cord. In the medulla oblongata, CTB labelled afferents were observed in the 

paratrigeminal nucleus, cuneate nucleus, and to a minor extent in the nucleus 

tractus solitarius. Efforts were made to identify the targets of labelled afferents 

using immunofluorescence for choline acetyltransferase, calbindin, 

parvalbumin, glutamate decarboxylase 67 and neurokinin receptor 1 

expressing cells, but inputs to each cell type were rare.  

Physiological recordings of the responses to ear stimulation were made in an 

anaesthetic free Working Heart Brainstem Preparation (WHBP) of the rat. 

Autonomic profiles of WHBP rats were first examined. Recordings made from 

rats at night time, revealed more robust sympathetic activity in comparison to 

day time rats, thus subsequent experiments were conducted in rats at night 

time. Electrical stimulation (100 Hz, 2.5 mA) was delivered for 5 minutes into 

the auricular stimulation sites in the WHBP. Direct recording from the 

sympathetic chain revealed a central sympathoinhibition from both tragus and 

earlobe stimulation. Sectioning of upper cervical afferent nerve roots silenced 

the sympathoinhibitory effects of tragus stimulation.        



 

Considering the predominance of afferent labelling in the cervical spinal cord 

dorsal horn and that cervical afferent nerve section reduced the 

sympathoinhibition evoked by tragus stimulation, this suggests that the 

autonomic effects of auricular stimulation are conveyed through 

somatosensory afferents rather than the ABVN.  
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Chapter 1 General Introduction 
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1.1 Autonomic nervous system 

 

Physiological homeostasis in the body is highly regulated by the central 

nervous system (CNS). The central command from the CNS reaches the 

tissues of effector organs through the peripheral nervous system (PNS). The 

afferent neurons in the PNS provides sensory input into the CNS, while output 

from the CNS into effector neurons is commonly referred as efferent. 

Modulation of the vital internal organs (e.g.: viscera and blood vessels) is 

conducted without the need of conscious inputs. As such, the autonomic 

(Greek auto = self, nomos = rule) nervous system (ANS) is appropriately 

named for its capability of coordinating physiological outputs to regulate 

internal visceral functions and homeostasis.  

The ANS organization is divided into three different sub-divisions; the 

sympathetic, parasympathetic and enteric. The sympathetic and 

parasympathetic sub-divisions are complementary in nature where visceral 

organs receive dual input from sympathetic and parasympathetic nerve fibres 

(Sherwood, 2008). Under normal circumstances both nervous systems are 

partially active. The ongoing tonic sympathetic/parasympathetic activities will, 

however, be influenced from external stimuli (e.g. threats), causing activity of 

one division to dominate the other. The activation of sympathetic is commonly 

referred to as a “fight-or-flight” response while the parasympathetic activation 

often considered as “rest-and-digest” state. Hence, the shifting of autonomic 

predominance balances physiological demands of the body without the need 

of reaching consciousness. However, the dual reciprocal actions of the 

autonomic nervous system divisions are not applicable in some visceral 

organs. One of the examples would be blood vessels (except in parotid gland) 

which have sole innervation by the sympathetic nerve fibres. Vasoconstriction 

or vasodilation is achieved by regulating the firing rate of the sympathetic 

nerve fibres alone.  
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1.1.1 The sympathetic nervous system 

 

 

Sympathetic nerve fibres have long been thought to originate from the thoracic 

and lumbar regions of the spinal cord to supply sympathetic transmission into 

various organs such as lungs, heart, blood vessels, eyes, sweat glands, 

kidneys and digestive tracts. However, recently sacral preganglionic neurons 

commonly considered as parasympathetic were reported to exhibit properties 

(anatomical, physiological, and pharmacological) more like sympathetic 

thoracolumbar than brainstem parasympathetic  preganglionic neurons, 

suggesting that all spinal autonomic outflow is sympathetic (Espinosa-Medina 

et al., 2016) (Figure 1.1). At all levels, sympathetic preganglionic cell bodies 

form the intermediolateral column in the lateral horn of mammals. The 

preganglionic sympathetic fibres with myelinated axons leave the ventral 

nerve roots of the spinal segments through the white rami communicantes. 

The sympathetic preganglionic axons are commonly short and synapse with 

cell bodies of postganglionic neurons within the ganglia in the sympathetic 

trunk that lies on each sides of the spinal cord. Non-myelinated postganglionic 

sympathetic fibres exit the sympathetic trunk through the grey rami 

communicantes and travel to the effector organs. Some preganglionic fibres 

pass through the sympathetic chain without synapsing and later synapse with 

the postganglionic neurons in the collateral ganglia, about halfway between 

the designated organs and the CNS. Projections from the postganglionic 

neurons of the collateral ganglia are commonly to the pelvic visceral organs. 

A direct projection from the CNS to the adrenal gland has also been 

documented, where the cells are “modified” sympathetic ganglion neurons 

and have the ability to secrete epinephrine and norepinephrine upon activation 

(Sherwood, 2008).   

The neurotransmitter released from the sympathetic preganglionic fibres is 

acetylcholine (Ach), hence all sympathetic pre-ganglionic fibres are 

cholinergic, acting on nicotinic receptors on the post-ganglionic neurons. 
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Postganglionic cells release norepinephrine and hence are called adrenergic 

fibres. Adrenergic receptors are heterogeneous (α1, α2, β1, β2) depending on 

anatomical location, showing different sensitivities to allow specific 

physiological responses during sympathetic activation. As such, the release 

of norepinephrine during the fight-or-flight condition binds to β1/β2-

adrenoreceptors in the heart to induce myocardial contraction and increase in 

heart rate (McCorry, 2007) . The α1-adrenoreceptors are mainly involved in 

smooth muscle contraction which includes vasoconstriction of blood vessels 

during heightened sympathetic nerve activity. Conversely, the α2-

adrenoreceptor activation causes negative feedback on the presynaptic 

norepinephrine release in the CNS. Unlike other postganglionic sympathetic 

neurons mentioned above, Ach is released from the postganglionic 

sympathetic fibres into sweat glands and binds onto muscarinic receptors. 

This promotes sweating, in anticipation of the heat production due to extreme 

physical exertions (Sherwood, 2008). 
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Figure 1.1 Central efferent distribution from the autonomic nervous      

system 

The sympathetic efferent projection (red) originates from the intermediolateral 

cell column and targets various vital organs. The complementary actions from 

the parasympathetic nerve originates from the cranial structures (blue). 

Majority of the vital organs received dual innervations from the autonomic sub-

division. III-oculomotor nerve, VII-facial nerve, IX-glossopharyngeal nerve, X-

vagus nerve, A.M.-adrenal medulla, gg-ganglion, pulm-pulmonary, SCG-

superior cervical ganglion, Sph-sphenopalatine, Smb-submandibular. Image 

source: Espinosa-Medina et al. (2016). 
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1.1.2 The parasympathetic nervous system 

 

The efferent parasympathetic ANS has a cranial outflow. The cranial 

parasympathetic nerves arise from specific nuclei in the brainstem and 

synapse at one of the parasympathetic ganglia near to, or within, end organs. 

The cranial nerves (CN) that arise from parasympathetic nuclei in the 

brainstem include the CN III – oculomotor nerve, which innervates ciliary and 

pupillary constrictor smooth muscles, CN VII – facial nerve, innervating 

lacrimal, nasal, sublingual and mandibular gland, CN IX – glossopharyngeal 

nerve to the zygomatic and parotid glands. The CN X – vagus nerve which 

has extensive innervation in the body regarded as the main parasympathetic 

transmission medium into the cardiorespiratory system, which will be covered 

in more detail later in Section 1.2. Both the preganglionic and postganglionic 

fibres in parasympathetic pathways are cholinergic, acting on nicotinic and 

muscarinic receptors respectively. The activation of parasympathetic nervous 

system dominates during quiet, relaxed and non- threatening situations. This 

is normally referred as a “rest and digest” state where the body can be 

concerned with  general housekeeping activities.  

 

1.1.3 Reflex control of cardiovascular autonomic functions  

 

The body’s blood pressure (BP) fluctuates in everyday life, triggered by 

various factors such as  exercise (Kelley & Kelley, 2000), drugs (Law et al., 

2009), postural changes (Borst et al., 1984) and even time of day (Pickering 

et al., 1982). The control of BP  is through a negative feedback mechanism 

that influences the heart and blood vessels to adjust cardiac output and total 

peripheral resistance in order to keep BP with certain limits (Wehrwein & 

Joyner, 2013). This rapid autonomic response is known as the baroreceptor 

reflex. The baroreceptors lie strategically in the carotid sinus to provide critical 

information about arterial blood pressure in the vessels leading to the brain, 

and also the aortic arch to monitor the pressure in the major arterial trunk 
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before branching off to the rest of the body. The baroreceptors continuously 

fire action potentials to provide constant information of the ongoing pressure 

within the arteries. Accumulation of pressure within the blood vessels above 

the normal level stretches the mechanoreceptors, increasing action potential 

firing to propagate the signals to the autonomic integration circuits in the 

brainstem (Andresen & Kunze, 1994). The resulting efferent signals decrease 

heart rate, decrease stroke volume, cause arteriolar and venous vasodilation, 

causing a decrease in cardiac output and total peripheral resistance. 

Ultimately the rise in blood pressure will be restored back to normal. In 

contrast, the falls of BP below normal causes a decrease in the baro-

mechanoreceptor signals into the brainstem, leading to an increase in heart 

rate and stroke volume coupled with vasoconstriction of the arteriolar and 

venous vasculature. As a result, both cardiac output and total peripheral 

resistance elevates blood pressure back to normal.     

Another negative feedback mechanism that is important in maintaining the 

physiological homeostasis of the body is the chemoreflex. In this homeostatic 

control mechanism, the changes in O2/CO2 content in the body are initiated by 

sensors located either centrally and/or peripherally. The central 

chemoreceptors are groups of cells sensitive to the changes of pH that located 

on the ventrolateral medullary surface. These cells also referred to as the 

retrotrapezoid nucleus, sensitive to pH changes that originated from increased 

carbon dioxide (Guyenet & Bayliss, 2015). The peripheral chemoreceptors 

detect arterial PO2 within carotid (Prabhakar & Semenza, 2015) and aortic 

(Brophy et al., 1999; Piskuric & Nurse, 2013) bodies. Activation of both central 

and peripheral chemoreceptors causes elevation in respiration, where the 

excess CO2 will be exhaled. 
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1.1.4 Fundamentals of central circuitry underlying cardio-

autonomic reflexes 

 

Cardiovascular afferent signals (e.g.: baro/chemoreceptors) are integrated in 

the CNS primarily in the nucleus tractus solitarius (NTS), an aggregate of 

neuronal cell bodies in the dorsomedial medulla oblongata. The neural 

pathways underlying the processing of such signals to alter efferent outputs 

have been determined to some extent (Guyenet, 2006; Wehrwein & Joyner, 

2013). In brief, transganglionic neuronal tracing from aortic and carotid sinus 

nerves that carry signals from major baroreceptor sites has revealed major 

labelled afferent projections into the ipsilateral interstitial nucleus and 

dorsolateral aspect of the  of the NTS (Ciriello et al., 1981; Ciriello, 1983).  

Striking differences between projections of the baroreceptor and 

chemoreceptor fibres were demonstrated with the antidromic mapping 

technique (opposite axonal impulse) in anaesthetized cats (Donoghue et al., 

1984). Using this technique, barosensitive and chemosensitive neurons in the 

petrosal ganglia were identified during different physiological interventions 

(e.g.: baroreflex activation by controlled haemorrhage and re-infusion of 

blood; chemoreflex activation by changing the inspired O2/CO2 content). 

Whilst all baroreceptor afferents showed dense projections to the lateral 

aspects of the NTS, the afferents from chemoreceptors consistently projected 

to the medial regions of the NTS. Cardiovascular signals from the 

baroreceptors and chemoreceptors into the specified NTS regions are 

propagated through myelinated and non-myelinated axons (determined via 

differences in conduction velocity) (Donoghue et al., 1984). Nevertheless, 

lesioning of the NTS in various animal models results in acute and extreme 

blood pressure and respiratory lability, indicating a major role of NTS in 

autonomic modulation of baro and chemo reflexes (Nathan & Reis, 1977; 

Laubie & Schmitt, 1979; Sato et al., 1999).  

Autonomic responses from peripheral chemoreceptor and baroreceptor 

activation are dependent on convergence of inputs from the NTS into 

sympathetic related circuitry in the ventrolateral medulla structure (Guyenet, 
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2006). Elevated blood pressure activates the baroreflex, the increase of firing 

in the NTS transmits glutamate modulated signals to the caudal ventrolateral 

medulla (CVLM). This was evident in anaesthetized rabbits, as bilateral 

glutamate injection into the CVLM inhibited the renal sympathetic discharge 

associated with decreases in arterial pressure (Masuda et al., 1991). Acute 

stimulation of rabbit CVLM neurons silences presympathetic rostral 

ventrolateral medulla (RVLM) firing to reduce renal sympathetic tone and 

arterial pressure (Terui et al., 1990). In contrast, inhibition of glutamatergic 

inputs into the CVLM of anaesthetized rats with kynurenic acid increases 

RVLM neuronal activity, heart rate and arterial pressure (Agarwal et al., 1990).  

The CVLM contains GABAergic neurons which project to the pressor RVLM, 

resulting in suppression of sympathetic preganglionic neuron firing in the 

intermediolateral nucleus (IML). This results in reduction of the tonic activity 

of the sympathetic nerves (Guyenet, 2006).  

It has been postulated that carotid chemoreceptor inputs in the NTS arborize 

in the RVLM. Single unit recording of anaesthetized rats revealed presence of 

chemosensitive neurons in the NTS that were tonically activated by peripheral 

chemoreceptor stimulation and did not fire in synchrony with the phrenic nerve 

discharge (Koshiya & Guyenet, 1996). Antidromic stimulation of the RVLM 

resulted in activation of a population of chemosensitive neurons in the NTS, 

suggesting neuronal connection between these two regions. Indeed, a  

mapping study in awake rabbits exposed to hypoxia for a period of 60 minutes , 

increased cFos expression (indirect measurement for neuronal activity) 

largely in the ventrolateral medulla as well as the NTS (Hirooka et al., 1997). 

The chemoreflex activated neurons also showed immunoreactivity towards 

tyrosine hydroxylase, a neuronal marker of pre-sympathetic neurons. In 

addition,, electrophysiological recording in the rat brainstem spinal-cord 

preparation showed sympathetic preganglionic neurons received 

sympathoexcitatory drive from the RVLM (Deuchars et al., 1995a). Taken 

together, activation of the carotid chemoreceptors during hypoxia results in 

increase of the central sympathetic outflow that is coupled with breathing rate.  



 

10 

 

The central circuitry of vagal activity is also coordinated in cardiovascular 

autonomic reflexes. Injection of retrograde tracer into the myocardium in the 

region of the sinoatrial node of rats labelled neurons predominantly in the 

ventral, external formation of the nucleus ambiguus (NA), the lateral dorsal 

vagal nucleus (DVN) and an area between the two that is known as the 

intermediate zone (Izzo et al., 1993). These projections have been confirmed 

by the converse experiments of injection of anterograde neuronal tracer into 

the DVN (Cheng et al., 1999) or NA (Cheng & Powley, 2000) with visualisation 

of fibres in the myocardium, sinoatrial and atrioventricular plexi. Investigation 

on firing pattern of these vagal preganglionic motoneurons activation in cats, 

revealed 2 distinct populations of motoneurons that are either cardioinhibitory 

or bronchoconstrictor (McAllen & Spyer, 1978). The cardioinhibitory 

motoneurons showed a parallel discharge with the cardiac rhythm and caused 

slowing of heart rate when activated. In contrast, the bronchoconstrictor 

motoneurons were spontaneously active and had an inspiratory-firing pattern. 

The bronchoconstrictor motoneurons discharges were independent of cardiac 

rhythm and did not inhibit the heartbeat (McAllen & Spyer, 1978).   

The summary of cardio-autonomic reflexes neural pathway is shown in Figure 

1.2 below.
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Figure 1.2 The summary of cardiac autonomic regulation involved in 

baroreflex and potentially in chemoreflex 

Incoming baroreceptor and chemoreceptor afferents from carotid bodies 

terminate in the autonomic relay centre in the NTS. Autonomic signals from 

the NTS either projects to the cardiac vagal preganglionic neurons in the NA, 

or GABA-containing neurons in the CVLM. The latter further send inhibitory 

signals to the pacemaker neuron in the RVLM which may project directly to 

the sympathetic preganglionic neurons in the IML. NTS – nucleus tractus 

solitarius, NA – nucleus ambiguus, CVLM - caudal ventral lateral medulla, 

RVLM – rostro ventral lateral medulla, Image acquired from Spyer (1994).
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1.2 The vagus nerve 

 

Vagus in Latin can be translated to English as wandering; hence the vagus 

nerve is appropriately named due to its widespread projections throughout the 

body. The vagus nerve originates as the 10th cranial nerve, leaves the 

medulla as a series of rootlets in the groove between the olive and the inferior 

cerebellar peduncle, crosses through the posterior cranial fossa and exits the 

cranium through the jugular foramen (Figure 1.3). Upon its exit from the brain, 

the upper and lower vagal ganglionic swellings can be identified. The upper 

swelling is known as the superior/jugular ganglion, whereas the distal swelling 

is commonly identified as the inferior/nodose ganglion. The accessory nerve 

essentially join with the vagal ganglia and extend to most organs in the neck, 

thorax and abdomen. Later, the vagus nerve travels vertically in the neck 

within the carotid sheath between the internal carotid artery and the internal 

jugular vein. Histological silver staining of the vagus from adult cats revealed 

that it had a composition of 20% of myelinated efferent fibres (identified with 

osmic acid preparation) and 80% unmyelinated afferent fibres (the difference 

between the total and myelinated fibres) (Foley & DuBois, 1937). This 

suggests the vagus also has a major role in relaying sensory information from 

visceral organs to the CNS.  

The vagal afferents can be classified into three different categories depending 

on their neuroanatomical functions; general visceral afferent (GVA), special 

visceral afferent (SVA) and the general somatic afferent (GSA). The GVA 

plays a vital role in conducting sensory impulses (e.g.: referred pain) from 

thoracic and internal organs such as the larynx, trachea, lungs, heart and 

gastrointestinal tract. This type of afferent also may carry baroreceptor and 

chemoreceptor information from the aortic arch into the autonomic relay 

centre in the brainstem (Berthoud & Neuhuber, 2000). The SVA fibres have a 

specific function carrying taste information from taste buds on the epiglottis, 

larynx and pharynx. The cell bodies of visceral afferent fibres (GVA and SVA) 

reside within the nodose ganglion of the vagus nerve and are involved in the 
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modulation of respiration, cardiovascular system, swallowing and digestion 

(Ruffoli et al., 2011). The vagus nerve GSA relays sensory impulses from the 

lower pharynx, larynx, trachea, oesophagus, and posterior dura mater. The 

GSA also carries somatic sensory information of pain, touch and temperature 

rises from select regions of the surface of the body, including the external ear. 

Intriguingly, bringing sensation from the external ear results in various 

somatovisceral reflexes (will be discussed further in Subsection 1.3.2) 

highlighting the complexity of the vagus nerve neuroanatomy and prompting 

this present investigation.  

Although a smaller proportion of the vagus, the functions of the vagal efferent 

component is as equally important as the afferent. The vagal efferent fibres 

leave the cranial structure and provide vagal input into effector organs in the 

form of General Visceral Efferent (GVE) or Special Visceral Efferent (SVE). 

The GVE has preganglionic parasympathetic fibres projecting into smooth 

muscle in the thoracic and abdominal cavities, cardiac muscle and glands . 

This type of efferent neuron mainly originates from the dorsal vagal nucleus 

(DVN), as well as the nucleus ambiguus (NA) (Izzo et al., 1993). The SVE 

neurons also originates from the NA and supplies vagal innervation into the 

striated muscle of the palate, larynx, pharynx and also upper oesophagus 

(Bieger & Hopkins, 1987; Kitamura et al., 1991). 
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Figure 1.3 Distribution of the vagus nerve into visceral organs 

The vagus nerve acts as a main parasympathetic innervation of the body with 

the preganglionic neurons located in the DVN and also the NA. The vagus 

leaves the brainstem at the 10th cranial nerve and supplies the efferent and 

afferent parasympathetic innervation of various organs throughout the body. 

A sensory branch arises from the superior ganglia to the external auricle, thus 

named the Auricular Branch of the Vagus Nerve (ABVN). The vagus nerve 

distributions are bilateral and have been omitted for clarity. NTS – nucleus 

tractus solitaries; DVN – dorsal vagal nucleus; SpVN – spinal trigeminal 

nucleus; NA – nucleus ambiguus. Image source: Clancy et al. (2013).
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1.2.1 History of Vagal Nerve Stimulation  

 

Vagus nerve stimulation (VNS) has become a target for therapy for many 

potential disorders, including epilepsy, heart failure, tinnitus (Clancy et al., 

2013). Of such disorders, VNS is most commonly applied as a treatment for 

epilepsy.  Epilepsy is a common disorder that affects patients at all ages and 

ethnicity, with an estimated 50 million people in all nationalities (WHO, 2017). 

Epilepsy is a neurological disorder where large numbers of brain cells fire 

signals at the same time, leading to episodic seizures. This  phenomenon can 

re-occur overtime without any known causes. In the early 1880s, the seizure 

attacks were believed to be a result from cerebral hyperaemia. Thus the 

medical strategies at that time involved carotid artery compression or ligation 

to reduce the recurrent seizures. A New York physician James Leonard 

Corning developed a two-pronged, fork like instrument to temporarily 

compress blood flow of the carotid artery, which successfully reduced the 

duration of the epilepsy events (Figure 1.4). Several years later, Corning 

combined the carotid artery compressor with a cervical vagal nerve stimulator 

to further decrease the cerebral blood flow. The underlying concept was that 

the vagal efferent stimulation would slow down heart rate and reduce cardiac 

output, so reducing the proposed hyperaemia causing epilepsy. Despite 

various claims on the success of reducing seizure events, vagus stimulation 

caused unintended side effects such as dizziness, bradycardia, general 

weakness and occasionally syncope. With a lack of clear theoretical 

frameworks and inadvertent complications, Corning’s innovation was then left 

overlooked until a century later (Lanska, 2002). 

The use of an implantable VNS device was approved by the USA Federal 

Drug Administration (FDA) as an adjunct treatment for epilepsy in 1997. In the 

UK, clinical guidelines the VNS in epilepsy is ‘for use as an adjunctive therapy 

in reducing the frequency of seizures in adults (and children) who are 

refractory to antiepileptic medication but who are not suitable for respective 

surgery’. It is also specifically indicated that the VNS therapy is for patients in 

whom focal or generalised seizures predominate (NICE, 2004).   
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The programmable VNS pulse generator is implanted under a subcutaneous 

pocket in the chest just below the clavicle; the electrical stimuli propagate 

through a lead connected to the electrode. Unlike the traditional conceptual 

framework of VNS to reduce the global blood flow through vagal efferent fibres 

to the heart as proposed by Corning, the modern VNS device stimulates vagal 

afferent fibres to the brain while circumventing the vital vagal-cardiac 

alterations.
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Figure 1.4 Vagus nerve stimulating (VNS) devices 

A) The initial vagus nerve ‘electrocompressor’ device was developed by (B) 

J.L. Corning (image courtesy of the National Library of Medicine) combining 

the simultaneous bilateral compression of the carotid arteries and 

transcutaneous cervical vagus nerve stimulation. Corning’s 

‘electrocompressor’ components device comprises of insulated sponge 

electrodes (a and a’), connecting wire (b), adjusting wheel  (c) of a simple 

screw (d) for flexible armatures width (e). C) A modern VNS stimulator is 

implanted under the skin on the chest with a lead wire connects to the left 

cervical vagus nerve. Source of image: A) Corning (1884) C) 

www.epilepsysociety.uk.
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The heterogeneity of vagal afferent activation thresholds determines the 

specificity of VNS activation. Vagal afferents contain three different fibres, 

myelinated A and B and also unmyelinated C. These 3 fibres can easily be 

identified in mammals (cats and dogs) since the A fibres are the biggest (5 – 

20 μm diameter), followed by B fibres (<5 µm diameter). The smallest and 

unmyelinated are regarded as C fibres (Blair & Erlanger, 1933). In cats, 

comparing these elements using light and electron microscopy revealed more 

non-myelinated than myelinated nerves, with the ratio of myelinated to non-

myelinated total averaging approximately 1:4 (Mei et al., 1980). Each fibre 

type also possesses a different activation threshold, inversely proportional to 

the square of fibre diameter. As such, the A fibres have the lowest threshold 

activation activated at 0.02 – 0.2 mA, the B fibres at 0.4 – 0.6 mA, and C fibres 

with the highest activation threshold at more than 2 mA (Blair & Erlanger, 

1933). Selective activation of vagal C fibres (from maximal stimulation)  at 4 

Hz, 0.2 – 0.5 mA/mm2 reduces incidence of seizures that were induced by 

chemical or electrical stimuli in rats, suggesting the antiepileptic potency is 

mainly due to stimulation of vagal C fibres (Woodbury & Woodbury, 1990). 

Woodbury’s finding was rebutted in later years as following selective 

destruction of vagal C fibres with systemic capsaicin injection, electrical 

stimulation of the vagus still suppressed induced seizures in rats (Krahl et al., 

2001). Furthermore, clinical evidence showed the stimulation parameter of 

VNS is clinically effective below the specific C-fibre threshold (DeGiorgio et 

al., 2000; Koo et al., 2001). Also, continuous stimulation of the peroneal/sciatic 

nerve of cats at high parameters (>50 Hz, 2.5 mA) resulted in irreversible 

axonal injury (Agnew & McCreery, 1990). On these bases, the stimulation 

parameters for clinical use of VNS approved by the FDA are below activation 

threshold for vagal C fibres ranging between 20 and 30 Hz (DeGiorgio et al., 

2000).  

Despite success of the VNS as a refractory seizures therapy, the underlying 

mechanism of the VNS antiepileptic effect is still not fully understood. Since 

the NTS is the major CNS region receiving vagal afferent signals, it has been 

suggested to play a major role in altering the uncontrolled cortical excitability 
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seen in epileptic seizures (Krahl & Clark, 2012). Indeed, the activated 

myelinated vagal afferent fibres primarily originated from neurons in the 

nodose ganglion and send projections into the nucleus of the solitary tract 

(Kalia & Sullivan, 1982; Nomura & Mizuno, 1984). Changing the synaptic 

transmission profile of the NTS proved to be beneficial in regulating induced 

seizures in rats since seizure responses were attenuated with muscimol 

(GABAergic agonist injection) or kynurenate (glutamate receptor antagonist) 

injections into the medial caudal subnuclei of the NTS, but not adjacent sub-

nuclei. (Walker et al., 1999). This suggests, contrary to the obvious 

explanation, that VNS could work via inhibition of the NTS output - such 

inhibition has been suggested to be the outcome of high frequency VNS 

(Walker et al., 1999).  

The effects of long-term VNS treatment on GABA receptor density was then 

studied using single photon emission computed tomography (SPECT) to 

identify binding of the iodinated benzodiazepine receptor inverse agonist 

iomazenil to GABA receptors in patients with drug resistant partial epilepsy. It 

was found after 1 year of VNS treatment that GABA receptor binding was 

increased in cortical regions where the GABA cortical inhibition was absent in 

the control group (Marrosu et al., 2003). As a relay centre, activation of the 

NTS from VNS therapy may send signals to the hypothalamus, the amygdala 

nucleus, the dorsal raphe, the NA, the parabrachial nucleus, the thalamus 

which further projects to the insular cortex (Rutecki, 1990). The wide neuronal 

projection from the NTS may provide an antiepileptic platform through 

induction of cortical changes as seen in the electroencephalographic (EEG) 

activity and sleep states. Normal EEG recording is indicated by a clear visible 

alpha (7.5-13 Hz) and beta rhythm (>14 Hz), while abrupt increase in various 

band peak observed in the epileptic EEG periodogram (Dash, 2014). In an 

effort to understand the influence of NTS activation from the VNS, direct 

electrical stimuli applied to the NTS produced a long lasting increase in theta 

and beta bands (12 hours) of the EEG in unrestricted cats. This EEG band 

synchronization was coupled  to increases in the total time of wakefulness (up 

to 6 hours) and also rapid eye movement (REM) sleep (Martínez-Vargas et 
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al., 2016). However, the synchronization or desynchronization of the EEG 

activity may be dependent on the stimulus parameters applied. Low frequency 

electrical stimulation (1-16Hz) in the NTS produced EEG synchronization in 

cats, while these effects were reversed with higher stimulation frequency 

(>30Hz) (Rutecki, 1990).    

Autonomic dysregulation has been linked with epilepsy during ictal and 

interictal periods. Ictal refers to a physiological condition during seizure, while 

interictal is a state between the seizure attacks. In most epilepsy cases, the 

seizure attack coincides with an increase in heart rate >120 bpm, with the 

frequency potentially reaching 201 bpm (Leutmezer et al., 2003). Tachycardia 

events precede the onset of EEG abnormality in epilepsy by several seconds, 

highlighting manifestation of the ANS sympathoexcitation rather than 

secondary effects of motor control dysregulation (Baumgartner et al., 2001; 

Leutmezer et al., 2003). Examining the sympathetic responses in epileptic 

patients with isometric hand grip test and vagal tone with Valsalva manoeuvre 

revealed a diminished cardiovascular responses (HR and BP responses) , 

reflecting a blunted ANS associated with epilepsy during the interictal period 

(Isojärvi et al., 1998). Similar interictal autonomic evaluation in groups of 

subjects with different types of epilepsy (partial vs general) indicated a 

prominent sympathetic dysfunction in partial epilepsy while parasympathetic 

dysfunction is recorded in patients with the general epilepsy (Berilgen et al., 

2004). The seizure attack that was not accompanied by abnormal electrical 

activity in the brain is known as non-epileptic psychogenic seizures (NEPS). 

Unlike epilepsy, ANS evaluation during interictal and postictal in NEPS 

displayed normal ANS functions highlighting the ANS disability was 

associated with epilepsy central pathogenesis not seizure (Müngen et al., 

2010).    

While the link between ANS dysfunction and epilepsy is beginning to be 

appreciated, the effect of VNS on autonomic function in epilepsy still remains 

controversial. A periodic beat to beat variation in the amplitude of the ST 

segments in an electrocardiogram (ECG) is known as a T wave alternans 

(TWA), provides a non-invasive predicting marker for cardiac arrest. Six 
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months of VNS therapy in the drug-resistant focal epilepsy had significantly 

reduced the number of TWA, where the reduction was correlated with the VNS 

intensity. Also, the HRV analysis showed a reduction in the low-to high-

frequency showing the parasympathetic predominance (Schomer et al., 

2014). Similarly, a HRV analysis in epilepsy patients who had the VNS 

treatment for 4.5 month showed increases in the HF power, which is 

associated with increase in vagal tone. There was also a slight increase in the 

baroreflex index during the VNS indicating the cardiovascular stability where 

adequate sympathetic and parasympathetic supply to adjust the 

cardiovascular in response to the BP (Stemper et al., 2008). These HRV 

observations in epilepsy patients however have been reported to be 

inconsistent either in short term VNS therapy (<3 months) (Barone et al., 

2008) or long term therapy (over than a year) (Ronkainen et al., 2006).  

 

1.2.2 VNS and Heart Failure 

 

Despite conflicting evidence from VNS on the cardiovascular protection 

among the epilepsy patients, the therapeutic potential of VNS among the heart 

failure (HF) patients is being tested. Stimulation at the right cervical vagus in 

healed myocardial infarction (MI) dogs successfully reduced the incidence of 

atrial fibrillation from 100% to 10% of cases. When the same VNS group 

underwent exercise without VNS stimulation, the incidence of atrial fibrillation 

increased to 89% (Vanoli et al., 1991), suggesting that VNS is protective on 

the heart. In a later study, 6 weeks of VNS on HF rats showed improvement 

in survival rate (86% versus 50%), lower left ventricular end diastolic pressure 

(17.1±5.9 versus 23.5±4.2 mm Hg, P<0.05) and lower normalized 

biventricular weight (2.75±0.25 versus 3.14±0.22 g/kg, P<0.01) compared to 

the control. This suggests VNS treatment improved haemodynamic properties 

in the failing heart of the rat (Li et al., 2004). This finding is in agreement with 

another study on burn induced HF rats that demonstrated significantly 
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improved end diastolic pressure in VNS treated animals compared to control 

groups (Niederbichler et al., 2010). 

Activation of the vagus nerve has also been documented to provide cardiac 

protection against myocardium remodelling in HF. Signal decay rate of nitroxyl 

probe in HF mice revealed elevated redox status compared to controls. The 

application of VNS on HF mice normalized the redox status (0.13 ± 0.01 min-

1) indicating the reversal effect of VNS on oxidative stress in cardiomyocytes 

(Tsutsumi et al., 2007). A study on microembolized induced chronic HF dogs 

, found that 6 months of VNS caused a significant reduction in proinflammatory 

factors such as CRP protein, TNF and IL6. In addition, cardiac pumping 

efficiency significantly improved as there was a reduction in end systolic 

volume compared to an increase in controls  (Hamann et al., 2013). 

Clinical trials of the VNS reported contradictory cardio autonomic endpoints. 

A 6 month pilot study of VNS application (CardioFit™) on ventricular 

dysfunction patients (n=8) found significant reductions in cardiac end systolic 

volume as well as New York Heart Association (NYHA) class function 

(Schwartz et al., 2008). The continuation of this study was performed by De 

Ferrari et al into a multicentre trial, two staged study (n=32) where a similar 

series of data collection completed with an optional 1 year follow-up. VNS 

successfully improved patients NYHA class quality of life, exercise ability, left 

ventricular systolic volume as well as ejection fraction. Intriguingly, these 

effects were maintained at 1 year follow-up (De Ferrari et al., 2011). The 

Autonomic Neural regulation Therapy to Enhance Myocardial Function in 

Heart Failure (ANTHEM-HF) study assessed the effects of therapy on LV 

structure and function in patients with chronic stable HF. Stimulating either left 

or right side of the vagus nerve in HF patients significantly improved the 

cardiac contractility function as measured from low ventricular ejection fraction 

(LVEF), HRV, and also plasma HF marker (Pro-BNP) (Premchand et al., 

2016). A randomized sham control trial in The Neural Cardiac Therapy for 

Heart Failure (NECTAR-HF) however failed to demonstrate any significant 

effect on the aforementioned endpoint measures after 6 months of right vagal 

stimulation (Zannad et al., 2015). A multinational randomized trial of The 
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Increase of Vagal Tone in Heart Failure (INOVATE-HF) showed the risk of 

death or events among HF patients was not improved in VNS treated group 

(Gold et al., 2016). Despite conflicting cardiac functions as primary endpoints 

of VNS, these trials mutually agreed on an improved overall quality of patient’s 

life after long term therapy.                   

Whilst VNS may be effective at improving quality of life in HF patients, there 

are several implications involving surgical implantation of the device. This 

includes technical difficulties such as electrode malfunction, cardiac 

arrhythmia during test stimulation as well as post-surgery wound infection 

(Spuck et al., 2010). It was also reported that patients experienced side effects 

such as hoarseness, dysphagia, cough and also pain which potentially due to 

undifferentiated glossopharyngeal stimulation (Smyth et al., 2003). Finding 

alternative to VNS with a less invasive method therefore would provide a 

valuable therapeutic option to treatment of HF and indeed epilepsy. 

 

1.2.3 Various medical applications of VNS 

 

In addition to epilepsy, there have been many interesting studies on the 

application of VNS in treating various medical conditions. These conditions 

can either be associated with autonomic or non-autonomic imbalance. Since 

our main interest in this project was autonomic function, the other applications 

of VNS are summarized in Table 1.1.  
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Table 1.1 Examples of other medical applications tested for VNS 

 

 Approval from the US 
Food Drug 

Administration (FDA) 

Clinical evidence 

Chronic medical 
conditions 

Status Year of 
approval 

Author Aims Results 

Depression Yes 2005 Christmas and 
Matthews 

(2015) 

Investigate response rate 
in chronic depression 

patients after 12 months of 
VNS therapy. 

Reduction in the depression 
symptom score 

Crohn’s Disease No No Bonaz et al. 
(2016) 

Evaluate the effect of 6 
month VNS therapy by 

looking at clinical, 
biological and also vagal 

tone. 

The long-term effect of VNS on 
vagal tone depends on the basal 

level. Biological parameters relating 
to Crohn’s disease improved after 

VNS.  
Tinnitus No No De Ridder et al. 

(2014) 
Evaluate the effect of VNS 

on tinnitus patients 
The medication-free patients 

reported a positive improvement in 
quantified tinnitus. 

Obesity No No Bodenlos et al. 
(2014) 

Examine calories 
consumption when VNS 

device is on or off in lean 
and obese subjects 

The VNS significantly reduced 
calories intake where this is 
dependent on subjects BMI 
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Migraine No No Pintea et al. 
(2016) 

Assessed the long term 
effect of VNS on headache 

severity and associated 
functional comorbidities.   

The VNS treated group a lower 
headache related pain severity 

score and anxiety scale. The score 
for migraine wasn’t significantly 

affected by the VNS.  
Alzheimer’s No No Merrill et al. 

(2006) 
Long-term effect (6 

months) of VNS on patients 
with Alzheimer’s disease 

was studied 

Majority patients (70.6%) improved 
or did not decline the cognitive 

functions from baseline. Significant 
decrease in CSF biomarkers for 

Alzheimer’s disease.  
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1.3 The auricular branch of the vagus nerve   

 

1.3.1 Anatomical structure of the auricle  

 

The auricle is a visible and paired external ear structure that resides on the 

lateral aspect of the head. Generally, the auricle structure of rats is similar to 

that in humans but it is mostly referred to as pinnae. The concave shaped 

arrangement of the auricle reflects its main function to capture sounds from 

various directions and amplify via resonance to the external acoustic 

meatus/ear canal where the sound is transmitted to the tympanic membrane. 

The human auricle is largely made of a flexible elastic cartilaginous framework 

to support the external ear shape while allowing its flexibility. The outer 

curvature of the ear is referred to as the helix and the presence of another 

curved elevation parallel to the helix is called anti-helix. Moving inwards, in 

middle of the auricle an upper region is referred as cymba concha and the 

lower region is the cavity conchae. Just before entrance of the external 

acoustic meatus, the elevation of cartilage tissue is identified as tragus. Unlike 

any other auricle structures, the absence of cartilage in the bottom ear 

structure (lobule) results in less elasticity in this region (Figure 1.5). Similar 

auricular anatomy is denoted in rats.
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Figure 1.5 Anatomical representation of human and rat external ear 

Similar external ear structure denoted in A) humans and B) rats. H- helix, Anti-

H- anti-helix, C- concha, CyC- Cymba concha, T- tragus, L- ear lobe. 

 

1.3.2 Ear somatovisceral reflexes  

 

In addition to acting as a sound amplifier, the auricle has been reported to 

produce various somatovisceral reflexes. The gastro-auricular phenomenon 

was described as intense itching comparable to a scratch with a toothpick or 

a hairpin in the left external auditory meatus that corresponded with severe 

heartburn. This medical observation was commonly reported in gastro-

surgical ward where the physicians were left puzzled since medical 

examinations found no dermatological or neurological abnormalities  

(Malherbe, 1958; Engel, 1979).  

In lung tuberculosis patients, hypersensitivity of the auricle region has been 

reported on the side with more advanced tubercular progression. This clinical 

observation was then referred to as the pulmonary-auriculo phenomenon 

(Engel, 1979). Activation of the pulmonary-auriculo pathway potentially 
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explains the radiating unilateral facial pain experienced among patients with 

lung cancer that can be initially felt deep within the ear (Bindoff & Heseltine, 

1988; Abraham et al., 2003; Palmieri, 2006).  

Manual stimulation of the external auditory meatus, for example through 

cleaning of the ears, elicits an ear cough reflex, in 2.3% to 4.2% of the general 

population (Gupta et al., 1986; Tekdemir et al., 1998). Vagal sensory 

hyperactivity in the ear-cough reflex has been linked to refractory chronic 

cough since patients experienced neuropathic features such as throat 

irritation and cough upon exposure to non-tussive triggers such as cold air.  

The auriculogenital reflex has also been described previously in cats where 

introducing manual stimulation into the external auditory canal of the ear 

caused gross contraction of the musculature around the vaginal orifice. 

Electrical stimulation on the external ear of decerebrated cats with specific 

nerves transected (e.g. cervical, trigeminal, facial) preserved the 

auriculogenital responses. However, this reflex was absent when the vagus 

nerve (at jugular foramen) was cut (Bradford, 1938).  

A connection between the ear and the heart has been reported in a recurrent 

syncopal attack and bradycardia due to light stimulation of the external ear 

canal. Targeted baseline autonomic function test (e.g.: cold face test and 

HRV) confirmed hyperactivity of vagal response as the pathophysiological 

mechanism rather than autonomic neuropathy complication (Thakar et al., 

2008). The ear-cardiac modulation however was reported to be rare, 

potentially due to the variability in the nerve innervation of the external ear in 

humans. Extra precaution was advised in patients undergoing ear 

manipulation (e.g.: myringotomy and ear tube insertion) during surgery due to 

incidence of dysrhythmias (Moorthy et al., 1985). The cardiac-auriculo 

connectivity might be associated with referred facial pain which happens 

together with angina and myocardial infarction (Rothwell, 1993; Amirhaeri & 

Spencer, 2010). 
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1.3.3 Neuroanatomy of the auricular branch of vagus nerve 

(ABVN) and the vagus nerve 

 

The auricular branch of the vagus nerve is given off from the vagal trunk at 

the jugular ganglion. In rats, the ABVN nerve passes behind the external 

jugular vein, enters the mastoid canaliculus on the lateral wall of the jugular 

fossa, and runs towards the external acoustic meatus. Continuing on its lateral 

direction, it traverses the temporal bone and crosses the facial canal and 

receives communication from the facial nerve(Weijnen et al., 2000). The 

interconnection between the ABVN and facial nerve is however, reviewed to 

be inconsistent in humans (Mitchell, 1954). These interconnections may be 

more constant in rats as identified by retrograde tracer injections into the wall 

of the auditory canal and examination of the ganglia of the aforementioned 

nerves (Folan-Curran et al., 1994). The ABVN further traverses the 

tympanomastoid fissure and gives off two rami; one to the floor and another 

to the posterior wall of the external ear (Weijnen et al., 2000). The highest 

density of fibres of the ABVN in human external ear could be found 

surrounding the cymba conchae (Peuker & Filler, 2002). Details of the findings 

from humans ABVN innervation is included in Table 1.2 and Figure 1.6. The 

anatomical knowledge of the ABVN innervation of the rat ear however still 

needs to be examined.  
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Table 1.2 Nerve innervation pattern on lateral surface of human auricle 
as outlined by Peuker and Filler (2002) 

 

 ABVN GAN ATN 

Crus of helix 20%  80% 

Spine of helix  9% 91% 

Tail of helix  100%  

Scapha  100%  

Crura of antihelix 9% 91%  

Antihelix 73% 9% 18% 

Antitragus  100%  

Tragus 45% 46% 9% 

Cymba conchae 100%   

Cavity of conchae 45% 55%  

 

 

Figure 1.6 The nerve innervation pattern of the external auricle 

A) Lateral aspect of the humans’ ear has distribution of the ATN, ABVN and 

GAN where the main distribution is colour coded (extrapolated from Peuker 

and Filler (2002)). B) Similar auricular nerve distribution proposed from similar 

structures observed in rats. ATN- Auriculotemporal Nerve, ABVN – Auricular 

Branch of the Vagus Nerve, GAN- Great Auricular Nerve.
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1.3.4 Central projections from the auricle/pinna  

 

Although there have been several gross examinations of nerve innervation of 

the pinna in humans, the central projection studies utilizing transganglionic 

tracing techniques have necessarily been performed on animals.  

Central projections of the Great Auricular Nerve (GAN) in animals have been 

examined only in rabbit. The application of HRP on the GAN nerve revealed 

afferent cell bodies in the ipsilateral dorsal root ganglion (C2-C3) and the 

superior cervical ganglion. Nerve fibres were detected in the dorsal column of 

the upper cervical spinal cord and strongly stained in laminae I-V at the C2 

level. The afferent GAN projection also has intense labelling in the cranial 

nerve nuclei in the medulla, accounting for caudal subnuclei of the spinal 

trigeminal nerve, the solitary nucleus, and also medial and lateral cuneate 

nuclei (Liu & Hu, 1988). Unlike for GAN, studies on central termination of the 

Auriculotemporal Nerve (ATN) have been explored in rodents (Jacquin et al., 

1982; Takemura et al., 1987). Horseradish Peroxidase (HRP) labelled primary 

afferent fibres of the ATN were confined to the ipsilateral brainstem. The nerve 

terminals projected to the caudal medulla; specifically staining the dorsolateral 

border of the mandibular division of the trigeminal principal nucleus, cuneate 

nucleus and also paratrigeminal nucleus (Pa5). Travelling further caudally 

until the 3rd cervical level, a termination of the ATN was also found in the 

dorsolateral spinal dorsal horn complex at laminae I-V but more intensely in 

III-IV (Takemura et al., 1987).  

Understanding patterns of the main vagus nerve projections is important 

before studying its branch projections. Central projections of the sensory 

vagus nerve in rats have been shown by use of HRP histochemistry (Kalia & 

Sullivan, 1982). It was found that the vagus entered the medulla in fascicles 

on the lateral side, travelled dorsolaterally and projected to the tractus 

solitaries. Vagal projections could also be observed on the caudal aspect of 

the tractus solitarius in laminae V of the upper cervical cord (C1 and C2). The 

sensory fibres of the vagus terminated bilaterally in the nucleus tractus 
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solitarius (NTS); area postrema (AP); as well as dorsal motor nucleus of the 

vagus nerve (dmnX). The ipsilateral projection onto the NTS and dmnX was 

found to be heavier than that onto the contralateral side. The projection onto 

the AP however, was found to be equally distributed on both sides (Kalia & 

Sullivan, 1982). The central projection study of ABVN showed slight 

differences in the termination pattern than that of the main vagus nerve. HRP 

applied to the ABVN of cats showed cell bodies stained in the superior 

ganglion of the vagus nerve confirming its connection with the main trunk of 

the vagal nerve, but not on the nodose ganglion (Nomura & Mizuno, 1984). 

The sensory labelling could be seen on the solitary nucleus covering 

interstitial, dorsal, dorsolateral as well as commissural subnuclei. Other 

terminal labelling was detected on the ventral aspect of the principal sensory 

trigeminal nucleus, the ventrolateral of the cuneate nucleus as well as in the 

dorsal horn of  C1-C3 cervical spinal (laminae I-IV) (Nomura & Mizuno, 1984). 

Injection of 1% CTB into the junction of cavity of the auricular concha and 

postero-inferior wall of the external acoustic meatus (presumed to be ABVN 

innervated) of rats showed ipsilateral staining with the fibres terminating in the 

caudal part of the lateral NTS, dorsomedial edge of the spinal trigeminal 

nucleus, rostro-lateral cuneate nucleus, and also spinal dorsal horn of upper 

cervical (He et al., 2013). 

It is important to note that the afferent from the external ear exhibited some 

degree of overlap in each of the neurotracing studies performed previously 

Figure 1.7. For example all the auricular nerve tracing studies (GAN, ATN, 

and ABVN) ipsilaterally labelled laminae III and IV of the dorsal horn (Nomura 

& Mizuno, 1984; Takemura et al., 1987; Liu & Hu, 1988). Intriguingly, this 

wasn’t the case when the vagal tracing was performed directly from the vagal 

trunk. HRP injection into the rats’ vagus nodose ganglion resulted in afferent 

terminal labelling of the laminae V only in the C1 and C2 region (Kalia & 

Sullivan, 1982). Similarly, when the middle portion of cervical trunk of the 

vagus nerve in cats was injected with HRP, it labelled the nucleus ambiguus 

and labelling extended into the basolateral portions of the ventral horn (border 

of laminae V) of the C1 and C2 cord segments (Nomura & Mizuno, 1983). 
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Furthermore, both of the vagal tracing studies showed no afferent terminations 

within the trigeminal structures such as the paratrigeminal and also trigeminal 

nucleus (Kalia & Sullivan, 1982; Nomura & Mizuno, 1983). This raises caveats 

of the previous auricular nerve tracing studies (particularly the ABVN) since 

the neuronal tracers were injected subcutaneously, causing non-selective 

nerve detection (Chien et al., 1996; He et al., 2013). The comparison between 

respective auricular nerve studies and the cervical vagal studies are 

summarised in Table 1.3.     
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Figure 1.7 Summary of external auricle afferent projections to brainstem 

and upper cervical spinal cord 

A) In the brainstem, the GAN (green) projects into the Sp5, Cu and a little in 

the NTS. The ATN (red) terminates into the Sp5, Sp5c and Cu. The ABVN 

(blue) has projection into the NTS, Cu, and Sp5c. B) Projection of the GAN 

into upper cervical cord has wide coverage from laminae I to laminae V, and 

smaller coverage by the ATN concentrated in the laminae III-IV. The ABVN 

afferents terminates into the laminae I-IV. The level central nervous axis was 

omitted for clarity. GAN- Great Auricular Nerve, ATN- Auriculotemporal Nerve, 

ABVN- Auricular Branch of the Vagus Nerve, CC- Central Canal, DVN- Dorsal 

Vagal Nucleus, NTS- Nucleus Tractus Solitarius, Cu-cuneate nucleus, Pa5- 

Paratrigeminal Nucleus, Sp5- Trigeminal tract, Sp5c- Caudal Trigeminal 

Nucleus.        
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Table 1.3 Comparison between neuronal tracing studies of the auricular nerves and the cervical vagal trunk  

 

 NTS Vagal   trigeminal cervical 

 
Study 

 
Author 

Site of 
injection 

 
Tracer 

 
Species 

 
l 

 
dl 

 
comm 

 
m 

 
d 

 
i 

 
v 

 
DVN 

 
AP 

 
Cu 

 
Pa5 

 
SP5n 

 
SP5 

 
C1 

 
C2 

 
C3 

 
 

Non-
isolated 
ABVN 

 
Chien et 
al. (1996) 

 
Middle 

& Caudal 
auricular 

 
HRP 

 
Dogs 

+ 
 

   +     
 

+ 
 

+ 
 

+ 
 

+ 
 

+ 
 

+ 
 

+ 

He et al. 
(2013) 

Auricular 
conchae 

 
CTB 

 
Rats 

 
+ 

        
 

+ 
 

 
+ 

  
 

+ 
 

+ 

Isolated 
ABVN 

Nomura 
and 

Mizuno 
(1984) 

 
ABVN 

 
HRP 

 
Cats 

 
 

+ 
 

+ 
 

 
+ 

  
 

+ 
 

 
+ 

 
 

+ 
 

+ 
 

+ 
 

+ 
 

+ 

 
Vagal 
Nerve 

Kalia and 
Sullivan 
(1982) 

 
Cervical 
trunk 

 
HRP 

 
Rats 

 
+ 

 
+ 

 
+ 

 
+ 

 
+ 

 
+ 

 
+ 

 
+ 

 
+ 

    
 

+ 
 

+ 
 

(Nomura 
& Mizuno, 

1983) 

Cervical 
trunk 

HRP Cats 
 

+ 
 

+ 
 

+ 
 

+ 
 

+ 
 

+ 
 

+ 
 

+ 
     + +  
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l – lateral, dl – dorsolateral, comm – commissural,  m- medial,  d – dorsal, I – intermediate, v – ventral, SP5n – trigeminal nucleus, 

SP5 – trigeminal tract

Isolated 
GAN 

 
(Liu & Hu, 

1988) 

 
GAN 
root 

 
HRP 

 
Rabbit 

     
 

+ 
   

 
+ 

 
 

+ 
 

+ 

 
+ 
 

 
+ 

 
+ 

Isolated 
ATN 

(Takemura 
et al., 
1987) 

ATN 
branch 

HRP Rats          + + + + + + + 
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1.3.5 NTS as a mediator site for cardio-auriculo reflexes 

 

The NTS lies in the dorsomedial medulla oblongata and runs from the caudal 

end of the pyramidal decussation to the caudal end of the facial motor 

neurons. As noted earlier, the NTS receives numerous primary afferent inputs, 

processes this information and projects the output to several other brain 

regions to influence autonomic control. There are three major NTS 

subregions: rostral, medial and caudal NTS. The caudal NTS nuclei are part 

of the respiratory and swallowing generators while the rostral nucleus is 

involved in somatosensation and taste (Chen, 2006).  

ABVN stimulation in rats activates baroreceptor sensitive neurons in the NTS 

(Gao et al., 2011). The barosensitive neurons were identified by possession 

of a rhythmic discharge that fluctuated more than 15% in response to 

administration of the vasodilator sodium nitroprusside. The changes in 

neuronal firing were compared for ABVN stimulation at the auricular point 

Heart and a somatic acupuncture point of the lower leg near to the tibia. 

Activated NTS neurons were mostly detected in subnuclei located at the 

dorsolateral, medial and solitary tract of the intermediate and caudal NTS 

(Figure 1.8) (Gao et al., 2011). The dorsal and commissural subnuclei of the 

NTS of rats were reported to have vagal innervations originating from the 

carotid sinus where baroreceptors lie (Ciriello & Calaresu, 1981). Hence, it is 

evident that the central termination of the ABVN in NTS suggests its 

involvement in controlling the cardiorespiratory reflexes and this hypothesized 

pathway is known as the Auriculovagal Afferent Pathway (He et al., 2013).   
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Figure 1.8 The brainstem region with active barosensitive neurons 

Diagram illustrates the A) Posterior view of the brainstem showing three NTS regions; rostral, intermediate, and caudal as outlined 

by Loewy and Spyer (1990) from cat brainstem. The sub nuclei from B) intermediate and caudal NTS were illustrated with a coronal 

section of the brainstem. The circled grey are areas with active barosensitive neurons as identified by Gao et al. (2011). Abbreviations 

Com= commissural subnuclei, dl = dorsolateral subnucleus, m = medial subnuclei, v = ventral subnucleus.
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1.3.6 History of ABVN stimulation  

 

The idea for ABVN stimulation has been around for thousands of years in a 

form of acupuncture, which has even been suggested to have arisen during 

pre-historic period and have been inherited by various parts of the world today 

(Gori & Firenzuoli, 2007). During pre-historic periods, the rudimentary form of 

acupuncture revolved from sharp stones, bamboo, substituted by fish bones, 

bamboo clips and later various shapes of needles made of metal. The use of 

acupuncture as a way of healing in wounded primeval warriors is supported 

by scars on the skin of the mummified body of Similaun Iceman, Italy.  The 

auricular acupuncture had been reported in the healing practice of ancient 

Egypt, Greek and Chinese civilization. The women in ancient Egypt were 

documented to have their external ear prickled with a hot needle to induce 

contraception, while gold earrings worn by the Mediterranean sailors was 

meant to improve vision. The father of Greek medicine, Hippocrates, who was 

also a paragon in modern medicine, reported that the cutting veins behind the 

ear improved male sexual functions (Gori & Firenzuoli, 2007). In ancient 

Chinese medicine, auricular acupuncture was developed from the concept of 

life force energy (qi) that flowed through channels (Nozdrachev, 2002). In 

much later periods, the inclusion of this ancient healing practice into the 

modern western medicine was first documented, to the best of our knowledge, 

by a French neurologist and trained acupuncturist Dr Paul Nogier in 1950 

(Nogier, 2014). Dr Nogier realized a small burn scar on parts of his patient’s 

ear, arose from a sciatic pain treatment by a local lady. He tested and later 

improvised the treatment strategy with simple needle jabs on underlying 

cartilage of the pinna. He discovered that auricular acupuncture may result in 

radial pulse shift (slowing or acceleration of heart rate).  
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1.3.7 Current clinical studies/applications of the ABVN 

stimulation and its effects on autonomic control  

 

The auriculo-medicine theory developed by Dr Nogier was not scientifically 

recognized due to lack of structural evidence (Nogier, 2014). One pilot study 

specifically developed a method to register pulsatory surface changes using 

microscopy to quantify the Nogier pulse reflex. This method revealed the 

reflex-based changes on blood flow velocity but more evidence is required to 

provide conclusive perspective on auricular acupuncture medicine (Litscher 

et al., 2015).  

Studies on assessing the effects of ABVN stimulation on ANS activity in 

healthy volunteers are rather conflicting. The responses of cardiac autonomic 

influence from ABVN stimulation were analysed non-invasively using heart 

rate variability (HRV), which was derived from R-R intervals of ECG recording. 

Power spectral analysis of the R-R interval produces measures which reflect 

the sympathetic activity (High Frequency; HF) and parasympathetic activity 

(Low Frequency – sympathetic). Earlier evidence with 25 minutes cavum 

conchae stimulation using manual acupuncture has shown a significant 

increase in the HF of the HRV, suggesting elevation in cardiac 

parasympathetic activity (Haker et al., 2000). The significant increase in the 

cardiac vagal tone was seen at the ear stimulation period, as well as for 60 

minutes post-stimulation. However, no changes were seen either in the 

sympathetic activity as measured by the low frequency (LF) of the HRV, blood 

pressure or heart rate (Haker et al., 2000). Similar work to stimulate the tragus 

for 15 minutes in healthy volunteers showed increases in HRV towards 

parasympathetic predominance, accompanied by decrease in muscle 

sympathetic nerve activity (MSNA) recorded from the common peroneal nerve 

(Clancy et al., 2014). This does not align with what was reported by Haker’s 

study where no sympathoinhibition was seen, at least in the heart. In a recent 

study, randomisation of healthy participants into left or right conchae 

stimulation increased the HRV vagal tone only from right-sided stimulation (De 

Couck et al., 2017). Further, the confounding factors contributing to ANS 
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changes from prolonged right conchae stimulation was analysed. The 

significant increase in cardiac vagal activity was only observed in women and 

not a total sample of participants. In addition the stimulation time and gender 

interaction were more consistent after 30 minutes of stimulation, suggesting 

moderate modulation effects of prolonged ABVN stimulation only in women 

(De Couck et al., 2017).  

Despite conflicting ideas on ABVN stimulation on cardiac ANS, the tVNS has 

been proposed as an inexpensive alternative to treat autonomic imbalance in 

heart failure (Clancy et al., 2013; Murray et al., 2016). Pioneering studies in 

this niche were performed on coronary artery disease and angina pectoris 

patients who underwent surgery for coronary bypass grafting (Zamotrinsky et 

al., 2001). Acupuncture needles were attached bilaterally on the “heart 

acupoint” in the inferior conchae, where the ABVN was stimulated for 15 

minutes for 10 days. This resulted in improved clinical presentation including 

a reduction in cardiac incidence of angina pectoris, and a decrease in the 

reliance on vasodilator usage (Zamotrinsky et al., 1997; Zamotrinsky et al., 

2001). In addition, the tVNS also resulted in a reduction of atrial noradrenergic 

plexus, suggesting cardiac sympathoinhibition effects (Zamotrinsky et al., 

2001). A further study that examined the HRV in coronary artery disease 

patients using similar tVNS protocols (15 minutes for 10 days) showed 

alleviation of the cardiac angina signs, and more importantly the non-invasive 

autonomic measurement (LF/HF index)  converted to healthy normal values 

among the responders (Popov et al., 2013).  The effects of low level electrical 

stimulation on tragus in patients with paroxysmal atrial fibrillation (AF) were 

studied (Stavrakis et al., 2015). It was found after an hour of tVNS, the vicious 

cycle of AF induction was inhibited by reducing the AF duration and the AF 

cycle length. The level of inflammatory cytokines was also reduced, 

highlighting activation of the vagal cholinergic anti-inflammatory pathway 

(Stavrakis et al., 2015).  

Beneficial evidence of the transcutaneous vagal activation has been tested in 

various HF animal studies. Applying low-level tragus stimulation in dogs with 

healed MI for 90 days attenuated the ventricular remodelling which recognised 
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by smaller infarct size, and better cardiac contractile and diastolic functions. 

In post-MI, the cardiac tissue started to develop scars and the level of fibrosis 

is influenced by enhanced sympathetic nerve activity. However, the low-level 

tragus stimulated group exhibited reduction in plasma NE level thus indicated 

that the central sympathoinhibition was responsible for the amelioration of the 

post-MI remodelling (Wang et al., 2014).  

Neuromodulation of the cardiac ANS from the low-level tragus stimulation has 

also been reported in an arrhythmia model in dogs. In this HF model, the 

sympathoactivation was induced with electrical stimulation on the right stellate 

ganglion and resulted in cardiac sinus node acceleration. The irregularity of 

the sinus nodal activity was nevertheless attenuated after 3 hours of tragus 

stimulation (20 Hz, 2ms), in conjunction with reduction in the expression of 

neural synaptic proteins (cFos and NGF) from the right stellate ganglion (Zhou 

et al., 2016). The low level tragus stimulation is also effective in suppressing 

intrinsic cardiac ANS in AF dogs. Neural hyper activation of the cardiac 

ganglionated plexus (intrinsic cardiac autonomic nervous system) has been 

suggested to trigger AF events. In AF model dogs using rapid atrial pacing, 

the low level tragus stimulation (20 Hz, 1ms) elicited an antiarrhythmic effect 

coupled with a suppression of the neural firing in the cardiac ganglionated 

plexus (Yu et al., 2012). When the low level stimulation was applied to the 

vagotomised dogs, the antiarrhythmic effects were eliminated indicating the 

vagal efferent activation in inhibiting the intrinsic cardiac ANS (Yu et al., 2013).  
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Table 1.4 Studies of cardiac neuromodulation by tVNS 

 

Paper Species n Sampling group Stimulation site 
Stimulation 
parameters 

Main outcomes 

Haker et al. 
(2000) 

H 12 Healthy 
Right cavum 

conchae 
Manual 

acupuncture 

Increased the HF of the HRV during 
and after stimulation. The LF, BP and 

HR not significantly changed 

Clancy et al. 
(2014) 

H 14 Healthy Right tragus 
10 – 50 mA, 30 

Hz 
Reduced the LF/HF ratio and 

decreased the mSNA 

Stavrakis et 
al. (2015) 

H 40 AF Right tragus 
1ms duration, 

20 Hz 

The AF was suppressed seen from 
total AF duration and cycle length. 

Inflammatory marker levels 
decreased significantly 

Wang et al. 
(2014) 

D 30 MI Right tragus 1ms, 20 Hz 

The contractility of the left 
ventricular functions improved, 

smaller infarct size, lower plasma 
remodelling factors, lower plasma 

NA. 

Zhou et al. 
(2016) 

D 16 Tachycardia Right tragus 2ms, 20 Hz 

The acceleration of the sinus nodal 
attenuated where lower neural 

activation in the stellate ganglion of 
the tVNS group 
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Paper Species n Sampling group Stimulation site 
Stimulation 
parameters 

Main outcomes 

Yu et al. 
(2013) 

D 16 AF Right tragus 1 ms, 20 Hz 

The atrial remodelling from induced 
AF was reversed in the tVNS group 
where bivagal transection inhibited 

the reversal. 

Zamotrinsky 
et al. (1997) 

H 10 
Preoperative 

coronary artery 
disease patients 

Bilateral cymba 
concha 

0.2-1.5 mA, 1.5 
ms, 3 Hz 

Relieve anginal symptoms, improved 
biochemical properties of 

myocardium, and increased heart’s 
tolerance of operative reperfusion 

damage. 

Zamotrinsky 
et al. (2001) 

H 16 
Preoperative 

coronary artery 
disease patients 

Bilateral cymba 
concha 

0.2-1.5 mA, 1.5 
ms, 3 Hz 

In tVNS groups, the noradrenergic 
nerves in the atrial tissues are 

significantly lower. Better cardiac 
functions reported in tVNS. 

Popov et al. 
(2013) 

H 48 
Coronary artery 
disease patients 

Bilateral cymba 
concha 

0.05-0.15 mA 

The effects of tVNS in responders 
showed improvement in health and 
the LF/HF index approached normal 

values. 

De Couck et 
al. (2017) 

H 60 Healthy 
Left or right 

conchae 
0.7 mA, 250 μs, 

25 Hz 

No consistent changes in HRV. The 
tVNS effect is more prominent on 

the right tVNS, and in women. 
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1.4 Research Gap 

Previous studies suggested that tVNS restores brings the autonomic balance 

in HF subjects presumably by augmenting parasympathetic actions and 

reducing sympathetic activity However, there are several areas of 

investigations identified for study:  

a) Determine the sensory afferent nerves from the site of transcutaneous 

stimulation to the brain 

b) Develop an ear stimulation model in an anaesthetic free preparation  

c) Examine the acute effect of tVNS on heart rate, respiration and 

sympathetic activity  

d) Investigate the effect of stimulation on different parts of the external ear 

in the anaesthetic free model. 

 

1.5  General Hypothesis 

Stimulation of the ABVN in the ear effectively alters the autonomic function of 

the rats as previously shown in humans. The physiological changes elicited 

from the ABVN stimulation in WHBP is mediated through afferent projection 

to the NTS. 

1.6  Aims and objectives 

1) To reveal the afferent projections from the stimulation sites (e.g.: 

tragus, lobe) into the CNS using neuronal tracing,  

2) To study the differences in autonomic profile of the rats in different 

circadian phases (dark/light) to determine the appropriate time of day 

for the ear stimulation, 

3) To study the effects of auricular stimulation through direct recordings 

of the sympathetic and phrenic nerve activity, along with heart rate, 

4) To determine the effect of stimulating different regions in the ear.
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Chapter 2 Methods 
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2.1 Transganglionic labelling of afferents from auricular 

stimulation sites 

 

In an effort to understand the pathways through which transcutaneous ear 

stimulation could influence autonomic function, the central projections of the 

afferents innervating the stimulations sites were studied. For this reason, 

afferent projections from the external auricle were traced using the retrograde 

neuronal tracer Cholera Toxin B (CTB). 

 

2.1.1 Introduction 

 

Cholera toxin as a neuronal tracer 

 

Cholera toxin (CT) is produced by Vibrio cholera, the family of bacteria which 

is responsible for the intoxication of intestinal cells after ingestion. V. cholera 

was first isolated by Robert Koch (1843 - 1910) from a stool sample that 

originated in Egypt where he noted the physical appearance of the bacteria - 

“a little bent, like a comma”; different from any other common bacillus. Despite 

Koch’s discovery, the pathogenesis of cholera only came to be understood 

years later by Sambhu Nath De (1915-1985). De’s findings involved ligated 

loops of rabbit small intestine injected with filtrates that originated from several 

strains of V. cholera (De et al., 1960). De noted that the immunoreactive 

peptides are naturally secreted by the V. cholera during bacterial growth as 

the isolated intestinal loops weren’t affected by filtrate from the washed 

bacterial bodies broken with ultrasonic vibrations (De et al., 1960). 
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Cholera toxin structure and actions 

 

This immunoreactive protein became later known as CT and it presents a 

hexameric protein structure consisting of 2 major domains (Figure 2.1). The 

A subunit domain (240 amino acids; MW 28 kD) has a central location and is 

surrounded by 5 B subunits (103 amino acids; MW 11 kD each). The release 

of CT from V. cholera to the infected intestine causes pentameric B subunit 

binding with the GM1 ganglioside receptor on enterocytes (epithelial cells). 

This is followed by cleavage of the A1 domain from the A2, where the A1 

fragment enters the cytosol to initiate the enzymatic cascades of 

enterotoxicity.  The A1 subunit catalyses an activation of adenylate cyclase to 

produce cyclic adenosine monophosphate (cAMP) within the host cells and 

causes internal electrolytic imbalance. Ultimately, there is massive water 

efflux in the intestinal cells and this result in watery diarrhoea and vomiting, 

the clinical symptoms of cholera. Unlike the A domain, the B pentamer is non-

toxic. Isolated cholera toxin B subunit is suggested to be essential as a tool 

for the design of drugs/vaccines due to great interactions involving GM1 

mediated signal transduction (Thiagarajah & Verkman, 2005). In fact, 

neuronal projection studies have been facilitated by this technology where 

central nerve projections can be labelled either anterogradely or retrogradely.
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Figure 2.1: The structure of cholera toxin (composite of PDB 1S5E and 
3CHB) 

A) Cholera toxin complex consists of 2 major domains; A and B subunits. The 

A subunit is made up of 2 protein chains. A1 is the catalytic domain joined to 

A2 via a disulphide bond. A2 is a linker protein, that joins A1 to B pentamer by 

protuding through the central pore.  B) The B pentamer of the cholera toxin 

provides specific binding interaction with the host cells via GM1 ganglioside 

before enterotoxicity cascades are initiated. Image acquired from the NCBI 

Protein Database website: https://www.ncbi.nlm.nih.gov/ 
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The neuronal membrane is generally rich with gangliosides (Sonnino et al., 

2007). The gangliosides play a passive role in reducing fluidity of the 

membrane by maintaining the membrane lipid domains as well as an active 

role in modulating membrane biological signalling. Abundant presence of 

gangliosides on the neuronal membranes provides affinity for binding 

interaction between the cholera toxin pentamer and GM1 pentasaccharide 

(Stoeckel et al., 1977). The binding of each B subunit to high affinity 

monosialoganglioside GM1 receptors initiates endocytosis and delivers the A 

subunit to the endoplasmic reticulum in a retrograde fashion (Merritt et al., 

1994). The retrograde axonal transport of cholera toxin in rats was completely 

abolished by pre-incubated cholera toxin with bovine brain GM1 gangliosides, 

indicating that it is the GM1 binding sites on the CT that mediate its uptake 

(Stoeckel et al., 1977). The conventional retrograde neuronal tracing 

technique by Stoekel nevertheless didn’t permit a characterization of the 

identified pathway as it was visualized by radioactive materials (Stoeckel et 

al., 1977). Later on, a new tracing technique was introduced by Luppi et al. 

(1987) where the CTB subunit was isolated and detected with 

immunoreactivity. The combination of CTB tracer with immunohistochemistry 

has not only allowed visualization of neuronal projections, but also 

identification of specific pathways involved through double/triple labelling 

(Luppi et al., 1987; Fort & Jouvet, 1990). In the present study CTB has been 

used to trace the projections from the external auricle to the CNS.
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2.1.2 Materials and Methods  

 

Injection Procedure  

 

Young male Wistar rats (65-85g, to match the age used for WHBP) were 

deeply anaesthetised with a 4% mixture of isoflurane in oxygen. Absence of 

the paw withdrawal reflex confirmed the depth of anaesthesia.  For each 

animal, a total of 5 μl of 20 mg/ml CTB in 0.1 M phosphate buffer saline (PBS) 

was injected on right tragus (n=4) and right ear lobe (n=4) at using a glass 

microelectrode (inner diameter 0.84 mm, outer diameter 1.5 mm, World 

Precise Instrument, UK) attached via rubber tubing to a 10 μl Hamilton syringe 

(Sigma Aldrich, UK). The animals were allowed to recover for 3-4 days prior 

to being humanely sacrificed as below.  

 

Isolation of the brainstem and spinal cord 

 

Animals were deeply anaesthetized with 60-80 ml/kg of intraperitoneal sodium 

pentobarbitone. Appropriate anaesthesia was confirmed by the absence of 

the paw withdrawal reflex. The abdomen was first transected transversely. 

Without cutting any other internal organs, the heart was exposed by a 

thoracotomy. The left ventricle was pierced and a blunt needle inserted and 

clipped into place. A small cut was made on the right atrium and the animals 

were flushed with 0.1 M phosphate buffer. Finally, transcardial perfusion was 

performed with approximately 200 ml of 4% paraformaldehyde (PFA) fixative. 

The posterior part of the vertebra column and skulls were carefully removed 

to allow the spinal cords and the brainstem to be collected and post-fixed 

overnight.  
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Serial sectioning of the brainstem and upper cervical spinal cord  

 

Transverse sections at 50 μm were made from the upper cervical C4 to rostral 

brainstem (4th Ventricle) with a vibrating microtome (Leica, UK).Serially 

sectioned brain slices were collected and sequentially placed into a 6- well 

plate with free-floating sections in 0.1M phosphate buffer (PB). The process 

was repeated until all brain tissues were sectioned, such that groups of 

section subsequently processed from any well included representative 

sections from across the brainstem and upper cervical cord. This 

method allowed a systematic sampling coverage of the brain sections. 

 

Immunofluorescence 

 

Tissue sections were washed three times for 10 minutes each in 0.1 M PBS 

followed by incubation in 10% donkey serum for 30 minutes. The incubation 

with donkey serum aimed to inhibit non-specific binding on tissues. After 

several washes, sections were incubated overnight in primary antibody (Table 

2.1) in PBS with 0.3% Triton X-100 (Row & Haas, UK) added to facilitate 

antibody penetration across cellular membranes. Sections were left on a 

shaker at 4oC overnight. 

Following overnight incubation (exception was 3-4 nights for ChAT), sections 

were rinsed 3 times with PBS. The sections were incubated in secondary 

antibody (Table 2.2)  for 2-3 hours at room temperature. Tissue was then 

rinsed for 3 times for 10 minutes before being dried and mounted on glass 

slides with Vectashield mounting medium (Vector Laboratories, USA) and 

sealed. 
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Table 2.1: Primary antibodies used on free floating tissue sections 

Primary 
antibody 

Abbreviation Raised in Dilution Source Catalogue 

Cholera toxin b 
subunit 

CTB 
Chicken 
Rabbit 

1:10000 
1:10000 

Abcam 
Sigma 

AB19106 
C3062 

Choline 
acetyltransferase 

ChAT Goat 1:500 Chemicon AB144 

Parvalbumin Parv Mouse 1:2500 Swant PV235 

Calbindin-D28K Calbindin Mouse 1:1000 Swant CB300 

Neurokinin-1 
Receptor 

NKR1 
Guinea 

pig 
1:500 Biomol NA 4200 

 

 

Table 2.2: Secondary antibodies used to visualize the primary antigens  

Secondary antibody Raised in Antigen Concentration Source 

Alexa Fluor 488 Donkey Mouse 1:1000 Invitrogen 

Alexa Fluor 488 Donkey Goat 1:1000 Invitrogen 

Alexa Fluor 488 Donkey Guinea Pig 1:1000 Invitrogen 

Alexa Fluor 488 Nil Nil 1:1000 Invitrogen 

Alexa Fluor 555 Donkey Rabbit 1:1000 Invitrogen 

Alexa Fluor 555 Donkey Chicken 1:1000 Invitrogen 

 

 

Fluorescence Microscopy  

Images were visualized with an epifluorescence microscope (Eclipse E600; 

Nikon, UK). Sections with staining were marked for later image processing 

with a confocal microscope. Images for double staining were captured by 

Zeiss LSM 880 with AiryScan. To see the projection of the nerve terminals, 

Tile Scan and Z stacks processes were chosen under x20 magnification. Any 

close apposition between CTB staining and potential contact cells was then 
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scanned under higher magnification with x40 and x63 oil immersion Plan-

neofluar lenses. The images were captured with ZEN Digital Imaging for Light 

Microscopy Black Edition. The analysis of the figures was done with ZEN 

Digital Imaging for Light Microscopy Blue Edition. Z stacks images were 

compressed and maximum intensity projection of the nerve terminations were 

visualized. These images were exported in TIFF format and final image editing 

(eg: labelling) was processed with CorelDRAW® software (X8 Edition).     

 

Anatomical location of termination 

The localisation of the neuronal tracer terminations were examined and 

clarified in reference to the Allen Brain Atlas (http://www.brain-map.org).
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2.2 Physiological Study using Working Heart Brainstem 

Preparation 

 

2.2.1 Introduction 

 

The physiological effects of ear stimulation were studied in the Working Heart 

Brainstem Preparation (WHBP). To the best of my knowledge, this is the first 

study that ever performed ear stimulation in the WHBP. This is an ideal 

method in determining the central mechanism of the cardiovascular autonomic 

response to the stimulation since it allows direct nerve recording and isolation 

of nerve pathways (eg:vagotomy), all without the use of anaesthetic agents.  

 

History of Development of the Working Heart Brainstem Preparation 

 

An in vitro brain stem spinal cord preparation was developed by Suzue where 

the isolated brain stem and the spinal cord of the neonatal rat was placed in a 

bath and superfused with a modified Krebs solution (Suzue, 1984). Viability 

for up to 7 hours was suggested by the presence of periodic discharges from 

respiratory nerves corresponding to a respiratory rhythm. Compared to in vivo 

models, this preparation provided easy access to the extracellular 

environment and also exhibited smaller movement artefacts. These properties 

facilitated pharmacological studies on functionally intact respiratory neurons 

and networks (Smith et al., 1991; Dong et al., 1996; Mellen et al., 2003) as 

well as circuitry controlling sympathetic preganglionic neurons (Deuchars et 

al., 1995b; Deuchars et al., 1997) and dorsal column nuclei neurons 

(Deuchars et al., 2000). However, from a respiratory function perspective, the 

respiratory rhythmogenesis in this in vitro preparation is now considered to be 

less reflective of the adult scenario, limiting its benefits (Johnson et al., 2012). 

In addition, another limitation was that it instead of being arterially perfused, 
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these in vitro preparations were commonly superfused, thus causing 

heterogeneity in the PO2, K+, and H+ gradients within the tissue (Brockhaus et 

al., 1993; Okada et al., 1993). Inadequate oxygenation of the brainstem raised 

a question if the medullary breathing circuitry was functioning normally 

(Richter, 2003; St-John & Paton, 2003). This claim was supported by an 

earlier report that the breathing pattern from the in vitro preparation was 

markedly different from eupnoea,  but instead was identical with gasping 

(Wang et al., 1996). Thus, a better preparation was required. 

Some of the technical limitations of the reduced brainstem-spinal cord 

preparation were circumvented by Hayashi et al in 1991 through an arterially 

perfused in situ rat brainstem–spinal cord preparation (Hayashi et al., 

1991).This preparation was characterized by its eupneic-like phrenic nerve 

activity suggesting adequate oxygenation of the brainstem. Hayashi claimed 

a rhythmic activity of the phrenic nerve recorded from his in situ model could 

be maintained up to 11 hours, longer than any reduced brainstem preparation. 

However, limited numbers of studies employed this technique in investigating 

the medullary respiratory rhythm generator in rats (Hayashi & Lipski, 1992). 

The fact that the whole heart was removed due to continuous artefact 

produced by the heartbeat activity during intracellular recording required a 

better in situ model with preserved cardiorespiratory coupling.    

A working heart brainstem preparation (WHBP) was introduced by Julian 

Paton to study the underlying mechanisms of medullary cardiovascular and 

respiratory modulation in an in vitro milieu (Paton, 1996a, b). The central 

autonomic motor output was shown to be present in the preparation as 

blockade of parasympathetic muscarinic receptors by atropine application 

caused an elevation in HR while sympathetic blockade with propranolol 

produced a bradycardia (Paton, 1996b).  A strong cardiac vagal modulation 

was also evident in the WHBP as central respiratory activity displayed an 

abrupt and pronounced bradycardia concomitant with the respiratory phases 

(respiratory sinus arrhythmia) which was attenuated by bilateral vagotomy. 

The WHBP also preserves integrity of the peripheral synaptic input into the 

autonomic central circuits such as the NTS in response to various 
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stimulations. This preserved coupling enabled WHBP as a scientific tool to 

study medullary cardio-respiratory neuron interactions with various afferent 

inputs (Potts et al., 2000; Smith et al., 2001; Braga et al., 2007). Activation of 

nociceptors, baroreceptors or chemoreceptors immediately caused 

cardiovascular and respiratory responses which could be abolished by 

pharmacological NTS blockade (Paton & Butcher, 1998; Potts et al., 2000; 

Boscan et al., 2001; Smith et al., 2001). For example, peripheral 

chemoreceptor reflex with sodium cyanide increased breathing frequency 

while baroreceptor vagal reflex activation decreased the breathing frequency 

in mice and musk shrews (Paton & Butcher, 1998; Smith et al., 2001). The 

central coupling between the central respiratory drive and cardiac motor 

neurons seems well preserved since each reflex pattern in the WHBP was 

qualitatively identical to the urethane anesthetised in vivo mice (Paton & 

Butcher, 1998). Hence the synaptic interactions and the central medullary 

tonic responses from peripheral cardio-respiratory receptors can be studied in 

the WHBP due to its preserved neuronal network (Potts et al., 2000).    

Since the WHBP is skinned and perfusion means that muscles can be 

removed without bleeding compromising the preparation, there is easy access 

to various autonomic and peripheral nerve bundles.  Such easy access allows 

direct extracellular nerve recordings to be made by using simple suction 

electrodes. Numerous extracellular recordings that have been recorded from 

the WHBP are phrenic (Paton, 1996a, b; Pickering et al., 2002), sympathetic 

(Zoccal et al., 2008; Lall et al., 2012), hypoglossal (Edwards et al., 2015) and 

vagus (Paton, 1996b). Cardiovascular variables such as aortic pressure (in 

this case perfusion pressure) and ECG can also be derived and analysed. 

Over the years, the utilization of WHBP in the laboratory has been rapidly 

advanced where it is now commonly used in studying the peripheral and 

central control of the autonomic nervous system. 
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Identifying eupnoea in the WHBP is a key indicator of preparation 

viability 

 

A key advance of the WHBP over previous in situ preparations is the 

generation of a breathing pattern that closely resembles eupneic, normal 

breathing. The maintenance of the eupneic motor generation is vital to WHBP 

preparation as the non-eupneic breathing is an indicator of inadequate 

ventilation and thus poor viability of the preparation (Paton, 1996b).  

Respiration is a fundamental physiological process in mammals that involves 

oxygen inhalation and carbon dioxide exhalation from the lungs to sustain 

cellular metabolism by providing enough energy. These two respiratory 

processes are controlled by specific groups of muscles including the 

diaphragm and intercostal muscles. The muscle activity is coordinated by 

three rhythmically active motor neural phases which is commonly monitored 

by extracellular recording of nerves containing axons of rhythmically active 

motor neurons (Smith & Feldman, 1987). Clear visualization can be obtained 

through recordings of activity of the phrenic nerve which innervates the 

diaphragm. In such recordings, inspiration is seen as a ramp like 

augmentation of discharge (I), post-inspiration (PI) –  a ramp rapid decline, 

followed by expiration (E) as a silent phase (Figure 2.2) (Richter, 1982). The 

presence of all three breathing phases is the main characteristic for eupneic 

breathing at rest (St John & Bartlett, 1985; St-John & Paton, 2003).



 

59 

 

 

 

Figure 2.2: The example of oscillatory breathing phases in raw and 
integrated phrenic nerve activity recorded from a WHBP rat 

The 3 phases of respiration begin with I phase, ramp-like augmentation; 

quickly followed by PI phase- rapid decline from I, and E- silent phase. The 

integrated phrenic nerve activity is shown at the bottom. I- inspiratory, PI- post 

inspiratory, E- expiratory. Diagram adapted from St-John and Leiter (2003).  

 

Each phase has its own physiological importance in allowing the respiratory 

muscles to work to alternately fill the lungs with air and empty them. In eupnea, 

the diaphragm and external intercostal muscles contract during the inspiratory 

phase, causing enlargement of the thoracic cavity volume which drives 

atmospheric air into the lungs. Negative pressure generated by the inspiratory 

muscles contraction however, needs to be preceded by dilating the upper 

airway muscles to maintain open airspace for effective breathing to prevent 

the risk of obstructive apnoea (Bianchi & Gestreau, 2009). The 

glossopharyngeal nerve that is responsible for pharyngeal dilatation is 

activated during inspiration; while the pharyngeal branch of the vagus nerve  

that is responsible for pharyngeal constriction is triggered in expiration. The 

abdominal muscles and internal intercostal muscles are activated during late 

expiratory phase to drive the carbon dioxide out of the lungs. During resting 
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breathing however these muscles tend to remain silent thus no discharge is 

observed from these motor outputs (Figure 2.3) (Bianchi & Gestreau, 2009).  

 

 

 

Figure 2.3: The example of oscillatory motor nerve pattern during 
respiration of a cat 

The respiratory motor nerves are involved in: creating air aspiration and air 

expulsion (pump muscles), or regulating air flow (valve muscles). The 

coordination of discharge from cranial outputs and spinal respiratory inputs 

assist in creating an effective breathing activity. PND- phrenic nerve 

discharge, Abd- Abdominal (L1 Lumbar nerve branch), RLN- recurrent 

laryngeal nerve, SLN- superior laryngeal nerve, VII- facial nerve, IX- 

glossopharyngeal nerve, Ph-X; pharyngeal branch of the vagus.  Figure 

adapted from Bianchi and Gestreau (2009). 

 

Identifying gasping  

Unlike eupnea, gasping is a resuscitative mechanism due to accumulation of 

cellular carbonic acid to initiate breathing following a period of apnoea 

(Lumsden, 1923). It is characterized by slowing of respiration with increased 

depth and prolongation of inspiration. Induced gasping in decerebrated cats 
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showed a significant higher peak in integrated phrenic activity than that of 

eupnea (St John & Knuth, 1981). This is accompanied by an increase in total 

(TTOT) and expiratory period (TE), shorter inspiratory period (TI) and lower 

mean arterial pressure (Figure 2.4). The need to identify differences between 

eupneic and gasping is vital in order to study the physiology of the breathing 

and ultimately determining viability of the preparation.  

Gasping and eupnea in rat WHBP has been documented indicating its fully 

functioning respiratory circuit similar to in vivo mammals (John & Paton, 2000; 

St-John & Paton, 2002). It is common to observe a classical “gasping” activity 

quickly after reperfusion. The hypoxic state in the WHBP began once the 

animal was deeply anaesthetized with isoflurane and time taken for dissection, 

nerve isolation and cannulation of the descending aorta which would take 5 

minutes altogether. The ventilatory pattern between gasping and eupnea is 

remarkably distinctive. In eupnea, the phrenic nerve discharge reaches its 

peak close to the end of the burst, but in gasping its peak is close to the 

beginning of the burst. In other words, this gasping inspiratory activity is 

identified by its extremely rapid rise of phrenic nerve burst followed by a rapid 

cut off. Thus instead of incrementing inspiratory activity in eupnea, the gasping 

is fundamentally decrementing (John & Paton, 2000). Prolonged gasping 

activity in the WHBP may become pathological. Since the source of oxygen in 

the preparation comes solely from the Ringer’s solution, the pump fed into the 

preparation was carefully increased so that more oxygenated perfusate will 

be supplied into the respiratory networks in the brainstem. Once the initial 

decrementing phrenic burst transformed into augmenting bursts, the 

preparation was left for at least 20 minutes for the strong eupneic pattern to 

settle in before any other experiments were undertaken.  
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Figure 2.4: Integrated activities of phrenic nerve in eupnea (A) and 
gasping (B) of adult rat in the Working Heart Brainstem Preparation 

 

A) The phrenic nerve activity in the eupneic preparation is identified by a 

regular breathing frequency with an incrementing nerve discharge. B) Gasping 

is identified by irregular breathing frequency where there is an increase in the 

expiratory period and decrease in inspiratory duration. Note that phrenic nerve 

activity has a decrementing pattern of the phrenic discharge which is the 

hallmark of gasping. Source of image: John and Paton (2000).  
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2.2.2 Materials and methods 

 

Animals were obtained internally from the Central Biomedical Services, 

University of Leeds, United Kingdom. All experiments were performed under 

UK Home Office License and in accordance with the regulations of the UK 

animals (Scientific Procedures) Act, 1986. Efforts were made to adhere with 

the 3R’s principle: Replacement, Reduction and Refinement.    

 

Surgical procedures 

Pre weaned rats ranging between 18 – 21 days of either sex were deeply 

anaesthetized through 4% isoflurane (Abbott, UK) inhalation. The depth of 

anaesthesia was tested by a pinch paw test. Once animals ceased to respond 

to the noxious pinch of the tail or hind paw they were bisected sub 

diaphragmatically. The rostral half (head, forelimbs and thorax) was 

submerged immediately in ice-cold Ringer’s solution to slow down the cellular 

metabolism, bubbled with 95% O2 – 5% CO2 gas mixture in an effort to 

preserve the viability. Animals were decerebrated at pre-collicular level, and 

skinned while keeping the body submerged in the ice-cold water. The frontal 

portion of the thorax was removed exposing chest cavity internal organs. The  

lungs were removed to prevent inflation due to breathing activity during the 

preparation. The descending aorta was isolated from the front of vertebra l 

column, extending from the thoracic aorta into the abdominal aorta just below 

the diaphragm. The phrenic nerve was cut distally to leave sufficient length for 

placement of a suction electrode to monitor the viability of the preparation. 

The lumbar sympathetic chain was identified as a chain of ganglia lying in a 

vertical row on both sides of the spinal cord and a distal cut was made at the 

inferior mesenteric ganglia that gives rise to renal sympathetic innervation. 

The preparation was moved to the recording chamber where the descending 

aorta was cut caudally and cleaned of any excess fat that could cause 

blockage. The aorta was then cannulated by pulling the cut end of the aorta 

over the cannula to allow retrograde perfusion to be initiated using a roller 
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pump at a constant flowrate (15-21 ml/min) (Watson-Marlow, 520Du) (Figure 

2.5). These procedures took approximately 10 minutes before perfusion was 

initiated. 

 

Additional procedures 

 

Additional considerations were included in the preparation to maximize 

preparation viability.  Constant perfusion pressure (pp) recording allowed a 

suitable perfusate inflow and therefore allowed the brainstem to be 

physiologically stable. Previous literature indicated that the pp recorded in pre-

weaned rats ranged between 50 and 75 mmHg, consistent with our 

observation (Potts et al., 2000; Lall et al., 2012). This was achieved by titrated 

vasopressin (final concentration 200-400 pM, Abcam, Cambridge, UK) directly 

into the perfusate within 5 minutes of cannulation of the aorta. Aortic pp was 

measured by a MEMSCAP SP844 physiological sensor that measured the 

intravascular pressure of a double lumen catheter. Perfusate temperature as 

measured from the outflow of the cannula was recorded and maintained at 

310C using a heat exchanger.   

Any possible blockage in the capillary beds by fungal hyphae, blood clots and 

cellular debris, was avoided by utilising a propylene screen filter (Millipore, 

pore size: 0.45 µm) in the perfusion circuit. Air bubbles in the perfusion circuit 

were trapped to prevent air embolism. In addition, the presence of the bubble 

trap also dampened the roller pump and cardiac pulse pressure waves 

superimposing on the perfusion pressure recording.  

It is important to have a suitable oncotic pressurein providing sufficient oxygen 

to the brainstem (Paton, 1996b). Thus the carbogenated Ringer’s solution 

(95% O2 and 5% CO2) was modified with an oncotic agent, Poly(ethylene 

glycol) BioUltra 20 000 (Sigma Aldrich), to prevent oedema. The oncotic agent 

added was 2.5 mg for each 200 ml perfusate.  
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To maintain a constant homeostatic temperature and prevent the loss of 

washed-out essential amino acids, the perfusate was recycled after 

reoxygenation. 

 

 

 
 

 

Figure 2.5: Representation of the ear stimulation in a working heart 

brainstem preparation experimental set up 

The decerebrated animals were placed in the recording chamber. The 

descending aorta was cannulated with a double lumen catheter that perfused 

with modified Ringer’s solution containing 95% O2 and 5% CO2 mixture. The 

perfusate was drawn from the reservoir by a peristaltic pump and fed into a 

heat exchanger, bubble trap and filtered to remove cellular debris. The 

perfusate was recycled to prevent from any proteins or nutrient loss. The ear 

stimulation was achieved with a biphasic stimulator delivered via a metal clip. 

An autonomic effect of the stimulation was measured from the ECG tracer and 

respiratory activity taken from the phrenic nerve, sympathetic nerve discharge 

from the lower thoracic sympathetic chain was also measured. 
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Modified Ringer’s Solutions 

 

The Ringer’s solution contained in mM: NaCl, 125; NaHCO3, 25; KCl, 4; 

CaCl2.2H2O, 2.5; MgSO4, 1.25; KH2PO4 1.25 and D-Glucose, 10. A high 

molecular weight oncotic agent, Polyethylene glycol was added to the 

perfusate (Paton, 1996b). Vecuronium bromide (2-4 μg/ml, Organon Teknica, 

Cambridge, UK) was added during initial stages of the preparations to block 

neuromuscular transmission (Potts et al., 2000). 

 

Tuning in the prep 

 

The intra-arterial perfusion in the WHBP allows generation of robust 

respiratory bursts that are comparable to in vivo conditions (Paton, 1996b). To 

achieve this physiological respiratory activity the perfusion rate needs to be 

correctly “tuned” without over perfusion. The pump flow was finely adjusted in 

order to supply sufficient oxygen in restoring the brain stem function to control 

cardiorespiratory responses to produce a eupneic motor pattern, and has a 

core that is neither hypoxic nor anoxic. Ideally, eupnic respiratory motor 

pattern was targeted from the phrenic nerve discharge (PND) recording where 

a “ramp-like rise” followed by a rapid cut off indicates an inspiration phase.  As 

shown from previous studies, breathing frequency targeted in all preparations 

ranged from 16-40 phrenic bursts per minute (Potts et al., 2000; Baekey et al., 

2008; Dutschmann et al., 2009). When tuning the preparation, over perfusion 

needed to be avoided as it will minimize the brainstem neuronal CO2 content. 

Removing CO2 from WHBP perfusate without changing its arterial pH reduced 

the respiratory activity, indicating that PCO2 is a necessary chemostimulant 

for eupnogenesis (Wilson et al., 2001).  Thus, respiratory activity requires the 

presence of CO2 and will be silent without it  (Phillipson et al., 1981). 

Commonly, poor perfusion would be characterised by augmented or “gasp” 

rather than eupneic breathing as CO2 is cleared to which the drive to breathe 
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is eliminated. Upon reaching the eupnic breathing state, the constant 

perfusion pump rate attained a range between 20- 25 ml/min.  

 

2.2.3 Defining Variables 

 

Cardiovascular variables 

 

Mean Heart rate (HR), perfusion pressure (PP) and respiratory sinus 

arrhythmia (RSA) are the indirect measures of sympathovagal balance in the 

WHBP.   

Average perfusion pressure recorded from distal end of the common artery in 

the WHBP ranged between 50 – 80 mm Hg.  

Cardiac activity returned seconds after reperfusion with electrocardiogram 

(ECG) traces from the beating heart and picked up by the phrenic nerve  

recording electrode. The ECG displayed a complete P wave and also QRS. 

The heart rate was derived offline by measuring the frequency of R peaks 

within one minute. A stable cardiac rate (after 30 minutes of initial reperfusion), 

normally ranged around 300 bpm.  

The cardiac rate was often modulated by central respiratory activity (e.g. 

respiratory sinus arrythmia) where a bradycardia was observed  at the end of 

inspiratory phrenic neurogram. Thus, RSA for the WHBP was obtained by 

deducting the highest peak to the lowest through of the HR signal that was in 

synchrony to the inspiration. The typical RSA recording in rats would be 15 

bpm (Potts et al., 2000), although, the RSA activity may absent in some 

preparations (Paton, 1996b).  

 

 

 



 

68 

 

Phrenic nerve discharge 

 

The phrenic nerve is the main motor supply of the diaphragm to produce 

diaphragmatic contractions. The phrenic nerve discharge indicates activity in 

the rhythmic respiratory cycle where its  bursting activity  reflect the 

corresponding respiratory brainstem network. The duration of the phrenic 

nerve discharges varied between 500-700 ms while the bursting rate was 

between 25-36 bursts/min (Potts et al., 2000). 

 

Sympathetic Nerve Discharge  

 

Central sympathetic nerve discharge (SND) was recorded from the 

sympathetic chain at the lower thoracic level using a second glass suction 

electrode. The sympathetic chain discharge was synchronized with 

respiratory activity. The discharge of the sympathetic nerve was always in 

accordance to the burst of the phrenic nerve, but this is however not 

necessarily occurring in 1:1 phase relations (Barman & Gebber, 1976). There 

are three types of distinct relationship between the SND (recorded from 

external carotid postganglionic sympathetic nerve) and PND as observed in 

vagotomised cats (Table 2.3). 
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Table 2.3: The three types of relationship between Phrenic Nerve 
Discharge (PND) and Sympathetic Nerve Discharge (SND) in 

vagotomised cats identified by Barman and Gebber (1976) 

 

Relationship Nerve Discharge Characteristic 

 

Expiratory - 
Inspiratory 

 

 

increase from a minimum in 
early expiration and 

reached a maximum during 
inspiration 

 

 

 
Inspiratory 

 

 
increase at the start of 

inspiration, maximal near 
peak inspiration, decayed 

with PND 
 

Inspiratory- 
Expiratory 

 

increase after the start of 

inspiration and reached 
maximum in early 

expiration 

 

Paton et al has noted the possibility of artefacts due to the breathing 

movement in their SND. This was prevented by adding small amount of a 

muscle blocker (eg.vecuronium bromide) into the perfusate.    

 

 

PND 

SND 

PND 

SND 

PND 

SND 
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Variable recordings 

 

Each respective nerve was attached to a glass suction electrode (borosilicate 

glass capillaries; World Precision Instruments, 1B150-4, outside diameter 

1.50 mm, inside diameter 0.84 mm, length 10 cm) and connected to a head 

stage (Digitimer, NL 100) to be fed into a Neurolog amplifier (x 1000 

amplification; Digitimer, NL 900D). Contaminated electrophysiological signals 

with 50/60 Hz noise and harmonics originating from power mains, power 

supplies and lighting were automatically eliminated by Humbug (Quest 

Scientific, Canada). The signals were also bandpass filtered between 50Hz 

and 4kHz and further digitised with a sampling frequency of 8 kHz and saved 

on computer using an interface (CED 1401, Cambridge Electronic Design, 

UK) for analysis on Spike 2 software offline. 
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Chapter 3 Circadian variation of autonomic profiles in the 

working heart brainstem preparation 
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3.1 Introduction 

3.1.1 Circadian Rhythm  

 

Human physiological activity exhibits a dynamic oscillation pattern between 

the day and night and also the sleep-awake cycle. This 24 hours physiological 

variation is also known as the circadian cycle, originating from Latin “circa”  

around and “diem” one day.  It is possible that this temporal pattern is part of 

the adaptation to sleep at night and wake in daytime. Our physiology during 

the day is governed for catabolic processes to facilitate with engaging the 

world. However, during the night our body is prepared for anabolic functions 

of growth, repair, consolidation and resetting for the next day (Panda, 2016). 

This cycle has important influences not only on cardiovascular activity but also 

hormonal release, metabolism, body temperature and other bodily functions.  

The work in this chapter will therefore examine if there are changes in 

cardiovascular, respiratory and autonomic variables in the WHBP with time of 

day which may influence future experiments.  

 

3.1.2 SCN as the central clock of circadian rhythm is influenced 

with light 

 

The diurnal rhythm of physiological functions are generated by an 

endogenous oscillator originating from the suprachiasmatic nucleus (SCN). 

The SCN acts as a central clock, consisting of multiple, autonomous, self-

sustaining, oscillatory cells which are linked to produce co-ordinated, in-phase 

circadian signals (Zampieri et al., 2014). These master oscillatory cells consist 

of interlocking gene activation-inactivation feedback loops; synthesising 

essential proteins overt physiological changes. Identified genes with circadian 

property in mammals are including circadian locomotor output cycles kaput 
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(clock), brain and muscle ARNT like protein 1 (bmal) and also period (per).  

The products generated from these genes oscillate over approximately 24 

hours entrained over light/dark phase. Thus light is a primary environmental 

‘zeitgeber’ or time giver on the circadian master clock in the SCN. The optic 

inputs detected from retinal photoreceptors are fed into the SCN through the 

retinohypothalamic tract. Initial tract tracing studies in rats with tritiated leucine 

or proline injection into the posterior chamber of the eye labelled the 

hypothalamic SCN bilaterally (Moore & Lenn, 1972). Earlier evidence on the 

SCN as central clocks include electrophysiological recording on the SCN of 

rat brain slices. These recordings revealed an endogenous circadian 

rhythmicity in the SCN, with unit discharge rates achieved the maximum 

activity during the day and reversed during the night (Shibata et al., 1982).  

 

3.1.3 PVN as a relay site for SCN mediated circadian influences 

on sympathetic nerve output  

 

The SCN as a master circadian pacemaker plays a critical role in facilitating 

light entrained autonomic nervous system oscillation. Anatomical evidence 

from rats suggests the circadian rhythm information from the SCN is passed 

into hypothalamic paraventricular nucleus (PVN), (Buijs et al., 1993; 

Teclemariam-Mesbah et al., 1997) an important integrative site to influence 

the autonomic nervous system. Parallel to the SCN, the PVN also exhibited 

rhythmic expression of circadian genes (e.g. per1) where it reaches a peak in 

the late night in nocturnal laboratory rats. The per protein expression in the 

PVN is 180o out of phase in the reverse cycle rats, highlighting the light 

entrained rhythmicity of the nucleus similar to the SCN (Martin-Fairey et al., 

2015).  

The PVN is located on both sides of the third ventricle of the hypothalamus 

where it contains larger magnocellular neurons and smaller parvocellular 

neurons (Badoer, 2000). The magnocellular neuron produced peptide 

hormones eg: vasopressin and oxytocin, transported to the posterior pituitary 
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where the hormones are released to the bloodstream to control diuresis and  

lead to blood pressure elevation. The parvocellular neurons on the other hand 

have additional functions by projecting into autonomic controlled regions such 

as the IML. Combination of retrograde tracer CTB into sympathetic cervical 

ganglion of rats with anterograde tracer Phaseolus vulgaris-luecoaggluti nin 

(PHA-L) into the PVN revealed high PVN-fibre density on SPNs in the IML 

(Hosoya et al., 1991). Similar tracing technique where CTB injected into the 

IML and PHA-L into the SCN  shown the highest population of closely apposed 

labelled fibres and cell bodies is within the PVN (Vrang et al., 1997). Taken 

together, these evidence suggesting circadian descending pathway originates 

from the SCN influences the sympathetic preganglionic neurons in the IML. 

This descending circadian pathway is mediated through inputs into the PVN. 

As such, short light exposure during dark phase rapidly elevates cFos 

expression in the arginine vasopressin neurons of SCN and  the PVN 

(Santoso et al., 2017). The vasopressinergic  input from the PVN will then be 

directed onto the sympathetic preganglionic neurons where the sympathetic 

tone is discharged (Motawei et al., 1999). The presence of these pathways 

therefore suggests that autonomic activity can be influenced by the circadian 

rhythm. 

 

3.1.4 Diurnal activity of autonomic control in humans is 

manifested by sympathetic predominance in the morning and 

sympathetic withdrawal at night.  

 

The sympathetic nervous system plays a critical role in generating the 

circadian rhythm in blood pressure (BP) control. The plasma adrenergic 

transmitter level is higher in humans during the day-time, with notable peaking 

observed in early morning (Grassi, 2009). In healthy individuals an enhanced 

morning surge in BP is commonly reported during the first 2-3 hours after 

waking from nocturnal sleep (Brotman et al., 2008). Earlier evidence studying 

circadian vascular tone, using strain gauge plethysmography to measure 
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forearm vascular blood flow variation, revealed highest resistance and lowest 

flow during morning and vice versa during the night (Panza et al., 1991). The 

circadian differences in blood flow and resistance were eliminated following  

phentolamine injection, suggesting α-receptor sympathetic-mediated 

vasoconstriction is a major determinant in the normally occurring circadian 

variation in arterial tone. Direct demonstration of sympathetic neural 

involvement in humans was obtained from microneurography, which revealed 

increases in muscle sympathetic nerve activity (MSNA) accompanying the 

morning BP surge (Narkiewicz et al., 2002; Lambert et al., 2014). The power  

of morning BP surges in healthy adults was found to be positively associated 

with MSNA during a cold pressor test, highlighting the sympathetic influence 

in determining the rate of BP rise during the morning period (Lambert et al., 

2014). Further trials on healthy participants also showed a strong correlation 

between the magnitude of morning BP surge with MSNA but not cardiac 

baroreflex sensitivity, reflecting changes in sympathetic tone rather than vagal 

reflexes in determining the morning BP surge (Johnson et al., 2016). 

In contrast, the autonomic control at night is associated with increased 

parasympathetic dominance over sympathetic. This was shown from early 

trials on healthy adults where the plasma epinephrine level dropped 

remarkably during the nocturnal sleep suggesting a sympathoadrenal latent 

phase at night (Dodt et al., 1997). Malpas and Purdie analysed the circadian 

rhythmicity from HRV in healthy subjects by looking at the mean R-R interval 

and the standard deviation of the successive differences between R-R 

intervals (SDSD) for 30-minute periods using 24 hour Holter recordings 

(Malpas & Purdie, 1990). HRV was elevated during sleep, consistent with 

vagal predominance. In a different set of subjects that presented with vagal 

neuropathy (insulin dependent diabetics and alcoholics), the normal heart rate 

variation was reduced but the amplitude of the cycle and time of peak 

variability was not different to control. This postulates that the origin of 

circadian HRV variations was due to sympathetic withdrawal rather than 

parasympathetic elevation at night. Earlier trials on groups of hospitalized 

patients with a history of hypertension showed the LF power of the HRV 
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(associated with sympathetic activity) was significantly reduced meanwhile 

the HF power (reflecting predominantly parasympathetic activity) was 

significantly elevated at night, thus suggesting sympathetic withdrawal and 

elevation of the parasympathetic tone at this period of time (Furlan et al., 

1990). An HRV study on children also reported a similar circadian cardiac 

autonomic variation, characterized by a rise in HRV during sleep (Massin et 

al., 2000). These studies indicate that sympathetic and parasympathetic 

influences on the cardiovascular system in humans vary with the time of day.   

 

3.1.5 Diurnal activity of autonomic control in rats is manifested by 

sympathetic predominance in the dark phase.  

 

Unlike humans, rats are known for their nocturnal nature where they are more 

active during the night. Locomotor activity recorded from revolutions of 

running wheels revealed rats had greater movements during the dark phase 

(Stephan & Zucker, 1972). A different study on the temporal pattern of rat 

locomotor activity recorded from telemetric recordings showed parallel 

ambulatory variation in mean heart rate and BP (Van Den Buuse, 1994). This 

suggests rat temporal locomotor variation is also associated with the 

cardiovascular temporal rhythm. Indeed, the telemetric recording revealed the 

LF/HF ratio on the light-phase (ie, akin to human night time) tended to be 

higher than those in the dark phase, suggesting predominant sympathetic 

nervous activity at night (Hashimoto et al., 1999). The mean levels of plasma 

adrenaline and noradrenaline also were significantly higher during the 

nightime when rats are behaviourally active (De Boer & Van der Gugten, 

1987). A dissection on rats’ pineal gland, which receives rich innervation of 

sympathetic nerve endings,  showed a peak noradrenaline content during the 

dark period (Wurtman & Axelrod, 1966). It is important to appreciate that these 

aforementioned studies have successfully showed the nocturnal sympathetic 

preferential pattern in rats through indirect measures. The direct measurement 

of the sympathetic activity from the sympathetic chain however requires 
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further investigation. Since the work in this thesis will examine sympathetic 

nerve activity, it is important to test for differences in such activity with time of 

day. 

 

3.1.6 Research questions 

 

There is a research gap in the literature examining a direct sympathetic nerve 

measurement in rats In particular, since this thesis uses the WHBP, it is 

important to determine if such differences exist in this preparation. The 

differences in the autonomic profile of the rats during the light and dark phases 

were therefore examined in the Working Heart Brainstem Preparation.  

 

3.1.7 Research aims 

 

 Understand the basic physiological functions in the WHBP 

 Compare the autonomic and physiological profiles between different 

time points of the circadian cycle  

 Finding the suitable WHBP model from different circadian cycle to be 

used in subsequent experiments.   

 

3.1.8 Hypothesis 

 

 The night-time rats will have a higher sympathetic nerve discharge in 

comparison to the day-time animals.  

 The elevated sympathetic nerve discharge will be accompanied by 

differences in other physiological functions such as heart rate, 

perfusion pressure and also breathing rate. 
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3.2 Methods 

 

The WHBP was prepared as detailed previously in Chapter 2 (Section 2.2). 

Recordings were taken only after the animals displayed a stable eupnic 

respiratory activity, normally within 30 minutes after the initial reperfusion. 

Baseline recordings included HR, PND, SND, and also PP.  The ramping 

pattern of the PND was stable for over than 2 hours, consistent with previous 

studies conducted in the WHBP of the rat (Potts et al., 2000).  

Primarily, animals from 2 different points in the circadian cycle were examined. 

The first group was the daytime animals (n=10, age 16-21 days) which have 

been caged in a normal lighting condition (lights on 7 am and off 7 pm). 

Another group of animals at similar age (n=20) were caged in the reversed 

lighting cabinet (switched on 7 pm and switched off 7 am). The reversed 

lighting group were acclimatised in this regime for 7 days before being used 

in the experiment. During transfer handling, light exposure on the nighttime 

animals were minimised by using a dark box.     

The normality test for numerical datasets were appropriately explored with the 

Shapiro-Wilk test due to small sample size. The significant value of the 

normality test greater than 0.05 considered as normal, while below than 0.05 

is considered to be deviated from a normal distribution.  

To determine if the physiological functions differed between the daytime and 

nightime groups measured from the WHBP, an independent samples t-test 

was performed with p<0.05 as the significance level for the normally 

distributed data. The non-normally distributed data was analysed with non-

parametric analysis using 2 independent tests using IBM SPSS Statistics 21. 

From all of the experiments performed, animals were later sub-grouped 

accordingly into their specific time of preparations.  The preparations under 

light phase were done either at 1030 or 1430, while the recordings were 

conducted at the rat’s dark phase equivalent at 2130 or 0230. One-way 

ANOVA test was used to determine any statistically significant differences 
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between the experimental stage (eg: 1030, 1430, 2130 and also 0230). Any 

statistical significant values from the ANOVA test were then confirmed with 

Fisher’s Least Significant Difference (LSD) post hoc test. 
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3.3 Results 

 

3.2.1 Baseline recording between day and night   

 

Cardiorespiratory activity was recorded from the WHBP of rats at different 

times of day (Figure 3.1). The recorded mean PP for the nightime animals 

(n=18, 61.6 ± 3.6 mmHg) was significantly higher than the daytime animals  

(n=10, 51.6 ± 2.2 mmHg, p= 0.024). The tonic discharge of the sympathetic 

chain in thoracic level was also significantly higher at night (n= 17, 4.7± 0.5 

AUC) than during the day (n=8, 3.0 ± 0.6, p=0.011). The nightime animals 

displayed an increased PND frequency (Daytime: n=9, 12.8 ±1.1 RPM; 

Nightime: n=19 15.7 ± 0.6 RPM, p= 0.037). There was no statistical difference 

in heart rate between night (n=19, 306.4 ± 5.8 BPM) and day (n=10, 327.5 ± 

13.5 BPM). There was also no statistically significant difference between 

cardiac vagal index measured from the RSA at day (n= 19, 9.5 ± 1.7 BPM) 

and nightime (n=9, 8.5 ± 1.6 BPM). The statistical summary can be found in 

Figure 3.2 with further details on Table 3.1. 

 

3.2.2 The physiological trend  

 

Further analysis on the circadian profile of the WHBP preparation was later 

studied by sub-grouping accordingly to the time in which each experiment was 

performed (Table 3.2 and Figure 3.3). The indicated times of experiments 

were equivalent to 10:30, 14:30 during the light phase, and 21:30 and 02:30 

during the dark phase. The average HR of the rats started with highest point 

during the light phase at 10:30am (n=4, 333.4 ± 24.4 bpm), and slightly lower 

at 14:30pm (n= 6, 323.6 ± 17.5 bpm). The HR reached the lowest bpm at 

21:30pm (n=11, 302.4 bpm ± 9.5 bpm) and slightly increased later at 02:30 

am (n=8, 311.9 ± 4.1 bpm). However, a one-way ANOVA showed no 
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statistically significant differences in the HR of the preparations between each 

experimental time (F (3, 25) = 1.086, p = 0.373. 

There was a statistically significant difference in PP between groups as 

determined by one-way ANOVA (F(3, 24) = 3.299, p = 0.038). A LSD post hoc 

test revealed the PP was significantly higher at 21:30 pm (n= 10, 67.5 ± 4.4 

mmHg) compared to the PP at 10:30 am (n=4, 49.9± 3.9, p=0.021), 14:30 pm 

(n= 6, 52.7 ± 2.7, p=0.026) and 02:30 am (n=8, 54.3 ±4.8, p = 0.030).   

The average RSA started low at 10:30 am (n=3, 7.1 ± 2.5 ∆bpm), elevated at 

14:30 pm (n=6,9.2 ± 1.5 ∆bpm) and reached the peak at 21:30 pm (n=11, 10.4 

± 2.7 ∆bpm). The RSA then dropped to 8.3 ± 1.8 ∆bpm (n=8) at 02:30 pm. 

However, one-way ANOVA analysis on the RSA showed these are not 

statistically significant (F(3,24) = 0.265, p = 0.850). 

The sympathetic activity recorded from low thoracic sympathetic chain 

showed a significant upward trend from evening until late nightime 

preparation. A statistically significant difference between groups are indicated 

with one-way ANOVA (F (3, 21) = 4.234, p = 0.017). A LSD post hoc test 

revealed the ∫SND was significantly higher at 02:30 am (n= 7, 5.9 ± 0.9 AUC) 

in comparison to 14:30 pm (n=4, 2.2 ± 0.5 AUC, p = 0.003) and 21:30 pm 

(n=10, 3.9 ± 0.3 AUC, p = 0.027). No significant differences were detected in 

the sympathetic nerve activity between the 10:30am and any other WHBP 

preparation.  

The PND frequency doesn’t show much variation between preparations at 

different times (F (3, 24) = 1.972, p = 0.145). This contrasts to when results 

from both groups of day time rats were compared with those from both groups 

of night time rats, where respiratory frequency was increased in rats from night 

time groups.
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Figure 3.1 The baseline of cardio respiratory activity recorded in the 

Working Heart Brainstem Preparation 

Examples of the baseline recording from the different timing of WHBP are 

shown in (A) daytime and (B) night-time. The RSA is measured from the 

dipping amplitude of HR (circled) that occurred concurrently with the PND. 

The sympathetic activities were measured from the area under the curve of 

the integrated SND. A striking sympathetic tone (SND) and respiratory 

frequency typically recorded from the nightime preparation. This was 

inconsistently accompanied by the perfusion pressure and also heart rate.
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Figure 3.2: The day-night animals displayed a circadian physiological 
profile in the WHBP preparation 

The B) perfusion pressure, D) sympathetic nerve activity and E) respiratory 

frequency in the night time animals were significantly higher than the daytime. 

Insignificant physiological profiles between groups were observed in the A) 

heart rate, and C) respiratory sinus arrhythmia. *, p<0.05; **, p<0.01; *** p,< 

0.005. Statistical details included on Table 4.1 below.    
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Table 3.1The statistical details of physiological profile in different 
circadian cycle from WHBP preparation 

 

 N Mean Std err Min Max P value 
HR 

(bpm) 

Day 10 327.5 13.5 250.4 403.2 
0.115 

Night 19 306.4 5.8 220.4 327.4 

PP 
(mmHg) 

Day 10 51.6 2.2 38.1 59.9 
0.024 

Night 18 61.6 3.6 37.6 91.1 

RSA 
(∆bpm) 

Day 9 8.5 1.6 1.9 16.3 
0.923 

Night 19 9.5 1.7 2.8 29.5 

∫SND 
(AUC) 

Day 8 3.0 0.6 1.5 7.0 
0.011 

Night 17 4.7 0.5 2.5 9.7 

 
f PND 

(rpm) 

Day 9 12.8 1.1 8.0 17.0 
0.037 

Night 19 15.7 0.6 8.0 19.0 
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Figure 3.3: The physiological profiles from the Working Heart Brainstem 
preparation at the four different recording times 

There are no significant differences at different time points between heart rate 

(A), RSA (C), respiratory frequency (E). In contrast, perfusion pressure (B) 

and SND (D) were higher at night. *, p<0.05; **, p<0.01; *** p, < 0.005. 

Statistical details included on Table 4.2 below.



 

86 

 

Table 3.2: The statistical details of physiological profiles from different 
timings of the WHBP preparation 

 

 Time N Mean Std err Min Max  P value 

HR  
(bpm) 

Day 
10:30 4 333.4 24.4 298.75 403.29 

ns 
14:30 6 323.6 17.5 250.1 364.12 

Night 
21:30 11 302.4 9.5 220.45 328.03 
02:30 8 311.9 4.1 287.31 326.73 

PP 
(mmHg)  

Day 
10:30 4 49.9 3.9 38.18 54.55 0.021 

14:30 6 52.8 2.8 45.02 59.93 0.026 

Night 
21:30 10 67.5 4.4 49.12 91.1 Max 

02:30 8 54.3 4.8 37.63 76.28 0.030 

RSA  
(∆ bpm) 

Day 
10:30 3 7.1 2.5 3.9 12.05 

ns 
14:30 6 9.2 1.5 1.92 16.33 

Night 
21:30 11 10.4 2.7 3.15 29.51 

02:30 8 8.3 1.8 2.83 15.39 

∫SND 

(AUC) 

Day 
10:30 4 3.9 1.1 8 17 ns 

14:30 4 2.2 0.5 9 16 0.003 

Night 
21:30 10 3.9 0.3 8 19 0.027 

02:30 7 5.9 0.9 12 19 Max 

 
Resp f 
(rpm) 

Day 
10:30 4 12.8 2.1 2.64 7.03 

ns 
14:30 5 13.0 2.4 1.55 2.89 

Night 
21:30 11 16.2 0.9 2.46 5.32 

02:30 8 15.9 0.7 2.83 9.66 
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3.4 Discussion 

 

3.4.1 Main findings 

 

In this study, the circadian cardio-respiratory profiles of rats that have been 

acclimatized either into a light phase or dark phase using the WHBP were 

assessed. PP, SND and PND were significantly higher during the night phase 

than the light phase. In contrast, HR and RSA were not significantly different 

between day and night. The animals were then sub grouped according to the 

time of day of recording and significant differences between PP and SND were 

detected. The presence of these differences and their relevance to the WHBP 

and subsequent studies in this thesis will be discussed below.   

 

3.4.2 Perfusion pressure and sympathetic nerve activity exhibit 

circadian variance in the WHBP. 

    

The circadian variation in maintenance and control of blood pressure has long 

been recognized in humans (Millar-Craig et al., 1978; Krauchi & Wirz-Justice, 

1994) and laboratory animals (Janssen et al., 1994; Van Den Buuse, 1994). 

Consistent with these findings, circadian influences on PP were detected in 

the WHBP in this study, albeit opposite to human timings - the PP was 

significantly higher during the nighttime, with a peak at 2130 at night and 

lowest at 1030 in the morning.  

The significant physiological variation in PP may be underpinned by the 

differences in the sympathetic nerve activity observed in the diurnal and 

nocturnal WHBP preparations. Such circadian patterns of SND as well as BP 

are found with humans.  MSNA recording from healthy subjects in dark phase 

while sleeping (overnight) showed decreases in sympathetic outflow 

specifically during non-rapid eye movement (non-REM) sleep and 
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progressively into deeper sleeping stages (Okada et al., 1991). The decrease 

in the sympathetic efferent outflow during the non-REM sleep stages were 

associated with decrease in arterial pressure and heart rate (Somers et al., 

1993). The rapid eye movement (REM) sleeping stage which is most manifest 

toward the end of sleep, before arousal, showed profound sympathetic 

activation with the HR and BP returning to levels similar to those during 

wakefulness (Somers et al., 1993). A major influence on rhythms in SND (and 

by association, blood pressure) appears to be the SCN. A bright light exposure 

(15 minutes at 5000 lx) in healthy subjects increased the sympathetic nerve 

activity as measured directly from their muscle sympathetic nerves. The 

elevated MSNA further increased and became significant during post - bright 

light exposure (Saito et al., 1996).  

Unlike humans, direct measurement of the sympathetic nerve activity in an 

effort to study the circadian variation in rodents is scarce. The nearest study 

was performed in rats where the sympathetic nerve activity measured 

indirectly through plasma noradrenaline and adrenaline level in free moving 

rats, collected hourly during 12 hour light and dark period. It was found that 

the circulating adrenaline and noradrenaline were significantly higher during 

the nightime, along with the more active behaviour pattern (e.g.: grooming, 

feeding, drinking, resting) (De Boer & Van der Gugten, 1987). Similarly, a 24 

hour telemetric recording of heart rate variability showed higher LF/HF ratio in 

the dark-phase, suggesting predominant sympathetic nervous activity at night 

(Hashimoto et al., 1999). Hence, the experiments in this chapter are 

consistent with different circadian autonomic profiles between humans and 

rats, but both exhibiting a circadian rhythm. This is evident as the current 

WHBP preparation showed the sympathetic activity was significantly higher at 

night, with the highest levels noted in the 2130 preparation.  
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3.4.3 Persistence of Circadian Rhythms in PP and SND in WHBP  

 

An important point to note is that the circadian rhythms in PP, SND and PND 

persisted in the WHBP, in which the hypothalamus has been removed. As 

discussed earlier in the Introduction (Section 3.3.2) circadian rhythms are set 

by the neuronal network from the SCN, how do these rhythms persist in its 

absence? Notably, circadian rhythms are driven by gene expression changes 

in the master clock in the SCN, but these serve to entrain similar rhythms in 

gene expression in cells of other organs and tissues. For example, oscillations 

of clock genes (per2, bmal1 and clock) have been reported in CNS regions 

controlling the baroreflex functions, such as the NTS and RVLM (Herichová 

et al., 2007). How fluctuations in expression of these genes influence the 

behaviour of neurons in these areas, for e.g. by controlling expression of other 

genes such as ion channels, is unknown. Indeed, it is not known if specific 

cells are under circadian influence, or indeed how other regions controlling 

autonomic outflow, such as the IML, may also display circadian rhythms. 

Crucially, since the WHBP is a short term preparation, it is clear that circadian 

changes in the brainstem circuits controlling PP and SND are sufficient to 

influence these activities. Future studies may address the changes in specific 

cell types and how they contribute to the circadian differences observed in this 

study. 

 

3.4.4 Respiratory rate and circadian influences in WHBP 

 

In these studies, respiratory rate (as measured by PND) was significantly 

higher in nighttime rats. This is consistent with observations in adult rats, 

which when placed into a plethysmography chamber for 3 consecutive days 

(12 hour L: D) showed substantial breathing oscillation, particularly during the 

dark phase (Seifert & Mortola, 2002). Using a similar chamber method, freely 

moving rats were found to have an increased ventilation in the dark phase, 

driven by an increased respiratory frequency (Stephenson et al., 2001). 
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However, these previous studies have examined awake animals, which were 

free to move and such movements may contribute to the increased ventilation. 

Since the WHBP is static, the increased PND is not driven by movement: this 

suggests that there are changes in the respiratory pattern generator network 

itself that leads to the increased PND. PND was therefore decreased in the 

light phase, when rats are more likely to be asleep. Such a decrease in 

respiratory drive could play a role in the expression of Ondine ’s Curse (aka 

congenital chronic hypoventilation syndrome), when the central drive for 

respiration is already diminished and reflex control of CO2 levels via the 

retrotrapezoid nucleus circuitry may come to the fore (Guyenet, 2008). 

 

3.4.5 Is vagal tone affected by the circadian rhythm? 

 

Unlike the sympathetic nerve activity, variation in the parasympathetic tone in 

relation to the circadian rhythm is debatable. From our WHBP record, indirect 

measurement of the cardiac vagal tone by examining respiratory sinus 

arrhythmia did not significantly vary between the day and night time. It was 

previously postulated that the autonomic control of the parasympathetic is not 

entrained by the light/dark phase since the circadian HRV variation persisted 

in vagal neuropathy subjects (Malpas & Purdie, 1990). Recent evidence from 

SCN damaged patients that underwent overnight ambulatory 

polysomnography did not have a significant HRV across the sleep stages in 

comparison to healthy controls (Joustra et al., 2016). This suggests the SCN 

has no primary role in the parasympathetic autonomic control since sleeping 

phase is frequently associated with cardiac vagal pre-dominance. Joustra’s 

observation is essentially contradicted by another study where the 

parasympathetic- associated HRV profiles of healthy volunteers showed a 

day-night pattern, marked by peak at nighttime and plateau at daytime 

(Bonnemeier et al., 2003).  

Furthermore, a neuroanatomical study using a series of retrograde viral 

tracers suggests the alternating sympathetic-parasympathetic nerve activity is 
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controlled by segregated pre-autonomic neurons in the hypothalamus. 

Injection of Pseudorabies virus (BGAL)-PRV into the sympathetically 

denervated liver (so the virus infects vagus nerve only), and GFP-PRV 

injected simultaneously into the adrenal (to infect the sympathetic nerve only) 

has stained separate pre-autonomic neurons in the PVN as well as the SCN 

(Buijs et al., 2003). The presence of pre-sympathetic and pre-parasympathetic 

neurons projection also can be seen in the NTS, the main cardiovascula r 

autonomic integration centre. This proposes the SCN balances sympathetic 

and parasympathetic outputs to peripheral organs through separate pre-

autonomic neurons where the PVN and NTS are involved in the interactions 

(Buijs et al., 2003). However, careful interpretation on the neuroanatomical 

result is required as there is a possibility that different organs were just 

projecting to different targets in the central nervous system. Also, functional 

significance of this differential autonomic neuronal projection into the 

hypothalamic circadian centre (eg: SCN) needs further investigation.  

 

3.4.6 Future application  

 

The study on diurnal rhythms is relevant to cardiovascular disease since the 

normal diurnal variation is altered in manifesting cardiovascular disease 

(Shaw et al., 2001) associated with increased end organ damage (Foley & 

DuBois, 1937)  and associated with acute cardiovascular events (Boscan et 

al., 2002). Cardiovascular events also exhibit 24-h variability in occurrence 

with a prominent peak between 06:00 h and noon  (Youcef et al., 2014), 

parallel with the diurnal rhythmicity of sympathetic vasoconstriction activity 

suggesting autonomic blood pressure control may participate in triggering 

acute cardiovascular events (Panza et al., 1991). The diurnal sympathetic 

rhythm obtained in humans is, however, contrary to the current WHBP 

findings, where heightened sympathetic activity was observed during the dark 

phase. Unfortunately, the vast majority of studies has been carried out on rats 

and mice during the daytime when the nocturnal animals are at rest. 



 

92 

 

Therefore, while studying the physiological functions in nocturnal animals 

during the daytime does not make invalid results, it needs to be considered 

during interpretation process. 

 

3.4.7 Conclusion 

 

This chapter is the first to examine the autonomic and physiological functions 

of rats in different parts of the circadian cycle using the WHBP. A key finding 

was that circadian differences in SND, PP and PND were consistent with 

those previously observed in intact animals and displayed a reverse cycle to 

that in humans. This is the first observation that SND was significantly higher 

in nighttime WHBPs. It is not yet clear if the differences in the physiological 

responses between day and nightime animals are also modulated by the 

parasympathetic nervous system. However, it is important to note these 

differences when designing experiments in rats that examine autonomic and 

respiratory activity.
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Chapter 4 An anatomical and functional study of the central 

afferent nerve projections from the tragus of the external ear 
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4.1 Introduction 

 

Different sites of stimulation of the auricle that is termed transcutaneous vagal 

nerve stimulation (tVNS) include the tragus, concha and cymba concha since 

there is ABVN innervation into these regions (see General Introduction 

section 1.3.7).  Since Clancy et al 2014 showed a decrease in sympathetic 

nerve activity via tragus stimulation in humans, this chapter examined the 

central projections of sensory afferents innervating the tragus, using the rat 

model. In addition, the effects of tragus stimulation on cardiorespiratory 

function in the WHBP were investigated. 

 

4.1.1 Functional effects of tragus stimulation 

 

Current evidence suggests tragus stimulation modulates autonomic control of 

the heart. In heathy human subjects (20- 60 years old),15 minutes of tragus 

stimulation (200μs, 30 Hz, 1-50 mA) shifted the cardiac autonomic function 

toward parasympathetic predominance as indicated from HRV analysis 

(Clancy et al., 2014). This was accompanied by a significant decrease in the 

muscle sympathetic nerve activity (MSNA) during tVNS recorded from muscle 

microneurography. The observed reduction in MSNA with tVNS could help 

explain the therapeutic potential of tragus stimulation in cardiovascular 

diseases characterised by sympathoexcitation (He et al., 2012; Murray et al., 

2016).  

Experimental models have assisted investigations into tVNS via the tragus 

and point to potential therapeutic uses. In dogs in which atrial fibrillation (AF) 

had been induced using rapid atrial pacing, low level stimulation of the right 

tragus (LLTS) dampened the fibrillation (Yu et al., 2013). Longer LLTS (9 

hours at 80% below threshold) stimulation delivered along with atrial pacing 

on anaesthetized dogs prevented the loss of connexin proteins (e.g.: Cx 40 

and Cx 43) in atrial tissues that were measured through Western Blot. This 
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suggests the anti-fibrillatory effect posed by the LLTS is through the defence 

against cardiac remodelling and preservation of its electrical conduction via 

gap junction (eg: Cx40 and Cx43) (Chen et al., 2015). Indeed, the LLTS effects 

on remodelling of the left ventricle have been studied specifically after 

myocardial infarction. Applying the LLTS twice per day for 90 days significantly 

improved cardiovascular system performance measured via ventricular 

contractility and diastolic function, reduced infarct size, decreased nonspecific 

inflammatory and fibrosis markers thus suggesting attenuation of cardiac 

remodelling   (Wang et al., 2014). These cardio protective effects were 

accompanied with plasma noradrenaline reduction, suggesting inhibition in 

central sympathetic nerve activity. Reduction of sympathetic output by LLTS 

was supported in a recent study in anaesthetised dogs (Zhou et al., 2016). 

Cardiac sympathetic hyperactivity was induced by a high-voltage electrical 

stimulation (20Hz, 0.1 ms, 10-70 V) on the right stellate ganglion (RSG), which 

significantly increased sinus rate in a voltage-dependent fashion (Zhou et al., 

2016). The sinus node acceleration and neural activity recorded from the right 

stellate ganglion (RSG) were, however, attenuated after 3 hours of the LLTS 

(20 Hz, 2 ms, voltage 80% below threshold). Furthermore, the neural related 

protein expression (cFos and NGF) in the RSG measured using qPCR and 

Western blot were significantly lower in the LLTS group. Electrophysiological 

recording from the RSG showed attenuation of its neural activity after 3 hours 

of LLTS, suggesting inhibition of sympathetically induced sinus node 

acceleration (Zhou et al., 2016).  

Patients attending for AF ablation procedure were treated with an hour of 

LLTS (20Hz, 50% below threshold) under the influence of general anaesthesia 

(Stavrakis et al., 2015). Similar anti-fibrillatory effects were reported in these 

people as were observed in the animal models, in addition to suppressed 

proinflammatory factors like TNFα and CRP. Considering that tVNS via the 

tragus is easy to apply, reduces sympathetic nerve activity in humans and has 

positive effects on cardiovascular disease models, further investigation into 

pathways and mechanisms appears warranted.  

 



 

96 

 

4.1.2 Central afferent projections from the tragus 

 

As noted in the Introduction, the external ear of mammals receives a relatively 

large sensory afferent innervation, with the three innervating nerves exhibiting 

overlapping, but distinct, distributions. The central portion of the auricle 

appears to be innervated differently to the peripheral portion: in cats, injection 

of horseradish peroxidase (HRP) into the central auricular region resulted in 

retrogradely labelled afferent cell bodies predominantly in the ganglia of 

cranial nerves, whilst  peripheral auricular (tragus included) injections 

revealed labelled neurons predominantly in C1-C4 spinal ganglia (Satomi & 

Takahashi, 1990).  In a different approach, human cadaveric dissection of the 

nerves innervating the human auricle identified three innervating nerves 

namely the Auricular branch of the vagus nerve (ABVN), the greater auricular 

nerve (GAN) and also a branch of the trigeminal nerve, the 

Auriculotemporal nerve (ATN).  These sensory nerves cover the auricular 

area at a variable degree in the respective dermatomes - the tragus has an 

almost even distribution of the GAN and also ABVN at 45% and 46% 

respectively (General Introduction Section 1.3.1).    

  

Previous anatomical studies observed an overlap of the central projection 

from the GAN and ABVN into the dorsal horn of the upper cervical and a main 

autonomic relay centre, the NTS. The application of HRP on the GAN in 

rabbits revealed afferent cell bodies in the ipsilateral dorsal root ganglion (C2-

C3) and the superior cervical ganglion, thus suggesting its origins from the 

cervical plexus (Liu & Hu, 1988). Nerve fibres were detected in the dorsal 

column of the upper cervical spinal cord and strongly stained in laminae I-V at 

the C2. Extending rostrally, the afferent GAN also has intense labelling in the 

cranial nerve nuclei in the medulla, accounting for caudal subnucleus of the 

spinal trigeminal nerve, the solitary nucleus, and also medial and lateral 

cuneate nuclei. ABVN central projection has been studied earlier in cats and 

rats where the sensory endings terminated  ipsilaterally  on the solitary 
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nucleus, spinal trigeminal nucleus, rostral cuneate nucleus, in addition to the 

spinal dorsal horn of the upper cervical (Nomura & Mizuno, 1984; He et al., 

2013). The frequent termination of afferent staining from the auricle on the 

NTS has been believed to be the explanatory mechanism for autonomic 

modulation from ear stimulation, hence was termed the Auriculovagal Afferent 

Pathway (He et al., 2013).  

 

4.2 Research gap 

 

To date, there have been no reports on the central projections of the tragus in 

an effort to understand its beneficial potential in modulating cardiac autonomic 

control. The nearest study was injection of HRP into peripheral region in cats 

auricle (tragus included) where primary afferents were labelled in the cervical 

and spinal ganglion (Satomi & Takahashi, 1990).  In rats, CTB was injected 

into the auricular concha of rats where labelled afferent terminals were 

observed on the lateral NTS along with the spinal trigeminal nucleus, cuneate 

nucleus and also spinal dorsal horn of 2-3 cervical segments (He et al., 2013). 

This however might not reflect the sensory nerve innervation into the tragus 

as human cadaver examination showed that the cymba concha is 100% 

innervated by the ABVN, while the tragus has a great mixture of ABVN and 

also GAN (Peuker & Filler, 2002). The tracing study on cats by Satomi and 

Takahashi, 1990 also showed that the HRP injection from the concha is mainly 

detected within cranial ganglia (superior vagus, trigeminal) while peripheral 

injections (tragus included) concentrated within the spinal ganglia (C1-C4). 

Thus mapping out the primary afferent projections from the tragus would 

facilitate better understanding and interpretation on the effects elicited from 

the tragus stimulation. The cardiorespiratory effects of tragus stimulation in 

the absence of anaesthetic were examined in the Working Heart Brainstem 

Preparation. Selective de-afferentation was performed to examine which 

afferents potentially influenced the cardiorespiratory effects of tragus 

stimulation.  
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4.3 Hypothesis 

 

 The tragus afferents project into the NTS  

 Tragus stimulation will cause a sympatho-inhibition in the WHBP. 

 This sympatho-inhibition from tragus stimulation is mediated by the 

auricular branch of the vagus nerve. 

 

 

4.4 Aim   

 

The aims of this study were: 

1. To map the afferent central projections of the tragus in rats using the 

neuronal tracer Cholera Toxin B (CTB).  

2. To examine potential cell contacts of the tragus afferents using 

immunohistochemistry. 

3. To determine the effects of tragus stimulation on cardiorespiratory activity 

in in the WHBP.  

4. To examine potential pathways mediating tragus stimulation by cutting 

specific nerves and examining if tragus stimulation elicited similar effects as 

in fully intact animals.
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4.5 Methods 

4.5.1 General Methods 

 

The general methods that been used in this chapter has been discussed in 

details in the general methods chapter. This includes the injection of CTB into 

the tragus (Section 2.1) and the WHBP (Section 2.2). All the animals (n=30) 

used in the WHBP experiments were night phase animals that been 

acclimatized inside a reverse cycle cabinet for at least 7 days. 3 groups of 

animals been studied:  

1) Fully intact (n=10)  

2) Right cervical vagotomised (n=10)  

3) C1-C3 transected animals (n=10).  

 

4.5.2 The Working Heart Brainstem Preparation (WHBP) 

Stimulation timeline 

 

After the preparation has settled in by displaying eupnoeic breathing pattern 

for at least 30 minutes, baseline parameters were recorded. These include the 

heart rate (HR), perfusion pressure (PP), sympathetic nerve discharge (SND) 

and also phrenic nerve discharge (PND). Indirect measurement of  respiratory 

sinus arrhythmia (RSA) was measured by mean changes in the HR in 

response to breathing cycle. The right tragus stimulation was performed using 

a DS3 Constant Current Isolated Stimulator (Digitimer Ltd, UK) connected to 

a modified metal ear clip (Figure 4.1). The stimulation was applied for 5 

minutes at 100 Hz, 2.5 mA with any current leakage grounded. The effects of 

post stimulation was compared immediately (post-stim) and much later 

(recovery). The effects of tragus stimulation was further examined in 

intervention WHBP group.  



 

100 

 

 

C 

 

 

Figure 4.1: The tragus stimulation  during WHBP experiment 

The electrical stimuli was applied on the A) the tragus using alligator clip. B) 

the cathode was applied on the outer tragus and anode on the inner tragus. 

C) Experimental parameters were recorded after the preparation has reached 

the eupnic breathing pattern for at least 30 minutes. The top black arrows 

indicate specific timings when the parameters were recorded. The effects of 

tragus stimulation were analysed and compared during baseline, stimulation, 

post-stimulation and recovery. The effects of tragus stimulation also compared 

in groups that received intervention procedure immediately after initiation of 

the WHBP (red arrow). 
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4.5.3 Sectioning of the cervical vagus nerve 

 

In some preparations the effects of sectioning the cervical vagus nerve on 

tragus evoked responses was investigated. Dissection of the vagus nerve 

began after animals were decerebrated and before the preparations were 

taken into the recording chamber. Dissection was initiated by removal of the 

superficial muscle layers on the right side (ipsilateral to the ear stimulation 

site). The sternohyoid muscle, a narrow band of muscle lying nearest to the 

trachea, was removed, exposing the carotid bifurcation  beneath. At this point, 

vagus nerve is visible lying next to the common carotid artery surrounded by 

a layer of sheath. Careful identification was required as the superior cervical 

sympathetic ganglion also lies nearby. The vagus nerve was carefully isolated 

from the sheath that attached to the common carotid artery and a thread was 

tied around the vagus nerve trunk. This thread was used to pull the nerve 

gently away during the WHBP preparation while iris scissors were utilised to 

cut the nerve without touching the surrounding tissues. With practice, this 

whole dissection process took between 2-3 minutes. It was important to make 

sure the whole dissection finished as quickly as possible for better viability of 

the nerve recording in the WHBP preparation (Docherty et al., 2005). 

 

4.5.4 Dissections of the dorsal roots of C2-C3 

 

Following the decerebration procedure, posterior neck muscles that covered 

the upper cervical cord axis were dissected and vertebrae were exposed. The 

spinous processes were carefully laminectomized (Figure 4.2). Ipsilateral to 

the site of the stimulation, the dorsal roots from the first till third cervical spinal 

were cut using springbow dissecting scissors. This dissection took 2-3 

minutes.
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Figure 4.2: The schematic diagram for upper cervical (C1-C3) dissection 

in WHBP 

The upper cervical spinal cords were exposed by removal of the spinous 

process. The ipsilateral dorsal root from the stimulation site was carefully cut. 

The coloured dotted lines represent the cutting areas that need to be made.   

 

4.5.5 Statistical Analysis 

 

The normality test for numerical datasets were appropriately explored with the 

Shapiro-Wilk test due to small sample size. The significant value of the 

normality test greater than 0.05 considered as normal, while below than 0.05 

is considered to be deviated from a normal distribution.  

For normal distributed data, the effects of electrical stimulation on the tragus 

were compared between baseline and other time points with repeated 
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measure ANOVA. Any statistical significant values from the ANOVA test were 

then confirmed with Fisher’s Least Significant Difference (LSD) post hoc test.  

To determine if the physiological functions differed between 2 groups only (in 

comparing the effects of vagotomy on physiological parameters of the WHBP), 

an independent samples t-test was performed with p<0.05 as the significance 

level for the normally distributed data. 

The non-normally distributed data was analysed with non-parametric analysis 

(Friedman test) using IBM SPSS Statistics 21. Identification of the significant 

points were made with the Wilcoxon signed-ranked test. 

 



 

104 

 

4.6 Results 

 

4.6.1 Localisation of the central afferent labelling from the tragus 

 

Rat brains were examined starting from the level of the 4 th ventricle (Bregma 

-10.04 mm) to upper cervical cord in C4. The areas labelled with CTB within 

the CNS were ipsilateral to the injected tragus and were identical for each of 

the animals (Figure 4.3). In the rostral brainstem (Bregma -12.72mm) there 

was labelling of the Paratrigeminal nucleus (Pa5) (Figure 4.3A). In the lower 

brainstem level (Bregma -14.08 mm) a larger area of afferent termination was 

observed in the Spinal trigeminal tract (Sp5) extending towards cuneate 

nucleus (Cu) (Figure 4.3B). In the most caudal brainstem (Bregma -14.60 

mm) the afferents labelled from Cu and extended ventromedially to the NTS 

covering the lateral, dorsomedial, and also medial of the NTS (Figure 4.3C). 

Double labelling with ChAT showed rare CTB labelled structures in close 

proximity to the ChAT labelled cells in the medial NTS (Figure 4.3Ci). 

In the upper cervical cord (C1-C3) there was substantial CTB labelling within 

the dorsal horn, in varying laminae (Figure 4.4). In C2, a large staining area 

covered laminae I, III, and IV but not laminae II (Figure 4.4B). The main 

termination of CTB labelled from the tragus was detected in the section of C3 

covering laminae III and IV ( Figure 4.4C). No CTB staining was observed 

distal to the rostral part of C3. Double labelling with ChAT suggested potential 

cell contacts in laminae IV only in all aforementioned cervical levels.  

Other potential cell contacts are also identified using monoclonal antibodies 

listed from general methodology. It must be noted that no cell type examined 

appeared significantly innervated by the afferents and therefore quantification 

was not undertaken. Calb-28k which is highly expressed in laminae II of the 

dorsal horn was detected to have infrequent appositions from the CTB 

terminations (Figure 4.5A and Figure 4.5Ai). Parv, another calcium binding 

protein, was potentially contacted by the afferent terminals in the Pa5 of the 
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brainstem (Figure 4.5B and Figure 4.5Bi). Potential afferent contacts onto 

GABA-ergic cells were observed rarely (Figure 4.5B and Figure 4.5Bi). 

NK1R, which has high distribution in superficial laminae (e.g.: laminae I) was 

also infrequently contacted with the CTB terminations. 
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Figure 4.3: Labelled afferents in the brainstem following injection of CTB 
into the tragus, with co-staining for ChAT immunofluorescence 

A) Rostral brainstem with afferents labelled in the Pa5 (magnified: Ai). B) 

Afferents more caudally seen in SP5 (magnified:Bi). C) Labelled afferents 

course from Cu to dorso-medio lateral NTS. Example of a rare apposition 

between a labelled afferent and a ChAT immunoreactive cell (Ci). Pa5- 

paratrigeminal nucleus, Sp5- spinal trigeminal tract, Cu-cuneate nucleus, 

NTS- nucleus tractus solitarius, ChAT – Choline acetyl transferase, CTB – 

Cholera Toxin B .
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Figure 4.4: CTB-positive afferents labelled in the upper cervical cord 
following injection of CTB into the tragus, detected with double staining 

of CTB and ChAT immunofluorescence 

A) Cervical slice at C1 with CTB-positive afferents terminating in laminae III 

and IV. B) Cervical slice at C2 with CTB-positive afferents terminating in 

laminae I, III and IV. C) Cervical slice at C2 with CTB-positive afferents 

terminating in laminae I, III and IV. Ai-Ci) Potential cell contact of the labelled 

afferents with ChAT positive cells mostly detected in laminae IV. ChAT – 

Choline acetyl transferase, CTB – Cholera Toxin B.
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Figure 4.5: CTB labelled afferents (red) in various locations of spinal cord 
and brainstem with examples of infrequent appositions to potential post 

synaptic cell types (green) 

A) Infrequent apposition of the CTB afferent terminals with Calb cells were 

observed in laminae II of the dorsal horn. B) Brainstem section where afferents 

apposed Parv positive neuron. C) Dorsolateral Sp5 with a rare example of potential 

apposition between CTB labelled afferents and GAD 67 immunoreactivity D) 

Abundant NKR1 positive cells in laminae I of the dorsal horn have infrequent 

contact with the CTB terminations. All potential contacts are depicted on (Ai-Di) 

and shown by arrows where appropriate. CTB – Cholera Toxin B, Calb – Calcium 

binding protein, Sp5 – spinal trigeminal tract, GAD 67 – glutamic acid 

decarboxylase 67, NKR1 – neurokinin receptor 1, Parv – parvalbumin ,Pa5 – 

paratrigeminal nucleus, Cu – cuneate nucleus.
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4.6.2 Effects of tragus stimulation on heart rate, sympathetic 

nerve discharge, perfusion pressure and phrenic nerve 

discharge. 

 

HR was recorded from the ECG signal of the phrenic nerve with the average 

taken for 1 minute before the stimulation began (301.2 ± 11.4 bpm, n=10) 

(Figure 4.6). Tragus stimulation significantly reduced the HR 

(F(1.74,13.95)=1.58, p = 0.02). During stimulation, the HR was reduced to 

297.9 ± 11.5 bpm  (p=0.034) and persisted at post-stimulation (297.6 ± 11.6 

bpm  p=0.045). During the recovery period (10 minutes after stimulation 

stopped), HR was not significantly different from the baseline (299.8 ± 11.6 

bpm) (p=0.17). These results indicate tragus stimulation causes a short term 

heart depressor response in the WHBP.  

PP recorded from the distal end of the aorta had a baseline average of 55.4 ± 

5.0 mm Hg. Tragus stimulation significantly lowered PP  from the baseline, 

χ2(3)=6.120,p=0.033 to 53.9 ± 5.1 mm Hg (p=0.008). It further reduced during 

the post-stimulation period (52.8 ± 5.1) (p=0.003). This depressor effect 

persisted during the recovery period, at least 5 minutes after the stimulation 

stopped (52.7 ± 5.0) (p=0.038). Thus the vasodepressor response outlasted 

the HR bradycardiac response.     

The baseline RSA was 7.23 ± 1.17 bpm. Electrical stimulation of the tragus 

did not significantly affect the RSA at any of the time points (F(1.14,10.263) = 

0.985, p = 0.356). (Stimulation; 7.15 ± 1.10 bpm; p=0.831;Post stimulation; 

7.33 ± 0.96 bpm; p=0.93; Recovery; 9.05 ± 1.40; p=0.367).     

There was a significant reduction in the ∫SND from the baseline  4.87 ± 0.52 

AUC (F(1.44, 12.93) = 12.66, p = 0.002).  Electrical tragal stimulation 

significantly lowered the ∫SND  during post-stimulation (3.70 AUC ± 0.36; 

p=0.003) and also during the recovery period (3.17 ± 1.18 AUC; p=0.004).  

Baseline respiratory rate (16.3 ± 1.04 rpm) determined from PND did not 

significantly alter during the stimulation (16.0 ± 1.14 rpm; p=0.26), post 
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stimulation (15.7 ± 1.20) (0=0.20) and during the recovery period (16.4 ± 1.35 

rpm) (p=0.83).  

The duration of inspiratory, expiratory and total respiratory phases did not 

differ significantly during the experiments (Table 4.1).
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Figure 4.6: The effects of tragus stimulation on autonomic and 
respiratory variables in the Working Heart Brainstem Preparation  

Original traces of the WHBP at A) 3 different time points: baseline, post 

stimulation (immediately after stimulation), and also recovery (10 minutes after 

stimulation stopped). No measurements of the SND nerve recording were 

taken during stimulation due to the presence of stimulus related noise that 

could not be eliminated. B) Group data (n=10) indicating HR, PP, RSA, and 

SND during baseline, stimulation (SND excluded), post-stimulation and 

recovery. No significant reduction was observed in the respiration of the 

animals due to tragus stimulation. *, p<0.05; **, p < 0.01; ***, p<0.005. WHBP 

- working heart brainstem preparation, HR – heart rate, PP - perfusion 

pressure, RSA – respiratory sinus arrhythmia, SND – sympathetic nerve 

discharge.        
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Table 4.1: Duration of respiratory phases (seconds) did not change 
upon tragus stimulation 

 

  Ti (s) Te (s) Ttot (s) 

Baseline Average 1.27 3.32 4.59 
Std error 0.08 0.51 0.55 

 
Stimulation 

Average 1.19 3.32 4.51 
Std error 0.09 0.49 0.56 

P value 0.169 0.878 0.333 
Post 

stimulation 
Average 1.16 3.52 4.68 

Std error 0.07 0.58 0.63 
P value 0.059 0.093 0.445 

 
Recovery 

Average 1.23 3.05 4.27 

Std error 0.08 0.44 0.49 

P value 0.959 0.285 0.139 
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4.6.3 The effects of vagotomy on tragus stimulation induced 

changes.  

 

To determine if vagal efferent nerves were involved in responses to tragus 

stimulation, physiological parameters were recorded pre- and post-cervical 

vagal vagotomy (Table 4.2 and Figure 4.7). RSA was significantly reduced 

by unilateral right sided vagotomy (9.7 ± 4.0 bpm VS 4.2 ± 1.1 bpm; p=0.009), 

reflecting vagal involvement. A typical example of the vagal tone reduction 

measured from the heart beat variation can be seen on (Figure 4.7A). Basal 

HR (309.5 ± 5.6 bpm) significantly increased following cervical vagotomy 

(319.9 ± 4.8 bpm, p=0.009). Similarly, respiratory frequency also increased 

after the vagotomy (16.7 ± 1.5 rpm VS 19.0 ± 1.4 rpm, p=0.005). There was 

only a small, but statistically significant (p=0.012), drop in the PP after 

vagotomy (57.9 ± 3.3 mmHg VS 57.2 ± 3.3 mmHg). The baseline integrated 

sympathetic activity (3.7 ± 0.2 AUC) was not significantly altered after the 

vagotomy (4.0 ± 0.2 AUC; p=0.406).  

Tragus stimulation in the vagotomised groups elicited no significant effects on 

the HR, PP and also the RSA (Table 4.3 and Figure 4.8). Repeated measures 

ANOVA revealed significant reduction in SND F(2,14)=4.064,p=0.041  during 

recovery period (4.0 ± 0.2 AUC VS 3.2 ± 0.3; p=0.048). In contrast, PND rate 

significantly increased F(3,27)=3.676, p = 0.024 during the recovery period 

(19.0 ± 1.4 rpm VS 20.2 ± 1.6; p=0.044). Further analysis on respiration 

revealed the significant value increase in breathing frequency lies in the 

reduction of the expiratory phase during the recovery period (Table 4.4).    
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Figure 4.7: The effect of right cervical vagotomy on the physiological 
properties in WHBP 

A) Raw traces of the apparent RSA recorded in non-vagotomised (bottom) in 

comparison to the vagotomised prep (top). B, C) Ipsilateral vagotomy on the 

WHBP animals significantly increased the HR and breathing frequencies D, 

E) PP significantly reduced after vagotomy. F) SND was not affected by 

vagotomy. *, p<0.05; **, p < 0.01; ***, p<0.005. WHBP - working heart 

brainstem preparation, HR – heart rate, PP - perfusion pressure, RSA – 

respiratory sinus arrhythmia, SND – sympathetic nerve discharge.
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Table 4.2: Effects of vagotomy on measured variables   

 

 

 

 

 

 N Mean Std err Min Max P value 

 

HR 
(bpm) 

Baseline 10 309.45 5.64 275.10 329.33  

0.009** Vagotomized 10 319.95 4.78 294.83 346.27 

 
PP 

(mmHg) 

Baseline 10 57.97 3.26 44.17 73.37  
0.012* Vagotomized 10 57.21 3.29 43.68 74.05 

 
RSA  

(∆ bpm) 

Baseline 10 9.77 4.04 2.46 40.28  
0.015* Vagotomized 10 4.22 1.05 1.80 11.46 

 
∫SND 
(AUC) 

Baseline 8 3.79 0.25 2.74 4.85  
0.406 Vagotomized 8 4.01 0.16 3.31 4.48 

 

PND 
(rpm) 

Baseline 10 16.70 1.47 10 24  

0.005** Vagotomized 10 19.00 1.35 13 24 
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Figure 4.8: The effect of tragus stimulation on physiological parameters 
recorded from the Working Heart Brainstem Preparation of the 

vagotomised animals 

Tragus stimulation on the ipsilateral vagotomised animals did not significantly 

affect HR (A), PP (B) or RSA (C). (D) The integrated SND was significantly 

inhibited during the recovery period. (E) The breathing activity significantly 

increased during the recovery period. *, p<0.05; **, p < 0.01; ***, p<0.005. 

WHBP - working heart brainstem preparation, HR – heart rate, PP - perfusion 

pressure, RSA – respiratory sinus arrhythmia, SND – sympathetic nerve 

discharge. 
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Table 4.3: Tragus stimulation in the vagotomised WHBP significantly 
altered the ∫SND and PND rate during the recovery period  

 

 N Mean Std err Min Max P value 

 
HR 

(bpm) 

Vagotomised 10 319.95 4.78 294.83 346.27   

Stimulation 10 318.89 5.03 288.60 341.96 0.529 

Post 

Stimulation 

10 317.65 5.03 287.04 339.23 0.248 

Recovery 10 316.86 4.95 282.27 334.06 0.221 

 
PP 

(mmHg) 

Vagotomised 10 57.21 3.29 43.68 74.05   

Stimulation 10 57.40 3.21 43.44 74.38 0.564 

Post 
Stimulation 

10 57.91 3.65 43.52 80.65 0.352 

Recovery 10 58.32 4.07 43.88 86.66 0.434 

 
RSA 

(∆bpm) 

Vagotomised 10 4.22 1.05 1.80 11.46   

Stimulation 10 4.63 1.58 1.83 16.69 0.678 

Post 
Stimulation 

10 3.72 1.11 1.23 11.92 0.086 

Recovery 10 3.70 1.07 1.09 11.40 0.068 

 

∫SND 
(AUC) 

Vagotomised 8 4.01 0.16 3.31 4.48   

Post 
Stimulation 

8 3.45 0.21 3.31 4.48 0.069 

Recovery 8 3.24 0.30 1.75 4.58 0.041* 

 
PND 

rate 
(rpm) 

Vagotomised 10 19.00 1.35 13 24   

Stimulation 10 19.10 1.69 12 26 0.832 

Post 
Stimulation 

10 20.30 1.78 13 30 0.064 

Recovery 10 20.20 1.63 13 28 0.044* 
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Table 4.4: Significant changes of the expiratory and total phase duration 
(seconds) in response to tragus stimulation in vagotomised WHBP 

 

  Ti (s) Te (s) Ttot (s) 

Baseline Average 0.91 
 

2.85 
 

3.76 
 

Std error 0.03 
 

0.23 
 

0.23 
 

 
Stimulation 

Average 0.88 
 

2.67 
 

3.55 
 

Stderror 0.06 
 

0.29 
 

0.27 

P value 0.603 0.275 0.103 

Post 
stimulation 

Average 0.91 
 

2.67 
 

3.57 
 

Stderror 0.05 
 

0.26 
 

0.25 
 

P value 0.832 0.205 0.166 

 
Recovery 

Average 0.90 
 

2.35 
 

3.25 
 

Stderror 0.05 

 

0.21 

 

0.21 

 
P value 0.848 0.003** 0.006** 
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4.6.4 Functional study to determine the effect of tragus 

stimulation following upper cervical (C1-C3) afferent nerve section  

 

In the anatomical study, significant afferent labelling from the tragus was 

visualised in the dorsal horn of the C1-C3 segments of the spinal cord. We 

were intrigued if afferent projections from the tragus into these classical 

sensory pathways had a role in autonomic respiratory modification due to 

electrical stimulation. Here the functionality of this sensory innervation was 

tested by cutting the afferent nerves in the WHBP and examining the 

physiological effects (Table 4.5 and Figure 4.9) due to tragus stimulation.      

The recorded HR before the stimulation was 277.4 ± 17.4 bpm (n=10). 

Repeated measures ANOVA revealed a significant elevation of HR after 

tragus stimulation F(1.4, 12.2)=4.4,p=0.048 (287.4 ± 17.2 bpm, p=0.047), post 

stimulation (294.6 ± 16.2p= 0.038). Further increases in HR were observed 

during the recovery (307.6 ± 18.4 bpm, p=0.038).  

The basal average of the PP recorded from the distal end of the aorta was 

65.4 ± 5.1 mm Hg. Tragus stimulation did not significantly affect the PP (64.2 

± 5.2 mm Hg). The PP significantly reduced (χ2(3)=12.720,p=0.022) to 63.0 ± 

5.4 mmHg when the stimulation stopped p=0.037 (. The arterial depressor 

effect persisted until the recovery period (61.9 ± 5.9 mmHg) (p=0.028).  

The recorded RSA baseline was 15.36 ± 3.76 ∆bpm. Electrical stimulation on 

the tragus did not significantly affect the RSA during the stimulation (13.4 ± 

3.0 ∆bpm; p=0.093). During post stimulation, however, the RSA significantly 

dropped F(1.2,10.9)=5.5, p=0.034 with the reduction maintained during the 

recovery (Post stimulation; 8.66 ± 1.4 ∆bpm; p=0.043; Recovery; 9.08 ± 1.9; 

p=0.036).  

The integrated SND from the lower thoracic level was initially recorded at 3.82 

± 0.72 AUC. Electrical stimulation of the tragus had no effect on the 

sympathetic nerve activity at any of the time points (Post stimulation= 3.81± 

0.75 AUC; p = 0.693) (Recovery= 2.97± 0.53 AUC; p = 0.141).     
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The effects of tragus stimulation also were measured on the respiratory 

frequency of the preparations F(1.1,7.9)=8.1, p=0.020 as well as the duration 

of the inspiratory/expiratory phase. The baseline respiratory rate (17.8 ± 1.47 

rpm) was significantly increased during the stimulation (18.6 ± 1.6 

rpm)(p=0.006). Further elevation on respiratory activity was seen during the 

post stimulation (20.3 ± 1.63) (p<0.001) and also recovery (21.0 ± 2.3 rpm) 

(p=0.019). Statistical analysis on the inspiratory, expiratory and total 

respiratory duration however showed non-significant changes due to the 

stimulation. The details of this analysis are included in Table 4.6. 

 



 

125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

A 

B C D 

E F 

P
er

fu
si



 

126 

 

 

Figure 4.9: The effect of tragus stimulation on physiological variables recorded from the Working Heart Brainstem 
Preparation of the upper cervical afferent nerve severed animals (C1-C3) 

Tragus stimulation in the upper cervical nerve severed animals significantly reduced the arterial pressure and also the RSA after the 

stimulation stopped. The HR and respiratory frequency immediately increased due to the stimulation where the elevation is 

maintained until the recovery period.  The SND and respiratory duration showed no effects in response to the ear stimulation. *, 

p<0.05; **, p < 0.01; ***, p<0.005. HR – heart rate, RSA – respiratory sinus arrhythmia, SND – sympathetic nerve discharge.
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Table 4.5: Tragus stimulation in the upper cervical nerve transected 
WHBP significantly caused physiological alteration without affecting the 
sympathetic activity  

 

 N Mean Std 
err Min Max P value 

 

 
 

HR 
(bpm) 

 
 

Baseline 10 277.41 17.35 193.87 373.11  

Stimulation 10 287.39 17.15 196.22 368.64 0.047* 
Post 

stimulation 10 294.63 16.20 238.56 369.03 0.038* 

Recovery 10 307.58 18.38 238.07 411.91 0.038* 

 
 
 

PP 
(mmHg) 

Baseline 10 65.39 5.11 48.59 107.79  

Stimulation 10 64.18 5.18 47.72 107.38 0.093 
Post 

stimulation 10 62.96 5.40 46.52 107.43 0.037* 

Recovery 10 61.89 5.62 45.21 107.18 0.028* 

 

 
 

RSA 
(∆ bpm) 

 

Baseline 10 15.36 3.76 1.10 33.46  

Stimulation 10 13.44 2.95 1.29 28.08 0.169 
Post 

stimulation 10 8.66 1.44 1.49 14.20 0.043* 

Recovery 10 9.077 1.88 0.88 17.65 0.036* 

 

∫SND 
(AUC) 

Baseline 8 3.82 0.72 0.83 6.65  

Stimulation 8 3.34 0.59 1.16 5.90 0.197 
Post 

stimulation 8 3.81 0.75 1.03 6.89 0.693 

Recovery 8 2.97 0.53 1.16 4.75 0.141 

 
PND 

frequency 
(rpm) 

Baseline 8 17.75 1.47 10 22  

Stimulation 8 18.63 1.58 10 23 0.006** 
Post 

stimulation 8 20.25 1.63 12 25 0.001*** 

Recovery 8 21.00 2.30 10 30 0.019** 
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Table 4.6: No changes of respiratory phase duration in response to 

tragus stimulation 

 

  Ti (s) Te (s) Ttot (s) 

Baseline 
Average 1.40 3.10 4.49 
Std error 0.14 0.65 0.71 

 
Stimulation 

Average 1.43 2.90 4.33 
Stderror 0.10 0.55 0.56 

P value 0.78 0.221 0.46 

Post 

stimulation 

Average 1.37 2.49 3.86 

Stderror 0.11 0.39 0.38 
P value 0.58 0.166 0.21 

 
Recovery 

Average 1.28 2.23 3.51 
Stderror 0.09 0.36 0.36 

P value 0.58 0.120 0.13 
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4.7 Discussion 

The major findings from these anatomical and functional studies include: 

 The main termination sites for afferents labelled from the tragus were 

in the upper cervical spinal cord, especially C2 and C3.  

 In the brainstem, the NTS and Pa5 received afferent inputs, with the 

Pa5 more densely innervated than the NTS. 

 The anterogradely labelled afferents make rare close appositions with 

ChAT, Calb-28k, Parv, NKR1, and GAD67 immunoreactive cells.   

 Tragus stimulation elicited a decrease in HR and PP, accompanied by 

a sympathoinhibition. The RSA and breathing activity were not 

changed. 

 The decrease in cardiovascular parameters were absent when tragus 

stimulation was applied in the vagotomized preparation. 

Sympathoinhibition was observed during the post-stimulation period, 

alongside an increase in respiratory frequency. 

 Sympathoinhibition was absent when tragus stimulation was applied in 

upper cervical afferent nerve transected preparations. This was 

accompanied by a significant increase in HR and respiratory activity. 

The PP and RSA were decreased after stimulation.  

The summary for these changes can be found in Table 4.7 below. 

 

 

 

 

 

 

 

 



 

130 

 

Table 4.7: Summary of major effects of tragus stimulation in different 

WHBP preparations (ns = no significant change) 

 

 

4.7.1 The cervical spinal cord dorsal horn is a major termination 

site for sensory afferents from the tragus.   

A significant finding was that the major sensory projections from the tragus 

were to the dorsal horn of the C1-C3 cervical spinal cord.  The labelled 

afferents on the upper cervical cord covered laminae I, III & IV. Similar 

labelling in the dorsal horn has been mentioned previously when CTB was 

injected into the inner concha of rats, but no images or other analyses were 

shown (He et al., 2013). This is therefore the first study to reveal the large 

extent of afferent signalling from the tragus to the cervical spinal cord. 

 

Afferent projections from the tragus to the upper cervical dorsal horn 

participate in responses to tragus stimulation.  

Since neuronal tracing from the tragus revealed primary afferents terminating 

in the superficial and deep laminae of the upper cervical spinal cord (C1-C3), 

the potential contribution of these afferents to tragus evoked responses was 

tested by transecting the upper cervical dorsal roots. Interestingly, the 

sympathoinhibition normally elicited by tragus stimulation was absent 

following sectioning of these cervical nerves. Therefore, this suggests the 

 

Preparation 

 

HR 

 

PP 
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PND 

 
Fully intact 

 

   
ns 
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afferents projecting into the dorsal horn play an important role in mediating the 

sympathoinhibition from tragus stimulation.  

Upper cervical spinal cord influences on autonomic cardiovascular control has 

been observed in various spinal cord stimulation (SCS) studies. An early 

spinal cord stimulation study (including lower cervical levels) in non-acute 

coronary syndrome patients showed a decrease in resting HR during 

stimulation that was pharmacologically shown to be mediated by a 

sympathoinhibition (Meglio et al., 1987).  In another study in anaesthetised 

rats, SCS resulted in an increase in peripheral circulation in the muscle and 

skin measured using laser Doppler flowmetry which was mediated by 

sympathoinhibition as it was inhibited by postganglionic adrenoceptor 

blockade (Linderoth et al., 1994). Since such spinal cord stimulation is 

mediated by electrodes placed adjacent to the dorsal surface of the spinal 

cord, it is easy to envisage how this could activate the primary afferent fibres 

and terminals within the dorsal horn, leading to sympathoinhibition similar to 

that observed to tragus stimulation. 

Curiously, the decrease in HR usually observed to tragus stimulation was 

reversed to an increase on stimulation after C1-C3 nerve section. It seems 

possible that the increase in HR is mediated by a decrease in parasympathetic 

outflow in these preparations, since the vagally mediated respiratory sinus 

arrhythmia decreased and SND did not change. Direct recordings of cardiac 

vagal nerve in future studies would clarify this issue. Nevertheless, the 

changes suggest that another afferent pathway from the tragus can also 

influence autonomic outflow, likely mediated via brainstem afferents. 
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Possible neuronal pathways via the cervical cord dorsal horn mediating 

the effects of tragus stimulation 

 

Dorsal horn neurons are typically associated with conveying sensory 

information from the skin and internal organs into the spinothalamic tract for 

pain perception processing (Todd, 2010). However, although less well 

appreciated, neurons in the superficial laminae of the cervical dorsal horn also 

provide synaptic input into cardiovascular and respiratory centres in the 

medullary reticular formation. Injections of anterograde tracer into the 

superficial (I-II) of the cervical dorsal horn in rats revealed projections 

predominantly concentrated in the medial part of the commissural subnuclei  

of the NTS at caudal levels, whilst the deeper laminae showed predominant 

labelled fibres and terminals only in the ventrolateral and dorsolateral portions 

of the caudal NTS (Gamboa-Esteves et al., 2001). In a similar experiment, 

anterograde neuronal tracer microinjection covering laminae I-V of the cervical 

spinal dorsal horn of rats, which revealed labelled axons in the medial, 

dorsomedial and commissural subdivisions of the caudal NTS, with most of 

the staining ipsilaterally (Potts et al., 2002). In addition, projections to other 

brainstem regions involved in autonomic control were also observed – 

including the caudal and rostral ventrolateral medulla, which play a significant 

role in the control of autonomic function. Hence, this suggests afferent 

projections from the tragus can indirectly influence brainstem regions involved 

in autonomic and respiratory function via the cervical spinal cord. Future 

studies could investigate this proposition by injecting the tragus with viruses 

that travel only in the anterograde direction, such as select rabies viruses 

(Zampieri et al., 2014). 

There is also a possibility that some of the effects of activating cervical sensory 

afferents are mediated through connections within the spinal cord. For 

example, application of glutamate pledgets to the dorsal surface of rat C1-C2 

spinal cord increased intercostal nerve and phrenic nerve activity and this 

persisted after spinal transection at rostral C1, indicating it was a spinally 

mediated response (Lu et al., 2004). However, the pledget application of 
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glutamate is likely to activate many neurons, making it difficult to identify the 

activated pathways. There are neurons in the cervical spinal cord that are pre-

sympathetic as they are labelled following transneuronal virus application to 

the stellate ganglion (Jansen & Loewy, 1997), but they are located laterally in 

the white matter and so appear unlikely to be innervated by the tragus 

afferents, although their dendritic architecture is unknown and it is possible 

that these dendrites lie within the afferent termination fields.  The circuitry 

underlying the cervical cord mediation of tragus evoked responses therefore 

requires further examination.  

 

4.7.2 Pa5 is likely to be involved in the tragus evoked responses  

 

Following injection of CTB into the tragus, a prominent projection was to the 

Pa5 in the brainstem. The Pa5 is a small collection of neurons within the dorsal 

lateral medullary spinal trigeminal tract that receives input from the jugular 

ganglion since injection of CTB488 into the Pa5 of guinea pigs labelled jugular 

ganglion neurons, whilst injection of CTB555 into the NTS labelled 

predominantly the nodose ganglion (McGovern et al., 2015). The input from 

the jugular ganglion to the Pa5 is consistent with observations in the cat that 

the ABVN sensory somata are within the jugular ganglion (Nomura & Mizuno, 

1984) and the Pa5 tragus projections observed in this study.  

Previous studies have revealed roles for the Pa5 consistent with a role in 

mediating the tragus influences on cardiovascular and respiratory function. 

The Pa5 also receives sensory input from airways - anterograde trans-

neuronal viral tracing from the trachea of rats identified tracheal sensory inputs 

towards the Pa5 that were relayed in the brainstem to the spinal trigeminal 

complex (McGovern et al., 2015). This input is involved in respiratory reflexes, 

revealed by a study performed on guinea pigs with a selective recurrent 

laryngeal nerve section to remove nodose ganglion inputs (eliminating the 

cough reflex), but leaving afferents via the jugular ganglion intact. Electrical 

laryngeal stimulation evoked a frequency dependent respiratory slowing and 
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a mild decrease in blood pressure. Both of these responses were abolished 

when the Pa5 was inhibited by muscimol injections (Driessen et al., 2015).  

The respiratory slowing is similar to the trend observed when the tragus was 

stimulated in the intact WHBP (but significance was not achieved), but 

opposite to that when the C1-C3 nerves were sectioned where PND increased 

to tragus stimulation.  Indeed, the increase in PND in response to tragus 

stimulation in the C1-C3 nerve sectioned WHBP is similar to phrenic nerve 

responses in fictive cough evoked by mechanical or electrical stimulation of 

the trachea (Baekey et al., 2001). Since approximately 4% of the population 

coughs when cleaning their ears, the so-called Arnold’s reflex (Murray et al., 

2016), this may reflect a role for the tragus afferents to the Pa5 in some cases.  

In addition to a role in respiratory control, neurons in Pa5 have been 

suggested to have a role in baroreceptor reflex modulation. 

Electrophysiological recording from Pa5 neurons in anaesthetic free rats 

showed that a large percentage (~35%) increased firing rate in response to 

intravenous phenylepinephrine injection (Yu & Lindsey, 2003). The functional 

role of the Pa5 in baroreflex control was later tested in anaesthetic free rats 

that underwent Pa5 ablation. Not only was a reduction in the baroreceptor 

reflex sensitivity (∆HR/∆AP) observed, resting AP and HR decreased, whilst 

respiratory rate increased; comparable to basal changes on lesioned NTS rats 

(Yu & Lindsey, 2003). It therefore seems possible that the tragus projections 

to the Pa5 could be involved in the stimulation evoked autonomic and 

respiratory changes. 

 

4.7.3 The afferent projection from the tragus to the NTS is limited 

 

Although the NTS is the main target for vagal and glossopharyngeal sensory 

afferents (Grélot et al., 1989), very few labelled afferents were found in the 

NTS following tragus injections of CTB in this study. This is similar to labelling 

from the concha, which was minimal and restricted to the medial NTS (He et 

al., 2013). Although according to human cadaveric dissections both of these 
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auricular regions are vagally innervated, they are also innervated by other 

nerves (Peuker & Filler, 2002). Therefore, the projection to the NTS may 

reflect that each of these areas only receives a small innervation from the 

ABVN. There have been no studies where the ABVN in rats has been 

specifically labelled, probably due to relative inaccessibility for recovery 

surgery. However, in cats application of HRP to the ABVN also resulted in 

labelling that was not predominantly in the NTS, but rather the spinal 

trigeminal nucleus and cervical cord dorsal horn (Nomura & Mizuno, 1984). It 

is therefore possible that the NTS is not in fact a major target of the ABVN 

sensory afferents. 

The lack of projection from the external ear direct to the NTS appears at first 

glance contradictory to a functional study - when the auricular dermatomes in 

anaesthetised rats were stimulated by electrical stimulation (100 Hz, 1mA) or 

manual acupuncture and the pattern of cardiovascular and gastric responses 

were documented. A mild depressor response (6%-12%) was noted in the BP, 

HR, and intragastric pressure from manual and electrical stimulation of the ear 

regardless of the stimulation area (Gao et al., 2008). Further,  manual 

stimulation on the auricular area with the ABVN innervation (e.g. concha) 

revealed  significant activation of the neurons in the NTS with cardiac related 

activity (presumed baroreceptive cells) which was associated with inhibition of 

the AP and HR (Gao et al., 2011). However, it is possible that the pathway 

underlying activation of these NTS ‘baroreceptive’ neurons is not through the 

NTS, but through the spinal cord cervical dorsal horn as discussed above. 

 

4.7.4 Comparison with effects of tragal stimulation in humans  

 

Tragus stimulation in rats WHBP showed reduction in the central sympathetic 

chain where the inhibition remained during the 10 minutes of post-stimulation. 

This was a main highlight of this study since there no other literature has ever 

performed similar stimulation in anaesthetic free animal models and 

demonstrated sympathoinhibition directly from the sympathetic nerve. The 

nearest direct sympathetic demonstration due to tragus stimulation was done 
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in healthy human subjects (200μs, 30 Hz, 1-50 mA, 15 minutes stimulation) in 

which a significant muscle sympathetic nerve reduction was measured during 

the stimulation (Clancy et al., 2014). The cardiovascular autonomic control 

measured from the HRV analysis indicated a shift towards parasympathetic 

predominance. The autonomic parameters in Clancy’s study did not return 

fully to baseline in 15 minutes post-stimulation, similar to the maintained 

sympathoinhibition seen here. This sympathoinhibition may have some 

therapeutic usefulness since 1 hour of low-level tragus electrical stimulation 

suppressed atrial fibrillation in patients with induced AF (Stavrakis et al., 

2015). However, the interpretation of the pathways underlying the tragus 

evoked effects may need to be reconsidered. Clancy et al. (2014) and Murray 

et al. (2016) suggested that tVNS works via a sensory projection to the NTS 

which interacts with the circuitry established to be involved in sympathetic 

control, but since there were few afferents in the NTS in this study this seems 

unlikely (assuming rat and humans share similar anatomy). Rather, it seems 

more likely that the afferents to the spinal cord are involved in the sympatho -

inhibition as this was absent in the C1-C3 sectioned animals. This may 

influence future stimulation sites in humans since different areas in the 

external ear receive different degrees of innervation from the ABVN, the 

auriculo-temporal nerve and the great auricular nerve (GAN). Indeed, since 

the GAN provides significant input to the cervical spinal cord dorsal horn, the 

autonomic and respiratory effects of direct stimulation of the relevant auricular 

areas could be interesting. 

 

4.7.5 Does tragus stimulation involve vagal efferent activation to 

cause heart rate decreases? 

 

When tragus stimulation experiments were performed in the vagotomised 

preparations, there was no significant decrease in heart rate, which could 

suggest that vagal efferent activation was involved. However, there was a 

downward trend in the HR responses in these vagotomised preparations and 

in the intact WHBP, there was no change in RSA, seeming to exclude a 
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change in vagal activity but rather point to the reduced sympathetic nerve 

activity as the reason for the decreases in heart rate. On the other hand, tragus 

stimulation elicited inhibition of atrial remodelling and atrial fibrillation induced 

by atrial pacing, was eliminated in bi-vagal transected anaesthetized dogs, 

suggesting that vagal efferent fibres to play a role in the cardiovascular 

response to tVNS (Yu et al., 2013). Direct recordings of cardiac vagal nerve 

activity during tragus stimulation could resolve these differences.  

 

4.7.6 Does the autonomic changes from tragus stimulation is 

affecting the  respiratory frequency? 

 

Breathing is an activity that requires contraction of respiratory muscles which 

are coordinated by the respiratory motor control system. This requires 

integration of inputs from the brainstem, spinal cord, and also 

peripheral nerves. The autonomic control of the breathing arises through the 

chemoreflex, as discussed earlier in the Introduction. In controlled WHBP 

conditions (e.g.: stable oxygen and carbon dioxide levels, and pH) 

respiratory activity was expected to remain constant. Any changes in 

respiratory activity from ear stimulation is non-autonomic related (e.g.: Pa5 

activation). Indeed, as seen in all stimulation experiments in this chapter 

the sympathoinhibition was not accompanied by changes in respiratory 

activity.      
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4.7.7 Potential postsynaptic targets of anterogradely labelled 

afferents from the tragus   

 

To determine if a particular neurochemical cell type was innervated by the 

tragal afferents, potential postsynaptic targets were identified using 

immunofluorescence. Despite staining for a number of markers known to be 

present in second order neurons (ChAT, calbindin, NK1R, GAD67), no one 

cell type received significant innervation. Considering the diverse projections 

from the tragus to different brain regions, further studies will need to conduct 

a systematic review of postsynaptic targets in each region, perhaps using a 

different strategy for cell type markers in each region.  

4.8 Conclusions 

Sensory afferents from the rat tragus projected heavily to the dorsal horn of 

the upper cervical spinal cord, and in the brainstem significantly to the Pa5 but 

to a lesser extent in the NTS. Potential neurochemical characteristics of the 

postsynaptic targets were ChAT, Calb, Parv, NKR1 and GAD67 cells, 

although no one group was densely innervated. Stimulating the tragus 

resulted in sympathoinhibition recorded from the lower thoracic sympathetic 

chain, accompanied by a decrease in HR and PP. Since the neuronal tracing 

showed the upper cervical cord was significantly innervated by afferents 

originating from the tragus, the importance of this sensory afferent innervation 

to tragus evoked responses was then tested in C1-C3 ipsilateral nerve 

transected WHBP. The absence of sympathoinhibition in this preparation 

suggest reductions in sympathetic nerve activity were mediated through these 

projections.
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Chapter 5 An anatomical and functional study of the central 

afferent nerve projections innervating from the rat earlobe 
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5.1 Introduction  

 

In the previous chapter, electrical stimulation of the tragus reduced the 

sympathetic nerve discharge from the lower thoracic sympathetic chain. This 

was consistent with a previous human study where tVNS reduced muscle 

sympathetic nerve activity measured using microneurography (Clancy et al., 

2014). It was postulated that the effects of tragus stimulation were due to 

activation of the ABVN. However, injection of the neuronal tracer CTB into the 

tragus resulted in dense afferent labelling in the dorsal horn of the upper 

cervical spinal cord, in addition to the NTS and Pa5 in the medulla oblongata. 

This suggests a major non-vagal sensory innervation of the tragus. Indeed, 

human cadaver examination suggested that the tragus also receives 

innervation from the GAN, almost to the same degree as the ABVN. The GAN 

is composed from the cervical plexus of the C2 and C3 spinal nerve and 

provides sensory innervation for the skin surrounding the auricular area. The 

potential relevance of GAN innervation in tragus stimulation was then 

examined through upper cervical transection WHBP. The sympathetic 

inhibition which was present in the fully intact and vagotomised preparations 

was absent in this preparation. This suggests involvement of the GAN 

innervation in the autonomic responses to tragus stimulation.   

A previous study by Peuker and Filler 2002 suggested that the GAN is the 

only nerve innervating the human ear lobule (Peuker & Filler, 2002). Assuming 

that GAN innervation within the lobule is similar in rats, this auricular region 

was stimulated in the WHBP preparation. Further, afferent projections from 

the lobule were studied with CTB to try to understand the central activation 

pathways for any physiological effects.
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5.1.1 Anatomy of the Great Auricular Nerve 

An early anatomical study to determine the origin and course of the GAN was 

performed in rabbits. The GAN receives a major contribution from the anterior 

primary division of the third cervical nerve, with a smaller extent from the 

posterior primary division of the second cervical nerve (Weddell et al., 1955a) 

(Figure 5.1A). In humans, the GAN leaves the cervical plexus winding around 

the posterior margin of the sternocleidomastoid muscle. It penetrates the 

parotid capsule antero-superiorly before separated into the anterior and 

posterior terminal branches (Figure 5.1B) (Ginsberg & Eicher, 2000). While 

the anterior branch supplies the skin covering the parotid gland and lower pre-

auricular region, this bifurcation also introduce the posterior branch that is 

destined to reach the posterior aspect of the auricle (Weddell et al., 1955a; 

Weddell et al., 1955b). As its name suggest, there is a large GAN innervation 

into the postero-inferior region of the auricle principally covering the area of 

the tail of helix, scapha and also the lobule of the auricle as seen in rabbits 

and humans (Figure 5.1C) (Peuker & Filler, 2002). In different parts of the 

auricle, the posterior branch of GAN communicates with the auricular branch 

of the vagus nerve and also with the posterior auricular branch of the facial 

nerve (the Auriculotemporal Nerve).  

The application of HRP on the central cut end of GAN nerve (region of 

sternocleidomastoids) in rabbits revealed afferent cell bodies in the ipsilateral 

dorsal root ganglion (C2-C3) and the superior cervical ganglion (Liu & Hu, 

1988). Nerve fibres were detected in the dorsal column of the upper cervical 

spinal cord and strongly stained in laminae I-V at the C2 level. The afferent 

GAN projection also has intense labelling in the cranial nerve nuclei in the 

medulla, including caudal subnucleus of the spinal trigeminal nerve, the 

solitary nucleus predominantly within the dorsal and interstitial subnuclei, and 

also medial and lateral cuneate nuclei (Liu & Hu, 1988). The convergence of 

the GAN primary afferents on the upper cervical cord, trigeminal tract and the 

NTS was then suggested to play a role on the transmission of somatovisceral 

sensations. The projection of afferents from the lobule of the rat has, however, 

never been tested. 
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Figure 5.1: Diagrammatic representation of the Great Auricular Nerve (GAN) origin from the cervical plexus and its 

major dermatome distribution area 

A) In rabbits, the GAN emerged from the cervical plexus originating from C2-C3 coursing superiorly and anteriorly, dividing into 

anterior and posterior branches. B) In humans, the GAN lies beneath the sternocleidomastoid muscle before changing course 

to the auricle area. C) Peripheral innervation of the GAN into humans auricle dermatome solely concentrated within the area tail 

of helix, scapha, anti-tragus and lobule of auricle.  Source of image A) Weddell et al. (1955a), B) Ginsberg and Eicher (2000), 

C) Peuker and Filler (2002).
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5.1.2 Physiological function of Greater Auricular Nerve 

 

The GAN relays sensory information - such as tactile, thermal, and also pain 

sensations detected from the skin overlying the parotid gland, external ear 

and posterior auricular region. Functional sensations in the regions with GAN 

distributions were disturbed in some patients who underwent conventional 

parotidectomy procedures, where the GAN is occasionally sacrificed (Patel et 

al., 2001; Ryan & Fee, 2006, 2009). Numerous difficulties have been listed 

from different studies where the GAN sensory loss lead to medical conditions 

(e.g.:- anaesthesia, paraesthesia), functional deficits (e.g.: difficulties when 

shaving, wearing earphones) thus increase risk of traumatic injuries, and also 

increase risk of neuromas. These medical side effects are however tolerable 

and improved in a long post-operative period, with the recovery potentially due 

to the regeneration of the GAN nerve fibres (Patel et al., 2001).  

Pharmacological blockade of GAN assisted with ultrasound imaging among 

healthy volunteers reported total sensory loss by pin prick tests in several 

auricular areas. These include the tail of helix, antitragus and also ear lobe 

(Thallaj et al., 2010). The benefits of this medical intervention would be 

specifically for patients with “Red ear syndrome”, a rare condition with burning 

pain or discomfort from tactile stimulation. Patients who received this 

treatment reported to be symptom free for 8-week during control examination 

(Selekler et al., 2009).  

 

5.2 Research gap  

 

Chapter 4 revealed that tragus stimulation instigated neuromodulation of the 

cardio-respiratory system in rats. Due to afferent heterogeneity in the tragus, 

it is unclear if the neuronal changes were elicited by the ABVN and/or GAN. 

Since the earlobe has exclusive innervation of the GAN at least in humans 

(Peuker & Filler, 2002) and rabbits (Weddell et al., 1955a),the effects of lobe 
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stimulation in the rat WHBP were tested. In addition, the central sensory 

projections from the earlobe of the rat were examined. 

 

5.3 Aims  

 To determine the central projection of afferents from the ear lobule  

 To determine the effects of lobule stimulation in the WHBP  

5.4 Hypothesis: 

 The major central sensory projection from the rat earlobe is to the 

cervical cord dorsal horn 

 Ear lobe stimulation will cause a sympatho-inhibition similar to tragus 

stimulation. 

 

5.5 Methodology 

5.5.1 General Methodology 

The neuronal tracing procedures that been used in this chapter has been 

discussed in detail in the General methodology (Section 2.1). CTB was 

injected into the lobule of the ear to label afferents from there to the CNS. 

Since tragus injections did not detect any particular post synaptic cell 

phenotype, double labelling for different neurochemical cell types was not 

typically performed. CTB was localised with ChAT, since ChAT facilitates 

identification of preganglionic and motor nuclei.  

The earlobe stimulation procedure are similar to that in tragus stimulation 

(Chapter 4 for ear stimulation). Briefly a DS3 Constant Current Isolated 

Stimulator (Digitimer Ltd, UK) connected to a modified metal ear clip attached 

to the right earlobe. Ear lobe stimulation was applied for 5 minutes (100 Hz, 

2.5 mA) and the effects were compared during baseline, stimulation, post-stim 
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and also recovery period. The animals used in the WHBP are nighttime 

animals (n=10).  

 

5.5.2 Statistical Analysis 

The normality test for numerical datasets were appropriately explored with the 

Shapiro-Wilk test due to small sample size. The significant value of the 

normality test greater than 0.05 considered as normal, while below than 0.05 

is considered to be deviated from a normal distribution.  

For normal distributed data, the effects of electrical stimulation on the tragus 

were compared between baseline and other time points with repeated 

measure ANOVA. Any statistical significant values from the ANOVA test were 

then confirmed with Fisher’s Least Significant Difference (LSD) post hoc test.  

The non-normally distributed data was analysed with non-parametric analysis 

(Friedman test) using IBM SPSS Statistics 21. Identification of the significant 

points were made with the Wilcoxon signed-ranked test. 

 

 

5.6 Results 

 

5.6.1 Afferent labelling from the lobule 

 

The perfused rat brains were sectioned and examined between Bregma -

10.04 mm to upper C4 spinal segment. Areas with CTB labelling were 

ipsilateral and almost identical for each animal (n=4). Labelled afferents were 

detected in the Pa5 of the rostral brainstem sections (Bregma -13.30mm and 

Bregma -13.68) (Figure 5.2A and Figure 5.2B). The mid brainstem section 

(Bregma -13.80 mm) has CTB labelled afferents observed within the Cu, 

extending medially towards the NTS (Figure 5.2C). In the lower mid brainstem 
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region (Bregma -14.30), CTB labelled afferents were most prominent in the 

cuneate fasciculus (cf), along with a small termination in the NTS (Figure 

5.2D). In the most caudal brainstem section (Bregma -14.60 mm), only cf has 

CTB labelled afferents originating from the earlobe (Figure 5.2E). CTB 

labelled afferents in mid brainstem were consistently observed within the 

region of ventrolateral NTS, although this labelling was sparse (Figure 5.3).  

CTB labelled afferents were detected in the dorsal horn of the upper cervical 

cord (C1-C4 levels) where close appositions with ChAT cells were 

occasionally observed (Figure 5.4). A small area with labelled afferents was 

observed in the medio-dorsal aspect of laminae IV of C1 (Figure 5.4A). In C2, 

labelling covered a larger area, including some of the central regions of 

laminae III, and IV (Figure 5.4B). The largest degree of labelling was 

consistently observed in C3, covering a greater portion of the mediodorsal 

aspect of laminae III and IV, bordering but not intruding into lamina II (Figure 

5.4C). 
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Figure 5.2: Photomontages of the brainstem at different rostrocaudal 
levels with CTB-positive afferents labelled following cutaneous injection 

of CTB into the lobule (red) detected with ChAT immunofluorescence 
(green) 

A, B) Rostral brainstem sections with CTB labelled afferents evident in Pa5. 

C,D,E) Afferents labelled in the Cu, cf and also the NTS. (Ai-Ei) Magnified 

images illustrating labelled afferents. All terminating afferents are ipsilateral to 

the injection side. CC – central canal, NTS- nucleus tractus solitarius, cf- 

cuneate fasciculus, Cu- cuneate nucleus. 



 

149 

 

 

 

 

Figure 5.3: CTB-positive afferents in the NTS region following injection 

into the lobule   

A) Example of a single, small labelled afferent in the ventrolateral NTS in 

rostral brainstem (magnified: Ai). B) Moving caudally, moderate labelled 

afferents also detected in the vlNTS Ai-Bi) Magnified figures for each of the 

labelled afferents in the NTS. NTS- nucleus tractus solitaries, CC – central 

canal, AP – area postrema, mNTS- medial NTS, ncom- commissural nuclei, 

TS- tractus solitaries, dmnX- dorsal nucleus of the vagus nerve.
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Figure 5.4: CTB-positive afferents in the upper cervical cord following 

cutaneous injection of CTB into the lobule, detected with double staining 

of CTB and ChAT immunofluorescence. 

A) Cervical section at C1 with CTB-positive afferents terminating in laminae 

IV. B) Cervical section at C2 with CTB-positive afferents terminating in 

laminae III and IV. C) Cervical section at C3 with CTB-positive afferents 

largely terminating in laminae III and IV.
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5.6.2 Functional study on lobule stimulation  

 

The raw tracers on the effects of earlobe stimulation can be found on Figure 

5.5. In general, lobule stimulation reduced RSA, SND and increase the PND 

frequency. The HR and PP was not affected by the stimulation.  

Average HR (n=10) at baseline was 308.3 ± 5.1 bpm and this was not 

significantly affected by stimulation or during recovery (Stimulation = 310.4 ± 

6.3 bpm; p=0.29; Post-stimulation=312.3 ± 6.17 bpm; p=0.16; Recovery = 

314.2 ± 5.09 bpm; p=0.07) (Figure 5.6A). Average PP from the distal aorta 

had a basal average of 68.3 ± 3.7 mm Hg, which was not significantly changed 

by stimulation (Stimulation = 67.7 ± 3.6 mm Hg; p=0.18; Post-stimulation=66.9 

± 3.47 mm Hg; p=0.08; Recovery = 66.1 ± 3.29 mm Hg; p=0.06) (Figure 

5.6B).  

RSA during the baseline was 12.08 ± 3.18 ∆bpm. Electrical stimulation of the 

lobule significantly reduced the RSA χ2(3)=16.6,p=0.001 during the 

stimulation (9.97 ± 2.3 ∆bpm; p=0.015). During post stimulation, the RSA 

further dropped (7.17 ± 1.5 ∆bpm; p=0.041) and such reduction continued into 

the recovery period (5.80 ± 1.3 ∆bpm; p=0.033) (Figure 5.6C).  

The sympathetic nerve discharge measured directly from the sympathetic 

chain of the lower thoracic level was 4.27 ± 0.66 AUC at baseline. This SND 

was significantly reduced χ2(2)=15.2,p=0.001  after stimulation (2.88 ± 0.64 

AUC; p=0.049). The sympatho-depressor effects were maintained during the 

recovery period (2.59 ± 0.55 AUC; p =0.036) (Figure 5.6D).  

The baseline respiratory rate (14.1 ± 1.54 rpm) was significantly increased  

χ2(3)=16.2,p=0.001   during the stimulation (16.2 ± 1.7 rpm;p=0.041). Further 

elevation of respiratory activity was also seen during the post stimulation (17.9 

± 3.2;p=0.009) and during the recovery (18.0 ± 3.1 rpm;p<0.008) (Figure 

5.6E). Statistical analysis on the duration of the different respiratory phases 

however revealed no significant alterations due to the stimulation. The only 

significant changes were in the total duration of the respiration during the 

recovery period, which was significantly reduced from the baseline (Baseline 
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4.37 ± 0.6 rpm vs Recovery 4.10 ± 0.7 rpm; P=0.004) (Figure 5.6F). Further 

details of this analysis are included in Table 5.1 and Table 5.2.   
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Figure 5.5: Typical example of original traces recorded from lobule stimulation.  

Following lobule stimulation HR and PP were not significantly altered, RSA and the SND were reduced and, respiratory frequency 

increased. Original traces during the stimulation period were omitted due to stimulation artefact in nerve recordings.  HR – heart rate, 

PP – perfusion pressure, RSA – respiratory sinus arrhythmia, SND – sympathetic nerve discharge.   
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Figure 5.6: The effect of lobule stimulation on autonomic and respiratory 

control in the Working Heart Brainstem Preparation  

Lobule stimulation did not significantly affect HR or PP, but did significantly 

reduce the RSA and SND. The respiratory frequency significantly increased 

during stimulation and persisted during the recovery period. The duration of 

the total respiratory cycle only showed significant reduction during the 

recovery.   HR – heart rate, PP – perfusion pressure, RSA – respiratory sinus 

arrhythmia, SND – sympathetic nerve discharge.*, p<0.05; **, p < 0.01; ***, 

p<0.005.       
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Table 5.1: Group data indicating that earlobe stimulation significantly 
caused sympathetic (SND) and parasympathetic (RSA) inhibition along 

with respiratory activation (PND rate)  

 

  N Mean Std 
err 

Min Max P value 

  
  

  
HR 

 (bpm) 
  
  

Baseline 10 308.29 5.06 267.64 327.75  

Stimulation 10 310.39 6.34 261.63 341.39 0.288 

Post 
stimulation 

10 312.34 6.17 265.04 342.79 0.157 

Recovery  10 314.21 5.09 282.26 344.70 0.070 

  
  
  

PP  
(mmHg) 

  

Baseline 10 68.29 3.67 48.17 86.85  

Stimulation 10 67.74 3.57 47.75 84.81 0.177 

Post 
stimulation  

10 66.93 3.47 47.96 81.42 0.078 

Recovery  10 66.10 3.29 48.52 79.66 0.063 

  
  

  
RSA  

(∆bpm) 
  

Baseline 9 12.08 3.18 4.18 29.51  

Stimulation 9 9.97 2.37 3.50 20.26 0.015* 

Post 
stimulation 

9 7.17 1.53 2.82 15.82 0.041* 

Recovery  9 5.80 1.29 2.61 13.56 0.033* 

  

∫SND  
(AUC) 

 

Baseline 10 4.27 0.66 2.70 9.66  

Post 

stimulation 

10 2.88 0.64 0.90 7.51 0.005** 

Recovery  10 2.59 0.55 0.49 6.37 0.005** 

 

PND rate  
(rpm) 

Baseline 10 14.1 1.54 8 24  

Stimulation 10 16.2 1.65 7 37 0.041* 

Post 

stimulation 

10 17.9 3.23 7 44 0.009** 

Recovery 10 18.0 3.08 7 43 0.008** 
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Table 5.2: Statistical evaluation of the respiratory phase duration in 

response to earlobe stimulation  

 

  Ti Te Ttot 

Baseline Average 1.40 2.97 4.37 
Std error 0.13 0.57 0.60 

 
Stimulation 

Average 1.15 3.18 4.34 
Std error 0.10 0.64 0.71 

P value 0.087 0.273 0.797 
Post 

stimulation 
Average 1.20 3.08 4.27 

Std error 0.10 0.65 0.75 
P value 0.303 0.273 0.100 

 

Recovery 

Average 1.25 2.84 4.10 

Std error 0.11 0.64 0.74 

P value 0.386 0.103 0.040* 
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5.7 Discussion 

  

This is the first study to examine the central sensory afferent projection of the 

earlobe of the rat and the effect of its stimulation on autonomic and respiratory 

control. The main findings from this anatomical and functional study include: 

 The main termination sites were observed in the upper cervical spinal 

cord, especially C2 and C3. In the brainstem the paratrigeminal 

nucleus was densely innervated and a minor projection was also 

observed to the NTS. . 

 Electrical stimulation of the earlobe did not evoke any changes in heart 

rate or arterial pressure.  

 Respiratory rate increased during and after the stimulation.  

 Cardiac parasympathetic function measured from the RSA was 

significantly reduced by stimulation.  

 Thoracic sympathetic nerve discharge was significantly reduced by the 

stimulation. 

Since some elements may overlap with outcomes discussed in chapter 4, they 

will be noted briefly here and comparisons made in more detail in chapter 6. 

 

5.7.1 Projections of afferents from the earlobe  

 

The ear lobe has been shown to be solely innervated by the GAN at least in 

humans and majorly in rabbits (Weddell et al., 1955b; Peuker & Filler, 2002). 

Neuronal tracer application of HRP on isolated GAN in rabbits primarily 

labelled ipsilateral dorsal root ganglion cells in C2 – C3, with the labelled fibres 

distributed in the dorsal horn of the upper 4 cervical segments (Liu & Hu, 

1988). Similar observations on the upper cervical innervation were made 

when HRP was applied on the cutaneous nerve of the caudal surface of the 

pinna of young dog pups , an area that is equivalent to human earlobe (Chien 

et al., 1996). The current neuronal tracing study confirms in rats that the 
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afferent innervation and central projection pattern appears similar to the 

species in these aforementioned studies (Liu & Hu, 1988; Chien et al., 1996; 

Peuker & Filler, 2002), with the labelled afferents predominantly within deeper 

laminae of the upper cervical cord (laminae III-IV). 

In addition to dorsal horn in the upper cervical region there were also labelled 

afferents in the brainstem Pa5 and, to a minor degree, the NTS. These areas 

were detected as afferent targets  in the previous isolated GAN tracing study 

in rabbits (Liu & Hu, 1988) as well as GAN innervated region in the caudal 

surface (earlobe included) of dog ear (Chien et al., 1996). This is of potential 

functional relevance as the Pa5 can modulate autonomic function (See 

Chapter 4 and 6) (Ciriello & Calaresu, 1981; Sousa & Lindsey, 2009). 

Interestingly, a study in humans to examine the activated pathway from 

earlobe stimulation (potentially through GAN activation) using fMRI did not 

show activation in any autonomic related regions, but did notice activation of 

the spinal trigeminal nucleus, which may include the Pa5 as it could be difficult 

to differentiate using fMRI (Frangos et al., 2015). Thus the central sensory 

projections of the earlobe in the rat may be similar to those observed or the 

GAN and/or similar auricular areas in other species. 

 

5.7.2  Functional consequences of ear lobe stimulation in the 

WHBP 

 

Stimulation of the earlobe did not evoke any changes in heart rate or arterial 

pressure, but increased respiratory rate. In contrast, RSA and SND both 

decreased. The increase in respiratory rate and decrease in RSA was different 

to tragus stimulation, where no differences were observed (see Chapter 6 for 

more detailed comparison).  

How can earlobe stimulation cause a decrease in RSA (and presumably 

parasympathetic activity) and sympathetic nerve discharge? The main 

afferent termination sites were in the cervical cord dorsal horn lamina 4 and 

the Pa5 in the brainstem, so comparison to previous studies stimulating these 
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areas could shed some light (see also Chapters 4 and 6). As discussed in the 

previous chapter (Chapter 4), spinal cord stimulation has been linked with the 

autonomic control of the heart as measured in non-cardiac related patients 

(Meglio et al., 1987) and also anaesthetised rats (Linderoth et al., 1994). In 

our stimulation study, significant reduction in sympathetic nerve activity during 

the post stimulation and recovery period, however were not accompanied by 

any cardiovascular changes. This probably could be explained by locality of 

the cardiovascular effects induced by the cervical spinal cord stimulation 

(cSCS). As such, stimulating the upper cervical (C3) in anaesthetized adult 

rats induced a significant vasodilation in the peripheral vasculature in the 

cerebral circulation that measured from the cerebral blood flow (Sagher & 

Huang, 2000). The increase in cerebral blood flow was not accompanied by 

significant changes in systemic blood pressure. The cerebral flow 

measurements had a peak 30 to 45 seconds after the stimulation and 

gradually returned to baseline after 5 minutes. The systemic BP however 

remained unchanged. This suggests high specificity of the stimulation effects 

in vasculature control. Indeed, cSCS on the higher upper cervical (C1) 

induced greater cerebral blood flow changes to that the C3, and the C6 

stimulated level did not significantly cause changes (Sagher & Huang, 2000). 

Since cerebral circulation has been removed in the WHBP it will clearly not be 

possible to detect any changes in this and it is perhaps not surprising that no 

changes were observed in perfusion pressure. 

The autonomic properties of local spinal region on cats was determined by 

intraspinal stimulation was applied through electrode place on various C2 

regions (Illert & Gabriel, 1972). An excitatory region to cause elevation in BP, 

renal and splanchnic sympathetic activity were found converged within the 

dorsal part of the lateral funiculus and laminae II-VII of the grey matter. In 

contrast, an inhibitory regions were revealed resided within the ventral 

funiculus, and also head of the dorsal horn (superficial laminae). Stimulation 

on both regions resulted changed BP and sympathetic nerve activity 

independent to each other. Considering species variation between the current 

investigation and Illert’s findings, it is unclear if the immunoreactive labelled 
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afferents from the tragus lies within excitatory, inhibitory, or transitory region 

(Illert & Gabriel, 1972). However, the significant reduction in SND without 

being companied by the HR or PP suggests that these are in transitory.     

 

5.7.3 Does ear lobe stimulation affect vagal modulation? 

 

Here, stimulating the GAN innervated area in the rat ear lobe caused vagal 

inhibition as measured from the RSA. Other regions with sole GAN into human 

ear would include the tail of helix, scapha, and also anti-tragus. Consistent 

with the results in this chapter, electrical and manual acupuncture in the tail of 

helix of the ear in the rat (likely to exert GAN activation), caused a mild 

depressor response on the blood pressure in anaesthetized rats (6% - 12% 

decrease from baseline) (Gao et al., 2008). In addition, a small bradycardia 

response was reported from electroacupuncture applied on the GAN 

innervated region, suggesting autonomic cardiovascular changes evoked 

from the stimulation. In future studies it would be preferable to identify effects 

on the vagus by recording directly from the cardiac vagus nerve (O'Leary & 

Jones, 2003). 

Outcomes of human studies are consistent with these current findings. Five 

minutes of SCS (between upper cervical to mid thoracic) at an amplitude to 

generate paraesthesia in patients who were in a treatment for chronic pain, 

caused significant increases in HR (Kalmár et al., 2013) The increase in HR 

may have been due to vagal withdrawal since the HF component of the was 

significantly reduced during the SCS stimulation (Kalmár et al., 2013). 

However, these results were contradictory to another SCS study performed in 

obese patients (Sobocki et al., 2013). The cSCS (C1-C2) in obese patients 

who underwent the treatment for 12 hour per day for 8 weeks significantly 

reduced body weight as well as increase in all HRV parameters, with the most 

pronounced effect in HF power that reflects parasympathetic activity (Sobocki 

et al., 2013). Referring to the differences on length of stimulation (5 minutes 

VS 12 hour) applied in current study and both of the previous SCS studies 
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might explain variation observed within vagal component of the cardiac. 

Furthermore, since Clancy et al reported that the starting HRV influenced the 

response to tragal stimulation, perhaps a similar relationship exists for SCS, 

where SCS increases the lower HRV of obese patients. 

.  

5.8 Conclusion 

 

The central afferent projection from the earlobe is similar to that from the 

tragus. The labelled afferent terminations can be seen in medullary regions 

(NTS, Pa5, and Cu) but the main termination was in the dorsal horn of the 

upper cervical spinal cord. Electrical stimulation of the earlobe caused 

sympathoinhibition in the lower thoracic chain. Interestingly, the vagal tone 

was also significantly reduced and this was accompanied by increased 

respiratory activity.
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Chapter 6 General Discussion 
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6.1 Summary of findings 

 

6.1.1 The physiological profile of the WHBP animals exhibits a 

circadian variation.  

 

The functional evidence presented in the first results chapter indicates the 

presence of physiological functions that vary with the dark/light phase 

recorded in the WHBP. The physiological functions were marked with higher 

perfusion pressure in the night time preparations, as well as increased 

respiratory activity. Direct demonstration of sympathetic neural involvement 

was evident from increased activity recorded from the lower thoracic 

sympathetic chain.  Sub-grouping the preparations according to specific time 

of the experimentation (e.g.: 10:30, 14:30, 21:30, and 2:30) revealed 

preferential peaking in perfusion pressure during the early dark phase. 

Sympathetic nerve activity on the other hand peaked during the late dark 

phase. These differences were consistent with those previously observed in 

intact rodents where the plasma epinephrine and norepinephrine were notably 

higher during the night time (De Boer & Van der Gugten, 1987).  The circadian 

variation in autonomic plasma markers  were  in  reverse to that in humans 

(Dodt et al., 1997). Hence, the differences in these autonomic profiles needed 

to be acknowledged when designing experiments in rats. The WHBP findings 

in this chapter provided a basis to utilize the night-time animals in the ear 

stimulation experiments in Chapter 4 and 5.   Further, these findings suggest 

that experiments conducted on rats during the day time need to acknowledge 

that this is their sleeping phase, with potentially different outcomes than 

observed in the night time, awake phase. This could have implications for 

studies in which translation to human trials is a primary objective.      
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6.1.2 Auricular stimulation at the tragus and lobe both evoke a 

sympathoinhibition. 

 

A common outcome for both studies was that stimulation at both the tragus 

(Chapter 4) and the lobe (Chapter 5) resulted in an inhibition of sympathetic 

nerve discharge. The cardiovascular depressor responses following 

electroacupuncture as reported by Gao et al. (2008) were well in agreement 

with sympathoinhibition observed from current WHBP stimulations. Electrical 

acupuncture (100 Hz, 1.0 mA) in the tail of helix of the ear in the rat (potentially 

GAN activation), caused a mild depressor response on the blood pressure (-

10 mmHg) in anaesthetized rats (Gao et al., 2008). In addition, a small 

bradycardia response (-8 bpm) was reported from tail of helix 

electroacupuncture. Similarly, electrical stimulation on the conchae 

(presumably innervated by the ABVN) gave a mild arterial depressor (-

7mmHg) and bradycardia (-6 bpm) responses. The sympathoinhibition 

observed from tragus stimulated WHBP was accompanied by a reduction in 

cardiovascular parameters, but not necessarily in earlobe stimulation (Figure 

6.1). This is interesting since both studies utilized a similar auricular 

stimulation frequency (100 Hz, 2.5 mA) and targeted similar auricular nerves 

(eg: GAN/ABVN). 
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Figure 6.1: Presumptive auricular sensory nerve innervation of rat ear 

and summary of cardiovascular effects of stimulation at different sites  

The outcome of electrical stimulation (100 Hz, 1 mA) on tail of A) helix and B) 

conchae of anaesthetized rats resulted in cardiovascular inhibition (Gao et al., 

2008). Similar stimulation frequency (100 Hz, 2.5 mA) on C) earlobe and D) 

tragus in WHBP also caused cardiovascular inhibition (except for HR in 

earlobe). ATN- Auriculotemporal Nerve, ABVN – Auricular Branch of the 

Vagus Nerve, GAN- Great Auricular Nerve.     
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As covered earlier in General Introduction (Section 1.3.7), the effects of 

ABVN stimulation (tragus/conchae) on ANS activity in healthy volunteers are 

rather conflicting. In brief, manual acupuncture on the concha increased HRV 

component of the cardiac vagal tone but not sympathetic (Haker et al., 2000). 

Electrical stimulation on the tragus (30 Hz, 10-50 mA)  shifted the HRV of 

healthy volunteers towards parasympathetic predominance while 

microneurography from the peroneal nerve recorded reduction in sympathetic  

nerve activity (Clancy et al., 2014). In another study, no changes were 

detected in HRV after one hour of right sided concha stimulation (De Couck 

et al., 2017). The use of HRV to describe sympatho-vagal balance in these 

studies may lead to the disagreements since the reliability of the 

aforementioned method to measure autonomic function has been questioned 

(Billman, 2007; Shaffer et al., 2014). Thus, the current WHBP study in 

providing a direct sympathetic nerve measurement demonstrates additional 

evidence on autonomic modulation from tragus stimulation.  

Easy accessibility of the auricular stimulation has been suggested as an 

inexpensive alternative treatment of “vagal nerve stimulation” for autonomic 

imbalance (Murray et al., 2016), a clinical feature for failing heart. In particular, 

accelerated heart beat is one of the common outcomes of sympathoexcitation 

in heart failure associated with an adverse prognosis. As such, electrical 

stimulation on the right stellate ganglion (RSG) to induce sympathetic 

hyperactivity resulted in sinus tachycardia in anaesthetized dogs (Zhou et al., 

2016). Duel stimulation onto the RSG and tragus (20 Hz, 2 millisecond pulse 

width) suppressed the RSG neural hyperactivation as seen from neural gene 

expression of cFos and neuronal growth factor. Furthermore, the cardiac 

sympathetic dominance was reduced as seen in the reduction of the LF/HF 

ratio of the HRV (Zhou et al., 2016). The effects of longer period tragus 

stimulation demonstrated sympathoinhibition in myocardial infarcted dogs as 

revealed by lower plasma norepinephrine. (Wang et al., 2014). These 

autonomic changes were coupled by improved ventricular functions 

(contractility and diastolic), smaller infarction size, and lower plasma cytokine.  
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Unlike tragus, there are limited studies that focused on autonomic changes 

following earlobe stimulation (presumably through the GAN). This possibly 

due to prominent application of earlobe stimulation; also commonly known as 

Cranial Electrotherapy stimulation in the treatment of non-autonomic 

conditions such as  depression, anxiety, insomnia and pain (Horowitz, 2013). 

The sympathoinhibition observed after earlobe stimulation in the WHBP thus 

provides a novel evidence of the GAN autonomic functions, similar to the 

ABVN.      

 

6.1.3 What pathways underlie the sympathoinhibition from the 

lobe and tragus? 

 

The current neuronal tracing studies from the GAN and the ABVN innervation 

areas, showed a similar central termination pattern. The only study on central 

projections from the isolated ABVN was done in cats using HRP. Principally, 

labelled neurons were found in the jugular ganglion but none in the nodose 

ganglion of the vagus. Labelled afferent projections were evident in brainstem 

in the cuneate nucleus and trigeminal nucleus as well as in dorsal horn at C1-

C3 levels (Nomura & Mizuno, 1984). Similarly, application of HRP into the 

GAN in rabbits showed prime convergence of sensory afferent terminals in 

the dorsal horn of the upper cervical regions (C1-C3) particularly the C2 in 

laminae I-V. Additional labelled terminal fibres were detected in the cuneate 

nuclei and nucleus of the spinal tract (Liu & Hu, 1988). The similarity in isolated 

ABVN to the GAN raised a question if the previous neurotracing studies had 

properly differentiated these 2 nerves. Furthermore, their results were almost 

equivalent to what was seen from the current non-isolated auricular nerves 

innervating into the tragus or earlobe (Table 6.1).  

Due to primary afferent innervation into the dorsal horn of the upper cervical 

cord, the significance of this innervation was later tested with C1-C3 ipsilateral 

nerve transections. In turn, the sympathoinhibition was absent in this 

preparation, suggesting that upper cervical afferents can modulate autonomic 
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activity. Stimulating neck muscle afferents that project into the rats upper 

cervical (C2) in WHBP study increased vascular resistance and with a little 

reduction of HR (Edwards et al., 2015). This physiological outcome was 

opposite to the current study when electrical stimuli was applied on the tragus 

of cervical transected preparations, highlighting the loss of autonomic 

modulating pathway. As discussed earlier in Chapter 4 (see 4.7.1) and 5 (see 

5.7.3), spinal cord stimulation on the upper cervical segments has been linked 

to autonomic modulation of cardiovascular control in animal (Linderoth et al., 

1994; Sagher & Huang, 2000) and human (Meglio et al., 1987) studies. Taken 

together, these studies suggest a pivotal role of afferents terminating into 

upper cervical region for modulating central autonomic control. 

The current proposed activation pathway (Figure 6.2) is contrary to our initial 

expectation where vagal afferents were thought to be activated upon auricular 

stimulation (He et al., 2013). fMRI evidence on the ABVN stimulation in cymba 

conchae (and GAN in earlobe as control) in healthy humans showed 

widespread activation in the ipsilateral NTS (Frangos et al., 2015). Similar 

fMRI experiment to stimulate the ABVN in posterior side of the outer auditory 

canal showed robust decreases in blood oxygenation level dependent (BOLD) 

signal in the area of the nucleus of the vagus nerve as well as the NTS (Kraus 

et al., 2013). In most recent fMRI evidence on healthy volunteers, ABVN 

stimulation in the tragus, wall of ear canal, cymba conchae caused significant 

activation of the NTS (Yakunina et al., 2016).  

Direct activation of the NTS from auricular stimulation is, however, 

inconsistent with our own and other findings.  Auricular afferent labelling in the 

NTS is sparse in cats (Nomura & Mizuno, 1984) and in rats (this thesis). An 

alternative pathway may be that the NTS is activated via the spinal cord (see 

Figure 6.2). The aforementioned fMRI studies (Kraus et al., 2013; Frangos et 

al., 2015; Yakunina et al., 2016) only reported on brain activity changes 

occurred within the brainstem, but not in the upper cervical region. We showed 

a primary convergence of somatosensory afferent from the stimulation sites 

terminated into dorsal horn of the upper cervical. Cutting this projection 

eliminates the sympathoinhibitory effects that presence in normal WHBP ear 
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stimulation.  Neuronal projection from the upper cervical dorsal horn into the 

NTS has also been documented in rats (Gamboa-Esteves et al., 2001) thus 

suggesting that the somatosensory afferent neurons in the dorsal horn are the 

first order of activation while NTS are the second order.  Future imaging 

studies on humans may reveal if the cervical dorsal horn is indeed activated 

by auricular stimulation.
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Figure 6.2: Potential pathways mediating effects of tragus stimulation 

on cardiovascular autonomic functions  

Stimulation of the ear (e.g.: tragus, earlobe) potentially activates 

somatosensory neurons in the dorsal horn of the upper cervical. It also may 

cause direct activation of NTS through ABVN afferents. The NTS may be 

activated in secondary order from somatosensory neurons. Initiation of 

neuronal firing in the NTS activation caused an activation of the CVLM, to 

inhibit the RVLM.  In turn, central sympathetic activity discharge is reduced 

and lead to depressed vascular tone. The stimulation effects on cardiac vagal 

output is still unknown as no changes in the RSA after tragus stimulation, but 

decreased in earlobe stimulation. The full line style represents findings from 

current study while the dotted lines represent findings drawn from previous 

literature. The intensity of afferent terminals detected from current study 

represented by with different thickness. NTS- nucleus tractus solitarius, 

CVLM/RVLM- caudal/rostral ventro lateral medulla, DVN- dorsal vagal 

nucleus, NA- nucleus ambiguus, RSA- respiratory sinus arrhythmia. 
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Table 6.1: Comparison on central projection of afferents from tragus, earlobe and other isolated nerves 

** This table is comparing results from the current and previous studies. This is different to Table 1.3 in the General Introduction which 

summarizes studies from the literature.    
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6.2 Further Experiments 

 

These studies revealed that tragus and earlobe stimulation both evoked an 

inhibition of sympathetic nerve activity. Contrary to expectations, the major 

afferent pathways did not seem to include the NTS as a first order target. 

Some progress was made towards identifying the pathways as sectioning of 

the cervical nerves eliminated the stimulation-evoked sympathoinhibition. 

However, the role of the inputs to the Pa5 and the minor projections to the 

NTS were not explored. Furthermore, it is not clear how the excitatory afferent 

signals are translated into a sympathoinhibition. Contemporary neuronal 

tracing techniques using viruses and/or functional studies with optogenetics 

could be used to shed some light on the neuronal pathways mediating the 

effects of auricular stimulation.  

 

6.2.1 Examining the pathway of upper cervical stimulation 

 

The current anatomical and functional study suggests a possibility of a cervical 

pathway being activated from the ear stimulation. Only a few studies have 

stimulated the upper cervical nerves of rats in WHBP. Stimulating the spinal 

nerve at C2 level with glass suction electrode in rats caused a temporary 

cessation of phrenic nerve activity, increased the arterial pressure with little 

effect upon heart rate (Edwards et al., 2015). The effect of upper cervical 

stimulation on the autonomic control in WHBP is still unknown. By adapting 

the stimulating electrodes into upper cervical stimulation (C1-C3), a direct 

recording from vagal efferent and sympathetic nerves would be possible. The 

spino-medullary activation pathway can further be tested by direct recording 

on the NTS or pharmacologically inhibiting the NTS. A previous WHBP study 

suggested the cardio-autonomic inhibition during nociception was mediated 

by an intrinsic GABAergic mechanism within the NTS (Boscan et al., 2002). 

Thus, microinjection of reversible GABA receptor antagonists (e.g.: 
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bicuculline, flumazenil) into the NTS right before auricular stimulation might 

be useful.  

Future studies on examining the effects of upper cervical stimulation could be 

performed in vivo. In this study, healthy adult rats would be implanted with an 

electrode system for spinal cord stimulation (SCS) on the upper cervical 

segments. The surgical procedure for the SCS has been explained in detail 

by Linderoth et al. (1993). Briefly, animals would be laminectomized at the C1 

– C3 segments and intraspinal electrodes placed extradurally onto the dorsal 

aspect of the cord. A silver anode would be implanted in the paravertebral 

subcutaneous tissue. The SCS would be applied twice per day and the effects 

of stimulation could be measured on autonomic parameters such as HR, BP, 

and RSA which obtained from telemetry system. The autonomic indicator in 

the blood can be obtained and compared before and after the stimulation 

period. A microdialysis probe can be placed near to any interested regions in 

the brain (eg: NTS/Upper cervical) for measurement of endogenous 

molecules to assess the biochemical functions upon the SCS. Histological 

analysis can be examined after animals being sacrificed and the distribution 

of activated regions can be studied with cFos.      

 

6.2.2 Combining anatomical and functional studies in 

optogenetics  

 

Development of technologies which can regulate the specific type of cells 

using optical control provides a reliable method to stimulate or supressed 

neural activity, thus allows combination on anatomical and functional studies. 

This was made possible by artificial incorporation of light-sensitive proteins 

eg:Channelrhodopsin-2 (ChR2) into cell membranes (Fenno et al., 2011). This 

method is known as optogenetics, where neural activation upon light 

activation at certain wavelength could be suitable to replace the current 

electrical stimulation to understand the ear stimulation circuitry. 
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The easiest strategy to investigate auricular stimulation would be through viral 

transduction with viral vectors to drive the channelrhodopsin expression. The 

use of rabies virus in rats has been shown to infect sensory neurons in the 

somatosensory system and could be used to introduce channelrhodopsins 

into the afferent nerve terminals by injection into either the tragus or the lobe. 

The fusion of ChR2 (a specific channelrhodopsin) with the fluorescent marker 

mCherry allows post-hoc identification and mapping of the ChR2-expressing 

cells for direct assessment of the specificity of expression (Cardin et al., 2010) 

. Injection of the rabies viral vector RV-ChR2-mCherry into the tragus or lobe 

of the rats would result in ChR2 expression in the central terminations. The 

terminals in different areas (e.g. dorsal horn, Pa5, NTS) can then be 

specifically activated by illumination of light at appropriate wavelengths in 

each area. The effects of such specific afferent activation can be determined 

in vivo where the rats are equipped with telemetric devices to record heart rate 

and blood pressure. Further, this can also be applied in WHBP where the 

extracellular cellular activities of the autonomic neuronal regions (e.g.: NTS, 

Pa5) can be recorded upon light simulation on the afferent termination area 

using electrophysiology technique. Finally, acute slices could be utilised to 

study the synaptic activity of the afferent terminations. In all cases the 

associated mCherry could be used to confirm the termination sites of the 

afferents. 

Further refinements of rabies viral labelling strategies could enable the 

mapping of second order neurons to be conducted with accuracy. Some 

rabies viruses have been modified to allow the transfer across a single 

synapse in either the anterograde or retrograde direction (Zampieri et al., 

2014). For these experiments, such viruses could be injected into the tragus 

or lobe and the location of the transsynaptically labelled target neurons 

identified. If conducted in transgenic reporter animals in which different cell 

types have become labelled (Tamamaki et al., 2003) this would reveal the 

nature of the postsynaptic neurons.               
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6.2.3 Animal model in heart failure  

 

There has been accumulating evidence on the application of auriculomedicine 

to alleviate HF symptoms in dogs (Yu et al., 2011; Wang et al., 2015; Zhou et 

al., 2016). However, there is limited evidence on the application of electrical 

auricular stimulation on rat model of heart failure. In this particular interest, a 

rodent model that accurately produces heart failure pathology can be utilised. 

There are numerous transgenic rats that are spontaneously prone to the 

cardiovascular conditions and can be purchased from Charles River. One of 

which is a Spontaneously Hypertensive Heart Failure Rat (SHHF). The SHHF 

rats progressed from a spontaneously hypertensive and converted phenotype 

into overt, late-stage HF (Heyen et al., 2002; Youcef et al., 2014). This 

provides close approximations of humans HF pathophysiology which was 

associated with gradual onset of hypertension and also autonomic imbalance 

with ageing. The effects of ear stimulation on cardiac remodelling can be 

studied using either transgenic or induced HF animal model. In non-transgenic 

animals, common practice for HF was anterior interventricular coronary artery 

ligation causing myocardial infarction. The rapid onset of HF is, however, not 

accurate representative for human pathological heart development (Shaw et 

al., 2001). Another widely used HF model in rats was the use of ascending 

aortic band that placed around the ascending aorta in weaned rats (3-4 week 

old). As these rats grow, hypertension develops gradually during aortic outflow 

is increasingly impeded. During 8 weeks of post-banding, the left ventricular 

exhibited signs of hypertrophy suggesting increased in left arterial pressure. 

After 18 weeks of post-banding, clear signs of HF became evident which 

include tachypnea, oedema, pleural effusion, and ascites (Shaw et al., 2001). 

The development of HF can be monitored using echocardiogram where left 

ventricular hypertrophy is assessed. Ear stimulation also can be applied 

where the effects of stimulation is compared with the control groups. This 

gives an idea as to whether the effects of ear stimulation ameliorates the 

progression of HF in vivo. 
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6.3 Relation to human work 

 

The current thesis project provides a basic physiological outcome of non-

specific auricular stimulation causing sympathoinhibition. As described in the 

General Introduction (Section 1.3.7), auricular stimulation on the ABVN 

innervated areas has been shown to modulate autonomic changes in healthy 

humans (Haker et al., 2000; Clancy et al., 2014). The autonomic changes from 

the GAN sensory afferents activation may have been underestimated. As 

such, there is limited study to examine the autonomic effects of earlobe 

stimulation. The only available literature found online was published in Latvian 

and reading the article with Google translate assistance may affect the real 

meaning. Basically, this study examined the changes in cardiac autonomic 

function non-invasively using SDNN analysis of HRV derived from 60 minutes 

of ECG recording (Līcis et al., 2015). Bilateral earlobe stimulation (20 minutes, 

500 μA) in adult handball players marked increase in the parasympathetic 

tone in 60 minutes after the stimulation. With the current research finding, 

there is a possibility that both stimulation sites are activating a similar 

activation pathway to cause reduction in sympathetic nerve activity.  If our 

proposed activation pathway is accurate, previous human work may require 

re-evaluation since the earlobe is commonly used as a point of sham control 

stimulation (Kraus et al., 2013; Frangos et al., 2015; Yakunina et al., 2016).  

 

6.4 Study limitations 

 

One major limitation in this study was presumptive nerve distribution on the 

external auricle structure of the rats. This presumption was made based on 

cadaver examination where the tragus has a mixed of the GAN and ABVN, 

while the earlobe has total ABVN innervation (Peuker & Filler, 2002). It is 

unknown if peripheral distribution of the auricular nerves in humans is similar 
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to that in rats. Given that current evidence, anatomical and physiological, 

showed a degree of similarity between these two auricular regions, there is a 

possibility that a similar nerve is innervating these structures. We did not 

clarify if this nerve is either the GAN or the ABVN. Hence, throughout the entire 

thesis the stimulation was referred to as general auricular stimulation rather 

than specific auricular afferent stimulation.          

Another major consideration in this study was the use of WHBP as a method 

to explore the vagal changes after ear stimulation. Given that the 

parasympathetic activity was indirectly measured with cardiac RSA in this 

preparation. The validity of cardiac RSA to measure autonomic activity has 

been debated in healthy young adults (Kollai & Mizsei, 1990). The cardiac 

parasympathetic activity was taken by changes in heart period from 

propranolol treatment while the RSA was quantified as difference between 

maximum and minimum heart periods in a given respiratory cycle. Regression 

analysis between the RSA and vagal control was found to be significant but 

weak (r=0.63), suggesting they are not necessarily reflective.  With the WHBP, 

a direct measurement from the vagal tone measurement from the preparation 

can be measured directly from the cervical vagal nerve (Paton, 1996b) and 

that wasn’t utilized in this study.  

The afferent labelling may also be biased in this study. Double labelling 

between CTB and either IB4 or WGA into sciatic nerve of rats revealed the 

tendency of myelinated fibres labelling only (Shehab & Hughes, 2011). This 

may resulted inaccuracy of the result interpretation since the vagus nerve (our 

initial nerve of interest) in cats is composed of 20% unmyelinated and 80% of 

myelinated fibres (DuBois & Foley, 1936). However, the fibres composition of 

the GAN is unknown. An electrophysiological study on single afferent  fibres 

recorded from the C3 (origin of the GAN) in cats suggested domination of low 

conduction velocity afferents (Abrahams et al., 1984). The low conduction 

velocity commonly have a high threshold activation points and this is mainly 

in the unmyelinated neuronal fibres. Hence, different neuronal tracing should 

be considered in the future to address this limitation.  
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Similar to that labelling outcome, there is also a possibility of bias in activation 

of certain type of afferent fibres particularly the C fibres. The activation 

threshold of C fibres (unmyelinated) in dogs is usually greater than 4 mA (Yoo 

et al., 2016), and cats is more than 2 mA that is higher than any other 

myelinated fibres (Blair & Erlanger, 1933). Extracellular recording on the vagal 

preganglionic neurones in the dorsal vagal motor nucleus of anaesthetized 

rats revealed to have majority of C fibre axons and this may play a role in 

autonomic control (Jones et al., 1998). Alas, this may not be necessarily 

relevant to our current interpretation since the autonomic functions are 

potentially mediated by the GAN rather than the vagus nerve.   

The WHBP can offer further advantages that were not conducted in this study. 

For example testing if stimulation can alter baroreceptor or chemoreceptor 

reflexes. Baroreceptor reflexes can be elicited by brief increases in pump 

pressure (Lall et al., 2012). Similarly, injection of sodium cyanide (to activate 

chemoreceptors) into the perfusate of the preparation decreases HR and 

increase phrenic nerve discharge. Changes in sensitivity of these reflexes 

would be consistent with autonomic influences of auricular stimulation.  

Another limitation of the current study is the relatively small number of the 

animals used for analysis of each experiment and so limits the power to detect 

some differences (e.g.: reduction in HR after earlobe stimulation). The 

average number of animals used for each experiments were 10. This may not 

be critical since previous literature of rodents physiological functions in WHBP 

has various number of replications ranging between 2 – 20  (Potts et al., 2000; 

Lall et al., 2012; Edwards et al., 2015).  

Attempts were made to look at the targets of labelled afferents that projected 

from the stimulation site (Chapter 4). Rare and infrequent co-localizations 

were found between the afferent terminals with the ChAT, Calb, ParV, GAD 

67, and also NKR1 expressing cells, thus counting was not performed.  
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6.5 Conclusions 

 

Autonomic function in WHBP of the rats following auricular electrical 

stimulation has been examined for the first time. To find a suitable animal 

model, the autonomic profile in rats WHBP from different circadian cycle was 

primarily characterized. Secondly, basal effects of tragus and earlobe 

stimulation caused central sympathoinhibition. Anatomical and physiological 

work in this theses proposed somatosensory pathway activation (presumably 

from the GAN) to upper cervical spinal, and potentially projects to autonomic 

modulation centre in the brainstem (e.g.: NTS). The significance of 

somatosensory activation from ear stimulation to cause autonomic changes 

became evident as central sympathoinhibition became absent in transected 

upper cervical preparation. This may explain a non-specific functional map in 

the ear as sympathoinhibition was seen in both tragus and earlobe stimulation.  

However, sensory nerve innervation in rats’ auricular dermatome needed to 

be clarified prior to confirming the proposed activation pathway. The 

neurophysiological work covered in this thesis may clinically be applied as a 

non-surgical treatment for chronically elevated sympathetic activity and 

sympatho-vagal imbalance such as heart failure.   
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