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Abstract 

Wear and fatigue of polyethylene acetabular cups have been reported to play 

a role in the failure of total hip replacements. Edge loading of hip replacements can 

occur where there is sub-optimal component positioning and/or joint laxity. Wear 

resistance can be improved by crosslinking but the manufacturing process of these 

materials involves post-irradiation thermal treatments to recombine free radicals 

and to stabilise the materials. Stabilisation can also be achieved by adding 

antioxidants. Material degradation due to oxidation and manufacturing process can 

result in rim cracking and/or fracture due to a reduction in mechanical properties 

and this has been observed in vivo. A requirement for pre-clinical hip simulator 

testing under edge loading conditions for all of these materials has therefore been 

identified.  

This thesis describes the development and evaluation of a hip simulator edge 

loading protocol using accelerated aged conventional UHWMPE acetabular liners 

as positive controls and commercially available crosslinked UHMWPE acetabular 

liners as negative controls. The edge loading protocol was then used to evaluate 

antioxidant stabilised liners in hip simulator tests. Explanted UHMWPE acetabular 

liners were evaluated for wear and damage mechanisms and compared with the 

damage observed on the hip simulator tested liners and new methodologies were 

developed to measure and analyse these explanted liners.  

The edge loading protocol produced cracking and subsurface damage in the 

aged UHMWPE liners but not in the non-aged crosslinked liners. Rim deformation 

was observed on all liners and the volume change produced was reduced under 

edge loading conditions for both types of UHWMPE liner. The antioxidant liners 

performed as well as the commercially available crosslinked liner in hip simulator 

tests and therim deformation that was observed on explanted liners was replicated 

under edge loading conditions in the hip simulator tests. 

The edge loading protocol can be used in the future to test a range of 

UHMWPE materials, including aged materials, and explant analysis using the 

methodologies developed in this study can be used to inform the design of future 

simulator tests.   
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 Introduction 

1.1 Introduction 

People in the UK are living longer and the percentage of the population aged 

over 65 is increasing. Not only has the basic life expectancy at birth continued to 

rise, the expectation of a healthy and disability free life for longer is also increasing 

(Office for National Statistics, 2014). As a result of this ageing population, medical 

science is faced with an increasing demand to keep more people active for longer 

and hip replacements play a vital role in achieving this. Historically, hip 

replacements have generally been implanted in elderly, less active patients with 

limited life expectancy. However, advancements in available technology leading to 

hip replacements in younger patients and a more active elderly population have 

given rise to patients with greater expectations in terms of continued activity levels 

and implant lifetime. As a result, researchers and manufacturers are faced with the 

challenge of developing implants that are able to meet the demands of our longer 

living, more active population. 

1.2 The Natural Hip 

The hip is a ball and socket joint made up of the head of the femur 

articulating against the acetabulum of the pelvis (Figure 1-1).  

 

Figure 1-1 The Natural Hip (BBC, 2014) 
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Both the head and acetabulum are covered by a layer of cartilage that 

promotes the smooth articulation of the joint. A synovial membrane lines the joint 

to form the joint capsule and secretes synovial fluid, which acts as lubrication to 

the joint. Ligaments, tendons and muscles surround the joint to stabilise and 

control movement. The hip joint has three degrees of freedom: flexion/extension; 

abduction/adduction; and external/internal rotation. It must withstand forces of 

around four times body weight for normal everyday activities and peak loads of up 

to eight times body weight have been recorded in stumbling patients (Paul, 1976; 

Bergmann et al., 2004).  

1.3 Osteoarthritis 

Osteoarthritis is a degenerative joint disease affecting not only the cartilage 

but the entire synovial joint. The initial stages of osteoarthritis are characterised by 

a thickening of the articular cartilage as the chondrocytes attempt to repair the 

tissue. However, as the disease progresses a softening and thinning of the cartilage 

takes place as the concentration of proteoglycans is reduced. The surface of the 

cartilage begins to break down and fibrillation occurs. In the later stages of 

osteoarthritis the cartilage can become completely worn exposing underlying 

eburnated bone. Cartilage does not have a blood supply, which means that once 

damaged it is difficult to repair. Fibrocartilage may form as part of a repair process 

but the mechanical properties are inferior to those of the original hyaline cartilage 

and it may degrade over time. Although cartilage damage is normally considered 

the main identifying feature of osteoarthritis, changes also occur in the bone and 

surrounding tissue. Sclerosis of subchondral bone, osteophyte formation, 

subchondral cysts and localised osteonecrosis may occur while inflammation of the 

synovial membrane and the joint capsule, bursitis, degradation of tendons, 

ligaments and muscle atrophy have all been linked to osteoarthritis (Fauci, 2006). 

In England, 2.46 million people are living with osteoarthritis of the hip (Arthritis 

Research UK, 2014) and this was the diagnosis in 91% of total hip replacements in 
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2014 (National Joint Registry, 2014).Other diagnoses include, rheumatoid arthritis 

and genetic disorders.    

1.4 Overview of Total Hip Replacement 

In total hip replacement the femoral head is removed and replaced by an 

artificial head, which articulates against an artificial cup implanted into the 

acetabulum. The head is attached to a stem that is fixed to the inside of the 

femoral shaft (Figure 1-2). Fixation of the femoral component is achieved using 

cement (cemented) or by adding a porous coating and press fitting into the shaft of 

the femur (uncemented), promoting bone growth directly on to the component. 

Likewise, the acetabular cup can be cemented directly into the acetabulum or it 

can be fixed to the acetabulum with screws, spikes or bone ingrowth.  

 

 

Figure 1-2 Total Hip Arthroplasty (Malik, 2007)  

 

The bearing is a ball and socket joint. Femoral heads are typically metal or 

ceramic and the acetabular component can be metal, ceramic or ultra-high-

molecular weight polyethylene (UHMWPE).  
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1.4.1 The National Joint Registry of England in Wales  

Total hip replacement is generally considered a successful procedure. In the 

12th Annual Report (2014), The National Joint Registry for England and Wales (NJR) 

reported that 85.6% of patients said they were much better following a primary hip 

replacement. In the same report, the overall risk of revision at 11 years was 

reported as 5%. However, the revision rate depended on a variety of factors 

including the age and gender of the patient. For example, the overall risk of 

revision at 10 years was 8.87% for men aged under 55 year’s old compared to only 

3.34% in men over 75 year’s old. The corresponding figures for women were 

12.15% and 2.55%, respectively. This emphasises the importance of long-lasting 

joint replacements for the younger more active patient.   

The failure and revision rate of total hip replacement is multifactorial and the 

complexity of the data in the National Joint Registry reflects this. The NJR annual 

reports present data on implant usage by bearing type, fixation (cemented, 

cementless, hybrid) and design as well as collecting and presenting surgeon and 

patient data. The clinical outcome is presented for a range of factors including, age, 

gender, surgeon, bearing type, fixation method and component design. Any one of 

these factors may influence the clinical outcome of a hip replacement and one of 

the primary purposes of the NJR is early identification of failure trends. In 

combination with laboratory research and pre-clinical testing it can be used to 

inform the design of implants and to help establish recommendations for patient 

suitability.               

1.4.2 Total Hip Replacement Bearings 

Total hip replacement bearings can be metal on UHMWPE (MoP), ceramic on 

UHMWPE (CoP), ceramic on ceramic (CoC), metal on metal (MoM) or ceramic on 

metal (CoM).  

The National Joint Registry for England and Wales report survival rates by 

bearing type and fixation method for total hip replacement (National Joint Registry, 

2014). For uncemented hip replacements, metal on metal hip replacements have 

the highest predicted failure rate at 10 years and ceramic on ceramic and ceramic 
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on UHMWPE have the lowest (Figure 1-3).  Cemented components show similar 

trends.  

 

 

 

Figure 1-3 Comparison of cumulative probability of revision (Kaplan-Meier 

estimates) for uncemented primary hip replacements with different bearing 

surfaces (National Joint Registry, 2014) 

 

Metal on UHMWPE is the most commonly implanted bearing combination 

followed by ceramic on UHMWPE (CoP). However, UHMWPE is susceptible to high 

wear rates. Wear debris has been implicated in the failure of these components 

due to osteolysis and subsequent aseptic loosing (Ingham and Fisher, 2000). 

Osteolysis refers to an inflammatory response that results in bone resorption and 

can be diagnosed by radiolucencies surrounding the total joint replacement.  

Studies carried out since the late 1970s have presented evidence that UHMWPE 

wear debris is the primary catalyst in the development of osteolysis around total 

joint replacements (Willert et al., 1977; Amstutz et al., 1992). Highly crosslinked 

UHMWPE was introduced in the 2000s to improve the wear resistance. This was 

achieved by exposing the material to gamma radiation, which breaks the chemical 

bonds and creates free radicals that recombine to form crosslinks. Post-irradiation 
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thermal treatments were then used to stabilise the material. Ceramic on UHMWPE 

bearings have been shown to wear less that metal on UHMWPE bearings, which is 

thought to be due to a higher resistance to scratching and damage (Derbyshire et 

al., 1994; Galvin et al., 2010).  

Ultra high molecular weight polyethylene wear debris may be generated at 

non-articulating surfaces, for example between the shell and liner, known as back-

side wear, or by contact of the femoral stem against the rim of the acetabular cup. 

However, the predominant particle found in the periprosthetic tissue of a metal on 

UHMWPE arthroplasty is UHMWPE, most of which is generated at the articulating 

surfaces (Kurtz et al., 1999).  Much progress has been made since the first hip 

replacements to improve the wear resistance of UHMWPE bearings and to provide 

a relatively inexpensive and clinically reliable total hip replacement. 

Ceramic on ceramic bearings have good wear resistance but can be 

susceptible to fracture (Barrack et al., 2004). Furthermore, mal-positioning of these 

components can lead to edge loading of the acetabular rim and an increase in wear 

(Nevelos et al., 2000).  Metal on metal total hip replacements and resurfacings 

constitute only 0.1% of all primary hip replacements (National Joint Registry, 2014). 

They offer superior wear resistance but relatively high failure rates have been 

recorded (20% at 10 years for uncemented components) and concerns over toxicity 

due to the release of metal ions have been raised.  

 

1.4.3 Acetabular Cup Design 

Acetabular cups can be cemented, cementless, modular or monoblock cups. 

Cemented, monoblock all UHMWPE cups date back to the first prostheses in 

the 1960s and are still available clinically today. The UHMWPE cups are cemented 

directly into the acetabulum using PMMA cement. The all-UHMWPE cup can be 

unforgiving intra-operatively, due to the design, as it cannot be repositioned once 

implanted and surgical inconsistency can yield varying clinical results. 

Manufacturers are continually seeking design improvements to achieve better 

fixation, to reduce dislocation potential and to reduce wear and as a result a vast 
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array of design features are available clinically, not all of which have a proven track 

record.  

Cementless cups are composed of a metal shell into which an UHMWPE, 

ceramic or metal liner is fixed by means of a mechanical locking mechanism. The 

metal shells are fixed to the acetabulum with screws, pegs or spikes or are press fit 

into the acetabulum. A porous and/or hydroxyapatite exterior coating achieves 

biological fixation of the component. Modularity of these components allows the 

surgeon to choose from a range of head diameters, liner materials, geometrical 

design features and liner offset. An additional benefit is that the liner can 

potentially be changed without revising other components if excessive wear 

occurs.  

 Some monoblock designs have an UHMWPE liner and porous coated metal 

shell that have been assembled during manufacture, usually by compression 

moulding of the UHMWPE. As well as limiting micromotion between shell and liner, 

this removes the requirement for a locking mechanism thus reducing potential 

areas of thin UHMWPE and high stress fields around notches. A study by Young et 

al. (2002) compared head penetration and incidence of osteolysis for modular and 

non-modular acetabular cups using radiographs. They reported lower wear rates 

(not significant) for the non-modular cups and a significantly lower rate of 

osteolysis for the non-modular cups. They attributed this to reduced micromotion 

between shell and liner, increased polyethylene thickness and greater shell-liner 

conformity.  

1.5 Overview of Ultra-High-Molecular-Weight Polyethylene 

1.5.1 Structure 

Ultra-high molecular weight polyethylene remains the most commonly 

implanted bearing material and can reasonably be expected to perform well 

clinically for 10-15 years (National Joint Registry, 2014). However, beyond 10 years 

the survival of UHMWPE total hip replacements becomes limited by wear of the 

UHMWPE primarily at the articulating surface. Ultra-high molecular weight 
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polyethylene for orthopaedic components is made up of ethylene monomer units 

joined together by covalent bonds to form a linear homopolymer, an un-branched 

chain of identical repeated units (Figure 1-4; Kurtz 2009).  

 

Figure 1-4 A schematic of (A) Ethylene and (B) UHMWPE Chemical 

Structures (Kurtz, 2009) 

 A UHMWPE chain can have between 71,000 and 214,000 repeated units 

equating to a molecular weight of between 2 and 6 million g mol-1 (Kurtz 2009). 

These polymer chains rotate around the C-C bond to form chain folds and ordered 

crystalline lamellae. However, the extremely long length of the polymer chains 

hinders the formation of these crystalline regions and therefore limits the overall 

crystallinity of the material. The resulting structure consists of crystalline lamellae 

interconnected via tie molecules embedded within an amorphous matrix consisting 

of randomly oriented, entangled polymer chains (Figure 1-5).  

  

 

Figure 1-5 A Schematic of the Morphology of UHMWPE. Kurtz (2009) 
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In comparison to other forms of polyethylene, UHMWPE has high impact 

strength, tensile strength and wear resistance (Kurtz 2009). Currently there are two 

medical grades of UHMWPE available for implants, GUR 1050 and GUR 1020, 

where the main difference is the average molecular weight (5.5-6 and 3-3.5 x 106 

gmol -1, respectively).  

 

1.5.2 Wear of UHMWPE 

Fisher (1994) identified the three main wear processes for UHMWPE: wear 

produced by microscopic counterface asperities; macroscopic polymer asperity 

wear and structural failure and wear.  

Wear produced by microscopic asperities on the smooth femoral head 

involves the smallest scale of cyclic stress (Figure 1-6). Repeated sliding of the 

femoral head over the UHMWPE surface causes the polymer to deform elastically 

and plastically and finally results in detachment of a particle through fatigue failure.  

A rougher femoral head results in increased wear as fewer sliding cycles are 

required to detach the particle as it is subjected to greater cyclic stress. 

 

 

Figure 1-6 A schematic of Wear Produced by Microscopic Counterface 

Asperities. Adapted from Fisher (1994) 

 

 Unlike wear produced by microscopic counterface asperities, macroscopic 

polymer asperity wear assumes a polymer surface roughness that is much greater 

than that of the femoral counterface (Figure 1-7). On loading of the polymer the 

macroscopic asperities initially deform elastically. However, after some cycles the 

deformation becomes plastic producing local stress concentrations in the polymer 

Hard Metal Asperities

Polymer
1µm

100µm
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asperity. Under cyclic loading the deformation of the macroscopic polymer asperity 

can produce crack propagation and surface fatigue to within 10µm of the surface 

under the asperity. This process is also known as micro-delamination and produces 

much larger UHMWPE particles due to the larger scale cyclic stresses involved. 

Both wear produced by microscopic counterface asperities and macroscopic 

polymer asperity wear occur within 10 µm of the surface.  

 

Figure 1-7 A Schematic of Macroscopic Polymer Asperity Wear. Adapted 

from Fisher (1994) 

 

Structural failure and wear involves larger stress fields and is associated with 

the overall structural stress field, which is of the order 1-10mm and varies with 

time as the load is applied and spatially as the contact area moves over the 

polymer. In this wear process it is assumed the two surfaces are smooth (Figure 

1-8). The stress field is determined by the geometry of the contact, the load and 

the elastic modulus of the materials. Under cyclic loading conditions, if the stress 

field exceeds the yield stress and fatigue limit of the material it can cause structural 

fatigue after relatively few cycles. This wear process otherwise known as 

delamination can produce large amounts of wear debris but is much more common 

in total knee replacements than total hip replacements (Mayor et al., 2003; Patten 

et al., 2010).  

Metal

Polymer

Strain Concentration

10µm

1mm
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Figure 1-8 A Schematic of Stress Fields Associated with Structural Failure. 

Adapted from Fisher (1994) 

   

 Mckellop & Campbell (1995) defined wear modes as the general conditions 

under which a joint functions in vivo (Table 1). All modes produce wear particles 

but modes 2,3 and 4 can produce significantly more wear because in these modes 

the prosthesis is not functioning in the manner intended by the designers.  

  

Table 1 Description of Wear Modes as Described by Mckellop & Campbell 

(1995) 

Mode  Description Example 

Mode 1 Two bearing surfaces moving together as 

intended by the designer 

 

Mode 2 A bearing surface wearing against a non- 

bearing surface 

Wear through of femoral 

head to metal shell and/or 

Ball contacting with shell 

rim during dislocation 

Mode 3 Third body particles interposed between 

bearing surfaces 

Bone, PMMA, metal or 

ceramic particles 

Mode 4  Two non-bearing surfaces moving 

against each other 

Neck impingement and/or 

Backside wear 

 

  

Metal Sphere

Polymer

10mm
Contact Width
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A joint prosthesis functioning in any of these modes will be subject to one of 

the three fundamental wear mechanisms: adhesion, abrasion, and fatigue. Wear 

mechanisms are the processes that cause wear and damage to the UHMWPE.  

Adhesion involves bonding of two contacting surfaces under load with material 

being pulled away from at least one of the surfaces when enough relative motion is 

experienced (macroscopic polymer asperity wear). Abrasion involves asperities on 

a rough hard surface cutting through a smooth softer surface, resulting in material 

removal (microscopic counterface asperity wear). Fatigue failure occurs when local 

stresses exceed the fatigue strength of a material causing it to fail after a certain 

number of loading cycles (structural failure and wear; McKellop 2007). McKellop 

(2007) differentiated between wear and damage because a material can undergo 

substantial damage despite very little or no particle generation or wear occurring. 

The most commonly observed forms of wear damage have been divided into two 

categories, macrodamage and microdamage, and several subdivisions (Table 2). 

 

Table 2 Damage Categories for UHMWPE Components. Adapted from 

Mckellop & Campbell (1995) 

Macrodamage 
Microdamage – observed in the glossy, 

smooth surface 

 Smoothing or Polishing – a glossy 

smooth surface relative to the 

original machined surface 

 Scratching – a rough surface relative 

to the original machined surface 

 Cracks, Pits and/or Delamination 

 Nodules several microns in diameter 

 Ripples – aligned rows of nodules 

 Smeared nodules – from slight 
surface deformation to complete 
obliteration of nodular structures 

 Fibrils of elongated polymer 

 Microcracks – usually located 
between nodules or ripples 

 Scratches – up to 10s of microns 
wide 

 Shreds of elongated polymer – larger 
than fibrils 

 Pits 

 

Volumetric wear (V; mm3) is widely thought to be proportional to applied 

load (W; N) and sliding distance (x; m) and is described by the Lancaster equation 



- 13- 

(1.1), where K is the wear factor (mm3/Nm) and dependant on material factors 

relating to the sliding surfaces such as hardness, lubrication and real contact area 

(Lancaster, 1973).  

𝑉 = 𝐾. 𝑊. 𝑥  (1.1) 

The Lancaster equation is a simplified version of the Archard equation 

(Archard, 1953). Archard theorised that the wear rate for metal on UHMWPE was 

proportional to the load and independent of the apparent area of contact.     

Several studies have challenged the idea that the wear rate is more 

dependent on the normal load rather than the contact area or the contact stress. In 

pin on plate tests, Rose et al. (1983) found that wear increased exponentially with 

increasing load and Rostoker and Galante (1979) reported substantial increases in 

wear with contact stress at contact pressures above 7MPa.  However, Barbour et 

al. (1995) reported a decrease in wear factor with increasing contact stress in pin 

on plate tests. Similarly, Vassiliou and Unsworth (2004) reported a decrease in 

wear factor with increasing nominal stress while Mazzucco et al. (2003) reported 

that wear rate increased with increasing contact area but was independent of 

normal load in pin on disk tests for a range of contact stresses.  

The wear behaviour of UHMWPE is very sensitive to the direction and mode 

of sliding motion. Unidirectional reciprocating motion results in the molecules 

becoming stretched and orientated along the direction of sliding causing strain 

hardening to occur and resulting in relatively low wear rates. Pooley & Tabor 

(1972) reported that when UHMWPE is subject to unidirectional sliding the 

molecules align along the direction of sliding. This results in a reduced coefficient of 

friction and a potential reduction in wear. Bragdon et al. (1996) found that 

multidirectional motion, which was representative of the natural human hip joint, 

resulted in the polymer surface being “redrawn and reoriented at acute angles” 

causing shearing of the UHMWPE into particles and producing wear. Similarly 

Wang et al. (1997) developed a model to describe multidirectional wear. The model 

separates flexion/extension and abduction/adduction into principal and secondary 

stress components, respectively. These authors described a strain hardening effect 

in the principal direction and a strain softening and weakening of the material in 
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the secondary direction. This strain softening led to shear rupture during 

multidirectional movement and hence the generation of wear particles. This 

phenomenon resulted in higher wear rates being observed when multidirectional 

wear paths were present. The above studies emphasise the importance of 

multidirectional motion on the wear behaviour of UHMWPE and the requirement 

to replicate this in vitro if clinically relevant wear rates are to be obtained. At this 

stage it is important to mention the effect of cross-linking on this wear behaviour. 

Cross-linking reduces the mobility of molecules and therefore reduces the strain 

hardening and corresponding strain softening, resulting in lower wear rates under 

multidirectional motion. A theoretical model developed by Wang (2001) related 

wear factor to coefficient of friction (µ), the cross-link density (Xc) and the 

maximum cross shear angle α for multi-directional motion in a hip joint simulator. 

These authors reported increasing wear rate with increasing coefficient of friction 

and increasing maximum cross shear angle but decreasing wear rate with 

increasing radiation crosslinking. 

During the initial stages of functioning, a joint prosthesis will undergo a 

process termed ‘bedding-in’ whereby penetration of the femoral head into the 

acetabular cup is a result of both creep and wear of the UHMWPE. Creep or cold 

flow refers to the deformation of the material over time under the application of a 

stress such as body weight. The two articulating surfaces increasingly conform over 

the first 12-24 months, increasing the contact area and reducing contact stresses, 

after which a steady state of wear is reached and penetration is mainly a result of 

particulate debris removal or ‘true wear’. Studies by Estok et al. (2005) and Glyn-

Jones et al. (2008) measured the penetration of the femoral head into the 

acetabulum using radiographs and compared the creep and wear of conventional 

and cross-linked UHMWPE. Both studies reported similar creep deformation for 

both types of material and both studies concluded that the majority of the creep 

occurs during the early stages of implantation. Estok et al. (2005) reported a creep 

dominated phase during the first two years of implantation and Glyn-Jones et al. 

(2008) reported a shorter creep phase of six months, predicting that virtually all 

creep would have occurred after one year of implantation. A simulator study by 

Galvin et al. (2007) also reported a creep dominated phase of two years for cross-
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linked UHWMPE for a ceramic on UHMWPE bearing and one year for a metal on 

UHMWPE bearing.  

Measurement of wear in UHMWPE components must therefore take into 

account the difference between volume change due to creep and volume change 

due to wear during the early stages of testing or implantation and that this may 

change depending on material characteristics and bearing combinations.  

1.5.3 Lubrication Regime 

Metal on metal and ceramic on ceramic bearings have been shown to 

function in fluid film or hydrodynamic lubrication regimes, assuming bearing 

surfaces are smooth enough (Jin et al. 1996). In this regime the presence of a 

relatively thick lubricant film between surfaces prevents rubbing between bearing 

surfaces and therefore greatly reduces wear. However, metal and ceramic on 

UHMWPE bearings have been shown to function in mixed lubrication regimes 

(dominated by boundary lubrication; Auger et al. (1993)), whereby high polymer 

surface roughness and a thin lubricant film allow surface asperities to rub together 

producing wear.  

The effect of altering lubricant viscosity, speed and applied load on the film 

thickness, coefficient of friction and lubrication regime are shown in Figure 1-9. 

 

Figure 1-9 Graph of Boundary, Mixed and and Hydrodynamic Lubrication 

Regimes. Adapted from Biresaw (2008) 

μ = Coefficient of Friction 

h = film thickness 

η = lubricant viscosity 

u = speed 

F = load 
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As it is not possible to alter the viscosity of synovial fluid or the load applied, 

it is therefore not possible to achieve fluid film lubrication by altering these 

variables for UHMWPE bearings. Jin et al. (1996) reported on the importance of 

surface roughness and fluid film thickness on the lubrication regime. The lambda 

ratio used to predict lubrication regime is given in equation (1.2): 

  

  (1.2) 

 

where Ra1 and Ra2 are the surface roughness of the femoral head and the 

acetabular cup, respectively, and h is the film thickness. If λ > 3 then fluid film 

lubrication is expected. For λ < 1, boundary lubrication, whereby a significant 

amount of asperity contact and wear occurs, is expected. For 1 < λ > 3, mixed 

lubrication occurs. Jalali-Vahid et al. (2001) found that increasing the femoral head 

diameter and the UHMWPE thickness and decreasing the radial clearance and the 

elastic modulus would increase the fluid film thickness. However, these authors 

reported that the film thickness achieved for all of these variables was much 

smaller than the surface roughness of the polymer and therefore a mixed 

lubrication regime would prevail. As it is unlikely that modern surface finishes could 

be improved significantly it is therefore necessary to reduce the wear produced by 

mixed lubrication by other means, such as modifying the mechanical properties of 

the polymer. 

1.5.4 Sterilisation 

Sterilisation of the UHMWPE components is an important step in obtaining 

long term performance and the sterilisation method chosen can influence the 

mechanical properties of the material. Previously, orthopaedic components were 

sterilised by gamma radiation in the presence of air and then packaged in air 

permeable packaging. Gamma irradiation results in crosslinking, which despite 

improving the wear resistance of the material is known to generate free radicals. 

Free radicals can react with oxygen in the air or in vivo to cause oxidative 
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degradation of the component. In the 1990s it was reported that these air sterilised 

components were undergoing oxidative degradation or shelf ageing, resulting in an 

increase in density and crystallinity and a decrease in ductility and toughness. 

Oxidative damage was observed as a white band below the surface of these 

implants and was responsible for fatigue damage and increased wear of the 

material (Premnath et al. 1996; Collier et al. 1996) Consequently, manufacturers 

have ceased to use this method of sterilisation and a range of other methods are 

used in its place.  

Gamma irradiation in an inert environment in conjunction with barrier 

packaging removes the availability of oxygen to react with free radicals. Argon, 

nitrogen and vacuum conditions are used. However, in recent years concerns have 

been raised over the effectiveness of this packaging and oxidation again becomes a 

problem once the packaging has been opened. Additionally, the degree of 

effectiveness in terms of preventing oxidation during shelf ageing can be affected 

by the type of packaging used, as outlined in a survey by Costa et al. (2006) on 

contemporary packaging.  

Ethylene oxide (EtO) sterilisation does not alter the physical structure of the 

UHMWPE and does not generate free radicals. Studies on oxidation levels after EtO 

sterilisation by Collier et al. (1996) revealed that damage modes such as rim 

cracking and delamination observed in components that had been gamma radiated 

were not observed in EtO sterilised components.  

Gas plasma sterilisation is a relatively modern sterilisation technique and 

therefore it is too early to evaluate its performance clinically. However, it is 

becoming more widely accepted as a cheap and quick sterilisation method that 

does not generate free radicals or alter material properties but as with EtO 

sterilisation it does not promote cross-linking of the UHMWPE and therefore does 

not offer the improvement to wear resistance of gamma radiation.  

1.5.5 Oxidation 

When UHMWPE is subjected to gamma radiation for either the purposes of 

sterilisation or crosslinking, the chemical bonds within the material are broken in a 
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process known as chain scission. This generates free radicals within the polymer. 

The more mobile free radicals will recombine to form crosslinks but residual free 

radicals that do not recombine will react with oxygen to form unstable 

hydroperoxides that decay causing embrittlement of the material through chain 

scission and recrystallization (Kurtz, 2009). This embrittlement of the material 

compromises wear resistance and fatigue resistance and can lead to failure of the 

material through fracture (Table 3).   

Edidin et al. (2000) compared the surface and subsurface mechanical 

properties of shelf aged and naturally aged UHMWPE test specimens using the 

small punch technique and compared them with non-aged controls. They reported 

an increase in elastic modulus and a decrease in ductility, ultimate strength and 

toughness resulting from post-irradiation ageing that was “consistent with a 

progressive embrittlement process. The accelerated ageing process that they used 

in the study (4 weeks at 80C in an atmospheric oven) produced mechanical 

degradation at the surface but not the subsurface, highlighting the difficulty in 

replicating the natural ageing process in these materials. 

Table 3 Mechanical properties of non-aged, accelerated aged, 5 years shelf 

aged and 10 years shelf aged test specimens tested using the small punch 

technique; taken from Edidin et al., 2000 

Shelf age 
when 

tested (yrs) 

Specimen 
Location 

Elastic 
Modulus 

(Mpa) 

Initial Peak 
Load (N) 

Ultimate 
Load (N) 

Ultimate 
Displacemen

t (mm) 

Work to 
Failure 

(mJ) 

0 Surface 485 ± 85 64.6 ± 2.9 55.1 ± 2.1 4.11 ± 0.04 191 ± 8 

0 Subsurface 589 ± 121 64.9 ± 3.1 60.9 ± 3.4 4.07 ± 0.08 196 ± 13 

A.A Surface 1281 ± 363 62.5 ± 8.5 17.7 ± 12.1 2.20 ± 1.57 78 ± 71 

A.A Subsurface 672 ± 188 70.3 ± 1.0 65.4 ± 1.8 4.06 ± 0.04 207 ± 5 

5 Surface 1100 ± 129 72.6 ± 1.5 56.7 ± 6.2 4.13 ± 0.20 214 ± 17 

5 Subsurface 1056 ± 134 69.7 ± 1.3 39.0 ± 3.7 4.11 ± 0.15 190 ± 5 

10 Surface 1326 ± 313 58.1 ± 7.7 22.5 ± 16.9 2.64 ± 0.32 99 ± 29 

10 Subsurface 1487 ± 150 34.7 ± 1.7 8.9 ± 0.0 1.91 ± 0.12 43 ± 4 

      *A.A = accelerated aged specimens 
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 Sutula et al. (1996) found that gamma induced oxidation from sterilisation in 

air had a significant correlation with component cracking and delamination and 

resulted in reductions in ultimate tensile strength and elongation. Oxidation of the 

components can occur when the implant is exposed to oxygen during shelf storage 

and/or during implantation.  

Currier et al. (2007)  reported that in vivo oxidation of components sterilised 

in barrier packaging with gamma radiation occurred via the same mechanisms as 

those sterilised in air and the long term results were expected to be a loss of 

mechanical properties leaving the components susceptible to fatigue failure with 

increasing time and loading cycles.  

Puolakka et al. (2003) retrieved 20 gamma sterilised acetabular liners and 

measured the oxidation index and wear. All liners exhibited oxidation and 

crystallisation but the liners with a shelf life of more than 3 years exhibited 

significantly higher wear rates. These authors observed extensive abrasive wear on 

the component surface using scanning electron microscopy. 

    

1.5.6 Wear Debris and Osteolysis 

During normal functioning of a UHMWPE hip replacement, UHMWPE wear 

debris is generated at the articulating surfaces. Macrophages are activated as the 

body attempts to rid itself of the foreign particles (Figure 1-10). The normal role of 

macrophages is to engulf and destroy micro-organisms and initiate the tissue repair 

process by releasing cytokines such as tumor necrosis factor- α (TNF-α), interleukin-

1(IL-1) and interleukin-6(IL-6) and other mediators of inflammation such as 

prostaglandin E2 (PGE2), RANKL, collagenases and gelatinase. However, UHMWPE 

particles are bioinert and phagocytosis is therefore ineffective. This results in the 

controlled release of cytokines and the formation of giant cells. Several of the 

cytokines produced are known to promote the activation of osteoclasts, the key 

players in bone resorption, which leads to the ultimate loosening of the implant 

(Ingham and Fisher, 2000). Revell et al. (1997) reported a critical number of 

UHMWPE particles that would cause osteolysis of around 1 x1010 particles/gram of 
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tissue. The mean number of particles per mg of wear debris for gamma sterilised 

acetabular cups was estimated by  Tipper et al. (2000) to be 1.3 x 1010.  

The total volume of wear debris is not the only factor to influence the 

osteolytic reaction but also the concentration of particles within the critical size 

range (0.2µm-0.8µm) for macrophage activation. Ingram et al. (2004) reported an 

increase in the percentage of particles within this critical size range for crosslinked 

UHMWPE compared to a non-crosslinked material.     

  

 

Figure 1-10 Schematic of pathophysiology of wear debris-mediated 

osteolysis (Talmo et al., 2006) 

1.5.7 Crosslinked UHMWPE 

Highly cross-linked UHMWPE (generally considered to be UHMWPE that has 

been exposed to radiation doses of 5Mrad and above and then stabilised with 

thermal treatments) was introduced clinically for total hip replacement in 1998 to 

improve the wear resistance of the polymer. Since then it has been widely used in 

the United States and is being used increasingly in the UK, with all major 

manufacturers offering a proprietary version of the material. The advantages of 

crosslinked UHMWPE over low wearing hard on hard bearings include a reduced 
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surgeon learning curve in terms of implantation technique and a forgiving nature 

with respect to surgeon variations at implantation.  

When UHMWPE is exposed to ionising radiation the C-C and C-H bonds are 

cleaved in a process known as chain scission. Free radicals are generated in this 

process and two free radicals may then go on to combine forming cross-links 

(Figure 1-11). Crosslinking is detrimental to the mechanical properties such as 

strength, ductility, toughness, elastic modulus and fatigue crack propagation 

resistance (Pruitt, 2005).  

 

 

Figure 1-11 Molecular structure of conventional UHMWPE and cross-linked 

UHMWPE (Adapted from DePuy Orthaepedics Inc., 2009) 

As discussed previously (section 1.5.5), the crosslinks between the polymer 

chains prevent slippage and make the UHMWPE more resistant to surface 

orientation, which in turn reduces the wear debris generation that occurs when 

conventional UHMWPE is subjected to cross shear during multidirectional 

movement (Bragdon et al., 1996). 

Most of the free radicals that are produced during the crosslinking process 

are not mobile enough to recombine and these residual free radicals pose an 

oxidation risk to the material as they can go on to react with oxygen in the 

environment. To avoid oxidation of the polymer, the radiation dose and post-

irradiation thermal treatment must be carefully selected. Increasing the radiation 

dose will increase the cross-link density up to a dose of around 10Mrad, after which 

the cross-linking begins to saturate (Muratoglu et al., 1999). Increasing the 

radiation dose up to this threshold will increase the wear resistance but conversely 
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results in reducing mechanical properties and increasing free radicals. A post-

irradiation thermal treatment is required to quench these free radicals and 

eliminate the oxidation risk of the material.  This can be done by heating the 

polymer to above its melting temperature, known as re-melting, or heating the 

polymer to below the melting temperature, known as annealing. Post-irradiation 

re-melting reduces the crystallinity of the material allowing the free radicals to 

mobilise and recombine but has an adverse effect on the strength of the material. 

Annealing in contrast allows the microstructure to be maintained but is less 

efficient at eliminating free radicals. Achieving a cross-linked UHMWPE that will 

provide implant longevity requires a balance to be achieved between the wear 

resistance, mechanical properties, free radicals and crystallinity of the material. 

Pruitt (2005) conducted a review of the mechanical properties of 

conventional and highly crosslinked UHMWPE. The properties as a function of 

radiation dose are provided in Table 4. They reported that the improved resistance 

to plastic deformation and corresponding improvement in wear was offset by 

reductions in ultimate tensile stress, ductility, modulus, toughness and crack 

propagation resistance.    

Table 4 Mechanical properties of UHWMPE as a function of radiation dose 

(Pruitt., 2005) 

Property GUR 1050  25kGy 50kGy 100kGy 200kGy 

Crystallinity (%) 50.7±0.5 45.4±0.7 46.2±0.7 46.9±0.8 47.7±0.4 

Yield Stress (MPa) 20.2±1.0 19.0±0.4 19.9±0.8 19.8±0.7 21.2±1.0 

Modulus (Mpa) 495±56 433±14 412±50 386±23 266±30 

True Stress at Break 
(MPa) 

315.5±31.6 284.8±18 237.6±12.3 185.7±7.5 126.0±14 

True strain at Break 1.82±0.01 1.74±0.03 1.59±0.01 1.50±0.02 1.37±0.06 

Fracture Toughness 
(JIC/kJ/m2) 

2.1 23.8 76.2 =Jss =Jss 

Steady State Fracture 
Toughness (Jss, kJ/m2) 

116.9±0.1 101.2±0.1 98.5±0.2 87.6±0.01 79.3±1.9 
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Several in vitro studies have been performed on the wear resistance of cross-

linked UHMWPE (McKellop et al., 1999; Ries et al., 2001; Endo et al., 2002; Galvin 

et al., 2010). The results have demonstrated a remarkable decrease in wear when 

compared to conventional UHMWPE and these findings are beginning to be 

corroborated by clinical experience (Martell et al. 2003; Dorr et al. 2005; Calvert et 

al. 2009; Engh et al. 2012; García-Rey et al. 2012; Glyn-Jones et al. 2015).  

McKellop et al. (1999) studied the wear of cross-linked UHMWPE cups for a 

range of radiation doses. These authors found that the wear rate decreased 

markedly for increasing radiation dose and that wear rates for gamma radiation 

doses above 200kGy were extremely low with machining marks still observable in 

the main contact zone. However, in practice the trade off in mechanical properties 

for radiation doses of 200kGy would be undesirable and a compromise between 

wear and material properties is essential. The wear rates in the McKellop study at 

more clinically relevant radiation doses were 9.3 ± 0.9mm3/yr and 2.2 ± 0.2 mm3/yr  

(for 4.5Mrad and 9.5Mrad, respectively). Galvin et al. (2007) reported significantly 

lower wear rates for UHWMPE materials crosslinked at 7.5Mrad and 10Mrad and 

then re-melted, compared to a control material subjected to a radiation dose of 

2.5Mrad in air (conventional UHMWPE). The steady state wear rate for the highly 

crosslinked material (10Mrad) was 4.6mm3/million cycles compared to over 

40mm3/million cycles for the conventional UHMWPE.  

Ries et al. (2001) reported the gravimetric wear rates from hip simulator 

testing of ethylene oxide sterilised UHMWPE, gamma inert sterilised UHMWPE and 

two crosslinked UHMWPEs subjected to clinically relevant radiation doses (5Mrad 

and 10Mrad) and aged. Both crosslinked materials were lower wearing than the 

non-crosslinked materials. These authors reported negative wear rates for the 

10Mrad crosslinked UHWMPE. However, they noted that fluid absorption of the 

UHMWPE material would make it difficult to correctly measure very low wear rates 

gravimetrically. Furthermore, these tests were run using 100% bovine serum rather 

than the 25% bovine recommended by ISO standards for hip simulator testing. 

Additionally, these tests were run with the bulk fluid at 37°C. Studies have shown 

that the temperature at the bearing is significant higher than 37°C and that 

increased protein precipitation may occur at these higher temperatures (Lu and 
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McKellop, 1997).  Protein concentration and precipitation influence the wear of 

UHWMPE and may explain the negligible wear reported in the above study (Wang 

et al., 1998; Liao et al., 1999). Zero wear has not been observed clinically for these 

materials.  

Medium term clinical results for highly crosslinked materials have now been 

reported. As part of a prospective, randomised study, Engh et al. (2012) carried out 

a 10 year follow up of highly crosslinked acetabular cups (5Mrad and heat treated) 

and non-crosslinked cups of the same design (DePuy Duraloc® cups). They reported 

an 83% reduction in the wear rate of the crosslinked cup compared to the non-

crosslinked cup (0.04mm/yr and 0.22mm/yr, respectively) and this corresponded 

with a clinically significant reduction in incidences of osteolysis for the crosslinked 

group.  

Similarly, Garcia-Rey et al. (2012) reported the results of the mean yearly 

linear penetration rates measured on radiographs of a highly crosslinked UHWMPE 

and a nitrogen sterilised UHMWPE at 10 to 12 year follow up and reported 

significantly lower rates for a highly crosslinked UHMWPE compared to a non-

crosslinked UHMWPE (a 64% reduction; 0.08mm/yr and 0.16mm/yr respectively). 

In a study by Babovic & Trousdale (2013) of 50 patients younger than 50 at 

the time of primary surgery, the authors reported 100% survivorship and a very low 

head penetration rate of 0.02mm/yr at 10 year follow up. They suggested that the 

younger patients in the study would be more active and therefore place higher 

demand in terms of wear on the materials and concluded that the crosslinked 

material had excellent long-term potential.  

The above studies all included creep and wear in the calculation of linear 

penetration rate. Creep in UHMWPE is known to vary depending on the type of 

UHMWPE and the material properties such as percentage crystallinity, which 

depends on factors such as radiation dose, thermal processing and oxidative 

degradation. Wear debris is linked to osteolysis and it is therefore important to 

distinguish wear from creep, which cannot be assumed to be the same for all 

UHMWPE materials. The majority of creep has been shown to occur within the first 

6 months to 2 years of implantation.  
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Glyn-Jones et al. (2015) reported the volumetric wear between 1 and 10 

years, excluding the first year of implantation, in a study of a crosslinked UHMWPE 

and a non-crosslinked UHMWPE of the same design. These authors observed lower 

wear volumes for the crosslinked liners (98mm3 and 14 mm3, respectively). All of 

the above studies are limited by the measurement of wear and penetration using 

radiographs, which can be subject to error due to patient positioning, poor quality 

images and observer variation, rather than direct wear measurement on an 

explanted liner. Furthermore, backside wear is not measurable using radiographs 

but may be a source of wear debris.   

A variety of factors can affect the wear rates of UHWMPE acetabular cups, 

such as component design, radiation dose, thermal processing, material 

degradation, adverse loading, all of which should be taken into consideration when 

interpreting results. However, the medium term performance of crosslinked 

UHMWPE in terms of wear is promising. Furthermore, while many studies have 

reported lower wear rates for crosslinked UHMWPE than non-crosslinked 

UHMWPE, there is currently limited evidence that this will equate to improved 

clinical outcomes in the long term. 

Despite the promising results in terms of the wear resistance of cross-linked 

UHMWPE, concerns remain about the effect of the alteration to mechanical 

properties on the clinical performance of the polymer. Baker et al. (2002) carried 

out a study on the degree of cross-linking and its effect on the fatigue crack 

initiation and propagation resistance. These authors found that although cross-

linking can be beneficial in preventing the initiation of flaws within the material, 

the resistance to crack propagation is reduced as a result of the decrease in 

plasticity at the crack tip. Crack propagation resistance is important if we are to 

assume the worst case scenario that clinically available components will contain 

some flaws or defects capable of propagating when subjected to cyclic loading. 

These authors concluded that a lower degree of crosslinking is optimal when 

designing for both wear resistance and fatigue crack propagation resistance. In a 

separate study by Bradford et al. (2004) of 21 retrieved acetabular cups, all 

explants exhibited surface cracking, abrasions, pitting and scratching after only 10 

months of implantation. This is in contrast to in vitro studies of cross-linked 
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UHMWPE cups that still display machining marks after simulation of long-term 

implantation. This may be because the less ductile material does not permit cold 

flow or creep of the polymer at the articulating surface.   

 The choice of post-irradiation thermal treatment may also play a role in the 

survivorship of cross-linked UHMWPE. It is widely believed that irradiated and 

annealed UHMWPE is at risk of in vivo oxidation as a result of residual free radicals. 

 Wannomae et al. (2006) reported increased crystallinity and unprecedented 

levels of in vivo oxidation of irradiated and annealed components after 3 years of 

implantation. These authors reported embrittlement and subsurface white bands 

comparable with those observed in traditional UHMWPE components sterilised in 

air. Furthermore these findings were compared to components that were 

irradiated and melted to remove all free radicals. No oxidation was observed and 

no change in crystallinity occurred in vivo for the re-melted components.  

Similarly, Currier et al. (2007) reported that a serious of retrieved Crossfire® 

(annealed) liners had oxidised to a measurable degree and were susceptible to 

fatigue damage after only 3 years.  

Kurtz et al. (2006) analysed traditional gamma air sterilised liners, 

conventional gamma inert sterilised liners and annealed highly cross-linked liners 

for in vivo degradation. These authors found that all three groups of liners had 

undergone in vivo degradation. However, they also found that the most severe 

oxidation occurs at areas experiencing the lowest amount of wear such as the liner 

rim. This was most likely to be due to the bearing itself being protected against 

exposure to oxidising bodily fluids. Consequently, the authors were able to 

conclude that in the absence of impingement and providing that the locking 

mechanism was not exposed to large volumes of oxidising fluid, in vivo degradation 

of annealed highly cross-linked UHMWPE was not clinically relevant during the first 

5 years of implantation and can be considered a long-term failure mode.  

Irradiated and re-melted UHMWPE is a solution to the problem of in vivo 

oxidation as free radicals are completely quenched during the re-melting process.  

However, as mentioned previously this presents another problem as it decreases 

the crystallinity of the material.  
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Atwood et al., (2011) reviewed the clinical trade-offs between fatigue, wear 

and oxidation of highly crosslinked and thermally processed materials. They 

devised a schematic that effectively showed the relationship between these 

properties for untreated controls, a moderately crosslinked and re-melted 

UHWMPE, a highly crosslinked and re-melted UHWMPE and a highly crosslinked 

and annealed UHWMPE (Figure 1-12). The untreated controls show good oxidation 

and fatigue crack propagation resistance but poor wear resistance. The moderately 

crosslinked and re-melted UHMWPE showed good oxidation resistance but 

moderate fatigue crack propagation and wear resistance. The highly crosslinked re-

melted UHWMPE showed good oxidation resistance and wear resistance but poor 

fatigue crack propagation resistance. Finally, the highly cross linked and annealed 

UHWMPE showed good wear resistance and fatigue crack propagation resistance 

but poor oxidation resistance.     

 

Figure 1-12 Schematic to outline the trade-offs in wear resistance, fatigue 

crack propagation resistance and oxidation resistance developed by Atwood et 

al., (2011) 

The inconclusive nature of the evidence surrounding the best post-irradiation 

thermal treatment led to a search for alternative methods to stabilise UHMWPE.  
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1.5.8 Additive Stabilised UHMWPE  

More recently, antioxidants such as vitamin E (α-tocopherol) have been 

added to crosslinked UHMWPE in order to stabilise residual free radicals and 

improve the materials resistance to oxidation. This eliminated the requirement for 

post-irradiation thermal treatments of varying effectiveness or that are detrimental 

to the mechanical properties of the material.   

Vitamin E is a biocompatible free radical scavenger and can therefore replace 

post-irradiation re-melting without the associated loss of crystallinity and reduced 

fatigue strength. Initial studies on vitamin E have been promising but long term 

clinical performance is yet to be determined. Oral et al. (2006) reported 

comparable wear performance for vitamin E stabilised UHMPWE acetabular liners 

when compared to highly crosslinked and re-melted UHMWPE in hip simulator 

tests. These authors also reported higher strength and fatigue crack propagation 

resistance of the material, which they attributed to the higher crystallinity of the 

base material.  

Grupp et al. (2014) evaluated the wear performance of Vitamin-E stabilised 

UHMWPE acetabular liners after prolonged ageing in hip simulator tests and 

compared it with standard and highly crosslinked re-melted UHMWPE. The 

standard UHWMPE began to oxidise after two weeks of accelerated ageing, the 

crosslinked UHMWPE after 5 weeks and the Vitamin-E stabilised UHMWPE was 

oxidation resistant after 6 weeks of accelerated ageing. Wear correlated with 

oxidation in this study.  

Other antioxidants have been investigated for use as free radical scavengers 

in UHMWPE such as nitroxide tempo, anthocyanin extracts and hindered phenol 

antioxidants.  

Ultra-high-molecular weight polyethylene stabilised with hindered phenol 

antioxidants (HPAOs) has been less widely studied than Vitamin E stabilised 

UHMWPE. However, some evidence of its efficacy exists.  Narayan et al. (2009) 

carried out pin on disk tests of hindered phenol doped UHMWPE. They observed 

inferior wear rates for three different formulations of hindered phenols when 

compared to a moderately crosslinked and re-melted control sample for a given 
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radiation dose but observed a decrease in wear rates with decreasing antioxidant 

loading and increased radiation dose. It was suggested that the higher loading of 

HPAO interfered with the crosslinking process resulting in higher wear. The authors 

suggested that the wear behaviour of HPAO doped UHMWPE was a complex 

interdependent relationship between formulation, antioxidant loading and 

radiation dose and that appropriate optimization would achieve a material that 

matched the performance of current UHMWPE with added oxidative stability. 

However, this study does not demonstrate superior wear performance of the 

material over other highly crosslinked UHMWPEs.  

King et al. (2009) compared the mechanical properties and oxidation 

resistance of HPAO doped UHWMPE (75kGy radiation dose), a conventional 

UHMWPE (radiation dose 40kGy) and a highly crosslinked and re-melted UHMWPE 

(50kGy). The HPAO stabilised UHMWPE showed better oxidation resistance 

compared to the conventional UHMWPE and was similar to that of the re-melted 

UHMWPE (Oxidation Index; 0.000, 0.045, 0.506 for the HPAO, re-melted and 

conventional UHMWPE, respectively). However, the mechanical properties were 

superior to those of the re-melted material. The strength (UTS; 40.1Mpa and 

46.1Mpa for the re-melted and HPAO materials, respectively) and crack 

propagation resistance (ΔKincep; 1.57Mpa√m and 1.88Mpa√m for the re-melted and 

HPAO materials, respectively) were improved in the HPAO material. The wear rates 

in pin on disk tests for the re-melted and HPAO materials were comparable and 

decreased in comparison to the conventional UHMWPE, suggesting that the 

material provides good wear resistance, improved tensile strength and fatigue 

crack propagation resistance and oxidation resistance. Narayan et al. (2010) carried 

out a follow up study and reported that HPAO stabilised UHMWPE continued to 

exhibit good oxidation resistance after 40 days of accelerated ageing. 

Despite these promising results, HPAO1 (hindered phenol 3,5-di-tert-butyl-4-

hydroxyhydrocinnamate) was reported to be cytotoxic to certain cells in a study by 

Bladen et al. (2013) and these authors cautioned the use of hindered phenols as 

stabilisers for UHWMPE.    
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1.6 Clinical Aspects of Total Hip Replacement 

1.6.1 Edge Loading  

Edge loading occurs when there is microseparation of the femoral head and 

the acetabular cup during the swing phase of gait. The head then contacts with the 

rim of the cup on heel strike before relocating to the articulating surface on the 

stance phase (Figure 1-13).  

Edge loading can result from rotational and/or translational mal-positioning 

of the cup. Rotational malposition refers to excessive inclination of the acetabular 

cup resulting in the contact area approaching the acetabular rim and translational 

malposition refers to a mismatch in the centres of rotation of the femoral head and 

acetabular cup. Translational malposition can be caused by medialisation of the 

cup, lever out of the head due to femoral neck impingement, head offset 

deficiency, stem subsidence or joint laxity (Jennings et al. 2012).          

 

Figure 1-13 Schematic of Edge Loading (A) Head and Cup Separation (B) Rim 

Contact (C) Relocation (Nevelos et al., 2000) 

  

Fluoroscopy studies have been carried out to determine the prevalence of 

edge loading in total hip replacements. Lombardi et al.  (2000) used fluoroscopy to 

study the extent of microseparation during adduction/abduction manoeuvres and 

normal walking gait for 10 metal on UHMWPE total hip replacements. These 

authors found that microseparation was present in all 10 THR studied with an 

average of 1.2mm & 2.4mm separation for adduction/abduction leg lifts and 

walking gait respectively. In a separate study by Dennis et al. (2001), an average 

femoral head separation of 3.3mm was observed in all of 10 total hip 
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replacements. Similarly, Komistek et al. (2002) observed a medial sliding of the 

femoral head during the swing phase of gait. The average sliding distance was 

2mm. 

  

1.6.2 Cup Positioning  

Incorrect cup placement is associated with restricted range of motion, rim 

damage through edge loading, impingement, dislocation and high contact stresses 

potentially leading to increased UHMWPE wear. At the time of implantation the 

surgeon can control cup inclination and anteversion as well as its depth in the 

acetabulum. Factors such as femoral anteversion and femoral offset play a role in 

restricting range of motion because of impingement and correct cup placement is 

critical.  

Several authors have carried out studies to determine recommendations for 

optimal cup positioning. Lewinnek et al. (1978) recommended a safe range of 40° 

±10° abduction and 15° ± 10° anteversion. This was considered a realistic range to 

allow a reasonable surgical envelope while permitting an adequate range of motion 

without impinging. Outside this range these authors found a significant increase in 

dislocation rate. D’Lima et al. (2000) used three dimensional computer aided 

design to investigate the effect of acetabular and femoral orientation on range of 

motion before cup/liner impingement for varying head/neck ratios. These authors 

found that for a given head/neck ratio a complex interaction of acetabular 

abduction and anteversion and femoral anteversion is required for optimal range 

of motion, concluding that overall, with the correct acetabular and femoral 

anteversion, abduction angles of between 45° and 55° permitted the maximum 

range of motion and stability without impingement.  

This ‘safe range’ has been widely adopted clinically. This has been largely 

driven by the prevalence of dislocation as a reason for revision (third most likely 

cause of revision in 2014; NJR 2014). While steeper inclination angles, such as those 

suggested by D’Lima, are desirable in terms of impingement free range of motion, 
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high cup inclination angles have been associated with higher risk of edge loading 

and greater wear.  

Hua et al. (2014) developed a finite element model to predict the contact 

mechanics of metal on UHMWPE acetabular cups for varying cup inclination angles 

and microseparation distances. These authors showed that, as the cup inclination 

angle increased, the microseparation distance required to create edge loading 

decreased. Microseparation distances of 2mm resulted in high stresses that were 

centralised on the rim of the cup and plastic strain was shown to increase with 

increasing microseparation.  

Patil et al. (2003) carried out a study using finite element analysis, simulator 

tests and explant analysis to determine the effect of cup abduction angle on 

UHMWPE wear. These authors reported a significant association between 

UHMWPE wear and cup abduction in all three elements of their study. In the 

clinical element of the study these authors observed a 40% increase in linear wear 

for cups with abduction angles of ≥45°.  

Similarly, excessive lateralisation of the cup has been associated with 

impingement (Malik 2007) but excessive medialisation may result in edge loading 

of the rim. 

1.6.3 Pre-clinical Hip Simulator Testing  

Currently, international ISO standards outline loading and displacement 

recommendations for a standard walking cycle (BS ISO 14242:2002). The standard 

recommends the following load and motion parameters for physiological hip 

simulators with three axes of rotation: a twin peak time dependant loading cycle 

with a maximum load of 3kN and a minimum load of 300N, an abduction/adduction 

angle of +7° to -4°, a flexion/extension angle of +25° to -18° and an 

internal/external rotation angle of ±10° (Figure 1-14). The complexities of a 

simulator with three axes of rotation, particularly 15 to 20 years ago when 

simulators were less advanced, was addressed by Barbour et al. (1999). These 

authors developed simplified load and motion input cycles using one load vector 

and two motion vectors (flexion/extension and internal/external rotation; 
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excluding abduction/adduction) by applying the motions 90° out of phase to 

generate an open elliptical wear track replicating physiological wear paths and 

rates. They compared the three axis physiological wear paths with that of the 

simplified two axis paths and similarities were reported. Ali et al. (2016) recently 

compared the wear rates of metal on UHMWPE bearings on a three axis of rotation 

hip simulator and a two axis of rotation hip simulator (using the simplified input 

profiles) and reported no significant difference in the wear rates between the two 

simulators.      

 

Figure 1-14 Load (right) and motion (left) parameters described in ISO 1424-

1 (2014) where AB = Abduction, AD = Adduction, E = Extension, F = Flexion, IR = 

Inward rotation and OR = Outward rotation (BS ISO 14242-1:2014) 

ISO standards do not currently recommend input parameters for hip 

simulator testing of edge loading conditions. Microseparation and edge loading 

caused by a mismatch in the centres of rotation of the femoral head and acetabular 

cup due to rotational and/or translational malposition has been observed in vivo 

and therefore the requirement for more robust and clinically relevant pre-clinical 

testing conditions has been identified.   

Nevelos et al. (2000) first replicated clinically relevant stripe wear patterns 

observed on retrieved ceramic on ceramic bearings by applying a mediolateral 

displacement of the femoral during the swing phase of gait. Stewart et al. (2001) 

tested ceramic on ceramic bearings under mild and severe microseparation and 

edge loading conditions in hip simulator tests and found that wear rates were 
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increased during microseparation compared to standard walking cycles and these 

replicated clinically relevant wear rates and patterns. Manaka et al. (2004) 

replicated the work of Stewart et al., obtaining wear rates that were consistent 

with those obtained in the mild and severe separation modes of Stewart’s group, 

demonstrating “good interlaboratory validation and credibility”. These authors 

compared the stripe wear observed on the simulator samples with retrieved 

femoral heads. The reported narrower wear scars on the retrievals, attributing this 

to the more varied load and motions experienced in vivo when carrying out 

common activities such as stair climbing and rising from a chair. Leslie et al. (2009) 

tested metal on metal hip surface replacements in simulator tests and reported 

that wear rates increased 9-fold under a high cup inclination angle and 17-fold 

when a high cup inclination angle and microseparation were combined. More 

recently, Al-Hajjar et al. (2010) reported increased wear rates under 

microseparation conditions for ceramic on ceramic bearings but no significant 

difference in wear rates was observed between inclination angles of  55° and 65° 

for either standard or microseparation conditions. The same authors also showed 

that wear rates were greater for 36mm diameter ceramic on ceramic bearings than 

28mm diameter bearings for dynamic microseparation and edge loading conditions 

but not standard conditions (Al-Hajjar et al. 2013), highlighting the importance of 

testing under more adverse conditions. It was also reported in a later study by 

these authors that increased translational mismatch between the centres of 

rotation of the head and the cup (translational malposition) and increased cup 

inclination angle (rotational malposition) would result in an increase in the 

magnitude of dynamic microseparation and wear in ceramic on ceramic bearings 

(Al-Hajjar et al. 2015). In contrast, a study by Williams et al. 2003 reported reduced 

wear rates in ceramic on UHMWPE bearings under edge loading conditions. 

However, the degree of microseparation studied by these authors was small in 

comparison to microseparation observed clinically (Komistek et al., 2002) and a 

deformation was observed on the rims of these cups that raised concerns over the 

fatigue performance of these cups under edge loading, particularly where material 

degradation exists. Similarly, Clarke et al. (2005) tested UHMWPE acetabular cups 

of a range of crosslinking levels in a hip simulator under standard conditions and 
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two different microseparation protocols. They reported higher wear rates under 

standard conditions compared to both microseparation protocols (up to 60% 

lower) regardless of crosslinking. The authors suggested the reduction in contact 

time was responsible for the reduction in wear.      

These studies highlight the advances made in this field in recent years. It is 

now better understood that a mismatch in the centres of rotation of the head and 

cup due to translational malposition (a medial translation of the acetabular cup) 

and rotational malposition (excessive inclination and/or version of the acetabular 

component) may lead to dynamic microseparation and edge loading. Furthermore, 

these advances in understanding have been the driver to introducing adverse 

loading conditions into ISO standards. Jennings et al. (2012) have presented a 

Stratified Approach For Enhanced Reliability (SAFER) for pre-clinical simulator 

testing that describes a wider range of clinical conditions including surgical delivery, 

variations in kinematics, variations in the patient population and degradation of the 

biomaterial properties. 

Current ISO standards do not describe testing conditions for components that 

have undergone material degradation during implantation. To replicate oxidative 

degradation during service, ASTM standard F2003-02 describes a process for the 

accelerated ageing of UHMWPE. This allows the mechanical and chemical stability 

of components to be evaluated without waiting long periods of time for the 

material to degrade naturally. Currier et al. (1998), reported cracking and 

delamination of knee components sterilised in air and then accelerated aged in 

simulations of fatigue loading. This damage was not observed in non-sterilised 

controls, highlighting the role of subsurface oxidation in these failure modes. 

Similarly, Oral et al. (2016) found that in vitro ageing of UHMWPE had detrimental 

effects on the mechanical properties of the material where even a small amount of 

oxidation existed. These studies emphasise the need to include an ageing element 

into hip simulator studies to determine the wear and fatigue performance of 

components. While accelerated ageing methods have been widely used to test the 

effect of oxidative degradation, comparisons between accelerated ageing and 

natural ageing are less widely reported and those that do exist highlight important 

differences between the two types of ageing. Edidin et al. (2000) compared the 
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mechanical behaviour of naturally and accelerated aged tibial inserts using the 

small punch test. The accelerated ageing process produced embrittlement of the 

surface area consistent with natural ageing for 10 years but embrittlement of the 

subsurface region was not replicated. In addition, a study by Saikko (2014) 

observed fracture and delamination of gamma-air-sterilised, shelf aged 

components on knee simulators after only a few hours of testing but equivalent  

components that were subjected to accelerated ageing showed only moderate 

adhesive wear after 8 weeks. These authors suggested that “established 

accelerated ageing methods may result in an underestimation of the oxidative 

damage”.  

Despite limitations in the methods, testing of UHMWPE total joint 

components after accelerated aging has been shown to be an important aspect of 

pre-clinical testing of these components.         

1.6.4 Modular Design Considerations 

Cementless modular acetabular cups were originally introduced to prevent 

cement disease and to allow greater component flexibility for the surgeon. 

However, certain factors relating to modular designs have proven to be of concern.  

Motion between shell and liner can lead to backside wear of the UHMWPE 

liner creating a further source of UHMWPE debris in addition to that produced at 

the articulating surfaces. The UHMWPE particles generated can migrate to the 

acetabulum leading to periacetabular osteolysis. Fehrig et al. (1999) studied the 

prevalence of shell/liner motion in modular cups from eight different 

manufacturers. These authors found evidence of motion in all designs and 

concluded that the extent of motion was greater where sharp anti-rotation devices 

that dig into the UHMWPE were used, rather than multiple protruding anti-rotation 

tabs or serrations in the internal rim. In a similar study by Lieberman et al. (1996) 

evidence of micromotion between shell and liner was found in cups from five 

different manufacturers. These studies did not quantify the degree of backside 

wear, nor did they attempt to relate the degree of micromotion to duration of 

implantation. However, a reasonable hypothesis would be that an increase in 

micromotion would increase backside wear and a locking mechanism undergoing 
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repetitive loading would deteriorate over time allowing micromotion to increase. 

These authors also found evidence to suggest that polishing the inner surface of 

the shell would reduce backside wear but noted that this was dependant on other 

design factors such as an effective locking mechanism.  Kurtz et al. (1998) reported 

that shell/liner conformity facilitates the load transfer between liner and shell. A 

non-conforming liner will be supported at the rim until the liner is sufficiently 

deformed during loading to reduce micromotion and to distribute the load 

between the shell and liner. However, until a load transfer path is established, the 

liner is vulnerable to fatigue damage. For modular components shell/liner non-

conformity can result from radial clearances, which are required to ensure ease of 

insertion of the liner, or manufacturing tolerances (Young et al., 2002) . Screw holes 

in the shell create large areas of unsupported UHMWPE and deformation of the 

UHMWPE has been linked to this lack of support (Simon et al., 1998). Optimising 

shell/liner conformity will ultimately increase the contact area of supported 

UHMWPE and decrease contact stresses and UHMWPE damage. Suboptimal 

locking mechanisms can also contribute to a lack of conformity between shell and 

liner. A design feature of modular cups includes a locking mechanism to fix the liner 

into the shell and this often results in areas of thinner UHMWPE close to the rim. A 

number of studies have reported rim fracture of cross-linked liners. Tower et al. 

(2007) observed rim cracking in four liners that had been retrieved after 7 to 27 

months. These authors concluded that thin UHMWPE in the equatorial region, 

relatively vertical cup alignment and the material properties of the re-melted 

UHMWPE were responsible for the failures and that the reduced toughness of the 

cross-linked UHMWPE would make it more susceptible to fatigue failure than 

conventional UHMWPE. 

   

1.6.5 Current Concepts in Explant Analysis  

Implants retrieved at revision surgery have been widely used to assess wear 

and fatigue performance of total hip replacements and to determine failure 

mechanisms. The information gathered from these analyses can be used to inform 

implant design and to validate hip simulator tests. Explant analysis has varied from 
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basic macroscopic categorisation of damage (Hood et al., 1983; Wasielewski et al., 

1994; Lombardi et al., 2008; Brandt et al., 2012) to more complex analyses such as 

Fourier Transform Infrared Spectroscopy (FTIR; Kurtz et al. 1999) to determine 

oxidation levels following implantation and geometrical measurements using 

coordinate measurement machines and MicroCT to determine wear volumes 

(Raimondi et al. 2000; Bowden et al. 2005; Jedenmalm et al. 2009; Matthew G 

Teeter et al. 2010; Uddin 2014).  

UHMWPE explants present unique difficulties relating to analysis and 

measurement that are not encountered or encountered to a lesser extent when 

measuring simulator samples and/or hard bearing materials. Iatrogenic damage 

caused by the removal process is often observed on UHMWPE explants and can be 

difficult to distinguish from damage sustained prior to revision surgery. 

Furthermore, explants may have sustained damage in vivo to such an extent that 

measurements and basic observations beyond the most obvious relating to 

damage mechanisms are difficult to make.  

The most significant challenge encountered when analysing explants results 

from the lack of original data relating to the component before it was implanted. 

Simulator samples can be measured prior to testing and then worn components 

can be compared to the original data. Gravimetric measurements can be 

performed to assess volume change as the original weight of the component is 

known (although errors relating to fluid absorption are acknowledged). 

Geometrical volume change measurements for hard on hard bearings can be 

complex but the lack of creep and plastic deformation means that it is easier to 

create nominal or reference spheres for comparison. Furthermore, for hard on 

hard bearings deformation of the component is primarily attributable to wear, 

unlike UHMWPE bearings that undergo extensive plastic deformation both during 

manufacture and implantation (Nevelos et al., 1999; Nevelos et al., 2000; Nevelos 

et al., 2001; Leslie et al., 2009; Williams et al., 2008). Wear and deformation in vivo 

is often calculated by measuring the penetration of the femoral head into the 

acetabular cups from radiographs. Penetration in mm/yr provides information 

relating to the wear of the acetabular cup if it assumed that most creep occurs in 

the first one to two years and thereafter the measurement relates to wear only. 



- 39- 

The two most common techniques are radiostereometric analysis (RSA) and the 

Martell Method. RSA uses tantalum beads implanted in the implant and bone to 

provide reference markers to track migration (Bottner et al., 2005) and the Martell 

method uses a computer assisted vector wear technique that uses best fit circles of 

the head and acetabular cup (Martell & Berdia 1997; Martell et al. 2003; Manning 

et al. 2005). The RSA technique is more accurate but the Martell technique can be 

used for more patients as the tantalum beads are not required. These methods and 

others have been used to measure femoral head penetration in vivo, before the 

implant has been revised but do not measure wear or deformation on the rim of 

the cup. 

Explanted acetabular cups allow direct measurement of volume change to be 

performed. Methods to measure wear and volume change in explanted UHMWPE 

acetabular cups include fluid displacement methods, shadowgraph methods as well 

as methods using coordinate measuring machines (CMM) and MicroCT. 

Experimental methods vary between studies but are generally based on similar 

principles. For the fluid displacement method, a femoral head is placed in the 

unworn region of the cup and fluid is introduced to the bearing using a 

micropipette, the resulting fluid volume is then compared to an unworn cup and 

femoral head to determine the volume attributable to the radial clearance of the 

femoral head and acetabular cup (Masaoka et al., 2003). The shadowgraph, 

radiograph and CMM techniques have been used to measure penetration depth d 

and then mathematical conversions are carried out based on these linear 

measurements to obtain volume change. For the shadowgraph method, casts are 

made of the worn sockets and the penetration of the worn and unworn profiles is 

measured in the superior and medial directions. The penetration angle β is then 

calculated using trigonometry. Hall & Unsworth (1995) compared a radiograph 

technique, a shadowgraph technique and a CMM technique to calculate wear 

volumes for 28 explanted Charnley cups. These authors modified an equation by 

Kabo et al. (1993), which utilised the penetration angle and penetration depth to 

calculate the volume of a hemispherical cup only, to calculate the volume change 

of a hemispherical Charnley cup with a cylindrical portion near the rim as seen in 

Figure 1-15.  
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𝑉𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑘𝑎𝑏𝑜 =  𝑉𝐾𝑎𝑏𝑜 +  
2𝑟𝑓𝑑

cos 𝛽
 (1.4) 

 

 

In equations (1.3) and (1.4) d is the penetration depth determined using the 

shadowgraph, radiograph or CMM technique, ƒ is the depth of the cylindrical 

portion of a Charnley cup and β is the penetration angle determined using the 

shadowgraph, radiograph or CMM technique. They concluded that there was no 

significant difference in terms of penetration for the shadowgraph and the CMM 

techniques. A difference between the radiograph and the CMM techniques was 

observed and this was thought to be a result of measuring the wear in the coronal 

plane for the radiograph technique.  
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Figure 1-15 schematic of the wear volumes for a Charnley acetabular cup 

showing the cylindrical and spherical regions and the wear volume (parallelogram 

EDCGFO; (Hall and Unsworth, 1995)) 

 

Chuter et al. (2007) compared the radiographic method of measuring wear 

volumes to three ex-vivo methods: a shadowgraph method, a fluid-displacement 

method and a CMM method. For all of the methods except the fluid-displacement 

method, the volumetric wear or volume change was calculated from the 

penetration using the equations (1.3) and (1.4). Chuter concluded that the fluid 

displacement method was the most accurate method and that all ex-vivo methods 

were better than the radiograph method. However, they note that the radiograph 

method is the only method suitable for in vivo measurements.  

For explants, the shadowgraph method and the fluid displacement method 

are time consuming and the fluid displacement method does not identify the 

location of the volume change. Furthermore, while they have been used 

successfully to measure cups with high wear volumes, their effectiveness for highly 

crosslinked UHMWPE cups exhibiting very low wear volumes is less well 

understood. Recently, CMM methods and MicroCT methods have been favoured 
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for the measurement of wear in explanted acetabular cups. Raimondi et al. (2000) 

presented a method for measuring wear volumes in UHMWPE acetabular cups 

using a coordinate measuring machine. The method involved sampling several 

points on the unworn area of the bearing surface and several points on the worn 

surface (identified by a ridge) and calculating the best-fit sphere from these points. 

The difference in volume of the two spheres was then calculated mathematically. 

The authors reported reasonable accuracy for cups with wear volumes of 100mm3 

but stressed that lower wear volumes would require a different method. Uddin 

(2014) used a similar method, to calculate wear volumes for highly crosslinked 

UHMWPE acetabular cups. These authors validated their method using gravimetric 

measurements. They reported that the method measured volumetric wear as low 

as 0.49mm3 and with a maximum volumetric certainty of ±3.12mm3. 

MicroCT has also been used to assess volume change of UHMWPE acetabular 

explants. Bowden et al. (2005) described a validated method using manual rigid 3D 

image registration for measuring volume change in acetabular cups that had a 

scanner maximum uncertainty of 0.6% and that was shown to be repeatable 

through intra-observer analysis. Jedenmalm et al. (2009) used MicroCT to measure 

volume change and found the accuracy for linear wear to be 0.6mm and the angle 

to be 27°, which they concluded was a clinically relevant level of accuracy. Teeter et 

al. (2010) described a MicroCT method that created 3D deviation maps for the 

bearing surface and backside of UHMWPE liners. They measured UHMWPE 

acetabular cups and the penetration rate of 0.15mm/yr corresponded with 

previous clinical results for the same type of cups. However, the method required 

comparison with an unworn cup. They used an unworn cup of the same design, 

which introduces errors due to the manufacturing tolerances. Another limiting 

factor of MicroCT analysis of volume change is the extremely large data sets and 

the length of time required to complete the image reconstruction. Both CMM and 

MicroCT methods for measuring volume change are susceptible to error due to 

creep of the UHMWPE as neither method isolates wear from creep.  

Damage assessment and categorisation of explants has been extensively used 

to understand wear and failure mechanisms of UHMWPE acetabular cups and 

liners. One of the first authors to describe a method to categorise damage in total 
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knee replacements was Hood et al. (1983). These authors defined seven surface 

degradation mechanisms: surface deformation, pitting, embedded poly(methy1 

methacrylate) (PMMA) debris, scratching, burnishing, abrasion, and delamination. 

Tibial components were divided into four quadrants and each quadrant was given a 

score from 0-3 depending on the percentage coverage of each damage mechanism 

for each quadrant. The method did not factor the severity of each mechanism into 

the damage score, which was a limitation of the method. Wasielewski et al. (1994) 

recognised this limitation and graded prevalence and severity separately, 

combining the two to give and overall score for each tibial quadrant. Similarly, 

Brandt et al. (2012) graded both severity and prevalence separately and defined six 

damage features: burnishing, grooving, indentations, pitting, deformation and 

stippling. Lombardi et al. (2008) assessed backside wear on tibial inserts. These 

authors divided the baseplate into six zones and scored the damage for prevalence, 

severity and depth of the major defect. They defined nine damage mechanisms: 

pitting, scratching, abrasion, delamination, embedded debris, burnishing, 

deformation, discoloration and fraying of locking mechanism. More recently, Childs 

et al. (2016) assessed glenoid liners using each of the methods developed by Hood, 

Wasielewski, Lombardi and Brandt and carried out an assessment of observer 

consistency and the preferred method of scoring damage. They concluded that the 

method by Brandt was the best method in terms of accuracy and highlighted the 

importance of using several observers. Damage scoring methods adapted from the 

Hood method have also previously been applied to acetabular cups. Bradford et al. 

(2004) used the Hood method to assess for pitting, scratching, burnishing, 

abrasion, embedded particles, and permanent plastic deformation on highly 

crosslinked UHMWPE liners. Pang et al. (2015) used the same method to compare 

the damage in highly crosslinked and conventional acetabular liners but scored the 

rim separately, creating eight damage zones to be assessed.     

MicroCT has previously been used to assess subsurface damage of UHMWPE 

total joint components. Kurtz et al. (2005) and Kurtz et al. (2007) were able to 

observe the trajectory of subsurface cracks and identify possible pit formation in 

explanted total disc arthroplasties using MicroCT scans. Teeter et al. (2010) 

described a method to visualise and quantify subsurface cracks due to fatigue wear 
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and delamination in explanted tibial inserts. As mentioned previously, MicroCT 

techniques for analysing UHMWPE total joint components are time consuming and 

require storage of large amounts of data. However, they offer a non-destructive 

method to analyse subsurface cracking in UHMWPE components. Non-destructive 

testing of explants allows further testing out of components to be carried as well 

avoiding legal and/or ethical implications relating to destruction of the 

components. Furthermore, MicroCT could be used in simulator testing to follow 

subsurface crack propagation over time by scanning at multiple measurement 

points, which would not be possible with destructive methods, but the sensitivity 

of the method in detecting very small cracks is yet to be fully determined.  

 

1.7 Aims and Objectives 

1.7.1 Aims 

The overall aim of the study was to develop and evaluate clinically relevant 

simulation methods for edge loading and to investigate the wear and fatigue 

performance of a range of different types of UHMWPE acetabular liners under 

these conditions. The study also aimed to develop and evaluate methodologies for 

measuring and analysing wear and damage of explanted acetabular cups and to 

compare the results of these analyses with the wear and damage observed on 

simulator components.  

1.7.2 Objectives 

The aims of the study were achieved by completing the following objectives: 

 Assess the wear and fatigue damage on the bearing surface and rim 

region of non-aged moderately crosslinked UHMWPE acetabular liners 

as negative controls and compare to aged UHMWPE liners as positive 

controls under standard and edge conditions in a hip simulator; 

 Assess the wear and fatigue damage of two different designs of novel 

antioxidant UHMWPE acetabular cups under standard and edge 
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loading conditions in a hip simulator and compare with positive and 

negative controls from the edge loading protocol development tests 

and compare the two different cup designs for wear and fatigue 

behaviour;    

 Evaluate new methodologies for the measurement and analysis of 

explanted acetabular liners with specific emphasis on damage and 

wear due to edge loading and carry out analyses of explanted 

acetabular liners; 

 Compare wear and damage observed on simulator samples and 

explants and evaluate hip simulator protocols for replication of 

clinically relevant wear and damage mechanisms;  

 Identify keys areas for future studies to investigate the wear and 

fatigue performance of acetabular components under a range of 

clinically relevant conditions.   
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1.7.3 Thesis Outline 

  

Chapter 1: 

Introduction and Literature 

Review 

Chapter 3: Hip simulator Edge Loading 

Protocol Development Study 

This chapter describes the development and 

evaluation of an edge loading protocol using 

negative and positive controls on a hip simulator to 

determine the wear and fatigue performance of 

UHMWPE acetabular liners.  

Chapter 4: Hip Simulator - Antioxidant 

UHMWPE Study 

This chapter describes hip simulator testing of 

antioxidant UHMWPE acetabular cups  to assess 

wear and fatigue damage using the edge loading 

protocol developed and evaluated in chapter 3.  

Chapter 5: Wear and 

Damage Analysis of 

Explanted Acetabular 

Liners 

This chapter describes the 

analysis of explanted liners for 

wear and damage mechanisms 

using the new methodologies 

developed in chapter 2 and 

used in chapters 3 and 4.     

Chapter 6: Discussion and Future Work 

 The chapter discusses and compares the results of the hip simulator studies (chapters 3 and 

4) and the explant study (chapter 5) and evaluates the clinical relevance of the hip simulator 

protocol developed in this study.  

Chapter 2: Materials and Methods 

This chapter describes the general methods used throughout the thesis and describes the 

development and evaluation of new methods used to measure and analyse both the 

simulator samples in chapters 3 and 4 and the explants in chapter 5.    
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 Materials and Methods 

2.1 Introduction 

Hip simulator testing under standard and adverse edge loading conditions 

and analysis of explanted acetabular liners was carried out to develop and evaluate 

the edge loading method, to determine the wear and fatigue performance of 

different acetabular cups and to determine the clinical relevance of these simulator 

testing protocols. This chapter outlines the general methods and materials that 

were common to all areas of the research. Methods specific to the work carried out 

in a particular chapter and specific details of the materials used, such as sample 

size, can be found at the beginning of each relevant chapter.  

Analysing the explants raised challenges that were not encountered when 

measuring and analysing the simulator samples. It was difficult to distinguish 

between damage sustained during implantation and iatrogenic damage caused at 

revision surgery. Furthermore, the lack of pre-implantation data relating to the cup 

meant that comparative measurements to determine wear volumes and/or rim 

deformation were not possible. Although some work has previously been 

undertaken to analyse explants at the Institute of Medical and Biological 

Engineering (Nevelos et al. 1999), there are not currently any Institute standard 

operating protocols relating to the analysis of explanted orthopaedic components 

or acetabular cups in particular, and therefore a significant proportion of the 

research presented in this thesis involved developing methodologies for analysing 

explants. This chapter also describes and discusses this methodology development.  

2.2 Materials 

This section provides a general overview of the components tested as part of 

the hip simulator studies as well as the components selected to form part of the 

explant study. Information relating to these components is provided here because 

the components are used to develop and evaluate the measurement 

methodologies discussed in this chapter. More detailed descriptions of the 
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components including sample size can be found in each relevant chapter. A list of 

component images, lot numbers and the labelling conventions used in each study 

can be found in Appendix 1 (simulator study) and Appendix 5 (explant study).  

2.2.1 Simulator Components 

In the Hip Simulator Protocol Development Study (Chapter 3) two types of 

UHMWPE acetabular liners were studied: Marathon® moderately crosslinked 

UHMWPE Pinnacle® liners (XLPE) and aged Gamma Vacuum Foil® UHMWPE liners 

(aged PE; DePuy Synthes, UK) compatible with the Pinnacle® total hip replacement 

system.  

In the Antioxidant UHMWPE Hip Simulator Study (Chapter 4) two different 

acetabular cup designs were tested. A modular acetabular liner compatible with 

the Pinnacle® total hip replacement system (AOPE Liner; DePuy Synthes, UK) and a 

monoblock prototype compression moulded acetabular cup design (AOPE cup; 

DePuy Synthes, UK).  

The Pinnacle® total hip replacement liners (XLPE, Aged PE and AOPE liners) in 

these studies comprised a 56mm outer diameter titanium alloy shell and a press fit 

36mm inner diameter UHMWPE liner with taper lock and anti-rotation device 

(ARD) tabs that mate with anti-rotation device scallops (Figure 2-1).  

 

 

Figure 2-1 An assembled Pinnacle® acetabular shell showing the ARD tabs 

on the UHMWPE liner and the ARD scallops on the titanium shell 
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The liner thickness for all materials was 7.8mm at the apex and 5.1mm at the 

rim.  The compression moulded acetabular cup design comprised of a 36mm inner 

diameter non-removable compression moulded UHMWPE interior with Gription® 

porous coating on both the inner and outer surfaces of a 48mm outer diameter 

titanium shell (Figure 2-2). The UHMWPE in the compression moulded cup was 

2.7mm thick. 

 

 

Figure 2-2 A compression moulded acetabular cup (foreground; AOPE CM 

cup) and a Pinnacle® compatible liner with titanium shell (background; AOPE 

liner) 

2.2.2 Explants 

Failed explants were collected at total hip replacement revision surgery and 

transported to the University of Leeds. Explants were selected for study with a view 

to making the best comparison with the simulator components. For this reason, 

UHMWPE Pinnacle® acetabular liners were selected for analysis from the collection 

at the University of Leeds. Crosslinked and non-crosslinked components and a 

range of thicknesses and Pinnacle® sub-designs (i.e., lipped, face changing, etc.) 

were selected but all were part of the Pinnacle® total hip replacement system. 

Further details including inclusion and exclusion criteria are provided in section 

5.2.2.  
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2.3 General Methods 

 This section outlines the general methods that are common to all areas of the 

research.  

2.3.1 Component Cleaning 

The simulator components were cleaned prior to testing and at each 

measurement point to remove all debris and proteins that may have adhered to 

the surface. The components were cleaned in soapy water with soft tissue, soaked 

in Distel (Tristel Solutions Ltd, Cambridge, UK) for 10 minutes, rinsed in water and 

then placed in an ultrasonic bath for 10 minutes in 70% (v/v) isopropanol before 

being dried with soft tissue or left to air dry. 

The explants were cleaned and decontaminated prior to storage and analysis. 

To decontaminate, explants were immersed in 10% neutral buffered formalin (NBF) 

for a minimum of 7 days at room temperature. Following decontamination, the 

explants were cleaned to remove any tissue and/or blood spots using Distil and a 

soft brush, rinsed using distilled water and dried using soft tissue paper or air dried.  

2.3.2 Microscopic and Macroscopic Observations 

Following testing of the simulator components and during damage 

categorisation of the explants, the surfaces of the components were cleaned 

according to the cleaning protocol described in section 2.3.1, photographed and 

visually inspected for damage.  

Further microscopic inspection was carried out using a Nikon SMZ800 

Stereomicroscope (Nikon UK Ltd, Surrey, UK) at x30 magnification.  

2.3.3 Gravimetric Measurements 

The gravimetric measurements assessed weight change due to material loss 

and fluid absorption of the simulator components. Weight change was not 

determined for the explants as no pre-implantation weight was available for 

comparison.  
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Prior to simulator testing and at each measurement point the liners were 

cleaned according to the cleaning protocol described in section 2.3.1 and left to 

stabilise for 72 hours in a controlled environment. The acetabular liners were 

weighed using a Mettler XP205 balance (Mettler Toledo, Leicester, UK; resolution 

0.01mg) until five measurements within a range of 0.1mg were obtained for each 

liner. The balance was re-zeroed after every measurement and the mean of the five 

measurements was taken. The mass was converted to volume (mm3) by dividing by 

the density of the UHMWPE (Equation 2.1). The volume change for each acetabular 

cup design was plotted as a function of the number of simulator cycles.  The wear 

rate in mm3/Million cycles (Mc) of simulator testing was calculated by dividing the 

overall volume change by the number of cycles of testing (Equation 2.2).  

 

𝑉𝑜𝑙𝑢𝑚𝑒 =  
𝑀𝑎𝑠𝑠

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
 (2.1) 

 

𝑊𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑚3

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒𝑠 ×106   (2.2) 

 

Soak controls were used to compensate for fluid absorption when weighing 

the components. The soak control samples were stored in serum next to the 

simulator during testing. The serum was replaced with the same frequency as the 

serum in the simulator stations. The weight change of the soak control was 

deducted from the mean weight change of the test components. All of the liners 

were pre-soaked in water before testing for a minimum of one month (3 months 

for the aged PE and the XLPE liners and 1 month for the AOPE liners) to minimise 

fluid uptake during testing. 

2.3.4 Geometric Measurement of Simulator Components 

 The three dimensional geometry of the bearing surface was determined using 

a Legex 322 coordinate measuring machine (CMM; Mitutyo, Halifax, UK) with an 

accuracy of 0.8µm. The CMM scanning function was used to take 36 tracks of 68 
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points each at 10° intervals, starting in the centre of the cup and finishing on the 

cup rim (Figure 2-3).  

 

 

Figure 2-3 Schematic of a CMM scan of a UHMWPE liner showing 

measurement coordinates across the bearing surface 

 

Alignment of the UHMWPE liner to the machine coordinates was achieved by 

aligning the horizontal rim of the cup with the z plane and using two small holes 

(diameter and depth 1.7mm) drilled in the cup rim to align the x and y axes (Figure 

2-4). This was done by finding the intersection point along the x axis between the 

centres of the two holes and setting this as the origin. The x axis was aligned 

though the origin and the centre of one of the holes. Aligning the component 

coordinates with the machine coordinates allowed a comparison to be made 

between measurements when the components were removed and replaced on the 

CMM between measurement points.  The cups and liners were measured before 

testing to obtain the original profile and then at each measurement point to 

determine a new worn profile. 
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Figure 2-4 Alignment of an acetabular cup on the CMM: origin (0x,0y) is set 

at (dx,0y) from the centre of one of the alignment holes and the x axis is aligned 

through the origin and the centre of one of the alignment holes. The horizontal 

liner rim is aligned with the z plane. 

 

To reduce measurement error, manufacturers recommend the largest 

possible probe diameter. In the case of the simulator cups the probe needed to be 

sufficiently small so as to fit into the alignment holes in the cup and therefore a 

1mm diameter ruby probe was selected for the measurements.  

SR3D software (Tribosol Ltd, UK) was used to analyse the CMM measurement 

data, which was exported from the CMM as a text file containing the coordinates 

and vector directions of the points along each track. SR3D compared the pre-wear 

profile of the component with the worn component and calculated the maximum 

radial deviation of a given track from the original profile to give the maximum 

penetration into the cup. An example of the output from the SR3D software is 

shown in Figure 2-5.  
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(diameter 1.7mm) 
 

Origin (0,0) set in the centre 

of the liner 
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Figure 2-5 SR3D image of a cross section of an AOPE acetabular liner (AOPE 

2) after 5Mc of standard loading and 5Mc of edge loading. The maximum radial 

deviation at the area of articulation is marked with a red line (208.9 µm) and the 

radial deviation at the rim is marked with a green line (157.9µm). Profile 

deviations are at x40 magnification 

 

The enclosed volume of the bearing surface was calculated by the SR3D 

software for both the original profile and the worn profile and a positive change 

indicated wear and/or deformation. A difference in the height of the average z 

value for the worn profile and the original profile was noted in the data and a z-

compensation was applied. This was done by subtracting the average z coordinate 

of the original rim (Z0) from the average z coordinate of the measurement (Z1) and 

subtracting this value from the z coordinate of all the points of the measurement. 

The CMM measurements included both volume changes caused by wear of the 

UHMWPE as well as volume changes due to creep (Section 1.5.2). The SR3D 

software also produced geometric reconstructions of volume change (Figure 2-6). 

Penetration at 
inner rim 

Maximum radial 
deviation  
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Figure 2-6 Geometric reconstruction of volume change for an AOPE 

acetabular liner after 5Mc of standard loading and 5Mc of edge loading (AOPE 2). 

Volume change on the bearing surface and close to the inner rim is shown. 

The volume change for each acetabular cup design was plotted as a function 

of the number of cycles. As previously described in section 2.3.3, the rate of 

volume change was calculated by dividing the total volume change by the number 

of cycles, giving the volume change per million cycles in mm3/Mc. The steady state 

wear rate was determined by calculating the volume change per million cycles 

between 1Mc and 5Mc (or 1Mc to the end of the test) to exclude the effect of 

creep in the first million cycles. This is a standard method for calculating steady 

state wear rates and has previously been used in similar studies (Galvin et al., 

2010). 

To evaluate measurement accuracy using this method, measurements of an 

unworn UHMWPE acetabular liner were repeated 4 times and a standard deviation 
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of 3.27mm3 was obtained, which was assumed sufficiently small to measure 

volume change in these liners with relative accuracy.        

2.3.5 General Statistical Methods 

For all data sets in the simulator and explant studies, the mean and 95% 

confidence intervals were calculated and statistical analyses were performed using 

a one–way ANOVA (p<0.05 for significance). A Tukey post-hoc analysis was 

performed for multiple datasets, where applicable.  

Relationships between volume change, volume change per year or damage 

score and time in vivo, patient age, patient activity levels, patient BMI, liner 

thickness or cup inclination angle were assessed using a Spearman’s correlations.  

The relative standard deviation (%RSD) was used to compare the variation of 

datasets with different means.    

2.4 Development of a Geometric Measurement Methodology for 

Explants  

2.4.1 Introduction  

Accurately measuring volume change in explants presents difficulties that are 

not encountered when measuring simulator samples. Iatrogenic damage caused by 

the removal process at hip replacement revision surgery is often observed on 

UHMWPE explants and can be difficult to distinguish from damage sustained during 

implantation. Furthermore, explants may have sustained damage in vivo to such an 

extent that measurements and basic observations relating to damage mechanisms 

are difficult to make. This damage contributes to one of the most significant 

challenges encountered when analysing explants, which is the lack of original data 

relating to the component before it was implanted. Simulator samples can be 

measured prior to testing and worn components can be compared to this original 

data. Gravimetric measurements can be performed to assess volume change as the 

original weight of the component is known (although errors relating to fluid 

absorption are acknowledged) and geometrical measurements can be compared to 
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original pre-wear profiles. Geometrical volume change measurements in explants 

require a nominal or reference sphere to be created from unworn, undamaged 

areas of the explants, which is then used for comparison with the worn profiles. 

However, damage and extensive plastic deformation can inhibit the identification 

of a reference sphere to represent the unworn geometry.  

Various methods that attempt to overcome the challenges associated with 

explants have been developed and used to measure wear volume in explants. 

These include fluid displacement methods, microCT methods, radiostereometric 

methods and CMM methods (discussed in section 1.6.5). However, all of these 

methods have limitations.    

This section describes and discusses the development and evaluation of a 

new geometric methodology for measuring and analysing explants using CMM 

measurements and Redlux software (Redlux, UK). The SR3D software (used for 

analysis in the simulator studies; section 2.3.4) was not used to determine the 

volume change or create geometric reconstructions of the explants as the software 

was no longer available when the explants were being analysed. A CMM based 

method was selected in this study to maintain consistency with the geometrical 

measurement methods used in the simulator studies in this project. Standard 

operating protocols for obtaining the volume change of UHMWPE acetabular 

explants do not currently exist at the Institute of Medical and Biological 

engineering and validation of the Redlux software reported in the literature 

primarily relates to hard on hard bearings (Tuke et al., 2010). A requirement to 

develop and evaluate a method to measure volume change in explanted UHMWPE 

acetabular liners was therefore identified.      

2.4.2 Materials 

Two explants from the explants study (Chapter 5), a simulator liner from the 

hip simulator study (Chapter 3) and an additional untested control liner were 

selected to develop and evaluate the method.  
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Both explants were non-crosslinked UHMWPE Pinnacle® liners (explant 6N 

and explant 3N; see section 2.2.1 for a description of the Pinnacle® liners). These 

explants were decontaminated and cleaned according to section 2.3.1.  

The simulator liner was an XLPE Pinnacle® liner that had been pre-soaked and 

tested in a hip simulator for five million walking cycles (control liner AM1; DePuy 

Synthes, UK). Control liner AM1 was cleaned and weighed before and after testing 

and the volume change was calculated. 

The additional control liner was an untested 36mm diameter Gamma Vacuum 

Foil® UHMWPE Pinnacle® compatible liner (Liner NA14; DePuy Synthes, UK). Liner 

NA14 was untested and had not been put in soak in order to reduce the effect of 

creep and fluid absorption on the results of the analyses. This liner was cleaned and 

weighed according to sections 2.3.1 and 2.3.3. A small amount of material was 

removed from the bearing surface of liner NA14 using a ball drill. The liner was 

weighed again and the volume change was calculated according to section 2.3.3.  

2.4.3 Methods 

Measurements 

Three dimensional geometric measurements assessed the total volume 

change at the surface of the cup comprising volume change due to creep and 

material loss due to wear. The cups were cleaned according to the cleaning 

protocol described in section 2.3  and left to stabilise in a controlled environment. 

The CMM measurements of the explants were performed in the same way as 

the measurements of the simulator liners (section 2.3.4) except a 2mm ruby probe 

was selected and Redlux software was used to create geometric reconstructions of 

the bearing surface of the explants as well as to calculate volume change. Also, the 

number of measurement points was increased to 72 tracks of 140 points each at 5° 

intervals. The larger probe was used for the CMM scans of the explants because 

alignment holes on the horizontal rim were not used. This was because no unworn 

measurements were available for the explants and therefore exact re-alignment of 

the components between measurements was not required and it was not 

necessary to align the component to the machine coordinates. 
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Analyses 

This section describes the basic Redlux analysis method as described in 

Redlux software manuals and the variations (protocols) of this basic method that 

were assessed in this study for analysing volume change in explants.  

In the absence of an unworn cup for comparison, the volume change analysis 

using Redlux involved defining a best-fit nominal sphere using unworn, 

undeformed regions of the liner to represent the unworn liner and then 

determining the volume change of the worn liner caused by creep and wear 

compared to the defined nominal sphere (Figure 2-7). The nominal sphere was 

defined by excluding any features that were perceived by the user to be volume 

change due to creep, wear or damage and then calculating the nominal sphere 

using the remaining surface areas. This was done using the “Sphere (advanced)” 

feature of the software, which fitted a sphere to the data using a linear least 

squares fit (Tuke et al., 2010). The user manually drew around each area to be 

excluded and therefore the features that were excluded as well as the size of each 

excluded area were user dependent.   

After the nominal sphere was defined, it was saved to the software and the 

profile for the worn liner was compared to this nominal sphere. A specific area of 

the worn cup was selected to perform the volume change calculation (i.e. the wear 

scar). This was done by excluding all other regions of the liner from calculations and 

selecting the desired area to be included in the calculation. The “Volume” tool 

feature of the software was then used to determine the volume of the black areas, 

which represented area below the nominal sphere (i.e. wear). Again the size of the 

area included in the volume change calculation was dependent on user judgement.  

The method was not suitable for measuring volume change at the rim, as the 

method relied on being able to fit the data points to a sphere. It is therefore 

suggested that the actual volume change for each cup or liner was marginally larger 

than the values obtained in this study.  However, it was assumed that any volume 

change and/or wear at the rim would be small in comparison to the wear on the 

bearing surface because the contact area was significantly larger at the bearing 

surface (Mazzucco and Spector, 2003).  
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Figure 2-7 A flow chart showing the process for obtaining volume change in 

explanted acetabular liners using Redlux from measurement to volume 

calculation. 

 

The explant is measured on the CMM The CMM mesurement coordinates are 

inported into the Redlux software 

The volume change is calculated as the 

difference between the best fit nominal 

sphere and the worn sphere. The wear 

area is selected (black) and the 

remaining areas (grey & black rim area) 

are excluded from calculations 

The “Volume” tool is used to calucate 

the volume (mm3) and area (mm2) of 

the selected area comapred to the 

nominal sphere. 

The nominal sphere is defined by the 

user. To do this, (A) the rim (B) areas of 

wear and deformation, and (C) damage 

are selected and excluded and a sphere 

is fit to the remaining data points. 
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In this study, variations in the basic method (protocols) were assessed to 

determine if this influenced the final volume change result. This was because the 

Redlux software manual provided a basic method but this method was subject to 

adaptation or refinement for specific applications.  

 

The four protocols that were assessed were: 

Protocol 1: The nominal sphere was defined by excluding the rim, damage 

(screwhole) and the basic wear area only;  

Protocol 2: The nominal sphere was defined by excluding the rim, damage 

(screwhole) and the wear area only. In this protocol the wear area was 

excluded by increasing the size of the selection until the radius of the nominal 

sphere stopped increasing and/or the excluded area was deemed too large to 

continue by the user (e.g. the selected area is covering more than half the 

cup); 

Protocol 3: As protocol 1 but also excluding other features not in the wear 

area caused by creep and/or damage;   

Protocol 4: As protocol 2 but also excluding other features not in the wear 

area caused by creep and/or damage.   

The protocols were selected to determine the effect of the size of the wear 

area that was excluded (protocol 1 & 2) and the effect of excluding other features 

caused by creep and/or damage (protocols 3 & 4) on the repeatability, 

reproducibility and accuracy of the protocol.  

 

Statistical Evaluation 

The Redlux software and method were sensitive to user variation when 

measuring volume change in explants. The size of the areas excluded when defining 

the reference sphere depended on the user’s judgement, as did the final area 

selected in the volume calculation. For this reason, evaluation of this method to 
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determine repeatability, reproducibility and accuracy when analysing explants for 

volume change was carried out prior to using it to measure volume change in 

explants. Four users, two with experience using the software (users 1 & 3) and two 

that were newly trained (2 & 4), assisted with the evaluation.  

 

The four protocols were assessed by four different users and repeated three 

times by each user. A flowchart outlining the evaluation process is given in Figure 

2-8. 

For each protocol the relative standard deviation (RSD) was calculated for 

each user to determine the intra-user variation (repeatability) of the volume 

change calculation. The repeatability of a single user on different days was 

determined by a single user (user 1). To do this, the volume change analysis using 

protocol 2 was repeated three times on three different days and the RSD was 

calculated for all values. A one-way ANOVA was performed to test for a significant 

difference between the results for each day (p<0.05). 

The mean volume change for each protocol and user was plotted with 95% 

confidence intervals and the inter-user variation (reproducibility) of each protocol 

was assessed by calculating the relative standard deviation for all users for each 

protocol. A one-way ANOVA and a Tukey HSD posthoc test were performed to 

determine if there was a significant difference (p<0.05) between the results of each 

user.  

The accuracy of the protocol was assessed by one user only. The volume 

changes for liner AM1 and liner NA14 were determined geometrically using each 

protocol and compared to gravimetric volume change calculations of the same 

liners. Protocol 3 and protocol 4 could not be performed for liner NA14 because 

the absence of creep and deformation meant that there were no other obvious 

features on the cup to exclude. 

The repeatability and reproducibility measurements for each user and 

protocol were performed for explant 3N and explant 6N. The statistical results are 

presented in the following section for explant 3N and in Appendix 2 for explant 6N.  
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Figure 2-8 Flow chart showing the process for evaluating the repeatability, reproducibility and accuracy of each volume change protocol. The volume change for 

the explants was determined by four different protocols, which were repeated three times by four different users. The accuracy was determined by comparing to 

gravimetric measurements of two different control liners 
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2.4.4 Results 

Repeatability  

The mean volume change ± %RSD for each user and protocol is given in Table 

5. 

Table 5 Mean volume change ± %RSD for three repeats of four different 

protocols by four different users using Redlux analysis software. Green = RSD<5%, 

Yellow = RSD = 5%-10%, Red = RSD>10% 

Explant 

3N 

 

Protocol 1 

(mm3) 

Protocol 2 

(mm3) 

Protocol 3 

(mm3) 

Protocol 4 

(mm3) 

User 1 11 ± 12.2% 23 ± 13% 8 ± 4.3% 18 ± 14.6% 

User 2 10 ± 7.5% 21 ± 16% 8 ± 1.3% 20 ± 2% 

User 3 14 ± 7.1% 36 ± 7% 14 ± 25.5% 27 ± 3.5% 

User 4 12.9 ± 6.8% 30 ± 5.2% 11.7 ± 6.6% 28.6 ± 4.4% 

 

For user 1, protocol 3 was the most repeatable (4.3 %RSD). For user 2, 

protocol 3 was the most repeatable (1.3 %RSD). For user 3, protocol 4 was the most 

repeatable (3.5 %RSD).  For user 4, protocol 4 was the most repeatable (4.4%RSD).  

The mean volume change ±%RSD for a single user using protocol 2 on three 

different days was 24 ± 11%RSD and there was no statistically significant difference 

between the data sets for each different day (p=0.144). 

The results for the expert users (1&3) were no more repeatable than those of 

the newly trained users (2&4).   

 

Reproducibility 



- 65- 

The mean volume change for each user and each protocol and then all users 

and each protocol were compared using a one-way ANOVA and a Tukey posthoc 

analysis to test for significant differences between the users and protocols. There 

was no significant difference between the mean volume changes for user 1 and 

user 2 for any of the protocols (Figure 2-9). The mean volume changes for user 3 

were significantly different to the volume changes for both user 1 and user 2 for all 

protocols. There was a significant difference between the mean volume changes 

for user 1 and user 4 for protocol 4 only. There was a significant difference in the 

mean volume change for user 2 and user 4 for protocols 1, 2 and 3. There was no 

significant difference between the mean volume changes for user 3 and user 4 for 

any of the protocols. 

 

 

Figure 2-9 Inter-user variability of the volume change analyses for the four 

protocols for each user for explant 3N (±95% Confidence intervals) 

 

The p numbers associated with the Tukey post hoc analysis are shown in 

Table 6. 
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Table 6 Associated p numbers for a Tukey HSD post hoc test of inter-user 

variation for four users and four protocols 

Users Protocol 1 (p) Protocol 2 (p) Protocol 3 (p) Protocol 4 (p) 

User1/User2 0.531 0.572 1 .388 

User 1/User 3 0.03 <0.01 0.023 <0.01 

User 1/User 4 0.125 0.066 0.179 <0.01 

User 2/User 3 <0.01 <0.01 0.024 <0.01 

User 2/User 4 0.18 0.011 .187 <0.01 

User 3/User 4 0.740 0.099 .502 0.420 

    *underlined p number are significant (p<0.05) 

 

The mean volume changes and the relative standard deviations for all users 

for each protocol are shown in Table 7. The most reproducible protocols were 

protocols 1 and 4. There was no statistically significant difference between 

protocols 1 and 3 (p=0.916) or protocols 2 and 4 (p=0.113) for all users but there 

was a significant difference between the other protocols (p<0.01 for all).    

Table 7 Mean volume change ± %RSD for all users and all protocols.  

 Protocol 1 Protocol 2 Protocol 3 Protocol 4 

Mean ± %RSD 11.8 ± 16% 27.5 ± 24.2% 10.6 ± 27.6%  23.3 ± 20.5% 

 

The repeatability and reproducibility measurements were also performed for 

explant 6N and were found to show similar trends to explant 3N. However, the 

larger volume change associated with explant 6N appeared to adversely affect the 

repeatability and reproducibility for this explant, which is evidenced by the slightly 

higher relative standard deviations. The values are presented in Appendix 2.  
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Accuracy  

The geometric volume change for liner AM1 and liner NA14 was determined 

using Redlux for each protocol and compared to the volume change calculated 

from the gravimetric measurements for the same liners (Table 8).  

Table 8 The volume change ±RSD assessed gravimetrically and geometrically 

(Redlux) using four different protocols for two different control liners. Protocol 3 

and 4 were not performed for liner NA14 because the absence of creep and 

deformation meant that there were no other obvious features on the cup to 

exclude. 

Liner 
NA14 

Gravimetric 
(mm3) 

Protocol 1 
(mm3 

±RSD) 

Protocol 2 
(mm3 ±RSD) 

Protocol 3 
(mm3 ±RSD) 

Protocol 4 
(mm3 ±RSD) 

Repeat 1 1034.96 756.47 941.14 

  

Repeat 2 

 

776.56 910.72 

Repeat 3 771.12 939.19 

Mean 768.05 ± 1.35 930.35 ± 1.83 

Liner  
AM1 

Gravimetric 
(mm3) 

Protocol 1 
(mm3 

±RSD) 

Protocol 2 
(mm3 ±RSD) 

Protocol 3 
(mm3 ±RSD) 

Protocol 4 
(mm3 ±RSD) 

Repeat 1 56.35 22.89 52.39 15.99 30.17 

Repeat 2 

 

24.28 52.80 18.67 32.22 

Repeat 3 23.68 39.25 16.19 47.98 

Repeat 4 24.46 51.71 18.42 40.45 

Repeat 5 26.71 54.86 22.67 42.25 

Mean 24.40± 5.85 50.20±12.42 18.39±14.65 38.61±19.05 
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The volume change measured gravimetrically was 1035mm3 and 56.4mm3 for 

control liner NA14 and control liner AM1, respectively. For both control liners, 

protocol 2 was closest to the gravimetric value and therefore the most accurate of 

all of the protocols. During drilling a small amount of material was unintentionally 

removed from the rim of control liner NA14. This was small in comparison to the 

area being measured on the bearing surface and would not greatly influence the 

total volume change. However, it can be assumed that the actual volume change 

calculated from the Redlux analysis would be even closer to the gravimetric data 

for this liner if the volume change at the rim was factored into the calculation.   

 

2.4.5 Discussion and Conclusion 

Protocol 2 was the most accurate of all the protocols. A relative standard 

deviation of ±12.42% was obtained with this protocol when measuring the volume 

change for control liner AM1 and it was thought that this was representative of the 

accuracy of the method for measuring volume change in explants. The repeatability 

and reproducibility was comparable to that of the other three protocols and 

protocol 2 was therefore selected to analyse the volume change of the explants. A 

standard operating protocol was written and is provided in Appendix 3. 

Protocols 2 and 4 produced higher volume changes than protocols 1 and 3. As 

there was no significant difference between the results of protocols 1 and 3 or 

protocols 2 and 4, it was assumed that excluding “other features” (protocols 3 and 

4) when defining the reference sphere had less influence on the final volume 

change than the size of the wear area that was excluded. In terms of repeatability 

and reproducibility, the most repeatable and reproducible protocols varied 

depending on the user and no protocol was notably more repeatable or 

reproducible than the others. For this reason, the final protocol for use in the 

explant study was decided based on the analysis of accuracy. This protocol was 

repeatable and reproducible relative to previous studies reporting user variability 

for measurement of volume change (Bowden et al. 2005; Chuter et al. 2007; Teeter 

et al. 2011).    
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A method has been developed to measure volume change in explanted 

acetabular liners for which no pre-wear data was available. There were some 

limitations to the method. The accuracy of the method was determined by 

comparing with gravimetric measurements of two control liners (AM1 and NA14). 

However, it is known that gravimetric measurements of UHMWPE liners that have 

been soaked in water or serum are affected by fluid absorption (Affatato et al., 

2000) and this would have affected the gravimetric measurements and therefore 

the calculated volume change of control liner AM1. The unsoaked and untested 

liner (NA14) eliminated the effect of fluid absorption but also minimised the effect 

of creep. The method may be more accurate for liners, such as control liner NA14, 

where minimal creep has occurred. This was because the material removal resulted 

in a more defined edge between the volume change and the rest of the bearing 

surface and it was therefore less subjective when selecting areas to exclude. 

However, explanted liners will have undergone more extensive deformation during 

implantation and the method may therefore be less accurate for explanted liners. 

Furthermore, the volume change for control liner NA14 was large in comparison to 

clinically relevant volume changes, the accuracy of the method may be reduced for 

smaller volume changes. 

The method measures volume changes on the bearing surface only and does 

not include volume changes at the rim. It is thought that because of the reduced 

contact area volume changes at the rim would be small in comparison to that 

sustained at the bearing surface, but it should be acknowledged that the method 

may obtain volume changes that are smaller than the actual values.   

Also, the method does not separate volume change due to creep and volume 

change due to wear and the resulting volume change is a combination of both. The 

volume change of an explant can only be measured at one time point and therefore 

it is not possible to exclude the first million cycles volume change to minimise the 

effect of creep, as would be possible with simulator samples. 

While the limitations are acknowledged, the method has been assessed for 

accuracy using two different control liners and has been shown to be repeatable 
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and reproducible relative to previous studies and can therefore be used to measure 

the volume change in explanted acetabular liners.  

2.5 Development of Rim Deformation Measurement Methodology  

Studies have reported microseparation of the femoral head and cup in vivo 

leading to edge loading of the acetabular rim (Lombardi et al., 2000; Dennis et al., 

2001; Komistek et al., 2002). Fatigue damage such as fracture and cracking as well 

as deformation of the rim have been observed in explanted liners (Tower et al., 

2007; Furmanski et al., 2009; Furmanski et al., 2011). Qualitative and quantitative 

analyses of rim damage in explanted cups and liners provide information relating to 

the prevalence and severity of edge loading during implantation. Current CMM 

measurement techniques for the rim of explants are often of limited accuracy 

because they depend on best fit methods of the spherical bearing surface to 

estimate the original geometry of the component before implantation (section 2.4). 

The inner rim does not lie on the spherical bearing surface and the method 

therefore lacks accuracy in this region. Furthermore, defining an original rim 

geometry for UHWMPE components is challenging because of the creep and 

deformation experienced by the material during loading.  

Alternatively, two dimensional contacting profilometry can be used to 

measure rim wear and deformation. The issues that arise with this method relate 

to aligning traces taken across the rim at unworn and worn regions so that a 

comparison between the two can be made.  

This section describes the development and evaluation of a new method for 

measuring wear and deformation at the inner rim of simulator components and 

explanted liners using two dimensional contacting profilometry.  

2.5.1 Materials 

The method was developed and evaluated in order to measure the liners 

from the hip simulator studies (Chapters 3 and 4) and the explant study (Chapter 

5). Descriptions of these components can be found in sections 2.2.1, 3.2.1 and 4.2 
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(simulator components) and sections 2.2.2 and 5.2.2 (explants) and images and 

labelling conventions can be found in Appendix 1 and Appendix 5.   

Three untested liners were used to validate the rim deformation 

measurement and analysis methodology (section 2.5.4). These were an untested 

non-aged 36mm diameter Gamma Vacuum Foil® Pinnacle® compatible liner (liner 

NA14; see section 2.2.1 for a description of the Pinnacle® liner), an untested 36mm 

diameter Marathon® Pinnacle® acetabular liner (liner AM11) and a Biolox® delta 

ceramic explanted Pinnacle® liner. The ceramic liner was a taper fit liner that mated 

with the same titanium shell as the UHMWPE liner. Liner AM11 was a soak control 

for a hip simulator test and therefore had been soaked in water for several months. 

Liner NA14 was unsoaked and untested. All liners were supplied by DePuy Synthes, 

UK.  

2.5.2 Measurement Methods 

A two dimensional contacting profilometer (Talysurf, Taylor and Hobson, 

Leicester, UK) was used to obtain profile traces of the liner rims for both simulator 

samples and explants. For all traces, a 2µm diamond tipped recess stylus was used. 

The liners were positioned at an angle of approximately 45° to prevent collision of 

the stylus with the liner. Measurement points were 0.25µm apart.  

For the liners from the simulator studies (Chapters 3 and 4), three traces were 

taken across the area of the rim that was edge loaded (Figure 2-10A). The liner was 

rotated by approximately 5°-10° between these traces. A fourth trace was taken 

across an unworn area of the rim (Figure 2-10B). The traces were 9mm to 12mm 

long and the exact length varied depending on the geometry of the cup but 

covered a section of the bearing surface, the chamfer and a section of the 

horizontal rim (Figure 2-10D). The colours in Figure 2-10 represent those used to 

plot the traces in Matlab in the following section (section 2.5).   
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Figure 2-10 Schematic of an acetabular liner showing the Talysurf traces 

taken from the bearing surface to the horizontal rim including: (A) three traces 

taken across the edge loaded region, (B) a fourth trace taken across an unworn 

region of the liner (the colours represent those used to plot the traces in Matlab 

in section 2.5.3) and (C) a photo of the liner showing the same traces in the 

schematic and (D) cross section of the rim showing where the stylus took the 

traces  

 

For the liners from the explant study (Chapter 5), rim traces were taken at 30° 

intervals around the circumference of the liners (Figure 2-11). The colours 

represent those used to plot the traces in Matlab (Section 2.5.3).  The blue traces 

were the traces taken on the unworn side of the liner and the pink traces were 

taken across the worn side of the liner. This was identified from Redlux geometric 

reconstructions. The two cyan traces were taken across the anterior and posterior 

sections of the liner rim. 
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Figure 2-11 Schematic of an explanted liner with the Talysurf traces taken at 

30° intervals around the circumference of the liner. The colours are the same as 

those used to plot the traces in Matlab. 

 

Occasionally, a trace was omitted due to extensive damage to the liner in that 

region, which may have resulted in damage to the stylus (Figure 2-12).  

 

 

Figure 2-12 Example of an explanted acetabular liner with extensive damage 

to the rim. No talysurf traces were taken over the rim in this area to avoid 

damage to the stylus.   
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2.5.3 Analysis Method 

A Matlab (version R2014b, The MathWorks Inc, Natick, MA, USA) code was 

developed to plot and align profile traces taken across a worn region of a liner rim 

(worn trace) and an unworn region of a liner rim (unworn trace) and to calculate 

the rim deformation (penetration) at the region of edge loading. This was 

developed in collaboration with Dr Greg de Boer, who wrote the code. This section 

describes the Matlab code used to analyse the Talysurf traces of the liner rims. A 

protocol for using the code is provided in Appendix 4.   

Measurement files with the x and z coordinates (y coordinate is fixed at 0) for 

the worn and unworn traces were exported from the Talysurf and converted to 

text files using Talymap Gold (Taylor Hobson, Leicester, UK). The text files with the 

data were then exported to Excel to be processed in Matlab.  

For the simulator samples and most of the explants, the point at which the 

chamfer met the horizontal rim (Figure 2-10D) was unworn and not deformed by 

loading and could therefore be used as a reference point (datum) to align all of the 

traces along the same coordinates. The unscaled and unlevelled data for a 

simulator sample, as exported from excel, are shown in Figure 2-13 with the datum 

indicated.  

 

Figure 2-13 Four Talysurf traces with the identified datum highlighted on 

each trace (Note: unworn trace = blue, worn traces = cyan, green and black; XLPE 

simulator liner, AM9). 
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To identify the datum, the points on each trace were down-sampled to one in 

every hundred to reduce noise in the data. The Matlab code iterated along each x 

value starting on the horizontal rim and working towards the centre of the cup. The 

datum was identified as the point where the differences in the y values upstream 

were less than the differences in the y values downstream by a given tolerance 

(tol), where xp, yp is the current x, y location, r is 10 data points from p (defining the 

upstream and downstream regions) and yp+r, yp-r are the y values of the upstream 

and downstream regions respectively. Two cases where the constraint (yp+r - yp ≤ tol 

(yp-r – yp) is and is not satisfied are shown in Figure 2-14. 

 

Figure 2-14 Two cases where (A) the constraint was not satisfied and the 

datum was not identified at xp and (B) the constraint was satisfied and the datum 

was identified at xp.  Note that the datum is identified before the traces are 

levelled. 

  

 The default tolerance was 0.5 but it could be modified for each individual 

trace. Setting the wrong tolerance may result in the datum being identified at the 

inner rim or a small localised deformation such as a scratch (Figure 2-15).  

  

 

 

yp+r - yp > tol (yp-r – yp) yp+r - yp ≤ tol (yp-r – yp) 

A B 
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Figure 2-15 Talysurf  traces with an example of an explant with (A) a 

wrongly identified datum for one of the traces (red), (B) a close up of the scratch 

that caused the datum to be located in the wrong place and (C) correct 

identification of the datum after lowering the tolerance value (note that the 

traces have not been levelled yet). 

 

Following identification of the datum, the datum for each trace was matched. 

All of the worn traces were rotated about the datum to align with the unworn trace 

along the horizontal liner rim and then all traces were rotated to the horizontal 

plane (levelled) and scaled to plot both axes in mm (Figure 2-16).  

 

A 

B 

C 
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Figure 2-16 Four Talysurf  traces that have been (A) datum matched and 

rotated to align with the unworn trace along the horizontal rim and (B) rotated 

about the datum to the horizontal plane (levelled) and scaled to plot both axes in 

mm (Note: unworn trace = blue, worn traces = cyan, green and black; XLPE 

simulator liner, AM9) 

 

After alignment and levelling, finer adjustments were made to the tolerance if 

the datum was considered by the user to be inaccurately determined on any of the 

traces (Figure 2-17). 

 

 

Figure 2-17 The tolerance used to calculate the datum for the cyan trace 

was changed from (A) 0.5 to (B) 0.55 resulting in better alignment with the other 

traces (XLPE simulator liner, AM1). 
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A point on the x axis of the unworn trace near the inner rim where edge 

loading occurred was selected by the user. The distance in mm between the 

unworn trace and the worn traces (penetration) was calculated normal to the 

unworn trace from this point (Figure 2-18). This point roughly corresponded with z 

= -1.8mm for the XLPE liners, z=-1.5mm for the aged PE liners and z=-1.8mm for the 

AOPE liners and cups. These values were selected because they were close to the 

inner rim but did not extend too far onto the articulating surface and were based 

on analysis of geometric mapping images to identify the most likely location of 

maximum penetration caused by edge loading. The penetration values were 

calculated by determining the tangential and normal directions of the unworn trace 

at the specified point, projecting a vector normal to the trace at this point and 

determining where it intercepted the worn traces and calculating the magnitude of 

the vector between the unworn and worn traces. The mean penetration between 

the unworn trace and each worn trace was calculated.           

   

Figure 2-18 Four Talysurf traces with (A) the location of the point from 

which the penetration was calculated and (B) a close up with a red arrow to mark 

the penetration distance between the unworn (dark blue) and worn traces (black, 

cyan, green; mean=0.07mm) normal to the unworn trace (XLPE simulator liner, 

AM9). 

A B 

z ≈ -1.8mm 
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2.5.4 Validation 

For control liner NA14, a section of the inner rim was scraped away using a 

scalpel to replicate wear and/or deformation caused by edge loading. Three traces 

were taken across the region of the inner rim where the material was removed 

(worn traces) and three traces were taken across an intact region (unworn traces) 

of the rim as described in section 2.5.2. The liner was not rotated between traces 

on each side. The Matlab code correctly identified the datum and aligned the 

traces (Figure 2-19). Only very small variations between the points in traces of the 

same type (worn and unworn) were observed.  The mean difference in worn and 

unworn traces just below the radius of curvature at the inner rim where the 

material was removed was 0.54mm. The mean difference on the chamfer above 

the area of material removal was 0.0076mm.  

 

Figure 2-19  Six Talysurf traces of untested liner NA14 with material 

removed at the inner rim. The blue, cyan and green traces were taken across an 

intact region of the rim and the black, magenta and red traces were taken across 

the region of the liner where the material was removed. (A) denotes the user 

defined data point where the distance between traces was calculated normal to 

the first unworn trace (0.54mm), (B) denotes the point where the distance 

between traces was calculated on the chamfer above the worn region 

(0.0076mm).   

(A) 

(B) 
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For control liner AM11, traces were taken at 45° intervals around the entire 

circumference of the liner. The Matlab code correctly identified the datum and 

aligned the traces (Figure 2-20).  

 

Figure 2-20 Eight Talysurf traces taken at 45° intervals around the 

circumference of untested liner AM11 

   

A difference in the gradient of the chamfer was observed between separate 

traces for control liner AM11 (Figure 2-21). As the liner is unworn and the datum 

appeared to have been correctly identified, this may have been due to deformation 

during the manufacturing process or as a result of marginal differences when 

setting the liner up between each trace after rotating the liner (a small tilt in the 

liner on set-up may result in a slightly longer/shorter trace length in the chamfer 

region and therefore a difference in gradient and misalignment at the inner rim). 

The mean difference between the traces at z=-1.6mm was 0.04mm.  
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Figure 2-21 (A) A close up of the eight Talysurf traces taken at 45° intervals 

around the circumference of control liner AM11 showing how a difference in 

gradient along the length of the chamfer resulted in a misaligned trace at the 

inner rim and (B) a close up of the inner rim showing a mean difference of 

0.04mm between traces. 

 

To investigate this further and to minimise the effect of UHMWPE 

deformation and manufacturing tolerances, six traces were taken across the rim of 

a ceramic liner by Jack Davies, an MSc student: three across a known area of rim 

wear and three across an unworn region of the rim. The liner was rotated between 

traces (Figure 2-22).  

A B 
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Figure 2-22 Six traces taken across the rim of a ceramic liner. Three across a 

worn region of the liner (pink) and three across an unworn region (blue) 

 

The maximum distance between the six traces at a selected point for the 

ceramic liner was 0.27mm. Two further traces were repeated on the ceramic liner. 

These traces were taken across the same unworn region of the liner. The stylus was 

raised and replaced between traces but the liner was not moved. The difference 

between the traces was much smaller than when the liner was moved and rotated 

(0.00083mm; Figure 2-23).  

 

Maximum distance between the 

traces 
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Figure 2-23 Two Talysurf traces across the same region of a ceramic liner 

(without moving the liner between traces) showing (A) a full plot of the two 

traces and (B) a close up of the traces showing a distance between the two of 

0.00083mm 

 

2.5.5 Discussion and Conclusion 

A method has been developed to measure and analyse rim deformation on 

UHMWPE liners. Limitations to determining the penetration distance at the inner 

rim were identified. A difference in gradient and therefore a misalignment at the 

inner rim was observed for both the UHMWPE rims and the ceramic rims. When 

the ceramic rims were measured, a difference in gradient was observed when the 

liners were moved between traces but it was much smaller when the liners were 

not moved between traces. Unlike UHMWPE, ceramic liners do not deform and any 

rim wear in the liners would be significantly smaller than the distance observed 

between the traces in this study (Al-Hajjar et al. 2013). It was therefore concluded 

that the difference between the traces was mostly a result of variations in set-up 

positioning rather than deformation of the UHMWPE. Further work, to improve the 

measurement technique would be required for future development of the 

methodology. A fixture that allowed rotation of the liner without having to remove 

and replace it between traces may prevent misalignment of the liners when taking 

A B 
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measurements. However, this fixture would need to accommodate a range of 

acetabular liner shapes and sizes.  

Despite the limitations of the method in accurately determining penetration, 

the Matlab code also allowed visual inspection of the shape of the inner rim 

following edge loading. For the purposes of this study, it was suggested that rim 

wear and deformation for UHMWPE acetabular components can be effectively 

analysed using a combination of quantitative (penetration values) and qualitative 

(shape of inner rim) methods.  

2.6 Development of Subsurface Analysis using MicroCT 

2.6.1 Introduction 

Cracking and fatigue fracture has been observed in explanted acetabular 

liners (Bradford et al., 2004; Tower et al., 2007; Furmanski et al., 2009; Furmanski 

et al., 2011), particularly around the superior rim region. Understanding crack 

propagation and initiation in UHMWPE components is important to understanding 

liner failure and informing liner design.  

Various methods such as CMM and stereomicroscopy have been used to 

measure and assess damage in explanted liners but have various limitations. 

Extensive surface cracking and damage can be measured by CMM techniques but it 

is not possible to measure subsurface cracking in this way. Stereomicroscopy with 

transillumination has been used to study subsurface cracking in UHMWPE liners 

but this method does not accurately detect and measure smaller cracks (Birman et 

al., 2005). Ong & Sa (1998) described an ultrasonic crack detection method but 

reported poor image resolution. Scanning electron microscopy (SEM) has 

successfully been used to measure subsurface damage in UHWMPE components 

with good resolution and image quality (Furmanski et al., 2009; Furmanski et al., 

2011; Pruitt et al., 2013) However, this method is destructive. 

Non-destructive methods are desirable when analysing explants so that 

further analyses can be performed in the future and to avoid any of the 

legal/ethical implications that may arise with destructively testing explanted liners.  
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Teeter et al. (2010) described a non-destructive microCT method with high image 

resolution (50 µm) to quantify subsurface cracking in explanted tibial inserts. 

Similar methods have been used by other researchers to analyse subsurface 

cracking in total joint components at up to 18µm resolution (Kurtz et al. 2007).    

A non-destructive microCT method was developed in this study to create 2D 

reconstructions of subsurface cracking with a higher resolution (10µm) than 

previously reported techniques. Previously reported methods using microCT at 

lower resolutions have described subsurface cracking in explanted acetabular 

liners. The method described in this study compared explanted acetabular liners 

with simulator samples, which to the author’s knowledge has not been previously 

reported. Dr Nagitha Wijayathunga assisted with the scans.      

2.6.2 Materials 

Three untested liners from each material group in the simulator tests were 

selected as control liners for the subsurface analysis methodology: an XLPE 

Pinnacle® liner, a GVF Pinnacle® compatible liner (chapter 3) and an AOPE 

Pinnacle® compatible liner (chapter 4). It was not possible to scan the AOPE 

compression moulded cups because the different density of the titanium shells 

would inhibit visualisation of the UHMWPE. 

For the simulator tests and explant study, a selection of liners for each 

material was scanned. This was because of time constraints arising from the length 

of time required to perform the scan and subsequent reconstruction. However, 

based on initial visual observations, it is believed that the liners selected were 

representative of the whole set for each material.  The details of the liners that 

were scanned are outlined in the materials section of the relevant chapters. 

2.6.3 Methods 

Components were imaged using a micro-computed tomography scanner 

(MicroCT; µCT100, Scanco Medical AG, Brüttisellen, Switzerland). A bespoke fixture 

for the liners was constructed to fit into the 73mm machine sample containers 

(Figure 2-24A). This was marked on one side to ensure the orientation was the 

same for all liners. The scan was carried out at 55kV and 72µA with an integration 
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time of 400s. A 2D reconstruction of the stacked images was completed using built-

in software and an image resolution of 10µm was obtained (Figure 2-24B). The 

images were converted to .TIF files and viewed using ImageJ (Version 1.49, National 

Institute for Health, USA).    

 

 

Figure 2-24 (A) A fixture for acetabular liners designed to fit the 73mm 

MicroCT sample holder with 3 tiers allowing multiple liners to be loaded at one 

time (sponge used to hold samples in place) and (B) a MicroCT image of an 

explanted acetabular liner with damage in the superior rim region. The view is of 

a 10µm 2D reconstruction and looks down onto a cross section of the rim. 

 

Initial scans were made of the whole liner for the control liners and for one 

tested liner of each different material subset (XLPE liner, Aged PE liner, AOPE liner 

and explanted liner). Subsequent scans were made of the superior region only, 

encompassing the rim and extending approximately 20-25mm (depending on the 

size of the liner) towards the apex, to reduce reconstruction time (Figure 2-25). The 

scan region was identified as the area of interest from the initial full size scans. The 

results of the scans of the tested liners and explants are presented in each relevant 

chapter. The results of the scans of the control liners are presented here.    
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Figure 2-25 (A) Initial scans for each type of material were made of the 

whole liner and (B) subsequent scans were of a reduced scan region measuring 

approximately 20-25mm from the horizontal rim towards the apex of the liner. 

 

Each 10 µm slice was viewed sequentially from the surface of the rim moving 

down towards the apex of the liner. Initially, 1 in every 50 slices was viewed. 

Adjoining slices were then viewed to inspect any features of interested in more 

detail, particularly in the rim region. The approximate distance of each slice from 

the horizontal liner rim was calculated by counting the number of slices. The slices 

were inspected for micro-cracking and other subsurface damage. For the purposes 

of this study, micro-cracking was defined as cracks smaller than 1mm and 

subsurface damage was defined as cracks larger then 1mm.    

2.6.4 Results  

This section provides the results of the microCT scans of the control liners. 

The results of the scans for the other liners (simulator liners and explants) are given 

in each relevant chapter (sections 3.4.2, 4.4.2 and 5.3.1). 

No identifiable subsurface micro-cracking or visible subsurface damage was 

observed in any of the control liners (Figure 2-26). Small, infrequent voids were 

observed in the material for all control liners (Figure 2-27A). These were observed 

throughout the material and were rarely observed over more than one slice 

(10µm). A wrinkle effect was observed in all of the liners (Figure 2-27B). This was 

observed at various depths from the horizontal surface of the liner for all of the 

control liners.    
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Figure 2-26 MicroCT images of (A) an XLPE control liner, (B) an aged PE liner 

and (C) an AOPE liner 
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Figure 2-27 MicroCT images of the AOPE control liner with (A) a void in the 

material and (B) a wrinkle effect around the inner rim 

 

2.6.5 Discussion and Conclusion  

Identifying subsurface micro-cracking and damage in simulator samples and 

explants may allow potential fatigue failure mechanisms in UHMWPE acetabular 

liners to be identified and the effects of edge loading to be better understood.   

The MicroCT method for analysing subsurface damage to liners used in this 

study achieved a resolution of 10µm, which is higher than existing methods 

described in the literature (Bowden et al. 2005; Kurtz et al. 2007; Teeter et al. 

2010). It was therefore possible to observe features in the material that were too 

small to observe in previously described methods. Three control liners have been 

scanned that can be used as a comparison to help identify damage sustained by 

liners in simulators and during implantation.    

The method had some limitations. Firstly, it relied on an observer individually 

checking up to 2000 microCT slices. Observer fatigue may result in misidentification 

of features such as micro-cracking or result in certain features being missed. This 

was minimised by reducing the size of the scan after the area of interest was 

identified from full scans.  
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Furthermore, very small cracks may not be easily distinguished from the 

surrounding material and therefore may not be identified by the observer. The 

control liners all exhibited small voids in the material. These are most likely created 

during the manufacture of the components, either during consolidation of the 

material or during machining of the liner. In practice it would be difficult to 

distinguish these voids from very small micro-cracks and therefore the method may 

require refining to enhance the appearance of micro-cracking and subsurface 

damage.  Further to this, subsurface damage and cracks are only visible in microCT 

scans where a void is present between either sides of the crack. If the material was 

pushed together, it may not be visible on microCT images and therefore not all 

cracks would be visible. A key area of development would be to determine the 

sensitivity of this method for identifying micro-cracking. 

A wrinkle effect was observed on all of the control liners. This may have been 

deformation of the material but as it was observed in untested and never-

implanted control liners, it was thought that this was more likely a reconstruction 

artefact of the scanner.  These artefacts and other reconstruction artefacts may 

inhibit observation of subsurface damage.     

Despite the limitations, the method can be used to non-destructively analyse 

simulator liners and explants for larger macro-sized subsurface cracking and 

damage resulting from adverse loading conditions such as edge loading. Some 

development is required for micro-analysis of cracking.             

2.7 General Equipment Calibration 

All laboratory equipment is calibrated and serviced yearly by service 

engineers. In addition to this, the following calibration and verification steps were 

performed on measurement and testing equipment.  

For the CMM measurements, a 20mm ceramic masterball supplied by the 

manufacturer (Mitutuyo, Halifax, UK) was used to calibrate the machine before 

each use and after each probe change. The deviation in probe dimensions was 

checked and accepted for values less than 2µm.  



- 91- 

For two dimensional contacting profilometry measurements, a 22m stainless 

steel hemisphere supplied by the manufacturer (Taylor Hobson, Leicester, UK) was 

used to calibrate the stylus at each change. Calibration verification was performed 

before every use with a 0.8µm ± 0.05 Ra standard (Taylor Hobson, Leicester, UK). 

This verified the equipment calibration and monitored the stylus condition.  

For the gravimetric measurements, correct functioning of the balance was 

verified by measuring a metal component of a known weight. 

2.8 Conclusion  

This chapter described standard and previously validated methods to 

measure volume change and damage in simulator components. In addition, new 

methods to measure and analyse volume change, damage and deformation in 

simulator samples and explanted acetabular liners were developed to be used in 

combination with existing standard methods in both simulator studies and explant 

studies. Both simulator samples and explants were used in the development of 

these new methods and the methods are in applied subsequent chapters in this 

project.   



- 92- 

 Hip Simulator Edge Loading Protocol Development Study 

3.1 Introduction 

Total hip replacements (THRs) comprising of an ultra-high molecular weight 

polyethylene (UHMWPE) acetabular cup are widely implanted and generally 

regarded as successful (National Joint Registry, 2014). Historically, wear debris from 

these components was identified as one of the primary factors leading to aseptic 

loosening and the long term failure of these prostheses (Revell et al., 1997; Tipper 

et al., 2000; Ingham and Fisher, 2000). Conventional UHMWPE irradiated in air to 

sterilise the UHMWPE, was subject to oxidative degradation and ageing that not 

only increased surface wear but also made components susceptible to fatigue 

damage (Collier et al. 1996; Kurtz et al. 2006; Currier 2007; Mayor et al. 2008).  

Introduced in the year 2000, highly crosslinked UHMWPE cups with improved wear 

resistance were developed to reduce the volume of wear particles produced. Most 

importantly the manufacturing process of these materials also involved annealing 

or heat treatment above the melting temperature after irradiation to recombine 

free radicals and to stabilise the materials. Gamma irradiation doses of between 

50kGy and 100kGy are used in the processing of crosslinked UHMWPE, this 

promotes crosslinking and increases wear resistance, and these are combined with 

various heat treatment protocols. Increased cross linking produces a corresponding 

decrease in ductility and fatigue crack propagation resistance of the UHMWPE 

(McKellop et al., 1999; Muratoglu et al., 1999). Over time further degradation may 

also occur. There have been reports of crosslinked acetabular liners being 

susceptible to rim fracture in vivo, particularly where liner designs or 

biomechanical conditions lead to stress concentrations from notched locking 

mechanisms and/or thin UHMWPE at the rim (Birman et al., 2005; Tower et al., 

2007; Currier, 2007; Furmanski et al., 2009). Furthermore, an increasing radiation 

dose and a greater degree of crosslinking produce free radicals in the material and 

increase the oxidation potential. Acetabular components that have degraded 

through oxidation are more susceptible to wear and fatigue failure (Collier et al. 

1996; Currier 2007; Kurtz et al. 2006; Currier et al. 2007). Recent studies have 
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reported in vivo oxidation of crosslinked components (Muratoglu et al., 1999; 

Baker et al., 1999; Currier et al., 2013; Kurtz et al., 2014). Initial reports on the 

clinical performance of these materials in terms of wear resistance have been 

favourable but the performance under more severe conditions such as edge 

loading or impingement has not been widely reported and has therefore yet to be 

fully determined.  

 Prior to clinical use, new hip replacement designs and materials are required 

to be tested in vitro on hip simulators to mimic aspects of the in vivo service of the 

hip replacement. Current ISO standards for hip simulator wear testing of THRs 

recommend loading and motion parameters that represent a standard walking 

cycle for correctly positioned prostheses with no degradation of the materials 

(Fisher et al. 2012; BS ISO 14242:2002). This does not consider many aspects of the 

highly variable kinematics and biomechanics of in vivo service of the THR that are 

apparent, for example, gait studies have revealed that THRs are subjected to 

elevated loads (eight times body weight in stumbling) and retrieval studies 

demonstrate that UHMWPE cups experience edge loading and impingement in vivo 

(Bergmann et al., 1995; Bergmann et al., 2004; Birman et al., 2005; Shon et al., 

2005; Usrey et al., 2006; Duffy et al., 2009; Marchetti et al., 2011).  Edge loading 

can result from non-optimal component positioning, the cup may be steeply 

inclined or the head and cup centres mismatched (Nevelos et al. 2000; Stewart et 

al. 2001; Leslie et al. 2009; Al-Hajjar et al. 2010; Al-Hajjar et al. 2013; Al-Hajjar et al. 

2013). Flouroscopy studies have revealed that such conditions can result in a 

separation of the head and cup in vivo leading to edge loading of the liner rim 

(Dennis et al., 2001; Komistek et al., 2002).  

The aim of this study was to develop and evaluate a hip simulator edge 

loading protocol to determine the wear and fatigue behaviour of UHMWPE 

acetabular components in total hip replacement using aged PE liners as positive 

controls and XLPE liners as negative controls. Edge loading of UHMWPE liners 

where mechanical properties have been modified by the material processing and 

by oxidation and ageing may lead to early failure of the components. It is therefore 

appropriate to consider a positive control that involves ageing (and has shown 
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fatigue failure in vivo) in the evaluation of a new hip simulator method alongside a 

currently produced material as a negative control.  

The study had the following objectives: 

 Assess the wear and deformation of moderately crosslinked UHMWPE 

acetabular liners under standard and edge loading hip simulator 

conditions as a negative control and compare to aged UHMWPE liners 

as a positive control; 

 Assess the rim deformation and subsurface damage to moderately 

crosslinked UHMWPE liners under edge loading conditions as a 

negative control and compare to aged UHMWPE liners as a positive 

control; 

3.2 Materials and Methods 

The following sections describe the materials that were assessed and the 

testing and measurement methods that were specific to the edge loading protocol 

development study. General methods are described in Chapter 2.     

3.2.1 Materials 

Two different types of 36mm diameter UHMWPE liner that were part of or 

compatible with the modular Pinnacle® total hip replacement system (DePuy 

Synthes, UK) were assessed. The Pinnacle® compatible design comprised a 56mm 

outer diameter titanium shell and a press fit 36mm inner diameter anti-oxidant 

UHMWPE liner with taper lock and anti-rotation device (ARD) tabs that mate with 

scallops on the titanium shell. The liner thickness was 7.8mm at the apex and 

5.1mm at the rim. 

The two types of UHMWPE studied were: Marathon®, a moderately 

crosslinked UHMWPE (XLPE; n=4) and an aged Gamma Vacuum Foil® UHMWPE 

(aged PE; n=4).  
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The XLPE liners were manufactured from GUR 1050 UHMWPE resin, gamma 

irradiated at 5Mrad and re-melted. These liners were commercially available as 

part of the Pinnacle® hip system.  

The aged PE liners were manufactured from GUR 1020 UHMWPE resin, 

gamma irradiated at 2.5Mrad for sterilisation purposes and packaged in an inert 

environment. These liners subsequently underwent an accelerated ageing process 

(ASTM F2003-02(2015)) whereby they were exposed to 70° and 70psi in oxygen for 

two weeks to replicate ageing and oxidation of the material. The aged PE liners 

were compatible with the Pinnacle® acetabular shell.  

All liners articulated against 36mm cobalt chromium femoral heads (DePuy 

Synthes, UK). The UHMWPE density was 0.934 g/cm3. The details of all the 

components are outlined in Table 9. Further details of the test components, 

reference and lot numbers and labelling are provided in Appendix 1. 

 

Table 9 Details of the acetabular liners, femoral heads, sample sizes and 

labelling convention of the edge loading protocol development tests 

Cup Head n Liner Labelling 

Marathon® UHMWPE 

Pinnacle® liner (DePuy 

Synthes Ltd) 

36mm CoCr Articul/eze® 

femoral head 

(DePuy Synthes Ltd) 

4 

AM1 

AM5 

AM7 

 AM9 

GVF UHMWPE Pinnacle® 

liner. Aged at 70psi and 

70°C for two weeks 

(DePuy Synthes Ltd) 

36mm CoCr Articul/eze® 

femoral head  

(DePuy Synthes Ltd) 

4 

A2 

A4 

A6 

A10 

 

A barb located around the circumference of the liners was removed prior to 

testing. Failure to remove this would have resulted in the barb detaching from the 

liner on removal from the shell at the first measurement point and influencing the 

gravimetric data.  
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Figure 3-1 Photo of an acetabular liner showing the barb around the 

circumference of the liner 

3.3 Methods 

3.3.1 Simulator Set-up  

A ten station Prosim pneumatic hip joint simulator (Simulation Solutions Ltd, 

UK) was used in this study (Figure 3-2). A simulator station comprised a femoral 

head and acetabular cup positioned anatomically and surrounded by a silicone 

gaiter containing lubricating fluid.  

 

 

Figure 3-2 Group 1 of the Prosim ten station hip joint simulator showing five 

stations with serum in gaiters surrounding the joint interface.  

 

 The titanium shells were mounted in the simulator cup holders using PMMA 

resin, so it was possible to remove the liners from the shells at each measurement 

point (Figure 3-3).  

Barb 

Area of barb removal 
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Figure 3-3 Single station on the Prosim simulator. The testing set-up is 

shown with the femoral head mounted on the metal spigot and the acetabular 

cup cemented into the simulator mount (note the image depicts a cemented cup 

rather than a shell and liner. The shells were cemented into the holder in the 

present study).   

 

A hole and a screw in the back of both the simulator cup holder and the titanium 

shell allowed the UHWMPE liner to be pushed from behind to remove it from the 

shell at measurement points. A small UHMWPE tab was placed in the hole in the 

titanium shell to protect the liner from damage.  

 

 

Figure 3-4 The backside of a titanium shell showing the hole through which 

the liner was pushed out by a screw at measurement points.  

Cup holder 

Acetabular cup 

mounted in cup 

holder 

Metal spigot and 

femoral head 

Base plate 

Piston is below station 
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The cups were mounted in the cup holders at 35° to the horizontal, which is 

the equivalent of 45° in vivo as the loading was applied along the vertical axis 

(upwards from the piston below each station). Clinically the direction of the joint 

reaction force during stance phase is 10° medial, 55° to the face of the cup. For a 

force applied vertically on the simulator, altering the inclination angle to 35° 

preserved the 55° angle between the joint reaction force and cup face and 

replicated the clinical situation (Figure 3-5). The clinical inclination angle of 45° was 

selected as this is currently the most cited safe range for cup inclination angles in 

vivo and is commonly recommended by orthopaedic manufacturers (Lewinnek et 

al., 1978).  

 

 

Figure 3-5 Schematic of an acetabular cup and femoral head showing (A) the 

joint reaction force during stance phase in the clinical conditions with the cup at 

45° and (B) the joint reaction force in the simulator conditions with the cup angle 

at 35° (Adapted from Williams et al. 2008) 

 

 The femoral heads were mounted by means of a taper on a stainless steel 

spigot and alignment marks on the head and spigot allowed them to be removed 

and replaced in the same position at each measurement point if required. The 

centre of rotation of the femoral head was set to match the centre of rotation of 

the machine by a technician and the cup holder was adjusted so that the 

acetabular liner sat on top of the head.  
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A silicone gaiter was placed around the femoral head and acetabular cup and 

held in place with a metal clip and was filled with lubricant during the test.   

A schematic of a single station of the Prosim hip simulator is shown in Figure 

3-6 (acknowledgement: Philippa Clarkson).  

 

Figure 3-6 Schematic of a side view of a single station of the Prosim hip 

simulator with the set-up for edge loading conditions. A back spring pushed the 

femoral head laterally during the swing phase of gait causing the femoral head to 

contact with the acetabular rim on heel strike (lateral sliding distance 0.5mm-

1mm) 

3.3.2 Standard and Edge Loading Conditions 

For both standard and edge loading conditions, a twin peak time dependant 

loading curve was applied through the vertical axis with a maximum load of 3000N 

at heel strike and a minimum load of 300N in the swing phase (Figure 3-7). Two 

motions were applied to each station: the head underwent a flexion/extension 
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motion of +30° to -15° and the cup underwent an internal/external rotation motion 

of ±10°. The motions were applied 90° out of phase to create an open elliptical 

wear track. This has previously been shown to give wear results comparable to a 

three axis physiological simulator under standard walking gait conditions (Barbour 

et al., 1999). The simulator was run at 1Hz. During edge loading conditions, a 

microseparation of the femoral head and the acetabular cup occurred during swing 

phase, causing the femoral head to strike the acetabular rim on heel strike and 

relocate during stance phase.  

 

 

Figure 3-7 Load and motion output profiles for one cycle of gait with the 

femoral head position highlighted for heel strike, stance phase and toe off.   

 

The loading was applied vertically through the femoral head by a piston 

underneath the station, which was controlled by a serious of hoses through which 

a pneumatic pressure was applied. The set-up of the Prosim simulator allowed the 

load to be adjusted for group 1 and group 2 separately, but not for individual 

stations. This was because the loading for each group was applied by means of a 

single pneumatic value for the entire group. Group 1 is comprised of stations 1 to 5 
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and group 2 of stations 6 to 10. Real-time feedback was obtained from a dynamic 

load cell located on one of the articulating stations for each group. As the load was 

variable between each station, a nominal input load that would obtain a mean 

output load of 3kN across all stations in each group was applied. This input load 

was determined at the time of calibration. The XLPE and aged PE acetabular liners 

were mounted on alternate stations (1-10) to reduce any simulator bias.  

During the edge loading test a separate constant downward pressure was 

applied to the piston through the vertical axis by means of one of the pneumatic 

inlet hoses attached to the station. This was sufficient to overcome the upward 

force during swing phase of gait and cause the piston and therefore the femoral 

head to drop, resulting in a dynamic microseparation of head and cup. A spring 

placed medially below the base plate provided a lateral sliding displacement of the 

femoral head causing it to contact with the superior edge of the cup on heel strike, 

representing translational malpositioning of the cup (Figure 3-8).   

A lateral sliding displacement of the centre of the femoral head of between 

0.5mm and 1mm was used and this was measured using a dial gauge micrometer 

(Figure 3-8). The magnitude of this displacement was assessed at serum changes 

and measurement points and could be adjusted by tightening or loosening the 

medial spring. It was not possible to measure the lateral displacement while the 

test was running due to the serum surrounding the bearing. Medial springs were 

regularly checked and adjusted during the test to prevent loosening.  
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Figure 3-8 Schematic of the dial gauge micrometer set-up to measure lateral 

sliding distance under microseparation (diagram not to scale) 

 

3.3.3 Lubricant 

The lubricant used in the simulator tests was 25% (v/v) newborn bovine 

serum with 0.03% sodium azide (v/v) to retard bacterial growth. Serum changes 

were carried out in situ without removing the components from the machine. 

Serum was contained in silicone gaiters that surrounded the bearings and that 

were held in place using metal jubilee clips. The test was stopped approximately 

every 0.33Mc to replace the serum. During each serum change the serum was 

drained from the silicone gaiter and either stored for future analysis or discarded. 

The stations and gaiters were flushed with soapy water, immersed in Distel for 10 

minutes and then flushed again once using tap water then twice using deionised 

water. The serum solution was then replenished. Excess air was squeezed out of 

the gaiters. 

3.3.4 Calibration 

The simulator was calibrated and the load verified before each test (including 

between standard and edge loading tests). To achieve this, the machine was 

switched to calibration mode and the ‘Automatic Load Calibration’ function was 

used. Group 1 (stations 1-5) and group 2 (stations 6-10) were calibrated separately. 

An external load cell and the machine load cell were placed on one station in each 

 

0.5mm-1mm 

Micrometer 

 

Initial centre of rotation of 

femoral head 

Centre of rotation of 

femoral head after 

separation 
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group. The valve was opened to a pre-determined position to apply increasing 

loads and the actual load measured by the external load cell was input by the user 

(Figure 3-9). A calibration report was created providing the calibration constants 

and the deviation of the actual load from the desired load. This step was repeated 

until the deviation between the actual load and the simulator load was as small as 

possible. The calibration constants were checked to ensure they were similar to 

previously used values. To verify the loads on each station, the simulator was taken 

out of calibration mode and the motions were disabled. The simulator testing cycle 

was run with the external load cell placed on each station. The maximum and 

minimum loads for each station were recorded and the median of these values was 

used for the input loading profile for the testing cycles.  

     

 

Figure 3-9 Automatic Load Calibration function on the Prosim pneumatic hip 

simulator.    

 

 The flexion/extension and the internal/external rotations were verified 

visually using markings on the simulator while the simulator was running with the 

motions enabled. The frequency was checked and confirmed as 1 cycle per second.    
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3.3.5 Measurement Points  

Measurement points were at 1, 2, 3 and 5Mc during the standard loading test 

and 1, 1.8, 2.9, 3.5 and 5Mc during the edge loading test for the aged PE and XLPE 

liners. At each measurement point, all cups were observed visually for evidence of 

cracking and/or subsurface damage. Total volume changes of the UHMWPE liners 

were measured gravimetrically using a balance (Mettler Toledo, Leicester, UK) and 

geometrically using a coordinate measuring machine (Legex 322, Mitutoyo, UK) as 

described in sections 2.3.3 and 2.3.4.  

3.3.6 Soak and Load Controls 

Soak and load control samples were used during the simulator testing to 

compensate for fluid absorption and creep respectively.  

 The soak control samples were stored in 25% (v/v) serum (section 3.3.3) next 

to the simulator during testing. The serum was replaced and the liners were 

cleaned with the same frequency as the serum in the simulator stations. The soak 

controls were used to correct for fluid uptake rather than the load controls (section 

2.3.3) because the load controls were not used during the edge loading tests and 

consistency between the two testing conditions was maintained.  

 The load control samples were mounted on stations three and eight of the 

hip simulator. These stations were run with the motions disabled under the same 

loading profile as the test stations. For standard hip simulator loading conditions, 

load controls were used to correct for creep in order to approximate a value for 

volume change relating to wear only. This was done by subtracting the volume 

change of the load control from the volume change of the worn samples at each 

measurement point. The load controls were only used during standard loading due 

to the difficulty in applying a load to the rim only with the motions disabled.  

3.3.7 Test for Liner Conformity of Aged PE Liners 

A rocking motion was observed when the aged PE liners were inserted into 

the shells. It was thought that this was a shell/liner conformity issue and to test this 

theory, the backside of the liners was covered in engineering blue and pressed into 
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the shells by hand. When the liner was removed the areas of shell/liner contact 

were observed on the inside of the titanium shell and photographs were taken.  

3.3.8 Subsurface Analysis 

Two liners from each material subset were selected to be assessed in the 

MicroCT subsurface analysis (section 2.6). The liners that were selected were aged 

PE liners A2 and A10 and XLPE liners AM1 and AM5.  The aged PE liners were 

selected because cracking was observed on the surface of these liners and the XLPE 

liners were a random selection.  A selection of liners were scanned and analysed 

rather than the entire set because of time constraints.  

3.4 Results 

The following sections outline the results of the simulator test for the XLPE 

and aged PE liners for 5Mc of standard loading and 5Mc of edge loading conditions. 

The rim deformation, subsurface damage, surface damage and volume change of 

the acetabular liners are described. 

3.4.1 Rim Deformation 

Two dimensional contacting profilometry (Talysurf) traces were taken across 

the liner rim to measure deformation due to edge loading. The method is described 

in section 2.5. Matlab plots of the traces over the inner rim and the mean 

penetration ± confidence intervals are presented in this section.  

The mean penetration value for the XLPE liners at the inner rim was 

0.08±0.04mm (Figure 3-10). A sharp change in gradient at the radius of curvature 

between the chamfer and the bearing surface was observed for the worn profiles. 

This was in contrast to the unworn profile, which exhibited a more gradual change 

in gradient and larger radius of curvature. The reader is referred back to section 

2.5.4 for discussion on interpretation of the Matlab plots and limitations of the 

method.  
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Figure 3-10 Worn and unworn rim profiles for XLPE liners (A) AM1, (B) AM5, 

(C) AM7 and (D) AM9 showing the points at which the penetration values were 

measured for a section zoomed to the inner rim. The red circle highlights the 

sharp change in radius between the bearing surface and chamfer for the worn 

profiles. The unworn profile is the dark blue line.  

 

The mean penetration value for the aged PE liners at the inner rim was 

0.18±0.15mm (Figure 3-11). A sharp change in gradient at the radius of curvature 

between the chamfer and the bearing surface was observed for the worn profiles 

for all liners except liner A2, which only showed a moderately sharpened rim on 

one of the traces (cyan). This was in contrast to the unworn profile, which exhibited 

a more gradual change in gradient and larger radius of curvature. The sharpening in 

-2.6 -2.4 -2.2 -2 -1.8
-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

mm

m
m

-2.6 -2.4 -2.2 -2 -1.8
-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

mm

m
m

-2.6 -2.4 -2.2 -2 -1.8
-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

mm

m
m

-2.6 -2.4 -2.2 -2 -1.8
-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

mm

m
m

Blue = unworn 

profile 

Green, cyan 

and black = 

worn profiles 

 

 

 

AM1 AM5 

AM7 AM9 



- 107- 

the radius of curvature that was observed between the chamfer and the bearing 

surface was more pronounced for the aged PE liners than the XLPE liners.    

 

  

  
 

Figure 3-11 Worn and unworn rim profiles for aged PE liners A2, A4, A6 and 

A10 showing the points at which the penetration values were measured for a 

section zoomed to the inner rim. The red circle highlights the sharp change in 

radius between the bearing surface and chamfer for the worn profiles. 

3.4.2 Subsurface Damage 

Subsurface damage was evaluated using MicoCT scans as described in section 

2.6. A selection of each type of material was scanned and analysed (A2, A10, AM1 

and AM5)  
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No micro-cracking and/or obvious visible damage were observed on the XLPE 

liners when compared to the XLPE controls in section 2.6 (Figure 3-12).  

 

 

Figure 3-12 MicroCT 2D reconstructed slices with no visible cracking: (A&B) 

XLPE liner AM1 at 2.3mm and 7.7mm below the horizontal surface of the rim and 

(C&D) XLPE liner AM5 at 2.1mm and 6mm below the horizontal surface of the 

rim. View is a cross section of the liner looking down onto the rim. 

  

Extensive subsurface cracking was observed on the aged PE liners (aged PE 

liners A2 & A10).  The subsurface cracking on liner A10 appeared to initiate near 

the outer rim close to the horizontal surface of the rim at an anti-rotation tab, and 

propagated towards the inner rim further down the liner towards the apex (Figure 

3-13). 
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Figure 3-13 MicroCT 2D reconstructed slices  showing subsurface cracking on 

aged PE liner A10 showing (A) circumferential cracking at outer rim and at an 

anti-rotation tab 2.5mm below the horizontal surface of the rim (B) cracking 

around an anti-rotation tab 3mm below the horizontal surface (C) extensive 

multi-directional cracking near the outer rim and anti-tab 3.3mm below the 

horizontal surface and (D) circumferential cracking near the inner rim 3.8mm 

below the horizontal surface. View is a cross section of the liner looking down 

onto the rim. 

The subsurface damage was observed in the corresponding location to the 

damage that was visible from the surface (Figure 3-14).  Circumferential subsurface 

cracks could be seen close to the inner rim where the whitening was observed at 

the surface and circumferential cracks propagating along the outer edge of the rim 

and at an anti-rotation tab were observed where the same type of damage was 

visible from the surface. Some subsurface damage was observed close to the 
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backside cracks but it was not extensive and appeared to propagate radially from 

the outer edge of the liner.     

 

Figure 3-14 MicroCT 2D reconstructed slices with the corresponding photos 

of an aged PE liner (A10) showing (A) cracks propagating circumferentially close 

to the inner rim and the corresponding whitening at the inner rim, (B) Cracks 

propagating circumferentially along the outer rim from at an anti-rotation tab 

and the corresponding photo and (C) a radial crack and the corresponding 

backside crack. The location of these damage mechanisms is shown in the first 

image. 
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A similar damage pattern was observed for aged PE liner A2. Cracks appeared 

to initiate at the outer edge of the rim around an anti-rotation tab and then 

propagated down towards the inner rim and the apex of the liner and the 

subsurface damage was observed in the corresponding location to the damage that 

was visible from the surface (Figure 3-15).  

 

 

Figure 3-15 Subsurface cracking on aged PE liner A2 showing (A) 

circumferential cracking at outer rim and around an anti-roation tab 2.9mm 

below the horizontal surface of the rim (B) cracking around an anti-rotation tab 

3.2mm below the horizontal surface (C) circumferential cracking near the inner 

rim 4mm below the horizontal surface and (D) Radial crack initiating at the outer 

rim and extending towards the inner bearing surface 9mm below the horizontal 

surface of the rim (see Figure 3-16 for detail). View is a cross section of the liner 

looking down onto the rim. 
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Similar to aged PE liner A10, the subsurface cracking corresponding to the 

backside crack was less easily identified but some radial cracking was observed that 

was thought to be the backside crack Figure 3-16 . 

 

 

Figure 3-16 A MicroCT reconstruction with the corresponding photo of an 

aged PE liner (A2) showing a radial crack and the corresponding backside crack 

3.4.3 Damage to Acetabular Liners and Cups 

This section describes the wear and damage mechanisms observed on the 

liners throughout the test and the location of wear and damage with respect to 

liner orientation.  

A polishing or burnishing of the articulating surface in the superior region of 

the cup, characterised by a shiny appearance, was observed on all liners, both XLPE 

and aged PE (Figure 3-17).  Fine multidirectional scratching was observed on the 

bearing surfaces using a microscope. The XLPE liners did not exhibit any other 

visible signs of damage on the bearing surface or the rim after standard loading or 

edge loading.  
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Figure 3-17 An XLPE liner with the polished wear area highlighted after 

standard loading and a microscopy image of the fine scratching on the bearing 

surface (AM1; x30 magnification) 

 

  

Damage in the form of subsurface cracking and a whitening of the material at 

the inner rim and circumferential cracking along anti-rotation tabs was observed 

after 2Mc of standard loading on aged PE liners A2 and A10 (Figure 3-18). The same 

types of damage were observed on aged PE liner A4 after 1Mc of edge loading. 

  

 

Figure 3-18 Images of cracking on aged PE liners after 5Mc of edge loading 

showing cracking along an anti-rotation tab (A, Aged PE liner A2; C, aged PE liner 

1mm 
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A10) and subsurface cracking and whitening at inner rim (B, aged PE liner A2 and 

C, aged PE liner A10)  

 

Radial cracks on the backside of the liners were observed on liner A4 after 

1Mc of edge loading and after 3.5Mc for liners A2 and A10 (Figure 3-19). 

 

 

Figure 3-19 Radial cracking on the backside of aged PE liner (A) A2, (B) A4 & 

(C) A10 after 5MC of edge loading 

  

The damage was observed in the same location on the superior aspect of all 

of the liners. The location of this damage with respect to the orientation of the 

liners during edge loading as well as images of the damage after 5Mc of edge 

loading can be seen in Figure 3-20.  
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Figure 3-20 (Top image) Location of damage to aged PE liners (A10 shown) with respect to orientation during edge loading (Bottom image 

A) Subsurface cracking and whitening of the material at the inner rim (Bottom image B) cracking along anti-rotation scallop (Bottom image C) 

radial crack on backside.   
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 No visible signs of damage were observed on aged PE liner A6. 

 Light scratching was observed on the femoral heads following testing (Figure 

3-21). 

 

Figure 3-21 Microscopic image of scratching on a metal femoral head 

articulating with an XLPE acetabular cup (AM1). 

 

3.4.4 Volume Change  

Volume change of the acetabular liners was calculated from the gravimetric 

measurements using the method described in section 2.3.3. They relate to material 

loss only and compensation for fluid absorption was applied. The mean volume 

change ± the 95% confidence intervals are given and data sets are compared using 

a one-way ANOVA. 

The mean total volume change for the XLPE liners after 5Mc of standard 

loading was 44.3 ± 13.3mm3  and the mean total volume change for the XLPE liners 

between 0Mc and 5Mc of edge loading (5-10Mc of testing) was 13.5 ± 12.6mm3 

(Figure 3-22).  

 

200µm 
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Figure 3-22 Cumulative volume changes measured gravimetrically for the 

XLPE liners after 5Mc of standard loading (0-5Mc) and 5Mc of edge loading (5-

10Mc) in a hip simulator  

 

 

 

 The mean total volume change for the aged PE liners after 5Mc of standard 

loading was 121 ± 28.6mm3 and the mean total volume change for the aged PE 

liners between 0Mc and 5Mc of edge loading (5-10Mc of testing) was 31.1 ± 

10.4mm3 (Figure 3-23). 
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Figure 3-23 Cumulative volume changes measured gravimetrically for the 

aged PE liners after 5Mc of standard loading (0-5Mc) and 5Mc of edge loading (5-

10Mc) in a hip simulator 

 

 

The variation in the volume changes between XLPE liners increased during 

edge loading (44.3mm2 ± 19 %RSD for standard loading and 13.5mm2 ± 59 %RSD 

for the edge loading conditions). This was less marked for the aged PE liners 

(43.2mm2 ± 14.7 %RSD and 31.1 ± 21 %RSD for standard and edge loading 

conditions, respectively).  
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The volume changes were converted to steady state wear rates as described 

in 2.3.3. These are shown in Figure 3-24.  

 

 

Figure 3-24 Mean steady state wear rates calculated using gravimetric 

measurements for the XLPE and aged PE liners under standard and edge loading 

conditions in a hip simulator (±95% Confidence intervals; n=4) 

 

 

The aged PE liners were significantly higher wearing than the XLPE liners 

under standard loading conditions (p=0.0004). The difference was not significant 

under edge loading conditions (p=0.06). The steady state wear rates were 

significantly lower under edge loading conditions than under standard loading 

conditions for both types of liner (p=0.002 and p=0.0002, for the XLPE and the aged 

PE liner respectively).  

3.4.5 Creep 

The volume change of each liner was measured geometrically using a 

coordinate measuring machine as described in section 2.3.4. The geometric 
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measurements measured volume change relating to both wear and creep of the 

material. Creep was assessed for standard loading conditions only.    

The mean total volume change for the XLPE liners measured geometrically 

after 5Mc of standard loading was 77.5 ± 20mm3 (Figure 3-25). 

 

Figure 3-25 Cumulative volume change measured geometrically for the XLPE 

liners after 5Mc of standard loading in a hip simulator 

 

The rate of volume change of the XLPE liners in the first million cycles was 

higher than the volume change for each of the subsequent 4 million cycles. An 

increase in volume between 1 and 2 million cycles, which may have been due to 

measurement error at the 1 million cycle measurement point or the 2 million cycle 

measurement point, was observed. The measurements were repeated at the 2Mc 

measurement point and were comparable to the first set of measurements taken 

at 2Mc. The method of volume change measurement was shown have an accuracy 

of ±3.27mm3 (SD; section 2.5.2), which may in part explain the volume change 

observed in these tests, given that a steady state wear rate of approximately 

10mm3 was expected. Other likely explanations included swelling of the liners due 

to temperature differences or excessive fluid absorption.        
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The mean volume changes for the geometric measurements were corrected 

for creep using the load control liner as described in section 3.3.6. These are shown 

for the XLPE liners in Figure 3-26 along with the gravimetric measurements, the 

geometric measurements before correction and load control measurements for 

comparison.  

 

 

Figure 3-26 Mean volume change for the XLPE liners over 5Mc of standard 

loading: comparison of gravimetric, geometric, geometric corrected with 

load control (±95% Confidence Intervals; n=4), and load control 

measurement 

 

When the load control is used to compensate for creep, a volume increase at 

2Mc is no longer observed.       

The volume changes for the corrected geometric measurements of the XLPE 

liners were higher than the volume changes measured gravimetrically, particularly 

in the first 1 to 2 million cycles.  

 

0

20

40

60

80

100

120

0 1 2 3 4 5

M
e

an
 V

o
lu

m
e

 C
h

an
ge

 m
m

3

Million Cycles

Gravimetric

Geometric

Corrected Geometric

Load Control



- 122- 

The mean total volume change for each aged PE liner measured geometrically 

after 5Mc of standard loading was 124 ± 22.5mm3 (Figure 3-27).  

 

 

Figure 3-27 Cumulative volume change measured geometrically for the aged 

PE liners after 5Mc of standard loading in a hip simulator 

 

  The mean volume change for the geometric measurements is shown for the 

aged PE liners in Figure 3-28 along with the gravimetric, corrected geometric and 

load control measurements for comparison.  
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Figure 3-28 Mean volume changes for the aged PE liners over 5Mc of 

standard loading: comparison of gravimetric, geometric, geometric load 

control corrected (±95% Confidence Intervals; n=4), and load control 

measurements 

 

In contrast to the load corrected geometric measurements of the XLPE liners, 

the load corrected measurements of the aged PE liners show good agreement with 

the gravimetric measurements. The volume change observed for the aged PE load 

control liner was smaller than the volume change observed for the XLPE load 

control liner, indicating that the aged PE liners underwent less creep.  

The steady state wear rates calculated using the geometric measurements 

and the gravimetric measurements can be seen in Figure 3-29.  
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Figure 3-29 Mean steady state wear rates calculated from the geometric and 

gravimetric measurements of the XLPE and the aged PE liners under 

standard loading conditions (±95% Confidence intervals; n=4) 

 

There was no significant difference between the steady state wear rates for 

the geometric measurements and the gravimetric measurements for either liner 

(p=0.51 and p=0.38 for the aged PE and XLPE liners respectively), suggesting that 

creep does not significantly affect the steady state wear rate for the liners where 

geometric measurements are taken.  

Volume change was observed on the superior region of the bearing surface 

after standard loading and superiorly in the form of a thin narrow strip on the inner 

rim of all liners after edge loading. This can be seen on the SR3D geometric 

reconstructions (Figure 3-30). Greater deformation at the inner rim was observed 

on the aged PE liners and the areas of volume change had clearly defined edges on 

both the bearing surface and the inner rim. The volume change at the inner rim 

was separate to the volume change on the bearing surface. In comparison, the 

volume change for the XLPE liners was more variable in size and shape and did not 

have clearly defined edges. The narrow strip of deformation at the inner rim was 

not clearly separated from the main area of volume change on the bearing surface.   

 

0

5

10

15

20

25

30

XLPE Liner aged PE Liner

M
e

an
 S

te
ad

y 
St

at
e

 W
e

ar
 R

at
e

s 
m

m
3 /

M
c

Geometric Loading

Gravimetric Loading 



- 125- 

Standard Loading (0-5Mc) Edge Loading (5-10Mc) 

  

  

Figure 3-30 SR3D geometric reconstructions of volume change after 5Mc 

standard loading and 5Mc edge loading conditions for XLPE liners (A & B; AM9) 

and aged PE liners (C & D; A10 ) 

 

3.4.6 Deformation of aged PE liners  

 A rocking motion was observed when the aged PE liners were inserted into 

the shells. This was observed pre-test and throughout the duration of the test. This 

was investigated further using engineering blue to reveal areas of shell/liner 

contact. The areas of contact between shell and liner for the aged PE liners and the 

XLPE liners can be seen in Figure 3-31.  
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Figure 3-31 Pinnacle shells after the backside of the liners were covered in 

engineering blue then inserted and removed from the shell. (A & B) areas of 

contact for an XLPE liner (C &D) areas of contact for an aged PE liner 

 

The XLPE liner made contact around the superior circumference but, with the 

exception of a few patches, the engineering blue was not transferred to the rest of 

the shell (Figure 3-31A&B). The aged PE liner made contact around the superior 

circumference of the shell but also made contact at the apex over a large area, as 

indicated by the blue dye that was transferred from the liner to the shell (Figure 

3-31C&D). This shell liner contact/non-contact was consistent over all liners of each 

type. This shell liner contact was considered to be the source of the rocking motion 

observed for all aged PE liners.    

 

3.5 Discussion 

The aim of the protocol development study was to evaluate a hip simulator 

edge loading protocol to determine the wear and fatigue behaviour of UHMWPE 
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acetabular components in total hip replacement using aged PE liners as positive 

controls and XLPE liners as negative controls. The edge loading protocol produced 

cracking and subsurface damage in the aged PE liners but not in the non-aged XLPE 

liners. Rim deformation was observed on all liners and volume change was reduced 

under edge loading conditions for both types of UHWMPE liner.    

3.5.1 Rim Deformation 

Rim deformation was observed on the superior rim of all liners following edge 

loading. This deformation could be attributed to both plastic deformation and wear 

of the material. As expected, the aged PE liners exhibited a larger mean 

deformation at the rim than the XLPE liners. This was expected because the aged 

PE liners were higher wearing than the XLPE liners. An interesting finding in this 

part of the study was the shape of the 2D profilometry traces of the aged PE liners 

(Figure 3-11). A sharp change in gradient was observed between the bearing 

surface and the chamfered region of the rim for the aged PE liners (the inner rim). 

While this was also observed for the XLPE liners, the change in gradient was less 

pronounced with a larger radius of curvature being observed. It is postulated that 

this difference could be attributed to the more brittle nature of the oxidised aged 

PE material, resulting in more wear and less plastic deformation when edge loading 

occurs. This is supported by the findings in Section 3.4.5, indicating that less creep 

deformation occurs for the aged PE liners. The less defined area of volume change 

at the inner rim observed on the CMM SR3D geometric reconstructions for the 

XLPE liners (Figure 3-30) may also be attributed to increased creep of the XLPE 

material compared to the aged PE.  

3.5.2 Subsurface Damage 

The MicroCT 2D reconstructions revealed extensive subsurface cracking in 

areas corresponding to surface cracking and damage on the positive controls, the 

aged PE liners. No visible damage was observed on the negative controls, the XLPE 

liners (compared to the XLPE controls in section 2.6). This may be a limitation of the 

analysis method as micro-cracking is not easily identified by the observer from the 

surrounding structure or it can be confused with reconstruction artefacts. 
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However, it may also suggest that no subsurface micro-cracking was sustained by 

the XLPE liners during the edge loading hip simulator tests.  

For the aged PE liners, the MicroCT allowed a more thorough non-destructive 

analysis of crack initiation and propagation to be performed than a simple visual 

analysis. The MicroCT scans were performed at the end of the test after 5Mc of 

standard loading and 5Mc of edge loading and it is difficult to confidently identify 

crack initiation sites and to fully understand the propagation of these cracks 

without scanning at defined intervals throughout the testing cycle. However, from 

the MicroCT reconstructions of the post-test scans, the cracking appeared to 

initiate around one of the anti-rotation tabs on the superior edge loaded region of 

the rim and extended circumferentially along the outer edge of the rim away from 

the anti-rotation tab. It is therefore reasonable to suggest that the crack initiated at 

the anti-rotation tab because, as discussed already (section 3.5.1), previous studies 

have identified anti-rotation devices and locking mechanisms as areas of high stress 

concentrations and features where cracking commonly initiates (Furmanski et al., 

2009; Furmanski et al., 2011; Tower et al., 2007).  

For both cracked liners (A2 and A10), multidirectional cracking was observed 

approximately 3mm below the horizontal rim and this was more severe than could 

be determined from visual observations of the surface cracks. As the cracking 

extended down towards the apex of the liner it approached the inner rim and this 

was most likely the whitening that could be seen from the surface. This supports 

the previous hypothesis that the whitening was the initial stages of delamination, 

as these cracks seemed to propagate parallel to the liner surface. 

Interestingly, the backside cracks were not easily identified on the MicroCT 

reconstructions. This was surprising as these cracks were fairly extensive and visible 

to the eye. This may be because the MicroCT reconstructions will only reveal cracks 

if there is a void between each side of the crack. If the two sides are pushed 

together then the crack may be less visible on the reconstruction. Alternatively, the 

direction of propagation was different to the other cracks and this may have been 

more difficult to identify on the 2D reconstruction slices.     



- 129- 

The MicroCT scans support the hypothesis made during the damage analysis 

that cracking initiates at the outer edge of the rim and around anti-rotations tabs 

and propagates circumferentially (section 3.5.2). Furthermore, the MicroCT scans 

help provide a better understanding of the severity of subsurface cracking, which 

could not be determined from a surface analysis.     

3.5.3 Damage to Acetabular Liners  

The circumferential cracks along the anti-rotation tabs of the aged PE liners 

observed during this study were similar to damage that has previously been 

observed on retrievals. Retrieval studies have reported crack initiation at notched 

locking mechanisms on UHMWPE liners and it was hypothesised that these were a 

result of high stress concentrations at these features (Furmanski et al., 2009; 

Furmanski et al., 2011; Tower et al., 2007). The whitening on the inner rim between 

the bearing surface and the chamfered region of the rim in this study indicated the 

presence of subsurface cracking. Its location adjacent to the cracking observed at 

the anti-rotation tab suggests that these cracks may have originated at the anti-

rotation tab on the backside of the liner and propagated through the thickness of 

the UHMWPE towards the bearing surface.  

The damage was observed in the form of a white patch, which may be 

indicative of the initial stages of delamination. Delamination is often characterised 

by large sections of material removal but during initial stages subsurface cracks 

propagate parallel to the material surface (Shibata et al., 2003; Blunn et al., 1992; 

Blunn et al., 1997). Oxidative degradation is known to decrease the resistance of 

the material to this cyclic fatigue mechanism (Bell et al., 1998; Blunn et al., 1992; 

Hood et al., 1983). It could therefore be hypothesised that the whitening observed 

at the inner rim in this study was characteristic of the early stages of delamination 

resulting from oxidative degradation of the material. Delamination has previously 

been observed on this region of the rim in retrieval studies (Tower et al., 2007). The 

damage observed in this simulator test was characteristic of fatigue damage caused 

by cyclic loading and was observed either on the liner rim or originating at the rim. 

In addition, the UHMWPE liner is thinnest at the rim giving rise to high stress 

concentrations in this area and leaving it vulnerable to fatigue failure.  
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To the author’s knowledge, the cracking on the backside of the liners has not 

been observed in other simulator studies or on retrievals. Studies have shown that 

a shell/liner non conformity and areas of unsupported UHMWPE can lead to 

cracking in UHMWPE liners (Furmanski et al., 2009; Birman et al., 2005). According 

to a study by Kurtz et al. (1998), shell/liner conformity facilitates the load transfer 

between liner and shell. A non-conforming liner will be supported at the rim until 

the liner is sufficiently deformed during loading to reduce micromotion and to 

distribute the load between the shell and liner. However, until a load transfer path 

is established, the liner is vulnerable to fatigue damage. It is hypothesised that the 

radial cracks observed on the backside of the liners in this study were caused by 

the nonconforming shell and liner and the areas of unsupported UHMWPE. The 

cause of this irregular non-conformity and micromotion in the aged PE liners is not 

known but it is suggested it may have been caused by the accelerated ageing 

process.                  

3.5.4 Volume Change 

   The aged PE liners exhibited increased volume change compared to the 

XLPE liners for standard loading conditions. This finding was expected as XLPE 

components are known to be more wear resistant than conventional UHMWPE and 

the steady state wear rates observed in this study were consistent with wear rates 

previously reported in the literature for hip simulator studies (Galvin et al., 2007; 

Galvin et al., 2010). Furthermore, studies have shown that components with 

oxidative degradation exhibit increased wear, as in the case of the aged PE liners in 

this study (Collier et al. 1996; Kurtz et al. 2006; Currier et al. 2007). The difference 

in wear rates between the XLPE liners and the aged PE liners was not significant 

under edge loading conditions and this was likely because of the more variable 

nature of the volume changes measured during the edge loading tests.  

The volume change for one of the XLPE liners was higher than the other liners 

during the standard loading test. This may be a result of variation in the loading 

conditions of individual simulator stations rather than a variation in material 

properties, as the volume changes for the other XLPE liners were similar. As 

discussed previously (section 3.3.2), the loading profile can be adjusted for each 
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group on the simulator but not individual stations and feedback was only obtained 

from one station (the station with the load cell). It is therefore possible that one 

individual station experienced different loading conditions to the other three, 

resulting in elevated wear volumes.   

The volume changes observed for each liner during the edge loading test 

were more variable than those observed during the standard loading test for both 

the aged PE liners and the XLPE liners. This may be attributed to the requirement 

for regular adjustment of the microseparation and lateral displacement during the 

edge loading test, as discussed in Section 3.3.2. Variations in microseparation and 

lateral displacement values between stations may explain the larger relative 

standard deviation observed for edge loading conditions.            

Both the aged PE liners and the XLPE liners exhibited reduced volume change 

under edge loading conditions than under standard loading conditions. This was 

previously observed in a simulator test of a moderately cross-linked UHMWPE 

articulating against ceramic heads (Williams et al., 2003). In contrast, studies of 

hard on hard bearings subjected to edge loading conditions have reported an 

increase in wear compared to standard loading conditions (Nevelos et al. 2000; 

Stewart et al. 2001; Nevelos et al. 2001; Williams et al. 2006; Leslie et al. 2009). It 

has been suggested that wear is increased for hard on hard bearings because of a 

disruption to fluid film lubrication and an increase in contact stress when edge 

loading occurs (Williams et al., 2008). Ultra-high-molecular-weight-polyethylene 

components function under a mixed lubrication regime, which is dominated by 

boundary lubrication mechanisms, and it is therefore hypothesised that the 

decrease in wear was due to a reduction in contact area during edge loading. 

Fluoroscopic studies have reported larger microseparations between the centre of 

the head and cup in vivo (between 0.8mm and 3.1mm; Lombardi et al. 2000; 

Dennis et al. 2001; Komistek et al. 2002). More recent advances in simulator 

technology allow these larger separations to be more readily replicated in 

simulator studies on edge loading. Increased translational malpositioning and 

increased cup inclination angles have been shown to cause increased magnitudes 

of dynamic microseparation and wear in hip simulator studies of ceramic on 

ceramic bearings (Al-Hajjar et al. 2015). It is yet to be determined if wear rates will 
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increase under more physiologically relevant dynamic microseparations for 

UHMWPE bearings.  

The XLPE liners appeared to creep more than the aged PE liners, as evidenced 

by the larger volume change for the XLPE load control liner. Significantly higher 

volume changes were observed for the geometric measurements compared to the 

gravimetric measurements for these liners, particularly in the first million cycles of 

testing. A small difference was observed for the aged PE liners but this was 

effectively compensated using the load control liner. Estok et al. (2005) observed 

significantly higher creep for crosslinked 28mm acetabular liners compared to non-

crosslinked liners in a load only simulator test but reported no difference in creep 

for 32mm liners. A study by Glyn-Jones et al. (2008) reported no difference in the 

mean creep values for highly cross-linked polyethylene and standard polyethylene 

hip replacement retrievals. It is therefore suggested that the higher creep observed 

for the XLPE liners relative to the aged PE liners in this study is related to the 

increase in percentage crystallinity and embrittlement of the aged material, 

resulting in an increased resistance to creep deformation (Narayan. et al. 2010; 

Brach del Prever et al. 2009). The study by Glyn-Jones et al. (2008) also reported 

that almost all (95%) creep of UHMWPE occurred within the first six months, which 

would explain why there was no different between the steady state wear rates for 

the gravimetric and geometric measurements in the present study, as steady state 

wear rates are calculated over 1-5Mc.   

3.6 Conclusion     

This study developed an edge loading protocol that simulated subsurface 

damage and rim cracking in aged PE liners as positive controls but not non-aged 

XLPE liners as negative controls. It supports previous findings that edge loading of 

UHMWPE components may cause rim failure as observed in vivo, particularly 

where component positioning is sub-optimal or in the case of material degradation. 

The protocol can be used in the future to test the effect of ageing on a range of 

crosslinked UHMWPE materials as well as to test components under larger 

microseparations. 
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 Hip Simulator - Antioxidant UHMWPE Study 

4.1 Introduction 

Simulator tests and medium term clinical data indicate that cross-linked 

UHMWPE has a superior wear performance to conventional UHMWPE and as a 

result is now widely implanted in the UK and overseas (McKellop et al., 1999; Ries 

et al., 2001; Endo et al., 2002; Galvin et al., 2007; Calvert et al., 2009; Galvin et al., 

2010; García-Rey et al., 2012; Engh et al., 2012; Babovic and Trousdale, 2013; Glyn-

Jones et al., 2015). Despite the promising wear results reported to date, concerns 

remain regarding the long-term performance of these materials in relation to 

reduced mechanical properties and susceptibility to fatigue damage and fracture 

(Baker et al., 2003; Pruitt, 2005; Gencur et al., 2006; Atwood et al., 2011; Pruitt et 

al., 2013; Sobieraj et al., 2013). Furthermore, highly cross-linked materials are 

exposed to radiation doses of 5Mrad or higher. This produces free radicals, which 

can lead to oxidative degradation of the material in vivo (Collier et al. 1996; Collier 

et al. 1996; Currier et al. 2007). Thermal treatments are used to remove free 

radicals following irradiation: re-melting involves heating the UHMWPE to above 

the melting temperature and is effective at removing the free radicals but at the 

expense of the crystallinity and strength of the material (Oral et al. 2006) and 

annealing involves heating the material to below the melting temperature, which 

preserves the mechanical properties but does not effectively remove all of the free 

radicals (Gencur et al., 2006).  

More recently, manufacturers have sought alternative means of protecting 

components from oxidation and eradicating free radicals after irradiation. This has 

been achieved by adding antioxidants such as hindered phenols to the UHMWPE to 

act as free radical scavengers (Oral et al. 2007; King et al. 2009). Mechanical 

properties are maintained in hindered phenol antioxidant doped UHWMPE relative 

to melted UHWMPE, which exhibits reduced properties due to a decrease in 

crystallinity (Narayan et al. 2009). The exact formulation and loading (% w/w) of 

the antioxidant influences the final mechanical properties of the UHMWPE and the 

wear rates increase with increasing antioxidant loading. However, studies have 



- 134- 

shown that the addition of hindered phenols does not significantly inhibit the 

crosslinking process during irradiation of the UHMWPE and good oxidative stability 

is obtained when compared with non-stabilised crosslinked UHMWPE (Narayan et 

al. 2009).    

Modular acetabular shells with UHMWPE liners offer a degree of choice in 

terms of component geometry and materials as well as giving the option to revise a 

liner independently of the metal shell. However, disadvantages include backside 

wear between shell and liner and the requirement for locking mechanisms, which 

may result in high stress concentrations and fatigue failure. Compression moulded 

acetabular cups are an alternative to modular cups to eliminate backside wear, 

improve shell liner conformity and eliminate locking mechanisms and other 

features that may be a source of stress concentrations (Young et al., 2002). 

The aim of this study was to assess the wear and failure mechanisms of 

antioxidant UHMWPE for two different acetabular cup designs under standard and 

adverse edge loading conditions in a hip simulator. Validation of the method was 

completed in Chapter 3 by replicating failures seen in vivo for conventional GVF 

aged UHMWPE cups (positive control) and comparing this with marathon cross-

linked UHMWPE cups (nagative control). It was hypothesised that the antioxidant 

UHMWPE will have sufficient fatigue strength to withstand rim loading and 

therefore no rim failure or fracture of the acetabular cups will be observed when 

tested under edge loading conditions for 5Mc.  

The oxidative degradation was not investigated in this study. Antioxidant 

UHMWPE provides an alternative method of stabilising the material, which in 

contrast with post-irradiation thermal treatments should eliminate free radicals 

whilst maintaining the mechanical properties of the material. This study 

investigates the wear and fatigue damage resistance of the material under edge 

loading conditions as compared to thermally treated liners. The resistance to 

oxidative degradation and any subsequent reduction in material properties would 

be the focus of another study.   
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The study had the following objectives: 

 Evaluate and compare the volume change of the cups under standard 

and edge loading conditions and compare with positive and negative 

controls from protocol development tests (Chapter 3); 

 Evaluate the rim damage to the acetabular cups after edge loading 

and compare with positive and negative controls from protocol 

development tests (Chapter 3); 

 Compare the wear and damage mechanisms of the two different cup 

designs.    

4.2 Materials 

Two different designs of 36mm anti-oxidant UHMWPE (AOPE) acetabular 

cups were studied (Table 10). Further details of the test components, reference 

and lot numbers and labelling are provided in Appendix 1.  

 

Table 10 Details of acetabular components and femoral heads in the anti-

oxidant hip simulator study 

Cup Head n Liner Labelling 

Anti-oxidant UHMWPE 

Pinnacle® compatible 

liner (DePuy Synthes, UK) 

36mm CoCr Articul/eze® 

femoral head (DePuy 

Synthes, UK) 

4 

AOPE 2 

AOPE 3 

AOPE 5 

AOPE 6  

 
 

AOPE liners 

Anti-oxidant UHMWPE 

compression moulded 

acetabular cup (DePuy 

Synthese, UK) 

36mm CoCr Articul/eze® 

femoral head (DePuy 

Synthes, UK) 

4 

AOPE CM 1 

AOPE CM 4 

AOPE CM 9 

AOPE CM 10 

 
 

AOPE cups 

 

The material was a prototype and therefore the exact composition was not 

disclosed by the manufacturer. However, the following details were known: the 

UHMWPE was gamma irradiated at 11.5Mrad and stabilised with anti-oxidant 
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hindered phenols to remove free radicals and lower the risk of oxidation. The 

density of the UHMWPE was 0.9403 g/cm3. Two different acetabular cup designs 

were studied (Figure 4-1), a Pinnacle compatible liner (AOPE liner; n=4) and a 

compression moulded acetabular cup (AOPE cup; n=4). The Pinnacle® compatible 

design comprised a 56mm outer diameter titanium shell and a press fit 36mm inner 

diameter anti-oxidant UHMWPE liner with taper lock and anti-rotation device 

(ARD) tabs that mate with scallops on the titanium shell. The liner thickness was 

7.8mm at the apex and 5.1mm at the rim. This design was the same as the design 

of the XLPE and aged PE liners described in sections 2.2.1 and 3.2.1.  

 

 

Figure 4-1 A compression moulder acetabular cup (foreground; AOPE cup) 

and a Pinnacle® compatible liner with titanium shell (background; AOPE liner) 

 

The compression moulded acetabular cup design comprised a 36mm inner 

diameter non-removable compression moulded UHMWPE interior with Gription® 

porous coating on both the inner and outer surfaces of a 48mm outer diameter 

titanium shell (Figure 4-2). The UHMWPE in the compression moulded cup is 

2.7mm thick.  
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Figure 4-2 Schematic of a cross-section of the compression moulded 

acetabular cup 

 

4.3 Methods 

The anti-oxidant simulator test was carried out as described in section 3.3. 

The Pinnacle® shells were cemented directly into the mounts and the Pinnacle 

compatible liner could be removed at measurement points. The compression 

moulded cup was cemented directly into the mount and it was not possible to 

remove it at measurement points. The components were mounted on alternate 

stations to prevent machine bias (section 3.3.2). The simulator test was run for 

4.8Mc under standard loading conditions (the test was stopped at 4.8Mc rather 

than 5Mc due to a power failure in the laboratory) and 5Mc under edge loading 

conditions. Measurement points were at 1, 2, 3, 4 and 4.8Mc for the standard 

loading tests and 1, 2, 3, 4 and 5Mc for the edge loading tests. As with the protocol 

development tests, all cups were removed and observed visually for evidence of 

cracking and/or subsurface damage at each measurement point. Total volume 

change was measured geometrically using a coordinate measuring machine (Legex 

322, Mitutoyo, UK) for both cup designs and gravimetrically using a balance 

(Mettler Toledo, Leicester, UK) for the AOPE liner (as described in section 2.3.3). A 
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soak control for the AOPE liner was used in gravimetric assessment of volume 

change as previously described in section 3.3.6. Following testing, the rim profiles 

and subsurface damage were assessed in greater detail as described in sections 2.6 

and 2.5.   

 Volume changes for the compression moulded components were not 

determined gravimetrically as the fixed UHMWPE design of the cup did not allow it 

to be removed from the simulator mount and too much fluid absorption would 

occur between UHMWPE and shell for accurate measurements to be taken. 

4.4 Results 

The following sections outline the results for the simulator test of the AOPE 

liners and the AOPE cups for 4.8Mc of standard loading and 5Mc of edge loading. 

The rim deformation, subsurface damage, surface damage and volume change of 

the acetabular liners are described. 

4.4.1 Rim Deformation  

Two dimensional contacting profilometry traces (Talysurf traces) were taken 

across the liner rim to measure deformation due to edge loading. The method is 

described in section 2.5.2. The penetration was measured at a user defined point 

on the inner rim and was described in section 2.5.3. Matlab plots of the traces over 

the inner rim and the mean penetration ± confidence intervals are presented in this 

section.  

 

The mean penetration for the AOPE liners was 0.117 ± 0.07mm (Figure 4-3). 

Furthermore, a sharp change in the radius of curvature at the point where the 

chamfer meets the bearing surface at the inner rim was observed on the worn 

profiles. This is in contrast to the unworn profile, which exhibited a more gradual 

change in gradient and a larger radius of curvature.    
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Figure 4-3 4-4 A close up of the inner rim showing worn and unworn rim 

profiles for the AOPE liners. The point at which the penetration values were 

measured is shown and a sharp change in radius at the inner rim can be 

observed. The dark blue liner is the unworn profile and the green, cyan and black 

lines are the worn profiles. 

 

The mean penetration at the inner rim for the AOPE cups was 0.07 ± 0.05mm 

(Figure 4-5). Similar to the AOPE liners, a sharp change in the radius of curvature at 

the inner rim was observed on the worn profiles. This is in contrast to the unworn 

profile, which exhibited a more gradual change in gradient and a larger radius of 

curvature. 
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Figure 4-5 A close up of the inner rim showing worn and unworn rim profiles 

for the AOPE cups. The point at which the penetration values were measured is 

shown and a sharp change in radius at the inner rim can be observed. The dark 

blue liner is the unworn profile and the green, cyan and black lines are the worn 

profiles. 

 

4.4.2 Subsurface Damage 

Subsurface damage on the AOPE liners was evaluated using MicroCT scans as 

described in section 2.6. Despite, the development of techniques to reduce metal 

artefacts in microCT scans, these were not investigated in this study and the AOPE 

cups were therefore not scanned because the different density of the titanium 

shells would produce an artefact and prevent visualisation of the UHMWPE.   

No visible subsurface cracking or micro-cracking was observed on the AOPE 

liners when compared to the AOPE control described in section 2.6 (Figure 4-6).  
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Figure 4-6 MicroCT 2D reconstructed slices with no visible cracking: AOPE 

liner AOPE 5 at (A) 1.39mm. (B) 2.64mm, (C) 2.91mm and (D) 7.1mm below the 

horizontal surface of the rim. The holes are reference holes used in the CMM 

measurements. View is a cross section of the liner looking down onto the rim. 

4.4.3 Damage to the acetabular liners and cups  

This section describes the wear and damage observed on the liners 

throughout the test and the location of wear and damage with respect to liner 

orientation.  

A polishing or burnishing of the articulating surface in the superior region of 

the liner, characterised by a shiny appearance, was observed on all components, 
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both the AOPE liners and the AOPE cups. Fine multidirectional scratching was 

observed using a microscope on the bearing surfaces (Figure 4-7). 

 

 

Figure 4-7 An AOPE liner (AOPE 5) with (A) the wear area highlighted after 

standard loading and (B) a microscopy image of the polished bearing surface (x30 

magnification)  

 

 No other visible signs of damage on the bearing surface or the rim were 

observed on the liners or cups after standard or edge loading.  

4.4.4 Volume Changes  

The volume changes for the AOPE liners were calculated from the gravimetric 

measurements using the method described in section 2.3.3. They relate to material 

loss and compensation for fluid absorption was applied as described in section 

3.3.6. The simulator tests for the AOPE liners and cups were run for 4.8Mc of 

standard loading and 5Mc of edge loading. For simplification of the results, these 

are discussed as 0 to 5Mc of standard loading and 5 to 10 Mc of edge loading. The 

mean volume change ± the 95% confidence intervals are given and data sets are 

compared using a one-way ANOVA. 

The mean total volume change for the AOPE liners after 5Mc of standard 

loading was 25.4 ± 1.9mm3 and the mean total volume change for the AOPE liners  

A 

B 

1mm 
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between 0Mc and 5Mc of edge loading (5-10Mc of testing) was 26.3 ± 4.7mm3 

(Figure 4-8). 

 

Figure 4-8 Cumulative volume changes measured gravimetrically for the 

AOPE liners after 4.8Mc of standard loading (0-5Mc) and 5Mc of edge loading (5-

10Mc) in a hip simulator  

 

The volume change of each AOPE liner and each AOPE cup was measured 

geometrically using a coordinate measuring machine as described in section 2.3.4. 

The geometric measurements assessed volume change relating to both wear and 

creep of the material.     

The mean total volume change measured geometrically for the  AOPE liners 

after 5Mc of standard loading was 53 ± 11mm3 and mean total volume change for 

the AOPE liners between 0Mc and 5Mc of edge loading (5-10Mc of testing) was 

36.4 ±5 22.9mm3 (Figure 4-9).  
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Figure 4-9 Cumulative volume changes measured geometrically for the 

AOPE liners after 4.8Mc of standard loading (0-5Mc)  and 5Mc of edge loading (5-

10Mc) in a hip simulator  

 

The mean total volume change measured geometrically for the AOPE cups 

after 5Mc of standard loading was 19.5 ± 3.8mm3 and the mean total volume 

change for the AOPE cups between 0Mc and 5Mc of edge loading (5-10Mc of 

testing) was 22.2 ± 10.8mm3 (Figure 4-10).  
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Figure 4-10 Cumulative volume changes measured geometrically for the 

AOPE cups after 4.8Mc of standard loading (0-5Mc) and 5Mc of edge loading (5-

10Mc) in a hip simulator  

 

The variation in the volume change measured geometrically between the 

AOPE cups increased during edge loading (19.5mm2 ± 11.9 %RSD for standard 

loading and 20.5mm2 ± 15.7 %RSD for the edge loading conditions). This was also 

observed for the AOPE liners (50.8mm2 ± 13.1 %RSD and 36.4 ± 19.8 %RSD for 

standard and edge loading conditions, respectively).  

The volume changes were converted to steady state wear rates as described 

in section 2.3.3. The steady state wear rates for the AOPE liners and AOPE cups 

calculated using both the gravimetric (AOPE liners only) and the geometric 

measurements are shown in Figure 4-11.  
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Figure 4-11 Mean steady state wear rates for the AOPE liners and AOPE cups 

after 4.8Mc of standard and 5Mc of edge loading conditions calculated using 

geometric measurements and gravimetric measurements (AOPE liners only); 

(±95% Confidence Intervals; n=4) 

 

The mean steady state wear rates for the AOPE cups were significantly lower 

than the AOPE liners under standard loading conditions (p<0.01) but the difference 

was not significant under edge loading conditions (measured geometrically; 

p=0.09). The mean steady state wear rates for the AOPE cups were significantly 

lower during edge loading than standard loading (p=0.04) but this difference for 

the AOPE liners was not significant when measured gravimetrically (p=0.58) or 

geometrically (p=0.06).  

Volume change was observed on the superior region of the bearing surface 

after standard loading and in the form a thin narrow strip on the superior inner rim 

of all liners and cups after five million cycles of edge loading. This was observed on 

the SR3D geometric reconstructions (Figure 4-12).  
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Standard Loading (0-5Mc) Edge Loading (5-10Mc) 

  

  

Figure 4-12 SR3D geometric reconstructions of volume change after 5Mc 

standard loading and 5Mc edge loading conditions for the AOPE liners (A & B; 

AOPE 6) and AOPE cups (C & D; AOPE CM 2). Superior region of the liner/cup is at 

the top of the image. 

        

4.4.5 Comparison of AOPE Study with Protocol Development Hip 

Simulator Study 

The results of the volume change and rim deformation assessments for the 

antioxidant tests were compared with the results of the protocol development 

tests in Chapter 3 and are presented in this Chapter. Very little surface or 

subsurface damage for the AOPE liners was observed and therefore these results 

were not compared.  

Edge Loading 

Edge Loading 

A B 

D C 
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The mean penetration at the inner rim for the AOPE liners and the AOPE cups 

(0.117±0.07mm and 0.07±0.05mm, respectively) were not significantly different to 

the mean penetration at the inner rim for the XLPE liners or the aged PE liners 

(0.08±0.04mm and 0.18±0.14mm, respectively; Figure 4-13; section 3.4.1)  

 

 

Figure 4-13 Mean penetration values at the inner rim for the XLPE liners, 

Aged PE liners, AOPE liners and AOPE cups (95% Confidence Intervals; n=4) 

 

 

The AOPE liners and cups were lower wearing than the XLPE liners and the 

aged PE liners for the standard loading tests for both the gravimetric and geometric 

measurement methods (Figure 4-14; XLPE and aged PE data presented in sections 

3.4.1). There was no significant difference in the wear of the different liners and 

cups under edge loading conditions.       
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Figure 4-14 Mean steady state wear rates measured gravimetrically and 

geometrically for the AOPE liners, AOPE cups, XLPE liners and aged PE liners for 

standard loading and edge loading conditions (±95% Confidence internals; n=4 for 

each liner/cup; all XLPE and aged PE data previously presented in results sections 

3.4.1) 

4.5 Discussion 

The aim of this study was to assess the wear and fatigue damage of a novel 

anti-oxidant UHMWPE of two different acetabular cup designs subjected to hip 

simulator testing under standard walking and edge loading conditions. 

4.5.1 Volume Change  

The AOPE cups exhibited lower volume change under standard loading 

conditions than the AOPE liners but there was no significant difference under edge 

loading conditions. Previous studies on compression moulded non modular cup 

designs have made similar observations and it was suggested in these studies that 

this may be due to increased shell-liner conformity, decreased micromotion and 

more favourable stress distributions due to design factors (Young et al., 2002; 
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Poultsides et al., 2012). However, in terms of the decrease in wear due to 

micromotion, the absence of gravimetric measurements in the present study 

excludes any backside wear from the measured wear volume of the AOPE liners, so 

this is not factored into the results. Furthermore, a low sample size (n=4) means 

conclusions regarding better wear performance should be made with caution. 

However, further development of geometric measurement and analysis methods 

to more accurately establish wear volumes for these cups would be an interesting 

line of investigation. 

The AOPE liners and cups were lower wearing than the XLPE liners and the 

aged PE liners for the standard loading tests for both the gravimetric and geometric 

measurement methods and there was no significant difference between any of the 

liners and cups under edge loading conditions. This result was expected as the 

material received a higher radiation dose than the wear resistant XLPE liners, 

resulting in a greater degree of crosslinking and wear resistance and the aged PE 

liners had undergone oxidative degradation. It is not known how the level of 

crosslinking compares to the XLPE liners, as the hindered phenols impede the 

crosslinking process (Narayan et al. 2009). However, the radiation dose is 

considerably higher (11.5Mrad for the AOPE compared to 5Mrad for the XLPE), so it 

is likely that the level of crosslinking is also greater.  

Relatively little literature is available on anti-oxidant UHMWPE stabilised with 

hindered phenols, but previous studies on α-tocopherol stabilised UHMWPE 

(Vitamin E) have reported no difference in wear rates compared to first generation 

crosslinked materials (Oral et al. 2006). Furthermore improved mechanical 

properties have also been reported for hindered phenol stabilised UHMWPE when 

compared to first generation highly crosslinked UHMWPE (Narayan et al. 2009; 

King et al. 2009; Narayan et al. 2009; King et al. 2009). It is likely that the difference 

in the volume change under edge loading conditions between the AOPE materials 

and the XLPE and Aged PE materials was not statistically significant because of the 

large variation in the volume change values under these conditions.       
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4.5.2 Damage to Acetabular Liners and Cups 

Mild damage was observed on the AOPE liners and the AOPE cups in the form 

of fine scratching and a burnishing on the bearing surface. No cracking or visible 

damage to the rim was observed for either design.  

The UHMWPE in this study was highly crosslinked and received a radiation 

dose of 11.5Mrad. Highly crosslinked UHMWPE acetabular components have a 

reduced toughness and fatigue crack propagation resistance (Baker et al., 1999; 

Pruitt, 2005) and may therefore be susceptible to rim fracture when edge loading 

occurs.  Furthermore, as discussed in section 3.5.1, studies of retrieved acetabular 

liners have reported crack initiation at notched locking mechanisms that were 

similar to the ARDs on the components in this study (Tower et al., 2007; Furmanski 

et al., 2009; Furmanski et al., 2011). Hindered phenols have been shown to exhibit 

improved mechanical properties compared to crosslinked and re-melted UHWMPE 

including fatigue crack propagation resistance and these findings were supported in 

the present hip simulator study of edge loading conditions (King et al. 2009).    

 While the rim of the AOPE liners and the AOPE cups was not visibly deformed 

or damaged, the rim deformation analysis using 2D contacting profilometry 

(Talysurf traces) revealed some wear and/or deformation at the inner rim. This was 

comparable with the XLPE liners and the aged PE liners in the protocol 

development tests (Chapter 3) and therefore reinforces the visual analysis of the 

rim damage, which suggested that the AOPE liners and cups are no more 

susceptible to rim damage and wear than the clinically available XLPE liners.  

The absence of cracking or fatigue type damage mechanisms in this study 

suggests that in terms of fatigue performance, the AOPE liners perform as well as 

the XLPE liners (negative controls) tested in Chapter 3. The lack of visible 

subsurface cracking when compared to the AOPE control liner in the MicroCT 

subsurface analysis further supports these findings.         
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4.6 Conclusion 

The aim of this study was to investigate the wear and fatigue mechanisms of a 

novel anti-oxidant UHMWPE of two different acetabular cup designs subjected to 

standard walking and edge loading conditions in hip simulator tests.  

The anti-oxidant UHMWPE assessed in this study showed good wear and 

fatigue performance under standard and edge loading conditions when compared 

to the positive and negative controls in the protocol development tests described 

in Chapter 3. The volume change was comparable with the clinically available XLPE 

liners and no rim cracking was observed. Furthermore, the AOPE compression 

moulded cups showed comparatively good wear resistance when compared with 

the AOPE liners. Initial assessment of this anti-oxidant material is promising, further 

testing should be carried out to determine the wear and fatigue behaviour of the 

material following ageing and under more severe edge loading conditions.          
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 Wear and Damage Analysis of Explanted Acetabular Liners 

5.1 Introduction 

Pre-clinical simulator testing of total hip replacements is essential to 

understanding the clinical performance of new component designs and materials 

and is a requirement of legislative product approval. The analysis of explants 

retrieved at revision surgery can be used to inform and validate the design of these 

simulator tests and to ensure that clinically relevant damage mechanisms are being 

replicated. Furthermore, explant analyses can be used to identify trends and 

correlations in damage and failure mechanisms to predict early failure and inform 

future component design.            

 The aim of this study was to evaluate new methodologies for the analysis of 

explanted acetabular liners with specific emphasis on damage and deformation due 

to edge loading and to carry out primary failure analyses of explanted acetabular 

liners.  

The study had the following objectives: 

1. Apply and evaluate methodologies developed in Chapter 2 to assess 

explanted acetabular liners for wear, damage and deformation; 

2. Identify damage mechanisms from analysis of sixteen liners retrieved at 

revision surgery along with the associated clinical data;  

3. Determine whether specific risk factors for liner failures can be identified 

and if recommendations can be made to minimise such failures in future. 

5.2 Methods and Materials 

This section describes the procedures that were implemented for collecting 

explants as well the methods of analysis that were specific to explants. General 

measurements and analyses were carried out as described in Chapter 2.    
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5.2.1 Ethical Approval and Explant Collection 

To comply with good clinical practice in research, ethical review by an 

appropriate ethics committee is required for all research involving human 

participants. For research involving NHS patients, ethical review is required by an 

NHS review committee. Favourable Ethical Approval was obtained from Leeds 

(West) Ethical Review Committee for the project “Wear Analysis of Explanted 

Orthopaedic Prostheses 09/H1307/60”. The protocol approved by the committee 

covered the retrieval of explanted orthopaedic components and associated tissue 

removed at revision surgery. The key elements of the collection procedure outlined 

in the protocol were the following: 

 Pre-operative informed consent 

 Maintaining patient anonymity  

 Safe shipping and storage of retrieved explants. 

 

The documents for obtaining consent and recording the details of the 

retrieved prostheses and associated tissue were approved by the research ethics 

committee and can be found in Appendix 6. Explants were assigned a code to 

maintain patient anonymity and recorded in a database. Consent forms were 

stored by Dr Sophie Williams, the chief investigator for the project.  

Following favourable ethical opinion, R&D permission was obtained from 

each individual trust. Two sites were included in the present study: Musgrave Park 

Hospital, Belfast and Charlotte Maxeke Johannesburg Academic Hospital, 

Johannesburg, South Africa. These sites were selected based on the availability of 

retrieved joints.  

The explants were carefully removed at revision surgery, packaged according 

to UN Packaging Instruction P650 and shipped according to UN3373 regulations for 

transportation of Biological Substances, Category B (Dept. for Transport, 2012). The 

explants were collected with pre and post-operative x-rays and selected patient and 

patient related data was recorded (Table 11; Explant Information Form, Appendix 6). 

On arrival in the department, the explants were decontaminated, cleaned and stored 

(section 2.3). 
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Table 11 List of patient/implant data recorded and description of the data 

Details/Information 

collected with 

explants 

Description of data provided 

Name of Hospital Name of the hospital where the revision operation was carried 

out 

Name of Surgeon Name of the surgeon that carried out the revision operation 

Date of Birth  

Height/Weight The Patient’s BMI (Body Max Index) was calculated from this 

data 

Gender  

Type of Prosthesis Bearing combination and product type if known (i.e. 

manufacturer and design name) 

Primary, 1st, 2nd 

revision explant or 

other 

Was this the first revision operation for the patient and if not, 

how many previous revisions were there?   

Implant and explant 

date 

Date that the joint was implanted and date of revision 

operation. Time in vivo was calculated from these dates.   

Side operated on Left or right joint 

Initial Diagnosis The initial reason for the first joint replacement.  

Reason for Revision Why was the joint revised 

Patient Activity Level Surgeon selected from 6 different activity levels: 

immobile/wheelchair, 1 stick, 2 sticks,  sedentary, reasonably 

active and very active 

History of 

dislocation? 

YES/NO  and details  

Evidence of 

Impingement? 

YES/NO  and details 

Other information? Any other information that the surgeon or support staff 

deemed relevant to the failure of the joint.  

       



- 156- 

5.2.2 Explant Selection 

The explant collection at the Institute of Medical and Biological Engineering 

consisted of hip, knee and ankle joints collected over a period of six years. Sixteen 

explants were selected from this collection. To allow a better comparison between 

the simulator study and the explant study to be made (overall study aim and 

Chapter 6), explants of the same design as those tested in the simulator study in 

Chapter 3 & 4 were selected. The inclusion criteria for the study were material 

(UHMWPE) and design (Pinnacle®). The Pinnacle® design is described in section 3.2. 

A summary data set with relevant data for the explants is provided in Table 12. 

Images of the explants can be found in Appendix 5. 

  

The explants were divided into three subsets (Figure 5-1): lipped liners (L; 

n=4; liners with an elevated rim region); dissociated neutral liners that had failed 

due to dissociation from the metal shell (D; n=5) and non-dissociated neutral liners 

that had failed for a variety of other reasons (N; n=7).  

All of the neutral liners (dissociated and non-dissociated) had a flat face (no 

elevated rim) and the centre of rotation of the femoral head was concentric with 

the outer acetabular shell. In the lipped subset, three of the liners were Pinnacle® 

lipped liners (4mm build up for stability and 15° face change) and one was a +4 10° 

face changing liner (lateralisation of 4mm and 10° face change).   
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Figure 5-1 Schematic of a (a) neutral liner, (B) lipped liner and (C) an image 

of a dissociated neutral liner (liner 10D)  

 

The subdivisions were selected to allow the identification of any trends 

and/or correlations in the damage mechanisms relating to the specific geometry of 

the components as well as to identify any damage mechanisms that were present 

on the dissociated neutral liners but not the non-dissociated neutral liners, thereby 

obtaining some insight into the failure of these components. Furthermore, the 

dissociated liners exhibited extensive damage that was sustained post-dissociation 

and it was therefore thought that this should be separated from the wider damage 

analysis as the damage mechanisms observed prior to dissociation were more 

useful to determine the cause of dissociation.  
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Table 12 Summary details of all explants included in the study 

Explant 
Code 

Patient 
age 

(Years) 

Time in 
vivo 

(Mnths) 

BMI 

(Kg/m2) 

Cup 
Inclination 

(Degrees) 

Activity 
level 

PE thickness  

Diameter Sex Side Diagnosis Reason for revision Bearing Stem Subset 

1N 79 95 35.9 42 3 9.5mm 28mm M R NA Lucency, infection MOP Corail N 

2N 78 85 NA 60 3 8mm 28mm F R OA Stem lucency MOP Corail N 

3N* 68 47 28.3 47 4 8mm 28mm F L Pain Stem lucency MOP Corail N* 

4N 72 101 27.3 50 3 11mm 28mm M L OA Fall, Infection, pain COP C-stem N 

5N 73 101 27 48 4 7mm 28mm F R NA Stem loosening COP Corail N 

6N 78 95 31 55 3 8.5mm 28mm M R Pain Stem loosening MOP Corail N 

7N* 70 23 37.6 33 5 9mm 32mm M L NA Dislocation MOP Corail N* 

8D* 78 31 33 57 3 8.5mm 32mm F R OA Dissociation MOP Corail D* 

9D 72 71 26 49 5 8.5mm 28mm M R NA Dissociation COP Corail D 

10D* 83 63 27.9 43 5 8.5mm 28mm M R OA Dissociation MOP Corail D* 

11D* 74 58 28 43 5 8.5mm 28mm F L OA Dissociation MOP Corail D* 

12D* 96 97 26 50 4 8.5mm 28mm M L OA Dissociation MOP Corail D* 

13L* 57 85 37.8 NA 2 9.5mm 28mm F R OA Stem loosening COP Corail L* 

14L* 58 60  NA 5 9.5mm 28mm F R OA Stem loosening COP Corail L* 

15L* 53 7 32.6 NA NA 9.5mm 28mm F R OA Dislocation MOP NA L* 

16L* 54 6 28 NA 5 NA 32mm F R OA Dislocation MOP NA L* 

*Crosslinked UHMWPE;  NA =not applicable or not available     (N=Neutral, D=Dissociated, L=Lipped)
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For the neutral liner subset, the average patient age was 75 years, the 

average BMI was 30 Kg/m2 and the average activity level was 4, representing a 

sedentary patient population that did not use a mobility aid. The average time in 

vivo for these explants was 87 months and the reasons for revision were pain, 

loosening, lucency, infection and for one explant, recurrent dislocation. Five of 

seven liners were GVF® UHMWPE and the remaining two were a moderately 

crosslinked UHMWPE (Marathon®). Six of the seven neutral liners were 28mm 

diameter and one was 32mm diameter. For the dissociated liner subset, the 

average patient age was 81, the average BMI was 28 and the average activity level 

was 4. The average time in vivo for these explants was 64 months and the reason 

for revision was dissociation of the liner from the metal shell. A sudden onset of 

pain followed by a grinding or squeaking was reported for three of the five cases. 

The joint was revised at a mean of 6 months (4-8months) after this event. Four of 

five liners were crosslinked UHMWPE (Marathon®) and one liner was GVF® 

UHMWPE. Four of five dissociated liners were 28mm diameter and one was 32mm. 

For the lipped liner subset, the average patient age was 56, the average BMI was 33 

and the average activity level was 4. The average time in vivo for these explants 

was 40 months and the reasons for revision were loosening for two of the explants 

and dislocation for two of the explants. All of the lipped liners were crosslinked. 

Three of four liners were diameter 28mm and one was 32mm diameter. Thirteen of 

the explants consisted of Corail® (DePuy, Warsaw, USA) cementless femoral stems 

(one was a DePuy C-stem® and two were unknown). 

5.2.3 Analysis Methods for Explants 

An analysis protocol was followed for each of the selected explants and is 

summarised below: 

 Components were photographed using a Canon 700D SLR Camera 

with a 100mm macro lens (Canon (UK) Ltd, Surrey, UK); 

 The type of UHMWPE, diameter and UHMWPE thickness were 

determined from the lot numbers on the component and by 

consulting manufacturer product information sheets;  

 Damage was graded and categorised as described in section 5.2.4; 
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 Geometric volume change measurements were taken as described in 

section 2.4. 

 Rim profile traces were taken using contacting profilometry as 

described in section 2.5;  

  MicroCT scans were carried out for a selection of the explants as 

described in section 2.6; 

 The patient x-ray was inspected and the inclination angle of the 

acetabular component was determined using Sante DICOM Viewer 

FREE version 3.0.12 software. The transischial line was used as the 

horizontal reference as described by Murray (1993) and Loftus & 

Ghelman (2015) (Figure 5-2). A line was drawn along the horizontal 

reference and across the cup face and the angle between the two was  

calculated using the software angle tool;  

 Any other relevant information or observations were noted.  

 

 

Figure 5-2 Pre-operative x-ray showing the horizontal reference along the 

transischial line and the inclination angle of the acetabular cup 

 

5.2.4 Semi-Quantative Damage Categorisation of Explants  

A macroscopic visual assessment of the explants was performed. A 

stereomicroscope (Nikon UK Ltd, Surrey, UK) was also used to help identify damage 

mechanisms if required. Each explant was awarded a damage score using an 

adaptation of a method described by Hood et al. (1983).  

48.53° 
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The explants were divided into four quadrants. If known, the wear area was 

located towards the superior aspect (identified from geometric reconstructions, 

see section 5.3.1; Figure 5-3). Each quadrant was subdivided into the bearing 

surface and the rim region with the rim region being defined as the flat rim section 

and the chamfer up to the inner rim.   

 

 

Figure 5-3 Schematic of an acetabular liner divided into four quadrants with 

the wear area to the superior aspect where (a) denotes the rim subdivision and 

(b) the bearing surface subdivision 

 

Each subdivision of each quadrant was visually inspected for the following 

wear and damage mechanisms (Figure 5-4):   

 Deformation - dimensional change due to plastic deformation  

 Pitting - depressions in the surface  

 Embedded Debris - third body particles embedded in the UHMWPE  

 Scratching - multidirectional indentations into the UHMWPE 

 Burnishing - highly polished appearance.  

 Abrasion - visually roughened surface.  

 Delamination - Subsurface failure together with removal of large sheet of 

UHMWPE 

2b 

3b 

4b 

1b 

Superior Aspect 

1a 

2a 

3a 

4a 

Wear area 
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 Cracking/Fracture - small subsurface cracks to gross fracture of the 

component.  

 

 

Figure 5-4 Microscopy image taken at x30 magnification showing (A) pitting, 

(B) surface deformation (indentations), (C) unworn surface with machining marks 

still visible, (D) abrasion, scratching and embedded debris, (E) large scratch and 

(F) fine scratching and burnishing 

 

.  

The presence and degree of each damage mechanism was graded on a scale 

of 0 to 3 depending on the percentage coverage of the quadrant (Table 13).  
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Table 13 Scoring system for assessing damage mechanisms on explant bearing 

surfaces and rims 

Damage Score Extent of Damage 

0 No damage 

1 10% coverage of quadrant 

2 10-50% coverage of quadrant 

3 >50% coverage of quadrant 

 

The assessor’s perception of severity was also taken into account in the final 

score. For example, if the damage mechanism only covered 10% of the surface but 

was deemed by the assessor to be particularly severe, this may have scored as 

highly as small scratches over more than 50% of the surface. The total possible 

score for each subdivision was 24, which equates to 48 for each quadrant and 192 

for the whole acetabular liner. 

The backside of the liners and other components (metal shell and femoral 

head) were visually inspected and any damage was noted. However, as the 

principal areas of interest in this study were the bearing surface and rim of the 

UHMWPE liner, a damage scoring was not performed. Femoral stems were 

excluded from the damage analysis because they were not available for all explants 

and because the focus of this study was the acetabular liners.  

 

5.2.5 Calculation of Volume Change per Million Cycles for Explants 

 The volume change for the simulator samples was calculated by dividing the 

mean total volume change by the number of cycles. To obtain a comparative value 

for the explants, the formula developed by Dowson and Wallbridge (1982) to 

calculate the number of steps based on patient age and adapted by Hall & Pinder 

(1998) to determine the total number of cycles per year was applied (Equation 5.1): 

 

𝑁 = 0.5(𝐴𝑟 − 𝐴𝑝)[6.58 − 0.032(𝐴𝑟 − 𝐴𝑝)] × 106  (5.1) 
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where 𝐴𝑟 is the patient’s age at revision and 𝐴𝑝is the patient’s age at primary 

surgery.  

A later study by Goldsmith et al. (2001) that observed the walking activities of 

patients with and without total hip replacements reported a decline in activity with 

age and results were “broadly consistent” with the earlier study by Dowson and 

Wallbridge. While it was acknowledged that patient activity may change over time, 

this reinforces the relevance of the formula for the present study.     

The volume change per Mc for the explants was then calculated by dividing 

the total volume change by N.  

5.3 Results 

The following sections outline the results of the explant analyses including rim 

deformation, subsurface damage, damage categorisation and volume change.  

 

5.3.1 Rim Deformation 

Two dimensional contacting profilometry traces were taken across the liner 

rims to measure wear and deformation due to edge loading as described in section 

2.5.  

Non-dissociated Neutral Liners 

Five of the seven neutral liners did not exhibit evidence of edge loading on 

the rim region and the radius of curvature at the inner rim was relatively uniform 

around the circumference of the liner (explants 1N, 2N, 3N, 4N and 7N;Figure 5-5).  
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Figure 5-5 Close up of the inner rims of five of the neutral liners with no 

visible deformation and/or wear. Blue traces are taken over the unworn region 

and pink traces over the worn region. Cyan traces are taken from the anterior 

and posterior unworn regions of the liner. 

 

-6.5 -6 -5.5 -5 -4.5
-5

-4.5

-4

-3.5

-3

-2.5

-2

mm

m
m

-5.5 -5 -4.5 -4 -3.5
-5

-4.5

-4

-3.5

-3

-2.5

-2

mm

m
m

-5.5 -5 -4.5 -4 -3.5
-5

-4.5

-4

-3.5

-3

-2.5

-2

mm

m
m

-6.5 -6 -5.5 -5 -4.5
-5

-4.5

-4

-3.5

-3

-2.5

-2

mm

m
m

-7.5 -7 -6.5 -6 -5.5
-5

-4.5

-4

-3.5

-3

-2.5

-2

mm

m
m



- 166- 

A visible change in the radius of curvature and a sharpening of the inner rim 

was observed on two of the explants (explant 5N and explant 6N; Figure 5-6). For 

these two explants the mean distance from an unworn trace to the worn traces 

was 0.36mm and 0.5mm, respectively.  

 

Figure 5-6 A close up of the inner rim showing a sharpening of the rim for 

(A) explant 5N with a mean penetration distance of 0.36mm and (B) explant 6N 

with a mean penetration of 0.5mm. Blue traces are taken over the unworn region 

and pink traces over the worn region. Cyan traces are taken from across the 

anterior and posterior regions of the liner. 

 

Dissociated Neutral Liners 

The extent of damage and deformation to the dissociated neutral liners made 

identification of the datum difficult and it was not possible to align and level the 

traces using the Matlab code (section 2.5). However, it was possible to plot the 

traces and qualitatively analyse the change in shape of the inner rim (Figure 5-7).  

Sharpening of the inner rim 

A B 
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Figure 5-7 Full traces and close up of the inner rims of the five dissociated 

neutral liners with large deformations in the form of a flattened curve on the 

superolateral rim (identified for one of the superolateral traces with an arrow) 

 

All of the dissociated neutral liners exhibited deformation at the inner 

superolateral rim, giving the rim a flattened appearance compared to other 
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undeformed or less deformed areas of the rim, such as the anterior and posterior 

sides (Figure 5-8).    

 

  

 

Figure 5-8 Talysurf traces of (A) a flattened inner rim on the superior 

region of dissociated neutral liner, explant 12D, (B) an undeformed region of 

the same liner (or less deformed) and (C) a photographic image of the 

deformed inner rim (explant 12D) 

 

5.3.1 Subsurface damage  

Three non-dissociated neutral liners (explants 2N, 3N and 5N) and three 

dissociated neutral liners (explants 9D, 11D and 12D) were selected for subsurface 

damage assessment using MicroCT. This is described in section 2.6.    

 

Non-dissociated Neutral liners 

No obvious subsurface micro-cracking or damage was observed on explant 3N 

when compared with the XLPE control liner in 2.6.2 (Figure 5-9).  

m
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Figure 5-9 A Photographic image and MicroCT images of the subsurface 

damage observed on a non-dissociated neutral liner (explant 3N) showing (A) a 

photo of the component and orientation in vivo, (B, C & D) visibly undamaged 

sections of the liner between 2.1mm and 4.5mm below the horizontal rim.  

 

No visible micro-cracking or subsurface damage was observed in the superior 

region of explant 2N. However, significant subsurface damage was observed in the 

posterior rim region, beneath the damage that was observed on the surface (Figure 

5-10). Large cracks and cracks propagating circumferentially, originating from the 

larger cracks, were observed. This damage was observed up to 2.2mm below the 

horizontal surface of the liner rim.   
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Figure 5-10 A Photographic image and MicroCT images of the subsurface 

damage observed on a non-dissociated neutral liner (explant 2N) showing (A) a 

photo of the component and orientation in vivo, (B) visibly undamaged section of 

the liner 5mm below the horizontal rim (C) a visibly damaged section showing 

cracking 1.3mm beneath the surface damage and (D) a close up of the damage in 

(C) showing cracks extending circumferentially and perpendicular to the outer rim 

(arrow; scale bar 1mm). 

 

 

No significant micro-cracking or subsurface damage was observed in the 

superior region of explant 5N. However, significant subsurface damage was 

observed in the posterior rim region, beneath the damage that was observed on 

the surface (Figure 5-11). Cracks propagating circumferentially and multi directional 

cracking were observed up to 2.5mm below the surface of the liner rim. This 

damage appeared to originate at the outer edge of the liner rim and no cracking 

was observed close to or originating from the inner rim. Damage and cracking was 

Superior 
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observed in the upper rim region only and did not extended more than a few 

millimetres below the horizontal rim.  

 

   

Figure 5-11 Photographic images and MicroCT images of the subsurface 

damage observed on a non-dissociated neutral liner (explant 5N) showing (A) a 

photo of the component and orientation in vivo, (B) a close up photographic 

section of the damaged rim showing surface damage in the posterior region, (C) a 

complete MicroCT slice at the top (horizontal section) of the liner rim, (D) a crack 

propagating circumferentially 0.4mm beneath the surface damage, (E) extensive 

multi-directional cracking 1mm underneath the surface damage and (F) a crack 

propagating circumferentially 1.6mm below the surface damage.  

 

Dissociated Neutral Liners 

Subsurface cracking adjacent to an absent anti-rotation tab was observed on 

explant 11D (Figure 5-12). This explant had a fractured superior rim. However, very 

little subsurface damage was observed though the thickness of the liner in the 

superior or inferior rim.  
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Figure 5-12 Photographic images and MicroCT images of the subsurface 

damage observed on a dissociated neutral liner (explant 11D) showing (A.1) a 

photo of the fractured superior rim with absent anti-rotation tabs, (B) the 

fractured superior rim and cracking adjacent to the location of an absent anti-

rotation tab 3.9mm below the horizontal liner rim, (C) a visibly undamaged 

section, except for the fracture in the superior region, 5.1mm below the 

horizontal rim, (D) a visibly undamaged section 6.8mm below the horizontal liner 

rim 

Extensive subsurface damage was observed on explant 9D, beneath the 

damage that was visible on the surface (Figure 5-13). On the superior rim, cracks 

propagating circumferentially parallel to the outer rim and embedded debris were 

observed. These cracks appeared to originate at the outer rim and extended up to 

3mm below the horizontal liner rim. Multi directional cracking was observed in the 

most extensively damaged areas. On the inferior rim, multi-directional cracking was 

Superior 
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observed beneath the delamination. Unlike the cracking on the superior rim this 

did not appear to initiate at the outer rim.     

 

Figure 5-13 Photographic images and MicroCT images of the subsurface 

damage observed on a dissociated neutral liner (explant 9D) showing (A.1) a 

photo of the superior rim with cracking, absent antirotation tabs and embedded 

debris, (B.1) a photo of the inferior rim with delamination and embedded debris, 

(A.2, A.3 & A.4) MicroCT images of circumferential cracking propagating parallel 

to the outer rim and multi-directional cracking with embedded debris at 1.8mm, 

2.1mm and 3mm (B.2, B.3) multi-directional cracking 3.3mm and 3.9mm below 

the horizontal rim and (B.4) circumferential cracking near the inferior inner rim 

Superior 

Inferior 
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Extensive subsurface damage was observed on explant 12D, beneath the 

damage that was visible on the surface (Figure 5-14). On the superior rim, no 

subsurface micro-cracking or damage was observed. On the inferior rim, multi-

directional cracking and embedded debris were observed beneath the 

delamination and cracks were also observed adjacent to an anti-rotation tab.   

 

 

Figure 5-14 Photographic images and MicroCT images of the subsurface 

damage observed on a dissociated neutral liner (explant 12D) showing (A.1) a 

photo of the deformed superior rim (B.1) a photo of the inferior rim with 

delamination and embedded debris, (A.2 & A.3) the visibly undamaged superior 

rim at 0.7mm and 3.1mm below the horizontal liner rim (B.2 & B.3) extensive 

multi-directional cracking on the inferior rim and cracking adjacent to an anti-

rotation tab (arrow) 

 

Inferior 

Superior 



- 175- 

5.3.2 Damage Categorisation  

Damage categorisation was carried out using an adaption of the Hood 

method (Hood et al., 1983) to assess wear and damage mechanisms as described in 

section 5.2.3.   

 

Non-dissociated Neutral liners 

The mean damage score for the non-dissociated neutral liners was 15 (Table 

14; Page 181). All of the non-dissociated neutral liners appeared be relatively 

undamaged with no evidence of gross failure. Mild to moderate scratching was 

observed on the bearing surface and the rim of all of the non-dissociated neutral 

liners (Figure 5-15A). Abrasion was observed on the bearing surface of one of the 

liners (explant 2N) and embedded debris was observed on the bearing surface and 

the rim of two of the liners (explants 2N and 4N; Figure 5-15C). An elongation of 

the bearing surface was observed on three of the liners (explants 3N, 5N and 6N; 

Figure 5-15D) and two gouge like cracks (Figure 5-15E) were observed on the rim 

area of one of the liners (explant 5N). The femoral heads were relatively 

undamaged with only very light scratching or metal transfer observed. Very little 

damage was observed on the backside of the neutral liners and the machining 

marks were still visible on the backside of all the liners.   
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Figure 5-15 Examples of damage modes observed on the non-dissociated  

neutral liners (A) Scratching with some embedded particles (explant 1N, (B) 

Abrasion (explant 2N), (C) embedded debris (explant 4N), (D) elongation of the 

bearing surface (explant 5N and (E) rim damage in the form of two gouge like 

cracks (explant 5N) 

 

Dissociated Neutral Liners 

The mean damage score of the dissociated neutral liners was 22 (Table 14; 

page 181). Deformation, delamination, fracture, scratching and embedded particles 

were observed on the rim of the dissociated neutral liners (Figure 5-16). 

Deformation of the inner rim was observed on all liners, predominately along the 

superior region of the liner (Figure 5-16A). Damage was observed at the periphery 
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of the superior rim in the form of deformation (all liners), metal 

transfer/embedded particles (all liners; Figure 5-16A) and fracture (explants 9D and 

12D; Figure 5-16B). The ARD tabs on the superior rim were absent from all liners, 

leaving only one or two tabs from an original six. Further damage was observed on 

the inferior rim of all liners: deformation (all liners); embedded particles (explants 

8D, 9D and 12D); a gouge like material removal (explant 8D; Figure 5-16C); and 

delamination (explants 9D and 12D; Figure 5-16D). The bearing surface remained 

relatively undamaged with common damage mechanisms such as pitting, abrasion 

and burnishing either not being observed or being very mild. Very light scratching 

was observed on the bearing surface of all of the dissociated neutral liners. One of 

the liners exhibited a slight discoloration to one side of the bearing surface (explant 

11D). An elongation of the liner into an oval shape was observed for all of the 

liners. 

 

 

Figure 5-16 Examples of damage mechanisms on the dissociated neutral 

liners: (A) Deformation at inner rim and embedded particles at the outer superior 

rim (explant 9D), (B) fractured superior rim (explant 11D) (C) gouge like rim 

fracture on the superior rim (explant 8D) and (D) Delamination, fracture and 

embedded particles on the inferior rim (explant 12D) 
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Damage in the form of scratching, deformation and a prominent ridge was 

also observed on one side of the backside of the liners Figure 5-17.  

 

Figure 5-17 (A) Deformation, scratching and a ridge across the backside of 

the liner. (B) The other side of the liner was less damaged 

 

Significant material transfer from the titanium shell was observed on all 

femoral heads and scratching was observed on all of the metal heads. This 

corresponded to a deformed and worn area on the superior region of the titanium 

shell as shown in Figure 5-18.  This was observed on all the dissociated neutral 

explants with the exception of explant 11D and explant 12D, for which the shell 

was not available for analysis.  

 

 

Figure 5-18 (A) Femoral head with typical metal transfer and scratching and 

(B) metal shell showing with deformation caused by articulation of the femoral 

head 

A B 

A 

B 
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Lipped Liners 

The mean damage score for the lipped liners was 15 (Table 14; page 64). All of 

the lipped liners exhibited mild scratching on the bearing surface and the rim. Very 

mild abrasion was observed on the rim of one of the liners (explant 16L). Machining 

marks were still visible on the bearing surface of two of the liners (explant 15L and 

16L). Three of the four liners exhibited an area of deformation on the extended rim 

(explants 13L, 14L and 15L), consistent with damage caused by femoral neck 

impingement (Figure 5-19). Circular indentations were observed on the bearing 

surface of one of the lipped liners (explant 14L; Figure 5-19B). One of the liners was 

grossly deformed around the outer edge of the superolateral rim (explant 16L; 

Figure 5-19D). 

 

 

Figure 5-19 Images of lipped explants showing (A), (B), (C) areas of rim 

deformation (highlighted with blue pen) possibly due to impingement and (D) 

gross deformation to the superolateral rim 
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The backsides of the lipped liners were relatively undamaged with only very 

light scratching being observed. Light metal transfer was observed around the base 

of the two ceramic femoral heads (explants 13L and 14L). Heavy scratching was 

observed to one side of the two metal femoral heads (explants 15L and 16L; Figure 

5-20).  

 

Figure 5-20 A femoral head that articulated with a lipped liner (explant 15L) 

with heavy scratching to one side
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Table 14 Summary of damage scores for each quadrant and subdivision for all 

explanted liners (mean is rounded to nearest whole number)   

Explant 

Code 

Damage Score 

Rim Bearing Surface Total 

1 N 7 6 13 

2 N 8 8 16 

3 N* 6 8 14 

4 N 7 13 20 

5 N 8 7 15 

6 N 4 10 14 

7 N* 9 5 14 

Mean (N) 7 8 15 

8 D* 14 6 20 

9 D 20 5 25 

10 D* 17 5 22 

11 D* 10 7 17 

12 D* 17 6 23 

Mean (D) 16 6 22 

13 L* 14 11 25 

14 L* 7 12 19 

15 L* 5 1 6 

16 L* 6 4 10 

Mean (L) 8 7 15 

*crosslinked  (Non-Dissociated Neutral =N; D = Dissociated Neutral; L = Lipped)
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The overall damage score for the dissociated neutral liners (22) was higher 

than that of the neutral liners (15) and the lipped liners (15) but the difference was 

not significant. The rim region was more damaged than the bearing surface for the 

dissociated neutral subset (p<0.01) but the difference was not significant for the 

neutral or lipped subsets. The mean damage scores for each liner subset and each 

location (bearing surface and rim) are given in Table 15. The most prevalent 

damage mechanisms were scratching and deformation on the bearing surface and 

scratching, deformation and embedded debris on the rim. Scratching and 

embedded debris were observed over all quadrants. Deformation was observed 

predominantly on the superior region of the liner. 

  

 Table 15 Mean damage scores for each different mechanisms and liner subset, 

divided into bearing surface and rim region  

Damage Mechanism 
Bearing Surface Rim Region 

N* D* L* N D L 

Deformation 0.86 2.40 2 0.71 5.64 3.25 

Pitting - - 1 - - - 

Embedded Debris 0.14 - 0.25 0.71 3.4 0.25 

Scratching 5.57 3 3 5.14 2.2 3.75 

Burnishing 1.29 0.2 - - 0.2 - 

Abrasion 0.43 - 0.75 - 0.8 0.25 

Delamination - - - 0.14 1.2 - 

Cracking/Failure - - - 0.43 2 - 

*N = Non-dissociated Neutral liner; D=Dissociated neutral liner; L = lipped liner 

5.3.3 Volume change 

The volume change was assessed geometrically and geometric 

reconstructions were created using Redlux software. The method is described in 

section 2.4. Negative volume change was defined as volume change due to 

penetration into the liner when viewed looking onto the bearing surface, such as 

wear, and positive volume change as change protruding from the liner such as 

creep. This corresponds to the Redlux histogram. It is recognised that many areas 

of volume change may comprise a combination of both, but the nomenclature 

highlights the dominant volume change for a particular area.    
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A distinct negative volume change on what is thought to be the superior 

region of the bearing surface, most likely due to both wear and creep, was 

observed on all of the neutral liners (Figure 5-21). A secondary area of negative 

volume change was observed near the rim opposite the principal area of volume 

change. A positive volume change, likely due to creep, was observed on other areas 

of the bearing surface for all liners. The volume change values for the principal and 

secondary volume change areas for all neutral liners, measured using the method 

described in section 2.4, are given in Table 16.  

 

Table 16 Volume changes for the non-dissociated neutral acetabular liners with 

the mean of the non-crosslinked liner ± 95% CI 

Explant 
Principal volume 

change on area of 
articulation (mm3) 

Secondary volume 
change (mm3) 

Total volume 
change (mm3) 

Rate of 
volume 
change 

(mm3/Mc) 

1 33.28 1.88 35.16 4.94 

2 24.78 1.94 26.72 4.21 

3* 21.59 3.08 24.67 5.24* 

4 53.73 2.11 55.84 6.27 

5 153.86 4.07 157.93 18.25 

6 183.75 12.31 196.06 26.58 

7* 55.17 1.76 56.93 26.31* 

   Meanᶧᶧ 12.1 ± 12.3 

*Crosslinked liner ᶧᶧMean excluding crosslinked liners 

 

The mean volume change per year for the non-crosslinked non-dissociated 

neutral liners was 12.1mm3/Mc (n=5; 11.63mm3/yr; 95% CI ± 12.3; range 4.2 - 

26.6mm3/Mc). Only two crosslinked neutral liners were studied and the volume 

change per year for these were 5.24mm3Mc and 26.3mm3/Mc.   
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Figure 5-21 Redlux geometric reconstructions of the explanted non-dissociated 

neutral acetabular liners. Annotations apply to all liners: (A) a principal area of volume 

change due to wear and creep, (B) a secondary area of volume change and (C) creep on 

the bearing surface (red, white). Grey areas are screw holes excluded from the 

calculations. View looks down onto the bearing surface 
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No distinct area of volume change relating to wear or deformation due to 

articulation on the bearing surface was observed for three of the five dissociated 

neutral liners (explants 8D, 10D, and 11D;Figure 5-22), reflecting the elongated 

‘oval’ shape of these liners (section 5.3.2). One of the dissociated neutral liners had 

atypical volume change (compared to other explants and simulator samples in this 

study) on the articulating surface in the form of four distinct regions of negative 

volume change (explant 9D). One of the liners had an area of negative volume 

change on the bearing surface similar to the neutral liners (explant 12D). Areas of 

negative and positive volume change around the circumference of the liners were 

observed on all of these liners. Volume change for the dissociated neutral liners 

was not obtained as no obvious volume change associated with a wear area was 

observed on the bearing surface for most of the liners.  
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Figure 5-22 Redlux geometric reconstructions of the explanted dissociated 

neutral acetabular liners showing areas of wear/deformation near the rim and 

extending on to the bearing surface (explants 8D, 10D & 11D), atypical volume 

change on the bearing surface (explant 9D) and “typical” volume change on the 

bearing surface (explant 12D). View looks down onto the bearing surface 

No distinct volume change associated with wear or deformation due to 

articulation on the bearing surface was observed on the lipped liners, with the 

exception of one liner for which there is a small area of volume change on the 

superior region of the bearing surface (explant 15L; Figure 5-23). An area of 

damage due to circular indentations was observed on the bearing surface of one of 

the liners (explant 14L) and some machining marks were still visible on the surface 

of two of the liners (explants 15L and 16L). Volume change of the lipped liners was 

not obtained as no distinct volume change associated with a wear area was 

observed on the bearing surface for most of the liners.     
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Figure 5-23 Redlux images of the explanted lipped acetabular liners showing 

areas of volume change. The elevated rim is positioned at the top of the image 

and view looks down onto the bearing surface. 

 

5.3.4 Statistical Analyses and Correlations 

Statistical analyses were carried out as described in section 2.3.5.   

No correlations between volume change, volume change per year or damage 

score and time in vivo, patient age, patient activity levels, patient BMI, liner 

thickness or cup inclination angle were observed.  

The patient age associated with the lipped liners was significantly younger 

than the non-dissociated neutral and dissociated neutral liners (p<0.01).  

Most of the dissociated neutral liners were crosslinked UHMWPE (five of 

seven), most of the neutral liners were non crosslinked GVF UHMWPE (four of five) 
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and all of the lipped liners were crosslinked UHMWPE. The time in vivo was 

significantly shorter for the crosslinked liners over all subsets (p<0.01).  The mean 

values for each variable are shown in Table 17. The value is in bold and the p 

number is given where the difference in the means is significant.  

 

Table 17 Mean values of patient and explant data for each subset (the p 

number is given where there is a statistically significant difference; p<0.05)  

 Non-dissociated 
Neutral 

Dissociated 
neutral 

Lipped 

Volume change per year 

(mm3/Mc) 
16 (Crosslinked) 

12.1 (GVF) 
NA NA 

Time in vivo (months) 87 64 40 

Mean damage score 14 (crosslinked) 

 15.6(GVF) 
21.4 15.8 

Age 75 81 56 (P<0.01) 

Activity levels 4 4 4 

BMI 30 28 33 

Liner thickness (mm) 8.7 8.5 9.5 

Cup Inclination angle (°) 48 46 NA 

 Crosslinked 

(all subsets) 

Non crosslinked 

(all subsets) 
 

Time in vivo (months) 44 91(p<0.01)  

*NA = Not available  

  

There was no difference in the damage scores between crosslinked and non 

crosslinked liners for the non-dissociated neutral liners. However, this was not 

statistically determined as only two of the non-dissociated neutral liners were 

crosslinked. The mean volume change per Mc for the non-dissociated neutral 

ceramic on UHMWPE explants was lower than the metal on UHMWPE explants 

(5.8mm3/Mc and 16.1mm3/Mc for the COP and the MOP explants, respectively). 
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However, this was not statistically significant as only two of the neutral liners were 

ceramic on UHMWPE and the volume change per year was not determined for the 

dissociated neutral and lipped liners, so these subsets could not be included in the 

analysis.  

 

5.4 Discussion  

Explant analysis can be used to determine wear and failure mechanisms and 

to identify correlations with component design, positioning and patient factors 

such as age and activity levels. Furthermore, it can be used to validate and inform 

the design of pre-clinical hip simulator testing. In this study, measurement 

methodologies were developed and have been used to assess damage and 

deformation to the rims of UHMWPE acetabular liners, to understand subsurface 

damage in the rim region and to measure wear volume in components where no 

pre-wear measurement exists. These methods are non-destructive and are 

therefore particularly appropriate for analysing explants. These methodologies can 

be developed further and used in future studies to better understand the 

prevalence of different types of edge loading and damage mechanisms and their 

role in the failure of acetabular liners.   

Sixteen Pinnacle® acetabular liners were retrieved and assessed for damage 

and wear. These explants were selected because they were the same design and 

material as the acetabular liners tested in the simulator tests in this study (Chapter 

3 & 4), allowing a more direct comparison to be made between the simulator 

studies and the explant study, which is one of the overall aims of this project 

(Chapter 6).  

The liners were subdivided into three groups: non-dissociated neutral liners 

(n=7), dissociated neutral liners (n=5) and lipped liners (n=4). The subsets were 

selected because it is known that the geometry of the lipped liners may make them 

more susceptible to femoral neck impingement rather than edge loading 

mechanisms (Takaoka and Ueno, 1998; Chu et al., 2002; Birman et al., 2005; Duffy 

et al., 2009) and while useful information relating to more general damage 
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mechanisms may be gained from including them in the study, it was important to 

acknowledge that this difference in geometry may influence the results. Similarly, 

the dissociated neutral liners sustained significant damage following dissociation. 

This post-dissociation damage does not provide information relating to the cause 

of dissociation and for this reason they were assessed separately in order not to 

influence the results of the wider damage categorisation analysis. The small 

cohorts for each type of liner in this study meant that it was not possible to 

determine statistical correlations and cause of failure for the liners. Often the 

reason for revision provided some insight into the failure (for example dissociation 

and stem loosening) but determining if these failures were secondary to specific 

liner design characteristics and/or positioning factors was challenging. Despite this, 

some interesting observations were made that could be used to inform the design 

of future explant and simulator studies.  

5.4.1 Rim Deformation of Explanted Acetabular Liners 

Rim deformation and damage indicative of edge loading or impingement 

were observed on a small cohort of UHMWPE acetabular liners in this study. Edge 

loading and impingement may result in increased wear and/or loosening of the 

femoral stem or dissociation of the liner and it is important to understand the 

cause of failure in these instances. Furthermore, high stress concentrations in areas 

where edge loading has occurred may result in fatigue failure and fracture of the 

liners and this should be included in design considerations and component 

positioning recommendations.  

Further understanding of the rim deformation and edge loading mechanisms 

was gained by comparing the edge damage of the non-dissociated neutral and 

dissociated neutral subsets. The rim deformation observed on the non-dissociated 

neutral liners and the dissociated neutral liners revealed two distinct geometries 

(Figure 5-24). A sharpening of the inner rim was observed on two of the non-

dissociated neutral liners (no deformation was observed on the remaining non-

dissociated neutral liners) and a flattening of the inner rim was observed on the 

dissociated neutral liners. This suggests that the mechanism of damage is different 

for each type of liner.     



- 191- 

 

  

Figure 5-24 Talysurf trace over the deformed region of (A) a non-dissociated 

neutral liner and (B) a dissociated neutral liner revealing distinct geometries 

between the two types of liner at the inner rim 

 

 

The dissociated neutral liners were badly damaged at the time of retrieval. 

However, the majority of this damage was caused after the liners had dissociated. 

Information about the extent and type of damage prior to dissociation was more 

valuable when attempting to identify the cause of dissociation. It was therefore 

necessary to identify when the flattening of the rim occurred. For all the 

dissociated neutral liners, the femoral head articulated against the metal shell after 

dissociation. This is indicated by scratching and metal transfer on the femoral head 

as well as damage to the inside of the metal shell (Figure 5-18). When the bearing 

couple was reassembled in the dissociated position using the ridge on the backside 

of the liner and the area of damage on the metal shell as landmarks, it could be 

argued that damage to the inner rim was not caused post-dissociation, because in 

this position there was no contact between head and inner rim and a much greater 

degree of damage would be expected across the entire superior rim region if there 

was articulation in this area (Figure 5-25). For example, the product reference 

numbers and machining marks would no longer be visible. It could therefore be 

hypothesised that damage to the inner rim was sustained before the dissociation 

event. This would support the hypothesis that the mechanism of edge damage to 
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the dissociated neutral liners prior to dissociation was different to the edge 

damage sustained by the non-dissociated neutral liners.   

 

 

Figure 5-25 (A) Reassembled dissociated neutral explant (explant 10D) 

showing (A) the position of the head with respect to the liner following the 

dissociation, (B) the deformed region of the inner rim and (C) a close up of the 

relatively undamaged rim region and (D) a microscope image of the rim area with 

machining marks still visible (x30 magnification) 

 

Two distinct edge damage mechanisms were described by Hall et al. (1998) 

for explanted cemented Charnley cups: a blunted edge due to impingement and a 

sharpened edge due to articular wear. The rim sharpening due to articular wear 

was more pronounced where the direction of wear was close to the rim of the cup. 

The findings of the present study were consistent with these descriptions. The 

flattened deformed rim on the dissociated neutral liners may therefore have been 

caused by impingement. Impingement of the femoral neck against the rim of the 

liner has been reported to cause fatigue failure of the locking mechanism and push-

out of the liner from the shell (Malik et al. 2009; Gray et al. 2012). The exact 

prevalence of impingement is difficult to determine but some studies have 

estimated that it occurs in 39% to 60% of total hip replacements (Isaac et al., 1992; 

Yamaguchi et al., 2000; Shon et al., 2005; Usrey et al., 2006). Where cups are 

lateralised or not sufficiently inclined the risk is greater. 

An alternative hypothesis is that the sharpening effect on the inner rim of the 

non-dissociated neutral subset could be caused by microseparation of the femoral 

head and acetabular cup leading to edge loading of the rim, rather than articular 
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wear. However, it is suggested that the degree of microseparation was small 

resulting in the femoral head not fully subluxating onto the chamfered region of 

the rim. It could therefore be hypothesised that two of the neutral liners 

experienced edge loading while the dissociated neutral liners experienced 

impingement on the superior rim. There are some limitations to the impingement 

theory. Firstly, deformation due to impingement is often observed as a notch like 

deformation on the rim, as is the impingement observed on the lipped liners in this 

study (Yamaguchi et al., 2000; Shon et al., 2005; Marchetti et al., 2011). In the 

present study, the deformation on the inner rim of the dissociated neutral liners 

was not notch-like; extending as much as 90° around the rim and indicating that 

the deformation may have been caused by the femoral head and not the femoral 

neck. Secondly, the posterosuperior region is a common site for impingement, but 

impingement in the superior region has not to the author’s knowledge been widely 

reported in the literature and it is difficult to imagine what movement would case 

this type of impingement. It therefore may be more plausible that, rather than 

impingement, the deformation was a result of a greater degree of edge loading 

than that experienced by the neutral liners, giving the deformation a different 

shape.  

This raised the question, is it possible that the dissociation resulted from 

fatigue failure of the liner rim following microseparation and a high degree of 

repetitive edge loading? Flouroscopic studies have shown a microseparation of the 

femoral head and cup during gait that leads to edge loading of the superior rim 

(Dennis et al., 2001; Komistek et al., 2002; Lombardi et al., 2000).  Simulator studies 

have shown that high inclination angles and joint centre mismatch such as 

medialisation are risk factors for edge loading (Nevelos et al., 2000; M Al-Hajjar et 

al., 2013; Al-Hajjar et al., 2010; Mazen Al-Hajjar et al., 2013). In addition, increased 

torque has also been reported when there was a mismatch between the centres of 

rotation of head and cup and edge loading (Al-Hajjar et al. 2011), which may also 

contribute to fatigue failure of the locking mechanism (Burroughs et al., 2006). It is 

therefore reasonable to suggest that the deformation observed on the inner rim of 

the retrieved liners in this study may have been caused entirely or in part by edge 

loading where the femoral head subluxated to such a degree that the contact was 
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made on the chamfered region of the liner resulting in an increase in torque that 

was sufficient to induce failure of the locking mechanism.  

Lewinnek et al. (1978) recommended a safe range of 40° ± 10° to minimise 

the risk of dislocation in total hip replacements. This safe range has been widely 

adopted and recommended by manufacturers. High inclination angles have since 

been linked with edge loading for hard on hard bearings (Williams et al. 2008; 

Leslie et al. 2009; Al-Hajjar et al. 2010). The inclination angles in this study fall 

within the safe range recommended by Lewinnek with the exception of three liners 

(Lewinnek et al. 1978; explants 2N, 6N & 8D; 60°, 55° and 57°, respectively) and 

there is no difference in the mean inclination angle of the non-dissociated neutral 

subset and the dissociated neutral subset. Furthermore, no correlation between 

inclination angle and edge wear or dissociation was observed. It is therefore 

possible that edge loading and dissociation can occur in well positioned 

components. Furthermore, the ‘safe range’ recommended by Lewinnek was to 

avoid dislocation secondary to impingement. Given the evidence presented in this 

study for different edge loading mechanisms, perhaps the recommended safe 

range should also consider risk factors for edge loading such as high inclination 

angles, medialisation of the cup and head offset deficiencies. 

Edge loading is a clinical concern due to the potential for fatigue failure of the 

rim. The dissociated neutral liners in this study exhibited deformation at the inner 

rim on the superior region of the liner and four of the five dissociated neutral liners 

in this study were crosslinked, which increased the risk of fatigue failure (and 

fracture of ARDs) due to the reduction in mechanical properties associated in with 

this material (Bradford et al., 2004; Baker et al., 1999; Pruitt, 2005; Furmanski et 

al., 2011; Furmanski et al., 2009). Furthermore, while impingement has commonly 

been linked to liner dissociation (Gray et al., 2012; Yun et al., 2015), it should be 

noted that impingement is a sporadic event, only occurring when the patient 

performs an unusual activity that challenges the range of motion of the joint. In 

contrast, edge loading could potentially occur every single step.  

The rim deformation observed in this study gave insight into the different 

mechanisms of damage to liner rims. The cohort assed in this study was too small 
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to make any firm conclusions. However, this study provided insight into potential 

failure mechanisms and further work should therefore aim to identify the 

prevalence of each type of rim damage mechanism and to determine a link with 

failure.  This work should include simulator testing to investigate more severe edge 

loading and whether this would result in a flattened rim, similar to that observed in 

the explants in this study.  

5.4.2 Subsurface Damage to Explanted Acetabular Liners 

The 2D microCT reconstructions did not reveal visually identifiable subsurface 

micro-cracking in the explanted liners (where micro-cracking was defined as cracks 

smaller than 1mm). However, the microCT scans allowed a non-destructive analysis 

of the initiation, propagation and severity of cracking beneath any damage that 

was visible on the surface to be performed.        

The microCT scans revealed information about the extent of cracking that 

could not be determined from the surface using microscopes or other optical 

methods.  Where subsurface cracking was present in the non-dissociated neutral 

liners, it was often observed propagating circumferentially, close to and parallel 

with the outer edge of the rim and appeared to initiate at areas of extensive 

surface damage (Figure 5-26) or around anti-rotation tabs. This type of damage 

may leave the liner susceptible to rim fracture as observed in some explant studies 

(Tower et al., 2007; Furmanski et al., 2009) or dissociation (Yun et al., 2015). 

Minimal subsurface damage was observed in the liners that did not also exhibit 

surface damage, it could therefore be hypothesised that surface damage, such as 

that caused by femoral neck impingement, resulted in initiation of cracks that 

propagated through the thickness of the material in areas of high stresses such as 

anti-rotation tabs and areas of thin UHMWPE.  
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Figure 5-26 (A) MicroCT image of a crack propagating circumferentially, 

appearing to initiate at an area of extensive damage (B) Cracks propagating 

circumferentially and parallel to the outer edge of the rim 

 

It is difficult to determine the exact initiation and propagation behaviour of 

the cracks in this microCT study because of the small sample size and the lack of 

data for regular time points throughout the lifetime of the component. However, it 

does support existing studies regarding stress concentrations at anti-rotation tabs 

and thin rims and subsequent cracking and rim fracture in these areas (Yun et al., 

2015). Furthermore, the subsurface cracking observed in the dissociated neutral 

liners may have occurred following dissociation and is therefore not necessarily 

representative of cracking during implantation. However it does provide 

information relating to the initiation and propagation of cracks in UHWMPE 

acetabular liners that have been subjected to adverse loading.          

MicroCT scanning of explanted UHMWPE acetabular cups can be used to non-

destructively analyse subsurface damage and identify damage mechanisms that 

may cause fatigue failure and/or fracture in these components.  Micro-cracking 

was not observed in this microCT study when compared to the untested control 

liners (section 2.6). However, the limitations of this method (discussed in section 

2.6.5) for observing micron sized cracks mean that it is possible that micro-cracking 

was present and not observed, either because it was less than 10µm in size or 

larger in size but failed to be distinguished by the observer from the surrounding 

material. Further work to improve the method to identify micro-cracking or 

confirm the lack of micro-cracking would still be an interesting line of investigation.      

A B 
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5.4.3 Damage and Volume Change to Explanted Acetabular Liners 

All seven non-dissociated neutral liners exhibited mild damage, 

predominantly in the form of scratching to the rim and bearing surface and 

similarly only very mild damage in the form of light scratching was observed on the 

backside of the liners. No obvious cause of liner failure due to damage (such as rim 

cracking or fatigue failure) was observed for any of the non-dissociated neutral 

liners. The mean volume change of 12.1mm3/Mc for the five non-crosslinked 

neutral UHMWPE explants was lower than previously observed in hip simulator 

studies and other explant studies (Hall & Pinder 1998; Endo et al. 2002; Bowden et 

al. 2005; Galvin et al. 2007; Engh et al. 2012; Glyn-Jones et al. 2015) and volume 

change was therefore deemed not to be excessive for this cohort of liners. Only 

two of the neutral subsets were crosslinked and so a mean volume change was not 

obtained (6.3mm3/Mc and 26.3mm3/Mc for each crosslinked liner). It should be 

noted that the volume change calculations in this study do not include wear and 

deformation in the rim region and these may increase if edge loading was taken 

into consideration. Furthermore, the relative standard deviation from the mean of 

12.42% (section 2.4.5) should be taken into consideration when interpreting the 

volume changes as this may have contributed to the variation in values. 

Furthermore, the measurement accuracy may be further affected by the complex 

damage mechanisms observed in explants.    

Six of the non-dissociated neutral liners were coupled with Corail® (DePuy 

Synthes, Warsaw, USA) cementless stems and were revised for lucency around the 

stem or stem loosening (the other Corail stem was revised for dislocation and the 

remaining stem was a c-stem revised for infection). It is therefore possible that 

these acetabular liners were functioning well at the time of revision and the failure 

of these explants is a result of failure of the femoral fixation. A study by Canton et 

al (2015) found that aseptic loosening of stems was significantly higher in 

lateralised stems (high offset and varus stems). However, the stems that were 

available for analysis in this study were all standard offset.   

The four lipped liners exhibited only mild damage in the form of scratching 

and abrasion on the bearing surface and the rim. An area of deformation on the 
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extended rim that was consistent with damage caused by femoral neck 

impingement was observed on three of the four lipped liners. Lipped liners are 

designed to prevent dislocation but result in a smaller range of motion and an 

increased risk of impingement on the extended rim (Yamaguchi et al., 2000; Shon 

et al., 2005; Malik, 2007). Femoral stem loosening secondary to impingement has 

previously been observed on liners with an extended rim (Bosco and Benjamin, 

1993; Messieh et al., 1994; Takaoka and Ueno, 1998). Two of the four lipped liners 

were revised for stem loosening, which may have been secondary to femoral neck 

impingement on the lipped region of the liners and the deformation observed on 

the rim in this study supports this hypothesis. Interestingly none of the lipped liners 

in this study dissociated despite the evidence of impingement, which reinforce the 

observation that edge loading caused the liner dissociation rather than 

impingement.    

The series of round indentations that were observed on the bearing surface 

of one of the lipped liners (explant 14L) may have been caused by third body debris 

between the femoral head and bearing surface. Heiner et al. (2009) reported that 

third body debris in the bearing space greatly increased with subluxation of the 

femoral head and Lundberg et al. (2007) described an association between lever 

out subluxation due to impingement and third body debris. The deformation 

observed on the extended rim of the liner in this study suggested that third body 

debris may have entered the bearing space as described in these studies, causing 

deep scratching. In this case, the extensive wear caused by both third body debris 

and femoral neck impingement may have contributed to osteolysis in the femoral 

region and loosening of the stem.  

All five dissociated neutral liners exhibited damage as a result of the 

dissociation. While characterisation of the damage on the liners was relatively 

straightforward, the cause of the dissociation was less clear. Previous studies on 

ceramic liners have linked early liner dissociation to malseated components and 

subsequent fracture (Miller et al., 2009). However, recent studies have reported 

late liner dissociations (UHMWPE) as much as 8 years postoperatively, indicating a 

fatigue type failure mechanism rather than malseating of the component at the 

time of implantation (Mesko, 2009; Gray et al., 2012; Mayer et al., 2012; ONeill et 
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al., 2015; Yun et al., 2015). The present study describes a cohort of five liner 

dissociations with a mean implantation time of 64 months (range 31-97months) for 

which the failure of the locking mechanism and shearing of the ARD tabs was 

consistent with previous observations in this type of failure. While it is plausible 

that malseated components may perform well for extended periods of time before 

failure, the relatively long mean implantation time reported in the literature and in 

this study suggest that correctly seated liners may experience failure of the locking 

mechanism due to longer term fatigue mechanisms. Whether this is a result of 

adverse loading or malpositioning of the anti-rotation tabs or both is less clear and 

not something that is answered within the scope of this study. However, simulator 

testing that investigates the potential failure mechanisms of malseated 

components would be a useful line of investigation.    

5.4.4 Damage and Wear of Crosslinked and Non-crosslinked Acetabular 

Liners  

Most of the dissociated neutral liners were crosslinked UHMWPE (five of 

seven) and most of the non-dissociated neutral liners were not (four of five). 

Crosslinked UHMWPE liners have previously been reported to be more susceptible 

to cracking and rim fracture as a result of the reduced fatigue properties of 

crosslinked UHMWPE (Bradford et al., 2004; Furmanski et al., 2009; Atwood et al., 

2011; Pruitt et al., 2013). It is therefore possible that the findings in the present 

study support the hypothesis that crosslinked liners are more susceptible to 

dissociation due to the reduced fatigue properties. However, a much larger cohort 

would be required to confirm this finding.  

Previous studies, have reported no difference in damage between crosslinked 

and conventional polyethylene acetabular components (Schroder et al., 2011; Pang 

et al., 2015). The findings in the present study support this because there was no 

significant difference between the mean damage scores over all subsets for the 

crosslinked and non-crosslinked liners (p=0.56). However, it should be noted that 

the distinct geometries of the liners may also influence damage scores and not just 

the material type.   
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An interesting finding in this study is the correlation between the use of 

crosslinked UHMWPE and a shorter implantation time (for all subsets). Again, with 

such small cohorts it is difficult to identify crosslinked UHMWPE as a factor in early 

failure in acetabular cups, particularly those that have dissociated. However, this 

would be an important line of investigation for future retrievals studies. 

5.4.5 Statistical Analyses 

No correlations between volume change, volume change per year or damage 

score and time in vivo, patient age, patient activity levels, patient BMI, liner 

thickness or cup inclination angle were observed. This contrasts with previous 

studies that reported a correlation between wear and time in vivo (Bowden et al. 

2005). The cohorts in this study are too small to determine strong correlations and 

a larger cohort would likely reveal more information regarding failure factors. 

5.4.6 Limitations to Explant Analysis Methodologies  

There were limitations to the analysis methods used in this study. The 

limitations of the rim profile measurements, the MicroCT measurements and the 

volume change measurements are discussed in sections 2.4, 2.5 and 2.6.  

The Hood method for damage categorisation only considers the degree of 

coverage when assessing damage (Hood et al., 1983) and not the severity of the 

damage. Furthermore, it assesses an entire quadrant and therefore does not 

distinguish between rim damage and damage to the bearing surface. The method 

was adapted in this study to divide each quadrant into rim and bearing surface, 

allowing rim damage to be assessed separately, and to introduce an assessment of 

severity as well as coverage. A recent study by Childs et al. 2016 evaluated four 

different methods for categorising shoulder explants (Hood et al., 1983; 

Wasielewski et al., 1994; Lombardi et al., 2008; Brandt et al., 2012) and concluded 

that the Hood method was subjective and did not allow for differences in severity 

and prevalence. Childs concluded that the method developed by Brandt et al. 2012 

was the best method for assessing both. These authors also highlighted the 

importance of using more than one observer to maintain consistency and 

minimising viewing time to reduce observer fatigue. Based on these findings, while 
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attempts were made to improve on the basic Hood method, the method used in 

the present study would be improved by using multiple observers and using a less 

subjective assessment of severity. However, as the focus of this study was to 

develop methodologies to measure and analyse rim damage, it was felt that the 

damage categorisation was adequate to give an overview prior to performing more 

specific measurement techniques.   

5.4.7 Summary and Conclusion 

New measurement and analysis methods were evaluated in this study to help 

understand rim deformation and wear of explanted acetabular liners. Non-

destructive methods to determine wear, rim deformation and subsurface cracking 

in the rim area were evaluated and the preliminary results of a small cohort of 

acetabular liners were obtained using these methods. Key areas of method 

development were identified for use in future studies.  This study serves as a 

primary investigation into the validity of methods for analysing explants and going 

forward the results of this study can be used to help develop more specific 

research questions. 

 One of the principal findings in this explant study was the existence of two 

distinct edge loading deformation mechanisms. While current thinking often 

implicates impingement as the cause of liner dissociation, this study proposes edge 

loading due to subluxation of the femoral head as a potential cause of fatigue 

failure of the locking mechanism. The sharpened rim on the non-dissociated 

neutral liners may indicate low levels of edge loading where the head does not pass 

onto the chamfered region and the flattened rim may indicate edge loading where 

the head passes onto the chamfered region of the rim. Certainly, clinical evidence 

suggests that such a degree of edge loading is possible. The cracking around anti-

rotation tabs observed on the microCT images support the existence of high stress 

in these areas and while the liner could potentially function normally without ARDs, 

the circumferential cracking around the perimeter could ultimately result in 

fracture of the rim as previously observed clinically.  

Edge loading has been shown to be a significant concern clinically and in the 

presence of material degradation such as oxidation or following thermal 
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processing, fatigue failure could be accelerated. To fully understand the edge 

loading mechanisms in this study, future simulator tests should include a greater 

degree of microseparation to attempt to replicate the flattened rims observed in 

this study. Simulation of impingement should also be considered.  
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 Discussion and Future Work 

6.1 Introduction 

Currently, international ISO standards outline loading and displacement 

recommendations for a standard walking cycle. However, studies have observed a 

microseparation of the head and cup in vivo resulting from rotational and/or 

translational malposition of the components leading to edge loading of the 

acetabular rim (Lombardi et al., 2000; Dennis et al., 2001; Komistek et al., 2002). 

Translational malposition refers to a mismatch in the centres of rotation of the 

femoral head and acetabular cup and rotational malposition is described as 

excessive inclination and/or version of the acetabular component (Nevelos et al., 

2000; Stewart et al., 2001; Leslie et al., 2009; Al-Hajjar et al., 2010; M Al-Hajjar et 

al., 2013; Al-hajjar, Lancaster-jones, et al., 2015). Furthermore, previous studies of 

explanted acetabular liners reported cracking and fracture of the rim, which may 

have been caused by edge loading of the component (Tower et al., 2007; 

Furmanski et al., 2009; Furmanski et al., 2011). A requirement for pre-clinical 

testing that replicates these edge loading conditions and the damage mechanisms 

observed in vivo has been identified.  

The hip simulator tests in this study developed a method for testing 

acetabular components under edge loading conditions. These tests allowed an 

assessment of the wear and damage sustained by components that are subjected 

to edge loading conditions in hip simulator tests to be made. Cracking and rim 

damage was observed on the positive controls, the aged PE liners, but not on the 

negative controls, the XLPE liners. In further tests of AOPE cups and liners, no 

cracking or rim damage was observed. Wear and deformation was observed on the 

bearing surface and rims of all simulator components.  

A comparison of the wear, deformation and damage to the simulator 

components was compared with a small cohort of explanted acetabular liners of 

similar design to the simulator components and similarities and differences in wear 

and damage mechanisms were assessed. To perform the comparative analysis, 

measurement methodologies were developed for analysing explanted acetabular 
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liners. The analysis of explants presents challenges that are not encountered when 

measuring simulator samples. Many of the standard methods for measuring 

simulator samples involve measuring the cups or liners prior to testing on the 

simulator and then comparing the pre-test measurements with the post-test 

measurements. However, unlike simulator samples, the pre-wear measurements 

are not available for explants and it is often difficult to define the original profile of 

the component. The new measurement and analysis methods in this study were 

developed to attempt to overcome these challenges and were developed using the 

simulator test samples as a comparison. These methods can be used in the future 

to inform standard operating protocols for analysis of explanted acetabular 

components. The results of the analyses can be used to inform the design of 

clinically relevant hip simulator tests. Few studies have previously compared 

simulator samples and explants and so this is a novel aspect of the present study. 

The overall aim of this study was to develop and evaluate a hip simulator 

protocol for edge loading by testing a range of crosslinked UHMWPE acetabular 

components and to evaluate and compare damage mechanisms observed on 

explanted components. This section discusses the comparison between the wear 

and damage observed on the simulator samples and the explants and the clinical 

relevance of the hip simulator protocols in this study. The data has previously been 

presented in results sections 3.4, 4.4 and 5.3. 

6.2 Comparative Analysis of Simulator Components and Explants   

The following sections compare simulator components with explants using 

the methods developed in Chapter 2. Due to measurement difficulties relating to 

damage, deformation and geometrical features (discussed in sections 5.3.1, 5.3.1 

and 5.3.1) for the dissociated and lipped liners, only the non-dissociated neutral 

liners were assessed for volume change.  

6.2.1 Rim Deformation of Simulator Components and Explants  

A principal focus of this study was to compare the wear damage caused by 

edge loading in hip simulator studies with wear damage potentially caused by 
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subluxation and edge loading of the femoral head in vivo. A sharpening of the inner 

rim was observed on all the simulator components following edge loading tests 

(Figure 6-1A). Similarly, a sharpened rim was observed on two of the non-

dissociated neutral explanted liners (explant 5N & explant 6N; Figure 6-1B). The 

mean penetration at the inner rim for the explants (0.43mm) was larger than the 

mean penetration of the simulator liners (0.08mm, 0.13mm, 0.12mm and 0.06mm 

for the XLPE, aged PE, AOPE and AOPE Cups, respectively). This may be due to the 

relatively low dynamic microseparation used in the simulator tests in these studies, 

as discussed in section 3.5. Interestingly, the simulator liners did not dissociate 

under the edge loading conditions in this simulator study, which indicate that the 

conditions may be less severe than those experienced by the dissociated explanted 

liners. The more severe wear and deformation observed on the rim of these 

explants may support findings in previous fluoroscopy studies that reported larger 

microseparation of the femoral head and acetabular cup in vivo than those used in 

the simulator tests in this study (Lombardi et al., 2000; Dennis et al., 2001; 

Komistek et al., 2002).  

A larger cohort of explants would be required to fully understand the 

prevalence and degree of penetration and rim damage due to edge loading in vivo 

but initial findings suggest that hip simulator testing of edge loading conditions 

with larger microseparations may be more clinically relevant. Nonetheless, initial 

results regarding the mechanism of rim wear suggest that the simulator studies in 

this project produced clinically relevant wear and deformation mechanisms on the 

acetabular rims.  
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Figure 6-1 Talysurf rim traces of (A) a simulator sample (aged PE liner A10) 

and (B) an explanted liner (explant 5N) showing similar rim wear and/or 

deformation in the form of a sharpening of the inner rim and reduced radius of 

curvature 

6.2.2 Subsurface Damage of Simulator Liners and Explants 

MicroCT scans of the XLPE and AOPE liners taken at a resolution of 10µm did 

not reveal subsurface micro-cracking when compared with untested controls. 

Similarly, it was not possible to identify subsurface micro-cracking in the selected 

explanted liners where no surface damage was observed. However, where surface 

damage was observed, on both simulator samples and explants, the microCT scans 

revealed information about initiation and propagation of subsurface cracking that 

would otherwise be difficult to obtain without using destructive methods. In both 

the aged PE liners and explants with surface damage (from both the non-

dissociated and dissociated neutral subset), cracking was observed near the outer 

edge of the liner rim and around anti-rotation tabs (Figure 6-2). Incidences of 

cracks propagating circumferentially around the rim were observed on both aged 

PE liners and explants. The similarities in crack initiation and propagation for 

simulator components and explants suggest that the damage mechanisms 

sustained by acetabular liners in vivo are replicated to a degree by the hip 

simulator edge loading protocol developed in this study. Larger cohorts would be 

mm 
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required to confirm these initial findings, as well as further method development to 

visualise micro-cracking. Furthermore, measuring simulator samples at regular 

intervals during testing would provide additional information relating to initiation 

and propagation.     

    

 

Figure 6-2 MicroCT images of (A) cracks propagating circumferentially 

around the liner rim and at an anti-rotation tab on the superior rim of an aged PE 

liner (simulator sample A10), (B) a crack propagating circumferentially close to 

the outer edge of the superior rim of a dissociated explant (9D), (C) a crack along 

an anti-rotation tab on the inferior rim of a dissociated explant (11D), (D) a crack 

filled with third body debris along an anti-rotation tab on the inferior rim of an 

explant (12D) and (E) a crack propagating circumferentially around a non-

dissociated explant (5N).  
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6.2.3 Surface Damage to Simulator Liners and Explants  

Following 5Mc of testing under standard loading conditions and 5Mc of 

testing under edge loading conditions in a hip simulator, relatively minimal surface 

damage was observed on the XLPE and the AOPE acetabular liners in this study. 

Cracking was observed on the backside of the aged PE liners, around anti-rotation 

tabs and at the inner rim but the bearing surface was relatively undamaged. In 

comparison, more surface damage was observed on the explanted liners.  

A polishing or burnishing and fine scratching was observed on the surface of 

the simulator components. Other damage mechanisms such as pitting, embedded 

debris, fracture and deformation that weren’t present on the simulator samples 

were observed on the explants. Scratching in particular was more severe on the 

explants. A fine scratching (visible using a microscope) was observed on the bearing 

surface of all simulator liners but much larger, deeper scratches that were visible to 

the eye were observed on the explants (Figure 6-3).  

 

 

Figure 6-3 Microscope images of the surface of (A) an XLPE simulator liner 

with fine scratching on the surface (XLPE AM1) and (B) an explant with fine 

scratching as well as larger, deeper scratches (arrow; explant 4N; x30 

magnification) 

 

It is suggested that the most likely cause of scratching was third body debris 

in the joint space. Sources of third body debris include metal particles from wear of 

the metallic components and porous coatings. Light scratching was observed on 
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the femoral heads during simulator testing and this suggests that some third body 

damage was sustained during these tests. Explant and simulator studies have 

reported increased wear due to third body damage (Minakawa et al. 1998; 

Morscher et al. 1998; Bragdon et al. 2003). The difference in the appearance of 

scratching to the bearing surface suggests that more third body damage is 

sustained by the explants than the simulator components. Therefore, to better 

replicate in vivo conditions, introducing third body wear testing into ISO standards 

for hip simulator testing should be considered.  

Fracture and deformation was observed on the rims of some of the non-

dissociated neutral explants and a deformation of the inner rim was observed on 

the dissociated neutral explants that may have been attributable to severe edge 

loading or femoral neck impingement (Figure 6-4).   

 

Figure 6-4 Rim damage on (A) a non-dissociated neutral explanted liner and 

a (B) dissociated neutral liner that may have been cause by femoral neck 

impingement.   

 

 Femoral neck impingement has been reported in several explant studies and 

is estimated to occur in as many as 60% of cups (Isaac et al., 1992; Yamaguchi et al., 

2000; Shon et al., 2005; Usrey et al., 2006). Impingement is known to cause 

loosening of both femoral stems and acetabular cups and has been implicated in 

fatigue fracture of liners rims (Duffy et al., 2009). Deformation in this study was 

observed close to the outer rim of the explanted liners and in some cases, resulted 

in minor cracking and/or fracture of the components. The microCT measurements 

provided information about the initiation and propagation of subsurface cracks 

when damage was sustained on the surface of the component. Simulator 
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technology has only recently advanced sufficiently to replicate damage due to 

impingement. The harsh nature of the tests can be damaging to some simulator 

designs and require a range of motion beyond that for which most simulators were 

designed. Nevertheless, observations regarding the damage sustained by implants 

in vivo in previous studies and the present study indicate that development of tests 

to replicate impingement conditions may be required. 

6.2.4 Volume Change of Simulator Components and Explants 

The mean volume change per Mc calculated for the XLPE liners, AOPE liners 

and the AOPE cups was lower than the mean volume change per Mc calculated for 

the five non-dissociated non-crosslinked neutral explanted liners (data for the 

crosslinked explants was not included as only two were crosslinked; Figure 6-5). 

The mean volume change per Mc for the aged PE liners was higher than the 

explants. These results were expected as the XLPE and AOPE liners had a greater 

degree of crosslinking, and therefore wear resistance, and a reduction in wear 

resistance caused by ageing of the aged PE liners has previously been discussed 

(section 3.4.1). However, differences in wear rates were not significant due to the 

large range of values for the explants (range 4.21mm3/Mc-26.58 mm3/Mc; Figure 

6-5).  

The measurement methodology developed for measuring volume change in 

explants did not take into account any volume change at the rim and therefore the 

actual volume change for the explants may be higher. However, the comparison is 

made with simulator samples that were tested under standard loading conditions 

only, excluding volume change at the rim and therefore representing an equivalent 

rate of volume change.  
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Figure 6-5 Volume change per million cycles measured geometrically under 

standard loading conditions for all simulator components (n=4) and for the non-

crosslinked non-dissociated neutral explanted liners (n=5; ±95% Confidence 

Intervals) 

 

 

 

It should also be noted that the volume change values for the simulator 

samples were performed using SR3D software, by comparing a pre-wear liner with 

a worn liner, and therefore the volume change comparison with the explants is 

comparing two different methods for calculating volume change. Furthermore, 

volume change results can vary from one simulator to another, so it is likely that 

the same simulator components would yield different results if tested on a 

different simulator (Ali et al., 2016).  

A large variation in the volume change of explants has previously been 

reported. In a commentary by Schmalzried et al. (1998) a number of studies on 

UHMWPE wear in vivo were assessed: Sychterz et al. (1997) reported a penetration 

range of 0.02-0.45mm/yr in one study of 96 hips and Woolson & Murphy (1995) 

reported a penetration range of 0-0.30mm/yr in a study of 80 hips. The authors of 

the commentary Schmalzreid et al. attributed these variations to the multifactorial 
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nature of UHMWPE wear, including patient variables, operative procedures and 

long-term loosening of implants. Similarly, in a separate study of UHMWPE 

acetabular cups by Bowden et al. (2005) a range of volumetric wear rates of 27-

98mm3/yr measured using microCT was reported. More recently, Pace et al. (2013) 

reported a penetration range of 0.11-0.88mm/yr for metal on UHWMPE acetabular 

cups. 

The large range of values for volume change that has been observed in 

explant studies makes meaningful comparisons with simulator studies challenging. 

The small cohort and the large variation observed in this study meant it was not 

possible to draw firm conclusions regarding the clinical relevance of the volume 

changes in the simulator tests in this study.          

6.3 Study Limitations 

A hip simulator edge loading protocol was developed in this study that 

allowed UHMWPE acetabular cups and liners to be tested under more clinically 

relevant loading conditions. New methods were developed in this study to measure 

and analyse explants for wear, deformation and damage and to compare explants 

with simulator components. However, there were some limitations to the study 

methods that may influence the results of this comparison. These limitations are 

discussed in the relevant chapters and summarised in this section.  

In the hip simulator edge loading tests, it was not possible to measure lateral 

sliding distance during the test because the components were surrounded by 

serum. It was possible for the lateral sliding to be adjusted by eye during the test 

and verified at serum changes and measurement points but the test may have run 

for short periods of time outside of the target sliding distance of 0.5-1mm.  

In the hip simulator edge loading test, the aged PE liners were deformed and 

rocked in the shell. This may have resulted in atypical stress distributions in the 

liner, possibly causing the backside cracking that was observed.  

A further limitation of the hip simulator studies was that not all materials 

were aged and therefore the wear and deformation to the rim was not assessed for 
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these components where oxidative degradation existed. It is known that the wear 

and fatigue performance of UMWPE is compromised under these conditions and 

this would therefore be a valuable follow up study.       

There were limitations to the measurement methodologies used to measure 

the simulator samples. The gravimetric measurements were subject to error arising 

from fluid absorption of the components and the geometric measurements did not 

distinguish between wear and deformation of the material.  

There were also limitations to the measurement methodologies used to 

analyse the explants. The volume change of the explants was assessed 

geometrically without the pre-wear profile for comparison. The volume change was 

therefore calculated from a best fit estimation of the pre-wear data, which is 

unlikely to be an exact representation of the unworn liner. The methodology for 

measuring volume change in explants in the present study was validated using 

gravimetric data (section 2.4). However, there were limitations to the method: the 

validation using the untested, unsoaked control liner (liner NA14) did not take into 

account the effect of plastic deformation on the accuracy of the method and in 

contrast the validation using the hip simulator tested liner (liner AM1) would have 

been susceptible to error due to fluid absorption (despite the use of a soak control 

for compensation).   

The rim deformation measurement methodology was subject to error due to 

positioning of the liner during measurements. If the liner was not positioned in 

exactly the same place between traces a difference in gradient along the chamfer 

was observed, which affected the measurement of penetration at the inner rim. 

Furthermore, the rim deformation was assessed by comparing the worn region of 

the liner with an unworn region of the same liner. This assumes that no wear or 

deformation occurred in the “unworn” region, which may not have been the case. 

The microCT method was limited by the resolution achieved by the scanner, 

which was limited by the size of the components.  

The damage categorisation method did not effectively separate prevalence 

and severity of damage.  
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Observer variability was a limitation of the volume change method, the 

damage categorisation method and the MicroCT method.    

6.4 Conclusion 

Simulator tests were not intended to exactly mimic the kinematics and 

operating conditions of the human body but rather replicate the wear and damage 

observed in vivo for a specific set of conditions. Current ISO standard simulator 

tests replicate an average set of conditions to achieve average wear and/or 

damage but do not necessarily replicate conditions that might result in failure or 

revision. In this study, similar damage mechanisms were observed on explants and 

simulator samples: a rim sharpening at the inner rim and crack initiation at the 

outer rim and around anti-rotation tabs, both indicative of edge loading. This 

reinforces the importance of current developments to ISO standards to introduce 

an edge loading protocol for hip simulator testing that replicates the rim wear and 

damage observed in vivo for an adverse set of conditions.  

The surface damage observed on the simulator components suggests that 

tribological conditions in the hip simulator test were less harsh than those 

experienced in vivo and therefore caused less surface damage such as cracking and 

pitting. Volume change calculations for the explants were more varied than those 

obtained from simulator components and further study to determine whether this 

is a result of a variation in wear and deformation in explants or a limitation of the 

measurement technique is required 

Areas where simulator testing and/or measurement techniques could be 

further developed were identified, such as testing under larger microseparations, 

third body wear tests to better replicate tribological conditions in vivo and  

impingement tests to fully replicate rim wear. Furthermore, improving volume 

change measurement protocols to include volume change at the rim would be a 

useful line of investigation.    
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6.5 Future Work 

Measurement methodologies have been developed in this study that can be 

used to assess the wear and damage of explanted acetabular liners and to compare 

wear and damage mechanisms observed on explants with those observed in hip 

simulator studies. The work carried out can be used to inform the development 

and evaluation of future explant studies as well as the design of future simulator 

tests. This section discusses the work that could be carried out in the future to 

build on the findings of this study.         

6.5.1 Simulator Studies 

Future developments of simulator studies should consider introducing a 

range of adverse testing conditions:  

 Larger microseparations; 

 Accelerated ageing of UHMWPE components; 

 Impingement tests; 

 Testing with malseated components; 

 Third body wear testing.   

In addition, the use of simulators to better understand explants should be 

considered. Simulator tests using explanted components to compare in vivo and in 

vitro wear and damage would help to understand differences between the 

tribology and kinematics of simulators and in vivo conditions.  

Wear debris isolation and analysis should be considered in order to compare 

the size and concentration of wear particles produced for conventional and cross-

linked UHMWPE in simulators as well as comparing this with wear debris collected 

from tissue surrounding explanted liners.     

6.5.2 Explant Studies 

One of the main limitations of this explant study was the cohort size. Larger 

collections of explants of similar design should be analysed in order to identify 

correlations between wear and damage mechanisms and patient factors, time in 
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vivo, design factors, etc. Implant failures are multi-factorial and therefore larger 

cohorts are required to identify trends in failure mechanisms.  

Further work to develop explant categorisation methods for acetabular liners 

should be carried out. This should include designing a method that assesses wear 

and damage on the backside, rim and bearing surface independently. The method 

should carefully consider the damage mechanisms that are relevant to acetabular 

liners, as existing methods are often biased towards damage mechanisms observed 

on total knee replacements. The standard ASTM F561-05a: Standard Practice for 

Retrieval and Analysis of Medical Devices, and Associated Tissues and Fluids, 

should be consulted but should be adapted to consider damage mechanisms 

resulting from adverse loading conditions. The method should include separate 

scores for prevalence (% coverage) and severity. Further to this, repeatability and 

reproducibility should be assessed. The development of a reproducible 

categorisation method will allow an initial assessment of explanted liners to be 

carried out, which in turn can be used to select explants for study based on severity 

and type of damage mechanism.  

The Matlab code that was developed in this study can be used to qualitatively 

and quantitatively assess rim wear and deformation on simulator components and 

explants. However, issues regarding alignment of the components following 

rotation between traces were highlighted. To resolve this issue, a measurement 

fixture that allowed rotation of the component between traces without moving it 

from the fixture should be designed. The fixture should be able to accommodate a 

range of acetabular liner sizes and shapes (i.e. different locking mechanisms) and 

should enable alignment of the component prior to measurement, specifically, 

ensuring the liner is perfectly horizontal before being tilted to 45° for measuring. 

An appropriate fixture should resolve the issues that were encountered relating to 

a difference in gradient along the chamfer and allow a more accurate value for 

penetration at the rim to be determined. An alternative to designing a fixture for 

the Talysurf would be to develop measurement methods using equipment that 

moves around the circumference of the liner, rather than moving the liner itself. 

Possible equipment would be the CMM (although this is likely to be less accurate 

than the Talysurf) or the Talyrond (Taylor Hobson, Leicester, UK).   
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 The MicroCT scans carried out during this study revealed information relating 

to crack initiation and propagation beneath surface damage on both simulator 

samples and explants. It was not possible to positively identify micro-cracking in 

this study. To investigate further, a smaller section of the liner should be identified 

using existing scans and then scanned at a higher resolution. In addition, the 

absorption of dye into the material to highlight smaller subsurface cracks should be 

investigated and the use of computer algorithms to automatically detect and 

highlight small voids and micro-cracking should be considered.      

Further work should be carried out to develop the method for measuring 

volume change to include volume change at the rim.  In addition, attempts should 

be made to distinguish between volume change due to wear and volume change 

due to plastic deformation of the components. Possible methods would include 

heating the components to recover any plastic deformation through the shape 

memory effect of UHMWPE (Muratoglu et al., 2004).      
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6.6 Final Summary 

The aim of this study was to develop and evaluate clinically relevant 

simulation methods for edge loading conditions, to investigate the wear and rim 

damage of a range of different types of UHMWPE acetabular liners under these 

conditions and to compare this wear and damage with that observed in vivo by 

analysing explanted UHMWPE liners.  

 A simulator edge loading protocol was developed that simulated 

subsurface damage and rim cracking in aged UHMWPE acetabular liners 

but not in non-aged crosslinked liners. This supported previous findings 

that edge loading of UHMWPE components may cause rim deformation, 

cracking and failure as observed in vivo, particularly where component 

positioning is sub-optimal or in the case of material degradation.  

 The edge loading protocol was used to assess the wear and fatigue 

mechanisms of a novel antioxidant UHMWPE of two different acetabular 

cup designs. These cups exhibited rim wear and/or deformation, similar 

to that observed clinically and on the non-aged crosslinked liners in the 

previous simulator tests, but did not crack or fracture at the rim.   

 New measurement methodologies were assessed and used to measure 

wear and damage mechanisms in a small cohort of explanted acetabular 

liners. These were compared with the damage mechanisms observed in 

the simulator tests. Clinically relevant damage mechanisms were 

observed on simulator samples after edge loading and key areas of 

method development and investigation for explants were identified from 

these initial studies, including developing microCT and rim deformation 

measurement methodologies and developing damage analysis protocols 

to include damage mechanisms relating to adverse loading.  

 Key developments in future simulator testing were identified including 

assessing the wear and rim damage of acetabular components under 

larger microseparations, after accelerated ageing, subjected to femoral 

neck impingement and subjected to liner malseating.   
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Appendix 1: Simulator Components with Station Numbers and Labelling 

Table 1 Details of XLPE Pinnacle acetabular liners for protocol development study (Chapter 3) 

Sample ID Description Diameter LOT# REF# 

AM1 Marathon UHMWPE 

acetabular liner 

36mm FK7F91 1219-36-056 

AM3 Marathon UHMWPE 

acetabular liner 

36mm FH5FJ1 1219-36-056 

AM5 Marathon UHMWPE 

acetabular liner 

36mm FH5FJ1 1219-36-056 

AM7 Marathon UHMWPE 

acetabular liner 

36mm 114854 1219-36-056 

AM9 Marathon UHMWPE 

acetabular liner 

36mm 114854 1219-36-056 

AM11 Marathon UHMWPE 

acetabular liner 

36mm 224893 1219-36-056 

 

Table 2 Details of aged GVF UHMWPE Pinnacle compatible acetabular liners for protocol 

development study (Chapter 3) 

Sample ID Description Diameter Gamma Process 

Run ID 

LOT# REF 

A2 Aged GVF UHMWPE 

acetabular liner 

36mm 68403A 4420722 

4418276 

1219-36-056 

A4 Aged GVF UHMWPE 

acetabular liner 

36mm 68403A 4420722 

4418276 

1219-36-056 

A6 Aged GVF UHMWPE 

acetabular liner 

36mm 68403A 4420722 

4418276 

1219-36-056 

A8 Aged GVF UHMWPE 

acetabular liner 

36mm 68403A 4420722 

4418276 

1219-36-056 

A10 Aged GVF UHMWPE 

acetabular liner 

36mm 68403A 4420722 

4418276 

1219-36-056 

A12 Aged GVF UHMWPE 

acetabular liner 

36mm 68403A 4420722 

4418276 

1219-36-056 
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Table 3 Details of CoCr femoral heads articulating with XLPE and aged PE liners for protocol 

development study (Chapter 3) 

Sample ID Description Diameter Taper LOT# REF 

XLPE 1 ARTICUL/EZE 36mm 12/14 3167851 1365-52-000 

Aged PE 2 ARTICUL/EZE 36mm 12/14 3167851 1365-52-000 

XLPE 3 ARTICUL/EZE 36mm 12/14 3003038 1365-52-000 

Aged PE 4 ARTICUL/EZE 36mm 12/14 3155929 1365-52-000 

XLPE 5 ARTICUL/EZE 36mm 12/14 3155929 1365-52-000 

Aged PE 6 ARTICUL/EZE 36mm 12/14 3167851 1365-52-000 

XLPE 7 ARTICUL/EZE 36mm 12/14 2513886 1365-52-000 

Aged PE 8 ARTICUL/EZE 36mm 12/14 2513886 1365-52-000 

XLPE 9 ARTICUL/EZE 36mm 12/14 2513886 1365-52-000 

Aged PE 10 ARTICUL/EZE 36mm 12/14 2513886 1365-52-000 

 

Table 4 Details of Pinnacle metal shells for protocol development study (Chapter 3) 

Sample ID Description Outer 

diameter 

LOT REF 

Shell 1 Pinnacle Shell 56mm FA4F91000  

P1 Pinnacle Shell 56mm D3VEM1000 1217-01-056 

Shell 3 Pinnacle Shell 56mm FA4F91000  

P2 Pinnacle Shell 56mm D3VEM1000 1217-01-056 

Shell 5 Pinnacle Shell 56mm FB5R41000  

P3 Pinnacle Shell 56mm D3KDA1000 1217-01-056 

Shell  7 Pinnacle Shell 56mm FA4F91000  

P4 Pinnacle Shell 56mm D3VEM1000 1217-01-056 

Shell 9 Pinnacle Shell 56mm FA4F91000  

P5 Pinnacle Shell 56mm D3KDA1000 1217-01-056 
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Table 5 Details of AOPE compression moulded acetabular cups for AOPE study (Chapter 4) 

Sample ID Description Diameter LOT# Other ref 

AOPE CM1 Monoblock 36mm DE 022309248 MD-E0601a 

AOPE CM2 Monoblock 36mm DE 022309248 MD-E0601a 

AOPE CM3 Monoblock 36mm DE 022309248 MD-E0601a 

AOPE CM4 Monoblock 36mm DE 022309248 MD-E0601a 

AOPE CM9 Monoblock 36mm DE 022309248 MD-E0601a 

AOPE CM10 Monoblock 36mm DE 022309248 MD-E0601a 

 

Table 6 Details of AOPE Pinnacle compatible acetabular liners for AOPE study (Chapter 4) 

Sample ID Description Diameter LOT# REF 

AOPE 1 Pinnacle 36mm  

AO Pinnacle LOT and REF 

numbers not provided by 

DePuy 

AOPE 2 Pinnacle 36mm 

AOPE 3 Pinnacle 36mm 

AOPE 4 Pinnacle 36mm 

AOPE 5 Pinnacle 36mm 

AOPE 6 Pinnacle  36mm 

 

Table 7 Details of Pinnacle metal shells for AOPE study (Chapter 4) 

Sample ID Description Outer diameter LOT REF 

P1 Pinnacle Shell 56mm D3VEM1000 1217-01-056 

P2 Pinnacle Shell 56mm D3VEM1000 1217-01-056 

P3 Pinnacle Shell 56mm D3KDA1000 1217-01-056 

P4 Pinnacle Shell 56mm D3VEM1000 1217-01-056 

P5 Pinnacle Shell 56mm D3KDA1000 1217-01-056 
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Table 8 Details of CoCr femoral heads for AOPE study (Chapter 4) 

Sample ID Description Diameter Taper LOT# REF 

M1 ARTICUL/EZE 36mm 12/14 3013699 1365-52-000 

M2 ARTICUL/EZE 36mm 12/14 3013699 1365-52-000 

M3 ARTICUL/EZE 36mm 12/14 3010300 1365-52-000 

M4 ARTICUL/EZE 36mm 12/14 3000245 1365-52-000 

M9 ARTICUL/EZE 36mm 12/14 3000245 1365-52-000 

M10 ARTICUL/EZE 36mm 12/14 3013699 1365-52-000 

P1 ARTICUL/EZE 36mm 12/14 3010300 1365-52-000 

P2 ARTICUL/EZE 36mm 12/14 3010300 1365-52-000 

P3 ARTICUL/EZE 36mm 12/14 3010300 1365-52-000 

P4 ARTICUL/EZE 36mm 12/14 3013699 1365-52-000 

P5 ARTICUL/EZE 36mm 12/14 3010300 1365-52-000 

P6 ARTICUL/EZE 36mm 12/14 3000245 1365-52-000 
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CoCr Femoral Heads Articualting with 
Compression Moulded Cups 

CoCr Femoral Heads Articulating with 
AOPE Liners 

  

  

  

  

  
Figure 1 CoCr Femoral heads that articulated with the AOPE compression moulded 

cups and AOPE liners for 5Mc of standard loading and 5Mc of edge loading with 

corresponding stations and component labelling (Chapter 4) 

 

Stn 1 

Stn 3 

Stn 5 
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Stn 9 
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AOPE M3 AOPE P3 

AOPE M4 AOPE P4 

AOPE M9 AOPE P5 

AOPE M10 AOPE P6 
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CoCr Femoral Heads Articualting 
with XLPE Liners 

CoCr Femoral Heads 
Articulating with aged PE Liners 

  

  

  

  

  
Figure 2 CoCr Femoral heads that articulated with XLPE and Aged PE liners for 5Mc of 

standard loading and 5Mc of edge loading with corresponding stations and component 

labelling (Chapter 3) 
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Figure 3 XLPE acetabular liners with polished wear area highlighted (Chapter 3)  

 

Figure 4 Aged PE Acetabular liners with polished wear area highlighted (Chapter 3)  

 

AM7 

AM3 AM1 

AM9 

A6 A10 

A4 A2 
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Figure 5 AOPE Acetabular liners with polished wear area highlighted (Chapter 4). 

Note one liner was returned to Depuy following testing and analysis prior to taking this 

picture.    

 

  

AOPE 5 

AOPE 2 AOPE 3 
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 Table 9: Simulator test set-up for protocol development study 

Station Number Femoral Head Acetabular Cup/Liner 

Station 1 AOPE M1 AOPE CM 1 

Station 2 AOPE P1 AOPE 6 

Station 3 (load control) AOPE M3 AOPE CM 3 

Station 4 AOPE P2 AOPE 2 

Station 5 AOPE  M4 AOPE CM 4 

Station 6 AOPE P3 AOPE 3 

Station 7 AOPE M9 AOPE CM 9 

Station 8 (load control) AOPE P4 AOPE 4 

Station 9 AOPE M10 AOPE CM 10 

Station 10 AOPE P5 AOPE 5 

Table 10: Simulator test set-up for AOPE study  

Station Number Femoral Head Acetabular Cup/Liner 

Station 1 XLPE 1 AM1 

Station 2 Aged PE 2 A2 

Station 3 (load control) XLPE 2 AM3 

Station 4 Aged PE 4 A4 

Station 5 XLPE 5 AM5 

Station 6 Aged PE 6 A6 

Station 7 XLPE 7 AM7 

Station 8 (load control) Aged PE 8 A8 

Station 9 XLPE 9 AM9 

Station 10 Aged PE 10 A10 
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Appendix 2: Inter and Intra-user variability of volume change measurements 

on explant 6N   

Table 1: Mean volume change ± %RSD of explant 6N for three repeats of four 

different protocols by four different users using Redlux analysis software. 

Explant 6 

 
Protocol 1 (mm3) Protocol 2 (mm3) Protocol 3 (mm3) Protocol 4 (mm3) 

User 1 75 ± 4.4% 184 ± 16% 47 ± 14.7% 128 ± 14.2% 

User 2 63 ± 23.8% 182 ± 32.1% 40 ± 20% 128 ± 28.4% 

User 3 142 ± 14.5% 310.2 ± 5.8% 108.3 ± 26.7% 278 ± 9.2% 

User 4 93.8 ± 13.9% 236.5 ± 16.7% 57.5 ± 11.9% 261.9 ± 6.2% 

 

 

Figure 1: Inter-user variability of the four protocols for each user for explant 6N 

(±95% Confidence intervals) 
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Appendix 3: Analysing Volume Change in Explants with Redlux 

Protocol  2: Defining the reference Sphere 

1. Import .dat file using “[R&D] Import CMM data” script. 

2. Remove rim using local radius tool and the exclusion tool from the analysis tab 

(Figure 1). Areas are excluded by right clicking in the area to be excluded and clicking 

exclude.  

 

 

Figure 1 Exclusion of the rim area with local radius tool selected. 

3. Exclude any screws holes (or major damage to the bearing surface; Figure 2). 

 

 

Figure 2 Exclusion of a screw hole with local radius tool selected 

Exclusion 

tool  

local radius 

tool  
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4. Deselect local radius tool and click on Fit to Sphere (advanced) and note radius. 

5. Exclude wear area and note radius (Figure 3) 

 

 

Figure 3 Exclusion of the wear area 

6. Repeat step 5 by increasing the size of the excluded wear area until the radius stops 

increasing or the excluded area is too big to continue.  

7. Right click on work area and select “Include All” 

8. Save the file and note radius. 

  

Radius 

Exclude wear 
area 
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Protocol 2: Calculating the Volume Change  

9. Draw round the wear area and exclude the rest of the cup. Do this on the inside of 

the cup so that all other areas are excluded (Figure 4). 

10. Right click on the histogram and set minimum so that the wear area turns black (this 

is usually somewhere in the purple region of the histogram.    

 

 

Figure 4 Selection of the wear area from the inside of the cup with the remaining 

areas of the cup excluded 

 

11. Click on “Volume” tool. Observe volume and area.  

12.  Repeat step 10 until the volume stops increasing.  

13. Note Volume and Area. 

  

Right click and 
select “minimum” 



- 258- 

Appendix 4: Analysing Rim Deformation in UHMWPE Liners 

1. Export raw data file from Talysurf and save as .PRF (export original file and not 

analysed file) 

2. In Talymap Gold -> Open blank document -> Open studiable ->  Save profile as .txt  

3. For each liner, copy the x and y coordinates for all rim traces from text files (Figure 

1) 

 

 

Figure 1 Text file showing the x and y coordinates of the Talysurf trace 

 

4. For each liner paste the x and y coordinates into a spreadsheet. The unworn trace 

(or the trace to which all other traces will be compared) should be pasted in 

columns A & B and then two columns should be left blank between each 

consecutive trace (Figure 2). Name the Excel file and the worksheet and save in the 

same folder as the Matlab program file.  

x and y coordinates for a trace 

taken across the unworn 

region of an XLPE liner 
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Figure 2 Spreadsheet showing the x and y coordinates of the traces. The colours 

represent the colours of the traces in the Matlab plots and all traces will be 

compared to the traces in the first column (usually the unworn trace) 

 

5.  Open Matlab and Open the relevant program (AGEDGVF_notlevelled_5.m in this 

example). 

 

Figure 3 First few lines of the Matlab code with the names of the active and 

inactive spreadsheets highlighted  

Active spreadsheet 

Inactive spreadsheet 
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6. Enter the name of the Excel file in the first section under %name of file. Anything 

after % will be ignored so several spreadsheets can be entered at this stage (Figure 

3).  

7. For each spreadsheet in the ‘if’ and ‘elseif’ sections enter the following details 

(Figure 4): 

a. The name of the file after ‘fname’ 

b. The name of the worksheet ‘sname’ 

c. The number of data sets (dat =?) 

d. The number of the last cell in each column; col = [……….] 

 

Figure 4 Code relating to the details of each spreadsheet and trace data  

 

8. Run the program (click Run or press F5) ensuring the correct spreadsheet is active. 

9. A series of graphs will appear:  

 

 

 

 

 

 

 

 



- 261- 

 
The raw data plotted for each trace 

 
The reference point matched for each 
trace 

 
The horizontal rim of the worn traces 
rotated round the reference point to 
match the worn trace 

 
All traces levelled and scaled (both axes 
in mm) 

 
Plot of penetration distance between 
traces 

 
Plot of volume between traces (not 
used) 

 
Traces aligned with the pentration 
distance marked at a user defined point 

 
A single trace 

 



- 262- 

10. Seven colours are available in Matlab an each colour corresponds to the column in 

spreadsheet in the following order Dark Blue, Green, Cyan, Black, Magenta, Red, 

Yellow. Colours can be changed in by changing the variable c (Figure 5). 

 

Figure 5 section of the code where the trace colours are defined  

 

11. If the reference point is not located in the correct location (Figure 6A). Then 

changing the tolerance will move the reference point (Figure 6B & C).  

 

 

Figure 6A, B & C: A trace with the reference point located in the wrong place, B the 

corrected reference point and C the section of code where the tolerance can be modified.   

 

12. The point at which the penetration distance is calculated can be defined by the 

user by entering the x value into the code (use the zoom feature to refine; Figure 

7) 

 

A B 

C 
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Figure 7 the point where the penetration (distance between the unworn and 

worn traces in calculated and the section of code where this is defined. 

 

13. The penetration is obtained by entering N into the command prompt (Figure 8): 

 

Figure 8 The command prompt window with the penetration distances displayed 

(all distances are relevant to the unworn trace or first column of data.   

 

14. Standard Matlab features can be used to save and print graphs.  

 

Penetration between: 

1. 1st and itself 
2. 1st and 2nd trace (2nd column of data) 
3. 1st and 3rd trace (3rd column of data) 
4. 1st and 4th trace (4th column of data) 

*1st trace is unworn trace 
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Appendix 5: Images of Explanted Acetabular Liners 
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Appendix 6: Informed Consent and Explant Collection Documents 

Patient Information Sheet: Wear Analysis of Explanted Orthopaedic Implants 

 

Information for the patient 

You are being invited to take part in a research study. Before you decide whether to take 
part you need to understand why the research is being done and exactly what it will involve. 
Please take the time to read the following information carefully and please do not hesitate to ask 
any questions if required. 

Background information 

Over 1 million artificial hips and knees are implanted into patients each year around the 
world. These can be made of plastic, metal and/or ceramic components . Hip replacement was 
one of the most successful operations of the 20th Century, however artificial hip and knee implants 
sometimes require replacement for a number of reasons. Your surgeon should discuss this with 
you.  

What is the purpose of the research? 

We are research scientists from the Institute of Medical and Biological Engineering at the 
University of Leeds. We want to improve our understanding of why implants fail. This is done by 
analysing the surfaces of your old implant for damage, along with the wear particles from the 
tissues from around your implant. Completing this research may allow us to improve joint 
replacements for future patients. 

Why have I been chosen? 

You have been chosen because you are a patient undergoing joint replacement revision 
surgery. Approximately 200 other patients will be invited to participate in this research. 

Do I have to take part? 

It is up to you to decide if you would like to take part. If you decide to take part, you will be 
given this information sheet to keep and you will be asked to sign a consent form to show you 
have agreed to take part. You are free to withdraw at any time and without giving a reason. A 
decision not to take part, or to withdraw at any time, will not affect the standard of care you 
receive. 

What are the benefits or risks involved? 

There are no benefits to you if you choose to take part. This research may however lead to 
improvements in joint replacements for future patients. There are no risks to you if you choose to 
take part. The tissue (bone, cartilage and soft tissue) we would like to analyse is routinely 
removed by the surgeon to prepare the implantation site for your new joint replacement. This 
tissue would normally be discarded following your operation.  

What will happen if I take part? 

You do not have to do anything. Your old joint replacement device and discarded tissue will 
be collected from the operating theatre after your operation and taken to the laboratory at the 
University of Leeds for analysis. No part of the surgical procedure will be different if you choose to 
participate in this study or not.  

 

Personal information, relevant to this study, will also be collected, stored and processed to 
help us with our research. Your information, failed implant and discarded tissue will be assigned a 
code so that you will remain anonymous to researchers at the University of Leeds. Only the 
project co-ordinator at the University of Leeds will have access to your consent form, which will 
remain in a sealed envelope and kept in a locked cabinet. All researchers at the University of 
Leeds will have a duty of confidentiality to you as a research participant. 
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Your old joint replacement will be examined for wear and surface measurements will be 
taken, the components will then be stored in a locked cabinet in a locked room. Your tissue will be 
analysed to characterise the wear particles present and will also be stored in a locked cupboard in 
a locked laboratory. After the analysis has taken place we will record the results and your tissue 
sample will either be incinerated or stored for future research. If your sample is deemed suitable 
for future research it will be stored under the same conditions as mentioned above and used in 
similar studies by researchers at the University of Leeds. There will be no genetic analysis of the 
tissue. 

If your joint replacement has failed prematurely, this will be reported to the manufacturer. 
Your personal data will not be disclosed by researchers at the University of Leeds and the 
manufacturer will be referred to your orthopaedic surgeon should they require further information.  

The duration of the study is 5 years in total. Your data and explants will be stored for a 
further 5 years to allow for the research to be published at the end of the study. 

What if my operation is unsuccessful?  

The surgery itself does not form part of this study. As no part of the surgical procedure or the 
care that you will receive will be different should you choose to participate, researchers at the 
University of Leeds are not responsible for the success or otherwise of your operation and any 
matters relating to your surgery or treatment should be discussed with your surgeon in the normal 
way.  

Will my taking part be confidential? 

Yes. We will follow legal and ethical practice and all information about you will be handled in 
confidence and in accordance with the Caldicott Principles and the Data Protection Act 1998. 

What will happen to the results of the research? 

Results of the research will be used in internal scientific reports. It is also anticipated that 
results will be submitted to peer reviewed scientific journals. Participant identity will remain 
confidential. Your surgeon will be sent a summary of research findings. Should you wish to 
receive a copy of the results please request them from your surgeon. Alternatively, in time 
research may be published in scientific journals, visit the iMBE website for details. No patients will 
be identifiable. 

Who has reviewed the study and who is funding the research? 

All research in the NHS is looked at by an independent group of people, called a Research 
Ethics Committee to protect your safety, rights, wellbeing and dignity. This study has been 
reviewed and given favourable opinion by a Research Ethics Committee. This research is being 
funded by the National Institute for Health Research (NIHR). 

Further Information 

Please contact Dr Sophie Williams at the University of Leeds on 0113 343 2214  or email 
s.d.williams@leeds.ac.uk should you require any further information regarding the research.  

 

If you are unhappy with your treatment at any time and wish to complain formally, you can 
do this through the NHS Complaints Procedure. Details can be obtained from the hospital. 
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Patient Consent Form: Wear Analysis of Explanted Orthopaedic Implants 

 

Centre:_______________________________________________________________ 

 

iMBE code:______________________________________________________________   

 

Patient consent                 Please initial box 

 

1. I confirm that I have read and understand the Patient Information Sheet (version 3) for  the 
above research study. I have had the opportunity to ask questions and have had these 
answered satisfactorily. 

 

2. I understand that my participation is voluntary and that I am free to withdraw  

 at any time without giving any reason, without my medical care or legal rights  

 being affected. 

 

3. I understand that sections of any of my medical notes may be looked at by responsible 
individuals from [Leeds Teaching Hospitals NHS Trust] or from the regulatory authorities, where 
it is relevant to my taking part in research.  I give permission for these individuals to have 
access to my records. 

  

4. I understand that researchers at the University of Leeds will analyse my explanted joint 
replacement device. 

 

5. I understand that researchers at the University of Leeds will analyse tissue from around my 
implant for wear particles. 

 

6. I agree to have my tissue sample stored at the University of Leeds 

 for future research.  

 

7. I understand that researchers at the University of Leeds will process personal information that 
that is relevant to the research. I give permission for these individuals to obtain, store and 
process such information. 

 

8. I agree to take part in the above study.   

 

________________________________________________________________________________ 

Name of Patient                                   Date Signature 

 

 

 

_________________________________________________________________________________ 

Name of Person Taking Consent       Date       Signature 
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Explant information: Wear Analysis of Explanted Orthopaedic Implants 

 
 

Patient code (designated by iMBE):__________________________________________ 
 
Name of Hospital (Revision Operation)_____________________________________________ 
 
Name of Surgeon (Revision Operation)_____________________________________________ 

 
Date of Birth ______________  
 
Height / Weight ________________________  
 
Patient Sex M     F 
 
Type of Prosthesis_____________________________________________________________ 

 
Is this explant the Primary explant?  1st revision explant?  2nd revision explant? 

Other?  
 
Implant Date ______________ 
 
Explant Date ______________  
 
Time of prosthesis in vivo ___________ 
 
Side Operated On _____________ 
 
Pre-revision x-ray available?       YES     NO            
 
Initial Diagnosis ______________________________________________________________ 
 
Reason for Revision __________________________________________________________ 
 
Patient Activity level before revision. Please tick to indicate level of activity.  
 
 Immobile/ 

Wheelchair 
2 Sticks (Zimmer 
frame) 

1 stick Sedentary Reasonably 
active 

Very active  

Low       High 

 
Hip only: Is there a history of dislocation?   YES     NO________________ 
 
Is there evidence of impingement at time of revision?  YES     NO __________ 
 
Knee only:        Is there evidence of medial and/or lateral laxity?  YES     NO __________ 
 
If yes, to what degree? mild   moderate   severe  
 

Is there evidence of gross surgical malalignment?  YES     NO_________ 
 
Any other information

Thank you for your help 



- 270- 

 


