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ABSTRACT 

The effect of scale on shear strength is studied by performing direct 

shear tests on different sized samples of large joints. A rubber 

moulding system is used to obtain impressions of the roughness from 

a variety of natural joint surfaces. A brittle model material is 

developed and used to cast several sets of identical interlocking 

specimens, which are in turn subdivided into sets of equidimensional 

joint block samples, each of the sets representing a different 

average block size or joint length. All sample sizes are tested in 

the same relative direction of shearing and under precisely the same 

level of normal stress. A total of eleven joints displaying a large 

variety of surface roughness is * included in the experimental programme. 

The. results from those tests show that peak shear strength is a 

strongly scale-dependent variable. Scale effects are most pronounced 
in cases of rough undulating joints, whereas they are virtually absent 
for relatively planar joints. The key factor behind the changing 
behaviour and strength with increasing scale is the involvement of 
different sizes of asperities in controlling the peak behaviour of 

different lengths of joints. An important consequence is a decrease 

in the value of roughness coefficient (JRC) and wall strength (JCS) 

operating at larger scale. Use of those indices may enable realistic 

allowance to be made. for the scale effect in peak shear strength. 

The normal deformability of rock joints is investigated by*conducting 

loading/unloading and repeated load cycling tests on a wide ranging 

" variety of fresh and weathered joints in five different rocks. The 

shear deformability is studied by performing direct shear tests at 

different levels of normal stress in a portable shear box. Several 

mismatched joints are also tested under compression.. 

In the present work the analytical representation of the stress- 
deformation curves is considered in detail. 

Quantitative relationships between maximum closure, aperture, wall 

strength and roughness are defined. 
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CHAPTER 1.1 

SHEAR STRENGTH AND DEFORMATION OF ROCK JOINTS 

1.1.1 Introduction 

Rock encountered in engineering practice is in its general form an 

anisotropic discontinuum, which usually deforms and fails along pre- 

existing mechanical 'breaks' or discontinuities of geological origin, 

such as joints, bedding planes, faults, etc. Unless otherwise 

specified, the term joint will be used in the context of this thesis 

as a general term to describe all natural discontinuities in rock 

having zero tensile strength and no previous shear displacement history. 

Early work in rock mechanics was based on the assumption that rock was 

a continuous, elastic, homogeneous, isotropic material. It was not 

until two decades ago that the discontinuous character of the rock mass 

and the implications on behaviour were emphasized in the works of 

Talobre (1957), John (1962) and Muller (1963). Under the low level of 

stresses associated with most civil engineering structures it'is the 

geometrical arrangement and properties of joints which determine the 

mechanical behaviour of the rock mass. Unfavourably orientated jointing 

or individual features such as fault planes, persistent clay partings, 

etc., provide low energy paths along which shear failure may occur. 

In addition to the reduction in strength, jointing increases the deform- 

ability of the mass. In foundations, cuttings, and tunnels sited in 

hard rock, the closure and slippage of joints axe the main contributors 

to the total amount of displacement. 

Discontinuous rock masses can be analyzed in either of two. ways 
(Goodman, 1976). The 'weakening' and 'softening' influence of the 

network of joints can be accounted for implicitly by reducing the 

mechanical properties assumed for a large body of rock by a selected 

amount. In that approach the rock mass is still treated as a continuum. 

Or, the actual properties of individual joints can be introduced 

explicitly in limiting equilibrium calculations, physical models, or 

numerical approximation techniques such as the explicit finite element 

or finite difference methods. Major steps have been made in the 

discipline of numerical modelling of jointed rock masses over the last 
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ten years (e. g. Goodman and St. John, 1977). However, there seems to 

exist an ever-widening gap between the methods of analysis and the 

quality of the input property values. Computer techniques although 

seemingly elegant and exact can only be as good as their input data 

which, at present, seems to be more or less guessed or extracted from 

the literature. 

1.1.2 Objectives of this study 

Explicit numerical or physical model methods of analysis of jointed rock 

masses require data on both the shear strength and deformation properties 

of joints. 

The literature of the mechanical properties of jointed rock which has 

accumulated over the past two decades, reveals an impressive number of 

studies which have been devoted to the all-important aspect of shear 

strength along joints. However, the directly related question of scale-, 

effects seems to have attracted very little attention. In the majority 

of publications the potential existence or non-existence of a scale effect 

is acknowledged in passing or is ignored. There are also a limited number 

of studies where the shear strength-scale effects have been considered more 

seriously, but the interpretations and conclusions are different. The 

urgent need for high quality shear strength data and the uncertainties 

surrounding the question of a scale effect in joints warrants a systematic 

investigation of this important aspect. The experimental study reported 

in part two of the thesis represents an attempt to answer some of-the 

questions. The main objectives of that work can be summarized under the 

following three headings: 

(a) investigation of the existence or otherwise of a scale effect 

in the shear strength of joints 

(b) clarification of the causes of a scale effect 

(c) examination of potential solutions to the problem of 

allowing for a scale effect in a practical situation. 

There is a large margin between the currently available literature on 
joint shear strength and the literature on joint deformability. This is 

probably because of the predominant use of limit equilibrium methods in 
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stability analyses of slopes and foundations. The experimental study 

described in the third part of the thesis deals with the analytical 

and quantitative aspects of joint deformability. The main objectives 

are summarized below: 

(a) investigation of the stress-deformation relationships of 

a variety of natural, unfilled, fresh and weathered joint 

types, and their analytical representation 

(b) study of the variables influencing joint deformability and 

derivation of quantitative relationships of possible 

practical use. 

Reviews of the current literature directly related to each specific topic 

of investigation have been included in the corresponding parts of the 

thesis. In the following sections a review will be made of the fundamental 

characteristics of joint shear strength and deformation, as a general 

introduction to the contents of the subsequent parts. 

1.1.3 Shear strength of joints 

When a rock surface slides over another, the phenomenon of friction 

comes into play. Jaeger (1971) reviewed the various empirical laws of 

friction, which are based on research into' materials other than rock - 

usually metals. The theories advanced in the past to explain the friction 

on metal surfaces are based* on one of the four following concepts (Lama. 

and Vutukuri, 1978): (a) lifting of microasperities over each other; 
(b) molecular attraction between the two surfaces; (c) a "ploughing" 

effect introduced by penetration on one solid by the asperity of the 

other solid; (d) interlocking of surface microroughness and lifting of 

asperities over-each other. The mechanism of friction in brittle materials 

such as rocks is bound to be different. For instance the concepts of 

molecular attraction and plastic deformation at low stresses are not 

relevant to rock surfaces. 

The basic criteria which have been adopted to describe rock friction are 

linear or non-linear: 

If Qn is the normal stress corresponding to a given shear 

strength t, the coefficient of friction may be defined as: 
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O tan O=Q, i. e. 't = O'n tan 1.1 

2. In general, for soil and rock materials better experimental 

verification is achieved by assuming a shear strength 

component at zero normal stress. This is the term of 

cohesive resistance (c) in Coulomb's equation: 

Z=0+ Qn tan l 

The intercept 'c' has little relevance when dealing with 

rock joints unless the walls are bonded with 'bridges' of 

intact material. An "apparent cohesion" intercept is 

often used as equivalent to the shearing component of 

failure of intact asperities. 

1.2 

3. Both the above criteria are linear. This however is not 

the case for non-planar rock surfaces and various attempts 
have been made to fit non-linear relationships with 

mathematical laws in the form 

t= f(in) 1.3 

In those cases the shear strength may be described by a 

variable coefficient of friction or in terms of a normal 

stress dependent "apparent cohesion" and a variable co- 

efficient of friction (see text below and Figure 1.1). 

In a simplistic model the shear strength of a rock joint may be con- 

sidered to consist of two main components: 

(i) A basic frictional component (ýb) which represents the 

minimum resistance between two flat, unpolished rock 

surfaces. The basic friction angle depends on the 

mineralogy of the rock. 

(ii) An additional resistance due to the presence of 
irregularities on the joint walls (roughness component, R0). 

The effects of surface roughness may be recognized in the 

shear strength versus normal stress curve as an apparent 

cohesion or as an increase in the observed friction angle 

over the basic friction angle of the rock. 
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The above models are illustrated diagrammatically in Figure 1.1. 

1. The basic frictional component of Joint shear strength 

The frictional resistance (0) developed between two flat rock surfaces 

is affected by the mineralogical composition of the material and- the 

moisture conditions. Measurements of mineral friction by Horn and 

Deere (1962) showed that the crystal structure is related with adverse 

effects of the moisture condition. Oven-drying increased the friction 

of lattice-structure minerals (mica, chlorite, clay, talc, serpentine) 

but surprisingly lowered the friction of minerals with massive structure 

such as quartz, calcite and feldspar, from approximately 23° - 37° when 

tested wet to 6° - 8° when dried. Since tests on dry flat surfaces of 

rock with high mineral content of those types do not display the low 

friction values suggested in Horn and Deere's experiments, it may be 

concluded that the phenomenon is restricted to highly polished mineral 

surfaces. 

In general, the friction coefficients of minerals range between 0.4 (- 22°) 

and 0.8 (- 39°), but for lattice minerals it can be as low as 0.2 

when wet. Consequently, rocks composed largely of such minerals can have 

quite low basic friction angles. For example, Brown et al. (1977) have 

reported angles of friction as low as 20.5° for wet smooth cleavage 

planes in Delabole slate, which was 9° lower than the values obtained 

from similar dry specimens. 

Table 1.1 presents a summary of basic friction angles for unweathered 

flat rock surfaces. From the data it is seen that sedimentary and 

igneous rocks have generally higher values than metamorphic rocks. 

This is due to the relative proportions of massive and layer lattice 

minerals in the rock materials. Unweathered igneous rocks 'are little 

affected by the presence of water whereas fine-grained sedimentary 

rocks show large strength losses under saturated conditions. 

For practical purposes the angle of basic friction can be determined 

from the residual shear strength of flat rock surfaces. The latter may 

result from residual shear tests on planar natural joints. Alternatively, 

the residual state may be simulated by preparing planar, rough-sawn or 

planar, sandblasted surfaces and conducting residual shear tests. It is 
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TABLE 1.1 BASIC FRICTION ANGLES OF VARIOUS UNWEATHERED 

ROCKS OBTAINED FROM FLAT AND RESIDUAL SURFACES 

(from'Barton and Choubey, 1977) 

0 

Rock type Moisture Basic friction angle Reference 
condition 0. 

A. Sedimentary Rocks 
Sandstone Dry 26-35 Patton, 1966 Sandstone Wet 25-33 Patton, 1966 Sandstone Wet 29 Ripley & Lee, 1962 Sandstone Dry 31-33 Krsmanovie, 1967 Sandstone Dry 32-34 Coulson, 1972 Sandstone Wet. 31-34 Coulson, 1972 Sandstone Wet 33 Richards, 1975 
Shale Wet 27 Ripley & Lee, 1962 
Siltstone Wet 31 Ripley & Lee, 1962 Siltstone Dry 31-33 Coulson, 1972 
Siltstone Wet 27-31 Coulson, 1972 Conglomerate Dry 35 Krsmanovi!, 1967 
Chalk Wet 30 Hutchinson, 1972 Limestone Dry 31-37 Coulson, 1972 Limestone Wet 27-35 Coulson, 1972 

B. Igneous Rocks 

Basalt Dry 35-38 Coulson, 1972 
Basalt Wet 31-36 Coulson, 1972 Fine-grained granite Dry 31-35 Coulson, 1972 
Fine-grained granite Wet 29-31 Coulson, 1972 
Coarse-grained granite Dry 31-35 Coulson, 1972 Coarse-grained granite Wet 31-33 Coulson, 1972 
Porphyry Dry 31 Barton, 1971b Porphyry Wet 31 Barton, 1971b 
Dolerire Dry 36 Richards, 1975 
Dolerite Wet 32 Richards, 1975 
C. Metamorphic Rocks 

Amphibolite Dry 32 Wallace ct al.; 1970 
Gneiss Dry 26-29 Coulson, 1972 
Gneiss Wet 23-26 Coulson, 1972 
Slate Dry 25-30 Barton, 1971b 
Slate W Dry 30 Richards, 1975 Slate 21 Richards, 1975 
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important that the granular texture of the rock is maintained as very 

smooth or too "coarse" (i. e. rough) surfaces due to sandblasting will 

give different than the true values. Coulson (1972) found that both 

the initial and residual friction of flat surfaces treated with 

different grades of carbide grit (from no. 80 to no. 600) increased 

with increasing 'roughness' under low normal stresses. A simple 

alternative method of measuring 0b is by conducting tilt tests between 

pairs of sawn surfaces (Barton and Choubey, 1977). In that case at 

least ten samples should be tested to characterize a rock type. 

The basic friction angle of a rock type is very close to the true 

residual friction (ýr) of a non-planar unweathered joint and for all 

practical purposes they can be considered interchangeable. However, 

extreme care should be exercised when the joints of interest have 

weathered surfaces. Richards (1975) found from shear tests on 

weathered sandstone joints that it is possible to have residual 

friction angles as low as 12° if normal stress levels were low. Under 

high levels of normal stress the more resistant sandstone beneath the. 

weathered skin came into effect and the mean Or value obtained from 

the same specimens was 28.5°. Barton and Choubey have suggested an 

empirical method for predicting the dir value for weathered joints 

based on the Schmidt hammer rebound numbers obtained from fresh and 

weathered surfaces and the angle of basic friction. 

2. The roughness component of Joint shear strength 

The usual idealization for joint roughness is to consider sliding 

taking place up the slope of a wedge shaped asperity inclined at an 

angle i to the direction of shearing, as shown in Figure 1.2(a); N is 

the applied normal load and T is the shear resistance under that load. 

Resolving these forces normal and parallel to the inclined surface AB 

yields: 

//AB: T' = Tcosi - Nsini -> T= T' + Nsini 
-b T= T'cosi + N'sini 

cosi 

1.4 

�LAB: N' = Ncosi + Toini =+ N= N' - Tsini 
ýs N= N'cosi - S'sini 

cosi 

1.5 
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The friction angle on the smooth sliding surface is ýby i. e. 

At the limit of sliding T and N are connected by: 

T_ T'cosi + N'sini 
N N'cosi - T'sini 1.7 

N' tan ob 1.6 

Introducing 1.6 in 1.7: 

T N'cosi tan + N'sini tan sb+ tan i 

thus 

Ntcosi - N'sini 

tan (' + ') 

1- tan ýb tan i 

1.8 

The effect of regular asperities inclined at a uniform angle i is 

therefore to increase the friction angle by i (Figure 1.2b). This 

result is also apparent upon examining the inclination (0b + i) of 

the resultant force on the plane of sliding (Figure 1.2c). If a 

natural joint is idealized as a regular set of saw toothed asperities, 

the function 1.8 can be considered to be a crude approximation of 

real joint behaviour. At low normal stresses displacement results in 

overriding of the irregularities. Asperity overriding gives rise to 

changes in the value of the normal deformation (dv) which has been 

termed dilation. The equation 1.8-implies that when there is no 

normal stress, asperities of inclination (i) less than 90° - 0b can 

be overriden. Under high normal stresses the work required to dilate 

against the normal force will exceed the work sufficient to shear 

through some asperities. Patton (1966) found that a bilinear relation 
(Figure 1.3) described his experimental data for shear of model joints 

with regular teeth. At low normal stresses the gradient of the steep 

primary portion was approximately equal to Ob +i where i was the 

inclination of the "asperities", and hence the curve was described by 

1.8. Beyond a certain level of normal stress the gradient changed 

rapidly as "asperity" failures occurred and the upper portions were 

fitted with Coulomb's equation. 
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In a real situation the transition from asperity overriding to 

shearing is not as abrupt as suggested in Figure 1.3, and the 

envelopes usually display a continuous curvature, which reflects 

a progressive transition from one mode of failure to the other. 

However, the original assumption of a bilinear friction law was a 

marked departure from the traditional concept of interpreting the 

shear strength of joints on the basis of Coulomb's "constants" c and 
1. The normal stress dependency of the shear strength of non-planar 

joints has been demonstrated by many investigators over the years 

e. g. Jaeger (1959), Krsovic and Langof (1964), Drozd (1967), 

Byerlee (1967), Ruiz et al. (1968), Barton (1973) to mention just a 

few. A review of proposed non-linear criteria will be made in sub- 

section 4. 

j. Peak, ultimate and residual shear strength 

The bilinear law relates to-peak shear strength only. The peak shear 

strength of a joint is, as the term implies, the maximum resistance 

which usually develops after a very small amount of displacement. 
It is conventionally described as peak frictional resistance or peak 

total frictional resistance. An interlocked rough joint subjected to 

shearing under a given normal stress, initially behaves in a "stiff" 

fashion, i. e. there is a large increase in shear strength for small 

displacement. In general, small initial displacements produce a steep 

increase in shear resistance. until a peak value is reached at a "peak 

shear displacement" (dh)p. Continuation of the movement after the 

peak results in progressive decrease in shear strength until a residual 

value is approached. Different joint types behave in different ways 

and a more detailed examination of the stress-displacement behaviour 

will be made in section 1.3. 

As has been discussed in the previous subsection 1, the residual friction 

of a non-planar fresh joint may for practical purposes be considered 

equal to the basic friction angle, thus assuming that roughness is not 

influencial any more and. hence dilation at the residual stage must be 

zero. Another practical rule proposed by the Commission on Standard- 

ization of Laboratory and Field Tests (ISRM 1974) regards the residual 

stage as reached when at least four consecutive sets of readings are 

obtained which show not more than 5o variation in shear stress over a 
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shear displacement of 10 mm. However, the Commission does recommend 

an independent check of the residual friction angle thus obtained, 

by testing two artificially prepared surfaces (saw-cut and ground flat 

with no. 80 silicon carbide grit). 

Erahn and Morgenstern (1979) observed that "two rock joint samples" 

of the same mineral composition and tested under the same stress 

state will not have the same 'large strain shearing resistance? if 
the structure or roughness along the shearing surfaces is not similar". 

They therefore suggested the use of the term ultimate frictional 

resistance in place of the word residual. This terminology was in fact 

also used some years ago by Krsmanovic (1967) who recognized the 

limits imposed by direct shear testing. The ultimate frictional 

resistance depends on the initial roughness of the joint by contrast 
to the 'theoretical' minimum of S. 

Ult 
is probably the lowest 

value which may be obtained by shear testing a rough joint unless 

asperity strength is low and normal stresses high. 

Use of the residual angle of friction for purposes of design is 

dictated when geological evidence suggests that displacements have 

occurred in the past or are anticipated during construction. The 

same applies when a high factor of safety is required for important 

structures of long life-span. When slopes are to be cut in a rock 

mass which has persistent clay filled joints, the adoption of fir for 

those 'weaknesses' is also justified. Barton (1973a) commends that 

for slopes cut in "cleanly"-jointed rock it is reasonable to design for 

peak strength along at least part of the potential failure surface. 

He also considers that it may be justifiable to adopt a global peak 

strength for designing the short term stability of working slopes in 

open cast mines, and the long term stability of bolted or anchored 

rock cuttings. Hoek and Londe (1974) also suggest that peak shear 

characteristics may be used for temporary rock structures provided 

that the design values are checked against values from back analysis 

of failures in similar materials. 

The residual shear strength of joints is perhaps the least problematic 

parameter, at least in the form assumed in practice. It can be easily 

measured on small size samples, generally shows small variationg 'and 

weathering effects can readily be allowed for. peak shear strength is 
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still an "uncertain" parameter to use Schneider's (1978) expression. 

It certainly is an extremely variable property which depends on the 

roughness of the surface, the asperity strength and the operating 

normal stress. Peak total friction angles may range from as low as 30° 

to as high as 80°. The wide spectrum revealed by literature data is 

illustrated in Figure 1.4. Barton (1973) noted the lack of any 

differences between joints in sedimentary, igneous or metamorphic rocks. 

This can be. expected considering that for instance limestones may have 

high compressive strength and rough bedding joints. Conversely, the 

high compressive strength of many metamorphic rocks may have little 

effect on the shear strength of the relatively smooth and planar 

foliation planes. 

On a simplified basis the geometry or roughness of joints is character- 

ized by a waviness and by an uneveness (ISRM, 1978a). Waviness 

describes the large scale undulations which, if interlocked and in 

contact, cause dilation during shear displacement since they are too 

large to be sheared off. Uneveness describes small scale roughness 

that tends to be damaged during shear displacement unless the discont- 

inuity walls are of high strength and/or the stress levels are low, so 

that these small features can also cause dilation. In the same context 

Patton (1966) described waviness and uneveness as first and second order 

irregularities. Patton's classical example showing the different orders 

of surface roughness is illustrated in Figure 1.5... The small scale 

roughness (uneveness) affects the shear strength of joint specimen sizes 

that would be sampled in a laboratory or small scale in-situ shear test. 

The large scale undulations (waviness) affect the initial direction of 

shearing relative to the mean joint plane. If the effects of uneveness 

are ignored, the angle of inclination of the undulations can be 

substituted for i in equation 1.8. 

The interrelationship-between roughness-and dilation was introduced in 

the last section. Dilation increases the peak shear'strength of a joint 

irrespective of the stiffness of the normal loading system. If normal 

deformation is unrestricted, dilation will increase the strength by 

forcing the joint to slide up at an angle to the mean shearing direction. 

If normal deformation is restricted due to fixed external boundaries the 

tendency of the joint to dilate will increase the narmal stress exerted 

across the joint and shearing will be possible only if the asperities 
themselves fail. 
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It is generally recognized that non-planar joints under shearing 

experience maximum dilation at or near the moment of mobilization of 
the peak shear strength. Under prolonged displacement a non-planar 
joint may continue to dilate`(depending on v'n) but at reduced rate. 
The above-two characteristics are illustrated in Figure 1.6, where the 

top curve represents the total frictional resistance of the joint, 

comprising the frictional component "f" (= basic friction + asperity 
failure) and the dilation angle (dv, &h). 

Oversliding of asperities without rock breakage is unlikely, except at 

extremely low normal stress. The fluctuations observed along the "p" 

curve in Fig. 1.6 are due to the very reason of failing asperities. 
This "shearing through" mode of failure normally occurs when the normal 

stress is high, but it can also occur at low stresses if the geometry 

of the remaining unsheared asperities allows shear failure to occur for 

a lower energy input than would be required for dilation. Whenever the 

shearing component rises as shown by sudden upward jumps in the "O" 

curve, the dilation curve (d, /dh) is seen to fall.. If both rose together, 

then the total strength component tan 1(r / Qn) shown in the upper curve 

would have to show an upward kick, signifying an increased energy input 

for continued shearing. Under very high normal stresses, and especially 

at levels approaching the unconfined compressive strength of asperities, 
dilation tends to become completely suppressed. An example of the mode 

of variation that could, be shown by the peak dilation angle with 

increasing normal stress to asperity strength ratio is shown in Figure 1.70 

The inverse relationship would have been obtained if the asperity failure 

component in. each case had been similarly plotted. 

4. Peak shear strength envelopes and related criteria 

The bilinear law of friction represents an idealized expression of the 

effects of normal stress on the peak shear strength of non-planar joints. 

Shear tests on real joints demonstrate' that the envelopes display a 

continuous curvature, and various approaches have been made in the past 

to yield a suitable peak shear strength criterion. Some workers have 

simply fitted their experimental data with appropriate functions, 

whereas others have attempted to derive constitutive relations by 

quantifying the variables other than a- n which influence the peak shear 

strength. 
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Murrell (1965) found that the post-fracture shear strength of specimens 

failed under triaxial compression was best approximated by a power law. 

Similar conclusion was reached by Ruiz et al. (1968) when interpreting 

the results of in-situ sliding tests. In general, the most common 

relation used to describe curved peak shear strength envelopes are: 

Tp = Aan 1.9 

Tp =c+B (Tb 1.10 

Jaeger (1971) gave another non-linear function: 

Tp = ar1 - exp(-b Qn)J +n tan ýIr 1.11 

The latter gives an empirical "smoothing" of Patton's bilinear relation- 

ship (Figure 1.8). When Qn tends to zero the slope of the curve is 

given by 

= ab +tan 1.12 ýQn 

At large normal stresses the shear strength is given by: 

-gyp =a +` vn tan or 1.13 

and therefore 'a' is equivalent to the apparent cohesion used for 

linear strength envelopes. If it is assumed that at low v'n behaviour 

is primarily dependent on the asperity angle i, then tan(O + i) 

ab + tan % and thus : 

tan i sect 
b_r 

a(1 - tan f6rtan i) 
1.14 

While Jaeger's empirical equation should be satisfactory for a wide range 

of conditions, it is helpful to have an equation derived from identifiable 

properties of the joint and wall rock. Ladariyi and Archambault (1970 
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suggested a peak shear strength criterion related to the intact strength 
of the rock material, given by: 

Q (1 - as)(V + tan Ob) + as Sr 
1 

P* 1- (1 - as)V tan 
1. 

pb 
5 

where: as, termed the shear area ratio, is the ratio of the 

sum of areas of failed asperities to the total 

sample area 

is the rate of dilation at the instant of peak 

Sr is the shear strength of the asperity rock. 

At very'low normal stresses when almost no asperity failure occurs, 
as -- 0 and V -º tan i and therefore equation 1.15 reduces to 

Tp = an tan(Xb + i). At extremely high stresses when as 1, 

then Tp --i- Sr" 

The authors suggested that Sr can be represented by the equation of a 

parabola attributed to Fairhurst: 

k 

S_ a' 
I1 +n' 1 Qn 

cn 
(1 +n a 

1.16 
c 

where CTc is the uniaxial compressive strength of the wall material 

n is the ratio of the uniaxial compressive to the uniaxial 
tensile strength of the rock material. 

Sr may also be expressed by any other shear strength criterion, e. g. 
Coulomb's. The functions as and V were described by the following 

empirical relations: 

V= (1 - On)K 
tan i 1.17 

c 

a8= 1-(1-')L 1.18 

where for, rough rock surfaces, K=4 and L =-1.5. Hoek and-Bray (1977) 

integrated the various functional relationships 1.7 to 1.10 in the 
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following dimensionless form assuming n= 10 and K=4, L= '1.5= 

an an 1.5 Qn 4 Qn 1.5 Qn D. 5 
(1 -a 

Z(1- 
a) tan i+ tan s6ý +0.232Z-(1 -) 

7(1+io ) 
-1p__ ccccc 
o-c 

1- Lr1 - 
ßn)5' S tan i tan föbý 

c 1.19 

The above equation relates the two dimensionless quantities TJ O'c and 

(Tn/ mac; the only unknowns are the roughness angle i and the basic 

friction angle. A hypothetical example of a predicted peak shear 

strength envelope by using 1.19 and assuming i= 20° and ýb° = 30° is 

shown in Figure 1.9. The latter demonstrates that Ladanyi and 
Archambault's function 1.19 gives a smooth transition between Pattoh's 

equation at low n levels to. Pairhurstts equation for the intrinsic 

shear strength of the rock material adjacent to the joint when QO. 

An alternative approach to the problem of predicting the peak shear 

strength of non-planar joints was proposed by Barton (1973). Based upon 

experiments on model tension fractures, Barton determined the following 

relationship between i, normal stress and rock compressive strength: 

i= JRC 1og10(JCS/On) 1.20 

where JRC is a joint roughness coefficient varying from 20 to 0 

from the roughest to the smoothest surfaces 

JCS is the joint wall compressive strength (= (T c 
if the 

joint is unweathered). 

Substituting 1.20 in the fundamental expression 1.8 yields: 

r= can tan[JRC 1og10( 
aS) + Söb 2 1.21 

n 

The unknowns in 1.21 are: sdb which can be measured as already discussed 
(if the joint is weathered the value of should be used instead); JCS 

which can be obtained either indirectly from representative rock material 

or directly from the joint surfaces themselves by means of simple index 

tests, e. g. Schmidt hammer, scratch index, etc. (ISRM, 1978(s); JRC can be 

either back-calculated from the results of sliding tests (shear or tilt) 
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from 1.21 or an approximate value can be predicted by matching surface 

profiles from the joints of interest with typical profiles as 
illustrated in Figure 1.10. Once the values of the unknowns have been 

established equation 1.21 can be used for curve fitting or extrapolation 

of experimental peak shear strength data. 

The families of curves presented in Figure 1.11 illustrate the 

practical nature of Barton's empirical law of friction. Values of 

JRC of 20,10 and 5 are used to illustrate the effect of joint rough- 

ness, while the numbers 5,10,50,100 assigned to the-curves are the 

assumed values of joint wall strength (JCS in MPa units). 

The criterion is valid within certain boundaries of the normal stress. 
At extremely low Qn the slope of the envelope becomes unrealistically 
high, depending of course on JRC. By reviewing literature results 
Barton suggested a maximum peak arctan (t /6n) of 70°. When a" 

n --I- 
JCS 

then the logarithmic formulation of the dimensionless ratio predicts 

negative dilation. The following forms were suggested for the correspond- 
ing stress ranges: 

1. JCS/ n> 100 ............. t =n tan 70° 

2.100 > JCS an 31.... Tp = an tan [JRC 1og10(JýS )+ X1 
n 

3.1>JCSl n ................... p= tan Xb 

The upper boundary of the criterion is illustrated in Figure 1.11, 

where the envelopes predicted for the roughest joints have been 

truncated to a curvi-linear form. 

If a comparison is made between Barton's and Ladanyi and Archambault's 

functions it is seen that the predicted envelopes are in close agreement 

under very low normal stresses, but they diverge as the normal stress 
increases. This is because in Barton's equation (1.21) as an/JCS. -+ 19 

T= Cr tan O, whereas Ladanyi and Archambault's equation (1.19) reduces 

to 
p= 

Sr (shear strength of intact rock). Therefore, 1.21 tends to be 

more conservative than 1.19. at higher normal stress levels. 

Schneider (1976) approximated the variation in peak dilation (i) with 

normal stress as observed in his experiments on model joint casts with 
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an exponential relation which, if substituted in equation 1.8, ' 

yields 

-ka 
'up = Cr tan(ýb + ioe n) 1.22 

where: io = peak dilation angle at zero normal stress 

k= empirical reduction factor. 

From a correlation with the tensile strength ( o't) of the materials, 
Schneider found the following empirical function between k and 07t: 

k= a(cytd)-b 1.23 

where d simply serves the purpose of making the function dimensionless. 

An inspection of all the peak shear strength criteria reviewed in this 

section shows that all except for Barton's rely on empirical constants. 

These constants can be obtained only by fitting the proposed curves to 

experimental data points. The relative advantage in Barton's criterion 

is that it is based on-simple, measurable or at least estimable joint 

properties, JRC, JCS and Or. In a recent article, Tse and Craden (1979) 

pointed out that small errors in estimating the value of JRC when 

visually comparing joint profiles with the "prototypes" in Fig. 1.10, 

could result in serious errors in estimating the peak shear strength 

from 1.21. They therefore recommended a numerical check of the value of 

JRC, based on a detailed profiling and analysis utilizing several of the 

mathematical techniques for describing surface characteristics used in 

mechanical engineering, to "avoid the subjectivity of estimates of JRC 

by comparison with typical profiles". Such errors could easily be 

avoided by actually "measuring" JRC from simple index tests as will be 

discussed later in part two. 

In the preceding discussions the shear strength of joints without infilling 

material has been considered. If the joint walls are separated by a filling 

of clay, fault gauge, or weathered material, the shear strength will depend 

on the character and mechanical properties 'of infill, and its . thiclness in 

relation to the geometry of the joint walls. Comprehensive reviews of the 

behaviour of infilled joints have been presented by Barton (1973a, 1974)" 

The infilled class of joints have not been included in the present 

experimental study. Brief reference to their behaviour will be made in 

the literature reviews in parts two and three. 
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1.1.4 Shear deformation 

Following an extensive review of in-situ and laboratory shear tests, 
Goodman (1970) classified the shear stress-shear deformation curves into 
four types, as illustrated in Figure 1.12. 

i 
T 

Type 2 

ýýPoI fished 
'Saw cut 

,. 

O! 234. cm OI23 1dh 
4cm 

Type 3 Type' 4 

et thin infill 

r! 

D'i' 

ry 

sturbed 
Undisturbed ; ^--W f-fý -infill 

O1234O1234 Clip 
Displacement, dh (cm) 

FIGURE 1.12 Typical shear stress - displacement relationships 
for various types of discontinuities (after Goodman, -1970) 

Type (1) behaviour is typical of incipient joints and 'healed' types 

containing e. g. chlorite, calcite, pyrite or cemented gauge. The 

stress-deformation curve rises steeply to a peak shear stress at very 
low deformations and then falls quickly to a residual value that may be 

one-third or less of the peak. 

Type (2) curves which are roughly simulated by artificial sawn, or' 
polished planar surfaces, are also typical of joints with hard and 
fairly smooth surfaces, although the latter do not always show a distinct 

peak point. Differences between peak and residual strength are 
generally low. 

Type (3) curves are typical of clean, rough, undulating joints. The 

relatively rapid rise in shear stress to a peak is usually followed by 

an irregular post-peak history from overriding of successive asperities, and 
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considerable loss in load carrying capacity. Jaeger & Rosengren (1969, 

quoted in Lama and Vutukuri, 1978) give a variation of this behaviour, 

showing somewhat smoother curves which they associate with undulating 
bedding planes such as those with cross ripple markings and also 
faults with cross slickensides or grooves. 

Type (4) behaviour which is typical of joints containing infilling 

material is extremely dependent on the water content of the infill. 

Behaviour can range from 'brittle' to 'plastic' depending upon the 

moisture content and the thickness of the joint filling. or seam, 

In the context of this thesis it is the pre-peak portion of the shear 

stress-deformation curves that is of main interest. Goodman, Taylor 

and Brekke (1968) defined the slope of that part as the unit shear 

stiffness, K_. In general terms the peäk shear stiffness of a joint 

can be found by conducting a shear test and dividing the peak shear 

strength by the peak shear displacement. Joints may also exhibit non- 

linear behaviour; the exact shape of the pre-peak portion describes 

the dependency of the shear stiffness on the level of shear stress 

under a given normal stress. Inspection of the curve types in Figure 1.12 

shows that types 1 and 2. display'little, if any, nonlinearity, while 
types 3 and 4 display progressively more non-linearity. 

For an initial appreciation of the variations in shear stiffness as 

dictated by the type of discontinuity some typical Ks values quoted by 

Goodman (1970) for the varieties in Figure 1.12 can be examined. As 

would be anticipated the highest 
sK value corresponds to-the healed 

and incipient joint type (Ks = 6.0 MPa/mm), and the lowest to joints 

containing thick wet infilling (s = . 008 MPa/mm). The latter is 

approximately three times lower than the 8 value of joints with dry 

infill. Clean, smooth fractures such as those represented by type (2) 

behaviour have almost the same or slightly higher S values 

. 06 MPa/mm) than the rough, undulating varieties (type 3,8 - "01 P'tPa/mm), 

because of the considerably smaller peak shear displacement. A more 
detailed review of e data from the literature will be made in part three. 

Goodman (1970) noted that since 8'is a function of peak shear strength 

and displacement and the latter depend on the normal stress level, 

roughness, filling and other joint system variables, it follows that 

for a given type and condition of joint the shear stiffness is 'a function 

only of the normal stress. 
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John (1970) suggested that the variation of peak shear displacement and 

shear stiffness with changing normal stress can be simplified into two 

models of behaviour, that is a model of constant shear stiffness as 

illustrated in Figure 1.13(a) or a model of a constant peak displacement 

shown in Figure 1 . 13(b). Inspection of pre-peak shear stress-displacement 

records shows that neither of the two models is universally applicable 

to rock joints. Interchanging modes of behaviour can be seen in the 

collection of curves in Figure 1.14. 

The plots in Fig. 1,. 14(a) by Jaeger (1971) correspond to a saw-cut ground 

trachyte sample (curve no. 1) and to a similar specimen after it had been 

subjected to 25 cm of cumulative displacement (curve no. 2). The former 

gave identical pre-peak curves thus matching the constant stiffness model. 

Conversely, the worn specimen revealed a marked dependency on Qn 

resembling the constant displacement model. A similar observation can 
be made for the stress-displacement records by Chappell (1975) obtained 
from shear tests on graphite coated bedding planes in shale (Fig. 1.14(b)). 

For joint no. 1 the shear stiffness is a function of the normal load, 

while the stiffness of no. 2 seems to be independent of the normal load. 

The curves in Figs. 1.14(c) and 1.14(d) show varying degree of dependency 

of stiffness on Qn. On the whole, experimental cases indicating an 

essential independence of s on Qn seem to be the exception. The shear 

stiffness usually is normal stress dependent although the "constant peak 

displacement" model is not generally representative of the real behaviour, 

which seems to lie between the two extremes. 

Since the shear deformation of joints in the pre-peak region is usually 

very small, the calculated values of shear stiffness are bound to be 

affected by the experimental technique, that is the method of "gripping" 

the specimen and the location of the displacement measuring devices. 

Rosso (1976) made an interesting comparison between shear stress-deformation 

curves and shear stiffness values as derived from triaxial and direct 

shear testing of joint samples by using different techniques for measuring 

the displacements. He found that the true shear stiffness can only be 

obtained if displacements are measured directly from the joint sample and 

as near to the shear plane as possible; errors in the displacement values 

can be quite high if the additional deformations of the loading systan and 

the mounting material are not eliminated. Direct measurements of deform- 

ation of the joint specimen gave comparable shear stiffness values from 

both the triaxial and direct shear tests. 
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Rosso also noted that '!.. even after achieving repeatable results 

using two different techniques in the laboratory, it is often 
difficult to obtain data comparable to that derived from large scale 
tests in the field". By comparing his results with a set of s 

values from in-situ tests he found that overall the in-situ Ks data 

was 1.5 - 4.0 times lower than the s values obtained from the 

laboratory specimens tested in direct shear. Those differences were 
thought to be due to the different stress'paths followed in the 

laboratory tests (an held constant as r increased) and in the field 

tests (cn increased along with Z until'slip occurred, as well as 
due to the physical differences between the joint samples. However, 

experimental evidence from the literature suggests that a scale effect 

on s may be a key factor in such discrepancies. There appears to be 

an inverse proportionality between test dimension and shear stiffness, 

for a given no=al stress (Barton, 1972). Shear joint stiffness in 

relation to scale will be considered in part three. 

1.1.5 Normal deformation 

Numerous in-situ plate loading tests have indicated that the deformation 

modulus of a jointed rock mass may be as much as an'order of magnitude 
less than the Young's modulus measured from tests on intact laboratory 

specimens. This is because the normal deformability of joints is 

generally much higher than the deformation of the solid rock separating 

the joints. Goodman et al. (1968) introduced the term normal stiffness 

Kn to describe the stress-deformation character of joints under normal 

loading condition. Normal joint stiffness is defined as the normal 

stress per unit closure. 

Goodman (1974) described the basic mechanics of normal deformation of 

joints by assuming a block resting lightly on a rough surface. In that 

situation, the proportion of the surface area in actual contact is 

extremely small and the entire contact force is sustained at a few 
(probably three) point contacts. Under increasing normal load a 

progressively larger contact area develops as the point contacts 

enlarge from elastic or plastic deformation, crushing, and indirect 

tensile cracking, whilst deformation is bringing new regions into 

contact. It is possible to pursue these mechanisms mathematically 
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and develop a theory of normal deformation under increasing normal 
load, as was done for metals by Bowden and Tabor (1964); however, 

as Goodman points out, the joint system is so poorly defined that an 

empirical approach is more useful. 

In his description of the normal stress-joint closure relationship 
Goodman considered two physical constraints: 

(i) there is a limit to the amount of joint closure possible; 
the maximum closure (m) must be less than the aperture 
thickness (ad) defined as the maximum gap anywhere 

across two mated joint walls (Figure 1.15a). 

(ii) the joint is assumed to exhibit negligible tensile 

strength, hence on complete removal of the normal load 

there will be no further resistance to motion, i. e. the 

normal stiffness will be equal to zero. 

Combining these two conditions Goodman proposed that the normal stress- 

closure relationship can befitted to a quarter space (Fig. 1.15b) and 
the following empirical hyperbolic relationship was advanced: 

AV. , 
a_n -V- DV uni +n, AVG < Vm 1.24 

mj 

where AVj is the amount of joint closure corresponding to an increase 

of normal stress from an initial level to Qn, and Vm is the 

maximum closure. The suggested hyperbolic variation between normal 

stress and joint closure implies that normal stiffness n is not a 

constant (as originally assumed by Goodman et al., 1968) but varies 

continuously from 0 to co. Hence for given Q. and Vm, the value of 

K1 can be found from the derivative of 1.24: 

2 

1.25 $n 
c 

The non-linearity in the stress-closure relationship had been recognized 
in earlier studies by Shehata (1971, quoted in Sharp and Maini 1972) 

who described the relationship as semi-logarithmic, thus implying that 

complete joint closure in the sense assumed by Goodman's hyperbola 

never occurs. 
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Witherspoon and Gale (1977) referred to two cases of large scale 

compression tests conducted. by Pratt et al. (1974) on a large block 

(3 mx3mx3 m) of naturally fractured granitic rock, and by Gale 

(1975) on a stiff saw-cut fracture in a large diameter (approximately 

1 meter) granite core. The type of non-linear behaviour observed in 

those tests is shown in Figures 1.16'and 1.17. The stress-strain 

data from the field test show the relative contribution to the total 

deformation of the joint, microcracks and the intact rock, as well as 

the non-linear nature of the normal force-displacement curve. Similarly, 

Gale's data plotted in Fig. 1.17 show the elastic curve of the solid 

rock (A), the total deformation curve (B) representing both the elastic 

compression of the rock and the closure of the artificial saw-cut 

fracture,. and the net closure curve (C) = (A) - (B). Gale found. that non- 

linear behaviour persisted with repeated loadings. 

Another experimental example by Goodman (1976) is shown in Figure 1.18. 

Curve (A) represents the deformation of an intact cylindrical specimen 

of granodiorite (91.4 mm length, 44.4 mm diameter) during its third 

loading cycle in uniaxial compression. Curve (B) shows the deformation 

of the same specimen with an interlocked extension fracture running 

parallel to its ends. Finally, curve (C) gives the deformation of the 

split cylinder after the two halves had been rotated to create a 

mismatched fracture with a mean aperture of 1.27 mm. The dotted line 

is an extrapolation of the experimental curve due to specimen failure 

at point F. The net joint closure curves shown in the lower half of 

Fig. 1.18 were derived by subtraction of (A) from (B) and (C). It is 

interesting to note the large difference in the maximum closure of the 

interlocked and mismatched fracture (0.119 MM and 0.386 mm respectively), 

which emphasises the fundamental significance of the initial seating 

condition in joint deformation. Goodman pointed out that unloading 

of the jointed specimens followed practically the same path as the 

unloading of the intact rock, signifying that the elastic portion of 

the normal deformation in a rock with a joint is entirely derived from 

the rock, hence joint closure is essentially irrecoverable. 

Similar observations to the above have been reported by Iwai (1976) who 

found that uniaxial compression of three artificially fractured 

cylindrical specimens of granite, marble and basalt gave highly non- 
linear stress-deformation curves throughout repeated loadings up to 
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20 MPa. An example of the stress-deformation relationships obtained 
in that study is shown in Figure 1.19. The three dotted curves 

represent the total deformation (rock + fracture) at three measuring 

points around the circumference; the difference in measurements was 

attributed to eccentric application of the axial stress. The net 
fracture closure curve (C) was derived by subtraction of the intact 

rock compression curve (B) from the average total deformation curve (A). 

It should be noted that the axial stress ( 0e) represents the applied 

effective normal stress, as these tests were conducted under simultaneous 

water injection in the fracture. Iwai found that the loading paths 
+i 

it. each load cycling were best approximated by a hyperbolic fit. 

Upon unloading significant hysteresis and permanent sets were observed 
in all cycles. 

Hungr and Coates (1978) conducted a series of compression tests on 

natural joints in limestone and sandstone. The normal stress-deformation 

curves obtained from those experiments did not exhibit non-linear 
behaviour, and in fact as illustrated in Figure 1.20(a), if minor 

irregularities were neglected all the curves were close to linear. 

The authors explained those relationships on the basis of a "joint 

precompression" effect. Specifically, they suggested that those joints 

had probably been compressed in the past by pressures much greater than 

those applied in the tests (maximum applied'o was in the order; of 2.5 
n 

to 3.0 MPa). A large part of the original deformations was irrecoverable 

and hence unloading and recompression of the same joints followed a 

relatively steep path, as shown'in the diagrammatic illustration in 

Figure 1.20(b). The-recompression curves could be expected to possess 

a relatively low degree of curvature, since the contact of a pre- 

compressed joint would not change as rapidly as in the case of a 

normally loaded joint with a large proportion of asperity area intact. 

The same views had been expressed earlier by Snow (1972) who noted that 

precompressed joints exhibit linear deformability. The author referred 

to unpublished data by Shehata, which apparently indicated linear 

variation in joint closure under repeated loading below some previously 

attained maxim= load (value not quoted). In conclusion, Snow suggested 

that non-linear behaviour may be appropriate for "virgin" fractures 

that have never closed before. No other evidence on the normal stress- 

closure relationship of natural joints was found in the literature. 
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1.1.6 Concluding remarks 

It is general knowledge that the engineering behaviour of the majority 

of rock masses at or near the earth's surface is largely determined by 

the geometrical structure of the network of intersecting discontinuities 

and their strength and deformation properties. The, inherent limitation 

in attempting to quantify the influence of joints is that they are 

'sampleable' only as individuals, or in small numbers when tested in-situ. 

Implicit analysis of a jointed rock mass, for example allowing for the 

"softening" effect of joints by using an 'effective' modulus, of deform-, 

ation, has the disadvantage that the mass is treated as a continuum. 

Joints introduce non-linear, -low symmetry properties into the rock mass 

behaviour. In the 'discontinuum' approach joints are considered as 

discrete elements of the mass and their properties can be input into an 

explicit physical model study or numerical analysis. The review presented 

in this part gives a summary of the fundamental shear strength and de- 

formation characteristics of joints as individual rock mass components. 

It has long been recognized that the peak frictional resistance of joints 

depends on the physical characteristics of the surfaces, i. e. roughness 

and asperity strength, and the operating level of normal stress. The basic 

friction angle of planar surfaces depends on the mineralogical composition 

of the rock material and the moisture condition and in general is equal 

to the residual friction of non-planar, unweathered joints. Various 

empirical functions have been presented to describe the peak shear 

strength envelopes of non-planar joints. These range from simple 

mathematical expressions fitted to specific sets of experimental data 

to functions of more general application based on identifiable joint 

properties. Barton's criterion for peak shear strength is based on 

measurable indices of joint wall strength and roughness; other criteria 

largely rely on empirical constants which can only be defined by fitting 

the proposed equations to experimental data. 

The term 'stiffness' of a rock joint is used to describe the overall 

stress-deformation characteristics in both the normal and tangential 

senses. The tangential or shear joint stiffness K describes the rate 
s 

of change of the shear stress with respect to shear displacement. The 

shear stiffness of a given joint type depends on the level of normal 
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stress. Ks values may be affected by the experimental technique and 

the scale of the test specimen. The normal stiffness K1 describes 

the rate of change of normal stress with respect to normal displacement. 

Present experimental evidence, mostly from compression tests on 

artificial fractures, indicates non-linear variation. A small number 

of tests on natural joints have shown an almost linear variation between 

compression load and closure. Non-linear models imply that the normal 

stiffness Kn will increase to a very large number as the joint will be 

approaching a fully closed condition. Intuitively' the maximum joint 

closure will be some function of the initial aperture thickness, and the 

joint wall strength and roughness. 

q 



PART TWO 

EXPERIMENTAL STUDY OF 

SCALE EFFECTS 

ON THE SHEAR STRENGTH OF JOINTS 
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CHAPTER 2.1 

INTRODUCTION 

2.1.1 General 

One of the most argueable aspects in applied rock mechanics concerns the 

extent to which the strength characteristics of intact or jointed samples 

of conventional size can be confidently relied upon to predict the 

response of the entire rock mass to, changes of the existing stress 

conditions. 

It is of vital practical importance that the existence or otherwise of 
size-effects be established. A structure designed assuming a size- 

strength effect will be overly conservative should no such effect exist, 

while a design assuming no scale effect would be unsafe should the rock 

mass properties be, in fact, size dependent. 

The size-strength relationships in intact rock material have received 
considerable attention in the past and an appreciable volume of 

experimental data exists. By contrast, a very limited amount of 
infozmation is available on the sensitivity of the shear properties 

of discontinuities to scale effects. 

The strength properties of the intact rock constitute an essential 

parameter (viz. joint compressive strength, JCS) in the evaluation of 

the frictional resistance along joints. It has been suggested that a 

scale effect in the shear strength of discontinuities may be induced 

by the size-dependency of the strength properties of the intact material. 

In the following sections a brief review of the literature on the strength- 

size effects in intact rock is followed by a detailed reference to the 

available information regarding similar effects along discontinuities. 

-2.1.2- Effects of scale upon the strength of intact rock 

The influence of size upon the strength properties and in particular 
the uniaxial compressive strength of rock materials has attracted the 

interest of a number of investigators. 
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Laboratory and in-situ compression tests on specimens (mostly of coal) 

with sample volumes differing by several orders of magnitude have 

revealed significant scale effects. 

The effect of size upon the tensile strength ( mot) has been studied in 

connection with the standardization of indirect methods for evaluation 

of vt (Brazilian disc test, point load test). Although restricted 

mostly to comparisons of specimen sizes in the laboratory range, tensile 

strength appears to be scale dependent. arthezmore, the intrinsic 

cohesion of intact rock ruptured in shear has been reported to decrease 

with increasing size of the test specimen. 

1. Uniaxial Compressive Strength 

It is well known in the field of materials testing that the strength 

values of specimens of a given material decrease as specimen size 
increases. The majority of the investigations on the size-strength 

relationships in rock have revealed similar trends, with laboratory to 

in-situ strength ratios generally ranging between2 and 10 (Bieniawski 

and Van Heerden, 1975)" 

The changes in the compressive strength of-rock materials with increasing 

specimen size have been attributed to the action or interaction of the 

following factors: 

-a purely statistical "volume effect" arising from the existence 

of internal structural flaws 
,. 

-a "surface effect" due to external imperfections induced either 

during specimen preparation or by the natural reaction of the 

rock minerals to the free surface 

- "mechanical" effects related to the amount, of strain energy 

stored during compression. 

The "volume effect" is based on the assumption that arty. material contains 

a number of flaws which affect the strength by their geometry, orientation 

and location. As the volume increases so does the probability of flaws 

in the specimen and therefore the probability of failure (Weibull'S 

statistical volume effect). 

Weibull's theory has been applied in size effects investigations in the 

form of: 
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ßc1 = ß2 
1 /M 

2.1 
c2 1 

where cci and 'U-c2 are the strength of samples with volumes V1 and V2 

respectively and m is a constant of the material. 

Ludborg (1967) used the above expression to quantify the decrease in 

compressive strength of cylindrical specimens of granite with 
increasing volume and quoted a value of 6 for the constant m. 

Lama and Gonano (1976) collected various strength-volume relationships 
that have been found in different rock types, which are presented in 
Figure 2.1. For all types of materials the strength showed a decrease 

with increasing specimen volume at least in the initial stage. The 

apparently linear normal-log plot of some of the strength-volume 
relationships was assigned the following empirical expression: 

a-, =a+b log V, 2.2 

where is the compressive strength and V the specimen volume. 

The last authors quoted the following values of b for the various types 

of rocks: sapropolite = -. 3443; durain = -. 0699; "rbedded coal" _ -. 0877; 

Barnsley Hard = -. 1316; Deep Ihzfryn = -. 0524. 

As clearly shown in Figure 2.1. for some of the rocks the strength in the 

earlier stages seems to be independent of the volume while the drop in 

strength starts at a point when the volume increases beyond a certain 
limit. In saprolite,, there is a drop in strength until the specimen 

volume increases to 100. cm3, then the strength remains constant until 
the volume increases further to about 10000 cm3. For volume increases 

beyond 105 cm3 the strength values appear to approach an asymptotic 

value. 

The cases presented in Figure 2.1 are a good example of the variability 

of the strength-size relationships which inhibit the establishment of a 

universal law. They are also indicative of the fact that the changes 
in strength with size probably cannot be explained by indiscriminate 

adaptation of Weibullts theory. 

The theoretical statistical relationships between size and strength are 

based on the assumption that only the distribution of flaws influences 

the strength. Implicitly, the assumption is also made that the process 
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of specimen deformation and fracture initiation is not influenced by 

size (Einstein et al., 1970). Experimental studies by the last authors 
have shown the opposite effect. 

The amount of strain energy that is stored in a specimen under 

compression increases with its volume and tends to accelerate crack 

propagation (Ber a1x, 1974). A study of the "energy effects" has been 

reported by Einstein et al. (1970) who tested a r'ange`of sizes of 

cylindrical (D = 2.52 - 5.04 cm, 
L/D 

=-2) and prismatic (width = 1.26 - 
5.04 cm, length/width = 2, height/width = 4) specimens made of a 

brittle model material. In the course of each test the stress levels 

corresponding to initiation of stable and unstable crack development 

were monitored and related to the respective' specimen volume. 

On the basis of those results Einstein et Al. were-able to conclude 
that stable crack development was affected only by the statistical volume 

effect, the stress range over which propagation of stable cracks 

occurred being apparently independent of size. The unstable crack, 

growth and propagation was significantly accelerated by stored strain 

energy, the latter being correlative with specimen volume: 

As a further demonstration of the effects of strain energy, Einstein et al. 

tested a number of model cylinders in series with a "spring", which was a 

hollow plexiglass cylinder able to store a considerable amount of 

additional strain energy. ' Characteristically, those specimens failed 

at lower stress levels than similar ones tested without the "spring". 

The influence of surface flaws has been suggested'as a possible 

explanation for the lower strength values obtained occasionally, from 

small specimens as compared to larger ones. 

Hoskins and Horino, 1969 (quoted in Vutukuri, Lama & Saluja, 1974) tested 

cylindrical specimens (L/D = 2,, D, = 2.5 - 15-cm) of limestone,. marble, 

sandstone and granite. The last, authors found that for all rock types 

(except granite) the 2.5 cm diameter specimens had lower compressive 

strength than the 5 cm specimens of the same rock type. Maximum strength 

was obtained either from the 5 cm or the 7.5 cm diameter specimens, while 

further increase in diameter resulted in decrease of specimen strength. 

Stephenson and Triantafilidis (1974) found that the strength of. limestone 

and granite specimens showed a small increase in strength with larger 

specimen sizes. 
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In both of the above cases "surface effects" were held responsible for 

the lower strength of the smaller specimens. Since the specific surface 

is inversely proportional to the volume, the smaller the specimen the 

larger its specific surface area and the weaker the specimen when the 

surface flaws are the dominant characteristic of the test specimen. 

Although the majority of the reported experimental studies indicate the 

existence of size effects, other investigators argue that the phenomenon 

is not necessarily an inherent material property. 

Brown (1971) pointed out that general comparisons of test results between 

different specimen sizes are not valid because of the variable stress- 

gradients resulting from specimen size and geometry and testing conditions. 
He further suggested that the size effect can only be studied as an 
intrinsic material property if the tests are designed to apply as nearly 

uniform a loading to the specimen as possible. As an experimental 

confirmation of the above views, Brown called upon the results obtained 

by Hodgson and Cook (1970). The last authors tested cylindrical specimens 

of quartzite and quartzitic shale (L/D = 3, D= . 56 - 45.7 cm) under 

uniform stress condition. No "gross" scale effect was found in that 

size range. 

On the other hand, an approximately ten-fold reduction in strength of a 

weathered quartz-diorite reported by Pratt et al. (1972) was obtained 
from tests on specimens with comparable stress gradients and uniform 

loading in the central portion of the specimens. The experimental 

studies of the last authors revealed an apparent "shelf" in the strength- 

specimen size curve, beyond which there was no further decrease in 

strength with increasing size. The asymptotic value of the strength 

was attained at specimen size (length of equilateral triangular prism) 

of 0.9 meters. 

Similar findings have been reported by Bieniawski and Van Heerden (1975) 

from tests by the first author on cubical specimens of coal. In that 

case, the "critical" specimen size (side of cube) was approximately 

1.5 meters. Strength reductions by up to a factor of 7 had been recorded 

for specimen sizes below 1.5 M. 

However, such comprehensive testing programmes as the above two are the 

exception rather than the rule, and additional testing is required over 
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similar ranges of specimen sizes of other rock types, before the relation- 

ship between strength and specimen size can be finalized. As Bernaix (1974) 

pointed out, "... any laws defining scale effect derived from experimental 

test programmes or theoretical calculations must be approached with 

considerable caution". 

2. Tensile strength 

Various investigators have reported reduction of the tensile strength of 

materials with increasing specimen size. As already pointed out, most 

of the relevant studies were conducted in connection with the standard- 

ization of various indirect methods of assessment of tensile strength. 

Figure 2.2a and b shows the effect of specimen size in the Brazilian (a) 

and point load (b) methods. An apparent decline in the scale effect 
beyond a certain specimen size is evident in most of the relationships 
illustrated. 

3. Shear strength 

bcperimental studies on the effects of scale upon the shear strength 

characteristics of intact rocks have shown that the important property 

of cohesion (c) may also be size dependent. 

Il'Nitskaya, 1969 (quoted in Vutukuri, Lama & Saluja, 1974 ) investigated 

the influence of specimen size on the shear strength of gabbro and marble. 

A number of-cylindrical samples with diameters ranging from 1.0 to 7.0 cm 

were tested with the method of single shear with compression between 

bevelled dies. All specimens were tested for shear at two different 

angles of the shearing plane to the horizontal, viz. 50° and 70°. 

The results - illustrated in Figure 2.3a - showed that for both rock 

types the cohesion decreased with increasing size to an asymptotic value, 

which was characteristic for each rock type. For an increase of the 

specimen cross-section by a factor exceeding 110 the obtained reduction 

in cohesion was 29% for the marble and 26% for the gabbro. 

Barroso (1966) presented some results of in-situ direct shear tests on 

intact rock blocks of different sizes. The scale effects are shown in 

Figure 2.3(b) where cohesion has been plotted against test surface area. 
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In the light of the experimental evidence presently available one could 

accept, at least in a qualitative sense, that some form of an inverse 

relationship between size and strength properties of intact rock may 
exist. However, because of the uncertainties involved with regard to 

the exact mechanism that causes this strength reduction-with increasing 

size, reliable extrapolation of laboratory values to field dimensions 

still remains a matter for speculation. Knowledge of the maximum 

amount of strength loss of the intact rock with increasing size can 

prove very important in the quantitative evaluation of the scale effects 

upon the shear strength of joints. 

2.1.3 General considerations regarding the effect of scale upon the 

shear strength of joints 

The methods of determination of the shear properties relevant to 

stability analyses may vary from a full scale "test" involving back- 

analysis of a known failure to small scale laboratory tests on specimen 

sizes representing an extremely small portion of the field 
. 
joint exposures 

Whenever economically and technically possible, in-situ shear tests are 

conducted on larger samples.. 

One could justifiably argue that estimation of the mobilized "cohesion" 
(c) and friction (%) from the back-analysis of a well documented case 
history would provide parameters most relevant to the real field 

conditions. However, indiscriminate use of numerical values derived 

in this way for general design purposes has been cautioned by Hoek and 

Bray (1977" Back analysis of a failed slope will yield values of c and 
O valid only for the normal stress level in that particular slope at the 

moment of failure. One could assume that such values could be taken 

into consideration in the design of other slopes where'the same normal 

loads and similarly orientated critical set(s) of discontinuities exist. 

In the majority of cases joint shear strength estimates are obtained 

from laboratory and/or small scale in-situ tests. The relevance of 

such numerical values to full scale field exposures has been questioned 
in the past. 

Deere et al. (1967) outlined the significance of full appreciation of 

the likely effects of scale upon. the shear strength of different types of 

joint surfaces. They considered some hypothetical examples of shear 
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tests on joint specimens of different sizes sampled from large 

exposures, * as shown in Figure 2.4 (the smooth planar joint example 

was added by the present author). If A, B and C denote the sizes of 

a laboratory specimen (say 15 cm), an in-situ block (1 meter) and the 

full scale discontinuity (3 to 30 meters or even more) respectively, 

then the surface morphology would probably dictate the difference in 

strength (s). 

Salas (1968) stressed the need for large scale joint testing because of 

the variable and complex morphology of the in-situ exposures. He 

noted that a test carried out on a small surface cannot show the 

influence of surface roughness. 

Jaeger (1970) pointed out that 'ý... a question of great importance is 

that of how values of friction measured on small specimens in triaxial 

apparatus or on larger specimens in direct shear can be extrapolated to 

the practical scale". He drew attention to, the possible anisotropy of 

frictional values and sliding behaviour with increasing joint size as 

for instance in cases of prominent current ripple marks frequently 

characteristic of bedding planes. 

Although there is a very large volume of published in-situ shear test 

results, and the sizes of joints that have been tested in the laboratory 

and field cover an appreciable range, it is very rare that any well 

documented work regarding the strength-size relationships in joints 

can be found. There are a number of reasons for this lack of 

information. 

Because of the high costs involved, large scale in-situ tests are 

usually only employed to investigate the most critical discontinuity 

types such as infilled joints, shear zones, contacts of materials with 

strikingly different mechanical properties, etc., where scale effects 

may well be irrelevant. 

Tests on different sizes of those joint types which could be susceptible 

to size effects (e. g. clean,, rough bedding planes) have shown inconclusive 

results. Some tests have indicated no size effects, whereas in other 

cases the variations were either on the positive or negative side. In 

view of the well documented effects of surface roughness upon the shear 

strength of joints, it is readily understandable that unless surfaces 



54 

1. SMOOTH, ALMOST PLANAR 
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-I(-- 
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Size of actual failure surface in field problem 

1. SASB Sc 
2. SA Se54 SC 
3. SA SB9E SC 

FIGURE 2.4. Examples of the probable effects of different specimen sizes in shear testing 

of joints and the relevance of the measured shear strength (S) to that of 
full scale failure planes. (after Deere et al , 

1967) 

Note: Example No. 1 has been added by the present author. 
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with related morphologies are tested, i. e. with the small joints sampled 

from the same or at least very similar surfaces as those tested in-situ, 

then comparisons would be anything but conclusive. 

In addition, the practical problems frequently involved with large scale 

testing make the interpretation of the results very difficult. It has 

been reported that sliding tests of large blocks often result in 

differential displacements between the loaded and free ends of the 

specimen, because of the non-uniform shear'stress distribution along the 

sheared surface area (e. g. see Krsmanovic and Popovic, 1966, and 

Evdokimov and Sapegin, 1970). Deformations of the rock block overlying 

the discontinuity may induce a progressive type of failure due to the 

displacement gradient. In such cases the portion of the joint surface 

adjacent to the point of shear load application may reach its peak 

resistance while displacements have not even started at the other end. 

The problem is obviously all the more serious when the block contains 

large numbers of fissures and open cracks. 

The limited number of experimental studies where the effects of size upon 

the shear strength of joints have been coincidentally or intentionally 

considered are reviewed in the following section. 

2.1.4 Review of experimental evidence on size-strenRth'effects in 

joints 

¶he literature search has revealed a small amount of experimental data 

from tests on joint specimens of different sizes. The range of the 

joint types tested has been broadly divided into two groups based on 

the presence or absence of in. filling material, and the relevant information 

will be presented in that order. Joints without infilling have been sub- 

divided into "discontinuous" and "continuous" types, depending upon the 

presence or absence of intact bridges between the walls. 

1. Infilled joints 

Salas (1968) reported on a series of shear tests conducted in-situ at 

Mequinenza Dam on joints of three different sizes, viz. 0.5 x 0.5 meters, 

1 x, 1 meters and 4x4 meters. As shown in Figure 2.5(a), no apparent 

size effect was found as the results of the large scale tests corresponded 

perfectly, within the scatter, to the smaller size tests. That behaviour 

was attributed to the regular surface morphology of those joint types and 
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the existence of a soft infilling material of thickness sufficient to 

prohibit any contact between the existing irregularities. In other 

words, the tests merely measured the shear strength of the infill. 

Findings similar to the above have recently been reported by Infanti and 
Kanji (1978), from a laboratory and in-situ testing program on joints 

in basalt infilled with montmorillonite (Agva Vermelha hydroelectric 

power plant in Brazil). In that investigation joint sizes ranged 
between 400 cm2 (laboratory) and 10,000 - 40,000 cm2 (in-situ). All 

the tests were run after saturation for 48 hours. The results showed 
that, irrespective of size, the shear strength of those joints was 
dominated by the type (clayey, sandy, etc. ) and thickness of infilling. 

The maximum shear stress envelopes obtained from the smallest (20 x 20 cm) 

and largest (200 x 200-cm) test sizes are shown in Figure 2.5(b). As 

seen, the in-situ joints appeared to exhibit slightly higher shear 

strength than the small ones tested in the laboratory. The equations 
fitted to the experimental data are given in Figure 2.5(b). One of the 

large joints showed lower strength at Qn - 1.5 MPa than smaller joints 

tested in the laboratory under the same normal stress. Overall, no 

significant size effects were apparent and the minor differences were 

presumably due to small variations in the thickness and properties of 

the infilling. 

Londe (1973) presented the results from direct shear tests on clayey 

joints in limestone conducted on 25 cm diameter cores and on an in-situ 

joint of an area of 4.4 m2. The shear stress-nozmal stress curves are 

shown in Figure 2.5(c). As clearly seen, the ultimate frictional 

resistance of the laboratory specimens agreed very well with that 

measured in the in-situ test. 

2. Discontinuous joints 

The term is used for those joint types which exhibit a certain amount 

of cohesion under a theoretically zero normal stress as a result of 

existing "bridges" of intact material bonding the two joint walls 
together. The peak shear strength of"those joint types develops at 

the moment of rupture of those bonds.. The sliding movement which 

follows is resisted by frictional forces only. 
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The random pattern of the intact bridges may produce an apparent scale 

effect when an experimental determination is attempted of the peak shear 

strength of those joint types. 

Londe (1973) presented the results from shear tests on discontinuous 

limestone joints of two different sizes, viz. 8 cm and 30 cm diameter 

cores. The shear vs. normal stress plots of the data are shown in 

Figure 2.6. 

The peak shear strength (cohesion mainly) of the larger samples (30 cm) 

was overall found to be lower than that of the smaller (8 cm) ones, while 

a good agreement was observed between the ultimate strength (friction 

only) values from both sizes, with the larger ones apparently being slightly 

stronger. The explanation offered for this size-effect will be discussed 

later. 

3. Continuous joints 

In this type of discontinuity no wall intact bonding exists and the peak 

shear resistance is fundamentally linked with the morphology of the joint 

surfaces and the strength of asperities. 

Krsmanovic and Popovic (1966) reported a series of large scale in-situ 

shear tests on "clean" and infilled bedding planes in limestone. The 

peak shear strength of a large, unfilled bedding joint (2.8 x 1.8 m) was 

compared to the results from laboratory tests on large specimens 40 x 40 cm, 

which have been published by Krsmanovic, Tufo and Langof(1966). The 

derived peak shear strength envelopes for the in-situ fissure and the 40 cm 

joints (Fig. 6a) showed a good agreement for normal stresses up to 1.5 NPa" 

The apparent size effect at higher normal stresses could be related to 

the multistage testing method which was employed for the large joint. 

In absolute terms all the results obtained after the initial shearing 

under higher normal stresses did not truly represent peak strength 

conditions. 

.. Locher and Rieder (1970) Published the results (Table 2.1) from large 
2 

scale laboratory (200 cm) and in-situ tests (- 3 m2) on bedding Planes 

in limestone. The two large scale field tests yielded a friction angle 

higher by 5° than the average laboratory equivalent. The authors 

attributed the difference to a scale effect but no further explanation 

was given in that publication. 
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TABLE 2.1 

Results from laboratory (200 cm2) and in-situ (M 3 mm) shear tests 

on beddin_- planes in limestone rock. (From Locher and Rieder, 1970)" 

A. LABORATORY TESTS B. IN-SITU TESTS 

Specimen Peak friction Block Range of friction angles Ayer2jo 
angles 

Minimum Maximum 
Lower limit Upper limit 

H 36° 40° I 50° 54° 52° 
M 42° 48° II 48° 54° 50° 

N 45° 51° 

Average 41° 46° Average I, II 51° 
H, M, N 

Note: The min. peak values in laboratory tests correspond to the point 

of "bending" of the shear stress-shear displacement diagram at the 

beginning of any movement. 
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However, on the basis of other information given by Locher and Rieder 

one could infer that the morphology of the walls of the different 

joints was responsible for that size effect. In particular, the authors 
described the laboratory joints samples as "smooth", in which case even 

small undulations present on the large test surfaces could have well 

offered the additional resistance. Indeed, it was reported that post- 
test measurements on the in-situ surfaces showed deviations from the 

assumed sliding planes to be up to ±2 cm. 

Jaeger (1970) referred to some triazial tests by Rosengren on graphite 

coated joints in cores of two different diameters, viz. 5 and 15 cm. 

Two of the joints were described as smooth and another two as rough. 

The mean angles of friction for. the 5 cm smooth and rough joints were 

11° and 21i° respectively. Two other smooth joints in 15 cm core gave 

an angle of friction of 8-5° and a rough one of similar dimensions gave 

of j2%ak value of . 2, ° and residual friction of 17°. On the basis of 

those results Jaeger commented that on that scale size-effects might 

not be important but outlined the need for much further work. 

Pratt et al. (1974) conducted a series of laboratory and in-situ tests 

on diorite joints of various sizes. Field testing covered a range of 

areas between 142 and 5130 cm2 with joints up to 2 meters long. The 

laboratory tests were carried out on 60 cm2 joint specimens cored from 

the same natural surfaces which were tested in-situ. 

The testing programme revealed a remarkable size-effect upon the peals 

shear strength. The largest 1. n-situ joint (N 5000 cm2) showed an 

approximately 40/. drop in strength compared to the 140 cm2 specimens. 

Figure 2.7(a) shows the shear stress-shear displacement diagrams for 

different joint areas. The variation of peak shear strength with joint 

area is given by the semi-log plot in Figure 2.7(b). 

Barton and Choubey (1977) reported the results from a combination of 

tests conducted on a 45 x 50 cm joint in granite. The full-size 

specimen was originally tilt-tested and was then sawn into 18 samples 

with dimensions of 9.8 x 4.9 cm. Six of the latter were tilt tested 

and the remaining 12 were "push"-tested. The roughness of the surfaces 

dictated the choice, of the index testing method. Finally, all eighteen 

samples were sheared in- a conventional shear box under low normal stress 

level (the average ratio of Joint Compressive Strength to normal stress 

was - 182). All types of tests were conducted in the same direction. 
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The Joint Roughness Coefficient for each of the specimens tilt-tested 

was found from: 
a° 

JRC = 2.3 
lo JCS 

where a "was the tilt angle at sliding and jar was the angle of residual 

friction (= 29° for that type of granite). The normal stress was 

calculated from 

=Y hcos2a 2.4 

where h was the thickness of the top half of block (m) and Y was the 

rock density (KIT/m3). 

Because of the large length/thickness ratio of the full size joint (- 20) 

the normal stress was calculated from n=Y hcos a. Had the 

expression (2.4) been used the back-calculated JRC value would have 

been lower by 0.3. The average. results from all tests are, given in 

Table 2.2. 

TABLE 2.2 

Average results of tilt, push and shear box tests on different sizes 

of the same joint 
(after Barton and Choubey, 1977) 

Type Joint No. of Angle of Arctan Back-calculated 
of length specimens sliding, under (r/%) value of JRC 

test (cm) "tilting" or 
"pushing" 

Tilt 45 1= 59° - 5.5 

Tilt 10 
6 67.2° 

Push 12 70,5° - 

Shear box 10 18 48.5° 87 . 

As shown by the results in Table 2.2, a decrease of the joint length 

resulted in an increase of the JRC value from 5.5, corresponding to the 

45 cm joint, to 8.8 which is the average of 18 specimens from the same 

original surface, irrespective of the testing method. 'On the basis of 

those results, Barton and Choubey suggested that there must be a size- 

effect in the relative contribution of surface roughness to sliding 

resistance with increasing joint size. 
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On the basis. of the 
. available experimental information, various views 

regarding the size-strength effects in joints have been expressed in the 

past and different practical approaches to the problem have been suggested, 

as reviewed in the following section. 

2.1.5 Current state-of-art 

The experimental evidence presented in the last section has shown that 

the shear strength of joints infilled. with soft materials must be in- 

dependent of the joint sample, length, particularly in the cases where 
the thickness of the infilling is larger than the amplitude of the wall 

roughness. The fact that in those cases failure takes place inside the 

infilling material without any involvement of the actual joint surfaces 
is the obvious explanation. 

Discontinuous joints with "bridged" walls appear to be sensitive to size 

as far as peak strength is concerned but apparently scale free when they 

reach a "steady-sliding" stage (ultimate strength). Continuous joints 

have been reported to suffer a strength-loss with increasing size, 

whereas in other cases no such effects seem to exist. If one accepted 

the existence of size-effects two questions of fundamental significance 

arise: 
(a) which are the factors responsible for the scale effects? 
(b) in quantitative terms, how can we allow for them? 

Londe (1973) argued that if one analyzed the strength of a discontinuous 

joint in terms of cohesion (c) and friction (0), then both reasoning 

and experiment lead to the following conclusions: (a) strength due to 

cohesion decreases with increasing size; (b) strength relying on 

friction only (i. e. after the collapse of the sound rock bridges) is 

more or less insensitive to scale effects. 

In order to prove the reasoning behind his statements, Londe gave as an 

example the hypothetical case of a joint with intact bridges randomly 
distributed across the interface. He pointed out that test specimens 

sampled from such an occurrence could be any of the types shown by the 

diagrammatic illustration in Figure 2.8. Sample (A) would obviously 

show the highest peak strength (equal to the shear strength of the intact 

rock) and sample C would be the "weakestuu. In general the value of peak 

shear strength would depend upon the relative location of the tested 

specimen. 
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In a general comment concerning the size-effects in rock mechanics 

testing, Londe stated that "... a characteristic property of dis- 

continuous bodies is the decrease in the arithmetic mean of measured 

strengths and the scatter of the results as the size of the sample 

increases". In accordance with that concept Londe pointed out that 

the scale effect on the peak shear strength of discontinuous joints 

becomes more significant as the scatter of the experimental values 

determined on small specimens increases. 

Londe further suggested that 11... where failure depends only on friction, 

the scale effect can only increase the strength of the larger samples 
because, if it is assumed that the normal stress distribution is more 

or less uniform over the whole area sheared, the strength will be 

governed by those telementst of the surface where the friction angle 
is highest". 

As an experimental confirmation of his views, Londe referred to the 

experimental data which has been presented in Figure 2.6. In conclusion 
he suggested that in view of the size-effects associated with the peak 

strength of discontinuous joints, it is preferable to use for design 

purposes the average ultimate strength values obtained in-the laboratory 

which by contrast show much lower scatter (Figure 2.6) and are 

comparable with those obtained from large scale tests. 

Let µs now consider the existing views about the scale effects 

associated with unfilled, continuous joints. 

The test results on diorite joints of different sizes by Pratt et al. (1974) 

have been presented in Figure 2.7 of the last section. The authors 

attributed the drop in strength with increasing size to decrease of the 

actual contact area. From observations of the joint surfaces after 

completion of tests, Pratt and co-workers found that the actual contact 

areas between the walls were sometimes as low as 10 to 20/16 of the total 

surface area, depending upon the wavelength and amplitude of the joint 

irregularities. Consequently, the actual shear stresses must have been 

considerably higher than the average stress values calculated from the 

apparent surface areas. This led to the size-effect for'larger joints 

with lower contact areas. Pratt et al. Presumed that 11... there would 

probably be no size effect if the contact areas of large and small joints 

were the same". They suggested that such might be the case of un- 

weathered, perfectly mating discontinuities under high normal stresses. 
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Barton (1976) made an empirical approach to the problem. He suggested- 
that the effects of scale upon the uniaxial compressive strength of 
intact rock would potentially affect the value of Joint Compressive 

Strength (JCS) operating along a joint interface. By referring to the 

diagrams presented in Figure 1.11(section 1.1.3(4), in part one), he 

pointed out that a scale effect on the joint compressive strength (JCS) 

would have a marked effect on the shear strength predicted for rough 

undulating joints (Joint roughness coefficient, JRC = 20), but a minimal 

effect on smooth, nearly planar joints (JRC = 5). By analogy, there 

would be minimal or zero scale effect on residual strength and maximum 

scale effect on the peak strength of very rough joints. 

Based on the above assumptions, Barton attempted an alternative interpret- 

ation of the experimental results on diorite joints by Pratt et al. 
An investigation of the size-effects upon the uniaxial compressive 

strength of the same diorite rock has also been reported by Pratt - et al. 
(1972), and has been referred to briefly in section 2.1.2. 

As has been shown in Figure 2.7, the increasing size of diorite joints 

resulted in roughly 40% drop in peak shear strength. Three distinct 

peak strength envelopes corresponding to mean joint areas of 200,1500 

and 5000 cm2 are shown in Figure 2.9(a). By assuming square test 

surfaces those areas represent joint lengths of approximately 14 200), 

39 (- il 500) and 71 (x 5000) cm respectively. 

Barton (1976) derived the theoretical counterparts of those experimental 

envelopes by using the following input data in his criterion (egn. 1.21, 

part one): 
(i) he assumed a Joint Roughness Coefficient (IRR) of 20 and a basic 

friction angle (0b) of 30°. 

(ii) a peak arctan (T / n) value was derived from a middle point from 

each of the experimental envelopes shown in Figure 2.9(a). 

He was then able to back-calculate the JCS value in each case from 

log(JCS/ a-) _ 
Peak arctan (T/ o-n) - Ob 2.5 

n JRC 

The derived JCS values were: 54 M2a (14 cm joint); 23 MPa (39 cm joint); 

13 MPa (71 cm joint . 

By using the above JCS values and the other data defined in (i) and (ii) 

Barton predicted the peak strength envelopes of the three joints (Fig. 2.9(b)). 
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As can easily be seen, the -theoretical- envelopes had a very similar 
to almost identical trend with the experimental ones. 

The apparent four-fold reduction in the back-calculated JCS values 
corresponded roughly to the decrease in unconfined compression strength 
(aC) in intact specimens of the same rock as has been reported by 

Pratt et al. (1972). The back-calculated JCS and measured Q-c values 

are given below for comparison. 

Equivalent Back-calculated Measured a- of intact rock 
joint length, JCS, MPa 

Specimen size (MPa) 
L= ýÄ 

cm (cm) 

14 54 
71 13 

5 60-70 
30-45 15-20 
100 7 

>100 No further 
reduction in 
c-c 0 

It is interesting to note that the back-calculated JCS = 54 MPa for the 

14 cm joint was approximately the same as the oý of the 5 cm specimens 

of intact rock. Similarly, the JCS = 13 MPa of the 71 cm joint - 

corresponded to the strength of the 30-45 cm intact specimens. In those 

two cases the ratio of intact specimen length/joint length was 5/14 (1/3) 

and 35/71 (tt1/2 ). Barton's hypothesis was that should that ratio (1/2 - 1/3), 

hold good for larger specimens, then the shear strength-scale effect might 

die out when the representative joint lengths were 2 to 3 times that of 

the largest compression specimen which was just sensitive to the size 

effect. As the compressive strength of the intact diorite specimens 

ceased to be size-dependent for specimen sizes in excess of 100 cm, it 

could then be assumed that the shear strength scale effect might die out 

for joint lengths larger than two to three meters. 

In a subsequent publication Barton and Choubey (1977) related the 

envisaged size-dependency of Joint Compressive Strength (JCS) with the 

scale effect on the Joint Roughness Coefficient (JRC) revealed by their 
tilt-tests on the granite joints (Table 2.2 in section 2.1.4)" 
Specifically, they suggested that as the joint length is increased, the 
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inherent stiffness of the surrounding rock will result in joint wall 

contact being transferred to the major irregularities as peak strength 

is approached. Therefore, they concluded, on a larger scale there are 

larger individual contact areas with correspondingly lower JCS values. 

As those irregularities are less steeply inclined in relation to the mean 

plane of the joint than the small steep asperities, they will give 

correspondingly reduced JRC values. 

The last authors further suggested that the scale effects in the peak 

shear strength of a rock mass could be closely related with the joint 

spacing, which potentially controls the mass stiffness. Scale effects 

might die out earlier if joint spacing and block size was small. The rock 

mass might not be stiff enough for the large irregularities to provide the 

only effective rock wall contacts, as could be the case if the rock mass 

was very massive with widely spaced joints. 

As a schematic illustration of their ideas, Barton and Choubey presented 
the diagram shown in Figure 2.10. In the case of the joint BB' the scale 

effect on JRC would be less marked (or perhaps non-existent) than in the 

case of AA'. The small individual blocks would move somewhat independently 

along BB' thus maintaining contact across the smaller and steeper 

asperities. On the other hand, the inherent stiffness of the large blocks 

overlying AA' would allow larger voids to open up and peak strength would 

not be reached until after a larger displacement when the major flatter 

undulations were in contact. 

The above speculations led Barton and Choubey to the tentative suggestion 
that the size of the in-situ blocks as defined by. the spacing of the cross- 

joints might represent a "critical joint length" just sensitive to scale 

effects and by implication the most relevant "specimen" size for testing. 

Further reference to the problem of practical allowance for scale effects 

in joints will be made in Chapter 2.5. 

2.1.6 Conclusions and present experimental work 

The review of the literature on shear strength-scale effects in unfilled 
joint types has shown that very little attention has been focussed on this 

all-important matter. 

Londe (1973) considers that scale-effects in the peak shear strength of 
discontinuous joint types arise from the inherent limitations of small scale 
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testing. From the practical point of view, this type of joint is probably 

the least critical and in any case the shear strength is most frequently 

described in terms of the ultimate(frictional)resistance which is probably 

not susceptible to scale effects. 

It is the effect of scale on the peak shear properties of joints with no 

tensile strength which requires further attention. The limited amount 

of the experimental evidence currently available indicates that peak shear 

strength is probably related to joint size. However very little factual 

information exists as to the variables responsible for that effect and 

essentially different views have been expressed in the past. 

Pratt et al. (1974) interpreted the reductions in the peak shear strength 

with increasing size of joints in a weathered quartz-diorite as a 

"circumstantial" phenomenon rather than as an inherent joint property. 

As has been reviewed in the last section, the experimentally observed scale- 

effects were thought to be induced by differences in the actual contact 

areas between small and large specimens. On that basis they arrived at 

the tentative conclusion that scale effects in fully interlocked un- 

weathered joint types would probably be absent. 

Barton and Choubey (1977) advanced a number of new concepts by attributing 

such scale effects to corresponding reductions in JRC and JCS, hence-, 

setting the problem on a different basis. However, those concepts are in 

urgent need of experimental verification before their practical potential 

can be fully appreciated. 

In absolute terms, the effect of scale on the shear strength of a long 

joint can be studied quantitatively, only if the results from tests on 

small specimens sampled from the large joint can be compared to those 

obtained by testing the same joint at full scale. 

An attempt was made to reproduce such a condition in the laboratory. A 

rubber moulding system was used to take precise impressions of natural 
joint surfaces. A carefully designed model material was used to cast 

at least four sets of identical interlocking specimens from each pair of 

moulds. Three of the full scale specimens were then cut into smaller 
blocks, each set having a different average block size or joint length. 

The component blocks of the subdivided models and the corresponding full 

size counterparts were individually tested in direct shear under constant 

normal load. All tests were conducted in the same shearing direction and 

under precisely the same level of normal stress. 
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The lengths of the full size joints were between 36 and 40 cm, while those 

of the smaller blocks were 18 or 20 cm, 10 or 12 cm and 5 or 6 cm. When 

converted into prototype scale those model sizes represented joints of 

10.8 or 12.0,5.4 or 6.0,3.0 or 3.6, and 1.5 or 1.8 meters length 

respectively. 

A total of eleven types of surfaces were included in the experimental study, 

with morphologies ranging from rough/undulating to almost smooth/planar. 
The "prototype" joints were collected from exposures of sandstone, 

siltstone, limestone and a fine-grained lightly metamorphosed sandstone. 

The primary objective of the present study has been to investigate the 

potential existence or otherwise of scale effects in the peak shear 

behaviour and properties of joints. An appropriate level of normal stress 

was adopted to ensure that the total frictional resistance would comprise 

both a geometrical (dilation) and an asperity failure component, so that 

any scale effects on either or both variables could be analyzed. The 

present study also offered the opportunity to examine the effects of scale 

on the joint property of peak shear stiffness. That aspect will be 

referred to in part three of the thesis. 

The development of a suitable model material is presented in Chapter 2.2 

and Appendix I, followed by description of the method of preparation of 
the model joints (Chapter 2.3). The experimental results are presented 

and analyzed in Chapter 2.4 and some practical considerations are 
discussed in Chapter 2.5. 



74 

CHAPTER 2.2 

DEVELOPMENT-OF A MODEL MATERIAL 

2.2.1 Introduction 

Two important prerequisites of the present study were the development 

of: 

(i) an artificial material with rock-like characteristics, and 
(ii) model joints which would exhibit a. behaviour comparable_ 

to that of real rock joints. 

The model material which was found to satisfy the specified requirements 

was made from a mixture of "silver" sand, calcined alumina, barytes, 

plaster of Paris. and water. 

2.2.2 Basic principles of model material design 

Detailed discussions on the derivation of the laws of model-prototype 

simulation have extensively been reported in the literature (e. g. Obert 

and Duvall, 1967, milli, 1974) and only a brief reference will be 

made here. 

The laws of model. material design can be established by application of 

the principles of dimensional analysis. Dimensional analysis enables 

expression of the variables -entering a problem, in the particular case 

the strength and deformation properties of a prototype intact rock, in 

terms of dimensionless products (it-terms). 

A list of some basic rock material parameters and their dimensions 

(expressed in terms of the three primary dimensions of mass [M], length 

[L] and time [T]) is given below: 

Compressive strength (a ) M; -'T 2 

Tensile strength (Qt) ML-1272 

Young's Modulus (E) ML 1T 2 

Poisson's ratio (v) 1 

Density (e) M L-3 

Acceleration due 
to gravity (8) LT 2 
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Angle of internal fraction (f) 1 

Cohesion (c) ML T 

Any linear dimension (L) L 

The set of dimensionless products which can be obtained from these is 

as follows: 

a_C ýt 0 eL 

gi, gL' gLº Esvs 

For similitude to be achieved between the model material-(m) and the 

prototype rock (p), it is necessary that these dimensionless products 
be equal in model and prototype. For instance: 

CC 

() =c m P 

om = op 

The first of the above equalities can be re-written as 

Qom - Lm g"em 

or L_x. e 2.7 
in 

where ?=Q 
p/ qcm is the stress scale factor and = 

Lp/ m is the 

geometric scale factor. 

Equation 2.7 is a fundamental relationship which defines all the stress- 

displacement properties of the model. Once the geometric scale factor (%1) 

is chosen, all the prototype properties with specific force dimensions 

must be reduced by 2xe p/ pm in the model. For example: 

I= 
C---pI 

Q_ E- ax pp/pm 
Cm 

-AxpP/pm tm aX 9 P/pm 

Dimensionless quantities such as strain, Poisson's ratio and angle of 
internal friction should be the same for both prototype rock and model 
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material. The same applies to other dimensionless quantities such as 

the ratio of compressive to tensile strength ( Q/ v't), modulus ratio 
(Er/Qc), etc. 

In addition to the above similitude requirements, Pumagalli (1974) drew 

attention to the need for geometrical similarity of the stress-strain 

curves and Mohr failure envelopes of the model and prototype materials. 

The laws of similitude which have been referred to above in connection 

with the design of a model material can also be applied for scaling 
the properties of a prototype discontinuity and vice versa. A discussion 

on that matter is made later in section 2.3.4" 

2.2.3 Specification of the model material properties 

The nature of the study did not require simulation of any specific type 

of rock. A range of prototype properties was established such that it 

would represent medium strength rock type(s) falling in the upper half of 

the average modulus ratio zone in the DEERE and MILLER's scheme of intact 

rock classification. 

A geometric scale factor (*ý ) of 30 was adopted. The choice of that 

value was made by considering the range of sizes of the model joints to 

be tested and their equivalent prototype dimensions. The minimum length 

(Lm) of the model blocks was approximately 5 cm and the maximum 40.0 cm. 

At prototype scales those dimensions represented joints of lengths 

(Lp = %1 x Lm) ranging between 1.5 and 12.0 meters. By using a relatively 

small A value, the surface roughness for most of the model joints gave a 

fairly realistic picture when extrapolated to prototype scale considering 

the length (Lp) of the prototype joints. 

Prior to the development of the model material, a ratio value of 
ep/e 

m= 
3/2 

= 1.5 was envisaged. By substituting il = 30 and e P/ e 1.5 in 

equation 2.7, a stress scale factor (Z) of 45 was derived. 

The final material had a higher density than originally anticipated 
(e=1.85 Sr/cm3) and by considering an average prototype rock density 

of 2.5 gr/cm3, the ratio's 
'2p/em value was 1.35. Using the latter in 

equation 2.7, the value of *9 became 40 for the same geometric scale factor. 
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The range of prototype rock properties originally specified were: 

- uniaxial compressive strength ( mac) = 50 - 80 Ma 

- compressive to tensile strength 

ratio (6c/ Q't) = 10 

- modulus ratio (ET/ ad = 300 - 400 

- axial strain at uniaxial failure (i 
f) = 0.15 - 0.40%O 

Considering the value of the stress scale factor of 40 it was evident 
that the model material should have a relatively high compressive 

strength of the order of 1.5 to 2.0 MPa. 

Achieving a material of high strength was an easy task. The main 

problems concerned the high deformability of the various mixes 

originally tried. Consequently, improvement of the "brittleness" of 
the material was the chief objective of the extensive experimental 

search that followed. 

2.2.4 Experimental work 

An extensive experimental programme was undertaken in the attempt to 

develop a brittle model material with properties resembling those of 

real rocks as closely as possible. 

The two basic components normally used in the development of granular 

model materials are: 

(i) a filler to provide the frictional properties 
(ii) an agent to cement the frictional filler. 

Initially the experimental study was directed towards the understanding 

of the simple sand-plaster-water system, which formed the basis of all 

subsequent combinations. 

J. Com site materials, specimen preparation and testing 

The development of the final model material was preceded by an extensive 

testing of a large number of trial mixes prepared from combinations of 

various substances. 
The various components which were tried included: five types of sand 

with different grain sizes and degrees of sorting;. three types of plaster 
(dental, pink and plaster of Paris); three different additives (barytes, 
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kaolinite, alumina). The physical properties of the above materials are 

presented in section 1 in Appendix I. 

Test specimen preparation involved three stages, namely mixing, casting 

and curing. The procedures were standardized and faithfully followed 

for all materials. 

In brief, the "dry" components (excluding plaster) were initially mixed 

for a standard period of five minutes. Next, water was added and the 

saturated mix was blended for another five minutes. Finally, the plaster 

was added and the stirring was continued until the mixture attained a 

creamy consistency. 

Once the material had reached that state it was poured into plastic 

cylindrical moulds. A fine longitudinal slit cut on the cylinder walls 

enabled easy removal of the specimens after they had set, by pulling the 

sides of the slits apart and at the same time carefully pushing the 

specimen out of the mould. 

The quantity of components used in each combination was sufficient to enable 

preparation of eight to ten specimens. Those with visible defects, for 

instance large surface pores etc., were discarded. 

The curing of the various trial mixes consisted of drying at room 
temperature for 24 hours and then at 85°C for 36 hours. Curing 

temperature is critical for the strength of plaster cemented model 

materials as it controls the amount of dehydration of gypsum. Details 

on the curing of the trial mixes are given, in section 2 in Appendix I. 

Lower oven temperature (50°-55°C) was used for the final model material. 

The testing program included uniaxial compression of 25 mm diameter/50 mm 

length cylinders with simultaneous recording of the axial deformation. 

The tensile strength was indirectly measured by axial point load testing 

of 25 mm diameter/20 mm length cylinders, and diametral point loading 

of standard compression specimens. Also, at later stages the Brazilian 

test was applied on 25 mm diameter/8 mm thickness discs. Detailed notes 

on the procedures of test specimen preparation and testing are given in 

sections 2 and 3 in Appendix I. 

During the early stages of the search it was evident that the relatively 

high strength (~ 2 MPs) specified for the model material could very easily 
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be achieved. The main problem faced was the high deformability of the 

various mixtures and improvement of the latter was the basic aim of the 

investigation. 

A detailed description of the behaviour of the'unsuccessful'materials 

is given in section 4 in Appendix I, together with analytical tables 

of the experimental results. 

In the present context, a very brief summary of the successive 

experimental stages that led to the development of the final model 

material will be given. 

2. Brief review of the properties of the trial mixes 

(i) Sand/Plaster/Water 

Five types of sand with different grain sizes and degrees of sorting were 

tried. Sands with uniform grain size were found to give weaker and more 

deformable materials than graded ones because of the reduced mechanical 

interlocking of-the grains, particularly in cases of coarse types. 

"Silver" sand was chosen as the most suitable type. 

The densities of the mixes were generally low - 1.5 to 1.6 gr/cm3 - 

and the porosities were of the order of 38 to 42%. The axial strain at 

failure ranged between 0.9 and 2.1% depending upon the sand type and 

amount of water. 

Compressive strengths up to 1.2 MPa were obtained under high temperature 

curing conditions (24 hrs at 20°C and 36 hrs at 85°C) and the °c/TSoo 

ratio was generally low (N5 on average). 

Use of pink and dental plaster revealed the unsuitability of the former 

because of its very slow setting, whereas dental plaster behaved 

similarly to plaster of Paris. 

(ii) Sand/Ba 7tes/Plaster/Water 

Addition of barytes improved the properties of the, sand/plaster/water 

system by increasing the density (e) and decreasing the strain at failure 

(F 
f). Furthermore, the inclusion of barytes appreciably reduced the 

water requirements of the mixes. A similar observation had been made 

by Barton (1971) who used red lead as a dense filler for his model material. 

The explanation offered was that the saturated red lead acted as a 
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lubricant on the sand particles and hence maintained the "pourable 

state" of the mix at a water content lower than would otherwise be 

required. 

From the various combinations between sand and barytes tested, a B: S 

proportion of 1: 2 appeared to show the most promising behaviour. One 

part of water was mixed with four parts of (B+S) and by adding various 

amounts of plaster (PP: (B+S) = 1: 7 to 1: 4) the following range of 

properties was obtained: 

0- = 347 - 1112.5 kPa; T500 = 66.4 - 194.3 kPa; % Ef = 0.79 - 0.90; 

e= 1.85 gr/cm3; E2, /QC = 256 - 285. 

It should be noted that all specimens were cured at 85°C for 1j days. 

(iii) Sand/Alumina/Plaster/Water 

Use of alumina instead of barytes produced mixtures with somewhat 
higher water requirements. However, two combinations of alumina with 

sand - A: S = 1: 4 and 1: 8 - gave materials with comparatively high 

Q/T500 ratios of 6.6 and 7.1. Furthermore, the recorded strain at 
failure was 0.6 and 0.74% which was the lowest in comparison with the 

other materials tested. 

Presumably the interference of the chemically inert silt-sized grains 

of alumina amongst the gypsum crystals reduced the effective bonding 

of the latter and hence reduced their resistance to tension. In 

addition, they probably offered a "reinforcement" to the sand structure 
by occupying part of the intergranular space that would be otherwise 
filled solely by plaster, and therefore improved the mechanical inter- 

locking of the granular skeleton. The latter could explain the 

comparatively low deformation of the test specimens. 

Since both barytes and alumina as individual fillers improved the 

performance of the basic sand-plaster-water system, their combined 

effect was studied on a series of materials prepared from different 

proportions of sand-to-(Barytes + Alumina), varying at the same time 

the relative quantities of the latter two. That led to the development 

of a multi-component material whose properties fulfilled to an 

acceptable degree the model design specifications. The properties of 

the final model material are discussed in detail in the following section. 
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2.2.5 Properties of the final model material 

1. General information 

The model material adopted in this study consisted of sand, alumina, 
barytes, plaster-and water, combined in the following proportions: 

(Barytes+Alumina): Sand = 1: 2 

Alumina: Baxytes = 1: 3 

Water: (Barytes+Alumi. na+Sand) = 1: 4 

The grain-size distribution of silver sand and alumina is shown in 

Figure 2.11 where the specific gravities of all components have also been 

included. 

During preparation of test specimens the standardized mixing procedure 
that has been described, in section 2.2.4 was followed. 

The temperature of curing was set at 50° to 55°C. At first, the specimens 

were allowed to dry at room temperature for 8 hours and then placed in the 

oven and left for 48 hours. Measurements of the weight loss at regular 
time intervals showed that all free water had evaporated within 30 hours. 

A characteristic curing curve is presented in Figure 2.12. 

An attempt was made to evaluate the "moisture content" of the fully. 

cured specimens. A mixture was prepared using 400 grins sand, 150 gyms 

barytes, 50 gras alumina, 150 gtms water and 80 grins plaster. 

If the various components are expressed in percentages by weight, then: 

sand = 48.1933ßd, barytes = 18.07296, alumina = 6.024%, water = 18.072%, 

and plaster = 9.63996. 

A set of five specimens was prepared from the above mix; their average 

weight was recorded and they were left to cure for the prescribed period. 

After 56 hours their average weight was measured again and the average 

moisture loss was found: 

average weight of uncured specimens: 

11 It It cured it : 

57.980 firms 
48.584 gms 

, 
9.396 firms of water moisture loss 
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Assuming perfectly uniform distribution of the components in the mixture, 

each specimen should consist of 48.197/6 sand, 18.072% barytes, 6.024% 

alumina, 18.082% water and 9.639°A plaster. 

As mentioned, the average mass of the uncured specimens was 57.98 grins. 
Combining the latter with the percentage by weight of plaster and water 

means that the average uncured specimen should contain 10.478 firms of 

water and 5.589 grins of plaster. Since 100 grins of plaster require 
18.6 cm3 of water for complete hydration, the 5.589 gis of plaster would 
need 1.039 gms of water. Therefore: 

Free water in uncured specimen = Total amount of water - Water for 
hydration of plaster = 
10.478 gams - 1.039. ßs = 9.438 firms. 

The "theoretical" amount of free water (= 9.438 mss) agreed very well 

with the estimated water loss through evaporation (= 9.396 grins), which 

meant that no breakdown of the gypsum commenced under the present curing 

conditions, while all free water had escaped. Holdridge and Walker (1964) 

concluded from D. T. A. studies that the dehydration of gypsum starts above 
70°C. The fully hydrated form of gypsum was reflected in the high 

strength values of the materials. 

2. Density and porosity of the material 

The density (e) of the material was found by dividing the weight (mass) 

of a number of cured specimens by their average volume (26.52 cm3). 
The average density values for mixes with different plaster quantities 

are tabulated below. 

PP: No.. of Density, e (gr/cm3) 
: (B+A+S) spec. 

Mean Std. dev. 

1: 705 13 1.86 0.0246 
1: 7.5 14 1.85 0.0232' 
1: 8.0 15 1.84 0.0223 
1: 8.57 15 1.84 0.0200 

1: 9.23 14 1.84 0.0205 
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The average density of all mixes was approximately 1.85 gras/cm3. 

An approximation of the material porosity (P) could be obtained if it was 

assumed that the pore space of the cured material was occupied by the 

evaporated water. Then: 

P= Volume of voids 100 2.8 Bulk volume 

where: volume of voids (v) ix volume of free water, and 
bulk volume (Vb) = weight/density. 

Considering a typical mix of 400-150-50-80-150 by weight of sand-barytes- 

alumina-plaster-water, then the 150 cm3 of water minus the amount 

retained for the hydration of plaster (- 15 cm3) would . 
form the free 

water phase which after evaporation would create an equivalent volume 

of voids (v). The bulk volume (Vb) would be equal to 695/1-85 = 375.7 cm3" 

According to 2.8 the porosity could be calculated from: 

p_ 
VV 

- 
135 cm3 Nz 36gß 

b 375.7 ßm3 

Two factors that could affect the above estimate should be pointed out. 

Entrappment of microscopic air-bubbles may cause an unaccounted increase 

of the actual porosity. On the other hand, the above value may be 

slightly higher than the actual one, as the amount of water loss by 

bleeding and surface evaporation has been ignored. - Provided that the 

method of evaluation is valid, the porosity value of 36% is quite 

acceptable compared with the range of plaster-water systems (40% to 80'). 

j. Uniaxial compressive strength of material 

The uniaxial compressive strength range (Qc) of the model material was 

determined by testing mixtures prepared with constant amounts of sand/ 

barytes/alumina/water and variable plaster quantities. The proportions 

of PP: (B+A-tS) ranged between an arbitrary minimum of 1: 15 and a maximum 

of 1: 7.06. The latter brought the mixture very close to its workability 
limit. 

Under the employed curing procedure the above quantities of plaster gave 

uniaxial compressive strength values ranging between . 747 MPa and 3.455 
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Separate sets of compositionally similar specimens were prepared and 
tested in order to examine the reproducibility of the material. 

The analytical results from all tests are presented in Table 9 in 

Appendix I, and the average values are given below together with the 

number of separately prepared sets of specimens. 

Table 2.3 

Range of average uniaxial compressive strength (o ) values of 

model material 

PP (B A W) 
No. of Total 

i f 
Crc (NPa) 

: + 4 men no. o spec 
sets spec. Mean Std. dev. 

1: 15 19 0.747 0.0542 
1: 12 18 . 1.251 0.0832 

1: 10.91 2 11 1.316 0.0901 

1: 9.65 1 10 2.030 0.0807 

1: 9.23 2 10 2.050 0.1405 

1: 8.57 2 10 2.456 0.1866 

1: 8 2 10 2.757 0.0991 
1: 7.5 3 17 3.129 0.1691 
1: 7.06 3 16 3.455 0.1794 

The compressive strength of the material was found to be reproducible 
to an acceptable degree, as indicated by the relatively low values of 

standard deviation of the Cr. values obtained from specimens prepared 
from more than one mixtures of the same composition. The calculated 

relative dispersion (% variation = [std. dev. /mean) x 100) of the O'c 

values determined for each of the eight mixtures ranged between 3.6 and 

7.6%. 

A variety of failure modes was observed during specimen testing, and 

some characteristic examples are shown by the photograph in Figure 2.13, 

which also includes some similarly tested cores of a massive siltstone 
for comparison. The majority of failures of the model cylinders occurred 
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by development of shear fracture running diagonally at an angle of 
approximately 45° with respect to the-longitudinal axis. The length 

of the fracture was variable - for example compare specimens 2,4,7 

and 11 - and occasionally had a strongly curved shape, e. g. see 
specimens no.. 8 and 10. In some cases, the failure was induced by 

axial splitting along one or more longitudinal cracks (e. g. specimen 
nos. 5 and 15). 

4. Indirect tensile strength (6t) of material 

Three methods of indirect determination of tensile strength were applied 
to the model material, namely axial and diametral point loading (on 25 mm D/ 

20 mm L and 25 mm D/50 mm'L cylindrical specimens respectively) and the 

Brazilian solid disc (25 mm D/8 mm thickness) method. The detailed 

results from the tests are given in Table 10 in Appendix I. and the 

average values are included here in Table 2.4. 

Table 2.4 

Range of indirect tensile strength values of model material 

PP: 
Indirect tensile strength ( 

t), MPa 

Axial point loading Diametral point Brazilian Test 
loading 

No. T500 std. dev. No. To std. dev. No. ö'tb std. dev. 

1: 15 - - - 6 0.103 0.009 5 0.127 . 009 
1: 12 - - - 8 0.184 . 007 - - - 
1: 10.91 6 . 284 . 0188 - - - - - - 
1: 9.23 6 . 349 . 0266 6 0.371 . 0353 9 . 288 . 0354 
1: 8.57 7 . 450 . 0199 9 "419 "0195 7 "353 . 0261 
1: 8 7 . 488 . 0207 6 "469 . 0221 5 . 403 . 049 
1: 7.5 7 "573 . 0197 7 "488 . 0371 8 . 421 . 0298 
1: 7.06 6 . 612 '. 0216 6 . 566 . 0089 12 . 473 . 0418 

Depending upon the proportion of plaster to filler and the type of test, 

the tensile strength ranged between 0.284 - 0.612 MPa (axial point loading, 

FP: (B+A+S) = 1: 10.91 to 1: 7.06), 0.103 - 0.566 MPa (diametral point loading, 
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PP: (B+A+S) = 1: 15 to 1: 7.06) and 0.127 - 0.473 MPa (Brazilian method, 
PP: (B+A+S) = 1: 15 to 1: 7.06). 

Comparatively the T500 values were the highest and the vtb from the disc 

tests were the lowest. 

With regard to the Brazilian method, care was exercized to select 

meaningful results, due to the problems associated with that type of 
test. Hobbs (1966) described the modes of failure associated with 

diametral compression of solid discs. Some of the tested model 

specimens developed wedge-shaped fractures at the loaded ends due to 

local concentration of compression stresses, which according to Hobbs 
(1966) may form prior to failure along the loaded diameter. The results 
in those cases were discarded. 

The photograph in Figure 2.14 shows some failed specimens under axial 

point loading (a) and diametral compression (b). The latter include 

two examples of the aforementioned wedge-shaped fractures (bottom row). 

5. Deformation of the model material under uniaxial compression 

The axial deformation of the model material under uniaxial compression 

was studied by measuring the "shortening" of the test specimens at 

various load increments, according to the method described in section 3 

in Appendix I. 

The material exhibited a satisfactory brittle behaviour under compression. 
The axial strain at failure ranged between 0.33 and 0.4916. The calculated 
tangent values of Young's Modulus at 50%6 of ultimate compressive stress 

were between 316 and 1305 MPa for materials with minimum (PP: B+A+S = 1: 15) 

and maximum (PP: B+A+S = 1: 7.06) plaster quantities respectively. 
The estimated modulus ratio (ET5_/ a. ) was between 350 and 445. 

A family of axial stress-axial strain curves corresponding to materials 

prepared with various plaster quantities are presented in Figure 2.1 

All relevant property values are also included. 
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2.2.6 Summary and critical evaluation of the behaviour of the 

model material 

The specifications for the design of the model material required in the 

present study were discussed in section 2.2.3. The tedious experiment- 

ation with a variety of components and mixtures resulted in the 

development of a model material which fulfilled to a satisfactory degree 

those requirements. 

In composition, the final material consisted of silver sand as the 

frictional filler, barytes as the dense filler, and calcined alumina 

which played an intermediate role since its grain size and specific 

gravity were between those of sand and barytes. Plaster of Paris was 

used as the cementing agent and the quantity of the added water was 

kept to as low levels as possible., 

By appropriate variation of the quantity of plaster and by employing a 

relatively low curing temperature (50°-550C) the specified compressive 

strength for the model material was comfortably achieved, with maxim= 

possible being 3.455. MPa. 

The other two material properties which were thoroughly investigated 

were the tensile strength and the axial deformation. 

The tensile strength (o't) of the model material was somewhat higher- 

than that exhibited by many rock types. Despite the improvement that 

was achieved in the course of the experimental search, the compressive 
to tensile strength ratio of the final model material ranged between 6 

and 7.5, which was below the "target" average value of 10. ' 

However, the above range is not too low to be considered unrealistic, 

as one can deduce by studying, the Qc/Qt ratio values of various 

prototype rocks. From typical compressive and tensile strength data 

presented by Attewell and Farmer (1976), the ranges, of °c/ cyt values 

were derived. for some rock types and are given in Table 2.5. 

The 6c/ Qt ratio for the model material appears to agree in general 

with that corresponding to sedimentary rock types. 
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Table 2.5 

Typical ranges of 
(c/ Qt ratio values for various rock types 

IGNEOUS 0c/ Qt SEDIMENTARY ac/ Qt METAMORPHIC -c/ 
Qt 

Granite 10-14 Sandstone 5-7 Quartzite 10-15 

Diorite 10 Shale 2.5-10 Gneiss 10 

Dolerite 6.5-10 Limestone 6-10 Marble 12-14 

Gabbro 10 Dolomite 2-10 Slate 10-14 

Basalt 10-15 

The deformability of the material under uniaxial compression was within 

the specifications. The % axial strain at failure ranged between . 33 

and .4 compared to . 15 - . 4(y/o which is considered as representative for 

the majority of rock types. 

An interesting feature of the uniaxial stress-strain curves (Figure 2.15) 

was the absence of excessive non-linearity at relatively low stresses, 

which one might expect in view of the high material porosity (- 36%). 

In general the curves showed a more or less linear shape up to approx- 

imately j of the ultimate stress, from then onwards exhibiting a "strain- 

softening" behaviour until failure. 

In order to relate the deformation characteristics of the model material 

with those of prototype intact rock types, the values of compressive 

strength and tangent Young's Modulus were scaled up and plotted in a 

log-log graph, in accordance to the MEERE and MII, LER's system of intact 

rock classification (Deere, 
_1974), 

as shown in Figure 2.16. The regions 

on the graph enclosed by lines represent data from various prototype rocks. 

As can be seen, the final model material data fell within, the upper half 

of the average modulus ratio zone (ET/ o-c N 400), being comparable to those 

for sandstone and weaker limestone rock types. 

The design chart for the model material was produced by plotting the 

average compressive strength values determined from each set of specimens 

tested against the respective proportion of plaster-to-(barytes+alumina+sand)" 

The a'c values showed a linear variation with increasing plaster proportion 

as shown in Figure 2.17. 
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Linear regression analysis of the plotted data gave the design equation 
for the model material, which was found to be: 

Y= -2.01 + 38.25 X, r= 40.98915 2.9 

where: Y= uniaxial compressive strength Q-C ' and 
X= proportion of PP: (B+A+S). 

The above formula 2.9 can be used to estimate the proportion of plaster 
required for the material to exhibit a desired strength. If, for example, 
a a-o of 3 MPa is required, then according to 2.9 the proportion of 
PP: (B+A+S) should be: 

X_+2.01 _ 38.25 0,131 
, or 1: 7.63 

Therefore, for an amount of 2000 firms of B+A+6 the appropriate quantity 
of plaster would be 262.12 firms. Obviously, the amount of water should 
also be varied according to the W: (B+A-, S) = 1: 4 proportional ratio. 

The error in o- by using the "prediction" formula 2.9 was estimated 
from: 

ý(Ya-Ye)2 
Sy, 

x = n-2 2.10 

where SYIX = standard error of, regression estimate 
Ya = actual (experimental) Y-value 

Ye = estimated (from 2.9) Y-value, and 
n= number of data. 

The uncertainty in the value of cc by using the predicted amount of 
plaster is illustrated by the two bands on either side of the best-fit 
line in Figure 2.17 drawn at a distance equal to 1 Syx. The latter was 
found to be + . 130 MPa. 
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CHAPTER 2.3 

PREPARATION AND TESTING OF MODEL JOINTS 

2.3.1 Introduction 

A brittle model material with realistic rock-like characteristics has 
been described in Chapter 2.2. That material was utilized to produce 

model joints by a casting technique. 

The nature of the present study dictated that the method of preparation 

of model jöint samples should enable: 

(i) production of joints with different surface geometries, and 
(ii) exact reproduction of the same surface as many times as required. 

Those fundamental requirements were fulfilled by casting the model material 

against perfect moulds of natural joint surfaces prepared from a high 

resolution moulding compound. Preliminary shear tests on model joints 

with various surface geometries revealed that their properties were 

acceptably comparable, at least in a qualitative sense, with those 

expected from real rock joints. 

A large direct shear apparatus had to be designed and built to accommodate 
joint specimens of lengths up to 40 cm. 

2.3.2 Method of preparation of model Joints 

A number of techniques have been used in the past to represent joint 

surfaces with different "morphologies". These include: insertion of 

various fillers between the planar faces of model bricks (Pumagalli, 1974); 

use of interlocking teeth joints of different tooth height and baselength 
(Patton, 1966); use of imbricated surfaces by arranging model bricks at 

various angles and heights of step (Krsmanovic 
et al., 1966). In view of 

the requirements of the present study, the above methods had only an 

academic interest rather than any practical potential. 

A casting technique has been described by Boyd (1975) who used a rubber 
material to obtain moulds of natural joint exposures. A similar procedure 
has also been reported by Schneider (1976). Such a technique fitted 

perfectly with the requirements of the present investigation. 
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A rubber hot melt moulding compound called VIIAMOLD 9525 ("Hard" variety) 

was used to prepare moulds with negative impressions of natural joint 

surfaces. The moulding material was chosen for its very high resolution 

which extended to clear reproduction of very fine scratches on a smooth 

aluminium sheet. The quality of reproduction of the natural joint 

surfaces achieved with that moulding compound can be seen in Figure 2.18 

where some model specimens are compared with the natural originals. 
The procedure of mould preparation is described below. 

The joint surface to be moulded was at first thoroughly cleaned and was 

then placed on the bench facing upwards, ensuring that the average joint 

plane was horizontal along both length and width with the aid of perspex 

strips and spirit levels. Once the horizontal levelling had been achieved, 

plaster was used to "fill-in" the gaps between the joint block and the 

bench, thus ensuring a permanent horizontal orientation, which was 

necessary for drawing the profiles of the respective surfaces, as will 

be discussed later in section 2.3.6. 

As the selected natural joint specimens had usually a width larger than 

that required for the model joints, an outline of the selected portion 

of the surface was drawn. A two-piece rectangular aluminium frame of 4 cm 

height was carefully fitted over the outline of the relevant area, also 

ensuring that the four top edges were all horizontal. If the joint 

surface to be moulded was very rough, the gaps along the contact line 

of the frame with the surface were carefully "built up" with plaster. 
For the less rough types plaster was used only externally to "bind" the 

base of the frame, which formed an outwards facing right angle with the 

frame wall, with the rock surface. 

Once that rigorous procedure of joint positioning and frame installation 

had been completed, the whole system was transferred onto a hot-plate and 

warmed to 500 - 6Q°C to avoid rapid cooling of the melted compound 
(manufacturer's recommendation). 

The melting of the Vinamold material was carried out in a progressive 

sequence as instructed by the manufacturer. The material was firstly 

cut into small pieces and a small amount was placed in a vessel and 

allowed to melt at a temperature of . 100°C. As melting progressed, 
small quantities were added at a time, and the temperature was eventually 
increased to "'140°C. The melting was considered completed when the 
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FIGURE 2.18 Photograph illustrating model joint surfaces obtained by casting the model material against rubber moulds of natural joint surfaces. 
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rubber was a viscous, creamy substance. It was then removed from the 

hot-plate and left to cool down to 120°C. 

The warmed-up joint and frame were then placed precisely on to the same 

original position, and once the melt had reached the temperature of 120°C 

it was slowly poured onto the rock surface, until the melt reached the 

top edge of the frame. The mould was left in place for 8-12 hours before 

removal. 

In order to define precisely the area, of the other joint half that should 

be moulded (as mentioned earlier,, in most cases only part of the total 

joint plane was reproduced), a cast of the first mould was carefully 

placed on to the corresponding portion of the second half to find the 

exact interlocked position. An outline of the mating portion on that 

joint plane was then drawn and the second mould was prepared in the manner 

already described. 

Once the moulds were ready, casting of the model joints was a simple 

matter. The moulds were placed on a horizontal glass plate and were 

enclosed in accurately cut aluminium frames whose base also rested on the 

glass plate. The top edges of the frames defined a horizontal plane 
parallel to the base of the mould and the average plane of the joint 

surface and offered a constant reference for the preparation of different 

sets of model specimens. The height of the walls of the frames which 

were used for specimen casting was from 6.5 to 10 cm and the choice was 
based on the intended use of the casts. For example, 'when-the cast was to 

be cut into 6 cm length specimens a thickness of 2 cm for each joint half 

was sufficient, while for the full scale tests the thickness of each of- 

the halves was 5 to 6 cm. 

The model material was poured very carefully onto the moulds to avoid 

entrappment of air near the joint plane. In. order to ensure the bases 

of all recasts were horizontal, a small amount of material was poured in 

excess to that required to fill the mould and was then carefully scraped 

off to the level of the top edges of the frames. That procedure ensured 
that the relative orientation of the joint planes with respect to the 

shear force was the same for all specimens from each recast. Once the 

material had set hard the surrounding frame was removed, and the model 

specimen could be easily detached from the mould. 
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Due to the practical difficulties of the collection of large natural 

joint specimens, two of the collected surfaces did not have a mating 

second half. In those cases only one rubber mould was prepared while 

the other half was obtained by direct casting of the model material 

against the rock surface. In this case an oil release agent had to be 

used to ease the specimen removal. 

The design equation (2.9) for the model material (section 2.2.6 in 

Chapter 2.2) was used to determine the proportion of plaster-to-filler 
(= sand+barytes+alumina) required for a material of uniaxial compressive 

strength of 2.0 MPa. Considering the stress scale factor (Z) value, of 
40, the model material represented a prototype rock of equal to 80 MPa. 

A convenient total quantity of components of approximately 4 kgms was 

mixed each time, according to the standardized blending sequence 

described in subsection 2.2.4(1) in Chapter 2.2. The "dry" and "wet" 

mixing period of the components was increased to 8 minutes. Addition 

of plaster was followed by 1 min and 15 seconds of blending, by which 
time the mixture had attained the familiar "creamy" consistency. 
The quantities of the individual components were: 2000 grins of sand; 
750 grins of barytes; 250 grins of alumina; 750 cm3 of water; 314.4 grins 

of plaster. 
The above quantities gave sufficient material to cast two specimens of 

2 cm thickness. An additional quantity of material had to be prepared 
to "top up" the moulds when specimens intended for full scale testing 

were being cast (5-6 cm thickness). 

Upon removal from the moulds the specimens were placed on a glass plate 

and left for -8 hours to set at room temperature. At the end of that 

period they were transferred to the oven (500 
- 55°C). After 10 to 12 

hours of drying the specimens intended to provide the small joint blocks 

were removed and cut by using a fine-blade saw. At that stage, the 

partially cured specimens were hard enough, and hence the risk of 

accidental damage to any small asperities was minimized. 

After cutting, the specimens were put back in the oven and left to dry 

completely. 

In order to standardize the curing procedure in accordance with the 

specifications set for the model material, a set of block specimens of 
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dimensions equal to those of the actual models were prepared and cured. 

The rate of loss of free water was regularly recorded until evaporation 

apparently stopped. Termination of the free water evaporation was 

ascertained by performing the simple calculations discussed-in sub- 

section 2.2.5(1) of Chapter 2.2. It was found that both the 6x4x2 cm 

and the 12 x6x2.5 cm specimens were completely "dry" after 2 days of 

oven curing. A drying period of 2J to 3 days was necessary for the 

18 x6x4 cm specimens, while for the largest block (36 x 12 x5 cm) 
the curing time was 4 days. At the end of those trials rectangular 

prismatic specimens cut from each of the cured blocks were point-load 
tested. The T500 values calculated for each set were almost identical 
(T500 = 268 + 15 kPa) and very near to those which had been obtained 
from the original tests on the model material. The above curing periods 

were faithfully followed in the preparation of all model joints. 

2.3.3 General shear characteristics of model joints 

Prior to initiation of the major testing programme, the basic frictional 

characteristics of the model surfaces were established and a number of 

direct shear tests were conducted on model joints with a variety of 

surface morphologies. The purpose of that preliminary investigation 

was to examine the suitability of the model material and that of the 

method of specimen preparation for producing joints displaying shear 

behaviour comparable to that of real rock joints. 

1. Basic friction of flat model surfaces 

Basic friction represents the minimum (residual) frictional resistance 

available during sliding of two flat, non-dilatant surfaces. A total of 
12 joint blocks were prepared in two separate sets of six by direct 

casting of the model material against a glass plate on which square 
frames 6x6x2 cm were firmly fixed with Plasticine. 

The specimens were cured in the standard way and then tested in direct 

shear under normal stresses (on) ranging between 6.8 and 98 kPa 
(equivalent to 0.2 - 3.5 EPa. at prototype scale). The shearing was 

continued until residual conditions had evidently been reached. The 

latter required 4 to 5 mm of relative shear displacement. Two tests 

were conducted under the same normal stress ( Cr. ) and the average residual 
shear stresses were plotted against the corresponding a- , as shown n 
in Figure 2.19. 
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The slope of the average straight line envelope gave an angle of basic 

friction (0b) of 32°, which was perfectly acceptable in view of the 25° 

to 350 range quoted to represent the majority of rock types. 

2. Shear strength characteristics of rough model surfaces 

Four natural joint specimens with interlocked faces and distinctly 

different roughness characteristics were selected and their respective 

rubber moulds prepared. A number of recasts were taken from each mould 
to prepare four sets of model joints. The size of those specimens was 

on average 9x5 cm, which when interpreted at prototype scale (a 
= 30) 

represented joints of 2.7 x 1.5 meters. A characteristic profile from 

each of the four types of model joints is shown in Figure 2.20. The 

strength of the model "intact" material was 2.0 MPa, which was equivalent 
to a prototype rock of = 80 MPa. The various specimens of the same 

surface recast were tested under normal stresses ranging from approx- 
imately 1 to 100 kPa. That range corresponded to prototype 0n between 

0.04 to 4.0 MPa. 

The various shear strength characteristics displayed by the model joints 

are discussed below. 

(a) Shear stress (T) 
- shear displacement (dhý relationships 

The 'z vs dh diagrams obtained from the four types of model joints showed 

clearly the sought after "unstable"� mode. of failure which is characteristic 

of interlocked natural joints. A sharp increase in the shear stress 

preceded mobilization of the peak shear strength, which occurred after 
displacements of approximately 0.5 to 0.8 mm, was followed by considerable 

strength loss, particularly in the cases of the rough joints. 

Some characteristic examples of the Z -dh relationships displayed by 

the four models are presented in Figure 2.20, where each family, of four 

curves corresponds to the four model surfaces tested under the same 

normal stress. 

The basic features of rock joint behaviour are qualitatively expressed by 

the diagrams in Figure 2.20. Under the same level of normal stress the 

shear strength of the model joints was clearly a function of the surface 
roughness, while an appreciable increase in the shear strength (t) of 
each joint type was the result of application of higher normal stress. 
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(b) Dilation characteristics of the model joints 

The amount of dilation of a rock joint sheared under normal 'stress an 

depends upon the roughness of its surface, and the value of the 

dimensionless ratio JCS /0-n, where JCS is the joint compressive strength. 

The distinct differences in the surface morphology of the above four 

types of model joints offered an ideal opportunity to examine the dilation 

effect. From measurements of vertical displacements taken during the tests 

the vertical vs horizontal displacement diagrams were drawn for each type 

of model joint under various levels of normal stress. The dilational 

behaviour of the model joints resembled very realistically the pattern 

one would expect from real joints, as illustrated by the two diagrams in 

Figure 2.21. 

Figure 2.21(a) illustrates a family of dilation curves (i. e. vertical (r) 

vs horizontal (dh) displacement) corresponding to the four types of joints 

tested under the same normal stress (n= 24 kPa). In that case, the 
dilation was a function of the geometry of the surface, as for example 
described by Barton's joint roughness coefficient (JRC). The derivation 

of the JRC values will be described in the following subsection. The 

important feature of the curves in Figure 2.21 (a) is the distinct increase 

in the dilation of. 
_the 

joints with rougher surfaces. 

A better, illustration of the realistic behaviour of the model joints is 

presented, in Figure 2.21 (b). The peak dilation angles (i)° were derived 

from the lope of the appropriate` 
p 

portion of the dilation curves (i. e. 

corresponding to peak shear displacement) and were plotted against log a 

for each of the four types of model joints. The expected inverse prop- 

ortionality between (i)Po and o-n is clearly demonstrated together with 

the obvious effect of surface roughness. 

(c) Peak shear stress (Tp)- normal stress ((7'n) relationship 

The non-linearity of the peak shear strength envelopes of rock joints has 

been discussed in Chapter 1.1. 

Plots of the peak shear strength (Tndata from the tests on the model 
joints against normal stress ( n) revealed a realistic deviation from a 
linear relationship. 

The peak shear strength criterion of Barton (1973) was found to fit the 

plotted data very well, allowing for experimental scatter. 
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The Joint Roughness Coefficient (JRC) corresponding to each of the four 

model types was found by solving Bartonts equation (2.12) for JRC: 

JRC Peak arctan (T ýc-) - ýb 

log10(JCS/Qn) 

The following input data was used in equation 2.11: 

2.11 

peak arctan (T /c7 
n) = average of the values measured from two 

shear tests under two different levels 

of normal stress 

Ob = 320 

JCS = 2000 kPa 

n= mean value applied in the two shear tests. 

By substituting the data in 2.11 the following values were back 

calculated for each type of joint: 

JIRCý = 6.5, JRC2 = 7.5, JRC3 = 10.6 and JRC4 = 16.6 

Note that the subscripts correspond to the joint numbers in Figure 2.19. 

By using the relevant values of the three constants JRC, JCS and Xb in 

Z= an tan £JRC 1og10(JCS) +'bJ 
n 

2.12 

the corresponding peak shear strength envelopes were established for the 

appropriate range of normal stress, as has been recommended by Barton and 

Choubey (1977). The realistic agreement between the envelopes fitted by 

using 2.12 and'the experimental data is shown in Figure 2.22. 

2.3.4 The quantitative relevance of model joints to prototype 

rock dints ' 

The preliminary investigation on the shear properties of the model joints 

revealed a realistic performance at least from a qualitative standpoint. 
It is pertinent, however, to consider what might the quantitative 
relevance be between the shear properties of model joints and those of 

natural jöints. 
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As has been referred to in section 2.2.2, the basic laws of model- 

prototype simulation can in principle be extended to relate the properties 

of a prototype joint and those of a model. The geometric scale factor 

can be used to convert all model"characteristics with dimensions L 

at prototype scale, whilst the stress scale factor (? ) can be used 

similarly to extrapolate all model properties with specific force 

dimensions. According to the same principles all dimensionless 

quantities such as peak and residual angles of friction, peak dilation 

angle etc. should be the same for both the model and prototype. 

The inherent "weakness" of model discontinuities arises from the problem 

of geometrical simulation of the surfaces of prototype joints. It can 
be seen that in most model studies of jointed rock masses that are found 

in the literature, blocks with flat faces are being adopted for an over- 

simplified simulation of the prototype joints (e. g. Reik and Teutsch, 

1974). In other cases extension fractures have been used (Barton, 1971) 

and despite the more positive nature of such an approach (i. e. inclusion 

of the important effect of joint roughness upon the performance of the 

rock mass), the problem immediately posed is that conversion of the model 

roughness into prototype dimensions may lead to an exaggerated surface 

morphology. Consequently, one might expect that the various shear 

property values derived from model joints would be higher than those of 

the same properties of a natural discontinuity. Such an effect would 

obviously be enhanced in cases of very rough model joints and high 

geometric scale factors. 

The resemblance of the surface morphology of the eleven joint types 

included in the present study to that found in large natural joint 

exposures is considered later in section 2.3.6. 

2.3.5 Experimental procedure and instrumentation 

Each of the eleven types of natural joint surfaces chosen to be tested 

was reproduced in four models, three of which were subsequently out into 

a number of smaller interlocked block elements to obtain "jointed" 

models with different "joint spacing" or average block size. An example 

of a complete set of specimens is shown in the photograph in Figure 2.23. 

Each joint block was individually tested in direct shear under constant 
normal load , i. e. unrestrained" dilation. The conventional testing 
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facilities available could not accommodate specimen sizes larger than 10 to 
12 cm long and consequently a large shear apparatus had to be designed and 
built for testing joints up to 40 cm long. Reference to--the=testing 

arrangements will be made after a. brief discussion on the principles of 
direct shear testing. 

The direct shear test constitutes the most commonly used method for the 
determination of peak and residual shear strength along rock discont- 
inuities. The conventional test set-up involves alignment of the joint 

plane, as closely as possible, with the line of action of an externally 
transmitted tangential force and applying a normal load at the centre and 
vertical to the shear plane. 

Despite the apparent simplicity of the method a careful insight will 
reveal that the above testing arrangement induces a complex stress 
distribution within the sample. On a strict theoretical basis such 

complexity apparently produces uncertainty as to the validity of the 

concept of average stress distribution along the shear plane assumed 
for all intents and practical purposes. Discussions on the-patterns 

of distribution of the normal and shear stresses along the shear plane 
in both laboratory and in-situ testing have often appeared in the rock 
mechanics literature (cf. Ruiz et al., 1968; Lajtai, E. Z., 1969; 

Goodman, R. E., 1970; Jaeger, J. C., 1971.; Kutter, - H. K.; 1971; Rocha, M., 
1974; Schneider, H. J., 1978). 

Schneider (1978) described the basic concepts-regarding-the force trans- 

mission in direct shear test samples and his relevant schematic 
illustration is shown below, where the sample has a longer lower portion 
as compared to the upper portion. 

Normal N 
el 

rf 

forcort 
Y 

Y, OYI 

Upper half Tangential 

h Lower halt 
~T force 

Qy2 
Cýz 

t2 

tNN 
12 



112 

The normal force N produces an average normal stress G-yj Yd 
The shear force T induces a compressive stress o (or aX2) on the 

side walls of the frame, while the remaining part of T is transmitted 

through the upper and lower frames as T1 (or -r 2). Both G-x and z 

contribute to the development of overturning moments which should be 

balanced by ± a7Y On the basis of the above concepts, Schneider 

concludes, large stress concentrations would be anticipated near the 

side boundaries of the sample. 

The results from stress analysis by the finite element method conducted 
by Schneider and others (e. g. Kutter, H. K., 1971, on the 100 ton direct 

shear apparatus at Imperial College) have shown that the above concepts 

are essentially correct. 'Kutter found that the distribution of the shear 

and normal stresses along a hypothetical shear plane presented with-a q 

peak 'at either end, whereas the stresses were uniformly distributed 

over the central 70/ of the total plane. 

To check the above observations a stress-analysis by the F. E. method was 

attempted on a test set-up resembling the one used in the present study. 

The element in the two-dimensional F. E. programme used was of the cubic 
type with two extra nodes per side. The finite element mesh consisted 

of a total of 140 elements and is shown in Figure 2.24(a) together with 
the assumed boundary conditions. -The relevant - input property values 
for both the reaction frame and the isotropic homogeneous "sample" are 

also given in Fig. 2.24(a). Normal (N) and shear (T) loads of equal 

magnitude (= 100) were assumed. The normal ( My) and shear ( -In) stress 

distributions along the shear plane (AB) as derived by that analysis 

are shown in Figure 2.24(b). 

A pattern similar to the one mentioned earlier is clearly discernible. 

The stresses in the central portion are uniformly distributed and compare 

favourably with those calculated from the external forces and the nominal 

contact area. On the basis of similar results, Kutter (1.971) 'concluded 

that use of average normal and shear stresses in the determination of 

shear strength is a valid procedure. However, one should always bear 

in mind that any form of analysis'that assumes-a continuous, isotropic, 

homogeneous material offers only a crude approximation of the actual 

conditions which prevail in the complex discontinuous joint system. 
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From a practical point of view the best precaution that can be taken 

during testing is to ensure that the shear force is transmitted as near 
to the shear plane as possible, so as to minimize the risk of excessive 

overturning moments. That precaution was ensured throughout the testing 

programme. 

Joint blocks with lengths 5 to 12 cm were tested on a Wykeham Farrance 

WF 25 300 Direct Shear Box apparatus. Use of the conventional boxes for 

mounting the specimens proved impractical because of the variability of 
the joint sizes. A range of simple adjustable clamping devices 

consisting of two rectangular plates of metal connected by threaded 

rods was prepared. The width of those metal plates was from 18 to 25 mm 
to allow for the variation in thickness of the joint halves in the 
length range of 5 to 12 cm. The plates were firmly positioned against 
the front and back vertical walls of each joint half by tightening the 

screws of the connecting rods at either side of the specimen. The lower 

joint half was firmly fixed in place by means of two horizontally 

aligned bolts passing through the front carriage wall. 

The normal load was applied at the centre of the specimen via a pin 
connected to a x10 lever arm. The shear load was applied. by a 300 kgms 

proving ring. Shear displacements were monitored by a 0.01 mm dial gauge. 
Vertical displacements were measured by either one dial gauge resting on 
to the normal load pin (5 and 6 cm specimens) or two gauges positioned 
symmetrically on either side of the pin and resting on the loading platen 
(10 and 12 cm specimens). An example of the test set-up is shown by the 

photograph in Figure 2.25(a). 

A large shear apparatus was designed for testing the 36-40 cm long 

specimens. A minor modification also enabled accommodation of the 18-20 cm 
long joints. 

The machine is basically a large version of the conventional direct shear 

apparatus , and its design was based on the simple principle of applying 
a shear force at constant rate under constant normal load. The various 
parts are bolted or welded onto a rigid 2.0 x 0.3 meters base. The shear 
m otionis transmitted by a horizontal shaft powered by an electric motor 
via a worm and wheel arrangement; the force (T) is applied by a proving ring. 
The sliding table (56 x 30 cm) rests on low-friction ball bearings and 
has a free movement of approximately 4 cm. The normal load is applied 
either directly by a vertical hanger or by using a x5 lever arm. 



FIGURE 2.25 (a) Direct shear test arrangement for model joints 5-12cm long 

F IGURE 2.25 (b) Direct shear test arrangement for model 18-20cm long 
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Adjustable reaction frames consisting of four interbolted sides were used 
to enclose the two joint halves. The vertical distance between the 

sliding plane and the spindle of the proving ring was adjusted to 5 cm to 

coincide with the thickness of the bottom joint half. Dilation measure- 

ments were taken from two dial gauges positioned symmetrically near the 

two ends of the specimen. Provision was also made to accommodate trans- 
ducers for electronic recording of the shear displacement and shear force 

on a Hewlett-Packard X-Y recorder. 

In order to enable testing of the 18 to 20 cm specimens a clamping device 

similar to the one already described was bolted onto the sliding table 

near the proving ring. The experimental set-up for the 18-20 cm and 
36-40 cm joints testing can be seen in the photographs in Figures 2.25(b) 

and 2.2 6 respectively. 

The rate of shearing of all joint sizes was standardized to 0.4-0.45 MM/Min- 
At an early stage three tests on 10 cm long specimens with identical 

surfaces sheared at rates of 0.048 mm/min, 0.4 mm/min and 0.6 mm/min 
produced practically identical results. 

The shear load and vertical displacements were recorded at 0.1 mm "gross" 

shear displacement interval until peak strength had been passed. That 

interval was then increased to 0.20 mm and later to 0.50 mm. The "gross" 

shear displacements were afterwards corrected for proving ring deflection 

to obtain the true relative displacement between the joint halves. 

All joint sizes were tested in the same relative direction and under 

precisely the same level of normal stress of 24.5 kPa, which corresponds 
to 0.98 MPa when interpreted at prototype scale. 

Repeat tests on separately prepared full size joint specimens were conducted 
for all the types of surfaces to check on the reproduction of the results. 
The new specimens gave consistently similar values of peak shear strength 
but more significantly they displayed almost identical deformation character- 
istics, i. e. peak shear displacement and dilation. Whenever a discrepancy 
was observed, a third specimen was tested for comparison and matching with 
the previous results. 
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2.3.6 Description of the types of joints 

A total of eleven natural joint specimens were finally selected so that a 
wide spectrum of surface geometries could be studied, ranging from rough 
undulating to almost smooth and planar. The "prototype" joints were 

collected from natural exposures of coarse-grained sandstone, siltstone 
limestone and a lightly metamorphosed fine grained sandstone. The genetic 
type of those discontinuities ranged from tension and shear joints to 
bedding planes. Longitudinal profiles were drawn for each of the joints 
by the method described below. 

The bottom half of the joint was positioned on a horizontal table. As has 

already been discussed in section 2.3.2 a permanent horizontal reference 
for the average joint plane was ensured during the moulding procedure. 
Consequently, the relative orientation of the profiles with respect to an 

arbitrary horizontal reference was identical (within the range of human 

error) with that of the model joint specimens when placed on the sliding 
table of the appropriate shear apparatus. 

A set of lines was drawn lengthwise on each joint surface as shown by 

sketch (a) in Figure 2.27. A 15_cm long Vitrex profile gauge was matched 

over consecutive sections of the profile lines and the outline was trans- 

ferred on to tracing paper placed on a perspex slab (sketches b and c in 

Figure 2.27). A levelling bubble fixed on the Vitrex gauge provided a 

standard horizontal reference during the profile matching. A line on the 

tracing paper drawn parallel to the edge of the slab provided a horizontal 

reference (see line XY in sketch c). The edge of the gauge was aligned with 
the top end of the perspex slab and the outline was traced using a fine 

technical pen. All the profiles which are presented "later have been normalized 
to the same horizontal plane. It should also be noted that the wire strands 
in the profile gauge had an approximately 0.7 mm diameter and hence some very 
fine details may have 'not been "picked up". 

The variable geometry of the eleven types of surfaces can be seen in 
Figure 2.28 where a characteristic profile for each of those is shown. 
The figure also includes information, about the type of the "prototype" 
joints. Model nos. 5 and 6 are the ones for which a mating half had to 
be prepared by direct casting of the model material against the joint face. 

In a brief discussion in section 2.3.4 about the similarity of the scaled-up 
roughness of model joints to that found on natural joint exposures it was 
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pointed out that an exaggerating effect might be inevitable, particularly 

when the model surfaces are very rough and the geometrical scale factor (71 

is large. A similar condition is probably relevant with some of the present 

rough, undulating joint types (e. g. model nos. 1,29"3). Of course, such 

uncertainties do not involve only the relevance of the vertical roughness 

amplitude but also the overall roughness when considered in relation to 

joint length. 

In the case of model no. 1a scaled-up 0= 30) average wavelength of 

approximately 3.5 meters produced an average vertical amplitude of 

approximately 25 cm. Likewise, the wavelengths on the surface of model 

no. 2 were between 1 and 3 meters and the corresponding amplitudes ranged 
between 12 and 20 cm. These ranges are realistic when compared with 

similar data from the literature. For instance, Mogilevskaya (1974) has 

reported vertical amplitudes in the order of 9 to 22 cm for wavelengths 
between 1.45 and 2.40 meters found on joint exposures in limestone and 

granite. However, the overall geometry of the nos. 1 and 2 joint surfaces 

is perhaps "too rough" considering their prototype length (. 11 meters). 

A more realistic overall picture is probably presented by joint types 

such as nos. 6 to 11. In general, the aforementioned uncertainties 

should always be borne in mind in any form of quantitative extrapolation 
from model to prototype scales. 
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CHAPTER 2.4 

PRESENTATION AND ANALYSIS OF THE EXPERIMENTAL RESULTS 

2.4.1 Introduction 

In this chapter the results of the extensive direct shear testing 

programme are presented and analyzed. The "component" blocks of each 

subdivided full size joint were tested individually and the results 
from all specimens within each set were interpreted in a cumulative 
form. 

Increasing size of the individual jointed blocks was found to induce 

marked changes in the shear behaviour of surfaces with identical rough- 

ness. Significant scale effects were revealed in both the strength and 

deformation characteristics. 

2.4.2 Presentation of the results 

As stated in section 2.3.5, the direct shear tests on all joint block 

sizes were conducted under precisely the same level of normal stress 
((I 

n). 
The surface area of each individual joint specimen was 

accurately measured to allow for any minor variations from the expected 

average joint area which might have been accidentally induced during the 

block cutting procedure. The individual surface areas were then used to 

calculate the load required to produce a normal stress of 24.5 kPa which 

was equivalent to approximately 1 MPa at prototype scale. 

The model joint compressive strength (JCS 
= uniaxial compressive strength 

of model material) was set at 2 MPa for all the types of surfaces tested. 

Extrapolation of JC m in prototype scale (JCS 
= JCS x gives a value 

pm 
of 80 MPa. The JCS/ n ratio value was thus maintained at a constant 
level of approximately 80 for all joint block sizes. 

The results from nearly 400 shear tests have been summarized in Tables 2.6 

to 2.16. Each-table includes a set of three profiles illustrating the 
full scale surface geometry of the bottom half of the respective joint 
type. A plan of the pattern of subdivision of the original joint plane 
into sets of successively smaller equidimensional. samples is shown 
beneath the profiles. 
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The numbers on each block have been assigned to denote the relative 
position of each "element" onto the full size joint. As an example, 

block no. 1 in Table 2.6 should be imagined as positioned-at the 

farthest left hand side of section no. 1, block no. 2 is adjacent and 

so on. The locations of the profile lines are given by the dotted lines 

drawn on the large joint. 

The dimensions of the full size model joint and those of the smaller 

specimens are given as the average length (cm) and width (cm), as well 

as average joint surface area (cm2). 

The values of three shear parameters have been included for each 
individual joint specimen tested, namely: 

(i) peak shear stress (Tp) 

(ii) angle of peak total friction "(4) 
(iii) peak shear displacement (dhP). 

The p eak shear stress (TP) was calculated by dividing maximum shear 
force (F 

') 
by total joint area (AT) 

Tp (kPa) 
= 

Fax 
x 98.07 2.13 

,,. 

where F is in kgms and AT in cm2. max 

It should be noted that maximum force values were used only in the cases 

where a clearly discernible peak was present in the shear force (F) - shear 
displacement (äh) diagram. In the event of absence of such a peak point, 
it was assumed that the joint had reached its peak resistance at the 

level of maximum inversion of the F-dh line (GUISEPPE, 1970). To avoid 

any subjectivity in the choice of the F value, the relatively steepest 

portion of the dilation curve - which is well known to correspond to 

mobilization of peak strength - was used as a control. Ill-defined peak 

conditions were more frequently met during testing of the larger joints, 

irrespective of surface roughness, as well as in smaller joints which 
had relatively smooth and planar surfaces. 

The peak total friction angle was derived as the arc of tangent -Up/ an. 
From simple geometrical considerations (section 1.1.3 in "Part one), the 
total friction angle is equal at least to the sum of the basic angle of 
friction (0b) and peak dilation angle (i)°; 

P 
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arctan (t / 0-n) 
> (i)p + Xb 2.14 

Under the present JCS o-n ratio value of N 80 the total friction angle 

was larger than the sum of ip and /b due to failure of intact 

asperities. 

The peak shear displacement (dhp) values correspond, as the term implies, 

to the instance of mobilization of peak shear strength and are given in 

mm units. All dhp values have been corrected for the deflection of the 

proving ring and hence represent the net relative displacement between 

the two joint halves. 

At the bottom of each table the range and mean value of each of the three 

shear parameters is given for each block size, together with the 

scatter of the 'Cp and arctan (Tp/Qn) values as expressed by the co- 

efficient of variation V (i%v = [std. dev. /mean ]x 100). 

A detailed analysis of the experimental results will be presented in the 

following sections. 

2.4.3 Peak shear strength in relation to joint block size 

It is a well documented fact that the peak frictional resistance of un- 

filled interlocked joints depends upon the geometrical and strength 

characteristics of the surface and the effective normal stress operating 

across the sliding interface. The stringent techniques-employed for the 

preparation of recasts of the same original joint ensured identical 

surface geometry and the composition of the model material was carefully 

controlled to give a uniaxial compressive strength of 2.0 MPa according 
to the design curve in Figure 2.17. 

Ewen a cursory glance at the individual and average shear strength data 

presented in Tables 2.6 - 2.16 gives an appreciation of the effects-of 
the new variable introduced, i. e. the length of the joint. An obvious 
inverse proportionality between the peak shear stress and the average 
joint block size persists, to a greater or lesser extent, in all the 

types of surfaces which were included in the present testing programme. 

As an introduction to the size effect in the peak shear strength, an 
overall summary of the experimental results is presented in Table 2.17 
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to give an initial idea of the range of values obtained by varying the 

size of the individual joint blocks. 

The eleven types of model joints were broadly divided, on a purely 

descriptive basis, into three classes-according to the visual intensity 

of the surface undulations and the roughness features of order lower 

than 1st. Model nos. 1,2,3,4 and 5 were grouped together as "strongly 

undulating, rough (1,2,3) to moderately rough (4,5)". The "moderately 

undulating, very rough" group comprised model nos. 6,7 and 8, and finally 

model nos. 9,10 and 11 were characterized as "gently undulating, 

moderately rough (nos. 9 and 10) to relatively planar and smooth (no. 11)". 

A visual clarification of the above descriptions can be obtained from the 

profiles in Figure 2.28 and those presented in Tables 2.6 to 2.16. 

The peak arctan (t / crý)° values for each group in Table 2.17 represent 
the mean values from all tests on joint blocks of similar size. 
Comparisons of the mean data within each of the four columns show in 

each case a decrease in the average total friction angle associated with 

the gradual increase of the joint length. The maximum average reduction 

ranged from - 8o to - 200 as the joint length increased from 5 or 6 cm 
(equivalent prototype, P=1.5 or 1.8 meters) to 36 or 40 cm (P = 10.8 or 

12 meters). 

A characteristic of the overall average'values presented in Table 2.17 is 

the decrease in_the value of standard deviation about the mean with 
increasing joint block size. ' A more clear picture is given-by the co- 

efficients of variation (V) which have been calculated for each set of 

specimens (see Tables 2.6 - 2.16). The fluctuations in the strength of 

the small individual joints are the expected result of two geometrical 

characteristics of the full scale surfaces, namely, the large undulations 

and the random distribution and variable size of the asperities smaller 

than the major waves. 

With regard to the variable of surface waviness, it is readily under- 

standable that the shear strength of a joint whose length is appreciably 

smaller than the wavelength of an undulation would depend upon its 

relative position on the limbs of the latter. If it fell on the negative 

or positive side with respect to the direction-of shearing, it would show 

minimum and maximum respectively resistance to sliding. Accordingly, a 
block situated on the peak of that undulation or in the'trough between two 
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successive ones would exhibit strength between the upper and lower limits. 

Those differences would obviously be enhanced by the variable geometry 

and location of the smaller irregularities, and would accordingly be 

minimal in the case of joints with planar surface geometry. The scatter 
(%V) in the peak shear stress (P) values corresponding to 6 cm-long 

specimens of the rough undulating joint types (nos. 1 to 5)'ranged between 

23% and 49%. For similar joint block sizes of model nos. 6 to 8 
(moderately undulating very rough) the %v was between 17.2% and 37.7%. 

Finally, the scatter in p of the 6 cm long samples from the least 

irregular surfaces (model nos. 9 to 11) was between 16.3 and 21.3%. 

The scale effect in the peak shear stress (p) is illustrated in 

Figure 2.29 where the average -tp values corresponding to each set of 

specimens tested have been plotted against the average joint area (AT). 

A characteristic feature of those average trends is the non-linear 

variation in Tp evidently tending to reach an asymptotic value with 
increasing AT. Furthermore, it is shown that size effects become much 
less pronounced with increasing regularity of'surface geometry, as in 

the cases of model nos. 9,10 and 11. 

A summary of the percentage reductions in joint strength with increasing 

block size is presented in Table 2.18. For each of the models the ratios 

of the average length (L) and area (A) of the individual blocks to the 

corresponding length (L. ) and area (A,, ) of the full scale joint are 
included. The % reductions in peak shear stress (T ) and total friction 

p 
angle tan-' ( tp/ Qn) have been calculated with respect to the. maximum 

experimental values which are also included in the table for reference. 

In most cases the joints of 5 or 6 cm length showed ma. peak shear 

strength as compared to the larger sizes. The 6 cm blocks of model nos. 1 

and 4 showed . virtually the same strength as the 12 cm ones, while in the 

case of'model no. 5 an intermediate size of 9 cm displayed higher strength 
than both the 6 and 12 cm joints. The explanation for those deviations 

lies in the preceding arguments regarding the scatter of the results with 

decreasing joint size, which can be supplemented here with the introduction 

of another factor, namely the symmetry of the undulation. A small amount 

of asymmetry was present in the case of model no. 5, where the "negative" 

limbs of the large undulations were overall longer than the "positive" 

ones (see corresponding profiles in Table 2.10). In combination with the 
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TABLE 2.18 

Summary of the percentage reductions in peak shear strength with increasing joint block size. 

Size relationships % REDUCTION Size relationships % REDUCTION 
between individual 
joint blocks and Peak shear Angle of total 

between individual 
joint blocks and Peak shear Angle of 

full scale model stress (Tp) friction (Op) = 
' 

full scale model stress (t ) total 
P 

* ** -tom (tp/ n)o friction(Xp) 
L: L A: F 

1 
L: i F A: Ap 

1 -tan (Tp/crn) 

MODEL No. 1 MODEL No. 6 

1: 6 1: 18 (6) 59.1 kPa ...... 65.70 1: 6 1: 18 (6) 46 kPa ...... 59.70 
1: 3 1: 6 (12) 8.3% 0.6% 1: 3 1: 6 (12) 18% 6.5% 

1: 2 1: 4 (18) 28.9% 9.3% 1: 2 1: 4 (18) 33.5% 17.3% 

11 (36) 38.7% 14. '9% 11 (36) 49.3% 26.7% 

MODEL No. 2 MODEL No. 7 

1: 6 1: 18 O6 53 "1 kPa .... ". 64.4° 1: 8 1: 32 (5) 61.2 kPa .... 67.3° 

1: 3 1: 6 (12) 23.7% 11.2% 1: 4 1: 12 (10) 20.9% 7.4% 
1: 2 1: 4 (18) 33: 0% 14.1% 1: 2 1: 4 (20) 47.1% 21.5% 
11 (36) 41.1% 19.4% 11 (40) 58.0% 31.1% 

MODEL No. 3 MODEL No. 8 

1: 6 1: 18 (6) 53.2 kPa ...... 63.8° 1: 8 1: 22 (5) 51.1 kPa .... 
63.9° 

1: 3 1: 6 (12) 27.3% 12.9% 1: 4 1: 12 (10) 3.3% 1.7% 

1: 2 1: 4 (18) 36.5% 15.8% 1: 2 1: 4 (20) 33.7% 15.5% 

11 (36) 49.2% 25.1% 11 (40) 49.7% 27.4% 

MODEL No. 4 MODEL No. 9 

1: 6 1: 18 (6) 
0 

1: 6 1: 18 (6) 36.5 kPa .... 55.50 

1: 3 1: 6 

) 

(12) 43 kPa ....... 59.7 
1: 3 1: 6 (12) 13.9% 7.6% 

1: 2 
. 

1: 4 (18) 20.7% 9.2% 1: 2 1: 4 (18) 25.6% 13.9% 

11 (36) 40.2% 22.3% 11 (36) 34.6% 20.0% 

MODEL No. 5 MODEL No. 10 

1: 6 1: 18 (6) 1.8% 4.8% 1: 6 1: 18 (6) 27.6 kPa .... 47.9° 

1: 4 1: 12 (9) 43.5 kPa ...... 60.2° 1: 3 1: 6 (12) 8.3% 5.3% 
1: 3 1: 9 (12) 5.3% 3.7% 1: 2 1: 4 (18) 15.9% 9.4% 

1: 2 1: 4 (18) 25.7% 12.8% 11 (36) 23.9% 15. E 

1 1 (36) 33.3% 17.3% 

*L= length of individual joint block 

LF, = length of full scale joint 

A= area of individual joint block 

AF = area of full scale joint 

Numbers in brackets give the average, 
model joint length in cm. 

MODEL No. 11 

1: 6 1: 18 (6) 25.8 kPa .... 46.2° 

1: 3 1: 6 (12) 15.5% 10" 
1: 2 1: 4 (18) 25.5% 18.0% 

11 (36) 21.7% 14.5% 
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moderate small scale rougghness, that type of surface geometry resulted 
in more 6 cm joints to be sheared "downslope" and hence show somewhat 
lower average strength than expected. 

For all joint types except no. 11 the full scale models exhibited the 

lowest peak shear strength. In case no. 11 the 36 cm joint showed 

slightly higher strength than the 18 cm ones, but lower than the 6 and 
12 cm blocks. 

The maximum loss in strength was displayed by model no. 7, in which case 

an increase in joint area by a factor of 32 resulted in almost 60% 

reduction in peak shear stress (31% reduction in peak total friction angle). 
For the other rough/undulating joints the maximum reductions in peak shear 

stress ranged between 33 and 50% as the area increased by a factor of 18 

to 22. The equivalent reductions in the total friction angle ranged 
between 17 and 27%. In the cases of the relatively planar joints nos. 10 

and 11, the maximum reduction in Tp was 24 and 22% respectively (14-15% 

in tan-' Tp/ Qn) . 

2.4.4 Analysis of the shear stress-horizontal displacement relationships 

1. Derivation of the stress-displacement curves 

The shear stress (T )-horizontal displacement (dh) diagrams for each sub- 
divided model were derived by slimming up the shear forces (T) which acted 

upon each of the component blocks for the same amount of shear displacement. 
The total shear force (1Ti) was then converted into stress units by 

dividing with the total joint area (. A) An example of that cumulative 

process is given below where a full size joint is assumed to have been 

divided into 18 jointed blocks which were tested separately: . 

Shear dis- 
placement (mm) 

Block 
no. 1 

SHEAR FORCE (T) 

Block Block 
no. 2 ...... no. 18 

CIIMULATIPE SHEAR FORCE 

E Ti 
i-1 

0.10 21 18 "....... 10 21 + 18 + ........ + 10 
0.20 32 26 22 32 + 26 + ........ + 22 

0.30 37 25 30 37 + 25 + ........ + 30 

1.00 24 21 19 24 + 21 + ........ + 19 
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Tables with the cumulative results for all types of models and block 

sizes axe included in Appendix II-. 

The shear stress-shear displacement diagrams are presented in Figures 2.30 - 
2.40. Each of those figures also includes the corresponding dilation 

curves, to which reference will be made in the next section. 

The T -dh curves demonstrate clearly the scale effects on the shear 

strength and defozmation properties of joints. Study of the diagrams 

obtained for each of the eleven types of surfaces reveals, in addition to 

the already discussed size-dependency of peak shear strength, two further 

scale effects: 

(i) a gradual increase in the peak shear displacement (ähp) with 
increasing joint block size, 

(ii) an apparent transition from "brittle" to "plastic" mode of 

shear failure. 

2. Shear displacement-size effects 

The displacement-size effect is illustrated in Figure 2.41 where the 

average dhp values given in Tables 2.6 - 2.16 have been plotted against 
the respective joint length (L). 

As shown by the three groups of data in Figure 2.41, the geometry of the 

-surfaces played a decisive role in the variation of dhp with increasing 

joint length. In general, the rough undulating joint types (nos. 1,2,3, 

4,5) underwent larger horizontal displacements before peak strength was 

reached than those with rough but less wavy surfaces (nos. 6,7,8), while 

the joint types with the least irregular wall geometry (nos. 9,10,11) 

occupied the lowest end of the dhp range. 

The differences in the magnitude of displacements as related to surface 

roughness were more pronounced between the larger block sizes and in 

particular those of length 18 or 20 cm and 36 or 40 cm. The above size- 

roughness-displacement effects are summarized in Table 2.19, 'where the 

mean dhp values corresponding to each group of data in Figure 2.41 are 

presented, together with the equivalent prototype values. 
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TABLE 2.19 

Summary of the peak displacement-size effect 

JOINT LENGTH (L) MODEL Nos. 

Model Prototype 19 29 3,4, ` 5 6,7, 8 9,10, 11 M P 
(cmý (m) 

M(mm) P(cm) M(mm) -, P(cm) - M(mm)' P(cm) 

5,6 1.5,1.8 0.90 2.91 0.65 1.95 0.74 2.22 
10,12 3.0,3.6 1.20 3.60 0.76 2.28 1.06 3.18 

18,20 5.4,6.0 1.64 4.92 1.01 3.03 1.06 3.18 

36,40 10.8,12 2.67 8.01 -1.83 5.49.. 1.30 3.90 
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Overall, a maximum increase in joint length by a factor of 6 to 8 

resulted in an increase in dhp by a factor of 1.8 to 2.8. The effect of 

surface roughness upon the peak displacement of equidimensional blocks 

agrees, at least in a qualitative sense, with the behaviour expected 

from natural joints. Peak displacements of 0.1 to 0.2 mm were quoted 

by Goodman (1970) as typical of smooth fractures, compared to dhp values 

of the order of 2 to 8 mm normally obtained from rough joints. 

AL'certOn amount of quantitative exaggeration probably exists in 

some of the equivalent prototype dhp values included in Table 2.19, if 

the peak displacements usually measured from in-situ shear tests (rarely 

exceeding 2 centimeters were used as a basis for comparison. Peak 

displacements in the order of 5.5 to 8.0 cm associated with joints 

approximately 11 to 12 meters long might not appear too unrealistic, 

although "specimen" sizes in that range are well beyond the usual reach 

of in-situ tests and obviously no valid comparisons can be made. 

On the basis of results from tests on model fractures, Barton (1972) 

suggested that an empirical relationship of "dhp equal to 1% of joint 

length" offers a reasonable compromise for a practical allowance of the 

size-displacement effect. The "1% rule-of-thumb" was tested against the 

mean data in Table 2.19 and the findings are summarized below: 

JOINT LENGTH (L) 

Model " Prototype 
) t ( 

Mean 

Joint 

dh 

length 
x 100 

L 
(cm) ers me 

1,2,3,4,5 6,7, 8 9,10,11 

5,6 1.5,1.8 1.5% 
_ 

1.2% 1.2% 

10,12 3.0,3.6 1.0% 0.7% 0.9% 

18,20 5.4,6.0 
r- 

0.99 
---- 

0.5% 
------- 

0.6% 
36,40 . 10.8,12.0 0.7% 0.5% 0.49/6 

In general, the empirical rule appears to agree reasonably well with the 

experimental data with the exception of the large joints (18-40 cm long) 

of model nos. 6 to 11. The overall mean of the (dh /L) x 100 values 
derived for joint nos. 1 to 5 (full range of block sizes) is 1.025%, while 
for the 5 to 12 cm long joints of model, nos. 6 to 11 the mean values are 
0.95% and 1.05%. 
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Barton and Choubey (1977) pointed out that dhp would be expected to reduce 

to less than 1% of the joint length as the latter increased to several 

meters. Distinction of a limiting joint length beyond which the 1% rule 

ceases to have any realistic correspondence to the actual behaviour is a 
difficult task when the combined effect of both size and roughness 

effects on peak displacement is considered. 

On the basis of the present experimental results it would appear that such 

a limit could be represented by the 18 cm long joints of the undulating 
joint types (nos. 1 to 5) and probably the 10 to 12 cm long joints 

representing less wavy to relatively planar surfaces (nos. 6 to 11).. 

Those sizes interpreted at prototype scale correspond to joints 5.4 and 
3.0-3.6 meters long respectively. It is perhaps unwise to quantify these 

observations further in view of the uncertainties surrounding the relevance 

of model joint roughness to that of natural exposures. 

Peak shear displacement is actually a measure of the distance a joint has 

to travel from an initial "at rest" position until effective contact is 

made between the irregularities controlling its peak resistance. The 

displacement-size effect revealed in the present series of joint types 

implies a potential involvement of different orders of asperities in 

defining the optima shear path of joints of different length. Conclusive 

evidence to that effect will soon be given. 

The scale-dependency of peak shear strength (T. ) and peak horizontal dis- 

placement (dhp) combined produces a strong scale effect upon the property 

of shear stiffness (x5), which is expressed as 

g_ 
T- 

s dhp 2.15 

i. e. as the average slope of the pre-peak portion of the T -dh curve. 
The effects of scale upon the shear stiffness of joints have been considered 
by Barton (1972), Barton and Choubey (1977) and Barton and Hansteen (1979). 

That aspect will be discussed in part three of the thesis. 

An interesting feature of the pre-peak part of a number of Z-dh curves 

representing joint blocks 18 and 36 cm long was the occurrence of one or 

more inflection points normally followed by a discernible decrease in the 

slope of the line. Such slope changes can be seen in some of the curves of 
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model nos. 1 (36 cm), 2 (18 and 36 cm), 3 (36 cm) and 7 (36 cm) in 
Figures 2.30,2.31,2.32 and 2.36 respectively. 

Similar interruptions of the continuity of the pre-peak portion of the 

shear stress-horizontal displacement curves are frequently observed in 

shear testing of rock joints. They are generally attributed to a small 

preliminary displacement occurring at some shear stress level, which 
brings the two halves of an undisturbed joint into a fully interlocked 

position.. 

The present model joints were fully interlocked prior to the application 

of shear force. Furthermore, it would appear that those inflection points 

and accompanying slope changes occurred after horizontal displacements 

corresponding roughly to the average peak displacements of the 6 cm and 

sometimes 12 cm long joints. A plausible explanation relating the above 
features with a probable "progressive" joint failure will be given in 

Section 2.4.8. 

3. Modes of failure with increasing joint block size 

The apparent change in the mode of shear failure from "brittle" to 

"plastic" as the joint length increased can be seen to persist, to a 

greater or lesser extent, in all the highly irregular types of surfaces 
tested. Rough joints 5 or 6 cm long displayed a marked drop in shear 

strength almost immediately after mobilization of peak resistance to 

levels rapidly approaching ultimate conditions ("brittle" mode of failure) 

as shown by the corresponding' t -dh curves of model nos. 1,2,3,4,6,7,8 

in Figures 2.30 - 2.33 and 2.35 -. 2.37. Similar behaviour but somewhat 
less pronounced was shown also by the 10-12-cm long joints of the same 
1 to 8 surface types. 

As the size of the individual blocks was increased further to 18 or 20 cm, 

a much more "stable" failure was observed. Mobilization of peak shear 

strength was followed by only small changes in the shear resistance with 
increasing horizontal displacement (quasi-"plastic" 

mode of failure). 

Such a pattern was characteristically shown by almost all the largest 

specimens (full scale models 36 or 40 cm long) tested. Two exceptional 

cases of "strain-hardening" behaviour should be noted (36 cm long joints 

in Figures 2.32 and 2.33). In those cases prolonged sliding was associated 

with small increase in the shear strength, 'until an apparently stable state 
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was approached after 7-8 nn of displacement. The relevance of the above 

patterns of behaviour to that expected from a jointed rock mass is 

discussed in Section 2.4.8. 

Ultimate strength is reached after horizontal displacements of a scale 
larger than the size of the irregularities of the joint walls (Krahn 

and Morgenstern, 1979); in other words, when the joint halves have 

displaced by an amount sufficient to result in loss of the effective 

contact between the asperities at the moment of peak shear resistance. 

In that context, the contrast in the post-peak behaviour of small and 
large specimens representing identical sliding planes indirectly implies 

that asperities of different baselength effectively control the shear 

strength of joints of different lengths. Evidently, the shear displacement 

of joint specimens 18 cm and in particular 36 cm long was not adequately 
large in relation to the size of the "important" irregularities to enable 

substantial overriding of the latter, unlike the cases of the smaller 

joint block sizes. 

As would be expected, the "flat" geometry of the roughness features of 

all scales on the relatively planar and smooth types of surfaces (model 

nos. 10 and 11) resulted in a more or less "plastic" behaviour 

irrespective of joint block size. 

The analysis so far of the shear characteristics of joint blocks of 

various sizes indicates the probable involvement of asperities of 
different order, which potentially control the shear behaviour of 
joints of correspondingly different lengths. The effects of surface 

roughness are reflected in the all-important property of joint dilation. 

The variations in the latter associated with increasing joint lengths 

are discussed in the next section. 

2.4.5 Dilation-size effects in joints 

The'dilation curve for each "jointed" model was derived by averaging 
the vertical displacements (v) of all component blocks for the same 
increment of shear displacement (dh). The average vertical displacement 

data for each joint type and block size are included in the Tables of 
Appendix II. The v vs dh graphs have been presented together with the 
t-dh diagrams in Figures 2.30 to 2.40. 
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The peak dilation angle (ip) was calculated in each case from the slope 

of the portion of the dilation curve corresponding to peak shear dis- 

placement. The so derived average ip values are given in Table 2.20 and 

their variation with length of joint is illustrated in Figure 2.42. 

As can be seen from the tabulated and plotted data the average peak 

dilation angle dropped appreciably with increasing joint length. The 

maximum difference in the ip values between the largest and smallest 

block sizes representing non-planar surfaces ranged approximately 

between 2.50 and 9.00, although in majority the maximum drops in-ip were 

below 50. The surfaces with regular geometry showed an extremely small 
(no. 10) to practically non-existent (no. 11) variation in ip with 

increasing joint length, as would obviously be expected. 

The differences between the average ip values displayed by the same 
joint when variable profile lengths were sheared under the. same normal 

stress signify that the peak shearing path of short and long joint 

profiles was defined by asperities of different baselength. Under a 

given p-n the peak dilation angle represents the inclination of the 

contacts between the 'effective' asperities with respect to the mean 
joint plane at the instant of peak strength. Analyses of joint 

profiles have shown that the longer the baselength considered, the 

less steep the asperities (Patton 1966, Barton 1971 and Rengers 1971/ 

quoted in Goodman 1976). Combining the scale effects in the shear 
displacement required to mobilize the peak strength and in the peak 
dilation angle it becomes clear that as the length of joint samples 
increased peak resistance was not reached until effective contact had 

been developed; between asperities of longer baselength and 

correspondingly 'flatter' slopes. That was confirmed from post-test 

observations of the sheared surfaces (see next section). The reducing 
dilation of longer joint samples accounts for part of the strength 
loss displayed by the latter. Partial or complete damage of effective 

asperities under the experimental contributed a shearing component 
to the peak total frictional resistance as will be discussed in 

section 2.4.7. 

An extremely significant implication of-the involvement of asperitiesA - 

of different baselength in controlling the shear strength of different 

joint lengths is that the value of the joint roughness coefficient (JRC) 

determined for a particular joint exposure will depend upon the size of 

specimen tested. " A joint length whose peak behaviour was controlled by 

small steep asperities would give a higher JRC value than a longer 

profile (of the same joint) whose behaviour was dominated by larger and 
more gently inclined irregularities. 
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TABLE 2.20 

Average peak dilation angles (ip) of different joint lengths. 
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JOINT LENGTH (L) MODEL Nos. 

Model 
(cm) 

Proto- 
type 

1 2 3 4 5 6 7 8 9 10 11 

5,6 1.5,1.8 15.0° 14.0° 12.7° 10.4° 5.4° 11.6° 16.7° 14.0° 6.5° 3.0° 2.3° 

10,12 3.0,3.6 15.6° 12.0° 9.8° 8.0° 10.0° 10.4° 12.0° 10.5° 6.6° 3.8° 2.0° 

18,20 5.4,6.0 14.4° 10.5° 10.0° 9.7° 8.9° 9.6° 10.6° 8.9° 5.1° 3.1° 1.8° 

, 40 36,40 10.8,12.0 12.2 0 9.8 0 9.60 0 6.00 0 7.5 0 6.5 0 7.8 0 8.4 0 5.1 0 2.0 0 2.0 
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FIGURE 2.42 Variation of peak dilation angles with -increasing length of joint specimen 
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2.4.6 The scale dependency of Joint Roughness Coefficients 

The values of JRC corresponding to the full size surfaces and the 

cumulative mean JRCts for each set of individually tested joint specimens 
have been back-calculated from Bartonts equation: 

JRC = 
arctan(tp/ 07n) -Ob 

log10 JCS am 

where: Zp = cumulative mean peak shear stress (kPa) 

n= normal stress equal to 24.5 kPa 
ýb = basic angle of friction (= 320) 

JCS = joint compressive strength equal to 2000 kPa. 

The back-analyzed values are presented in Table 2.22 and the variation 
in JRC with increasing length of joint is illustrated in Figure 2.43. 
The tabulated and plotted data show very distinctly the reduction in 
the effective JRC value representing the same joint surface as the length 

of profile of the individual block components increased. The JRC values 
dropped by a maximum of 1.3 to 11.2. As is tobe expected the minimum 

reductions were associated with the relatively smooth and planar joint 

types (nos. 10 and 11). 

TABLE 2.22 

Cumulative mean JRC values for different types of surfaces and joint lengths. 

JOINT LENGTH (L) MODEL Nos. 

Model Prototype 
(cm) (m) 1 2 3 4 5 6 7 8 9 10 11 

5,6 1.5,1.8 18.1 16.8 17.0 14.5 13.8 15.0 18.5 16.7 11.9 8.4 5.1 

10,12 3.0,3.6 17.3 13.6 13.1 13.0 13.7 11.8 15.3 15.7 10.3 7.2 4.4 

18,20 5.4,6.0 14.4 11.8 11.7 11.4 10.9 9.6 10.8 11.1 7.8 6.2 3.5 

36,40 10.8,12.0 12.5 10.4 7.8 7.5 9.0 6.0 7.3 7.5 6-51 4-51 3-8 

11 
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The scale-dependency of JRC manifests the potential decline in the 

effective contribution of surface roughness to the total frictional 

resistance of a non-planar joint as its length increases. Barton and 

Choubey (1977) drew attention to the probable size-effects in the joint 

compressive strength (JCS) as a consequence of similar effects in the 

uniaxial compressive strength of intact rock. 

A constant JCS value (= 2000 kPa) was used in the derivation of the JRC 

estimates in Table 2.22. Had the JCS been assumed as size-dependent 

and the original value of 2000 kPa been reduced, the back-calculated JRC's 

for joint lengths larger than 5 or 6 cm would have been somewhat larger 

than those given in Table 2.22. Some characteristic examples will be 

presented in the next section. 

The probability of scale effects in both JRC and JCS implies that the 

lower shear strength of longer joints could result partly from a redu- 

ced geometrical contribution of the surface roughness (lower JRC) and 

partly from a reduced resistance to failure of larger asperities due to 

the inherent strength-size effect of the intact material. Analysis of 

the present experimental results showed that the asperity failure or 
intact strength component represents a potential source of size effects 

in the shear strength of joints. 

2.4.7 Asperity failure components in relation to joint block size 

The total frictional resistance of a non-planar joint sheared under 

normal load comprises three angular components as shown diagrammatically 

in Figure 2.44: 

(i) the basic frictional component (0b) which is generally 

accepted as a constant material property 

(ii) the inclined plane or geometrical component (i. ) from 

asperity overriding 

(iii) the intact strength or asperity failure component (Sg) 

arising from intact failure of some irregularities. 

As has already been discussed in Section 2.4.5, the dependency of 
dilation on scale is one of the reasons for the lower shear strength 
of longer joints. However the reductions in the peak dilation angle 
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FIGURE 2.44 The angular components of shear strength for an undulating 
joint (after Barton, 1971) 

TABLE 2.23 

Variation of the asperity failure component (SA°) with increasing joint length (L) 
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JOINT LENGTH (L) MODEL Nos. 
Model Prototype 

(cm) (m) 1 2 3 4 5 6 7 8 9 10 11 

5,6 1.5,1.8 19.6° 18.1° 19.9° 17.3° 21.1° 17.3° 18.7° 17.9° 16,3° 13.1° 7.5° 

10,12 3.0,3.6 17.4 0 14.2° 15.4° 16.8° 17.1° 12.2° 17.2° 19.5° 12.7° 9.6° 6.6° 
18,20 5.4,6.0 13.2° 12.4° 12.2° 12.1° 12.1° 8.7° 10.4° 12.1° 10.70 8.30 4.90 

36,40 10.8,12.0 11.7° 10.1° 5.3° 8.4° 10.3° 5.1° 6.2° 6. o° 7.3° 6.6° 5.3° 
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cannot account for the full scale effect in the total friction angle 
(tan-' tp/ Qn) which is represented by: 

tan 1(' /o 
n)° 

Eip + Si° + pb 2.16 

Had ip been the only scale dependent variable one would expect SÄ to be 

constant irrespective of joint length. The values of the asperity 
failure component estimated from 

J SÄ = tan 1( T pl - )° - 
[ip +. f 2.17 

I 
revealed a strong scale effect in SÄ as shown by the data in Table 2.23. 

A comparison of the percentage reductions in SÄ with those of the peak 
dilation angles (ip) in Table 2.20 shows that in fact the intact strength 

component was apparently more-dependent on scale than was the dilation. 

For example, in model no. 1 the maximum reduction in So was 41% while iP 

decreased by 18.4%. In the case of model no. 2, SA dropped by 45% 

compared to a 306 reduction in ip. The largest joint size of model no. 3 

showed a 50.8% reduction in So while iP decreased by 24.4%. Similar 

observations can be made for all types of joints tested. 

The apparently different "sensitivity" of the geometrical and intact 

strength components to size effects can be readily appreciated if each 

of them-is expressed as a percentage of their sum, which in effect 

represents the total contribution of surface roughness to the frictional 

resistance of a joint sheared under a certain level of normal stress: 

0 Eip + SAO ]= ROUGHNESS COMPONEN'T', R° = tan 1(T 
p/a-, )° - 

/b 2.18 

Under the present level of normal stress (an = 24.5 kPa, JCS/Qn = 80), 

the results showed that the intact strength component was somewhat 
larger than the dilation component of all the small joint block sizes 
(5 or 6 cm). The disproportional reduction in ip and SÄ with increasing 

joint length eventually led to an inversion of that original analogy, 

as shown with a few characteristic examples in the next page. 
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Joint Length (L) 

Prototype Model 
(m) (cm) 

1°° and. SSas%ofR0 

Roughness Geometrical Intact Strength 
Component, R0 Component (i°) Component (SA) 

MODEL No. 1 

1.8 6 34.6° 
3.6 12 33.1° 
5.4 18 27.50 

10.8 36 23.9° 

43.4% - 56.6/ 
47.1% 52.3% 
52.4% 47.6% 
51.0% 49.096 

MODEL No. 2 

6 32.1° 43.6% 56.4% 
12 26.00 46.2% 53,8°/ 

if 1s 22.6° 46.5% 53.5% 
36 19.9° 49.2% 50.8% 

MODEL No. 6 

6 28.7° 40.4% 59.6% 
12 22.6° 46.0% 53.4% 

", 18 18.4° 52.2% 47.8% 
36 11.5° 56.50/6 43.5% 

For instance, in the case of model no. 1,43.4% of the roughness 
component (Re) in the total shear resistance of the 6 cm long joints was 
contributed by the overridden irregularities (geometrical component, ip) 

and the remaining 56.6% by the strength of the failed asperities (intact 

strength component, SÄ). Similar analysis of the roughness component 
of the 36 cm long specimens showed that ip represented 51% of the Rc 

value and SÄ was 49%. 

The difficult question is that of how can this size-effect in the asperity 
failure component be explained. A probable source. of that phenomenon 
could be a large quantitative difference in the actual contact area 
between joint surfaces of different sizes. 

As has been discussed in Section 2.1.5, Pratt et al. (1974) attributed 
a 409/6 reduction in the shear strength of diorite joints to the fact that 
"larger" specimens (N 5000 cm 

2) had lower actual contact area than 
"smaller" (N 250 cm2) ones. Post test observations of the large sheared 
surfaces had shown that the shear load had been applied over 10 to 20% 
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of the total area. However, no quantitative information was given in 

that publication about the contacts of the smaller size specimens. 

If in the present case the contact area of the large joints was indeed 

much lower than that of the smaller ones, the peak shear stress values 
(T 

P 
), which in each case were calculated with reference to total joint 

areas, would be accordingly affected. By implication, the asperity 
failure components (SÄ) would also "appear" as size-dependent, since they 

were calculated from tp (see equation 2.17). 

Post-test observations were made on the actual contact areas (A 
actual) 

of 
different joint block sizes in an attempt to clarify the above hypothesis. 

The areas on the surfaces of the bottom half of joint specimens over which 

asperities were visibly damaged or scratched were carefully contoured and 

then traced onto transparent graph paper. 

Comparisons were mainly concentrated between the 6 cm long joints and 
their full size counterparts (36 cm). In each case, the areas of contact 

on all component joints of the subdivided model were added up and the 

average value of the actual/Atotal ratio was estimated, where Atotal was 
the apparent total area of the full size joint. 

From measurements on different types of surfaces, the average AactlAtotal 

ratio values corresponding to the subdivided models were found to range 
between 5.3% and 9.6%. The contact ratio values of the corresponding 
full size joints were between 8 and 10.5%. Overall, the sum of the actual 

contact areas which were found on the component joints of the subdivided 

models were somewhat smaller than the total contact area of their full size 

counterparts. Some examples are given below: 

Sum of actual Total ! t l Individual Contact Areas Surface Area (_ ac ua )x 100 
Joint Length 

l(cm 
2) A t (cm 2) g 

Atotal 

ac ua total 

6 cm 48 504 9.5% 
Model No. 1 36 cm 53 504 10.5% 

6 cm 41 504 8.1% 
Model No. 2 36 cm 49 504 9.7% 

6 cm 30.6 400 7.7% 
Model No. 11 18 cm 37.5 - 400 9 . 4/ 
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It is important to note that those contacts corresponded to 5-6 mm of 

joint displacement and hence were accordingly larger than those expected 

at the moment of mobilization of peak shear strength (2 to 3% at the most). 

The effect of the continued displacement must have been an enlargement of 

the "peak" contacts and development of some new contact areas. Considering 

the size and geometry of the asperities which controlled the peak strength 

of Joints of different length, it is reasonable to expect that the 

"enlargement effect" would be more pronounced in the cases of the full 

size joints, where the effective irregularities maintained a substantial 

contact after peak strength was reached, evidently unlike the smaller 

specimens (see Section 2.4.4). That may explain the apparent "negative" 

size effect in contact areas of small and large joints. 

It is probable that the Aactual/Atotal ratio value for both specimen sizes 

was reasonably comparable at the moment of peak strength. At any rate, 

it would appear as a rather remote likelihood that post-peak displacements 

of a few millimeters masked the originally suspected size-effect of 

substantially decreasing contact area with increasing specimen size. 

In conclusion, it would seem that as fax as the present types of joints 

is concerned, the scale effects in the asperity failure components cannot 

be related to a size-contact effect in the context considered above. 

Three characteristic examples of the contact areas found on different 

specimen sizes of three joint types (nos. 1,4 and 11) are shown by the 

photographs in Figures 2.45,2.46 and 2.47. A cursory glance at the two 

rough undulating surfaces (model nos. 1 and 4, Figs. 2.45 and 2.46 respect- 

ively) reveals some very distinct features regarding the pattern of 

distribution and size of the contact areas: a larger number of smaller 

individual contacts can be seen on the subdivided surfaces (individual 

joint length L=6 cm) by contrast to the full size specimens (L = 36 cm) 

which were characteristically marked by fewer but larger contacts. 

For instance, a total of 230 individual contacts were counted on the sub- 

divided (L =6 cm) model no. 1 compared to 75 found on the corresponding 

full size specimen. Similarly, 156 areas of contact were traced on the 

subdivided model no. 4 compared to a total of 55 on the 36 cm joint. 

Similar differences were also observed on other non-planar joint types. 

A less contrasting pattern was found on the nearly planar joint no. 11. 

The contacts on the 6 cm/ and 18 cm /subdivided 
models were 215 and 175 

respectively, while the size of the individual areas was only slightly 

larger in the case of the 18 cm joint specimens. 



i. I" 

ý t 1 

.I 



169 

CT) 
0 

0 
c 
0 

E 
N 

U 
C3 

C 
0 
U 

N 

0 
0- 

0 
N 

N 

C 
0 

L^, 

W 

E 

C 

C 
0 

D 

-4-. 
N 

0r 

O 
Z 

cn - 
Zv 

0 
}E 

o 

a) 
nE 

pc 

0 

LC) 

v 
N 

w 

0 
L 



169 

rn ö 

0 

E 

} 

U 

c 
0 
U 
In 

O 
Q 

O 
N 

Qi 
N 

-a C 

a 

D 
c 
c 
0 

} 

} 
v- 

Vo 
SZ 

rn- 
cv 

"} -o 
00 

o 

a) 
0 oE 

0 

o 
-C o 

LAO 
v 
N 

w 

U- 



170 

ö 

-v 0) 

Q, pia c: 
w` º,. +"-': r 

`` 

; mal 1º rd . sf 

Jr, 10 
14- 

1e0ý;, 
C% 

.0, --, fll. 

4w- 

ý (3 

- ý.. ayt, 4-"Q äý 

4" 

4L 44 w3 ve 

aý 

a0 
aN 

0a 
oE 

_c 

N 

w 

0 

U- 



171 

0 C3 

ao 
Q- 

Qp0 

--ft I 
-W 

' 
`. 

.. 

. -..... 

-OOO0 

0 

,s ate` . ý©a , ýa ä 
40 0 

kk 
410k 40- 

v0 

�R 
40 12ý 

4" 11 
41 , <: ý 

(2 Qýý 
IýP% iE 

q o0GJa () -vp ö 

0vn j 

,ý""oV 

Q-, ý 
0g10 c 'O 

gyp, 
)> 

!ý 
00 

0RA co 
-' . 

- 
Vr 

ýiýr b -- aZ 
JN 

'Ib r .t Oe 
QLN 

U) (U 
E 0 

AMM, a- ý 
t\ 

C«; 

w 

0 
LL 



172 

There is a clear interrelationship between the size of the individual 

contacts and the dimensions of the asperities responsible for the 

contrasting behaviour of joints of different lengths. Large areas of 

contact developed between the slopes of the, few large irregularities, 

which dominated the behaviour of the long joints. On the other hand, 

smaller contacts were created between the sides of the small asperities, 

which controlled the strength of the shorter specimens. 

Such a contact area-size effect is linked with the hypothesis of, Barton 

and Choubey (1977) regarding the probable existence of a scale effect in 
the joint compressive strength (JCS). 

As reviewed in Section 2.1.2, the strength properties of intact materials 

are inversely related - to a greater or lesser extent - with specimen 

size. Consequently, it is not unreasonable to consider the probability 

of large irregularities "resisting" lower stresses than small asperities 

due to the inherent strength-size effect coupled with the aforementioned 

contact area-scale effect. In that context, Barton and Choubey proposed 

that the effective JCS - which actually represents a measure of the uni- 

axial compressive strength of asperities - during shearing of large joints 
(visualize large irregularities thrusting against each other across their 

large areas of contact) would probably be lower than the effective JCS 

mobilized upon failure of a shorter joint with the critical asperities 

"touching" one another over correspondingly smaller individual contacts. 

Size-effects in the uniaxial compressive strength a- 
c) 

of plaster/sand 

based model materials have been reported in the past (e. g. Eistein et al. 

1970, Lama and Gonano 1976) and it is not unlikely that a similar effect 

did exist in the case of the present material. The probable scale effects 

in ac, and potentially in JCS, could have been a key factor in the 

apparent reductions of the estimated asperity failure components (s ) 

with increasing specimen size. 

It should be carefully noted that'-the relatively small scale effect in S0 

of joint no. 11 (a drop of"2.6° as specimen length increased from 6 to 18 cm) 

agrees qualitatively with the small difference in the size of the 

respective actual contacts (Figure 2.47). Large reductions in SÄ were 
found to be associated with more prominent differences in the areas of 
contact. For instance, in the case of model no. 4 (Fig. 2.46) SAO dropped 
by 20 as joint length increased from 6 to 36 cm. For the same range of 
specimen sizes the estimated reduction in So for model no. 1 (Fig. 2.45) 
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was 72. It is interesting to note that the differences in the size of 
the individual contact areas between the 6 and 36 cm joints, were more 
pronounced in model no. 4 (hence larger scale effect in SÄ) than in 
model no. 1 (smaller scale effect in SÄ as compared to no. 4). 

However, it would be unwise to pursue the above observations any further 
because of the complicating factor of post-peak displacement. In any 
case the obvious uncertainties involved in a realistic assessment of the 

scale effects in JCS, should their existence be accepted, do not 

represent 'a serious limitation in'-a practical situation. 

Use of "scale-dependent" values of JCS would result in back-calculation 

of somewhat larger values for JRC. A range of JCS scale reduction 
factors was tentatively derived from the ratios of the maximum So values, 

corresponding to the presumably "scale-free" 5 or 6 cm long specimens, 
to those derived for the longer joints. Those factors were then used to 

reduce accordingly the JCS value of 2000 kPa. 

Characteristic examples of the new Joint Roughness Coefficients calculated 
by using the "corrected" JCS values are shown in Table 2.24. The original 
JRCts derived on the assumption of a constant JCS are also included in 

each case for comparison. The errors involved in the estimates of 
tan1(ttp/Q 

n)0 at higher normal stress levels by using over- or under- 

estimated values for JRC and JCS are considered in the next chapter. 

2.4.8 Critical evaluation of the scale effects in joints 

The direct shear tests conducted on sets of joint specimens differing 

in size and representing sliding planes of identical geometry have shown 
the existence of significant scale effects in the shear strength and 
deformation characteristics. Size effects in joints are fundamentally 

linked with a proportional interrelationship between the length of the 

sheared surface and the size of the irregularities which potentially 

control its frictional resistance. 

An idealized model of the scale effects in the strength and deformation 

properties of non-planar joints is presented in Figure 2.48. On the left- 

hand side of the diagram the shear stress - horizontal displacement 

relationships of four hypothetical joint sizes are given. The columnar 
drawings represent the relative variation in the geometrical and asperity 
failure components with increasing length of joint profile. 
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A few remarks had been made in Section 2.2.4 with regard to changes in 
the slope of the pre-peak portions observed in some of the 'L-dh curves 
(also illustrated by the no. 3 and no. 4 hypothetical curves in Fig. 2.48). 
It is probable that those slope changes are signs of a "progressive" 
joint failure. It is envisaged that during the course of the pre-peak 
displacement, the joint will have to overcome the resistance of 
"interfering" asperities of size smaller than the effective one for the 

particular case. If that is true, the joint will "feel" progressively 
larger asperities until its walls develop a fizm contact between the 

effective irregularities. An interesting coincidence was that the 
inflection points occurred after horizontal movement roughly equal to 

the peak displacement of smaller joints (see relevant text in Section 2.4.4). 
That could mean that the inflection of the curve happened as the joint 
overcame the resistance of asperities which represented the effective 
size at the scale of. the smaller specimens (6 to 12 cm long). 

The experimental results have shown an expected decline of the scale 

effects in the properties of the relatively smooth and planar types of 
joints. -Technically insignificant effects were also associated with the 

ultimate strength of most rough undulating joint,. types. 

It is important at-this'stage to assess the relevance of the experimental 
findings and related interpretations to the probable response of a jointed 

rock mass. The inherent "weakness" in direct shear testing of individual 

jointed blocks is that the response of the surrounding rock mass is 

absent, a simplification which may sometimes lead to erroneous extra- 

polations. For instance, shear tests on joints as individual mass 

components have shown an apparent transition from "brittle" to "plastic" 

behaviour, as has been discussed in Section 2.4.4. Although on an 
individual basis small jointed blocks are likely to behave ina more 
"brittle" manner than large jointed blocks, collectively the much greater 

number of blocks'in a heavily jointed rock mass will tend to cause more 
"plastic" behaviour. 

In all the preceding analysis of size-effects in joints it was implicitly 

assumed that the small jointed blocks are capable of an independent 

movement, which. is obviously essential to maintain contact between the 

small asperities. The only restraint imposed during testing was the 

constant normal load. The important question is that of whether the 

stiffness of the rock mass overlying an inferred sliding plane would allow 
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the small blocks to follow the individual shear paths they require for 

their higher strength. That important aspect is considered further later 

in this section, after the results from some recent experiments by Barton 
(1979) made available to the author have been'discussed. 

Barton tested a series of two-dimensional plane-stress jointed models, in 

a biaxial loading frame. The dimensions of the jointed slabs were 40 x 40 

x 2.5 cm and were prepared from a low strength model material consisting 

of a mixture of red lead-sand-ballotini-plaster cured at 105°C. The method 

of producing sets of rough interlocking tension fractures by the use of 

a double-bladed guillotine has been described by-Barton (1971). 

Two different joint orientations were produced, namely 18° and 45°, with 

respect to the vertical direction, and four different spacings of joints 

viz. 6.2 mm, 11 mm, 21 mm and 41 mm were simulated. Each model consisted 

of 4000,1000 or 250 blocks, depending on the joint spacing chosen. The 

various details of the geometry of the jointed models are shown below. 

Model Nos. 1ý '. OO 

_ ýýH fl H lull slýýý 

40 cm 

ttt11 

I-40cm-1 

t1t1t11tt1. 

1tt1t 

No. of 
Blocks 

4000 1000 250 

} 

4000 

° 18° 18° 18° __ 45 0 

(odel, 
Lm 11 21 41 6.2 

Joint ----- ------- --------------- -- --------- Block Proto- 
Length tide, Lp 3.3 6.4 12.3 1.8 

m) 
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The edges of the jointed slabs were loaded with compressed air filled 

rubber tubes to ensure a uniform stress distribution. The models were 
firstly loaded with an equal QI and o'2 value of 0.02 MPa (8.0 MPa at 
prototype scale) and a1 was increased to"failure-while 02 was maintained 

constant. The loading paths followed for model nos. 1,2 and 3 (2P = 36° 

in each case) were identical and are shown by the Q/ Q1 values included 

in Figure 2.49. A different path was employed in the case of model no. 4 
(2 P= 900). 

The theoretical peak shear strength envelopes in Figure 2.49 were drawn 

from the results of shear tests on model tension fractures 6 and 10 cm 
long, representing prototype joints 18 and 30 meters long respectively. 
The upper (JRC = 23) and lower (JRC = 17) envelopes represent the scatter 

of results from the tests on the single joints whose average JRC was 

approximately 20. 

The solid squares plotted in Fig. 2.49 show the different levels in shear 

stress at which failure of the jointed materials with the same p angle 
took place. The lowest stress corresponded to the model with the most 

widely spaced joints (no. 3, Lm = 41 mm, Lp = 12.3 meters) and the highest 

to the most closely jointed one. (no. 1, m= 11. mm, p=3.3 meters). 
All three models failed at higher stress than the individually tested 

fractures representing prototype joints 18 and 30 meters long. 

During the course of loading, displacements were measured by using a 

photogrammetric method, which has been described by Barton and Hansteen 
(1979). In Figure 2.50 the plots of the differential stress ( 61 -6 2) 
vs strain (axial e1 and lateral E2) representing three jointed models 
(nos. 1,2 and 3) is shown. The corresponding estimates of the modulus 

of deformation (m) of the model jointed masses are also included. 

Depending upon the spacing of the joints the Em values ranged between 

19 and 46 MPa (7500 MPa to 18460 MPa at prototype scale), the lowest 

obviously corresponding to the most densely jointed model. 

It is important to note the. relationship, between. the values of the 

deformation modulus (Em), the effective joint block sizes and the stress 
levels at which failure took place within the models. Reduced block size 

was found to increase the shear strength of the model jointed mass. The 

correspondingly reduced stiffness of the latter must have increased the 

degree of freedom of the individual joint blocks and enabled them to 

"follow" and "feel" all scales of roughness (viz. individual shear paths) 
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more readily. As a result,. the model rock masses composed of differently 

spaced joints had different JRC values, despite the almost identical surface 

roughness, and hence different sheax strengths., 
, 

A tabulation of the, Joint Roughness Coefficients which were back-calculated 

from the values of Cr, and o'2 required to cause shear failure in the 

biaxial tests is presented below. The results from the individually tested 

specimens are also included. 

Joint length or cross joint spacing 
Type of Joint 

Test Roughness 
Coefficient 
(JRC) 

Model Scale, Prototype Scale 
mm (m) 

Direct shear 10 30 Mean of tests on 20 > 100 
individual 6 18 tests ts 
jointed blocks 

41 (250 12.3 21.6 
" blocks) 

Biaxial tests 
_180 21 (1000 6.4 25.1 

on jointed blocks) 
models 

11 (4000 3.3 26.7 
blocks) 

=45 
6.2 (4000 1.8 >26 

blocks) (failure did 
not occur) 

The result of an approximately four-fold increase in cross-joint spacing 

(or block size) was a decrease in the JRC value by "r 5. 

A series of shear tests was conducted on a complete set of joint sizes, 

i. e. 6 cm, 12 cm, 18 cm and 36 cm of model no. 2 (rough, undulating) 

under normal stresses of up to 61.25 kPa. That level corresponded to- 

2.45 NPa in prototype scale. The object of those tests was to examine 

the scale effect in shear strength in relation to an and the possibility 

of any changes in the conventional shape of the peak strength envelopes 

associated with increasing size of joint. 
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The results of those tests are summarized in Table 2.25, which includes 

the values of peak shear stress (T ); peak total friction angle P 
tan-1 (tip/Qn), peak dilation angle (or geometrical component) ip and the 

asperity-failure component Si. as estimated from equation 2.17. 

Shearing under different levels of normal stress revealed a "normal" 

behaviour irrespective of the size of the joints. Increasing an resulted 

in lower dilation, increased asperity failure component in relation to 

joint dilation and of course a steady decrease in the peak total friction 

angle. 

The peak shear stress data were plotted against the respective level of 

normal stress (Figure 2.51), and the theoretical peak strength envelopes 

were derived by utilizing Bartouts criterion. It should be noted that 

the JRC values used in the derivation of the envelopes for the 12 cm, 

18 cm and 36 cm joints are the ones presented in Table 2.24 derived on 

the assumption of a reduced JCS. As can easily be seen, the experimental 

data and the fitted envelopes showed a good agreement within that range of 

normal stress. 

Observation of the data in Table 2.25 revealed an interesting point. The 

asperity failure component (SÄ) of the 36 cm joint 'when tested under 

n. 24.5 and 61.25 kPa was 10.1 0 and 9.8° respectively, that is it 

decreased by an amount of 0.3°. On the other hand, the estimated Sg of 

the 6 cm joint specimens decreased by an amount of 3.1° within the same 

range of an* Under increasing an it is expected that the dilation (io) 

of a joint will decrease and the asperity failure component will increase 

in relation to i0p. Those effects can be clearly seen in the test results 

from both the 6 cm and 36 cm joints. 

A plausible explanation of the different values of S°A estimated for the 

6 cm joints as an increased may be offered on the basis'of the earlier 

hypothesis relating the scale effects in So with the size of the individual 

contact areas and the "operating" value of JCS (viz. uniaxial compressive 

strength of asperities). It is probable that the increase in the contact 

area of the 6 cm joints under higher ýTn "reduced" the JCS value which was 

operating under lower n (smaller contact areas). The question is why 

was there not a similar effect in the case of the 36 cm joint, since there 

must have been a corresponding increase in the contact areas. 
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Table 2.25 

Summary of results from direct shear tests of joint specimens of various 
lengths under different levels of normal stress. 

Joint Normal Peak Peak total Geometrical Asperity 
Length L stress, a shear friction component failure 

(cm) 
P 

n 
M stress angle component 

(MPa) (kPa) p(kPa) tan-' i Si 
p 

36 0.98 24.50 31.3 51.9° 9.8° 10.1° 

1.47 36.75 42.9 49.4° 8.2° 9.20 
2.45 61.25 68.5 48.2° 6.4° 9.8° 

18 24.50 34.2 54.4° 10.50 11.90 

of 36.75 49.8 53.6° 9.4° 12.2° 
61.25 73.9 50.3° 7.0° 11,30 

12 24.50 39.2 58.0° 12.0° 14.00 

61.25 78.4 52.0° 7.5° 12.5° 

6 24.50 50.5 64.1° 14.0° 18.1° 

61.25 90.5 55.9° 8.9° 15.0° 
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FIGURE 2.51 Theoretical peak shear strength envelopes and experimental 
data from shear tests on joint specimens of different length 
(L) under different levels of normal stress. The envelopes 
were fitted assuming scale-reduced values for both JRC and 
JCS (see equations above) 
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It has often been found that the decrease'in the uniaxial compressive 

strength ( Q) of materials with increasing specimen size reaches a 
limiting level beyond which there is no further reduction in a- 
(e. g. see Pratt et al. 1974, Bieniawaki and Van Heerlen 1975, a. ' also 
Figure 2.1). It is probable that an analogous variation occurf- n the 

case of the JCS/contact area size effect. Despite the increase n the 

size of the individual contacts on the 36 cm joint, the effective JCS 

value had already reached a "reduction limit", hence the practically 

non-existent difference in the SÄ values. The envisaged JCS-scale effect 

limit coupled with the more or less exponential variation in the angle of 

slope inclination with increasing baselength of asperity may explain the 

"flattening" of the shear strength-joint size (length or area) relation- 

ships (e. g. see Figure 2.29). 

2.4.9 Concluding remarks 

Direct shear tests on joint block specimens of different length 

representing surfaces with identical roughness have demonstrated that 

peak shear strength is a strongly scale-dependent variable. In 

general, short joint profiles exhibit higher peak strength than longer 

profiles of the same joint surface. The inverse relationship between 

shear strength and length of joint appears as non-linear, with a 

tendency to reach an asymptotic level. Maxim= scale effects are 

associated with rough, undulating joint types; the shear strength of 

relatively smooth and planar joints is almost independent of the length 

of joint. 

Analysis of the experimental results leads to the conclusion that both 

the geometrical and strength characteristics of surface roughness 

present potential sources of the scale effects. The peak shearing path 

of short joint profiles is regulated by the small and steep asperities, 

whereas that of longer joints is controlled by irregularities of larger 

baselength and correspondingly flatter slopes. Under a given normal 

stress the peak-dilation angle is inversely proportional to joint 

length. There exists a strong scale effect in the peak shear displace- 

ment, which seems to be a measure of the distance a joint has to displace 

for contact to be made between those asperities which are effective for 

that particular joint. That distance increases with increasing joint 

length. 
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The different inclination with respect to the mean joint plane of the 

contacts between small and large asperities at the instant of peak 

strength introduces a scale effect in the value of the joint roughness 

coefficient (JRC) operating along two-different profile lengths of the 

same joint. It has been found that the JRC value decreases with 
increasing joint length. 

In addition to the contact inclination-scale effect, there is a 

relationship between the size of the individual contact areas and the 

joint length.. Mobilization of peak shear strength along short joints 

is associated with development of small individual contacts between 

the small effective asperities. By contrast, larger areas of contact 

are created between the larger irregularities controlling the shear 

strength of longer joints. It has been tentatively concluded that 

the scale effect in the asperity failure components estimated for the 

present joints may be connected with a reduction in the effective 

value of joint compressive strength (JCS) operating along longer 

samples due to the increasing contact areas, as assumed by Barton and 

Choubey. There will probably exist a limit to the scale effect in 

JCS beyond which any further increase in the size of the individual 

contact areas will not affect the value of JCS, in compliance with 

the variation in the uniaxial compressive strength with specimen size 

found for intact rock materials. The latter effect coupled with a 

similar variation in the angle of slope inclination with increasing 

effective asperity baselength, and hence in the value of JRC, may 

explain the experimental non-linear trends between the peak shear 

strength and the joint block size. 

In cases of relatively smooth and planar joints the actual contact 

area-scale effect is virtually absent and hence scale effects on JCS 

will be minimal. The joint roughness coefficient is also practically 

independent of the length of profile considered. Consequently, the 

peak shear strength of those joint types is unaffected by scale. 

The shear stress-shear displacement relationships of rough undulating 

joints reveal significant changes in behaviour with increasing scale. 

The pre-peak region becomes gradually more non-linear and behaviour 

changes from 'brittlet to 'plastic'. The changing shape of the curves 

may be the result of a tprogressiver joint failure with increasing 

scale. The 'brittle' and 'plastics behaviour exhibited by respectively 
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small and large joint blocks may be a characteristic of individual 
joints but not of composite rock masses with analogous joint spacing. 

Comparison of experimental peak shear displacement data with Barton's 

suggestion of 'peak displacement equal to 1% of joint length' showed 
good agreement in the lower range of sizes (model lengths up to 18 cm). 
For the larger specimens,. in. particular the types without large 

undulations, peak displacements were smaller than those predicted 
from the "1%" rule. The present joint types indicate that the 
length range within which the "i%" assumption may be applicable, 
could be narrower in cases of joints with relatively planar full 

scale surface geometry. Interpretation of the model results at proto- 
type scale shows that for moderately undulating to planar surfaces 
the 111%" rule may apply for joint lengths up to"approximately 3-4 meters. 
For strongly undulating joints that limit is represented by 5-6 meters. 

However, the quality of such deductions is questionable due to the un- 

certainties with regard to the relevance of model joint roughness 

when extrapolated at prototype scale to that of natural exposures. 

An implicit assumption in the interpretation of the results from this 

study has been that small joint blocks in a closely jointed rock mass 

would be capable of a more or less independent movement, which would 

obviously be necessary for the joint walls to maintain contact between 

the small asperities and hence develop higher peak shear strength. 

Some recent experimental results by Barton from biaxial tests on 

jointed model rock masses composed of different joint block sizes 

show that the shear strength of a rock mass increases with decreasing 

block size or joint spacing. It could therefore be concluded that the 

reduced stiffness of a closely jointed mass will increase the degree 

of freedom of the small blocks and allow them to rotate and 'feel' 

the smaller scale and steeper asperities of the component joints. 

Intuitively, the freedom for individual block movement will be 

limited at high stress levels. 
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CHAPTER 2.5 

PRACTICAL CONSIDERATIONS 

2.5.1 Introduction 

The scale effect on shear strength implies that there will be a minimum 
test specimen size which should be-regarded as technically acceptable 
for a shear surface of particular' morphological characteristics. 

Joint sizes which can be tested in the laboratory by using commercially 
available (e. g. standard soil mechanics shear box) or specially 
constructed apparatus (Krsmanovic 1967, Rengers 1970, 'Goodman 1970, 
Kutter 1971 describe some notable ones) are between approximately 5 
and 40 cm in length. However, the technical size-limit in most 
laboratories rarely exceeds 10-15 cm. Those joint sample sizes 

represent fractional portions of the natural exposures and may yield 

unrealistic data. Schneider (1978) notes the reluctance of practicing 

engineers to apply friction values which have-been determined in the 

-laboratory, a situation which often leads to the use of'more' or less 

arbitrary reduction factors whereby friction values are reduced to one- 
half to two-thirds of their measured values. 

The limited laboratory-size range can be extended substantially by 

in-situ testing. 'A large number of field shear tests have been 

reported in the literature'with joint block sizes usually ranging from 

approximately 50 to 200 or 300 cm in length (e. g. Krsmanovic and Popovic 

1966, Drozd 1967, Serafim and Guerreiro 1968, Locher and Rieder 1970, 

Pratt et al. 1974, Franklin et al. 1974, Infanti and Kanji 1978). 

In-situ shear tests are very costly and hence are used mainly on large 

scale projects such-as dam foundations, major, stability problems and 

complex underground openings, and even then are usually-reserved for 

the worst conditions, e. g. faults, shear zones, infilled joints etc. 

Predictions of the shear strength of large unfilled joint exposures, 
where scale effects may be potentially significant, ' are frequently 
based on laboratory-size specimens. Knowledge of the full scale joint 

morphology would then be essential for the interpretation of experimental 
data in order to make some allowance for a scale factor. Barton and 
Choubey (1977) have suggested an 'experimental' approach to the problem 
of derivation of full-scale shear strength estimates via inexpensive 
large scale index testing. 
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2.5.. 2 Choice of an appropriate joint test size 

For each shear strength investigation a decision must be made on the 

size of joint specimens which will be tested. ' The choice is generally 
based on both economic and technical considerations. However, the 

dramatic increase in the cost of conventional shear tests with 
incre asing specimen size (e. g. see Franklin et al., 1974) may lead 
to a decision based solely on a cost-benefit evaluation;. that is, 

cost of testing larger joints versus possible excavation savings and 
maintenance costs such as disruption from and removal of a slipped mass. 
Wareham and Sherwood (1974) note that in some cases the test size which 
can be justified from economic considerations can only be 

, regarded as an 
index test in the problem. 

From the technical point of view the size of test specimen will depend 

upon the intended use of peak or residual parameters and the type of 

joints involved in the particular problem. Measurements of residual 

friction angles are independent of the test scale, and laboratory-size 

joints will be the immediate choice. The peak shear strength of the 

relatively planar joint types also seems to be little affected by scale 

and hence small joint samples may yield technically acceptable data.. 

In situations where irregular surfaces, e. g. rough undulating bedding 

planes, are the suspected failure paths, the scale factor becomes 

significant. According to Wareham and Sherwood (1974) the asperities 

controlling peak behaviour will probably have a minimum wavelength of 

about 1-10'° of the total length of the potential sliding plane, and 

therefore the appropriate joint specimen size should be chosen 

accordingly. Barton and Choubey (1977) suggested that the correct 

joint test size might, as 
,a 

first approximation, be given by the natural 
block size or more specifically the spacing of cross-joints. They 

envisage that the scale effect in a. closely jointed mass may 'die-out' 

earlier, as the reduced stiffness might not allow the large scale 
irregularities to be mobilized as the only rock wall contacts, as might 

be the case in a rock mass with very widely-spaced joints and 

correspondingly high stiffness. Hence, the natural block size (or 

similar) may represent a 'critical joint length' still just sensitive 
to scale effects on -t and dh and thus be the most relevant joint size 
for testing. The last authors point out that in the presence of tightly 

interlocked non-planar cross-joints the rock mass would remain quite 
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stiff due to the high peak shear stiffness of these joints, especially 

when under confined conditions within the mass. " They further observe, 
however, that this complication might not arise often since closer 

spaced joints generally appear to be smoother and more planar than 

widely spaced joints. 

The interconnection between cross-joint spacing, mass stiffness, 
freedom of block movement and the related scale effects have been 

discussed in the last chapter. Rock masses with widely spaced joints 

have less freedom for block rotation than rock masses with small block 

sizes. The greater freedom of smaller blocks for individual rotation 

enable them to maintain contact with the smaller scale and steeper 

asperities of the component joints. - In effect the spacing of cross- 

joints (or block size) is the minimum 'hinge' length in the rock mass, 

hence its potential as a scale-effect size limit. 

Under present considerations, therefore, Barton and Choubey's concept 

of a 'critical joint length' may be acceptable. The latter-implies 

that if the maximum spacing of cross-joints was 50 cm, then joints of 

minimum 50 cm length should ideally be tested. If the maximum spacing 

of cross-joints was-200 cm correspondingly larger blocks should be 

tested, if technically and economically possible. It is also implied 

that the natural block size will represent the most relevant joint 

length for roughness analysis and related interpretation of laboratory- 

size joint test results. -' 

2.5.3 Prediction of shear strength from laboratory-size joints 

ýý General considerations 

The presence of different scales of roughness on large joint surfaces 

means that there may be a built-in 'scale' effect when using 

laboratory-size specimens to predict the shear strength of large 

exposures. Joint specimens are aligned in the shear box horizontally 

and parallel to the enforced direction of shear. In the field 

exposure the same joints may not be so aligned due to the presence of 

gently inclined large scale undulations and an inclined plane comp- 

onent 
(waviness angle i) may need to be added. This correction is 

most appropriate when residual friction angles (ýlr) are assumed in 

the general shear strength equation (Patton 1966): 
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'L = Crn tan (OT+ 2.19 

is not mobilized until after large displacements have occurred 
which generally makes the waviness angle (i) a realistic addition 
to shear strength. 

In the "Suggested Methods" report of the ISRM (1978a)`it is 

recommended that the value `of the peak friction angle (alp) for 

use in 2.19 can be estimated from: 

gp = JRC log10 (6) + Fir 2.20 
n 

It is also noted that "since peak shear strength is mobilized after 
relatively small displacements it may not'be realistic to add the 
large scale waviness angle (i) to the above estimate of alp". 

As demonstrated from this study, the index of JRC can only be 

regarded as a constant for a fixed joint length, or when joints 

are of the relatively planar type. Longer profiles of the same 

non-planar joint will have lower JRC values. There may also be a 

scale effect in the value of JCS. Consequently, unless the JRC and 

JCS values have been corrected for a scale factor, the estimates 

of /p based on index values relevant to laboratory-size joint samples 

will tend to be optimistic. 

Different lengths of roughness-profiles of the present joint types 

were analyzed to examine the existence or otherwise of some simple 

relation between joint length and 'effective' roughness, -for the 

purpose of arriving at some quantitative form of extrapolation of 

the JRC values representing short profiles (viz. laboratory-size 

specimens) to-much longer ones (viz. natural joint exposures). 

2. Roughness analyses of : ioint surface profiles 

Scale effects on JRC are associated with the-changing geometry of the 

'effective' roughness which defines the peak shearing path of 
different profile lengths of, the same joint. As the 'sample' length 

increases, so does-the peak shear displacement and the contacts at 
the instant of peak strength are transferred onto larger irregularities. 
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Those contacts are less steeply inclined with respect to the mean 

joint plane than the contacts between smaller asperities which 

control the peak behaviour of shorter joint profiles, and the value 

of JRC changes accordingly. The shearing mechanism of different 

joint lengths is shown in Figure 2.52, 'which is a reconstruction of 

the approximate peak shear conditions for two joint samples 6 cm and 

18 cm long under the experimental normal stress (JCS/an = 80). The 

JRC value back-analyzed for the 18 cm joint, assuming constant JCS, 

was 12.2, whereas a JRC value-of 18.5 was obtained for the 6 cm joint. 

The involvement of larger� asperities with increasing scale is 

illustrated quite clearly. Under the particular normal stress level 

the mean inclination of the contacts. at the instant of peak (_ peak 

dilation angle ip) was 10.5° and 16.3° for the 18 cm and 6 cm joints 

respectively. 

Measurements of joint roughness have demonstrated that the-roughness 

angle depends on the closeness between the adjacent measuring points 

(e. g. Rengers 1970, Barton 1971). As the distance or 'step'-size 

increases the inclination of the 'step'-lines connecting each pair 

of points decreases. In effect, larger 'steps' linearize smaller 

steep asperities thereby 'sampling' longer and more gently inclined 

asperities. The changing 'effective' roughness with scale could 

therefore be accounted for by increasing the 'step'-size , when 

profiling longer joints. With-reference to the particular example 

in Figure 2.52, 'steps' of approximately 1 mm would be necessary to 

'sample' the 'effective' asperities *for the 6 cm long joint, whereas 

at least 3-4 times larger 'steps' would be relevant to the 18 cm joint. 

Since the reduction-in JRC is related with the flatter geometry of 

larger 'effective' asperities, it is tempting to consider whether the* 

difference in the measured roughness angles by varying the ', step'-size 

could give some indication of the anticipated change in JRC at larger 

scale. 

In order to examine the validity of that hypothesis the roughness of 

several non-planar joints was analyzed in the manner shown in 

Filtre 2.53 (the three profiles are from model joint no. 2). Firstly, 

a series of points was located on the profiles at a distance equal to 

the baselength of the smallest asperities. A minimum 'step'-size was' 

then defined by connecting point no. 1 with no. 2, no. 2 with no. 3, 

and so on. The next 'step' was taken between points no. I and 3, 
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FIGURE 2.52 Reconstruction of the approximate peak shear condition of an 18 cm 
long joint and a6 cm Tong"sample illustrating the increase in the 
size of the asperities controlling the peak behaviour and hence the 
effective peak value of JRC. When profiling long joints the "critical" 

asperities can be sampled by increasing the step size (see following 
figure 2.53) 
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no. 3 and 5, etc., and the one after between points no. 1 and 5, no. 5 

and 9 and so on. The range of 'step'-sizes for all joints was on 

average equivalent to 0.3-3. C9 of the total length of the profiles 

and the baselengths of the asperities thus 'sampled' ranged between 

approximately 2 and 20 mm. The procedure was applied on three to five 

profiles of each joint surface. The inclination of the different 

'steps' was measured with respect to a horizontal reference plane by 

using a combined protractor and parallel rule instrument of high 

accuracy. Only the positive angles with respect to the shearing 
direction were measured. 

In addition to the roughness measurements on the large joints a similar 

procedure was applied on a few smaller 'samples' of the profiles. The 

'step'-size for those joint sizes was equal: to half the baselength of. 
the small asperities. The roughness data for model' no. 2 with 
increasing 'step'-size (s)are-shown in the form of block diagrams in 

Figure 2.53. If the 'effective' roughness for the 36 cm long joint 

was represented by asperities with average baselengths in the order of 

-6 mm, the tstept-size of -3 mm would give the correct range of 
inclination angles (a) and so on. 

The "effectiveI roughness sampled by each of the 'steps' was expressed 

by the arithmetic mean'of a values. it should be noted that exception- 

ally small inclination angles were discarded from the averaging, hence 

the scatter about the mean values was generally small. In order to 

examine whether the difference in the a values representing the 

'effective' roughness of the 6 cm samples and the 36 cm long joint 

was related quantitatively with the anticipated reduction in the JRC 

value measured from the 6 cm samples, a range of reduction factors 

was defined as a6/ 36, where a36 was equal to the a values corresponding 

to each of the three 'step'-sizes considered. With reference-to the 

particular case in Figure 2.53, if it was assumed that the 'effective, 

roughness for the 36 cm joint was represented by asperities with 

average basselength of N6 mm, the corresponding reduction factor would 
be ä6/a36 = 23.9° 18.1° = 1.32. According to the hypothesis tested, 

the relevant JRC value for the 36 cm joint would' be: 
. 

JRC36 = JRC6/1.32" 

If the 'effective' asperities were actually larger, a correspondingly 
larger reduction factor would-be applicable, as shown over: 
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6 cm samples: a= 23.9°, JRC6 (average of 3) = 17.7 

Reduction factors (a, /a34: 23.9°/18.1° = 1.32 

23.9°/15.9° = 1.50 
23.9°/ 8.5° = 2.80 

Predicted values of JRC36" JEc6/1.32 .= 13.4 
/1.50 = 11.8 
/2.80 = 6.3 

The experimental value of JRC36 was 10.4 (on the assumption of a 
'constant' JCS value) or 12.0 (on the assumption of a scale-reduced 
JCS value, see Table 2.24 in p. 174)" It is interesting to note that 

the predicted JRC36 value of 11.8 is almost identical with that 

obtained on the assumption of a scale-dependent JCS. Another '' 

remarkable similarity exists in the predicted JRC value of 13.4 and 
the mean experimental value obtained for the 18 cm long samples of 

the same joint (= 13.0 on the assumption of a scale-dependent JCS). 

In this example, therefore, there is a quantitative relation between 

the 'effective' roughness for the 6 cm, 18 cm. and 36 cm 'joints and 

their corresponding values of JRC when the 'step'-size is taken as 

approximately equal to 1.5% of the corresponding, joint length. 

Similar observations were made for a range of joint types by 

considering approximately the same 'step'-sizes (- 1-2% of joint 

length): 

MODEL no. 3 

6 cm samples (nos. 3,14,18): a6 = 25.8° , std, dev. = 4.1" 

JRC6 (av, of 3) = 18 

'Effective' roughness data: 18 cm joints a18 = 17.8°, std. dev. = 2.9" 

36 cm joint a36 = 13.7', std. dev. = 3.0° 

Predicted JRC: JRC18 = JRC6/1.45 = 12.4 

JRC36 = 3C6/1088 = 9.6 

Experimental JRC: JRC ='11.7 (JCS = 2000 kPa) or 13.1 
18 (JCS = 1250 kPa) 

JRC36 = 7.8 (JCS = 2000 kPa) or 11.1 
(JCS = 536 kPa). 



MODEL no. 4 

6 cm samples (nos. 2,10,18): 

197 

a6 = 25.1°, std. dev. = 4.5° 

JRC6 (av. of 3) = 16.1 

'Effective' roughness data:, -- 18 cm, joints a1$ 

36 cm joint ä, 
36 

Predicted JRC: JRC18 = JRC6/1.26 

JRC36 = JRC6/1.56 

19.9°, std. ' dev. = 2.8° 

16.1°, std. dev. = 3.2' 

12.8 

10.3 

Experimental JRC: JRC18 = 11.7 (JCS, =, 2000 kPa) or 
13.1 (JCS = 1400 kPa) 

JRC36 = 7.5 (JCS = 2000 kPa) or' 
9.0 (JCS = 960 kPa). 

MODEL no. 7 

5 cm samples (nos. 12,17,25): a= 29.2°, std. dev. = 3.4° 
5 

JRC5 (av. of 3) 20 

'Effective' roughness data: 20 cm joints a10 = 16.0 std. dev. = 2.20 

40 cm joint a40 = 14.7° std. dev. = 1.6° 

Predicted JRC: JRC20 = JRCS/1.82 = 11 

JRC40 =c /1-9T= 10.1 

Experimental JRC: JRC20 =, 10.8 (JCS = 2000 kPa) or 
12.6 (JCS = 1070 kPa) 

JRC40 = 7.5 (JCS = 200 kPa) or 
9.0 (JCS = 962 kPa). 

The good agreement between the predicted and measured values of JRC 

implies that for the present type and size of joints and assuming 

that the baselength of asperities controlling peak behaviour is 

between 2 and 4% of the respective joint length, the hypothesis of 

a quantitative relation between 'effective' roughness angles and JRC 

at different scales may be a valid one. It is noted that for all the 
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joint surfaces analyzed the predicted JRC values were closer to the 

experimental ones derived by assuming scale-dependent JCS values. 
Those JRC values probably give a more realistic picture of the 

magnitude of scale effects on JRC than the somewhat exaggerated 

effect when JCS%is kept constant. Should those relationships hold 

good for much larger joints, it would in principle be, possible to 

derive a scale-corrected value for JRC from laboratory-size specimens. 

According to the concept of a 'critical joint length' the minimum 
joint size for roughness analysis would be defined by the maximum 

cross-joint spacing in-situ. Roughness measurements should be taken 

along several profiles of appropriate length for a minim= 'step'-size 

approximately equal to 1-2% of the joint length. A 
, 
number of 

laboratory size samples should also be collected for similar roughness 

analysis and determination of 
,a 

statistically representative value of 

JRC for those sample sizes. Provided that the roughness data follow 

a more or less normal distribution it might be preferable to describe 

the 'effective' roughness by means of the arithmetic mean and standard 

deviation of the a° angles and derive a range of possible scale 

reduction factors for the 'laboratory' value of JRC. 

3, Prediction errors 

Prediction methods of the type considered in 'the' last section maylead 

to significant errors if the data required are not statistically 

representative of the joint surfaces analyzed. Another inherent 

limitation in introducing independently 'corrected' JRC and JCS values 

is that the estimate of the peak friction angle at 'at design stress 

levels could be seriously misleading, depending of, course on the 

magnitude of error in the input JRC and, JCS values. ,A 
hypothetical,. 

example will be given to demonstrate the range of errorstin predicted 
ýp values at different normal stress levels by using over- and under- 

estimated (with reference to hypothetical actual values) JRC and JCS data. 

In the example it will be assumed that the 'true' JRC is equal to 8 and 
the 'true' JCS-is equal to 40 MPa. Then the 'true' valuesfat-different 
on levels would be: 

Normal stress (NPa) : p, 1 0.5 1.0 2.0 

JRC=8 
Jcs = 40 MPa 

Op 53° 47.20 44.8° 42.40 
yr = 32° 
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Assuming JRC values of 10 or 6, i. te. an over- and underestimate of the 
true JRC by 2, and JCS values of 60 and 40 MPd, i. e. an over- and under- 
estimate of JCS by 50/, the following prediction errors could arise 
within the range of an considered (the + and - values express the 

amount of over- and underestimation with respect to the 'true' XP values 
above): 

JRC =6 (-2) =- -7,2° JCS = 20 (-50%) 
_5.6° 

-5° -4.4° 
JCS = 10 (+2) -º +2° ' +0, $° +0.2° 40,90 

JRC 6 (-2) -º -4.3° -2.7° -2.1° -1.5° (+5/) JCS=60 0'0 
Jcs = 10 (+2) -' +6.8° -t5.6° +5° +4.4° 

From the various combinations considered above it is clear that the 

most serious error is introduced by an incorrect JRC value and that 

errors axe higher when the JCS/ n ratio value is high. This type of 

analysis may be useful when deriving a range of possible full scale 
JRC values according to the procedures described earlier. Different 

scale reduction factors for JCS could also be considered depending on 
the rock type involved (e. g. see Barton and Choubey 1977), so that 

selection of a design Flp value could be made in parallel with the 

knowledge of the likely margin of uncertainty. 

The inevitable uncertainties in deriving the full scale values for JRC 

and JCS and the likely magnitude of errors in the predicted dip values 

could be largely reduced if, as Barton and Choubey suggested, the 

values of JRC were back-analyzed from the results of large scale tests. 

As the cheapest solution they suggested that tilt or pull tests could be 

conducted on naturally occurring block sizes. 

2.5.4 Prediction of shear strength from large scale index tests 

The potential of tilt testing in the-determinatiön, of the angle of statical 
friction of rock joint surfaces has been considered by Cawsey and Farrar 
(1976) and Hencher (1976). Those studies concentrated on planar joint 

surfaces of laboratory dimensions. 

Barton and Choubey. (1977) considered the applicability of tilt-testing 

on rough joint surfaces. The higher angles of tilt (a°) associated with 

sliding of irregular planes imposes an obvious restriction to the range 

of surface roughness that can be tilt-tested. ' Steep angles a° may induce 

a tendency for joint opening and toppling depending upon the value of the 

lengthAeight ratio, which defines the vertical line of action from the 

centre of gravity of the top block. As the angle of inclination 'increases, 

the uniform stress distribution across the originally horizontal basal 



contact changes to the effect of producing higher stress concentrations 
towards the leaning edge of the block (Hencher, 1976). 
Theoretically, the effective normal stress (c) generated by the 

gravitational force acting on the upper half of an infinitely long block 
is given by 

no =h cos a 2.21 

where h= height of top half of block (m) 

= unit weight of rock material (KN/m3). 

In a practical situation some allowance should be made in eqn. 2.21 for 

the uneven stress distribution. Barton and Choubey have proposed an 

empirical correction factor cos a and the modified version of-2.21 is 

given below: 

200 

cos02.22 

The JRC value of a tilt-tested joint can be obtained from 

O 

JRC a- or 
2.23 

- 
log10(JCS/ Qno) 

= normal stress induced by, self-weight of the block (calculated from 
no 

2.22) 

h= as defined above, 
xir = residual angle of friction 

JCS = joint compressive strength. 

Values of JCS can be estimated using the simple Schmidt hammer test 
(Miller 1965, ISBM 1978). Further information on Schmidt hammer testing 

is included in part three of the thesis. The value of för can either be 

measured or estimated by a method described by Barton and Choubey. The 

estimate of dir is based on the ratio between the Schmidt hammer rebound 
(r) obtained on the weathered joint wall and the rebound (R) obtained on 

unweathered rock combined in the following form: 

Ihr =( fib - 200) + 20(r/R) 2.24 

where 
0b is the basic angle of friction of an unweathered flat surface 

(also measured from tilt tests). The key condition for the reliability 

of the parameters predicted, by index testing lies in the large number of 
tests that can and should be made. Barton and Choubey recommend use of 
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the mean angle of'tilt from three tests on"the same joints and testing 

of as large a number- of different specimens as practically possible. 
Comparisons of the friction angles measured by. conventional testing 

methods and predicted by index testing of the same specimens representing 

eight different rock types (a total of ^ 140 joints) showed an. agreement 
to within + 10. 

The various principles referred to earlier can obviously be extended to 

in-situ tilt testing of large blocks. A worked out example of a 
hypothetical tilt test is presented in Figure 2.54. Tilt tests can 

safely be employed for a range of JRC values of up to 10. 

Rougher joints can be -pull -tested with the joint in a horizontal 

plane (or inclined as the case may be) and the top block pulled parallel 
to the joint plane. A diagrammatic illustration of the testing principle 
is presented in Figure 2.55. 

The external "pulling" force T2 (in addition to the tangential component 

T of the self-weight W of the block) required to mobilize the peak value 

of JRC may be applied via a grouted bolt and hook. In many cases it 

would probably be necessary to "line-drill" at least one side of the 

block to remove the stabilizing effect of interlocking asperities from 

the surrounding blocks. 

In this case the relevant value of JRC is given by the following relation: 

`T +T 

JRC tan 11N2 
-jar 2.25 

JCS xA 1°g10( N 

where T1 and T2 are as defined in the text above 
N= normal component of block weight (W) 
A= joint area. 

A hypothetical example is included in Figure 2.55" 
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TILT TEST 

Assume the following values have been measured: 

510 (tilt angle) a= 
h =. 50 m (block height) According to eqn. 2.2 2, a=0.005 MPa 

ý_ 25 KN/m3 (unit weight) 

JCS = 50 MPa Estimated using Schmidt hammer 

= 23° 
r 

Estimated from eqn. 2.24 

510 - 230 
- JRC = logl0( 0 

0 0 
., 

7.0 

. 05 

FIGURE 2 . 54 (from Barton and B andis, 1979)" 
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Example: 

N=2 tons 

T1 =1 ton 

T21 ton 

A m2 

JCS = 20 MPa 

= 24° 
r 

Normal and tangential components of 

self-weight of upper block. 

External force 

Area of test surface 

Estimated using S. H. 

Estimated from eqn. 2.24 

arctan(1+1) - 240 
JRC =2=7.0 20 log10ý. 

02ý 

FIGURE 2.55 (from Barton and Bardis, 1979)" 

PULL TEST 
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The obvious appeal of index testing is the low expense involved. The 

cost of isolating or extracting jointed blocks for tilt or pull tests, 
for example using line drilling,. is. a small fraction of the amount 
needed to set up and execute a conventional large in situ test (e. g. 1x1 m) 
with associated hydraulic jacking equipment in the 50 to 100 tons range 
(probably in the order of £5000 if the cost quoted by Franklin et al., -1974, 

based on 1973 prices is doubled). In cases of densely jointed rock masses, 

especially when at least three sets of joints are present, it would be 

relatively much simpler to extract jointed blocks for tilt testing: 

However the quality of information that can be obtained should be care- 
fully considered. Barton and Choubey suggest, that the input parameters 
JCS and 4 in eqns. 2.21 or 2.23 can be estimated from relevant index 

tests as well (Schmidt hammer, residual tilt tests to obtain Xb and then 

derive dir from equation 2.22) and so it would seem that one-empiricism is 
built upon another with the possibility of producing a cumulative error 

upon the end result, i. e. the desired estimate of JRC. 

It is important that the magnitude of the probable errors is carefully 

considered. A particularly favourable feature in self-weight tests is 

the high value of the ratio JCS/ n, which would probably be in the range 

of 1,000 to 100,000 in most conceivable cases. Thus errors in estimating 

would be reduced by a, factor of 3to 5 when those estimates are used in 

eqns. 2.23 or 2.25. Also, errors in estimating JCS would be relatively 

small due to the logarithmic formulation, At any rate, the formulation 

of eqns. 2.23 or 2.25 ensures an automatic compensation for overestimates 

or underestimates of X. and/or JCS by producing corresponding under- 

estimation or overestimation of JRC. (for instance refer to the data in 

Table 2.24 where JRC values for the same joint length have been derived 

by assuming two different values of JCS). 

In order to test the effect of different values. of JRC and, JCS on the 

estimates of shear strength at levels of normal. stress higher than the 

experimental, three pairs of "compensated" JRC and JCS values were 
derived for some of the 36 cm-joint specimens by assuming: 

(1) JCS to be equal to 2000 kPa (relevant JRC data-already' 
given in Table 2.22). 

(2) JCS and JRC as both scale-dependent variables (see Tableý2.24). 
(3), JCS as equal to the value back-calculated by using the JRC 

corresponding to the 6 cm specimens of the particular model type. 
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As an example, in the case of the 36 cm specimen of, model no. 1 the-three 
respective sets of values would be 

(1) JCS = 2000 kPa " (2) JCS = 1198 kPa (3) JCS = 512 kPa 
JRC = 12.5 JRC 

= 14.1 JRC = 18.1 

with each pair expressing the tan 1 (, up/ p-ri) value as determined at the 

experimental n. Some characteristic examples of the peak friction 

angles at higher an estimated from 

tan 1(tiJQn) 
= JRC 1og10(Jcs/Qn) + jöb 

by using each set of JRC and JCS values are given in Table 2.26. 

As shown from those examples, "higher" JCS values combined with "lower" 

JRC resulted in estimation of larger peak friction angles and vice versa 
for the same n. The magnitude of. the differences depended upon, the 

JCS1/JCS2 3 ratio value, the level of Qn and the type of joint. Within 
" 

the range of normal stress considered (up to 6 times the experimental an 

of 24.5 kPa) and with the assumed JCS values differing by up to factor of 
7.7, the maximum relative differences in tan 1(' Jcr ) were between 30 and 
5° for joint types ranging from very rough (no. 1) to nearly planar (no. 10). 

Similar dipcrepancies should be expected when extrapolating the results 
from in-situ tilt or pull tests to design levels of normal stress, which 
would normally be at least one to two orders of magnitude higher than the 

test n. In a relevant example given by Barton and Choubey (1977)' 

an assumed extrapolation of the results from a hypothetical tilt test 

t6 an = 1.0 MPa produced an overestimate of 60 by assuming a JCS value 
10 times higher than the "true" scale-dependent JCS. They further 

commented that by making a reasonable allowance for size-effects in JCS 
the expected error from that source should be nearer 10 or"2o for that 

range of normal stress. It should also be noted that errors in extrapolated 
friction angles would be smaller in cases of less rough joints (low JRC) 

as shown by model no. 10 in Table 2.26. This is-because the shear strength 
of planar. joints is'' not seriously affected by 'the value of JCS, ' as 
demonstrated by the family of curves in the previous Figure" 1.11 (p. 26). 

Regarding the problem of practical. allowance for size effects in JCS, 

Barton and Choubey suggested a maximum two- to three-fold reduction to 

be adopted for dense, hard rocks and a maximum ten-fold reduction for more 



Table 2.26 

Comparisons between estimates of tan-i(TP/07") 0 at various cn levels 

using different JCS and JRC input values. 

36 cm specimen (MODEL No. 1) 

Normal JCS1 = 2000 JCS2 = 1198 JCS3 = 512 

stress an JRC1 = 12.5 JRC2 = 14.1 JRC3 = 18.1 

x Qjj kPa JCSI/JCS2 = 1.7 JCSI/JCS3 = 3.9 

1.0 *24.5 55.9° 55.9° 55.9° 
2.0 49.0 51.2° 51.6° 50.4° . 

4.0 98.0 48.4° 47.3° 45.00 
6.0 147.0 46.2° 44.8° 41.8° 

36 cm specimen (MODEL No. 2) 

JCS1 = 2000 JCS2 = 1116 JCS3 = 374 
JRC1 =. 10.4 JRC2 = 12.0 JRC3 =. 16.8 

JCS1/JCS2 = 1.8 JCSI/JCS3 = 5.3 

*24.5 -51.9°, 51.9° 51.9° 
49.0 48.8°- 48.30 46.80 
98.0 45.6° 44,7° 41.8° 

147.0 43.8°- 42.6° 38.8° 

36 cm specimen (MODEL No. 10) 

JCS1 = 2000 
"JCS 2= 1010 JCS3 = 259 

. - 
JRC1 =. 4.5. JRC2 = 5.3 JRC3 = 8.4, 

JCSI/JCS2 2.0 JCSI/JCS3 = 7.7 

'*24.5 40.6° ° 40.60 ° 40.60 
49.0 39.2° 39.0° . 37.9°- 

If 98.0 37.9° 37.4° 35.5° 
147.0- 37.1° 36.4° 34.1°. 

f 

*perimental n 

Note: Subscripts 1,2 and 3 correspond to assumptions 1,2 and 3 as 
given in text. 
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porous and weathered rock types. Reductions in JCS of that magnitude 
are in compliance with the results from reported. experimental studies 
on the size-effects upon the uniaxial compressive strength of intact 

rock materials (see Section 2.1.2). 

2.5.5 Concluding remarks 

It is of obvious practical implication that the determination of joint 

friction values during a shear strength investigation is based on sample 

sizes sufficiently large to allow for the scale factor. The current 

state-of-art with regard to the scale effect on the shear strength of 

rock masses leads to the conclusion that Barton and Choubey's concept 
of a 'critical joint length' controlled by the maximum spacing of cross- 

joints may be of potential practical value. The naturally occurring block 

size may effectively constitute a scale effect size limit thus being the 

most relevant joint size to test or analyze. This is of course, 

considerably larger than the laboratory size specimens usually tested 

in rock mechanics. Use of conventional methods of testing at that 

scale would be impractical in most cases due to the very high cost 
involved. There iss therefore, great practical value in the use of 

empirical predictions via rationalized extrapolation procedures and 

inexpensive large scale testing methods. 

Shear strength predictions demand that the scale effect on the input 

variables of JRC and JCS is realistically allowed for. According to 

the 'critical joint length' concept the nearest scale-free estimate of 

JRC could be measured on samples of minimum length equal to the maximum 

cross-joint spacing. The same minimum joint length should be-considered 

when interpreting the results from tests on 'laboratory' size specimens. 

Roughness analyses of joint surfaces revealed the existence of a potential 

relationship between the geometry of 'critical' asperities or 'effective' 

roughness for different lengths of joints and their respective values of 

JRC. Specifically, it has been found that the ratio between the average 

inclination angles of the 'critical' asperities for different joint 

lengths was approximately. equal to the ratio between the respective JRC 

values. For the present range of joint sizes the wavelength of the 

'critical' asperities was generally between 2 and 4% of the respective 
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joint lengths. If the above relation between 'effective' roughness and 
JRC at different scales holds good between joints with much larger 

, 
difference in sizes, it may be possible to predict full scale estimates 

of JRC by correcting the values determined on laboratory samples 

according to reduction factors derived from roughness analysis of the 

respective profile lengths. 

Allowance for a scale effect on JCS can only be made on the basis of 

experimental evidence of similar effects on the uniaxial compressive 

strength of intact, rocks. The inherent uncertainty when using 
independently predicted estimates of JRC, JCS and ýr in the calculation 

of the peak friction angle (alp) is that a cumulative error could be 

introduced if the variables had been over- or underestimated. This 

problem will be minimized if the JRC value is back-analyzed from the 

results of large scale tilt or pull tests (cf. Barton and Choubey). 

In that case the estimates of JCS and 0r required for the derivation 

of JRC need not be very accurate. Underestimates and overestimates 

will be'automatically compensated by corresponding overestimates or 

underestimates of JRC. Errors in the predicted VP values at higher 

normal stresses will then be relatively small, unless extrapolations 

are continued at very high stress levels. 



PART THREE 

EXPERIMENTAL STUDY OF 

ROCK JOINT DEFORMATION 
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CHAPTER 3.1 

INTRODUCTION 

3.1.1 General 

The deformational behaviour of 'joints when stressed is a fundamental 

component of rock mass performance under load. At the relatively 
low stress levels encountered in near-surface excavations, it can 
be anticipated that joint behaviour will completely dominate the 

elastic deformations of the intact rock (Barton, 1971" Even under' 

the higher levels of stress associated with heavy structures joint 

deformation often constitutes the major part of settlement on rock 
(Hungr and Coates, 1978). 

The deformation modes of the joint system are considered to be made 

up primarily of direct compression or tension and tangential deform- 

ation. With the advances in the methods of numerical analysis, the 
deformation properties of joints have been explicitly introduced into 

the determination of the potential behaviour of the rock mass. 

Joint deformability can be described by the character of the stress- 

deformation curves. Goodman et al. (1968) introduced the terms, 

"normal stiffness" and "shear stiffness" to describe the rate of 

change of the normal stress with respect to normal displacements-and 

of the shear stress with respect to shear displacements, respectively. 

Together with values for peak and residual shear displacement and 

maxim= joint closure, these quantities allow computation of the 

contribution of joints to the total displacement of the rock mass. 

The fundamental characteristics of joint behaviour under normal and 

shear loading conditions have been described in Part One of this 

thesis and the main points from the review of an extremely limited 

literature are suamarized below: 

(A) The normal stress-closure curves of certain joint types are highly 

non-linear. This mode of behaviour is mainly deduced from 

reported compression tests on artificial rock fractures. Non- 

linear deformation implies that the joint normal stiffness is not 
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a constant. According to a suggested hyperbolic model of 
behaviour (Goodman, 1974), the normal stiffness will increase 

to an extremely large number as the joint will approach its 

fully closed condition. The only published experimental study 
(Hungr and Coates, 1978) on the compression properties of 

natural joint specimens has indicated an essentially linear 

behaviour. The normal stresses applied in that case were 

extremely low. Quasi-linear behaviour has been attributed to 

"precompression effects", that is, past loading of the joints 

under pressures much higher than those applied in the tests. 

Similar views have been expressed in the past by Snow (1972) 

who stated that non-linearity is only relevant to "virgin" 

joints that have never closed before. The fundamental property 

of maximum joint closure depends on the loading history of the 

joint and the initial stress condition. Unloading of joints 

normally shows hysteresis and permanent set. 

(B) The pre-peak portion of the shear stress-shear deformation curves 

obtained from direct shear testing indicate both linear and non- 
linear behaviour, which means that under a certain level of 

normal stress the joint shear stiffness-may be independent of 

or dependent on the level of shear stresses. There is some un- 

certainty regarding the effects of-normal stress and according 
to Goodman (1976), Chappell (1975) and others, neither a "constant 

stiffness" nor a "constant displacement" model as described by 

John (1970) are universally applicable. It is difficult to make 

strictly valid comparisons between various test cases, as shear 

stiffness values are affected by the experimental technique. 

Furthermore, joint peak shear stiffness seems to depend strongly 

on the size of the test specimen. 

Despite their obvious practical significance the deformation properties 

of joints, and in particular the normal stiffness, have received very 

little attention over the past ten years. Although joint normal stiff- 

ness can relatively easily be measured from laboratory tests on single 

jointed blocks by applying loads normally to the joint plane and record- 

ing the vertical displacements, the literature review has shown that 

such data are extremely scarce. No systematic study has yet been 

reported regarding the variations in normal stiffness with joint type, 
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the effects of weathering, etc. 

Although some uncertainties still exist, a relatively larger amount 
of information is available on the property of joint shear stiffness. 
Topics requiring further attention are standardization of laboratory 
techniques for measurement of the displacements, and more significantly, 
full appreciation of the potential effects of scale. 

In the following two sections the factors affecting the joint deform- 

ability are discussed and some literature data are presented. Althoui 

reference will be made to the "infilled" class of joints, those types 

of discontinuities have not been included in the present experimental 

study. However, for the sake of a full discussion, it has been con- 

sidered appropriate to review their behaviour. 

3.1.2 Factors influencing the joint normal stiffness 

Several workers have made qualitative reference to the factors affecting 
the normal stiffness of joints (Dunkan and Hancock, 1966, Goodman et al. 
1968, Goodman 1970, Hungr and Coates 1978), which can be summed up as 
follows: 

initial actual contact area ratio; relative amplitude 

and vertical distribution of the aperture between the 
joint walls 

(ii) joint wall roughness, strength and deformation properties 

of asperities 

(iii . thickness, type, and physical properties of the infilling 

material, if present. 

1" Infilled joints 

The expected "softening" effect of infilling materials on the normal 

deformation of joints can be seen in the normal stiffness data by 

Infanti and Sanji (1978) listed in Table 3.1. The Yn values were 

obtained from in-situ normal loading tests on basaltic joints contain- 

ing infilling materials of different thickness. As shown, under the 

range of applied normal stresses (< 1 MPa), an average variation in 

filling thickness from 1 to 100 mm produced more than two orders of 

magnitude difference in the K values. 
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Table 3.1 

Range of normal stiffness' (Kn) in 
relation to thickness of infilling (t) 

(after Infanti & Kanji, 1978) 

t (mm) Kn (MPa/mm) 

50-100 0.01-0.50 

10-20 0.50-2.00 

<1 (1 case) >5 

The relative effects of a soft infilling on the deformability of a 
joint depend on the relationship between its average thickness and 

the roughness of the surface, that is the vertical amplitude of 

the wall asperities. Some experimental results by Goodman et al. 1972 
(quoted in Kulhaway 1978) clearly demonstrate the interrelationship 

between the geometry-of the joint system-and the normal stiffness. 
Goodman et al. reported K values for four joints in granite and 
four joints in sandstone all filled with a soft, saturated clayey 

material (100/ < 2µ, WL = 57%, PI = 27) of variable thickness. The 

stiffness data and details of the geometry of the joint system 
(the "joint face roughness" was presumably expressing the average 

roughness amplitude) are given in Table 3.2 over. 
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Table 3.2 

Normal stiffness data of joints with variable surface roughness 
and different thicimesses of infilling. 

(after Goodman et al. 1972) 

Rock 
type Area (cm 2 Thickness of 

inf(ilýljng, 
Joint face 
ro ejs, 

t 
r 

Normal 
stK iffness 

Pa/mm) 

GRANITE 145 1.47 1.33 1.10 5.21 

ºº 1.37 1.51 0.91 16.91 
º' 1.22 2.27 0.54 67.59. 
ºº 1.07 0.06 17.83 7.22 

SANDSTONE 145 2.26 1.91 1.18 5.59. 
ºº 1.88 1.42 1.32 5.40 

0.53 0.21 2.52 5.43 
0.26 0.20 1.30 5.40 

In the case of the granite joints, although the filling thickness did not 

vary substantially, the normal stiffness values differed by more than one 

order of magnitude. Assuming that all the joints had been compressed 

under the same level'of normal stress, the large variation can easily be 

explained considering the ratio of filling thickness to surface rough- 

ness amplitude (t/r). For values of the ratio below unity (roughness 

amplitude > filling thickness) joint deformation is largely controlled 

by solid/solid contacts hence the large Kn values, as opposed to the 

cases where the filling thickness exceeds the height of asperities 
(t > r). Interestingly, the Kn values corresponding to the sandstone 
joints were virtually identical despite the considerable variations 
in the thickness of the infilling. However, it can be seen that in 

all cases the roughness of the joints varied in such a way that the t/r 

ratio values were comparable, -and more significantly, larger than 1. 

The expected amount of joint "stiffening,, with increasing level of normal 

stress is obviously related to the geometrical variables referred to 

above. The variation innormal stiffness with increasing normal stress 
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is shown in the semi-logarithmic plot in Figure 3.1 for a suite of 
joints of comparable morphology but variable infilling thickness. 

In the preceding discussion soft compressible infilling materials have 
been considered. However, as Goodman et al. (1968) have pointed out, 
a distinction should be made for cementing materials such as quartz, 
calcite, epidote etc., whose presence could result in high normal 
stiffness, unless weathering effects are involved, as for instance in 
cases of soluble calcite infillings. 

2. Unfilled tioints 

Factual information regarding the effects of the variables referred to 

earlier on the normal deformability of unfilled contacting joints is 

virtually non-existent. This is largely because the majority of the 

relevant studies have been conducted on artificial fractures (extension 

or saw-cut), which resemble only certain types of natural joints and 
have a very restricted range of the variables in question. 

The initial actual contact area (directly dependent upon the stress 
history of the joint) is the most important variable controlling the 

deformability of a joint. As an extreme case, a point-contacting mis- 

matched fracture showed an approximately three-fold increase in maximum 

closure as compared to the closure achieved when the same fracture had 

been compressed in fully-interlocked position (Goodman, 1976). 

Situations where natural joints may have such huge apertures and point 

contacts may arise from shear movement along undulating surfaces, 
dissolution and removal of wall material by migrating waters, etc. 

Significant differences in the magnitude of deformations can also be 

traced in cases of interlocked joints with. extremely small aperture 

and relatively larger actual contact area. Iwai (1976) found that the 

maximum closure (Via) of a perfectly mating extension fracture in granite 
during first loading under maximum normal stresses of 20 MPa was 0.108 mm, 

whereas the Vm of a similar basaltic fracture was N 0.055 mm under the 

same stress level. Interestingly, the uniaxial compressive strength of 
the granite and basalt rocks was 135 MPa and 230 MPa respectively, and 
the Young's moduli were 44.4 and 74.4 GPa. The potential increase in 

joint deformability with decreasing rock strength has been pointed out 
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by Duncan and Hancock (1966). From compression tests on natural 
joints the last authors' concluded that an appreciable amount of joint 

closure may occur only when the intact wall material is deformable 

enough. Joints in rocks of ströngly brittle nature would show minimum 
closure because the intact material would resist local failures, 

compaction of asperities or increase in actual contact area under 
compression. Unfortunately no experimental data were included in that 

publication. 
J 

It is of interest to note, however, that the difference in the uni- 
axial compressive strength of the rock material of the limestone 
((Tc = 150-210 MPa) and sandstone (Q = 50-90 MPa) joints tested by 

Hungr and Coates (1978) was not reflected in the amount of joint 

closure, which seemed to range between 0.1 mm and 0.2 mm for both 

groups of joints. In fact, the average normal stiffness coefficient 

of the limestone joint group was 17.8 MPa/mm and of the sandstone' 

group 18.5 MPa/mm. It is conceivable that the applied normal stresses 

were not high enough to mobilize the inherent differences in the 

strength and elastic properties of the asperities of the sandstone 

and limestone joints. On the other hand, a certain amount of, variation 
fas observed in the normal stiffness coefficients (calculated as maximum 

stress Qn"over maximum displacement AV ) within each joint group. 
The Kn values of five limestone joints ranged between 11 MPa/mm and 
46 MPa/mm; - for eight sandstone joints Kn was between 13 MPa/mm and 
25 MPa/mm. Incidentally, the upper bound Kn value of the limestone 

joints was obtained from a very tight, incipient fracture. Hungr and 
Coates attributed the scatter in the magnitudes of K to small differ- 

ences in aperture opening. All joints were described as tight, and 

an average aperture thickness of less than 0.5 mm was quoted for the 

limestone joint specimens. 

No attention seems to have been focussed on the weathering effects 
upon joint normal stiffness. Snow (1972) pointed out that the joint 

normal deformability coefficient may vary radically with degree of 
weathering, ' but no experimental evidence was given. 

j'rom the above review it becomes clear that the present- state' of 
knowledge leaves much to be learned about the normal stiffness property 

of natural joints, and in particular its variation under the influence 
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of joint system variables known to control joint behaviour under 

shear loading conditions. Joint normal stiffness is a very important 

parameter as it effectively determines the Emass%Erock ratio and 

representative data are much needed for both physical and numerical 

modelling of the rock mass. Furthermore, joint normal deformability 

is fundamentally related with the problem of water flow through 

jointed rock masses subjected to changes in the stress environment. 

Since it is known that the permeability of joints, which constitute 

the main water conduits in the mass, is a sensitive function of joint 

aperture, it is essential that the interaction of hydraulic and 

mechanical effects be considered. 

3.1.3 Factors influencing the joint shear stiffness 

Goodman et al. (1968) summarized the factors influencing the sheax 

stiffness of joints as follows: 

(1) the roughness of the joint walls' determined by-the 

distribution, amplitude, and inclination of asperities; 

(2) the tangential aperture distribution and amplitude; 

(3) the relevant properties of the infilling material, if 

present. ýI1 '` " 

The effect of another variable has also to be considered, that is 

the length of the joint., 

Infilled joints 

The shear stiffness of infilled joints depends on the relevant 

properties of the intervening material and, of course, its thickness 

in relation to the geometry of the opposed joint walls. The behaviour 

of joints filled with a layer of uniformly graded and predominantly 

clayey or silty material of . thickness several times that of the 

asperity amplitude will be governed by straight-forward soil mechanics 

principles. Complications arise due to fillings that consist of 

widely graded material, for instance rock breccia and clay mixtures, 

and for discontinuities which have a filling of thickness smaller than 

the amplitude of the wall roughness. In the latter case, "strain- 
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hardening" behaviour is usually observed due to increasing rock-rock- 
interaction with shear displacement. 

A carefully controlled experiment conducted by Goodman (1970) 

demonstrates the influence of an infilling material on the shear 
stiffness of joints. The effects of different thicknesses of a finely 

crushed mica filling on the Ks of regular saw-tooth surfaces cast in 

a plaster-celite model. material were tested. The geometry'of-the 
"joints", the shear force vs. displacement curves and the variations 
in Ks with percentage joint infilling defined as 

joint infilling =tx 100 
r 

where: t= thickness of infilling 

r= vertical amplitude of asperities 

are included in Figure 3.2. . As shown, the stiffness showed a gradual 
decrease with the degree of joint filling until at 125% 

, 
filling the 

shear stiffness of the infilled joint was less than one-third than that 

of the unfilled. At that stage the infilled joint was twice as stiff 

as the filling material alone. The experiment therefore demonstrates 

that sheared zones and filled joints may display shear deformability 

appreciably different from that of the filling material itself. 

The expected significant reductions in peak shear stiffness with in- 

creasing thickness of filling has also been demonstrated by Infanti 

and. Kanji (1978), who conducted in-situ shear tests on joints in 

basalt (the compression properties of these joints have already been 

discussed in section 3.1.2(1)). The infillings varied from silty sand 
to silty clay and their thickness ranged from discontinuous films of 

"r 1 nim to continuous thick zones up to 100 mm. The-authors listed the 

range of K$ values measured in relation to filling thickness, as shown 
in jab-le-3--I- 

The peak shear stiffness of partially filled joints (i. e. when filling 

thickness < roughness amplitude) is directly related to the shear die- 

placement required for contact to develop between the wall asperities. 
The variable size, shape and distribution of the irregularities on joint 

planes makes the establishment of any general empirical rules of 

practical reliability very difficult. 
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The problems are further accentuated by additional complications 

such as development during shear of highly consolidated "pockets" 

of infilling forcing the advancing joint block to dilate and hence 

delaying actual contact. Moreover, the slight consolidation of 

normally-consolidated, and dilation of overconsolidated clayey 

materials during shearing, could be significant in cases of rel- 

atively smoother joint surfaces (Barton, 1973a). The complexity of 
the mechanics of shear deformation of infilled joints is usually 

reflected in poor correlations between peak displacements and filling 

thicknesses even under controlled laboratory conditions (for example, 

see Lama 1978). It seems therefore that actual shear testing of such 
discontinuities is the only reliable means of evaluation of the shear 

strength and deformation characteristics. As a result there exists a 
fair amount of shear stiffness data from laboratory and in-situ testing 

of different types of infilled joints. A collection of Ks values (both 

secant and yield) is presented in Table 3.4. Depending on the normal 

stress (range = 0.21 - 2.99 MPa), the thickness of infilling and dry 

or wet conditions, the peak shear stiffness data present a range from 

0.32 to 23.55 MPa/mm, although maximum values rarely exceed 2 to 3 MPa/mm. 

2. Unfilled joints 

Since the roughness of the surface of unfilled joints effectively 

controls the peak shear strength and displacement, it will obviously 

influence the shear stiffness of a joint. The effect of surface rough- 

ness is clearly shown by the collection of peak shear stiffness data 

listed in Table 3.5. For instance, comparison of the Ks values for 

the limestone joints nos. 1 to 4, shows a substantial increase from 

an average value of 0.51 MFA/mm (on = 0.88-2.40 MPa) to 3.06 MPa/mm 
(an = 0.30-3.36 IPa/mm). The overall range of the average Bs values 
from laboratory size specimens is 0.51 to 3.06 MPa/mm under a range 

of normal stresses from 0.15 to 10.1 MPa. 
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Table 3.4 

Summary of secant yield and peak shear stiffness values of infilled 
joints (data as compiled by Kulhawy, 1978). 

Joint type 
Area 
(cm2) 

Normal 
stress 

Thickness 
of fillin 

Secant Shear Stiffness (MPa/mm) 
g (MPa) (mm) Yield Peak 

Range Average Range Average 

Mail layer 
in limestone 

6750 
"56' 1-3 2.16- 

2.84 0'51- 
2.13 (saturated) 3.73 3.73 

Many partings 
in limestone 56 

63 "24- 1-5 2.16- 2.74 0.85- 
2 8 9 (saturated) . 77 3.14 5.69 . 

Manly joints 
in limestone 

' 
28- 
47 "49- 

1 . 25-20 - - 
2,26_ 

9.75 (dry) 
. . 47 2 3.55 

Foliated 
gneiss and 

10.6- 
24.5 "39- 2 94 4x50 1.46- 2"55 0.69- 2.36 

mylonite . 4.71 3.69 

Limestone 
bedding with 1500 21- 

2 38 - 
04- 18 3.90 05 69 1.25 

niylonite , . . . 04 . 
Manly joint 
in limestone 1243- 2 99 15-30 118- 2.65 "41- 1.70 (moist) . 3.33 4.71 

Limestone 
bedding with 
thin shale 

1500 1.23- 
2.80 

1.55- 
13,90 5.96 "32- 8.33 3.08 

seams 

Joint filled 
with manly 44000 0.98 1-2 - - - , 2.34 
sand 

Marly joints 20- 47- in limestone 
(saturated) 40 . 1.47 . 25-2.0 - . 47 1 3460 7.41 

Vertical - , 37_ 17_ . fault 1.07 Thick, uneven - - 0.23 
0.20 

Narly joint 
(saturated) 

1030- 
1240 . 49- 

2.94 1.3-3.2 0.09- 
2 2.41 . 02- 

86 0.78 
. 74 1. 
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Table 3.5 

Range of peak shear stiffness values (secant) for different types 

of unfilled joints. 

Rock and No. joint type 
Area 
(cm2) ' 

Normal stress 
(MPa) 

Peak shear stiffness, 
Ks (MPa/mm) 

Range Average 

LIMESTONE: 

1- smooth joint 1600 0.88 - 2.40-" 0.20 - 1.28 0.51 
2- rough joint 1600-: 1.52 - 4.00 1.26- 2.61 1.98 
3- slightly rough 

bedding 1500 0.15 - 3.63 0.20 - 1.37 0.84 
4- rough bedding 1600 

, 
0.30 - 3.36 0.25 - 7.35 3.06 

PORPHYRY: 

5- dry, natural 500 3.24 - 10.10 0.26 - 1.94 1.02 
joint _, 

SLATE 

6- natural 500 4.37 0.79 
cleavage plane 

GRANITE 

7- rough joint 144- 1.18 - 1.42 0.99 - 1.57 1.32 
205 

AMP'HIBOLITE 

8- schistosity 5x103 0.12 - 0.59 
plane 

BASALT- 
SANDSTONE 

9- contact plane 3o8x103 0.13 - 0.11 
(unbonded) 

Notes: Data as compiled by Kulhawy (1978) 

Nos. 1 to 7: laboratory tests 
8 and 9: in-situ tests. 
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3. Scale effects 

Direct shear tests on model tension fractures conducted by Barton (1972) 

revealed a potential scale effect on the peak shear stiffness of joints. 
In that study the joint test specimens were generated through the same 
size of block. By using a dimensionless relationship relating the 

stress and geometrical scale factors (equation 2.7 in section 2.2.2, 
Chapter 2.2 in Part Two), Barton'simulated different prototype joint 
lengths (from 2.3 to 30 meters) by varying the compressive strength of 
his model material and assuming the same strength of prototype rock 
in each case. The results from that study showed no scale effects in 
the prototype peak shear strength but large increases in the prototype 

peak shear displacements with increasing length of the simulated 

prototype joints. Based on those observations Barton concluded that 

the peak shear stiffness is a strongly scale dependent parameter. 

The` experimental study on scale effects reported in part two of this 

thesis has demonstrated that profound scale effects exist in both the 

peak shear strength and peak shear displacement of physically increased 

lengths of joint specimens of identical morphology, which manifest 

the strong dependency of peak shear stiffness on joint length. 

on the assumption that peak shear strength is reached after shearing 
approximately 1% of the joint length, Barton and Choubey (1977) 

suggested that for'practical purposes the peak shear stiffness in" 

relation to joint length can be found from: 

)+ fib J 3.1 Kr _ 
100 

Q tan [ JRC 1og10 (Ms 
s-Ln 

n 

where: S= peak shear stiffness (MN/mmm) 

L= joint length (m). 

In view of a potential existence of a critical joint length, Lc (defined 

as the length of joint still just sensitive to scale effects in peak 
shear strength and displacement) controlled by the average cross-joint 
spacing in the rock mass, the value of L in equation 3.1 should be 

replaced by Lc. 

General trends of the variation in peak shear stiffness with increasing 
joint length are shown by the chart in Figure 3.3 as has been presented 
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by Barton and Hausteen (1979). The plotted data represent laboratory- 

size joints as well as larger joints tested in-situ (all clean, unfilled), 
Results from model fractures simulating different joint lengths 

according to the principles discussed earlier are also included. The 

set of parallellines represent approximate envelopes for equal normal 

stress (n), demonstrating a dependency of Ks on an. The peak shear 

stiffness'of infilled joints is essentially independent of scale effects 
(Infanti and Kanji, 1978). 

3.1.4 Present work 

The experimental study to be reported in the next two chapters-concentrates 

primarily on the property of joint normal stiffness. Normal loading tests 

have been conducted on a range of natural unfilled joints sampled from 

different rock types and displaying variable wall strength and roughness 

characteristics. The targets of those experiments are s»mmarized below: 

(1) Investigation of the complete stress-deformation relationship of 

different joint types - both fresh and weathered - under loading/ 

unloading and repeated load cycling conditions, and definition of 

an analytical representation of the curves. 

(2) Study of the effects of weathering on joint normal deformability. 

(3) Derivation of empirical relationships of possible practical value 
between normal deformability parameters and fundamental joint 

variables, such as aperture, wall strength, and roughness. 

(4) Comparative study of the deformational characteristics of point- 

contacting joints of variable aperture openings created by mis- 

fitting the joint halves in a manner approximately simulating the 

condition of joint surfaces displaced in shear. 

A limited number of direct shear tests was conducted on different types 

of joints after the conventional configuration for measuring displace- 

ments had been refined in order to: 

study the exact shape of the pre-peak portion of the shear stress- 
displacement curves of different joints and compare the behaviour 

of fresh and weathered surfaces, 
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(2) examine the anisotropy in joint deformability in relation to 

joint type and weathering stage. 

The test results from the model joints reported in part two have also 

been analysed further to investigate the scale effects on peak shear 

stiffness. 
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CHAPTER 3.2 

EXPERIMENTAL STUDY OP JOINT DEFORMATION 

3.2.1 Introduction 

This chapter contains a review of the laboratory work undertaken . 
to 

investigate the deformational behaviour under normal and shear loading 

conditions of a wide ranging variety of natural unfilled joint types, 

and a general analysis of the experimental results. 

Fresh, interlocked joint samples with surfaces displaying an appreciable 

variety of roughness were. collected from exposures-of five different 

rocks, namely; limestone, sandstone, siltstone, dolerite, and slate. 
Each of the sampling locations yielded also a number of either surficially 

or throughout weathered joint blocks. For a quantitative indexing of the 

various joint types, the-surface roughness coefficients (JRC) and wall 

compressive strengths (JCS) were determined. 

The normal deformability tests involved cyclic loading of carefully 

prepared single-jointed blocks and measurement of the vertical displace- 

ments. At first, all joints were compressed in fully locked position, 

and then a collection of different joint types was tested with artificially 

mismatched walls. Finally, a number of joints were tested in direct shear 

under different normal loads by adopting a multistage testing procedure. 

The contents in this chapter have been divided into three main sections. 

The first contains descriptions of the different rock material and joint 

types together with their index properties, and a review of the joint 

testing procedures. In the second and third sections the stress-deformation 

relationships of the joints as derived from the experimental results are 

introduced and analysed. 

3.2.2 Index properties of intact rock and joint types, and description 

of testing procedures 

A series of index'tests was conducted to examine the strength and deform- 

ation characteristics of the five rock materials. The joint wall strength 

and geometry were described in terms of the joint compressive strength 
(JCS) estimated from Schmidt hammer testing, and the joint roughness 
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coefficients (JRC) were back-calculated from the results of direct shear 
tests under extremely low normal stress. The various index properties 

of the intact rocks and joints will be presented after a brief 

geological description. The general descriptions have been based on 
the relevant terminology recommended in the reports by the Working 

Party of the Geological Society of London (GSL, 1977) and the Commission 

on Standardization of Laboratory and Field Tests of the International 

Society for Rock Mechanics (ISRM, 1978a). 

1. Type of rock materials and weathering state 

(a) SLATE : Ordovician from Skiddaw Slates, very fine-grained, finely 

laminated with micaceous partings, moderately well 
developed slatey cleavage, grey. ' Sampling location: 

disused quarry near Keswick, Lake District. 

(b) DOLERITE : Pernio-Carboniferous, medium-grained, grey-green. 
Sampling location: natural exposure at Horwick Crags', * 

Middleton, Teesdale. 

(c) LIMESTONE : Lower Carboniferous, medium-grained, dense, light grey. 
Sampling locations: ' Coldstones quarry (disused), Greenhow 
Bill, N. Yorks; Trollers Gill (old mine and natural 
exposure), N. Yorks. 

(d) SILTSTONE : Upper Coal Measures, medium- to fine-grained, finely 

laminated with muddy partings, light grey. ' 
Sampling location: N. C. B. open cast pit at Snydale, W. Yorks. 

(e) SANDSTONE : Lower Coal Measures, ` medium-grained, micaceous, light 

yellow. Sampling location: Mink Farm quarry, Shibden Dale, 

W. Yorks. 

The constituent minerals of slates vary in their susceptibility to 

chemical weathering. Ferrous compounds are oxidized at an early stage 

and the subsequent changes are probably dominated by the alteration of 

mica to form new clay minerals, while the sericite and quartz of the 

rock remain unaltered (Greensmith, 1975). Some of the present slate 

samples were heavily oxidized and sections through cleavage blocks 

revealed penetration of weathering towards an apparently fresh corestone. 

Weathering effects in the dolerite were visible along the joint planes 

which were frequently covered by a layer of limonite. Exposed block 
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faces showed a spalling effect with-crusts of altered material of thickness 

2 to 5 cm. Apart from those features the rock had a fresh appearance. 

The non-porous, impermeable limestone rock was fresh and only the joint 

surfaces appeared discoloured to various shades of brown from deposition 

of iron oxides or into a dark grey-green colour due to algae growth. 

The bedding and joint planes'of the siltstone were heavily oxidized and 
had a rusty-coloured appearance. Chemical weathering in siltstones 

commonly involves oxidation of accessory minerals, e. g. pyrite (FeS2), 7 

siderite (FeCO4) to give limonite (Pettijohn, 1957 ). In this siltstone 

rock oxidation had penetrated most of the block to a depth of a few 

centimeters. 

The basic weathering features of the sandstone included slight discolour- 

ation to darker yellow colour and iron deposition on the joint and bedding 

planes. Chemical weathering in sandstone consists of leaching or alter- 

ation of the cementing material surrounding the usually inert granular 

skeleton. The present rock was cemented by some ferruginous compound 

and hydration of the latter to hydroxides was probably the principal 

weathering agent. In some sections of the quarry highly weathered sand- 

stone material of brown appearance was exposed. 

2. Index properties of rock materials 

An estimate of the uniaxial compressive strength (o ) of each material 

was obtained from point load tests on prismatic specimens of various sizes. 

The same specimens were also used for rock density determinations and 

evaluation of an alteration index of the weathered materials. Uniaxial 

compression tests were performed on cylindrical and prismatic rock 

specimens to measure the elastic modulus (Er). The various property 
values obtained from each rock type are listed in Table, 3.6. 

The point load strength index T500 was determined according to a method 

described by Brook -(1977). The load of failure of prismatic rock specimens 

of various sizes was plotted against the fracture cross-sectional areas in 

a log-log graph. The load (L) corresponding to the intersection of the 

average data curve with the 500 mm2 line was used'to calculate the T500 

index from: 
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T 
(kos) x 9.807 

in MPa units)' 500 500 3.2 

Test specimens were prepared from solid blocks firstly tested in com- 
pression to determine the elastic behaviour of the rock materials, and 
from joint block sawing cut-offs. The point load testing apparatus 
was the ELF model. Typical relationships between failure load and 
fracture area for the fresh and weathered rock materials are shown in 

Figure 3.4. The calculated T500 values ranged from 17.3 MPa (fresh 

dolerite) to 0.8MPa (highly weathered sandstone). An estimate of the 

uniaxial compressive strength (a- 
0) was obtained from the relationship 

v-c = 12.5 T500 3.3 

which Brook has found to represent a good approximation for a variety of 

rock types. The estimated v- ranged, from 216 MPa to 10 MPa, and showed 

a reasonable agreement with the values of v- measured from a few conven- 
tional tional tests on cylindrical and prismatic rock specimens (* o in Table 3.6). 

The axial stress-axial strain behaviour of the various rock materials up to 

failure was studied by conducting uniaxial compression tests on prepared 

cylindrical and one prismatic specimens. Axial strain was recorded by 

means of electrical resistance strain gauges and measurements at regular 
load increments were taken from a Peeckel strain-meter. The cylindrical 

specimens had a diameter of 5.08 cm and a length to diameter ratio of 

approximately 2. No cores of satisfactory quality could be drilled from 

the heavily weathered sandstone and so a prismatic specimen was sawn and 
tested instead (the loading ends were N5 cm square and the side length 

was 10 cm). One 10 mm strain gauge was mounted halfway along the length 

of each specimen after the area had been thoroughly cleaned using a low 

activity degreaser (Freon TF), a water based acidic (conditioner "A") 

and an alkaline (neutralizer 5) surface cleaners. The gauges were fixed 

on the rock surface using a mix of P-2 adhesive (Drug "A") and hardener 
(trug "B"). 

The range of stress-strain relationships displayed by the various rock 

specimens is illustrated in Figure 3.5. All fresh rock materials failed 

in brittle fracture and exhibited different degrees of non-linear 
behaviour at low stress levels. No well defined point of failure could 
be distinguished for the highly weathered sandstone specimen. The elastic 
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behaviour of the various rock types under cyclic loading will be`' 

considered in detail in section 3.2.3. The Young's modulus (Er) of 

each rock type was calculated from the slope of the tangent to the 

stress-strain curve at 50'/ of the maximum axial stress. The values 

of Er given in Table 3.6 represent the mean of two tests except for the 

slightly weathered siltstone and the highly weathered sandstone. 

The moduli of the five fresh rock types ranged from 24 GPa (sandstone) 

to 78 GPa (dolerite). The significant effects of weathering on the 

strength and deformation of the sandstone can be seen in Figs. 3.4 and 
3.5. The point load strength (T500) and the Young's modulus (Er) showed 

approximately six-fold and five-fold maximum reductions respectively. 
An alteration index (AI) defined by 8amrol (1961) as AI(%) = ff w Wd)/WdJX 100, 

where Wd and w are the dry and wet weights respectively of a rock piece 

after a quick (« 2 hours) absorption test, was found to increase from an 

average value of 3% for the fresh sandstone to 8.6% for the highly weathered 

rock. The unit weight of the material decreased from 24.1 kN/m3 to. 

19.9 kN/m3" 

3, Types of joints and weathering state 

Single jointed blocks were extracted from the rock exposures manually 

with the aid of hammer and chisels. Maxim= care was taken to ensure that 

no damage was caused on the joint walls especially in the cases of 

weathered surfaces. The differences in the physical and mineralogical 

properties of the rock materials were reflected in their variable 

susceptibility to weathering. In the cases of dense, impermeable rocks 

such as slate, " dolerite and limestone, weathering was confined within a 

relatively thin band of joint wall material with rock in the immediate 

vicinity being fresh or slightly weathered. Advanced weathering effects 

were encountered only-in the case of the sandstone exposure. A brief 

description of the weathering and geometrical characteristics of the joints 

included in the testing programme is given below. A representative 

selection of joints illustrating the range of surface roughness types is 

shown in the photographsof Figure 3.6. 

(a) Slate cleavage planes : Surface geometry was variously rough, planar 

to slightly undulating. The sampled exposure yielded open cleavage planes 

with the surfaces covered by a film of limonite and weathered secondary 
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crystalline calcite which had been dissolved in places. Fresh specimens 
were sawn from two incipient cleavage planes. A total of seven 
cleavage blocks were finally tested. 

(b) Dolerite joints : These varied between planar to slightly undulating 
in roughness. Only five joint blocks could be prepared and tested because 

of sampling difficulties and breakages during saw-cutting, including: 

one fresh and one slightly weathered (lightly stained) joint and three 

surficially weathered samples. The surfaces of the latter were covered 
by a thin film of limonite and a'2-3 mm band of, adjacent rock was dis- 

coloured to yellowish followed by perfectly fresh material. 

(c) Limestone joints : The, sampling locations yielded tension joints 

and bedding planes showing a considerable range of wall roughness from 

nearly smooth and planar to rough undulating. Most of the surfaces 
were partially or completely stained and some were discoloured to darker 

grey. Some joint planes were covered by a film (N 0.50 mm) of a soft, 

yellow, porous material probably less soluble limestone and insoluble 

iron oxides. A total of twenty-one specimens were prepared for testing. 

(d) Siltstone joints : The collected samples were all bedding planes of 

more or less similar rough, -undulating surface geometry. Weathering 

effects included intense oxidation giving the surfaces a'rusty colour, 

and "flakey" appearance presumably due to physical breakdown of the 

muddy partings in the rock. Fresh natural joint specimens could not be 

found in that particular exposure. For that reason, freue core-samples 

from an adjacent borehole were used to produce artificial extension 

fractures vertically to the bedding. Ten joints (five natural and five 

artificial) were finally tested. 

(e) Sandstone joints : The samples were rough undulating vertical, 

tension joints and rough, planar bedding planes. The surfaces of some 

bedding planes in slightly weathered rock had a light brown appearance 

due to iron staining. A number'of vertical joints in fresh rock were 

covered by v 0.1 mm dark brown crust of deposited iron oxides. Bedding 

planes collected from the highly weathered sections of the exposure 

were moderately rough, gently undulating. There was no visual difference 

between bedding surface and rock material. A total of "twenty-one 

specimens were tested. 
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Based on an assessment of the relative differences in wall hardness the 
joints from each rock type-were conveniently classed as "fresh" to 
"slightly weathered"9 "moderately weathered"9 and "weathered". Details 

on rock joint indexing are presented in the following subsection, where 
tables have also been included containing relevant quantitative inform- 

ation for each group of joints. 

4. Index properties of : joints 

The variables of direct relevance to the deformational behaviour of 
joints are the aperture opening, and the wall strength and roughness. 

(a) Measurements of joint wall strength 

The mechanical strength of joint walls is the same as that of the 

surrounding rock only in cases where joints are running through perfectly 
fresh or uniformly weathered material. Water-conducting joints in im- 

permeable rocks usually develop a thin layer of weathered material 
bounding an otherwise fresh rock block. 

, 
Such weathering effects were 

present in some of the joint types described in the last section. It 

has frequently been emphasized that the shear strength and deformability 

of joints is crucially affected by the. thin weathered "skin" of wall 

rock and various simple index tests have been recommended for direct 

assessment of its hardness (e. g. ISRM, 1978x). 

In the present study, estimates of the wall compressive strength (JCS) 

were obtained by Schmidt hammer testing. The S. H. is a simple device 

for recording the rebound of a spring loaded plunger after its impact 

with a surface. A wide ranging assessment of the suitability of the 

hammer for indexing of rock materials was given by Miller (1965). The 

Commission on Laboratory and Field Testing of the ISRM has recently 

published recommended procedures for standardization of intact rock 
testing (ISRM, 1978 ) and the potential application of the method for 

a direct assessment of joint wall hardness has been described in another 

report (ISBN, 197ffa)! Further details on Schmidt hammer testing have 

been included in Appendix III (section 1). 

An Irtype hammer (impact energy = 0.075 mkg) was used in the present 
study. The tested blocks were securely clamped on a heavy concrete 
base to avoid any "drumminess" effects. In cases of irregularly shaped 
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blocks concrete moulds were built to ensure firm seating. Each joint 

surface was repeatedly tested by applying the hammer in a direction 

perpendicular to the joint (all tested in dry condition). A total of 
twenty tests was performed on each surface and the mean of the ten 

highest rebound numbers was assigned to each tested joint. It is 
known that in S. H. testing artificially low numbers often result from 
improper contact between the hammer plunger and the joint surface due 

to the presence of irregularities. A brief supplementary investigation 

into the effects of the surface roughness on the rebound numbers (see, 

Appendix III) showed that rough surfaces give lower recordings" than 

smooth ones. For three rock types tested (coarse-, medium- and fine- 

grained) the mean rebound number from twenty tests on saw-cut smooth 

surfaces and rough tension fractures showed a difference from approx- 
imately 4 to 8. The average values obtained from the ten highest 

readings from each rough fracture were very close to those measured 

on the flat surfaces, especially in the case of the medium- and fine- 
grained rocks. 

The joint compressive strength (JCS), values were estimated in MPa units 
from a relationship given by Miller (1965): 

1og10(Jcs) =. 0.00088 YR +-1.01 3.4 

where: Y= dry unit weight (kN/m3) 

R= rebound number (mean of ten highest readings). 

The dry unit weight (Y) values were measured either from rock pieces 

out from intact material (for joints in fresh and uniformly weathered 
blocks) or from thinly sawn slices of joint wall material (for joints 

displaying visual difference between the surface and the surrounding 

rock). Significant differences were-observed between the measured unit 

weights. Depending on the rock type, the extent, and the character of 

surface weathering, the Y values ranged: for the slate cleavage planes 
between 27.70 and 27.05 kN/m3 (-2.4%); for the dolerite joints between 

29.0 and 26.75 kx/m3 (-8.4%); for the limestone joints between 27.27 

and 25.68 kN/m3 (-6.2%); for the siltstone joints between 24.20 and 
23.62 kNIM3 (-2.5%); and for the sandstone joints between 24.32 and 
19.90 kN/m3 (-22.2%). 
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The estimates of JCS obtained from equation 3.4 by using the mean R and 

appropriate Y values for each joint presented a clear pattern of the 

weathering effects on joint wall strength. The maximum variations in. 

JCS values for the various types of joints are given below: 

Slate : from 175 MPa to 77 MPa 

Dolerite : from 182 MPa to 60 MPa 

Limestone : from 170 MPa to 35 MPa 
Siltstone : from 105 MPa to 42 MPa 

Sandstone : from 95 MPa to 22 MPa 

A meaningful index describing the character of joint weathering is the 

ratio of the compressive strength ( Q) of the rock in the interior of 

a joint block to the strength of the joint wall. Barton and Choubey (1977) 

have called that ratio the index of relative alteration ( Cr /JCS). In 

order to estimate the ratio values for the present range of joints, 'Schmidt 

hammer tests were conducted on the rock adjacent to the prepared blocks 

or on separate rock samples of the same weathering grade depending on the 

availability of pieces sufficiently large to be tested. The findings are 

summarized below: 

iý Depending on the rock type, extent, and character of weathering the 

Q/JCS value for surficially weathered joints in fresh slate, 
dolerite and limestone rocks showed the following range: for the 

cleavage planes in slate it increased from 1.0 to 2.1; for the 

dolerite joints it increased from approximately 1.0 to 2.9; for 

the limestone joints it increased from approximately 1.0 to a 

maximum value of 4.7. 

ii) For joints in slightly to highly weathered rock materials such as 

the siltstone and sandstone the o /JCS values were slightly lower 

than the above. For the heavily stained siltstone joints the index 

was between 1.4 and 2.2. For the sandstone joints o', /JCS increased 

from approximately 1.0 (fresh blocks) to 1.2 - 1.6 (slightly 

weathered blocks) and then decreased again to approximately 1.0 for 

the joints in highly weathered material. If O-c is taken as the 

strength of the freshest sandstone rock material (p-c = 75 MPa) then 

the index value for the weathered joints becomes 3.4. A discrepancy 

was observed on a group of four sandstone joints whose'surfaces were 
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covered by a film of iron oxides, in that the index value was below unity 
(= 0.8). The deposition of the iron oxides increased the strength of the 

rock surface from approximately 75 MPa to 95 MPa. A small increase was 

also observed in the unit weights from 24.32 kN/m3 for the fresh rock 
to 24.75 kN/m3 for the stained rock. 

From a comparative evaluation of�the Schmidt hammer test results it was 
deduced that the joint samples from each. of the five rock types could 
be broadly divided into three main groups according to their relative 
weathering, as defined by the v'1JCS ratio values (where ac was the 

compressive strength of the freshest rock material): 

Fresh to slightly weathered :6 07 JCS 1.2 

Moderately weathered : 1.2< % JCS <2 

Weathered :c /JCS >-2 

The above descriptive terms have been used for the sake of convenience 
in the subsequent discussions on joint behaviour. Reference to the 

specific weathering features of each group of joints will be made in 

Tables 3.7 to 3.11 seated at the end of this subsection. 

(b) Measurements of joint aperture 

Even in tightly mated joints the actual contact area is only a minute 

portion of the total surface area, thus creating a complex system of 

"gaps" between the walls. The aperture of contacting joints is defined 

as the maximum perpendicular distance of separation of the joint walls 

and effectively represents the distance that the joint walls have to 

close for perfect contact to be made over one hundred percent of the 

outline area of the sample (Duncan and Hancock, 1966). The aperture of 

joints is the most difficult parameter to measure with accuracy. 

From visual examination of the field joint samples it was clear that 

fresh to moderately weathered joints from all rock types displayed 

very narrow range, if any at all, of aperture openings; whereas 

weathered joints had relatively larger apertures due to partial outwash 

of weathered surface material. The only technically feasible method of 

assessment of the average aperture value in the present case was to take 

measurements by using feeler gauges. This method is obviously not very 
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accurate since it only gives the width of the externally visible gaps 

which may have been widened by localized weathering. To avoid any such 

effects the measurements were taken after the joint blocks had been sawn 

and more representative sections across the joint planes were available. 

Since the apertures for the majority of the joints (fresh to moderately 

weathered) were quite similar, it was decided to: (a) take measurements 
from all joints of each rock type, which belonged to the same group of 

relative weathering; (b) determine the most representative range and 

assign an average aperture value to the particular group of joints; and 
(c) note any striking deviations from the norm especially for weathered 

joint walls. A number of measurements were taken from each joint by 

inserting wedge-shaped feeler gauges in the visible gaps between the 

mated surfaces. The usual range of average apertures-for fresh and 

moderately weathered joints from all rock types was between 0.10 to 

0.30 mn. The range obtained from the weathered specimens was between 

0.30-0.40 and 0.50-0.65 mm. The range and average aperture (aj) values 

assigned to all joint groups are given below: Fresh, slightly weathered, 

moderately weathered and weathered joints are denoted as F, SW9 MW and W 

respectively. 

Aperture openings 

(mm) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 

Slate (F) -- --- Limestone (W), aj = 0.50 mm 
aj E Dolerite(F) 
0.10 mit Slate (MW) 

Siltstone(F) Sandstone (W), 

aj=0.15 mm 0.4 mm ------- 
--- --- --- -- Siltstone (MW & W) 

Limestone (F, SW &MW Dolerite (W) 

Sandstone (F SW &MW aj=0.60 pan 
Dolerite (SWS 

a=0.20-0.25 mm-- j Slate (W) aj =0-50 mm 

Some typical sections across various fresh and weathered joint types 

illustrating the differences in aperture thickness are shown by the 

photographs in Figure 3.7. 
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(c) Measurements of joint wall roughness 

For quantitative description of the wall geometry the roughness co- 
efficients (JRC) of the various joints were estimated from direct shear 
testing under extremely low normal load (the JCS! Qn ratio was maintained 
at approximately 2000). A few cases were encountered where the shear tests 

yielded JRC values clearly unrepresentative of the geometry of the joint 

surfaces tested. This was observed in cases of overall planar surfaces 
with one or more "stepped" ridge(s) resisting sliding at the surfaces. 
For those joints, the direction of shearing was reversed and the test 

repeated. Residual angles of friction (dir) for joints in fresh and 
highly weathered rocks were measured from shear tests on saw-cut sand- 

blasted surfaces. The dir values assigned to the surficially weathered 
joints were estimated according to the empirical method described by 

Barton and Choubey (1977). The ranges of JRC values for the various 

groups of joints are summ rized below: 

FRESH TO SLIGHTLY MODERATELY 
WEATHERED WEATHERED WEATHERED 

JRC range (Or ) JRC range (X, 
, 
O) JRC range Wo) 

Slate (Ob=31°) 4.0-5.0 (31°) 5.3 (31°) 6.0-6.8 (250*) 

Dolerite (=34°) 7.1-8.8 (34°) - 6.0-7.7 (27°*) 
Limestone (yb=33°) 5.6-11.4 (33°) 5.8-16.9 (30°*) 5.0-15.0 (220*) 
Siltstone (fib=28°) 8.8-11.8 (28°) 7.0-7.5 (250*) 6.46.7 (210*) 

sandstone (%b=24°-30°) 5.4-10.7 (30°) 5.1-14.1 (260*) 4.8-6.1 (24') 

o= basic angle of friction (average data from 3 tests under n=0.25 - 
0.75 MPa) 

X10 = residual angle of friction: (a) for fresh and uniformly weathered r 
joints b ýi o= ýro 

(b) for preferentially weatherd joints 
Or = 10 °+ r%R( 

- 10°) 

where r=S. H. rebound on weathered 
joint surface 

R=S. H. rebound on fresh rock 
surface 

Qir values thus derived are denoted by (*). 

Detailed information on the strength and roughness characteristics of all 
the types of joints included in this study is presented in Tables 3.7 to 3.11. 
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A characteristic longitudinal surface profile for each joint has also 
been included. 

The various symbols used, in the tables are explained below: 

- Joint types: IF = joint induced along a natural incipient fracture; 

CP = cleavage plane; VJ = vertical joints; BP = bedding planes; 

AF = artificial extension fracture. 

- Strength of joint walls: R= mean rebound number from direct S. H. tests 

on joint surfaces; Y= unit weight of rock material or thin slices of 

wall rock as appropriate; JCS = joint compressive strength estimated 
from Miller's equation 3.4; Cr /JCS = alteration index, where a- is 

uniaxial compressive strength of rock within the joint block'as 

calculated from S. H. tests. Nimºbers in brackets give the ratio value 

when a' is equal to the strength of the freshest rock. 

- Geometry of Joint walls: A. = joint surface area; profiles as drawn 

by using a Vitrex wire gauge; JRC = joint roughness coefficient as 

back-calculated from Barton's formula (equation 2.11,7 part two). In 

a few cases where the JRC values are marked with (*) it means that the 

particular joints have not been shear tested due to accidental failures 

during the compression tests. The JRC values in those cases have been 

assigned by matching the joint profiles with typical roughness profiles 

given by Barton and Choubey (1977); JRA = joint roughness amplitude 

describing the average vertical amplitude of the prominent surface 

protrusions. The aperture (ad) values given with the general joint 

descriptions are the most representative average values assigned to the 

respective group of joints. 

5. Joint block compression and direct shear testing procedures 

The field samples were cut to a technically optimum size and shape using 

a diamond saw. The prepared joint blocks were rectangular prisms with 

side lengths ranging from approximately 80 to 100 mm, widths from 40 to 

60 mm and heights from 50 to 70 mm. Specimens intersected by closed 

cracks were normally discarded from testing. During the saw-cutting, 

maximum care was taken to ensure that the average joint plane was aligned 

in a position parallel to the loading ends of the blocks. Parallelism 

between the three planes was subsequently improved by fine saw-trimming 
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and grinding to within a tolerance of approximately ± 1° to 2°9 although 
those specifications could only be approximated in cases of the very 
irregular joint surfaces. 

(a) Joint block compression tests 

The prepared joint blocks were compressed between two accurately machined 
hardened steel platens. The vertical displacements under normal loading 

or unloading were recorded by two sensitive dial gauges to an accuracy 

of + 0.0005 mm. The vertical dimension for the majority of the joint 

blocks was insufficient for direct mounting of the gauges onto the block 

sides and therefore an alternative was to attach the gauges on independent 

stands and measure the relative displacement between the upper and lower 

platens. The problem in such an arrangement is that additional deform- 

ations may be introduced from improper preparation of the rock surfaces 

and hence poor quality rock/platen contacts. It was therefore necessary 

to ensure that such errors were reduced to a minimum. 

The joint block compression tests were conducted on a 50 ton Dennison 

compression machine, which is shown together with the experimental set-up 

in the photographs in Figure 3.8. The dial gauges were connected to 

magnetic stands firmly seated on the basal plate. The spindles of the 

gauges were brought to rest vertically on two laterally projecting 

horizontal aluminium platelets. The latter were symmetrically fixed on 

two opposite sides of the upper block surface along a lengthwise central 

line. Two square grooves (20 mm long, 5 mm deep) were machined in the 

upper loading platen to accommodate the aluminium platelets. In that way 

the problem of upper platen/rock contact effect was eliminated. To 

minimize the effects for the basal contact of the block, a rigorous 

rock surface grinding and polishing procedure was applied. In order to 

examine- the sensitivity and relative accuracy of the. above experimental 

set-up a number of compression tests was conducted on solid rock samples 
" 

and the axial strain measured directly by electrical resistance strain 

gauges was compared with the values calculated indirectly from the 

deformations recorded by the-dial gauges. The two sets of measurements 

showed an overall good agreement. Details of those tests and of the 

surface preparation procedures have been included in Appendix III.. 
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A problem which was encountered during a number of compression tests was 
that the dials gave dissimilar values of displacements at the two measuring 

points, the differences usually being in the order of 10 to 20'/0. This 

type of problem has been mentioned by other workers. Iwai (1976) described 

an extreme case of a fracture closing at one point and opening at another 

due to eccentric application of the normal load. Hungr and Coates (1978) 

referred to similar experiences involving rotation of the moveable half 

of the joint blocks, which they attributed to the design of their apparatus 

and application of the compression load by means of flexible air bellows. 

Eccentric application of the normal load may have also been the cause of 

the differential deformations recorded in the present experiments. 

However, it would also seem that in some cases the geometry itself of 

the joint surfaces may have contributed to that effect. As an extreme 

example, during one test it was observed that under increasing load the 

initial difference between the deformation recordings of the two gauges 
(let us call them no. 1 and no. 2) progressively narrowed and at approx- 

imately 8 to 12 MPa the two gauges read very similar displacements. 

Then, for the following loading stages gauge no. 2 (which originally had 

given the lower readings) showed slightly larger displacement than no. 1 

and the new discrepancy continued until the end of the test. The joint 

block in that case was limestone specimen no. 12. Gauge no. 1 was 

recording the deformation across the area of the joint occupied by a 

large undulation (see profile in Table 3.9). It is probable that stress 

concentrations on that large irregularity firstly caused larger deform- 

ation and then "closed" that region earlier than the rest of the surface. 

All experimental results were analysed by using the average of%the dis- 

placement values recorded by the two dial gauges. 

The normal deformations measured, during compression of the joint blocks 

represented the sum of the elastic, deformation of the solid rock and the 

closure of the intersecting joint (the term "total deformation" 'will be 

used hereafter). Therefore, the net joint closure at any stress level 

would have to be- found by subtraction of the elastic deformation of the 

surrounding rock under the same normal stress from the experimental value 

of total deformation. When testing an artificial fracture the intact 

rock deformation can be measured on the same specimen prior to splitting, 

as for instance was done by Goodman (1976). Alternatively, a separate 

intact specimen can be used provided that it has precisely the same shape 
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and size as the jointed one. It is obviously essential to use a specimen 
from the same original sample and maintain the same relative orientation 
during cutting or coring particularly in cases of mechanically anisotropic 

materials. 

During preparation of the test samples a number of intact rock blocks 

was also cut. It was impossible to obtain a "truly representative" solid 

rock block for each jointed block due to unavailability of sufficient 

quantity and/or good quality uncracked material after the joint block 

had been sawn from the field sample. Eventually ýn alternative solution 

was adopted as will be discussed in the next chapter. 

(b) Direct shear tests 

Direct shear testing of a number of joints was performed on a portable 

shear apparatus. The latter was the model manufactured by Robertson 

Research International. The normal and shear loads are applied by means 

of wire ropes and hydraulic rams fitted onto the upper and lower boxes 

respectively. The loads exerted on the rams during testing are indicated 

by Bourton tube lead gauges which are worked independently by hand operated 

hydraulic rams. In the present model, the pump feeding the normal loading 

ram was fitted with an adjustable low friction pressure maintainer, thus 

allowing constant normal loading conditions during testing of dilatent 

surfaces. The joint samples were fitted in the machine after appropriate 

concrete moulds had been prepared (details included in Appendix III9 

section 3). The shear apparatus in assembled position and prepared 

specimen moulds are shown in the photograph of Figure 3.9. 

The majority of joint types were sheared under different normal loads by 

following a positive (or incremental) multistage testing procedure. That 

is, the same joint was sheared repeatedly, each time applying a load 

higher than that of the previous test(s). The justification of such a 

practice lies in the practical impossibility of obtaining joint samples 

of identical surface geometry. That procedure suited the main purpose of 
these tests, which was to compare the normal and shear stiffness of 
different joint types at various normal stress levels. On the. other hand, 

the disadvantages of multistage testing ought to be carefully considered. 
Martin and Millar (1974) derived peak shear strength envelopes from an 
incremental normal loading sequence applied on the same joints assuming 
that any surface irregularities which are damaged at a lower stress level 
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FIGURE 3.9 Photograph illustrating the portable shear box in assembled 
position with a modified dial arrangement for measuring shear 
displacements directly on the encased joint sample. 
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would not affect the strength at the higher stress level. However, 

after the first test it is logical to expect that the peak shear 

resistance will be affected to a certain extent by the previous stress- 
deformation history, depending of course on the level of normal stress 

applied in the preceding test(s). 

There are various techniques which can be followed in peak strength 
determination from multistage testing. For example, Ross-Brown and 
Walton (1975) describe a method in which after the peak shear strength 

under a certain normal load is reached the test is stopped and by 

maintaining the shear load the next normal load increment is applied. 
Alternatively, the shear load is released (thus causing some horizontal 

elastic. rebound) before the normal load is increased to the next value. 

However, both those methods would obviously be unsuitable for the present 

purpose of multistage testing and hence the chosen procedure consisted of 

reassembling the sample to its original position before starting a new 

shear run under higher normal load. Some of the joint types had very 

similar surface geometry and a normal testing procedure was followed. 

During early testing trials significant inconsistencies were observed in 

the recordings of the horizontal displacements by a dial gauge mounted 

on the lower box with the spindle' resting on a position beneath the- 

normal loading ram (standard manufacturer's design). Specifically, ýwhen 
testing strongly dilatant joints "negative" displacements or sudden laxge 

increases were obtained due to a small rotational movement of box 

enhanced by the large vertical distance of the measuring point from the 

shear plane (-110 mm). Such anomalies were not observed in casgs of 

relatively planar surfaces, but comparisons of the displacements recorded 

by the standard system with those recorded by two other gauges fitted at 

the level of the shear plane (spindles resting on the box) showed that 

overall the latter gave smaller average displacement values. It is 

generally advisable to record the displacements from points near to the 

shear plane, and preferably directly from the joint thus avoiding the 

additional deformations of the encasing components and the loading system 
(Rosso, 1976). A minor modification of the present apparatus enabled 

two dial gauges to be mounted on the lower box with their spindles resting 
directly on the upper joint block half at 'a distance of one or two milli- 

meters above the shear plane. The positioning of the dials can be seen in 
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the photograph in Figure 3.9 and further details have been included 

in Appendix III (section 3). Comparisons between the displacement 

readings by using the standard and modified configurations showed 
that the original system could give up to three times larger displace- 

ments than the true ones. The latter were used for the calculation of 
the shear stiffness values for all the joints tested. 

In the preceding sections the various preparatory stages of the 

experimental study have been reviewed.,, It has, been shown that the 

joint specimens included in the testing programme represented a 

considerable range of the variables of potential influence on joint 

deformability. That was an imperative condition for the aims of this 

study. 

The following two sections have been exclusively devoted to the analysis 

and preliminary qualitative interpretation of typical experimental results. 

3.2.3 Fundamental aspects of Joint normal deformation 

As briefly stated in the introductory section of this chapter, Aormal 

loading tests were conducted on the joints by firstly assembling them 

into their fully interlocked position and subsequently by mismatch ng 

them to create point-contacting, "open" joints displaying var fib] 

aperture openings. The testing procedures were in both ca ps. essentially 

the same. Interlocked joint blocks were subjected to a.,, a, quence of 

loading-unloading cycles and readings of the vertical displace S 

recorded by the two dial gauges were taken at regular, incr ments or 

decrements of normal load. Misfitted joint testing presented various 

practical difficulties which will be discussed in the relevant section 
(3.2.3(3))" 

The initial normal stress (Q) acting upon the joint planes was created 

by the weights of the upper loading platen, flexible coupling and upper 

joint block half, which created an average 6 value of approximately 
1x 10-3 }Pa. Depending on the rock type the interlocked joint blocks 

were loaded under maxim= stresses ranging from approximately 5-10 to 

. 50-55 MPa. Those levels of stress were applied to ensure that'the solid 

rock deformation would be well within the elastic region and that maximum 
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closure of the joint could be achieved. The maximum normal stresses 

generally corresponded to approximately J to J of the uniaxial compressive 

strength (os) of the rock material. The misfitted joint blocks were 

compressed under maximum stresses usually approaching -J of rock strength 
( Qc); attempts to increase them further often resulted in specimen 
failures by tensile splitting. 

The fundamental deformational. characteristics of the interlocked and 

mismatched joints will be discussed in the two main subsections (2) and 
(3) to follow. The experimentally recorded displacements represented 
both the closure of the joints and deformation of the solid rock above 

and below the interface. It is, therefore, essential that the behaviour 

of the rock materials be fully appreciated and understood before 

proceeding to the analysis of joint behaviour. 

1. Elastic deformation of the solid rock" 

The elastic deformational behaviour of the intact rock materials was 

studied by conducting a series of compression tests on saw-cut blocks. 

Those specimens represented the "solid counterparts" for a number of 

joint blocks and were cyclically loaded under the same levels of normal 

stress as the respective jointed blocks. The rock compression curves 

were subsequently used to derive the net closure of the joints. 

Under compression the different materials displayed variabýe non-linear 

behaviour depending on the rock type and weathering state. On unloa ing 

all rock types underwent hysteresis and in some cases showed P. gnificant 
inelasticity. The loading/unloading curves from three cycles applied on 
fresh blocks of the five rock materials are presented in Figure 3.10. 

The applied maximum stresses were approximately equal to qne-third of the 

uniaxial compressive strength. As shown the slate, 'dolerite and limestone 

rocks displayed essentially similar loading behaviour. The curves 

revealed a certain small amount of non-linear behaviour at low stress 
levels and then linearity. The elastic moduli (r) calculated as tangent 

values at the normal stress level of approximately 35 MPa (1st cycle 
loading curves) were very similar to those. obtained from tests on 

cylindrical specimens with strain gauges, as reported earlier (section 

3.2.1(2) and Fig- 3.5). On-unloading, the limestone block displayed 

relatively more pronounced hysteresis than the slate and dolerite rocks, 
but all three materials were almost perfectly elastic. The fresh siltstone 
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and sandstone samples showed markedly non-linear behaviour over a wider 

range of stresses, significant hysteresis and a small amount of-, 

permanent set at the end of the first loading cycle. 

Non-linearity, hysteretic effects, and amount of permanent deformation 

all increased considerably with weathering. Load cycling curves on 

weathered materials are included with the respective experimental joint 

block compression curves in Figures 3.15 and 3.16 seated in the next 

subsection. Inelasticity was also observed in those materials after the 

first cycle, and especially in the case of the highly weathered sand- 

stone, it persisted in all three cycles. 

The non-linear stress-deformation behaviour of intact rock under uni- 

axial compression as well as the phenomenon of hysteresis-in cyclic 

loading have been explained due to presence of structural flaws (Walsh, 

1965). At low stresses cracks may be open; as the stress is raised the 

cracks begin to close (primarily those normal to the stress axis) and the 

rock becomes elastically stiffer, hence accounting for the non-linearity 

during initial loading. Walsh pointed out that in general, even if the 

cracks were closed, some sliding motion of opposing crack faces would 

still be possible. On unloading, a finite stress change is necessary 

such that it will allow the internal back stress to exceed the frictional 

resistance along the cracks and enable reversal of the crack sliding motion, 

and hence the hysteresis phenomenon appears. Favourably oriented cracks 

may remain interlocked and therefore on completion of unloading irrecover- 

able deformations are observed. Collapsing of pore spaces during loading 

would also add to the total permanent set. 

Bearing in mind the above fundamental aspects of solid rock behaviour we 

can now embark on the description of the combined performance of jointed 

blocks and then proceed to extract the net joint behaviour. 

2. Normal deformational behaviour of -interlocked-joints 

(a) Normal stress (6_) - total deformation (Ay) relationships 

The, experimentally obtained normal stress-total deformation curves of 
the various joint block types showed an invariably non-linear behaviour 

within a wide range of normal stresses. The type of relationships and 
the range of deformations as a function of the mechanical strength of the 
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intact rock and/or joint surface are illustrated by the family of curves 

presented in Figure 3.11. Each of-those curves represents the loading 

path from the first loading cycle. Those denoted as A1, B11 C1, D1 and 
E correspond to fresh joint blocks of slate, dolerite, limestone, 

siltstone and sandstone respectively. A2, B2 and C2 are the lowest 

bound curves of slightly weathered slate and fresh dolerite and limestone 

blocks containing joints with weathered surfaces. Finally, D2 and E2 

represent weathered joint blocks from siltstone and sandstone. 

The behaviour of joint blocks under compression followed the general 
pattern outlined by Goodman and St. John (1977). At the initial stages 
of the first loading the deformability of each joint block was dominated 
by the displacements taking place across the joint interface. For 

example, at a normal stress level of approximately 1.0 MPa it was estimated 
that the average ratio values of joint block deformation to solid rock 

compression ranged between 5 and 30 depending on the rock type and the 

weathering of both joint walls and intact material. As would be expected, 
the lower ratio values were associated with joint blocks from uniformly 

weathered deformable material and the higher values corresponded to cases 

of weathered joint surfaces in fresh solid rock. 

Under increasing normal stresses the curves became gradually steeper and 
in most cases developed into virtually straight lines, which were parallel 

or nearly so to the elastic compression curves of-the solid rock (dotted 

lines in Fig. 3.11). Goodman and St. John consider that at this stage 

the joints have closely approached or reached a fully closed position and 
that any further increase in normal load is taken up by the solid rock 
above and below the joint, hence the similarity between the jointed and 
solid block compression curves in that stress range. It is noticeable 
that the total deformation curves of fresh blocks with weathered joints 
(e. g. A2, B2, C2 which failed at N 28 1+'ßa) began to approach the 

respective rock compression lines under higher stresses than those 

apparently required by the uniformly fresh joint blocks. That was 
because of the larger distance that the weathered walls had to cover 
due to the wider aperture, but other factors such as the wall strength 

and roughness were involved as will be discussed in detail in the next 

chapter. 
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After the joint blocks had been compressed under the maximum stresses, 

the load was decrementally released and the rebound of the specimens 

recorded. Once the blocks were completely unloaded two further loading 

cycles were applied. Typical examples of the behaviour of fresh and 

weathered joint blocks from all five rock types under cyclic loading 

are shown in Figures 3.12 to 3.16. Each of the diagrams contains also 

the stress-deformation curves of a cyclically loaded solid rock specimen 

with the same dimensions and prepared from the same field sample as the 

corresponding joint block. 

On decompression after first loading all joint blocks showed markedly 

hysteretic behaviour and upon return to zero normal stress a large amount 

of deformation remained irrecoverable. Reloading for the second and 

then third time produced much steeper curves, while each unloading 

persistently showed hysteresis and inelasticity. The permanent sets 

at the end of the second and third cycle were only a fraction of that 

obtained after the first. 

Another typical feature also deserves attention, that is the similarity 

between the unloading paths of the solid and jointed blocks within a 

range representing over of the total applied stresses. That agrees 

with the observations by Goodman (1974) that the elastic portion of the 

normal deformation of a jointed block is derived from the solid rock. 

However, it should also be noticed that as the unloading approached very 

low levels of normal stress the jointed blocks displayed a much more 

rapid recuperation until completion of unloading in a-mode similar to 

that frequently observed in plate-loading in-situ tests (e. g. Serafim, 

1964, Guerreiro et al., 1968). That was due to some elastic recovery 

of the joint walls. 

The basic qualitative characteristics of 'joint block deformation 

referred to above were invariably displayed by all the 64 specimens 

tested. Detailed tables with all experimental results have been included 

in Appendix IV. 
, 

(b) Normal stress (_6_)-joint 
closure (AV. ) relationships 

The net joint deformation or closure curves of the joint types in 

Figures 3.12 to 3.16 were derived by subtraction of the deformation 

lines of the intact rock samples from the experimental total deformation 
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curves. Thus, at each level of normal stress the net joint closure ( AV 

on loading or unloading was calculated from: 

LV, = tVt- OVr 

where Mt was the deformation of the joint block under loading or un- 
loading and 0r the corresponding deformation of its solid counterpart. 
The calculations were separately applied to each'loading cycle. The so 
derived joint closure curves are presented in Figures 3.17 to 3.21. 
Observation of those curves reveals the following fundamental character- 
istics of joint normal deformation: 

iý The loading paths of the normal stress-joint closure curves are 
highly non-linear. This type of behaviour persists throughout 

repeated loadings, irrespective of the rock type and the weathering 

state of the joint. 

ii) Repeated loading after the first cycle indicates marked increase in 

the joint stiffness. The largest amount of closure occurs during 

the first loading. There is a vast difference in the closure 

achieved during the first and second loading. Compression for a 
third time shows a small further decrease in closure. 

iii) Significant hysteresis persists between loading and unloading during 

all three cycles. At the end of the first loading a very large 

permanent set remains. By contrast, the increase in the amount of 

irrecoverable deformation at the end of the second and third cycles 

is small. 

iv) Fresh joints are capable of some elastic recovery under the unloading 

path. In a relative sense, this recovery is smaller in cases of 

weathered joints. 

v) The weathering state of walls has a profound effect on joint normal 
deformability. 

The basic features sumnarizea above can now be considered in further 

detail. Upon initial application of load all joints underwent a rapid 

closure probably triggered by a readjustment of the initial seating 

condition. The joint walls were then stabilized in an optimum interlocked 

position and as the normal stresses continued to increase the rate of 
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closure began to slow down. The stiffness of the joints started 
increasing drastically as the vertical displacements were controlled 
by asperities deforming-in an effectively confined environment due to 
the mechanical interlock. Eventually the joints, and especially the 

unweathered types with very small aperture, reached a stage where very 
little or no displacement seemed to occur across their interface. The 
loading path of the closure curves appeared to become asymptotic to a 
vertical line representing the potential limit of closure. However 

it should not be implied that at this stage the joint walls will be 

in perfect contact over 100'/ of their surface outline. Iwai (1976) 

found that under Qn = 30 MPa a small amount of residual flow through 

perfectly mating extension fractures was still possible. Typical 

. examples of the 'impressions' of contacts obtained by inserting an 

extremely thin plastic sheet between the interlocked joint walls are 

shown in Figure 3.22 for two limestone joints (nos. 13 and 9) under 
the indicated levels of compression. Under the maximum stress of 
35 MPa both joints were extremely near their fully closed position. 
The corresponding contact areas were estimated to amount. to approxim- 

ately 50-60% of the total sample areas., It is interesting to note 
the-uniformity and the size of the areas of contact on the relatively 

planar joint no. 9, as compared to the more random pattern and 

variability in the size of contacts on the rough joint no. 13.. From 

similar observations on at least two joints from each. rock type it 

was found that at Vm the contacts represented - 40-70'% of the total 

areas. 

It is of interest to compare the maximum deformability of the joints in 

Figures 3.17 to 3.21 in relation to their approximate aperture (ad). 

Fresh joints had apertures ranging from ". 0.10 mm to " 0.250 mm. The 

maximum closures at the end of the first loading ranged between 0.063 mm 

and 0.190 mm. The ratio of Vm to aj ranged from - 0.29 to N 0.90 which 

agrees with Goodman's comment of Vm < aj; it is also quite clear that the 

ratio of Vdaj is strongly dependent on the joint wall strength (JCS). On 

a broad basis it can be said that joints of high JCS "closed" by relatively 

smaller amounts than joints of lower JCS and equal or even smaller aperture. 
For example, the maximum closure of limestone joint no. 1 (Figure 3.19) 

with JCS = 162 MPa, JRC = 9.8 and a=0.250 mm was 0.072, nm, whereas the 
0 

maximum closure of sandstone -joint no. 2 (Figure ' 3.21) with JCS = 68 MPa, 

JRC = 11.9 and aj = 0.250 mm was 0.190. mm. The siltstone joint no. 3 
(Figure 3.20) with similar roughness (JRC = 8.8) as the limestone joint 

no. 1 but with lower wall strength (JCS = 10510a) and smaller aperture 
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(aj - 0.15 mm) underwent larger maximum closure. (Vm = 0.135 mm) than the 
limestone joint but appreciably smaller than the sandstone joint. 

On second and third loading the deformability of the joints was 
markedly reduced. As can be seen from the V values listed in 

Tna 
Figures 3.17 and 3.21, their difference at the end of the first and 
third cycles frequently approached a factor of 5 or over.. An 
explanation of the evident joint stiffening after the first loading 
may be as follows: after an initial compression under extremely high 
stresses the joints achieved optimum interlocking and large actual 
contact area through adjustment of their initial seating condition and 
asperity deformation. Significant seating readjustments, which would 
probably account for the largest part-of the irrecoverable deformations 

at the end of the first cycle, would be almost absent in all subsequent 
loadings. Thus, joint deformation under second and third loading was 
probably due mainly to elastic deformation of wall asperities, plus some 
amount of plastic deformation which can'explain the small permanent set 
at the end of those cycles. 

On decompression the joints displayed significant hysteresis and 
initially followed a near vertical unloading path. At low levels of 

normal stress acertain amount of elastic recovery was observed. Since 

the component of solid rock deformation has been subtracted from the 

total deformation of the joint block, the "opening" in the unloading 

path must be due to recovery of elastically deformed asperities. 

The maximum closure (Vm) values of the joints illustrated in Figures 3.17 
to 3.21 showed large variation depending on the rock-type and weathering 
state. Weathering effects on the present joint types caused both a 
decrease of the JCS value and also an increase of . the aperture between 
the walls. The combined result was a significant increase in joint de- 
formability. For a preliminary appraisal of the weathering effects the 
Vm values from the first loading listed'in the respective diagrams can be 

compared. As shown,, weathered joints in slate, dolerite and limestone 

showed a five- to six-fold increase in V as compared to the fresh ones. 
m On the other hand, the maximum closures of the weathered sandstone joint 

no. 18 and of the fresh joint no. 2 differed only by a factor of approx- 
imately 2. That was because the weathered sample had relatively small 
aperture and the fresh joint underwent significant closure, which was 
over two times larger than that of the slate, dolerite and limestone 
joints. There exists therefore a clear interrelationship between Vm, 
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JCS and aj and an attempt to combine-all these variables in a 
quantitative form will be discussed in'the next chapter. 

The particular weathered sandstone joint referred to above exhibited 
an unusual behaviour. First unloading, followed an almost vertical 
return to zero stress line (Fig. 3.21), the permanent set being 

virtually the same as the, maximu closure.,. On. recompressing the joint 

showed remarkably stiffer behaviour and the maximum closure at the end 
of the third. loading was over twenty times smaller than that under first 
loading. The JCS was 25 MPa, the average aperture was placed, between 
0.3 and 0.4 mm, the total permanent deformation after all three cycles 
was 0.333 m and the maximum stresses applied were approximately 14 MPa. 
It would appear that after the first compression the weak asperities -. 
suffered large deformations and were forced into a tight mechanical 
interlocking. That state. was largely maintained through unloading and 
after the second cycle the joint block behaved virtually like a solid 
block, with very little contribution from the "bonded" surface to any 
further deformation. At the end of the tests the specimen was so 
tightly locked that it seemed as' if it would have to be wedged apart. 
In any case°the block was left in its interlocked position and wired 
safely for direct shear testing. - 

Mechanical interlocking of the surfaces was observed in most fresh 
joints from the relative weaker and deformable materials such as the 

sandstone and siltstone and in all the weathered types. Fresh joints 
in limestone, dolerite and slate could be freely plucked, although some 
adhesion between the joint faces was , 

"felt". 
-, -No visible signs of 

surface damage were found on any of the joint surfaces. 

In the preceding discussions the fundamental characteristics of joint 

normal deformability as deduced from the compression test results have 

been reviewed. On a broad basis, there is' agreement between the current 
observations and those reported by other workers (e. g. Gale, 1975; 
Goodman, 1976; Iwai, 1976) from tests on artificial fractures. On the 

other hand, the behaviour of the present joints appears to be different 
from that exhibited by the natural limestone and sandstone joints 
tested by Hungr and Coates (1978). Those authors interpreted the 

stress-closure relationship of those joints as close to linear due to 

previous compression under stresses much higher than those applied in 
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the tests. Although it is undoubtedly correct that-joint deformability, 

and hence the slope of the closure curves, depends on the loading history, 

the normal stresses applied in those tests (up to - 2.5 MPa) were too low 

to reveal the-complete-joint performance. The experience from the 

present tests shows that much higher stresses are needed to achieve 

complete joint closure. Hungr and Coates also attributed joint deform- 

ability to progressive crushing of asperities, which seems to be an 
incorrect assumption as far as interlocked joints are concerned. 
Furthermore, they did not take into consideration the inevitable 

disturbance of the natural in-situ closure and seating condition of the 

joints caused by conventional sampling procedures. "Pre compression" 

effects can only be conclusively studied if those conditions are 

adequately reproduced prior to the test. As far as can be deduced from 

the current study, -the loading history of a joint does not have any 

effect on the mode of behaviour. Even extremely tightly locked joints, 

as for instance after two cycles under very high stresses, showed non- 
linear behaviour. 

In the next chapter, the mathematical representation of the interlocked 

joint closure curves will be investigated, as well as the relative 

effects of fundamental joint system variables such as aperture, wall 

strength and roughness in conditioning the amounts of closure and hence 

joint normal stiffness. 

3. Normal deformational behaviour of mismatched joints 

The initial idea behind the tests on mismatched joints was to investigate 

the deformational characteristics and the changes in the normal stiffness 

when joints have been subjected to a relative shear displacement. The 

latter condition was approximately simulated by creating misfitted joints 

supported at a few discrete contact points. Preliminary tests showed that 

unless the two joint surfaces had a stable seating it would. be practically 
impossible to obtain vertical displacement measurements due to excessive 

rotation. That was an inherent limitation in the attempted simulation 

of joints displaced in shear. On the other hand excessive rotations 
of individual joints blocks in the rock mass are also unlikely due - to 

confinement. The best practical compromise was to create mismatched 
joints by a small (1 to 2 mm) lengthwise relative translational-movement 

and a sligh t rotation about a vertical axis, thus achieving a stable 
initial seating condition. 
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A total of 24 joints from four different rock types were tested' 

(7 limestone joints, 11 sandstone joints plus another two from a 

millstone grit formation, 3 siltstone joints and 2 slate fractures). 

The average vertical joint "uplift" (effectively representing the 

average aperture across the interface) was estimated by subtraction 

of the block heights when the intersecting joint was in its interlocked 

(hiý and mismatched ( m) positions as indicated below: 

11h 
h2 

Interlocked joint Mismatched joint 

h, +h2 +h3 +h4 
=4 

aý =h- mi 

The measurements of hm were taken just before initiation of, the 

compression test. The mismatched joint block was placed in. its 

testing position and a small normal load was applied (^'0.15 MPa 

on average). Measurements were then taken by inserting telescopic 

gauges between the loading platens. The average apertures of the 

various joint types varied from 0.150 um to 1.30 mm but the majority 

were between approximately 0.300 and 0.800 mm. 

The load cycling procedure was the same as in the tests of, the inter- 

locked joint blocks. The normal loads were incrementally raised to a 

man level and then returned to the initial value. The two dials 

usually gave dissimilar displacement values and in a few cases the 

differences between the readings were as much as 30 to 40%. 
_ 

That was 

mainly due to readjusting movements of the upper block-half , especially 

in cases of highly irregular surfaces, as. the delicate, initial balance 

of the mismatched walls was altered under the applied loads. Average 

displacement values were assumed in the derivation of the stress-deform- 

ation curves. 
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(a) Normal stress ( n)-total deformation ( AV 1) relationships 

Typical examples of the mismatched joint block compression curves 

obtained from the experiments are illustrated in Figure 3.23 for a 

variety of joints under first loading. As can be seen, the blocks 

displayed qualitatively similar behaviour as when tested with the 

joints interlocked, by following non-linear loading paths and showing 
typical hysteretic recovery and huge permanent sets. The factors 

which seemingly controlled the magnitude of the vertical displacements 

were the distance of separation between the joint walls, the surface 

roughness and the mechanical properties of the contacting asperities. 

For an initial appreciation of the quantitative differences between the 

deformabilities of interlocked and mismatched joints a typical test 

case is presented in Figure 3.24, where the total deformation (AVt) 

and closure (A V. ) curves of the same limestone joint (no. 10) tested 

in interlocked (a. = 0.20 mm) and mismatched (aj = 0.35 mm) positions 

are compared. In that particular case the stiffnesp of the interlocked 

joint was 3 to 5 times higher than that of. the mismatched depending on an. 

(b) Normal stress (Qn)-joint closure f (A Vvi ), relationships 

As shown in Figure 3.24, subtraction of the solid rock deformation (m r) 

from the joint block compression curves (AVt) gave a highly non-linear 

closure (AV. ) curve. wie unloä, ding path showed huge hysteresis and a 

certain amount of elastic recovery. That pattern was typical of the 

behaviour exhibited by all the joints tested. 

The basic mechanics of deformation of the joints can be described 

qualitatively. Under extremely low loads the upper block half was 

supported by small, point contacting asperities. As the loading' 

increased those asperities suffered large amounts of deformation and 

eventually failed under the polarized stresses. The results were a 

rapid reduction of the original vertical distance of the joint walls, 

enlargement of the original contact areas, and development of new 

asperity contacts. The shape and size of the damaged areas indicated 

that in some of the rough joints, failure of the asperities originally 

supporting the upper block half may have triggered a small amount of 

translational movement, thus upsetting the initial balance. Once the 

walls had readjusted themselves into a new "stable" seating condition, 
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further increase in the stresses caused proportional enlargement of 
the contact areas as the large surface protrusions deformed elastically 
or plastically, the rate of closure began to slow down, and the stiff- 
ness of the joint started increasing rapidly. 

The distribution and extent of surface damage found on different types 
of joints at the end of testing is shown in the photograph of Figure 3.25. 
As would be expected, damaged areas on rough undulating joints were 
mainly concentrated on the slopes of the large irregularities (e. g. see 
limestone joint nos. 13 and failed joint no. 1). A relatively more 
uniform distribution of damaged contacts was observed on planar 
surfaces, e. g. as shown by the limestone joint no. 9 and sandstone joint 

no. 13. Planar joints lacking appreciable small scale roughness 
features such as the slate cleavage fractures, did not have any visible 

signs of damage. 

As seen from the closure curves presented in Figure 3.26, the mis- 

matched joints did-not reach the closure state as when tested fully 
locked. Maximum stresses usually approached J of JCS. Even in cases 

where the stresses were increased to N' of JCS (e. g. sandstone joint 

no. 2 in Fig. 3.26), complete closure had not been achieved. In quite 

a few tests raising of the loads to such high levels resulted in block 

failure by tensile splitting (e. g. limestone joint no. 1 and sandstone 
joint no. 6 in Fig. 3.25 failed during the second loading under Qn 
between * and2 of JCS). The closure curves from repeated loadings 

were also non-linear but much steeper, since the vertical displacements 

after the first cycle were probably mostly contributed by the deformation 

of the asperities across their enlarged areas of contact.. The curves 
from the third cycle applied on the particular joints are included in 

Fig. 3.26. 
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FIGURE 3.25 Photograph illustrating the distribution and extent of asperity 
damage (I ight coloured areas) found on the surfaces of 
mismatched joints at the end of the compression test. Maximum 
applied normal stresses were approximately equal to ä of the 
uniaxial compressive strength of the rock material. 
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3.2.4 Fundamental aspects of joint shear deformability in the 

pre-peak range 

The shear deformation characteristics up to mobilization of peak shear 

strength was studied for a range of fresh and weathered joint types. 

The purpose of those tests was to compare the normal and shear stiff- 

ness of joints at various stress levels and to examine closely the 

shear stress-displacement-relationship in the pre-peak region. 

1. Experimental procedure 

The limitations of the multistage testing procedures have already been 

outlined in section 3.2.2(5). The present testing sequence consisted 

of firstly shearing each joint under the lowest normal stress level 

which was usually N 0.25 MPa. Once the peak shear strength was reached, 

the shear load was released, the joint halves reassembled, and a new 

run performed under a higher normal stress. The chosen increments of 

Qn were approximately 0.25,0.50,1.00 and 2.00 MPa, with small 

variations depending on the specimen size.. A "normal" testing procedure 

was followed for the weathered sandstone joints and slate cleavage 

planes since the available specimens had very similar surface geometry. 

2. Shear stress-shear displacement relationships 

Typical examples of the stress-displacement relationships up to peak 

shear strength for a variety of joint types are illustrated in 

Figures 3.27 and 3.28, and the following observations can be made: 

(i) The shear stress (ti)-displacement (da) relationships show that 

all joints exhibited non-linear behaviour to a greater or lesser 

extent. Under each level of normal stress the shear stiffness 
(expressed as the tangent value) varied from a maximum value at 

extremely low shear stress to a minimum at the peak stress region. 

(ii) The amounts of displacement preceding peak shear strength were 

generally larger for the weathered joints, due to the poor inter- 

locking and relatively even geometry. Depending on the level of 

normal stresses, the peak shear stiffness (secant values) of fresh 

and weathered joints of reasonably similar roughness differed by 

factors ranging from "". 2.0 to N 3.5. An extreme case was 
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presented by the slate cleavage planes, which showed approximately 

one order of magnitude difference. 

(iii) The peak shear stiffness (Ks) depends on the level of normal 

stresses applied. Generally, peak shear displacements varied by 

a relatively small amount compared to the increase in shear 

strength under increasing Cy 
n' 

Overall, the behaviour of this 

type and size of joints seems to agree better with the conceptual 
"constant displacement" model referred to in Section 1.1.4 of part one. 
Within the present range of un the calculated secant peak Ks 

values increased by factors varying from N3 to N8 depending on 
the joint type and degree of weathering, although the exact 

variation under high an cannot be known with certainty due to 

the multistage testing (except for the weathered slate and sand- 

stone specimens). For a ready appraisal of the effects of 

weathering. and normal stress on the peak shear stiffness a few 

typical test data have been listed in Table 3.12. 

fi 
The fundamental features of joint peak shear deformability described 

above are commonly observed in laboratory test cases found in the 

literature (e. g. Guiseppe 1970, Hungr and Coates 1978). The practical 

relevance of shear stiffness data as extracted from small scale testing 

seems to depend on the size of the joints involved in a particulax 

problem. The tests on model joints reported in part two have 

demonstrated that as the joint length increases the peak shear strength 
drops considerably whereas the peak shear displacements increase. A 
discussion on the scale dependency of K has been'included in the next s 
chapter. 

Another factor which significantly affects the peak strength and in- 

directly so the peak shear stiffness of a joint is its past loading 

history. Barton (1973") demonstrated that joints pre-compressed under 

normal stresses considerably higher than those operating in a shear 
failure display higher peak resistance than ifýsheared under the same 

O-n but without previous compression. The term joint "overclosure " 

was then introduced'as equivalent to the term "overconsolidation" used 
in soil mechanics. An extreme example of the potential importance of 
"overclosure"" effects was experienced during a shear test on a pre- 

compressed joint. 
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As recalled from section 3.2.3, normal loading of a weathered sand- 

stone joint under stresses just exceeding 5% of JCS (= 25 MPa = 
uniaxial compressive strength of intact rock) resulted in a very tight 

mechanical interlocking of the surfaces. The joint block was mounted 

on the portable shear box and a normal stress of - 2.0 MPa was applied, 
thus creating an overclosure ratio of approximately 1: 7. As the 

increments of shear load were applied the deformations directly 

recorded by the two gauges showed very small increases. Then at 

approximately 1.4 MPa a sudden drop in the shear load was observed, 

which at first was thought to be due to the dislocation of the "bonded" 

walls. When the sample was removed from the apparatus it was found 

that shear failure had taken place through the intact material, along 

a subhorizontal plane located a few millimeters above the joint and 

near to the contact of the concrete mould with the joint block. The 

failed specimen is shown in the photograph in Figure 3.29, together 

with the stress-displacement curve up to failure. The curve of a 

similar but "normally"-loaded joint has also been included for 

comparison. 

It appeared, therefore, that the shear resistance and stiffness of 

the "overclosedlt joint had increased to the level of'the intrinsic 

shear strength and shear modulus of the solid rock. The possibility 

of the influence of some external factor causing severe reduction in 

the mechanical strength of the material was considered. As the prop- 

erties of the weathered sandstone were very much affected by the 

moisture content, it was firstly suspected that the material might not 

have completely dried after the moulding process and hence had much 
lower strength; however, measurements of the moisture content proved 

normal. Another possibility was that an unseen crack near the edges 

of the block opened under the applied shear loads and then propagated 

along the full block-half length, but that could not be checked. 

The above extreme experimental case demonstrates the important role of 
the loading history of a joint on its peak resistance and deformational 

performance. Weathered joints would generally be more sensitive to 

"overclosure"" effects as the weak and deformable asperities could 

achieve better mechanical interlocking than in cases of fresh joints. 

It would of course be unrealistic to expect that joints in weathered 

rock masses could be even half as tightly locked as the one tested. 
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Since,. however, the joints sampled by conventional methods are 
inevitably disturbed and any natural "overclosure" effect is destroyed, 

Barton (1973b) suggested that in an experimental determination of 

shear strength and deformation properties a more valid practice would 
be to pre-load a joint under the current in-situ normal stresses 
("undisturbed" stage) before conducting the test under the anticipated 
"post-construction" stress levels, provided that an "overclosure" 

ratio between the two stages does exist. 

3.2.5 Concluding remarks 

The fundamental characteristics of rock joint deformation under normal 

and shear loading conditions can be summaxited as follows: 

(i) The normal stress-normal deformation relationships of a wide 

ranging variety of natural interlocked joints are highly non-linear 

irrespective of the rock and joint type and throughout repeated loadings. 

Accordingly, no single value of Kn can uniquely characterize the nature 

of the deformation curve. This is in agreement with previous findings 

from loading tests on artificial rock fractures. 

(ii) The derived stress-closure curves indicate that joints under 

compression gradually reach. a state of maximum closure. . 
fie 

fundamental parameter of maximum joint closure is a unique joint 

property directly dependent upon the previous stress history. ,, 
Wer--- 

repeated loadings the value of Vm decreases significantly. 

(iii) Preliminary quantitative considerations suggest the existence of 

a potential relationship between maximum closure, aperture thickness 

and joint wall strength. It has been verified that the amount of 

maximu closure is generally lower than the average thickness of joint 

. aperture. For the present range of joint types and under maximum 

applied stresses approaching 7- to J of the uniaxial compressive strength 

of the intact rock, the closure/aperture ratio ranged between 0.3 and 

0.9 depending on the joint wall strength. The actual contact areas at 

the state of maximum closure generally ranged between 40'%o and 709/6 of the 

total sample area. 

(iv) Upon unloading; joints undergo strong hysteresis and display large 

permanent sets. A certain amount of the maximum closure may be recover- 

able due to the rebound of elastically deformed asperities. $ysteresis 
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and inelasticity are found to persist after at least three loading 

cycles. 

(v) Artificially mismatched point-contacting joints exhibit typical 

non-linear stress-deformation behaviour. Under maximum applied stress 
to 3 of the rock compressive strength the mismatched joints had 

still not reached the characteristic maximum closure state of inter- 
locked surfaces. The differences between interlocked and mismatched 
joint normmal stiffness can be significant depending on the amount of 
joint opening and the joint wall strength. 

(vi) The shear stress-shear deformation relationships of joints in the 

pre-peak range reveal variable non-linear behaviour. Non-linearity is 

more profound in cases of weathered joint surfaces, and least in cases 

of tightly interlocked fresh joints. 

(vii) Non-linear behaviour implies that under a given normal stress 
the joint shear stiffness (Ks) will depend on the level of shear stress, 
in addition to a marked normal stress dependency. Joint surface variables 

such as roughness and weathering state have a significant influence on 
K. The relatively unimportant effects of normal stress on peak shear 
displacement suggest that the shear stress-deformation behaviour of 

natural joints may be closer to the conceptual 'constant displacement'. 

model of John at least within the range of normal stresses of 

engineering interest. 

(viii) Experimentally determined values of shear stiffness can be 

seriously affected by additional deformations due to uncontrolled 
movement of the external measuring point. This has been experienced 
on the portable shear apparatus and when testing dilatant joints. Even 

when the displacement measuring devices are aligned as closely as 

possible to the plane of shearing the measured displacement can be up 
to 2-3 times higher than displacements obtained directly from the joint 

specimen itself. 

(ix) overclosure effects will have a significant influence on joint 

shear strength and deformation, and hence on joint shear stiffness. 
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CHAPTER 3. '3 

ANALYSIS OP THE EXPERIMENTAL RESULTS 

3.3.1 Introduction 

In the review of typical experimental results reported in Chapter 3.2 

the modes of joint deformation have been considered. In this chapter 
joint deformability will be studied from the quantitative point of 

view. The contents can broadly be divided into three main sections: 
(1) analysis of the stress-deformation curves of joints under normal 

and shear loading conditions; (2) processing of the experimental 

results and derivation of stiffness parameters; and (3) study of the 

variations in joint stiffness and of its relative dependence on 
fundamental variables defining the strength and geometry of the 

joint system. 

3.3.2 Analytical expression of the stress-deformation relationships 

The normal loading tests on joints have demonstrated that the normal 

stress-closure relationships for a, range,, of natural, unfilled joint 

types are invariably non-linear throughout repeated loadings. 

Significant non-linearity was also observed in the shear stress- 
displacement curves of joints-in direct shear. Some workers have 

attempted' to establish an analytical representation of the stress- 
deformation curves. Shehata (1971, quoted in Sharp 'and Maa, n1,1972) has 

described the stress-closure relationship as being semi-logarithmic 

but Goodman (1974) has advanced a hyperbolic model. Hyperbolic 
functions have also been suggested for the description of the shear 
stress-displacement curves in the pre-peak range (Clough and Duncan, 
1969, Hungr and Coates, 1978). 

1. Normal stress-closure curves (joints interlocked) 

At first, closure data from different joint types were plotted against 
logarithmically scaled normal stress. Typical examples of the 

relationships obtained for the loading paths from the first and third 
loading cycles are shown in Figure 3.30. As can be seen, the semi-log 
relationship fitted the data usually within an intermediate range of 
normal stresses showing very poor linearity in the low and high stress 
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regions. The plots for the loading paths from the third cycle were 

generally linear over a wider range of normal stresses. The plot for 

the weathered siltstone joint no. 8 showed linear relationship except 

only at low Qn, whereas the plot for the weathered limestone joint 

no. 17 displayed extremely poor linearity virtually over the full 

range of stresses. Similar plots for the unloading paths were found 

to be non-linear over a large range of stresses. It seemed therefore 

that the validity of the semi-logarithmic expression depended on the 

joint type, the stress history and the loading mode. 

Goodman (1974) proposed the empirical hyperbolic function' 

CT = ZAV. /(V - pVý )J 6i + (Ti, which may be rearranged in the 

following linear form: 

AVj =m- (v ) 
8- 

n 
3.5 

Plots of AV. versus the reciprocal of normal stress for the same joint 

types as above, showed strong non-linearity except for in the low 

stress region as illustrated in Figure 3.31. An alternative version 

of that function was given by Goodman (1976) in the following dimension- 

less logarithmic form: 

Q -Q. AV. t 
i 6 

a_i -m- AV. 3ý 
V 

where C and t are constants. 

The logarithmic relationships of dimensionless stress versus dimension- 

less deformation for the previous joint types and"a sandstone joint 

are shown in Figure 3.32. The closure (AV data represent the 

loading paths in the first and third cycles. The input m values were 

obtained from the intercept of the asymptotic line to the joint closure 

curves with the AV -axis. The seating normal stress (O i) value used 

in the calculations was arbitrarily established at 0.015 MPa. The new 

plots presented a completely different picture. The highly non-linear 

relationships of AV 
a vs. 1/Crn were now expressed by near perfect 

bilinear curves due to the logarithmic formulation. It therefore 

seemed that the hyperbolic function fitted well the data representing 
the low slope portion of the experimental joint closure curves but not 
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the steeply rising part in the high stress region. Application of 
linear regression on both segments of the log-log relationships 
yielded values of t (= slope) ranging in most cases between 0.6 and 0.8. 

Those t values were in agreement with unpublished data by Goodman (1979, 

personal communication) who quoted an average value of approximately 
0.7. Unfortunately, no analytical log-log plots were available to 

check the existence or otherwise of the type of bilinear relationship 

which the present data seemed to demand. 

By using the C and t values from the linear regression of the relation- 
ships in Fig. 3.32, closure values ( AV for different joints were 
calculated and found to agree quite well with the experimental data. 
As it seemed that Goodman's expression gave an overall better fit than 

a semi-logarithmic relationship, it was decided to try another 
hyperbolic function. Christian. and Desai (1977) reviewed an appropriate 
type of equation which has been used in the past to model the stress- 

strain relationships for soils (Kondner 1963, Duncan & Chang 1970) and 

rocks (Kulhaway, 1975) under triaxial compression. The basic form of 
that equation is: 

°- `A+ be 3.7 

where: o"= deviator stress 
E= axial strain 

a&b= constants. 

A change to the sign of the denominator was necessary for the present 
type of curve and hence the basic formula adopted was: 

OVi 
Q= ------ 3.8 n a-bAV3 

Rearrangement of the above expression and division by an yields: 

AV. 

a-bA V3 3.9 

The latter form of equation 3.8 plots as a straight line and, conversely, 
a plot with axes AVj/Qn ancl AVj can be used to check whether the joint 
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closure data fit a hyperbola. The LiVj/Qn vs A Vj relationships 

obtained for the joint types included in the preceding analyses are 
illustrated in Figures 3.33 and 3.34. As seen, apart from the 

occasional minor discrepancies in the very low or very high stress 

regions, the various plots. were linear throughout the normal stress 

range for both the first and third loading cycles, therefore indicating 

an overall good hyperbolic fit. Similar plots for the unloading paths, 

some of which have been included in the respective diagrams, also showed 

good linearity. 

It seemed, therefore, that equation 3.8 might give a better, or at least 

a more consistent fit to the experimental data than Goodman's empirical 
formula. Since both expressions describe a hyperbolic variation of AVj 

with Qn, it must have been the formulation itself of Goodman's equation 
that exaggerated any small deviations of the experimental curves from 

an ideal hyperbola. The bilinear trends of the log-log relationships 
in Fig. 3.32 were conceivably the result of a disproportional increase 

of the dimensionless ratio AVj/(Vm - AVbeyond some range of 
(n values. Trials indicated that the calculated values 

of the deformation ratio in the region where AV 
i 

is very close to m 

" were considerably different, if the Vm values were increased or de- 

creased by no more than 2 to 4%. However, as has already been mentioned, 

by using the average C and t values the calculated AV 
i values showed 

good. agreement with the experimental ones. In order to examine the 

curve fitting potential of equations 3.6 and 3.8, calculated joint 

closure data were plotted and compared with the curves obtained 

experimentally. The values of AV 
i were obtained from: 

Qa 
eve =n3.10 

1 +a- b 
n 

where a and b are the intercept and slope of the AVG/ Qn vs ß_n plots 
in Figs. 3.33 and 3.34 and their values were derived by linear regression. 
For fitting Goodman's expression, A V. 's were calculated from: 

4 

ýv - 
B_m 

3.11 3 +B 
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6n Qi 

where: B= antilog, 10 
F legý0 ( 

o"i - logj0 C 

t 

and C and t were obtained by linear regression of the log-log relation- 

ships in Figure 3.32. Four typical examples of the degree of approx- 
imation obtained are shown in Figure 3.35 for the loading paths from 

the first and third cycles. Overall, equation 3.8 produced curves 

which followed the experimental ones closer than the curves calculated 
from equation 3.6, although in some cases the differences were only 

marginal or non-existent (for example, note the third cycle loading 

paths for the sandstone joint no. 16 and the limestone joint no. 10). 

The analysis of the experimental joint closure curves has shown that 

the rate of change in closure of natural, unfilled interlocked joints 

can be adequately described by a hyperbolic relationship, irrespective 

of the joint type, stress history and loading mode. The normal stiff- 

ness (K of a joint cannot, therefore, be defined by a single value; 
for each increment of Q the corresponding n value must be obtained 
from the derivative of the hyperbolic function. 

In order to find the incremental stiffness by using equation 3.8, the 

physical meaning of the constants a and b must be considered. 
Equation 3.8 may be rewritten as 

O' _1 na 
6V3 

3.12 

which implies that for very 'large values of ßn (-- oo ), OVA must tend 
to the limiting value a/b, hence 

a= asymptote to the hyperbola =m (maximum joint closure) 3"13 

and therefore at Vm the tangent joint stiffness (n) will acquire an 
infinite value as' shown below: 

a 6n 
n- 

cý =a- -º oo , for L1Vý -- 
b=mV3.14 

(a -b AVG 

and 6º -CO 
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For an extremely small increment. of an (-º 0), ' AVG will also ---a- 01 

and hence: 

n= ia 3.15 

therefore, constant "a" represents the reciprocal of the initial normal 

stiffness (Kn. ). 

The values of the initial normal, stiffness (K ) and maximum joint 

closure (V uniquely define the hyperbolic stress-closure relation- 

ship of a joint. The tangent value of normal stiffness (Rn) at any 
level of normal stress (Q) may be found from: 

b Qn 
_a En aAVi (a-bMV1)2 

By substitution of AVV for 

a(1 -ä 6Vi)2 

K 
3.16 

Qn a- 
_ 

n_ y3 
1+Qb 1 

+b n 0'a a n 

the expression 3.16 becomes: 

6n 
m 

nim+ 
n 

-2 Kn= Kz (1 6n 
- m ni +n 

(ý - 
°vß. )2 
AV 

m 

3.17 

Both IýIi and Vý data of a particular joint are, of course, dependent 
upon the initial level. of normal stress (cri)" In an experimental 
determination of those' parameters, the joint can be precompressed 

-under the estimated in-situ seating stress before closure readings 
begin; alternatively, in cases where the experimental CT is zero, 
the' compression curve may be obtained by translating the axes to a 

position (Cr 
i ., 

L Vji) such that and QV, 
1 .. will represent the 

initial stress and closure conditions respectively of the joint 
(Goodman and St. John, 1977). That will again lead to an appropriate'y _ -' 

reduced maximum closure (V ) value and increased initial normal 
stiffness (K 

.) 
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2. Normal stress-closure curves (joints mismatched) 

The closure curves of the joints with mismatched walls (Figures 3.24 

and 3.26) were highly non-linear implying possible use of a hyperbolic 

function to express them analytically. In the only similar test 

known to the author, equation 3.6 had been used to approximate the 

closure curve of a mismatched fracture (Goodman, 1976). However, 

in that case the experimental curve had to be extrapolated to obtain 

an estimate of the maximum closure value (m) needed in 3.6, due to 

specimen failure. As stated in section 3.2.3(3), complete closure of 

the mismatched joints was not achieved under the applied levels of 

stress and hence the 
mV value could only be guessed. Due to the 

apparent sensitivity of equation 3.6 upon the input value of m, that 

function was not tested against the present data. In any case, plots 

of AVj/CT 
n 

vs AVj (according to 3.9) showed poor linearity over a 

wide range of stresses, as shown with a few examples in Figure 3.36. 

Since the mismatched joints closure data did not fit a hyperbola to 

a satisfactory degree, the possibilities of fitting a power or a 

semi-log curve were considered. Of those two alternatives, the' semi- 

log fit gave the best approximation. As shown in Figure 3.37, plots 

of closure data versus logarithmically scaled normal stress gave 

linear relationships except for in the very low stress region. A 

semi-log relationship between Q' and AV 
J. 

implies that a joint will 
n 

never be fully closed, which in fact is the very case for mismatched 
joints. 

The relationships in Figure 3.37 are expressed by 

log10 6n p+q AV 3.18 

which implies that for AVi =-O (initial reference for taking closure 

measurements), log10 ßn is equal to p. Hence, the intercept p rep- 

resents the logarithm of the initial normal stress (6). The antilog 

of the coefficients p in the linear regression equations included in 

Fig. 3.37 indicate somewhat higher 6 values (range = . 175 N'a - . 268 MPa, 

mean = . 222 MPa) than the mean experimental (-0.15 MPa). This is 

probably due to the slight deviation of the closure data from an ideal 

semi-log relationship over the full stress range. 
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The incremental normal stiffness'(n) for mismatched joints can be 

calculated from the derivative of function 3.18, which may be re- 

written as: 

AV =_2+10810, 
crn 

3 9. 
hence bAy 

lo e 
ian nq 

g10 

and Qn qan 
AV3 1og10e 

Therefore, for each increment of 6n, the normal stiffness can be 

obtained from: 

q an 3.19 
0.4343 

K=q 6n 
0.4343 

3. Shear stress-diAplacement curves in the pre-peak range 

The typical examples of shear stress-displacement curves presented in 

Figures 3.27 and 3.28 have shown significant non-linearity in the 

range up to mobilization of the peak shear strength. The shape of the 

curves at constant normal stress suggests the possibility of using a 
hyperbolic function to depict the pre-peak shear behaviour of joints. 

Clough and Duncan (1969, 
quoted by Kulhawy 1975) developed a hyperbolic 

relationship to model the shear behaviour of soil/concrete interface. 

The basic form of the function was the same as the one used in this 

study to express the stress-joint closure relationships 
(equation 3.8) 

except for the sign of the denominator: 

ti = or in linear form: ti 
m+ ndh =m+n dh 3.20 

where 'G is the shear stress, dh is the shear displacement, and m and n 

are the constants of the hyperbola. The above function implies that 

at very small shear displacements ti = dh/m, hence the constant m 

represents the reciprocal of the initial shear stiffness (si), or 

g_13.21 
si m 
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ti 

dh 

FIGURE 3.38 

At large shear displacements ti = 1/n, 

hence constant n represents the 

reciprocal of the horizontal 

asymptote (Zult), or: 

moult 3.22 

The above basic characteristics of 

the hyperbolic model for non-linear 

behaviour are illustrated diagram- 

matically in Figure 3.38. 

In order to examine whether the present stress-displacement curves 

agreed with the hyperbolic model, plots of dh/U vs. dh were prepared 
for various levels of normal stress, and some characteristic examples 

are illustrated in Figure 3.39. As seen, the data points fell 

essentially on straight lines, thus indicating a good hyperbolic fit 

in the pre-peak range. The only exception was the fresh slate cleavage 
fracture no. 2, which displayed minimum non-linearity (see Fig. 3.27). 

For a certain level of normal stress the incremental shear stiffness (st) 

can be found by differentiation of the hyperbolic function (3.20): 

K 
st = 

ati m 3.23 - a (m + ndh)2 

By solving (3.20) for dh = 
Im 

n and substituting in 3.23: 

st -m ý1 - nt)2 3.24 

Finally, by replacing 1/m by Ksi and n by 1/'Glt, 3.24 becomes 

st - si(1 - TI 
)23.25 

ult 

Equation 3.25 defines the tint shear stiffness ($t) as a function of 
the shear stress Cr ) under constant normal stress. Clough and Duncan 
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related the ultimate stress (Lult) value predicted by the hyperbola 

with the experimental peak shear stress (p) by means of a coefficient 

which they called the failure ratio (Rf) and defined as: 

Z 
Rf 

Tit 3.26 

The failure ratio is always less than or equal to unity. High values of 
Rf indicate high degree of non-linearity. It was also stated that the 

initial shear stiffness (K 
si 

) varied linearly with normal stress on a 
log-log basis: 

n. 
S1 =( Qn) 3.27 

where: K. = stiffness number 

ný = stiffness exponent 

By substitution ofLUlt for "IpAf and 8i for 3.27, equation 3.25 becomes 

n. 2 
Kt_K, 

j 
(07 

n) ZRf 
) 3.28 

The above expression describes the shear stiffness of a joint at any 

level of shear and normal stresses. It is interesting to note that if 

the shear stre ss -displacement curve is linear Rf can be set equal to 

zero, and if the stiffness is not dependent on the normal stress n can 

be set equal to zero. 

Hungr and Coates (1978) also advanced the practical validity of use of 
hyperbolic functions and derived a relationship uniquely defined by the 

"yield" point of the shear stress (t) - displacement (dh) curve. The 

basic form of their expression was: 

ut Z=c-u, fort <d 
h 

3.29 

where u and t are constants. The two fundamental conditions considered 
in the definition of the hyperbola were that (a) the function must pass 
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through the yield point and (b) by definition the function must attain 
its maximum curvature at the yield point. By solving the two equations 

satisfying conditions (a) and (b) simultaneously for u and t and 
through a series of simple combinations the authors derived the 

following two functional relationships for the constants u and t: 

uz afQn2 and .tz 
fb 

a6n -b a aßn- b 

where: z= ratio of the yield (-r, ) to the peak (t) stress 

a= ratio of the yield secant shear stiffness (Ksy) 

to the normal stress (6n) 

f= coefficient of friction describing the peak shear 

strength under an. 
b= scale coefficient equal to'the ratio of unit length 

on the stress axis to the unit length on the 

displacement axis, allowing for cases where results 

of the same test were plotted to different scales. 

3.30 

Once the values of u and t have been derived, the incremental tangent 

shear stiffness (st) at any level of shear or normal stress can be 

calculated from: 

ati ut 3.31 Kh 
(t -d h) 

gurr and Coates' hyperbolic relationship is based on a single 

characteristic point, that is the yield point (Zy, dhy). In order 
to examine its validity at various levels of shear stress, secant values 

of shear stiffness *were calculated at points representing 25%, 5aß and 
75% of the peak shear stress and the peak point itself for different 

types of joints and levels of normal stress. The calculated values 
were very comparable to those obtained directly from the experimental 

results. Some typical examples of the observed level of agreement 

are presented in Table 3.13. The data listed in column 1 were 

calculated from Hung and Coates' expression as 

L ut 3.32 8= ah (t -dh- u) 
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and those in column 2 were obtained from Clough and Duncan's expression 
as: 

K_I 
sä bd. h 

3.33 

The three joint types referred to in Table 3.13 displayed different 
degrees of non-linear behaviour. The average failure ratio (Rf) 

values were 0.87 (slate), 0.83 (limestone) and 0.77 (dolerite). The 

agreement between the predicted and experimental data indicates that 
both hyperbolic functions may be regarded as a good representation 
of observed pre-peak shear behaviour irrespective of the joint type 

and level of normal stresses. 

The analytical work presented in this section has shown that simple 
empirical functional relationships may offer a realistic expression 

of the joint deformational behaviour under normal and shear loading 

conditions. The obvious advantage of such relationships is that they 

are based on parameters which can be measured by experiment. For 

example the changing stiffness ofýa joint under compression is 

uniquely defined by the initial stiffness and the maximum closure. 
Likewise, the changing stiffness of a joint in shear can be defined 

by the stiffness number (K 
J . 

), exponent (n 
i) and failure ratio (Rf), 

etc. The functional relationships can be incorporated in numerical 

analyses, e. g. in a finite element model modifying progressively the 

Kn and s values by the incremental or iterative procedures used in 

the F. E. method to simulate non-linear stress-deformation behaviour. 

3.13 Data processing and presentation of Joint stiffness parameters 

In this section the method of analysis of the experimental stress- 
deformation data will be described and the derived stiffness para- 
meters of all the types of joints tested in this study will be presented. 

(f) Joint block compression test results 

In discussing the general pattern of joint behaviour under normal 
loading, Goodman and st. John (1977) stated that the total deformation 

curve of a jointed block eventually becomes asymptotic to a line 
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representing the elastic compression of the rock material and that it 

is extremely close to it after the intersecting joint has reached its 

maximum closure state. The authors assumed that the maximum closure 
(m) can be defined as the intersection of the asymptote to the joint 

block compression curve with the total deformation (AVt) axis, as 

exemplified diagrammatically in Figure 3.40. By implication the net 
joint closure curve could be derived by subtraction of the compression 
line of the intact rock (BC) from the total deformation curve (OA) as 

obtained from the experiment. 

The above characteristics can be readily observed in the normal stress- 

total deformation relationships of interlocked joint blocks in the 

previous Figures 3.12 to 3.16. Under, high normal stresses the curves - 

especially those obtained from fresh joints in slate, dolerite and 

limestone - acquired an essentially constant slope and followed paths 

parallel or virtually parallel to the loading paths of'the independently 

tested solid blocks. Exceptions to that pattern were the curves of 

weathered joints during the first loading. Sketching of the approx- 

imate asymptotic lines showed that the agreement of the "predicted" 

Vm values with the experimental ones depended, as would be expected, 

on the degree of non-linearity in the elastic curves of the rock 

materials. Therefore, if the maximum closure was to be obtained in 

that manner, an appropriate allowance ought to be made for the over- 

estimate induced by the non-linearity in actual rock behaviour. 

The above empirical approach presented a potential solution to the 

problem of evaluation of the maximum closure values of all the joints 

tested, -since rock deformation 
_( 

AV data-for-each--individual test 

case were not available, and the following steps were undertaken: 

(aý formulation of an appropriate function representing the 

experimental normal stress-total deformation relationships 

(b) fitting each set of data with that function by non-linear 
least squares regression to obtain statistically 
significant "predictions" 

(c) 
revaluation of appropriate-. correction-factors_to allow---------- 

for the non-linearity component included in the "predicted" 
m' 
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FIGURE 3.40 Normal deformation of rock block containing a joint 

(from Goodman and St. John, 1977) 
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The function which was found to fit best the experimental data was 
a simply modified form of the hyperbolic expression 3.10, by addition 

of a linear component (AV ): 

AVt = DVS + AV -1+vab+ 
6cn 

n 
3.33 

where c is a constant representing the elastic normal stiffness of the 

rock material. The experimental results from each joint were processed 
using anon-linear regression program in Algol 68 written by Powell 
(1979, personal communication). Each data set was fitted with 

L vt =11b+ 6n 
3.34 

Qa +a 
n 

so that for very large O' 
n, 

3.34 becomes 

Avt = b+(0)7 3.35 

and thus, for large an the slope is 1/c and the intercept is a/b, 

which has been defined as the maximum closure Vm. 

The results from data processing showed that function 3.34 gave a very 

good. fitting to the experimental loading paths. Of all cycles, the 

uncertainty in the "predicted" V values from the first loading curves 
m 

were rarely outside the +1 to 4% range. Slightly wider range of 

uncertainty was indicated for the V data from the 2nd and 3rd loadings. 
m 

The same applied for the "predicted" values for the initial normal 
stiffness coefficient K ni. 'Detailed tables with. complete experimental, 

and analytical data have been included in Appendix IV. 

In order to allow for the rock deformation component included in the 

"predicted" 
m, average correction quantities 

(Table 3.14) were 

evaluated from all the experimental curves available for each type of 

rock. The percentage, variation of those values was estimated to be 

within the region of + 5. to 15%. 
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TABLE 3.14 

Average non-linearity components (DV ) of rock deformation 

V (mm) 
Joint 1st 2nd 3rd Rock weathering 

Rock type nos. loading loading loading state 

Dolerite All 0.005 0.005 0.005 Fresh 
Slate 1 to 4 0.003 0.003 0.003 Fresh (. 1) 

it 5 to 7 0.020 0.020 0.020 Slightly 
weathered (i. ) 

Limestone All 0.006 0.006 0.006 Fresh 
Siltstone I to 5 0.035 0.030 0.030 Fresh (//) 

Siltstone 6 to 10 0.080 0.070 0.070 Slightly 
weathered' (. 1) 

Sandstone 1 to 4 0.040 0.035 0.035 Fresh (i) 

Sandstone 5 to 8 0.030 0.025 0.025 Fresh (//) 

Sandstone 9 to 12 0.050 0.050 0.045 Slightly 
weathered (//) 

Sandstone 13 to 17 0.070 0.060 0.055 it " (1 ) 

Sandstone 18 to. 21 0.100 0.085 0.080 Highly 
weathered (1 ) 

Maximum closure and initial normal stiffness data derived from the 

above procedure are listQd in Table 3.15 and compared with the 

corresponding experimental values; that iss those obtained ordinarily 

by subtraction of the actual rock deformation curve from the joint 

block compression curves. As seen, the predicted and experimental 

parameters from both the first and third loadings were in close agree- 

ment, thus indicating that the empirical processing of the experimental 

data could indeed, be regarded as a realistic approximation.., 

As stated earlier, the stress-closure relationship of a joint is 

uniquely defined by the initial normal stiffness and maximum closure. 
Those two parameters were derived for all the types of interlocked 

joints and. are presented in. Table16 to 3.20, 
_. -The _+ values .. .__ 

represent the range of uncertainty implied by one standard deviation. 

In a few cases where no data from the 2nd or 3rd cycle have been 
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TABLE 3.15 

Comparisons between experimental (E) and predicted (P) maximum 
closure and initial normal stiffness values. 

Maxinº2 joint closure, m (mm) 

1st LOADING 3rd LOADING 

Joint type EpEp 

Slate, no. 3 . 063 . 058 + . 002 . 026 . 035 + . 004 

Dolerite, no. 1 . 081 . 084 ± . 001 . 035 . 042 ± . 004 

Limestone, no. 1 . 072 . 068 + . 002 . 013 . 016 + . 002 

Limestone, no. 10 . 105 . 110 + . 002 . 015 . 016 + . 003 

Sandstone, no. 2 . 190 . 
173 ± . 008 . 022 . 037 ± . 007 

Sandstone, no. 16 . 255 . 244 ± . 012 . 051 . 058 + . 017 

Siltstone, no. 3 "135 -143. ± . 006 . 036 . 053 ± . 006 

Initial normal stiffness, Kn (MPa/mm) 

Slate, no. 3 

Dolerite, no. 1 

Limestone, no. 10 

Sandstone, no. 16 

Siltstone, no. 3 

1st LOADING 3rd LOADING 

EPEP 

26.9 24.10 ± 1.77 210.20 189.10 ± 16.13 

22.7 26.72 ± 0.62 99.01 102.90 ± 9.03 
25.9 27.64 ± 0.62 171.50 137.70 ± 30.78 

4.1 4.30 ± 0.41 26.46 32.04 
.±1.50 

18.0 22.42 ± 0.60 84.42 69.66 ± 3.20 
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included, repeated loading of the particular joint was either not per- 
formed or discontinued due to specimen failure. The Vm values predicted* 
for the weathered joints in slate, dolerite and limestone under first 
loading were much lower than what would be expected considering the 

magnitude of the total deformation (_. 6Vt) and rock deformation Ar). 
As already pointed out, the slope of the portion of the L Vt curves of 
weathered joints in the high stress region was artificially low due to 
incomplete closure, and consequently erroneous overestimates of AV r 
were obtained. Significant increase in the steepness of the curves was 
observed during the second-and third loadings. For example, in the 

case of the limestone joint no. 17 the value of c (= slope of asymptote 
in 3.3.4) increased from an initial 235.6 MPa/mm to 698.4 MPa/mm, which 

was within the expected range for the particular type of rock. Unless 
independent AV data for those joints were available, the total deform- 

ation curves were corrected by using the value of c as predicted for the 
third loading curve. 

The empirical analysis of the stress-deformation relationships of inter- 
locked joint blocks could not be adopted for the mismatched specimens. 
Even under the maximum stresses the deformation across the asperity 
contacts of the'mismatched joint walls contributed a significant portion 
to the total deformation of the blocks. Consequently, the slope of the 
"elastic" portion of the curves was appreciably lower than that of the 

solid rock compression line. Ultimately, the following correction 
procedure was chosen: for each particular joint the 

mV and K- values 
derived from the last loading test were used to calculate its closure 
curve from: AV j= nVm/(K. 

mV+ p-n). The closure curve was then sub- 
tracted from the experimental (total deformation, AV t) curve to obtain 
the approximate compression line of the solid rock. In that manner it 
was-possible to allow for the non-linearity in rock behaviour under the 
third loading. As it would be unlikely to encounter any significant 
changes in rock behaviour under its fourth loading, the calculated AVr 

values were used to correct the_ AVt data from the same joint when tested 
in mismatched position. 

The experimental results for the suite of 24 mismatched joints, are 
summarized in Table 3.21. For each specimen the following data are given: 
(i) the average aperture (aj); (ii) the-regression coefficient q of the 

semi-log Plots of stress versus closure; (iii) the closure of all joints 
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TABLE 3.21 

Smeary of experimental results from normal loading tests on mis- 
matched joints (first loading, initial normal stress N 0.15 MPa). 

Closure 
(Avg) 

Average Regression at o'n = 
Joint aperture coefficient 15 MPa 
no. ai (mm) q (mm) 

LIMESTONE 

1 0.800 3.881 0.293 

6 0.300 12.199 0.151 
8 0-360 6.445 0.318 
9 0.450 8.872 0.208 

10 0.350 11.158 0.152 

13 0.480 4.866 0.270 
AP 1.300 4.574 0.470 

SANDSTONE 

2 0.590 6.987 0.311 
3 0.380 8.082 0.210 

7 0.600 5.601- 0.319 
8 0.250 11.390 0.175 

9 0.350 5.761 0.304 
10 0.490 5.073 0.314 
12 0.350 9.704 0.185 
13 0.480 4.042 0,352 
14 0.420" 6.162 0.264 
16 0.250 9.408 0.184 

millstone grit 

Ni 1.220 4.538 0.387 

rr2 0.520 6.104 0.277 

ai q AV 

no. (mm) (miI 

SILTSTONE 

2 0.480 7.801 0.241 
5 0.860 4.225 0.314 
9 0.730 2.779 0.489 

SLATE 

1 
2 

0.150 
0.230 

23.349 
16.329 

0.076 
0.108 

Notes: Joint nos. are as 
originally assigned (see 

Tables 3.7 to 3.11). The lime- 

stone specimen AP is an/ificial 

extension fracture (JCS=art 135 NPa, 

JRC = 10). M1 and M2 are two 

extension fractures in coarse- 

grained sandstone of the 

Millstone Grit series (JCS = 
54 - 65 MPa, JRC = 9.5 for M1, 

and 7.8 for M2). 
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at the arbitrary normal stress level of 15 MPa, for ready appraisal 

of the differences in deformability and -in place of the unobtained 

values of V 
max 

(2) Direct shear test results 

The ranges of the shear stiffness parameters derived from the 

experimental results are summarized in Table 3.22. Linear regression 

analyses of the dh/ t vs dh plots yielded the initial shear stiffness 

coefficient (K 
si 

) at each of the normal stress levels. The log-log 

relationships between K. and 0'n gave the values of the stiffness 

number (Kj) and stiffness exponent (nj) for each of the joints. As 

the failure ratio (Rf) values did not display large differences under 
different n, mean values have been included. The-weathering state 

of joints is denoted by F, SW, MW and W as deflped earlier. 
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3.3.4 Discussion of results 

Some introductory comments on the quantitative differences in joint 

stiffness were made in the last chapter. The normal and shear 

stiffness data listed in Tables 3.16 to 3.22 provide a complete 

picture of the range of variations in the deformability of the present 
types of joints. It is seen that considerable differences exist 
between the stiffness parameters of fresh joints from the five 

different rock types and even between joints from the same rock 

and of similar weathering characteristics. Weathered joints are 

expectedly more deformable than fresh specimens from the same rock 
type. An attempt has been made to express those variations in a, 

quantitative manner based on measurable indices of joint wall strength 

and geometry. - 

Study of the variations in interlocked joint normal stiffness 

For a ready appraisal of the variations in the normal deformability 

of the various types of joints, the ranges and average maximum 

closure (Vm) and initial normal stiffness (1;,, ) values from all 

loading cycles are summarized in Table 3.23, from which the following 

general observations can be made: 

(i) Comparison of the average maximum closure 'of fresh joints 

from all rock types shows a maximum difference by an 

average factor of 4.4. The highest recorded Vm value was 

0.246 mm (sandstone, no. 1) and the lowest was 0.019 mm 
(slate, no. 2). Variations in the 

mV of fresh joints 

also persisted under the subsequent reloadings, but the 

differences were less pronounced. Under the third loading 

the highest and lowest average closure values differed by 

a factor of 2.5. The maximum m under that cycle was 
0.096 mm (sandstone, no. I and, siltstone, no. 1) and the 

minimum was 0.015 mm (slate, no. 2). 

(ii) Comparison of the'average maximum closure of fresh and 

weathered joints from the same rock type shows a maximum 
increase by an average factor of'8.5 (slate), and a minimum 
increase by an average factor of 2.8 (sandstone). The 

average maximum closure of weathered joints in dolerite, 
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limestone, and. siltstone was greater than that of the 

fresh specimens by average factors of 4.8,4.0 and 3.8 

respectively. The differences in the. average maximum 

closure of fresh and weathered. joints under the third 

loading were approximately two times smaller than above. - 

(iii) The initial normal stiffness (K 
.) coefficients' are also 

considerably variable. The lowest average KID value of 
fresh joints was obtained from the sandstone group (= 12.8 
MPa/mm) and the highest was obtained from the slate cleavage 
planes (= 35.0 MPa/mm). The minimum and maximum K values 
recorded from individual specimens were 3.6 MPa/mm (sand- 

stone, no. 1) and 70.2 Ma/mm (limestone, no. 2). The 

average Kni coefficients of weathered joints were predict- 
ably lower by factors ranging from approximately 1.8 to 4.0. 

It is generally recognized that under a 
. 
certain initial stress condition 

the basic factors influencing the amount of joint closure, and hence 

the normal stiffness, are the aperture thickness, the strength and 

deformation properties of the asperities and the roughness of the 

walls. By definition the aperture represents the maximum possible 

amount of vertical displacement which can occur between two proximate 

surfaces. The maximum amount of displacement which actually occurs 

may be only a fraction of the aperture depending on'the mechanical 

resistance of the surface protrusions against the applied loads and 

the vertical distribution of the aperture. " It is also reasonable that 

roughness may play a part in restraining the closure of the joint 

surfaces. 

The present results provide factual evidence of the interrelationship 

between the joint closure and the above variables. Study of the 

analytical mV 
data in Tables 3.16 to 3.20 in conjunction with-the 

strength and geometrical properties of the joints (listed in previous 

Tables 3.7 to 3.11) shows that: ' (a) the maximum closure of joints 

with similar average aperture thickness depends primarily on the 

strength of the joint walls; (b) the fluctuations in the maximum 

closure of joints with similar wall strength anti average aperture 

seem to be related with the differences in the roughness of the surfaces; 
(c) the large increases in the closure of the present types of weathered 
joints are the result of the combined effect of wider apertures and much 

lower wall strength. 
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It is of practical interest to search for a functional expression of 
the interrelationship between the maximum closure and the joint 

variables. In strict terms, this would require quantification of 
factors such as the initial contact area ratio, the size and shape of 
protrusions and the perpendicular distribution of their heights, as 
well as the variations in aperture thickness in both the perpendicular 
and lateral senses. Provided that those factors could be expressed in 

some quantitative form, it is questionable whether a meaningful 

relationship could ever be arrived at, due to the complex geometry 
of most natural surfaces. It may therefore be preferable to divert 

the attention onto well understood empirical indices describing the 

joint wall strength and geometry such as JCS and JRC. The most 

problematic variable is the aperture of the walls. It is true to say 
that no absolute measure of the joint aperture can be obtained. The 

nearest approximation is usually considered to be the equivalent 

aperture value derived from the back-analysis of a joint permeability 

test. A reasonable approximation can be obtained from direct measure- 

ments with feeler gauges provided that the openings are not extremely 

small («0.1 mat) and mbasurements are taken along representative 

sections of the joint, as has been discussed in section 3.2.2(4b). 

It was stated earlier that the large increases in the maximum closure 

of weathered joints was the consequence of wider apertures (aj) coupled 

with the much reduced mechanical resistance (JCS) of the weathered 

asperities. The relative effect of JCS and aj on joint closure can be 

studied simultaneously by combining the two variables empirically in a 

convenient form as JCS/aj. Large values of the ratio indicate high 

JCS and small aj; small values indicate low JCS and large aj. The 

ratio of JCS/aj gives a more appropriate quantitative reference of the 

weathering state of the present joints than JCS alone. 

A detailed picture of the weathering effects'on the normal deform- 

ability of joints from each rock type-is presented in Figures 3.41 to 

3.4(symbols F, ' SW, MW and W describe fresh, slightly weathered, 

moderately weathered and weathered joints respectively). The top 

diagram in each of the figures shows the rate of increase in the 

maximum closure with decreasing JCS/aj. All Vm data correspond to 

the first loading cycle. - The exponential relationships arise from the 

normalization of JCS by aj. Plots of Vm versus JCS gave linear trends 
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for all joint groups except for the limestone. The bottom diagram 

in each of the figures illustrates the variations in the normal 

stiffness coefficients of the fresh and weathered joints at different 

levels of normal stress. The 
n 

coefficients are the "tangent" 

values calculated from equation 3.17 at n equal to 3.0 and 6.0 MPa. 

The "initial" values are those listed in Tables 3.17 to 3.20. 

The increasing rate of change in 
n with JCS/aj under rising normal 

stresses illustrates the effects of the significantly different 

"stiffening" paths imposed by the different aj and JCS variables. 
As an extreme example, the average n coefficients at a very small 
increment of a' ("initial" KID) of three fresh (aj N . 10 mm, JCS = 
175 HPa) and three-weathered (aj - 0.40-0.60 mm, JCS = 77 NPa) 

cleavage planes in slate differed by a factor of 2.2. At n equal 
to 3.0 MPa the difference rose to an average factor of 11.7 which 
then increased to 17 at a=6.0 MPa. 

The essential similarity between the relationships of maximum closure 

with JCS/aj led to a combined plot of-the m values of all the joints 

both fresh and weathered,, against the respective JCS/aj ratio values. 
As shown in Figure 3.45, the data combined produced a distinct non- 
linear relationship of high correlation. Similar plots were also 

prepared for the maximum closure data from the second and third cycles, 

and have been included in Figure 3.45" 'The values of average aperture 

aj used for the latter two were different from those previously used. 
In the plot of mV 

data from the second cycle the aj value for each 
joint was assumed to be equal to the initial aperture minus the 

permanent set at the end of the first cycle. Accordingly, the aj of 

the joints under. -the third loading was assumed to be equal to the sum 

of permanent sets under the previous two cycles. For purposes of 

comparison the regression lines of the relationships for the second 

and third loadings have also. been' drawn to the same scale of axes as 

the first. - 

Curve fitting procedures applied on the relationships in Figure 3.45 

showed that the data were best fitted by a power curve: 

D 
m= c(JCS ) 3,36 
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The values of the constants C and D derived from the least square 

regression analysis of the data and the respective coefficients of 
2 

determination (r) were as follows: 

Ist loading: C1 =. 8.57 Dý _ -0.68 r12 = 0.865 

2nd loading: C2 = 4.46 D2 = -0.65 r22 = 0.599 

3rd loading: C3 = 6.41 D3 =, -0.72 r32 = 0.607 

The third variable of-potential influence on maximum joint closure., 
is the surface roughness. The latter can be expressed by the 

empirical index of JRC. In order to examine the variations in 

maximum closure with JRC, a, selection of 
mV 

data from " joints dis- 

playing similar aperture thicknesses was made. The selected data 

werefurther divided into three groups according to the JCS values, 

as follows: (a) JCS > 140 M'Pa (limestone joint nos. 1 to 10a, slate 

cleavage no. 4, dolerite joint nos. 1 and 2); (b) JCS = 90 - 120 
(limestone joint nos. 11 to 15, siltstone fracture nos. 1 tor5, sand- 

stone joint nos. 5 to 8); (c) JCS < 70 MPa (sandstone joint nos. 1 to 

4 and 9 to 17)" 

The relationships derived by plotting the maximum closure data against 

the joint roughness coefficients are illustrated in Figure 3.46 for 

all three'loading cycless The Vm data from the first loading test 

presented a well defined trend of decreasing maximum closure with 

increasing JRC irrespective of the joint wall strength (JCS). The 

plots of the data from the second and third loadings showed a very 

high scatter but in most cases a similar trend was discernible. 

An explanation for these inverse relationships between closure and 

surface roughness may be as follows: the mechanical interlocking 

between two mated surfaces becomes, more effective with increasing mc. 

Mais may have an effect upon the deformability of joints at both the 

very low and high levels of normal stress. Upon initiation of loading 

joints undergo a rapid closure through readjustment of their initial 

seating condition. It is logical to assume that the degrees of freedom 

across the interface depend on the interlocking potential between the 

two mated surfaces. . The rate of closure at the very initial loading 

stages is described by the initial normal stiffness coefficient (K). 

plots of K versus JRC show a distinct increase in K with increasing 
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JRC (Figure 3.47). It is therefore plausible that the interlocking 

of rough surfaces reduces the amount of initial joint closure. As the 

normal stresses increase, the closure of the joint depends almost 

exclusively on the deformability of asperities. The tight mechanical 
interlock between the protrusions of a rough surface probably creates 

a very effective confined environment, thus improving the deformational 

response of the asperities. It is logical to expect that such an. 

effect would be less pronounced in the cases of more regular surfaces. 
The-impressions of the areas-of actual, contact presented in Figure 3.22 

indicate that loads applied on very rough surfaces will be distributed 

over relatively larger contact areas than-in cases of planar joints. The 

latter 2 related factors, i. e. confinement potential and relatively 

larger actual contact area, may also explain why roughness seemingly 
has some effect on joint closure under reloading, although the scatter 
in the data points of the high JCS joint group does not indicate 

roughness effects with certainty. The scatter in the JCS < 70 MPa 

joint group is probably due to variation in the'aperture thickness 

which depends on the permanent set(s) obtained at the end of the 

previous cycle(s). No relationship-was-found between the initial- 

stiffness under the second and third loading tests and JRC. 

The trends in Figure 3.46 indicate that within the range of JRC and JCS 

values considered,. the variation between maximum closure and JRC can be 

approximated by a linear relationship. At present it is not possible 
to state what the relationship would be for the range of JRC below -5 

and over N 15" It would seem logical that the relationship in the 

two extreme ranges will experience a gradual flattening, although this 

can only be established experimentally. Also, it is not possible to 

establish with certainty what the roughness effects were, if any, in 

the cases of the weathered joints, due to the small number of specimens 

and their similar roughness. Limited experimental evidence does not 
indicate any deviation from the norm. Comparison between three 

weathered limestone joints (nos. 16,17 and 18) shows that the closure 

of the relatively planar (JRC - 5) joint no. 16 was much larger than 

that of, nos. 17 and 18 which were very undulating and rough (JRC = 15.0). 

The established relationships between the maximum closure and the indices 

of wall aperture, strength and roughness were combined to yield an 
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empirical function expressing the effect of all three variables on V. 

The relationship between 
mV , ai and JCS is described by 3.36. The 

relationship between Vm and JRC can be given as Vm =A- BJRC. The 

two basic functions could then be combined as: 

[In =A+ B(JRC) + C(1 )D 3.37 
a3 

Multiple regression of all sets of data yielded the following values 
for constants A, B, C and D (subscripts 1,2 and 3 below correspond 
to the cycle no.; ± values describe the range of uncertainty implied 

by one standard deviation; r, 
2, 

r22, r32 are the coefficients of 
determination). 

Al = -0.2960 ± 0.1258 A2 = -0.1005 ± 0.0530 A3 = -0.1031 ± 0.0680 

B1 = -0.0056 + 0.0022 B2 = -0.0073 0.0031 B3 = -0.0074 ± 0.0039 

c1 = 2.2410 ± 0.3504 C2 = 1.0082 + 0.2351 C3 = 1.1350 ± 0.3261 

D1 = -0.2450 ± 0.108 D2 = -0.2301 ± 0.1171 D3 = -0.2510 ± 0.1029 

r12 = 0.675 r22 = 0.546 r32 = 0.589 

The empirical function 3.37 does in principle represent a simple 

constitutive relationship describing the variations in the maximum 

closure of unfilled interlocked joint types displaying the following 

range of wall strength and geometry indices: JRC = 5-15; JCS = 22-182 MPa; 

aj. ý 0.10 - 0.60 mm, and provided that the initial stress condition does 

not exceed a level of 1x 10 3 EPA. However, the potential validity of 
3.37 can only be advanced with confidence if tested against a larger 

number of data, which unfortunately do not exist at present. Three 

cases of compression tests on artificial extension fractures described 

by Iwai (1976) provide the only set of data whose agreement with values 

predicted from equation 3.36 can be examined (the JRC of those fractures 

which is needed in 3.37 was not given). The relevant fracture property 

values, the experimental maximum closure under the first loading test 

I 
CY. = 2.17 x 1O 

3 
NPa) and the Vm values predicted from 3.36 are shown 

over 
(numbers in brackets give the range of Vm values recorded at three 

measuring points around the circumference of the cylindrical' specimens): 
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Granite 

JCS = 127 MPa, a, N 0.15 mm 

Basalt 

JCS = 234 MPa, aý 0.10 mm 

Marble 

JCS = 98.5 N1Pa, aJ-0-05 mm 

Experimental Vm (mm) Predicted Vm 

data from Iwai (1976) from 3.36 

Mean 

0.108 (. 084 - . 127) 0.088 mm 

0.050 (. 019 - . 072) 0.044 mm 

X0.034 (. 013 - . 048) ... 0.049 mm 

Although the JCS of the. basalt sample and the ai of the marble were 

slightly outside the ranges specified earlier, it can be seen that 

there is a reasonable agreement between-the predicted and the., 

experimental values of maximum closure of these special types of joints. 

The main points arising from the above analyses can be summarized as 

follows: 

(i) The normal stiffness coefficients of unfilled interlocked joint 

types show large variation. Under a certain level of normal stress 

the values of K1 depend on the aperture thickness, the joint wall` 

strength, and'the roughness in that order of relative importance. 

(ii) Well defined trends have been observed between the maximum closure 

and indices describing the aforementioned joint variables. The 

present data indicate that within a range of aperture thicknesses 

between - 0.10 and N 0.60 and a range of JCS between 22 MPa and 

182 1MPa, the maximum closure decreases exponentially with de- 

creasing aj and increasing JCS. That relationship arises from 

combination of data from fresh and weathered joints from all 
five rock types. It should be noted that joints of large aj 

usually had low JCS. No data have been included from joint types 

of high JCS and large a., or of low JCS and small although 
there are no indications to suggest significant deviations from 

the observed patterns of variation. The derived empirical function 

3.36 may be used to obtain an estimate of the maximum closure of 

various types of joints (different JCS and ai but similar roughness) 

and-assuming an - 
initial stress level in the order--of .1x 10-3 MPa. 
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(iii) Maximum closure data sets from joints with similar apertures 
indicate that within the range of JRC from N5 to -15, the 

maximum closure decreases linearly with JRC irrespective of JCS. 

The effects of roughness on joint closure are relatively less 

significant than those of JCS. 

(iv) A constitute relationship describing the variations in maximum 
joint closure should incorporate all three fundamental joint 

variables of wall aperture, strength, and roughness. The simple 

empirical function 3.37 offers a potential'solution, but its 

validity should be checked against a much larger number of data 

than the 64 data sets-available from this study. ' The inevitable 

scatter in the experimental results created considerable un- 
certainty in the values of constants A, B, C and`D. From the 

present data it has been found that an estimate of the maximum 

closure of a joint under first loading and effectively "zero'' 

initial stress condition can be obtained from: 

mV- -0.269 - 0.0056 JRC + 2.241(JCS/aj )-0'245 3.38 

The uncertainty in the values of Vm predicted from the above 

relationship is 15-79/o (one standard deviation about the regression 
lines). A. similar 

-type of relationship as 3.37 was, derived for 

the initial normal stiffness coefficients (K), in which the 

linear relationships between Kni and (JCS/aj) and Kni and JRC 

(see previous Figures 3.41 to 3.44 and 3.47) were combined as: 

1C = -7.154 +1 . 748 JRC + 0.0178(JCS/aj), r2 = 0.573 3.39 

Intuitively, prediction of Vm and Kim from 3.38 and 3.39 would 

enable the normal stiffness coefficient of a particular joint 

type at any desired level of normal stress to be obtained by- 

using equation 3.17.. The reliability of such estimates can only 
be tested and, hopefully, improved through experiment. 
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2. Comparison between interlocked and mismatched joint normal 

stiffness 

As already noted in section 3.2.3(3) (see also Figures 3.24 and 3.25) 
the normal stiffness of the mismatched joints was considerably lower 
than the stiffness of the same specimens when loaded in. fully locked 
position. This is an anticipated result of the stress polarisation 
over a relatively lower actual contact area (see Figure 3.48) and the 
lack of asperity confinement. A summary of the observed reductions 
in normal stiffness is given in'Table 3.24. In order to examine the 
influence of the joint type the various mismatched joints have been 
distinguished into four groups according to their wall strength (JCS) 

and--roughness--(JRC). The--average -n (interlocked)/Sri (mismatched)--- 

ratio values have been calculated at three largely different stress 
levels 0.5,5 and 15 MPa (the respective ranges of the ratios are 
given in brackets). 

TABLE 3.24 

Summary of interlocked and mismatched joint normal stiffness ratio values 

0 

Normal stress (MPa): 

1HIGH JCS: 
(4 epee. ) 

HIGH JRC LOW JCS: 
-_ (6 spec. ) 

n(interlocked)/n(mismatched) 

0.5 5.0 15.0 

7.5 (4.5-10) 6.5 (4.5-10) 12.1 (7.7-20) 

3.7 (1.4-5.6) 1.3-3 (2.1-7.7) 

HIGH JCS: 3.1 (2.0-7.7) 3.7 (2.9-11.8) 
(5 spec. ) 

LOW JRC LOW JCS: 1.9 (1.1-2.9) 2.0 (1.4-2.4) (8 spec. ) 

Note: HIGH JCS: 120-175 MPa (mean 
= 156 MPa) 

LOW JCS: 44-105 MPa (mean 
= 70 MPa) 

HIGH JRC: 9.5-15 (mean 
= 11.0) 

LOW JRC: 4.0-7.6 (mean 
= 6,4) 

4.3 (3.0-6.6) 

7.1 (5.3-12.5) 

3.3 (2.8-4) 

As indicated, the largest stiffness ratio values were obtained from 
joints of high JRC4igh JCS and the smallest by the joints of 'low JRC/ 
low JCS. A reason for that effect is that joints of high JRC, and JCS 
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generally exhibited very 'stiff' behaviour when interlocked, whereas 
joints of low JRC and JCS did just the opposite. Some mismatched 
joints of the latter group had considerable actual contact area and 
hence 

nK 
(mismatched) was as expected very close to 

nK 
(interlocked). 

On the other hand, the large protrusions on the surfaces of joints 

of high JRC prevented a similar effect. The stiffness ratio values 
generally show some increase with increasing level of normal stress, 
due to the hyperbolic and semi-logarithmic variations in the closure 
of interlocked and mismatched joints respectively. 

The purpose of mismatching the joint surfaces by some relative trans- 
latiöri of ti e--bldck 1iälves was to -enablO a simplistic simulation of 
joints subjected to shearing displacement and examination of the 

related changes in stiffness. This is an aspect of potential interest 

because modelling of the complete joint behaviour by recent techniques 

whereby the joint property values are progressively modified with 
displacement (cf. Barton and Han teen, 1979) will require knowledge of 
how K1 (interlocked) reduces as shearing takes place to dh (peak) and 
thence to dh (residual). 

In the previous general comments the state of "displacement" of the 

mismatched joints, which obviously regulates the changes in the actual 

contact area and consequently in the normal stiffness, was not considered. 
The amount of the relative translation of the joint surfaces which was 
technically feasible was usually restricted to within a range of approx- 
imately <1-to 2 mm. Relative movement of the joint surfaces by approx- 
imately 0.5 to 1.0 mm was taken to be approximately equivalent to the 

peak shear displacement of the present length of joints (- 10 cm). 

A simplified model of the different stages during shearing could be 

envisaged in a set of joint specimens with similar wall strength and 
roughness, and each of which had been subjected to a different amount 
of shear dislocation, as in fact was the case of the joint specimens 
within each of the JRC and. JCS groups referred to earlier. Increasing 

relative displacement results in progressively larger joint opening as 
the gradually reducing number of contact points are transferred higher 

onto the asperity slopes, and the stiffness of the joint drops. An 
illustration of the changes in stiffness with increasing joint opening 
due to larger shear dislocation is presented in Figure 3.49-for all the 
four groups of joints. The relative amount of joint opening is expressed 
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by the ratio of the vertical uplift (aj)m of the upper block half 
(see illustration in p. 280) to the aperture (a. )1 of the joint when 
interlocked. The value of (aj)m and hence the (aj)m/(aj)I ratio 
value depends on the surface roughness and the relative amount of 
'shear displacement'. The stiffness ratio (n)I/(L1)m value for 

each joint corresponds to 'shearing' under a stress level of 0.5 MPa. 

Assuming 'peak displacements' to be within the range from 0.5 to 1.0 mm, 
three stages of-joint 'shearing' can be identified for the joint groups 
2,3 and 4: a 'pre-peak' stage ('displacement' dh S 0.5 mm), the 'peak' 

stage ('dh' > 0.5-1.0 mm) and ä 'post-peak' stage ('dh' N 1.5-2.5 mm)- 
The-plots in Figure-3949 indicate that-an extremely small amount of 
dislocation from an originally interlocked position (n)m/( n)I =1 

will cause a large reduction of the original stiffness which could 

amount to up to 3 of the total reduction in stiffness from dh =0 to 

dh =dh(peak). Small 'post-peak displacements' indicate a further 

reduction in stiffness but at a much lower rate. No inferences can be 

made at present regarding the 'post-peak' stiffness after large dis- 

placements. 

It would be useful to find an empirical- rule - for modifying -the original -- 

stiffness n(I) at dh =0 into an effective n(M) value at dh = dh(). 

It could then be easier to modify n(M) further for varying amounts of 

shear displacement (dh). However, some basic considerations relating 

the changes in stiffness to the differences in the actual contact area 

between the 'interlocked' and "peak' positions of a joint suggest that 

deduction of a rule-of-thumb would be difficult. Ia. danyi and Archambault 

(1970) suggested equation 1.18 (p. 21) to describe the ratio of the sum of 

contact areas at peak to the total joint area. Barton and Choubey (1977) 

gave a simpler version whereby Aactual at peak may be related to Atotal 

in the ratid Qr/JCS. If it was assumed that n (interlocked) 

represented Aactual - Atotal then it could be proposed that the stiffness 

K (M) at the moment of peak would be reduced to n(I) x( n/JCS). Since 

the. assumption of 1003 contact area for interlocked joints would be 

grossly unrealistic at any level of normal stress, an approximation 

would necessarily have the form:, 

Kn(M) _ Kn (I) $Ä 
v'ýJCSýM 

act 
Atotal I 
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where ( n/JCS)M is the contact. area ratio for the joint at the moment 
of peak under CTl9 and'(Aact/Atotal)I is the contact area ratio for the 
joint in interlocked position and under the same normal stress. However 
the practical usefulness of the above relation is rather limited as it 
requires knowledge of the stress-dependent contact area ratio of the 
interlocked joint. It also ignores the probable influence of the 
surface roughness on the peak Aactual' There-is undoubtedly much to 
be learned about this aspect of joint behaviour which warrants a 
systematic investigation. That should involve shearing of a variety 
of joint types and study of the behaviour under complex normal loading 

paths at various stages of displacement. 

3. Range of joint shear stiffness parameters 

The data on joint shear stiffness listed in the previous Table 3.22 

show considerable variability. Under the range of normal stresses 

applied (0.23-2.36 MPa) the 8 (secant peak) coefficients varied 
between 0.47 MPa/mm and 12.6 MPa/mm. The highest K8 coefficients 

were obtained from the very tight slate cleavage fractures nos. 1 to 

3. In fact the lowest coefficient of those specimens (5.6 MPa/mm 

under n=0.545 P'PP) was very near to the maxim= 8 obtained from 

all other joints under the maximum normal stresses. All three slate 

specimens failed in "brittle" fashion at a peak displacement between 

0.1 and 0.16 am. The peak shear displacement of the other joints 

ranged between 0.28 and 0.82 mm. Under rising level of normal stress 
(dh)peak underwent only a marginal increase and consequently the K. 

coefficients showed a strong dependency on normal stress. 

The variation in the secant peak shear stiffness coefficients with 
normal stress is illustrated in Figure 3.50. The Ss data ät 

extremely low normal stresses were derived from the results of the 

shear tests conducted for the determination of the JRC. The stiffness 

envelopes had invariably a, curved shape resembling the peak shear 
strength envelopes of joints., The non-linear variation in s with n 
is due to the non-linear variation of peak with Cr and the small 
increases in (dh)peak with increasing cn. Distinct changes in the 

gentle curvature of the stiffness envelopes are due to the effects of 
the multistage testing procedure. The envelopes in Fig. 3.50 also 
demonstrate the dependency of the peak shear stiffness on joint wall 
strength (JCS) and roughness (JRC). 
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The set of parameters in Table 3.22 describing the non-linearity in 

joint behaviour showed the following characteristics : 

(i) the failure ratio (Rf) ranged between 0.652 and 0.870. 

That ratio has been referred to as an index of non-linearity in 

joint behaviour (for linear stress displacement relationships Rf is 

zero). In general, the-lower Rf values were associated with well 
interlocked', unweathered joints of high. JRC. Planar fresh and, more 
so, weathered joints gave the relatively higher Rf values. 

(ii) The stiffness exponent nj (= slope of the log-log relation- 

ship between initial shear stiffness Ks . and normal-stress)-was-very 

similar for all the joints; except for the nj of a weathered lime- 

stone joint (= 1.188 MPa2/mm) the values from all the other specimens 

ranged between approximately 0.6 and 0.8. 

(iii) The stiffness number K0 (= intercept of the above relation) 

was significantly-variable ranging between 3.02 and 30.19 MPa/tea. 

This can of course be anticipated considering the variations in si 

and the essential similarity in the n3 values. Correlation of the 

Ki values with JRC shows' a proportional lineai- trend. This is logical 

since the initial stiffness of a mated joint depends on the degree of 
interlocking which in turn is related with the value of JRC. The' 

best fitted line'in the relationship of the 13 Kj data values and 
JRC is expressed by: 

Kj = -17.19 + 3.86 JRC (r = 0.835, for JRC > 4.5) 

4ý Anisotropy in joint deformability 

3.40 

A related feature of jointed rock masses that distinguishes continuum 

and discontinuum behaviour is the anisotropic deformability. Joint 

stiffness is much lower in the tangential than in the normal senses. 

The value of normal to peak shear stiffness ratio is not a constant'" 

but depends on the level of normal stress, 'the highest anisotropy 
being shown at low stresses. 

The stiffness ratio values of the present joints are summarized in 

Table 3.2 . The K ýs values of the sandstone joints 1 to 5 and 15,16, 

are the mean of *the individual values at each level of an I as the 

differences were very small. The shear stiffness of the joints under 
r 
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TABLE 3.25 

List of normal to peak shear stiffness ratio values at different 
levels of normal stress. 

Normal stress, MPa 

. 02-. 05 . 25 . 50 1.0 2.0 

SANDSTONE; F (nos. 1,3,4,5) 

av. K 
i%Ks 

MW (nos. 15,16) 
av. n%Ks : 

W (nos. 19,20,21) 
av. K 

1/ßs :y 

LIMESTONE F (no. 4), K Ag 
ns 

mw (no. 14) n 

W (no. 20) 

DOLERITE F (no. 2), Kn-Aa : 

W (no. 5) 

SLATE F (nos. 1,2,3), nýs 

W (nos. 6,7,8) ýý : 

73 16 12 12 

124 18 16 15 

,A 30 8.4 . 11 

58 19.4 15.6 11.3 

67 7.8 7.8 12.9 

35 24 21 

125 15.1 14.9 12.8 

9.6 7.2 5.7 

88 12 27 132 

122 26.2 

14 

F: fresh; MW: moderately weathered; W: weathered 

normal stresses up to 1 MPa has been considered, to avoid the possibility 
of using unrealistically low 8 values due to the multistage testing. 

For "normally" tested joints the Ks coefficients under the full on range 
wereused. 

Under extremely low n (. 02 - . 05, Mpa) the KC/KS ratio attained maximum 
values ranging from 130 to 58. Within the 6n range from . 25 to 1 or 
2 MPa the anisotropy was markedly reduced without showing any significant 
further changes. The effect of weathering on joint anisotropy is un- 
clear. In the case of the sandstone and dolerite weathered joints the 
g Ks values were lower than those of the fresh. For the slate cleavage 
planes anisotropy appeared similar in both fresh dnd weathered specimens, 
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whereas the weathered limestone joint gave higher Kj s values than 
the fresh. 

5. Scale effect on shear stiffness 

The preceding discussion on the range of joint shear stiffness para- 

meters was related to a specific joint size. However, existing 

evidence and the present results from the study on model joints 

strongly point to the significant effect of scale on peak shear stiff- 

ness, due to the dependency of both peak shear strength and displacement 

on the joint length. 

The mean peak shear stiffness of each subdivided and full scale model 

was calculated from the mean gradient of the shear stress-displacement 

curves in Figures 2.30'to 2.40 in part two. Conversion of the model 
(M) s values to the prototype (P) scale was made according to 

(E: )= Y- (K 
ap 3.41 

where y and a are the stress (= 40) and geometric (= 39) scale factors. 

The variation in the Ks values with joint length (L) is illustrated in 

Figure 3.51. The data are plotted in three groups each, comprising 
joints of particular morphological characteristics (nos. 1 to 5: rough, 

strongly undulating; nos. 6 to 8: very rough, moderately undulating; 

nos. 9 to 11: slightly undulating to planar). The trends show a very 

large reduction in the peak shear stiffness-of the models with increasing 

joint block size. As would be anticipated, the largest reductions are 

, associated with the highly irregular surfaces. By increasing the 

length of joints from 5 or 6 to 36 or 40 cm the 8 coefficients de- 

creased by factors ranging from approximately 3 to 7 depending on the 

surface geometry. A near two-fold decrease in s is also displayed 

by the slightly undulating model joints nos. 9 and 10. The only case 

where virtually no scale effect was observed was the planar joint no. 11. 

The gs values converted to prototype scale ranged between 0.119 and 0.021 

Mpa/mrn. The equivalent prototype joint lengths were between 1.5 and 

12.0 meters and the prototype normal stress was approximately 1.0 MPa. 

The Prototype K. values of the model joint were plotted against the 

correspondingPrototype-lengths in the chart presented in Figure 3.3 in 
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Chapter 3.1, which is reproduced in Figure 3.52 containing the shear 
stiffness data from both the real and model joints. It is interesting 
to note the remarkable agreement of the data-from the model joints 

with the general trend inferred from the current literature. All 
data points scatter about the v'n N1 Ma envelope. The normal stress 
applied on the model joints was also N1 MPa. 

The practical considerations made in part two with regard--to the 

derivation of scale-free estimates of peak shear strength are obviously 

relevant in a -prediction of values of peak shear stiffness. Due to 

cross-jointing and the reduced rigidity of a rock mass as scale 
increases, there. is a limit to the length of joint that needs to be 

tested to be certain of avoiding the scale-effect. - 
Correct estimates 

of JRC and JCS based on either index testing or appropriate correction 

of laboratory-size test results in relation to the average in-situ 

joint block size can be substituted in Barton and Choubey's empirical 

equation 3.1, thus allowing for the scale'effect on peak shear strength. 
The scale-displacement effect is allowed for by the factor 100/%. 

In the absence of measured or predicted parameters the data chart in 

Figure 3.52 may Offer ark approximation of the Ks values relevant to" 

a particular situation. " 

3.3.5 Concluding remarks 

The examination of possible analytical expressions for the stress- 
deformation relationships of rock joints leads to the following 

conclusions: 

(i) The normal stress-normal deformation relationship of natural 
interlocked joints can be accurately described by a hyperbola. 

Equation 3.8 is'found to fit the present data in a 
. 
-more consistent 

manner than Goodmants empirical function 3.6. 

The normal stress-normal. deformation relationship of mismatched 
joints is best represented by a semi-logarithmic expression (eqn. 3.18). 

(iii) Non-linear shear stress shear deformation relationships in the 

range up to mobilization of peak shear strength can also be approximated 
by hyperbolic functions (e. g. egns. 3.20 or 3.29). 
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According to function 3.8 the hyperbolic normal stress-deformation 
relationship of a joint is uniquely defined by the initial normal 
stiffness (Kni) and the maximum closure (Vm). For a particular type 

of joint the values of Ku and m depend on the initial stress level- 
( Under the same however, the maximum closure of different 
types of joints can vary substantially. From comparisons between the 

present experimental data the following relations have been identified: 

(i) For a joint with a given aperture thickness (aj) the amount of 

maýcimum closure depends to a large extent on the mechanical properties 

of asperities. For joints with similar aj the value of Ym is 

inversely proportional to the asperity strength or JCS. Maximum 

closure data from all three tests have shown an inverse exponential 

relationship with the JCS/aj ratio values. That relationship was 
fitted best by a power law (eqn. 3.36). 

(ii) For joints with comparable JCS/ai ratio values the maximum closure 
is generally lower for rougher surfaces. Specifically, an inverse 

linear trend exists between 
mV and the surface, roughness described by 

JRC within a range from approximately 5 to 15. The correlation between 

maximum closure and JRC was poor for Vm data other than those obtained 
from the first loading. 

(iii) 'Combination of (i) and (ii) yields a simple constitutive relation 
describing the maximum joint closure as a function of 'aperture thickness, 

joint wall strength and roughness (eqn. 3.37). The latter gave a good 

approximation of the relationship between the maximum closure values` 

from the first loading tests and the above joint variables. 

In contrast to the'very similar normal stress-normal deformation 

behaviour shown by all types of joints, the shear stress-shear deformation 

relationships indicate different degrees of non-linearity. For the 

present type and size of joints, and under normal stresses up to approx- 

imately 2.0 MPa, the failure ratio (Rf) values ranged between N, 0.65 and 

N 0.89. In the case of the fresh slate cleavage planes, the Rf value 

was approximately zero. As a general observation, the Rf values for 

tightly locked joints in fresh rock were lower than 0.75. The incremental 

tangent shear stiffness values can be calculated from eqn. 3.28. The 

input parameters of stiffness number (ic) and stiffness exponent (nj) 

calculated from the present joints showed that: 
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(i) nj is essentially independent of the joint type within the normal 
stress range up to 2.0 MPa and varies between 0.6 and 0.8. For the 

majority of joints nj was between 0.7 and 0.8; 

(ii) Kj depends on the type of joint and increases linearly with JRC. 

In addition to the marked normal stress dependency, the effects of 
factors such as surface roughness and weathering on peak shear strength" 
are clearly identified in the shear stiffness values. Comparison 
between the normal and peak shear stiffness of joints at different 
levels of normal stress showed that the KrrKs ratio varies with normal 
stress, the highest anisotropy usually occurring under low stress levels. 
It has not been possible to recognize any systematic difference in the 
anisotropic deformability of fresh and weathered joints, even in cases 
where the multistage testing procedure was not a complicating factor. 

The results from the model tests have verified the strong scale effect 
on the peak shear stiffness. The amount of decrease in a depends on 
the joint type. Maximum scale effects in s' are found for rough 

undulating joints and minimum m to almost absent scale effects for 

relatively smooth and planar joints. The empirical relationship 3.1 

can be used to obtain a full-scale estimate of Ks provided that allowance 
is made for scale effects in the JRC and JCS input values. 

A comparative study of the differences in the normal stiffness of 
interlocked and mismatched joints led to some tentative conclusions 

with regard to the changes in K of joints subjected to shearing. These 

conclusions can be summarized as follows: 

(i) Within the range' of displacements required to mobilize the peak 
shear strength the original joint stiffness (n interlocked) will reduce 
at a gradually decreasing rate. The largest reductions will occur during 
the initial stages of displacement, and will continue at a slower rate 
until the joint has reached the dh(peak). The present results indicate 
that at dh approximately equal to J dh(peak) the original Kn (interlocked) 

may decrease by up to three-quarters of the total reduction at the 
instant of peak strength. The results also suggest a further decrease' 
in Kn at a slow rate in the immediate post-peak stages. 
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(ii) The amount of decrease in K1 at any stage of displacement-will,. 

in addition to its dependence on normal stress, be different for 

various types of joints. The results imply that the maximum decrease 

in 
nK will be associated with joints of high JRC and JCS and the 

smallest with joints of low JRC and low JCS. In the present cases 

the relative reductions in n (interlocked) at an assumed dh(peak) 

for the above types of joints differed approximately by a factor of 4. 



PART FOUR 

SUMMARY AND CONCLUSIONS 
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EFFECTS OF SCALE ON THE SHEAR STRENGTH OF JOINTS 

Summary of work 

The experimental approach consisted of direct shear testing joint 

samples of various lengths prepared from eleven different 'full-size' 

joints 36 to 40 cm long. A rubber moulding system was used to take 

precise impressions of the roughness from a variety of natural joint 

surfaces in different rocks. Amulti-component brittle material 

simulating a prototype rock with uniaxial compressive strength of 

80 Ma was used to cast several sets of identical interlocking 

specimens from each pair of moulds. The 'full-size' joints were in 

turn subdivided into sets of equidimensional joint block samples,, ' 

each of the sets representing a different average block size or 

joint length varying from 5-6 cm to 18-20 cm. The complete range 

of model joint lengths corresponded to prototype joints from 1.5 - 
1.8 meters to 10.8 -12.0 meters long. All sample sizes were tested 

in the-same relative direction of shear and under exactly the same 

level of normal stress which was equivalent to approximately 1 MPa 

at prototype scale. 

Conclusions 

The results of this study show that, under the same level of normal 

stress, the behaviour and shear strength of different size samples 

of a large sized joint will change significantly as the length of 

sample increases: 

(i) For different sized samples of the same joint, longer samples 

would need larger displacements than shorter samples before 

peak strength was attained. In effect, the peak shear dis- 

placement (dh)p represents the distance which a joint will have 

to displace until it develops contacts between asperities of a 

size critical to the peak behaviour of that particular joint 

length. Small asperities regulate the peak shearing path of 

short joints, whereas larger irregularities become effective 
for correspondingly longer joints. In the present case the 

peak shear displacements ranged between approximately 0.5'° and 
i. 0'ß of the length of joint. There may also be a proportionality 
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between joint length and size of 'critical' asperities. 
Indications are-that for the present rough undulating joint 
types the average baselength of 'critical' asperities ranged 
between approximately 2% and 4% of the corresponding joint 

length. 

(ii) The effect of the above condition on the shear behaviour with 
increasing scale is reflected in the shear stress-displacement 
relationships. Behaviour changes from 'brittle' to 'plastic$, 
the shear stiffness reduces and the pre-peak portion of the 

curves usually displays higher non-linearity due to the 

progressive damage occurring to larger and larger asperities 
with increasing scale. 

(iii) The involvement of small and large asperities in controlling 
the peak behaviour of correspondingly short and long joint 

samples introduces two geometrical effects-on the contact areas 

at the instant of peak. In the-first case small individual 

contacts develop between-the small-critical' asperities, while 
in the second case larger contacts are created between the 

slopes of the longer asperities. In addition, the larger 

contacts are less steeply inclined with-respect to the mean 
joint plane than the smaller. The decreasing inclination of 

contacts contributes a reduced geometrical component (peak 

dilation angle ip) to the total frictional resistance as the 

scale increases. The larger contact areas introduce a scale 

effect in the asperity failure component (SÄ) because of the 

reducing joint compressive strength (JCS) with increasing size 

of contacts. The two effects combined result in a substantial 
decrease of the total friction angle (Op). 

(iv) Maximum scale effects on the geometrical and asperity failure 

components, and hence on the peak total friction angle, are 
associated with rough undulating types of joints. There is a 
progressive decline in the scale effect as the joint roughness 
decreases and for almost smooth and planar joints the peak shear 
strength is practically independent of the length of the joint. 

The conclusions from this study suggest that the peak shear strength 
of a closely jointed rock mass would be higher than for a wider 
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jointed mass because of the difference in the peak shear strength of 
the smaller and larger joint blocks. This in turn implies that the 

smaller joint blocks within the rock mass will be capable of 
following the individual shear paths they require in order to 

maintain contact with the small steep asperities and hence develop 

higher peak shear strength. 

Experimental evidence by Barton from biaxial tests on jointed model 

rock masses with different cross-joint spacings (3.3,6.4 and 12.3 

meters at prototype scale) shows that the closer the spacing, or the 

smaller the joint block size, the higher the peak shear strength of 
the mass. It therefore seems probable that, unless the stress levels 

are high, the reduced stiffness of a closely jointed mass will offer 

sufficient freedom to the component blocks for individual shearing 

and rotation, thus 'mobilizing' the smaller scale and steeper 

asperities and developing higher peak shear strength. 

Practical recommendations 

Conventional methods of shear strength determination on samples sizes 

sufficiently large to allow for the scale factor are extremely costly 

and impractical. -On the other hand empirical predictions of peak 

shear strength may offer not only a cheap but also a reliable alternative. 
Use of the indices of joint roughness coefficient (JRC) and wall 

compressive strength (JCS) allows incorporation of the scale effects 

in the estimate of shear strength in a realistic and consistent manner. 

The present studies have shown that the joint roughness coefficient 

should only be considered as a constant for a fixed joint length. 

Small joint samples where peak behaviour is controlled by small steep 

asperities will have higher JRC values than longer joints where peak 
behaviour is governed by larger asperities with correspondingly flatter 

slopes. In addition to the scale effect on JRC, the value of joint 

compressive strength (JCS) will probably also be lower because of the 

increasing size of contact areas. 

There are reasons to suggest that the naturally occurring block size 

may constitute a. potential scale effect size limit (cf. Barton and 
Choubey). Accordingly the nearest scale-free estimate of JRC could be 
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measured on samples of minimum length equal to the maximum cross-joint 
spacing. The same minim, m, joint length should also be the 'reference' 
for interpretation and correction of JRC values measured on 'laboratory' 

size specimens. 

Analyses of the roughness on the present model joint surfaces showed a 
consistent similarity between the ratio of the mean inclination angles 
(ä) of asperities with half-baselength (= mean 'step'-size) equal to 
approximately 1-2% of the length of each of the two joint sizes 
considered, and the ratio of their respective values of JRC. If it 
was assumed that this type of relation was valid at larger scale, 
it might be possible to predict an approximate full-scale value of 
JRC by correcting the JRC measured on laboratory samples by an 
appropriate amount determined from roughness analysis of both natural 
joint block sizes and laboratory samples. 

The difficulty of introducing independently'"corrected values of JRC 

and JCS is that prediction errors in the total friction angle can be 
high if there is a significant error in the input index values. The 

more serious error is introduced by an incorrect JRC value and when. the 

JCS an ratio value is high. It would be useful if simple sensitivity 

analyses were conducted by combining the range of predicted JRC values 

with scale-reduced JCS values, so that the final choice of the peak 
friction angle(s) could be made with some knowledge of. the probable 

range of uncertainty. 

The magnitude of prediction errors would be considerably reduced if 

the values of. JRC were actually measured on'naturally occurring joint 
block sizes by tilt- or pull-testing as suggested by Barton & Choubey. 

The advantage of these methods is that when back-calculating the value 
of JRC the estimates of JCS and residual friction angle 0r need not 
be very accurate due to the logarithmic formulation and the very large 

JCSI Qn values. In any case, overestimates and underestimates in JCS 

and 91r will be balanced by corresponding underestimates and over- 

estimates of JRC. The error in the extrapolated values of total 

friction angle at higher stress levels would then be relatively small. 
An additional advantage of index testing is that the low cost involved 

will enable a sufficiently large number of samples to be tested, thus 

yielding statistically significant data. 
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Suggestions for future work 

One of the most important limitations in simulating the shearing of 
joints in their natural environment by performing shear tests on 
individual joint samples is that the response of the surrounding 
rock mass is absent. It is important that subsequent studies on 
scale effects be directed to multiple-jointed masses. Further 

experimental verification is needed with regard to the inter- 

relationship between joint spacing, mass stiffness and shear strength. 
It will be of great value to test the scale model of "close joint 

spacing -- low mass stiffness -. freedom for rotation of individual 

blocks - higher peak shear strength" against various stress levels, 

since it is anticipated that the stress level will effectively control 
the freedom of blocks for individual rotation, and therefore influence 

the magnitude of the scale effect. 

The experimental approach could be either via shear tests on jointed 

assemblies of rock blocks or by two-dimensional plane-stress jointed 

models tested in a biaxial loading frame. The first technique could 

present serious experimental difficulties, such as differential dis- 

placements at the two ends of the sheared assembly and the problem 

of realistic simulation of the stiffness of an assumed 'overlying rock 
masst. Use of a stiff loading plate introduces variable normal stress 
conditions as some of the blocks become 'overstressed' whereas others 
are 'understressed' as a result of differential dilation along the 

shear plane. Alternative methods by using leaf- or coil springs to 
balance the stress distribution are generally impractical, the most 
reasonable compromise being the use of relatively stiff rubber packs 
between the top plate and the specimen. The problem of differential 
displacement could be solved by producing extension interlocked 
fractures to represent the cross-joints but then of course their high 

stiffness introduces a new variable. The second technique, using 
two-dimensional jointed models, will not only be technically simpler 
but probably more informative. 

Meantime, it will be of practical value if more attention is paid to 
the correct interpretation of data from laboratory-size samples and 
to the application of realistic scale reduction factors. In Chapter 2.5 
there are tentative suggestions which could be tested against larger 
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joints. It would be most useful if JRC values back-calculated from 
large scale tilt tests are compared with those predicted from 
laboratory samples and roughness analyses. Building up knowledge 

on the reliability of such predictions will not only improve the 

procedures but will also be of practical use where index tests 

are not technically feasible. 

]DEFORMATION OF ROCK JOINTS 

Summary of work 

Rock joint deformation has been studied by conducting normal compression 
tests and direct shear tests on a wide ranging variety of fresh and 

weathered natural joint samples of five different rock types, namely 

slate, dolerite, limestone, siltstone and sandstone. Normal loading 

tests involved cyclic loading of prepared single-jointed blocks and 

measurement of the vertical displacements. At first, all joints were 

compressed in fully locked position under maximum normal stresses 

which approached J to of the uniaxial compressive strength of the 

intact rock (N 20 to N 180 1KPa). A collection of different types of 

joints with artificially mismatched walls was then tested. 'Finally, a 

number of joints were tested in direct shear by adopting a multistage 
testing procedure. 

Conclusions 

Normal deformation (interlocked joints) 

(i) The normal stress (Qn)-normal deformation (closure AVa) relation- 

ship of natural joints is highly non-linear throughout repeated loadings 

and irrespective of the rock and joint type. On first unloading the 

joints show marked hysteresis and large permanent sets. A certain 
amount of recuperation also occurs because of the recovery of 
elastically deformed asperities. Under subsequent reloadings the 

amount of permanent set is considerably lower. However, it seems that 

several more cycles than the three applied in the present tests would 
be needed to obtain a reproducible stress-deformation curve with no 
further permanent set. 
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(ii) Use of hyperbolic functions enables an accurate analytical 
representation of the normal stress (O'n)-closure ( Ava) curves of 
natural joints, whereby the asymptote to the hyperbola defines the 
fundamental property of maximum joint closure (Vm). It was found 
that equation 3.10 

on a 
6vj =1b, a and b= constants of the hyperbola 

n 
a/b = maximum joint closure m 

gave the most consistent fitting to the present experimental curves, 
irrespective of the joint type, stress history and loading mode. 

(iii) The normal stress (Qn)-total deformation (OVt) relationship of 
joint blocks under repeated loading is accurately described by 

equation 3.34 

evt = 1-ý b+ Qn 
s 

c na + 
a- 

c= elastic normal stiffness of 

the rock material 

provided that the applied stresses are high enough to enter the elastic 
region of the solid rock. The function can be used for statistical 
processing of experimental AVt data and prediction of the maximum- 
joint closure (V provided that the stress-deformation relationship 
of the rock material is linear. Otherwise, an appropriate non-linearity 
component should be subtracted from the predicted value. 

(iv) The hyperbolic variation of joint closure (6 VJ) with stress 

means that no single value of normal stiffness (Kn) can be used to 

characterize the stress-closure relationship. The incremental normal, 

stiffness can be calculated from equation 3.17: 

(1vK ý+ 
o, 

-2 KC = initial normal stiffness 
m ni n 

Comparisons of the normal stiffness (K of different joint types under n 
the same level of normal stress (ß') show that K is significantly 

nn 
variable. This is because the maximum closure (Vm)v which together 

with the initial normal stiffness (K ) uniquely define the hyperbolic 
ni 

stress-closure relationship of a joint,. is seriously affected by the 

physical characteristics of the joint surfaces. 
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(v) The maximum closure (Vm) is a unique joint property which depends 

upon the initial stress level (a ). Under the same Qi the maximum 

closure of different joints and in particular that of fresh and 

weathered samples varies significantly. In fact, the value of Vm for 

interlocked joints depends upon the initial aperture thickness (aj), 

the joint wall strength (JCS), and the wall roughness (JRC) in that 

order of relative importance. 

(vi) From the analysis of the data the following quantitative 

relationships have been identified: 

(a) an inverse exponential relationship between the maximum joint 

closure (V and the ratio of wall strength (JCS) to aperture 
thickness, which was fitted by equation 3.36: 

V_ C(JCS)-ID 
m a. J 

(b) an inverse linear relationship between maximum closure and 

wall roughness: 

V= A-B JRC 
m 

From a combination of (a) and (b) a simple constitutive relationship 

can be advanced, describing m as a function of a JCS and JRC: 

mV=A+ 
B(JRC) + C(ics 

i 

Normal deformation (mismatched joints) 

(vii) Mismatched joints show typically non-linear stress-deformation 
behaviour, hysteresis and huge permanent sets. Due to the very large 

aperture and the interference of surface irregularities, mismatched 
joints do not attain the maximum closure state observed on interlocked 

joints. The normal stress ( n)-closure (tivj) curves cease to 

resemble a hyperbola and the relationship is best described by a 

semilogarithmic function: 

log10 O-n =p+q AV 
i 
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(viii) Comparisons between the normal stiffness of joints tested in 

interlocked and mismatched positions, and assuming that a mismatched 
joint resembles a joint subjected to a certain shearing displacement 
(dh), suggest that: 

(a) the amount of reduction in the original joint stiffness nK 
(inter- 

locked) from dh =0 to dh = (dh)peak will depend upon the wall 

strength and roughness of the particular joint. The maximum 

reduction should be expected for joints of high JRC and JCS and 
the mini=um for joints of low JRC and low JCS. The present 

experiments have shown that for joints of the first group, K (inter- 

locked) reduced by an average factor of approximately 10 within the 

normal stress range up to 5 MPa. For the other group the 

reduction amounted to a factor of approximately 2.5. 

(b) the largest part of the reduction in n (interlocked) occurs 

during the very initial stages of displacement. Subsequent 

changes up to dh(peak) and immediately after appear to occur 

at considerably slower rate. No information is available as to 

the changes in 
n after very large displacements. 

Shear deformation 

(ix) Joints display variable shear stress (Z )-shear deformation (dh) 

behaviour within the region up to mobilization of peak shear strength, 

ranging from virtually linear to highly non-linear. Non-linear curves 

can be adequately approximated by hyperbolic functions. 

(x) The peak shear stiffness (s )-normal stress ((Tn) relationship 
is non-linear irrespective of the joint type. Under the same normal 

stress the shear stiffness is regulated by all the factors which affect 
the peak shear strength (-gyp) and displacement (dh)p. The normal (Kn) 

to shear (Ks) stiffness ratio varies with normal stress, the highest 

anisotropy generally occurring under low stress levels. No systematic 

weathering effects have been identified in the KnfKs ratio values. 

(xi) Two potential sources of error may affect the values of s measured 

at laboratory scale. The peak shear strength of a previously overclosed 
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joint will be underestimated if the overclosure ratio operating in the 

field is not reproduced prior to the test. The peak shear displacement 

may on the other hand be considerably overestimated if external 

deformations are not avoided or if, preferably, displacements are not 

measured directly on the sheared joint. 

(xii) Peak shear stiffness measurements on laboratory-size samples 

will probably yield the absolute maximum Ks value for a particular 
large scale joint exposure. In fact, s is strongly scale dependent. 

This is also verified by the results from the present model joints 

which show a remarkable similarity with the trends of literature data. 

The magnitude of scale effect on Ks depends on the type of joint 
(e. g. rough, undulating or planar) and generally increases for rougher 

joint surfaces. 
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APPENDIX I 

1. PHYSICAL PROPERTIES OF TEE COMPOSITE MODELLING MATERIALS 

A list of the materials that were combined into,. a variety of mixes 
has been given in section 2.2.4 , and some information about their 
physical characteristics is presented here. 

(a) Cementing materials 

Plaster is the most commonly used binder in multi-component mixes. 
The material is easily obtainable, it is easy to cast, sets relatively 
fast, shows very little. shrinkage, its properties can be changed by 

addition of various fillers and is relatively cheap. 

The main disadvantages are the sensitivity of its properties to-external 

factors such as the source of raw material, production conditions and 

atmospheric moisture. It is generally advisable to'test each new supply 

of plaster and store it in air-tight containers. ý" 

The mechanical properties of dry plaster, i. e. ~dried plaster-water mixes, 
have been summarized by Stimpson (1970), and some very brief notes are 
included here. 

Uniaxial compressive strength Cm ay range from", 2.5 to 7.6 mal Young's 

Modulus (ET) can vary between 2.5 and 18 GPa and Poisson's ratio (V) is 

of the order of 0.06 and 0.304. 

The a-C/O't ratio varies between 2 and 8 depending upon the type of 

plaster. With increasing amount of water, Q'c, at and E decrease and 

V rises or stays constant. 

Depending upon the type of plaster and testing conditions (e. g. rate of 

strain) the stress-strain curves can be either linear or non-linear. 
Most non-linear curves possess a linear region at low stresses. 

The dependence or the properties of the plaster upon its hydration state 

makes curing conditions very critical. Hobbs (1966) tested the effect 

of curing temperature on sand-plaster mixes and found that curing at 

25°-30°C gave slightly lower (To, at and ET values. By drying at 90°C9 

a-o and Ep decreased by up to 85% due to the breakdown of the dibydrate. 



I. 2 

Three types of plaster were tried, namely, plaster of Paris,. dental 
and pink plaster, and the first one was finally adopted. 

Plaster of Paris (P. P. ) is the hemihydrate of calcium sulphate and has 
the composition CaSO4. jH2O. It is commercially produced by calcination 
of gypsum (CaSO4.2H20) at 190°-200°C. Addition of water results in 
reversal of the above process and needle-like crystals of dihydrate 
(CaSO4.2H20) are formed: 

Cas04.2 0+ 3/2 H20 CaSO . 2H 0 42 
The hydration process requires 18.6 grams of water for, every 100 grams 
of plaster. 

Dental plaster (D. P. ) is the hemihydrate of ß-calcium sulphate. It 

resembles P. P. in that neither contain impurities. Dental plaster is 

produced by calcination at higher temperatures-than P. P. Dental 

plaster was found to be slightly weaker than plaster of Paris. 

Finally, pink plaster contains various additives which retard its 

setting time to over 1 hoar compared to the 5-10 rains of the other 

two types. 

Control tests on plaster of Paris consisted of compression and diametrical 

point loading of cylindrical specimens 2.5 cm D/5.0 cm L, prepared-from 

a mix of equal quantities of water and plaster (W: P. P. = 1: 1) and cured 

at 900 + 5°C for 2 days. 

The three different batches of P. P. supplied during the course of work 

showed very similar. properties (ß-c = 552 ± 50 kPa and (7't = 125.5, ± 15 kPa). 

Care was taken to store the plaster in a moisture-free environment' and 

gras always kept in air-tight containers. 

The suppliers were: C. F. Thackray Ltd., Leeds. 

(b) Frictional fillers 

Sand was used as the basic frictional filler and five different types 

were tried before the choice of the optimum one. The varieties of sands 

differed both in grain-size and sort , "including: 

- Very fine sand (VP) - 

- Fine (silver) sand (F) 
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- Medium-coarse sand (MC) 

- Coarse sand (C) , 

- Very coarse sand (VC). 

Letters in brackets axe the assigned symbols for brief description of 
each sand type. 

The grain size distribution of the five sands obtained by sieve analysis 
is presented in Figure 1. From the cumulative graphs two statistical 
parameters, namely graphic mean and graphic standard deviation, were 
derived by methods given in Folk (1968). The various derived parameters 
together with the dry densities of the sands are presented in Table 1. 

The type of sand finally chosen was the silver sand (F-type). The 

reasons of the choice will be explained in the relevant context. 

Suppliers: Cawoods Building Materials Ltd., Leeds. 

(c) Other additives 

Three different additives. were combined with the basic sand/plaster/water 

mixtures in the attempt to improve the properties of the latter, namely: 

Barytes (BaSO4) : 'Finely-ground powder. Specific gravity = 4.35" Used 

as a dense filler to increase the density and reduce 
the deformation of mixes. 
Other types'of similar additives that have been used 
in the past axe red lead (Pb303) (Barton, 1970), iron 

ore and magnetite powder. 

Calcined Alumina (Burntisland grade, A1203) : Silt-size powder of 

specific gravity 3.8. Used mainly to increase the 

o- a't ratio and improve the brittleness of the material. 
Use Of- alumina has not been reported in the literature. 

Kaolinite powder (pure Clay size fraction, specific gravity 2.6. 

Use of clay has been reported to-increase the brittleness 

of materials (Stimpson, 1970" Its present use proved 

unsuccessful. 

Suppliers of barytes: Donated by St. John's Colliery, NCB, 

Nr. Normanton, Yorks. 

Suppliers of alumina : B. A. Chemicals Ltd., Chalfont Park, Bucks. 
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TABLE 1 

Description of type and dry densities of sands 

m. 

GRAPHIC MEAN SAND UNIFORMITY ]DENSITY 
Type 

sand = 16% 87ß6 + X5,0%+ Graphic std. dev. = gr/CM3 
- 3 

ý84% 
16% +9 5K 5%- 

values in mm - 4 
Description 

VF 0.21 0.31, Very well , 1.51 
sorted 

F 0.27 0.50: 
_ 

Moderately 1.62 
well sorted 

NC 0.47 0.56 ýý "" 1.74 
C 0.79 0.29 Very well 1.53 

sorted 

VC 1.39 0.25 ýý ýý 1.50 

r .. 
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2. DETAILS OF TEST SPECIMEN PREPARATION 

Mxing 
The mixing of the various components was carried out in a Kenwood A901 

mixer of double orbital type. Blending duration was standardized for 

similar mixes and the same speed was used throughout (setting 4). 

The mixing of the materials was performed at three consecutive stages: 
dry mixing of fillers (5 minutes) addition of water and 5 minutes 

of wet blending -- addition of plaster quantity. The duration of 

mixing of all components depended upon the quantity of plaster and water 

and for the various combinations tried, it ranged between 20 seconds 

and 3 minutes. ' In general, blending was continued until the mixture 

reached a "creamy-but-pourable" state. " 

The latter condition was essential for two reasons: firstly, it almost 

eliminated the amount of "bleeding" of the specimens during setting and 

secondly, enabled preparation of compositionally homogeneous specimens. ' 

With regard to the latter, it. should be pointed out that careless mixing 

resulted in a layer of "watery substance" on the top of the mixture 

which was inevitably poured in the first two or three moulds. 

(b) Cast' 

The blended mixtures were poured into cylindrical moulds made of acrylic 

plastic. The average inside diameter of the cylinders was 25.67 mm 
(std. dev. = 0.240, n= 20). The moulds were of two different lengths; 

the longer ones (with average length of 51.22 mm, std. dev. = 0.2) were 

used to cast specimens for compression tests; the shorter ones (average 

length 21.26 mm, std. dev. = 0.22) provided specimens for axial point 

load testing. 

After the plaster had set, the excess material was gently scraped off 

the mould ends. 

Removal of the specimens from the moulds originally presented a small 

problem. A lubricant oil was firstly used to cover the walls of the 

moulds and ease specimen removal. However, that method proved dis- 

advantageous for the following reasons. Firstly, it caused considerable 

delays as one had-to-wait until the specimens -were hard enough to with- 

ständ without disturbance (mainly end compaction) the pressure necessary 



I. 6 

for their extraction. Secondly, in quite a few instances miniature 
surficial pores were observed on the walls of the specimens. Closer 

observation of the "lubricated" cylinders revealed the existence of 
many air-bubbles trapped under the thin oil film, which were thought 
to be responsible for the defective specimen surface-finish. Use of' 
less oil proved to be ineffective. 

Another set of moulds was then prepared with longitudinal slits along 
them. Once the*mix had apparently set the moulds were placed for a 
few minutes in the oven at 60°-700c. That resulted in a very small 

radial expansion of the plastic and by gently pulling the slit sides 

apart the specimen could very easily be pushed out. The possibility 

of mould deformation due to the repeated heating cycles was considered 

and measurements of dimensions were taken regularly by a micrometer. 

No measurable change was recorded throughout the course of the 

investigation. 

(c) Curing 
f t 

The basic characteristic of multi-component mixtures cemented with 

plaster is that a much larger amount of water is needed to make the 

mix pourable than that required for the hydration process. 

Removal of the excess or free water can be achieved through evaporation 

by exposing the specimens either at room or oven temperature. The effect 

of curing temperature upon the properties of plaster has been briefly 

discussed in section 2.2.4. 

During the course of this work a range of temperatures was tried, 

varying from room temperature (_ 2000) to oven (80°-850C). As 

expected, that variation was found to be critical for the strength of 

the mixes tested. The curing temperature used for the final model 

material was 50°-55°C which allowed the desired strength properties 

to be obtained. 

The curing procedures will be discussed further in connection with the 

various mixes. 
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3. NOTES ON THE TESTING PROCEDURES 

(a) Uniaxial Compression Tests 

Compression tests were performed on. standard size. (25 mm D/50 mm L) 

cylindrical specimens using an Instron Compression Machine. -Uniaxial 
strength was calculated from: 

a=Lx9. 
so 

x 10-3 kPa 
c c. s. a. 

where L= load in kgms 

c. s. a. = cross sectional area in m2 (= 517.5 x 10 
m2). 

(b) Indirect tensile strength tests 

(i) Point load tests 

Axial testing, Tý00 

The tests were performed on 25 mm D/20 mmýL cylindrical specimens 
having the optimum cross sectional area of 500 mm as has been, 

recommended by Brook (1977). 

The T500 index was obtained from: 

Lx 9-801'x 1073 T500 = c. s. a. x 10 kPa 

where L= load in kgms, 

c. s. a. = cross sectional area in m2 (= 500 x 10 m 
6 2). 

_ Diametrical testingLT0 (Kroch and Franklin, 1972) 

The standard compression cylinders were point load tested diametrically 

and To was derived from: 

T_Lx . 80 10-3 kPa 
d2 

where L= load in kgms 

d= specimen diameter in ,m (= 25.667 x 10-3 m)- 

(ii) Brazilian' test (o'ta 

The test was performed on 25 nun diameter/8 = thick discs and Crtb 

was calculated from: 

2L x 9.807 -3 x 10 kPa tb = IT Mt 
- 

where .L= 
load in kgms 

D= diameter of disc in meters (= 25.667 x 10-3. ) 

t= thickness of disc in meters (=. 8 x 10 3m). 
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(c) Measurements of axial deformation 

Use of strain gauges for measurements of axial and lateral strains of 
model specimens poses a. number of practical problems. For instance, a 
thin coating of high modulus plaster on the specimen surface may result 
in underestimation of deformability if the gauge is directly attached 
on it. The inverse error can be induced by concealed pores near the 

specimen's surface. Furthermore, the time-consuming preparation and 
the cost when a large number of tests are involved, are not justified 
in view of the uncertainties involved. 

Consequently, it was decided to measure the axial deformation of the 
loaded specimens by means of a dial gauge mounted on the matron compression 
machine. The gauge is calibrated to measure the downwards movement of the 
loading ram of the apparatus to an, accuracy of 0.001 mm. 

During compression of a specimen the total movement of the loading ram 
is the sum of the axial "shortening" of the specimen and the vertical 

suppression of the base plate. Therefore, under any load F the dis- 

placement (D) of the loading end is: 

D= (L-Lt)+d 

where: L= original length of specimen 
L' = reduced length of specimen due to axial deformation under P 
d= base plate suppression under F. 

If D can be corrected for d then the axial deformation (L - L') will be 

equal to (D - d), and hence axial strain (E) will be: 

L- L' 
L 

The average movement 
_(d) of the base plate under various loads was 

measured from a series of compression tests on a steel cylinder. 
Mechanical dial gauges (0.001 mm) were also used to cross-check the 

readings of the machine gauge. The displacements recorded by all gauges 

were almost identical. 

The normal load-base plate deflection relationship was perfectly linear 

for both load cells used in the experiments. Linear regression analysis 

of the data gave the following two calibration equations: 

CCM-cell: 0-50 kgms: Y(kgns). = 2.367 (kgns) +-0-445-X (I m), r =+0.998 

CFX-cell: 0-5000 kgr 
. s: Y(kgms) = 7.782 (kms) +`6.085 X (Nm), r =+0.989 
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Use of the above equations enabled corrections of the total displacement 
of the loading ram recorded during each experiment. 

Care was exercised during the test specimen preparation to ensure flatness 
of the ends. A very good finish of the latter was achieved by lapping 
them with a glass plate after extraction from the moulds. 

The axial deformation at failure was recorded for every specimen of a 
given mix, and an average value was assigned. The deformation of 3-4 

specimens from each mix was measured at regular load increments and the 

average values were used to draw the stress-strain curve for that material. 
From that curve the secant and tangent (at 50°A o'c) values of Young's 
Modulus were calculated., 

(d), Density and Porosity-Evaluation 

The density (e) of the mixes was calculated according to 

Mass 
e- Volume 

A batch of cylindrical specimens was weighed after completion of curing 

and the average mass was divided by. the'average volume of the specimen 
to derive mass per unit volume or density in gns/cm3. 

Porosity was evaluated indirectly on the assumption that the volume 

occupied by, free water in the "wet" mix is equal to the volume of pores 
in the cured mix. - Then porosity can be evaluated by dividing the weight 

of the evaporated water by the mass of the cured specimen. 

4. PROPERTIES of THE VARIOUS TRIAL NIXES 

(a) Behaviour of the Sand (S)-Plaster (PP) -Water (W) system 

(a. 1 Different sand types 

The ph 7uical characteristics of the five different sand types tested have 

been given in Table 1, section 1 of this appendix. According to their 

grain size the various sands have been described as: very fine (VF); 

fine (F); medium-coarse (MC); coarse (C); very coarse (VC). 

The above varieties were used to prepare five mixes with the same amount 

of plaster and water. Each mixture consisted. of the following quantities: 

Sand = 600 grms/Plaster = 100 grms/Water = 200 firms 
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During the preparation of the mixes it was observed that grain size 
influenced their viscosity. For the same amount of water the mixtures 
of the coarse sands were rather "watery", while the ones with finer sands 
were much "thicker". That indicated the generally higher water require- 
ments for saturation of finer grained materials due to their relatively 
larger surface area. 

After preparation, the specimens were at first left to dry at room 
temperature for 24 hours to avoid development of vapour pore pressures, 
and then put in a ventilated oven at 80°C. 

During the curing period regular recordings of the water loss were made. 
The specimens were considered as cured when no measurable changes of 
mass weight could be recorded. The latter meant that all the free water 
that was originally retained in the pores had evaporated. 

Figure 2 shows the rate of moisture loss of the cylindrical specimens 
under room and oven temperatures. As shown, an apparent total loss of 
free water was achieved after - 35 hours of combined curing. The specimens 

were removed from the oven after 1-j days. 

The experimental results from uniaxial compression and point load (T500) 

tests on the various mixtures are given in Table 2. Two additional mixes 

with combined sands were. also tested (denoted 1 and 2 in Table 2). 

The results showed that both a- e and T500 varied with sand type. 

The three "uniform" sands VF, C and VC gave weaker mixes than the graded 

sands F and MC, as shown in Figure 3. Such behaviour can be attributed 
to the better interlocking between the different sized grains in P and MC. 

Uniform grain size will result in looser packing of the grains, particularly 
in cases of coarse sands. It is interesting to note that the very fine 

sand (VF) of the uniform varieties exhibited much higher strength than the 

other two types (C and VC) because of the better mechanical bonding of the 

small grains. The closer packing of the sand structure that resulted from 

combinations of C and VC with VP resulted in mixes with strength higher 

than that of the original C and VC mixtures (Table and Figure 3). 
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FIGURE 2 Curing of 25mm diameter/ 50mm length cylindrical specimens 
of sand-plaster-water mixes. 
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TABLE 2 

Different sand types 

Components Streng th prop erties '(kPa) 
6 Failure Sand (gms)_ Proportions 

N f N f c Density t o. o o. O rain s type S PP W PP: S W: S spec.. ,c spec. 
T500 "500 e(icm3) %f 

vF 600 100 200 1: 6 1: 3 8 91.87 5 17.73 5.2 1.52 1.35 

F III 9 115.34 7 22.53 5.1 1.53 1.11 

Mc "" ýý ýý ýý 7 118.12 8 25.60 5.0 1.57 1.45 

c 6 77.03 7 13.13 5.9 1.53 1.72 

vc 6 52.72 5, . 12.02 4.4 . 1.56. 2.10 

(1) 600 100 200 1: 6 1: 3 8 67.84 3 12.23 _5.55 
1.59 - 

(2) 9 86.19 9 16.07 5.4 1.56 - 

(1) : 300VF + 300VC; (2) : 300VF + 3000, 

6 
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It would appear therefore that the load carrying capacity of the sand 
structure decreases with increasing grain size especially in cases of 
uniform sands. The small amount of contact between the grains would 
reduce the internal frictional resistance of the material and increase 
its deformability. (2.1gä strain at failure was recorded for the VC sand 
type. ) In view of the above the very coarse (VC) and coarse (C) sand 
types were eliminated from any further testing. 

(a. 2) Properties of the VF, F and MC sand types mixed with various 

plaster quantities 

The VF, P and MC types of sand were mixed with various amounts of plaster 
to gain some information about the range of strengths that could be 

achieved. The quantity of sand and water was kept constant for all mixes 

at 600 gyms and 200 cm3 respectively. Curing of the specimens followed 

the procedure described in the last section (24 hra at 20°C and 36 hra 

at 85°C). 

For each type of mix the amount of plaster was increased to the maximum 

cuantity that would still allow a workable mix -to be obtained. Me VF 

sand could only be mixed with up to 150 grins of plaster before it reached 

its workability limit. For the MC and F sands the maxim= plaster 

quantities were 200 and 250 gyms respectively. 

The experimental results are given in Table 3, and the variations in G'C' 

and T500 are shown in Fig. 4. 
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TABLE 3 

Properties of Sand-Plaster-Water materials with constant S and-W and 

varying PP 

Curing: 24 hrs at 20°C +'36 bra at 85°C. 

Sand Components (grProportions Strength properties (kPa) Density % 

t e SW PP PP SW S N fN f 
Tc ý 

yp : : o. o T o. o 3 (i ) at spec. c spec. 500 500 failure 
of 

VF 600 200 120, 1: 5 1: 3 6 229.8 7 44.76 5.1 1.51 1.14 

135 1: 4.4 7 332.7 5 64.94 5.1 1.54 1.15 

150 1: 4 6 399.0 6 -87.26 4.6 1.53 1042 

F 600 200 150 1: 4 1: 3 9 363.05 8 64.28 5.7 1.59 1.13 
200 1: 3 10 664.10 7 128.75 5.2 1.62 1.13 

250 1: 24 8 1187,9 6 213.37 5.6 1.62 1.06 

Mc 600 200 150� 1: 4,1: 3, 8 353.5 6 83.36 4.2 1.58 1.50 

175 1: 3.4 8 493.43 8 95.80 5.2 1.63 1.55 

200 1: 3 . 7 642.40 7 135.14 4.7 1.64 1.52 

Measurements of the axial strain at failure showed the high deformability of 

the mixes. The F-sand material was comparatively the least deformable while 

the highest strain was exhibited by the MC-mixture. A similar pattern' was also 

observed for the CTJTS00 ratio values. 

on the basis of the above results, the MC-sand was discarded from any further 

testing: The VP-sand was also rejected because of its high water requirements 

and hence low mixture strength. 

(a-3) Properties of silver card/plaster mixes with different water contents 

The critical factor that controls, the deformational behaviour of a model, 

material is the volume of the Pore space left after evaporation of the free 

water. As has already been discussed, the water requirement of a mix is 

related to the grain size of'the filler and the amount of plaster used. 
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Since the silver sand/plaster system. fozmed the basis of all subsequent 
combinations, the effects of different water quantities upon the properties 
of the above components was studied in order to draw some guidelines for 
future optimization of proportions. 

Eight sets of specimens were prepared by using a constant S: P ratio of 6: 1 

and vaxying the amount of water. The relative quantities and the test 

results are presented in Table 4. 

T 

For all mixes S: P = 6: 1 

Components Density Porosity Streng th prop erties (kPa) % strain 
Mix (gr) W: S e P Nö. of No. of at 
type S PP W (cm3) / spec. 'c spec. 

T500 failure 
Ef 

1 600 100 250 1: 2.4 1.39 44.8 6 50.2 7 8.32 2.0 

2 200 1: 3.0 "1.53 42 9 116.3 7 22.5 1.4 

3 190 1: 3.16 1.57 41.5 9 132.2 9 25.4 1.5 

4' 185 1: 3.24 1.57 42 8 172.2 9 34.0 1.2 

5 180 1: 3.33 1.61 40 10 184.2_ 11. 40.0 1.4 

6 175 1: 3.45 1.59 36 8 179.2 6 31.1 1.1 

7 170 1: 3.53 1.62 38 6 185.5 7 37.1 0.9 

8 165 1: 3.64 1.64 38 5 189.2 7 38.5 1.1 

As expected, increasing water content results in decreasing density, increasing 

porosity and hence decreasing strength. The variation of those properties 

with volume of water is illustrated -in Figure 5. 

The minimum amount of water required for saturation of the 700 grins of the 

sand/plaster mix was 165 grins, i. e. a proportion of W: (S+P) of 1: 4.24" 

impending upon the water content the defozmation of the specimens at failure 

was tf= 2% at W= 250 'cm3 and 'Ef% 1% at W= 165 cm3 A small decrease in . 
the value of the o /T500 ratios was observed-from 6 to 4.9 - with decreasing 

water. 
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As will soon be discussed, use of fillers enabled considerable improvement 

of the minimum water requirements of the silver sand-plaster system. 

(a. 4) Summaxy of Properties of the SAND: PLASTER: WATER system . 
The test results from the various trial mixes of the three basic material 
components gave sufficient information on the general behaviour of the 

system and pointed out the disadvantages of those combinations. 

Compressive strengths up to 1.2 MPa were obtained-(F-sand mix) under high 
temperature curing conditions, and obviously the target value of - 2.0 MPa 

could easily be reached if different curing temperatures were employed. 
However the mixes hardly approximated any of the requirements of the 

model material. 

Densities were generally low being approximately 1.5 - 1.6 grms/cm3. The 

porosity of the mixtures was of the order 'of 38 to 42'/ and, the materials 

were very defoimable. 

The average axial strain at failure: was estimated-'to be over 1% which was 

unacceptable in view of the range specified (. 15 - . 4%). Furthermore, 

the °c/T500 ratio was generally low being approximately 5 on average. 

The selected sand type (silver sand) was also combined with two other 

varieties of plaster, namely-dental and pink. The latter was immediately 

rejected because of its extremely long setting period. 

Dental plaster mixtures exhibited behaviour and properties similar to 

those of the mixes of plaster of. Paris. Comparatively, the former type 

was found to be slightly weaker than PP. A summary of the properties 
is given below., 

'Mix : 600 gras SAND/200 firms WATER/250 firms PLASTER 

PP-Mix DP-mix 

6c (kPa) 1188 1052 
T500 (kPa) 

_ 
213.4 184.0 

6 T500 5.6 5.7 

1.06 1.31 

At this stage the investigation was directed towards improvement of the 

basic sand/plaster/water mixture with the aid of various additives. 
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(b) Properties of"the Sand-Plaster-Water system combined with other fillers 

(b. 1) Use of Barytes (B), Kaolinite (K) and Alumina (A) as fillers 

A set of five mixes with different barytes to sand ratios (1: 1, '1: 2, 
1: 3,1: 4,1: 5) was preparedto investigate the effects of the dense 
filler upon the properties of the silver sand/plaster/water system. 
The quantities of plaster and water were kept constant in all the 

materials to proportions of PP: (B+S) = 1: 6 and W: (B+3) = 1: 3 (average 

water requirement for similar quantities of sand and plaster). The 
test specimens were cured by oven drying at 80°C for 1j days, after 
exposing them at room temperature for 24 hours. 

The test results are presented in Table 5. 

Inclusion of the high specific gravity barytes caused an increase of the 

strength and density of the basic sand/plaster/water mixture. 
Comparatively, the materials with high barytes content - B: S = 1: 2 and 
1: 1 - showed the best behaviour with 0c/T500 values of 7.5 and 6.0 and 

axial deformation at failure 0.30 and 0.87 respectively. However, the 

latter was still at unacceptable levels. 

Another interesting observation was that barytes appeared to reduce the 

water requirements of the mixes. - As mentioned in sub-section a. 3, a 

quantity of 600 firms sand and 100 gins plaster required 165 cm3 of water 
for the mix to reach its workability limit. A similar quantity of 

combined sand and barytes (400 gr S+ 200 gr B) with 100 gyms of plaster 

needed 125 cm3 to reach similar viscosity. A series of mixes was 

prepared with different B: S proportions and constant plaster content 
(P: Filler'= 1: 6). The quantity of water added to each combination was 

sufficient to provide a workable mixture. The decreasing water require-" 

ments with increasing barytes content can clearly be seen in Figure 6. 

A new set of specimens was prepared-with the same B: S ratios as those 

presented in Table 5, but with smaller water content (W: Filler = 1: 4). 

Those test- results are included in Table 6 (Mix types: F6, F7, F8, F9). 

In Fi a comparison of the compressive strength vale s of the same 

mires with different water contents is shown.. 
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The densities, strain at failure and CrcýT500 ratios of the two materials 
are given below. 

Mix proportions - PLASTER : FILIER = 1: 6 

W: F = 1: 3- 

e(g/cm3) % Ef 00 

B: S = 1: 8 

= 1: 4 

= 1: 2 

= 1: 1 

W: P = 1: 4 
ilcm3) % F-f C°/T500 

1.59 1.12 5.7. 1.76 0.95 4.2 
1.63... _ 1.33. 5.0 1.79 0.95 4.85 
1.65 1.10 7.5 1.84. 0.90 5.30 
1.70 1.02. 6.0 1.91 0.87. 4.55 

The last results showed that a smaller amount of water resulted in 
higher densities and lower deformation at failure. However the °c/T500 

ratio appeared'to decrease with decreasing water content. A similar 
trend was observed in the case of the sand/plaster mixes described in 

section a. 3. 

The water-to-filler proportion of 1: 4 was used for a new set of mixes 

with different B: S and P: (B+S) ratios, which were tested to enable 

choice of the most promising combination for further development. 

A total of sixteen mixtures were prepared by using four B: S. ratios 
each combined with four different plaster quantities. The test results 

are given in Table 6. 

The material with B: S proportion of 1: 2 seemed to be of relatively better 

quality than. the other three, especially with regard to deformability. 

The 0c/T500 ratio continued to remain low (around 5) for all mixes. 

Evidently the inclusion of barytes resulted in an overall improvement of 
the performance of the sand/plaster/water mixes. However further 

investigation was required to increase the brittleness of the materials 
to levels approaching the set specifications., 

parallel to the development of mixtures with baxytes, the potential use 

of two other fillers was studied, namely Saolinite and Alumina.. 

As reported in section 1 of this appendix, use of clay has been found 

to increase the brittleness of model materials. 
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However, attempts to use Kaolinite as a filler proved unsuccessful. 
The main problem was the very high water requirements of the mixtures. 
A combination of Kaolinite: Sand of 1: 8 and plaster: filler of 1: 5.25 
required a water: filler proportion of 1: 3 for the mix to be workable. 
That material showed considerable compressive strength (777 kPa) which 
was higher than that of proportionally similar mixes of sand/barytes. 
The hydrogen bonding in the clay substance was presumably the reason 
for that strength. 
High axial strain (0.98%) was recorded at the moment of failure, and 
the ac/T500 ratio was 5.2. 

Combinations of different quantities of alumina with sand gave more 
promising results. Four mixes were prepared with A: S ratios of 1: 1, 
1: 2,1: 4 and 1: 8. The same plaster quantity was used in all cases in 

a proportion P: (A+S) = 1: 5. Although the mixtures needed a considerable 
amount of water they showed an interesting behaviour. 
The test results are presented in Table 7. The amount of water added 
to each combination was sufficient for saturation of the components 
in a workable mix. 

6 

The high water content of the mixes resulted in low densities (P ). The 

materials with high alumina content were very deformable (bf = . 9%) 

but the other two (FA3 and FA4) which required less water showed strains 

at failure of 0.6 and 0.749/o. The other interesting feature was the 

relatively higher (Tc/T500 ratios (6.6 and 7.1). Repeat tests on the 

latter two materials confirmed the results. 

Afthat stage it was decided to investigate the combined effect of 

alumina and barytes upon the sand: plaster: water system. 
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(b. 2) Properties of mixes, with combined fillers 

A number of combinations between the various components was tried in 

order to achieve an optimum proportion of S: (B+A) with the minimum 
water requirements. The one that was finally chosen consisted of sand 
combined with the filler (79) B,; 25% A) in a proportion of 2 to 1. 
The optimum amount of water was in a proportion of 1W to 4(S+B+A). 

The test results on specimens prepared from the last material with 
various plaster quantities are presented in Table 8. All specimens 
were cured for 24 hours at room temperature and for 36 hours at 85°C. 

The behaviour of that material was found to fulfil the various 

specifications to an acceptable degree. Its strength was of course 
lower than that required, but much higher ac values could be obtained 
by adopting a different curing temperature. Earlier tests on Sand/ 
Barytes mixes revealed a ten-fold difference in strength between the 

materials cured at room temperature and at 85°C (2.86 MPa and 0.292 MPa 

respectively). The curing temperature chosen for the final material 

was 50°-55°C. 

An extensive experimental programme was undertaken to establish the 

design curve of the material and to test its reproducibility. The 

details on the properties of the final model material are discussed 

in Chapter 2.2 

The following Tables 9 and 10 summarise the experimental results from 

the final material and will be referred to in the relevant context in 

Chapter. 2.2. 
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II. 1 

APPENDIX II 

Tables 11 to 21 containing the cumulative mean direct shear test 

results from model joints (see p. 141). 

Symbols: 

L= length of individual joint blocks 
dh = shear displacement 

= cumulative an shear stress at. corresponding dh 

dv = cumulative mean vertical displacement at dh. 
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APPENDIX III 

This appendix has been included as a supplement to Chapter 3.2 in 

part three. It contains additional information on the Schmidt hammer 

index testing method of rock surface hardness, on the preparation and 

compression testing of joint blocks and detailed notes on specimen 

preparation and shear testing of joints in a portable shear box. 

1. Notes on Schmidt hammer testing of rock surfaces 

The Schmidt hammer was originally designed by E. Schmidt for testing 

concrete. The hammer is a simple device recording the rebound of a 
spring loaded plunger'after its impact with a surface. A longitudinal 

section of the instrument is shown in Figure III. 1. 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Impact plunger 

Tested surface 

Housing compl. 

Rider with guide rod 

Pushbutton compl. 

Hammer guide bar 

Disk 

Cap 

Two part ring 

Rear cover 

Compression 

Pawl 

Hammer mass 

Retaining spring 

Impact spring 

Guide sleeve 

Pelt washer 

Scale 

Trip screw 
Lock nut 
Pin 

Pawl spring 

III. 1. Longitudinal section and description of components 
of a Schmidt haiianer (from manufacturer's manual). 
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Briefly, under pressure the compression spring (12) at the top of-the 
device contracts, while the impact spring (16) extends. Just before 

the plunger (1) disappears, in the housing (3) the impact mass (14) of 
the hammer is released and due to the tension developed in the impact 

spring (16) it strikes the end of the plunger. After the impact the 

hammer mass rebounds to a certain height which is indicated by a 

pointer (4) on a scale (5). The reading on the scale represents the 

rebound height as a percentage of the forward travel of the impact 

mass and is termed the rebound number (R). 

There are a number of Schmidt hammer types differing in the amount of 
impact energy (in fact,. spring stiffness), which are tabulated below 

with the manufacturer's specifications and recommendations for use. ' 

Hammer type Impact 
energy () Recommended use 

"N" . 225 For testing concrete in 
ordinary building and bridge 

" construction 

: 075 For testing small and impact 
sensitive, parts of concrete or 
artificial stone 

"M" 3.0 For massive concrete, concrete 
road pavements, airfield run- 
ways 

"F" . 09 For low hardness and strength 
(pendulum materials (4.8 to 24 MPa) 
type) 

11PT11' "09 For. extremely low strength 
materials (. 5 to 8 MPa) 

The L-type hammer is the- one most commonly used for testing of rock 

surfaces, as it is non-destructive even when applied on hand-specimens 

and is capable of measuring strength values from 20 up to 300 MPa. 

Miller (1965) investigated the 
_potential_application -of 

- 

the-Schmidt-hammer for the purpose of indexing of rock substances. By testing a 

suite of rock types he found 'a reasonable correlation between the re- 

bound number, R (in the range from approximately 25 to 60) and unconfined 
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compressive strength (6c) measured on conventional cylindrical 

specimens. Best linearity in the original arithmetic plot of p'c vs 
R was observed in the range of rebound numbers from approximately 40 
to 55. An improved correlation was subsequently obtained when he 

multiplied the rebound number by the dry unit weight (Y in kN/m3) and 
he was able to derive the following semi-logarithmic relationship: 

log c, = 0.00088 YR + 1.01, r=0 . 943 

The above relationship and an approximate measure of the anticipated 

scatter is shown in Figure III. 2. 

Appreciation of the significance of the hardness. of the joint surfaces 
as opposed to that of the underlying rock substance has led to the use 
of the Schmidt haumier for direct testing of joint surfaces and 
derivation of an index representing the joint compressive strength (JCS). 

Despite its simplicity the test is sensitive to a number of external 
factors and for optimum results the following operational instructions 

should be noted (summarized mainly from ISRM, 1978b): 

(a) the hammer should be applied*in a direction perpendicular to the 
test surface 

(b) for a given surface the rebound number is minimum when the hammer 

is used vertically downwards (rebound against gravity) and maximum 

when used vertically upwards. Miller's equation and Figure 111.2 

apply to vertical downwards tests on horizontal surfaces. For any 

other testing direction the rebound numbers should be appropriately 

corrected, as shown in Table III. 1. 

(c) if the impulse is sufficient to move the surface being tested, the 

resulting rebound will be artificially low. This problem may 
arise in field testing of a closely spaced and loose joint structure. 
Specimens tested in the laboratory should be sufficiently large 
(for example blocks at least 20 cm in each direction, Barton and 
Choubey 1977) or otherwise they should be rigidly clamped on a 
heavy base.. 

- 
(d) the test surface should be smooth and flat over the area covered 

by the plunger. Crushing of loose grains also produces artificially 
low readings. 
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AVERAGE DISPERSION of 
STRENGTH FOR MOST ROCRS(MP ) 
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FIGURE I11.2. Correlation chart for Scbmidt (L. ) 
hammer, relating rock density, 
compressive strength and rebound 
number. 
(After Miller, 1965)" 

. TAFLE III A 

Corrections for reducing measured Schmidt hammer rebound (r) when the hammer is not used vertically 
downwards 

Rebound Downwards Upwards horizontal 
r a--9U` a--450 a -+90° a-+45' a-0" 

10 0 
. -0.8 -3.2 

20 0 -0.9 -8.8 - -6.9 -3.4 
30 0 -0.8 -7.8 -6.2 -3.1 
40 0 -0.7 -6.6 -5.3 -2.7 
50 0 -0.6 ' -5.3 -4.3 -2.2 
60 0 -0.4 -4.0 --3.3 -1.7 

POCK DENSITY r ýr ýý e 

116a 
aoo .1 1 / Z, 

sio 
oil* 

+so ' 

1- 

Mommar vortical dowwwords 
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It is important to consider the factor (d) in some detail. Rebound 

numbers are affected by the roughness (both microscopic and megascopic) 
of the surface being tested. Dixon (1969) gave a broad classification 
of various surface textures as an aid to the appraisal of the rebound 
test (Figure III. 3). The rebound numbers from rough surfaces (e. g. see 
"hackly" type, in Fig. III. 3) show larger scatter and the mean value is 

usually lower than that of a planar surface of the same rock type. 

Since the correlations between the uniaxial compressive strength and 
the rebound number are'based on tests on flat surfaces, some more 

standardized procedure is necessary for the assessment of the JCS index 

from direct testing of natural joint surfaces. The ISRM (1978b) 

recommends that tests are performed in groups of 10 (i. e. 10 tests per 
joint, or 10 tests per unit area of a large critical discontinuity), 

applying the hammer to a new part of the surface before each impact. 

The five lowest readings of each group of 10 are discounted and the 

mean value of the five highest readings is quoted. The overall mean 
R value for a set of joints can then be obtained from a number of 
individual sets of 10 tests conducted on different joint exposures. 

For a better appreciation' of the effects of surface roughness on the 

rebound numbers, a-few experiments were conducted on smooth, saw-cut 

surfaces aid rough tension fractures of three rock types, namely: a 

coarse-grained granite, a medium-grained sandstone and a fine-grained 

dolerite (Whin Sill). A group of twenty readings were firstly taken 

by applying the hammer on the sides of the blocks, which were then 

split in tension and the same number of tests was repeated on the rough 

fractures. The results of those tests are summarized in Table 111.2. 

The mean R values of all the readings taken from the rough fractures 

were in all cases lower than the means for the planar surfaces, by an 

amount ranging from approximately 4 to 8. It should be noted that 

extremely low R values which were occasionally obtained have been 

excluded from those presented in Table 111.2. Assuming a unit weight 

value of 25 kN/m3 for all three rock types, the Q estimates would 
differ by 15 to 33%. For example in the case of the granite the 

relevant values would be 175 (± 70) and 117 (± 45). By eliminating 
the ten lowest readings obtained from the fractures, the remaining 

readings gave means very close to those obtained from the flat surfaces, 

especially in the case- of the medium---and-fine-grained, rocks. A 
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smooth, planar 
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smooth, non-planar D= 0-6 mm 
w= 8-15 mm 

hackly 

granular 

scaly 
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D= 0-6 mm 
w=3-8 mm 
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5-1.5mm 
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D=2-4 mm 
w=2-10 mm 

FIGURE 111.3 Classification of surface textures on joint surfaces as used by the 
Department of Mines,. South Australia. (from Dixon, 1969) 
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TABLE 111.2 

Comparison of rebound numbers from Schmidt 

artificial smooth and rough rock surfaces. 

TESTS ON SMOOTH 
SAW-CUT SURFACES 

All 

1. COARSE-GRAINED GRANITE 

Minimum : 

Average : 

Std. dev. 

% variation : 

2. MEDIUM-GRAINED SANDSTONE 

Maxiintima " 
Average : 
Std. dev'. : 

variation 

3. FINE-GRAINED WINDXTONE 

Mires : 

Maximum " 

Average : 

Std. dev..: 

variation : 

hammer testing of 

TESTS ON ROUGH 
TENSION FRACTURES 

Excluding 
All 10 lowest 

53 42 49 
59 56 56 
56 48.1 51.8 
1.6 4.5 3.7 
2.9 9.1 7.0 

43 37 42 
48 51 51 
45.1 41.7 44.2 

1.5 3.3 2.7 

3,1 8.0 6.0 

48 44 49 
59 56 56 
52.7 49 51.6 
2.7 3.2 2.3 
5.1 6.5 4.5 
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relatively larger deviation was still present in the case of the granite, 

presumably due to the coarse grain size. However, for practical purposes 

such differences are insignificant considering the anticipated scatter 

in the predicted Qc values. - The above testing procedure was adopted 

for the fresh and weathered joint surfaces as discussed in the relevant 

section 3.2.2(4) of Chapter 3.2. 

2. Joint block preparation and compression testing 

The experimental set-up described in section 3.2.2(5) of Chapter 3.2 

meant that the accuracy of the vertical displacement measurements could 

be affected by poor quality contact between the bottom side of the block 

and the basal plate. Consequently, proper surface preparation was of 

primary significance in order to eliminate such influences to the 

maximum practical level-. '' 

Both the leading ends of the joint blocks were ground by using a 

horizontal grinder with a clamping device to accommodate the prismatic 

specimens. The first stage of treatment aimed at producing flat 

surfaces and improving the parallelism between the loading ends and 

the joint plane. As a second stage the block sides which would be in 

contact with the basal platen during the compression tests were sub- 

jected to several stages of progressively finer grinding, and then 

polished on a lapping wheel using a 600 grade silicon carbide. 

Some difficulties were experienced during the grinding of, the joint 

blocks from the highly weathered sandstone. Because of the weakness of 

the cementing material, many quartz grains were actually removed rather 

than ground, thus ending with an inferior quality finish. ' In order to 

strengthen the intergranular bonding those surfaces were treated with a 

thin epoxy resin mixture consisting of equal parts of araldite CY 219 

and versamid 140 thinned with acetone. The mixture was'allowed to 

impregnate 2 to 3 nm of the rock surfaces and on drying it provided a 

remarkably effective bonding, enabling the surfaces to be ground and 

lapped safely. 

In -order to compare the. deformation values recorded by the. dial gauges 

in the present experimental set-up with those obtained by. using some 

other conventional technique, and so totest the effectiveness of the 

preparatory procedures and the relative sensitivity of the displacement 
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measuring devices, a series of compression tests was conducted on 
intact specimens of five different rock types. During each test 

direct measurements of strain were taken- by two. electrical resistance 
strain gauges, and the average of these values were then compared with 
the values of strain calculated from the average deformations recorded 
by the dial gauges. The tested rock specimens are described below: 

(1) sandstone (coarse-grained) : cylinder, 73.41 mm diameter/65.52 mm 
length 

(2) sandstone (medium-grained) : prism, 83 . 00 mm x 50.24 mm x 67.98 mm 
(3) limestone (medium- to fine-grained) : cylinder, 73.41 mm diameter/ 

132.52 min length 
(4) limestone (medium- to fine-grained) : cylinder 73.41 mm diameter 

70.55 mm length 
(5) sandstone metamorphosed (fine-grained) : prism, 76.45 mm x 69.90 mm 

x 76.32 mm. 

Two 10 mm strain gauges were attached on each specimen on diametrically 

opposite positions on the circumference of the cylinders and on 

opposing sides of the blocks. The average stress-strain curves 

obtained from the direct and indirect measurements of strain are shown 

in Figure III. 4. As seen, the curves derived for the two sandstone 

samples showed a very good agreement during both loading and unloading. 

Reasonably comparable also were the curves for the limestone specimen 

no. 3. Significant deviation was found in the case of limestone 

specimen no. 4, while for specimenno. 5 an unusual discrepancy was 

observed. 

A ready explanation for the larger strains calculated for specimen no. 4 

from the dial gauges could be that an additional amount of deformation 

had been recorded due -to imperfect rock-platen contact. However, it 

should be noted that both specimens no. 3 and 4 were drilled from 

adjacent positions of the same block of perfectly fresh, compact lime- 

stone material. Comparison between the curves of specimen nos. 3 and 4 

shows that those derived from the dial gauge measurements are virtually 

parallel which could be expected considering the type of rock being 

tested. - On the other hand, -- the two strain gauge -curves show- a sub- 

stantial difference in slope, with curve no. 4 being steeper than no. 3. 

It is not unlikely therefore that some external factor affected the 

strain gauge measurements for specimen no.. 4" 
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In the case of specimen no. 5 it can be seen'that although the two 

curves are extremely close for normal stresses iap to approximately 

20 MPa, from then onwards the dial gauge curve began to deviate. The 

calculated strain at 45 Ma was approximately 20% higher than that 

directly measured by the strain gauges. There is a possible explanation 

for that anomaly. The block contained an extremely fine crack running 

across it diagonally at approximately ? 5° to the direction of loading. 

It is conceivable that a small elastic movement occurred along that 

crack and added to the overall block deformation measured by the dial 

gauges. Because of their relative position the strain gauges could not 

record that additional strain. 

The above comparative study showed that careful sample preparation could 

enable acceptably accurate measurements of joint block deformation. 

Although it is unlikely that the platen-contact effects were completely 

eliminated, the amount of extra deformation would be insignificant 

compared to the magnitude of joint block displacements and certainly 

within the tolerance of the experimental error. 

3. Direct shear testing of joints on a portable shear apparatus 

The apparatus consists of two halves, the lower half being fitted with 

two hydraulic rams for forward and reverse shear movement and the upper 

with a ram for normal loads. The box is designed to accept rock samples 

of no more than 115 mm x 125 min in face area or cores of up to 102 mm 

diameter. The general lay-out-of the apparatus and casting moulds is 

shown in the manufacturer's design reproduced in Figure III. 5. 

The'two halves of the joint sample to be tested are usually wired or 

taped together, then fitted. into special clamps for horizontal align- 

ment, appropriately positioned in the shear plane of the apparatus, 

and the moulding material is poured. Once the bottom section has set 

sufficiently hard, the sample is inverted and the top is cast in the 

other half of the mould. Once the mounted joint has been encased in 

the apparatus and a small normal load has been applied to prevent any 

movement of -the- joint, - the -wire -or -tape holding the two -halves is cut 

and the test normal load can be applied. The most convenient shearing 

procedure is to apply suitable increments of shear load and monitor the 

shear displacements. During the shearing process the normal load is 
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Portable 
shear 
box 

Sample locating clamp 

FIGURE 111.5 

Sec. iiongl Uiew of 
sQm41t in mould 

maintained constant by a hydraulic intensifier, the low pressure side 

being a pneumatic reservoir. The hydraulic and pneumatic pressures 

are balanced by mean s of the hydraulic hand pump and an air pump 

respectively, such that the maintainer float lower edge rises approx- 

imately half way up the viewing parts in the outer body at the required 

load. 

Testing trials showed that the standard configuration for measuring 

the shear displacement (Figure III. 5(a))is inappropriate when testing 

dilatant surfaces, as has been outlined in section 3.2.2(5c) of 

Chapter 3.2. Some striking examples of the type of difficulties 

experienced are illustrated in the shear load-displacement curves 

in Figure 111.6. 

In order to ensure accurate measurements of shear displacements a 
different system was adopted. The unused hydraulic ram was removed 

Sample mould former 
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FIGURE 111.6 Effects of rotation of the upper box during shearing of dilatant surfaces 
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from the lower, box-half and two dial gauges were fitted at an 

appropriate height so that their spindles could go through the existing 
holes for the ram screws. By attaching an extension to the standard 

spindle length, the ends were brought to rest on the projecting side 

of the upper joint half at a distance of one or two millimeters above 
the shear plane, as shown diagrama tic ally in Figure 111.7. 

PLANAR VIEW bri inoll osi position of displaumcni dial 

New position- n,: - -- ,. -- 
_. - for : '! 

': _"::, ý : z7 gJZ2Z 

dired 

displnctena4 

S6Gj1o1IgL V1GW 

Figure III. 7 Diagrammatic illustration of the standard and a, 
modified positioning of dial gauges for measuring 
the shear displacements. 

The positioning of the dial spindles near the corners of the joint also 

enables a check to be made on any excessive horizontal rotation of the 

upper half. However, in all the tests carried out the differences in the 

readings of the two dials were never in excess of + 0.05 mm. Average 

displacement values were used in the plotting of the shear stress-shear 
displacement diagrams. 

A number of tests were carried out with simultaneous recording of the 

displacements -by -both-the standard--and-modified -dial -arrangement. A 

typical example of the differences obtained is illustrated by the family 

of curves in Figure III. 8, as derived from multistage testing of a tightly 

locked dilatent joint in sandstone. As shown, the direct measurements 
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were two to three times smaller than the indirect ones which had, of 

course, an analogous effect on the calculated values of peak shear 

stiffness. 
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Qn=1.2 MPa 

ýirect 

Ks = 4.63 MPa/mm 
KS = 2.76 MPa/mm 
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FIGURE III. 8 Comparisons of shear stress (t) - shear displacement (dh) diagrams 
obtained from direct and indirect measurements of shear displacement 
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APPENDIX IV 

This appendix contains analytical records of the experimental data and 
the results from the non-linear regression analysis. 

Symbols 

SIQIA =. normal stress in MPa units 

DELTA (v) MEASURED = experimental total deformation of joint blocks 

DELTA (V) CALCULATED = regression value 
% DIFF = DELTA (V)M - DELTA (V)c)/DELTA (VMM 

-7 x 100 

A= initial normal stiffness (K. ) in MPa/mm 

B= maximum joint closure (V in mm 
C= elastic stiffness of intact rock-in MPa/mm 

SD = one standard deviation 

= 
(SD/(A or B or C)J x 100 

The data plotted in the diagrams are the experimental total deformation 

values. The three loading cycles are drawn as: 

a-d ist cycle 

v--v 2nd cycle 

0---'n 3rd cycle 

The results from the various joint types are presented in the following 

order: 

Slate : SL 1 to 7 

Dolerite : DOL. 1 to 5 

Limestone : IMST 1 to 20 

Siltstone : SLST 1 
-to 

10 

Sandstone : SDST 1 to 21. 
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Sl: i 

1s4 loadi. 9 
SOLOT101.50 

Aß 34.51 SD R 0,1175 %R Zý659 
Bs 0.04256 st) P 4.163ä .4%F0.9778 45 
C. o°2.7 SD . 4.822 9 0.6961 

CCItp1'TED RESIDUALS 40 

SIGH.. DEt. TACV) DELTA(V) RIFF % DIFF 35 ( SUNED CALCULATED 

0,4691 . 0,01(, 00 0.01856 0,00046 2.33 = 
30 

-', 065 0.02600 0.07786 0.00U14 0.50 
3,140 0.03300 0.0335!. "0.00054 1.63 
x, 215 0.03700 0.03766 "0.00066 1,78 5 25 
., 36u 0.04400 0.0437L 0.0Uu22 0.49 

A. 517 0.04'. 00 0.04861 0.00039 0.80 
17.82 0.05700 0.05670 0,00030 0,5x -, )20 
17.12 0.06400 0.06393 0,01)007 0.11 LU 
. 1.42 0.07100 0.07077 U. out) 23 0.33 V) 0.0.07741 "0,00041 0153 

J 
15 

30.02 C. 08»00 0.063°3 0,01)007.0.08 < 
39-. 39" C. 00000 0.0 031; ^0.0u136 0.49 M 

10 
38,63 0.09700 0.0(678 O. 0UV p. 23 Z 

4. T. 93 R. 1ä30 0.1031 -11.01101 0.14 
.. 6.30 (+. 1110 0.1111 «0.0001 0.05 
54.53 0.1160 0.1158 u. 0002 0.18 

2nd kodintL 

SC 'i ION 

Aa g2.33 $O a '. t41 ;:   
an C. 03577 S) s 00'114u7 7. a 
Ca 713.0 S  1704 7. a 

C. 0'01TEd RESIDUALS 

514144 DELTA(V) DELTA(V) III FF 
t"FASURED CALCUl, ATkn 

30. ý 1.31003 0. aV91i 0,00udf 
2.065 '1.01630 0,0159u U, 000Iu 
4,215 "3.32410 0,044'1 -0,000y1 
A. 517 3.03610 0.04494 -u, 0ou44 
13.32 0.34510 0.04440 0,0004 
1+. 12 0.05200 0.0)1ao 0,00044 
21.42 J. 03800 O, 0) 10 -u. oooiU 
25.72 0.06300 0,0044.3 -0,00143 
31.32 0.07109 0,0f04? 0,000o3 
34.32 0.07700 0,0711 [' 0.00or1 
33.63 "1.032'10 0,0421J -0,00fJ13 
42,93 3.08390 0,047yu 0,000lu 
51.53 0.19900 0,0'931 -V, 00041 

ý 

P; " 

" 
p 

/1 
d 

fps// 

. :?, 0/, 

0.02 0.04 0.06 0.08 0.1 0.12 
" TOTAL DEFORMATION (DELT A(V)), MM 

3rd ocýdiri9_ 

SOLUTIOu 

x. 307 As 1852 SD a . 3.601 Y. x 4,643 , 3,932 8 0.03509 SD   0.0U1odz x; 4 6L1 
Z, 2Y1 C= 826.1 SD a 1ölö1 Xs 2,2(7 

COMPUTED"RFSIDUALS 

DIFF SIGMA DELTA(V) DELTA(V) D1FF DIFF 
HEASUýIFD CALCUI, iT6tl 

öe67 0.939) 0.006300 0. U0>8ä1 0ý0001oY Lýö1 
ýý65 2.065 0.011n0 0.0109o 0,00004 U. 36 
3,79 4,215 0.01900 0.01äY1 0,000Vy U, 49 
U, 60 3.517 " 0.03330 0,03U41 -0.0oo 1 U, 70 
1,19 12.82 0.039n0 0,0.1ddu 0,0004u 0,51 
0,65 17.12 0.04630 0 , Ohb1o -0,00016 U, 34 
U, 17 21.42 0.052.10 40>2 ö> "0,000d) 1,63 
C'11 25.72 01.06000 0,07914 0,00044 1,43 
00ö8 4?. 02 0.16510 0, '1b51ä -0.00018 0,28 
0,92 34.32 0.07100 0,0r1u4 -0,00004 0,06` 
V, 1 31.63 0.07733 0,0f6du 0,00040 0ý2? 
0,11 42. x3 0.08310 0, J1 44 0,000)6 " Uý67 
U, 31 51.53 0.39300 0,0'o. s>. 3 00,00053 U, 57 

t 



Iv. 3 

SL: No. 2 

1-4 locadi4_ 

SOLUTI01. 
5C 

AR ,; 6. S0 SD p 5.594 z 12.03 
pF 0.02237 Sb . 0.040669 1.  " x. 988 , 
C. 021.3 SD P 11. ('0 1"1.45V 45 

(CIIPUTED RESIDUALS 
;Q 

SIGMA DEI. TA(V) DELTA(V) DIFF % DIFF 
NC. ISUFED CALCULATED 35 

1 002 0 01200 0 01220 "0,00020" 1 64 
2: 092 0.01x00 0: 01741) 0,00151 7 95" = 30 
16.271 0.02200 0"0231p . 0.00119 5042 
6.451 0.02x00 0.02712 x0,00111 4,31 c 
£, 630 0.03000 0.0304? : 0,00047 1,58 r 25 
10.81 0.03300 0.03357 -0.00057 1,73 
17.9E 0.03700 0.03653 0.00047 1,27 
15.17 0.04000 0.03941 0.00059' 1.49 N 20 
17.35" 0.04300 0.04223 0,00077 1,79 
1C.. 53 0.04500 0.04502 00,00002 0004 
21.71 0.04800 0.04778 0,00022 0,46 15 
26.06 0.05300 0.05325 "0,00025 9,47 
30.42 0.05(00 0.03868 0.0u032 0955 ö 10 31.. 78 0.06500 0.06407 0.000V3 1.43 z 3c. 14 0.07000 0.06945 0.00055 0,78 
4.3.50 0.07400 0,07481 "0,00081 1.10 5 
4.7.80 0.08000 0.08017 P0,00017 0,21 
52.22 0.08500 0.08551 -0.00051 0.61 

2nd 1oadýnq_ 

SOLUTIOd 

Aa 344,3 SD a 1Y. /i %a 
68 0.11335 SD a 0,0V1UU'1 'n   
Ca . 4c3. a SD R 13ýV7 :ia 

CCt1P ITEn RESIDUALS 

SIGMA DELTAIY) DELTAtl) DIFF 
" OfE*SURED CALC4LAT40 

1: 412 0.934))0 0.00.1o3f O. OAO. fos 
2ý'Q2 0,037030 0,00o914 0,000Jaf 
4,271 3.01210 0.01440 U. 0004U 
oý633 0.02090 . 

0"0404il , 0.0004a 
1?. 99 0.02700 0,0469,0.000ur 
1'. 35 3.03310 0,0329S 0,000Uf 
21.71 0.03900 0l'0.1l 9 0.00041 
: 5.06 0.04400 0.044U. -0.000'» 
4: 711 0.05430 0.0)454 "U , 000)ö 
3". 14 0.06000 0l0)9f4 U, 000ý0 
4'. 86 0.07000 0,0 9YS 0,00 0u: l 
57.22 0.07530 0,00Uu -U, 000uu 

0 ý " // , 1 
Z91 

r f 

0.0) 0.02 0.05 0.04 0.05 0.06 0.07 0.06 0.09 
TOTAL DEFORMATION (DELTA (V)) ; MM 

313 (oadinc)_ 

SO L 1J TI 0, j 

5,795 An 424.4. SD   
5,44.9 BE 0.01828 SO e 
1,404 C= 89015 SD " 

CWIPATED RESIDUALS 

X 01FF SIGMA DFI. TA(V) 
' HEASURED 

9,08 10002 0". 004000 
1,24 2.092 0.006000 
1,64 41,271 0.01110 
1,42 8.63n 0.019', 7 
U, 96 12.99 0.02600 
u, Z1 17.35 0.0320 
1,06. - -21.71 0.033"10 
U, 06 26,06 0.4370 
1,07 34.7A 0.05310 
0,43 - 

30.14 0.05910 
Ue08 47.86 0.060,0 
V, 00.52.22 0.074,10 

34, uti X"7,5 4 
0,0)1)93 X 8,714 

19.70 ýi " 201yU 

DELTA(V) D1FF "w DIFF 
CALCULATED 

O, UODU5 0,0007,0ß 19.88 
0,0004Ud "U, 000406 3#47 

0,011C' "0,00044 4,17 
0,01914 "0,0004C 1,16- 
0,045bo 0100014 0,44 
0, os19 0.000vä'° U, 25 
0,03760 0,00040 1,05 
0.143U4 "Q, 00000 U113 
0, O)So1 "0,00001 1,15 
0,094/f 0,00043 0139 
0.0'494 0,000V6 U6U9 
0,0/397 0,000V3 0,04 
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51 -- Ho. 3 

151 ica; n9 
SOLUT)01.1 

Aa 24,06 SD F 1,765 ;; r. 7.337 
6c 0.06071` SD a 0.002124 V. 3.499 
Cs 754.6 SD " 39.75 Xs5,268 

COMPUTED RESTDUALS 

SIGNA` DELTA(V) DELTA(V) PIFF DIFF 
14EASURFD CALCULATED 

03680 0 C08000 0 017705 .. 0 UU4705 58 82 
0.5310 6.01600 6.0168r "6,004ö9 20: 64 
0,7360 0.02o00 0,02132 '0, UU132 6,58 
0.9400 0.02500 0.02502 «0000002 0.07 

1.553 0.03600 0.03334 0,00266 7.38 
"1,961 C. 04000 0.0373V 0,00961 6,52 
2.983 0.04600 0,04471 0.00129.2.81 
4.005 0.05100 0.04070 0,00121 2.37 
5.026 0.05600 0,, 05370 OIUUU30 0.50 
6,048 0,05700 0,05691 0.00009 0.15 
5,091 0.06200 0.06215 "0.00015 0,23 
1n. 13 0.06an0 0.06u4N «0l00049 0,74 
12.16 0.07000 0.07034 -0,00034 0,49 
11.. 22 0.07&0C 0,07390 0.00010 0.14 
16.21' C. 07700 0.07725 "0,00025 0.33 
18.31 0.08000 M8046 "0,00048 0,60 
20,35 0.08300 0.08361 "0.00061 0.73 
? 2.3ý' j). 08C, 00 0.08666 "0, '00066 0.77 

046 0 WOO 0.0l06, -0.0(1066 0.75 
2 . 52 0.00500 0.00555 "0000055 0.57 
32.61 0.10(I 0 0.1013 ºU. 0013 1.31 
3t-. 61r 0.1040 0.1070 «0.0030 2.89 
69,7i*. 0,1180 0.1120 0.0054 4.54 

Ind Ioadinq_ 

SC L'JTIJ+º 

As 101.1 SD s f. - f5I Xs7,604 
Bs ß. 037A3 SD s O, DU1YUb Xa5,147 
Cs 901.1 SD " . 3, u5 X 3,668 

CC'1P"TED 2ESIDVALS 

SIGMA DELTA(V) " DELTA(V) DIFF % DIFF 
HFÄSCREC CALC'J ATLD 

3; 5310 A. 007000 0.00)1äa 0. U01d14 'Z), $9 
3, "43.1 0,009000 0.004%. 3 U, 00054f 586 

1,061 0.01450 0,01490 "0,00040 ; 1: 77 
5.026 0.02600 0,0. oou "0.00uau 5,06 
S1091 0.03400 0,0J449 -u. 0004V 0º36 
11,13 0.038g0 0,03ö4ä "0.00046 ' U173 
14.27 3.04500 0.045u'ß -u, 0000Y uý20 
16.2' J. "4000 0,04314 ' 0,00000 1 75 
22,30 0,15610 0,065f "°. 00)v 1,02 
25.52 0.06500 "0,0e454 0,00004 uº95 
36.69 1.07500 0,0(454 0.000oö 0º91 
49,78 0.02930 0,04964 U. 0 000ö U177 

50 

45 

40 

35 

30 

25 
U) 

2Q 
w 
N is 
J 

10 0 
Z 

5 

. h 

. Il 

,, 
4', 

;i 
i, i 
oI r i 

.a /1 
'a, 

4 ' / a 

, 
III 

-e 2.04 0.06 0.08 0.1 0.12 

TOTAL DEFORMATION (DELTA [v) ), MM 

ýsrd loading 

SOLUTION 

189.1 SU a 10,13 7. Z ä, SCii Pa 0.03916 SO a 0,0"J. YV4 Ga 1u 13 C" 471: 4 Si :a 01r>7 % 6,3s4 

COMMP')TED RESIýU. ILS 

SIGMA DELTA(V) DELTA(V) PIFF DUFF 
I-1EASL'AFC CALCUL, 1TEU 

0; 531,0. na25nn.. 9.005104 au, uoo6o! 2O, 46 
D. 9L00 0.0)4310 n. u0)Ja> tu, oo130> 34,12 

1.061 0.31,100 0, oio17 "u, 0001t 1,72 
5,026 D. 022no 0,040349 0,00110 lr28 
3.091 3. n2900 0, ý)44SU U, 000>0 1,73 
13,13 0.13300 04114f1 01000Uy u, 87 
14.22 ß). 0390J 0: O. i')Y) lu, 000Y> 2: 44 
16,26 ). 043no n, 7gsli . o, 0901I U, 39 
22,39 " 0. ^51,0 0, Oa1'/1 "Ur000Y1 1,78 
28.52 0.116000 0,0>9d 0,0001y U, 31 
36.69 0.07110 0: Of. 1960,00134 1,89 
417.7a 0.08400 0,0,14>4 w)r000>ö u, 69 
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5L - No. 4 

(st loading 

SCLUT1014 

Aic 13.10 SD " 0.3185 2,431 
ax 0.1095 SD a 0.001136 X 1.037 
Cs (83.4 SD p 33.38 X= 3494 

C0PPUTED RESIDUALS 

SIV A DELTA(V) DELTA(V) PIFF DIFF 
fICASURED CALCULATED 

0.2800 0.01700 0,01617 "0, U0117 6,86 
0.0300 0.03700 0.03406 0,0021+4 7: 95 

1.156 0.05000 0.05005 -0.00005 0.09 
1,681 0.06100 0.06080 0,00020 0.33 
2.557 0.07200 0.07276 '0,00076 1.06 
3.432 0.08000 0.08073 "0400073 0.92 

_x.. 
303 0,0400 0.08655 w0, UUp55 0.64 

5.18L0.09100 0.0C-10G "0,00006 0; 07 
(,, 935 0.09600 

. 
0.0c781 P-0, u0181 1.89 

8.686 0.1030 0.1024 V. 0002 0.15 
10.46 (. 1060 0.1061, pu. 0009 0.86 
12.10 x. 1110 0.1104 V. 0u06 0.54 
y1.. 82 (1.1160 0.1141' 0.00,1 0.92 

-7.41. x. 1200 0.11Qu 0.0010 0.87 
, -2 n. g6 0.1250 0.1238 0. Vu12 0.95 

74.45 P. 1200 0.1283 0.0007 0.52 
j7.95 ". 1330 0.1321.0.0004 0.29 
31.45 0.1360 0.1367 '0.0007 0.55 
3». 95 x. 1610 0.1408 0.0U02 0.16 
3a, 46 0.1440 0.1447 "0.0007 0.49 
41. är 0.1680 0.1486 _ "0.00,06 0.40 

4 

ý.,. I (eaöinq 

SOLUT13% 

A: t, 16040 SD a 40041 9a 3,017 
an - :.,?., 04351 S3   0,0-J11uo 9a 21264 
C", . 1133. SD a . 31,52 '/, a 2,859 

CO.;? '1TEt RESIDUALS 

SIG'A DELTACV) DELTAM 0IFF ;G DIFF 
ºIE*SURED CALCULATEL 

3.6300 n. 1149000 0.0001)f 
" 

V, U00743 ö, 26 
1.081 . 1.01310 0 , 0174 

, 
0000040 1,42 

3,432 a. 1? 7'0 0, " 97 4. e -0,07Jof t'49 
5,180 J. -13400 0,03410 -U. 0001ä U 53 
3,65n . ). 04310 0,04LYJ U, 00JIU V, 24 
1T. 1' ). 04900 0,14914 -0,00J1.4 U124 
1+. `r. . 1.0S7n0 0,0>6)4 0,00046 Uýög 
24.45 'x. 165-0 0,0,, 444 o '). 0001 U, 24 , 31.45 1.37200 0,0f2sf 

' 
-q, 10, ß. $f v 51 

34.05 0.07600 0,0i Y? U, 90JU-) U05 
41.96 9.783.10 0,01194 U, OOU14 V, 03 

4? l 

r 

1l 

:% 1r 
P, 

r t 

� r 

! 

P, )f 
I 

A 

ly 

40 

35 

30 

=25 

20 
U) 

N 

u`i15 a 

X10 
cr 
z z 

5 

0.02.0.04 0.06 0.08 0.1 0.12 0.14 
TOTAL DEFORMATION (DELTA (V», nn 

0 Std Icaa ny _ 

SOLUTION 

A. 235,5 SO a 
I. 0,04149 So w 
Ca 1257. SU a 

COI1WITEn RESIDUALS 

S14MA DELTACV) 
11EASURFD 

0.630n 4.103)10 
1.681 0.006un0 
3.432 1.01310 
5,184 0.0101(1 
3.686 0.027.10 
12.19 0.03410 
17.44 0.04100 
24,45 0.04d; 10 
31.45 0.056111 
34. )S 0.06110 
41.96 0.06390 

1a0,3 )c is 7,7x1 
O, OJ/346 ;; 17.43 

1tl61Y % 14, ö6 

DELTACV) 01FF 3 D{FF 
CALCULAT4D 

0.003(1u . 10,000316 U, 53 
9, UJ/43-1 'U, 70141ä 23,97 

A. ý1$S) +0,00015 4, Z2 
0,31dß/ U, 0004. L, 28 
0, OCb)) 0,0074 1,68 
O, JSLaa J, 0011L 5,29 
0,0ytO7 U, 0003.5 U, aO 
O, J4935 -0,001.45 L, 82 
0,0b97 00,0009/ 1,73 
0,00054 0,00046 0,75 
0,0173( 0,00003 0,92 



N. 6 

5L: ' No. 5 

1st loading__ 
SOCUTI0. 

As 13.81 SD   0.7774 % 5.629 
8s 0.2562 SU " 0.01110 X4 334 40 
Cs 246.8 SD " 15.4.8 % o, 354 

COMPUTED RESTDUALS 
35 

SIGMA DELTA(V) DELTA(V) PIFF h DIFF 
HEASUNED CALCULATED 

0.2920 0,02300 0.02071 0, U0e29 U. 94 
30 

0. s560 0.044-00 C. 0L273 0, UUo27 12,80 
1.021 0.06700 0,06151 0.0049 8.19 = 25 
1,385 0,08100 O, 0776ä 0,0US31 4,09 
1,750 0,00300 0.0018n 0. UU11Z 1.21 ` 
3,573 r, 1360 0.1432 . U. UU(2 >, 30 = 
5.39k r. 100 0.1764. "U, 0996 5,7u 220 
7.21r (', 1' 20 0.2012 f-ua0UI 2 4,7fß D 
'. 041 ^. 2290 0.7208 U, UPb2 3,59 
10.81, tº, 2480 0.2373 0,0107 4,32 n 

ui is 
15.42 r, 2, $0 0,2701' ýU. UU29.108 c 
1A. 1c r, 2860 0.2880 00. UV20 0 .. 70 (n 
2,1,80 41,3100 0.3088 U, 002 0,39 
£5.45 ". 3290 0.3281 U, 0004 0,2I =10 
29.0v 0,3400 0.3463 1), 0U27 0,77 clý 
32.74 f, 3t. 40 0,3x36 0.0001 0.03 Z 
36,38 t` "3A20 

0,380' V. 0011 0,28 5 
40,03 S, 3s60 0.3970 -V. U916 0,41 

.. 3.68 0.4120 0,414t) MU, UU20 0.49 

lrJ loaýiiný 

SCLjTIJa 

As 19.12 SD   . 
1. d9V ii a 

9s 0.1543 SD   O. V1UJ"; Xa 
Cs 313,7 Sd   L3, ä5   

CO'iP'ºTED RESIDUALS 

SIGMA 1EOSURED 
CALCU4ATkä 

OIFF 

0.2923 ), 01310 0.01443 0.0031f 
0; 656,1 0.03910 0. J4J1f 9.00403 

1.750 "3.36310 0,0431V "0,0001V 
3.573 , 1Jna 0. JY600 "0.006U 
7.219 ß. 1, R0 0.13<ö "0.0044 
11.86 J. 1sýo O. 15o3 V, ooof 
15.42 '. 1)10 0"1791 0.0019 
21.8 J. 'ß. 2300 06 056 0000.34 
2^ 09 0.7340 0.433.1 q. 000f 
3613.1 1.2590 0, "5vg 10.0014 
y3ý63 1.2830 O, 4ö43 10.0013 

o 

% 
I 

1 
' 

3 rr 

i 

qd 7ý 

P v'ý 

U. 1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
TOTAL DEFORMATION (DELTA (VI) , nn 

3rd lma; ncý_ 

SOLUTION 

9,931 Aa 63.58 SD a 4.4u'S %a 0.933 
6,512 B. 0,1400 SD s U.; ý1/06 Xa 12,19 
7.603 Ca 426.7 SD   S0. ty ;a 111Y0 

C0'4p'1TEn RESIDUALS 

%c DIFF SIGMA DELTAty) DEtTAIv) DIFF Y DIFF 
14EASURED CALCU{, ATkD , 

1/. 61 0.2920 0.308004 0.037131 0.002809 3), 86 
29,63 0: 6560 0.01410 0001115 0,00zä) 20,38 

0,16 1.750 0.023nt 010471"" 0.9009V 
. 

3,1 
6,74 3,573 n. 04400 0, J'. 4/ "0,0044! 10,16 
3,77 7,219 0.080'10 0,0f91 

, 
0,00039 V, 49 

1,70 11.36 3.1060 U. 10L4 0,0046 3,42 
1U7 15.42 3,1210 0.1447 . 0.0U1V 1,53 
1,51 21.80 ß. 151n u. 15u> 0,0005 0,35 
V130 2oý09 0,174; 0.17>> 'RU. 0011 0,77 
0,46 36.30 .1 1980 0.19 ft 0,0003 0.15 

0,45 43.68 1.21n0 U. ir1du 0,0004 , 0,1? 



SL i No. 6 

1'51 loading 

SOLUT1014 

An 12.76 so   0,4543 
an 0.2680 SD o c* 

. CF 188.; - SD U 0.443 

CCHPUTED RESIDUALS 

SIGMA DCLTA(V) DELTA(V) 
IIEASUkED CALCULATI'D 

0.2560 0 02500 0.07002 
0,5120 0,04400 0.03761 
0, (540 ('. 05100 0.0464' 
0,538 b. 06o00 0.06265 

1,364 C. 081; 00 0,08363 
2.075 (. 1100 0.1122 
1,78u (1.1330 0.1351 
4,207 r"14,50 0.1701 
5,657 f. 1l, 30 0.197o 
k.. 471 r. 220 0.2358 
11.31 r. 2c, 20 0.2657 
; 4.1&. r. 29,30 0.200.1 
15.51, r. UM 0.3022 
17.001 (. 3160 0.3131 
18.42 1.3320 0.3235 
21.2, (. 3460 0.3434 
: 3.45 (. 3600 0.358) 
25.53 (. 3750 0.3715 
"7.6i, (, 3840 41.3849 

: o. 7( 0.31,60 0.3681 
31,92 11.4080 0.4111 
34.05 (. 4200 0.4238 

;C"3.874 
xa3.531 
%"5.000 

OFF 9 DIFF 

0,00498 19,92 
0,00039 14,52 
0,00451 8.85 
0,00335 5.07 
0.00437 4,96 
"0.0022 1.99 
-V. Uuzl 1.55 
"U. op>1 3.09 
. 0.0040 2.06 
-(1.0068 2.95 
"0,0V37 1.41 
0.0022 00.75 U. 0018 0.59 
V. UVZ9 0.91 
V. UVls5 2.55 
0.0024 0.74 
0.0020 0.55 0,0035 0.94 

"0.0009 0.25 
ýU. 0021 0.54 
'-(1.0031 0.75 
^(1.0038 0.91 

lud Icading_ 

SOLUT1, w 

As 39,9o SD s l. oýi Xs4, OY"i 
B. 0.1237 S3 s 0004/391 xsy, 743 
C. 395.5 S]   47,41 X. 6,931 

C01P'JTED RESIDUALS 

3! 'A DELTA(V) DELTA(V) D1FFX DiFF 
'IEASURED CýLCULgTkD 

1.5123 "1. C1400 0.0129) 0,001U: ), 7,52 
3.9380 3.: 2400 0,04u4 0,001fö %, 40 

1.364 0.3320C 0,03043 ), 001>( 4'92 
2,075 a. 043U 0, ü4244 u, 000io 1,76 
2,786 a. 15100 0,0>240 "u, 001to C, 48 
5.657 J. 08350 0. O 1%1 -0,001(1 t, 14 
8,471 M. 1010 0,101) -0. U0u: b U, 40 
11.31 0.1150 0,11(1 "0.0041 1, (9 
19.42 1.1570 0.14(4 0,0048 188 
21.45 1.1650 0,104rs 0,000c 0.10 
25.53 ^. 1740 0.171' 0,00[.! 1,34 
31,92 ^. 1910 0,191) ' "0,0015 - 0,82 
34.05 '. 1°'0 0,1919 w0,0JV9 U, 46 

IV. 7 

4( 

3E 

3C 

= 25 

2 20 

w15 
f- -U) 

=1o 
0 Z 

S 

P 

, I1 f 

QQ 
/. 

. 10 ý i _ 
F F I 

m 
ý j d arý d 

P ý. 
a 

v. u2 V. 1 V. l) U. Z 0.25 0.3 0.35 0.4 0.45 
TOTAL DEFORMATION (DELTA (V) ), MM 

3rd %o0ding 
_ 

SOLUTION 

A  77.61 SD   d. -S94 X 3,064 
e  0,1815 SD   U. VSUy2 X 16,41 
C  A31.1 SD r 4du14 X  38,55 

C0'1P'JTED RESIDUALS 

SIGMA DELTA(V) DELTA{V) DIFF RIFF 
I EASUAED CALC'JLAT9a 

0; 5120 0.009010 0,0 9o. 0,002010 2Ls43 
, 3; n780 (1.01111 0.01240 . 0,00140 11,27 

1,364 0.01300 0,01700 0,00034 1,86 
" 2,075 0.02400 *0,045dU 90,001öu T450 

2,786 0.03600 0'0. $3.5 0,00208 f044 
5,657 0.05700 . 

0,0>861 m0,00141 3,18 
8.471 p. 07900 0,4fdSy 0,00003 U, 82 
11.31 0.09400 0.0Y444 -0,00044 U, 47 
13,42 0.12TA 0,1ZN'1 0.00Lu 1, b6 
25,53 0.1460" U. 14ff n0.001( 1,16 
31.9; 0.1610 0.164 X0.001. U, b3 
34.05 - 0.1710 0.16V 010010 0,95 



IV. 8 

SL : No. 7 

W loading_ 

SOLUTIOI" 40 

AF 11.57 SD "0 4674 % 4,040 
an 0.2661 SD 0 0.0(17628 w"= 2.867 35 
C. 102.5 SD   '6.811 %R3.531 

C01IRUUTED RESIDUALS 30 

S)GMA DFLTA(V) DELTA(V) DUFF % DIFF 
11EASURED CALCULATED t 

25 
0,2930 0.02500 *0.0266k 0,00036 1.44 
0,8430 006500 0,06157 0,00043 9,46 

1.210 0,. 08500 0.081316 0.0U36b 6,30 L2 20 
1.760 0.1100 0.1059 0.0041 3.7Z N 
2.676 , ('. 1370 0.1370 ºQ. OV06 0.44 
3,593 0.1570 0.161L ºU. 0U49 3.14 
5.426 (. 1'-60 0.16.79 ºU. OV1Q 0.9' uj is 
7,305 11.2190 0.2251 º(j. UQ61 2.77 

V) c, C92 (. 2440 0.245! " ºV. 0019 0.71. 
10.92 (. 2600 0.2662 ºu. uu42 1.63 10 
11. . 

51' (. 2(, 60 0.24 56 ºU. VU14 0.47 M, -- 
Is 26 x. 3270 0.3224 U. 1JU46 1.42 Z 
21, Q2 (. 3520 0.367) 0.0ä50 1.42 
25,50 11.3750 0.3702 0.0048 1,28 5 

;, c.. 2c" f. 3i'60 0.3524 0.0036 0.90 
37.92 ('. 4160 0.4140 0.0020 0.68 
3(". 55 (. 1.350 0.6351 ºu. DU01 0.03 
4.0.25 (. 4560 0.4551" 0,0001 0.02 

.. 0.. 01 x. 40°0 0.4761, ºu. uu79 1.68 

? nd loadýn9_. 
" 

SOLj? I0 . 
A. 38.61 SD s 0,6142 :ia 
on 3.2275 S) . 0,0050. S Xa 
ca 770,0 SD a 9Z, `º9 %s 

COMPUTED RESIDUALS 

' 
SIGMA DELTACV) 

CALCULATtp 
DIFF 

0,3430 1.12240 0.040y9 0,0010 
1,76. ) 1.07900 0.04041 "0,00141 
3,59A '). 417100 0,01u)9 U, 00041 
T. 335 0.1130 0,1191 U, 009s 
1,. 97 ^. 14+10 0,1404 "0,00u4 
14: 59 ",. 1c10 0, IoJY 0,0001 

`1.9? 1.18g0 0,1904 m0,0016 
25 5Q 1.2340 0, LUI> 0,0015 
3'ßq2 1.2230 0.4zes 0.00ut 

;. 25 ^, 2330 0,416Y MO, 00(9 
44,01 1.2470 0.4467 0.00us 

1 
T 
1 

, t1 , Pli 

i 'r 

d 

' A I 
ra r 
r 

Pý P 

dÄ 

ß. u5 u. I U. 15 0.2 0.25 0.5 0.35 0.4 0.4; 
TOTAL DEFORMATION (DELTA (V) ), MM 

3td ka dincj 
_ 

SOLUTION 

1,743 Aa 49,47 SD i. OV2 X 7,2öC 
2,864 Pa 0,. 1849 SD a 0, '123.54 Xa 12,62 
8,110 Ca S99.5 SD a 133,4 Xa C7. [S 

COMPITED RESIDUALS 

D1FF SIGMA DELTACV) DELTMI) 01FF X D1FF 
MEASURED CALC'1LATkD 

4,60 0.343n 0.0224A 0,01701 J, 004VV 2069 
3,10 1,760 0.03600 -0,044/f U, 00343 ä, 96 
U, 57 3,590 0.057n0 0,0)ö11 '0,00111 1,94 
0,27 7,305 0.094n0 0, )y44`ß -0,00J<# 0.31 
U, 12 11.92 3.1140 0,1180, m0.0046 4,25 
0,08 14.59 1.1310 0,1340 0,0000 0,00 
0,95 21.92 r, 16110 0,16/U N0,000U U, -02 
0,73 21.59 1.1a21 0,17äy 0t0031 1,69 
0,33 3'. 92 1.2340 

. 0.1996 0.0044 . [, 14 
0,39.41.25 0.2130 0,9170 840.0040 4.2o 
0,11 44.01 '1.22'0 0,246 "0.00u5 U, 21 



IV. 

DOL: No. I 

1'3 1ýod; ý9 _ 55 
SDýUTION 

As 26 72 So . 0.6203 % 2 321 So 
Sr 0.08 013 SD " 0.001100 %" . 1.233 to 1080. SD s 30.01 X  2.7? 5 45 
COMPUTED RESItlJdlS 

S1GNA DELTA(V) DELYA(V)_ RIFF � DIFF 
11C; SURED CALCULATED 

35 

. 0,434C 
O, t5CC 

0.01400 
0. G2? 00 

0. C1414 
0,02°30 "0,00014 

0ý00070 
1.00 
2 60 

ö = 
1,98. 0.04300 0.04233 0e00 1167 , 1,56 

39 
3.016 0.05300 

. 
0.05255" 0.00061 0.77 -- 

t,. 111 
0.05"00 
0.66100 

0.05981; 
0.06682 :0 000819 

'0: 09982 
1 48 
1 19 

r- 
25 

ü., 
b, 176 C. G7500 0. G7t"6w "0,00162 

. 2,17 
1f+. 2w 0.08200 0.08183 OýUUP17 0.21 vi Zý 
14.37 C. CS1@0 G. C898C 0.00120 32 1 
18.3c C. Cc700 0. o' 13 0,0001S7 . 0,90 
. 2.63 1.1020 0.101t. 0.0004 0.31 IS 
26.71 ft, 10? 0 001067 U. VV03 0,32 
3rß8^. ß. 111r 0.1114 ýU. 0004 0.35 in 35.02 0.1160 0.1151+ U. 0001 0.07 z 
30.100 1,1200 0.1203 ^0.0003 0.25 
43.27 x, 1240 0.1246 6-0.01+06 0,45 
51,33 nß1330 0.1327 U. DU03 0,19 

0 

ZnA levcliny 
_ 

SCLUTION 

As 75.31 SD " 4,474 Xs5,941 
"84 0., 14965 SD s 0,012106 Xs4,403 
Co 9613.6 SD   4u17d %i a 4.1ö> 

COHV 1TEn RESiDL'ýLS 

S1GNA ýFýSUýFC 
CAUC'UATKD 

DIFf X DIFF 

0; 4340 0. ")7OO O. OO)o11 O. U013a9 19, ö4 
1.982 J. 013'C 0.019 4 '0.001ýt4 a, 91 
39814 1.02690 0.3d52f 0,000/3 ic82 
6.111 O. 03730 0, JJ71u '0.00010 U, l8 
111.24 1.04710 0004bY3 0,00007 0,15 
13.3.1 Q. 3600C` 0,0003d "U. 0003ö Ul63 
2A. 76 : ). 171'10 0,0(110 "0.00010 0,22 
35.02 J. z98230 ob 04013 u0001ud 1,25 
41.27 i1-l' J1%` 0,0Y034 -0,00034 u836 
51.33 0.: 9900 0,0Y9L1 '0,00041 0,22 

ry 

I1 
'll 

019 

n i 

! -i 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 

TOTAL DEFORMATION (DELTA (V) ), MM 

3rd lcoding_ 

SOLUTION 

A  102.9 SD 
D" 0.04711 SD 
C= 1087,. SD f 

COMPLITEn RESIDUALS 

SIGMA DELTACVI 
MEASURED 

0.4340 '). 00403C 
1,982 0.0130x, 
3.014 0.02200 
6.111 0.0330 
11.74 0.042A0 
13.5,1 11.05400 
: A. 76 0.06400 
35.01 n. 073f0 
43.27 0.082n0 
51.33 0.0Q100 

91U. S X= býlöl 
O, OU3f46 X=7,91u 

-. 10065 x 7,440 

DELTACV) DuFE X DIFF 
CALCULATtO 

U, U0', fl "0,000Zf1 6877 
0, U1»»U "U, 002)V 1Y, 20 
O, U4Uö3 0,001tf 5130 
0,031äy. 0,00111 3,35 
U, nglsy U, 000o1 1,44 
p, -)? 435 -U, 0003) Uj65 
0, ß)i' 1 "U, 000)1 U, 79 
O, 0(i J -u, 000ou U, d3 
0,1641n -0,00010 0,21 

o, o'iuef 0,000fs u, bo 



IV. 10 
DOL.: No. 2 

154 larding 

SOLUTION 

An - 21 
. 

6C SD " 0,95n9 
R. 0.1216 SD " 0.0030111 
Co 553.3 SD, e 21,65 

COMPUTED RESIDUALS 

SI614A DELTý(V) DELTA(V) 
MEASUkED CALCULATED 

0.4610 (, 02300 0.0i692 
0.0640 0.03700 0.0342r 

1.488 0.04400 0.04051. 
2,012 0,05700 0.05625 
3.05' 0,07000 0.0702 
4,107 0,07400 0.08144 
S. 155 0,08700 0,084"75 
0,203 0.0300 0.05652 
8,298 0.1060 0.1073 
10.34 f. 11S0 0.1153 
I2. ' x1250 0,1230 
91, . 

58 (.. 1 310 0.1253 
ic+. 68 0,1370 0.1351 
20.87 ('. 1480 0.1457 
25001, (1.1570 0.1553 
2°. 25 ß. 1i. 60 0.1644 
33.44 0.1740 0.1731 
37.63 0.1800 0.1816 
-. 1.83 r. 1A90 0.1500 
J-6, C2 r. IF, 80 0.1682 
5o. 21 1.2o50 0.7063 

XF4.411 
2.534 

x"3.913 

D1FF ý, DIFF 

O, UOl. UB 1T. 72 
O, U0971 7.33 
0,00946 5.01 

ý0,00075 1.31 
-0,00082 1.17. 
'0,00X46 3,12 
"0.00175 3.1v 
"0,0Qä52 3,79 

'U. OQ33 3,13 
U, 000$ 0.66 
U, UU20 1 63 
U. 0017 1.2h 
V. 0019 1.36 
0. OU23 1.56 
U. OU17 1. OL 
U. QU16 0.9u 
P. UV09 O. 4u 

"0.0016 0.91 
'"+'. 0010 0.51 
"0.0002 0.0h 
"0.0013 0.6;; 

ltd lo0äm j- 

SCLUTICN 

As 5E. 98 SD  , 10ýU? Xs 17.07 
as O. 0SS3 SD s 0900401 x 12.60 
C" 535.. 9 SD s 40*03 % 9,017 

COMP'ITEn RESIDLALS 

SIGMA DELTA(v) DELTACV) DIFF X DIpF 
'IrASUAED CALCUI,, 1TkD 

-0: 610 o, 009Jn0 o. W844 0.0011: 6 1t, 84 
0'0640 0,01700 0.014äa 0,00211 1t 4S 

2.012 0,026; ºD 0,0464u -0,000tu 0,75 
4,107 ). 03000 0.0414% "0,00244 6,25 
6,203 o. 05200 0,0)19f 0,003u3 0,06 
11039 0,06360 0,0u71o 0,000*4 1,21 
14.58 0.08260 0, J/9U4 u, 002Yb 3,61 
21,87 0.08600 0,44b 00,000tö y6 
25.06 0.10'C " 0.1050 0.0034 . 

'2o 

33 41. (. 1250 011219 0,0030 3,05 
41.83 6.13! 10 0,1381 "0.0001 0,07 
5?. 21 ^. 1530 0,1540 "0,0010 1,05 

I 

as " J 

ý 
40 

ýý "r 
30 '' 

20- 
1J 

IS 

0. '1 

is r 

Ex 
U) 

U, 6') 
w 
I 
U) 

J 

CY 
O 
7 

TOTAL DEFORMATION IDELTA(V)), nn 

SOLUTION 

An 119.4 SD   
B  0.09727 SD   
Co 787.6 SD'. 

C01PITED RESIDUALS 

SIGMA DELTA(V) 
MEASUkEC 

0.4610 0.005000 
0': ^640 0.009090 

2,012 0.017n0 
4.107 0.03130 
6.203 0.04200 
1n, 39 n. 05300 
14.58 6.073n0 
2-1.87 11 . 08,1 PC 
25,06 o. 09900 
33,44 0.1150 

'41,83 0.130C 
51.21 0.1470 

4. VYS x= 215u9 
0,0351 il -XZ5,2f7 

DELTAtV) nIFF x D(FF 
C4LCUI, ATkp 

0. UU42YY 0,0007U1 14,01 
O. UJC$68U U, 0003LU 3,56 

0,016Y[ UCO 00Uli U, 4a 
0,0, SU63 U, 000Sf 1,20 
0,04174 0,00046 U, 61 
O, »91C 'O, 0011L 1,94 
0,0f266 0,00034 0847 
08044YY "U, 000YY 1,13 
0,, 7"ä4Y 0,000f1 u, 72 

0,1147 0,000.5 U, 30 
0,12Yd U, OUuö 0,58 
0,144? 0.00u( U, 53 



Dol : Wo. 3 

151 loodýý_ 

SCLUTIOS 

als 13.29 S' a 0,1991 1,499 
Bs 0 57641 S9 s 0, U13 %a 2,417 
Es 562.1 S.   . 

f8,02 Xv 13,99 

C0NPITFn RESIDLALS 

SIGMA DELTA(V) DELTA(V) DUFF %D1FF 
"iEASU14 CD CALCULATED 

D:; 63ý1 . 1.02500 0, oto7. ) -0,001fs 6,91 
0'. 9800 0.06300 0,0o719 U, 000öö 1,29 

1.81+ 0.1150 0.11.3? 0.0013 1,14 
2.547 ^"15? C 0,1481 0,0039 x, 54 ü 
3,632 ý. 1`' 0,1y1v ýU. 001ö U, 97 = 

:. S40 0.2240 0, ý(lL? 0,001) 0,65 
S, L4A 0.25nc U, 449 0,900 0,31 = 
7,266 0.2350 0, Ly34 

" 
@10,0044 1,53 2 

0.181 0.3270 Lif 0, a @10,001, U, 53 L) 
1ýýGt 0.3550 U, aSfö 00.00Lö 0,73 

411) 
1'. 79 . 0.3340 0. JsL4 0"oQ1ö U, 48 

U i 16,4° 0. L34r 0.4ugf 0,0013 u, 32 . 
1Z. 1n ?. 435r 0,43f4 880.0016 u: 5,3 vl 
21. 0.4670 U, N)th O. OQVU 1,92 
25,43 n. 4,140 0.43dU 080.0U4U U, 82 rc 

20. IA n. S350 U, >ofi w0.0Q b 0,52 
3'"60 0.5250 0,5249 0.00u1 0,02 
36.37 0.5423 U. >4U6 0,0010 0,29 
3^35 . -1.555( 0, »511 0,0039 u, 70 

, 50 " 41 C. SN40 0. )6f> tu. 00.15 0,63 

2nd looalny_ 

SCLUT10n " 

Ar 33. '2 SU "£ "4 ;G  65,; 
"B; 0,13^7 So . O1OVY335 Xnb, 664 
Co 951,., SD s 17597 %A 18,47 

CCt1PUTEa RES1DLALS 

SIGHS DELTA(V) DE. TA(V) DIFF DIFF 
º'EASLRFC" CALCULATLD 

0", 0800 0.02°00 01J0 U1+ 0.0o3v 
. 
13,50 

2,542 d. 04ä00 0,0>10. i "0,00501 10,23 
3,632 a. '16y11C 0,04464 -o oo, )bC O, 9i, 
5.443 J" Oe3n0 O, OdOb3 U, 002sf t, 85 
7.264 o. 1194ne 0 , a943u 0,00104 1,74 
13,9,1 3110170 0,10ru 0.00uu 0,03 
14,53 ?. 1210 0,120f 0. DUU3 0.21 
20 1.70 0.1360 0,135f U. ODU3 u, 1o 
2r* . ao n. 1'no 0,15uf -o, ootf 1,16 
3A. 32 10.1010 0.1014 "0.0o1a 1,13 
0 . SG 0.1'4D 0,1719 0,0041 1,23 

IV. 11 

45 

40 
II 
1 

ý 1 

35 

30 
5? T 
ý; I I 

,5 
' "i ' "i 

'0 ` 

15 

10 I H 

/ 
W. W, Y. 1 U. 1;, u. L W. 4j W. a V. 77 Y. " U i.. U. i 0.: 5 

TOTAL DEFORMATION (DELTA (V)) , M! 1 

SOLUTION 

Ax 7 3.2q Si " 4, UC9 X as 5.504 
on 0. 0947 SD s 0.00146 %-a 15.42 C= 810 SD e 62.99 X 7,78 

CD!, Pl)Tfn RESIDUALS 

SIGMA DELTA(V) ýELTA(V) RIFF No DIFF 
MEASURED CALCU{, ATkq 

0.11800 0.01300 0, o1Lf. 0.0004ä [. 12 
. 547 0.02400 0,049») «0,0o5» 23 13 3.632 0.04000 113.5yJo U, UOUb4 0 1,59 7,264 "). 06700 0,1)o4s6 0,0020) 3,95 

11.9,1 0.08300 0mä164 0,0011ä 1.42 
14,53 0.09600 O 0". d: l 0.00115 l, 20 2?. 7Q 
' 

0.11cc 0.111e n0.0011 1,10 
. On 2 P. 1240 0,1.: 6G "0. outi 1,77 

34.32 0.1360 0.13bu . 0, OUuU" 0,03 43.58 0.1450 0.14311 U, 00i U, 80 



IV. 12. 

Doi . No. 4 

bi loodin9_ 

SOI. UT101. 

AF 10,96 SD a 0,23! '1 N 2.161 
!F0.3281 Sb   0.004532 a. 1.397 CF 509.1 SD " 28.57 %R4.768 

COMPUTED RESIDUALS 

SIGMA DIITAO). DELTA(V) DIFF. % DIFF 
MEASURED CALCULATED 

0, t-C40 0.62200 0.02773 -0,00573 26.03 
1,207 0.05300 0,05139 0,00161 3.03 
1811 0.07200 0,0715'2 O. 00008 0.11 
2 414 00 400 0,08987 0,00113 1 24 
3,01? f, 1ti 50 0.1057 "u. 00(17 0: 7v 
1., 521. , ̂. 1.. 10 00385 0.0025 1.76 
0,035 1t. 40 0.1642 "V. 0002 0.1" 
7 544 (', 1b60 0.185o rV, QV10 056 
9,653 F: 200 0.7023 v. 0007 0,33 
1o. 51- ". 2170 0.2171 'V. 0001 0.03 
17.07 x. 2200 0.2291) "V. 0U09 0.38 
13.511 (1. ? &00 - 0.7411 "U. 0011 0.48 
15.0E (, 2500 0.7512 "0.0012 0,49 
18.10 0.2700 0.2611c) V. VV16 0.51 
21.1. (. 2830 0.2833 "V. 0003 0.12 
2A. 16 11.200 0.2962 u. 0(108 0.23 
77,1' n, 3U80 0.3071.0.0004 0.12 
30.17 (1,3180 0.318(1 'U. UVUO 0.01 
33.1& ". 3280 0.327 V. OV04 0.11 
36.21 P. 3370 0.336e V. OV06 0.12 
3'. 23 x. 3650 0031-50 «V. U000 0.01 
4.2 24 x, 3520 0,530 "V. 0010 0.30 
4, ß`. 2o ", 3n10 0.3607 V. U003 0,00 
,. 8.26 0,31.80 0.3681 -0.0U01 0.03 

2nd Iý.. ýiry_ 
. 

SOLJTION 

A. 0.53 SU   
E. A. A621.1 SD` a 
Ca 768.7 SD a 

CCIIPIT En RES1DU'LS 

SIGNA DELTA(V) 
MEASU. iED 

0.604) 0.1)8J00 
1ý2J7 4.01»^C 
ß't1.3.02100 
4, S2e ").! 13o3n 
7ýS4G o. OS2ý0 
x . 

56 0.06230 

1 070D0 
1. 

o 
i, 

15.1A 
24.14 1.0900 
3'. 17 11.105$ 

1153 .. '. 2i. 
0,1250 

4', 2r C. 1: ß+C 

). sib %a5,807 
0.0J0su3 Xa7,670 

al, )3 Fa8, O0 

DELTAIV) DIFF DIFF 
CALCuLtiTLD 

O. 00o8Y, U. UOllob 13,83 
O. al 2'+a 0,001uf f, 62 
0, J4311 . 0,00211 10,03 
0 OA670 -U, OOJfb 4.11 
0,00YO U, 001u4 9,00 
O. Oh173 0,00021 U, 44 
OOf'SS 0800: 45 3,36 
0: 0416U 00,00200 3,29 
O, OY406 '. 0,00006 0,05 

0,10S%? w0. Oouu 0,02 
0.11)1 «0,00ul 0,13 
V. 1447 0,00u3 0,24 
0113310 0,00u1 0,07 

45 

40 

35 

30 
a 

25 

ý2 20 
U. 

) 
N 
W 

~ 15 V) 

CE, 

J 
10 

U 
Z 

5 

Oy , 

iI 
T' 

IT 

;; 11 

I 

't 

1 

' r t ä 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 

TOTAL DEFORM&TION (DELTA (V) ), M! 1 
3rd loading 

_ 
SOLUTIO14 

Aa 13J. 4 SU a ?; o4. l .4a4,317 
Ba 0.0668. ) SD a 0.0'J4o1'7 Z ýyUC 
Ca Y64. º SD a 071.50 ia6,9du 

C011p. ITEn RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF )G D1FF 
ttIASURFD CALCULATLD 

O. A041) 0,006000 D. 0049)y 0.1101041 17,. f5 
1.2117 0.01100 0,0qyiu U, 00104 14,69 
.. 414 0.016DO 0,917UU "u, 001uU 6,27 
4,526 ti. 027no 0,. )4754 "U, 000)4 t, 0o 
7.544 0.03900 0,0.31$63 0,0001I 0,43 
11.56 0.04710 0,047541  u, 0005o " 1020 
11.10 0.06500 0,0(i. Sö/ 0,00111 1,7.3" 
24.14" 0.07400 O, 0t41A "u, 00013 U, 17 
31.17 0.08330 0.04314 "0.00013 U, 15 
J A. 21 1). 0Q100 0, J'/14J 00,00040 U, 44 
0.24 0.09910 O, 0'/91u "0,00019 U'10 
4�1,28 0.1070 0.1UO7 O. O0u3 0,31 



IV. 13 

Dol ; No 5 

id Itadin9 

So LUTZ 0, j 

A. 7. OS4 SJ   Jýýý, 4 ;i  
B. 0,7171 SJ " ý. JVýLyS G" 
C. 1313 SD " 68 . V5 %  

CC9i''TEn RESIDLA%S 

STG"A DfLTACV) DELTAtV) 
'"EASU. FD CALCULATka 

0.5331 "1.066n0 0, )i434 

"3; 
'Q5 ) 1.09510 0, )3d44 

1.. '. 25 1.1310 0,120) 
1.155 0.1590 u,, »1 
2. E51 '. 1150 0.14YJ 
3.10 7e 9.2! 30 0.42dt1 
5.311 '. 25L0 0.45ä1 
6.626 ^. 2750 U. 4817 
7.092 1.2900 0.. 3014 
9: 277 0.31AC 0141y'i 
1' . 6a 0.3370 O.. S35u 
11.25 1,1.361)0 0.. 363y 
1 9.9.1 '. 3°L1 0.. VU1 
11,55 1.41^C 0.4140 
21.20 (. L4341 0.43ds 
: i. 85 ^. 4o43 0.4011 
2!,. 5,1 x. 4311 U. 4ä34 
2-, 1h 1.531.0 0,? U5d 

" 31.13 '+. 5310 J. 73f) 

2nd 1codIýy 

So LiTIah, 

As 24.73 SO $ 0,9631 zs 
on 3.2303 S) a U. J1Cyd %e 
is t30.8 SD   . )5,7N %a 

DI FF X DIFF 3C 

0,00106 4,52 
U, 00456 6,93 25 

0.004 5,40 
0 0043 1,47 cl. 

00.0)40 
'U. 00 Y 

L, 19 
9,63 H2O "0.0041 '1.61 

"0.00e5 L. 37 
53 "O. 0044 0,81 

"o. 001V 0,31 15 
0. OO4U V, 59 LU 
0.0o1 1,38 
0.00. ay Uý98 

i 1() 0.0049 1, J), - 
"). 0041 1,06 
0.0041 Uý62 

"0.0414 uý28 5 
"u. 0V1t U"25 
"Q. 004) 1,22 

3,660 
2.3/0 
3.243 

3,89 
5,643 
121yß 

COt1P'ITEJ RESIDUALS 

SIGMA 

0-7954 
1.355 
3.076 
6.67E 
9,277 
13.25 
13.55 
21.35 
26.5 o 
33.13 

DELTA(V) DELTA( V) 
UUEASU1ED CALCiL. ITED 

333.10 3, MIN> 
J. 761 MD 06 J1194T 

., 1'110 011 UJY 
'. 1., 2C 0,13Y7 
0.1ä40 0,1641 
0.1911 01191, 
1.2180 0.! 191 

0.23°8 
0.4411 

r. 2510 U, CSUY 
1.2730 0.47.11 

DIFF% DIFF 

0.002') 
0,001)1.5 
"U. '0039 

0.0Q43 
+U. 09u1 

0.091i 
N0.0011 
my . 0u41 

0.0lz1 
+0. OJUL 

ös93 
U, 21 
3,86 
1,63 
0,07 
0,68 
0,50 
0, ö7 
V, ß4 
U, 07 

4 v 
1 

f 

4h ý 

1ý 

lot 
ova 

... _.. _ -. - _... - ... " v.. v..: v,. V. 55 

TOTAL DEFOPIAT I ON (DELTA (V)) , nM 

Std lond'ýnq_ 

SOLUTION 

A= 37,4;! SD s 1.6>7 F  33. ) 5 
p= 0.1601 SD " 0, V-04,11 %a5,1/2 
Ca 452.1 SI, a 44,41 

.Za3,4y7 
Cot p"TEn RESIDUALS 

SIGMA DFLT*CV) DE6TA(V) DIFF % D1FF 
MEASURED CALCU6ATLD 

"7; '050 4.02200 " 0,04049 0,00151 0 86 
1.855 0.04; 10C 0,00y1 -0,00191 4,78 
3.976 0.07200 0, U(Lb1 00,00001 

, 
U, 85 

6.626 " 0.1010 0, )'8I 0.0045 4,29 
9.277 0.1170 0.11/d 001). 0ouo 0,64 
11.25 0.14! 10 0,1x'95 0,000) 0,33 
11.55 0,1610 0.1ozo 'n0.0310 0,64 
21.85 0.1300 0,1duf R0,000f 0,39 
25.53 0111900 0.1n94 O, 00uö 0,43 
33.13 0.20^0 0,40by 9. oou1 0,07 



IV. 14 

LMST : No. 1 

Isi Ioad; n9 
SOLUTION 50 

As 21.63 SD F 1.005 %a8.636 
Bm 0.07409 SD   0.002122 %x ? '864 45 
f. " 1099. SD   73.6'1 %i6.727 

CGNVUTED RESIDUALS 40 

SIGIIA DFI. TA(V) DELTA(V) PIFF DIFI 
35 NE'SURED CALCULATED 

0409 0.02670 0. C? 422 0, UU9t48 15,63 30 c1 200 0.04010 0,03404 0.0U101 2.52 
;. 431 0.04c"40 0.04754 -0,0U116 2.46 
1.941 0.05140 0.05307 ;. 0, UU117 2.26 25 
2.962 0.05840 0.06004 "0,0u169 2.89 
3.984 0.06270 0.06454 "0.001b6 2.93 
5.005 0.06560 0.06776 "0. U0e16 3.29 v) 20 
6.027 0.06750 0.07031 "0.00481 4.16 w 
10.05 0.079., 40 0.07746 0.001Q6 2.47 
15.5(, 0.08b10 0.08437 

, 
0. UU)73 4.24 15 

20930 G. n)i70 0.08455 G. U0 1S 2.34 
25.61 0.09 L0 0.0^474 0. U0161 1.67 
30.52 n. IU07 0.0998 u. 0009 0.80 Z 10 
36.65 0.1058 0.1057 U. 0001 0.05 
. 7.78 0.1097 0.1110 -U. U919 1.70 
5i. 7r, rß. 1177 0.1191 "0.0u14 1.18 

1 

1 "1 

;l 
MTV v 

1! / ! 
l;, 

" 
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

TOTAL DEF ORMATION (DELTA (V)) , MM 

2nd k dina 
_ 

-a Imdincj_ 

so LJT10.4 SOLUTION 

A. 133.5 SD s L4. yl tA 18.07 A. 159.5 SD " 15. ol X  9 811 
in 3.02710 SD a 000V3(99 X 13.97 Da - 0,02230 SD a 0.001614 9u , 7,2>4 
C. 1265.39 a 1Z4o4 9,989 Co 1289, SD a )0,14 %  4@354 

COMp'JTE9 RESIDUALS CC'1P'JTED RESIDUALS 

SIGMA DELTAIV) DELTA(V) DIF'F X DIFF SIGMA DELTA(V) DELTA(V) 01FF X 01FF 
HEASCRED CALC'JLATED NEASUAED CALCULATED 

0; 390 0.004100 0.03307/ 0,001JCS 24,95 0.4090 0. n032t10 0.00461f 0,00054.1 14 23 
0.920, ) 0.007000 0.00x240, 0.0007,4 11,06 0'; '200 0.004510 0. U0? 49O aU, 0007y0 . 68 17 

1,041 0.01150 
01659 

0.01101 
J14> 0 

0.00049 
u 0 y> 

4,28' 1.941 0.008300 0.0313/8 . 0,0013/8 , 17 22 
2 60 
3.08.. 

0. 
3.01290 

. 0,01738 , U1 
"0,00538 

11,80 
44,80 

Zý960 
3,984 

0.01300 
0.01600 

0.01240 
0,01461 

uý000>o 
0,0011. S 

4843 
7f05 

0.027 . 7.02300 
29 0 

0.0117.1 
04791 0 

U, 001ýt( 
U 3 0 

>, 51 6.027 0.01850 0,01ä7U +u, 000tu 1, Ja , 11,09 0 0.0 . , U1u 3,55 10.09 '0.02500 0,0.414 0,00066 ßi 74 
15.56 0.03500 0,04434 U, OOOoe 1,88 15,56. 0.03000 0,0.10 -U. 00044 0 74 
21.30 
25.41 

3.039? 0 
0.04400 

0923911 
0,04387 

"0.00011 
0,0001-3 

0,27 
U, 30 

27,30 
25.41 

0.03400 
0.03900 

0. J. 147. ß 
0,0i9Zd 

-u. 000fs 
-0,00046 

, 1'13 
9 71 

31,12 
36.65 

0904100 
0.05300 

0,3rä44 
0: 0>37U 

"0,00344 
"U. Opu(U 

U, 87 
1,32 

39.52 
36.65 

0.04400 
0.04900 

0,31436> 
0,048(4 

0,000s> 
0t00044 

U79 
068 

.. 5.40 
79 51 

0.06100 
06000 3 

0,341U> 
0,00551 

"0,0000) 
0o00049 

0,09 
0 74 

45.40 '0.055111 0,0D590 
) 

-0,00090 
' 

1,64 
, . & 51.79 0.06100 0,0i04 0,000 1 , 23 



r 

LMST : Wo. 'l 

ßs1 loading 

SOLUTIDN 

A" 30.57 SD P 1.708 %F"5.586 5o 
on 0,09870 SD " 0.003446 %R3,49? 
Cs 502.5 SD " 20.21 X"4.021 

45 
CWIPUTED RESIDUALS 

SIGMA DFITA IV ) DFLTA(V) PIFF �DIFF 40 
ME;. SUNED CALCULATED 

0.3736 0,01270 0.0116D 0,00110 8,64 
35 

0F4D0 0.02580 0.02317 0,00463 10,20 
1.775 0.04220 0.64006 0,00411 4; 99 = 30 
2,708 0,05290 0.05208 0,0008'1 1,56 
3,643 0,06070 0.06126 "0,00056 0,89 < 
5,510 6.07150 0.07474 "0,007? 4 4.54 25 
1,37; C. ('8020 0.08474 P0,0U454 5.60 
L 247 0 OC140 0.09282 "0,00142 1,56 
1;, 11 0,1005 0.0997 0,0008 075 20 

7: 9b ", 1068 0.105E U. 0009 0,82 Ui 
1 . 85 ß, 112a 0.1116 0.0008 0.72 
16.59 ('. 1234 0.121! V. UV15 1.21 0 15 

. 2%. 2o ('. 1357 0.133a U. OM 1.51 < 
27.93 0.1469 0,1441 0.0023 1.53 g 

10. 
32.60 x, 1557 0.1552 0.0005 0.32 z 
37,27 t. 104 0,1655 "V, OUO1 0.04 
4.1 . 91, x. 1739 0.1755 'V. 0016 0.93 5 
a. 6.51 x. 1860 0.1852 o-0,0012 0.66 

'2rd Imdiýg_ 
SOlvý10: ' 

A. 56,53 SD is 4. le 6X" 
B. ,. p5365 SJ . 0.3Q3'LJ9 Xa 
C. 584.5 SD . L4, ý7 

C0y? '1TEn AFSIDUALS 

SIGMA 
FFASUdFC CALCiLAUD 

DIFF 

0.008230 n. 03066ti 0.001510 
0: 14' a. o15u, u 08013.3J o, oolru 

1*775 1.02320 00.35') "0,0003V 
3,643 , 1.03503 0., 1. *u9) +U, 001y) 
5.511 ]. 04550 0.040u3 "Olooo» 
c. 247 3.051)00 01Q)90U 0,000vu 
1;. 98 0.071,0 osoo49. O, ootur 
ii 59 a. 08200 39)415d 0,00044 
2': 9; 3.00900 0,1JQ' "0,001LL 
3+. Z7 0.1173 0.11 Its w0.000o 
46.51 0.13SO 0.134.3 0.000, 

Iv. 15 

ýy 

cc 7 

i 

i 

pi Y / I' /A 

q 
ýr / 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.16 

TOTAL DEFORMATION (DELTA(VJ), mm 

"W lcaa; ng _ 
SOLuTIO'j 

T, Sö6 As 72.17 SD   
' 

1, /d ;: = 2,144 
5,4fu B. 0. ()4361 SD . D, )30fVY Z ++ 1,643 
A, 2U4 C  ö38., 1 SD a ". fº1")2 Aa 11164 

COMPITEn RESIDUALS 

D1FF SIGMA DFLTA(V) DE4t4CV) DIFF % D1FF 
))CASURED CALL)LATLD 

1ö, 49 0*. *3800 0.004800 D. UJ? 340 "U, p00540 11,37 
11,34 0; 1400 0.4)1060 0.010f1 -0.00011 1,00 

1,27 1,775 
. 0.01050 0,01911 U, ODo9 1,99 

5,56 3,646 0.03050 0,31, )46 0,000U4 0,06 
1,22 5.510 0.03820 0, t)3. +13s -0,00013 U, 33 
0,00 9,247 0.04950 0,049f4 -0,00014 U, 44 
2,91 1? . C)9 o. 050 30 0,05ö59 0,00041 0,70 
U, 51 1A, 59 ' u. 07t)00 0, +)fooo U, 000Uu 0,01 
1,23 27.93 0.08650 0, ")d6V1 -0,001)41 . 0,47 
0,54 37.27 0.1030 0 1u4d. 5 0, Q3ut U, 22 
U, 50 45.51 0.1190 U. 11öu "U. 00uu 0,01 



Iv. 16 
I 

LMSi : No. 3 

lit Ioodin9 
_ 

SO LUT 101. 
So 

Ac 10, C8 SD " 0,76V1 %=6.821 
Sc 0.1098 SD I 0. C02983 %=2,710 
Ci 438.6 SU " 17.38 2 in 3.963 45 

COMPUTED RESIDUALS 40 

SIGMA DELTA(V) DELTA(V) PIFF DIFF 
MEASUkED CALCULATED 35 

0 393( 0.03400 0,0278L. 0.0U(j11 17.98 nom. 
0,8420 0 04100 0.04707 0,00193 3.94 r- 30 

1,3Cr 0.06000 0.06014 -0,00014 0.. 26 
1,777 0 061)00 0.06947 ý0"00147 2.17 
ß, 712 0.071-00 0.08220 wo, UU310 4.05 25 
3,646 0.08600 0.04095 "0.00C85 3,24 
S. 51& ('. 1010 0.107'0.0017 1,6ý to 20 7.388 n. 1090 0.1113 ßu. 0023. z. 07 w 

25f. x.. 1100 0.1183 U. 0007 0,61 CX 
11.12 C.. 1270 0.1244 U. UP? 6 2.02 15 

x", 4,87 '. 1330 0.1355 -('. 0025 1,87 
. 8.61 1'. 1500 0.1456 0.0044 2,95 _ 

" r3ý2( r. 1a10 0.1575 0.0035 2.16 10 
;: 7.96 0.1710 0.1690 0.0U20 1,16 Z 
33,57 x. 1830 0.182o 0.0004 0.23 
3r, Of (. 1950 0.1554' '0.0009 0.46 5 

.. h. 57 ^. 2100 5.2133 -0.0033 1.55 

Ind loadinq_ 

SCLUT10,. 

An 75073 S; ) a 
R. 0.3S837 SD " 
Co 533.9 SD a 

C0.1PJTEa RESIDUALS 

SIG! 4a DELIACY) 
PE SU4ED 

3,., 0.3053n0 
)ý3i2A J. 01130 
1.777 0.02301 
3: 643 x. 03200 
7.338 x. 05300 
11.12 J. 06200 
13.61 0.08200 
23.29 0.093D0 
33.57 1.1160 
3'. 19 1.1270 
65.56 n. 13r, 0 

P 
M 

"I 

W 

/. / 

/ 

py / 

b 

2 P 

pýýa d 
I 

, 
% 

p 

v. oz a cý o c+ o cs oSo. 1s o 1" o. S" o. N o't 

TOTAL DEFORMATION (DELTA (V)) , Mtl 
" 

3rd loading, 

4.454 x. 6,4U5 
3.110342 X 5,6(? 

19242 i 3.635 

DELTAtY) PIFF X DIM 
CALCJkATED 

O. 00>NUZ -O. uo05uL 1u, 05 
0,01U9 0,00)38 3,33 
0,3L010 'U, 0001u u, 49 
00,2.5332 "0.0013L " 4,11 
0,3)U)4 0, OOt40 4,64 
O, d4 . u, 000ä4 1,36 
0,11934 90,00034 U, 42 
0. OVJQ3 'U. ODJUS U, 03 

0.1144 '0.00ue 0,74 
0,1263 o. oJur U, 50 
0,139) 0.000u Uj03 

$0LUy10u 

Aa 90.23 SD   o, 4U6 %a 
ea 0.05103 3D a 0,3'). S )% 3q 
Co 545.6 SD a 19,36 3a 

COMp'ITEn RESIDUALS 

SIGMA DELTA(V) DEITA(V) PIFF 
MEASURED CALCVLATkD 

0; 3930 0.004703 0, UJ4754 '0,0000J4 
3.142o 0.01100 00043 0,001: 1f 

1'; 777 o. 01300 0, ')174f 0,000» 
3.648 0.02900 O, 0,9L) "0,00045 
7.388/ 0.04400 0,, 45UJ -0,001uU 
11.12 0.05500 0,, 1)65, ß +J, 001]u 
19.61 0.07650 0,0005 0,00145 

"23,2Q 0.08600 0,9453. $ 0,0004f 
33.57 0,1965 0, 

"1064 
0.00ul 

39,19 0.1180 0,11f5 0,000! 
46,57 0.1310 0,1310 . 40.0004 

?, 1U0 
6,364 
39549 

R DIFF 

0,71 
14,24 

4,94 
0688 
t, 27 
2,72 
1,89 
U, 77 
0,05 
U, 39 
U, 64 



IV. 17 

LAST ; No. 4 

W loodin9_ 

SOLUT10t 
50 

AF 25.27 SD   0.7468 9 2.967 
l" C. C8275 sD 0.001167 1.386 
CF 6 3.1 SD 6.539 %s1.32b "5 

COIpuTED RESIDUALS 
. 40 

SIGNA DELTA(V) DELTA(V) DIFF X DUF 
" HEASURED CALCULATED 35 

0,1.764 0,01580 0,01631 -0000S1 3; 22 
1.567 0 03970 0,03863 0,, 00107 2.71 30 
2,578 0.05210 0,05092 0,01)118 2.27 " 3,608 0.06020 0.05S7o U. 0Uu50 0.82 
... 63! 0.06550 0.06645 "0. U0VS'5 " 144 0 25 
5.6o' 0.07090 0.0'155 "0.00105 1 ,. 48 v) 
x, 700 0.07560 0,07665 "0,00105 1,39 
7,851 0.08040 0.08127 p0. V0Uö7 108 in 

20 
10.16 0.08t"00 0.08V 23 -0.0V023 0.. 26 ix 
13.91 0.09'"'00 0.10015 "0. UUL75 0.25 
ý 

"- 
r.. 05 is (', 1116 0.1101: V. uu08 0.70 

2701.3 f. 1212 011201. (', 1)006 0,49 = 
; 5.26 x, 12'2 0.127c: 0.0016 1.20 n 10 3('. 46 41.1393 0.130? V. uVU1 0.08 r 
35.55 1.1507 0.1502 V. 0105 0.30 
. p, 74 (, 1110 0.1613 "V. 0V03 0,21 5 
'. 5,84 ('. 1718 0.1721 . V, UV03 0,18 
51,04 f, 1L23 0,1830 - rlj, 0007 0,38 

I, 

// 
// 

Pd 7 

4 

r1l Y, i 'I-, 

0.02 0.04 0.06 0.06 0.1 0.12 0.14 0.16 0.18 

TOTAL DEFORMATION (DELTA (Vl ), MM 

And loodi. 
_ 

3(d Ioadinq 

SOLUTION SOLUTI0t 

As 5 3. °2 S5 * V. 913 Za 18,64 Aa 121.1 SU a 1/. 14 n  14.1) 
D  0.0 5122 SD a 0,005,14 *4 a 10.17 8; 0.04327 SD a 0,095647 Za 13,51 

Ca 6 33.7 S) a 4CIU2 na 6ý79ij Ca 705,7 S) a )1.04 o  7,34' 

CG-1P STET lESIDLALS COi1P: ITEn RESIDUM. s 

SI6)'A DELTA(V) DELTICV) 0IFF DIFF SIGMA OELTACV ) DE PIFF % DIFF 
'irASURED CALCJ6.1Tkp D LrATL CA 

3; 274,1 l. n451n0 0.03? 0» 0,000045 u, 88 0. '740 
- 

0.002310 0.054556 009000230 10.34 

0 4760 , ). C1100 D. 0. UUQ 0,001f[ 1f, 19 0 . 6760 0.004310 0.014Cff aU, 0002ff 6192 
. 
1 ; 37 1.01960 D, 74 0Lf +0,0000f 3,43 1.487 0.01100 0. Jllbf -0.0074( . 6,09 

. 3 618 ). 033.10 0.03471 -0.001 el 5,17 3,605 o. 02310 0,94[74 U100)30 1,55 
0 553 5 1.04251 '0,042Vf "0,00047 1.11 5.530 0.02900 0,03005 -0,00015 U, 51 
. 552 7 0.05106 0,04942 0,00150 3,09 7.552 0.03700 0.03694 01 000f0 9,04 
. 2A 1' u. 05750 0,0600 0,00090 1 57 11.28 0.04350 0"143t3 U, 0004f U, 63 

. e2 1s 1.065'16 0,0045U 0.000: 1u 0,77 13.32 0.05000 0,35U9c -0,00090 
" 

1,91 
. x, 1 21 . 1.08100 0,0d0U5 0,000') 1,18 21.90 0.0601 00 0e)595 0,000u) 0S 08 
, 19 3, 1.39500 ß. 0'45f 0,00043 0,45 31.19 0.08100 09afi6> 0,0013) 1,67 
. 3% 55 0.1050 0.1091 "0.0041 3,94 44.75 " 0.093n0 0,1'121' -0.00415 4,23 

" " 
44,75 0.1130 0.1169 -"0.00)9 5,19 51.0n 0.1110 0.1100 o. ooau 4'64 

:. '. 96 9.12'0 0.1240 O. Ou3u 1'34 
5,1.00 0.1323 0,14f4 000346 3,45 



IV. 18 

LMST : No. 5 

isi loading 

SCLUT10?. 

A" 12.68 SD a0 20! '7 Xa1.120 
an 0.102r SD " 0.000660 X"0.6427 'Q 
Cs 708.6 SD s 0.4! +4   1.340 

CC IPUTEDREIIDIIALS 45 

S1GI1A D[tTA(V) DFLTA(V) I'IFF DIE 40 I'E, %SURED CALCULATED 

0,3966 0,02580 0, U? 452 0,00128 4,97 35 
0, Y130 C. 04210 0: 04064 0,00146 3: 47 
O, 0910 0.04550 0,04580 -0,00030 0.60 

784 0.06120 0,061x2 -0.00072 1.17 30 

: 
181 0.06050 0.06742 "0.000"2 1.38 

2,855 6. C7380 0.0? 660 -0,00060 Lob = 
3,767 D. 08200 0.08168 0.00032 0,39 4.2 25 
.., 758 0.08790 0.087L0 0.00050 0.57 Ln 
5 74C 0,09150 0.0r1Q0 -0.00040 0,44 
7,732 0.09640 0.008ßG º0.00046 0: A7 , 

ten 20 
', 716 (. 1038 0.1043 -U. Utr05 0,51 
11.70 (. 1088 0.1040 ºu. uU02 0.16 vi t5 
13.66 x. 1128 0.1131 ºU. uu03 0,30 

5 . bG 1.1174 0,1170 0,0004 0.36 = 
17.64 1', 1205 0.1206 '-0.0001 0.09 Xl0 
19.63 0.1249 0.1241 0. ou08 0.6E z 
2L. $A (. 1332 0.1323 0.0009 0,68 
24.54 0,1412 0.1401 V"OU1I 0,77 5 
3A, 4r, r. 1478 0,1477 0.0001 0,06 
30.45 x. 1549 0.1552 ºU, 0u03 0.17 
d. 1.. 40 x. 1626 0.1625 0.0001 0 od 
., 4ý3&) r. 1c. 87 0.1698 ºu. u1V11 0.65 

0 

and kccöinq 
SCLu, 10 J 

A. 74.21. S) " T. 05 X" 
as 0. o'318 SD " 0,01110Iö X" 
C. 794, » SD a , i614j Xs 

CC`? TED RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF 
MEASURED CALCUI, ITED 

; 1060 0.008310 0.00)945 U, 002/55 
3.1421 1.0110C 0.0195) 0,00145 

1,786 0.01751,0.3176a -U. 0001ä 
3.766 0.02600 0,09öuc, -u, 002uo 
7,732 4). 04000 0.0404C' '0,00 Io 
ii 6A 0.05200 0,0 z4v -0,0004u 
1^. 62 0.06200 0,0o1öC u, 00J1ö 
24.59 0.07000 0.3a916 u, o uoO 
2'). 54 1.07700 0.3/h14 U, 0004o 
S'ä7 Iº. 38700 0,0469) 0,000ua 
44,41 3.006n0 0,0Yo14 -I), OOU1ö 
40.3" 0.1020 0,11.. d, / "010171. / 

'Al 

d; 1 

ýl 

I 
r 

P 
d 

ýP 
i 

0.02 0.04 0.06 0.06 0.1 0.12 0.14 0.16 0.16 

TOTAL DEFORMATION (DELTA(V)), MM 

3id loading 
- 

soLUTIdw 

Y , 715 As 130. ' SD a 14, fj 9a 
6,201 Be 0. i12513 SD a 0,011502 a 4,517 Cc 753.1 SD " 19,. u4 %a 

C04P: I7ED RESIDUALS 

Z D1FF S14MA DFLTA(V) DELTACV) RIFF 
MEASURED CALC'ILATkD 

34,44 D. 306n 0.004500 0.00440 0,0012f4 
13,18 0'. 792) 0.007100 O. UUý9g( 0,0011 ß 

1,04 1,784 J. ollon 0. till4u -0.000Cu T, 94 3,766 0.01750 0,01841 -0,000Y1 
0,64 7.732 0.0270n 0,047yu . u, 000Yu 
U, 39 11.68 0.0390n 0,004A 0,000f 
0,29 1111.62 0.04300 0,04%Sa 0#00044 
1,23 24. SA 0.05500 A, Jý480 0,00040 
1,12 2^. 54 0.062no 0,041d4 0,00014 
0,06 37.47 0.07303 0, Uf4öu' 0,00114 
u, 1H 44.41 o. 0A? 00 0,1423f -0,0003f 
0,67 41.36 

. 
0.08900 0, '91u . u, Uo01u 

9,714 
6 2V 
2,534 

Z DiFF 

26.32 
16,52 

1.86 
). 22 
s. J2 
1,47 
0,87 
Uý30 
Uý26 

"U. 19 
U. 45 
0,12 



IMST : no. 6 

Ist loading 

SCLUT10I. 

AR 5,812 SD .0 . 
(, 61.6 % 4,773 

I 0.09561 SD   0.002346 % 2.356 50 
C. 581.0 Su w 24.0 %P4.142 

COMPUTED RESIDUALS 45 

SIGNA DELTA(V) DELTA(V) DIFF X DIFF 40 
MEASURED CALCULATED 

0,3530 0,03400 0,02704 0ý00v96 20.48 35 
0 P580 0.04500 0,04606 -0ý0U. 06 6,70 

1,366 C. 06000 0.06037 -0,00037 0: 62" 
1,870 0.06100 0.06863 0,00u37 0.53 = 30 
2 881 L,, 07800 0.07433 -0 U0133 1,71 
3,892 0.08500 0.08631 -0,00131 1,54 
5515 0 09300 D, 0C565 -0,0U265 2,85 L 25 
7,93i (. 1010 0.1023 -V. UV13 1,32 
'", 958 41.1080 0.107& V. 0002 0.1L, 
14.0C 0.11c0 0.1172 V. OV18 1.53 W 20 

18.05 0.1280 0.1255 V. 0V25 1,94 
22.05 (. 1350 0.1334 V. OV16 1.21 N 

15 
2('013 ('. 1420 0.1410 V. 0010 0.74 
3'. 20 4.1530 0.1520 0.0010 0.63 = 
.. o, 2C 0.1.60 0.1665 -0,0005 0.31 t0 
50.30 (, 1820 0.1842 -U. 0V22 1.20 z 

S 

2rad lending 

SOLJTIA; ý 

As 0,2.87 SA a f. dlü n  
sa 0.44315 SD   O. JU3Y45 iG 
C" 455. (j Su   46'r0 Xa 

CCýIP"ITED RESIDIJ. %LS 

s! G4a DFLTA(V) DELTACV) DIFF 
11EASURED CALCJLATID 

); 350 9,0n8o00 0, O. fSL4 0,0024fo 
3 i51iJ J. 01150 0. J11du -u1QOJJo 

1,36t' "). 0130n 0.117uu 0,001Uu 
2.88' ). C2°10 0,747dß "1.00113 
5.0411 3.03700 A0J4Uyo -0,0039o 
9.57,1 J. 052ft0 0, J»114 "U. 00014 
14. C3 . 1.0610fl 0. nnlY's 0, no") uo 
: 2.561 J. 07900 00(OY(+ 0 00944 
3'. 2,1 1.094l3 0. J'/st s o0 aOVöf 
y+: A1 nIIJ'i0 0.10f1 -0. at01 
51.3,1 1 . 1210 0.1241 "0.0011 

iv. 19 

i 
T - 

db 

i 
I L 

i 

0.02 0.04 0.06 0.06 0.1 0.12 0.14 0.16 0.16 

TOTAL DEFORMATION (DELTA (V)) , MM 

3rd lonain9 

" SOLuTlo 

12.44 An 103.0 SD s 11,90 X 
, Ra 0.03144 SD s 0,0J1)u4 Z 5 5Y3 r Cs 719.7 SD . 9t, o7 X 

C0llp'ºTEo RESIDUALS 

DIFF SIG14A bELTA(V) DELrA(V) DUFF 
HHeASURED CALC'J 4 Tl 

30,95 0 '50n 0". n051(1 n, 014554 0,001540 3,17. 
1 

a; "51n 0"n08200 o, uýa i u, UO04, l ! 3655 
3 90 

1.36,1 0.0115n 0.01119 u, 00031 
, 1V, 69 

2.80 
5.04,1 

0.01910 
0.0270n 

0, )1dÖU 
0, )436J 

0,007<u 
-0,00100 U, 28 4.970 0.0365n 0,04759 -U, 001u9 

0,09 14,0, ) 0.04610 0,0449Y 0, Oolul 
9,84 

. )'. 541 0.05900 0,4>l$f 0,0000 
U, 93 37.2o 0,07400 0,0f331 0,000ov 
0,05 in. 80 1). C87 0, 0: )45ag "0,0011+1 0,94 5.7.30 0.09800 0,0996.3 "Q, 00143 

11.65 
7,964 
3,845 

:: DIFF 

30.32 
5177 
d, 69 
1,04 
x, 93 
Z, 97 

0,43 
Uý93 
1'36 
1 '44 



IV. 20 

LMST : No. 7 

Ist loodinq_ 50 

SOLUTI06 45 

A. - .-7,21 SD . 0,8716 XF3,203 
6  0.1205 SD " 0.002502 %"2.077 40 

"C" 577.7 SD   19.15 X"3.314 

(, OHVUTED FESTDUALS 35 

SIGMA DELTAIV) DELTA(V) PIFF X DIFF 30 HLASURED CALCULATED 

1091 0.03400 0u3195 0.00G05 6.03 25 
2,17r 0,05200 0,05188 0.0uU12 0,23 
4: 359 0,07000 0.07632 '0,00032 0,6Z 
x"538 0.09000 0,0x157 010.00157 1.75 0' 20 
b, 71? 0.1020 0.1027 "0,0007 0,64 w 
10.90 0.1100 0.1115 9-V. 0015 1.3t ° 
13.08 0.1200 0.1100 V. 0010 0.85 N 15 
17,63 n. 1320 0.1316 0.0006 0,30 
21.7° 0.1440 0.1425 0.0015 1.0G ' 
26.15 0.1530 0.1523 V. VUO7 0.43 Z 10 
30.51 n. 11120 0.1616 0.0004 0.23 
34.90 

. 
0.1710 0.1706 0.0004 0.25 5 3o, 23 n. 1780 0.1701 "0e0011 0.62 

43.59 A, 1&70 0.1875 "0.0005 0.28 

2r. ä Iondinq 

; cLýT10+ 
" 

A0.39 SJ a 3.794 :: a 
to 0. A5484 S9 O, iJ2106 Xa 
C" 513.2 S) " 14,3j Xa 

CC'MP'ºIEn RESIDUALS 

SIGMA nrLTACV) DELTAtV) DIFF 
11EASURED CALCULATED 

3; 5120 O. n06510 0.00)640 U. 000H54 
1. G4,1 t1.01210 0001114 0,00Jöö 
"179 ). 013511 11,0954 -0.001uä 
r.. 350 1.032)0 OOJ4411 -0,00J11 
9.451 3.05150" 0. X1)139 u, 00011 

it. 38 o. 06230 0,041a4 u, ao0so 
1,. 4,1 1.07290 0.0P211 -0,00041 
21.71) 4)"012'O 0, nu IV f 0,000ui 
31.51 0.1000 0. u993 0.00uL 
3494 1.1')10 0.10ö" wu. o ju4 
43: 59 1 . 1250 0,1241 0 . 9OU4 

J 

IY 

t 

pfp / 

GI 
f/ 

I I "/ 

e / - " 

,,, I 
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.16 

TOTAL DEFORMATION 
_ 
(DELTA (V)) , MM 

3md 1ondýn9_ 

SOLUTIOw 

3,801 Aa 124.0 SJ e 1SýYt Y. a 12,6> 
3,951 B  ß, 0420G SD a 0,0, iSif1 %  12, f7 
2,5U4 Ca 53n. 5 SD s i)'46 3  5,81,3 

COP1P'1TEn RESIDU, %LS 

x DIPF SIGMA DELTA(V)" DELTA(V) DIFF DIFF 
MEASURED CALCJLATEP 

13,13 D; 5120 0, n04911n 0,0)h70 0.0001(4 soS5 
7,34 1,09ti 0.009530 0. Q) 3t4 0,0001(2 1,82 
]83 2.179 0.0113 n, 216y1) '0,000)() 3,15 
V, 35 4.359 0.02754. 0,0473( 4), 00013 U@ 4.3 
U, 20 9.45,1 0.0460rf 0, ')449 0,00108 1 35 
U, 5A 17,04 0.0550n 0,0a4 f. $ 0,00,1df 0: 49 
0,30 17.441 41 . 06159 0. uInb1a 0U. 00300 5,95 
U, 04 21.79 0.07710 0,0/S01 U. 001YY 2158 
0,1,8 31.51 0.094041 0,0Y343 U, 000>7 0,60 
0,35 34.90 41.1030 0,104 0.0006 0,60 
0,12 43.50 0.11^t' 0,119? ýU. ODUf 0,62 

0 



IV. 21 

l 

LMST: No. 8 

1st login9 

SOLUTION 

A. 16.51 SD v 0.6610 %F4,556 
B. 0. C°071 su f 0.001753 %F 10933 
Cs 762.7 SU F 29.73 %-m 3.897 

CO(lGUTED RESIDUALS 

S1GMA DELTAtV) DELTA(V) PIFF % DIFF 
NEASUKED CALCULATED 

0.3810 0 01590 0 62086 "0,0u446 31,23 
0,8570 0 03610 D. 03660 '» 0,0V080 2,21 

1.331.0.041.70 0.04741 0,00129 2 65 
1.810 C. 0500 0.0568( 0,0Ue01 3: 53 
;; 763 C 06.. 1.0 0.06506 0,00134 2,01 
3,715 0 07250 0.07185 0. V0U65 0.90 
4.667 0.07.80 0.07687 -0,00007 0.10 
5.620 0.08080 0.0808e. ºO, 000U6 0,08 
7.525 0.08700 0.08707 -0.00007 0. Ob. 
5.430.0.00163 0.0r. 1Sa "0,001136 0,40 
13.24 0. GOi. 80 0. Ur98a "0.001106 0,00 
18,95 0.10°0 0.1oe7 -11.01107 0.61 
''7.76 r. 11L0 0.1159, "U. UU16 1.40 28.46 x. 1245 0.1240 V. 01105 0.37 
33.24 0.1305 0.1309 -V. 01103 0.24 
38.00 x. 1370 0.1375 -V. 0005 0,3o 
.. 7,53 x". 1519 0.1506 . U. UV13 0,87 

'1na 
SOLUTION 

A. 104.1 SD " 
Be 0.05502 SD   
C. $39.2 SD R 

C0Mi''TE0 RESIDLALS 

SIGMA DELTACV) 
MEASURED 

J. 3lý10 0 0039n0 
, 1; ýSTn ý» OEb00 

1. D1n 0.01700 
3.715 O. n2400 
5.620 0.03350 
9.43.1 0.04600 
13.24 0.05500 
18: 95 0.06500 
2.1.48 0.07900 
39.00 0.00300 
47.53 0.1060 

u, 617 xa6,35T 
0.0u3ä» x, T, oua jU, Lj Xa 5ý9ör 

OELTA(V) DIFF % DIFF 
CALCULAT4P 

o, o3 äö4 0,000014 U, 36 
0.0031ö3 0.000D1r f, 01 

000153? 0,001o3 9,59 
0.0460f. '0,00ZUf ö, 64 
0,033" a0,0004> 1,33 
0,0454f 0,000>3 1,16 
0,3)41ö 0,000äG 1,49 
0.0O4ä5 0,0001? U, 26 
0, Of916 +09000f4 0,94 
0,0309 'O, Ooouv U, 10 

0.1Uýf O, oov U, 25 

Sc 

4! 

4C 

35 

{ 
a = 30 

25 
v, 

20 
w 
U) N 15 

10 
z 

S 

- 
;; I 

- F 
J - F 

d y 
/ 

p/ k 

dä ý 

lid iq 

v. vc v. uy v. uo u. vo v. ' v. 1L U. 14 0.16 0.16 
TOTAL DEFORMATION (DELTA (V)) , Mn 

-5f a loud; 

SOLuT10w 

As 126.3 So a 92,07 * y. a 
on 0,03765 SD   0,00332 X  
Co 749.6 SD"  (0, u4 Xa 

COt1PUTED RESIDUALS 

SIGMA DELTA(V) DELTA(V) o1FF 
MEASURED CALCUI.. TEO 

0; 391n 0.004500 0.003CVu 0,001210 
0; 8570 0.007500 0.00b81.1), 0006 

1.810 0.01310 0,012fn U. 000L4 
3.715 0.02230 0.0414.3 0,000bf 
5.620 0.02850 0.047dD 0.0006ß 
9.430 0.03250 0,0-17b7 -0.005y( 
13.24 0.04703 0,04533 . 0.0010, 
11.95 0.03700 0,3>53) 0,00165 
21.48 0.07100 0.4(043 0.000,7 
38.00 0.08400 0,04414 -0.00014 
47.53 0.09700 0,0704 -0.00004 

17,67 16, dZ 
9,3411 

D1FF 

26, ö3 
äs37 
1.82 
C, 59 
9,28 

1:, e1 
J, 55 
[, ö9 
1,08 
U016 
U, 66 



IV. 22 

LM ST; H0. i 

1st loading_ 

SOLUTION 

A. 15 10 SD r O. Z443 X as 
Is 0109L49 SD   01OV0)99 X 
Co 679.3 SD " ? 0372 x. 

COMPUTEo RESIDUALS 

SIGMA DELTA(V) DEI, TACV) PIFF 
MEASURED CALCULATED 

0; 4000 0.02100 - 0.09124 110.00044 
0'; 000 0.03900 0,03784 0000119 

1.902 0.05700 0,0)079 0,00041 
2.002 0.06700 0.00764 "0.00064 
3.903 0.07470 0,07494 00.000V4 
4.903 0.08000 0,04041 "0,00041 
5,004 0.085n0 0.04479 0,00041 
71905 0.09200 0,09107 0.00033 
9.007 0.00700 0. OY717 "0,00017 
11.91 0.1020 0.1019 0.00ul 
15.91 0.1110 0.1101 0,00u9 
26.02 0.1260 0.120U . 0.00Yu 
2". 92 0.1340 0.1344 . 0.001)4 
31.93 0.1440 0.1434 0.00u4 
41.93 0.1530 0.1511 00.00u1 
10.83 0.1630 0.16)4 . 0.00V4 

s 

ýt 
,. 

" 

{ 

: / 

'e / N, 

;/ 
d"/ 

;/ 
I 

50 

'5 

f0 

35 

1.34 30 
t. aa 
9 37 !z 
U. 92 2S 

0.25 g 20 
V. 35 
U. 1a ý 

U109 " is 
V. 79 
U 03 clý lo u. tb z 
U, 1T 
0,05 S 
0.11 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

TOTAL DEFORMATION (DELTA (V)1, litt 

2, ßs; 9_ 
SOLUTION SOLUTION 

A. 108.6 SD p 0.194 X4 5,7U1 A. 113.1 SD   4.193 X4 3.707 
s" 0. o4674 SD " 0.008 0? Z4 6,135 88 0.03259 30 is 0,091015 X+ 39113 
C. 766.9 SD   31.46 3+ 4,102 C" 712. a !D" 1U1)0 % 'I 1,415 

COMP'J UD RESIDUALS COMPUUT! D RESIDUALS 

SIGMA DELTACV) DELTA(V) DIFF X DIºF SIGMA DELTA(Y) DELTA(V) DIFF X RIFF 
MEASURED CALCU6ATED MEASUNED CALCULATED 

0"4003 0.004300 0.003935 0.000,0! 12,56 0"; 4000 0.004000 0.00375( 0,000240 6.19 

0; 0000 0.008200 0.00ä211 "0.000011 0,13 " 0"000 0.007530 0,00f660 "0.00010u 4,13 
1,907 0.01500 0.01)22 +0.00024 1,45 1'. 902 0101400 0.013f6 0.00094 1,68 
2,907 0.02100 0.02078 0,00044 1,04 2,902 0.01900 0.01äi3 0,000Df 2,99 
3,903 , 1.02600 0104540 0.00000 2,30 3,903 0.02200 0,02214 -0,00024 1.10 
5.904 0.03200 0,0328.5 =U, 000ä. 4,58 5.904 0.02800 0.09636 -0.00046 
9,007 0.04300 0.04364 

, 
O, 000ä2 1.91 9.907 0.03700 0 03%Of 00.0000/ 

, 20 1 
15.91 00 0.053 )01* 0 4 601 3,14 15.91 0.04930 0.04dä0 0,00020 0,40 

92 24 0 0.07 
,0 

"0 3 10 1,119 24.92 0.06400 0.00339 0,00061 O, vs 
. 35.93 0.08800 0,00780 0,0002u 0: 22 35.93 11.08000 0: 00004 "0,00304 0,03 

41: 93 0.09700 0.0Y630 0,00004 0,65 41-. 93 " 0.08900 0.04603 0.00010 Vol? 
4), 83 0.1070 0,1074 "O. OOV4 0,37 0.83 0.1000 0.10V. ' 010.0003 0,33 

X"1 619 
X4 Oß&334 
X4 10083 

PIFF '% PIPE 



IV. 23 

LNST; No. 40 

{st 1ooding 
SOLUTION 

Ar- 27 66 SD " 0.6i65 x 2.241 
0 0.1162 SD   0.0016°2 ka1.430 
Cc 8°0.7 SD f 30.1; 6 i:.   3.441 

tGI'DUTED RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF DIFF 
MEASURED CALCULATED . 

0035G 0,01'"00 0"0198F, 0.00uU1 007 
1.020 0.02190 0,02914 O, UUD76 2., 54 
i 789 0.04540 0,04356 0,0V1ri4 4,00 
2753 0.05760 0,0566!, 0,0091 1,511 
3ý? 1S 0. C6600 0.06045 -0,00D45 0,69 
j.: 677 0.07330 0.071.10 -0, UOV80 1.09 
5,634 0.07ä0C 0,08031 : 0,0Ue31 2.90 
7,563 0.08770 0.0899;. C, UUic2B 2.60 
L. 483 O. G°H10 0,0t73h 0.00071 0.73 
11.1.1 (". 1065 0.1034 U. 0011 1.06 
13.34 (. 1i)°1 0.1085 V. 0006 0.55 
1717.111 

n° . 
32 0.1130 U. 000? (), 18 

ý1171 0.1171 0,0 00 0.04 
17.18 (. 1171 0.1171 u. 0UoG 0.04 
1c. 11 0.1207 0.1208 '9,0901 0.00 
;: Z. 92 (. 12°4 0.1291 V. 0003 0.23 
-'8 73 (, 1367 0.1365 0.0002 002 
33.55 , 1644 0.1435 9.0009 0,66 
38.35 (', 1507 0.1500 U. UUO7 0,48 
x3.16 ! ̀. 1557 091563 "u. UV06 0.37 
1.7.96 ^, 1016 0.1624 x0.0010 0.62 

SCLJTICI 

so 

45 

40 

35 

30 

L 25 
ü) 

v'i 20 
w 
I 

15 
J 

ö lo 
z 

5 

¢Ii 

' f 

PCB 

,/ 

, - 
/ L 

0.02 0.04 0.06 0.06 0.1 0.12 0.14 0.16 0.18 

TOTAL DEFORMATION (DELTA lV) ), mm 

SOLU? 10 

AZ 1CO. ) Si a B  0,. 12')03 5º)   
14,41 

º1, JJ1d15 
Z 
:Z  

11. fri 
6,901 

Aa 137,7 50 " 
B. (121 n? SD   

Jo, (n 
0,0. )SU4 

c" Za 22.3b 
13, ö1 Ca A65�1 SJ . a1tu> Z 3 6»y ý Ca 97$, 9 Si a 46831 Za 687fh 

CC'11'JTEn RESIDUALS CCrIP"ITEu RESIDU' LS 

SIGv, 1 nELTA(V) DELTA(V) DIFF DIFF SIGNA DELTA(V) DELTA(V) DIFF ,t DIFF NC"ASVAFD CALCJL, Vf o IIEASUAED CALC'J6ATR0 

3,635) 0.037180 3.0J>49D O, 0o16u4 21,60 0'*635(1 0,003500 0,0)'º4D4 w0.0009: 6 2f 37 
1.7? o 

7 
3.01263 

01351 1 
ab al dl 4 

A19uf J 
+0,00)14 1,17 1,789 0.01050 0.00994 0,000>4 ý 4,91 

1i 3. 
5.64,1 . " 

. 1.0240.1 
, 0,0434 0,0001) 

3,05 
0 61 

3.715 
5 640 

O. 01ä'1.1 
0,02100 

0,015dY 

, 

0,00)l1 
0,0001? 

0 77 ' 6 
9,49,1 
0.34 

0,03000 
0.33650 

0, )310. ~ 
0, JJoYJ 

- 

w , 0 J01u3 
"0.00J4u 

3 , 43 
1,11 

, 9 , 490 
13,34 

0.02651 
3.02300 

0.34b33 
0,0,31)0 

0,0001f 
U0.0037ä 

0, 6 0,66 
hl li 

1", 11 0.04500 0,044 ff 1), 009C3 U, 50 11.11 0.03950 0, "13 6) , 0 001US e d'65 
21,92 ). 05150 0,0>094 0,007>6 1,10 21.92 0.04500 0, "14310' 0 0011u 9444 
23.71 
31 35 

0.05390 
06900 0 

0,17691 
0, '1n85/ 

0,00109 
U 001343 

1487 2-9.73 
, 

0.05000 
95 

0,04919 
9)) 

0,00081 
0 

163 , 
, 4''"Q 

, 
(1.07900 0,3*004 , 

«0,001u4 
0,62 
1,31 

1,35 3 
47,98 

0 0.05 
0,06'00 

. 0,0> 
0, D'964 , 0o000 

-0,00304 
U 00 
U: 93 



IV. 24 

LMS'1 : No. lO G 

ist Icndincj 

SODUT101. 

As 24.05 SD . 0.7541 ,ba3,023 5c 
am 010754& SD 0.001128 %s1.495 
to 041.3 SD . 27.06 % 2.939 

45 
CCNPUTED. RE$'DUALS 

40 61GNA DELTA(S) DELTA(V) DIFF X DIFF 
IIL. SUkFD CALCULATLD 

0 4044 0,01350 0 01376 .0 , 00026 1: 96 
35 

C, R650 0.02510 0, G7464 0,00042 1,69 n 
1.346 0.03390 0. t"328f 0,00101 2.99 = 30 
1827 0. C4040 0.03910 0.00130 3.21 
2,78& 0.047°o 0.04800 -D, uuQTO 0,21 
3.750 0.05350 0.05422 '0.00072 1,34 25 
4.711 0.05730 0.05891" '. 0.00161 2.81 
5.672 G 06050 0.06267 '. 0.00217 3.59 
7,259 0.06740 O. C6762 '. 0,00022 0.33 w 20 
ß, 51c 0.07440 0.07310 0.00130 1,74 
11.44 0.07750 0. t7(-94 0. UU456 0,72 u, 15 
13,36 0.04030 0.0p033 -0,00003 0.04 
15.2° 0.08340 0.08342 '0,00002 0,02 = 
14,13 0.0A440 C. GF. °01 0,00039 0.43 
X3.94 0 00040 0.0r 53ft 0,00102 1,04 z 
X8,75 0.0.19 0.1016 U. 0005 0.54 
: x. 56 r. 1G68 0.1071 '. 0.0003 0.27 5 
3F, 36 r. 1127 0.1127 0.0000 0.02 
.. 7,8& ', 191 27 0,1235 "0.0009 0.62 

2n i 

SOLUTION ; 
A. 61.17 SD   
on 0, nß817 SD   
C. 924.7 SD a 

C0'IPJTED RESIDUALS 

SIGMA 
MDELYACV) EASURED 

0; 4060 0.1106000 
0; 3654 0.01150 
1.827 a. 02100 
3,750 0.03200 
3.672 0.03700 
9,519 n. 0c650 
15.29 0.05600 
23.96 0.06050 
33.56 0.08200 
38.36 0.08650 
67.88 0.09690 

3,70; %a6,1db 
o, OQZ044 X"4,210 

ýa. y1 X"h, zuö 

DELTA(V) DIFF X D1FF 
CALCU6A7C0 

0.00(j245 00,000245 4,08 
0,011ö7 "0, ooos7 3,19 
0,09041 0.000)y 2,80 
0,0i1U0 0,000Y7 3,03 
0.03744 90,000134 2,26 
0,04704 90,000>ö 1,25 
0,0)692  0"000y2 1467 
0,00874 0.000f4 

. 1,03 
0,040)4 0,00142 1,73 
0,00644 0,000C4 V. 32 
0,0V714 90,00110 1: 21 

lý 

// 

// 

0.02 0.04 0.06 0. Ob 0.1 0.12 0.14 0.16 0.16 

TOTAL DEFORMATION (DELTA (Y) I, MM 



IV. 25 

1M51 No. 11 

151 Iondin9 

SOLuy10I. 

A. 32.83 sib a1 . 
151 % 3.503 So 

8  0.12C6 SD " 0.006777 % 3.686 
C. 703. SD R 143.6 S: a, 20.02 

" 45 
[GHpUTED RFSIDUAL3 

SIOHA D[tTA(V) DEL? A(V) 01FF DIFF 40 
NE? SUNED CALCULATt'D 

0, R32C 0 02010 0,07106 -0, UU1ö6 4,17 
35 

1.295 0.03340 0.031&0 0,0Uý00 5,90 ä 
1,756 0.04170 0.0306? 0,0u423 5,34 30 
2.683 0.05340 0,05256 0, UUQ86 1,62 
3,60' 0.06200 0.06273 -0,0UU73 1.18 
.. "533 0.07030 0.07096 e0,000b4 0.92 Li 25 
5,458 0.07750 0.0777b -0.0Ut426 0.33 
7305 0.08700 0,0P85 2 -0,00152 1,75 
x, 155 0.0S5ß0 0,0r678 r0,00088 0,92 N 20 
11.01 (. 1o12 0.1o34 "u. u022 2,22 cr 
12,80 M. 1U71 0.1090 '-U. 0u19 180 N5 
1i. . 71 1', 1172 0.1138 0,0036 2., 8o 1 

18,61 r, 1247 0.1270 U. 0u27 2,20 = 
22.11 1,1300 0.1287 0.0013 0,98 10 X5.81 r, 1351 0.1347 0,0004 0,33 z 
iß. 51 r, 142? 0.1400 9. U, 0013 0.95 
33.21 C"1493 o. 145U "U, UVO? 0.47 5 
30.91 0.1546 0.1467 '0,0003 0,18 

f 

IM -I CONI n9 

I 
SCt; Jfl 

Aa '. 5.33 SD a J. fo5 i( a d. 215 
Ba 0.. 15242 Sa a 0,014443 7. a 4,65Y 
Ca oS". 1 SD a 44, t1 Xa . 3.801 

CO'IP"'TEn RESICUALS 

SIGMA D¬LTAIV) DELTACV) DIFF *4 DLFF 
14EASURED CALCULATgn 

0.4500 . 1.011)50 0,0.1d90 0,001y'. 14.64 
1.295 ). 02230 0 , J403ý 0.0010} 7.49 
201,30 . 1.3 150 0,03331 -0.001ö1 5'75 

0421C O, )44d/ "V. 000d/ 4.9441 ). 1 07 
690 1.05150 0,0)17/ "000041 

1'. ' ), 06210 0,11,3414 "0,00014 'u, 22 
11.41 J. 07500 0.3/404 0,00031 0,41 
25. "81 ). 0El)00 0.01700 0.00134 1,50 
31,21 ". 1J10 0.10QJ 0.0olu 1,02 
.. 0.50 ^. 1115 0.1114 A0.00us ' 0,26 
4ä. 1O ?. 1130 0.1194 n0.0014 V'98 

,. A 
': /1 

: // 
' // 

.. : // 
dp 

: 1 // 
, , 

p i 

'r 
, 
/ f d 7 

j 

qiý ý 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.16 

TOTAL DEFORMATION (DELTA (VH , MM 

3cd loaXin 

SOLUTION 

As 121.4 SD'a 
Hs n. ()3414 SD a 
Co 770,,; Si) a 

C0IIP'ITED RESIDUALS 

SIGMA DELTACV) 
11EASURF0 

0.45n, ) o, a05oOn 
1.295 X1.01000 
2Q 30 0.01-1'11) 
4. Q4o O. n2'. 54) 
7.690 1). 032')0 
12.00 4). 04')50 
18.41 1). 05In 
25.81 0.06370 
33,21 0.07500 
4'1.5D 0.08200 
45.10 0.00010 

10, r4 xv 
0, odýson Ge 

s1, y5 xn 

DELTA(V) OIFF 
CALCt1LATIU 

0. U1jugf 0, U')13ß 
0,0.1981 0,00019 
0, J1794 0,000Uo 
0,1)449f +0,000, ( 
0, t)Az14 -0,00010 
0, -J4+)y' 'U, 00044 
0,4ý17> U, 000ýS 
0, ')U4YU" O, g001U 
O, Uf. S4ti 0,001)0 
0, x)4351 "0,001 1 

8,849 
7, ses 
4, OY. 

Y DIFF 

21.46 
1,93 
U, 34 
1; 93 
U. SO 
1,09 
V143 
0,16 
', u9 
1.84 
U"25 



1MS1: No. 12 

ist loading 

SoLuTIoi4 
As 70.22 SD F 2.721 %a_3.163 
pit 0.07635 SD . 0.00231.5 '4 R 3,123 
Cs 579.0 SD " 15.13 :. a9.613 

COMPUTED RESIDUALS 

SIGMA DELTA(V) DELTA(V) PIFF X DIFF 
N[LSUkED CALCLLATED 

0.2000 0. ('03000 0.003091 .. 0.000091 3.06 
0.31-0G O. r05300 0.00i4o o, uou160 3.02 
0.7(. 00 0. ^08600 ('. 01002u . 0. uU16Z6 10.58 

1.301 0.02050 0.0171c. 0.00.534 16.31 
2,; 02 0.02590 0.02603 -0, UUV13 0,51 
2.702 G 02L00 0.03025 -0.0UV35 1,17 
3.706 0.03720 0.03761 '0,00V41 1.09 
4,703 0.04360 0.04380 "0,00020 0.46 
5,704 0.041-80 0,04521 O, UUU59 1.19 
7,705 0 05800 0. u5833 "0,00V33 0,57 
L, 7(17 0.06560 0,66595 "0,00035 0.53 
. 1.71 0.07170 0.0725' «0,0Uut9 1.25 
'13.71 "0.07810 0.07857 v0,00047 0.60 
$. 71 0.08340 0.040u "0,00066 0.79 
, 7,71 G. 08660 0. U8420 "0.0oklo0 0.68 
It'. 71 0.091.80 0.00407 O. 0UV73 0.77 
: 6'7; rý1066 0.105w V. Uy12 1,09 
; c, 72 x. 1169 0.1160 V. 0009 0.76 
3., 72 11.1268 0.1261 V. 0007 0,54 
3C . 

73 0.1362 0. l35tß U. 0003 0.23 
e', 73 ß. 1a68 0.1473 . 'U. UV05 0.36 
4'. 73 x. 1540 0.1548 "U. 000S 0.53 

0 

2nd lcdin_ - 

SO Lu'1ON 

As 25.71 SD   4.5u1 x= 25, Ld 
9" 0,1315?. SO " 0, O 4? b x of 717yä 
C 509�+. SD " 17"K3 Xa3,599 

CO'ti'ºTED RES1CLALS 

SIG": DELTACV) DILTA(V) DIFF DIFF 
º'FASUREC CALCUL, 1T1 D 

33,1 0, ^071 no 0.0: 10634 U. 000464 6,59 
0; '14.1,1 '1.01300 00 00)Yti 0,003UC 23,20 

1,670 J. 0224.0 0,0; 4)1 -U "002)1 11,40 
3,63u 0.03350 010JCy1 "U, 00241 e'vo 
7.735 000440C 0,34361, u, 000.44 0,72 
11,71 0.055'0 0.0)454 0,0024a 4,50 
in, 71 J, 0710C 0600901, V, 00194 9,73 

22717 
0,08400 0,044U7 -U, 000Uf 0,00 

34,77 3.09350 0. P912 +0,00004.0,63 
;, ý. ab ý. 11? 0 0.11)3 "0,0033 9,92 

4fl, 7f 0.1310 0I14Ö 0,0021 1,63 

l 

50 

45 

40 

35 

a = 30 

ü 25 
N 

20 
w 
cy 

15 
J 
{ 

0 10 
z 

5 

IV. 26 

. // 

5 " 
1 1 

; ý1"/ / 

d. ý7 

ý" / 

/ 

Oll 

u. vc v. v' V. uo u. up U. 1 U. I1 U. 14 0.16 0.16 

TOTAL DEFORMATION (DELTA (V)), MM 

Sud londin9 

SOLUTION 

Aa 53,33 SG o 
na O. o? 512 SIJ a 
Ca 571,6 SG a 

COIIP'1TEo RESIDUALS 

SIGI4A DELTA(V) 
I"IEASV ED 

I); ý000 0.0S)4Sn0 
9; 1400 0.008000 

1.670 4.015'0 
3.632 J. 02400 
7.705 0. D35n0 
11.71 0.04350 
1^, 71 0.057n0 
2'. 17 0.07300 
34.72 0.08600 
42,86 o. 09900 
4^, 7" 0.1135 

10107 X  18.89 
0.0+11 f's9 %. 7,1 L3 

14993 X 31 X, G1i: 

DELTACV) 
. 

PIFF DiFF 
CALCi{, AT41) 

0.00. Su13 U, 000uö! 19,71 
0,01»(, öu U, 0023Cu 29: 00 

0,01uöu "0,001ad 1U192 
O, ')40 "U, 000fU. 1,93 
O, 034öö 0#00014 U, 30 
0,04304 U, 00046.1,10 
0,0801) "0,001uU 1,75 
0,0(14f . u. oula3 Z'10 
0,04494 u, 001tits 1,25 
0,0'"95. "I), 00033 U, 34 

0,111 040,0010 U, Hri 



IV. 27 

LMST : No. 13 

1St 1ma, ns 
SOLUTION 

As "4.1-2 SD   0.3652 Xa1.011 
em 0. (0210 SD R O. t, OC675 .s0.7328 
fF 552.7 SD " 17.05 % 1.413 

C01IPUTED RESIDUALS 

SIGNA DELTA(V) DELTA(V) 
NE, %SURED CALCULATED 

0 1.770 0.01e00 0, G1a67 
0, t54G - C. 02680 0.7855 

S, S26 0.03400 C. 0? 402 
i, 50B C OLw90 0,04451 
2,862 0.05460 0, vSLO3 
3,816 0.06170 0.06242 
4.770 0 06b60 0,06E1ä 
5,724 0.07380 0.07293 
7.632 0.079 70 0.0A0u 
6,540 0 08510 C. 09572 
11.45 0.08470 0. Ir040 
13.36 0 09380 0. O0LL!. - 
ic. 26 ( 06770 0.00817 
17.17 r, 1G16 0.1016 
. '. OL 11,1u56 0.1041: 
22. ßr r, 1118 0.1107 

. 2. x. 71 r116o 0.1163 
30.53 11.1222 0.1211' 
34 34 1268 p 0.1267 . 39.1o . (, 1317 0.1317 
.. 1.40 (. 1368 0.136c' 
.. 5.7f' r. 1400 0.1415 

4.7.70 f. 1434 0.163L 

2n, i Iwding_ 
SCLu`1C,. 

As QC. 72 SU r 4, (45 
8a 0.06603 S) r O. JUCUhz 
fs A2'.. » SO 8 C>6%JZ 

£09? 'TEn REsl'. tats 

SIGMA DtLTAIv) 
IEaSLAED 

o; L77a 0,005100 
Oýnsc, ) 1OOo 

2g367 ). 02Sp0 
5.724 . ). 03° 00 
Q. 54a '). 05300 
13.36 . 1.06100 
)o: 3g ). 07350 
26.71 j. 08650 
34.31.1.09.1 no 
41.9$ ".. TORO 
L': 7. ) 0.1170 

Si 

RIFF X DIFF 
4! 

4f 
0,000 3 1.33 
0.00025.0.87 

-0,00002 0,05 
0,00u39 0,87 

'U, 00033 0.60 
ýo, uuu7z 1,17 

0, OUu42 0,61 
0,000'17 1.31 

-0.00039 0,46 
. 0.00062 0.72 
-0.00070 0,78 
-0.00069 0.73 
'0.00047 0.48 

-0.0002 0.17 
V. uu06 0.61 
0.0011 0.9, 
0.0006 0.54 
U. U006 0,51 
U. UD01 0.07 

-0.0000 0.02 
0.0002 0.12 

-U. UUU6 0.42 
'0,0005' 0.34 

XA 3"OCd 
X 3,1ýC 
Xa3,031 

DELTA(V) DIFF 
C'LCUL, 1TRp 

0.03? 449+ "U. 000349 
O, Oluij "0,000<S 
0. J44ö4d u. 00018 
O. J. 9L1 ýU. ODUC1 
0.0)41) O. OOJd/ 
O, Oa1öd ýU, 000nu 
0, Of34U 0,0001U 
0,0d*3a U, 000i( 
0, Oy? öes 0,000id 

O, lOdf NO. Cour 
0,116? 0.0Ju 

n n1FF 

6ýö4 
Leto 
0,72 
U, 53 
163 
1,30 
0,14 
U, 19 
U, 12 
U, 66 
0,41 

3! 

a = 3C 

n 

N 20 
w 

is 
J 

p 10 
Z 

5 

'; rr 
, rr 

, / 

ý v 

bp y 

ld 

13 

rf 
-. -& V. U4 V. wo u. va U. r V. r[ V. 14 0.16 0.16 

TOTAL DEFORMATION (DELTA (VJ )', MM 

3cd Iovclýn9_ 
SOLJTJ Ord 

A. 168.4 SU   1o, Y1 "10.04 0  0.0451, ) SD   0, OUSY4'1 Y. a 1lýCT 
0  854.5 SD   (1eu0 !a a831G 

COtPUTED RESIDUAS 

SIGMA DELTA CV) DELTA(V) RIFF RIFF 
1IEASUNFD CALCU{, ATI: D 

0; 47741 0.0025M) 0, U; 131. [4 I0,000724 28,95 f) "54n ; 0,105310 0, U. 1a1>LJ nU, OO(I3i)v 0,03 
'162 , 1.0165A ö, 3(Ud 

, 0UÖ V. 3 5 72 4 J Ce "U . 
00)u4. u: 31 9.540 . ). o355o 0,03(Z7 --), Doof( lg 

"11.36 4.0440n 0,14439 +0, OOJ39 " U, ä8 
19.08 0.056On 0.0? 4) 0 00141 4,53 
26.71- 0.0675n 0,00637 t)'0011.3 167 
34.34 3.0750n 0,0/711 "V, Iogll t, 82 
41,98 0.08650 0,04731 "J, 000ö1 (1s96 
47.70 0.09690 0, U"47. U1001gd 1,33 



IV. 28 

LMST ; No. 14 

I4t boding 
SOLUT101. 

As 4.9SD SD . 0.3409 %" 
an 0.1517 SD " 0.002718 .o 
C. 458.6 SD in 16.49 Xa 

CCI1ptPTED RESIDUALS 

SIGPA DELTA(V) DELTA(V) 
HEASUwED CALCULATED 

o 7570 0 07240 0 07781 
1,472 r. 1049 6.1037 
1,997 r. 117L 0,114a 
3.046 (, 1311 0.1284 
£. 100 fl. 13^2 0.1372 
5,151 (. 1448 0.1437 
6.305 x. 1557 0.1573 
1(1.41 ^. 11,36 0.1642 
12.51 r. 1702 0.1704 
ie. 72 P. 17)9 0.1817 
2P. 92 c. 16Q9 0.1621 
20.18 (1.2098 0.2046 
31.43 x. 2122 0.7167 
3t, 69 (2254 0.9287 
d. 4.. 05 ^: 2445 0.2453 
5». 3D C. 2c, 82 0,2636 

0.887 
1.791 
3,640 

PIFF h DIFF 

a. 
-0, UU541 7 48 

V. uo12 
. 
1.1u 

u. outb 2037 i 
V. 0027 2.07 LO 0.01)20 1: 45 -- V. Ua11 0.79 n ýV. UU16 1.00 w 

Cr , *V. 0006 0.38 
V. 0002 0.13 N 

-U. 0V18 0,93 
pu. 0022 1.16 

0.0052 2.48 
z "0.0045 2,14 

PU. UU33 1.46 
"V. 0008 0.31 

V. U044 1.66 

SO 
i' 

45 .a +/ 

40 
/f 

35 " 

30 

zs 

0 

is 

IO 

5 
el 

Y 

U. uD U. 1 U. n U. 2 0.25 
TOTAL DEFORMATION (DELTA(V1), Mt1 

2nd loading- 'Sid loading- 

SOLUTION SOLUTION 

Aa 47 , 80 SD a 1.796 %a 3,7)8 As 7 1,28 SD a 2.346 X" 3,29 
B. 0,09 233 SD a 0,0ý)273d X 2,949 Be 0,0 8275 SD a 0.0V4646 Za 3.197 
Ca . 53 8,3 SD a 15, U9 Z 2,803 Ca $ 50,9 SD   13'ay ;(a 2,521 

C0"iP'1TEn RESIDUALS CO'IP! ITEo RESIDUALS 

SIGMA DELTA(V) DELTA(V) D1FF X D)FF SIGMA DELTACV) DELIA(V) D1FF X D1FF 
14EASURED CALCULATED 14CASURED CALC'JLAT4 

3'757.1 0.01610 0,31494 0,00100 6,65 0.7570 0.01100 0,010t' 0,00041 1,94 
1.470 0.02650 0614565 0,00Jbf t, 52 1.470 0.01800 0,0191b 00,00118 6954 
3.049 0.06400 0, )434? 0,000)1 1120 3.069 0.03450 0004374 0,000(t 9,22 
5.151 0.05300 0, "1)944 "4.00144 Z: 49 5.151 0,04800 0,0'$79 0,000Uf 0,15 
11.41 0.08300 0.01443 '0,00143 1,72 11.41 0.07200 0, Jf174 0.0000 0,39 
16.72 0.1060 0.1044 010016 1,48 16.72 0.09100 0,091)3 -0.000)3 0,58 
21.92 1.1155 0,115) 0,00VU 0,04 2". 92 0.1020 01095 "0,000 Uý52 
26,19" 0.1280 0,1Zöv "0,0000 0,01 26.18 0.1160 0,11)1 0,00v9 u, ö1 
36.60 0.1510 0.1510 0.00VU 0,01 36.64 0.1370 0,1379 "U. OOVV 0,65 
44.05" 0,1670 0,1062 0.00Uä u049 44.05 0.1540 0,1. )9 0,0011 0,68 
51.36 0.1370 0 , 1ä2Y gQ, 0009 0,47 52.36 0.100 0 . 1694 w0,0004 "U, "15 



IV. 29 

LM57 : Ko. IS 

1s! looding 

SOLUTIOk 

A" 6,276 SD s 0.6100 P. r+ 7.370 
Bc 0.1621 SD   0.003927 2.423 - Cs 70205 SD * 47.12 

.N" 
6.708 

CCIIVUTED RESIDUALS 

SIGMA DELTA(%') DFLTACV) PIFF X D! F1 
f'I, tSURED CALCULATED 

0.512C 0.0650 o 
. 
c4550 0,01300 22.22 

1,051 0,071,60 0.07261, 0,0U391 " 5,. 10 < 
2,076 0.09580 0.10140 "0.0060 5.85 = 
3,074 x,, 1132 0.1172 -0. U040 3,54 
3,745 x, 1194 0.1247 "V. 0053 4,42 -Z 
5,098 C, 13D7 0.1350 rV. 0049 3,72 S 
7,705 r, 1673 * 0.1454 "u, 0U21 1.40 
I1,4p x, 1582 0.158u . 0.0004 0,27 
13.11 n. 1(161 0.165! ' V. 01102 0.14 
15,84 r, 1732 0.1721 U. 0011 0.6v U 
18.51 r. 17°1 0.177., U. 0015 0,84' 
21.28 0.1849 0.1827 V. UU22 1.17 
23,98 x. 1'06 0.1G7u V, U1j28 1.47 J < 
2t.. 67 r, 1u56 0.14.23 0.0035 1.80 
; 4.37 r. 2007 0.1568 V. UV39 1.95 Z 
33.42 x, 21)67 0.2034 U. UV33 1,61 
4.0.1( x, 2149 0.2140 V. Uo09 0.42 

"a6: 9G x. 2228 0.7243 "V. UO15 0.68 
5165 (, 2314 0.2345 "0.0031 1.33 
a0,3C r. 2ý11 0.2445 «V. 0034 1.41 

60 

55 / 

I .! 

S7 ý1 
r ýS 

., r 

r 35 ' 

p p 
30 

:: 

_ _ _ _ _ _ 

I5 

I 

0. OS 0.1 0_ IS nn ' 
TOTAL DEFORMATION (DELTAIV», Mm 

1l loosºn9_ 

SOLUTION 

A. 68.41 SD a ). Joy 
Be 0.08564 SD a 010V611ä 
C01 781.3 SD   07'. 11 

COMP'ITED RESIDUALS 

SIGMA DELTACV) DELTA(V) 
MEASURED CALCULATtD 

0; 1070 1). 009003 0.009294 
3; 512) 0.01420 0.01007 

1.351 3.31990 0,0186q 
21400 3.03100 0.0344( 
5.097 3.35330 000)3(4 
1,,, 49 0.07500 O, Jf4di 
15.89 3.38930 0,33844 
21.28 -0.09930 O. JYddV 

26.67 0.1100 011034 
32.67 3.1180 0.1114 
4.3 . 18 0.1263 0.12YU 
43,25 1.1410 0.1404 
67.39 7.15A0 0.1574 

M loodincj 

X= 
X 

11, u9 A  80,12 Su . 13,34 xx 16, ru 
a 7,144 Ha 0.04292 SD . 0,0. )4141 »q 9,619 
a 3"61Q C= 629.5 SD . $1,15 xa !� 04u 

COWITEn RESIDUALS 

DIFF Z DIFF SIGMA DELTA(V) DELTA(V) DtFF D)FF 
f1EASURFD CALCtJ6ATI U 

9.0067dö 
0 3041.1 

74,54 
U9 29 

0.003110 0.0)146) 0,00203) 51,14 
0.00144 . , * 21 

0 5120 0.036300 O, U1ý37y 0,000445 0 24 
0,00344 . 11 19 "1.051 3.011,10 0,0117 "U, 00ljtýC 6 51 

-0,000(4 , 41 
2,400 0.02010 0,3414> +0,000Y5 4 65 

U. OOJ[U 
/0 0 

ýý 
0,27 

5.07 
11,49 

0,0340 
0.051n0 

0, -13. ýT4 
0,344Yy 

4,000fCö 
0,00201 

V, hi 
3 95 

, 000 
0. 

1), ös 
U 11 

15.89 1.060n0 0,04154 +0,00024 , 0,87 00011 
, 1 61 

21.23 0.07100 0,0(U7) 0,00045 0,35 
0,0016 ' , 

0 18 
24.67 . ). 08050 0,0.1035 0,0001[ 0,15 

,0 0060 , 38 9 
31.67 

1 
4). 08500 0,0YU .) -0,002fs 3,10 

000y J. 
OJU4 

, U, 3, . 16 4 
43.25 

0.1310 
0.1220" 

0 1U3a 
0,116f 

-40,0093 
0,00» 

9,30 
4,34 

. " 6 ", 39 0.1350 0,136? -40,0016" 1,14 



Iv- 30 

LMST s No. 16 

ist Ioo din9 
SOLUTION 

As C. 922 SD F 0,1CE4 Y. = 2.867 
sw 0.4396 st a o, 013oo sc r. 2,957 30 
Cs 122.2 SP c 6.733 .:: r- 5.508 

COMPUTED RESIDUALS 

SIGPA DELTA(V) DELTA(V) DOFF % DUFF 25 
MEASURED CALCULATED 

0 580 0 05500 o, o 550 "0, U1uSo 19,82 
1,651 (. 1150 0.1222 "U. U072 6.23 20 
1,682 (. 1740 0.1703 V. U37 2.15 
2.305 (, 2120 0.7083 0.0037 1.73 
2.927 x. 21.50 0.7305 1). UU55 2,25 
3,550 11.2709 0.2651% U. uus1 1,90 15 
.., 795 (, 3085 0.3082 V. 0003 0,10 Y 
c'. 040 r, 3306 0.341A 'V. UO22 0,64 V) 7,286 x, 3148 0.3097 "U. UU49 1,35 w ýfl 

, +tb56 ", 3"47 0.3961 "U. U014 0,35 
, 

777 x, 4140 0.4153 rV, 0013 0,31 V)10 
12,52 0,4531 , 0.4560 'V, 0029 0,65 
14.71. x, 41177 0.4652 ' )I 0.51 
17.25 (, 5158 P, 5148 U. U010 0.19 0 

8D (1,5771 
. 
0.. 5750 V, UVZ1 

0,36 ZS 

;! b. 78 x., 6117 0,6134 'U. UU2 0,34 

v 

n ns n1 0_ i5 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.59 0e 

TOTAL DEFORMATION (DELTA (V) ), MM 



IV. 31 

LMST -- No. 1? 

1, loading__ 

SOLUT10h 

AF 12.89 SD is 0.4660 % 3.615 
Ar. 0.2760 SD o 0. Cn7257 %e2.629 so 
Cr. 235.6 SD " C. C82 %a3.854 

CCIIPUTED RESIDUALS 45 

SZG1'A DEI. TA(V) DELTA(V) RIFF X DIF 
40 MEASURED CALCULATED 

0 4030 (A 
. 
t13370 0,02470 O, UU. SS'1 11,61 35 C"cCSC 0.06260 0,0SVSa 0. UUGb4 4: 21 

ýýgig, r, 1107 0.1047 UuU60 . 5 39 
2,421 ('"1255 0.1220 , 0u39 U 3: 08 r- 30 
7.92t. r. 1386 0.1370 U. UU16 1.113 
3.; 35 4,150? 0.1x16 V. VV19 1.21 < 
.., 9 43 r. 1711 O. 1ß15 9-0. U034 1.89 25 
5,952 (', 1623 0,1! 80 rt, U057 2.46 tn 7,966 ('. 2175 0.2246 pt). u071 3.2b " 
0,987 x. 2445 0.245" wg. UV14 0,57 V) 20 
17.00 ('. zr, 2o 0.263" ýlº. U019 0.71 
14.02 (. 2793 0.279? 'U. UQ14 0.49 Lu I- 
ir. 06 r, 2' 32 0.7'40 'V. uvo5 0.26 V' is 
i8.2cb x. 3101 0.30115 V. 0V16 0,52 
20.07 0.320? 0.3147 u. UV10 0,33 ä 

ý0 24.11 1,3403 0.342£ U. 0065 1.85 Z 
28.14 0.3701 0.3645 U. 1J056 1.52 
32.2ß ('. 30Q0 0.385c. V. U934 0.87 5 
36.21 f., 4073 004050 U. U013 0.56 
42.27 0.4335 0.4340 'tv. uv05 0.11 
.. c. 33 t. 4590 0.4668 ^V. U078 1.70 

2nd kovdincj_ 

SOLUTIOºa 

A. 1.9.44 SD   n. 273 -X 14 
81.. 0.01387 SD Z O, oday7d %a 
C. "605.7 SD   03, >o Z. 

COMPUTED RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF 
MEASURED CALCULATLD 

pýýp}p 3.01500 0.00äU9 0,00691 
3; 9083 0.02000 0101057 0,00343 

1.916 0.03050 0,04907 0,00053 
2.926 0.03800 0,0. i9)3 -0,001)3 
4 943 0.05300 0,0)377 +0,0oor7 
7.969 0.06250 -0,03544 
12.00 0.08300 0000215 0,0000) 
16.04.0.09200- 
20 Oa 

Y313- +0.00113 

. 
0.1050 0,1015 0.0095 

29'1& 0.1220 0.11YO 0.0044 
36.21 0.1375 0.1350 0.004 
L2.27 0.1470 0,1404 0.00Uä 
4'. 33 0.1550 0,150,1 40.0036 

1: 11 

dý7 

dot 
ý 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

TOTAL DEFORMATION (DELTA (V», MM 

-5(d d loadin 

SOLUTION 

12,69 As 59,76 SD . ). 406 X 9,147 
10,12 B. 0.06485 SD . 0, OU4>49 %n 71015 
10.44 Co 698.4 SD " 45, f1 X4 6,546 

COMPUTED RESIDUALS 

X DIPF SIGMA DELTACV) DELTA(V) D1FF X D{FF 
MEASURED CALCULATED 

46,03 0; 4030 0.01100 0, OJ66Y 0,00431 39,22 
1%. 17 09080 0.01500 0,01361 0,00139 9,26 

4,72 1,946 0.0'2200 0,0444f 00,00947 11,21 , 4,03 2.926 0.03330 0.0J409 0,00091 2 76 
1,46 4.943 0.04250 0.04343 00.000Y3 2.19 
5,32 7.969 0,05400 0.00504 00.00104 1,93 
1,03 12.00 0.06600 0,0062J 00,00040 0,31 
1,22 16.04 0.07500 - 0. Of>20 "0.00090 

, 
0,26 

4,39 20.00 0.08600 0.0ö2Yo 0,00304 5,53 
4,00 28.16 0.09600 0.09749 +0,00149 1,35 
1,79 36.21 0.1110 0.1104 0.0006 0,51 
Uss7 42.27 0.1190 0.1159 "0.000Y 0,78 
"4,46 49.33 0.1310 0,13Ud 0,0004 0,18 



IV. 3 

1M51 c Na. 16 

ist Zooding 

SOLUTION 

As 3"83a SD s 0,20 2h 
a= 0.2576 SG O. Gp551?. :: F 
to 244.3 SD in 79.! 3%o 

tOtIPUTED RESIDUALS 

SIG VA DEI. TA(V) DELTA(V) 
IIEASUkED CALCULATED 

0,4010 0.08500 0,0? 564 
0, c030 f, 1120 0,9? 60 

1.401. x. 1560 0.155'" 
I 0( ! '. 1780 0.1761 
... 90; 0 r, 20L0 0.2021 
3.913 1,2250 0.1a1 
46,911) r, 7320 0.2312 
5516 0,2640 0,24011 
7,925 (. 2530 012554, 

531 C. A, 200 0,268(1 
, 1?, 02 1,2750 0.2788 

13.96 ('. 2870 0,287Q 
1., 00 x", 2'. 50 0,2970 
'I , 9i A, 3134 0.3133 
27 98 0,32°8 0.321v 
27,96 fß, 31.56 0,343' 
32.00 x. 3587 0 . 3586 

'Eta lca nq 

SOLUTION 

A= 6S. 19 SD P 
Bs" 0.06845 SD s 
C - 716.1. SD " 

CCMP'ITED RESIDUALS 

SIGMA DELTACV) 
MEASURED 

0; 4010 0.008000 
3! 9030 0.01200 

1; 906 0.021so 
3.913- 0.03700 
5.918 0,04900 
9 931 0.06250 
13.96 . ). 07100 
19.96 0.08200 
23.98_ 0.09050 
27.99 0109800 
329800 . 00 0 

5.424 
40 

9.140 
0.771 35 

PIFF X DIFF 30 

0, uu431 10.95 =25 

. u. 0140 12.52 
Vtu Uli 0.05 
V, UU19 1.0 = 
U, 009 0.92 1 20 
V. 0061 2,70 
U. UVO8 0,36 N 
V. 0032 1.30 w 15 

'V. VU29 1.1i+ 
ýV. 0V10 0.38 
. 0,0038 
rV. uu09 

1,39 
0,31 10 

"U. UU20 0,67 ö 
0.0001 0,04 Z 
U. UVOg 0.29 5 
11.0017 0.49 
11,0001 0.03 

4,848 Z07,404 
0.006133 %x8,9>V 

öu, öö x9 11,19 

DELTA(V) DIFF % DTFF 
CALCULATLD 

0.0002u4 0,0017v6 22,46 
00012(* "0.000fä 6,50 
0.0031) "u, oole> 

. 
-r, 66 

0,0J744 "0,00044 1,19 
0,04714 0,001 6 3,50 
0,061u9 0.00141 'L. 26 
0.01131 "0,00031 U, 44 
0,043ö0 "0.00140 1'20 
O. Oyllo 00.00068 U, 75 
0,09811 " 

0.1047 
0010013 

' 1,19 

a 1ý 

"' 1 

V 

.,; ' 

Cf! d 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
TOTAL DEFORMATION (DELTA (V) ), MM 

Znd k dinq__ 

SOLUTION 

Ain 43,66 SD . 
B. ' 0'. 07647 SD P 
C11 612.5 SD . 

COMPUTED RESIDUALS 

SIGMA DELTA(V) 
MEASURED 

0.4010 0.01300 
09030 0.01950 

1'. 906 0.02900 
3.155 0.04200 
5.918 0.03700 
9.931 0.07300 
13.94 0.08500 
19.96 0.1000 
23.98 0.1070 
27.99 0.1140 
32.00 0.1200 

$S(Sd x. 0.0U63? 4 X ,i 
aöý15 %. 

DEkTA0) DiFF 
CALCULATED 

o. ouöö> 0.0041) 
0.0177) 0,001'e> 
0.0., OVU "0.0o1w( 
O, 34LSU "0.00030 
0.0>ö» "0,001» 
0.0(344 00.00044 
0.0ti44) 0.000» 

0; Uyö1 0,001' 
0.1904 o. 0ou'r 0.114U" w0,0000 
0,121> "0.001) 

8,7U0 
8.341 
11 , 13 

X D1FF 

31.89 
8,95 
6,56 
U,? 3 
2,72 
U, 61 
0,64 
1,90 
0,68 
0,01 
1024 



N" 33 

Ims'l : No. 19 

1si Iocding_ 

SCLuT10N 

A. 1,. 26n SD . 0, )0f3 %"9,0)3 
B 0", 2322 SD : 0. u1ub2 % lº, 573 
Cs 272.3 SO a 42. f7 %s4,34? 

CC, 1? 'ITEn RESIDUALS 

SIGNA DELTA(V) DELTA(V) 
14EASUAED CALCJ{, ATED 

3; 294a 3.049nn 0.34011 
3; 4933 0.06700 0. JoOly 
3: 6860 3.38930 0,3(691 
a. 981a 0.1043 0.0y11 

1,471 0.121C 0.1211 
1.961.0.1370 0.14U° 
2.942 D. 1543 0,1661 
3.923 0.1710 0.143T 
5,881.3.1960 0.4077 
7.846 0.2180 0,24b 
11.77 C. 2530 0.9496 

0,4714 15.96 0.2320 
1^. 62 3.3010 O, Cöö1 
24.52 ß. 316J O.. OY1 
29.42 0.3370 0,3291 
34.32 0.351 U. ý460 
39.23 0.3650 0,367T 
47.17 0.3840 Q, J974 

2nd 1ocdirq_ 

SOLUTION 

As 1.2,50 SD s 
ON 01193 SD 
Ca 725,3 5J   

CO't? JTED RESIDUALS 

D1FF ; DIFF 

0,00309 18,15 r- 
0,30611 10,01 
0,01209 13,58 

0.0469 6,64 
'0.0311 0,92 
*0.033o 2,61 
+0.0121 7,88 
+0.014F 7,45 UJ 
"0,0117 5,98 N 
x0.0060 3,04 

0.0034 1,28 
0.0107 3,80 
0.0149 4,30 Z 
o, o009 il, 20 
o. o0f9 2,34 
0.0044 0,69 

. u, 009t 0,74 
"0.0130 3,59 

1.04 X 3,514 
0,09401 X 3,501 

44,49 :i 6,133 

SIGMA DELTA(V) DELTA(V) 
MEASURED CALCULATED 

0., 4030 0.01330 0,01119 
0,981,1 0.022n3 0.34071 

1,964 0.035fß 0,33600 
3,923 0.05703 O, J57 ) 
5.834 3.37330 O, JfZ34 
11.77 0.09900 O. Ov9o 
1y, 06 0.1120 0.1144 
24.52 0.1340 0.1330 
34.32 0.1530 0,151f 
47.07 0.1720 0,1730 

DIFF% DIFF 

45- 

40- 

t 

35 417 

1 
1] f / i 

50 / 

25 

20 I! } 

15 

PI 
10 

S J 

U. u! ) 0.1 u. 15 u. [ U. 15 0.3 0.35 0.4 

TOTAL DEFORMATION (DELTAIM, MM 

lid looalnq 
- 

SOLUTION 

An 43.9)9 SD a "x. 642 X  12ý%d 
Bs 0.1063 SD   0, U12vs n 12.16 
Ca 448.5 SD   P1, b0 %a ill51 

COMP'1TED RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF X DIFF 
MEASURED CALCULATkD 

J, 001ä1 13,90, 0.4900 
- 

0.01600 0,01118 0,00481 30,16 
0,0 0iv - 588 . 

981) 0 0.02700 0,34064 0,00636 23,63 

-0100100 3 02 1.964 0.03600 ' 08335äL 0,00010 0,50 
' . 3OJ» , 96 0 2.942 0.04700 0,04161 "0,00001 1,30 

0,00Jo6 , 
0 90' 5.881. 0.06903 0,0(135 "o, 0033> 4486 

+), JQ O 0,87 7.846 0.08100- 0,0441U "0,00310 3,83 
X0 000' 0,73 11.77. 0.1010 

0.1170 
0 10Z4 
0,1174 

eu, Ooii 
- 0,69 

, 0,00113 0,87 24.52 3.1480 "0,1439 9,0041 d e74 
m0.03%U 0,59 34.32 0,1730 0,1701 0,0049 1,68 

37.23 0.1370 . 0.1824 0,0046 1., 44 
67,07 0.1950 0. dgl Cl "0.0006 3,41 



Iv. 34 

uM51 : tio. 20 

ii looding_ 
SO LJTION 40 

As 12.43 SO s 1. Sy9 X 12.86 
on 0: 2168 SD a o, UZJU %: a 10,04 35 
C  182.1 SD is 93103 Xa 12.65 

CO'9P'JTED RESIDUALS 30 

SIGMA DF. LTA(V) DELTA(V) DIFF X DUFF 
IIEASUAED CALCULAT(; D 0 

25 
0: 346) 3.03900 0.3.6)o 0,01244 31,80 
3.3030 1.06830 0,35444 0,0106 15º, 95 

1,154 X1.07630 0,0(133 0,0040( his 0 20 
1.731 3.09230 0, JY4L3 wJ. 00t[ö C, 48 0 
2.308 3.1350 O. 11Z? . '0.00/I (�Si 
4,615 0.1570 0,1oC. . 0.0019 3: 30 
6,923 11.1763 0,194U "0.0100 1U, 25 15 

9.231 1.2220 0,414) 0,00» 1,59 ' 
13.84 0.26.30 0.45f) 0.00» r'10 
19.66 3.3010 0,00 0.01uß 3,48 F10 
23.37 0.3200 0,. 1: Oä 0 . OV6 ? 49 Pi 
: 1,84 0.3570 0,. )0Q 0.0004 0,11 z 
34.62 9.3810 0,. 1912 00.0102 t, 68 5 

2nd Icoding_ 

SCLufIU 

As oC. 26 SJ   is . Z91 X  13, f6 
as 0,, 16930' 53 a O, 3t19 V6 X 13,64 
Co 424.4 S3 a 43,19 Xa 10,14 

CC JTED REsIDUALS 

3104x' DELTACV) DEiTA(V) DIFF X DIFF 
11EASURED CALCJOTSD 

3461 0.01130 J. JJ614 0,004öä 44,36 
3'. 1334 J. 31630 0,31! 15 0,00261 11, n0 

1,731 3.32230 0, ")4443 -0,00243 11,04 
I, " 615 J. '34 530 0, )40719 +0,002.3 5.32 
9,231 3.07100 3,049fu 0,0013V 11#13 
13.8k , 1.08700 0, Oö6lu 0.00064 0,96 
JR. 46 01 "0.00us 0,35 
23.07 0.1140 0.1104 0.0000 0,51 
23,84 1.1280 0.1Ln9 '0.00u'/ 0,69 
34.62 3.1440 0.1434 0.0JUd 0,12 

lip 

N 11 
" 

ý1 1 

ýP 1 

. ,p 

m da 7 / t 

d 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

TOTAL DEFORMATION (DELTA (V) ), nn 

'Std loading 

SOLUTION 

A. 39.77 SD . 4. äV3 Xa 12.30 
BR 0". 1084 SD a O, U1i46 XA 12.44 
C  418.6 SD s )8Y4 Xa 14,09 

COMD! ITED RESIDUALS 

SIGMA DELTACV) DELTA(V) DIFF X DIFF 
MEASURED CALCULATLD 

0'; 346,1 0.01400 0, ), )dud 0,0051! 36,57 
O;. -, 080 0.020,1(1 0.01904 u. 0U0Y6 4, ö, ) 

1.731 0.03500 0,0.3519 -'1.00019 U, 54 
4.615 0,06700 0.3o? uo -J, 000u6 0,09 
9.231 0.09000 0. JY594 -0,00594 6,53 
11.84 0.1100 0.115/ 0.00s. C, 78 
19.46 0.1320 011319 0.0001 0,04 
23.07 0.1503 0,1464 1, (I0s6 2,33 
28.84 0.1630 0.1634 '0.0002 0,11 
34.62 0,1770 0.1fY1 "7.0091 1,17 



Iv. 35 

SLS7 i No. f 

Ist laa a7Y1l 

- 

$0LUYION 

As 116.02 SD " 7.245 "% a 16.01 3( 
an 0.1518 SD . 0.01646 %R 10,84 
C. 147.0 SD   12.! 8 % b. 827 

COMPUTED REStUUjiLS 
25 

SIGMA DELTA(V) DELTA(V) PIFF h D1FF 
VE. tSUMED CALCULATLD 

0,4290 C 02800 0, C2838 . 0.00038 1,35 (j 
0.0400 0.05700 0.05284 0.00411 7,21 alf 

;, 961 0.08500 0.08613 V0,00113 1.33 
;, 983 P. 1060 0.1084 -U, UU29 2.72 
0.005 n. 12A0 0.1264 U. UV74 1.91 
e, 048 x. 1530 0,1534 . -11, uVU4 0.28 
6,091 ('. 1770 0.1752 U. U018 1.00 
10.13 0.1180 0.1444 V. 0U36 1,82 
17.18 0,2160 0.2121 V. UV39 1.83 w 
14.22 fl. 2340 0.2288 V. UV52 2,23 6CE"l0 
1F. 2E x. 26°0 0.244'" V. VV41 1.6G 

8,31 0.2340 0.2605 "0.0965 11,33 
ZG. 35 x. 2800 0,275b U. VU41 1,48 
: 2.3v ý. 2ý50 0.? C 0' V. 01,41 1.37 z 
7 , 40 (. 3000 0.3062 v, ow 0.90 S 
'R, 57 (. 3360 0.3353 U. UVO7 0.22 

0 
. 

" ll 

"1/ 
G 

4 

, 

a ,. 
7 7 

... w '4.1 V. 4j u. c u. [ýI u. 3 0.35 
TOTAL DEFORMATION (DELTA (V)) , MM 

2nd loading_ 
" 

SOLuTIam 

As 21.33 S3 a 1. lu7 Xa 
as 0.. 1337 SD   O, Ov734d Aa 
Cf 191.1 SD a tl. fuy Xa 

CWIPJTED RES)CUAL$ 

SIGMA DELTA(V) DELTACV) PIFF 
MEASURED CALCULAT9D 

31,290 0.02100 0.01934 0,001ot 
0. ^405 3.33900 0,01744 0,00174 

1 061 "36300 0.0Q3vv -O, o00YY 
2., 093 ;,. 38100 0,04310 "'J, 00416 
6.0DS 0.1310 V90.1 0.00L"f 
3.091 111370 0.1400 *0.00so 
12.18 0.1720 0,1714 0.0004 
1$. 26 3.2003 0,19 4 0.0016 
21.35 0.2250 0,4234 0,0010 
24,40 (N.? yo0 0.9470 0.0014 
23.57 3.2690 0, ? u} '+0.004) 

Svc l°dddiri9_ 

SOLUTION 

5,5L'I A. 2 1,82 SD a 1.1.14 Xa 581Y(ý 
5,4ö9 B. 0-. 1262 SD a O. OU0411 4 It 4,941 
»1553 C= 2 00.3 SD   ö. 943 Xa 4,11> 

C0MP! ITED RESIDUALS 

7i DIFF SIGMA DELTAIV) DELTACV) RIFF D1FF 
MEASURED CALCULATID 

7.73 a** 429o 0,02200 010191) 0,00285 1L, 94- 
3,88 0. ^40, ) 1.03630 0,0a6I1 -u, 000ä1 C025 
1.56 1.961 0.06000 0.0029a "0,0024ä 3,81 
4,69 2.983 0.079! f0 0,0äU5L 00,00154 1,92 
1,68 1.. 005 0.09300 0,0Y414 0, g07Lg 3,28 
9.62 8.091 0.1363 0,1340 0.0014 lýpb 
0424 1!. 1A 0.1620 0,103/ "0.001( 1,08 
0.78 16.21, 0.1380 0,1ö91 "0.0011 0,59 
0,70 2.1.35 0,7130 0. L1L4 0.00uä 0,11 
0,56 24.4') 0.23? 0 0.0)? 0,001s 0,54 
0.96 27.52 0.2570 0,95/5 "0.0005 0,18 



Iv- 36 

5151 : No 2 

Ist (ooain9 

S0LUTl0k 30 
Ac 25.50 SD 2.604 XF 10.28 
Dý 0.1582 SD p 0.01813 %F 11.46 
Cs 252.2 SD p 32.87 9c 1303 

COMPUTED RE61DUALS 25 

SIGI"A DELTACV) DELTA(V) DIFF RIFF 
14EASUyED CALCULATED 

0,9970 0 04300 0034C1 0, uoH09 1881 
20 

. '., 081 0.06500 4: 06153 0.00347 5.: 34 
3,165 0.08000 0.0814( "0.00149 180 
4.241,0.09500 0.00738 9-0.00438 2,. 50 
0,417 0.1180 0.1220 -V. 0(140 3,. 38 r`15j 
&. 584 (. 1360 0.1411 '0.0051 3.76 
10.75 P, 1530 0.1572 "U. 0062 2.71 12 
12.92 0.1n90 0.1713 x0.0023 1.38 N 15.04 A. I&00 0.18L2 V. 0058 3.04 N 
17,25 tß. 2010 0.1662 V. 0048 2.30 io 

10.42 0.2120 0.7071,0.0044 2.06 ý 
21.50 (. 2240 0.2186 V. 0054 2,43 _. 1 
25.93 (. 2180 0.2306 0.0014 0.59 r_ 
30.26 x. 2530 0.7593 -V. 0o03 2.50 Lj 

iý 
9 

1ý 

JI 
d, 

U. U, U. I U. 1 0.2 0.25 0.3 0.35 
TOTAL DEFORMATION (DELTA(V)), nM 

4 

Lnd loading 
_ , 

so I. UT! O. 

As 'n9.06 SD   4.351 % r4 6.301 
ßs 0.0453 SJ s 0,0Joöf? s 9, Z17 
Cs 333.6 30 s 1904 X" 5,78y 

CCtw'JTED RESIDUALS 

SIGNA M A D D1FF :S DiFF E 
SU. ED CALCJLAT9 

ýýý97J 3.01410 001511 '0,00111 f@93 
2.081 3.02900 0,047f5 0. Q01t? 4,30 
3.165 3.333.10 0.379} 0,000U 0,13 
6.1-17 3.06100 3.300// 0,000t. f 0,38 
1 1.75 1.08140 0.04291 '0,001`/1 2.36 
1S: (19 0.1020 O. 101il o. 00uo 0,77 
1(1,47 01 11aC 0,11,7 000003 9.29 
25.91 0.1420 0.140u 0.0014 0.97 
3 1.26 ?. 1543 0.1554 w0.001L 0,79 

STA 10031P3 

SOLUTION 

As 64.23 SD o ). 944 %s9 254 
8s 0.0'7351 SD a 0, ýºu91"7 Xe 12.44 
C  339,0 SD a 47,405 7,, : ; 3,155 

CC 1P'ITEn RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF D1FF 
MEASURED CALC'ILATLD 

O, f)97(1 0.01330 0.015fu -0,002fo 21,21 
2,082 0,03003 0.0986,4.001x0 4,54 
3.16S 0.04130 0,03604 J, 00210 5,28 
0.417 0.06300 O, o1Co ", ) 001Lo 9013 
11.75 3.08130 0, jdt7y -U, 001f9 C, 21 
15.09 0.1010 0,101)? C. 0005 0,4'9 
1^. 42 r. 11"a0 0,1164 . 010016 1.34 
25.93 0.1300 0.136f 0.00403 0,23 
31.26 0,1520 -. 0,15LY "0.0009 0,56 



Iv. 37 

SLST s No. 3 

Ist Iood; n9 _ 
SC WTI Ob 

Aic 22,42 SD " 0,5957 % is 2,65b 
30 

Do: 0.1782 SD   0.005047 2a2.832 
Co 228.7 SU   7.359 Xa3.21b 

COHPUTED RESS(UALS 25 

SIGNA DEI, Ir A(V) . DELTA(V) DIFF X D)FF 
MEASURED CALCULATED 

0 558b 0 02400 0,02428 '. 0.00028 1; 18 
7.222 0.04800 O. 000b 0. UVV41 1.90 
2.551 0.08300 0.04061 0, UUý39 2.88 = 
3.880 0.1040 0.1043 '0.0008 0.75 ý 5.20 . (". 1210 0.123t. -U. 0026 2.19 v'1 

S 

7.867 (, 1520 0.1526 "U. 0006 0,40 v, 10.52 0,1760 0.1752 ;. 0008 0.45 w 
13.11 0,1v40 0.1944 9-U. 0006 0.22 " 
. 5.84 --- 0.2120 0.2113 V. 0004 0.19 V)10 
18,50 ('. 2770 0.7275 -U. u005 0.20 
: 1.15 11.200 0.2424 U. uU0 0.24 
; "3.16 (. 2560 0.7534 V. 0U26 1.01 z 
;., 47 (, 2700 0.770c, . 0.0006 0.23 5 
31.7; 0.2L60 0,2473 'u. UU13 0.45 

P 

M/ý 

I 

1I 

II l 

ý( Gý7Y 

/"' 

" 
' 

pýý11 

I 

ni si 

U. Ut) U. I U. 1: ) U. d U. 25 0.3 
TOTAL DEFORMATION (DELTA (V) ), mm 

2nd Icadmg_ 

SOLUTIC 

Aa 45.75 SJ.. L. 348 a 
R. 0,, 18833 S1   O. Odi3Sq %a 
C" 255.5 Sý . '/. 014 Xa 

CO'1P1TED gESIOt LS 

SIGMA DELTA(V) DELTA(V) DIFF 
MEASURED CALC'ILATCD 

3 5580 1.01413 0. Aý1t9t 0,0011u 
L227 J. e2C. 1n o. JtSC' Jýo0or1 
2.555 1.0453c O. J44Z4 J. OOJ(ö 
3.8ßp 0.05733 0. ti? ö40 'Je0014b 
7.867 3. ZR3)ýl J. Jo910 "u, ooliö 
11.13 (. 11'11 0.119 -0.00U4 
13. Sn ('. 1.. ' 0.1449 0.0091 
21.18" '. 1(60 0.1bou 0, oouu 
31.74 v. 2J23 D. LUL4 w0.0JJö 

3tl loading_ 

SOLUTION 

5,132 Aa 69,66 Sig a " a, guy xA 4 60? 6,033 6a 0'. 1122 SD a 0 1149 ýý Xa , 10 ö'1 3, TO; f Ca 308,3 SD s 44, Ul x . 
r. To(, 

CO'1P'JTED RESIDUALS 

DIFF SIGMA DELTAC')) DLLTA(Y) RIFF DIPF MEASURED CALCUL, }TLD 

i, 84 0ý558o 0.009030 0, OJY d( «0,0002at 3 19 1.72 
1,74 

1.222 0.011)1,11 
2,555 

" 3,33710 
00191' 
0,349. S 

-0,30014 
ý1 00lut 

. U ,? l '8 
2,56 3.880 ). 05030 0,0'99 1 , U, 0001v 

1 9 
33 0 1431 7.367 0.08103 0, a41öO -U, 000öu , U 99 0,17 13.10 011123 0,1144 n0,00vö 1 1) 69 1,42 

U, 03 
13,5J 0,1380 
21.18 0.1620 

0,1389 
0,1yv1 

"0 00uv 
0 OJCV 

7 U 
0,40 31.79 0,1020 0,19S4 «0.001 

9 1 
0,61 



N. 38 

sLsT : No. 4 

Ist looäm9 
SOLUT101: 

Am 15.82 SD 2.034 F 
an; 0.187L SD s 0.0182? Xs 
C. 132.5 SD . r. z02 3.   

OOPIVUTED RESIDUALS 

SIGMA DELTA(V) DELTA(V) 
MEASURED CALCULATED 

0.5200 0.03400 0, t)3181: 
1135 C. 06j00 0,06061 
4,377 1.1030 0.1013 
3614 

854 
n, 12P0 
x" 1530 

(1.1303 
0 153 4, , , ) 

7330 r. 11.90 0.1888 
5 

: 
807 1.1'. 50 0.21 75 

12.2& 0.2470 0.2437 
+4.7c 1.2740 -- 0.2675 
17,24 1.2450 0.2y00 
; c. 71 1). 3170 0.3117 
22.1P 1.3400 0.332+ 
2 . 67 0.3550 0.3535 
2L, 62 ^. 39.00 0.3936 
3x. 57 x. 4280 0.4335 

SLs1 . No. 5 

SO It, G i. 

0 

Am " 16,23 SD s 0, C"317 %e-5,741 
0.1748 SD " 0. C07338 .s4.197 

Cs 167.1 SD P 6.043 %e3,616 

tOPPUTED RESIDUALS 

SIGI'A DELTA(V) DELTA(V) RIFF x DIFF 
MEASURED CALCULATED 

0,5210 0.037(0 0,03024 0, UU676 18,27 
1,142 C. 06000 0.05701 O, 00099 4,99 
2,383 0.09300 0. CC407 "0,001(17 1,15 

625 (', 1160 0.1108 -11.0(138 3.24 
866 n. 1370 003C6 -V. U026 1.87 

7,: 349 x". 1070 0.1701 -V. UU31 " 1.86 
5.832 n. 14.60 0.1945 0.0(115 0,76 
-12.31 0,2180 0.2158 U. U022 1,02 
14,80 0.2360 0.2352 -9.0012 0,53 
iP, 26 0.2560 0.2536 V, 0024' 0,95 
10,76 0.2750 0.2711 0.0439 1,40 
4r.: 73 0.3050 0.3048 V, 0002 0.06 
'u. 6V 0.3350 0.3373 'V. UU23 0.68 
31.. 66 n. 31.80 0.3cc0 'V, VU10 0,27 

12.85 
9,749 
7.095 

DIFF % DIFF 

0, UUL11 6 21 
O. uu>39 8,17 

U. 0017 1,62 
ºU. 0023 1.77 

0.0000 0.01 
V. 0002 0.13 

ºV. Ue29 11.70 
V. UU33 1.34 
V. 0u65__2,39 
0.0050 1,70 
V. UU53 1.68 
V. 0U72 2.12 
V, U015 0,43 

ºV. OV39 1,00 
rQ. VU55 1,29 

f 



N" 39 

sLST : Na b 

ki locdýý 

SOLUTION 

Am '11.22 SD p 0,4128 %a3,678 
6" 014191 SD ' 0.01636 %"3.904 40 
Ca 115.4 SD . 5.010 9" 16.342 

COMPUTED RESIDUALS 35 

SIGMA DILTA(V) DELTA(V) PIFF 9 DIFF 
MEASURED CALCULATED 

30 
0,5070 0.05200 0,04517 0,00083 13,13 
0.9580 0.07500 0.07922 "0,00422 5.62 

1,522 0,1150 0.1156 110.0006 0,56 °C 25 
2,085 0,1670 0.1468 u. 0002 0,15 . 3.213 0.1L20 00979 «910059 3,09 
4.340 0.21.50 0.2387 9.0063 2,56 20 6.594 P. 3,20 0.3017 0.0103 3.29 
8.869 0.3450 0.5503 "0.0053 1.54 
11.10 0.3910 0.3906 1.0.0096 2.52 N 
13.36 0.4260 0,6257 "0.0917 0.40 uvi) 15 
15.61 0.4560 0.1-573 -0,0013 0.30 N 
17.87 ('. 4680 0.4866 - 0.0014 0.29 
22.38 0.5480 0.5402 V. OVT8 1.42 J10 
26,88 1.5880 0.5807 "0.0017 0,28 
31.39 r, 6420 0.6365 V. VU55 0.85 
35.90 n. 6800 0.6817 'V. uO17 0.25 
38,16 0.7000 " 0.7038 . 0.0038 0.54 5 

Ind iooain9 
SOLUTION 

A. 20.03 SD a 1.375 X is 
Be 0: 2071 SD t 0. U91U1 X 
Co 166.4 SD a 13941 X 

COMPUTED RESIDUALS 

SIGMA DELTAIV) DELTA(V) 
MEASURED CALCULATED 

0: 5070 0.032n0 0104563 
00580 0.05700 0.04404 

2,035 0.08300 0,0419) 
6.340 0.1210 0.1394 
3.849 0.1900 0,1944 
13.39 0.2380 , 0.2810 g764 0 
22,38 0.3150 0,1109 
26.88 0.3510 0,499 
3 1-. 39 0.3740 
35 90 0,4040 
33,16 0,6150 0.4109 

4 

ii . ö3 
10.63 
B, 3y9 

DIFF X DIFF 

0.0063? 
0,012i 
o. 001u> 
A0.011s 
'Q. 004* 
90.0010 0.0044 

0.0041 
0.0001 
0.0Ju1 

f10.0040 
'0.0039 

19,89 
21 62 

1,27 
V, 32 
1.54 
0,66 
1.50 
1,32 
2,30 
0103 
1.01 
U. 94 

; 11 I 

p 1 

I 
ýl ýi 1 

p 

u. 1 U. e U.. ) U. 4 0.5 0.6 0.7 

.. 
TOTAL DEFORMATION (DELTA (V) ), mm 

3cd londiýºoý 

SOLUTION 

Ar p5.93 -SD " 1. LY1 X 
Bi 0.2054 SD s O, U114T x 
CF 

, 
188,5 SD P 0.519 9s 

COMPUTED RISJDUALS 

SIGMA DELTACV) DELTA(V) 
MEASURED CALCULATkD 

0"5070 0,02300 0,0C05a 
0.9580 0,03900 0,0J64u 

2,035 0.07000 0,008 
4,340 01,1140 0,. 11x. $ 
8.849 0,1710 0,1754 
13.39 0.2180 0,41äu 
1', 87 0.2550 0, 'Lý31 
2?. 08 0.2830 0, gä4( 
26.88 0.3183 0,3141 
31'. 39 0.3450 0,3444 
35.90 0.3690 0, j694 
33.16 0.3790 0,4847 

4,964 
5,4öä 
4,540 

DIFF 9 DIFF 

0,00245 
u, 00zou 
0,00114 
010,0013 
"0.0044 

"0.000u 0". 001y 
"0.0017 

0,00. I9 
O. 00'* 

n0.0004 
fqO. OOaf 

1U, 67 
6,66 
1,63 
1,11 
Z, 45 
0,00 
U, 76 
0,559 
1,26 
U'ö2 
0,10 
U, 98 



IV. 40 

SlS T: No. 

ist kQ ; ng 
SOLUTION 

As 10.49 SD p 0,2366 %0 
!s0.3613 SD IV 0.008608 X. 

". C, 88.71 SD . 2.014 %" 

COºIPUTED RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF 
MEASURED CALCULATED 

1,064 0 08300 0,09121 "0.00821 
2: 12? 0.1550 0.1 Sake V. oU11 
3.191 0.2060 0.2012 0.0028 
1.. 261 0.2410 0.2393 0.0017 
5.316 0.2730 0.2706 010921 
6,382 0.3000 0.2087 0.0013 
7,446 0.3230 0.3234 p0.0004 
8,50E 0.3460 0.3451) 0.0001 
5.573 0.300 0.3668 090002 
10.64 0.3850 0.3863 "0.0013 
12.76 0.4210 0,4225 : 0.0015 
14,89 0.45RD 0.4554 0,0019 
17.02 0.4860 0.4874 : 0.0014 
19.15 0.5170 0.5175 pU, 0005 
21.27 0.5470 0,5L65 0.0005 
23.40 0,5760 0,5748 0.0012 
25,53 0.6040 0.6024 0.0016 
27.65 0.6290 0.6295 0-0.0005 

2,237 
2.382 
2.270 

% DIFF" 

9; 89 
0,72 
1,40 
0.71 
0.75 
0.45 
0.13 
0.02 
0.06 
0,35 
0,36 
0,42 
0.29 0.09 
0.00 
0.21- 
0,26 0.09 

4 

t 



IV. 41 

SLST $ No. 8 

1st % cain9_ 
SOLUTION 

All 9.973 SD P 0,1909 X 1,914 
B. 0.5796 SD r 0.01SVS Y. " x. 752 
C. 127.8 SD P 5.716 %"4,470 35 

COMPUTED RESIDUALS 

SIGMA DEETA¬V) DELTA(V) DIFF 9 DIFF 30 

PEASUUED CALCULATED 

0, &620 0,03700 0.04651 "O, U0yS1 25 71 ' 25 
1011 0.09900 0.0n410 0.00481 4: 86 
1: 561 0.1360 0.1355 V. 0005 0.40 2t 
2,111 0,1730 0.1716 0.0014 0.83 
3,210 0.2350 0.2321 V. U929 1,25 0 
4.310 0.2780 0,2813 eU. 0033 1,18 = 
6.509 0.3530 0.3574 -V. 0V49 1.39 
8.774 0.4180 0.4180 "0.0000 0.01 N 
10.91.0.4690 0.4641 0.0049 1.04 N15 13.10 0.5070 0.5047 V"u023 0.45 w 
17.61 0.5730 0.5742 -u. UV12 0.20 
21.90 0.6270 0.6299 ru. o029 0.46 
26.30 '. 6830 0.6804 u. U021 0.31 _j10 

P. 7250 0.7279 'U, UV29 0.40 

z 
5 

Ind iooaing 
SOLUTION 

A" 2? 01 SD " 1.445 % 
so 0.1105 SD " 0.91903 % 
Ce 112,9 SD " 4,109 % 

COMPUTED RESIDUALS 

SIGMA DELTA(, )) DELTA(V) DIFF 
MEASURED CALCULATED 

0.4620 0.01600 0,019f4 "0,003(4 
1,011 " 0.04100 0,0j9Y0 0,00104 
2.111 0.074nD O. Jfs44 0,000to 
4.310 0.1250 0,1L0 u, *0091 
d. ? 7G 011900 0,19JI "0; 00.17 
13.10 0.2470 0,441to NO. 000a 
1'. 41 0.2980 O. 9) 0,00114 
21.60 0.3330 0.2386 . 0.0000 
26.30 0.3870 O, J4) 010014 
33,50 0,4240 0,42)4 "U'oo 

", 

hh 
h 

1 
, 

d 7 
/. 
ý 

/ 

I 

; 1%f 

CY 4i 7 
1/ 1, 

dj 

U. I U. z 0.3 0.4 0.5 0.6 
. 

0.7 
TOTAL DEFORMATION (DELTA (V)), MM 

3cd toobýny_ 

SOLUTION 

5,2(7 Aa 29.04 SD a I"9S Xv6,668 7,001 Ba 0-. 1949 SD ""0.019(1 X If 10,11 3,693 CR . 139,7 SD a Y. 343 Xa6,61J6 

COHPJTED RESIDUALS 

X DIFF SIGMA DELTA CV) DELTA(V) PIFF X DIFF 
MEASURED CALCU{, ATSD 

23.22 1.011 0.04300 010,1671 0,0060 14,49 Z, 35 2,111 0.06800 0,00bu) "0,0000 0,07 1.03 4.310 0.1110 0.1151 N0.0041 3,68 1.71 d. 774 0,1800 0,1813 "0,0013 0,69 1,96 17.10 0.2310 O, CLYö 010019 0,51 0,23 1'. 41 0.2740 0,9711 10.000 0,86 0.94 21.60 0,3080 0,3090 f-Q. O01U 0,32 0,17 26.30 0.3500 0.3486 0.0014 0,41 0,46 33.50 0,3810 0.3ULD "0.0016 0,43 0,41 



IV. 42 

L151 : Mo. 9 

w loadýng_ ' 

SOLUTION 

As 6.949 SD P 0.2793 %`. 
Ss 0.6026 SD r 0.03406 Xp 

.. ' Co 113.5 SD' 13.77 %R 

cOnPUTED RESIDUALS 

SIGMA 

0,4300 
0.9430 
"1.968 
2. ýTT 
4.017 
6.067 
8,116 
10.17 
12.21 
14.26 
16.31 
18.36 
20.41 
22,46 
2,51 

DEI. TAcV) DELTA(V) 
MEASUKED CALCULATID 

0.06500 0,05990 
n. 1240 0.1191 
0.1880 0.2100 
0.2620 0.273k 
0.3600 0.3306 
0.4110 0.4100 
0.4650 0.4690 
C, 5160 0.5163 
0.5550 0.5563 
x. 5910 0.5915 
0,6260 0.6232 
0.6520 0,6524 
(. 6800 0.6798 
07060 0.7058 
0.. 7310 0.7306 

4.019 
5,65? 
12.13 25 

1 

Q g 

. gy p 

Wp ,'ý 

DOFF X DIFF 

20 
0,00510 7.85 

9,0049 3,98 
-0,0220 . 11 , 69, a- 

0,0086 3,05 
5 u, u0y6 z, az 

0.0010 0.25 
'0,0040 0.86 
'0.0003 0.06 
"090013 0,24 NO 
X0,0005 0.08 uý 

0,0008 0.13 b-- 
'U, 0004 0,07 

0,0002 0.03 
0,0002 0,04 
0,0004 0, oa Z5 

2m loading_ 

SOLUTION 

Al 28 60 SD a 0,9u44 X 
6i 0.1; 6A SD a 0, u1134 X 
C. 138,7 SD 0 e, 447 x, 

COMP; 'TED RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF 
MEASURED CALCULATED 

0.4300 0.01800 0,0169) 0,001u> 
0.9430 0.03300 0, Oa4Sf  0,001af 

1.968 0.06300 0.0036ä 0,0014L 
2,922 0,08500 0,065(? "U, 000fa 
4.017 011000 0,1071 0,0019 
6.067 0.1380 0,140) -0,00eu 
13.17 0,1900 0,1919 140,0011 
14.26 0,2360 0,4331 0.0044 
18.36 0.2700 0�4707 140,000f 
23,41 0.2880 0,44dD n0,000 
24,51 0.3230 0,4230 01000u 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 
TOTAL DEFORMATION (DELTA (V) ), t1M 

3rd loading 

SOLUTION 

3,170 Ap. 40,93 SD r 0,0442 Z. ý 1,5b4 6142ö 8" 0.. 1800 SO r 0,0V9l9O X. 3,329 
4,640 C4 14602 SD a 3,53U 

COMPUTED RESIDUALS 

X DIPF SIGMA DELTAIV) DELTAIV) DIFF X DIFF MEASURED CALCULATLD 

5,82 0; 4300 0.01400 "0,01267 0,00113 8,09 
4,77. 09430 0.02600 0,0g6ä7 90,00067 3,36 2603 1.968 0.05100 0,3)14U 00,00040 0,79 
v, 89 2,922 0.07000 0,0T11"u "0,00110 1,56 1,70 4,017 0.09200" 0, OYOYQ 0,001u2 1,11 
1,48; 6,067 0.1240 0,12Cä 010014 0,99 
0,64 10.17 0.1730 0,1739 "O, 000Y 0,53 
1,23' 14.26 0.2160 0,9169 "0.00uL 0,08 
0,27 18,36 0,2540 0,954U 0.000U 0,01 
0,19 . 23,41 0.2720 0,9710 0,00vi 0,07 
0,01 24.51 0.3060 0,30e0 0.00uU 0,01 

I 



MAO 

4s1 loodir 

SOLUTION 

A  14.21 SD P 0,1321 %"0,9297 
As 0.5998 SD s 0.01477 !Cf2.463 
C. 182.6 SD ' 4.959 9 5.455 

'COMPUTED RESIDUALS 

" SIGMA DIITAtV) DELTA(V) D1FF % D1FF 
MEASURED CALCULATED 

0 6010 0 04250 0.04281 "0,00031 0 72 
1,002 0.061,50 0.06850 0,00091 1.31 
1: 603 0.10000 0.10374 010.00374 3.74 

-2.003 0.1260 0.1251 010009 0,70 

13 
005 0.1705 0.1728 -0.0023 1.36 

6.007 0.21&6 0.2138 0,0008 0.38 
5,009 0.2500 0.2495 V"0905 0.21 
6,010 n. 2810 0.2810 0,01)00 0.00 
8,014 0.31600 0.3340 0.0054 1.59 
In'n? ("3780 0.3790 -0.01)10 0.20 
12.02 0.4150 0.4168 -0.0118 0,44 
16,02 0.4678 0.4499 "0.0021 0.47 
16.03 0.4820 0.6794 0.0026 0.51. 
20.03_ 0.5285 " 0.5306 '0.0021 0.39 
27.04 0.5550 0.5533 0.0017 0.31 
24.04 0.5733 0.5746 -u. 0013 0.22 
26,04 0.5650 0.5046 0,0004 0.06 

-. 1 

30 

25 

po 
t U, 

V) 
N 
W 

N10 
J 
t 
cD 
O 

Z5 

N"43 

.Q 

I 
l 1 

0#p 

U. 1 " U. Z U.. U. 4 0.5 0.6 
TOTAL DEFORMATION (DELTA (V) ), n(1 

2ndd 

SOLUTION 

A. 25,07 " SD " 0,71gä x" 
an 0; 2S49 SD r 0. V160ä Z 
Cs 16 6.8 SD a Y. 15b Zw 

COMPUTED RESIDUALS 

SIGMA DELTA(V) -DELTA(V) DIFF 
MEASURED CALCULATED 

0: 6010 0.02500 0,01601 w0,001u1 
1,603 0.06400 0.00204 0.0019° 
3.005 0.1030 0,10lU 0.0010 
5.009 0.1650 0.1461 "0.0011 
8.016 0,1940 0.1964 "0.0044 
12,02 0,2500 0.4463 0,001/ 
16.03 0.2900 0.014 so. 0014 
23.03 0.3320 0,3Z9f 0,0013 
22.04" 0.3490 0,347/ 0,0013 
26.04 A. 3300 0., iaeU A0.004U 

2,8$4 
6,545 
6,23? 

X DIf F 

4,04 
3,06 
0,97 
0,78 
1,24 
0,68 
0,49 
0,70 
0,37 
0,53 

3rd loading 

SOLUTION 

A. 30.77 SD " J. 'f44 X  
Bar 0; 2267 SD X. 0. v (7 Xr 
Cog 146.0 SD " 170Cö x it 

COMPflTED RESIDUALS 

SIGMA 

0*. 601o 
1.603 
3,005 
5,009 
8.014 
12.02 
16,03 
20.03 
26.04 

DELTA CV) 
MEASURED 

0.02600 
0.05600 
0.09000 

0.1260 
0.1730 
0.2250 
0,2710 
0.3090 
0.3560 

DELTA(V) 
CALCULATbp 

O, OtC13 
0,0»34U 
o, odavg 
0,12Y1 
0,1761 
0, L2»ö 
0,467d 
O, JObh 
0, l57? 

9.6f7 
14,46 
11.43 

DIFF% DIfF 

0,0038/ 
o, oozou 
o, oo1uö 
w0.0031 

00.32 
. o, 0094 
o. ooji 
0,0046 

I, o. 00. u 

4,89 
4,64 
1,20 
2,50 
1,83 
0,38 
1,18 
1,18 
0,59 



SD57 s No. 4 

isi looaIAy- 
SOLUTIO14 

Ai 3.56k SD   0.1202 OX, 3.374 16 
aw 0.2862 SD   0. C05515 % 1.927 
Cs 110.4 SD r 4.1G7 X F_; 3.721 

16 
CCtIFUTED RESTDUALS 

SIENA DELTACV) DELTA(V) D1FF X DIFF 14 
MEASURED CALCULATED 

0 1250 0.03300 C. 0323+ß 0,000o2 1 89 ä 12 
0: 3340 0.08100 0.07362 0.00738 9.11 
0.7516 1'. 1310 0.128: " U. UU28 2.17 

1.168 r. 100 0.1634 -U. UV16 0.83 10 
1.5Fc" . 1650 0.1885 eu. 0035 1.91 
'. 003 ^. 2050 0.7078 -V. UU28 135 
3.046 x. 2380 0.2420 "V. U040 1 

.. 67 8 
.., 090 1.2620 0.7661 v-U. U041 1.57 N 
5.133 t. 2l50 0.7852 -U. UUO2 0.08 w 
c 171, (1.3u50 0.3011.0.0036 1.13 6 
f%. 263 1'. 3330 0.320f. V. 0034 1.02 °' 
5,306 ^. 3.50 0.3472 0.0028 0.81 < 
10.35 E. 3570 0.3543 U. 00? 7 0,76 4 
12.44 ^. 3800 0.3772 0.0028 0: 75 c2i Z 

52 11.3'80 0.3991" "0.0010 0.25 
16.61 0.4,8C 0.4201 9-0.0021 0.50 2 
18.70 r'. 4580 0.4408 "0.0028,0.63 

IV. 44 

P 9 

11 

11 
, 

I/ 11 
1I I I 

i1 
', 

f 

Y 

I/ 

o 

1 
1 

1I 

/ 

/ 

P Pýý 

I r 
o" 'ý 

0.05 0.1 0. IS 0.2 0.25 0.5 0.55 0.4 
. 
0,45 

TOTAL DEFORMATION (DELTA(V)), MM 

Did loading 

SCI. U! IC1. 

As 11.5» SD c 0.6(19 .4a5.8LS 
Is 0.106? SD a-U. U11y2 '/. a 610! 2 
Cs 137., x. SZ) a 1U, >3 ha7,6/3 

CO'1P'JTEý AESTCLALS 

SIGN DEL7A(v) DELTA(V) DIFF ". DIFF 
HEASLiEC CALC'JLATLD 

, ). A270r 0,00 3s 0,00507 2U. 98 

ý'Std 
: 1.051: 10 0,3)43; 1 "04001. »? " 6.57 

1.586 1.0940J 0.39239 0.00101 1.71 
3.046 C. 1330 0.1340. w0. O01b 

, 
1.32 

5,133 f. 17L0 0.1/30 0.0004 Ov24 
5,263 0.215G 0,4144 D, OQuö 0.35 
11,35 3.2350 0,9364 "O. QJ14 0,61 
11.. 52 1,2790 0.200 0.0024 0,87 

.. 31'ºC 0. J11o w0.0013 0,43 

SOL UT 10.1 

Ai 18.311 SD s 1. d14 Z'a 9,909 
BR - 0; 1309. SD a. __ 0, )14l1: _; ß '- ___ 10.84) 
Co 126,9 

, 
SD a 10, >3 h$ 13,301 

COrtW"TEn RESIDUALS 

SIGMA DELTACV) DELTACY) DIFF % DIFF 
I1EASURFD CALCULATLD 

7'. 'Sp0 0,02110 O, J14A4 0,0000o 31,72 
3'. 7510 0.03900 01oalli4 Q, 001ä4 4,72 

1,386 , 1,062.10 0,00464 -J, 002o4 4,26 
3,04a 0,09000 0,0Y%L'4 "0,00194 1,. S3 
5.133 0,1270 0,1t9( "I0,0uCf d, 13 
6.263 0.16"J 0,10ou 0.0094 1,42 
11.35 3,1910 0,1dfS 0,0UL1 1,13 
14,52 3,2270 0,9464 0,00ud Uý09 
1.3,70 ' 0,2620 0,4034 -40,0014 0,53 



t, DST :- No. 2 

f5i 

SOLUT101. 

Ac 14,622 SD P0 2751 %=1.908 25 
Br. 0.212? SD " 0.065624 La2.644 
Cr. 234.7 SD s 15.09 %a6.430 

COMPUTED RESTDUI. LS 

SIGI'A DELTA(V) DELT*(V) RIFF DIFF 
20 

HEASUhED CALCULATED 
o 

046-00 0,07500 0,06545 0.0055 12.73 r. 
0; 0210 ('. 1040 A. 106! '+ -U. 0028 2,69 ýc, 

1,421 x, 11.30 0.1<8! . U. 0059 4,10 = 3,523 f. 1640 C. 186S -. 0. u u81.51 
S, s24 r. 2070 , 0.707e. . U* 0006 0.31 D 
7, c26 (, 2240 0.7230 0.0010 0.45 N S27 fý2380 0.2351. O. VV22 0.92 O 
11.93 (. 2L00 0.2473 0.0v17 0,64' 
13.93 0.2x, 10 0.2580 0.0030 1.15 t 
15.93 n. 2700 0.7682 0.0018 0,67 

_i 17.93 n. 2790 0.2780 4)60010 0.35 = 
, c. 93 ('. 2670 0.7876 60.0006 0,21 S 21.94 0.2160 0.257(, "0.0010 0.34 z 
73.94 r. 3030 0.3063 . 0.0033 1.08 

SCI. IOl 

As 34.94 S. ) a 
an C. 4733,1 SD   
C. 36. '. 1 Si a 

CCI PAT Eli FESICUALS 

SIGMA DELTA(V) 
'I Z. 1 SURF P 

3-. ý»200 e. 312,10 
3ý^210 4.321D0 

1.021 0.33330 
3. °23 3.35900 
5,92,, 1.16830 
5: 027 3.08800 
13.9; t+. 1J5c 
15.93 '. 1110 
1r: 03 '. 1240 

21.91.1.. 1360 

9.046 X= 
0. J. 145o3 Xa 

L2ý34 Zs 

DELTA(V DIFF 
CALCULATED 

00%) 1154 0.0044 
0, J4240 -0.00110 
). J376J U. 0004U 
0, J)6Yu U, 00i 04 
0440994 -0,001y'd 
0, sl0ö? 9 -0.000(9 

0"lu3`/ 0.0011 
0.11uo 0.00u4 
0,1esv 0.0oul 
0.1364 "U. OJu4 

N" 45 

lI 

' a 
'*P 1 

ld d 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 

TOTAL DEFORMATION (DELTA(V)), MM 

3ld loodin9_ 

SOLUTION 

5.7Y9 Aa 37,27 SI' a L042 9a 6,767 5,89. ) Ba 0.07222 SD a 0,0V46. S Y. a 4 170 4.1to Ca 393.3 SD t 94.14 4 7,155 

C0'tp'ITEn RESIDUALS 

DIFF SIGMA DCLTA(V) DELTAtV) DIFF DIFF 
NEASURFD CALCULATt. D 

3,49 'Y42On 0.01110 O, n1064 u, o0U1n t, 6ß 
6,02 0ý1210 - 0.01913 0,049(5 -0,301(5 Y, 23 1,04 1,921 0.036; 10 0,0300 0,00104 j'H9 3,45 3,923 0,05310 0, ýi)Cd1 u. 00019 0,37 
9.83 5,924 il 066,10 0, oaAi7U 0,001Co -1,94 O. YO 9.927 0.080b0 0, ih U9 "U, 002U) C, 57 
1,04 1i, 93 x. 096.10 0.01/594 0,000Ub 0,06 
0,17 15,93 0.1320 oll 049A NO. 000S U, 27 
0,09 1^, 9; 0,1160 0.1143 0, OU1f 1,47 
0,23 21 . 94 0,1250 0,1156 "0,0000 U. 63 



zv. 46 

SDST s Ne. 3 

kt Iona 
_ 

SOLUT IOil 

Ai 11,8T, SD   0,2754 %"2,316 
8" 0.2360 SD " 0.006700 X"2.839 
Cc 170.5 SD   A. 459 = 4,961 25 

COI4VUTED RESIDUALS 

SIGNA DFITA(V) DELTA CV) DIFF . DIFF 
HEASUkED CALCULATED 20 

0,2500 0.61100 0. C701' . 0.00179 9441 
0,1560 0 03700 0, v5564 0.00131 3.54 Q 
0. t, 420 C. uSiOO 0,04774 0,00S26 6: 40 r 

103'" 0.07300 0. (16965 0,00335 4,59 
-! 

ý 
1,424 0. Gy000 0. (87g3 0.0U9u7 2.30 =S 
-. 81( (, 1030 0.1635 "U, 0005 0.52 

, 211 (. 1160 0.117u "v. 01'10 0.88 

, 
490 (. 1370 0.1395 . U. OU25 1.81 

3,780 (, 1550 0.1577 U. OU27 172 

.., 76) f 
. 

1740 0.1761. "U. Ul'26 1, . 
41 0 

5,741 A. 1r, 10 0.1922 rV. U1'12 0,64 
n. 722 r. 2050 0.2060 -V. UU10 0ý4° J 7,703 1.2180 0.2182 eU. 0002 0,09 
6,684 0.2300 0.2203 v. 000? 0.30 ce 
4,664 A. 21.10 0.73Cc: 0.0014 0.58 °z 5 

10.64 0.2500 0.2402 0.01,08 0.31 
11.63 11.2x10 0.2593 (1U047 1.03 
13.59 (. 2800 0.2753 0.0047 1.68 
it. 50 f, 2t80 0.2985 w0.0005 0.10 
i$. 00 1.3080 0.3D47 '0,0(17 0,57 
; 0.00 (. 3220 0.3243 "0.0023 0170 

ind loadin3_ 

SCLUP10Pd 

As 15, Qý) Sa s 1.1Ud i: o 
Ps 0,1151 SJ s 0, UUuýIU Xs 
Cs 116.1 S9 s ('9o iº 

CC'4P'TEn REsIDUaLS 

SIGNA DELTA(V) DELTA(V) RIFF 
I1E. SL E0 C4LCJLaTRD 

,; ý50,, s. 013f0 0,0152. ( 
ýouzrs 

0. i423 3.33510 0003364 U"001s0 
t. E1v 1.36730 3.3041o -0.00118 
3.783 0.09933 0,1VJ1y -U. 00119 
5 741 n. 122C 0.1410 040,001d 
6.684 0.1470 0.1471 w0.0003 
11,63 1.1710 0.169.0. OJ1o 
11.59 0.1360 0,1611 010040 
16. Sä t1.2350 0. L0 9 010001 
13.3J 1.2120 0, L1Ln -0,0044 
2ý. JC A. 2210 0. LL)'9 m0.000 

a 
g 

i 
.4 fi l 

p" 
/91 

p 

/i 

J q 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 
TOTAL DEFORMATION (DELTA (V», MM 

31c Ibndino 

SOLUTION 
7,117 Ao 24.46 SD a 1. bd9 %a 6ý9U5 
5,445 R0.1 01 c) SD. o, utjao1,;, 6o745 
4,7Y6 Cs 181�^, SD p V. 440 :Ls, SýýY1 

COIIP'iTED RESIDUALS 

D1FF SIGMA DELTACV) DELTMV) OIFF % D{FF 
NEASUNED CALCULATkI 

15,16 02500 3.012P0 0.01I)bo 0,001.54 11.20 
3'90 06420 0.02730 

. 
0,3L43b J, 001o4 V477 

1,76 1", 819 ). 05200 0,0) .s -0,00003 1,60 
1,20 3,780 3.08000 0.061ä7 "J. 001ä! 1; 33 
1,46 5,741 0,1010 0,1012 no. 0011 1,18 
U, 20 3.6LA 0.1260 U, 1Zb1 no. 00u1 U, 10 
0,92 11.63 0.1500 0,14! 3 u. 0007 1,82 
1', 49 11.59 0.1610 0,1604 1), 00Uö " 0,49 
1,01 

.' 
16.50 0,1700 0,1780 0,0004 0, Z2 

0,40 13.00 0.13FO 0,18fd o, oov 0,10 
1,28 21,00 0.1980 0.199`) -0.0019 0,96 



N" 47 

SV5T : Na. 4 

Isi %oodin9 

"SCLuTIus. 

A. r. 65i SD s o, 2ff4 X"4.1(1 35 
B. 0,2343 SJ " 0,09*4 10 Za1,9t7 
Co 334.3 SD " 03.47 ."6, luu 

CCºtP'1ED RES)OL"ALS 30 

SIGMA DELTA(V) DELTA(V) D1FF X DIFF 
'l£, %SURED CALCULATED 25 

0; 236n 3.04290 0.33143 0,0105f 2516 
O; 614,1 1.0650C 0 ,0 o'/ö4 0,002*C 4,34 r 

1.187 0.1040 0,1041 w0.00u1,1,13 
2.363 0.1»60 0.1473 w0.0J13 0.91 Z20 
4.726 0.1360 0.1ööi q, 0.009>, 1.33 
7.08v ^. 2100 0, L1Up w0.0uv> U. 23 Ln 
9.511 C. 2260 0. Ct6u «0.0000 0,01 

ß. l5 
11.82 0.23'0 08 931f wJ. 000I 0,29 W 
14.1A 3.24' O 0.44(V 0.0J11 0,43 c 
16.54 0.2580 0.4b71 0.00u9 . U, 35 vi--i 
13.95 0.2670 0. L6>", 0,0016 0,48 

,. 
10 

21.27 0.2750 01473c 0. DJ14 0,53 = 
0', 63 A. 2320 D. Lö1e 0. Diud 0,29 
Z`ý. 3e. ".? 960 O. L'! >d U. 0044 u. 08 z 
3'. 91 '1.3212 0, iti. i "U. 00C. 3 U, 70 5 

0 

2nä loadin4 

SCLUT10N 

ýs 31.14 S) %a 11.13 

e" 0.02032 S3 .% 
r. 408.1 SJ   sollo %s 713yu 

CC'ýP'ýTED RESIDUALS 

SIGMA 

"' 
6 .. S 143 

1182 
ý. 363 
4726 

11.82 
16.5. 
21.27 
23.3n 
3'. 81 

DELTA CV) 
HEASUAEC 

0.038a. 1C 
, x. 02210 
1.033.1J 
x. 342. 
0.061]0 
3. D7803 
0.09400 

0.11ot 
0.1270 
%. 1461 
. 1.1650 

DELTA(V) 
CALCULATED 

0.03(>U. 
3,31 ? J4 
O, Ogöa7 
0,0a4ä1 
0,00411 
0,0raf) 
0. OYSLS 

0.1103 
0,1C4u 
0,143 
Q, 16dU 

DIFF "ýX DIFF 

W 

.' ý 
car 

/ Fl 
S/ 

ct! 

Fv 

0.05 0.1 0.15 U. Z 0.25 0.3 
TOTAL CEFORMAT ION (DELTA (V)11 nn 

" Id locidin9_ 

SOLUTION 

As 36.03 SD s 4.467 X 9,6U9 
Bs 0.08333 SD 0.00645 X 7,2to 
Cs 429.1 SD s 49642 Xa6,948 

COIIPITEo RESIDUALS 

SIGMA 'DELTA(V) DELTA(V) '- DIFrX DI FT 
'IEASURED CALCULATED 

U. 0004Yf 6,21 0.2,16n 0.009000 d. 0 J4bYd 0. U026UL 26,69 
U, J04cb 21,20 0,6140 0.319041 O. V»54e 0,003>3 ib, 57 
0.001 » 4,42 1.182 0.02733 3,04604 0, OOuYö 3,62 

-O, OO. e1 0,69 2.363 0.04n00 0,041>0 -0,001>b 3,96 
"0.00311 5609 4.726 , 1.05900 0.0004) "0.00160 3,06 

0.001j> 1.61 7.089 0.07210 0,0(3 -0.001)4 2413 
"0 0011> 1 32 i 11.82 0.09100 0,01)2U4 +0,001U4 1,14 

^0,00u3 0,28 141.94 0.1080 00 1VbY 0.0011 1,02 0.000 
0 0e L/ 

4,37 
1 65 

21.27 0.1210 0,110.1 
sy 

0.00Lf 2.23 
. 

"0,00. U , 1,61 
2.1.36 
3°. 81 

0.1410 
'0.1600 

0.1 u 
0,162! 

" U. 0040 
"O. DOCf 

1,45 
1, ZO 

I 



IV 48 

5D5T : No. 5 

ßs1 IcoaIny 

SCLUTION . 
35, 

Ac 16.21 SU p 1.020 Xe 11.84 
B 0.1585 SD s 0.01329   8.386 

30 C. 227.8 SD e 70.28 X, a 8,82G 

CC11PUTED RESIDUALS 

SIGI'A DELTA(V) CELTA(V) PIFF DIFF 25 

NE. SURFD CALCULATED 

0,. 510 0.03L00 0,02563 0,01337 34; 29 20. 
1,077 0.05700 0.05150 O, Uu»o 0.65 = 
3,706 0.07G00 0.07061 -0.00ä61 0.88 L3 
2.331 6.08400 0.08554 -0.00154 1.83 N 
3,584 P. 1 t$40 0.107'" "u. UU39 3.76 

v, 15 
, 

83S 0.1200 0.1246 w0.0046 3.82 v 
0,091 1). 1360 0.138u rU. UQ40 2.98 ui 
7.345 r. 144o 0.1404 P0.0054 3.75 v, 
C. 852 0.1 1,60 0; 168u v-0.0026 1.56 . j10 12,3P ', 1820 0,1850 . 0,0030 1.65 = 
11,86 (', 2700 0,19Cä U, 02o2 9.16 
10,88 rr. 22s0 0.7261. U. 00ZI 0,93 z 
22.3v 0.2410 0.2396 u. uo14 0.58 5 
21sBC (. 2520 0.7520 -U. u000 0.01 
11701.0 r. 200 0.7042 "0.0012 0.44 
2q. 01 r. 2750 0.2761 "0.0011 0.41 
37,61 x". 2650 0.2871, "0.0029 1.03 
36.92 ('. 2'80 0.7496 "0,01)16 0.54 

2nd Icndinc_ 

sO UT10 

Aa ; C, o:, So a t, sýy xa 
on 0., 18134 SD a O. ij2, fl3 xa 
CF 272.3 SJ s h, 6ý8 .Ga 

C0? IP ºTED RESIDUALS 

SIGMA DELTACV) DELTA(V) DIFF 
NEASA ED CALCULAT9D 

0;: 510 ). 31330 0, J1430 -U. 00130 

1. G'7 3.02900 0,0411Y1 U. 000UY 
x. 331 J. 350,10 0,04649 3.00116 

w. C38 . 1.37310 00 t1'/ZUh -u. 00uv 

- 00091 J. 11300 0. adob9 -0.00009 
s. S52 M. 1430 0.101( 

, "0.001? 
(. 1140 0,1137 0.00113 

;. o 86 3.1250 0,144.1 o. oou 
19, gp P. 1471 0.1454 0.0014 
2439 C. 1670 0.1659 010011 
2091 1.1.1850 0.1ä5y "0.000 
37., 41 711940 0.19! 1 n9.0011 
3;.. 92 . 1.2050 0.9047 0.0003 

4 

" 
ýy 
11 

II 
I 

Il 

I 
I 

l 
I 

1 
/ 

i 

1 

II 

I/ 
/ 

" 
/ 

11 I/ 

Iy / 

7 ýr 
0.05 0.1 0.15 0.2 0.25 0.3 0.35 

TOTAL DEFORMATION (DELTA (V) ), MM 

&A loadi 

SOLUTION 

4,351 Ax 62,03 SD a 3.4+6 Xs 5,5x4 
2,704 Ba 0.04891 SD a 0,011995 Xa 4,0f4 
1,712 Ca 770.5 SJ e 3.912 Z= 11444 

COFIP'ITED RESIDUALS 

'G DIFF SIGMA DELTA(V) DELTA(V) DIFF i: DIFF 
14EASURED CALCU6AUP 

10,42 045111 0.009000 0,01(993 0, D01Ouf 11,19 
U32 1.077 3.01700 0,016/9 0,00041 1,25 
3.17 2.331 3.03000 0,0980 0,00014 U, 47 
0,07 6,838 0.04700 0,09794 "0,009V4 1,99 
0,87 6.091 . 1.05500 0,0a510 -0,00010 0.29 
1,69 9.852 o 37400 , . 0,05 
0,29 2.36 1 0.08300 ý 04496 0 ý 0 00004 . u, 05 
0,16 14.86 , 1.09500 0.09») -0,000» 0,58 
0,78 1^, 88 0.1160 0.1159 0.00u1 0,06 
0,66 24.89 0.1370 011356 0.0014 1.01 
0,26 2^. 91 0.1560 0,1550 0.0010 0#65 
0,57 32.41 0.1640 0,1645 "O. Opv5 0.33 
014 34.92 0.1730 0.1/41 OR0.0011 0,64 



N"49 

5DS7 : No. 6 

II°°a'_ 

SOLUTION 

As 22.67 SD e 0.61(. 3 0% s 2.733 
An 0.1688 SD " 0.004220 %F2.499 35 
C 243.5 Su w 6.513 9 2.675 " 

-COMPUTED RESIDUALS 

SIGI'A DELTAIV) DELTACV) DIFF DIFF 
30 

MEASURED CALCULATED 

0,5150 0,02300 0.02214 0,00086 3 73 25 
1,126 0.04700 0.04307' 0.0U393 8436 
2, '354 0.07100 0,0730^ 0.00003 0,04 
3,580 0.05500 0, CS631 -0,00131 1,38 

SOS (, 1120 0.1137 "00017 1.54 0 
7,257 x'"1350 0,1403 -0.0013 0,97 
4,709 A. 1e00 0.1161u . 0,0010 0,61 v, 
12.16 i'. 1780 0.178. -V. UV04 0.21 
IL, 61 r. i4.5D 0.19311 V. U612 0.61 -15 
17,06 x'. 2000 0.2080 U. Uo1D 0.48 wu 
19.52 (. 2220 0.2213 U. U107 0.31 
21.97 (v. 2360 0.234u 0.0020 0.84 
; t; L2 4.2470 0.7462 V. UVUS 0.30 
20.87 C. 2580 0,7581 -0.0001 0.06 
20.32 0.2600 0.2608 "V. 0CUB 029 z 
31,77 (. 2000 0.2812 -0,0012 0,42 5 
3tý23 ('. 2620 0.29'2x. ru. UV0A 

" 
0.14 

" ' 
": 

II 
%/ 

ii 

d' 
/ 

/ ± 

_ 

d am , 
0,05 0.1 0.15 0.2 0.25 0.3 0.35 

TOTAL DEFORMATION (DELTA (V) ), MM 

SO LU? 10 

Aa IE. 6ii SD a 4.130 %  
Fs 1.102.4 SD a D. O; J7/ö2 Xq 
Cs 234.4 SD s 12142 Xa 

CCºiP: tTED RESIDUALS 

SIVA DELTACV) DELTACV) DIFF 
nEASURED CALCULATED 

0.515.1 ). 03200 O, JLSVM U. DUhuo 
1.123 3.34130 0.04180 "0.00100 
. 0354 . 1.164.13 O. Juabf "U. 002nf 
r. A05 11.3930J O. JYSyf "U. OOJyf 
7.257 0.1090 0.1111 '0.0013 
t2.16 7.1420 0.1407 0.0013 
1'. 0F 9.1L33 0,16: 1L 0.00Co 
21.97 0.1910 0,1d 0.00a 
; F'87 0.2170 O. L10o 0.0014 
31.77 0.2300 0, C. )t> ro. OJt> 
34.23 0.2420 0,9434 w0,0014 

SOLUTION 

11,94 As 56,45 SD a ös7 X 
69984 Br 0.08441 SD   0.0"J5Uu0 X: 
59213 C: 276,7 SD   Y. Ufd % 

COflPUTED RESIDUALS 

DIFF SIGMA DELTACV) DELTA(V) D1FF 
MEASURED CALCULATED 

25,19 0; 515, ) . 1,01100 0,01009 0,00091 
4,54 1,12,3 021 DC 0,0 0t. ' 0,000(f 
4,17 2,354 ý). 035n0 0,0304[ ýU, 0014t 
1.04 4,805 3.05900 0,0)9f4 10,000r4 
s, 00 7,257 0.07810 0. Or<1i 0,0o0ös 0,93 12,16 0.1J60 0.104b 0.0014 
1,66 17,06 0.1280 0,11/u 0.0004 
1,42 21.97 0.1470 0,14äf OR0, o01f 
0,66 26.87 0.1680 0,16äd Pl0,00uO 
1,09 31,77 0.1880 0,16d4 IRO. 000t 
0,58 34,23 0,19'C 0,191ä 0,00 

5.001 
SOZ4 
3,2d1 

% DIFF 

ts. 23 
J, 65 
4,05 
1,26 
1,06 
1,34 
0.9 
1.19 
(1,47 
0,11 
0,61 



IV. 50 

SD5T % No. f 

iii Icoaºn9 
_ 

50LWrI01. 

Aa 17,20? SD ' 0,3234 1.1 an 
Big 0.1642 SD f 0.004250 ý.   2.594 

. Cs 215.6 SD R 10. '8 xe4,860 

COMPUTED RESIDU. LS 

SIGMA DFLTALV) DELTA(V) PIFF «'DIFF 
I11, SURED CALCULATED 

0,1410 0,01600 0, C1814 "0 00014 0,76 
0,3430 0.04300 0,084c" 0,0U451 1049 
@, 5450 0,0SG00 0,05431 0.00-569 6,, 37 
0_c480 0,07'-00 0,07743 0,00157 1,98 

1,1SO 0.08500 0.0862t-0.00126 1,49 
', 95? 0,1100 0.1114 "0.004 1,28 
2.361 (. 11E0 0,1203 rQ. U023 1.98 
;!, 765 ('. 12(0 0.1278 . 0.0018 1,44 
3.166 (, 1320 0.1342 rV. 0022 1.70 
3,975 (', 1430 0.1450 -V. 00Z0 1,3S 
.,, 086 (, 1540 ' 0. lSSe -V. UU18 1,19 
S, 993 n. 1a40 0.1644 . 0,0009 0.57 
;, G0 (', 1720 0,1730 . U, u010 0,51; 
3,011 (, 11.10 0.1803 V, UV0T" 0.41 

°10,03 1,116C 0.1636 0.0026 1.32 
12.05 8,2120 0.2054 0. UL66 3.10 
1c, 0.0.2190 0.2167 V, 0U23 1,03 
15.50 (. 2280 0.2245 0,0035 1,53 
17,00 (, 2330 0,2324 0,0006 0,25 
10,35 11.2430 0.7445 rV. U015 0,63 
2?, 00 (. 2520 0,257 ' 1.0. U059 2,3E. 

? ed ioodýn9 

SClýTJýýN 

As "'- 24,0.1 Sý " 
on . 0.09'1-5 -SD   
C. '53.7 SD " 

CC`IP'iTED RESIDUALS 

SIGMA DELTA(V) 
HEASUREC 

ý; tA3,1 ). 016; 10 
0, '48,1 11.33100 

1,957 t. 0520L 
3,163 3.06600 
4.984 ). 08500 
7.002 ). 393n0 
11.33 0.1171 
1: '1n 

7.1370 
1'. 1&1 0.1520 
2.1: 30 0.1710 

1, c>J Xa5,203 
o. 0V4JUJ- x 4,7r3- 1xýcs z=4. $cc 

DELTA(V) DIFF DIFF 
CAICJLATEO 

0. al S7a t), OOZ[> 14.1)6 
0.3S1>o -0,00o>b 1,82 
0,0? 14y 3,00050 1,07 
0,3o7>1 -U. 001)1 2,29 
0,0)4)4 J, 0004b U, 54 
0, 'd9c -0.000YC U, 94 

0,1160 O. OOV4 U. 38 
0.130/ 0.0UVS U, 19 

>Ui 0.001l. 1,10 
o. tei. ) "90001. U, T7 

2a 

26 

24 

22 

20 
I 

i 

16 

16 
d y 

1 

/.. / 

d d 
6 

d yp 
4- 

2- 
/ 
A; 

a. 

U, 

U) 
U, 
w 

J 

Z 

TOTAL DEFORMATION (DELTA (V) ), MM 

3cd 'ýOOdinS! 

SOLUTION 

Aa 23909 SD a 0, %YgY xa3,434 
Aa ' 0.07907 SD a 0. JU2U(b 9a2,61y 
Ca' 294.1 SD a 4.113 Xa 20759 

CC lP'ITED RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF DIFF 
HEAS UIt FD CALCULATLD 

0'; 3430 0.01413 0.0136/ u, 0033.5 
'35 0': ̂ 480 D. 0310C 0.03U1) 0. a00fý 1.43 

1.957 0.047n. 1 1,04I5a "V , 00U)0 1.19 
3.168 0.36103 0,000Y4 J, 00JU6 0,11 
4,984 0.07403 

. 
0,0(4bG "0,0000e 1,11 

7,002 0.08600 004)(1653 -9.000 3 0.62 
10.03 0.1320 0.1010 0.0010 0.9 
14.06 0.11As 0.11/a U. 0uu[ 0,17 
17.00 0.13n^ 0,1ZY'd 3.0ou8 0,60 
2'. 00 3.16'n " 0.14f4 "O, OOuu 0,56 



IV. 51 

$DST : No. 6 

Ist loodin9 

SOLUT101; 

AF i. 745 SG R 0.4354 %  
Do 0.1778 SD . 0.005200   
txi 179.8 SD w 7.157 

COMPUTED RESIDUALS 

S 1611;, 

O. t190 
0.411L 

1.902 
2.893 
3.883 
5.864 
7.846 
x. 827 
11.81 
1307' 
15.77 
17.75 
; l.. 73 
21.71 
23.6c 

DELTA(V) DELT, &(V) 
IIEASURED CALCULATED 

0.03700 0.03195 
0.07000 0. C6636 

rß. 1040 0.1030 
0.1250 0.1273 
(0.1420 0.1445 
n. I, SO 0.1601. 
0.1F90 0.18c3 
0,2050 0.2058 
0,2210 0.2207 
0.2350 0.2347 
0.2530 0.7474 
A. 2640 0.2t. 07 
0.2730 0.2732 
r. 284o 0.? 854 
^. 2''40 0.2975 

4.468 25 
2,925 
3.981 

"I 

dpf 

dp ý 

PIFF % DIFF 
20 

a 
o. u0005 0.13 , 
0. U0366 5.24 S 

u. QU04 0.37 = 
'U. 0023 1.83 
't'. UV25 1.79 
'V. 0(r09 0.51 
''U. 0003 0.15 
"U. 0V00 0.40 

U. uV03 0.12 N 
0.01103 0.15 
u. uu51 2,01 
0.0033" 1.24 S 

"u. 0V02 0.023 Z 
@IU. 0U14 0.51 
'0. uP35 1.19 

4 

2nA louain{- 

SDL. iTI C 

As 7C. 0S S) " 1,9V4 ws 
Be 0.07A44 SD . o. ov5u'4 
C" 204.. SJ   '1.1)3 X  

CCMPITEn AESIOUALS 

SI64A DELTA(V) DELTA(V) DIFF 
IFASL'RED C*LCJLATED 

0; 4100 0.02110 0.0789 0,00318 
0'; ̂ 11a J. 033n1 0. JJ1Y1 J'001vW 

14g02 7.76310 0I07OZ1 -%). 002C1 
2,893 3.06100 0130"4 -J. 001ýC 
5,86L J. 086DC J. Oo7SU -0.001)u 
9.827 x. 1150 0.110.3 o, oo? 
1179 C. 1350 0.1344 0.000 

1'. 7S .. 1560 0.155" 0.00u7 
1x. 73 5.1660 0110» (). 000S 
23.69 3.1340 0.1b5b pl0.0018 

0.05 0.1 . 0.15 0.2 0.25 0.3 0.35 
TOTAL DEFORMATION (DELTA (V) ), MM 

51a loudln5 

SOLUTION 

9". 511 AR 19.94 SD a 4.354 X 5,9UU 
6.790 0s 0.06915 S; ) a 0,0U444) Xa6,4Lä 
4,4f9 Ca 233.7 SD a -9.406 Xa3,961 

COr; P'9TEn RESIDUALS 

°n DIFF SIGMA DELTA(V) DELTA(V) DIFF X DIFF 
MEASURED CALCU{, ATLD 

15.17 0; 4190 1.0120,1 000106C' 0,00114 9,46 
3,31 O'; 1) 11a 1.02100 0,040 f 0,000u3 0,15 
48b0 1'. 902 0.03500 0.03017 "01O011( 3,34 
9,50 2,893 3.04900 0,0'47)0 0,001ý0 3,06 
1,14 5,864 3.470ro 0,0f15a -0.001bö 

il, 25 z, 32 9,827 4.09500 0.091) -0.0001) 0,16 0,48 13.79 0.1160 0,1154 0.0006 0,53 
0,46 1', 75 0.1350 0,1344 0,000d 0,59 
0,28 "1". 73 0.11.40 0,143. ) 0.000'! 0.47 
0,96 23.69 0.1600 0.1619 "0.0011.0,74 



Iv- 52 

SDSi . No. 9 

Ist kooam9 

$OLLTIOP 

Am 7.973 SD " 0,3So8 %o 
Bs 0.2498 SD 0 0. D0884.6 %o 
Cc 169.0 SD " 11.28 s 

CCHNUTEO RESIDUALS 

SIGMA DELTAO) DELTA(V) 
MEASUeED CALCULATED 

0 3030 0.03x00 G 05478 
. 0.5060 0. u5'00 0. C'36f 

1.011 0 09500 o. Olooi 
1.517 11,11co 0.117u 
:, 022 0.13A) 0.1377. 
;:. 528 ('. 1520 0.1547 
3.033 ". 1(. 40 0.1687 
d., 046 n. 1880 0.1y/3 
5.055 r.. 2050 0.2041 
&. 066 ('. 2210 0.720 
7.077 ('. 2350 0.2368 
8.088 ^. 2470 0.2483 
'.. 09D r. 2000 0.2580 
10.11 ('. 2710 r. 2e85 
12.15 ". 2'10 0.7863 
; iý15 r. 308C 0.3027 
1e.: 16 (', 3240 0.3181 

20 14+ 0.3370 0.3326 
. 2('. 22 x. 3650 0.3470 

22.63 ('. 3540 0.3635 

4.475 
3.562 
0.674 25 

:: /1 

z 

7 
, 

DIFF DIFF 

20 
G"UU1lZ 3,40 
O, OU)40 9,10 = 
D, VUý. 41 5.17 

u. u020 1,7c 5 
U. 0002 0.14 s 

9, U, 0UZ7 1.70 
V-V"U047 2.88 D 
I-U. 0033 1.75 
"'U"uv61 z. o0 ' go 
^U. 0079 1.33 . "V. VUi8 0.71 N 
P, U. UU13 0,52 

V. 0u1z 0.48 = 
v. 0025 0.93 ö 
v. u047 1.60 , 
V, uuS3 1,72 
U. uv59 1, n 
0,0042 1,24 

vV. UU20 " 0.59 
"U. 009S 2.68 

2rd loading 

SCLJTIC4 

As 25.35 ° SJ   1.044 Xs 
es n. 1130 SD a 0, atliL99 %s 
Cs ? 15.3 $J a_ 14,01 Xa 

CO9? 'JTEr. AESIPL LS 

SIG"A DELTA(V) DELTACV) DIFF 
1EASURED CALCULATED 

0: 1033 "). C1430 0101243 0,001! 7 
1.011 J. 33533 0,0340 0,000fß 
2.32? . ). 05700 0,0633 0,000of 
3,033 x. 07233 0,0ft4f -0,0004f 
5.055 0.04430 0.0YOU. -0.00203 
6, OBR 0.1190 0,1210 "a 0090 
11.11 3.1383 0,1W 0. OUt3 
14.15 ". 1620 0,1004 0.0010 
111: =3 :. 1353 0,1$lu 0100u 
22.63 0.2340 0,4063 w0.0u 5 

u. Ub U. I U. I V. 1 0.15 0.3 0.35 
TOTAL DEFORMATION (DELTA (V)') , nn 

31d Ioadin 

SOLUTION 

6,567 Aa 31.94 SD   1. äy0 %a 5,937 
7,263 Aa 0,1031) S) s 0.0;! 7aoo %a 7,4oZ 
ti, 7Yy Cs .- 257,8 SD a jö, }d /, v" - ? �2O7- 

CO1PITEn RESIDUALS 

X DIFF SIGMA DELTA(v) DELTACV) DIFF x DIFF 
MEASURED CALCU ATRD 

1L, 65 03030 0,01230 O, J4Yöo 4,00214 1f, ßs2 L. 15 1.011 u. 3301C 0,54113 J, 001ä/ 6,22 
1,18 2,022 0,34700 0,04f0 "0,0000) 0,11 
0,66 3.033 o. 06013 0,0011? -0,00117 1,95 
e, 16 5.055 0.08000 0,04400 -0,002uu e, 5G e, 17 is, 08A 0.1040 0.1040 i0.00u6 U, 56 
1,70 1n. 11 n. 11,10 001149 090011 0,91 
0,96 14.15 0.1413 0, I4d6 010016 1,11 
1,08 13.20 0.15,70 0,15fß+ 0,001L 0,74 
1,13 22.63 0,1760 0.177/ "0,001/ 0,96 



IV- 53 

S DST + No. 40 

Ist loading_ 

SOLI'T10 

Ac 7.0c8 SD e 0.1977 % 2.786 21 
Bic 0.3217 SD 0.0n6521 x 2.027 
Cs 145.1 SD   4.6&1 % 3.227 2' 

CCtIPUTED RES'DU, LS 21 

S1CVA DE1. TA(V) DELTA(V) PIFF X DIFF 2; 
NEASUNED CAICUTATFD 

Z 

0, c780 0 05500 0,058n8 . 0.00398 7.24 
0.0810 11,1000 0.1u3l. . U, U034' 3.44' . if 

151,4 x"1450 . 0.1387 U, 0V63 4.34 0- 
2: 047 11.1710 (5"1662 9. VV48 Z: 81 

r 
Id 

3113 n 2070 n"p070 "u, uuno 0 oz 
4,1? c 1; 2340 0.236' "V"0V29 1.22 ZH 
t., 311 (. 2750 0.2708 "0, UU48 1.73 12 
b, 443 n. 3u90 0.3114 . u, OV24 0.79 12 
10.57 ^, 3360 0.3375 "V. UV15 0.44 N 12171 r. 30 0 0.3603 0,0007 0.10 w 10 
1L, 84 11.3:, 30 0.3811 v, 0V19 0.50 
16.97 1"4,30 0.4005 V. UU25 0.61 of 
19-. IC f. 4230 C. A1Qo V. uv40 0.93 
21.23 r, 4310 0.4361? uuu21 049 = 
23.37 11.4550 0.6542 0: vuna 0,. 19 
25.50 x. 4700 0.4710 -0.0010 0.22 Z4 
27.63 ß. 4d40 0.4870 "0.0036 0.75 
is: 76 , 4"5030 0.504u "v, 0U10 0.19 

2 

i 

2nd Zooding 

SCLuTIOti 

As 26.62 SD a 1. f)7 zs6,597 
Ba 0,1143 S) a O, 0V6943 Xa6,073 
Ca 155.2 SJ s ). 100 Xa3,338 

CC9? ITED RESIDUALS 

SIGMA DELTACV) DELTA(V)-- D1FF DIF 
11EASCRED CALCULATED 

04783 3.02300 0901d60 0,0014u f, 
0:? 913 037 10 0,3.419 0,00261 fý 

2,447 1,35333 1, J)91° -0, D0116 1, 
4,179 3.09111) 0.01/. 0 f -0,002uf i, 
. i, 4i1 0.1370 0,1364 -40.0014 1, 
11,71 1,176a 0,1741 010019 1, 
, x: 07 1,2370 0. e96. ' Q, 000( 0, 
21.73 A. 24O' 0.44U. 5 nu, OJu3 0, 
25, sä M124^p 0. go e) 0,00o 'i 11 V, 76 11.2933 0 , LY» n0,00<a 0, 

% DIFF' " 

f, 02 
f, 60 
e$00 
c, za 
1,05 
1,05 
U, 34 
0,13 
V, 95 
r). b5 

! fy l 
t1 

1ý 

I I 

P 
/ 

p dd 

Ö 

-- V. I w.. 2 V. [ U. [3 V. i U. 3.9.4 O. 4J 0.5 

TOTAL DEFORMATION (DELTA (V1) , MM 

! IIJ loading 

SOI. UTIOn 

Aa 44179 SD a ?. 15'L %= 11,50 
B= 0.1021 sJ p 0.01>16 Y. = 14, d5 
Cc 86.1 SD ; 14,12 iG   7,55+2 

COMP'ITED RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF % DIFF 
IIEASURED CALCULATED 

D'; 47Af1 (1,009000 0.01[C30 80,00323u. 3)ßd9 
0 0.02000 0,01331 "0,00331 16,53 

2.047 0.3451a 0.042S( Q, 00Z43 5,43 
4,179 0.07410 0. Of1L1 0.002fy 3,77 
8,443 0.1110 0,111e w0.0006 u, 55 
11.71 n. 14110 0,143 w0.0034 1' 43 
16,97 0.1730 0,17lu 0.0014 u, iv 
21.73 0.2000 U, L011 wu. 0J11 U, 57 
25.5,1 0.22A3 O. Ltsb 0.0044 1,92 
2^. 76 0.2460 0, L4ö> wU, 00[a 1 00 



IV- 54 

SDST : Wo. 11 

" %si loodinq 

SOLUTIO. 

Ac 25.567 SP " 1.4141 %c 
e" 0.2471 se a o. 0n7co5 xF 
Ca 155.6 SP " G. 541 " 

CCUPUTED AESTDUALS 

SIGVA DELTA«V) DFLTA(V) 
HEASUi+ED CALCULATID 

0,3020 0 ostceo 004x, 43 o 790 0,09400 0, G860& 
i, 433 (, 1360 0.1353 
1,811 x, 1490 0.1521 
2.565 (, 1730 0.1774 
;; 942 r. 1h30 0.1873 
3,31E (. 11.10 0.1561 
3,691" F. 2000 0.203( 

., 63r (1.2180 0.7205 
5.582 1.2340 0.2342 
co, 525 r. 2470 0.2461 
7,468 fl. 2580 0.256d 

0,411 x, 2680 0.2665 
1,354 '. 27Q0 0.2757 
11.24 (.. 2470 0.2625 
13.13 x. 3120 0.. 012 
15,01 f. 3270 0,3230 
16.40 0.3410 0.3373 
11,7,3 x, 35,10 0.3512 
2?. 6C (. 3690 0.3784 

5.534 
3.199 

c,. 174 25 

PIFF % DIFF 

o, ouS57 1? o9 
0,00796 8; 47 

u. uou7 0.51 
'u. UU31 2.06 
'0,0044 2.53 
-U. UU43 2.37 
'U, UU51 2.6o 
-U. 0039 1.95 
'U. UU25 1.13 
'U, 0002 0.09 

0.0009 0.30 
0,0012 0.48 
U, UU15 0.54 
Q, VQ33 1.20 
9.0945 1.50 
0.0038 1.22 
U. 0V40 1.2Z 
0.0937 1.0L 

iV. UDU2 0.05 
'0,0094 2.54 

nä looding 

SOWTIC. 

As 26.87 S) s 
P. 0.1139 SD s 
Ca 196.3 SD s 

CCh? '1TEn RESIDUALS 

SIGN,. DELTA(") 
'ýEýSURfD 

p'; ýA2J 1.01410 
ý . 679.1 t. 326'ß 

1. P11 ). 0S3DO 
942 6.07130 3,696 0.0823" 

5.582 a. 1J13 
7,66P 11.1210 
11.24 3.1520 
15.01 C. 17S11 
13. U of IQac 
21.6.1 C.? 11O 

1.612 2s 

13924 Xs 

DELT,, (V) DIFF 
CALCULATED 

0.011au U. 0u2tu 

. 
0. O. 69 t7 ,0 01 f1 
0.0>z44 u, 00Jfö 
3 af19) -u, 000y: b 
O, 31 ) -')80o0» 

0.104U. *0.00.3U 
0.1212 -o. oou4 
0,1497 0.00ci 
0.1743 0,001? 
0,191u 0.001u 
0.4133 "0,0ocs 

20 

a 

;5 

in 
Ul 
go 
J 

z 2 

G 9 
I 

'/ 
/' 11 
' /I 

' :/ 

1 /I 

- - 
pd 1 

- / 
q 

P 
ý. 

ýqaý 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 
TOTAL DEFORMATION (DELTA(V)), tim 

a«1 IoaJincj_ 

SOLUTION 
6,001 AZ 25,65 Si) a 0,9301 Xa3,649 
7,714 Im 0; 1022 SD a 0,0'J3d)4 Xt3,7YÄ 
0,7C9 C0,24485 SD + '/"143 Xs3,739 

CO'IP: ITEn RESIDUALS 

% DIFF SIGMA DELTA(V) DELTA (V) DIFF \X 
Di FF 

tIEASURED CALCULATLD 

1>, 69 071020 0.01300 0,011(9 0,00141 9,29 
6,57 0; 67 90 )ß. 0251J 0,0436u 0,001[u 4.79 
1,48 1,811 4.04800 0,04`21( *U, 0011( 4,43 
1,33 2,942 0.36600 0,0116.0,1 "0,000Ub u, 13 
0,67 5.582 0.092(13 0,0 34 "0,000Sö 0,42 
de95 7,468 011060 0,1u64 '0,00u1 u, 19 
0,18 11.24 0.12^0 011zdv 0.0001 0,11 
1052 15.01 0,1510 0,14 0,0016 1,06 
0,9? 13.78 0.1660 0,160) M0.0003 0.31 

1,10 
21.6o 0.17Q3 0,179) "0,0005 0,28 



N"55 

SDS'i : 12 

ßs% iýoa; n9_ 25 
SoLlITloi, 
Ac 11.45 SD p 0.48&6 %e4,268 
Bo 0.3205 SD . 0.01772 :a5.5211 20 
Cc 188.2 SD R 21.40 S. e 11.37 

CJHVUTED RESIDUALS 

SIGNA DELTAIV) DELTA(V) D1FF X, DIFF S 
IE�SURED CALCULATED 

0 1.071D 0.02700 0,03417 -0 00717 16 54 
o: F920 0.07L'00 0.06742 0,01058 13,56 

N 1.861 r. 1210 0.1177 V. 0033 2.69 O 
, 

630 x. 1510 0.1546 "U. U036 2.38 
, 

79( x"1.. 00 0.1832 -l). Uu32 1.79 
5,737 n. 723A 0.2260 -V. UV3D 1.33 
7,675 r. 256A 0.257a 'u. u016 0,63 = 
L 613 r. 2ALo ('. 2330 ýý. u010 0.34 
11.55 r. 3070 0.304u V, 0V24 0,76 z5 
13.4L ('. 3260 0.523e. U, UV26 0.72 
15.43 ('. 3420 0.340, U, UU11 0.32 
17,37 r. 3580 0.3564, U, 0u11 0.32 
14.30 x. 3720 0.3711 V, uu01 0.03 
21.2E 31.50 0.3862 -u. 0012 0.30 
23.111 x. 31.80 0.394(" 0-0. UU19 0.47 

2nd ýoadýnq_ 

SCLuT10, a 

A= 13.12 So s 0, ö4CS Y. 
B: A. 157; 6 S9 s n, üjö[rr Xs 
C: 220.2 SD s 16. y4 Xm 

CCM? 'ITEn RES1DL. L$ 

S164A DFLTACV) DELTA V) DIFF 
tlEASURED C%LCULATkD 

ýº,:, ý7, ý "1.33210 C, OL7f4 U, 00440 
3 'Q 23 J. 05310 0,33143 0,301ý1 

1,861 ý.. 081io o, 03 ) a, 001o 
3.799 0.1160: 0,1164 ß, U. 0046 
5.737 C. 14ý10 0.1411 "0,0011 
9,613 '1.1720 0.1791 10.0Oul 
15.49 0,20o0 o. 196'r 0.0036 
1', 37 :. 22 0 0,1ý5 0.0045 
21.24 0.2360 0, Lf4 -3.0014 
23.1? 3.2450 0,1.4fO w0100CU 

1 C5, 
. 

n" 'Y 
d a/ 

0 
U. U5 u. I U. lb 0.2 0.25 0.3 0.35 

. 
TOTAL DEFORMATION (DELTA (V) ), º1M 

" 3Td louý; ýg_ 
SOLUTION 

6.401 Aa 21, S3 S) : 1. b0? Xs 
5,21i Ra 0.1533 S)   U, J14)I Xa 
7.491 Co 

. 
235.7 SD a 95,11 X  

COMP'ITED RESIDUALS 

Z D1FF SIGNA DELTACV) DLLTACV) RIFF 
IIEASURFD CALCULATkd 

13,38 0"; 4070 3.017,10 0,, ')14fJ 0.0ou4 
t, 96 0.3920 j. 03200 0,09yfo 1,00! [4 
2,29 1.861 3.0541 0,0)300 0,00034 
[, 40 3,799 1.083ý%t 0,0074U -U. 0044u 
u. K1 5.737 0,1170 0.1114 o. 00vo 
ßi. 05 9.613 0.14°G 0,1464 090018 
1,91 13.49 0.1740 0.1! 31 0,0009 
1,14 17.37 0.1960 0,1Yai s0,0003 
0.59 21.24 0.2150 0.4104 g0,0o 4 
Q. 83 23.13 0 . 22^0 019272 0 . 0012 

5,841 
9.469 
10.6/ 

X DZFF 

13.06 
f, 01 
U, 62 
x, 30 
U, 58 
1,21 
U, 53 
0,14 
1,11, 
U, 6? 



SDST : No 0 

isl 

SO LUTICh 
2 

AR &, 514 SU F 0.1031 %R1,210 
or. 0.3557 SD e 0,004651 %F1,301' 2 
CF 130.4 SU a 2.65? % 2.037 

2 
COrpUTED RESIDUALS 

2 

SIGN DELTA(V) DFLTA(V) RIFF X DIFF 
VEA5UFE0 CALCULATLD 2 

02130 0.02500 0.02501 «0,00001 0,03 
0,4250 0.04(00 0.04703 «0,00103 2,25 
0 38C 0,06b00 0,06674 0,00121 1,78 
0,8510 0 08700 O, (8455 0,00245 2,81 

i27i r, 11p0 0,1152 0.01)38 3.17 = 1,915 (. 1560" 0.1525 V, U015 0,99 

, 
446 f, 178C 0.1777 0.0003 0.18 in 
c7 & , 1L80 0.1592 -V 0012 0,60 

3: 51C ". 2116 0 0.2174 "V V(119 0,8o N 
"., 042 0.7320 0.7343 9-0.0023 1,00 tj 

.. 574 x'. 2450 0.2491 "V, U041 1,66 N 
5,10v l. 21,20 0.2624 "U. 0004 0.16 

,1 4,160 21.50 0.2859" "0,0009 0,30 = 
1., 297 ('. 3250 0.3242 0.0008 0.25 ö 
10.42 x. 3570 0.3555 V. UU15 0.41 z 
12.55 1%. 3660 0.3828 0.0012 0,32 
14,68 (', 4080 0.4074 U, UP06 0.15 
16,81 6.4320 0.4302 U. U(118 0.41 
18,93 r. 4540 0.4510 " 0,0022 0,49 
21,00 0,4730 0.4721.0,0006 0.12 
23.10 x'. 4910 0 . L620. p0.0014 U, 28 
25,31 -r, 5100 0.5113 . V, 0018 0,34 

. 27,44 4.5300 0,5307 "V, 0007 0,13 

Znd 1cadýý 

ScLiT10k 

As 13.41, SD . Jý7sU1   5.4O9 
6s 3.1517 SD   0.090149 Xa 4,1Up 
Co 14S. 1 SJ   4. ä44 3.341. 

CCMDJTED ýESICU.. LS 

SIG"A DFLTA(V) DELTA(V) RIFF X DIFF 
ME. SL'AED CALCULATED 

ß: '13J ,. a1730 0.315öo 0,001cti (; D7 
3;. 3333 3.3423C 0.3401 0.00143 3.54 

1.276 0.06903 0 . 3o713 0"001d7 2'70 
"2.446 3.09933 0.099J3 . 0.000!. 5. UI. 54 
i. O42 x. 1240 O. 12ä0 . 0,0040 3074 
6.169 3.1570 0.156) 0.000: b U, 33 
13.42 3.1930 0.196f go. 000/ 0,33 
14 6,4 3.23'O 0.434,5 0.00[/ 1,12 
13.03 ;. 2690 0.46f4 0.0010 060 
23.19 ". 3010 0,9V C 0.0.310 Uý59 
2°. 44 ^. 3274 0.33U. '0.00.53 1.01 

Iv. 56 

i 

TOTAL DEFOPMAT I ON (DELTA (Vl) , MM 



Iv. 57 

SDSI : N. 14 

Is, loading 

SOLUTI01: 

As 5,635 SD s 0, i. 1b9 ;; R 
Ps 0.3110. Sb R 0.01563 Xs 
Cs 93.32 SD s 5.872 Fe 

COMPUTED RESIDUALS 

SIGN 

0 
. 
4000 

0 8760 
1, L28 

78C 
3,732 
5,637 
7,51#1 

465 
11,35 
13.25 
15, lu 
17. OP 
18.97 
20.87 
. 2.77 

DELTA(V) DELTA(V) 
HCASURED CALCUTATLD 

0-07000 0 0620fi 
(1.1200 0.1136 
r. 1r, 30 0.1784 
(. 2100 0.2205 
(. 2420 0.751c 
r. 29.20 0.2977 
(, 3300 0.3332 
f. 3bfo n. 3635 
4.3180 0.3910 
''. 4240 0.4167 
(,. 4470 0.4412 
r. 4u90 0.4649 
r. 4880 t). LV7c. 
(. 5060 0.5106 
x. 5250 0.5328 

26 

7,292 2 
4.962 

24 6,292 

P 

I 
p ýý 

63 

pIFF y DIFF 2C 

1! 

0,00792 11.32 = 
U, VC70 5,81 . 

1e 
U. UV46 2.53 z 

. 0,0105 5.02 " 
'U. UV96 3,97 V 
ýU. OV57 1.94 
-V. UV32 0.96 

U, U045 1.21 ä ºC 
lº, UV70 1.75 
V, OV73 1,72 "' º 
V. VV58 1.30 
V. 0041 0.88 º 
V. 0001 0.01 Z 

'V, U046 0.90 4 
'U, UV78 1,49 

6 

kcchn9 
ýsawTiah 

A. 13. '7 SD a 0164UI Y. a 
B. 0,2159 Sao a U, J1146 Xa 
Ca j 3, d SJ a tO Xv 

C�'IP'ITEn ; tES! DLJALS 

SIG"A DELTACV) DELTACV) DIFF 
4EASUREC CALCJLAT6) 

3; 4130 3.1)32'"D 0,04004 0,003Yi 
3*'31760 a. 058.13 0.0)46( 00031.5 

1.823 0.0913;, 0.05'417 -0: 0041 if 
30732 0.1450 0,1453 , QQ 3 
5.037 0.17°0 0.1IYo "to. 0046 
9,445 0.233C OLL9) O, 000( 
11.25 1_, 2630 0: 4644 O. OJUU 
11.36 3.3340 O, i%L1 0,0019 
; 3,07 4.31^J 0,. 31134 0,0JUö 
22.77 3.34'C 0.449J , 0,0040 

3, d 1oacl; n 
TOTAL DEFORMATION (DELTA IM, Mn 

SOLUTION 

4.540 A= 16.25 SD " 1.247 Xa 7ý5ý1 
5,309 Be " . 

1496 SD a 0, V1441 3a7,242 
6,04. $ C  156.2 SO r 10, '4 Xe 01710 

C0'iP'ITED RESIDUALS 

DIFf SIGMA DELTA(') DELTACV). "DIFF -% DIFF 
? IEASURED CALCULATED 

11,33 0.4000 0.02911 0,0437) 0.00530 1d. 28 
5 74 O. S760 3.04610 0.0450,0,30016 1,66 
4,63 1,828 0.07532 O, 0f591 "D. 000Y1 1,21 
0 13 3.737 0.1110 0,1145 '0,003b . S, 12 
U, 46 5,637 1.1400 0,1410 "0,00vo 0.42 
V'30 9.445 0.17'0 0.179" "D. OJU4 0,23 
V, o 13.2S 1.2150 0,4114 0,00313 1,77 
0,63 17.06 0.2430 0ý94U1 0.0049 1,19 
0,25 11.97 0.2570 0,95'U "0.0090 0,79 
11,57 22.77 0.2790 0,96u9 "0.001V U667 



IV. 58 

SUSZ No. 15 

1si boding 

SOLUTION 

A  5.15& Su i 0,3579 z  
BF 0.306u SD a 0. A1L52 %m 
Co 78.40 SD s 3.513 %  

OOltpUTED RESTDIIALS 

SIGMA DELTA(S) DELTA(V) 
f'EASUFED CALCULATED 

0 1.140 0 OF3fo 0,0!, 88' 
0; C060 r. 1? 70 0.1232 

1.691 
875 

f: 1.850 
r 4 

0.1411 
;;. 0 

. 
23 0.2345 

3.860 p. 2560 0.2667 
5t24 x. 3100 0.5155 
7"791s 4.3530 0.3544 
L 768 ( 

.3f 
10 0.5885 

. 11.74 1`. 4250 0.41C! " 
13.71 (. 4n10 0.1.41; 7 
15.67 r, 41i20 0.4786 
17.64 ", 5090 0.5065 
lc. 61 11.5370 0.533" 
.l . 58 ". 5560 0.5614 
23.55 0.57Q0 0.5877 

2nd Icodin9 

SZLuTIC, 

An "R. 3DE. SD s 0.0u13 X" 
21 : 017Sd SD   0.007604 %a 
r: 412.2 SD a %. d42 %s 

CCM? 'JtED RESIDUALS 

StG4A 
I, SCRED CALCULATED 

0'; 4144 J. IGSOJ 0,040/5 
3; 906J ä. 3760C O, Jf1öa 

1.991 9.1ý9ý 0.113. 
3.669 3.1560 0,15yý 
5.129 3.1920 0.1YU4 
9768 0.2310 0,1. Sä4 

15.71 1.233C O. C%5+5 

1'. 64 . 5.31c0 O.. s1ö1 
21.5; ?. 3540 0, JSýo 
, Z: SS 1.3710 0,. 3741 

7.714 25 
4.736 
4.990 

DIFF DIFF 

0,01411 17,00 
0,0038 2 97 

"u. 0061 3,29 
.. U, 0Vo5 0.20 
rV. u107 4.19 
"U, 0V55 1,78 
'-u, 0o14 0,39 

V. 0025 0,65 
0.0051 1,20 
0,0113 2.45 
V, 0u36 0,74 
V. uu25 0, Su 
0, UV31 0,58 

Pu, ua50 0.89 
ýV, 0087 "1,51 

6 

6,849 
4,09 
3,760 

DIFF. i DIFF 

0.00445 
0.00319 
000.00» 
wo 

. 
003: 1 

010016 
0.0Juö 
3.00» 
0. oouV 

RU. OJ10 
"0.0.311 

9'44 
4,11 
4.89 
9.23 
0,85 
0.33 
1.24 
0.27 
0,46 
0.30 

20 

a 

U) 
LO 
go t. - V) 
J 
t 
L 

0 
95 

dý 1 

P 
'f 

l 

: / 

- , 
W. uz V.. .. - ... v. - -- -- -_-.. 

TOTAL DEFORMATION (DELTA (V) ), MM 

SOLUTION 

A. 18,04 SD a 1.117 Xs6,190 
B. 0. '. 175') SD   0., )1942 iG a ?' OYA 
Ca 125.3 SD a 4.641 Xa5,43u 

COMP'lTEn RESIDUALS 

SIGNA DELTA(V) DELTA(V) RIFF Y. DIFF-- 
IMEASURED CALCULATED 

0; 4140 o. 027! 10 0,0435d U, 00344.19,68 
0 9060 0.0533 0,3Y u, 003(6 7,55 

1,391 0.0760C 000,059 -0,00459 6,04 
3,86o 0.12RO 0.1t"u 01001u U, d2 
5,829 0.1570 0,1599 , 0,00[9 1,62 
9,768 " 0.2120 0,9099 010041 0,98 
13.71 0.2520 O. C511 0.0008 0,30 
17.64 0,23n0 09db% 0,000) u, 11 
21.53 0.3250 0,3 44 0.00V8 0,24" 
23.55 0.3430 0,3415 'O. OJ1i 0,45 



IV. 59 

SDST : No IL 

Ist Iowan- 

SOLUT30I. 

As 4,207 SU   0,!. 107 %a9.55(, - 25 

eý 0.2865 SD   `" 0.01270 (a4.432 
114.4 SD o 6.977 IL = 6.097 

CCI'vUTED RESIDUALS 20 

SIGMA DEITA(V) DFLTA(V) DZFF % RIFF 
tILASUkED CALCULATED 

3Z 
0.4080 0.1000 0, n74! u. u2S1 25.13 
0.8930 0,1270 0.1282 «0.0012 0,98 

5 

1.664 0.11; 00 0.1888 . 0.0088 4,90 
2,835 11.2150 0.2245 "Ulu V05 4.42 ü, 
3.804 A. 2420 0.245? r-V. 007? 3.19 
5,748 ß. 2h20 0.7862 rU. 0042 1.48 
?, 690 r. 3150 0.3141 0.01,09 0.27 00 

4,632 P. 33t0 0.3382 U. u0P8 0.24 N 
11.57 ". 3.90 0.36e1 U. UU89 2,42 

J 13.52 C. . 301) 0,3807 0,0463 1163 < 
ss, 5o r. 4u7o 0.4008 0.0062 1.52 0S 
17.40 f, 475C e. 41C6 V. ou54 1,27 z 
15'34 D. 4620 0.4383 0.0037 0,83 
21., 28 ', 4550 0. L56. W9.0018.0.40 
23.23 n. 4760 0.4750 "0.0010 0.21 
25,17 r. th80 e. 4(; 3u rU. OU50 1.03 

^. 11 1.5060 0. S10'" "U. UVo9 1.37 

ind %oodlny_ 

SCýJTION 

As 19, i, ß S. ) s 0,7.115 XR 
3a 0.1563 SJ a 0,04b336 Xa 
Ca 205.6 --SO a 4. y41 Xa 

C04i'iTED RESIDUALS 

S1+"A DELTA(V) DELTAIV) RIFF 
4EASUnFD %LCULATO 

O; t! 8J . 1.125J0 0.34061 0,00439 
3. ßs30 J. J*. 7D0 0,0400b -J, 00Su) 

10864 J. 370r0 O, OQ f? 0.00143 
2.335 0.08900 060'1954 . 0,000le 
3,320 0.1050 0.10by M0.000 
5.748 0.1310 0.1.0) 0.000) 
cE32 0.1660 0.10by 0,0001 
1i . 52 1.1030 01103) "0.0045 
15.5. ) (.? 060 0.9000 «o, oju[ 
19.54 0.2320 0.004 0.0010 
2 X23 

1.2513 0.9513 . 10.000.5 
2+. 11 0.2770 0.4/9) '0,000 

.' / 

" 
1 

ý Y 
" 

y p ý 

p " 

V. w v. I V.. " v. c .. .1V.. V. Sd v. " v .ýW. 2,0.55 

TOTAL DEFORMATION (DELTA (V)) , ºM 
3. d Io., Jtnc 

__ 
SOLUTION 

3,8Y5 A. 32,04 SD s 185W) X 4,603 
4.053 Ba 0.1127 SD a U. 0005 Xa 'd, 918 
4.30$.. C. 210.4... SD a- l9i/4" Xa_. 14.1Z 

C0'IP ITED RESIDUA(S 

X 01FF SIGMA DEASURCD 
CAICJTATk) 

D1FF x 01FF 

1f. 56 3., 408a 1) . 01530 0.01339 0,00101 10,76 
0.24' 3.3930 0.02830 0.04W44 0,00006 t, 36 
1,76 1". 364 0.052.10 0, t»049 0,00111 2,91 
0,58 2,835 0.06730 0,00911 -0,00211 i, 14 
0,07 3,820 0.08410 0,04401 -0,00001 0,97 
U, 41 5.748 0.1100 0.1UY5 0,00V) 0,47 
0,08 . 9.632 0.1470 0.14sf 0,0013 u, ä9 
0,28 13,52 ß. 17J0 . 0,1731 w0,0031 1,01 
0'11 15.5,1 0,1350 0,10)4 w0,0004 0I11 
0,68 1^. 54 0.2130 0,40fu 0,00>4 2,52 
0,12 21.23 0.2230 0,226.5 "0.0033 1,49 

_0,18 
2'. 11 1.2450 . 

"0,4444 0,0002 0,09 



Iv. 60 

« DST s No. ii 

151 loan 

SOI. LT1ON 

Am &, 2? 1 SD a 
6r. 0.3143 SD   
Ca $6.13 SD a 

COMPUTED RESIDUALS 

SIGMA DELTA(V) 
IIEASUkFD 

0.2277 
0.009939 

3,305 

DFLT, t (V) 
CALCULATED 

0 2150 0 021.00 0.07656 
0: 4880 0,06400 0,05534 
0,0770 0.1000 0.0972 

j. 465 ^. 1310 0.1303 
1.053 0.1s6o 0.1575 7,442 0,1700 0"i806 

. 
930 16'60 0.200b 

3,419 (. 2160 0.2183 
3.907 0.2330 0.7341 
., 684 ('. 21.20 0.2618 
5.861 r. 261.0 017850 
1,, 838 C. 3o80 0.3071 
7.814 0.3270 0.3266 

. 79 A. 3420 0.344? 

. 76$ 0.3030 0.3617 
10.74 ('. 3810 0.3776 
ßt. 72 '. 3c-50 0.3934 
13.67 (. 4290 0.1.22') 
15.63 0.4520 0.451o 
1l. 58, 0.4760 0.4780 
1s. 54 M. 5o00 0.5042 

2nd Iond n9 

50 IJ 

A. 12.31. SD " J, a1u7 
B. 0.1802 SD : O, V11N7 
C. 130. ßi SJ   y. uu3 

CC4PUTED RESIDUALS 

S1G'+A DELTA(V) DELTA(V) 
11EASURED CALCLJ ATED 

3215) J. 32110 0,0a754 
). 4381 3.139r0 0.0.3617 
1.46S J. 37913 0, O4175 
2,442 3.1160 0.11. ti 
3.937 1.1423 0,1447 
5,861 1.1750 0,175',. 
7,816 0.1970 0,1977 
11.74 0.2353 0.431.5 
13.67 3.2610 0,45Y4 
15.63 1.27"0 0,27/1 
1r. 5G . 1.3J4i1 0.41101 

«" 2.75g 24 3. ýaz 
3.838 

12 

20 
RIFF , X. DIFF 

lb 

0ý0UC50 8 61 
0. U0n66 13.53 16 

U. UU28 2.80 n 

V. 0007 0.54 = 14 
"U. UU15 0.97 
"U. 006 0.89 = 

12 
"V. 0046 2,33 
"V. V1I23 1.04 D 
"V. UU11 0.47 v, 

to 
0.0002 0.06 w 

"V. uL, 18 0.63 ar 
V. 0009 0.28 cn 
V. UV04 0.13 ._b "U. UC27 0.78 = 
V. UG13 0.37 n 
0.0031 0.83 z4 
V. 0016 0.41 
U. UVa1 1.42 2 
0.0010 0.23 

"V. 0020 0.42 
"0.0042 0.85 

i 

ad d 

F/jr 

0. OS 0.1 0.15 0.2 0.2S 03 '0.35 0.4 0. ý5 0. S 

TOTAL DEFORMATION (DELTA M ), nn 

3rd Icndýrg_ 

$0LUTI0w 

a 6.56Y An 14,8u SO " O. f)ll %a5. Of4 
Xa6,364 B. 0.1944 SD   U. )1LO Xa 613VO 
Xa6.811 Ca 

. 168.4 -SD a 1404 Zab. 6S1 

CO'IPJTED RESIDUALS 

DIFF X DIFF SIGMA DELTA(V) DELTA(V) DIFF % DIFF 
IIEASUAED CALCULATtD 

0,0034f 16,53 0; 215n 0.01810 - 0,114 w u. 00341 1f, ö2 
0.00zab -f030 0.4880 0.03110 00 0&1UY -ur00ou9 U, ? 

-0.0031) 4,75 1.465 0.07610 0. Of41d 0.001f4 1.26 
U. 00. )v 9.62 2.447 0.1050 0.1.0.3/ 010013 1,20 

"0.03Cf 1,88 3.907 0.1310 0.1351 10,00)1 3,96 
'0.0004 0.22 5,861 0.1640 0.145~ -0.0014 Or 72 
"0.0049 1,50 

. 
7.814 3.18"0 0,1all 5 0.0001 Q" 3 

0. OJ3f 1.57 11.74 3.2210 0,41(1 0.0039 1.77 
0.0010 0,62 13.67 0.2423 0.4414 0.0004 0,10 
0,0019 0,67 15.63 0.2570 0.45fu 0 . 0Juu u, 01 

"0.00.30 
, U. 98 1f) . 56 0.2343 "0,4ä» via . 0015 0,52 



iv. 61 

5D51 : ro. 18 

1si Icod' nq 
_ r 

14 
soLJ713: 0 
Aa 4 . 72S ýSD   J, Zb45 V# a . 365 
on D. 4712 SO a 0 936ub xa 717V3 12 
Ca . 47.36 SJ   9.44d a 14.66 

CC'IP'ITE0 RESIDUALS 
10 

SIGMA nELTA(V) DELTACV) RIFF Z DIFF 
'1EiSURFn CALCULATED 

ö; 4c3i a.!: 9533 0, ovzrf u. 00zfs a7 6 
3; d86,7 0.1240 U. 111ýt 0.0JGö 1'29 
3; 98111 Z. 1o30 0,158! 0.0013 0,84 

1.35J 1.2331 0,1979 0.0101 4,88 
1.971 1.2510 0.4504 0.0006 u, 22 v 
: 

ý45i 
'. 27% U.. JJ 0.0JýS 1,89 

2 C42 335 0.. S11ä R0.0004 2,22 f- 
ý - 3,023 ". 3513 0,35d? "O. 0Off 9,19 

4 904 1.3900 0.. 7967 n0.00n7 1,73 
5,884 1.424) 0. '141 90.0»1 1,20 c 
6,865 f. 45R0 0, ', To 0.0JU4 U, 08 z 
7,846 ^. 4910 0,4d. 55 3,00f 1,54 
9,102 :. 5333 0, b1J7 

- 
0.0193 3,62 

11.77 1.5783 0. )711 0.000Y 1,20 
13.73 ß. 594J 0,009) "0.0115 1,61 

6 

2nd loodin9_ 

buWTIaI 

As 13.67 SU a 3, T2>3 Xq5,306 
Bs 1,151) S3 a 0. J11oU xq7.661 
Cs ICO. 7 S)   (. y. 37 Xa7,441 

C0"$aJTED MES1)LALS 

SIGMA DELTA(V) DELTA(V) DIFE % DIFF 
'"E%St. ED CALCULATLD 

3; 0.030 3.33do ^t 0.3.3>o 0,00044 1,29 
.3 ; 5863 3.163;;, 0,3441u "A, 0011u e. 55 
J; °ä11, . 3. n61it 0,0>76' 0,00316 5,17 

1'. 351 a. "75aa 0.3f23f' U, 002a3 3: 51 
1.911 . 3. . 10,110 O. OyZth +Jý30224 . C'49 
2.042 ". 11'J 0,1103 . '0.0043 31ö7 

031, -". 151f' 0115411 "0.0013 U, ri3 
u, 865 ). 1d73 0,1äu5 a. 0j15 U, 84 
7.86b !. 1970 0.1931 0.0039 1,97 
11.77 `. 2330 0.4.330 "0 0006 0,35 
13.73 ''. 25^J 0,2ouu MU. 001U 0,39 

7 9 

, 

": l 
'll 

. 
t 

ýl r !r 1 º 
dä 
'1 

i 
i 

p 
, 1: 

{ 

- - F f0 

dp ; 
, 

TOTAL DEFORMATION (DELTA (V) ), f1(1 

3ýd loudincj_ 

SOIJ710N 

Aa 19,90 SD 014VA* %'  6,034 
Bs - 0; 143.3 S1 a 001144 X is 8,221 
Ca 123. "J SD s '/. 445 X47,6V4, 

C0; (P'ITEn RESIDUALS 

SIGMA DELTA(V) DELTA(V) DIFF X DIFF 
MEASURED eALCq6ATkD 

0; 4000 0.02431 0.04500 00,001uu 4,19 
3: 6860 0.032-13 O, 33Sc +0,001Aä 4'31 
3.9810 3.04530.0,04464 0,00044 u. /0 

1.35) 0.35330 0.0)1Jn J, 00)94 " 1,61 
1,971 0.37510 0,3(46? 0,30013 0; 44 
2.1342 0.0961,10 0.0YoM1 '0,00041 0,84 
4.934 3.1330 0,1SU/ D. 0003 1,75" 
6,865 1.1500 0,1513 a. 001( 1,07 
7,864 0.1650 0.1694 "O. 0u44. L, 64 
11.77 : 1.21'0 u, 4114 O. 0J4j6 0,30 
11.73 3,2310 11, g3UO O. 0004 0,16 



IV. 62 

SDST : No. 19 

Ist Lcod, ll9- tt 
SGLJTIJ.. 

10 
As 7.032 Si) a 4. u%u4o X y 6yö 
e 0; 6517 SJ a 0, J24u3 X"3,810 
C" 42.17 $3 s ). 495 X d. 19Z 9 

COMO) JTED RESIDUALS 6 

SIGMA DELTA(V) DELTA(V) DIFF X DIFF 
? IFASUAED CALCULAT40 ä7 

0', 2051 1.1371 0,1030 0,0034 1.22 

. 35°03 '. 1910 0,18L4 O. OJöö 4, b1 =6 
3^n21 ". 2653 0.4040 0,001u U: 36 

1.571 P. 3410 0.35Jd w0.00' 1 86 to 5 
2.358 1.4320' 0,435 u 0.00. IU U, 69 
:. Q 411 1.434J 0.0530 (). 0004 0,08 N 
3.33e1 1.52.10 0, ) 44 "'). 0044 0,85 ui 4 

521 1.5830 0.5411 0.001v 0,33 
3.531 1.1353 0. Oldf 0.0003 1,00 

J3 
o, 323 0.6061 0,0044 u, o. 4u uý30 < 
7.47A 1.714,1 U. fud? 0100» Uý76 o 
, 1.254 ). 7350 0. f36o '0.0013 U, 18 z2 
8.344 . 754J 0, f56Q w0,0Jeo 0,34 
9.633' 1.7790 0. e '0.003) 0,45 t 

4 

'2nd Iccdir 

so LJTION 

A. D Si, 0.37uU 4 
B. 3.17L5 S9 s U. t)1 Usti 
C" 55.04 SD   L. 032 X. 

CO'IVJTED pES1! lJ LS 

SIGMA DELTACV) DELTA(V) 
HEASL EC CALCUL, 1TkD 

5; '5511 0.03410 0. OJSU9+ 
3.51,03 0. )S900 0,0)4)o 
7; ^e2., 0.31610 0,03S133 
1.572 0.1160 0.1101 
2.04ri " (. 1640 0.16? 

G. 52, a 1.2150 0,4110 
5.503 '. 23? 0 0.435y" 
7.47.4 . 1.27'c 0, edue 
9 . 63,1 11.3250 0 . 2)1 

4.156 
5.9ä'I 
4.781 

DIFF X DIFF 

U, 00uyl 
0,00J41 
0,00)1! 
 U. OQul 
"0.0040 

0.0011 
0. OJ12 

«! U. 00ul 

1,66 
U, 71 
U, 20 
0,10 
t, 22 
1,48 
U, 46 
0.44 
U. 03 

0.1 U. IU3U. 4 U. U. o U. U. 0 V. y 

TOTAL DEFORMATION (DELTA(Vl), MM 

3, d loading 

SO LUiioN 
An . 11,33 S) : 0,4655 $R4,2ä4 
an 0'; 2807 SD " 9, U41.51 X" 14. f1 
C. 09,3; i SD s L4ýu% xs as IUe 

CC1P"TEu RESIDUALS 

SIGMA DELTA(V) DELTA(V) RIFF A. D1FF 
MEASURED CALCULATED 

0.29511 0.02930 0,04619 0,00a4l 1,61 
05903 0.04400 0.045äu "0.005ö6 13,32 
0; 9920 0.07300 0,0/612 0,0012ä 1.65 

1,572 0.1130 0,108! 0,0045 3,84 
2,948 3.1610 0,164f .. 0,003! 4,29 
4.52, S ß. 2120 0,91u3 0.0017 U*H2 
5: 503 0.2330 0 ; G: i33 -40.0003 0,12 
7.47A 3.2720 5.47Lr ýu, 00u4 U, 07 
', 630 0.3010 0.. 3019 0.00ul 0,02 



N. 63 

5D5T t No. 20 

ißt loading 
SOtUTIODU 

Aa 2.541 SD p 0.03439 
as 0.6103 SD I 0.038'6 
C. 21.10 SD R 7.226 

COMPUTED RESIDUALS 

SIGNA DELTA(V) DELTA(V) 
IICASUkED CALCULATED 

0 370t 0 1320 0 1351 
0: 5550 ß; 1890 0,1872 
0,7400 0.2340 0.2322 
0.8320 0.2540 0.2525 
0, x250 0.2720 0.7710 

1,110 Aý3070 05072 
1,480 0.3690 0.3(82 
1.850 1`. 4130 0.4107 
2.501 0.5060 0.5046 
3.331 0,5780 0.5743 
3.701 0.6&60 0,6055 
4.459 e. 6620 0.6641 

SDST No. 21 

6 

Ist Itadinq 

SOLUT1014 

Xe1.354 
6.384 

Y.   10.55 

RIFF % DIFF 

. 00031 2 35 
U. uu18 0; 98 
u, UU18 0,76 
U, 0015 0,58 
u. uvnl 0.05 

. u, 0002 0,06 
u. OU08 0, z3 

. 0.0067 1,61 
Q, UU16 0.28 
0.0037 0,65 
V, UWO5 0,09 

'0.0021 0.32 

As 2.685 SD P 0,04307 % 1,627 
Or. 0.4427 SD R 0.01545 % 3.489 
Co 22.89 SD " 1.112 %F 4.857 

COMPUTED RESTDUALS 

SIGMA DEI. TA(V) DELTA(V) RIFF DIFF 
IIEASURED CALCULATED 

0,4520 (', 1610 0,1417 . 0.0007 0,50 
0.0040 f. 2300 0.2307 -0.00.07 0.32 

1,351. 
1,803 

0,2"80 
D, 3450 

0,2951 
0.3461. 

0,0029 
. V, VV11 

0,90 
0,31 

2,26(( D, 3a80 0.3888 "0,0008 0,21 
2,825 
3,390 

1.4360 
0,4750 

0.4350 
0.47511 

V. "0010 
. V; 0008 

0.23 
0,18 

3,954 0.512( 6.5131 ýu. 001t-. 0.21 . 4.511' 0.5600 0. S47t' 0.0011 . 0.20 


