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Abstract 

Cloud computing is an evolving paradigm. It delivers virtualized, scalable and 

elastic resources (e.g. CPU, memory) over a network (e.g. Internet) from data 

centres to users (e.g. individuals, enterprises, governments). Applications, 

platforms, and infrastructures are Cloud services that users can access. Clouds 

enable users to run highly complex operations to satisfy computation needs 

through resource virtualization. Virtualization is a method to run a number of 

virtual machines (VM) on a single physical server. However, VMs are not a 

necessity in the Clouds. Cloud providers tend to overcommit resources, aiming 

to leverage unused capacity and maximize profits. This over-commitment of 

resources can lead to an overload of the actual physical machine, which lowers 

the performance or lead to the failure of tasks due to lack of resources, i.e. CPU 

or RAM, and consequently lead to SLA violations. There are a number of different 

strategies to mitigate the overload, one of which is VM task eviction. 

The ambition of this research is to adapt a provenance model, PROV, to help 

understand the historical usage of a Cloud system and the components 

contributed to the overload, so that the causes for task eviction can be identified 

for future prevention. A novel provenance-driven diagnostic framework is 

proposed. By studying Google’s 29-day Cloud dataset, the PROV model was 

extended to PROV-TE that underpinned a number of diagnostic algorithms for 

identifying evicted tasks due to specific causes.  

The framework was implemented and tested against the Google dataset. To 

further evaluate the framework, a simulation tool, SEED, was used to replicate 

task eviction behaviour with the specifications of Google Cloud and Amazon 

EC2. The framework, specifically the diagnostic algorithms, was then applied to 

audit the causes and to identify the relevant evicted tasks. The results were then 
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analysed using precision and recall measures. The average precision and recall 

of the diagnostic algorithms are 83% and 90%, respectively. 
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Chapter 1  

Introduction 

1.1 Research Motivation 

In Cloud computing, virtual machine over-commitment is widely implemented 

among Cloud providers in order to maximize profits and to utilize resources [1]. 

Some researchers use other names for this mechanism, such as overbooking, 

oversubscription and over-allocation [1]–[3]. Over-commitment means that for 

any given physical machine, Cloud providers allocate more virtual capacity than 

the actual capacity on the physical machine. Over-commitment can make better 

use of resources, namely CPU, memory, storage and network in the Cloud [4]. 

These resources have been found to be under-utilized because users tend to 

over-estimate their needs so they request more resources [5]. 

Every Cloud provider has specific policies to determine the amount of over-

commitment ratio [1]. For example, if the ratio is 2 then a server with a capacity 

of 50 units can accept 100 units. In reality, requirements such as QoS (Quality 

of Service) are taken into consideration by Cloud providers. For any application, 

the QoS is defined on a per-VM basis. It is an assurance that the required 

resources and parameters would be fully supported, such as levels of 

performance and availability. In addition, the SLA (Service Level Agreement) is 

a service contract between a Cloud provider and a Cloud user which includes 

the QoS parameters that guarantees the quality of service required.  

Over-commitment runs the risk of not meeting SLAs [6] by breaching key and 

agreed performance metrics, such as response time, execution time, and 

latency. The ability to guarantee the continuous availability of the agreed levels 
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of resources, e.g. memory or CPU, could also be affected as a consequence of 

lack of over-commitment administration in a virtualized environment. 

In addition, over-commitment of resources, if not managed carefully, can cause 

overload on the physical machines, which has a deteriorating effect on the 

performance and availability of the Cloud service. For example, even though that 

88% of memory overloads are transient and lasts for less than 2 minutes [2], it is 

considered a massive drawback and can still violate the SLAs and QoS 

agreements. The sensitivity of memory overload is high because it can lead to 

halts in the system or service. The provider in this case may have to compensate 

the client.  

In order to summarize over-commitment and overload, consider R as a resource 

such as CPU, C(R) as its physical capacity such as 10 units, Rreq as the total 

approved requests to R, and Ract as the total consumption actually needed to 

R. Over-commitment occurs when the total approved requests to R, such as 15 

units exceeds the physical capacity of R, 10 units, (Rreq > C(R)). Overload 

occurs when the total consumption of R, such as 11 units, exceeds the physical 

capacity of R, 10 units, (Ract > C(R)). Ideally, it is expected that the actual 

consumption of a resource does not exceed its actual physical capacity which at 

the same time is less than the total approved requests (Ract <= C(R) < Rreq). 

To help providers not to violate the SLAs in terms of, for example, performance 

and uptime, there are a number of different strategies to mitigate the overload 

which aim to provide a continuous space and computing power for existing tasks 

to perform, namely; Resource Stealing, Quiescing, Live Migration, Streaming 

Disks, Network Memory, and Task Eviction [2], [4], [7], [8]. These existing 

strategies for mitigating overloads are largely reactive, i.e. after an overload has 
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taken place, the system will act upon it. The proposed framework in this research 

is a step towards a proactive preventative system. 

Google, a Cloud service provider, implemented the mitigating strategy Task 

Eviction in its data centres [7]. Google stated a variety of causes for any overload 

scenario to occur [7]. This research is motivated to find a method to 

systematically identify the causes of an overload and their extent of impact and 

explain how is different from the current diagnostics methods, such as fault 

tolerance techniques. Instead of only mitigating the current overload, 

understanding the causal relationships between cause and effect may help 

identify preventative actions and reduce future occurrences of overload. 

1.2 Research Focus 

Over-commitment is facilitated by the use of virtualization technologies. Thus, 

raw data from the virtualization layer, such as physical machines’ resources 

uptime, is important for auditing. For example, when one physical unit of CPU is 

virtualized to 10 units, the failure of the physical unit means all virtualized units 

will fail as a result which then leads to an overload on the servers. This research 

focuses on: the behaviour of the physical machines resources uptime (CPU, 

Memory, and disk), the behaviour of users in terms of their requests of resources, 

and the usage of the allocated resources. The use of PROV model [9], one of 

provenance models explained in section 2.3.2, to add reasoning power and 

meaning to logged usage data might lead to the exploration of reasons and 

causes of overload. Analysis of provenance information of a given task would 

pave the way to extract knowledge from usage data that was not identified using 

the standard logging system. For example, STRAPP project [10], explained in 

section 3.3.2, has sparked the motivation of using provenance data. 
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The proposed provenance-driven diagnostic framework includes three parts. The 

first part is the PROV-TE model, which is an application of the provenance model 

PROV over a Cloud infrastructure that mitigates overloads by applying Task 

Eviction strategy. As presented in Chapter 4, PROV-TE has been built after 

examining and filtering the raw data of a datacentre. The second part prepares 

the platform for queries and the third part develops the algorithms and the 

diagnostic analysis. Each algorithm identifies the link between a specific cause 

and the evicted task(s). Alternative provenance and non-provenance based 

methods are presented in sections 3.3.3 and 3.2.5. 

Calculating the extent of every cause can determine the most dominant cause of 

an overload in a datacentre. The general assumption of this framework is that 

overload could be caused by a variety of reasons which include, but not 

excluding, both the user and the provider. The framework is a structure that 

serves the diagnostic investigations on Task Evictions in Cloud data centres.  

1.3 Research Aim and Questions 

The aim of this research is to produce a provenance-driven diagnostic framework 

that examines the historical data and finds the causes of an overload. This 

framework will utilize and extend a provenance model: PROV, which is a W3C 

family of documents that define an abstract standardized model, corresponding 

serializations and other supporting definitions [11]. The framework uses light 

weight semantics. The challenge that faces this research is to understand the 

meaning and relationship captured in the raw data that have not been known 

previously. The purpose of making use of light weight semantics following PROV 

is to add meaning and reasoning power in terms of connecting the collected raw 

data as nodes and edges. Thus, a diagnostic framework to provide the reasons 
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and causes of an overload can be developed. Although there are strategies to 

mitigate the overload, there is no approach in the literature to audit the causes 

by considering the provenance of the dataset that captures the behaviour of the 

systems and the users’ usage. 

In light of this, the research questions and the objectives for each question are: 

1. How to formulate a suitable diagnostic provenance model that will help 

check the causes of overload in a Cloud platform? 

a. To define the purpose of this underlying provenance model. 

b. To find how the proposed model would add reasoning power to the raw 

data in Cloud environments. 

c. To compare the proposed model different with other techniques, assess 

the added-value, and illustrate how it is different from a simple ER 

model. 

2. How to operationalize the model? 

a. To develop queries that could provide diagnosis. 

b. To reflect on the lessons learned from testing on Google dataset. 

3. How to validate the model? 

a. To test the accuracy of PROV-TE.  

b. To assess the reliability of the model and the diagnostic algorithms. 

1.4 Research Methodology 

In general, there are two research approaches to data collection and analysis, 

quantitative and qualitative [12]. According to the literature, there are three types 

of methodologies applied in distributed systems, namely Prototyping, Simulation 

and Mathematical Modelling [13]–[15].  
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The research approach followed in this thesis is based on quantitative analysis 

and includes the use of simulation, prototyping and repeatable empirical 

experiments as follows: 

 Identification of the mitigating strategies of an overload and provenance 

models used in a datacentre through an extensive literature review. 

 Analysis and characterization of the overload problems and task eviction 

causes in Google’s datacentre using a 29-day Cloud dataset. 

 Formulation of a provenance model to audit the impact of the causes of 

overload. This is the first case study using Google Cloud dataset for 

learning. After examining the dataset, the abstract model of PROV was 

applied which led to development of PROV-TE model. Then, 10 different 

diagnostic algorithms were developed, each look at the data from a 

different perspective with the aim of identifying and pinpointing the 

evicted tasks. Both the model and the algorithms have gone through two 

iterations of development. 

 Validation of the developed provenance-driven framework on a 

simulated dataset for evaluation. This is the second case study using a 

simulation tool, SEED, to simulate the overload behaviour in a 

datacentre. The generated datasets were then passed through the 

diagnostic framework. This application is an assessment of the reliability 

and the transferability of the framework. 

1.5 Potential Areas for Contribution 

The major contributions of this thesis is summarized below. An in depth 

discussion will be presented in Chapter 6. 



- 7 - 
 

 A provenance framework that acts as a diagnostic tool to find the causes 

of an overload in the Clouds by two steps. First, extending the PROV 

model to represent a task eviction mitigating strategy. Second, 

identifying attributes relevant to the strategy, related to research 

question number 1. 

 A computational version of the model for reasoning. Developing 

algorithms to find the cause-effect relationship between causes and 

tasks (identifying the evicted tasks because of each cause), related to 

research question number 2. 

 The modelling of Task Eviction behaviors in a Cloud datacentre with 

provenance data using a simulation tool. Demonstrating methods of 

simulating task evictions, related to research question number 3. 

1.6 Thesis Outline 

A summary of the remaining chapters is as follows: 

 Chapter 2 discusses the state of the art with respect to provenance in 

Cloud computing. It presents the concept of the Cloud in computing and 

the concept of provenance and related background. In addition, it 

highlights the benefits of provenance and provenance models in the 

Clouds.  

 Chapter 3 presents related work in terms of Cloud Computing and 

Provenance. The mechanism of over-commitment of resources 

leveraging virtualization. In addition, it highlights the current use of 

provenance and provenance models in the Clouds. 

 Chapter 4 presents the analysis and characterization of Google’s 29-

day Cloud dataset. Also, it demonstrates the extension of PROV model 
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and the diagnostic algorithms to fit a Cloud datacentre using Google 

dataset for learning. 

 Chapter 5 illustrates the application of PROV-TE model over Google 

dataset and shows the computational version of the model and its 

application.  

 Chapter 6 shows the framework’s evaluation using a simulation tool, 

SEED. 15 simulated datasets have been generated to test the precision 

and recall of the framework. 

 Chapter 7 presents the conclusion of this thesis and provides the future 

work related to this area of study.  
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Chapter 2  

General Background in Cloud Computing and 

Provenance 

2.1 Introduction 

This chapter provides the broad context of this research. To better understand 

the scope of this research, the background of Cloud computing is presented and 

discussed. The concept of resources virtualization is then described. The 

differences between Cloud and traditional data centres are drawn. Then, the 

concept of data provenance as well as its uses and benefits are presented.  

2.2 Cloud Computing 

Cloud computing is a rapid evolving paradigm [16]. It delivers virtualized, 

scalable, dynamic, pooled and elastic resources (i.e. CPU, memory) over a 

network (i.e. Internet) from off-site data centres to the users (i.e. individuals, 

enterprises, governments) [17]. Besides, it has been stated that Cloud computing 

facilitates the transformation of the way in which the IT utility is delivered in a 

wide variety of organizations [18]. Further, there is not yet an agreed definition 

of Cloud computing in the literature. There are more than 20 definitions covering 

various aspects of Cloud computing [19]. The most used definition in the 

literature is issued by the National Institute of Standards and Technology (NIST) 

[20] stating that  

“Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing 

resources (e.g., networks, servers, storage, applications, and services) 

that can be rapidly provisioned and released with minimal management 

effort or service provider interaction.”, 
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which also is going to be used along this research. In addition, Cloud computing 

encompasses the applications that are delivered as services and also the 

hardware and software that support the delivery of these services [21], [22]. In 

order to guarantee consumers’ satisfaction, reasonable levels of Quality of 

Service (QoS) must be established and maintained which is a pivotal feature 

when providing such dynamic services. Furthermore, the technology of Cloud 

computing has unique characteristics comes in a number of types (delivery 

models) and deployment modes. All would be discussed in the next sub-

sections, respectively. 

2.2.1 Cloud Computing Characteristics 

NIST [20] defines five unique characteristics that distinguish Cloud computing 

from other distributed system technologies which are described as follow: 

 On-demand self-service: Cloud self-service interfaces provide 

mechanisms for the management of the entire service delivery lifecycle. 

Consumers can request, utilize and manage the computing resources 

such as network bandwidth and CPU power on-demand and without the 

need to interact with service administrators or providers.   

 Broad network access: Cloud computing services are delivered over 

standard network protocols and accessed through heterogeneous 

platforms and devices used by consumers such as mobiles, laptops, 

tablets and workstations. This allows Cloud providers the capability and 

capacity to deliver wide range of services of different kinds to their 

consumers whose devices are connected through networks. 

 Resource pooling: Cloud providers can pool their computing resources to 

multiple users (consumers) utilizing a multi-tenant model. These 
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resources are dynamically assigned and reassigned depending on the 

consumers’ demands. Cloud services are provided with a sense of 

location independence where consumers generally have no control or 

knowledge of the exact location of the provided resources. However, 

depending on the provider’s policies, the consumer can specify the 

location at a higher level of abstraction such as datacentre, city, or 

country.  

 Rapid elasticity: Elasticity is the system’s ability to add and remove 

computing capacity from a computing environment. Cloud providers can 

scale their resources in and out based on consumers’ demands which 

saves costs. Elasticity of resources can be achieved in two ways: vertically 

by increasing or decreasing Virtual Machine’s (VM) resources (scale-up) 

and horizontally by increasing or decreasing the number of VMs (scale-

out). This makes the resources appear to be unlimited to the consumers. 

 Measured service: Cloud resources usage can be monitored, reported 

and managed on a transparent manner for both the provider and the 

consumer. Consumers are billed on a pay-per-use basis which means 

that consumer are charged according to their actual resources usage. 

This allows the providers to monitor the usage patterns which can lead to 

improvement to the Cloud environment productivity and resources 

provision enhancement. 

2.2.2 Cloud Actors 

There are five Cloud actors (stakeholders) according the NIST Cloud computing 

Reference Architecture [23], as shown in figure 2.1: 
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 Clouds Carriers are the intermediate entities that guarantee faultless 

service distribution by providing transport and connectivity amongst other 

Cloud actors. They provide access to the their services through 

telecommunication, network and other devices which the other Cloud 

actors can use [17]. Besides, ensuring the distribution of the services is 

undertaken by telecommunication and network providers or transport 

agents. Those agents are defined as business organizations that provide 

the underlying physicality of the network. In addition, the Service Level 

Agreements (SLAs) are usually set up by the Cloud Provider with the 

Cloud Carrier to guarantee a consistent and dedicated delivery of Cloud 

services to fulfil the level of SLAs offered to consumers. 

 Cloud Brokers provide negotiations between Cloud Providers and Cloud 

Consumers. The brokers’ services can be categorized into two distinctive 

categories [17]. In the first category, the brokers deal with the 

relationships between Cloud providers and Cloud consumer. In addition, 

Figure 2.1 NIST Cloud Conceptual Reference Model [23] 
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the ownership and maintenance of the Cloud is the providers’ 

responsibility not the broker. For instance, a consumer may reach a broker 

for a consultancy on the most suitable Cloud provider. In the second 

category, the broker can add additional services to the Cloud providers’ 

application, platform, or infrastructure. Their aim is usually enhancing and 

adding more security components to the actual services which the 

providers are lacking. 

 Cloud Auditors undertake an independent assessment of other Cloud 

actors and services. The aim of the audit is to confirm the 

expected/agreed level of standards in a number of dimensions, such as 

security, performance. The result of the audit is a certificate that has an 

influence of the consumers' choice of Cloud providers [17]. 

 Cloud Providers are responsible for the hosting and maintenance of the 

Cloud’s infrastructure along with the provided services to consumers and 

brokers. The Cloud Provider is usually an individual or an organization. 

Cloud providers can undertake their activities in the following areas; 

privacy and security, Cloud service management, service orchestration, 

and service deployment. Usually, the providers’ consumers (individuals or 

brokers) can become providers in specific cases [17]. 

 Cloud Consumers are the prime actor of Cloud computing. Habib in [17] 

identified two categories of Cloud consumers; end users, and Cloud-

based service providers (CbSP). End users use the provided service to 

satisfy their goals (i.e. business targets). However, CbSPs offer (resell) 

the services they acquired, that are completely hosted in the Cloud, to 

their consumers. To distinguish between CbSPs and Cloud Brokers, 
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CbSP rely on the services they offer to build their own business model, 

while Cloud Brokers only offer extra add-on to the actual service.  

2.2.3 Cloud Delivery Models 

Implementations of Cloud computing can be categorized according to the service 

delivery model (Software, Platform, and Infrastructure) and according to the 

deployment mode (Public, Private, Community and Hybrid/Federated)  [20], 

[24]–[27]. Each delivery model, shown in figure 2.2, has a different set of 

responsibilities and functionalities for both the Cloud provider and consumer.  

 

 

Cloud computing services can be delivered through three types of delivery 

modes; Software as a Service (SaaS), Platform as a Service (PaaS), and 

Infrastructure as a Service (IaaS) [20]. 

 SaaS is basically delivering a service/application to a costumer utilizing 

Service Oriented Architecture (SOA). The application is location 

independent and can be accessed through various devices; either a thin 

client interface or a program interface. One of the advantages of SaaS is 

that everything is abstracted and the user would not worry, manage, or 

control the infrastructure of the Cloud. However, one of the disadvantages 

Figure 2.2 Hierarchical View of Cloud Computing [159] 
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of SaaS is that users have limited configurations settings (control) over 

the service. One example of SaaS is Google Gmail and salesforce.com. 

 PaaS enables the costumer to deploy or run their own applications 

(whether developed/created by them or not) leveraging the Cloud 

platform, tools, and programming language. Also, managing and 

controlling the Cloud infrastructure is not the costumers’ role. However, 

they have full configuration settings over the applications, since they own 

it. One example of PaaS is Google App Engine. 

 IaaS refers to delivering the computer infrastructure as a service. 

Consumers are able to deploy their arbitrary software, such as operating 

systems. They have the power to control and manage all of the 

fundamental computing resources (i.e. storage, operating system) but 

with limited control of selected network components (i.e. firewalls).  One 

example of IaaS is Amazon’s Simple Storage Service (S3). 

The targeted delivery model for this research is IaaS because in which the 

virtualized and physical resources and deployed, managed and monitored. 

2.2.4 Cloud Deployment Modes 

The deployment mode of a Cloud data centre depends on the physical location 

of the computing resources, the organization’s responsibilities and the business 

strategy. There are a number of Cloud computing deployment modes that are 

being used, which are Private Clouds, Public Clouds. Community Clouds and 

Hybrid Clouds [23], [24]. 

 Private Clouds: The environments are characteristically customized 

with devoted virtualized (provisioned) resources and infrastructure for 

particular organization(s) [28]. The ownership, managements, and 
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control of the private Clouds by the same organization(s), a third party 

or both of them. Examples of Private Clouds can be found in 

enterprises and universities. 

 Public Clouds: The infrastructure is virtualized to be used by the 

general public, such as Gmail. The ownership, managements, and 

control of the Cloud is by a business or an organization (i.e. 

government or NGO) and the location of the Cloud is in the site of the 

Cloud provider. Usually services of this category require subscription. 

Google App Engine, Windows Azure, and Amazon Elastic Compute 

Clouds are examples of Public Clouds. 

 Community Clouds are customized for a specific group of consumers 

who have the same goals or concerns [20], [29]. For example, Siemens 

offer services for media companies by utilizing Microsoft Azure, a public 

Cloud, as the underlying Cloud platform while relying on Siemens IT 

Solutions and Services data centres, a Private Cloud [30]. 

 Hybrid Cloud is the infrastructure composition of two or more unique 

entities of Clouds (Private, Public, or Community). Those entities 

remain separate (unique) but are linked together by standardized 

technologies to enable application and data sharing (portability) [20], 

[28], [29]. 

The only accessible type of the deployment modes for this research is Public 

Clouds, i.e. Google’s Dataset. Thus, it has been utilized to meet the objectives 

of this research. 
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2.2.5 Virtualization 

Virtualization of resources is not unique to Cloud computing, but it is a key unit 

in Cloud data centres [31], [32]. Virtualization of resources at the lowest level is 

a feature that differentiate Clouds from Grids [33]. It refers to the abstraction of 

computing resources, normally as virtual machines (VMs), with related network 

and storage interconnection [34]. Cloud-powered technology governs the 

allocation, delivery and presentation of these virtualized resources. With 

virtualization, rapid and dynamic scaling of resources depending on consumers’ 

demands is allowed [35]. It makes possible for hardware resources to be 

efficiently used by sharing the same resources to several units at the same time 

[36]. The Virtualization layer sits between the physical infrastructure (hardware) 

and the operating system (OS) and the applications. A key element that enables 

virtualization is the Hypervisor, a Virtual Machine Manager (VMM), which hides 

the physical resources of the system from the OS. The VMM directly controls the 

hardware resources, thus allowing the possibility of running more than one OS 

on the same hardware. As a consequence, the hardware can then be partitioned 

into logical unites which are called VMs [34]. To the OS and the consumers, a 

VM appears as an isolated physical machine (PM). Also, the VMM is responsible 

for the deploying, migration, monitoring and deletion of the VMs.  

2.2.5.1 Virtualization Types 

There are numerous types of virtualization including Full Virtualization, Para-

virtualization and OS-Layer Virtualization [33], [34] illustrated in figure 2.3. 

 Full Virtualization: The VMM allows complete abstraction from the 

underlying physical hardware, i.e. CPU and Memory. Both the OS and the 
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VM are unmodified and unware of the virtualization environment. The total 

abstraction introduces overhead which reduces level of performance.  

 Para-virtualization is similar to the full virtualization but the OS is modified 

in the sense that it is aware of the virtualization environment and also 

aware of the other VMs’ resources demands within the same PM. 

 OS-Layer Virtualization: The VMM runs more than one instance of the 

same OS in parallel. In this type, both the hardware and the OS are 

virtualized. The VMs on the same PM use the same OS. 

 Linux Container is a virtualization tool different from VMs. It allows the 

ability to package applications and their dependencies into lightweight 

containers that move easily between different distros, start up quickly and 

are isolated from each other. A distro is a computer software distribution 

package. So, a container can be considered as a lightweight equivalent 

of a VM [37]. 
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Figure 2.3 Types of Virtualization 
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2.2.5.2 Virtualization Advantages 

According to [34], [38], there are benefits for the organizations who implement 

system virtualization. The main advantages are described below. 

 Cost. Resources are accessed and managed efficiently which leads to 

cost reduction in both hardware and operations. 

 Workload Optimization. Resources are better utilized by reducing the 

amount of idle or non-used resources. This allows Cloud providers to 

maximize the utilization of the available resources. Reacting to high 

usage, providers can easily shift resources between VMs. 

 IT flexibility. Creating and deploying VMs can easily be done on demand 

by Cloud providers regardless of the location. Also, the specification of 

the VMs can be modified while running such as CPU units and amount of 

memory. 

 Availability. In case of PMs taken offline for maintenance, the VMs can 

keep running. This is allowed by temporarily migrating the VM to another 

running PM. PMs can be maintained, upgraded and changed without 

having an effect on the running virtualized instances. 

2.2.5.3 Virtualization Disadvantages 

 Single Point of Failure. The virtualization layer relies on the hardware that 

hosts the VMs even though it is decoupled from the physical layer. The 

PM failure can lead to the failure of all hosted VMs which often translates 

in loss of consumers’ data. 

 Overhead. There is a trade-off between flexibility and performance when 

applying virtualization. The increased flexibility causes overhead which 
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has a negative effect on the overall performance of the hosted 

applications.  

2.2.6 Cloud Quality of Service 

Guaranteeing a QoS is a pivotal issue for Cloud providers because it determines 

their level of success [39]. Cloud providers’ reputation and revenue depend on 

the successful delivery of the Cloud services to consumers as expected. A QoS 

is an assurance that the required resources and parameters would be fully 

supported, such as levels of performance, availability, privacy, security and 

dependability [33]. Providers rely on SLAs in order to facilitate and establish the 

QoS.  

A SLA is a legal service contract between a Cloud provider and a Cloud user 

which includes the QoS parameters that guarantees the quality of service 

required [24], [33], [40]. It includes the set of services that will be delivered, 

definitions of each service, the responsibilities of the provider and the consumer, 

a set of measurable metrics, an auditing framework for monitoring, the 

consequences and actions for service delivery failure, etc [24], [39], [41]. For 

example, when a virtualized CPU is under overload, the agreed level of 

performance is likely not to be met. The same thing for a virtualized memory in 

a situation of overload, the agreed level of memory is likely not to be met. Also, 

response time, execution time, latency and more are related performance 

metrics included in the SLA. There are specific SLA metrics for each Cloud 

delivery model (explained in Section 2.2.4) [40]. The SLA of IaaS includes 

metrics such as time for VM to be ready for use, maximum and minimum VMs 

available for dynamic scaling, availability of access in terms of uptime. For PaaS, 

SLA metrics include method of charging, maximum number of unique user 
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access, possibility of integration with other platforms, etc. For SaaS, SLA metrics 

include reliability, usability in terms of method of access, uptime of software, etc. 

In addition, SLA coverage can be classified into four levels depending on the 

delivery models; Facilities-Level, Platform Level, Operating System Level, and 

Application Level. 

2.2.7 Differences between Cloud and Traditional Datacentres 

A datacentre is a facility that houses PMs, namely servers, storage units and 

network devices, systems for power distribution and systems for cooling [42]. 

Cloud computing refers to the delivery of SaaS, PaaS and IaaS to consumers 

over a network and the software and hardware in a datacentre that support that 

delivery [22]. It builds on the principles and paradigms and shares similar 

characteristics with multiple distributed systems technologies such as Cluster 

computing and Grid computing [32], [33]. Managing large scale resource 

Element 
Cloud 

Datacentres 

Traditional 

Datacentres 

Unlimited computing resources on demand Yes No 

No Up-front obligation by customers Yes No 

Pay per consumption Yes No 

Economies of scale Yes Usually not 

Increase utilization via virtualization of 
resources 

Yes No 

Full control over data and physical equipment No Yes 

Rapid elasticity of computing resources Yes No 

High Potential for building value-added or 3rd 
party solutions 

Yes No 

 

Table 2.1 Differences between Cloud and Traditional Datacentres 
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intensive application is the shared motivation between Grids and Clouds. 

However, Cloud computing leans more towards a business model. A Cloud 

datacentre is a group of virtualized and connected computers that are 

dynamically provisioned and provided as combined computing resources which 

depend on the agreed SLAs [19]. Cloud implementations are deployed over 

traditional datacentre; thus the approaches at infrastructure level are similar. 

Method of access to datacentres and the way providers and consumers interact 

is where Cloud datacentres is different than traditional datacentres. Cloud 

datacentres are off-site (outside the physical location of the organization) and 

permit the access of resources through the internet. Consumers are allowed to 

acquire and reacquire computing resources without the need of human 

interaction. In comparison, traditional datacentres are mainly on-site (inside the 

physical location of the organization) and consumers generally need to request 

resources without guarantee of delivery. Table 2.1 summarizes the differences 

between Cloud and traditional datacentres [21], [22], [43], [44].  

2.2.8 Challenges for Adopting Clouds 

Even though Cloud computing offers wide range of benefits, it yet holds many 

hurdles that disrupt its rapid adoption [21]. Such challenges include business 

continuity and service availability, multi-tenancy, access control, confidentiality, 

data integrity, and audit [22], [45], [46]. A number of which will be explained 

below.  

Business continuity and service availability are one of the major challenges in 

Clouds. In the business community, it is known that there is no guarantee for a 

company to stay in business for ever. So, there is a risk that, for any reason, 

Cloud providers go out of business. Also, nearly every major Cloud provider, i.e. 
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Amazon’s S3 and Google’s App Engine, has had a downtime in their service 

availability due to many reasons, such as overload and programming error. One 

of the suggested solutions to lower the risk of this issue is for Cloud providers to 

have multiple data centres located in different locations and for Cloud consumer 

not to rely on one provider (A single point of failure) [22]. 

While multi-tenancy in Cloud environment introduced many benefits, it brings 

security and privacy vulnerabilities and threats to both the Cloud users and Cloud 

infrastructures. In the physical environment, similar functionalities with existing 

operating systems and applications are pooled in virtualized environments, thus 

software bugs and recognized security weaknesses in these systems remain the 

key risk to any virtualized multitenant environment [45]. 

Having private and sensitive data in off-site Clouds brings about more security 

threats, such as potential insider attacks or server compromise [45], [46]. 

Attackers can mimic an identity of a user and potentially be enabled to full access 

of the data. One of approaches to mitigate this issue in access control is to 

encrypt the data in a differentiated manner and only share the decryption keys 

with the authorized users [45]; however, this solution comes at a cost of 

performance. Trade-offs is almost in every suggested solution of Clouds 

challenges and issues.   

2.3 Provenance 

Provenance is not a new idea. Moreau et al gave a simple scenario of 

provenance in the art world [9]. When a painting is sold to someone, it is often 

accompanied with a paper trail or physical markings, documenting the details of 

the first owner (the artist) from its creation to its current state and ownership. This 

documentary history is referred to as the provenance of the object. The price of 
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this object depends on the level of completeness and the quality of its 

provenance, which reflects its importance. In the literature, provenance is 

sometimes called lineage [47], [48]. 

Within the context of e-Science, Simmhan et al [49] stated that Data Provenance 

as:  

“One kind of metadata which involves recording the dependencies amongst 

datasets”. 

That dependency shows the relationship amongst these datasets since their 

creations as well as the information on how they were generated in the first place. 

In the scientific domain, one benefit of data provenance is enabling the 

regeneration of missing or deleted datasets, as proposed by Foster [50] in [51] 

in their notion of virtual data. 

Further, provenance is not only about the production of scientific data but also 

the process that lead to their generation [49]. The granularity at which 

provenance is collected defines its usefulness. There are two crucial attributes 

of the provenance of a data item: (1) the ancestral data product from which this 

data item has evolved, and (2) the process of transformation of this ancestral 

data product, i.e. workflow, that leads to the derivation of this data products[49], 

[52].  

Buneman et al in [53] defined provenance within the domain of databases as:  

“The description of the origin of the data and the process(es) by which it 

arrived to the database”.  

This implies that the processes of data transformation and derivation of data 

should be recorded. So, decision making will be more accurate given data 
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provenance is in place as a decision mostly involves a human agent who relies 

on system output. Thus it is pivotal for a user to place trust on the system outputs 

[54]. 

Provenance is not new in computing and IT systems as it is being used with 

regards to the debugging of systems [55]. Provenance data and logs are 

completely different. Logs provide a time-line history of actions - that have been 

pre-defined - relating to a single application, whereas provenance data goes 

beyond logs as it includes data about numerous applications, components and 

people [55]. Logging and auditing are heavily being used to establish the first 

point of an error, the reason it took place, other attributes lead to this error being 

created and the impact on the overall system. It has been claimed that complex 

systems such as Clouds that include many layers of interactions between 

software and hardware and involve the interaction between different components 

from different providers lack such effective debugging systems (logging and 

auditing) [49], [55]. Thus, it is thought that provenance would bring instant 

benefits to both users and Cloud providers once it has been introduced to Cloud 

computing [56]. 

2.3.1 Provenance in the Web and Cloud Domains 

World Wide Web Consortium (W3C) has defined provenance as  

“A record that describes the people, institutions, entities, and activities 

involved in producing, influencing, or delivering a piece of data or a thing” 

[57].  

In addition, a more related definition of provenance to this research is introduced 

by Moreau et al [9] stating that provenance in the context of web and Clouds is 

defined by  
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“A record that can be created by, exchanged between, and processed by 

computers.” 

For this research, provenance can be defined as a documentation of Cloud data 

or descriptions of Cloud events that computers and people can create, 

exchange, and process. This documentation records who created what and 

when, why it has been created, and the path this object has travelled. The ‘who’ 

represents the person who initiates an event to be processed. The ‘process’ can 

be deploy, update, pause, terminate a task, etc.  The ‘when’ represents the time; 

for example, the time the event has been created and the time needed for that 

event to be processed. Events are of five types: invalidation, generation, start 

and end of activities, and usage of entities [9]. For example, a Cloud activity has 

a lifetime delimited by its generation and invalidation. 

2.3.2 Provenance Models  

Because the underpinning of provenance models is commonly a graph 

representation, it is important to explain it first. 

2.3.2.1 Representation of Provenance 

It has been stated that the state of an object can be affected by the people 

involved, the organizations that people act on behalf of, processes executed, and 

other relevant data [9]. Thus, to better show provenance record in a meaningful 

way, it can be represented as a graph, that includes data, processes, 

organizations, and people as nodes and the relations between these nodes as 

edges [11]. 

The provenance graph is defines as  
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“A record of a past or a current execution ... but not a workflow to derive 

future data.” [58]. 

Capturing the dependencies between entities is the aim of the provenance 

graph. So, edges that link nodes such as process, artefact, or agent, represent 

such dependencies between the effect (source) and the cause (destination) [58]. 

To illustrate, edges can articulate the following reliance: an artefact ‘was 

generated by’ a process; a process ‘used’ an artefact; a process ‘was controlled 

by’ an agent; an artefact ‘was derived from’ another artefact; a process ‘was 

triggered by’ another process and so on [9], [58]. Figure 2.4 explains one of the 

dependencies in an example. It illustrates one angle of the provenance graph, 

the responsibility angle between an agent, Bob, and an entity, the article. All of 

which will be described in the next sections. 

Other than bespoke models, there two notable provenance models which are 

widely used, The Open Provenance Model (OPM) and PROV model. 

2.3.2.2 The Open Provenance Model 

OPM is the outcome of the Provenance Challenge series in 2006 – 2010. The 

first challenge was to understand the different capabilities of different 

provenance systems and the second was to utilize provenance information to 

establish inter-operability of systems. The last challenge was about sensibly 

evaluating the Open Provenance Model, from an inter-operability standpoint 

[58]–[60].  

 

 
 

 

 

Figure 2.4 The Employment Article was Attributed to Bob. [9] 



- 28 - 
 

OPM is a model explaining artefacts and their derivations in the past; whereas 

process could be still running or finishing in the future so long as they have 

originated in the past. Additionally, the OPM is established for the aim to fulfil the 

following requirements [60]: 

 Exchanging provenance information between systems based on a shared 

provenance model. 

 Ability to build and share tools operating on a provenance model. 

 To define the model in a precise, technology-agnostic manner. 

 Representing the provenance for anything digitally. 

 Defining a set of rules and guidelines that specify the valid interpretations 

that can be made on provenance graphs. 

OPM is depended upon three nodes, which are: Artefact (A), a slice of state that 

may have a physical or digital representation; Process (P), new artefacts 

resulting from an action or a series of actions executed on or originated by 

already existing artefacts; and Agent (Ag), circumstantial entity acting as a 

Figure 2.5 OPM edges [58] 
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medium of a process, simplifying, enabling, controlling, or influencing its 

execution. With regards to the provenance graph, Figure 2.5 shows the five 

identified causal dependencies between the three nodes. Circles represent 

artefacts; octagons indicate agents; and rectangles denote processes. A causal 

dependency is defined as a relationship that shows the existence of dependency 

between an effect (source) and its cause (destination) [60].   

2.3.2.3 PROV Model 

It is vital for provenance to be independent of the technologies used across 

multiple systems’ executions as it is anticipated to express the flow of data and 

information of those systems. In addition, those systems are probably to be 

different in nature, employed and designed by different vendors, where each of 

which may adopt a unique way of representing information. Thus, the PROV 

model, W3C standard for provenance, implements the notion of the abstract data 

model PROV-DM, which can be serialized in a number of formats [9]. According 

to W3C [11], 

“The PROV Family of Documents defines a model, corresponding 

serializations and other supporting definitions to enable the inter-operable 

interchange of provenance information in heterogeneous environments 

such as the Web.”  

PROV family consists of 13 documents which define the factors essential to 

achieve the task of inter-operable exchange of provenance data and information 

in different environments such as distributed systems and the web [11]. W3C 

have recommended 4 documents to serialize PROV model: 
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 The PROV ontology (PROV-O) is an owl2 ontology enabling PROV data 

model to be mapped to RDF [61], which presents numerous serialization 

formats, such as rdf/xml.  

 PROV-XML is an xml schema which allows native xml representations for 

the PROV data model [62]. 

 PROV-N is a notation for provenance intended for human use. 

 PROV-DM is the PROV data model for provenance. 

PROV model is composed of three classes (provenance views) and seven 

properties (prefix with ‘prov:’) [9], shown on Figure 2.6.  

 The data flow view shows transformation of things in physical or digital 

domains. Also, it is the flow of information within computer systems. 

Entities (prov:Entity) are arbitrary things or digital artefacts of which we 

want to describe the provenance. Derivation, encoded by the property 

prov:wasDerivedFrom, refers to the transformation and the flow of these 

entities. 

 Sometimes, cataloguing the processes that occurred and all related timing 

information is helpful to offer more information about derivations. The data 

flow view can then be cleansed by the process flow view detailing the 

activities that took place, in addition to their start and end timings. The 

property (prov:used) is a notion describing Entities being input to Activities 

(prov:Activity), which their output are new entities (the notion of 

Generation described by the property prov:wasGeneratedBy). 

Additionally, the concept of Communication, articulated by 

prov:wasInformedBy, captures the flying data from one activity to another. 
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 Provenance is also about conveying responsibility for what happened in 

a system, the responsibility view.  The class of things found in the range 

of three properties is referred to Agent (class prov:Agent). Agents may be 

responsible for (a) other agents which forms a Delegation, represented by 

prov:actedOnBehalfOf (b) for past activities: that is an Association, which 

is denoted by prov:wasAssociatedWith, or (c) for the existence of entities 

which refers to Attribution indicated by the property prov:wasAttributedTo.  

2.3.3 Benefits of Provenance in the Clouds 

Provenance is mainly valuable in difficult circumstances to review complex 

processes particularly when they involve numerous stakeholders [9]. 

Provenance is one essential dimension of process verification, reproducibility, 

reliability and trust in distributed systems [32], [63]. Analysis of provenance 

information of a given task would pave the way to extract knowledge from usage 

 

Figure 2.6 PROV Abstract Model [9] 
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data that was not identified using the standard logging system. According to [49]  

[64], there are several uses (benefits) that provenance systems could support, 

some of which are: 

 Attribution in which provenance can establish the copyright and ownership 

of data. 

 Provenance can be used to assess Data Quality and Reliability with 

regards to the origin data and transformations.  

 The more detailed the provenance the more confidence in Replication of 

data derivation. 

 Provenance can provide the ability to track the Audit Trail of data. 

In addition, provenance in scientific and intensive computing is claimed to 

provide guarantee in quality of results and to assure the repeatability of 

experiments [55]. Nevertheless, there is one crucial trade-off when utilizing 

provenance which is scalability. Having more and more data to be recorded adds 

an overhead on scalability [65]. To guarantee whether data on the web/Cloud is 

creditable or not takes a lot of effort, cost and time. Clouds provide the feasibility 

for resources and data to be shared easily (and sometimes anonymously); 

however, there is no 100% guarantee of the reliability of the data which brings 

about doubtfulness between users. Thus, provenance is important for Clouds 

because without it, users will not be able to validate the data’s identity and 

authenticity [66]. In Clouds, location of the physical machine is unknown which 

makes the normal forensic activities redundant, such as traditional capture and 

seizure. Data Provenance is one way that can fulfil the need to track Cloud data 

and  users which makes it a key in Cloud forensics field [67].  
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2.4 Summary 

This chapter has provided a detailed summary about Cloud computing. It 

presented an overview on Cloud computing deployment modes and delivery 

models and the challenges in adopting the Clouds. It also discussed in detail the 

Virtualization feature which is an essential key component in Cloud computing. 

Besides, the benefits of virtualization to both the consumer and providers has 

been presented.  

Furthermore, the concept of provenance and the two standards of provenance 

models have been discussed. Then, the potential advantages of provenance 

have been presented  
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Chapter 3  

Literature Review 

3.1 Introduction 

This chapter presents related work in Cloud resource utilization and provenance. 

The advantages and disadvantages of resources over-commitment are 

discussed. Overload issues and the existing mitigating strategies in the literature 

are presented. The challenges of provenance adoption in the Clouds is 

presented and discussed. Finally, the Chapter concludes by discussing the 

related work with regards to the use of W3C PROV provenance data model in 

Cloud computing environments highlighting the research opportunities based on 

the gaps found in the literature review. 

3.2 Cloud Resource Utilization 

This section will explain the relationship between overestimation of resources by 

users, over-commitment of resources by providers, and the inevitable 

overloading in physical machines if over-commitment is not administrated 

carefully. It also discusses the existing overload reactive mitigating strategies. 

3.2.1 Overestimation of Resources 

As described in Section 2.2.1, on-demand self-service is one of the 

characteristics of Cloud computing. This feature allows resources to be 

requested, managed and used by consumers without providers’ intervention. For 

example, consumers acquire substantial virtual compute resources such as CPU 

to enable the configuration and deployment of their applications and platforms 

on the physical infrastructure. It is evident that consumers lack the understanding 

and knowledge to determine the exact needed resources to compute their tasks, 

thus they tend to estimate and consequently pay more than for resources than 
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they require [68], [69]. According to [70], [71], consumers tend to significantly 

overestimate the required Cloud resources as there is a large difference between 

the estimated assigned value and the actual usage consumption of that resource 

by a task.  

From the Cloud data centres’ perspective and complying to the feature of on-

demand self-service, all requested resources by consumers are granted virtually. 

This may lead to the issue of physical resources underutilization due to the fact 

that hosted tasks on VMs rarely reach the peak demand simultaneously [1], [72]. 

Another scenario for underutilization of resources is caused by the fixed VM sizes 

offered by providers [73]. Underutilized/idle PMs consume considerable power 

in data centres, almost 50%, which leads to losses in revenue [1], [74]. Therefore, 

Cloud providers apply over-commitment policy in order to maximize profits, 

utilize resources and mitigate the problem of overestimation [2], [75], [76].  

In order to provide an illustration of the overestimation problem, an analysis has 

been done on a real Cloud usage dataset by [71]. Figure 3.1 shows the hourly 

average of CPU (top) and memory (bottom), actual usage (left) and allocated 

 

Figure 3.1 CPU and Memory overestimation and over-commitment 
observed in Google Cloud dataset [71] 
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resource (right). The total capacity of the data centre is represented by the 

dashed line seen on the top of every plot. According to [71], the dataset shows 

that the data centre is heavily booked. As it can be observed, the total resource 

allocation is more than 80% of the data centre’s memory capacity and more than 

100% of the data centre’s CPU capacity at almost any time. However, the actual 

demand is much lower. On average, the actual memory usage and CPU usage 

is about 50% and 60% of the actual physical capacity, respectively. In addition, 

CPU has been almost always been overcommitted whereas Memory has not 

been as much overcommitted. The Google usage dataset will be discussed 

further in Chapters 4 and 5.  

3.2.2 Over-Commitment of Resources 

Over-commitment of resources, also known as oversubscription, over-allocation 

or overbooking, is the practice of allocating more virtual resources on a PM than 

the actual physical capacities [74], [77]. Every Cloud provider has specific 

policies to determine the amount of Over-Commitment Ratio (OCR) because 

higher ratios introduces higher risks [1], [73]. OCR is set by the provider which is 

the highest limit of the physical resources’ over-commitment . For example, if the 

ratio is 2:1, then a PM with a capacity of 50 CPU units can accept requests of 

100 virtual CPU (VCPU) units. According to [1], [78], a larger OCR can increase 

the density of the workload per PM but negatively impacts on the performance 

guarantees. A low OCR impacts positively on performance but does not greatly 

increase levels of resource utilization. When determining the OCR, Cloud 

providers need an understanding of the type and characteristics of the tasks and 

jobs to be executed and be aware of the agreed SLAs and the data centre’s 

capacity and infrastructure [78]. It can be argued that OCR can be adjusted 

dynamically in order not to experience overload in the machines. It can be done 
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by setting a maximum usage level by which OCR is changed once the level is 

reached or exceeded. Adjusting OCR dynamically might prevent future 

occurrences of overload; however, overload can still occur due to running tasks 

prior to OCR adjustment in addition to other causes irrelevant to OCR, as 

discussed in section 3.2.4. In addition, OCR only works for new tasks. This 

research focuses on submitted and running tasks. The underlying assumption of 

over-commitment is that the allocated capacities will never reach total 

consumption at the same time. Providers utilize such practices in a leverage to 

serve the same number of consumers with less PMs and to mitigate the problem 

of overestimation by users [1]. Over-commitment not only increases the average 

utilization of a data centre or a cluster but also increases the number of tasks 

and jobs that can be supported and executed [78], [79]. Although over-

commitment is beneficial, it introduces risks such as PM overload [4], [80], [81].  

3.2.3 Machine Overload and Mitigating Strategies 

As explained in Section 1.1, the ideal expectation is when the actual physical 

capacity is more than or equal to the actual usage and less than the requested 

capacity (Ract <= C(R) < Rreq). However, the case when the actual usage is 

higher than the actual physical capacity is called overload (Ract > C(R)). In the 

case of overload, new requests can no longer be accepted or fulfilled due to the 

limited physical capacity available [43]. According to [73], [74], [82], [83], PM 

overload can lead to VM disruptions and performance degradation in terms of 

low latency and response time. It also causes resource shortages [81]. Overload 

occurs when the actual usage demand exceeds the physical capacities [84]. 

Overloads can happen to all types of resources, namely CPU, Memory, Disk, 

and Network bandwidth. Not managing overloads can lead to violations and 

breaches to the SLAs, described in Section 2.2.6. 



- 38 - 
 

Cloud service providers face three different types of costs as a consequence of 

overloading. Repair costs when overloading lead to components failure, Penalty 

costs due to services disruptions, and Business revenue losses due to constant 

services outages and unavailability [85]. 

There are different strategies to mitigate PM overloading, namely Resource 

Stealing, Quiescing, Live Migration, Streaming Disks, Network Memory, and 

Task Eviction [2], [4], [7], [84], [86], [87].  

 Resource Stealing refers to the idea of downsizing the underloaded VMs 

or PMs and putting the free resources into the overloaded VMs or PM. In 

distributed systems, resource balancing facilitated by resource stealing is 

a crucial step especially if it’s achieved dynamically which helps maintain 

high overall system utilization. The controller checks available resources 

before hosting a task. In the case of lack of resources, the controller 

allocates the local available resources, if any, then queries other VMs or 

partitions to steal from them the remaining needed recourses [88]. 

 Quiescing means turning off a number of VMs to regain balance in the PM 

and then they can be resumed. In an overloaded PM, one or more less 

significant VMs get quiesced so that the remaining more important VMs 

run normally and don’t face any performance degradations. Once the 

running VMs complete their tasks and resources become free, the 

quiesced are resumed [89]. 

 Live Migration means dynamically migrating an overloaded VM (or an 

underloaded VM from an overloaded PM) to another PM that has enough 

space to host it. The common approach for live migration of virtual 

machine is through pre-copy. On the destination host, a shadow VM is 
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created. Each used memory page is then copied from the source to the 

destination. While the memory pages are being copied, the VM is still 

running on the source host until the before coping the last memory page. 

The VM stops on the source host and resumes on the destination host 

[90], [91]. 

 Streaming Disks means migrating enough portions of VM’s local disk from 

an overloaded PM to an underloaded PM so that it enables the VM to 

start. Once load is balanced, the remaining portions of the VM are 

transferred. This strategy reduces network costs of migration to the disk 

[84]. 

 Network Memory enables the provider to make use of a memory from 

another machine over the network. Until load is restored, page 

repositories across the network are used for VM swap pages [2]. 

Swapping can potentially ease load on the local disk of the overloaded 

PM [4]. 

 Task Eviction is where a hosted task on a VM is pushed out of the VM to 

re-queue (re-submit) and wait for free resources to be hosted again. 

Tasks sometimes are no longer fit to run on the machines and get evicted 

due to (i) hardware failure, (ii) overload because of machine’s over-

commitment, or (iii) competing workload [71]. There are policies that are 

used to determine which tasks to be evicted, such as task’s priority. Most 

evictions are resultant to changes of machine configuration or other higher 

priority tasks being hosted and started on the same VM [71]. 

These strategies are mainly reactive. They are triggered after the overload has 

taken place. Selecting a specific mitigating strategy by Cloud providers depends 
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on the characteristics of the data centre and the running applications [2]. Possible 

proactive methods such as FTM, TCloud, FTCloud are discussed in section 

3.2.5. However, to the best of our knowledge there are no proactive methods 

found in the literature that directly targets the issue of overload mitigation and 

prevention. 

3.2.4 Overload Causes 

Machine overload can be caused by variety of reasons in addition to over-

commitment. Both the user and the provider can contribute to the existence of 

overload [2]. For example, increasing the request of resources by user can lead 

to overload in the case that not enough space is available. Bad management of 

resources by the provider could lead to memory leaks, for example, which also 

can lead to overload. Also, increasing the over-commitment ratio by providers 

could increase the chances of overload occurrences [73]. In addition, physical 

resources could cause overloads. For example, fan failures and CPU overlocking 

could lead to CPU overheating and server overload [92]. Google have observed 

five different causes of overload in their data centres; namely Take Over by 

Higher Priority Tasks, Increase In Resource Requests, Demand Exceeds 

Physical Capacities, Missing Machines, and Decrease in Machines Capacities 

(refer to sections 4.3 and 4.8) [7], [71]. Overloads can be in three different states; 

(i) network overload (i.e. bandwidth), (ii) hardware overload (i.e. PM), or (iii) 

software overload (i.e. VM) [93], [94]. 

As explained earlier, overload is generally caused due to the limited capacity of 

the free physical resource. In practice, overload can be caused due to a 

combination of more than one cause in addition to the limited physical capacity 

because of over-commitment, refer to section 5.5.  
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There are several causes that may lead to overload which can later be mitigated 

by six different strategies. The scope of this research is to investigate one 

mitigating strategy and five causes that triggered it using a real Cloud usage data 

for learning and exploration, refer to chapter 3. The mitigating strategy is Task 

Eviction and the causes are: Take Over by Higher Priority Tasks, Increase in 

Resource Requests, Demand Exceeds Physical Capacities, Missing Machines, 

and Decrease in Machines Capacities, refer to chapters 4 and 5. 

3.2.5 Causes Diagnosis and Identification 

In distributed systems, machine overloading is an issue. There are existing 

concepts which can be utilised to diagnose overloading such as fault tolerance, 

self-healing, Data Centre Infrastructure Management (DCIM), and rule based 

techniques. These methods are considered as resiliency techniques in Cloud 

computing [85]. In this section, these concepts and tools, such as TCloud, 

FTCloud, Chopstic, Fay, D3S, and Pip, that could potentially be utilized for 

overload causes identification will be presented. 

In [95], authors stated that fault diagnosis is valuable as it helps administrators 

and developers to identify causes of disruption. It has two limitations. First, it is 

always passive and reactive. The diagnosis is triggered after the disruption has 

already occurred and the symptoms have appeared. Second, diagnosis only 

detects the issue but does not prevent it. Disruption diagnosis, nevertheless, is 

a prerequisite step before undertaking any kind of corrective measures and it is 

a crucial indicator of systems resilience [96]. In addition, employing only fault 

prevention techniques, such as rigorous development process, and fault removal 

techniques, such as debugging, have been proven to be difficult [97]. Increasing 

the dependability of distributed systems and critical applications can be achieved 

through the use of fault tolerant methods [98]. Implementing fault tolerance in 
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Cloud computing is still a challenge [99]–[102]. Challenges range from the 

heterogeneity of the integrated components from different vendors to the 

difficulty of integrating existing scheduling algorithms with fault tolerance 

approaches. The role of fault tolerance has been described in [103] as: 

“… to preserve the delivery of expected services despite the presence of 

fault-caused errors within the system itself. Errors are detected and corrected, 

and permanent faults are located and removed while the system continues to 

deliver acceptable service.” 

Failures, errors and faults are three different things [103]. When the system 

deviates from its pre-specified behaviour, a failure could occur. Failures are 

caused by system errors. An error represents an invalid system state. An error 

is a result of a fault, which is a defect in the system. Thus, a fault is the root cause 

of a failure. Examples of failures in distributed systems are hardware faults, 

physical machine overload, and network congestion. Fault tolerance techniques 

are either reactive or proactive [104]. In reactive methods, the fault’s impact is 

reduced using recovery methods but only after it has occurred. In proactive 

methods, faults are predicted, then fault occurrences are prevented. The latter is 

preferred but there is still no guarantees that predictions are always accurate 

[104]. 

There are three well-known fault tolerance approaches [97], [98], [103]. 

Recovery Block approach is a mechanism implemented in software fault 

tolerance where redundant program modules (components) are structured. 

Standby components are sequentially invoked if the primary component fails. 

Multi-Version Design approach is a mechanism that generates multiple 

functionally equivalent versions of a system. When applying the Multi-Version 



- 43 - 
 

Design approach to Cloud services, the functionally equivalent versions are 

invoked at the same time and their results are compared. The final system result 

is determined by the consensus output. Parallel approach is similar to Multi-

Version Design. The difference is that the final result is the first returned output. 

In [105], [106], authors propose a Failure Tolerance Manager (FTM) in the 

Clouds which applies the tight integration of management components technique 

[85]. FTM addresses the issues of different computing resources and integrates 

three managements components to realize generic fault tolerance mechanisms 

and to enable adaptable resilience in Cloud environments: (i) Resource Manager 

avoids failure and congestion when allocating resources and manages the 

network links, (ii) Replication Manager supports the replication mechanisms 

which is used for fault healing. It manages their execution by ensuring that fault-

free replicas show correct behaviour during execution, (iii) Fault Masking and 

Recovery Manager enforces fault masking mechanisms to prevent error 

occurrences and ensures that the detected system faults are hidden from the 

user, such as VM and node faults. The recovery manager’s goal is to minimize 

the downtime of the system during failures by recovering and resuming the last 

error-free replica of the system. Fault tolerance techniques can be applied to an 

overload scenario only when an overload cause is considered as a fault, an error 

or a failure such as virtual machines failures. Due to the characteristics of 

resources over-commitment and machines overload, there are causes that don’t 

fit into these three categories, such as arrival of higher priority tasks and increase 

in resource requests. Although fault tolerance techniques are effective, they are 

not fully applicable to the different overload scenarios. The proposed 

provenance-driven diagnostic framework contributes by diagnosing every 

overload scenario and identifies the linked causes, refer to Chapter 3. 
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Self-healing is another resiliency technique that is applicable to the Clouds [85], 

[96]. Dai et al [107] propose a self-diagnosis and self-healing tool that utilises 

both Multivariate Decision Diagrams and Naïve Bayes Classifiers as a hybrid 

mechanism. Self-healing is the ability of the system to autonomously discover, 

diagnose and mitigate any disruptions in the system. Their proposed tool is 

based on a consequence-oriented concept. The tool diagnoses the detected 

symptoms to prevent failures. The Multivariate Decision Diagram determines the 

severity levels of the possible failure. The Naïve Bayes Classifier is a probabilistic 

classifier and it infers the possible consequences. The tool scope is in both 

hardware and software as it looks, for example, for the causes of memory leaks  

and programming bugs. Although authors claim that this is a self-healing tool, it 

goes as far as prevention. The tool can be extended and utilized to be used as 

an implementation of the overload mitigating strategies and to help decide which 

the best strategy is by utilizing the Naïve Bayes Classifier. Verissimo et al [108] 

proposes a failure preventative tool, TCloud, which its goal is to reallocate 

resources and reassigns trust in in hardware and software components. TCloud 

aims to detect and prevent failures. TCloud has been extended to FTCloud which 

adds the capability of fault tolerance [97]. FTCloud uses a ranking approach for 

resources allocation. Each Cloud component is tested and ranked in terms of 

availability. Higher-ranked components are used for the allocation. A drawback 

to TCloud and FTCloud is that a data centre needs to be re-implemented and 

reconfigured in order to be compliant. Following the formulation steps of the 

proposed framework, section 4.4, it can be seen that reconfiguration of a data 

centre is not a prerequisite. Kavulya et al [96] argue that self-healing is risky 

because it depends on the outcome of the diagnosis. Wrong diagnosis could 
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lead to bad and wrong recovery decisions. This adds importance and creditability 

to the diagnosis models. 

DCIM is a one of the management solutions for data centres and can facilitate 

resilience techniques [109]. It is the management layer of the physical 

infrastructure. It allows data centres to leverage existing technologies such as 

data collectors, meters and sensors to support capacity planning and analytics 

and data management, integration and reporting [110]. DCIM can be used as a 

method for the identification of the overload causes. For example, the decision 

support system in the DCIM that can be used by the scheduler to identify weak 

nodes by offering a ranking method of servers. Ouyang et al [111] propose a 

node performance modelling and ranking framework which analyses node 

execution ability and vulnerability to straggler occurrence by using Google Cloud 

29-day production data as a case study. They stated that the framework could 

inform the scheduler about node-level stragglers that show weak performance to 

be avoided. It can observed from section 3.2.4 that the scope of this framework 

does not cover all causes of overload. This work shows that DCIMs can be 

further improved. 

Diagnosis techniques and methods such as count-and-threshold techniques and 

rule-based techniques, have historically been a manual process. The notion of 

automating as much of the diagnosis process as possible has grown in 

importance. Diagnosis techniques can be used to guide cause analysis and are 

found in diverse domains such as artificial intelligence, distributed systems, 

machine learning, statistics, and stochastic modelling. Such techniques are not 

perfect and can fail to pick up a problem resulting in a false negative (FN) or 

accuse the wrong and irrelevant cause resulting in a false positive (FP), hence 
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the importance of tuning [96]. Four existing non-provenance diagnosis tools will 

be presented next; Chopstic, Fay, D3S, and Pip. 

Chopstix is a manual lightweight monitoring tool that collects data of low-level 

operating system events and analysis them offline [112]. The study claims that 

Chopstix monitors hardware-related vital signs, such as CPU utilization, then 

detects and isolates the root cause of a fault, such as OS operations, to allow 

the use of existing debugging tools by developers. This diagnostic tool is rule-

based and relies on a small collection of rules to guide the diagnosis. According 

to [96], this tool only diagnoses problems on single node and does not correlate 

data from several nodes.  

Fay is a similar rule-based diagnostic and monitoring tool [113]. Collection, 

processing, and analysis of software and hardware execution traces are 

facilitated by Fay [114]. It is applicable to activities of users and nodes. It allows 

the traceability in distributed systems by their developed FayLINQ language, 

which provides the means to specify the events to be traced, aggregated, 

processed, and analysed. Rule-based techniques lack (i) the ability to learn from 

experience and (ii) the ability of dealing with failures not described within the 

predefined rules [96]. 

D3S is a large-scale real-time debugging and checking tool [115]. Programmatic 

tests of measured performance data are used to imperatively describe 

performance expectations.  When a problem is detected, a sequence of state 

changes that led to the problem is produced to be further analysed by a 

developer. The drawback of this tool is its complete dependence on the 

developer to write and specify predicates. Predicates, similar to rules, are 

injected by the tool into a running process and used as guidance. 
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Pip is another debugging tool which aids the developer to explore expected and 

unexpected system behaviour [116]. Similar to D3S, Pip depends on the 

developer to express, programmatically, system expectations. Pip uses such 

inputs to compare the actual and expected behaviour to flag any application-level 

issues or performance problems. Properties of a program, such as throughput, 

node failure, and latency, can be dynamically monitored and checked by Pip. 

However, such tools requires a deeper understanding of the systems as a 

prerequisite [96]. 

3.3 Provenance 

This section presents a review of related work about  the application and the use 

of provenance in the Clouds. It also presents the possible provenance-based 

methods for overload causes identification. 

3.3.1 Challenges of Adopting Provenance in the Clouds 

In [32], [55], [67], [117], the authors have identified the challenges and hurdles 

that face adopting provenance in the Clouds. They have stated that for Clouds, 

supporting scientific computing as well as fulfilling the common requirements for 

improved auditing, debugging, and resource monitoring is envisioned to be 

possible by creating practical provenance systems. As mentioned earlier in 

Section 2.2.4, there are a number of deployments of Clouds; private, public, and 

community. The differences in these deployments are, and not inclusive of, 

number of users, relationships between users and Cloud providers, supported 

systems and devices, and adopted business models. As a consequence, such 

differences have a direct effect on the level of urgency to adopt and implement 

a provenance system. The challenges can be classified into five categories:  
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1. Audit and Log Data. For a Cloud provider, services are of three types, 

SaaS, PaaS, and IaaS for different consumers. Cloud consumers may 

require Cloud services from different providers. The current way of 

recording and collecting provenance in Clouds is by log files [118]. Thus, 

there is a log for every Cloud deployment mode of every Cloud model for 

every service at every logging interval which makes it challenging and 

almost not practical to collect provenance data from logs of services that 

are of dynamic nature.  

The challenge faced in this research is mapping the data collected 

through current logging techniques to the provenance model PROV. 

2. Heterogeneity. Clouds in nature are complex systems and involve 

numerous interlinked resources that are managed by different policies 

and offered by heterogeneous Cloud providers. Thus, when investigating 

an event for one application data from many sources might be needed, 

which increases the cost of time and effort doing it because an 

investigation involves the application itself, all logs for the virtual 

resources the applications used, and the logs for the physical resources 

that supported the hosting of those virtual ones.  

In terms of this research, only one log of one Cloud provider has been 

used. This particular challenge has not been faced. However, it is a 

possible obstacle when extending the proposed framework in future work 

to include datasets of different format and structure from data centres with 

heterogeneous infrastructure design. 

3. Granularity. Scalability is a challenge facing provenance adoption in 

Cloud computing. According to the literature, there are trade-offs between 

the granularity of provenance and Clouds’ scalability and performance 
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because recording every single aspect leads to gigabytes of data, 

important and not important, being created [46]. So, the challenge is to 

maintain the levels of scalability and performance while refining the 

granularity of provenance data in terms of scale and level of detail.  

The overwhelming volume of the dataset used in this research made it 

almost impossible to deal with. A number of programming languages such 

as Python and database platforms such as MySQL Workbench have been 

used and yet failed to return results in reasonable time. Thus, the level of 

granularity has been changed in terms of selecting only the needed 

attributes in order to be queried.  

4. Security and Trust. For provenance in the Clouds to be trustworthy, it must 

meet four requirements; Confidentiality, Integrity, Availability and 

Reliability [67]. Collecting provenance at the kernel-level is one of the 

ways to determine its security and reliability because generally users have 

no control and access at this level. Muniswamy-Reddy et al stated there 

is no clear means of recording provenance in the Cloud  [66]. They have 

identified four features that are crucial for any provenance system to be 

creditable, which are Provenance Data-Coupling, Multi-Object Causal 

Ordering, Data-Independent Persistence, and Efficient Query. 

5. Persistence. Each data object in a Cloud requires an identification. When 

such an object travels between different Cloud providers, the identification 

changes due to the different policies followed by the providers. Data 

objects in the Clouds are transient, thus hashing identification techniques 

are not appropriate because the hash identifier need to continuously be 

recalculated which affects the overall performance. The provenance 
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graph could be disconnected if one provenance object is removed, hence 

provenance persistence is important. 

3.3.2 Provenance Research Projects in Distributed Systems 

SPADE [119] is a software infrastructure for collecting and managing 

provenance data in distributed systems based on OPM which supports 

provenance auditing in distributed environments. It supports both graph and 

relational databases for storing data and provides a distributed module for 

querying. The core of SPADE is a provenance kernel which decouples the 

gathering, storing, and querying of provenance data from different provenance 

sources, such as application and operating systems. The kernel consists of four 

components; reporter which collects provenance data, filter which undertakes 

transformation on provenance events, storage which is used to store filtered 

provenance data and sketch which is used to optimize the querying process. 

SPADE utilizes OPM’s nodes and edges to embed the domain-specific 

semantics of the provenance. 

STRAPP [10], [120], [121] is a framework that improves trust and the 

understanding of risks in distributed systems using personalized provenance 

reasoning and risk assessments techniques. W3C PROV provenance data 

model has been used to systematically model system provenance. STRAPP 

consists of three main components: the Presentation Service which takes input 

from the user from an external unit, formats it, then passes it to an internal unit. 

It is responsible for displaying the final view of the STRAPP system in XML to 

the user, the Personalization Service invokes the provenance model and its 

reasoning engine, personalizes the provenance view and conducts risk 

assessments, and Data Management Service which retrieves data for the 



- 51 - 
 

personalization service. The authors justify their choice of W3C PROV model 

rather than an ad-hoc approach because it provides a standardized layer of 

normalized data upon which processing algorithms can be implemented. They 

stated that created provenance graphs can be modified, parsed and serialized 

leveraging standard tools. Also, reasoning engines can be invoked for the 

detection of inconsistencies and missing provenance data, such as agents. It 

provides the ability to understand relationships between entities without data 

being present in the underlying database. 

3.3.3 Use of Provenance and PROV in the Clouds 

A number of studies have considered using provenance in the Clouds for 

different purposes [55], [56], [66], [122]–[125]. However, there were no attempts 

of using the PROV model standard that enables the exchange of the provenance 

information [11]. These studies have developed bespoke models as the PROV 

model was still being developed. Using standard models can help work 

undertaken by both research and industry communities to be easily understood 

and extended by building on them.  

PROV model has recently started to gain attention in the Cloud computing 

community. In [48], researchers applied PROV model in the Cloud for security 

and trustworthiness purposes. One algorithm has been developed based on 

PROV model for controlling access to Cloud data. It ensures the completeness 

of the causal dependencies between the data. Another study used PROV model 

as a basis for a provenance framework for gathering and storing Cloud workflow 

provenance data for later analysis [126]. In [127], the study argues that current 

provenance models lack the express-ability to describe the low-level working of 

a Cloud service. cProv which is a provenance traceability model and cProvl 
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which is a provenance-aware policy language are proposed to support 

accountability and provenance traceability in the Clouds. PROV model is used 

and extended by cProv to provide a representation of provenance history for the 

Clouds. The use of PROV notation is to add the missing and need express-ability 

(relation, metadata) on the Cloud provenance data.  

Li and Boucelma [128], [129] used the open provenance model (OPM) and 

Coloured Petri Net (CPN) for monitoring workflow and data provenance in the 

Cloud by utilizing SOA. Their approach is similar to the approach conducted in 

this research, described in Chapter 3. They have used the simulation tool 

CPNTools to act as the diagnoser for their analysis. CPN is used as the abstract 

model underpinning the diagnosis component which identifies the correct and 

faulty behaviours of the workflow, starting from the symptoms (faulty data or 

activities), and backward detecting the possible causes of the symptoms. Web 

Service Security (WS-S) protocol has been modelled using OPM to integrate the 

secure communications in Cloud environments. The reason why WS-S has been 

chosen is due to its support to provenance requirements and it does not disrupt 

the generality of OPM model. 

In [130], Distributed Time-aware Provenance (DTaP) is proposed which helps in 

debugging and forensics in distributed systems, i.e. Clouds. The study argues 

that distributed systems problems in performance, security, or configuration don’t 

always have a sole cause but could have a combination of causes (behaviours). 

DTaP collects distribution, time, and causality of updates. It also gives the 

administration control to make ad-hoc queries over network communication 

patterns, system states, etc. This tool facilitates the manual diagnosis by 

developers The focus is maintaining the network overhead of provenance 
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collection in distributed systems. It also discusses that provenance can be 

maintained and provenance trees could be constructed in two ways; proactive 

and reactive.  

In [122], [131], Provenance Aware Storage Systems (PASS) is proposed by 

Muniswamy-Reddy et al and Barillari et al. It is a scheme for automatic 

maintenance and collection of data provenance in Cloud storage systems. Its 

architecture integrates provenance from several layers of abstraction; hence 

distributed systems. 

In [132], the authors stated that provenance data in the Clouds can be classified 

into five granularities; application, virtual machine, physical machine, Cloud, and 

Internet (Cloud of Clouds). Provenance of VM summarizes all provenance data 

related to a VM. Provenance of PM summarizes all provenance data to a 

particular PM and the mapping of VMs to PMs. Provenance of Cloud incudes the 

provenance data across the three layers; application, virtual, and physical and 

the communication between them. It also includes data such as consumer 

details, migration of data across VMs, migration of VMs across PMs, and more. 

S2Logger in [133] is a data event logging tool which captures, analyses and 

visualizes Cloud data provenance. This tool enables the near real-time detection 

of security violations and allows for end-to-end tracing of data events at both 

block and file level. The scope of this tool is detecting data loss and leakage in 

physical and virtual machines and supports diagnosis of security breaches. 

S2Logger builds on and complements existing distributed security systems, such 

as SELinux. Cloud data provenance related to hardware, software and network 

is monitored as a graph by S2Logger. The study claims that analysing the data 

flow graph can help make better Cloud data security decisions. 
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In [134], a provenance-driven auditing framework is proposed by Meera et al. 

This framework allow providers to run audit checks to ensure there are no 

inconsistencies in terms of data, SLAs, etc. It follows the procedures and phases 

of the digital forensic investigation; acquisition, preservation, analysis, and 

presentation. The framework is based on OPM. This study aims to provide a 

secure way of provenance audit in the Clouds using existing cryptographic 

techniques. 

Even though these studies are notable, their aims and objectives are different 

than the ones of this research. They do not look into the overload problem of 

physical machines which is the scope of this research. 

Table 3.1 summarizes the comparison between the possible provenance and 

non-provenance based methods, presented in sections 3.2.5 and 3.3.3, that can 

potentially be used for the identification and diagnosis of overload causes. The 

comparison is drawn between the capability and the scope. The capability is 

based on six different metrics: prediction, detection, diagnosis, mitigation, 

prevention, and healing. The scope shows the coverage and focus of the method 

in terms of three metrics: hardware (i.e. CPU and Memory utilization), software 

(i.e. virtualization-related issues and programming bugs) and network (i.e. 

bandwidth and response time). “Yes” means that the method either supports the 

metric or paves the way to it. “No” means that the method does not support the 

metric.
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Table 3.1 Comparison of Different Possible Methods for Overload Causes Identification 

Method (page in this 
thesis) 

Capability Scope 

Prediction Detection Diagnosis Mitigation Prevention Healing Software Hardware Network 

FTM by Jhawar et al  
[105], [106] / (p. 43) 
non-provenance based 

No Yes No No Yes Yes Yes Yes Yes 

Dai et al 
[107] / (p. 44) 
non-provenance based 

Yes Yes Yes No Yes No Yes Yes No 

TCloud by Verissimo et al  
FTCloud by Zheng et al 
[97], [108] / (p. 44)  
non-provenance based 

No Yes No No Yes No Yes Yes No 

Chopstix by Bhatia et al  
[112] / (p. 46) 
non-provenance based 

No Yes Yes No No No Yes Yes No 

Fay by Erlingsson et al 
[113] / (p. 46) 
non-provenance based 

No No Yes No No No Yes Yes No 

D3S by Liu et al 
[115] / (p. 46) 
non-provenance based 

Yes Yes Yes No No No Yes No No 

Pip by Reynolds et al  
[116] / (p. 47) 
non-provenance based 

No Yes Yes No No No Yes No No 

CPN by Li et al  
[129] / (p. 52) 
Provenance based 

No No Yes No No No Yes No Yes 

DTaP by Zhou et al 
[130] / (p. 52) 
Provenance based 

No No Yes No No No No No Yes 

S2Logger by Suen et al 
[133] / (p. 53) 
Provenance based 

No Yes Yes No No No Yes Yes Yes 
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3.4 Summary 

The concepts of over-commitment and overload have been discussed. Also, this 

chapter presented the overload mitigating strategies, overload causes and 

symptoms and existing possible methods for causes diagnosis and identification. 

The challenges and issues in adopting provenance in the Clouds along with a 

number of research projects that utilized provenance and PROV in the Clouds 

have been presented. 

Lastly, the Chapter provided a literature review of the uses of provenance and 

the PROV model in the Clouds. The review of the literature reveals that PROV 

model is adoptable in the Clouds but it has never been utilized with regards to 

the issue of Task Eviction which is an opportunity captured by this research. It 

ends with comparison of different possible methods for overload causes 

identification, provenance based and non-provenance based. 



- 57 - 
 

Chapter 4  

Provenance-Driven Diagnostic Framework 

4.1 Introduction 

Infrastructure as a Service (IaaS) in Cloud computing has introduced many new 

opportunities for businesses and individuals by extending accessibility and 

minimizing costs by providing users with access to remote resources [135]. 

However, as the Cloud computing paradigm rapidly evolves, the management of 

resource allocation becomes increasingly important so as to maintain a high level 

of overall system utilization. These challenges are typically addressed through 

the use of virtualization and the over-commitment of resources to users.  

This chapter proposes the Provenance-Driven Diagnostic Framework which 

addresses the negative impact due to over-commitment that leads to task 

eviction, as discussed in Chapter 2. The framework investigates cause and effect 

relationships. The chapter explains the underpinning concepts of the framework. 

It presents the importance of provenance to the Clouds and how PROV can help 

Cloud data centres understand why tasks were evicted. A publicly available 

Cloud dataset with known Task Eviction behaviours was used to inform the 

construction of the PROV-TE provenance model. Also, the methodology of 

building the framework and developing the diagnostic algorithms is described. 

Finally, an instantiation of the framework, the Auditor, is presented. Specifically, 

how the framework fits in a Cloud data centre is described.  
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4.2 Underpinning Philosophy and Assumptions of the 

Framework 

As described in Chapter 2, the record of an activity that leads to a piece of data 

is the provenance of that data [98]. Provenance describes the flow of data and 

processes across several heterogeneous layers and systems. The reason for 

using provenance is because (i) traceability of results is provided; (ii) 

reproducibility is possible; and (iii) the integration of diverse data sources is 

facilitated by the schema. Analysis of provenance information of a given task 

would pave the way to extract knowledge from usage data that was not identified 

using the standard logging system.  

PROV is W3C standard for provenance. As defined by W3C, “provenance is a 

record that describes the people, institutions, entities, and activities involved in 

producing, influencing, or delivering a piece of data or a thing” [136]. With regards 

to distributed systems, Moreau and Groth in [9], [137] stated that provenance 

can relate to data, documents and resources since it is a record that computers 

have produced, processed, and exchanged. In addition, provenance is one 

essential dimension of process verification, reproducibility, reliability and trust in 

distributed systems [63]. PROV, explained in Chapter 2, is a model that 

represents all types of tangible and intangible objects such as data and 

machines, and allows the expression of causal relationships and dependencies 

between them through nodes and edges. The dependencies define the link 

between the effects and the cause in a backwards manner. 

PROV has a diagrammatic representation that encapsulates relationships and 

tagging between the nodes which add reasoning and meaning to the raw data. 

PROV is built on logic and has a representation that is machine process-able. 
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The usefulness of mining data to answer questions and draw conclusions is 

determined by the ability of finding hidden patterns and anomalies in the data. 

Hence, a query platform will enable the mining of data and patterns for reasoning. 

It would be observed later that without the proposed framework it would be 

difficult to audit and find the causes of overload in data centres. 

The challenge that faces this research is the validity of the assumption that 

provenance adds richness in data for log data analysis to help find the causes 

for machines overload due to over-commitment, explained in Chapter 2. With 

this in mind, a provenance-driven diagnostic framework [138] has been 

developed using Google Cloud 29-Day usage dataset for exploration. Its goal is 

to identify the causes for task evictions. As explained in Chapter 2, Task Eviction 

(TE) is one of six overload mitigating strategies. The framework extends the W3C 

PROV model [9] into PROV-Task Eviction (PROV-TE) which underpins a 

number of diagnostic algorithms for identifying evicted tasks due to specific 

causes. 

4.3 Google Cloud 29-day Usage Dataset 

Real production and usage datasets (also named workloads, log data and trace 

logs) play a pivotal role in conducting research. These real datasets support a 

wide variety of research domains and provide creditability and assurance for 

building models and designing simulation as they reflect realistic scenarios [139].  

The biggest publicly available Cloud dataset, Google’s Cloud 29-day usage 

dataset, has been utilized to extend the PROV model into PROV-TE because it 

applies Task Eviction mitigating strategy [7], [140]. As illustrated in Table 4.1, the 

dataset consists of a 29-day trace of its applications with over 25 million tasks 

grouped into over 650 thousand jobs running across over 12 thousand 
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heterogeneous machines from a Google data centre. The trace starts at 19:00 

EDT on Sunday May 1, 2011. The documentation of the dataset [7] shows that 

Google applies over-commitment mechanism to utilize their resources. 

According to [5], [37], each task is scheduled in a Linux container which is a 

lightweight virtual system mechanism equivalent to a VM, as explained in section 

2.2.5. The documentation also states that Google applies a Task Eviction 

mitigating strategy in order to mitigate the overload of usage (trade-off of over-

commitment). The documentation states five causes for evicting tasks which are: 

Cause 1. Take Over by Higher Priority Tasks 

Cause 2. Increase In Resource Requests 

Cause 3. Demand exceeds Physical Capacities 

Cause 4. Missing Machines 

Cause 5. Decrease in Machines Capacities  

 

Table 4.1 Dataset Profile 

Dataset period 29-day 

Number of unique users 930 

Number of unique tasks 25,405,064 

Number of unique jobs 671,679 

Number of unique physical 

machines 
12,583 

This dataset is made up of six database tables, which add up to the size of about 

200 GB, namely Machine Event (ME), Machine Attribute (MA), Job Event (JE), 

Task Constraint (TC), Task Event (TEv) and Task Usage (TU). Each table has a 

primary key as an index and includes a timestamp. Also, each table is packaged 
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in one or more CSV files and has a specific set of attributes (parameters). 

Summaries of the overall statistics of the tables as well as the list of all 

parameters are illustrated in tables 4.2 and 4.3, respectively. 

ME and MA tables describe the machines characteristics, i.e. CPU capacity, and 

the status of the machine: Added, Updated, or Removed. JE and TEv tables are 

related to jobs and their tasks. They describe specific information such as status, 

i.e. submitted or killed, the priority, the level of sensitivity of the tasks and jobs. 

describes jobs and their lifecycle. There are 9 event types (status) of every job 

and task: Submit, Schedule, Evict, Fail, Finish, Kill, Lost, Update Pending, 

Update Running. They also show the amount of resources requested which can 

be used together with the machines capacity to identify the level of wasted 

resources. For example, 10 tasks were scheduled into machine A. The sum of 

the requested RAM is 100 units and the capacity of the machine’s RAM is 100 

units. When calculating the available RAM of the machine at run time, it is found 

that 30 units are available which were already allocated to the 10 tasks but not 

used, hence wasted. Moving on, TC table describes the task placement 

constraints that restrict the machines onto which tasks can schedule. Finally, TU 

Table 4.2 Overview of the Dataset [160] 

Table ME MA JE TEv TC TU 

Number of csv 
file(s) 

1 1 500 500 500 500 

Data entries 37,780 10,748,566 5,012,242 144,648,288 28,485,619 1,232,792,102 

Ave entries/file 37,780 10,748,566 4,024.5 289,296.6 56,971.2 2,465,584.2 

Number of data  
parameters 

6 5 8 13 6 20 

Compressed 
size 

339 KB 136 MB 83 MB 1.5 GB 147 MB 36.6 GB 

Uncompressed 
size 

2.77 
MB 

1.12 GB 315 MB 15.4 GB 2.82 GB 158 GB 
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table is the biggest table and it describes the tasks’ usage and resources 

consumption. 

Table 4.3 Dataset Parameters 

Dataset Tables Parameters Description of Table 

Machine Events (ME) 

1. timestamp 
2. machine ID 
3. event type 
4. platform ID 
5. capacity: CPU 
6. capacity: memory 

Each machine is described 
by one or more records in 
the machine event table.  
There are three types of 
machine events: ADD, 
REMOVE, and UPDATE. 

Machine Attributes 

(MA) 

1. timestamp 
2. machine ID 
3. attribute name: an 

opaque string 
4. attribute value: either an 

opaque string or an 
integer 

5. attribute deleted: a 
Boolean indicating 
whether the attribute 
was deleted 

Machine attributes are 
key-value pairs 
representing machine 
properties, such as kernel 
version, clock speed, and 
presence of an external IP 
address. Tasks can 
specify constraints on 
machine attributes. 

Job Events (JE) 

1. timestamp 
2. missing info 
3. job ID 
4. event type 
5. user name 
6. scheduling class 
7. job name 
8. logical job name 

The job event table 
describes jobs and their 
lifecycle. There are 9 
event types that describe 
the status of every job and 
task: SUBMIT, 
SCHEDULE, EVICT, FAIL, 
FINISH, KILL, LOST, 
UPDATE PENDING, 
UPDATE RUNNING. 

Task Events (TEv) 

1. timestamp 
2. missing info 
3. job ID 
4. task index - within the job 
5. machine ID 
6. event type 
7. user name 
8. scheduling class 
9. priority 
10. resource request for 

CPU cores 
11. resource request for 

RAM 
12. resource request for 

local disk space 
13. different machine 

constraint 

The description of Job 
Events applies here. 
Tasks have the same 
lifecycle and represented 
in the dataset with 9 
different status types 
recorded in the event type 
parameter. Event types 
SCHEDULE and EVICT 
are the focus of this thesis.   
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Task Constraints (TC) 

1. timestamp 
2. job ID 
3. task index 
4. attribute name -- 

corresponds to machine 
attribute table 

5. attribute value -- either 
an opaque string or an 
integer or the empty 
string 

6. comparison operator 

This dataset describes the 
task placement constraints 
that restrict the machines 
onto which tasks can be 
scheduled. 

Task Usage (TU) 

1. Start time 
2. End time 
3. job ID 
4. task index 
5. machine ID 
6. CPU usage  
7. memory usage 
8. assigned memory 
9. unmapped page cache 

memory usage 
10. page cache memory 

usage 
11. maximum memory 

usage 
12. disk I/O time - mean 
13. local disk space used - 

mean 
14. CPU rate - max 
15. disk IO time - max 
16. cycles per instruction 

(CPI) 
17. memory accesses per 

instruction (MAI) 
18. sampling rate 
19. aggregation type 
20. CPU sampling rate 

Describes the tasks’ usage 
and resources 
consumptions on a 5-
minute logging interval. 

In terms of distinguishing physical machine and virtual machines, the dataset 

states only one machine ID in MA table but does not state the type of the 

machine. In this research, during the initial development of the algorithms, there 

was no separation between the VM and PM due to the lack of information. 

However, during the evaluation of the algorithms using simulated environment, 

the algorithms were enhanced to consider both VMs and PMs, see sections 6.6.1 

and 6.7.1. 
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In terms of the relationships between the parameters, they already normalized 

by the vendor and structured [7], hence being categorized in six tables. Also, 

each table comes with primary key or a compound key. 

4.4 The Generic Framework for Provenance-Driven Diagnostic 

Model 

The diagnostic framework can be divided into three phases, shown in Figure 4.1. 

The goal of this framework is to map the raw data to a PROV model (phase 1), 

Figure 4.1 Steps for the Provenance-Driven Diagnostic Framework 

Dataset 

P1. 
Understand 

Data 

P3. 
Implemen
t PROV-
TE Model 

P2.  
Understand 

PROV Abstract 
Model 

a. 
List of 

relevant 
parameters 

for PROV-TE 

b. 
A conceptual 
PROV model 

P4.   
Populate Query 

Platform 

P5. 
Diagnostic 
Algorithms 

c. 
Meta-data of 

dataset to 
be queried 

d. 
Extracted raw 

data from 
Dataset 

e. 
A structured 

dataset for query 

Phase 1 

Phase 2 (Operationalise) 

Phase 3 (Query) 
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operationalize it  (phase 2) and to have a platform ready for querying and finally 

to develop algorithms for the queries (phase 3). This generic process can be 

used to develop specific diagnostic frameworks for different overload mitigating 

strategies depending on the available datasets.  

The three phases will be described in detail in Sections 4.6 – 4.8. 

4.5 Iterative Approach in Framework Development 

Each Cloud data centre has unique configurations which makes usage datasets 

to be in different structure with different parameters. Similar to software 

development, refinement could be made based on feedback. Figure 4.2 shows 

the iterations that took place for this research. (1) Raw dataset helps formulate 

the model. (2) The model is then used to construct both the testing platform and 

the diagnostic algorithms. (3) The algorithms are then applied on the constructed 

platform for testing. (f) is the feedback from testing which informs both the model 

and the algorithms for further enhancements. The model, Figure 4.3, has gone 

Formulation of 
PROV-TE Model 

(Phase 1) 

Development of 
Platform 

(Phase 2) 

Development of 
Diagnostic Algorithms 

(Phase 3) 

1 

2 

f 

f 

3 

2 

Figure 4.2 Iterations for Framework Improvement 
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through two iterations informed by the feedback. The continuous feedback while 

testing helped in constructing the algorithms. A number of SQL queries were 

merged into one algorithm. Next, the framework is discussed in detail. 

4.6 Phase 1: PROV-TE Formulation 

The input of this phase is the Google 29-day Cloud Usage dataset, presented in 

Section 4.3. Data in Google’s dataset is structured and huge in volume. Not all 

data are relevant, hence a subset will be selected to enable further analysis and 

minimize processing time.  

The first process of this phase (P1) starts with understanding the meaning of the 

attributes (parameters) in the dataset tables by consulting the publications of 

Google on the datasets.  

Process 2 (P2) relates to understanding the abstract model of PROV, presented 

in Chapter 2. The PROV model consists of edges and nodes. Nodes can be one 

of the following: Entity- a digital, conceptual or physical thing of which we need 

to keep the provenance; Activity- a process that occurs over a duration of time 

that act upon entities; and Agent- something/someone to which entities and 

activities are attributed or associated. Edges represent the dependencies 

between these nodes; for instance, prov:Used, prov:WasGeneratedBy, 

prov:WasDerivedFrom, prov:WasAssociatedWith, prov:WasAttributedTo, 

prov:WasActedOnBehalf, and prov:WasInformedBy. The output of these two 

processes (P1 and P2) are (a) an understanding of the meaning of the 

parameters in the dataset which led to specifying the needed parameters for 

PROV-TE and (b) an understanding of the skeleton of PROV model.  
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Process 3 (P3) is the implementation of PROV-TE (PROV Task-Eviction) 

according to the list of selected parameters. Having understood the parameters 

from the trace’s documentation, only the needed ones that capture the data 

Table 4.4 Selected Parameters for PROV-TE 

PROV 

Nodes 
Parameters 

Agent 
 User, 

 Scheduler 

Activity 

 Submit task, 

 Group Tasks into jobs, 

 Schedule Task/Job, 

 Add Machine, 

 Update Machine, 

 Update Pending/Running, 

 Evict Task/Job 

Entity 

(Selected 

Parameters) 

 JE_timestamp, 

 JE_jobID, 

 JE_eventtype, 

 JE_username 

 TEv_timestamp 

 TEv_taskindex, 

 TEv_eventtype, 

 TEv_priority, 

 TEv_username, 

 TEv_schedulingclass, 

 TEv_resource_request_CPU, 

 TEv_resource_request_RAM, 

 TEv_differentmachine, 

 ME_timestamp, 

 ME_machineID, 

 ME_eventtype, 

 ME_capacityCPU 

 ME_capacityRAM 

 MA_timestamp, 

 MA_attributename 

 MA_attributevalue 

 MA_attributedeleted 

Unused 

Parameters 

 TC_timestamp 

 TC_jobID 

 TC_taskindex 

 TC_comparison_operator 

 TC_attribute_name 

 TC_attribute_value 

 TU_starttime 

 TU_endtime 

 TU_jobID 

 TU_taskindex 

 TU_machineID 

 TU_CPU_usage 

 TU_memory_usage 

 TU_assigned_memory_usage 

 TU_unmapped_page_cache_me
mory_usage 

 TU_page_cache_memory_usage 

 TU_maximum_memory_usage 

 TU_disk_I/O_time_mean 

 TU_local_disk_space_used_ 
mean 

 TU_CPU-rate_max 

 TU_disk_IO_time _max 

 TU_cycles_per_instruction 

 TU_memory_accesses_per_i
nstruction 

 TU_sampling_rate 

 TU_ggregation_type 

 TU_CPU_sampling_rate 
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relevant to task eviction are selected, shown in Table 4.41. P3 takes (a) and (b) 

as input and the output of this process is PROV-TE model which provides (c) the 

meta-data of the dataset to be queried.  

4.6.1 The PROV-TE Model 

Figure 4.3 shows a diagrammatic representation of PROV-TE, the output of this 

phase. It is the second version of PROV-TE. The first version of PROV-TE is 

shown in [138], details are presented in Appendix A.  

PROV-TE model was constructed by (i)  putting together the workflow processes 

of scheduling a task and the five causes explained in sections 4.6.2 and 4.6.3, 

(ii) including the relevant parameters (entities) explained in Table 4.4, (iii) 

mapping the dependencies between the Activity, Agent and Entity of every 

workflow based on the generic PROV model, and (iv) following the normalization 

of the dataset tables.

                                            

1 The agents and the activities have been captured from the dataset’s documentation 
but not recorded in the dataset itself. 
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Figure 4.3 PROV-TE, a PROV Model for Task Eviction Mitigating Strategy
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4.6.2 Workflow for a Scheduled Task 

Following is an illustration of how the PROV-TE model can be used to trace the 

workflow of a task from user submission Agent: User to being hosted by Agent: 

Scheduler, refer to Figure 4.3. Normally, an Agent: User submits a task and 

specifies its scheduling priority Entity: TEv_priority. After a task is submitted 

Activity: Submit Task, a number of Entities are generated, i.e. TEv event type, 

TEv priority, TEv resource CPU/RAM, and all have a time stamp. Those entities 

are used by the Activity: Group Tasks into Job. Then a number of Entities are 

generated according to the grouping activity, i.e. JE jobID, JE event type, JE job 

name, and TEv task index and JE time stamp is recorded. The Activity: Schedule 

Job will use those entities and other entities related to the designated Machine, 

i.e. ME_MachineID, ME_eventtype, ME_capacity CPU/RAM, so that the task/job 

can be scheduled and hosted. 

4.6.3 Task Eviction Workflows  

This section illustrates how to trace task eviction workflows in PROV-TE model 

with respect to the five causes. Knowing task eviction workflows beforehand 

helps in the development of the diagnostic algorithms. 

Activity: Evict Task constantly checks (Prov: Used) the following entities: Entity: 

ME_capacityCPU, Entity: ME_capacityRAM, Entity: ME_eventtype, Entity: 

TEv_resource_request_CPU and Entity: TEv_resource_request_RAM. It gets 

triggered to process the eviction of one or more lower priority tasks i.e. Entity: 

TEv_priority on the same machine Entity: ME_machineID if one or more of the 

following scenarios takes place: 
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Cause 1. a new task with a higher priority Entity: TEv_Priority is submitted to 

a machine Entity: ME_machineID that lacks resources or encounters a 

temporary loss of resources Entity: ME_capacityCPU and Entity: 

ME_capacityRAM, see Figure 5.5 in section 5.4.1. 

Cause 2.  Agent: User updates the request of resources Entity: 

TEv_resource_request_CPU  and Entity: TEv_resource_request_RAM 

for the running tasks Activity: Update Running Tasks but there are no 

enough resources Entity: ME_capacityCPU and Entity: ME_capacityRAM 

to approve the new request, see Figure 5.6 in section 5.4.2. 

Cause 3. The approved capacities requests Entity: 

TEv_resource_request_CPU and Entity: TEv_resource_request_RAM 

exceeds the machine’s capacity Entity: ME_capacityCPU and Entity: 

ME_capacityRAM at any point of time, see Figure 5.7 in section 5.4.3. 

Cause 4.  A machine is Removed in Entity: ME_eventtype and the already 

scheduled tasks Entity: TEv_taskindex and Entity: jobID can no longer be 

accommodated, see Figure 5.10 in section 5.4.4. 

Cause 5.  A machine status is Updated in Entity: ME_eventtype and the new 

physical or virtual capacities Entity: ME_capacityCPU and Entity: 

ME_capacityRAM are less than the approved resources requests of the 

already scheduled tasks Entity: TEv_resource_request_CPU and Entity: 

TEv_resource_request_RAM, see Figure 5.11 in section 5.4.5. 
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4.7 Phase 2: Preparation of Platform for Queries 

The input of this phase is the meta-data provided by the extended PROV model, 

PROV-TE, refer to (c) in Figure 4.1. The meta-data is used to build the data 

model storage which supports the querying mechanism. For this research, a 

relational database with structured and cleaned dataset, the output of this phase, 

has been developed for this framework because a lightweight provenance model 

is applied. Other types of databases could also be used such as graph database. 

For a heavyweight provenance model, semantics platform could be developed 

which supports querying mechanisms such as SPARQL. 

While investigating the causes, one by one during first iteration, it was discovered 

that some parameters were missing in order to conduct the investigations. They 

provided the feedback to phases 1 and 3 for improvements (as represented by 

(f) in Figure 4.2). 

4.8 Phase 3: Diagnostic Algorithms Formulation based on 

PROV-TE 

This phase takes the processed dataset as input ((e) in Figure 3,.1) and use the 

constructed querying platform in order to develop and test the diagnostic 

algorithms, (process P5 in Figure 4.1). 

In this thesis, it is assumed that a task can be evicted due to one or more causes, 

discussed in section 5.5. This suspension will be tested by the application of the 

algorithms in chapter 5. The 5 causes identified from the literature were adopted 

for investigation. 10 diagnostic algorithms have been developed based on 

PROV-TE to facilitate the querying process. Causes 1 – 5 are investigated 
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separately and diagnosed by a set of algorithms that are implemented using 

SQLite. The following is a discussion on the developed diagnostic algorithms for 

the 5 causes presented in section 4.3. 

4.8.1 Arrival of Higher Priority Tasks 

Table 4.5 Algorithm 1a: Cause 1 Priority Identifier 

Finding the priority of evicted tasks and isolating the tasks in a separate table 

(PriorityofEvictedTasks). 

1. FOR each task in TaskEvents table (TEv), until end of period 

2. IF status = Killed 

3. STORE distinct TEv_taskindex, TEv_priority and TEv_timestamp 

in PriorityofEvictedTasks table (PET). 

4. END IF 

5. END FOR 

Table 4.6 Algorithm 1b: Cause 1 Eviction Identifier. 

Identifying the number of evicted tasks from PriorityofEvictedTasks table 

(PET) within one-step interval from higher priority tasks being scheduled in 

the same machine. 

1. FOR each task in PET, until end of period 

2. FOR each task in TaskEvent (TEv) table, until end of period 

3. IF ((TEv.timestamp < PET.timestamp <= (TEv.timestamp+ next 

time interval) 

AND (PET.priority < TEv_priority) 

AND (PET_machineID = TEv_machineID)) 

4. STORE distinct PET.Task in Cause1EvictedTasks table 

5. END IF 

6. END FOR 

7. END FOR 
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One of the causes of task eviction is due to higher priority tasks taking over the 

space of the lower priority ones upon scheduling. This trigger is due to the VMs’ 

limited resources. With help of PROV-TE, two algorithms have been used to 

investigate this scenario. First, all evicted tasks in the dataset are captured and 

their priorities are ordered and stored (Algorithm 1a). The aim is to precisely 

identify the tasks the have been evicted only by Higher Priority Tasks being 

scheduled in the same Host (VM) and within one interval of higher priority task 

arrival timestamp (Algorithm 1b). PROV-TE has helped in constructing these 

algorithms following the workflows mentioned in section 4.6. 

4.8.2 Increase in Resource Requests 

Another cause of task eviction is when users ask for more resources than they 

have initially requested while their tasks are running. Each task is scheduled in 

Table 4.7 Algorithm 2a: Cause 2 Request Comparer. 

Comparing the resources’ request of both CPU and MEM at the task’s 

scheduling time against the new resources’ request while running, then identify 

the tasks with the increased update of resources’ request and isolate them in 

Updated table (UT). 

1. FOR each task in TaskEvent (TEv) table, until end of period 

2. IF (Status = scheduled (S)  
AND updated_while_running (U) = true  

AND ((TEv_resource_request_CPU of U > 

TEv_resource_request_CPU of S)  

OR (TEv_resource_request_Mem of U > 

TEv_resource_request_Mem of S))) 

3. STORE Task_timestamp, Task ID, machineID in Updated Table 

(UT) 

4. END IF 

5. END FOR 
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a specific VM with specific virtual resources (assigned resources according to 

their request). In the case of over-commitment , when users request more 

resources, the scheduler neither can allocate more resources nor find an 

available virtual machine. A physical machine with fixed resource capacity would 

no longer be capable of continuing to host those tasks because the sum of the 

tasks’ virtual resources’ usage could get higher than the actual machine’s 

capacity. So, lower priority tasks get evicted to avoid an overload in the machine. 

The aim of algorithms 2a-b is to find the evicted tasks because of such scenario. 

4.8.3 Demand Exceeds Physical Capacities 

Resources over-commitment causes overload [2], [4]. Cloud providers set a 

usage threshold level where once it has been reached, an overload mitigating 

strategy, i.e. Task Eviction, is then triggered [2]. However, in Google’s case [7] 

the threshold level is not documented nor stated in the dataset. Thus, algorithms 

3a-b have been developed to identify the total capacities of the physical 

Table 4.8 Algorithm 2b: Cause 2 Eviction Identifier. 

Looking within the lowest granularity interval of the dataset, one interval, from 

the time of the task resources’ request update in Updated Table (UT) to identify 

the tasks that have been evicted due to the increase in the update. 

1. FOR each task in UT table, until end of period 
2. FOR each task in TaskEvent table (TEv) with an increase to their 

resources’ request, until end of period 
3. IF ((TEv.Status = evict)  
                 AND (Task_timestamp (UT) < Task_timestamp (TEv) <= 

(Task_timestamp (UT) + next time interval))  
                 AND Task priority (UT) > Task priority (TEv)) 
4. THEN display TEv.Task ID, Task_timestamp 
5. END IF 
6. END FOR 
7. END FOR 

 



- 76 - 
 

 

 

machines and the total assigned resources in a daily basis. Then, the day that 

has higher resources request than the actual physical capacity is assumed to 

result in an overload. Tasks evicted on those days are presumed to be the result 

of the occurred overload instances.  

4.8.4 Missing Machines 

The fourth investigation looks at the dataset from the physical machine point of 

view. The attribute ME_eventtype of PROV-TE tells whether the machine is Add, 

Update, or Remove. Removal of physical machines can usually be caused due 

Table 4.9 Algorithm 3a: Cause 3 Capacities Calculator 

Identifying the total capacities of the machines and the total requested 

resources (CPU and MEM)  per day for the period of the trace (29 days). 

1. FOR all available physical machines in machine_events table and all 

requested resources of tasks in task_events table, until end of period 

2. Sum the total capacity of ME_capacityMEM and ME_capacityCPU 

3. Sum the total capacity of TEv_requestedCPU, TEv_requestedMEM  

4. Group By Day 

5. STORE Day Number, TEv_requestedCPU, TEv_requestedMEM, 

ME_capacityMEM and ME_capacityCPU in Overload Table (OT) 

6. END FOR 

 

 

 

Table 4.10 Algorithm 3b: Cause 3 Eviction Identifier 

Identify the days where the requested resources (MEM and CPU) are higher 

the available physical resources from the Overload Table (OT). 

1. FOR every day in Overload Table (OT), until end of period 
2. IF ((ME_capacityMEM < TEv_requestedMEM) 

OR (ME_capacityCPU < TEv_requestedCPU)) 
3. Display tasks with status = evicted 
4. END IF 
5. END FOR 
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to maintenance or failure. Thus, tasks that have been scheduled to run on those 

machined get evicted.  

4.8.5 Decrease in Machines Capacities  

For various reasons, machines’ capacities get reduced. That reduction can 

cause tasks to be evicted. Algorithm 5a identifies the physical machines which 

have encountered an update to their resources in their lifetime. The event type 

attribute in Machine Events table (ME_eventtype) is used. Every machine in the 

log-data has three event types, Add, Remove, or Update. The ME_eventtype 

‘Update’ allows us to exactly identify the updated machines and work out if the 

Table 4.11 Algorithm 4a: Cause 4 Removal Identifier 

Finding machines with a Remove event type and storing their IDs in a separate 

table. 

1. FOR each machine in machine_events table, until end of period 
2. IF ME_eventtype = remove 
3. STORE  ME_machineID, ME_timestamp in Removed Machine 

IDs table (RMI) 
4. END IF 
5. END FOR 

 

Table 4.12 Algorithm 4b: Cause 4 Eviction Identifier 

For every removed machine in Removed Machine IDs table (RMI), identify the 

tasks that have been evicted within on-interval of the removal. 

1. FOR each task scheduled in RMI, until end of period 

2. IF (TEv_eventtype = evict) AND 

3. (RMI.ME_timestamp < TEv_timestamp <= (RMI.ME_timestamp 
+ next time interval)) 

4. Display distinct JE_JobID, TEv_taskindex 

5. END IF 

6. END FOR 
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resources has been reduced or not by comparing with its capacity at previous 

state ‘Add’. Then, Algorithm 5b looks at the impact of such reduction by 

identifying the evicted tasks within one interval from the update timestamp.  

Table 4.14 Algorithm 5b: Cause 5 Eviction Identifier 

Looking within the lowest granularity interval of the dataset from the time of 
the machine update in order to identify the tasks that have been evicted due 
to the decrease in the machine capacity. 

1. FOR each machine in MDC table 
2. FOR each task in task_events table scheduled in machines with 

decreased update, until end of log data 
3. IF (TEv_eventtype = evict) AND 
4. (ME_timestamp < TEv_timestamp <= (ME_timestamp + next 

time interval) 
5. DISPLAY TEv_timestamp, JE_JobID, TEv_taskindex, 

ME_timestamp, ME_machineID 
6. END IF 
7. END FOR 
8. END FOR 

 

Table 4.13 Algorithm 5a: Cause 5 Removal Identifier 

Comparing the capacity of the machines at add event and at update event, 

then storing IDs of machines with decreased capacities in Machines 

Decreased Capacity table (MDC). 

1. FOR each machine in machine_events table, until end of period 
2. IF ME_eventtype = add AND update  

 Compare capacity at add with capacity after update for  
ME_capacityCPU , ME_capacityRAM  

3. IF ((ME_capacityCPU(at add) > ME_capacityCPU (after update)) 
OR   
(ME_capacityRAM(at add) > ME_capacityRAM (after update)))  

4. STORE ME_timestamp, ME_machineID, ME_capacityCPU, 
ME_capacityRAM in MDC table. 

5. END IF 
6. END IF 
7. END FOR 
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4.9 Instantiation of the Framework – The Auditor 

As explained in Chapter 2, there are three delivery models for Cloud services; 

SaaS, PaaS, and IaaS. The framework’s application is in the IaaS layer. A proof-

of-concept system, Auditor, was developed and its positioning is shown in Figure 

4.4. It shows how the framework can be applied to the reality of research and 

engineering. The Auditor consists of three components: Mapper, Database, and 

Query Handler. The Mapper takes the raw data from the dataset gathered by the 

Infrastructure Monitor component as input and maps it to the PROV-TE model 

structure which then is stored in the database. The Query Handler is the 

implementation of the diagnostic algorithms discussed earlier. It gets the 

structured dataset from the database as input, runs the algorithms using SQLite, 

and then informs the Virtual Infrastructure Manager (VIM) with the causes of TE. 

The VIM or the Cloud provider could make use of the Auditor to make decisions.  
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Figure 4.4 System Model 
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The potential use of the proposed framework is that following the process of 

framework development, the other five mitigating strategies could be modelled 

based on PROV and the relevant diagnostic algorithms could be developed. As 

a result, each mitigating strategy could have its own Auditor; e.g. Auditor for Live 

Migration causes, Auditor for VM Quiescing causes and so on.  

In addition, users could make use of the auditor as a third party framework to 

audit the Cloud services they use and the providers management of the data 

centre. Because users lack the accessibility to the providers monitoring tools, the 

auditor could potentially be facilitated for this purpose. For example, users might 

be able to understand and know the exact reason behind why their tasks are not 

finishing within the expected timeframe.  

4.10 Summary 

This Chapter has presented the novel provenance-driven diagnostic framework 

and the methodology followed to construct it. The underpinning philosophy and 

assumptions of the framework have been explained. The real Cloud dataset 

used for learning has been analysed in detail and presented. 

The three phases of the formulation methodology the provenance-driven 

diagnostic framework for task eviction have been explained. Working scenarios 

of tracing of task eviction workflow demonstrating PROV-TE model have been 

illustrated. Further, the diagnostic algorithms of all five causes of task eviction 

which are used identify the evicted tasks and the relevant causes have been 

presented and discussed. In the next Chapter, the application of the framework 

on a real Cloud dataset will be presented and discussed in detail.  
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Chapter 5  

Application of the Diagnostic Algorithms 

5.1 Introduction 

This chapter presents the application of the developed diagnostic algorithms. It 

investigates how PROV-TE could diagnose and audit Task Eviction causes from 

a given Cloud usage dataset. An exploratory experiment was set up to 

investigate the causal relationships between the causes and Task Evictions 

using the proposed diagnostic algorithms in the framework. It starts with 

presenting the context of the experiment. Then, it discusses the aim and 

hypothesis of the experiment. It then illustrates the application of the proposed 

diagnostic algorithms over the given Cloud usage dataset. It describes how 

PROV-TE contributes to every investigation. It ends with a summary of the 

overall findings of the experiment. 

5.2 Context for the Experiment 

As explained in section 4.3, using real datasets in research adds assurance and 

credibility in the results and findings [139]. Where there are assumptions, the use 

of real datasets reflect the realistic scenarios in verifying and proving such 

assumptions. Google’s 29-day Cloud Usage dataset has been used for this 

exploratory experiment.  

SQLite is a relational database management system and was used as the query 

platform. This section discusses how the datasets were restructured into 

relational tables. The Google 29-day trace dataset in six folders, one for each 
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Figure 5.2 A snapshot of Machine Attributes table 

 

Figure 5.1 A snapshot of Machine Events table 

 

 

dataset table. Each folder contains up to 500 csv files. Using Linux command                      

cat *.csv >> output.csv, all files in each folder have been merged into one csv 

file. After merging the relevant files together, we end up with six csv files, each 

represent a dataset. Four csv files have been imported into four separate 

database tables, namely Machine Events, Machine Attributes, Job Events and 

Task Events. The diagnostic algorithms, explained in Section 4.8 have been 

translated into SQLite queries. Figures 5.1 – 5.4 are snapshots of the first 10 

rows of the used tables; machine_events table, machines_attributes table, 

job_events table, and task_events table. 
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Figure 5.3 A snapshot of Job Events table 

 

Figure 5.4 A snapshot of Task Events table 
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5.3 Hypothesis and Aim  

The hypothesis for this exploratory study is that PROV-TE, an extension of the 

provenance model PROV, provides adequate reasoning support for auditing 

Google dataset for the causes and timing of Task Eviction. 

Google has stated the causes for Task Eviction (see section 4.3) but their extent 

of impact has neither been quantified nor mentioned. The aim of this experiment 

is to test the hypothesis that provenance, represented here by PROV-TE, adds 

value to the raw data by injecting the meaning and relationship between the data 

for log data analysis. 

5.4 Applying the Diagnostic Algorithms 

PROV-TE is used to guide the investigations into job/task behaviour leading to 

the stated causes for task eviction as suggested by Google. The investigations 

start after going through the three phases of the Provenance-Driven Diagnostic 

Framework as explained in sections 4.4 – 4.8. 

Each one of the five causes is in a separate investigation. Each investigation is 

to see how PROV-TE help identify tasks that have been evicted by a specific 

cause. After the identification of the evicted tasks, questions arise, such as why 

that cause have happened? Also, where exactly that cause took place? 

Pinpointing the exact evicted tasks and tracing backwards the provenance of 

such instances with the help of PROV-TE could answer such questions.  

The number of evicted tasks due to every cause is unknown at this stage. In 

terms of evictions, out of 25,242,731 tasks in the dataset, it has been found that 
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1,422,317 tasks were evicted. This has been found by counting the distinct 

evicted tasks in the dataset using the parameter TEv_eventtype with the value 

EVICT, regardless of the causes. The algorithms will look into the 1,422,317 

evicted tasks particularly and try to identify the exact causes. According to the 

documentation of the dataset [7], the evictions can be because of a machine (i.e. 

Cause 4) or another task (i.e. Cause 1). While conducting the investigations, any 

found limitation will be recorded and discussed later in this Chapter. The 

expectation is that the total number of evicted tasks to be found by the application 

of the diagnostic algorithms will be equal to the total number found before 

conducting the investigations, 1,422,317. 

5.4.1 Investigation 1 (Evicted Tasks caused by Take Over of Higher 

Priority Tasks) 

This investigation looks at the priority of tasks. In the case when all physical 

resources are fully allocated and a new task is submitted with higher priority than 

those already scheduled, one or more lower priority tasks will get evicted. The 

selection of the exact task to be evicted is unknown. This is the process Google 

follows with regards to task eviction [7].  

This investigation is to identify the tasks that are linked to Cause 1 Take Over by 

Higher Priority Tasks to be scheduled. 

There are 12 priorities logged in the dataset, ranging from 0 to 11 as the bigger 

the number the more important the task is. In case of an overload, Google’s only 

mechanism is to evict the lower priority tasks as higher priority tasks get 

preference for resources over lower priority ones. According to the dataset’s 
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supporting document, there are three categories of task priorities. First, free 

priorities. This category has the least importance over the rest, Second, 

production priorities where tasks fall in this category have the highest priorities. 

Tasks that are latency sensitive are prevented by the scheduler from being 

evicted. Lastly, the third category is monitoring priorities, where higher priority 

jobs monitor lower priority ones. However, it is not possible from using both the 

documentation and the dataset to map the 11 priorities to the three categories. 

Table 5.1 shows the priority distribution of tasks in the dataset.  

5.4.1.1  Contribution of PROV-TE 

A number of attributes have been identified in order to undertake this 

investigation which are TEv_priority, TEv_eventtype and TEv_timestamp, shown 

Table 5.1 Priority Distribution 

Priority Number Number of Tasks 
Percentage of 

Total Tasks 

0 6472128 25.48% 

1 2453482 9.66% 

2 1111810 4.38% 

3 1027 0.004% 

4 14197733 55.89% 

5 104 0.0004% 

6 639784 2.52% 

7 400 0.002% 

8 254680 1% 

9 286269 1.13% 

10 1403 0.01% 

11 7538 0.03% 
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in Figure 5.5. TEv_priority specifies the priority of the task. TEv_eventtype 

specifies the status (e.g. SCHEDULE, EVICT, FAIL) of the tasks. It has been 

used to only count the scheduled and the evicted tasks while using the third 

attribute, TEv_timestamp, to only look at the 5-minute interval because this is the 

logging interval of the dataset. So, any task that is evicted within one logging 

interval from a higher priority task being scheduled is considered in this 

investigation.  

5.4.1.2 Results and Analysis  

In this investigation, algorithms 1a and 1b, see tables 4.5 and 4.6 in Chapter 4, 

have been applied on the dataset which identify the evicted tasks due to the 

arrival of higher priority tasks into the host machine. 
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Out of a total of 25 million tasks in the 29-day dataset, 18,693,472 distinct tasks 

were scheduled with higher priority that those already running (Cause 1). Also, it 

has been found that a total of 1,421,054 distinct tasks were evicted in the same 

host machine. 

Hence, there is a possible link between these 18,693,472 (76% of the total tasks) 

to the eviction of 1,421,054 lower priority tasks to be evicted due to lack of 

resources (Cause 0). 

5.4.2 Investigation 2 (Evicted Tasks caused by Increase In 

Resource Requests) 

When a task is submitted a number of parameters are set, such as priority, CPU 

and Memory. This determines where the tasks can be scheduled and how 

quickly. The requested capacities of a running task can be amended on the fly 

by the scheduler fulfilling the requests of users. When there is not enough 

resources and there are lower priority tasks, the task eviction process will be 

triggered.  

5.4.2.1 Contribution of PROV-TE 

In order to audit the cause of Increase in Resource Request, PROV-TE model in 

Figure 5.6 specifically identifies the related attributes to the cause in hand. 

Following the dataflow when Activity: Evict Task is triggered by an increase in 

resources request (CPU and RAM), attributes to be investigated are identified, 

which are TEv_resource_request_CPU, and TEv_resource_request_RAM. 

These two entities are generated by Activity: Update Running Tasks. When a 

task is updated, its Entity: TEv_eventtype is updated as well. This entity helps in 
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identifying the updated task while running. The time for every update is also 

recorded by TEv_timestamp. By using the ME_MachineID Entity, the exact 

machines and their hosted tasks can be identified. ME_MachineID is used so 

that the associated tasks can be identified. Finally, by using TEv_timestamp 

ME_MachineID, and TEv_eventtype tasks that were evicted as a result of this 

cause have been identified. Algorithms 2a and 2b, tables 4.7 and 4.8 in Chapter 

4, have been applied in this investigation.  

5.4.2.2 Results and Analysis 

It was found that 58,760 tasks requested more resources while running. Those 

tasks resulted in the eviction of other lower priority tasks. The timestamp of the 

resource update was used in order to count all evicted tasks within one interval 

from the update. The result shows that 1,583 tasks were evicted due to the 

increase in resources request by other higher priority tasks. 
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Figure 5.6 PROV-TE for Increase in Resources Request 
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Users can request to update the resources’ needed to compute their tasks. The 

update can be an increase of the original request or a decrease. In this 

investigation, tasks with an increase update have been identified and quantified. 

The increase in request sometimes result in an overload, where the sum of the 

needed resources to compute the hosted tasks exceeds the actual physical 

capacity. Thus, one or more tasks with lower priority get evicted as a result in 

order to make space for the resource request of the running higher priority tasks 

to be approved. It has been found in this investigation that 1,583 evicted tasks 

were linked to Cause 2 Increase In Resource Requests.  

5.4.3 Investigation 3 (Evicted Tasks caused by Demand Exceeding 

Physical Capacities) 

Usage threshold level is one of the measures which is used to trigger Task 

Eviction mitigating strategy in Cloud dataset centres to avoid machine overloads. 

Due to the limitations of the dataset with regards to usage threshold level not 

being documented, overload has been calculated by comparing the physical 

capacity against the requested resources on a daily basis as explained in Section 

4.8.3. Every task that has been evicted in the timeframe of overload (requested 

capacity exceeds physical resources) is counted in this investigation. 

5.4.3.1 Contribution of PROV-TE 

From Figure 5.7, PROV-TE helps to identify entities related to requested 

resources and machines’ capacities. Following the dataflow of Activity: Evict 

Task, entities like ME_capacityRAM, ME_capacityCPU, 

TEv_resource_request_CPU, TEv_resource_request_RAM are used. Also, by 

using TEv_taskindex and JE_JobID, ME_machineID, it has been possible to sum 
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the requested resources for all tasks per machine per day. Algorithms 3a and 

3b, tables 4.9 and 4.10 in Chapter 4, have been applied in this investigation.  

5.4.3.2 Results and Analysis 

By comparing the results of the two algorithms 3a-b, it has been identified that 

days 1, 2, 9 and 10 were highly likely to have overload in both CPU and Memory 

because the sum of the requested resources per day exceeds the sum of the 

actual physical capacity due to over-commitment as seen in Figures 5.8 and 5.9. 

There were 463,544 evicted tasks in these four days which are believed to be 

linked to Cause 3 Demand Exceeding Physical Capacities.  
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5.4.4 Investigation 4 (Evicted Tasks caused by Missing Machines) 

One of the causes that triggers Task Eviction is missing machines. Removal of 

physical machines can usually be caused due to maintenance or failure [7]. The 

attribute ME_eventtype of PROV-TE tells whether the machine is Added, 

Updated, or Removed. Tasks that have been scheduled to run on machines 

which are removed get evicted as a result. This investigation looks at the extent 

of this cause.  

 

  

Figure 5.9 Total CPU Request vs Total CPU Capacity Over the 29-Day Dataset 

 

Figure 5.8 Total Memory Request vs Total Memory Capacity Over the 29-Day 
Dataset 
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5.4.4.1 Contribution of PROV-TE 

The investigation started with two entities, ME_eventtype and ME_timestamp 

shown in Figure 5.10. Machines, that were removed, have been identified and 

counted. To find the tasks that were evicted as a result, the following entities 

have been used: TEv_timestamp, TEv_eventtype, JE_JobID, and 

TEv_taskindex. Algorithms 4a and 4b, tables 4.11 and 4.12 in Chapter 4, have 

applied in this investigation. 

5.4.4.2 Results and Analysis 

The diagnostic algorithms show that 5141 physical machines were removed 

during the period of the 29-day. 76 tasks found to were evicted within one interval 

from the removal of these machines. This cause is not considered to be dominant 

because it is linked to a low number of tasks were evicted. 
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5.4.5 Investigation 5 (Evicted Tasks caused by Decrease in Physical 

Machines Capacities) 

Due to failure of nodes and maintenance, machines’ capacities (CPU and 

Memory) can get reduced [5], [7]. That reduction can cause tasks to be evicted 

due to the lack of available resources to compute those tasks. The focus of this 

investigations is to identify those evicted tasks. 

5.4.5.1 Contribution of PROV-TE 

The following explains how the evicted tasks that are linked to Cause 5 Decrease 

in Machine Capacity can be identified by using PROV-TE. The process starts 

with the Activity: Evict Task. Tracing backwards in the dataflow, the needed 

attributes for this investigation are identified, shown in Figure 5.11. Specifically, 

the process checks the Entities: ME_capacityRAM and ME_capacityCPU which 

have had an update. The Entity: ME_machineID helps in terms of identifying the 

exact machines with a decrease in Memory or CPU and the IDs of the tasks that 
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Figure 5.11 PROV-TE for Decrease in Machine Capacity 
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were scheduled on them by using JE_jobID, TEv_taskindex through the Activity: 

Schedule Job. Then, by using Entity: TEv_eventtype, it has become possible to 

identify the evicted tasks hosted on the specified machines earlier. Algorithms 

5a and 5b, tables 4.13 and 4.14 in Chapter 4, have been applied in this 

investigation. 

5.4.5.2 Results and Analysis 

From Algorithm 5a: by comparing the initial capacity of the machine in the event 

type Add and Update, it was possible to narrow down the search to only the 

machines with a decrease in resources. During the 29-day period, it was found 

that 1267 physical machines have encountered an update (either increased or 

decreased) in their capacity. Only 32 (2.5%) of which have had their capacity 

decreased. 

From Algorithm 5b, it has been found that 7,670 tasks were scheduled in the 32 

machines and have been evicted within one interval from the update. Since 

Google logs the data every 5-min, an assumption has been made that any 

evicted task within this timeframe from the update is linked to the decrease of 

machine capacity. Table 5.2 shows the 32 machines with the number of evicted 

tasks as a result of their decrease in capacity (CPU and/or Memory). For 

example, machine with the ID number ‘317488637’ had its memory decreased 

from 0.749 bytes to 0.4995 bytes at time t. As a result of this decrease, 321 tasks 

were evicted at time t+1. 
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Table 5.2 Number of Evicted Tasks per Machine (with Decreased Capacity) 

Machine ID 

Number of 

Evicted 

Tasks 

Machine ID 

Number of 

Evicted 

Tasks 

Machine ID 

Number of 

Evicted 

Tasks 

317488637 321 6315250734 187 6400066596 113 

6264344062 286 6316827871 404 6401302061 102 

6274355716 625 6322213339 415 6402941427 41 

6280643141 376 6335261139 324 6408086842 228 

6282149131 349 6344084916 220 6415978528 126 

6285257156 285 6370662053 140 6415979192 37 

6289355687 569 6390664602 48 6437385645 71 

6289704471 843 6391270721 207 6453653899 88 

6296268057 306 6391293459 209 6455072430 30 

6296865278 256 6391374318 151 6457070948 54 

6301942525 301 6391421427 125   

There is a correlation between the machines capacity reduced and the eviction 

of tasks. This could be due to the fact that the needed capacity to run the tasks 

exceeded the actual capacity after resources update. The result of this 

investigation shows that the Cause 5 Decrease in Machine Capacity is linked to 

7,670 evicted tasks during the total period of the dataset. From such analysis, 

Cloud providers can know the machines that have abnormal behaviour or cause 

the most disturbance in the data centre by identifying the linked number of 

evicted tasks and time of evictions.  

5.5 Overall Analysis 

The overall findings show that PROV-TE was useful, due to the reasoning 

support it added, in identifying the dominant cause that triggered task eviction 

strategy, which is “Higher priority tasks take place over lower priority tasks” as 
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shown in Table 5.3. The reasons being the edges between the nodes which 

explain the relationships between the attributes. In order to tackle the dominant 

cause of overload, more understanding is needed and further investigation on 

the root causes could be conducted. 

Table 5.3 Overall Findings of the Investigations 

Cause 
Ordered by Level of Impact 

Number of Evicted Tasks 

Cause 1. Take Over by Higher Priority Tasks 1,421,054 

Cause 3. Actual Demand Exceeds the 
Physical Capacity 

463,544 

Cause 2. Decrease in Physical Machine 
Capacity 

7,670 

Cause 5. Increase in Resource Requests 1,583 

Cause 4. Missing Machines 76 

Total Number of Evicted Tasks Found by 
the Use of PROV-TE 

1,893,927 

The total number of evicted tasks found by provenance-driven diagnostic 

framework is 1,893,827, which exceeds the number stated by the dataset by 

33%, 1,422,317.  

Certain information in the dataset has been obfuscated for confidentiality reason. 

This limits the ability of the diagnostic algorithms which might have affected the 

level of accuracy. For example, level of overload threshold is not stated. Due to 

this, a workaround process has been conducted to identify the evicted tasks 

linked to Cause 3 Demand Exceed Physical Capacity. In section 5.4.3, the 

method of identifying the extent of the Cause 3 was by calculating the sum 

capacity of physical resources and the sum requested resources. The 
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assumption is whenever the sum of requested capacity exceeds the physical 

capacity, one or more tasks could be evicted. Another particular challenge 

related to the identification of causes is the overwhelming volume and size of the 

dataset. Althought query performance is not a focus in this research, it was an 

obstacle. Thus, the level of granularity has been changed in terms of selecting 

only the needed attributes in order to be queried which increased the query 

performance, refer to section 3.3.1.  

On a closer analysis, a cause can be the outcome of another cause, hence a 

possible cascade of causes. Not enough physical or virtual resources (Cause 0) 

is another cause that can lead to the five causes mentioned in section 4.3. In 

addition, each one of the six causes can itself be a root cause of another issue 

that leads to an overload. The chain of causes in the Google case study all lead 

to overload and consequently trigger Task Eviction overload mitigating strategy. 

Figure 5.12 illustrates the possible relationships between the six causes.  

Task 
Eviction 

Overload 

Cause 0 

Cause 4 

Cause 3 

Cause 1 

Cause 2 

Cause 5 

Figure 5.12 Chain of Causes 
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From Figure 5.12, it can be observed that Cause 0 can itself lead to overload but 

it can also lead to Cause 1 (Take Over of Higher Priority Tasks), Cause 2 

(Increase in Resource Requests), and Cause 3 (Demand Exceeds Physical 

Capacity). Cause 4 (Missing Machines) and Cause 5 (Decrease in Machine 

Capacities) can also lead to both overload and to Cause 0. For example, Cause 

4 can result in Cause 0 which later can lead to Cause 3. In this case, Cause 3 

creates the overload instance where tasks are then evicted as a result. In this 

example, from the evicted tasks’ point of view, the cause of the eviction is Cause 

3 but the root cause is Cause 4. The figure represent a two-level cause; however, 

it is not a deterministic figure and needs further investigation. 

Having said that, from Table 5.3, Cause 1 itself may not be the most dominant 

cause due to the fact that other causes could have contributed as well. Thus, a 

deeper investigation and analysis is needed to identify the root causes of every 

evicted task, which is a limitation of this study. PROV-TE could be used for the 

deeper-analysis investigation by guiding the development of more diagnostic 

algorithms following similar development logic presented in Chapter 3. The focus 

would be looking at the relationships between the five causes, one becoming the 

cause and the other becoming the effect and so on. The investigation would 

analyse the dataset to find evidence if in fact one cause has led to the existence 

of other cause(s). The outcome is envisioned to be a complete trace of the events 

and cause(s) that led to the eviction of every task. 

Often in semantics the understanding of the dataset that underpin that 

construction of provenance models could have limitations but not the dataset in 
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question. In general, semantics has shortcomings, such as missing links and 

concepts, which limit its power to result in accurate answers or to answer more 

complex question [141]. 

To further examine the reasons behind the gap between the results of the 

investigations and the fact stated by the dataset, the Provenance-Driven 

Diagnostic Framework should be evaluated on another dataset. Next Chapter 

presents the use of a simulation tool to generate 15 heterogeneous datasets 

based on a hybrid configuration combining both Google and Amazon EC2 Cloud 

configurations to test and evaluate the framework. Applying the algorithms in a 

controlled environment could potentially lead to an opportunity of enhancement 

which could have a positive effect on accuracy. 

5.6 Summary 

This Chapter has presented and illustrated the use of Auditor for acquiring a 

deeper understanding of the causes of Task Eviction. It started by giving the 

context of the experiment and the purpose of this Chapter. It then described the 

aim and hypothesis of the experiment. Then it presented the application of the 

diagnostic algorithms in five clearly distinguished investigations, each with a 

unique focus. It showed the results obtained from the application of the 

diagnostic algorithms which quantifies the extent of every cause on the dataset. 

It also explained how PROV-TE contributes specifically to every cause and 

guides the investigations. It ended with identifying the most dominant and least 

dominant causes for Task Eviction. Also, it discussed the limitations of the given 

Cloud dataset and the probable effects on the diagnosis. 
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Chapter 6  

Evaluation of the Diagnostic Algorithms 

6.1 Introduction 

This chapter presents the evaluation step of the Provenance-Driven Diagnostic 

Framework which assesses its accuracy of the identified evicted tasks and the 

causes that led to the eviction of those tasks. It describes the method used to 

evaluate the framework which is simulation. It gives an overview of the chosen 

simulation tool. It gives details on the general and scenario-specific simulation 

setup and configuration. The Chapter then shows the output of the simulation 

which is 15 heterogeneous and randomly-generated Cloud datasets based on a 

hypothetical configuration that combines Google’s and Amazon’s EC2 Clouds’ 

configurations reflecting a general setup. The generated datasets are used for 

the evaluation of the framework. The Chapter then explains the accuracy of the 

framework by analysing the results based on the precision and recall statistical 

measures. Finally, it concludes with a summary of the findings. 

6.2 Purpose and Scope of Evaluation 

In Chapter 4, the Provenance-Driven Diagnostic Framework, which includes the 

developed diagnostic algorithms and the underpinning PROV-TE model, has 

been applied on Google 29-day Cloud usage dataset. Evicted tasks have been 

identified as well as the relevant causes based on metrics such as timestamp 

and shared physical machine. In order to evaluate and assess the framework, a 

simulation tool, SEED [14], has been used to generate Cloud datasets according 

to known Task Eviction behaviours. 



- 102 - 
 

 

The hypothesis of the research is that PROV-TE adds value to the raw data by 

connecting the data in a way that provides additional meaning for further 

interpretation and analysis. Specifically, the analysis will provide the reasons and 

causes of an overload.  

The aim of this evaluation is to further test and evaluate the reasoning power of 

the proposed diagnostic algorithms and the underpinning PROV-TE model for 

the different overload scenarios. Due to the limited access to real Cloud datasets, 

the simulation tool has been set up with a general data centre configuration and 

has been used to generate 15 different simulated datasets. Each dataset comes 

with a log which includes details of the physical and virtual machines such as 

Host ID and CPU/MEM units, and tasks such as requested units of CPU/MEM 

and priority. Most importantly, it includes details about eviction of tasks such as 

relevant eviction cause and timestamp. These details will be used to validate the 

results of our framework by calculating the precision and recall of every 

diagnostic algorithm. Also, having datasets that reflect general data centre 

configuration from different Cloud vendors will illustrate the transferability of the 

diagnostic algorithms for task evictions driven by PROV-TE model. The 

applicability of working with different datasets generated from different 

configurations will be shown. 

The experiment will focus on the following causes which could potentially trigger 

overloading; hence Task Eviction: 

Cause 1. Take Over by a Higher Priority Task - higher priority tasks will 

always be scheduled irrespective of remaining machine capacity. 

Cause 2. Increase in Resource Requests by a Running Task – each physical 

machine has a fixed capacity. During the execution of a task, occasionally 
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a task could request more resources. If the task has a higher priority, the 

request will be approved regardless of the remaining machine capacity.  

Cause 3. Actual Demand Exceeding Physical Capacities – when over-

commitment is applied, more virtual resources are allocated than the 

actual physical capacities. At some point in time, users could use all of 

their allocated resources. At this stage, one or more tasks might not be 

computed due to the degradation in physical resources. In this case, 

overload occurs when the maximum physical usage exceeds the 

threshold usage level of the machine’s capacity. 

The scope of the evaluation focuses in these three causes so that a reasonable 

range of typical patterns of behaviour in resource management at the IaaS level 

of Cloud computing is covered. 

6.3 Simulation Tool 

The Simulation EnvironmEnt Distributor (SEED) tool [14] has been used to 

systematically generate different Cloud datasets, each with a different task 

eviction behaviour. Simulation in computer science domain is a vital systematic 

method for validating complex behaviours. In Cloud environments, simulation is 

the favoured method for evaluation due to the dynamic conditions of Cloud data 

centres and their scale [13], [142]. Evaluating new mechanisms and frameworks 

in a randomized, repeatable, reliable, isolatable and scalable manner can be 

achieved through the use of simulation [81], [143]–[145]. Simulation also allows 

the abstraction of system complexities which makes it possible to focus on 

specific variables under controlled and configurable parameters permitting the 

repetition of experiments and unbiased comparison of results.  
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6.3.1 Simulation Tools for Clouds 

In Cloud computing domain, there is a limited number of simulation tools that can 

be used [146]. They share common features but every tool has unique 

characteristics and focus. For instance, GreenCloud [147], YANS [148] focus on 

Cloud network parameters. Haizea [149] focus on scheduler performance. 

MDCSim [150] is only for commercial access and does not consider virtualization 

and multiple tenants. Other simulation tools such as Cloudsim [13], iCanCloud 

[151], DCSim [152] and SEED [14] are more generic. Table 6.1 shows the 

analysis of different simulation tools. SEED has the following advantages: 

1. Event-based synchronization is supported while maintaining reasonable 

levels of performance compared to real world time. Performance is an 

important metric for users and administrators in terms of business 

requirements and operational costs such as money and time.  

2. Setup is guided and requires minimal user intervention and expertise in 

terms of configuration and programming. This feature permits rapid 

development and execution of simulation. Also, it enables SEED to be 

provided as a SaaS. 

3. Assumptions about the underlying hardware of the simulator are not 

essential to execute distributed simulations. Simulations can run across 

heterogeneous machine architectures and operating systems.  

4. Low-level understanding of both the model domain as well as aspects 

relating to simulation synchronization is not a prerequisite. SEED 

facilitates the modelling of the domain based on graph notation and was 

designed specifically for modelling large-scale data centres. 



- 105 - 
 

 

Table 6.1 Comparison of Cloud computing Simulation Tools 

Simulation Tool / 
Focus Domain 

 Model Elements 
VM 

Support 
Accessibility 

YANS [148] / 
Network 

Task, Consumer, 
Scheduler, Network,  

No Open Source 

Haizea [149] / 
Scheduler 

Task, Server, Scheduler Yes Open Source 

GreenCloud [147] 
/ Network 

Task, Server, Scheduler, 
Network 

No Open Source 

MDCSim [150] /  
Multi-tier system 

Task, Consumer, 
Server, Scheduler, Data 

Centre, Network  
No Commercial 

Cloudsim [13] /  
Environment 

Task, Consumer, 
Server, Data Centre, 
Scheduler, Network 

Yes Open Source 

iCanCloud [151] /  
Environment 

Task, Consumer, 
Server, Data Centre, 
Scheduler, Network 

Yes Commercial 

DCSim [152] / 
Environment  

Task, Server, Data 
Centre, Scheduler 

Yes Commercial 

SEED [14] / 
Environment 

Task, Consumer, 
Server, Data Centre, 
Scheduler, Network 

Yes Commercial 

SEED has been selected for this research mainly due to points 2 – 4 above. In 

addition, it is a product from our research group; hence access is allowed [14]. 

6.3.2 Overview of SEED 

In [14], Cyber-Physical Systems (CPS) simulation can be performed by the 

assembly of SEED’s core components which are formed by several services. Its 

high level architecture, is shown in Figure 6.1. SEED’s architecture is loosely-

coupled. The components are less dependent on each other. Performance 

bottlenecks are reduced because simulation components are located on 

heterogeneous machines within a network. SEED allows the addition of further 

components into the system. The characterization of the important components 

are as follows: 
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 Simulation Instantiation: the creation and classification of the simulated 

network topology in addition to the configuration and partitioning of a 

simulation across distributed infrastructure are automated. 

 Instance Manager: Highly synchronized simulation that is deployed 

across distributed infrastructure is maintained by the provided scalable 

approach. Message ordering between virtual nodes that exist within 

different partitions is managed by the provided open synchronization 

framework between local clocks for instances. Clock Manager manages 

the simulation local clock of every instance with respect to the global clock 

of the entire simulation. 

Figure 6.1 SEED High Level Architecture [14] 
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 Instances: Nodes, Links, and Tasks are interacting components that form 

a logical unit of simulation computation. Each instance, which is formed 

by a specified set of tasks and a subset of the total virtual network 

topology, executes on a partition that is hosted on a unique physical 

machine and automatically created by SEED. The Clock Manager 

externally manages each instance’s local clock. 

6.4 Simulation Design 

As illustrated in Table 6.2, three scenarios have been developed in SEED. 

Scenario 1 includes the behaviour of Cause 1. Scenario 2 includes the 

behaviours of Cause 1 and Cause 2. Lastly, Scenario 3 includes the behaviours 

of Cause 1 and Cause 3.  

Following the scope of this evaluation mentioned in section 6.2, in scenario 1, 

one or more lower tasks are expected to be evicted when a higher priority task 

is to be scheduled and there is lack of available resources. In scenario 2, one or 

more lower priority task are expected to be evicted when there is a lack of free 

resources and when (1) a higher priority task is to be scheduled, or (2) a higher 

priority task requests more resources at runtime. In scenario 3, one or more lower 

priority tasks are expected to be evicted when there is a lack of free resources 

 

Table 6.2 Design of Scenarios 

 Scenario 1 Scenario 2 Scenario 3 

Cause (C1)       

Cause (C2)     

Cause (C3)     
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and when (1) a higher priority task is to be scheduled, or (2) the actual demand 

exceeds the actual physical capacity controlled by the overload threshold level. 

6.4.1 General Setup for the Simulation Environment 

The simulation environment has been configured to reflect a general data centre 

setup and can be seen in Figure 6.2. For every run, the tool starts with building 

20 physical machines (PM) and 40 virtual machines (VM). Each PM has two VMs 

(1:2). The PMs’ CPU and RAM sizes are fixed with 8 units and 15 GB, 

respectively. The VM sizes are chosen randomly from a specified size list. 

Number of VM CPUs can be 2, 4, or 8 units. VM RAM size can be 4, 6, or 8 GB. 

The sizes are a reflection of Amazon EC2 c3.2xlarge instance [153]. However, 

VM and PM sizes of other vendors can be used. This particular instance allows 

over-commitment of resources. The scale of the simulation can be generalized 

to larger environments with more PMs and VMs, generating huge volumes of 

data. This aims to demonstrate the feasibility of massive-scale simulation for 

implementing provenance-based techniques. 

Tasks are then generated according to a random task submission rate (TSR). 

TSR is randomly chosen from 100-300 per hour. The simulation length is 24 

hours. The method of task distribution is: send one task to one VM at a time, in 

equal distribution, then loop back again until all tasks are sent to be queued in 

every VM. 

There are 4 variables assigned to each task. Firstly, a task’s length is measured 

in steps. The task length is randomly chosen from 2 to 10 steps. The length of 

the task is the number of steps needed to finish execution. In SEED, events are 

logged in a one-step interval. A step is a predefined interval of 30 seconds. 
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Second, a priority is randomly assigned to each task. It is a number to define the 

privilege of a task: 0 (lowest), 1 and 2 (highest). Finally, the remaining two 

variables are the requested resources, CPU and RAM. The resources are also 

chosen randomly from a predefined list (1, 2, 3, 4, 5, 6, 7, 8).  

For every VM, there are three queues for tasks to be scheduled, once for each 

priority which ensures that every task get its fair time of waiting in the queue. In 

the scheduling method, there is a loop that goes around the three queues and 

dequeues one task from each queue at a time to be scheduled.  

6.4.2 Scenario’s Specific Configuration 

Each scenario has additional configuration in order to generate the needed 

behaviour in the dataset. Three algorithms are developed in SEED to mimic the 

behaviour predefined in the three scenarios, namely Task Evictor, Request 

SEED Simulator

Experiment Manager Model Elements

Automated execution management

Data 
Output

20x Physical Machines
• CPU: 8
• RAM: 15GB

40x Virtual Machines
• VCPU: {2,4,8}
• VRAM: {4,6,8}GB

Tasks
• Submssion: 100-300/hr
• Length: 60-300s
• Priority: 0-2
• CPU/RAM: {1-8}

Configuraiton
• Duration: 24hrs
• Interval: 30s

Server

CPU RAM VMs

Scheduler

Virtual Machine

VCPU VRAM Tasks

Scheduler

Task

VCPU VRAM LengthProcess Priority

Figure 6.2 Configuration of the simulation environment using the SEED 
simulator 
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Handler and Overload Manager. A brief description of these is detailed below. In 

the case where only one loop is filled (equal-priority), tasks are then scheduled 

in a First-Come First-Served order, following the priority scheduling algorithm 

[154]. 

6.4.2.1 Cause 1: Take Over by Higher Priority Tasks  

For every VM, whenever there is a lack of RAM or CPU and there is a task waiting 

in the queue with higher priority than the ones running, lower priority tasks get 

evicted so the VM to be ready to schedule the waiting higher priority task.  

Table 6.3 Algorithm: SEED Task Evictor 

Task A is to be hosted in VM n  

1. IF available resources on VM n <= Task A requested CPU/RAM 
2. SCHEDULE Task A 
3. ELSE IF there are lower priority tasks than Task A  
4. CREATE a List of tasks where their priority <  priority of Task A. 
5. ORDER elements of List in ASCENDING order by priority. 
6. IF SUM of resource of List >= Task A requested Resource 
7. SET TotalFreedResource = 0 
8. WHILE (TotalFreedResource < Requested Resource) 
9. TotalFreedResource += Task Recourse  
10. KILL Task in List  
11. END WHILE 
12. SCHEDULE Task A 
13. ELSE 
14. WAIT in queue to be scheduled 
15. ELSE 
16. WAIT in queue to be scheduled 

As illustrated in Table 6.3, whenever a task is to be scheduled, the scheduler has 

been configured to first check the available VM capacity, CPU and RAM. If there 

is enough space, then the task gets scheduled. Otherwise, if there lower priority 

tasks running in the VM, a list is then created to include all lower priority tasks 

ordered ascendingly by priority. From the top of the list, tasks get evicted until 

enough space becomes available. Then the task in question gets scheduled. In 
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case there are no lower priority tasks, the to-be-scheduled task is to wait in the 

queue until free space becomes available. Because all behaviours share the 

same policy of evicting tasks, SEED has been designed to use the algorithm 

SEED Task Evictor for every scenario. 

6.4.2.2 Cause 2: Increase in Resource Request 

Scheduling a task on a specific VM depends on the task’s requested capacities, 

in terms of CPU and RAM. Once hosted, a task can request a change in the 

requested resources. In case there is no free resources to accommodate this 

request and there are lower priority tasks on the same VM, the task eviction 

mechanism will be executed until the desired requested capacities become 

available. 

Table 6.4 Algorithm: SEED Request Handler 

Task A is to be hosted in VM n 

1. WHILE Task is in progress < 1  // 1 = finished  
2. Generate random request 
3. IF (Task A new request < VM’s CPU/RAM && there is free 

space) 
4. Approve request 
5. ELSE IF there are lower priority tasks 
6. RUN Algorithm: SEED Task Evictor to evict lower priority 

tasks 
7. Approve request 
8. ELSE  
9. Deny request 
10. END WHILE 

As illustrated in Table 6.4 while a task is running, the simulation tool has been 

configured to generate a new random request from a predefined list (1, 2, 3, 4, 

5, 6, 7, 8). The request will get approved only if there is available space in the 

VM. Otherwise, the same lower priority task eviction method of Algorithm 4: Task 

Evictor is run until the requested space becomes available. 
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6.4.2.3 Cause 3: Demand Exceeds the Physical Capacities 

Over-commitment is a policy that is widely adopted in data canters to maximize 

resources’ usage. Physical and virtual usage are managed by overload threshold 

levels [155]. The simulation tool has been configured with an 80% physical 

threshold usage level. Once physical usage exceeds it, eviction process is 

executed. Unlike the other scenarios, two policies are enforced when evicting 

tasks, lower priority task first and Last-In-First-Out (LIFO). It is more sensible to 

evict tasks that have just started than those near to finish.  

Table 6.5 Algorithm: SEED Overload Manager 

Every PM has 2 VMs 

Every VM has more than 1 task 

1. SET threshold level 
2. SUM total PM usage 
3. Calculate the usage ratio based on the threshold level 
4. IF PM total usage > threshold 
5. CREATE a List of tasks running in the PM 
6. ORDER elements of List in ASCENDING order by priority  
7. ORDER elements of List in DESCENDING order by Time of hosting 

in VM  
8. WHILE (PM total usage > threshold) 
9. RUN Algorithm: Task Evictor to evict lower priority tasks 
10. END WHILE 
11. END IF 

As illustrated in Table 6.5, for every physical machine, the total physical usage 

is calculated every one-step interval (30 seconds). If the total physical usage 

exceeds the predifented usage thresold limit, tasks get evicted following the 

same lower priority task eviction method of SEED Task Evictor until normal 

usage behaviour is restored. The list is ordered ascending by tasks priority and 

descending by time of hosting in the VM. In this controlled environment, normal 

usage behaviour means the total physical usage is less than the usage thresold 

limit. 
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6.5 Simulation Runs 

Each scenario (simulation) is run 5 times, each resulting in a dataset (trace log) 

similar to the log data from a data centre. Having a dataset with more than one 

Cause will help validate the accuracy of the diagnostic algorithms. These 

datasets will be then be cleansed and imported into a database to be diagnosed 

and analysed by the diagnostic algorithms.  

Figure 6.3 shows the execution time of every run for every scenario. The mean 

execution time for all runs is 1.29 hours for scenario 1, 2.53 hours for scenario 

2, and 0.43 hours for scenario 3. The standard deviation of the mean execution 

times is ±0.1 for scenario 1, ±0.73 for scenario 2, and ±0.06 for scenario 3. Due 

to the small number of tasks of Scenario 3 which depends on the random TSR, 

the mean of Scenario 3 execution times is smaller compared to the means of 

Scenarios 1 and 2. Also, Scenario 2 execution times are relatively higher is 

because of the complexity of Algorithm: Request Handler. 

 

Figure 6.3 Execution time for every simulation run 
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While tasks are running, their resources request are constantly and randomly 

changed. In order for every request to be approved or not, capacities comparison 

is undertaken. Every request in RAM or CPU must be less or equal the size of 

the VM. Also, if there is no VM space and there are lower priority tasks, the 

eviction process is triggered. Only then the request is approved. This explains 

the long execution times for runs of scenario 2. 

6.6 Simulation Output 

To show the randomness, variances and differences of the resulting generated 

behaviour, each scenario has 5 simulation runs. The output of SEED is a total of 

15 simulated and randomly-generated logs. Table 6.6 summarizes the overall 

Table 6.6 Output of Simulation 

 Scenario 1 Scenario 2 Scenario 3 

 
Total 
Tasks 

Total 
Evicted 
Tasks 

Total 
Tasks 

Total 
Evicted 
Tasks 

Total 
Tasks 

Total Evicted 
Tasks 

Run 1 4208 259 3735 

C1 C2 

3131 

C1 C3 

904 20 326 54 

Run 2 4530 266 4076 

C1 C2 

2341 

C1 C3 

967 20 16 187 

Run 3 4501 421 4328 

C1 C2 

2687 

C1 C3 

1041 45 1 176 

Run 4 4653 297 4035 

C1 C2 

3077 

C1 C3 

1012 37 177 76 

Run 5 4538 319 4049 

C1 C2 

2596 

C1 C3 

994 43 96 157 
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output of the 15 runs of the three scenarios. For each run, the total number of 

tasks as well as the total number of evicted tasks are shown. Also, because 

Scenario 2 and 3 have two causes each, the total number of evicted tasks related 

to each cause is also shown. The aim for Table 6.6 is that it will be used after 

applying the algorithms of the framework to calculate the precision and recall of 

the results, which will be explained in the next sections. 

6.6.1 Simulation Parameters 

Each simulation run results in one trace log (dataset) which combines all 

parameters of the simulation, physical machine, virtual machine, and task. The 

logs are in a csv format. There are shared parameters across all scenarios, 

explained in Table 6.7. As a result of the scenario-specific configurations 

mentioned in Section 6.4.2, there are unique parameters for scenarios 2 and 3, 

explained in Table 6.8.  

Table 6.7 Common Simulation Parameters in all Trace Logs 

Component Parameter Description 

Simulation 

SimTime The simulation logging interval; step. 

UTCDateStamp The date of the each logged interval 

UTCTimeStamp The time of the each logged interval 

ID The internal ID of every component 

ComponentType The component type; PM, VM, Task 

PM 
PMemory The physical Memory size of the PM 

PCPU The physical CPU size of the PM 

VM 

VCPU The virtual CPU size of the VM 

VMemory The virtual memory size of the VM 

HostMachine The ID of the Host PM 

Task 
Status 

The status of a task; Not Started, Started, 
Executing, Finished, Killed (Evicted). 

HostID The ID of the host VM. 
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HostCPU The CPU size of the host VM 

HostMemory The Memory size of the host VM 

Length 
The length of the task measured in 
SimTime (steps) 

Progress 
The progress of the task; <1 = running, 1 
= finished. 

Priority The priority of the task 

CPU The requested CPU size of the task 

Memory The requested Memory size of the task 

In Table 6.7, The parameters related to the component: Simulation and 

parameter: Progress in component: Task are mandatory for the working of the 

simulation tool but are not considered in the algorithms. VM-related parameters 

have been introduced due to the controlled environment which led to the 

enhancement of the algorithms, see section 6.7.1. The other parameters are not 

new for the proposed PROV-TE framework. 

Table 6.8 Additional Scenario-Specific Parameters in Trace Logs for Scenario 
2 and Scenario 3  

Scenario Component Parameter Description 
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isCPUChanged 
A boolean variable to 
state if task requested 
new CPU size 

ReqCPU 
The newly approved 
CPU size request 

isMemoryChanged 
A Boolean variable to 
state if task requested 
new Memory size 

ReqMemory 
The newly approved 
Memory size request 
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Overload 
A Boolean variable to 
state if usage exceeded 
threshold in the PM 

PhysicalMemUsage 
The total Memory usage 
of the PM 

OverloadMemThreshold 
The predefined 
threshold Memory usage 
level 
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PhysicalCPUUsage 
The total CPU usage of 
the PM 

OverloadCPUThreshold 
The predefined 
threshold CPU usage 
level 

Depending on the scope of the running scenario, functions of other scenarios are 

turned off and the related parameters are not logged.  

6.6.2 Simulation Logs 

Below is a snapshot of one log of every scenario. Figures 6.4 - 6.6 show the 

datasets for scenarios 1, 2 and 3, respectively. 

6.7 Output from the Diagnostic Algorithms 

For the rest of the chapter, Cause 1 is also referred to as C1, Caused 2 is also 

referred to as C2 and Causes 3 is also referred to as C3. The following shows 

the results of the implementation of the diagnostic algorithms for Causes 1 - 3 

 

Figure 6.4 A snapshot of scenario 1 trace log 

 

Figure 6.5 A snapshot of scenario 2 trace log 
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presented in Chapter 3, mainly the Auditor component. For scenario 1, the 

Auditor will only apply C1 related algorithms. For scenario 2, the Auditor will apply 

C1 and C2 related algorithms. For scenario 3, the apply will trigger C1 and C3 

related algorithms, following the simulation design illustrated in Table 6.2. 

The input to the Auditor was the 15 simulated datasets. The diagnostic 

algorithms were applied to find the causes of all evictions. The output of the 

Auditor is the identification of causes and relevant evicted tasks. 

Table 6.9 summarizes the output of all diagnostic algorithms. In section 6.8, 

precision and recall statistical measures will be applied to evaluate the accuracy 

of the results. 

6.7.1 Enhancement of Diagnostic Algorithms 

While applying the diagnostic algorithms, discussed in Chapter 3, there was an 

opportunity for enhancements. Overlaps in identifying the evicted tasks have 

been noticed in Algorithm 2b: Cause 2 Eviction Identifier and Algorithm 3b: 

Cause 3 Eviction Identifier. Thus, the attempt to minimize the overlaps is 

described below. This could explain the gap found in the overall results in 

Chapter 4. 

 

Figure 6.6 A snapshot of scenario 3 trace log 
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When identifying the evicted tasks because of both Cause 2 (Increase in 

Resource Request) or Cause 3 (Demand Exceeds the Physical Capacities), all 

tasks evicted due to Cause 1 (Take Over by Higher Priority Tasks) should be 

excluded before applying the algorithms 2b and 3b, shown in tables 6.10 and 

6.12, respectively. 

Further, because the simulation tool has been configured to apply the threshold 

usage level, Cause 3 diagnostic algorithms, described in Chapter 3 and 

implemented in Chapter 4, have been enhanced to be applicable for the normal 

environment setup, shown in tables 6.11 and 6.12. 

Table 6.9 Output of the Auditor 

 Scenario 1 Scenario 2 Scenario 3 

 

Total 
Tasks 
Found 

Evicted 
Tasks 
Found 

Total 
Tasks 
Found 

Evicted 
Tasks 
Found 

Total 
Tasks 
Found 

Evicted 
Tasks Found 

Run 1 4208 259 3735 

C1 C2 

3131 

C1 C3 

900 13 307 58 

Run 2 4530 266 4076 

C1 C2 

2341 

C1 C3 

960 15 91 60 

Run 3 4501 421 4328 

C1 C2 

2687 

C1 C3 

1048 20 75 55 

Run 4 4653 297 4035 

C1 C2 

3077 

C1 C3 

1012 22 182 36 

Run 5 4538 319 4049 

C1 C2 

2596 

C1 C3 

997 23 159 55 
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Table 6.10 Enhanced Algorithm 2b: Cause 2 Eviction Identifier. 

1. FOR each task in TaskEvent table (TEv) with an increase to their 
resources’ request, until end of period 

2. IF ((Status = evict)  
AND (Task_timestamp (updated) < Task_timestamp (evited) <= 
(Task_timestamp (updated) + next time interval))  
AND Task priority (updated) > Task priority (evicted)) 
AND Task ID NOT IN Cause1EvictedTasks table 

3. THEN display Task ID, Task_timestamp 
4. END IF 
5. END FOR 

 

Table 6.11 Enhanced Algorithm 3a: Cause 3 Capacities Calculator. 

Comparing the total physical capacities with the resources usage. Once the 

usage reaches threshold (80%), store physical machine ID with timestamp of 

overload in Overloaded Table (OT). 

1. FOR each physical machine (PM) in Sc3dataset table, until end of period 
2. Find total CPU/RAM usage in every interval  
3. IF CPU/RAM usage >  threshold level 
4. Store PM ID, timestamp in Overloaded table 
5. END IF 
6. END FOR 

 

Table 6.12 Enhanced Algorithm 3b: Cause 3 Eviction Identifier. 

Per every overloaded physical machine in overload table OT, find all 

evicted tasks within one interval of overload in the same machine. 

1. FOR each physical machine in OT, until end of period 
2. FOR each task in Sc3dataset table (ST) hosted in an overloaded a 

physical machine (PM) that is in OT, until end of period 
3. IF (ST.Status = evict)  

AND (PM_timestamp < Task_timestamp  <= (PM_timestamp + 
next time interval))  
AND Task ID NOT IN Cause1EvictedTasks table 

4. THEN display ST.Task_timestamp, ST.Task ID 
5. END IF 
6. END FOR 

7. END FOR 
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6.8 Precision and Recall Statistical Measures 

The simulation facilitated the generation of 15 Cloud test datasets that captured 

specific behaviours for task eviction. The developed diagnostic algorithms make 

use of PROV-TE. This has proved to be helpful by both the ability of auditing the 

datasets and identifying evicted tasks and links to possible causes.  

In order to evaluate the accuracy of the diagnostic algorithms, precision and 

recall statistical measures have been applied. Precision is a measure of the 

reliability of the diagnostic algorithms to only identify the relevant evicted tasks 

for each cause. Recall is a measure of the sensitivity of the diagnostic algorithms 

to retrieve and identify the highest possible number of relevant evicted tasks for 

a specific cause. 

Precision =  
True Positive (TP)

True Positive (TP)+False Positive(FP)
× 100  (6.1) 

 

Recall =  
True Positive (TP)

True Positive (TP)+False Negetive (FN)
× 100  (6.2) 

TP is the number of relevant evicted tasks stated in the simulation log and 

captured by the Auditor. FP is the number of irrelevant evicted tasks stated by 

the simulation log but captured by the Auditor. FN is the number of relevant 

evicted tasks stated in the simulation log but NOT captured by the Auditor. TN is 

the number of irrelevant evicted tasks stated by the simulation log and NOT 

captured by the Auditor. 

TP, FP, and TN were calculated by comparing the output of the simulation, Table 

6.6, with the output of the Auditor, Table 5.9. For example, looking at these two 

tables, in Run 1 of Scenario 2, the Auditor as able to identify all tasks, 3735, and 
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also classify the evicted tasks based on the specific causes, C1 and C2. For C1, 

900 (TP) evicted tasks out of 904 have been identified (FN = 4).This gives 100% 

for precision and 99% for recall. For C2, 13 evicted tasks out of 20 were identified 

which makes precision 100% and recall 65%. 

The precision and recall of C1 related algorithms were calculated in every 

scenario because all datasets captured C1 task eviction behaviour whereas C2 

task eviction behaviour was captured in only Scenario 2 and C3 task eviction 

behaviour was captured in only Scenario 3. 

6.8.1 Scenario 1 Analysis 

Table 6.13 shows the simulated datasets of scenario 1. There is only one cause 

and the algorithms have identified all evicted tasks due to this cause.  

In Table 6.13, the mean TP of all 5 runs is 312.4 identified evicted tasks with a 

standard deviation of ±65 tasks. The mean FP, FN, and TN is 0 and so is the 

standard deviation. Applying Equations 5.1 and 5.2, the precision and recall are 

both 100%.  

Table 6.13 Scenario 1 Mean Precision and Recall. 

C1 Algorithms 
Relevant Tasks 

(Simulated) 
Irrelevant Tasks 

(Simulated) 

Relevant Tasks 
(Auditor) 

TP = 312.4 
STD DEV = ± 65 

FP = 0 
STD DEV = ± 0 

Irrelevant Tasks 
(Auditor) 

FN = 0 
STD DEV = ± 0 

TN = 0 
STD DEV = ± 0 

Precision 100% 

Recall 100% 
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In Figure 6.7, the average actual and identified evicted tasks for the whole 

simulation period (24 hours) on an hourly basis can be observed for Scenario 1 

Cause 1. Also, it can be seen that 100% of evicted tasks were identified. It shows 

the cumulative average of actual and identified evicted tasks of all 5 runs of 

Scenario 1, Cause 1. The bars represent the average number of evicted tasks 

per hour. Grey bars represent the actual number of evicted tasks. Black bars 

 

Figure 6.8 Average of actual and identified evicted tasks per hour, showing 
the variance across all 5 runs of Scenario 1 Cause 1 
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Figure 6.7 Cumulative average task evictions over all 5 runs of Scenario 1 
Cause 1 
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represent the found number of evicted tasks. There are two lines, which overlap 

each other in this case because 100% of evicted tasks were identified. The same 

colouring representation applies for the rest of the figures, grey for actual and 

black for found evicted tasks. The lines are cumulative frequency representation 

to show the percentage of match between the actual and the found.  

In Figure 6.8, the randomization of the generated data can be seen, around 10-

20 tasks per hour on average. It shows the actual (grey line) and identified 

(dotted black line) average number of evicted task with standard deviation across 

all 5 runs for this scenario for Cause 1. They overlap because 100% of evicted 

tasks were identified. 

6.8.2 Scenario 2 Analysis 

Table 6.14 Scenario 2 Cause 1 Mean Precision and Recall. 

C1 Algorithms 
Relevant Tasks 

(Simulated) 
Irrelevant Tasks 

(Simulated) 

Relevant Tasks 
(Auditor) 

TP = 981.4 
STD DEV = ± 54 

FP = 2 
STD DEV = ± 3 

Irrelevant Tasks 
(Auditor) 

FN = 2.2 
STD DEV = ± 3.1 

TN = 0 
STD DEV = ± 0 

Precision 99% 

Recall 99% 

Table 6.15 Scenario 2 Cause 2 Mean Precision and Recall. 

C2 Algorithms 
Relevant Tasks 

(Simulated) 
Irrelevant Tasks 

(Simulated) 

Relevant Tasks 
(Auditor) 

TP = 18.6 
STD DEV = ± 4.3 

FP = 0 
STD DEV = ± 0 

Irrelevant Tasks 
(Auditor) 

FN = 14.4 
STD DEV = ± 8.4 

TN = 0 
STD DEV = ± 0 

Precision 100% 

Recall 56% 
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Table 6.14 summarizes the mean precision and recall of scenario 2 Cause 1 

across all runs. It can be seen that the diagnostic algorithms of C1 are quite 

promising with 99% in both precision and recall. In Table 6.14, the mean TP of 

all 5 runs is 981.4 identified evicted tasks with a standard deviation of ±54 tasks. 

The mean FP of all 5 runs is 2 identified evicted tasks with a standard deviation 

of ±3 tasks. The mean FN of all 5 runs is 2.2 identified evicted tasks with a 

standard deviation of ±3.1 tasks. The mean TN is 0 and so is the standard 

deviation. In Table 6.15, the mean TP of all 5 runs is 18.6 identified evicted tasks 

with a standard deviation of ±4.3 tasks. The mean FN of all 5 runs is 14.4 

identified evicted tasks with a standard deviation of ±8.4 tasks. The mean TN 

and FP is 0 and so is the standard deviation. In Table 6.15, C2 diagnostic 

algorithms have returned precisely the relevant evicted tasks but failed to pick 

up 44% of the evicted tasks linked to C2. 

It can be seen from Figure 6.9 that 99% of evicted tasks were identified. It shows 

the cumulative average of actual and identified evicted tasks of all 5 runs of 

Scenario 2, Cause 1. The bars represent the hourly average number of evicted 

 

Figure 6.9 Cumulative average task evictions over all 5 runs of Scenario 2 
Cause 1 
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tasks across all 5 runs. There are two lines, which overlap each other in this 

case. The lines are cumulative frequency representation to show the percentage 

of the match between actual and found number of evicted tasks.  

Figure 6.10 shows the randomization of the generated data, 32-47 tasks per hour 

on average. The average actual and identified evicted tasks for the whole 

simulation period (24 hours) on an hourly basis of Cause 1 are shown in the 

figure. The dotted black line represent the average number of identified evicted 

tasks per hour. The grey line represent the actual number of evicted tasks per 

hour. They overlap because 99% of evicted tasks were identified.  

It can be seen from Figure 6.11 that 56% of evicted tasks were identified. The 

figure shows the cumulative average of actual and identified evicted tasks of all 

5 runs of Scenario 2, Cause 2. The bars represent the hourly average number of 

tasks across all 5 runs. The lines are cumulative frequency representation to 

show the percentage of the match between actual and found number of evicted 

tasks.  

 

Figure 6.10 Average of actual and identified evicted tasks per hour, 
showing the variance across all 5 runs of Scenario 2 Cause 1 
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In Figure 6.12, the average number of the identified evicted tasks (56% 

presented in Table 6.15) that are linked to Cause 2 can be observed on an hourly 

basis. The number of evicted tasks that have not been picked up by the 

framework can be observed in an hourly basis. The average number of evicted 

tasks per hour is based on the devolved randomizer and the task eviction 

behaviour models. 

 

Figure 6.12 Average of actual and identified evicted tasks per hour, 
showing the variance across all 5 runs of Scenario 2 Cause 2 
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Figure 6.11 Cumulative average task evictions over all 5 runs of 
Scenario 2 Cause 2 
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6.8.3 Scenario 3 Analysis 

In Table 6.16, C1 diagnostic algorithms of Scenario 3 are able to identify relevant 

evicted tasks. The recall percentage of C3 diagnostic algorithms is high, 98%, 

which means it is capable of identifying the relevant evicted tasks as shown in 

Table 6.17. However, its precision measure is 40%, as seen in Figures 6.15 and 

6.16. In Table 6.16, the mean TP of all 5 runs is 119.4 identified evicted tasks 

with a standard deviation of ±126.2 tasks. The mean FP of all 5 runs is 43.4 

identified evicted tasks with a standard deviation of ±37.6 tasks. The mean FN 

of all 5 runs is 3.8 identified evicted tasks with a standard deviation of ±8.4 tasks. 

The mean TN is 0 and so is the standard deviation. In Table 6.17, the mean TP 

Table 6.16 Scenario 3 Cause 1 Mean Precision and Recall. 

C1 Algorithms 
Relevant Tasks 

(Simulated) 
Irrelevant Tasks 

(Simulated) 

Relevant Tasks 
(Auditor) 

TP = 119.4 
STD DEV = ± 126.2 

FP = 43.4 
STD DEV = ± 37.6 

Irrelevant Tasks 
(Auditor) 

FN = 3.8 
STD DEV = ± 8.4 

TN = 0 
STD DEV = ± 0 

Precision 73% 

Recall 97% 

 

Table 6.17 Scenario 3 Cause 3 Mean Precision and Recall 

C3 Algorithms 
Relevant Tasks 

(Simulated) 
Irrelevant Tasks 

(Simulated) 

Relevant Tasks 
(Auditor) 

TP = 52 
STD DEV = ± 9.2 

FP = 78 
STD DEV = ± 55.5 

Irrelevant Tasks 
(Auditor) 

FN = 0.8 
STD DEV = ± 1.7 

TN = 0 
STD DEV = ± 0 

Precision 40% 

Recall 98% 
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of all 5 runs is 52 identified evicted tasks with a standard deviation of ±9.2 tasks. 

The mean FP of all 5 runs is 78 identified evicted tasks with a standard deviation 

of ±55.5 tasks. The mean FN of all 5 runs is 0.8 identified tasks with a standard 

deviation of ±1.7 tasks. The mean TN is 0 and so its standard deviation.  

In Figure 6.13, the average actual and identified evicted tasks for the whole 

simulation period (24 hours) for Scenario 3 Cause 1 on an hourly basis can be 

observed. It can be seen that the diagnostic algorithms for C1 have identified 

more evicted tasks than expected with a 73% precision. It can also be seen from 

the two lines that about 40% of irrelevant evicted tasks were identified. The lines 

are cumulative frequency representation to show the percentage of the match 

between actual and found number of evicted tasks. 

In Figure 6.14, the randomization of the generated data can also be seen. The 

figure shows the hourly average number of the actual and identified task eviction 

with standard deviation across the 5 runs of Scenario 3 Cause 1. It can be 

observed that in the first 11 hours the precision of the algorithms was not high 

 

Figure 6.13 Cumulative average task evictions over all runs of Scenario 3 
Cause 1 
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unlike the remaining hours. However, as shown in both figures 6.13 and 6.14, 

there is probably an overlap in terms of the identified causes as 40% of which 

are irrelevant.  

In Figure 6.15, the average actual and identified evicted tasks for the whole 

simulation period (24 hours) for Scenario 3 Cause 3 on an hourly basis can be 

observed. Looking at the dotted black (identified) and solid grey (actual) lines, 

 
Figure 6.14 Average of actual and identified evicted tasks per hour, 

showing the variance across all runs of Scenario 3 Cause 1 
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Figure 6.15 Cumulative average task evictions over all runs of Scenario 3 

Cause 3 
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only 40% of the evicted tasks were identified. This is a limitation of the diagnostic 

algorithms and is discussed later.  

In Figure 6.16, the randomization of the generated data can also be seen. The 

figure shows the hourly average number of the actual and identified task eviction 

with standard deviation across the 5 runs of Scenario 3 Cause 3. It can be 

observed that the precision increases overtime. However, almost 60% of 

relevant evicted tasks linked to Cause 3 have not been picked up by the 

diagnostic algorithms, refer to Table 6.17. 

6.9 Overall Analysis 

For every simulation run of every scenario, the Auditor can generate files for 

each cause which include the IDs of the evicted tasks and their physical and 

virtual host IDs which can be further investigated. Also, the Auditor can order the 

causes in terms of extent of impact on the system. From Tables 6.6 and 6.9, it 

can be observed the most dominant cause is C1 which is the Arrival of Higher 

 

Figure 6.16 Average of actual and identified evicted tasks per hour, 
showing the variance across all 5 runs of Scenario 3 Cause 3 
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Priority Tasks and the least dominant cause is C2 which is Increase in Resource 

Request. 

The precision and recall of C1 diagnostic algorithms are relatively high across all 

scenarios, as seen in Tables 6.13, 6.14, and 6.16. In Table 6.15, the 56% recall 

of C2 diagnostic algorithms could be because the algorithms’ focus is looking at 

one cause instead of looking at the two causes at the same time. This may have 

led the algorithms to consider a number of relevant tasks as irrelevant. In Tables 

6.16 and 6.17, the 73% and 40% precision percentages means that irrelevant 

evicted tasks were considered as relevant by the Auditor.  

The cumulative frequency distribution in the above figures has been calculated 

by adding each frequency from a frequency distribution table to the sum of its 

predecessors. Each graph has its own frequency distribution table. 

6.10 Possible Direction for Better Accuracy 

In order to further enhance the accuracy of the diagnostic algorithms, the 

investigatory results of each cause for each Scenario have been combined which 

has formulated an assumption.  

Figure 6.17 is a combination of the Figures 6.9 and 6.11. It shows that almost 

100% of all evicted tasks due to C1 and C2 could be identified. The figure shows 

Cumulative average task evictions over all simulations of Scenario 2, combining 

Cause 1 and Cause 2. 

Figure 6.18 is a combination of Figures 6.13 and 6.15. It also shows that almost 

90% of all evicted tasks due to C1 and C3 could be identified. The figure shows 
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Cumulative average task evictions over all simulations of Scenario 3, combining 

Cause 1 and Cause 3.  

This suggests an assumption that running a hybrid algorithm that investigates 

two or more causes could return better results with higher precision and recall 

instead of auditing each cause separately. When identifying the evicted tasks 

and the linked cause(s), the algorithm could dynamically discard irrelevant 

 

Figure 6.17 Cumulative average task evictions over all simulations of 
Scenario 3, combining C1 and C3 
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Figure 6.18 Cumulative average task evictions over all simulations of 
Scenario 2, combining C1 and C2 
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evicted tasks and be able to distinguish the relevant linked cause which could 

potentially minimize the noise in the results. Further investigation is needed to 

evaluate and test this assumption.  

6.11 Possible Methods for Evaluation 

There are other methods that can be used to evaluate the diagnostic algorithms 

other than simulation, such as using another real dataset, a subset of the same 

dataset used for exploration and learning, or a Cloud testbed to generate usage 

data. First, real Cloud usage datasets are a very excellent option but researchers 

may face a risk of making assumptions due to data obfuscation. For this 

research, there was no other publicly available Cloud usage dataset.  Second, 

dividing a dataset into two sets, one for experimenting and the other for 

evaluation, is also a good method. However, the characteristics, the features, 

and the variables are the same across the two subsets which makes the scope 

very specific and the evaluation not thorough. This method was not possible 

because the full 29-day dataset has been used for learning. However, an 

extended version of the same dataset can be used if available. Third, Cloud 

testbeds, local or global, are widely used as testing platforms to experiment with 

new services leveraging flexible compute node and network provisions 

capabilities. The testbed itself is not a method for evaluation but the generated 

usage dataset is which makes it one example of the first method, real Cloud 

usage dataset. The challenges of this method are the complications of 

administrative rights and the suitability and volume of the generated usage 

datasets.  
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6.12 Summary 

This Chapter has presented the evaluation step of the proposed diagnostic 

algorithms. The framework’s aim is to find the causes of Task Eviction in a data 

centre. The contribution of this Chapter is the evaluation of the diagnostic 

algorithms using a simulation tool, SEED. The simulation tool has been used to 

generate 15 different Cloud test datasets with different task eviction behaviours. 

The Framework, PROV-TE and Diagnostic Algorithms, have been applied on 

these datasets and the found results have been compared with the simulation 

results. Finally, the results have been statistically analysed using precision and 

recall measures to find the levels of sensitivity and reliability. The average 

precision and recall of the diagnostic algorithms are 83% and 90%, respectively. 

Although the diagnostic algorithms are able to identify the causes of task eviction 

fairly precisely, there are still limitations relating to the overlapping of identified 

causes for evicted tasks. It ended with giving a brief summary of the possible 

approaches that could have been used for the evaluation other than simulation. 
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Chapter 7   

Conclusion and Future Work 

The first section of this Chapter presents a summary of the previous chapters 

that illustrate the utilization of provenance in Cloud computing which led to 

proposing the novel Provenance-Driven Diagnostic Framework as an approach 

to audit and identify the causes of Task Eviction in Cloud computing. The second 

section of this Chapter presents the research contributions of this study. The third 

section presents the summary of achievements of this research by revisiting the 

research questions. Finally, this Chapter concludes by discussing the research 

limitations and possible future work to further extend this research. 

7.1 Summary of Chapters 

Chapters 2 and 3 have provided a detailed summary about Cloud computing. 

They presented an overview on Cloud computing deployment modes and 

delivery models and the challenges in adopting the Clouds. They also  discussed 

in detail the virtualization feature which is an essential key component in Cloud 

computing. Besides, the benefits of virtualization to both the consumer and 

providers has been presented, along with the method of utilizing resources which 

is over-commitment. The issue of Physical Machine Overloads has been 

discussed in addition to the overload mitigating strategies; namely Resource 

Stealing, Quiescing, Live Migration, Streaming Disks, and Network Memory, and 

Task Eviction. 

The concept of provenance and the two standards of provenance models have 

been discussed, OPM and W3C RROV. The potential advantages of provenance 

to Cloud computing have been presented, along with the challenges and issues 
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in adopting provenance in the Clouds. Next, a number of research projects that 

utilized provenance in the Clouds have been presented. Lastly, the Chapter 

provided a literature review of the uses of provenance and the W3C PROV model 

in the Clouds. The review of the literature revealed that PROV model is adoptable 

in the Clouds but it has never been utilized with regards to the issue of Task 

Eviction which led to the proposing of the Provenance-Driven Diagnostic 

Framework. 

Chapter 4 proposed the novel Provenance-Driven Diagnostic Framework and 

the three-phased methodology to construct it. The underpinning philosophy of 

the framework has been explained. The real Cloud dataset used for learning has 

been empirically analysed in detail and presented. The data pre-processing of 

the framework and working scenarios of tracing of task eviction workflow for the 

five Task Eviction causes as an example of demonstrating PROV-TE model have 

been discussed. Further, 10 diagnostic algorithms which are used to identify the 

evicted tasks and the linked causes have been discussed. 

Chapter 5 has presented an exploratory experiment which illustrates the use of 

the Auditor for acquiring a deeper understanding of the causes of Task Eviction. 

It started by giving a deeper analysis of the used Cloud dataset for the application 

of the diagnostic algorithms. It then described the aim and hypothesis of the 

experiment. Then it presented the application of the diagnostic algorithms in five 

separate investigations, each focusing on one Task Eviction cause. It showed 

the results obtained from the application of the diagnostic algorithms which 

quantifies the extent of every cause in the dataset. It also explained how PROV-

TE contributes specifically to every cause and guides the investigations. It 
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concluded with identifying the most dominant and least dominant causes for 

Task Eviction observed in Google’s dataset.  

One of the challenges in this chapter is the volume of the dataset which led to 

scaling down the data to be queried. This has increased the performance (query 

response time) and was deemed small enough to fulfil the objections of the 

investigations. Provenance in general faces a challenge with level of granularity, 

as discussed in section 3.3.1. In section 7.4, a number of possible directions and 

techniques has been introduced as future work which could help with recording 

and using provenance data large datasets, such as graph database and NoSQL. 

This chapter has studied and analysed a dataset that applies Task Eviction 

mitigating strategy. As a result, PROV model has been extended to PROV-TE. 

In case another dataset applies another mitigating strategy, such as Live 

Migration, the same generic framework, section 4.4, could be used and the steps 

could be followed to extend PROV model to PROV-LM and so on, as explained 

in section 4.9. One of the future directions, section 7.4, the framework could be 

extended to include all six mitigating strategies. The challenge that could be 

faced is the selection of relevant attributes. This could increase the number of 

iterations and tests until the expected accuracy level is reached. 

Chapter 6 has presented the evaluation step of the proposed diagnostic 

algorithms. The framework’s aim is to find the causes of Task Eviction in a data 

centre. The contribution of this Chapter is the evaluation of the diagnostic 

algorithms using a simulation tool, SEED. The simulation tool has been used to 

generate 15 different Cloud test datasets with different task eviction behaviours. 

The Framework, PROV-TE and Diagnostic Algorithms, have been applied on 
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these datasets and the found results have been compared with the simulation 

results. Finally, the results have been statistically analysed using precision and 

recall measures to find the levels of sensitivity and reliability. The average 

precision and recall of the diagnostic algorithms are 83% and 90%, respectively. 

Although the diagnostic algorithms are able to identify the causes of task eviction 

fairly precisely, there are still limitations relating to the overlapping of identified 

causes for evicted tasks.  

The scale of the simulation can be generalized to larger environments with more 

PMs and VMs, generating huge volumes of data. This aims to demonstrate the 

feasibility of massive-scale simulation for implementing provenance-based 

techniques. 

7.2 Research Contributions 

The major contributions of the research presented in this thesis are summarized 

as follows: 

 A provenance framework that acts as a diagnostic tool to find the causes 

of an overload in the Clouds by two steps. First, the PROV model was extended 

to represent a task eviction mitigating strategy, refer to section 4.6.1. Second, 

relevant attributes to the strategy were identified, refer to section 4.6. Over-

commitment of resources is a beneficial policy for Cloud providers because it 

maximizes profits and utilizes the idle resources. Overload is an inevitable 

consequence of over-commitment if it was not administered carefully. The way 

the mitigating strategies are used to cope with overload has room for 

improvements, refer to section 3.2. One of which is to act proactively and identify 

the causes of overload by empirically studying the strategies backwards to 
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quantify the impact. This thesis has presented a novel framework and is 

provenance-driven which was tested and evaluated. This framework is capable 

in identifying the causes for task and job evictions. Knowing the causes and their 

behaviour could help mitigate them in the first place which proactively minimizes 

the number of overload instances. 

 A computational version of the model for reasoning. A querying platform 

and algorithms were developed to find the causal relationship between causes 

and tasks by identifying the evicted tasks and the linked causes. These are the 

second and third parts of the proposed framework. The extended PROV model 

(PROV-TE) underpins a number of diagnostic algorithms which were developed 

by using a real Cloud dataset for learning. The diagnostic algorithms have been 

operationalized using SQL queries. With the help of both PROV-TE and the 

diagnostic algorithms, it has been proven possible for evicted tasks and the 

linked causes to be identified. The potential user for this framework is a Cloud 

provider. The framework helps providers to efficiently manage their data centres, 

specifically with regards to Task Eviction policy. The Auditor presented in this 

research, see section 4.9, can be utilized to be applicable for another mitigating 

strategy following the systematic steps presented in Chapter 3.  

 The modelling of Task Eviction behaviors in a Cloud datacentre with 

provenance data for a simulations. A controlled Cloud environment was built 

using the simulation tool, SEED. The configurations of both Amazon EC2 Cloud 

and Google Cloud have been combined to form a hypothetical configuration and 

used as the basis for the built environment. Three Task Eviction behaviours 

(causes) have been modelled into the simulation tool. 15 heterogeneous and 

randomized Cloud datasets were generated and used for the evaluation of the 
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diagnostic algorithms. The transferability of PROV-TE and the diagnostic 

algorithms has been demonstrated by being applied on different datasets using 

simulation, see Chapters 5 and 6. 

7.3 Summary of Achievements 

The three research questions of this thesis were discussed in Chapter 1, each 

question and the success of this research answering it is listed below: 

Q1. How to formulate a suitable diagnostic provenance model 

that will help check the causes of overload in a Cloud 

platform? 

In this thesis, two standard models for provenance have been reviewed and 

analysed, refer to section 2.3.2. PROV model has been chosen as the abstract 

provenance model for the envisioned framework because it is a W3C standard. 

Related state-of-the-art work that used PROV in Cloud computing has been 

critically reviewed to understand how PROV can be extended. Also, the largely 

publicly available real Cloud datasets has been empirically analysed and used 

for learning. As a result, PROV has been extended to be applicable on Cloud 

infrastructures and named PROV-TE model, please see section 4.6. PROV-TE 

is one of three parts of the Provenance-Driven Diagnostic Framework.  

Q2. How to operationalize the model? 

PROV-TE is a theoretical model. In order to test its potential, it needs to be 

operationalized. By empirically studying Google’s 29-day Cloud usage dataset, 

10 diagnostic algorithms have been developed taking PROV-TE model as the 

underpinning basis, refer to sections 4.3 and 4.8.  These algorithms have been 

applied on the dataset to test whether PROV-TE’s reasoning power helps 

quantify the extent of Task Eviction causes, see section 4.4. Each algorithm has 



- 142 - 
 

 

been translated in to an SQL query and SQLite3 has been used as the query 

platform. The Auditor has been presented in Chapter 4 is an instantiation of the 

framework and it demonstrates how the frameworks fits in a data centre. 

Q3. How to evaluate the proposed framework? 

It is not effective to use the same dataset for evaluating the framework. Due to 

the lack of publicly available Cloud dataset, simulation has been used as a 

method for the evaluation, see section 6.2. A simulation tool has been chosen 

and used to randomly generate 15 different Cloud datasets, refer to sections 6.3 

– 6.6. These datasets have been used to test the accuracy and reliability of the 

proposed Provenance-Driven Diagnostic Framework, see section 6.8. In section 

6.11, the possible approaches that could have been used for the evaluation other 

than simulation have been presented. 

The outcomes of this framework could be used by Cloud providers to make better 

informed decisions and to identify the maximum over-commitment ratio that fits 

the data center infrastructure. Providers could use the framework to test the 

infrastructure until they reach the most suitable and less damaging OCR. Cloud 

brokers could make use of the framework to choose the suitable providers for 

the clients. Cloud auditors can use the framework as an auditing approach that 

systematically extends a standardized provenance model to make sense of 

historical data. Lastly, Cloud consumers (users) can use the framework to audit 

the performance and availability of the Cloud services. Access to the IaaS 

Infrastructure Monitoring component is required. 

Table 7.1 below revisits Table 3.1 and shows the comparison between the 

different possible methods for causes identification and the proposed 

provenance-driven diagnostic framework, named PROV-TE framework. 
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Table 7.1 Comparison of Different Possible Methods for Overload Causes Identification and PROV-TE Framework 

Method (page in this 
thesis) 

Capability Scope 

Prediction Detection Diagnosis Mitigation Prevention Healing Software Hardware Network 

FTM by Jhawar et al  
[105], [106] / (p. 43) 
non-provenance based 

No Yes No No Yes Yes Yes Yes Yes 

Dai et al 
[107] / (p. 44) 
non-provenance based 

Yes Yes Yes No Yes No Yes Yes No 

TCloud by Verissimo et al  
FTCloud by Zheng et al 
[97], [108] / (p. 44)  
non-provenance based 

No Yes No No Yes No Yes Yes No 

Chopstix by Bhatia et al  
[112] / (p. 46) 
non-provenance based 

No Yes Yes No No No Yes Yes No 

Fay by Erlingsson et al 
[113] / (p. 46) 
non-provenance based 

No No Yes No No No Yes Yes No 

D3S by Liu et al 
[115] / (p. 46) 
non-provenance based 

Yes Yes Yes No No No Yes No No 

Pip by Reynolds et al  
[116] / (p. 47) 
non-provenance based 

No Yes Yes No No No Yes No No 

CPN by Li et al  
[129] / (p. 52) 
Provenance based 

No No Yes No No No Yes No Yes 

DTaP by Zhou et al 
[130] / (p. 52) 
Provenance based 

No No Yes No No No No No Yes 

S2Logger by Suen et al 
[133] / (p. 53) 
Provenance based 

No Yes Yes No No No Yes Yes Yes 

PROV-TE framework 
[138], [161] / (Chapter 4) 
Provenance based 

No Yes Yes No No No Yes Yes No 
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7.4 Limitations and Future Work 

The work in this thesis is a beneficial first step in measuring the extent of the 

causes of overload for all six mitigating strategies. Although the proposed 

framework is able to identify the causes of task evictions fairly precisely, there 

are still limitations relating for example to the overlapping of identified causes for 

evicted tasks which can be explained by the chain of causes presented in section 

5.5. PROV-TE has been developed based on Google 29-day dataset. As 

mentioned in Chapter 5, there are unknown number of parameters that have 

been deliberately obfuscated by the dataset provider. This limits the development 

of the framework by relying on assumptions. 

By definition, simulations are approximations or abstractions of the real world 

[156]. Simulation models needs verification to confirm that they are correctly 

implemented according to the conceptual model, assumptions and 

specifications. Validation is also important which checks the accuracy of the 

simulation model and its representation and imitation of the real system [157]. 

For example, verification can be done by statistical testing of the final simulation 

output against analytical results and validation can be done by comparing 

simulation and real data through tests such as t tests. A further study is needed 

to verify and validate the simulation models and checks the outputs of chapter 6. 

The work carried out in this thesis can be extended into several promising 

directions: 

 The proposed Provenance-Driven Diagnostic Framework solely focuses 

on Task Eviction mitigating strategies. The framework could be extended to 

include all six mitigating strategies. The power of the framework could be 
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stronger as the causes of the overload could be quantified and mitigated in the 

first place based on extent of impact and the Cloud provider’s policies.  

 The working of the framework has been done manually in terms of 

extending the model, mapping the raw data, building the database and 

developing and running the diagnostic algorithms. Automating this process would 

make this framework dynamic. The framework could learn from provenance data 

on the fly and extend the model and the algorithms accordingly. For example, 

adding more parameters in to the database that could potentially enhance the 

accuracy of the diagnostic algorithms. 

 As presented in Chapters 5 and 6, the diagnostic algorithms have been 

processed separately and each cause has been individually investigated. As 

seen from Figures 6.17 and 6.18 in Chapter 6, when the results of the two 

investigations have been combined for each scenario, the precision and recall 

have increased. The method of combing the diagnostic algorithms which could 

potentially increase levels of accuracy need to be further studied to evaluate the 

hypothesis. 

 The proposed framework uses lightweight semantics. PROV-TE is a 

lightweight provenance model. Making use of heavyweight semantics by for 

example utilizing ontologies and RDF is an interesting future direction which 

could further enrich the added meaning and possible have a positive effect on 

auditing accuracy.  

 As presented in Chapters 5 and 6, relational database and SQLite have 

been used for storing and querying the data. Relational databases are efficient 

for a data-intensive storage. For data that contains many relationships, a graph 

database which utilizes NoSQL could potentially be more efficient [158]. This 
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leads to a future work where a graph database and NoSQL could be used for 

storing and querying the data which could potentially enhance the reliability and 

sensitivity of the diagnostic algorithms. 
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Appendix A 

First Version of PROV-TE 

 

 

 

 

 

 

 

 

Figure A.1 shows the first version of PROV-TE. The version contributed to the 

development of the diagnostic algorithms. After testing the output of the 

algorithms, it became clear that a number of attributes needs to be considered 

in the diagnosis. The results were not accurate in terms of identifying the relevant 

evicted tasks linked to the causes. The difference between the two versions 

includes corrections and more entities were included in the second version, 

presented in section 4.6.1. The changes are:  

 Activity: Update Running/Pending has been renamed to 

UpdateRunningTasks. 

 Agent: User is linked to Activity: UpdateRunningTasks  

Figure A.1 First PROV-TE Model 
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 Entities TE_username, TE_differentmachine, TE_schedulingclass were 

included in the second version.  

These additions were a result of the iterations so that both PROV-TE and the 

diagnostics algorithms are fit-for-purpose. Also, the overall model has been 

redesigned for ease of understanding.  
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