

Provenance-Driven Diagnostic Framework for Task

Evictions Mitigating Strategy in Cloud Computing

Abdulaziz Mohammed N. Albatli

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

The University of Leeds

School of Computing

January 2017

- ii -

Intellectual Property and Publication Statements

The candidate confirms that the work submitted is his/her own, except where

work which has formed part of jointly-authored publications has been included.

The contribution of the candidate and the other authors to this work has been

explicitly indicated below. The candidate confirms that appropriate credit has

been given within the thesis where reference has been made to the work of

others.

Albatli, A., McKee, D., Townend, P., Lau, L., Xu, J. (2017) PROV-TE: A

Provenance-Driven Diagnostic Framework for Task Eviction in Data

Centers. Proceedings of the 3rd IEEE International Conference on Big

Data Computing Service and Applications (IEEE BigDataService 2017).

(Accepted)

My contribution in this jointly authored publication was developing the diagnostic

algorithms, designing the simulation setup, preparing the environment for

evaluation, developing three models for task eviction behaviours, and conducting

the analysis. David McKee contributed by providing the simulation tool and

development guidance. The paper was reviewed editorially by David McKee,

Paul Townend, Lydia Lau, and Jie Xu. The content of this paper is related to

Chapters 2, 3, 4 and 6.

Albatli, A., Lau, L., Xu, J. (2014) Application of PROV Model for Modeling a

VM Overload Mitigating Strategy: Task Eviction. Provenance

Analytics Workshop. Provenance Week 2014.

My contribution in this jointly authored publication was conducting the analysis

on Google 29-day dataset and proposing the early version of the novel

provenance-driven diagnostic framework and discussing its potential

contribution to the implementation of task eviction strategy for machine overload

mitigation. Lydia Lau and Jie Xu provided structural feedback and helped

editorially. The work relates to Chapters 2, 3, 4 and 5.

- iii -

AlJahdali, H., Albatli, A., Garraghan, P., Townend, P., Lau, L., Xu, J. (2014)

Multi-Tenancy in Cloud Computing. Proceedings of the 8th IEEE

International Symposium on Service-Oriented System Engineering

(SOSE 2014).

My contribution in this jointly authored publication was to understand and analyse

Google 29-day dataset which was reflected in the introductory section of the

paper. This was a preparatory step that helped conducting this research.

Hassain AlJahdali did and wrote most of the publication, Peter Garraghan

provided the selected log file of the dataset which I have analysed. Lydia Lau,

Paul Townend, and Jie Xu provided structural feedback and helped editorially.

The work relates to Chapters 4 and 5.

This copy has been supplied on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper

acknowledgement.

© 2017 “The University of Leeds and Abdulaziz Mohammed N. Albatli”

The right of Abdulaziz Mohammed Albatli to be identified as Author of this work

has been asserted by him in accordance with the Copyright, Designs and Patents

Act 1988.

- iv -

Acknowledgments

Without a doubt, first and foremost, my deepest appreciation and gratitude goes

to my supervisors Dr. Lydia Lau and Prof. Jie Xu for their unconditional support

and guidance, continuous and constructive feedback, and for shining the light on

the path of my PhD journey. Thank you and God bless.

I thank my thesis examiners Dr. Ligang He and Dr. Karim Djemame for their

excellent feedback and comments given in the examination.

I would like to thank my nephews, Ramzi and Faris, for their advice and initiative

that honestly have let me start my unplanned, adventures, and amazing 12-year

journey. You two have planted the seed that opened the doors to a better future.

I will always be indebted to you both and forever be thankful.

I thank my friends and colleagues for their help in this PhD journey and for being

there. Dave, David, Dimoklis, Django, Hussain, Ibrahim, Ismael, Judi, Khalid,

Marwan, Paul, Peter, Richard, Silvana, and Vania. I cannot thank you enough.

Last but not least, I thank the Ministry of Education of the Saudi government for

providing me a generous scholarship that gave me the opportunity to achieve my

degrees, BSc, MSc and starting this PhD, abroad. Also, I thank Shaqra University

for extending this opportunity to achieve my PhD degree.

- v -

Dedication

My sincere appreciations and heartfelt thank you goes to my parents, Munirah

and Mohammed, and my siblings, Tarfah and Abdulmajeed, for their

unconditional love and support not only during the years of my PhD but also

during my expat life for the past 12 years. Without you, I would not have reached

and accomplished this milestone. This work is dedicated to you.

I also thank my beloved wife, Daliyah Abuabah, whose divine love and

encouragement can’t be overlooked. Thank you for being by my side. You are a

true gift to my life. This work is dedicated to you too.

- vi -

Abstract

Cloud computing is an evolving paradigm. It delivers virtualized, scalable and

elastic resources (e.g. CPU, memory) over a network (e.g. Internet) from data

centres to users (e.g. individuals, enterprises, governments). Applications,

platforms, and infrastructures are Cloud services that users can access. Clouds

enable users to run highly complex operations to satisfy computation needs

through resource virtualization. Virtualization is a method to run a number of

virtual machines (VM) on a single physical server. However, VMs are not a

necessity in the Clouds. Cloud providers tend to overcommit resources, aiming

to leverage unused capacity and maximize profits. This over-commitment of

resources can lead to an overload of the actual physical machine, which lowers

the performance or lead to the failure of tasks due to lack of resources, i.e. CPU

or RAM, and consequently lead to SLA violations. There are a number of different

strategies to mitigate the overload, one of which is VM task eviction.

The ambition of this research is to adapt a provenance model, PROV, to help

understand the historical usage of a Cloud system and the components

contributed to the overload, so that the causes for task eviction can be identified

for future prevention. A novel provenance-driven diagnostic framework is

proposed. By studying Google’s 29-day Cloud dataset, the PROV model was

extended to PROV-TE that underpinned a number of diagnostic algorithms for

identifying evicted tasks due to specific causes.

The framework was implemented and tested against the Google dataset. To

further evaluate the framework, a simulation tool, SEED, was used to replicate

task eviction behaviour with the specifications of Google Cloud and Amazon

EC2. The framework, specifically the diagnostic algorithms, was then applied to

audit the causes and to identify the relevant evicted tasks. The results were then

- vii -

analysed using precision and recall measures. The average precision and recall

of the diagnostic algorithms are 83% and 90%, respectively.

- viii -

Table of Contents

Intellectual Property and Publication Statementsii

Acknowledgments .. iv

Dedication ...v

Abstract ... vi

Table of Contents .. viii

List of Acronyms .. xii

List of Figures ... xiv

List of Tables ... xvi

Chapter 1 ..1

Introduction ..1

1.1 Research Motivation ...1

1.2 Research Focus ...3

1.3 Research Aim and Questions ...4

1.4 Research Methodology ...5

1.5 Potential Areas for Contribution ..6

1.6 Thesis Outline ..7

Chapter 2 ..9

General Background in Cloud Computing and Provenance9

2.1 Introduction ...9

2.2 Cloud Computing ..9

2.2.1 Cloud Computing Characteristics .. 10

2.2.2 Cloud Actors .. 11

2.2.3 Cloud Delivery Models .. 14

2.2.4 Cloud Deployment Modes ... 15

2.2.5 Virtualization .. 17

2.2.6 Cloud Quality of Service .. 20

2.2.7 Differences between Cloud and Traditional Datacentres 21

2.2.8 Challenges for Adopting Clouds .. 22

2.3 Provenance .. 23

2.3.1 Provenance in the Web and Cloud Domains......................... 25

2.3.2 Provenance Models .. 26

2.3.3 Benefits of Provenance in the Clouds 31

2.4 Summary .. 33

- ix -

Chapter 3 .. 34

Literature Review ... 34

3.1 Introduction ... 34

3.2 Cloud Resource Utilization ... 34

3.2.1 Overestimation of Resources .. 34

3.2.2 Over-Commitment of Resources ... 36

3.2.3 Machine Overload and Mitigating Strategies 37

3.2.4 Overload Causes .. 40

3.2.5 Causes Diagnosis and Identification 41

3.3 Provenance .. 47

3.3.1 Challenges of Adopting Provenance in the Clouds 47

3.3.2 Provenance Research Projects in Distributed Systems 50

3.3.3 Use of Provenance and PROV in the Clouds 51

3.4 Summary .. 56

Chapter 4 .. 57

Provenance-Driven Diagnostic Framework ... 57

4.1 Introduction ... 57

4.2 Underpinning Philosophy and Assumptions of the Framework 58

4.3 Google Cloud 29-day Usage Dataset ... 59

4.4 The Generic Framework for Provenance-Driven Diagnostic Model 64

4.5 Iterative Approach in Framework Development 65

4.6 Phase 1: PROV-TE Formulation .. 66

4.6.1 The PROV-TE Model .. 68

4.6.2 Workflow for a Scheduled Task ... 70

4.6.3 Task Eviction Workflows ... 70

4.7 Phase 2: Preparation of Platform for Queries 72

4.8 Phase 3: Diagnostic Algorithms Formulation based on PROV-TE . 72

4.8.1 Arrival of Higher Priority Tasks .. 73

4.8.2 Increase in Resource Requests .. 74

4.8.3 Demand Exceeds Physical Capacities 75

4.8.4 Missing Machines .. 76

4.8.5 Decrease in Machines Capacities ... 77

4.9 Instantiation of the Framework – The Auditor 79

4.10 Summary .. 80

- x -

Chapter 5 .. 81

Application of the Diagnostic Algorithms .. 81

5.1 Introduction ... 81

5.2 Context for the Experiment ... 81

5.3 Hypothesis and Aim .. 84

5.4 Applying the Diagnostic Algorithms .. 84

5.4.1 Investigation 1 (Evicted Tasks caused by Take Over of Higher
Priority Tasks) ... 85

5.4.2 Investigation 2 (Evicted Tasks caused by Increase In
Resource Requests) ... 88

5.4.3 Investigation 3 (Evicted Tasks caused by Demand Exceeding
Physical Capacities) .. 90

5.4.4 Investigation 4 (Evicted Tasks caused by Missing Machines) ...
 ... 92

5.4.5 Investigation 5 (Evicted Tasks caused by Decrease in
Physical Machines Capacities) .. 94

5.5 Overall Analysis .. 96

5.6 Summary .. 100

Chapter 6 .. 101

Evaluation of the Diagnostic Algorithms ... 101

6.1 Introduction ... 101

6.2 Purpose and Scope of Evaluation .. 101

6.3 Simulation Tool ... 103

6.3.1 Simulation Tools for Clouds .. 104

6.3.2 Overview of SEED .. 105

6.4 Simulation Design... 107

6.4.1 General Setup for the Simulation Environment 108

6.4.2 Scenario’s Specific Configuration .. 109

6.5 Simulation Runs ... 113

6.6 Simulation Output ... 114

6.6.1 Simulation Parameters .. 115

6.6.2 Simulation Logs ... 117

6.7 Output from the Diagnostic Algorithms ... 117

6.7.1 Enhancement of Diagnostic Algorithms 118

6.8 Precision and Recall Statistical Measures 121

6.8.1 Scenario 1 Analysis ... 122

6.8.2 Scenario 2 Analysis ... 124

- xi -

6.8.3 Scenario 3 Analysis ... 128

6.9 Overall Analysis .. 131

6.10 Possible Direction for Better Accuracy ... 132

6.11 Possible Methods for Evaluation .. 134

6.12 Summary .. 135

Chapter 7 .. 136

Conclusion and Future Work .. 136

7.1 Summary of Chapters... 136

7.2 Research Contributions .. 139

7.3 Summary of Achievements ... 141

7.4 Limitations and Future Work ... 144

Appendix A ... 147

First Version of PROV-TE .. 147

References.. 149

- xii -

List of Acronyms

Ag Agent

CbSP Cloud-based Service Providers

CPN Coloured Petri Net

CPU Central Processing Unit

CSV Comma-Separated Values

DCIM Data Centre Infrastructure Management

DCSim Data Centre Simulation

DTaP Distributed Time-aware Provenance

EC2 Elastic Compute Cloud

EDT Eastern Daylight Time

ER Entity Relationship

FN False Negative

FP False Positive

IaaS Infrastructure-as-a-Service

ID Identification

IT Information Technology

JE Job Events

LIFO Last-In-First-Out

MA Machine Attributes

MDC Machines Decreased Capacity table

MDCSim Multi-tier Data Centre Simulation

ME Machine Events

MEM Memory

NGO Non-Government Organization

NIST National Institute of Standards and Technology

OCR Over-Commitment Ratio

OPM Open Provenance Model

OS Operation System

OT Overload Table

PaaS Platform-as-a-Service

PCPU Physical Central Processing Unit

PET Priority of Evicted Tasks table

PM Physical Machine

PROV-DM The PROV Data Model

PROV-N The Provenance Notation

- xiii -

PROV-O The PROV Ontology

PROV-TE PROV Task Eviction

QoS Quality of Service

RAM Random-Access Memory

RDF The Resource Description Framework

RMI Removed Machine IDs table

SaaS Application-as-a-Service

SEED Simulation EnvironmEnt Distributor

SLA Service Level Agreement

SOA Service Oriented Architecture

SPADE
Support for Provenance Auditing in Distributed

Environments

SQL Structured Query Language

Std Dev Standard Deviation

STRAPP
Trusted Digital Spaces through Timely Reliable and

Personalised Provenance

TC Task Constraint

TE Task Eviction

TEv Task Events

TN True Negatives

TP True Positives

TSR Task Submission Rate

TU Task Usage

UML Unified Modelling Language

UTC Coordinated Universal Time

VCPU Virtual Central Processing Unit

VMemory Virtual Memory

VM Virtual Machine

VMM Virtual Machine Manager

W3C World Wide Web Consortium

WS-S Web Service Security

XML Extensible Markup Language

YANS Yet Another Network Simulator

- xiv -

List of Figures

Figure 2.1 NIST Cloud Conceptual Reference Model ………………................. 12

Figure 2.2 Hierarchical View of Cloud Computing ……………………………… 14

Figure 2.3 Types of Virtualization ………………………………………………… 18

Figure 2.4 The Employment Article was Attributed to Bob …………………… 27

Figure 2.5 OPM Edges ………………………………………………………………. 28

Figure 2.6 PROV Abstract Model ………………………………………………….. 31

Figure 3.1 CPU and Memory Overestimation and Over-commitment
observed in Google Cloud dataset ………………………………………………… 35

Figure 4.1 Steps for the Provenance-Driven Diagnostic Framework ……….. 64

Figure 4.2 Iterations for Framework Improvement ……………………………… 65

Figure 4.3 PROV-TE, a PROV Model for Task Eviction Mitigating strategy …. 69

Figure 4.4 System Model …………………………………………………………….. 79

Figure 5.1 A Snapshot of Machine Events Table ………………………………… 82

Figure 5.2 A Snapshot of Machine Attributes Table ……………………………. 82

Figure 5.3 A Snapshot of Job Events Table ……………………………………… 83

Figure 5.4 A Snapshot of Task Events Table ..…………………………………… 83

Figure 5.5 PROV-TE for Take Over by Tasks with Higher Priority ……………. 87

Figure 5.6 PROV-TE for Increase in Resources Request ………………………. 89

Figure 5.7 PROV-TE for Demand Exceeding Machines’ Capacities ………….. 91
Figure 5.8 Total Memory Request vs Total Memory Capacity Over the 29-
Day Dataset …………………………………………………………………………… 92
Figure 5.9 Total CPU Request vs Total CPU Capacity Over the 29-Day
Dataset …………………………………………………………………………………… 92

Figure 5.10 PROV-TE for Missing Machines …………………………….............. 93

Figure 5.11 PROV-TE for Decrease in Machine Capacity ……………………… 94

Figure 5.12 Chain of Causes ………………………………………………………... 98

Figure 6.1 SEED High Level Architecture …………………………………………. 106
Figure 6.2 Configuration of the Simulation Environment Using the SEED
Simulator ………………………………………………………………………………… 109

Figure 6.3 Execution Time for Every Simulation Run …………………………… 113

Figure 6.4 A Snapshot of Scenario 1 Trace Log …………………………………. 117

Figure 6.5 A Snapshot of Scenario 2 Trace Log …………………………………. 117

Figure 6.6 A Snapshot of Scenario 3 Trace Log …………………………………. 118

- xv -

Figure 6.7 Cumulative Average Task Evictions Over All Runs of Scenario 1
Cause 1 ………………………………………………………………………………….. 123

Figure 6.8 Average of Actual and Identified Evicted Tasks per Hour,
Showing the Variance Across All 5 Runs of Scenario 1 Cause 1 …………….. 123

Figure 6.9 Cumulative Average Task Evictions Over All Runs of Scenario 2
Cause 1 ………………………………………………………………………………….. 125

Figure 6.10 Average of actual and identified evicted tasks per hour,
showing the variance across all 5 runs of Scenario 2 Cause 1 ……………….. 126

Figure 6.11 Cumulative Average Task Evictions Over All Runs of Scenario
2 Cause 2 ………………………………………………………………………………. 127

Figure 6.12 Average of actual and identified evicted tasks per hour,
showing the variance across all runs of Scenario 2 Cause 2 ………………… 127

Figure 6.13 Cumulative Average Task Evictions Over All Runs of Scenario
3 Cause 1 ………………………………………………………………………………. 129

Figure 6.14 Average of actual and identified evicted tasks per hour,
showing the variance across all runs of Scenario 3 Cause 1 …………………. 130

Figure 6.15 Cumulative Average Task Evictions Over All Runs of Scenario
3 Cause 3 ………….…………………….…………………………………………….. 130

Figure 6.16 Average of actual and identified evicted tasks per hour,
showing the variance across all 5 runs of Scenario 3 Cause 3 ……………….. 131

Figure 6.17 Cumulative Average Task Evictions Over All Simulations of
Scenario 2, combining C1 and C2 ………………………………………………….. 133

Figure 6.18 Cumulative Average Task Evictions Over All Simulations of
Scenario 3, combining C1 and C3 ………………………………………………….. 133

- xvi -

List of Tables

Table 2.1 Differences between Cloud and Traditional Datacentres 21

Table 3.1 Comparison of Different Possible Methods for Overload Causes
Identification …………………………………………………………………………. 55

Table 4.1 Dataset Profile …………………………………………………………… 60

Table 4.2 Overview of the Dataset ………………………………………………. 61

Table 4.3 Dataset Parameters ……………………………………………………. 62

Table 4.4 Selected Parameters for PROV-TE ………………………………….. 67

Table 4.5 Algorithm 1a: Cause 1 Priority Identifier …………………………… 73

Table 4.6 Algorithm 1b: Cause 1 Eviction Identifier ………………………….. 73

Table 4.7 Algorithm 2a: Cause 2 Request Comparer …………………………. 74

Table 4.8 Algorithm 2b: Cause 2 Eviction Identifier ………………………….. 75

Table 4.9 Algorithm 3a: Cause 3 Capacities Calculator ……………………… 76

Table 4.10 Algorithm 3b: Cause 3 Eviction Identifier ………………………… 76

Table 4.11 Algorithm 4a: Cause 4 Removal Identifier ………………………… 77

Table 4.12 Algorithm 4b: Cause 4 Eviction Identifier ………………………… 77

Table 4.13 Algorithm 5a: Cause 5 Removal Identifier ………………………… 78

Table 4.14 Algorithm 5b: Cause 5 Eviction Identifier ………………………… 78

Table 5.1 Priority Distribution …………………………………………………….. 86

Table 5.2 Number of Evicted Tasks per Machine (with Decreased Capacity 96

Table 5.3 Overall Findings of the Investigations ………………………………. 97

Table 6.1 Comparison of Cloud Computing Simulation Tools ……………… 105

Table 6.2 Design of Scenarios …………………………………………………… 107

Table 6.3 Algorithm: SEED Task Evictor ………………………………............ 110

Table 6.4 Algorithm: SEED Request Handler ………………………………….. 111

Table 6.5 Algorithm: SEED Overload Manager ………………………………. 112

Table 6.6 Output of Simulation …………………………………………………… 114

Table 6.7 Common Simulation Parameters in all Trace Logs ………………. 115
Table 6.8 Additional Scenario-Specific Parameters in Trace Logs for
Scenario 2 and Scenario 3 ………………………………………………………….. 116

Table 5.9 Output of the Auditor ………………………………………………..….. 119

Table 6.10 Enhanced Algorithm 2b: Cause 2 Eviction Identifier ………….... 120

Table 6.11 Enhanced Algorithm 3a: Cause 3 Capacities Calculator ……….. 120

Table 6.12 Enhanced Algorithm 3b: Cause 3 Eviction Identifier ……………. 120

Table 6.13 Scenario 1 Mean Precision and Recall ……………………………… 122

- xvii -

Table 6.14 Scenario 2 Cause 1 Mean Precision and Recall ………………….. 124

Table 6.15 Scenario 2 Cause 2 Mean Precision and Recall ………………….. 124

Table 6.16 Scenario 3 Cause 1 Mean Precision and Recall ………………….. 128

Table 6.17 Scenario 3 Cause 3 Mean Precision and Recall ………………….. 128

Table 7.1 Comparison of Different Possible Methods for Overload Causes
Identification and PROV-TE Framework ………………………………………… 143

- 1 -

Chapter 1

Introduction

1.1 Research Motivation

In Cloud computing, virtual machine over-commitment is widely implemented

among Cloud providers in order to maximize profits and to utilize resources [1].

Some researchers use other names for this mechanism, such as overbooking,

oversubscription and over-allocation [1]–[3]. Over-commitment means that for

any given physical machine, Cloud providers allocate more virtual capacity than

the actual capacity on the physical machine. Over-commitment can make better

use of resources, namely CPU, memory, storage and network in the Cloud [4].

These resources have been found to be under-utilized because users tend to

over-estimate their needs so they request more resources [5].

Every Cloud provider has specific policies to determine the amount of over-

commitment ratio [1]. For example, if the ratio is 2 then a server with a capacity

of 50 units can accept 100 units. In reality, requirements such as QoS (Quality

of Service) are taken into consideration by Cloud providers. For any application,

the QoS is defined on a per-VM basis. It is an assurance that the required

resources and parameters would be fully supported, such as levels of

performance and availability. In addition, the SLA (Service Level Agreement) is

a service contract between a Cloud provider and a Cloud user which includes

the QoS parameters that guarantees the quality of service required.

Over-commitment runs the risk of not meeting SLAs [6] by breaching key and

agreed performance metrics, such as response time, execution time, and

latency. The ability to guarantee the continuous availability of the agreed levels

- 2 -

of resources, e.g. memory or CPU, could also be affected as a consequence of

lack of over-commitment administration in a virtualized environment.

In addition, over-commitment of resources, if not managed carefully, can cause

overload on the physical machines, which has a deteriorating effect on the

performance and availability of the Cloud service. For example, even though that

88% of memory overloads are transient and lasts for less than 2 minutes [2], it is

considered a massive drawback and can still violate the SLAs and QoS

agreements. The sensitivity of memory overload is high because it can lead to

halts in the system or service. The provider in this case may have to compensate

the client.

In order to summarize over-commitment and overload, consider R as a resource

such as CPU, C(R) as its physical capacity such as 10 units, Rreq as the total

approved requests to R, and Ract as the total consumption actually needed to

R. Over-commitment occurs when the total approved requests to R, such as 15

units exceeds the physical capacity of R, 10 units, (Rreq > C(R)). Overload

occurs when the total consumption of R, such as 11 units, exceeds the physical

capacity of R, 10 units, (Ract > C(R)). Ideally, it is expected that the actual

consumption of a resource does not exceed its actual physical capacity which at

the same time is less than the total approved requests (Ract <= C(R) < Rreq).

To help providers not to violate the SLAs in terms of, for example, performance

and uptime, there are a number of different strategies to mitigate the overload

which aim to provide a continuous space and computing power for existing tasks

to perform, namely; Resource Stealing, Quiescing, Live Migration, Streaming

Disks, Network Memory, and Task Eviction [2], [4], [7], [8]. These existing

strategies for mitigating overloads are largely reactive, i.e. after an overload has

- 3 -

taken place, the system will act upon it. The proposed framework in this research

is a step towards a proactive preventative system.

Google, a Cloud service provider, implemented the mitigating strategy Task

Eviction in its data centres [7]. Google stated a variety of causes for any overload

scenario to occur [7]. This research is motivated to find a method to

systematically identify the causes of an overload and their extent of impact and

explain how is different from the current diagnostics methods, such as fault

tolerance techniques. Instead of only mitigating the current overload,

understanding the causal relationships between cause and effect may help

identify preventative actions and reduce future occurrences of overload.

1.2 Research Focus

Over-commitment is facilitated by the use of virtualization technologies. Thus,

raw data from the virtualization layer, such as physical machines’ resources

uptime, is important for auditing. For example, when one physical unit of CPU is

virtualized to 10 units, the failure of the physical unit means all virtualized units

will fail as a result which then leads to an overload on the servers. This research

focuses on: the behaviour of the physical machines resources uptime (CPU,

Memory, and disk), the behaviour of users in terms of their requests of resources,

and the usage of the allocated resources. The use of PROV model [9], one of

provenance models explained in section 2.3.2, to add reasoning power and

meaning to logged usage data might lead to the exploration of reasons and

causes of overload. Analysis of provenance information of a given task would

pave the way to extract knowledge from usage data that was not identified using

the standard logging system. For example, STRAPP project [10], explained in

section 3.3.2, has sparked the motivation of using provenance data.

- 4 -

The proposed provenance-driven diagnostic framework includes three parts. The

first part is the PROV-TE model, which is an application of the provenance model

PROV over a Cloud infrastructure that mitigates overloads by applying Task

Eviction strategy. As presented in Chapter 4, PROV-TE has been built after

examining and filtering the raw data of a datacentre. The second part prepares

the platform for queries and the third part develops the algorithms and the

diagnostic analysis. Each algorithm identifies the link between a specific cause

and the evicted task(s). Alternative provenance and non-provenance based

methods are presented in sections 3.3.3 and 3.2.5.

Calculating the extent of every cause can determine the most dominant cause of

an overload in a datacentre. The general assumption of this framework is that

overload could be caused by a variety of reasons which include, but not

excluding, both the user and the provider. The framework is a structure that

serves the diagnostic investigations on Task Evictions in Cloud data centres.

1.3 Research Aim and Questions

The aim of this research is to produce a provenance-driven diagnostic framework

that examines the historical data and finds the causes of an overload. This

framework will utilize and extend a provenance model: PROV, which is a W3C

family of documents that define an abstract standardized model, corresponding

serializations and other supporting definitions [11]. The framework uses light

weight semantics. The challenge that faces this research is to understand the

meaning and relationship captured in the raw data that have not been known

previously. The purpose of making use of light weight semantics following PROV

is to add meaning and reasoning power in terms of connecting the collected raw

data as nodes and edges. Thus, a diagnostic framework to provide the reasons

- 5 -

and causes of an overload can be developed. Although there are strategies to

mitigate the overload, there is no approach in the literature to audit the causes

by considering the provenance of the dataset that captures the behaviour of the

systems and the users’ usage.

In light of this, the research questions and the objectives for each question are:

1. How to formulate a suitable diagnostic provenance model that will help

check the causes of overload in a Cloud platform?

a. To define the purpose of this underlying provenance model.

b. To find how the proposed model would add reasoning power to the raw

data in Cloud environments.

c. To compare the proposed model different with other techniques, assess

the added-value, and illustrate how it is different from a simple ER

model.

2. How to operationalize the model?

a. To develop queries that could provide diagnosis.

b. To reflect on the lessons learned from testing on Google dataset.

3. How to validate the model?

a. To test the accuracy of PROV-TE.

b. To assess the reliability of the model and the diagnostic algorithms.

1.4 Research Methodology

In general, there are two research approaches to data collection and analysis,

quantitative and qualitative [12]. According to the literature, there are three types

of methodologies applied in distributed systems, namely Prototyping, Simulation

and Mathematical Modelling [13]–[15].

- 6 -

The research approach followed in this thesis is based on quantitative analysis

and includes the use of simulation, prototyping and repeatable empirical

experiments as follows:

 Identification of the mitigating strategies of an overload and provenance

models used in a datacentre through an extensive literature review.

 Analysis and characterization of the overload problems and task eviction

causes in Google’s datacentre using a 29-day Cloud dataset.

 Formulation of a provenance model to audit the impact of the causes of

overload. This is the first case study using Google Cloud dataset for

learning. After examining the dataset, the abstract model of PROV was

applied which led to development of PROV-TE model. Then, 10 different

diagnostic algorithms were developed, each look at the data from a

different perspective with the aim of identifying and pinpointing the

evicted tasks. Both the model and the algorithms have gone through two

iterations of development.

 Validation of the developed provenance-driven framework on a

simulated dataset for evaluation. This is the second case study using a

simulation tool, SEED, to simulate the overload behaviour in a

datacentre. The generated datasets were then passed through the

diagnostic framework. This application is an assessment of the reliability

and the transferability of the framework.

1.5 Potential Areas for Contribution

The major contributions of this thesis is summarized below. An in depth

discussion will be presented in Chapter 6.

- 7 -

 A provenance framework that acts as a diagnostic tool to find the causes

of an overload in the Clouds by two steps. First, extending the PROV

model to represent a task eviction mitigating strategy. Second,

identifying attributes relevant to the strategy, related to research

question number 1.

 A computational version of the model for reasoning. Developing

algorithms to find the cause-effect relationship between causes and

tasks (identifying the evicted tasks because of each cause), related to

research question number 2.

 The modelling of Task Eviction behaviors in a Cloud datacentre with

provenance data using a simulation tool. Demonstrating methods of

simulating task evictions, related to research question number 3.

1.6 Thesis Outline

A summary of the remaining chapters is as follows:

 Chapter 2 discusses the state of the art with respect to provenance in

Cloud computing. It presents the concept of the Cloud in computing and

the concept of provenance and related background. In addition, it

highlights the benefits of provenance and provenance models in the

Clouds.

 Chapter 3 presents related work in terms of Cloud Computing and

Provenance. The mechanism of over-commitment of resources

leveraging virtualization. In addition, it highlights the current use of

provenance and provenance models in the Clouds.

 Chapter 4 presents the analysis and characterization of Google’s 29-

day Cloud dataset. Also, it demonstrates the extension of PROV model

- 8 -

and the diagnostic algorithms to fit a Cloud datacentre using Google

dataset for learning.

 Chapter 5 illustrates the application of PROV-TE model over Google

dataset and shows the computational version of the model and its

application.

 Chapter 6 shows the framework’s evaluation using a simulation tool,

SEED. 15 simulated datasets have been generated to test the precision

and recall of the framework.

 Chapter 7 presents the conclusion of this thesis and provides the future

work related to this area of study.

- 9 -

Chapter 2

General Background in Cloud Computing and

Provenance

2.1 Introduction

This chapter provides the broad context of this research. To better understand

the scope of this research, the background of Cloud computing is presented and

discussed. The concept of resources virtualization is then described. The

differences between Cloud and traditional data centres are drawn. Then, the

concept of data provenance as well as its uses and benefits are presented.

2.2 Cloud Computing

Cloud computing is a rapid evolving paradigm [16]. It delivers virtualized,

scalable, dynamic, pooled and elastic resources (i.e. CPU, memory) over a

network (i.e. Internet) from off-site data centres to the users (i.e. individuals,

enterprises, governments) [17]. Besides, it has been stated that Cloud computing

facilitates the transformation of the way in which the IT utility is delivered in a

wide variety of organizations [18]. Further, there is not yet an agreed definition

of Cloud computing in the literature. There are more than 20 definitions covering

various aspects of Cloud computing [19]. The most used definition in the

literature is issued by the National Institute of Standards and Technology (NIST)

[20] stating that

“Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management

effort or service provider interaction.”,

- 10 -

which also is going to be used along this research. In addition, Cloud computing

encompasses the applications that are delivered as services and also the

hardware and software that support the delivery of these services [21], [22]. In

order to guarantee consumers’ satisfaction, reasonable levels of Quality of

Service (QoS) must be established and maintained which is a pivotal feature

when providing such dynamic services. Furthermore, the technology of Cloud

computing has unique characteristics comes in a number of types (delivery

models) and deployment modes. All would be discussed in the next sub-

sections, respectively.

2.2.1 Cloud Computing Characteristics

NIST [20] defines five unique characteristics that distinguish Cloud computing

from other distributed system technologies which are described as follow:

 On-demand self-service: Cloud self-service interfaces provide

mechanisms for the management of the entire service delivery lifecycle.

Consumers can request, utilize and manage the computing resources

such as network bandwidth and CPU power on-demand and without the

need to interact with service administrators or providers.

 Broad network access: Cloud computing services are delivered over

standard network protocols and accessed through heterogeneous

platforms and devices used by consumers such as mobiles, laptops,

tablets and workstations. This allows Cloud providers the capability and

capacity to deliver wide range of services of different kinds to their

consumers whose devices are connected through networks.

 Resource pooling: Cloud providers can pool their computing resources to

multiple users (consumers) utilizing a multi-tenant model. These

- 11 -

resources are dynamically assigned and reassigned depending on the

consumers’ demands. Cloud services are provided with a sense of

location independence where consumers generally have no control or

knowledge of the exact location of the provided resources. However,

depending on the provider’s policies, the consumer can specify the

location at a higher level of abstraction such as datacentre, city, or

country.

 Rapid elasticity: Elasticity is the system’s ability to add and remove

computing capacity from a computing environment. Cloud providers can

scale their resources in and out based on consumers’ demands which

saves costs. Elasticity of resources can be achieved in two ways: vertically

by increasing or decreasing Virtual Machine’s (VM) resources (scale-up)

and horizontally by increasing or decreasing the number of VMs (scale-

out). This makes the resources appear to be unlimited to the consumers.

 Measured service: Cloud resources usage can be monitored, reported

and managed on a transparent manner for both the provider and the

consumer. Consumers are billed on a pay-per-use basis which means

that consumer are charged according to their actual resources usage.

This allows the providers to monitor the usage patterns which can lead to

improvement to the Cloud environment productivity and resources

provision enhancement.

2.2.2 Cloud Actors

There are five Cloud actors (stakeholders) according the NIST Cloud computing

Reference Architecture [23], as shown in figure 2.1:

- 12 -

 Clouds Carriers are the intermediate entities that guarantee faultless

service distribution by providing transport and connectivity amongst other

Cloud actors. They provide access to the their services through

telecommunication, network and other devices which the other Cloud

actors can use [17]. Besides, ensuring the distribution of the services is

undertaken by telecommunication and network providers or transport

agents. Those agents are defined as business organizations that provide

the underlying physicality of the network. In addition, the Service Level

Agreements (SLAs) are usually set up by the Cloud Provider with the

Cloud Carrier to guarantee a consistent and dedicated delivery of Cloud

services to fulfil the level of SLAs offered to consumers.

 Cloud Brokers provide negotiations between Cloud Providers and Cloud

Consumers. The brokers’ services can be categorized into two distinctive

categories [17]. In the first category, the brokers deal with the

relationships between Cloud providers and Cloud consumer. In addition,

Figure 2.1 NIST Cloud Conceptual Reference Model [23]

- 13 -

the ownership and maintenance of the Cloud is the providers’

responsibility not the broker. For instance, a consumer may reach a broker

for a consultancy on the most suitable Cloud provider. In the second

category, the broker can add additional services to the Cloud providers’

application, platform, or infrastructure. Their aim is usually enhancing and

adding more security components to the actual services which the

providers are lacking.

 Cloud Auditors undertake an independent assessment of other Cloud

actors and services. The aim of the audit is to confirm the

expected/agreed level of standards in a number of dimensions, such as

security, performance. The result of the audit is a certificate that has an

influence of the consumers' choice of Cloud providers [17].

 Cloud Providers are responsible for the hosting and maintenance of the

Cloud’s infrastructure along with the provided services to consumers and

brokers. The Cloud Provider is usually an individual or an organization.

Cloud providers can undertake their activities in the following areas;

privacy and security, Cloud service management, service orchestration,

and service deployment. Usually, the providers’ consumers (individuals or

brokers) can become providers in specific cases [17].

 Cloud Consumers are the prime actor of Cloud computing. Habib in [17]

identified two categories of Cloud consumers; end users, and Cloud-

based service providers (CbSP). End users use the provided service to

satisfy their goals (i.e. business targets). However, CbSPs offer (resell)

the services they acquired, that are completely hosted in the Cloud, to

their consumers. To distinguish between CbSPs and Cloud Brokers,

- 14 -

CbSP rely on the services they offer to build their own business model,

while Cloud Brokers only offer extra add-on to the actual service.

2.2.3 Cloud Delivery Models

Implementations of Cloud computing can be categorized according to the service

delivery model (Software, Platform, and Infrastructure) and according to the

deployment mode (Public, Private, Community and Hybrid/Federated) [20],

[24]–[27]. Each delivery model, shown in figure 2.2, has a different set of

responsibilities and functionalities for both the Cloud provider and consumer.

Cloud computing services can be delivered through three types of delivery

modes; Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS) [20].

 SaaS is basically delivering a service/application to a costumer utilizing

Service Oriented Architecture (SOA). The application is location

independent and can be accessed through various devices; either a thin

client interface or a program interface. One of the advantages of SaaS is

that everything is abstracted and the user would not worry, manage, or

control the infrastructure of the Cloud. However, one of the disadvantages

Figure 2.2 Hierarchical View of Cloud Computing [159]

- 15 -

of SaaS is that users have limited configurations settings (control) over

the service. One example of SaaS is Google Gmail and salesforce.com.

 PaaS enables the costumer to deploy or run their own applications

(whether developed/created by them or not) leveraging the Cloud

platform, tools, and programming language. Also, managing and

controlling the Cloud infrastructure is not the costumers’ role. However,

they have full configuration settings over the applications, since they own

it. One example of PaaS is Google App Engine.

 IaaS refers to delivering the computer infrastructure as a service.

Consumers are able to deploy their arbitrary software, such as operating

systems. They have the power to control and manage all of the

fundamental computing resources (i.e. storage, operating system) but

with limited control of selected network components (i.e. firewalls). One

example of IaaS is Amazon’s Simple Storage Service (S3).

The targeted delivery model for this research is IaaS because in which the

virtualized and physical resources and deployed, managed and monitored.

2.2.4 Cloud Deployment Modes

The deployment mode of a Cloud data centre depends on the physical location

of the computing resources, the organization’s responsibilities and the business

strategy. There are a number of Cloud computing deployment modes that are

being used, which are Private Clouds, Public Clouds. Community Clouds and

Hybrid Clouds [23], [24].

 Private Clouds: The environments are characteristically customized

with devoted virtualized (provisioned) resources and infrastructure for

particular organization(s) [28]. The ownership, managements, and

- 16 -

control of the private Clouds by the same organization(s), a third party

or both of them. Examples of Private Clouds can be found in

enterprises and universities.

 Public Clouds: The infrastructure is virtualized to be used by the

general public, such as Gmail. The ownership, managements, and

control of the Cloud is by a business or an organization (i.e.

government or NGO) and the location of the Cloud is in the site of the

Cloud provider. Usually services of this category require subscription.

Google App Engine, Windows Azure, and Amazon Elastic Compute

Clouds are examples of Public Clouds.

 Community Clouds are customized for a specific group of consumers

who have the same goals or concerns [20], [29]. For example, Siemens

offer services for media companies by utilizing Microsoft Azure, a public

Cloud, as the underlying Cloud platform while relying on Siemens IT

Solutions and Services data centres, a Private Cloud [30].

 Hybrid Cloud is the infrastructure composition of two or more unique

entities of Clouds (Private, Public, or Community). Those entities

remain separate (unique) but are linked together by standardized

technologies to enable application and data sharing (portability) [20],

[28], [29].

The only accessible type of the deployment modes for this research is Public

Clouds, i.e. Google’s Dataset. Thus, it has been utilized to meet the objectives

of this research.

- 17 -

2.2.5 Virtualization

Virtualization of resources is not unique to Cloud computing, but it is a key unit

in Cloud data centres [31], [32]. Virtualization of resources at the lowest level is

a feature that differentiate Clouds from Grids [33]. It refers to the abstraction of

computing resources, normally as virtual machines (VMs), with related network

and storage interconnection [34]. Cloud-powered technology governs the

allocation, delivery and presentation of these virtualized resources. With

virtualization, rapid and dynamic scaling of resources depending on consumers’

demands is allowed [35]. It makes possible for hardware resources to be

efficiently used by sharing the same resources to several units at the same time

[36]. The Virtualization layer sits between the physical infrastructure (hardware)

and the operating system (OS) and the applications. A key element that enables

virtualization is the Hypervisor, a Virtual Machine Manager (VMM), which hides

the physical resources of the system from the OS. The VMM directly controls the

hardware resources, thus allowing the possibility of running more than one OS

on the same hardware. As a consequence, the hardware can then be partitioned

into logical unites which are called VMs [34]. To the OS and the consumers, a

VM appears as an isolated physical machine (PM). Also, the VMM is responsible

for the deploying, migration, monitoring and deletion of the VMs.

2.2.5.1 Virtualization Types

There are numerous types of virtualization including Full Virtualization, Para-

virtualization and OS-Layer Virtualization [33], [34] illustrated in figure 2.3.

 Full Virtualization: The VMM allows complete abstraction from the

underlying physical hardware, i.e. CPU and Memory. Both the OS and the

- 18 -

VM are unmodified and unware of the virtualization environment. The total

abstraction introduces overhead which reduces level of performance.

 Para-virtualization is similar to the full virtualization but the OS is modified

in the sense that it is aware of the virtualization environment and also

aware of the other VMs’ resources demands within the same PM.

 OS-Layer Virtualization: The VMM runs more than one instance of the

same OS in parallel. In this type, both the hardware and the OS are

virtualized. The VMs on the same PM use the same OS.

 Linux Container is a virtualization tool different from VMs. It allows the

ability to package applications and their dependencies into lightweight

containers that move easily between different distros, start up quickly and

are isolated from each other. A distro is a computer software distribution

package. So, a container can be considered as a lightweight equivalent

of a VM [37].

Hardware Layer

Host OS

VM

Full Virtualization OS-Layer
Virtualization

Para-virtualization

VM VM

Hardware Layer

Host OS

VM

VMM

VM VM

Hardware Layer

VMM

VM VM VM

Figure 2.3 Types of Virtualization

- 19 -

2.2.5.2 Virtualization Advantages

According to [34], [38], there are benefits for the organizations who implement

system virtualization. The main advantages are described below.

 Cost. Resources are accessed and managed efficiently which leads to

cost reduction in both hardware and operations.

 Workload Optimization. Resources are better utilized by reducing the

amount of idle or non-used resources. This allows Cloud providers to

maximize the utilization of the available resources. Reacting to high

usage, providers can easily shift resources between VMs.

 IT flexibility. Creating and deploying VMs can easily be done on demand

by Cloud providers regardless of the location. Also, the specification of

the VMs can be modified while running such as CPU units and amount of

memory.

 Availability. In case of PMs taken offline for maintenance, the VMs can

keep running. This is allowed by temporarily migrating the VM to another

running PM. PMs can be maintained, upgraded and changed without

having an effect on the running virtualized instances.

2.2.5.3 Virtualization Disadvantages

 Single Point of Failure. The virtualization layer relies on the hardware that

hosts the VMs even though it is decoupled from the physical layer. The

PM failure can lead to the failure of all hosted VMs which often translates

in loss of consumers’ data.

 Overhead. There is a trade-off between flexibility and performance when

applying virtualization. The increased flexibility causes overhead which

- 20 -

has a negative effect on the overall performance of the hosted

applications.

2.2.6 Cloud Quality of Service

Guaranteeing a QoS is a pivotal issue for Cloud providers because it determines

their level of success [39]. Cloud providers’ reputation and revenue depend on

the successful delivery of the Cloud services to consumers as expected. A QoS

is an assurance that the required resources and parameters would be fully

supported, such as levels of performance, availability, privacy, security and

dependability [33]. Providers rely on SLAs in order to facilitate and establish the

QoS.

A SLA is a legal service contract between a Cloud provider and a Cloud user

which includes the QoS parameters that guarantees the quality of service

required [24], [33], [40]. It includes the set of services that will be delivered,

definitions of each service, the responsibilities of the provider and the consumer,

a set of measurable metrics, an auditing framework for monitoring, the

consequences and actions for service delivery failure, etc [24], [39], [41]. For

example, when a virtualized CPU is under overload, the agreed level of

performance is likely not to be met. The same thing for a virtualized memory in

a situation of overload, the agreed level of memory is likely not to be met. Also,

response time, execution time, latency and more are related performance

metrics included in the SLA. There are specific SLA metrics for each Cloud

delivery model (explained in Section 2.2.4) [40]. The SLA of IaaS includes

metrics such as time for VM to be ready for use, maximum and minimum VMs

available for dynamic scaling, availability of access in terms of uptime. For PaaS,

SLA metrics include method of charging, maximum number of unique user

- 21 -

access, possibility of integration with other platforms, etc. For SaaS, SLA metrics

include reliability, usability in terms of method of access, uptime of software, etc.

In addition, SLA coverage can be classified into four levels depending on the

delivery models; Facilities-Level, Platform Level, Operating System Level, and

Application Level.

2.2.7 Differences between Cloud and Traditional Datacentres

A datacentre is a facility that houses PMs, namely servers, storage units and

network devices, systems for power distribution and systems for cooling [42].

Cloud computing refers to the delivery of SaaS, PaaS and IaaS to consumers

over a network and the software and hardware in a datacentre that support that

delivery [22]. It builds on the principles and paradigms and shares similar

characteristics with multiple distributed systems technologies such as Cluster

computing and Grid computing [32], [33]. Managing large scale resource

Element
Cloud

Datacentres

Traditional

Datacentres

Unlimited computing resources on demand Yes No

No Up-front obligation by customers Yes No

Pay per consumption Yes No

Economies of scale Yes Usually not

Increase utilization via virtualization of
resources

Yes No

Full control over data and physical equipment No Yes

Rapid elasticity of computing resources Yes No

High Potential for building value-added or 3rd
party solutions

Yes No

Table 2.1 Differences between Cloud and Traditional Datacentres

- 22 -

intensive application is the shared motivation between Grids and Clouds.

However, Cloud computing leans more towards a business model. A Cloud

datacentre is a group of virtualized and connected computers that are

dynamically provisioned and provided as combined computing resources which

depend on the agreed SLAs [19]. Cloud implementations are deployed over

traditional datacentre; thus the approaches at infrastructure level are similar.

Method of access to datacentres and the way providers and consumers interact

is where Cloud datacentres is different than traditional datacentres. Cloud

datacentres are off-site (outside the physical location of the organization) and

permit the access of resources through the internet. Consumers are allowed to

acquire and reacquire computing resources without the need of human

interaction. In comparison, traditional datacentres are mainly on-site (inside the

physical location of the organization) and consumers generally need to request

resources without guarantee of delivery. Table 2.1 summarizes the differences

between Cloud and traditional datacentres [21], [22], [43], [44].

2.2.8 Challenges for Adopting Clouds

Even though Cloud computing offers wide range of benefits, it yet holds many

hurdles that disrupt its rapid adoption [21]. Such challenges include business

continuity and service availability, multi-tenancy, access control, confidentiality,

data integrity, and audit [22], [45], [46]. A number of which will be explained

below.

Business continuity and service availability are one of the major challenges in

Clouds. In the business community, it is known that there is no guarantee for a

company to stay in business for ever. So, there is a risk that, for any reason,

Cloud providers go out of business. Also, nearly every major Cloud provider, i.e.

- 23 -

Amazon’s S3 and Google’s App Engine, has had a downtime in their service

availability due to many reasons, such as overload and programming error. One

of the suggested solutions to lower the risk of this issue is for Cloud providers to

have multiple data centres located in different locations and for Cloud consumer

not to rely on one provider (A single point of failure) [22].

While multi-tenancy in Cloud environment introduced many benefits, it brings

security and privacy vulnerabilities and threats to both the Cloud users and Cloud

infrastructures. In the physical environment, similar functionalities with existing

operating systems and applications are pooled in virtualized environments, thus

software bugs and recognized security weaknesses in these systems remain the

key risk to any virtualized multitenant environment [45].

Having private and sensitive data in off-site Clouds brings about more security

threats, such as potential insider attacks or server compromise [45], [46].

Attackers can mimic an identity of a user and potentially be enabled to full access

of the data. One of approaches to mitigate this issue in access control is to

encrypt the data in a differentiated manner and only share the decryption keys

with the authorized users [45]; however, this solution comes at a cost of

performance. Trade-offs is almost in every suggested solution of Clouds

challenges and issues.

2.3 Provenance

Provenance is not a new idea. Moreau et al gave a simple scenario of

provenance in the art world [9]. When a painting is sold to someone, it is often

accompanied with a paper trail or physical markings, documenting the details of

the first owner (the artist) from its creation to its current state and ownership. This

documentary history is referred to as the provenance of the object. The price of

- 24 -

this object depends on the level of completeness and the quality of its

provenance, which reflects its importance. In the literature, provenance is

sometimes called lineage [47], [48].

Within the context of e-Science, Simmhan et al [49] stated that Data Provenance

as:

“One kind of metadata which involves recording the dependencies amongst

datasets”.

That dependency shows the relationship amongst these datasets since their

creations as well as the information on how they were generated in the first place.

In the scientific domain, one benefit of data provenance is enabling the

regeneration of missing or deleted datasets, as proposed by Foster [50] in [51]

in their notion of virtual data.

Further, provenance is not only about the production of scientific data but also

the process that lead to their generation [49]. The granularity at which

provenance is collected defines its usefulness. There are two crucial attributes

of the provenance of a data item: (1) the ancestral data product from which this

data item has evolved, and (2) the process of transformation of this ancestral

data product, i.e. workflow, that leads to the derivation of this data products[49],

[52].

Buneman et al in [53] defined provenance within the domain of databases as:

“The description of the origin of the data and the process(es) by which it

arrived to the database”.

This implies that the processes of data transformation and derivation of data

should be recorded. So, decision making will be more accurate given data

- 25 -

provenance is in place as a decision mostly involves a human agent who relies

on system output. Thus it is pivotal for a user to place trust on the system outputs

[54].

Provenance is not new in computing and IT systems as it is being used with

regards to the debugging of systems [55]. Provenance data and logs are

completely different. Logs provide a time-line history of actions - that have been

pre-defined - relating to a single application, whereas provenance data goes

beyond logs as it includes data about numerous applications, components and

people [55]. Logging and auditing are heavily being used to establish the first

point of an error, the reason it took place, other attributes lead to this error being

created and the impact on the overall system. It has been claimed that complex

systems such as Clouds that include many layers of interactions between

software and hardware and involve the interaction between different components

from different providers lack such effective debugging systems (logging and

auditing) [49], [55]. Thus, it is thought that provenance would bring instant

benefits to both users and Cloud providers once it has been introduced to Cloud

computing [56].

2.3.1 Provenance in the Web and Cloud Domains

World Wide Web Consortium (W3C) has defined provenance as

“A record that describes the people, institutions, entities, and activities

involved in producing, influencing, or delivering a piece of data or a thing”

[57].

In addition, a more related definition of provenance to this research is introduced

by Moreau et al [9] stating that provenance in the context of web and Clouds is

defined by

- 26 -

“A record that can be created by, exchanged between, and processed by

computers.”

For this research, provenance can be defined as a documentation of Cloud data

or descriptions of Cloud events that computers and people can create,

exchange, and process. This documentation records who created what and

when, why it has been created, and the path this object has travelled. The ‘who’

represents the person who initiates an event to be processed. The ‘process’ can

be deploy, update, pause, terminate a task, etc. The ‘when’ represents the time;

for example, the time the event has been created and the time needed for that

event to be processed. Events are of five types: invalidation, generation, start

and end of activities, and usage of entities [9]. For example, a Cloud activity has

a lifetime delimited by its generation and invalidation.

2.3.2 Provenance Models

Because the underpinning of provenance models is commonly a graph

representation, it is important to explain it first.

2.3.2.1 Representation of Provenance

It has been stated that the state of an object can be affected by the people

involved, the organizations that people act on behalf of, processes executed, and

other relevant data [9]. Thus, to better show provenance record in a meaningful

way, it can be represented as a graph, that includes data, processes,

organizations, and people as nodes and the relations between these nodes as

edges [11].

The provenance graph is defines as

- 27 -

“A record of a past or a current execution ... but not a workflow to derive

future data.” [58].

Capturing the dependencies between entities is the aim of the provenance

graph. So, edges that link nodes such as process, artefact, or agent, represent

such dependencies between the effect (source) and the cause (destination) [58].

To illustrate, edges can articulate the following reliance: an artefact ‘was

generated by’ a process; a process ‘used’ an artefact; a process ‘was controlled

by’ an agent; an artefact ‘was derived from’ another artefact; a process ‘was

triggered by’ another process and so on [9], [58]. Figure 2.4 explains one of the

dependencies in an example. It illustrates one angle of the provenance graph,

the responsibility angle between an agent, Bob, and an entity, the article. All of

which will be described in the next sections.

Other than bespoke models, there two notable provenance models which are

widely used, The Open Provenance Model (OPM) and PROV model.

2.3.2.2 The Open Provenance Model

OPM is the outcome of the Provenance Challenge series in 2006 – 2010. The

first challenge was to understand the different capabilities of different

provenance systems and the second was to utilize provenance information to

establish inter-operability of systems. The last challenge was about sensibly

evaluating the Open Provenance Model, from an inter-operability standpoint

[58]–[60].

Figure 2.4 The Employment Article was Attributed to Bob. [9]

- 28 -

OPM is a model explaining artefacts and their derivations in the past; whereas

process could be still running or finishing in the future so long as they have

originated in the past. Additionally, the OPM is established for the aim to fulfil the

following requirements [60]:

 Exchanging provenance information between systems based on a shared

provenance model.

 Ability to build and share tools operating on a provenance model.

 To define the model in a precise, technology-agnostic manner.

 Representing the provenance for anything digitally.

 Defining a set of rules and guidelines that specify the valid interpretations

that can be made on provenance graphs.

OPM is depended upon three nodes, which are: Artefact (A), a slice of state that

may have a physical or digital representation; Process (P), new artefacts

resulting from an action or a series of actions executed on or originated by

already existing artefacts; and Agent (Ag), circumstantial entity acting as a

Figure 2.5 OPM edges [58]

- 29 -

medium of a process, simplifying, enabling, controlling, or influencing its

execution. With regards to the provenance graph, Figure 2.5 shows the five

identified causal dependencies between the three nodes. Circles represent

artefacts; octagons indicate agents; and rectangles denote processes. A causal

dependency is defined as a relationship that shows the existence of dependency

between an effect (source) and its cause (destination) [60].

2.3.2.3 PROV Model

It is vital for provenance to be independent of the technologies used across

multiple systems’ executions as it is anticipated to express the flow of data and

information of those systems. In addition, those systems are probably to be

different in nature, employed and designed by different vendors, where each of

which may adopt a unique way of representing information. Thus, the PROV

model, W3C standard for provenance, implements the notion of the abstract data

model PROV-DM, which can be serialized in a number of formats [9]. According

to W3C [11],

“The PROV Family of Documents defines a model, corresponding

serializations and other supporting definitions to enable the inter-operable

interchange of provenance information in heterogeneous environments

such as the Web.”

PROV family consists of 13 documents which define the factors essential to

achieve the task of inter-operable exchange of provenance data and information

in different environments such as distributed systems and the web [11]. W3C

have recommended 4 documents to serialize PROV model:

- 30 -

 The PROV ontology (PROV-O) is an owl2 ontology enabling PROV data

model to be mapped to RDF [61], which presents numerous serialization

formats, such as rdf/xml.

 PROV-XML is an xml schema which allows native xml representations for

the PROV data model [62].

 PROV-N is a notation for provenance intended for human use.

 PROV-DM is the PROV data model for provenance.

PROV model is composed of three classes (provenance views) and seven

properties (prefix with ‘prov:’) [9], shown on Figure 2.6.

 The data flow view shows transformation of things in physical or digital

domains. Also, it is the flow of information within computer systems.

Entities (prov:Entity) are arbitrary things or digital artefacts of which we

want to describe the provenance. Derivation, encoded by the property

prov:wasDerivedFrom, refers to the transformation and the flow of these

entities.

 Sometimes, cataloguing the processes that occurred and all related timing

information is helpful to offer more information about derivations. The data

flow view can then be cleansed by the process flow view detailing the

activities that took place, in addition to their start and end timings. The

property (prov:used) is a notion describing Entities being input to Activities

(prov:Activity), which their output are new entities (the notion of

Generation described by the property prov:wasGeneratedBy).

Additionally, the concept of Communication, articulated by

prov:wasInformedBy, captures the flying data from one activity to another.

- 31 -

 Provenance is also about conveying responsibility for what happened in

a system, the responsibility view. The class of things found in the range

of three properties is referred to Agent (class prov:Agent). Agents may be

responsible for (a) other agents which forms a Delegation, represented by

prov:actedOnBehalfOf (b) for past activities: that is an Association, which

is denoted by prov:wasAssociatedWith, or (c) for the existence of entities

which refers to Attribution indicated by the property prov:wasAttributedTo.

2.3.3 Benefits of Provenance in the Clouds

Provenance is mainly valuable in difficult circumstances to review complex

processes particularly when they involve numerous stakeholders [9].

Provenance is one essential dimension of process verification, reproducibility,

reliability and trust in distributed systems [32], [63]. Analysis of provenance

information of a given task would pave the way to extract knowledge from usage

Figure 2.6 PROV Abstract Model [9]

Prov:AgentProv:AgentProv:ActivityProv:Activity

Prov:EntityProv:Entity

prov:wasAttributedTo

responsibility
 view

data flo
w viewprocess flow view

prov:used

prov:wasGeneratedBy

prov:wasDerivedFrom

prov:wasInformedBy prov:actedOnBehalfOf

prov:wasAssociatedW
ith

- 32 -

data that was not identified using the standard logging system. According to [49]

[64], there are several uses (benefits) that provenance systems could support,

some of which are:

 Attribution in which provenance can establish the copyright and ownership

of data.

 Provenance can be used to assess Data Quality and Reliability with

regards to the origin data and transformations.

 The more detailed the provenance the more confidence in Replication of

data derivation.

 Provenance can provide the ability to track the Audit Trail of data.

In addition, provenance in scientific and intensive computing is claimed to

provide guarantee in quality of results and to assure the repeatability of

experiments [55]. Nevertheless, there is one crucial trade-off when utilizing

provenance which is scalability. Having more and more data to be recorded adds

an overhead on scalability [65]. To guarantee whether data on the web/Cloud is

creditable or not takes a lot of effort, cost and time. Clouds provide the feasibility

for resources and data to be shared easily (and sometimes anonymously);

however, there is no 100% guarantee of the reliability of the data which brings

about doubtfulness between users. Thus, provenance is important for Clouds

because without it, users will not be able to validate the data’s identity and

authenticity [66]. In Clouds, location of the physical machine is unknown which

makes the normal forensic activities redundant, such as traditional capture and

seizure. Data Provenance is one way that can fulfil the need to track Cloud data

and users which makes it a key in Cloud forensics field [67].

- 33 -

2.4 Summary

This chapter has provided a detailed summary about Cloud computing. It

presented an overview on Cloud computing deployment modes and delivery

models and the challenges in adopting the Clouds. It also discussed in detail the

Virtualization feature which is an essential key component in Cloud computing.

Besides, the benefits of virtualization to both the consumer and providers has

been presented.

Furthermore, the concept of provenance and the two standards of provenance

models have been discussed. Then, the potential advantages of provenance

have been presented

- 34 -

Chapter 3

Literature Review

3.1 Introduction

This chapter presents related work in Cloud resource utilization and provenance.

The advantages and disadvantages of resources over-commitment are

discussed. Overload issues and the existing mitigating strategies in the literature

are presented. The challenges of provenance adoption in the Clouds is

presented and discussed. Finally, the Chapter concludes by discussing the

related work with regards to the use of W3C PROV provenance data model in

Cloud computing environments highlighting the research opportunities based on

the gaps found in the literature review.

3.2 Cloud Resource Utilization

This section will explain the relationship between overestimation of resources by

users, over-commitment of resources by providers, and the inevitable

overloading in physical machines if over-commitment is not administrated

carefully. It also discusses the existing overload reactive mitigating strategies.

3.2.1 Overestimation of Resources

As described in Section 2.2.1, on-demand self-service is one of the

characteristics of Cloud computing. This feature allows resources to be

requested, managed and used by consumers without providers’ intervention. For

example, consumers acquire substantial virtual compute resources such as CPU

to enable the configuration and deployment of their applications and platforms

on the physical infrastructure. It is evident that consumers lack the understanding

and knowledge to determine the exact needed resources to compute their tasks,

thus they tend to estimate and consequently pay more than for resources than

- 35 -

they require [68], [69]. According to [70], [71], consumers tend to significantly

overestimate the required Cloud resources as there is a large difference between

the estimated assigned value and the actual usage consumption of that resource

by a task.

From the Cloud data centres’ perspective and complying to the feature of on-

demand self-service, all requested resources by consumers are granted virtually.

This may lead to the issue of physical resources underutilization due to the fact

that hosted tasks on VMs rarely reach the peak demand simultaneously [1], [72].

Another scenario for underutilization of resources is caused by the fixed VM sizes

offered by providers [73]. Underutilized/idle PMs consume considerable power

in data centres, almost 50%, which leads to losses in revenue [1], [74]. Therefore,

Cloud providers apply over-commitment policy in order to maximize profits,

utilize resources and mitigate the problem of overestimation [2], [75], [76].

In order to provide an illustration of the overestimation problem, an analysis has

been done on a real Cloud usage dataset by [71]. Figure 3.1 shows the hourly

average of CPU (top) and memory (bottom), actual usage (left) and allocated

Figure 3.1 CPU and Memory overestimation and over-commitment
observed in Google Cloud dataset [71]

- 36 -

resource (right). The total capacity of the data centre is represented by the

dashed line seen on the top of every plot. According to [71], the dataset shows

that the data centre is heavily booked. As it can be observed, the total resource

allocation is more than 80% of the data centre’s memory capacity and more than

100% of the data centre’s CPU capacity at almost any time. However, the actual

demand is much lower. On average, the actual memory usage and CPU usage

is about 50% and 60% of the actual physical capacity, respectively. In addition,

CPU has been almost always been overcommitted whereas Memory has not

been as much overcommitted. The Google usage dataset will be discussed

further in Chapters 4 and 5.

3.2.2 Over-Commitment of Resources

Over-commitment of resources, also known as oversubscription, over-allocation

or overbooking, is the practice of allocating more virtual resources on a PM than

the actual physical capacities [74], [77]. Every Cloud provider has specific

policies to determine the amount of Over-Commitment Ratio (OCR) because

higher ratios introduces higher risks [1], [73]. OCR is set by the provider which is

the highest limit of the physical resources’ over-commitment . For example, if the

ratio is 2:1, then a PM with a capacity of 50 CPU units can accept requests of

100 virtual CPU (VCPU) units. According to [1], [78], a larger OCR can increase

the density of the workload per PM but negatively impacts on the performance

guarantees. A low OCR impacts positively on performance but does not greatly

increase levels of resource utilization. When determining the OCR, Cloud

providers need an understanding of the type and characteristics of the tasks and

jobs to be executed and be aware of the agreed SLAs and the data centre’s

capacity and infrastructure [78]. It can be argued that OCR can be adjusted

dynamically in order not to experience overload in the machines. It can be done

- 37 -

by setting a maximum usage level by which OCR is changed once the level is

reached or exceeded. Adjusting OCR dynamically might prevent future

occurrences of overload; however, overload can still occur due to running tasks

prior to OCR adjustment in addition to other causes irrelevant to OCR, as

discussed in section 3.2.4. In addition, OCR only works for new tasks. This

research focuses on submitted and running tasks. The underlying assumption of

over-commitment is that the allocated capacities will never reach total

consumption at the same time. Providers utilize such practices in a leverage to

serve the same number of consumers with less PMs and to mitigate the problem

of overestimation by users [1]. Over-commitment not only increases the average

utilization of a data centre or a cluster but also increases the number of tasks

and jobs that can be supported and executed [78], [79]. Although over-

commitment is beneficial, it introduces risks such as PM overload [4], [80], [81].

3.2.3 Machine Overload and Mitigating Strategies

As explained in Section 1.1, the ideal expectation is when the actual physical

capacity is more than or equal to the actual usage and less than the requested

capacity (Ract <= C(R) < Rreq). However, the case when the actual usage is

higher than the actual physical capacity is called overload (Ract > C(R)). In the

case of overload, new requests can no longer be accepted or fulfilled due to the

limited physical capacity available [43]. According to [73], [74], [82], [83], PM

overload can lead to VM disruptions and performance degradation in terms of

low latency and response time. It also causes resource shortages [81]. Overload

occurs when the actual usage demand exceeds the physical capacities [84].

Overloads can happen to all types of resources, namely CPU, Memory, Disk,

and Network bandwidth. Not managing overloads can lead to violations and

breaches to the SLAs, described in Section 2.2.6.

- 38 -

Cloud service providers face three different types of costs as a consequence of

overloading. Repair costs when overloading lead to components failure, Penalty

costs due to services disruptions, and Business revenue losses due to constant

services outages and unavailability [85].

There are different strategies to mitigate PM overloading, namely Resource

Stealing, Quiescing, Live Migration, Streaming Disks, Network Memory, and

Task Eviction [2], [4], [7], [84], [86], [87].

 Resource Stealing refers to the idea of downsizing the underloaded VMs

or PMs and putting the free resources into the overloaded VMs or PM. In

distributed systems, resource balancing facilitated by resource stealing is

a crucial step especially if it’s achieved dynamically which helps maintain

high overall system utilization. The controller checks available resources

before hosting a task. In the case of lack of resources, the controller

allocates the local available resources, if any, then queries other VMs or

partitions to steal from them the remaining needed recourses [88].

 Quiescing means turning off a number of VMs to regain balance in the PM

and then they can be resumed. In an overloaded PM, one or more less

significant VMs get quiesced so that the remaining more important VMs

run normally and don’t face any performance degradations. Once the

running VMs complete their tasks and resources become free, the

quiesced are resumed [89].

 Live Migration means dynamically migrating an overloaded VM (or an

underloaded VM from an overloaded PM) to another PM that has enough

space to host it. The common approach for live migration of virtual

machine is through pre-copy. On the destination host, a shadow VM is

- 39 -

created. Each used memory page is then copied from the source to the

destination. While the memory pages are being copied, the VM is still

running on the source host until the before coping the last memory page.

The VM stops on the source host and resumes on the destination host

[90], [91].

 Streaming Disks means migrating enough portions of VM’s local disk from

an overloaded PM to an underloaded PM so that it enables the VM to

start. Once load is balanced, the remaining portions of the VM are

transferred. This strategy reduces network costs of migration to the disk

[84].

 Network Memory enables the provider to make use of a memory from

another machine over the network. Until load is restored, page

repositories across the network are used for VM swap pages [2].

Swapping can potentially ease load on the local disk of the overloaded

PM [4].

 Task Eviction is where a hosted task on a VM is pushed out of the VM to

re-queue (re-submit) and wait for free resources to be hosted again.

Tasks sometimes are no longer fit to run on the machines and get evicted

due to (i) hardware failure, (ii) overload because of machine’s over-

commitment, or (iii) competing workload [71]. There are policies that are

used to determine which tasks to be evicted, such as task’s priority. Most

evictions are resultant to changes of machine configuration or other higher

priority tasks being hosted and started on the same VM [71].

These strategies are mainly reactive. They are triggered after the overload has

taken place. Selecting a specific mitigating strategy by Cloud providers depends

- 40 -

on the characteristics of the data centre and the running applications [2]. Possible

proactive methods such as FTM, TCloud, FTCloud are discussed in section

3.2.5. However, to the best of our knowledge there are no proactive methods

found in the literature that directly targets the issue of overload mitigation and

prevention.

3.2.4 Overload Causes

Machine overload can be caused by variety of reasons in addition to over-

commitment. Both the user and the provider can contribute to the existence of

overload [2]. For example, increasing the request of resources by user can lead

to overload in the case that not enough space is available. Bad management of

resources by the provider could lead to memory leaks, for example, which also

can lead to overload. Also, increasing the over-commitment ratio by providers

could increase the chances of overload occurrences [73]. In addition, physical

resources could cause overloads. For example, fan failures and CPU overlocking

could lead to CPU overheating and server overload [92]. Google have observed

five different causes of overload in their data centres; namely Take Over by

Higher Priority Tasks, Increase In Resource Requests, Demand Exceeds

Physical Capacities, Missing Machines, and Decrease in Machines Capacities

(refer to sections 4.3 and 4.8) [7], [71]. Overloads can be in three different states;

(i) network overload (i.e. bandwidth), (ii) hardware overload (i.e. PM), or (iii)

software overload (i.e. VM) [93], [94].

As explained earlier, overload is generally caused due to the limited capacity of

the free physical resource. In practice, overload can be caused due to a

combination of more than one cause in addition to the limited physical capacity

because of over-commitment, refer to section 5.5.

- 41 -

There are several causes that may lead to overload which can later be mitigated

by six different strategies. The scope of this research is to investigate one

mitigating strategy and five causes that triggered it using a real Cloud usage data

for learning and exploration, refer to chapter 3. The mitigating strategy is Task

Eviction and the causes are: Take Over by Higher Priority Tasks, Increase in

Resource Requests, Demand Exceeds Physical Capacities, Missing Machines,

and Decrease in Machines Capacities, refer to chapters 4 and 5.

3.2.5 Causes Diagnosis and Identification

In distributed systems, machine overloading is an issue. There are existing

concepts which can be utilised to diagnose overloading such as fault tolerance,

self-healing, Data Centre Infrastructure Management (DCIM), and rule based

techniques. These methods are considered as resiliency techniques in Cloud

computing [85]. In this section, these concepts and tools, such as TCloud,

FTCloud, Chopstic, Fay, D3S, and Pip, that could potentially be utilized for

overload causes identification will be presented.

In [95], authors stated that fault diagnosis is valuable as it helps administrators

and developers to identify causes of disruption. It has two limitations. First, it is

always passive and reactive. The diagnosis is triggered after the disruption has

already occurred and the symptoms have appeared. Second, diagnosis only

detects the issue but does not prevent it. Disruption diagnosis, nevertheless, is

a prerequisite step before undertaking any kind of corrective measures and it is

a crucial indicator of systems resilience [96]. In addition, employing only fault

prevention techniques, such as rigorous development process, and fault removal

techniques, such as debugging, have been proven to be difficult [97]. Increasing

the dependability of distributed systems and critical applications can be achieved

through the use of fault tolerant methods [98]. Implementing fault tolerance in

- 42 -

Cloud computing is still a challenge [99]–[102]. Challenges range from the

heterogeneity of the integrated components from different vendors to the

difficulty of integrating existing scheduling algorithms with fault tolerance

approaches. The role of fault tolerance has been described in [103] as:

“… to preserve the delivery of expected services despite the presence of

fault-caused errors within the system itself. Errors are detected and corrected,

and permanent faults are located and removed while the system continues to

deliver acceptable service.”

Failures, errors and faults are three different things [103]. When the system

deviates from its pre-specified behaviour, a failure could occur. Failures are

caused by system errors. An error represents an invalid system state. An error

is a result of a fault, which is a defect in the system. Thus, a fault is the root cause

of a failure. Examples of failures in distributed systems are hardware faults,

physical machine overload, and network congestion. Fault tolerance techniques

are either reactive or proactive [104]. In reactive methods, the fault’s impact is

reduced using recovery methods but only after it has occurred. In proactive

methods, faults are predicted, then fault occurrences are prevented. The latter is

preferred but there is still no guarantees that predictions are always accurate

[104].

There are three well-known fault tolerance approaches [97], [98], [103].

Recovery Block approach is a mechanism implemented in software fault

tolerance where redundant program modules (components) are structured.

Standby components are sequentially invoked if the primary component fails.

Multi-Version Design approach is a mechanism that generates multiple

functionally equivalent versions of a system. When applying the Multi-Version

- 43 -

Design approach to Cloud services, the functionally equivalent versions are

invoked at the same time and their results are compared. The final system result

is determined by the consensus output. Parallel approach is similar to Multi-

Version Design. The difference is that the final result is the first returned output.

In [105], [106], authors propose a Failure Tolerance Manager (FTM) in the

Clouds which applies the tight integration of management components technique

[85]. FTM addresses the issues of different computing resources and integrates

three managements components to realize generic fault tolerance mechanisms

and to enable adaptable resilience in Cloud environments: (i) Resource Manager

avoids failure and congestion when allocating resources and manages the

network links, (ii) Replication Manager supports the replication mechanisms

which is used for fault healing. It manages their execution by ensuring that fault-

free replicas show correct behaviour during execution, (iii) Fault Masking and

Recovery Manager enforces fault masking mechanisms to prevent error

occurrences and ensures that the detected system faults are hidden from the

user, such as VM and node faults. The recovery manager’s goal is to minimize

the downtime of the system during failures by recovering and resuming the last

error-free replica of the system. Fault tolerance techniques can be applied to an

overload scenario only when an overload cause is considered as a fault, an error

or a failure such as virtual machines failures. Due to the characteristics of

resources over-commitment and machines overload, there are causes that don’t

fit into these three categories, such as arrival of higher priority tasks and increase

in resource requests. Although fault tolerance techniques are effective, they are

not fully applicable to the different overload scenarios. The proposed

provenance-driven diagnostic framework contributes by diagnosing every

overload scenario and identifies the linked causes, refer to Chapter 3.

- 44 -

Self-healing is another resiliency technique that is applicable to the Clouds [85],

[96]. Dai et al [107] propose a self-diagnosis and self-healing tool that utilises

both Multivariate Decision Diagrams and Naïve Bayes Classifiers as a hybrid

mechanism. Self-healing is the ability of the system to autonomously discover,

diagnose and mitigate any disruptions in the system. Their proposed tool is

based on a consequence-oriented concept. The tool diagnoses the detected

symptoms to prevent failures. The Multivariate Decision Diagram determines the

severity levels of the possible failure. The Naïve Bayes Classifier is a probabilistic

classifier and it infers the possible consequences. The tool scope is in both

hardware and software as it looks, for example, for the causes of memory leaks

and programming bugs. Although authors claim that this is a self-healing tool, it

goes as far as prevention. The tool can be extended and utilized to be used as

an implementation of the overload mitigating strategies and to help decide which

the best strategy is by utilizing the Naïve Bayes Classifier. Verissimo et al [108]

proposes a failure preventative tool, TCloud, which its goal is to reallocate

resources and reassigns trust in in hardware and software components. TCloud

aims to detect and prevent failures. TCloud has been extended to FTCloud which

adds the capability of fault tolerance [97]. FTCloud uses a ranking approach for

resources allocation. Each Cloud component is tested and ranked in terms of

availability. Higher-ranked components are used for the allocation. A drawback

to TCloud and FTCloud is that a data centre needs to be re-implemented and

reconfigured in order to be compliant. Following the formulation steps of the

proposed framework, section 4.4, it can be seen that reconfiguration of a data

centre is not a prerequisite. Kavulya et al [96] argue that self-healing is risky

because it depends on the outcome of the diagnosis. Wrong diagnosis could

- 45 -

lead to bad and wrong recovery decisions. This adds importance and creditability

to the diagnosis models.

DCIM is a one of the management solutions for data centres and can facilitate

resilience techniques [109]. It is the management layer of the physical

infrastructure. It allows data centres to leverage existing technologies such as

data collectors, meters and sensors to support capacity planning and analytics

and data management, integration and reporting [110]. DCIM can be used as a

method for the identification of the overload causes. For example, the decision

support system in the DCIM that can be used by the scheduler to identify weak

nodes by offering a ranking method of servers. Ouyang et al [111] propose a

node performance modelling and ranking framework which analyses node

execution ability and vulnerability to straggler occurrence by using Google Cloud

29-day production data as a case study. They stated that the framework could

inform the scheduler about node-level stragglers that show weak performance to

be avoided. It can observed from section 3.2.4 that the scope of this framework

does not cover all causes of overload. This work shows that DCIMs can be

further improved.

Diagnosis techniques and methods such as count-and-threshold techniques and

rule-based techniques, have historically been a manual process. The notion of

automating as much of the diagnosis process as possible has grown in

importance. Diagnosis techniques can be used to guide cause analysis and are

found in diverse domains such as artificial intelligence, distributed systems,

machine learning, statistics, and stochastic modelling. Such techniques are not

perfect and can fail to pick up a problem resulting in a false negative (FN) or

accuse the wrong and irrelevant cause resulting in a false positive (FP), hence

- 46 -

the importance of tuning [96]. Four existing non-provenance diagnosis tools will

be presented next; Chopstic, Fay, D3S, and Pip.

Chopstix is a manual lightweight monitoring tool that collects data of low-level

operating system events and analysis them offline [112]. The study claims that

Chopstix monitors hardware-related vital signs, such as CPU utilization, then

detects and isolates the root cause of a fault, such as OS operations, to allow

the use of existing debugging tools by developers. This diagnostic tool is rule-

based and relies on a small collection of rules to guide the diagnosis. According

to [96], this tool only diagnoses problems on single node and does not correlate

data from several nodes.

Fay is a similar rule-based diagnostic and monitoring tool [113]. Collection,

processing, and analysis of software and hardware execution traces are

facilitated by Fay [114]. It is applicable to activities of users and nodes. It allows

the traceability in distributed systems by their developed FayLINQ language,

which provides the means to specify the events to be traced, aggregated,

processed, and analysed. Rule-based techniques lack (i) the ability to learn from

experience and (ii) the ability of dealing with failures not described within the

predefined rules [96].

D3S is a large-scale real-time debugging and checking tool [115]. Programmatic

tests of measured performance data are used to imperatively describe

performance expectations. When a problem is detected, a sequence of state

changes that led to the problem is produced to be further analysed by a

developer. The drawback of this tool is its complete dependence on the

developer to write and specify predicates. Predicates, similar to rules, are

injected by the tool into a running process and used as guidance.

- 47 -

Pip is another debugging tool which aids the developer to explore expected and

unexpected system behaviour [116]. Similar to D3S, Pip depends on the

developer to express, programmatically, system expectations. Pip uses such

inputs to compare the actual and expected behaviour to flag any application-level

issues or performance problems. Properties of a program, such as throughput,

node failure, and latency, can be dynamically monitored and checked by Pip.

However, such tools requires a deeper understanding of the systems as a

prerequisite [96].

3.3 Provenance

This section presents a review of related work about the application and the use

of provenance in the Clouds. It also presents the possible provenance-based

methods for overload causes identification.

3.3.1 Challenges of Adopting Provenance in the Clouds

In [32], [55], [67], [117], the authors have identified the challenges and hurdles

that face adopting provenance in the Clouds. They have stated that for Clouds,

supporting scientific computing as well as fulfilling the common requirements for

improved auditing, debugging, and resource monitoring is envisioned to be

possible by creating practical provenance systems. As mentioned earlier in

Section 2.2.4, there are a number of deployments of Clouds; private, public, and

community. The differences in these deployments are, and not inclusive of,

number of users, relationships between users and Cloud providers, supported

systems and devices, and adopted business models. As a consequence, such

differences have a direct effect on the level of urgency to adopt and implement

a provenance system. The challenges can be classified into five categories:

- 48 -

1. Audit and Log Data. For a Cloud provider, services are of three types,

SaaS, PaaS, and IaaS for different consumers. Cloud consumers may

require Cloud services from different providers. The current way of

recording and collecting provenance in Clouds is by log files [118]. Thus,

there is a log for every Cloud deployment mode of every Cloud model for

every service at every logging interval which makes it challenging and

almost not practical to collect provenance data from logs of services that

are of dynamic nature.

The challenge faced in this research is mapping the data collected

through current logging techniques to the provenance model PROV.

2. Heterogeneity. Clouds in nature are complex systems and involve

numerous interlinked resources that are managed by different policies

and offered by heterogeneous Cloud providers. Thus, when investigating

an event for one application data from many sources might be needed,

which increases the cost of time and effort doing it because an

investigation involves the application itself, all logs for the virtual

resources the applications used, and the logs for the physical resources

that supported the hosting of those virtual ones.

In terms of this research, only one log of one Cloud provider has been

used. This particular challenge has not been faced. However, it is a

possible obstacle when extending the proposed framework in future work

to include datasets of different format and structure from data centres with

heterogeneous infrastructure design.

3. Granularity. Scalability is a challenge facing provenance adoption in

Cloud computing. According to the literature, there are trade-offs between

the granularity of provenance and Clouds’ scalability and performance

- 49 -

because recording every single aspect leads to gigabytes of data,

important and not important, being created [46]. So, the challenge is to

maintain the levels of scalability and performance while refining the

granularity of provenance data in terms of scale and level of detail.

The overwhelming volume of the dataset used in this research made it

almost impossible to deal with. A number of programming languages such

as Python and database platforms such as MySQL Workbench have been

used and yet failed to return results in reasonable time. Thus, the level of

granularity has been changed in terms of selecting only the needed

attributes in order to be queried.

4. Security and Trust. For provenance in the Clouds to be trustworthy, it must

meet four requirements; Confidentiality, Integrity, Availability and

Reliability [67]. Collecting provenance at the kernel-level is one of the

ways to determine its security and reliability because generally users have

no control and access at this level. Muniswamy-Reddy et al stated there

is no clear means of recording provenance in the Cloud [66]. They have

identified four features that are crucial for any provenance system to be

creditable, which are Provenance Data-Coupling, Multi-Object Causal

Ordering, Data-Independent Persistence, and Efficient Query.

5. Persistence. Each data object in a Cloud requires an identification. When

such an object travels between different Cloud providers, the identification

changes due to the different policies followed by the providers. Data

objects in the Clouds are transient, thus hashing identification techniques

are not appropriate because the hash identifier need to continuously be

recalculated which affects the overall performance. The provenance

- 50 -

graph could be disconnected if one provenance object is removed, hence

provenance persistence is important.

3.3.2 Provenance Research Projects in Distributed Systems

SPADE [119] is a software infrastructure for collecting and managing

provenance data in distributed systems based on OPM which supports

provenance auditing in distributed environments. It supports both graph and

relational databases for storing data and provides a distributed module for

querying. The core of SPADE is a provenance kernel which decouples the

gathering, storing, and querying of provenance data from different provenance

sources, such as application and operating systems. The kernel consists of four

components; reporter which collects provenance data, filter which undertakes

transformation on provenance events, storage which is used to store filtered

provenance data and sketch which is used to optimize the querying process.

SPADE utilizes OPM’s nodes and edges to embed the domain-specific

semantics of the provenance.

STRAPP [10], [120], [121] is a framework that improves trust and the

understanding of risks in distributed systems using personalized provenance

reasoning and risk assessments techniques. W3C PROV provenance data

model has been used to systematically model system provenance. STRAPP

consists of three main components: the Presentation Service which takes input

from the user from an external unit, formats it, then passes it to an internal unit.

It is responsible for displaying the final view of the STRAPP system in XML to

the user, the Personalization Service invokes the provenance model and its

reasoning engine, personalizes the provenance view and conducts risk

assessments, and Data Management Service which retrieves data for the

- 51 -

personalization service. The authors justify their choice of W3C PROV model

rather than an ad-hoc approach because it provides a standardized layer of

normalized data upon which processing algorithms can be implemented. They

stated that created provenance graphs can be modified, parsed and serialized

leveraging standard tools. Also, reasoning engines can be invoked for the

detection of inconsistencies and missing provenance data, such as agents. It

provides the ability to understand relationships between entities without data

being present in the underlying database.

3.3.3 Use of Provenance and PROV in the Clouds

A number of studies have considered using provenance in the Clouds for

different purposes [55], [56], [66], [122]–[125]. However, there were no attempts

of using the PROV model standard that enables the exchange of the provenance

information [11]. These studies have developed bespoke models as the PROV

model was still being developed. Using standard models can help work

undertaken by both research and industry communities to be easily understood

and extended by building on them.

PROV model has recently started to gain attention in the Cloud computing

community. In [48], researchers applied PROV model in the Cloud for security

and trustworthiness purposes. One algorithm has been developed based on

PROV model for controlling access to Cloud data. It ensures the completeness

of the causal dependencies between the data. Another study used PROV model

as a basis for a provenance framework for gathering and storing Cloud workflow

provenance data for later analysis [126]. In [127], the study argues that current

provenance models lack the express-ability to describe the low-level working of

a Cloud service. cProv which is a provenance traceability model and cProvl

- 52 -

which is a provenance-aware policy language are proposed to support

accountability and provenance traceability in the Clouds. PROV model is used

and extended by cProv to provide a representation of provenance history for the

Clouds. The use of PROV notation is to add the missing and need express-ability

(relation, metadata) on the Cloud provenance data.

Li and Boucelma [128], [129] used the open provenance model (OPM) and

Coloured Petri Net (CPN) for monitoring workflow and data provenance in the

Cloud by utilizing SOA. Their approach is similar to the approach conducted in

this research, described in Chapter 3. They have used the simulation tool

CPNTools to act as the diagnoser for their analysis. CPN is used as the abstract

model underpinning the diagnosis component which identifies the correct and

faulty behaviours of the workflow, starting from the symptoms (faulty data or

activities), and backward detecting the possible causes of the symptoms. Web

Service Security (WS-S) protocol has been modelled using OPM to integrate the

secure communications in Cloud environments. The reason why WS-S has been

chosen is due to its support to provenance requirements and it does not disrupt

the generality of OPM model.

In [130], Distributed Time-aware Provenance (DTaP) is proposed which helps in

debugging and forensics in distributed systems, i.e. Clouds. The study argues

that distributed systems problems in performance, security, or configuration don’t

always have a sole cause but could have a combination of causes (behaviours).

DTaP collects distribution, time, and causality of updates. It also gives the

administration control to make ad-hoc queries over network communication

patterns, system states, etc. This tool facilitates the manual diagnosis by

developers The focus is maintaining the network overhead of provenance

- 53 -

collection in distributed systems. It also discusses that provenance can be

maintained and provenance trees could be constructed in two ways; proactive

and reactive.

In [122], [131], Provenance Aware Storage Systems (PASS) is proposed by

Muniswamy-Reddy et al and Barillari et al. It is a scheme for automatic

maintenance and collection of data provenance in Cloud storage systems. Its

architecture integrates provenance from several layers of abstraction; hence

distributed systems.

In [132], the authors stated that provenance data in the Clouds can be classified

into five granularities; application, virtual machine, physical machine, Cloud, and

Internet (Cloud of Clouds). Provenance of VM summarizes all provenance data

related to a VM. Provenance of PM summarizes all provenance data to a

particular PM and the mapping of VMs to PMs. Provenance of Cloud incudes the

provenance data across the three layers; application, virtual, and physical and

the communication between them. It also includes data such as consumer

details, migration of data across VMs, migration of VMs across PMs, and more.

S2Logger in [133] is a data event logging tool which captures, analyses and

visualizes Cloud data provenance. This tool enables the near real-time detection

of security violations and allows for end-to-end tracing of data events at both

block and file level. The scope of this tool is detecting data loss and leakage in

physical and virtual machines and supports diagnosis of security breaches.

S2Logger builds on and complements existing distributed security systems, such

as SELinux. Cloud data provenance related to hardware, software and network

is monitored as a graph by S2Logger. The study claims that analysing the data

flow graph can help make better Cloud data security decisions.

- 54 -

In [134], a provenance-driven auditing framework is proposed by Meera et al.

This framework allow providers to run audit checks to ensure there are no

inconsistencies in terms of data, SLAs, etc. It follows the procedures and phases

of the digital forensic investigation; acquisition, preservation, analysis, and

presentation. The framework is based on OPM. This study aims to provide a

secure way of provenance audit in the Clouds using existing cryptographic

techniques.

Even though these studies are notable, their aims and objectives are different

than the ones of this research. They do not look into the overload problem of

physical machines which is the scope of this research.

Table 3.1 summarizes the comparison between the possible provenance and

non-provenance based methods, presented in sections 3.2.5 and 3.3.3, that can

potentially be used for the identification and diagnosis of overload causes. The

comparison is drawn between the capability and the scope. The capability is

based on six different metrics: prediction, detection, diagnosis, mitigation,

prevention, and healing. The scope shows the coverage and focus of the method

in terms of three metrics: hardware (i.e. CPU and Memory utilization), software

(i.e. virtualization-related issues and programming bugs) and network (i.e.

bandwidth and response time). “Yes” means that the method either supports the

metric or paves the way to it. “No” means that the method does not support the

metric.

- 55 -

Table 3.1 Comparison of Different Possible Methods for Overload Causes Identification

Method (page in this
thesis)

Capability Scope

Prediction Detection Diagnosis Mitigation Prevention Healing Software Hardware Network

FTM by Jhawar et al
[105], [106] / (p. 43)
non-provenance based

No Yes No No Yes Yes Yes Yes Yes

Dai et al
[107] / (p. 44)
non-provenance based

Yes Yes Yes No Yes No Yes Yes No

TCloud by Verissimo et al
FTCloud by Zheng et al
[97], [108] / (p. 44)
non-provenance based

No Yes No No Yes No Yes Yes No

Chopstix by Bhatia et al
[112] / (p. 46)
non-provenance based

No Yes Yes No No No Yes Yes No

Fay by Erlingsson et al
[113] / (p. 46)
non-provenance based

No No Yes No No No Yes Yes No

D3S by Liu et al
[115] / (p. 46)
non-provenance based

Yes Yes Yes No No No Yes No No

Pip by Reynolds et al
[116] / (p. 47)
non-provenance based

No Yes Yes No No No Yes No No

CPN by Li et al
[129] / (p. 52)
Provenance based

No No Yes No No No Yes No Yes

DTaP by Zhou et al
[130] / (p. 52)
Provenance based

No No Yes No No No No No Yes

S2Logger by Suen et al
[133] / (p. 53)
Provenance based

No Yes Yes No No No Yes Yes Yes

- 56 -

3.4 Summary

The concepts of over-commitment and overload have been discussed. Also, this

chapter presented the overload mitigating strategies, overload causes and

symptoms and existing possible methods for causes diagnosis and identification.

The challenges and issues in adopting provenance in the Clouds along with a

number of research projects that utilized provenance and PROV in the Clouds

have been presented.

Lastly, the Chapter provided a literature review of the uses of provenance and

the PROV model in the Clouds. The review of the literature reveals that PROV

model is adoptable in the Clouds but it has never been utilized with regards to

the issue of Task Eviction which is an opportunity captured by this research. It

ends with comparison of different possible methods for overload causes

identification, provenance based and non-provenance based.

- 57 -

Chapter 4

Provenance-Driven Diagnostic Framework

4.1 Introduction

Infrastructure as a Service (IaaS) in Cloud computing has introduced many new

opportunities for businesses and individuals by extending accessibility and

minimizing costs by providing users with access to remote resources [135].

However, as the Cloud computing paradigm rapidly evolves, the management of

resource allocation becomes increasingly important so as to maintain a high level

of overall system utilization. These challenges are typically addressed through

the use of virtualization and the over-commitment of resources to users.

This chapter proposes the Provenance-Driven Diagnostic Framework which

addresses the negative impact due to over-commitment that leads to task

eviction, as discussed in Chapter 2. The framework investigates cause and effect

relationships. The chapter explains the underpinning concepts of the framework.

It presents the importance of provenance to the Clouds and how PROV can help

Cloud data centres understand why tasks were evicted. A publicly available

Cloud dataset with known Task Eviction behaviours was used to inform the

construction of the PROV-TE provenance model. Also, the methodology of

building the framework and developing the diagnostic algorithms is described.

Finally, an instantiation of the framework, the Auditor, is presented. Specifically,

how the framework fits in a Cloud data centre is described.

- 58 -

4.2 Underpinning Philosophy and Assumptions of the

Framework

As described in Chapter 2, the record of an activity that leads to a piece of data

is the provenance of that data [98]. Provenance describes the flow of data and

processes across several heterogeneous layers and systems. The reason for

using provenance is because (i) traceability of results is provided; (ii)

reproducibility is possible; and (iii) the integration of diverse data sources is

facilitated by the schema. Analysis of provenance information of a given task

would pave the way to extract knowledge from usage data that was not identified

using the standard logging system.

PROV is W3C standard for provenance. As defined by W3C, “provenance is a

record that describes the people, institutions, entities, and activities involved in

producing, influencing, or delivering a piece of data or a thing” [136]. With regards

to distributed systems, Moreau and Groth in [9], [137] stated that provenance

can relate to data, documents and resources since it is a record that computers

have produced, processed, and exchanged. In addition, provenance is one

essential dimension of process verification, reproducibility, reliability and trust in

distributed systems [63]. PROV, explained in Chapter 2, is a model that

represents all types of tangible and intangible objects such as data and

machines, and allows the expression of causal relationships and dependencies

between them through nodes and edges. The dependencies define the link

between the effects and the cause in a backwards manner.

PROV has a diagrammatic representation that encapsulates relationships and

tagging between the nodes which add reasoning and meaning to the raw data.

PROV is built on logic and has a representation that is machine process-able.

- 59 -

The usefulness of mining data to answer questions and draw conclusions is

determined by the ability of finding hidden patterns and anomalies in the data.

Hence, a query platform will enable the mining of data and patterns for reasoning.

It would be observed later that without the proposed framework it would be

difficult to audit and find the causes of overload in data centres.

The challenge that faces this research is the validity of the assumption that

provenance adds richness in data for log data analysis to help find the causes

for machines overload due to over-commitment, explained in Chapter 2. With

this in mind, a provenance-driven diagnostic framework [138] has been

developed using Google Cloud 29-Day usage dataset for exploration. Its goal is

to identify the causes for task evictions. As explained in Chapter 2, Task Eviction

(TE) is one of six overload mitigating strategies. The framework extends the W3C

PROV model [9] into PROV-Task Eviction (PROV-TE) which underpins a

number of diagnostic algorithms for identifying evicted tasks due to specific

causes.

4.3 Google Cloud 29-day Usage Dataset

Real production and usage datasets (also named workloads, log data and trace

logs) play a pivotal role in conducting research. These real datasets support a

wide variety of research domains and provide creditability and assurance for

building models and designing simulation as they reflect realistic scenarios [139].

The biggest publicly available Cloud dataset, Google’s Cloud 29-day usage

dataset, has been utilized to extend the PROV model into PROV-TE because it

applies Task Eviction mitigating strategy [7], [140]. As illustrated in Table 4.1, the

dataset consists of a 29-day trace of its applications with over 25 million tasks

grouped into over 650 thousand jobs running across over 12 thousand

- 60 -

heterogeneous machines from a Google data centre. The trace starts at 19:00

EDT on Sunday May 1, 2011. The documentation of the dataset [7] shows that

Google applies over-commitment mechanism to utilize their resources.

According to [5], [37], each task is scheduled in a Linux container which is a

lightweight virtual system mechanism equivalent to a VM, as explained in section

2.2.5. The documentation also states that Google applies a Task Eviction

mitigating strategy in order to mitigate the overload of usage (trade-off of over-

commitment). The documentation states five causes for evicting tasks which are:

Cause 1. Take Over by Higher Priority Tasks

Cause 2. Increase In Resource Requests

Cause 3. Demand exceeds Physical Capacities

Cause 4. Missing Machines

Cause 5. Decrease in Machines Capacities

Table 4.1 Dataset Profile

Dataset period 29-day

Number of unique users 930

Number of unique tasks 25,405,064

Number of unique jobs 671,679

Number of unique physical

machines
12,583

This dataset is made up of six database tables, which add up to the size of about

200 GB, namely Machine Event (ME), Machine Attribute (MA), Job Event (JE),

Task Constraint (TC), Task Event (TEv) and Task Usage (TU). Each table has a

primary key as an index and includes a timestamp. Also, each table is packaged

- 61 -

in one or more CSV files and has a specific set of attributes (parameters).

Summaries of the overall statistics of the tables as well as the list of all

parameters are illustrated in tables 4.2 and 4.3, respectively.

ME and MA tables describe the machines characteristics, i.e. CPU capacity, and

the status of the machine: Added, Updated, or Removed. JE and TEv tables are

related to jobs and their tasks. They describe specific information such as status,

i.e. submitted or killed, the priority, the level of sensitivity of the tasks and jobs.

describes jobs and their lifecycle. There are 9 event types (status) of every job

and task: Submit, Schedule, Evict, Fail, Finish, Kill, Lost, Update Pending,

Update Running. They also show the amount of resources requested which can

be used together with the machines capacity to identify the level of wasted

resources. For example, 10 tasks were scheduled into machine A. The sum of

the requested RAM is 100 units and the capacity of the machine’s RAM is 100

units. When calculating the available RAM of the machine at run time, it is found

that 30 units are available which were already allocated to the 10 tasks but not

used, hence wasted. Moving on, TC table describes the task placement

constraints that restrict the machines onto which tasks can schedule. Finally, TU

Table 4.2 Overview of the Dataset [160]

Table ME MA JE TEv TC TU

Number of csv
file(s)

1 1 500 500 500 500

Data entries 37,780 10,748,566 5,012,242 144,648,288 28,485,619 1,232,792,102

Ave entries/file 37,780 10,748,566 4,024.5 289,296.6 56,971.2 2,465,584.2

Number of data
parameters

6 5 8 13 6 20

Compressed
size

339 KB 136 MB 83 MB 1.5 GB 147 MB 36.6 GB

Uncompressed
size

2.77
MB

1.12 GB 315 MB 15.4 GB 2.82 GB 158 GB

- 62 -

table is the biggest table and it describes the tasks’ usage and resources

consumption.

Table 4.3 Dataset Parameters

Dataset Tables Parameters Description of Table

Machine Events (ME)

1. timestamp
2. machine ID
3. event type
4. platform ID
5. capacity: CPU
6. capacity: memory

Each machine is described
by one or more records in
the machine event table.
There are three types of
machine events: ADD,
REMOVE, and UPDATE.

Machine Attributes

(MA)

1. timestamp
2. machine ID
3. attribute name: an

opaque string
4. attribute value: either an

opaque string or an
integer

5. attribute deleted: a
Boolean indicating
whether the attribute
was deleted

Machine attributes are
key-value pairs
representing machine
properties, such as kernel
version, clock speed, and
presence of an external IP
address. Tasks can
specify constraints on
machine attributes.

Job Events (JE)

1. timestamp
2. missing info
3. job ID
4. event type
5. user name
6. scheduling class
7. job name
8. logical job name

The job event table
describes jobs and their
lifecycle. There are 9
event types that describe
the status of every job and
task: SUBMIT,
SCHEDULE, EVICT, FAIL,
FINISH, KILL, LOST,
UPDATE PENDING,
UPDATE RUNNING.

Task Events (TEv)

1. timestamp
2. missing info
3. job ID
4. task index - within the job
5. machine ID
6. event type
7. user name
8. scheduling class
9. priority
10. resource request for

CPU cores
11. resource request for

RAM
12. resource request for

local disk space
13. different machine

constraint

The description of Job
Events applies here.
Tasks have the same
lifecycle and represented
in the dataset with 9
different status types
recorded in the event type
parameter. Event types
SCHEDULE and EVICT
are the focus of this thesis.

- 63 -

Task Constraints (TC)

1. timestamp
2. job ID
3. task index
4. attribute name --

corresponds to machine
attribute table

5. attribute value -- either
an opaque string or an
integer or the empty
string

6. comparison operator

This dataset describes the
task placement constraints
that restrict the machines
onto which tasks can be
scheduled.

Task Usage (TU)

1. Start time
2. End time
3. job ID
4. task index
5. machine ID
6. CPU usage
7. memory usage
8. assigned memory
9. unmapped page cache

memory usage
10. page cache memory

usage
11. maximum memory

usage
12. disk I/O time - mean
13. local disk space used -

mean
14. CPU rate - max
15. disk IO time - max
16. cycles per instruction

(CPI)
17. memory accesses per

instruction (MAI)
18. sampling rate
19. aggregation type
20. CPU sampling rate

Describes the tasks’ usage
and resources
consumptions on a 5-
minute logging interval.

In terms of distinguishing physical machine and virtual machines, the dataset

states only one machine ID in MA table but does not state the type of the

machine. In this research, during the initial development of the algorithms, there

was no separation between the VM and PM due to the lack of information.

However, during the evaluation of the algorithms using simulated environment,

the algorithms were enhanced to consider both VMs and PMs, see sections 6.6.1

and 6.7.1.

- 64 -

In terms of the relationships between the parameters, they already normalized

by the vendor and structured [7], hence being categorized in six tables. Also,

each table comes with primary key or a compound key.

4.4 The Generic Framework for Provenance-Driven Diagnostic

Model

The diagnostic framework can be divided into three phases, shown in Figure 4.1.

The goal of this framework is to map the raw data to a PROV model (phase 1),

Figure 4.1 Steps for the Provenance-Driven Diagnostic Framework

Dataset

P1.
Understand

Data

P3.
Implemen
t PROV-
TE Model

P2.
Understand

PROV Abstract
Model

a.
List of

relevant
parameters

for PROV-TE

b.
A conceptual
PROV model

P4.
Populate Query

Platform

P5.
Diagnostic
Algorithms

c.
Meta-data of

dataset to
be queried

d.
Extracted raw

data from
Dataset

e.
A structured

dataset for query

Phase 1

Phase 2 (Operationalise)

Phase 3 (Query)

- 65 -

operationalize it (phase 2) and to have a platform ready for querying and finally

to develop algorithms for the queries (phase 3). This generic process can be

used to develop specific diagnostic frameworks for different overload mitigating

strategies depending on the available datasets.

The three phases will be described in detail in Sections 4.6 – 4.8.

4.5 Iterative Approach in Framework Development

Each Cloud data centre has unique configurations which makes usage datasets

to be in different structure with different parameters. Similar to software

development, refinement could be made based on feedback. Figure 4.2 shows

the iterations that took place for this research. (1) Raw dataset helps formulate

the model. (2) The model is then used to construct both the testing platform and

the diagnostic algorithms. (3) The algorithms are then applied on the constructed

platform for testing. (f) is the feedback from testing which informs both the model

and the algorithms for further enhancements. The model, Figure 4.3, has gone

Formulation of
PROV-TE Model

(Phase 1)

Development of
Platform

(Phase 2)

Development of
Diagnostic Algorithms

(Phase 3)

1

2

f

f

3

2

Figure 4.2 Iterations for Framework Improvement

- 66 -

through two iterations informed by the feedback. The continuous feedback while

testing helped in constructing the algorithms. A number of SQL queries were

merged into one algorithm. Next, the framework is discussed in detail.

4.6 Phase 1: PROV-TE Formulation

The input of this phase is the Google 29-day Cloud Usage dataset, presented in

Section 4.3. Data in Google’s dataset is structured and huge in volume. Not all

data are relevant, hence a subset will be selected to enable further analysis and

minimize processing time.

The first process of this phase (P1) starts with understanding the meaning of the

attributes (parameters) in the dataset tables by consulting the publications of

Google on the datasets.

Process 2 (P2) relates to understanding the abstract model of PROV, presented

in Chapter 2. The PROV model consists of edges and nodes. Nodes can be one

of the following: Entity- a digital, conceptual or physical thing of which we need

to keep the provenance; Activity- a process that occurs over a duration of time

that act upon entities; and Agent- something/someone to which entities and

activities are attributed or associated. Edges represent the dependencies

between these nodes; for instance, prov:Used, prov:WasGeneratedBy,

prov:WasDerivedFrom, prov:WasAssociatedWith, prov:WasAttributedTo,

prov:WasActedOnBehalf, and prov:WasInformedBy. The output of these two

processes (P1 and P2) are (a) an understanding of the meaning of the

parameters in the dataset which led to specifying the needed parameters for

PROV-TE and (b) an understanding of the skeleton of PROV model.

- 67 -

Process 3 (P3) is the implementation of PROV-TE (PROV Task-Eviction)

according to the list of selected parameters. Having understood the parameters

from the trace’s documentation, only the needed ones that capture the data

Table 4.4 Selected Parameters for PROV-TE

PROV

Nodes
Parameters

Agent
 User,

 Scheduler

Activity

 Submit task,

 Group Tasks into jobs,

 Schedule Task/Job,

 Add Machine,

 Update Machine,

 Update Pending/Running,

 Evict Task/Job

Entity

(Selected

Parameters)

 JE_timestamp,

 JE_jobID,

 JE_eventtype,

 JE_username

 TEv_timestamp

 TEv_taskindex,

 TEv_eventtype,

 TEv_priority,

 TEv_username,

 TEv_schedulingclass,

 TEv_resource_request_CPU,

 TEv_resource_request_RAM,

 TEv_differentmachine,

 ME_timestamp,

 ME_machineID,

 ME_eventtype,

 ME_capacityCPU

 ME_capacityRAM

 MA_timestamp,

 MA_attributename

 MA_attributevalue

 MA_attributedeleted

Unused

Parameters

 TC_timestamp

 TC_jobID

 TC_taskindex

 TC_comparison_operator

 TC_attribute_name

 TC_attribute_value

 TU_starttime

 TU_endtime

 TU_jobID

 TU_taskindex

 TU_machineID

 TU_CPU_usage

 TU_memory_usage

 TU_assigned_memory_usage

 TU_unmapped_page_cache_me
mory_usage

 TU_page_cache_memory_usage

 TU_maximum_memory_usage

 TU_disk_I/O_time_mean

 TU_local_disk_space_used_
mean

 TU_CPU-rate_max

 TU_disk_IO_time _max

 TU_cycles_per_instruction

 TU_memory_accesses_per_i
nstruction

 TU_sampling_rate

 TU_ggregation_type

 TU_CPU_sampling_rate

- 68 -

relevant to task eviction are selected, shown in Table 4.41. P3 takes (a) and (b)

as input and the output of this process is PROV-TE model which provides (c) the

meta-data of the dataset to be queried.

4.6.1 The PROV-TE Model

Figure 4.3 shows a diagrammatic representation of PROV-TE, the output of this

phase. It is the second version of PROV-TE. The first version of PROV-TE is

shown in [138], details are presented in Appendix A.

PROV-TE model was constructed by (i) putting together the workflow processes

of scheduling a task and the five causes explained in sections 4.6.2 and 4.6.3,

(ii) including the relevant parameters (entities) explained in Table 4.4, (iii)

mapping the dependencies between the Activity, Agent and Entity of every

workflow based on the generic PROV model, and (iv) following the normalization

of the dataset tables.

1 The agents and the activities have been captured from the dataset’s documentation
but not recorded in the dataset itself.

- 69 -

Figure 4.3 PROV-TE, a PROV Model for Task Eviction Mitigating Strategy

Submit Task
Group Tasks

into Jobs
Schedule

Job

Evict Task
Update

Machine

Add/Remove
Machine

Update Running
Tasks

TEv_username

TEv_differentmachine

TEv_resource_request_
CPU

TEv_schedulingclass

TEv_priority

TEv_eventtype

TEv_taskindex

TEv_timestamp

TEv_resource_request_
RAM

JE_username

JE_jobID

JE_eventtype

JE_timestamp

User

Scheduler

ME_capacityCPU

ME_machineID

ME_eventtype

ME_capacityRAM

ME_timestamp

TEv_resource_request_
CPU

TEv_resource_request_
RAM JE_eventtype

TEv_eventtype

ME_eventtype

ME_capacityCPU

ME_capacityRAM

Pr
ov

:W
as

G
en

er
at

ed
By

Pr
ov

:W
as

G
en

er
at

ed
By

Pr
ov

:U
se

d

Pr
ov

:U
se

d

JE_eventtype

TEv_eventtype

Pr
ov

:U
se

d

Pr
ov

:w
as

G
en

er
at

ed
Fr

om

Prov:wasDerivedFrom

Prov:w
asDeriv

edFrom

Pr
ov

:w
as

G
en

er
at

ed
Fr

om

Prov:wasDerivedFrom

Pr
ov

:w
as

De
riv

ed
Fr

om

Pr
ov

:w
as

G
en

er
at

ed
Fr

om

Pr
ov

:U
se

d

Pr
ov

:w
as

G
en

er
at

ed
Fr

om

Prov:Used

Prov:wasGenerated
From Prov:wasDerivedFrom

Pr
ov

:w
as

De
riv

ed
Fr

om

Prov:Used

Prov:WasAsso
ciatedWithProv:WasAssociatedWith

Prov:wasGen
eratedFrom

Pr
ov

:w
as

De
riv

ed
Fr

om

Pr
ov

:U
se

d

Prov:Used

Legend:

Agent ValueActivity Entitiy

Prov:WasAssociatedWith Pr
ov

:w
as

De
riv

ed
Fr

om

- 70 -

4.6.2 Workflow for a Scheduled Task

Following is an illustration of how the PROV-TE model can be used to trace the

workflow of a task from user submission Agent: User to being hosted by Agent:

Scheduler, refer to Figure 4.3. Normally, an Agent: User submits a task and

specifies its scheduling priority Entity: TEv_priority. After a task is submitted

Activity: Submit Task, a number of Entities are generated, i.e. TEv event type,

TEv priority, TEv resource CPU/RAM, and all have a time stamp. Those entities

are used by the Activity: Group Tasks into Job. Then a number of Entities are

generated according to the grouping activity, i.e. JE jobID, JE event type, JE job

name, and TEv task index and JE time stamp is recorded. The Activity: Schedule

Job will use those entities and other entities related to the designated Machine,

i.e. ME_MachineID, ME_eventtype, ME_capacity CPU/RAM, so that the task/job

can be scheduled and hosted.

4.6.3 Task Eviction Workflows

This section illustrates how to trace task eviction workflows in PROV-TE model

with respect to the five causes. Knowing task eviction workflows beforehand

helps in the development of the diagnostic algorithms.

Activity: Evict Task constantly checks (Prov: Used) the following entities: Entity:

ME_capacityCPU, Entity: ME_capacityRAM, Entity: ME_eventtype, Entity:

TEv_resource_request_CPU and Entity: TEv_resource_request_RAM. It gets

triggered to process the eviction of one or more lower priority tasks i.e. Entity:

TEv_priority on the same machine Entity: ME_machineID if one or more of the

following scenarios takes place:

- 71 -

Cause 1. a new task with a higher priority Entity: TEv_Priority is submitted to

a machine Entity: ME_machineID that lacks resources or encounters a

temporary loss of resources Entity: ME_capacityCPU and Entity:

ME_capacityRAM, see Figure 5.5 in section 5.4.1.

Cause 2. Agent: User updates the request of resources Entity:

TEv_resource_request_CPU and Entity: TEv_resource_request_RAM

for the running tasks Activity: Update Running Tasks but there are no

enough resources Entity: ME_capacityCPU and Entity: ME_capacityRAM

to approve the new request, see Figure 5.6 in section 5.4.2.

Cause 3. The approved capacities requests Entity:

TEv_resource_request_CPU and Entity: TEv_resource_request_RAM

exceeds the machine’s capacity Entity: ME_capacityCPU and Entity:

ME_capacityRAM at any point of time, see Figure 5.7 in section 5.4.3.

Cause 4. A machine is Removed in Entity: ME_eventtype and the already

scheduled tasks Entity: TEv_taskindex and Entity: jobID can no longer be

accommodated, see Figure 5.10 in section 5.4.4.

Cause 5. A machine status is Updated in Entity: ME_eventtype and the new

physical or virtual capacities Entity: ME_capacityCPU and Entity:

ME_capacityRAM are less than the approved resources requests of the

already scheduled tasks Entity: TEv_resource_request_CPU and Entity:

TEv_resource_request_RAM, see Figure 5.11 in section 5.4.5.

- 72 -

4.7 Phase 2: Preparation of Platform for Queries

The input of this phase is the meta-data provided by the extended PROV model,

PROV-TE, refer to (c) in Figure 4.1. The meta-data is used to build the data

model storage which supports the querying mechanism. For this research, a

relational database with structured and cleaned dataset, the output of this phase,

has been developed for this framework because a lightweight provenance model

is applied. Other types of databases could also be used such as graph database.

For a heavyweight provenance model, semantics platform could be developed

which supports querying mechanisms such as SPARQL.

While investigating the causes, one by one during first iteration, it was discovered

that some parameters were missing in order to conduct the investigations. They

provided the feedback to phases 1 and 3 for improvements (as represented by

(f) in Figure 4.2).

4.8 Phase 3: Diagnostic Algorithms Formulation based on

PROV-TE

This phase takes the processed dataset as input ((e) in Figure 3,.1) and use the

constructed querying platform in order to develop and test the diagnostic

algorithms, (process P5 in Figure 4.1).

In this thesis, it is assumed that a task can be evicted due to one or more causes,

discussed in section 5.5. This suspension will be tested by the application of the

algorithms in chapter 5. The 5 causes identified from the literature were adopted

for investigation. 10 diagnostic algorithms have been developed based on

PROV-TE to facilitate the querying process. Causes 1 – 5 are investigated

- 73 -

separately and diagnosed by a set of algorithms that are implemented using

SQLite. The following is a discussion on the developed diagnostic algorithms for

the 5 causes presented in section 4.3.

4.8.1 Arrival of Higher Priority Tasks

Table 4.5 Algorithm 1a: Cause 1 Priority Identifier

Finding the priority of evicted tasks and isolating the tasks in a separate table

(PriorityofEvictedTasks).

1. FOR each task in TaskEvents table (TEv), until end of period

2. IF status = Killed

3. STORE distinct TEv_taskindex, TEv_priority and TEv_timestamp

in PriorityofEvictedTasks table (PET).

4. END IF

5. END FOR

Table 4.6 Algorithm 1b: Cause 1 Eviction Identifier.

Identifying the number of evicted tasks from PriorityofEvictedTasks table

(PET) within one-step interval from higher priority tasks being scheduled in

the same machine.

1. FOR each task in PET, until end of period

2. FOR each task in TaskEvent (TEv) table, until end of period

3. IF ((TEv.timestamp < PET.timestamp <= (TEv.timestamp+ next

time interval)

AND (PET.priority < TEv_priority)

AND (PET_machineID = TEv_machineID))

4. STORE distinct PET.Task in Cause1EvictedTasks table

5. END IF

6. END FOR

7. END FOR

- 74 -

One of the causes of task eviction is due to higher priority tasks taking over the

space of the lower priority ones upon scheduling. This trigger is due to the VMs’

limited resources. With help of PROV-TE, two algorithms have been used to

investigate this scenario. First, all evicted tasks in the dataset are captured and

their priorities are ordered and stored (Algorithm 1a). The aim is to precisely

identify the tasks the have been evicted only by Higher Priority Tasks being

scheduled in the same Host (VM) and within one interval of higher priority task

arrival timestamp (Algorithm 1b). PROV-TE has helped in constructing these

algorithms following the workflows mentioned in section 4.6.

4.8.2 Increase in Resource Requests

Another cause of task eviction is when users ask for more resources than they

have initially requested while their tasks are running. Each task is scheduled in

Table 4.7 Algorithm 2a: Cause 2 Request Comparer.

Comparing the resources’ request of both CPU and MEM at the task’s

scheduling time against the new resources’ request while running, then identify

the tasks with the increased update of resources’ request and isolate them in

Updated table (UT).

1. FOR each task in TaskEvent (TEv) table, until end of period

2. IF (Status = scheduled (S)
AND updated_while_running (U) = true

AND ((TEv_resource_request_CPU of U >

TEv_resource_request_CPU of S)

OR (TEv_resource_request_Mem of U >

TEv_resource_request_Mem of S)))

3. STORE Task_timestamp, Task ID, machineID in Updated Table

(UT)

4. END IF

5. END FOR

- 75 -

a specific VM with specific virtual resources (assigned resources according to

their request). In the case of over-commitment , when users request more

resources, the scheduler neither can allocate more resources nor find an

available virtual machine. A physical machine with fixed resource capacity would

no longer be capable of continuing to host those tasks because the sum of the

tasks’ virtual resources’ usage could get higher than the actual machine’s

capacity. So, lower priority tasks get evicted to avoid an overload in the machine.

The aim of algorithms 2a-b is to find the evicted tasks because of such scenario.

4.8.3 Demand Exceeds Physical Capacities

Resources over-commitment causes overload [2], [4]. Cloud providers set a

usage threshold level where once it has been reached, an overload mitigating

strategy, i.e. Task Eviction, is then triggered [2]. However, in Google’s case [7]

the threshold level is not documented nor stated in the dataset. Thus, algorithms

3a-b have been developed to identify the total capacities of the physical

Table 4.8 Algorithm 2b: Cause 2 Eviction Identifier.

Looking within the lowest granularity interval of the dataset, one interval, from

the time of the task resources’ request update in Updated Table (UT) to identify

the tasks that have been evicted due to the increase in the update.

1. FOR each task in UT table, until end of period
2. FOR each task in TaskEvent table (TEv) with an increase to their

resources’ request, until end of period
3. IF ((TEv.Status = evict)
 AND (Task_timestamp (UT) < Task_timestamp (TEv) <=

(Task_timestamp (UT) + next time interval))
 AND Task priority (UT) > Task priority (TEv))
4. THEN display TEv.Task ID, Task_timestamp
5. END IF
6. END FOR
7. END FOR

- 76 -

machines and the total assigned resources in a daily basis. Then, the day that

has higher resources request than the actual physical capacity is assumed to

result in an overload. Tasks evicted on those days are presumed to be the result

of the occurred overload instances.

4.8.4 Missing Machines

The fourth investigation looks at the dataset from the physical machine point of

view. The attribute ME_eventtype of PROV-TE tells whether the machine is Add,

Update, or Remove. Removal of physical machines can usually be caused due

Table 4.9 Algorithm 3a: Cause 3 Capacities Calculator

Identifying the total capacities of the machines and the total requested

resources (CPU and MEM) per day for the period of the trace (29 days).

1. FOR all available physical machines in machine_events table and all

requested resources of tasks in task_events table, until end of period

2. Sum the total capacity of ME_capacityMEM and ME_capacityCPU

3. Sum the total capacity of TEv_requestedCPU, TEv_requestedMEM

4. Group By Day

5. STORE Day Number, TEv_requestedCPU, TEv_requestedMEM,

ME_capacityMEM and ME_capacityCPU in Overload Table (OT)

6. END FOR

Table 4.10 Algorithm 3b: Cause 3 Eviction Identifier

Identify the days where the requested resources (MEM and CPU) are higher

the available physical resources from the Overload Table (OT).

1. FOR every day in Overload Table (OT), until end of period
2. IF ((ME_capacityMEM < TEv_requestedMEM)

OR (ME_capacityCPU < TEv_requestedCPU))
3. Display tasks with status = evicted
4. END IF
5. END FOR

- 77 -

to maintenance or failure. Thus, tasks that have been scheduled to run on those

machined get evicted.

4.8.5 Decrease in Machines Capacities

For various reasons, machines’ capacities get reduced. That reduction can

cause tasks to be evicted. Algorithm 5a identifies the physical machines which

have encountered an update to their resources in their lifetime. The event type

attribute in Machine Events table (ME_eventtype) is used. Every machine in the

log-data has three event types, Add, Remove, or Update. The ME_eventtype

‘Update’ allows us to exactly identify the updated machines and work out if the

Table 4.11 Algorithm 4a: Cause 4 Removal Identifier

Finding machines with a Remove event type and storing their IDs in a separate

table.

1. FOR each machine in machine_events table, until end of period
2. IF ME_eventtype = remove
3. STORE ME_machineID, ME_timestamp in Removed Machine

IDs table (RMI)
4. END IF
5. END FOR

Table 4.12 Algorithm 4b: Cause 4 Eviction Identifier

For every removed machine in Removed Machine IDs table (RMI), identify the

tasks that have been evicted within on-interval of the removal.

1. FOR each task scheduled in RMI, until end of period

2. IF (TEv_eventtype = evict) AND

3. (RMI.ME_timestamp < TEv_timestamp <= (RMI.ME_timestamp
+ next time interval))

4. Display distinct JE_JobID, TEv_taskindex

5. END IF

6. END FOR

- 78 -

resources has been reduced or not by comparing with its capacity at previous

state ‘Add’. Then, Algorithm 5b looks at the impact of such reduction by

identifying the evicted tasks within one interval from the update timestamp.

Table 4.14 Algorithm 5b: Cause 5 Eviction Identifier

Looking within the lowest granularity interval of the dataset from the time of
the machine update in order to identify the tasks that have been evicted due
to the decrease in the machine capacity.

1. FOR each machine in MDC table
2. FOR each task in task_events table scheduled in machines with

decreased update, until end of log data
3. IF (TEv_eventtype = evict) AND
4. (ME_timestamp < TEv_timestamp <= (ME_timestamp + next

time interval)
5. DISPLAY TEv_timestamp, JE_JobID, TEv_taskindex,

ME_timestamp, ME_machineID
6. END IF
7. END FOR
8. END FOR

Table 4.13 Algorithm 5a: Cause 5 Removal Identifier

Comparing the capacity of the machines at add event and at update event,

then storing IDs of machines with decreased capacities in Machines

Decreased Capacity table (MDC).

1. FOR each machine in machine_events table, until end of period
2. IF ME_eventtype = add AND update

 Compare capacity at add with capacity after update for
ME_capacityCPU , ME_capacityRAM

3. IF ((ME_capacityCPU(at add) > ME_capacityCPU (after update))
OR
(ME_capacityRAM(at add) > ME_capacityRAM (after update)))

4. STORE ME_timestamp, ME_machineID, ME_capacityCPU,
ME_capacityRAM in MDC table.

5. END IF
6. END IF
7. END FOR

- 79 -

4.9 Instantiation of the Framework – The Auditor

As explained in Chapter 2, there are three delivery models for Cloud services;

SaaS, PaaS, and IaaS. The framework’s application is in the IaaS layer. A proof-

of-concept system, Auditor, was developed and its positioning is shown in Figure

4.4. It shows how the framework can be applied to the reality of research and

engineering. The Auditor consists of three components: Mapper, Database, and

Query Handler. The Mapper takes the raw data from the dataset gathered by the

Infrastructure Monitor component as input and maps it to the PROV-TE model

structure which then is stored in the database. The Query Handler is the

implementation of the diagnostic algorithms discussed earlier. It gets the

structured dataset from the database as input, runs the algorithms using SQLite,

and then informs the Virtual Infrastructure Manager (VIM) with the causes of TE.

The VIM or the Cloud provider could make use of the Auditor to make decisions.

Mapper

Query
Handler

Database

Applications

Platforms

SaaS

PaaS

IaaS

Infrastructure
Monitor

Virtual Infrastructure Manager

Physical Machine(s)

Virtual Machine(s)

Usage &
Infrastructure Data

Causes for
Task Eviction

Raw Data

Structured
Dataset

Cleansed Data

Auditor

Figure 4.4 System Model

- 80 -

The potential use of the proposed framework is that following the process of

framework development, the other five mitigating strategies could be modelled

based on PROV and the relevant diagnostic algorithms could be developed. As

a result, each mitigating strategy could have its own Auditor; e.g. Auditor for Live

Migration causes, Auditor for VM Quiescing causes and so on.

In addition, users could make use of the auditor as a third party framework to

audit the Cloud services they use and the providers management of the data

centre. Because users lack the accessibility to the providers monitoring tools, the

auditor could potentially be facilitated for this purpose. For example, users might

be able to understand and know the exact reason behind why their tasks are not

finishing within the expected timeframe.

4.10 Summary

This Chapter has presented the novel provenance-driven diagnostic framework

and the methodology followed to construct it. The underpinning philosophy and

assumptions of the framework have been explained. The real Cloud dataset

used for learning has been analysed in detail and presented.

The three phases of the formulation methodology the provenance-driven

diagnostic framework for task eviction have been explained. Working scenarios

of tracing of task eviction workflow demonstrating PROV-TE model have been

illustrated. Further, the diagnostic algorithms of all five causes of task eviction

which are used identify the evicted tasks and the relevant causes have been

presented and discussed. In the next Chapter, the application of the framework

on a real Cloud dataset will be presented and discussed in detail.

- 81 -

Chapter 5

Application of the Diagnostic Algorithms

5.1 Introduction

This chapter presents the application of the developed diagnostic algorithms. It

investigates how PROV-TE could diagnose and audit Task Eviction causes from

a given Cloud usage dataset. An exploratory experiment was set up to

investigate the causal relationships between the causes and Task Evictions

using the proposed diagnostic algorithms in the framework. It starts with

presenting the context of the experiment. Then, it discusses the aim and

hypothesis of the experiment. It then illustrates the application of the proposed

diagnostic algorithms over the given Cloud usage dataset. It describes how

PROV-TE contributes to every investigation. It ends with a summary of the

overall findings of the experiment.

5.2 Context for the Experiment

As explained in section 4.3, using real datasets in research adds assurance and

credibility in the results and findings [139]. Where there are assumptions, the use

of real datasets reflect the realistic scenarios in verifying and proving such

assumptions. Google’s 29-day Cloud Usage dataset has been used for this

exploratory experiment.

SQLite is a relational database management system and was used as the query

platform. This section discusses how the datasets were restructured into

relational tables. The Google 29-day trace dataset in six folders, one for each

- 82 -

Figure 5.2 A snapshot of Machine Attributes table

Figure 5.1 A snapshot of Machine Events table

dataset table. Each folder contains up to 500 csv files. Using Linux command

cat *.csv >> output.csv, all files in each folder have been merged into one csv

file. After merging the relevant files together, we end up with six csv files, each

represent a dataset. Four csv files have been imported into four separate

database tables, namely Machine Events, Machine Attributes, Job Events and

Task Events. The diagnostic algorithms, explained in Section 4.8 have been

translated into SQLite queries. Figures 5.1 – 5.4 are snapshots of the first 10

rows of the used tables; machine_events table, machines_attributes table,

job_events table, and task_events table.

- 83 -

Figure 5.3 A snapshot of Job Events table

Figure 5.4 A snapshot of Task Events table

- 84 -

5.3 Hypothesis and Aim

The hypothesis for this exploratory study is that PROV-TE, an extension of the

provenance model PROV, provides adequate reasoning support for auditing

Google dataset for the causes and timing of Task Eviction.

Google has stated the causes for Task Eviction (see section 4.3) but their extent

of impact has neither been quantified nor mentioned. The aim of this experiment

is to test the hypothesis that provenance, represented here by PROV-TE, adds

value to the raw data by injecting the meaning and relationship between the data

for log data analysis.

5.4 Applying the Diagnostic Algorithms

PROV-TE is used to guide the investigations into job/task behaviour leading to

the stated causes for task eviction as suggested by Google. The investigations

start after going through the three phases of the Provenance-Driven Diagnostic

Framework as explained in sections 4.4 – 4.8.

Each one of the five causes is in a separate investigation. Each investigation is

to see how PROV-TE help identify tasks that have been evicted by a specific

cause. After the identification of the evicted tasks, questions arise, such as why

that cause have happened? Also, where exactly that cause took place?

Pinpointing the exact evicted tasks and tracing backwards the provenance of

such instances with the help of PROV-TE could answer such questions.

The number of evicted tasks due to every cause is unknown at this stage. In

terms of evictions, out of 25,242,731 tasks in the dataset, it has been found that

- 85 -

1,422,317 tasks were evicted. This has been found by counting the distinct

evicted tasks in the dataset using the parameter TEv_eventtype with the value

EVICT, regardless of the causes. The algorithms will look into the 1,422,317

evicted tasks particularly and try to identify the exact causes. According to the

documentation of the dataset [7], the evictions can be because of a machine (i.e.

Cause 4) or another task (i.e. Cause 1). While conducting the investigations, any

found limitation will be recorded and discussed later in this Chapter. The

expectation is that the total number of evicted tasks to be found by the application

of the diagnostic algorithms will be equal to the total number found before

conducting the investigations, 1,422,317.

5.4.1 Investigation 1 (Evicted Tasks caused by Take Over of Higher

Priority Tasks)

This investigation looks at the priority of tasks. In the case when all physical

resources are fully allocated and a new task is submitted with higher priority than

those already scheduled, one or more lower priority tasks will get evicted. The

selection of the exact task to be evicted is unknown. This is the process Google

follows with regards to task eviction [7].

This investigation is to identify the tasks that are linked to Cause 1 Take Over by

Higher Priority Tasks to be scheduled.

There are 12 priorities logged in the dataset, ranging from 0 to 11 as the bigger

the number the more important the task is. In case of an overload, Google’s only

mechanism is to evict the lower priority tasks as higher priority tasks get

preference for resources over lower priority ones. According to the dataset’s

- 86 -

supporting document, there are three categories of task priorities. First, free

priorities. This category has the least importance over the rest, Second,

production priorities where tasks fall in this category have the highest priorities.

Tasks that are latency sensitive are prevented by the scheduler from being

evicted. Lastly, the third category is monitoring priorities, where higher priority

jobs monitor lower priority ones. However, it is not possible from using both the

documentation and the dataset to map the 11 priorities to the three categories.

Table 5.1 shows the priority distribution of tasks in the dataset.

5.4.1.1 Contribution of PROV-TE

A number of attributes have been identified in order to undertake this

investigation which are TEv_priority, TEv_eventtype and TEv_timestamp, shown

Table 5.1 Priority Distribution

Priority Number Number of Tasks
Percentage of

Total Tasks

0 6472128 25.48%

1 2453482 9.66%

2 1111810 4.38%

3 1027 0.004%

4 14197733 55.89%

5 104 0.0004%

6 639784 2.52%

7 400 0.002%

8 254680 1%

9 286269 1.13%

10 1403 0.01%

11 7538 0.03%

- 87 -

in Figure 5.5. TEv_priority specifies the priority of the task. TEv_eventtype

specifies the status (e.g. SCHEDULE, EVICT, FAIL) of the tasks. It has been

used to only count the scheduled and the evicted tasks while using the third

attribute, TEv_timestamp, to only look at the 5-minute interval because this is the

logging interval of the dataset. So, any task that is evicted within one logging

interval from a higher priority task being scheduled is considered in this

investigation.

5.4.1.2 Results and Analysis

In this investigation, algorithms 1a and 1b, see tables 4.5 and 4.6 in Chapter 4,

have been applied on the dataset which identify the evicted tasks due to the

arrival of higher priority tasks into the host machine.

Submit Task
Group Tasks

into Jobs
Schedule

Job

Evict Task

Add/Remove
Machine

TEv_priority

TEv_eventtype

TEv_taskindex

TEv_time
stamp

JE_jobID

JE_timestamp

User Scheduler

ME_capacityCPU

ME_machineID

ME_capacityRAM

ME_time
stamp

P
ro

v:
W

as
G

e
n

e
ra

te
d

B
y

P
ro

v:
W

as
G

e
n

e
ra

te
d

B
y

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
w

as
G

e
n

e
ra

te
d

Fr
o

m

Prov:WasAsso
ciatedWith

Prov:WasAsso
ciatedWith

Prov:Used

Legend:

Agent ValueActivity Entitiy

Figure 5.5 PROV-TE for Take Over by Tasks with Higher Priority

- 88 -

Out of a total of 25 million tasks in the 29-day dataset, 18,693,472 distinct tasks

were scheduled with higher priority that those already running (Cause 1). Also, it

has been found that a total of 1,421,054 distinct tasks were evicted in the same

host machine.

Hence, there is a possible link between these 18,693,472 (76% of the total tasks)

to the eviction of 1,421,054 lower priority tasks to be evicted due to lack of

resources (Cause 0).

5.4.2 Investigation 2 (Evicted Tasks caused by Increase In

Resource Requests)

When a task is submitted a number of parameters are set, such as priority, CPU

and Memory. This determines where the tasks can be scheduled and how

quickly. The requested capacities of a running task can be amended on the fly

by the scheduler fulfilling the requests of users. When there is not enough

resources and there are lower priority tasks, the task eviction process will be

triggered.

5.4.2.1 Contribution of PROV-TE

In order to audit the cause of Increase in Resource Request, PROV-TE model in

Figure 5.6 specifically identifies the related attributes to the cause in hand.

Following the dataflow when Activity: Evict Task is triggered by an increase in

resources request (CPU and RAM), attributes to be investigated are identified,

which are TEv_resource_request_CPU, and TEv_resource_request_RAM.

These two entities are generated by Activity: Update Running Tasks. When a

task is updated, its Entity: TEv_eventtype is updated as well. This entity helps in

- 89 -

identifying the updated task while running. The time for every update is also

recorded by TEv_timestamp. By using the ME_MachineID Entity, the exact

machines and their hosted tasks can be identified. ME_MachineID is used so

that the associated tasks can be identified. Finally, by using TEv_timestamp

ME_MachineID, and TEv_eventtype tasks that were evicted as a result of this

cause have been identified. Algorithms 2a and 2b, tables 4.7 and 4.8 in Chapter

4, have been applied in this investigation.

5.4.2.2 Results and Analysis

It was found that 58,760 tasks requested more resources while running. Those

tasks resulted in the eviction of other lower priority tasks. The timestamp of the

resource update was used in order to count all evicted tasks within one interval

from the update. The result shows that 1,583 tasks were evicted due to the

increase in resources request by other higher priority tasks.

Submit Task
Group Tasks

into Jobs
Schedule

Job

Evict Task

Add/Remove
Machine

Update
Running

Tasks

TEv_resource_request_
CPU

TEv_priority

TEv_eventtype

TEv_taskindex

TEv_time
stamp

TEv_resource_request_
RAM

JE_jobID

JE_timestamp

User Scheduler

ME_capacityCPU

ME_machineID

ME_capacityRAM

ME_time
stamp

TEv_resource_request_
CPU

TEv_resource_request_
RAM

P
ro

v:
W

as
G

e
n

e
ra

te
d

B
y

P
ro

v:
W

as
G

e
n

e
ra

te
d

B
y

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
w

as
G

e
n

e
ra

te
d

Fr
o

m

Prov:Used

Prov:WasAsso
ciatedWith

Prov:WasAsso
ciatedWith

Prov:wasGen
eratedFrom

P
ro

v:
w

as
D

e
ri

ve
d

Fr
o

m

P
ro

v:
U

se
d

Legend:

Agent ValueActivity Entitiy

Prov:WasAsso
ciatedWith

Figure 5.6 PROV-TE for Increase in Resources Request

- 90 -

Users can request to update the resources’ needed to compute their tasks. The

update can be an increase of the original request or a decrease. In this

investigation, tasks with an increase update have been identified and quantified.

The increase in request sometimes result in an overload, where the sum of the

needed resources to compute the hosted tasks exceeds the actual physical

capacity. Thus, one or more tasks with lower priority get evicted as a result in

order to make space for the resource request of the running higher priority tasks

to be approved. It has been found in this investigation that 1,583 evicted tasks

were linked to Cause 2 Increase In Resource Requests.

5.4.3 Investigation 3 (Evicted Tasks caused by Demand Exceeding

Physical Capacities)

Usage threshold level is one of the measures which is used to trigger Task

Eviction mitigating strategy in Cloud dataset centres to avoid machine overloads.

Due to the limitations of the dataset with regards to usage threshold level not

being documented, overload has been calculated by comparing the physical

capacity against the requested resources on a daily basis as explained in Section

4.8.3. Every task that has been evicted in the timeframe of overload (requested

capacity exceeds physical resources) is counted in this investigation.

5.4.3.1 Contribution of PROV-TE

From Figure 5.7, PROV-TE helps to identify entities related to requested

resources and machines’ capacities. Following the dataflow of Activity: Evict

Task, entities like ME_capacityRAM, ME_capacityCPU,

TEv_resource_request_CPU, TEv_resource_request_RAM are used. Also, by

using TEv_taskindex and JE_JobID, ME_machineID, it has been possible to sum

- 91 -

the requested resources for all tasks per machine per day. Algorithms 3a and

3b, tables 4.9 and 4.10 in Chapter 4, have been applied in this investigation.

5.4.3.2 Results and Analysis

By comparing the results of the two algorithms 3a-b, it has been identified that

days 1, 2, 9 and 10 were highly likely to have overload in both CPU and Memory

because the sum of the requested resources per day exceeds the sum of the

actual physical capacity due to over-commitment as seen in Figures 5.8 and 5.9.

There were 463,544 evicted tasks in these four days which are believed to be

linked to Cause 3 Demand Exceeding Physical Capacities.

Submit Task
Group Tasks

into Jobs
Schedule

Job

Evict Task
Update

Machine

Add/Remove
Machine

Update
Running

Tasks

TEv_resource_request_
CPU

TEv_priority

TEv_taskindex

TEv_time
stamp

TEv_resource_request_
RAM

JE_jobID

JE_timestamp

User Scheduler

ME_capacityCPU

ME_machineID

ME_eventtype

ME_capacityRAM

ME_time
stamp

TEv_resource_request_
CPU

TEv_resource_request_
RAM

ME_eventtype

ME_capacityCPU

ME_capacityRAM

P
ro

v:
W

a
sG

en
e

ra
te

d
B

y

P
ro

v:
W

a
sG

en
e

ra
te

d
B

y

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
w

as
G

en
er

at
e

dF
ro

m

P
ro

v:
w

as
D

e
ri

ve
d

Fr
o

m

P
ro

v:
w

as
G

en
er

at
e

dF
ro

m

P
ro

v:
U

se
d

P
ro

v:
w

as
G

en
er

at
ed

Fr
o

m

Prov:Used

P
ro

v:
w

as
D

e
ri

ve
d

Fr
o

m

Prov:Used

Prov:WasAsso
ciatedWith

Prov:WasAssociated
With

Prov:wasGen
eratedFrom

P
ro

v:
w

as
D

e
ri

ve
d

Fr
o

m

P
ro

v:
U

se
d

Prov:Used

Agent ValueActivity Entitiy

Prov:WasAssociated
With

Figure 5.7 PROV-TE for Demand Exceeding Machines’ Capacities

- 92 -

5.4.4 Investigation 4 (Evicted Tasks caused by Missing Machines)

One of the causes that triggers Task Eviction is missing machines. Removal of

physical machines can usually be caused due to maintenance or failure [7]. The

attribute ME_eventtype of PROV-TE tells whether the machine is Added,

Updated, or Removed. Tasks that have been scheduled to run on machines

which are removed get evicted as a result. This investigation looks at the extent

of this cause.

Figure 5.9 Total CPU Request vs Total CPU Capacity Over the 29-Day Dataset

Figure 5.8 Total Memory Request vs Total Memory Capacity Over the 29-Day
Dataset

- 93 -

5.4.4.1 Contribution of PROV-TE

The investigation started with two entities, ME_eventtype and ME_timestamp

shown in Figure 5.10. Machines, that were removed, have been identified and

counted. To find the tasks that were evicted as a result, the following entities

have been used: TEv_timestamp, TEv_eventtype, JE_JobID, and

TEv_taskindex. Algorithms 4a and 4b, tables 4.11 and 4.12 in Chapter 4, have

applied in this investigation.

5.4.4.2 Results and Analysis

The diagnostic algorithms show that 5141 physical machines were removed

during the period of the 29-day. 76 tasks found to were evicted within one interval

from the removal of these machines. This cause is not considered to be dominant

because it is linked to a low number of tasks were evicted.

Submit Task
Group Tasks

into Jobs
Schedule

Job

Evict Task

Add/Remove
Machine

TEv_priority

TEv_eventtype
TEv_taskindex

TEv_time
stamp JE_jobID

JE_timestamp

User Scheduler

ME_machineID

ME_eventtype

ME_time
stamp

P
ro

v:
W

as
G

en
er

at
ed

B
y

P
ro

v:
W

as
G

en
er

at
ed

B
y

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
w

as
G

en
er

at
ed

Fr
o

m

Prov:Used

Prov:WasAsso
ciatedWith

Prov:WasAsso
ciatedWith

Legend:

Agent ValueActivity Entitiy

Figure 5.10 PROV-TE for Missing Machines

- 94 -

5.4.5 Investigation 5 (Evicted Tasks caused by Decrease in Physical

Machines Capacities)

Due to failure of nodes and maintenance, machines’ capacities (CPU and

Memory) can get reduced [5], [7]. That reduction can cause tasks to be evicted

due to the lack of available resources to compute those tasks. The focus of this

investigations is to identify those evicted tasks.

5.4.5.1 Contribution of PROV-TE

The following explains how the evicted tasks that are linked to Cause 5 Decrease

in Machine Capacity can be identified by using PROV-TE. The process starts

with the Activity: Evict Task. Tracing backwards in the dataflow, the needed

attributes for this investigation are identified, shown in Figure 5.11. Specifically,

the process checks the Entities: ME_capacityRAM and ME_capacityCPU which

have had an update. The Entity: ME_machineID helps in terms of identifying the

exact machines with a decrease in Memory or CPU and the IDs of the tasks that

Submit Task
Group Tasks

into Jobs
Schedule

Job

Evict Task
Update

Machine

Add/Remove
Machine

TEv_priority

TEv_eventtype
TEv_taskindex

TEv_time
stamp JE_jobID

JE_eventtype

JE_timestamp

User Scheduler

ME_capacityCPU

ME_machineID

ME_eventtype

ME_capacityRAM

ME_time
stamp

ME_eventtype

ME_capacityCPU

ME_capacityRAM

P
ro

v:
W

as
G

en
er

at
ed

B
y

P
ro

v:
W

as
G

en
er

at
ed

B
y

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
U

se
d

P
ro

v:
w

as
G

en
er

at
ed

Fr
o

m

Prov:wasDerivedFrom

P
ro

v:
w

as
D

er
iv

ed
Fr

o
m

P
ro

v:
w

as
G

en
er

at
ed

Fr
o

m

P
ro

v:
U

se
d

P
ro

v:
w

as
G

en
er

at
ed

Fr
o

m

Prov:Used

Prov:WasAsso
ciatedWith

Prov:WasAsso
ciatedWith

Legend:

Agent ValueActivity Entitiy

Figure 5.11 PROV-TE for Decrease in Machine Capacity

- 95 -

were scheduled on them by using JE_jobID, TEv_taskindex through the Activity:

Schedule Job. Then, by using Entity: TEv_eventtype, it has become possible to

identify the evicted tasks hosted on the specified machines earlier. Algorithms

5a and 5b, tables 4.13 and 4.14 in Chapter 4, have been applied in this

investigation.

5.4.5.2 Results and Analysis

From Algorithm 5a: by comparing the initial capacity of the machine in the event

type Add and Update, it was possible to narrow down the search to only the

machines with a decrease in resources. During the 29-day period, it was found

that 1267 physical machines have encountered an update (either increased or

decreased) in their capacity. Only 32 (2.5%) of which have had their capacity

decreased.

From Algorithm 5b, it has been found that 7,670 tasks were scheduled in the 32

machines and have been evicted within one interval from the update. Since

Google logs the data every 5-min, an assumption has been made that any

evicted task within this timeframe from the update is linked to the decrease of

machine capacity. Table 5.2 shows the 32 machines with the number of evicted

tasks as a result of their decrease in capacity (CPU and/or Memory). For

example, machine with the ID number ‘317488637’ had its memory decreased

from 0.749 bytes to 0.4995 bytes at time t. As a result of this decrease, 321 tasks

were evicted at time t+1.

- 96 -

Table 5.2 Number of Evicted Tasks per Machine (with Decreased Capacity)

Machine ID

Number of

Evicted

Tasks

Machine ID

Number of

Evicted

Tasks

Machine ID

Number of

Evicted

Tasks

317488637 321 6315250734 187 6400066596 113

6264344062 286 6316827871 404 6401302061 102

6274355716 625 6322213339 415 6402941427 41

6280643141 376 6335261139 324 6408086842 228

6282149131 349 6344084916 220 6415978528 126

6285257156 285 6370662053 140 6415979192 37

6289355687 569 6390664602 48 6437385645 71

6289704471 843 6391270721 207 6453653899 88

6296268057 306 6391293459 209 6455072430 30

6296865278 256 6391374318 151 6457070948 54

6301942525 301 6391421427 125

There is a correlation between the machines capacity reduced and the eviction

of tasks. This could be due to the fact that the needed capacity to run the tasks

exceeded the actual capacity after resources update. The result of this

investigation shows that the Cause 5 Decrease in Machine Capacity is linked to

7,670 evicted tasks during the total period of the dataset. From such analysis,

Cloud providers can know the machines that have abnormal behaviour or cause

the most disturbance in the data centre by identifying the linked number of

evicted tasks and time of evictions.

5.5 Overall Analysis

The overall findings show that PROV-TE was useful, due to the reasoning

support it added, in identifying the dominant cause that triggered task eviction

strategy, which is “Higher priority tasks take place over lower priority tasks” as

- 97 -

shown in Table 5.3. The reasons being the edges between the nodes which

explain the relationships between the attributes. In order to tackle the dominant

cause of overload, more understanding is needed and further investigation on

the root causes could be conducted.

Table 5.3 Overall Findings of the Investigations

Cause
Ordered by Level of Impact

Number of Evicted Tasks

Cause 1. Take Over by Higher Priority Tasks 1,421,054

Cause 3. Actual Demand Exceeds the
Physical Capacity

463,544

Cause 2. Decrease in Physical Machine
Capacity

7,670

Cause 5. Increase in Resource Requests 1,583

Cause 4. Missing Machines 76

Total Number of Evicted Tasks Found by
the Use of PROV-TE

1,893,927

The total number of evicted tasks found by provenance-driven diagnostic

framework is 1,893,827, which exceeds the number stated by the dataset by

33%, 1,422,317.

Certain information in the dataset has been obfuscated for confidentiality reason.

This limits the ability of the diagnostic algorithms which might have affected the

level of accuracy. For example, level of overload threshold is not stated. Due to

this, a workaround process has been conducted to identify the evicted tasks

linked to Cause 3 Demand Exceed Physical Capacity. In section 5.4.3, the

method of identifying the extent of the Cause 3 was by calculating the sum

capacity of physical resources and the sum requested resources. The

- 98 -

assumption is whenever the sum of requested capacity exceeds the physical

capacity, one or more tasks could be evicted. Another particular challenge

related to the identification of causes is the overwhelming volume and size of the

dataset. Althought query performance is not a focus in this research, it was an

obstacle. Thus, the level of granularity has been changed in terms of selecting

only the needed attributes in order to be queried which increased the query

performance, refer to section 3.3.1.

On a closer analysis, a cause can be the outcome of another cause, hence a

possible cascade of causes. Not enough physical or virtual resources (Cause 0)

is another cause that can lead to the five causes mentioned in section 4.3. In

addition, each one of the six causes can itself be a root cause of another issue

that leads to an overload. The chain of causes in the Google case study all lead

to overload and consequently trigger Task Eviction overload mitigating strategy.

Figure 5.12 illustrates the possible relationships between the six causes.

Task
Eviction

Overload

Cause 0

Cause 4

Cause 3

Cause 1

Cause 2

Cause 5

Figure 5.12 Chain of Causes

- 99 -

From Figure 5.12, it can be observed that Cause 0 can itself lead to overload but

it can also lead to Cause 1 (Take Over of Higher Priority Tasks), Cause 2

(Increase in Resource Requests), and Cause 3 (Demand Exceeds Physical

Capacity). Cause 4 (Missing Machines) and Cause 5 (Decrease in Machine

Capacities) can also lead to both overload and to Cause 0. For example, Cause

4 can result in Cause 0 which later can lead to Cause 3. In this case, Cause 3

creates the overload instance where tasks are then evicted as a result. In this

example, from the evicted tasks’ point of view, the cause of the eviction is Cause

3 but the root cause is Cause 4. The figure represent a two-level cause; however,

it is not a deterministic figure and needs further investigation.

Having said that, from Table 5.3, Cause 1 itself may not be the most dominant

cause due to the fact that other causes could have contributed as well. Thus, a

deeper investigation and analysis is needed to identify the root causes of every

evicted task, which is a limitation of this study. PROV-TE could be used for the

deeper-analysis investigation by guiding the development of more diagnostic

algorithms following similar development logic presented in Chapter 3. The focus

would be looking at the relationships between the five causes, one becoming the

cause and the other becoming the effect and so on. The investigation would

analyse the dataset to find evidence if in fact one cause has led to the existence

of other cause(s). The outcome is envisioned to be a complete trace of the events

and cause(s) that led to the eviction of every task.

Often in semantics the understanding of the dataset that underpin that

construction of provenance models could have limitations but not the dataset in

- 100 -

question. In general, semantics has shortcomings, such as missing links and

concepts, which limit its power to result in accurate answers or to answer more

complex question [141].

To further examine the reasons behind the gap between the results of the

investigations and the fact stated by the dataset, the Provenance-Driven

Diagnostic Framework should be evaluated on another dataset. Next Chapter

presents the use of a simulation tool to generate 15 heterogeneous datasets

based on a hybrid configuration combining both Google and Amazon EC2 Cloud

configurations to test and evaluate the framework. Applying the algorithms in a

controlled environment could potentially lead to an opportunity of enhancement

which could have a positive effect on accuracy.

5.6 Summary

This Chapter has presented and illustrated the use of Auditor for acquiring a

deeper understanding of the causes of Task Eviction. It started by giving the

context of the experiment and the purpose of this Chapter. It then described the

aim and hypothesis of the experiment. Then it presented the application of the

diagnostic algorithms in five clearly distinguished investigations, each with a

unique focus. It showed the results obtained from the application of the

diagnostic algorithms which quantifies the extent of every cause on the dataset.

It also explained how PROV-TE contributes specifically to every cause and

guides the investigations. It ended with identifying the most dominant and least

dominant causes for Task Eviction. Also, it discussed the limitations of the given

Cloud dataset and the probable effects on the diagnosis.

- 101 -

Chapter 6

Evaluation of the Diagnostic Algorithms

6.1 Introduction

This chapter presents the evaluation step of the Provenance-Driven Diagnostic

Framework which assesses its accuracy of the identified evicted tasks and the

causes that led to the eviction of those tasks. It describes the method used to

evaluate the framework which is simulation. It gives an overview of the chosen

simulation tool. It gives details on the general and scenario-specific simulation

setup and configuration. The Chapter then shows the output of the simulation

which is 15 heterogeneous and randomly-generated Cloud datasets based on a

hypothetical configuration that combines Google’s and Amazon’s EC2 Clouds’

configurations reflecting a general setup. The generated datasets are used for

the evaluation of the framework. The Chapter then explains the accuracy of the

framework by analysing the results based on the precision and recall statistical

measures. Finally, it concludes with a summary of the findings.

6.2 Purpose and Scope of Evaluation

In Chapter 4, the Provenance-Driven Diagnostic Framework, which includes the

developed diagnostic algorithms and the underpinning PROV-TE model, has

been applied on Google 29-day Cloud usage dataset. Evicted tasks have been

identified as well as the relevant causes based on metrics such as timestamp

and shared physical machine. In order to evaluate and assess the framework, a

simulation tool, SEED [14], has been used to generate Cloud datasets according

to known Task Eviction behaviours.

- 102 -

The hypothesis of the research is that PROV-TE adds value to the raw data by

connecting the data in a way that provides additional meaning for further

interpretation and analysis. Specifically, the analysis will provide the reasons and

causes of an overload.

The aim of this evaluation is to further test and evaluate the reasoning power of

the proposed diagnostic algorithms and the underpinning PROV-TE model for

the different overload scenarios. Due to the limited access to real Cloud datasets,

the simulation tool has been set up with a general data centre configuration and

has been used to generate 15 different simulated datasets. Each dataset comes

with a log which includes details of the physical and virtual machines such as

Host ID and CPU/MEM units, and tasks such as requested units of CPU/MEM

and priority. Most importantly, it includes details about eviction of tasks such as

relevant eviction cause and timestamp. These details will be used to validate the

results of our framework by calculating the precision and recall of every

diagnostic algorithm. Also, having datasets that reflect general data centre

configuration from different Cloud vendors will illustrate the transferability of the

diagnostic algorithms for task evictions driven by PROV-TE model. The

applicability of working with different datasets generated from different

configurations will be shown.

The experiment will focus on the following causes which could potentially trigger

overloading; hence Task Eviction:

Cause 1. Take Over by a Higher Priority Task - higher priority tasks will

always be scheduled irrespective of remaining machine capacity.

Cause 2. Increase in Resource Requests by a Running Task – each physical

machine has a fixed capacity. During the execution of a task, occasionally

- 103 -

a task could request more resources. If the task has a higher priority, the

request will be approved regardless of the remaining machine capacity.

Cause 3. Actual Demand Exceeding Physical Capacities – when over-

commitment is applied, more virtual resources are allocated than the

actual physical capacities. At some point in time, users could use all of

their allocated resources. At this stage, one or more tasks might not be

computed due to the degradation in physical resources. In this case,

overload occurs when the maximum physical usage exceeds the

threshold usage level of the machine’s capacity.

The scope of the evaluation focuses in these three causes so that a reasonable

range of typical patterns of behaviour in resource management at the IaaS level

of Cloud computing is covered.

6.3 Simulation Tool

The Simulation EnvironmEnt Distributor (SEED) tool [14] has been used to

systematically generate different Cloud datasets, each with a different task

eviction behaviour. Simulation in computer science domain is a vital systematic

method for validating complex behaviours. In Cloud environments, simulation is

the favoured method for evaluation due to the dynamic conditions of Cloud data

centres and their scale [13], [142]. Evaluating new mechanisms and frameworks

in a randomized, repeatable, reliable, isolatable and scalable manner can be

achieved through the use of simulation [81], [143]–[145]. Simulation also allows

the abstraction of system complexities which makes it possible to focus on

specific variables under controlled and configurable parameters permitting the

repetition of experiments and unbiased comparison of results.

- 104 -

6.3.1 Simulation Tools for Clouds

In Cloud computing domain, there is a limited number of simulation tools that can

be used [146]. They share common features but every tool has unique

characteristics and focus. For instance, GreenCloud [147], YANS [148] focus on

Cloud network parameters. Haizea [149] focus on scheduler performance.

MDCSim [150] is only for commercial access and does not consider virtualization

and multiple tenants. Other simulation tools such as Cloudsim [13], iCanCloud

[151], DCSim [152] and SEED [14] are more generic. Table 6.1 shows the

analysis of different simulation tools. SEED has the following advantages:

1. Event-based synchronization is supported while maintaining reasonable

levels of performance compared to real world time. Performance is an

important metric for users and administrators in terms of business

requirements and operational costs such as money and time.

2. Setup is guided and requires minimal user intervention and expertise in

terms of configuration and programming. This feature permits rapid

development and execution of simulation. Also, it enables SEED to be

provided as a SaaS.

3. Assumptions about the underlying hardware of the simulator are not

essential to execute distributed simulations. Simulations can run across

heterogeneous machine architectures and operating systems.

4. Low-level understanding of both the model domain as well as aspects

relating to simulation synchronization is not a prerequisite. SEED

facilitates the modelling of the domain based on graph notation and was

designed specifically for modelling large-scale data centres.

- 105 -

Table 6.1 Comparison of Cloud computing Simulation Tools

Simulation Tool /
Focus Domain

 Model Elements
VM

Support
Accessibility

YANS [148] /
Network

Task, Consumer,
Scheduler, Network,

No Open Source

Haizea [149] /
Scheduler

Task, Server, Scheduler Yes Open Source

GreenCloud [147]
/ Network

Task, Server, Scheduler,
Network

No Open Source

MDCSim [150] /
Multi-tier system

Task, Consumer,
Server, Scheduler, Data

Centre, Network
No Commercial

Cloudsim [13] /
Environment

Task, Consumer,
Server, Data Centre,
Scheduler, Network

Yes Open Source

iCanCloud [151] /
Environment

Task, Consumer,
Server, Data Centre,
Scheduler, Network

Yes Commercial

DCSim [152] /
Environment

Task, Server, Data
Centre, Scheduler

Yes Commercial

SEED [14] /
Environment

Task, Consumer,
Server, Data Centre,
Scheduler, Network

Yes Commercial

SEED has been selected for this research mainly due to points 2 – 4 above. In

addition, it is a product from our research group; hence access is allowed [14].

6.3.2 Overview of SEED

In [14], Cyber-Physical Systems (CPS) simulation can be performed by the

assembly of SEED’s core components which are formed by several services. Its

high level architecture, is shown in Figure 6.1. SEED’s architecture is loosely-

coupled. The components are less dependent on each other. Performance

bottlenecks are reduced because simulation components are located on

heterogeneous machines within a network. SEED allows the addition of further

components into the system. The characterization of the important components

are as follows:

- 106 -

 Simulation Instantiation: the creation and classification of the simulated

network topology in addition to the configuration and partitioning of a

simulation across distributed infrastructure are automated.

 Instance Manager: Highly synchronized simulation that is deployed

across distributed infrastructure is maintained by the provided scalable

approach. Message ordering between virtual nodes that exist within

different partitions is managed by the provided open synchronization

framework between local clocks for instances. Clock Manager manages

the simulation local clock of every instance with respect to the global clock

of the entire simulation.

Figure 6.1 SEED High Level Architecture [14]

- 107 -

 Instances: Nodes, Links, and Tasks are interacting components that form

a logical unit of simulation computation. Each instance, which is formed

by a specified set of tasks and a subset of the total virtual network

topology, executes on a partition that is hosted on a unique physical

machine and automatically created by SEED. The Clock Manager

externally manages each instance’s local clock.

6.4 Simulation Design

As illustrated in Table 6.2, three scenarios have been developed in SEED.

Scenario 1 includes the behaviour of Cause 1. Scenario 2 includes the

behaviours of Cause 1 and Cause 2. Lastly, Scenario 3 includes the behaviours

of Cause 1 and Cause 3.

Following the scope of this evaluation mentioned in section 6.2, in scenario 1,

one or more lower tasks are expected to be evicted when a higher priority task

is to be scheduled and there is lack of available resources. In scenario 2, one or

more lower priority task are expected to be evicted when there is a lack of free

resources and when (1) a higher priority task is to be scheduled, or (2) a higher

priority task requests more resources at runtime. In scenario 3, one or more lower

priority tasks are expected to be evicted when there is a lack of free resources

Table 6.2 Design of Scenarios

 Scenario 1 Scenario 2 Scenario 3

Cause (C1)

Cause (C2)

Cause (C3)

- 108 -

and when (1) a higher priority task is to be scheduled, or (2) the actual demand

exceeds the actual physical capacity controlled by the overload threshold level.

6.4.1 General Setup for the Simulation Environment

The simulation environment has been configured to reflect a general data centre

setup and can be seen in Figure 6.2. For every run, the tool starts with building

20 physical machines (PM) and 40 virtual machines (VM). Each PM has two VMs

(1:2). The PMs’ CPU and RAM sizes are fixed with 8 units and 15 GB,

respectively. The VM sizes are chosen randomly from a specified size list.

Number of VM CPUs can be 2, 4, or 8 units. VM RAM size can be 4, 6, or 8 GB.

The sizes are a reflection of Amazon EC2 c3.2xlarge instance [153]. However,

VM and PM sizes of other vendors can be used. This particular instance allows

over-commitment of resources. The scale of the simulation can be generalized

to larger environments with more PMs and VMs, generating huge volumes of

data. This aims to demonstrate the feasibility of massive-scale simulation for

implementing provenance-based techniques.

Tasks are then generated according to a random task submission rate (TSR).

TSR is randomly chosen from 100-300 per hour. The simulation length is 24

hours. The method of task distribution is: send one task to one VM at a time, in

equal distribution, then loop back again until all tasks are sent to be queued in

every VM.

There are 4 variables assigned to each task. Firstly, a task’s length is measured

in steps. The task length is randomly chosen from 2 to 10 steps. The length of

the task is the number of steps needed to finish execution. In SEED, events are

logged in a one-step interval. A step is a predefined interval of 30 seconds.

- 109 -

Second, a priority is randomly assigned to each task. It is a number to define the

privilege of a task: 0 (lowest), 1 and 2 (highest). Finally, the remaining two

variables are the requested resources, CPU and RAM. The resources are also

chosen randomly from a predefined list (1, 2, 3, 4, 5, 6, 7, 8).

For every VM, there are three queues for tasks to be scheduled, once for each

priority which ensures that every task get its fair time of waiting in the queue. In

the scheduling method, there is a loop that goes around the three queues and

dequeues one task from each queue at a time to be scheduled.

6.4.2 Scenario’s Specific Configuration

Each scenario has additional configuration in order to generate the needed

behaviour in the dataset. Three algorithms are developed in SEED to mimic the

behaviour predefined in the three scenarios, namely Task Evictor, Request

SEED Simulator

Experiment Manager Model Elements

Automated execution management

Data
Output

20x Physical Machines
• CPU: 8
• RAM: 15GB

40x Virtual Machines
• VCPU: {2,4,8}
• VRAM: {4,6,8}GB

Tasks
• Submssion: 100-300/hr
• Length: 60-300s
• Priority: 0-2
• CPU/RAM: {1-8}

Configuraiton
• Duration: 24hrs
• Interval: 30s

Server

CPU RAM VMs

Scheduler

Virtual Machine

VCPU VRAM Tasks

Scheduler

Task

VCPU VRAM LengthProcess Priority

Figure 6.2 Configuration of the simulation environment using the SEED
simulator

- 110 -

Handler and Overload Manager. A brief description of these is detailed below. In

the case where only one loop is filled (equal-priority), tasks are then scheduled

in a First-Come First-Served order, following the priority scheduling algorithm

[154].

6.4.2.1 Cause 1: Take Over by Higher Priority Tasks

For every VM, whenever there is a lack of RAM or CPU and there is a task waiting

in the queue with higher priority than the ones running, lower priority tasks get

evicted so the VM to be ready to schedule the waiting higher priority task.

Table 6.3 Algorithm: SEED Task Evictor

Task A is to be hosted in VM n

1. IF available resources on VM n <= Task A requested CPU/RAM
2. SCHEDULE Task A
3. ELSE IF there are lower priority tasks than Task A
4. CREATE a List of tasks where their priority < priority of Task A.
5. ORDER elements of List in ASCENDING order by priority.
6. IF SUM of resource of List >= Task A requested Resource
7. SET TotalFreedResource = 0
8. WHILE (TotalFreedResource < Requested Resource)
9. TotalFreedResource += Task Recourse
10. KILL Task in List
11. END WHILE
12. SCHEDULE Task A
13. ELSE
14. WAIT in queue to be scheduled
15. ELSE
16. WAIT in queue to be scheduled

As illustrated in Table 6.3, whenever a task is to be scheduled, the scheduler has

been configured to first check the available VM capacity, CPU and RAM. If there

is enough space, then the task gets scheduled. Otherwise, if there lower priority

tasks running in the VM, a list is then created to include all lower priority tasks

ordered ascendingly by priority. From the top of the list, tasks get evicted until

enough space becomes available. Then the task in question gets scheduled. In

- 111 -

case there are no lower priority tasks, the to-be-scheduled task is to wait in the

queue until free space becomes available. Because all behaviours share the

same policy of evicting tasks, SEED has been designed to use the algorithm

SEED Task Evictor for every scenario.

6.4.2.2 Cause 2: Increase in Resource Request

Scheduling a task on a specific VM depends on the task’s requested capacities,

in terms of CPU and RAM. Once hosted, a task can request a change in the

requested resources. In case there is no free resources to accommodate this

request and there are lower priority tasks on the same VM, the task eviction

mechanism will be executed until the desired requested capacities become

available.

Table 6.4 Algorithm: SEED Request Handler

Task A is to be hosted in VM n

1. WHILE Task is in progress < 1 // 1 = finished
2. Generate random request
3. IF (Task A new request < VM’s CPU/RAM && there is free

space)
4. Approve request
5. ELSE IF there are lower priority tasks
6. RUN Algorithm: SEED Task Evictor to evict lower priority

tasks
7. Approve request
8. ELSE
9. Deny request
10. END WHILE

As illustrated in Table 6.4 while a task is running, the simulation tool has been

configured to generate a new random request from a predefined list (1, 2, 3, 4,

5, 6, 7, 8). The request will get approved only if there is available space in the

VM. Otherwise, the same lower priority task eviction method of Algorithm 4: Task

Evictor is run until the requested space becomes available.

- 112 -

6.4.2.3 Cause 3: Demand Exceeds the Physical Capacities

Over-commitment is a policy that is widely adopted in data canters to maximize

resources’ usage. Physical and virtual usage are managed by overload threshold

levels [155]. The simulation tool has been configured with an 80% physical

threshold usage level. Once physical usage exceeds it, eviction process is

executed. Unlike the other scenarios, two policies are enforced when evicting

tasks, lower priority task first and Last-In-First-Out (LIFO). It is more sensible to

evict tasks that have just started than those near to finish.

Table 6.5 Algorithm: SEED Overload Manager

Every PM has 2 VMs

Every VM has more than 1 task

1. SET threshold level
2. SUM total PM usage
3. Calculate the usage ratio based on the threshold level
4. IF PM total usage > threshold
5. CREATE a List of tasks running in the PM
6. ORDER elements of List in ASCENDING order by priority
7. ORDER elements of List in DESCENDING order by Time of hosting

in VM
8. WHILE (PM total usage > threshold)
9. RUN Algorithm: Task Evictor to evict lower priority tasks
10. END WHILE
11. END IF

As illustrated in Table 6.5, for every physical machine, the total physical usage

is calculated every one-step interval (30 seconds). If the total physical usage

exceeds the predifented usage thresold limit, tasks get evicted following the

same lower priority task eviction method of SEED Task Evictor until normal

usage behaviour is restored. The list is ordered ascending by tasks priority and

descending by time of hosting in the VM. In this controlled environment, normal

usage behaviour means the total physical usage is less than the usage thresold

limit.

- 113 -

6.5 Simulation Runs

Each scenario (simulation) is run 5 times, each resulting in a dataset (trace log)

similar to the log data from a data centre. Having a dataset with more than one

Cause will help validate the accuracy of the diagnostic algorithms. These

datasets will be then be cleansed and imported into a database to be diagnosed

and analysed by the diagnostic algorithms.

Figure 6.3 shows the execution time of every run for every scenario. The mean

execution time for all runs is 1.29 hours for scenario 1, 2.53 hours for scenario

2, and 0.43 hours for scenario 3. The standard deviation of the mean execution

times is ±0.1 for scenario 1, ±0.73 for scenario 2, and ±0.06 for scenario 3. Due

to the small number of tasks of Scenario 3 which depends on the random TSR,

the mean of Scenario 3 execution times is smaller compared to the means of

Scenarios 1 and 2. Also, Scenario 2 execution times are relatively higher is

because of the complexity of Algorithm: Request Handler.

Figure 6.3 Execution time for every simulation run

0

0.5

1

1.5

2

2.5

3

3.5

Scenario 1 Scenario 2 Scenario 3

Ti
m

e
in

 H
o

u
rs

- 114 -

While tasks are running, their resources request are constantly and randomly

changed. In order for every request to be approved or not, capacities comparison

is undertaken. Every request in RAM or CPU must be less or equal the size of

the VM. Also, if there is no VM space and there are lower priority tasks, the

eviction process is triggered. Only then the request is approved. This explains

the long execution times for runs of scenario 2.

6.6 Simulation Output

To show the randomness, variances and differences of the resulting generated

behaviour, each scenario has 5 simulation runs. The output of SEED is a total of

15 simulated and randomly-generated logs. Table 6.6 summarizes the overall

Table 6.6 Output of Simulation

 Scenario 1 Scenario 2 Scenario 3

Total
Tasks

Total
Evicted
Tasks

Total
Tasks

Total
Evicted
Tasks

Total
Tasks

Total Evicted
Tasks

Run 1 4208 259 3735

C1 C2

3131

C1 C3

904 20 326 54

Run 2 4530 266 4076

C1 C2

2341

C1 C3

967 20 16 187

Run 3 4501 421 4328

C1 C2

2687

C1 C3

1041 45 1 176

Run 4 4653 297 4035

C1 C2

3077

C1 C3

1012 37 177 76

Run 5 4538 319 4049

C1 C2

2596

C1 C3

994 43 96 157

- 115 -

output of the 15 runs of the three scenarios. For each run, the total number of

tasks as well as the total number of evicted tasks are shown. Also, because

Scenario 2 and 3 have two causes each, the total number of evicted tasks related

to each cause is also shown. The aim for Table 6.6 is that it will be used after

applying the algorithms of the framework to calculate the precision and recall of

the results, which will be explained in the next sections.

6.6.1 Simulation Parameters

Each simulation run results in one trace log (dataset) which combines all

parameters of the simulation, physical machine, virtual machine, and task. The

logs are in a csv format. There are shared parameters across all scenarios,

explained in Table 6.7. As a result of the scenario-specific configurations

mentioned in Section 6.4.2, there are unique parameters for scenarios 2 and 3,

explained in Table 6.8.

Table 6.7 Common Simulation Parameters in all Trace Logs

Component Parameter Description

Simulation

SimTime The simulation logging interval; step.

UTCDateStamp The date of the each logged interval

UTCTimeStamp The time of the each logged interval

ID The internal ID of every component

ComponentType The component type; PM, VM, Task

PM
PMemory The physical Memory size of the PM

PCPU The physical CPU size of the PM

VM

VCPU The virtual CPU size of the VM

VMemory The virtual memory size of the VM

HostMachine The ID of the Host PM

Task
Status

The status of a task; Not Started, Started,
Executing, Finished, Killed (Evicted).

HostID The ID of the host VM.

- 116 -

HostCPU The CPU size of the host VM

HostMemory The Memory size of the host VM

Length
The length of the task measured in
SimTime (steps)

Progress
The progress of the task; <1 = running, 1
= finished.

Priority The priority of the task

CPU The requested CPU size of the task

Memory The requested Memory size of the task

In Table 6.7, The parameters related to the component: Simulation and

parameter: Progress in component: Task are mandatory for the working of the

simulation tool but are not considered in the algorithms. VM-related parameters

have been introduced due to the controlled environment which led to the

enhancement of the algorithms, see section 6.7.1. The other parameters are not

new for the proposed PROV-TE framework.

Table 6.8 Additional Scenario-Specific Parameters in Trace Logs for Scenario
2 and Scenario 3

Scenario Component Parameter Description

S
c
e

n
a

ri
o
 2

T
a

s
k

isCPUChanged
A boolean variable to
state if task requested
new CPU size

ReqCPU
The newly approved
CPU size request

isMemoryChanged
A Boolean variable to
state if task requested
new Memory size

ReqMemory
The newly approved
Memory size request

S
c
e

n
a

ri
o
 3

P
h

y
s
ic

a
l
M

a
c
h

in
e

Overload
A Boolean variable to
state if usage exceeded
threshold in the PM

PhysicalMemUsage
The total Memory usage
of the PM

OverloadMemThreshold
The predefined
threshold Memory usage
level

- 117 -

PhysicalCPUUsage
The total CPU usage of
the PM

OverloadCPUThreshold
The predefined
threshold CPU usage
level

Depending on the scope of the running scenario, functions of other scenarios are

turned off and the related parameters are not logged.

6.6.2 Simulation Logs

Below is a snapshot of one log of every scenario. Figures 6.4 - 6.6 show the

datasets for scenarios 1, 2 and 3, respectively.

6.7 Output from the Diagnostic Algorithms

For the rest of the chapter, Cause 1 is also referred to as C1, Caused 2 is also

referred to as C2 and Causes 3 is also referred to as C3. The following shows

the results of the implementation of the diagnostic algorithms for Causes 1 - 3

Figure 6.4 A snapshot of scenario 1 trace log

Figure 6.5 A snapshot of scenario 2 trace log

- 118 -

presented in Chapter 3, mainly the Auditor component. For scenario 1, the

Auditor will only apply C1 related algorithms. For scenario 2, the Auditor will apply

C1 and C2 related algorithms. For scenario 3, the apply will trigger C1 and C3

related algorithms, following the simulation design illustrated in Table 6.2.

The input to the Auditor was the 15 simulated datasets. The diagnostic

algorithms were applied to find the causes of all evictions. The output of the

Auditor is the identification of causes and relevant evicted tasks.

Table 6.9 summarizes the output of all diagnostic algorithms. In section 6.8,

precision and recall statistical measures will be applied to evaluate the accuracy

of the results.

6.7.1 Enhancement of Diagnostic Algorithms

While applying the diagnostic algorithms, discussed in Chapter 3, there was an

opportunity for enhancements. Overlaps in identifying the evicted tasks have

been noticed in Algorithm 2b: Cause 2 Eviction Identifier and Algorithm 3b:

Cause 3 Eviction Identifier. Thus, the attempt to minimize the overlaps is

described below. This could explain the gap found in the overall results in

Chapter 4.

Figure 6.6 A snapshot of scenario 3 trace log

- 119 -

When identifying the evicted tasks because of both Cause 2 (Increase in

Resource Request) or Cause 3 (Demand Exceeds the Physical Capacities), all

tasks evicted due to Cause 1 (Take Over by Higher Priority Tasks) should be

excluded before applying the algorithms 2b and 3b, shown in tables 6.10 and

6.12, respectively.

Further, because the simulation tool has been configured to apply the threshold

usage level, Cause 3 diagnostic algorithms, described in Chapter 3 and

implemented in Chapter 4, have been enhanced to be applicable for the normal

environment setup, shown in tables 6.11 and 6.12.

Table 6.9 Output of the Auditor

 Scenario 1 Scenario 2 Scenario 3

Total
Tasks
Found

Evicted
Tasks
Found

Total
Tasks
Found

Evicted
Tasks
Found

Total
Tasks
Found

Evicted
Tasks Found

Run 1 4208 259 3735

C1 C2

3131

C1 C3

900 13 307 58

Run 2 4530 266 4076

C1 C2

2341

C1 C3

960 15 91 60

Run 3 4501 421 4328

C1 C2

2687

C1 C3

1048 20 75 55

Run 4 4653 297 4035

C1 C2

3077

C1 C3

1012 22 182 36

Run 5 4538 319 4049

C1 C2

2596

C1 C3

997 23 159 55

- 120 -

Table 6.10 Enhanced Algorithm 2b: Cause 2 Eviction Identifier.

1. FOR each task in TaskEvent table (TEv) with an increase to their
resources’ request, until end of period

2. IF ((Status = evict)
AND (Task_timestamp (updated) < Task_timestamp (evited) <=
(Task_timestamp (updated) + next time interval))
AND Task priority (updated) > Task priority (evicted))
AND Task ID NOT IN Cause1EvictedTasks table

3. THEN display Task ID, Task_timestamp
4. END IF
5. END FOR

Table 6.11 Enhanced Algorithm 3a: Cause 3 Capacities Calculator.

Comparing the total physical capacities with the resources usage. Once the

usage reaches threshold (80%), store physical machine ID with timestamp of

overload in Overloaded Table (OT).

1. FOR each physical machine (PM) in Sc3dataset table, until end of period
2. Find total CPU/RAM usage in every interval
3. IF CPU/RAM usage > threshold level
4. Store PM ID, timestamp in Overloaded table
5. END IF
6. END FOR

Table 6.12 Enhanced Algorithm 3b: Cause 3 Eviction Identifier.

Per every overloaded physical machine in overload table OT, find all

evicted tasks within one interval of overload in the same machine.

1. FOR each physical machine in OT, until end of period
2. FOR each task in Sc3dataset table (ST) hosted in an overloaded a

physical machine (PM) that is in OT, until end of period
3. IF (ST.Status = evict)

AND (PM_timestamp < Task_timestamp <= (PM_timestamp +
next time interval))
AND Task ID NOT IN Cause1EvictedTasks table

4. THEN display ST.Task_timestamp, ST.Task ID
5. END IF
6. END FOR

7. END FOR

- 121 -

6.8 Precision and Recall Statistical Measures

The simulation facilitated the generation of 15 Cloud test datasets that captured

specific behaviours for task eviction. The developed diagnostic algorithms make

use of PROV-TE. This has proved to be helpful by both the ability of auditing the

datasets and identifying evicted tasks and links to possible causes.

In order to evaluate the accuracy of the diagnostic algorithms, precision and

recall statistical measures have been applied. Precision is a measure of the

reliability of the diagnostic algorithms to only identify the relevant evicted tasks

for each cause. Recall is a measure of the sensitivity of the diagnostic algorithms

to retrieve and identify the highest possible number of relevant evicted tasks for

a specific cause.

Precision =
True Positive (TP)

True Positive (TP)+False Positive(FP)
× 100 (6.1)

Recall =
True Positive (TP)

True Positive (TP)+False Negetive (FN)
× 100 (6.2)

TP is the number of relevant evicted tasks stated in the simulation log and

captured by the Auditor. FP is the number of irrelevant evicted tasks stated by

the simulation log but captured by the Auditor. FN is the number of relevant

evicted tasks stated in the simulation log but NOT captured by the Auditor. TN is

the number of irrelevant evicted tasks stated by the simulation log and NOT

captured by the Auditor.

TP, FP, and TN were calculated by comparing the output of the simulation, Table

6.6, with the output of the Auditor, Table 5.9. For example, looking at these two

tables, in Run 1 of Scenario 2, the Auditor as able to identify all tasks, 3735, and

- 122 -

also classify the evicted tasks based on the specific causes, C1 and C2. For C1,

900 (TP) evicted tasks out of 904 have been identified (FN = 4).This gives 100%

for precision and 99% for recall. For C2, 13 evicted tasks out of 20 were identified

which makes precision 100% and recall 65%.

The precision and recall of C1 related algorithms were calculated in every

scenario because all datasets captured C1 task eviction behaviour whereas C2

task eviction behaviour was captured in only Scenario 2 and C3 task eviction

behaviour was captured in only Scenario 3.

6.8.1 Scenario 1 Analysis

Table 6.13 shows the simulated datasets of scenario 1. There is only one cause

and the algorithms have identified all evicted tasks due to this cause.

In Table 6.13, the mean TP of all 5 runs is 312.4 identified evicted tasks with a

standard deviation of ±65 tasks. The mean FP, FN, and TN is 0 and so is the

standard deviation. Applying Equations 5.1 and 5.2, the precision and recall are

both 100%.

Table 6.13 Scenario 1 Mean Precision and Recall.

C1 Algorithms
Relevant Tasks

(Simulated)
Irrelevant Tasks

(Simulated)

Relevant Tasks
(Auditor)

TP = 312.4
STD DEV = ± 65

FP = 0
STD DEV = ± 0

Irrelevant Tasks
(Auditor)

FN = 0
STD DEV = ± 0

TN = 0
STD DEV = ± 0

Precision 100%

Recall 100%

- 123 -

In Figure 6.7, the average actual and identified evicted tasks for the whole

simulation period (24 hours) on an hourly basis can be observed for Scenario 1

Cause 1. Also, it can be seen that 100% of evicted tasks were identified. It shows

the cumulative average of actual and identified evicted tasks of all 5 runs of

Scenario 1, Cause 1. The bars represent the average number of evicted tasks

per hour. Grey bars represent the actual number of evicted tasks. Black bars

Figure 6.8 Average of actual and identified evicted tasks per hour, showing
the variance across all 5 runs of Scenario 1 Cause 1

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Scenario 1 - Avg Actual Scenario 1 - Avg Identified

Figure 6.7 Cumulative average task evictions over all 5 runs of Scenario 1
Cause 1

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
al

ti
ve

 F
re

q
u

en
ce

 P
er

ce
n

ta
ge

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumulative Percentage Identified Cumulative Percentage

- 124 -

represent the found number of evicted tasks. There are two lines, which overlap

each other in this case because 100% of evicted tasks were identified. The same

colouring representation applies for the rest of the figures, grey for actual and

black for found evicted tasks. The lines are cumulative frequency representation

to show the percentage of match between the actual and the found.

In Figure 6.8, the randomization of the generated data can be seen, around 10-

20 tasks per hour on average. It shows the actual (grey line) and identified

(dotted black line) average number of evicted task with standard deviation across

all 5 runs for this scenario for Cause 1. They overlap because 100% of evicted

tasks were identified.

6.8.2 Scenario 2 Analysis

Table 6.14 Scenario 2 Cause 1 Mean Precision and Recall.

C1 Algorithms
Relevant Tasks

(Simulated)
Irrelevant Tasks

(Simulated)

Relevant Tasks
(Auditor)

TP = 981.4
STD DEV = ± 54

FP = 2
STD DEV = ± 3

Irrelevant Tasks
(Auditor)

FN = 2.2
STD DEV = ± 3.1

TN = 0
STD DEV = ± 0

Precision 99%

Recall 99%

Table 6.15 Scenario 2 Cause 2 Mean Precision and Recall.

C2 Algorithms
Relevant Tasks

(Simulated)
Irrelevant Tasks

(Simulated)

Relevant Tasks
(Auditor)

TP = 18.6
STD DEV = ± 4.3

FP = 0
STD DEV = ± 0

Irrelevant Tasks
(Auditor)

FN = 14.4
STD DEV = ± 8.4

TN = 0
STD DEV = ± 0

Precision 100%

Recall 56%

- 125 -

Table 6.14 summarizes the mean precision and recall of scenario 2 Cause 1

across all runs. It can be seen that the diagnostic algorithms of C1 are quite

promising with 99% in both precision and recall. In Table 6.14, the mean TP of

all 5 runs is 981.4 identified evicted tasks with a standard deviation of ±54 tasks.

The mean FP of all 5 runs is 2 identified evicted tasks with a standard deviation

of ±3 tasks. The mean FN of all 5 runs is 2.2 identified evicted tasks with a

standard deviation of ±3.1 tasks. The mean TN is 0 and so is the standard

deviation. In Table 6.15, the mean TP of all 5 runs is 18.6 identified evicted tasks

with a standard deviation of ±4.3 tasks. The mean FN of all 5 runs is 14.4

identified evicted tasks with a standard deviation of ±8.4 tasks. The mean TN

and FP is 0 and so is the standard deviation. In Table 6.15, C2 diagnostic

algorithms have returned precisely the relevant evicted tasks but failed to pick

up 44% of the evicted tasks linked to C2.

It can be seen from Figure 6.9 that 99% of evicted tasks were identified. It shows

the cumulative average of actual and identified evicted tasks of all 5 runs of

Scenario 2, Cause 1. The bars represent the hourly average number of evicted

Figure 6.9 Cumulative average task evictions over all 5 runs of Scenario 2
Cause 1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
u

la
ti

ve
 F

re
q

u
en

ce

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumulative Frequence Identified Cumulative Frequence

- 126 -

tasks across all 5 runs. There are two lines, which overlap each other in this

case. The lines are cumulative frequency representation to show the percentage

of the match between actual and found number of evicted tasks.

Figure 6.10 shows the randomization of the generated data, 32-47 tasks per hour

on average. The average actual and identified evicted tasks for the whole

simulation period (24 hours) on an hourly basis of Cause 1 are shown in the

figure. The dotted black line represent the average number of identified evicted

tasks per hour. The grey line represent the actual number of evicted tasks per

hour. They overlap because 99% of evicted tasks were identified.

It can be seen from Figure 6.11 that 56% of evicted tasks were identified. The

figure shows the cumulative average of actual and identified evicted tasks of all

5 runs of Scenario 2, Cause 2. The bars represent the hourly average number of

tasks across all 5 runs. The lines are cumulative frequency representation to

show the percentage of the match between actual and found number of evicted

tasks.

Figure 6.10 Average of actual and identified evicted tasks per hour,
showing the variance across all 5 runs of Scenario 2 Cause 1

0

15

30

45

60

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Scenario 2 C1 - Ave Actual Scenario 2 C1 - Ave Identified

- 127 -

In Figure 6.12, the average number of the identified evicted tasks (56%

presented in Table 6.15) that are linked to Cause 2 can be observed on an hourly

basis. The number of evicted tasks that have not been picked up by the

framework can be observed in an hourly basis. The average number of evicted

tasks per hour is based on the devolved randomizer and the task eviction

behaviour models.

Figure 6.12 Average of actual and identified evicted tasks per hour,
showing the variance across all 5 runs of Scenario 2 Cause 2

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
u

m
b

er
 o

f
Ev

ci
te

d
 T

as
ks

Hour

Scenario 2 Cause 2 - Ave Actual Scenario 2 Cause 2 - Ave Identified

Figure 6.11 Cumulative average task evictions over all 5 runs of
Scenario 2 Cause 2

0%

20%

40%

60%

80%

100%

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
u

la
ti

ve
 F

re
q

u
en

ce

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumulative Frequence Identified Cumulative Frequence

- 128 -

6.8.3 Scenario 3 Analysis

In Table 6.16, C1 diagnostic algorithms of Scenario 3 are able to identify relevant

evicted tasks. The recall percentage of C3 diagnostic algorithms is high, 98%,

which means it is capable of identifying the relevant evicted tasks as shown in

Table 6.17. However, its precision measure is 40%, as seen in Figures 6.15 and

6.16. In Table 6.16, the mean TP of all 5 runs is 119.4 identified evicted tasks

with a standard deviation of ±126.2 tasks. The mean FP of all 5 runs is 43.4

identified evicted tasks with a standard deviation of ±37.6 tasks. The mean FN

of all 5 runs is 3.8 identified evicted tasks with a standard deviation of ±8.4 tasks.

The mean TN is 0 and so is the standard deviation. In Table 6.17, the mean TP

Table 6.16 Scenario 3 Cause 1 Mean Precision and Recall.

C1 Algorithms
Relevant Tasks

(Simulated)
Irrelevant Tasks

(Simulated)

Relevant Tasks
(Auditor)

TP = 119.4
STD DEV = ± 126.2

FP = 43.4
STD DEV = ± 37.6

Irrelevant Tasks
(Auditor)

FN = 3.8
STD DEV = ± 8.4

TN = 0
STD DEV = ± 0

Precision 73%

Recall 97%

Table 6.17 Scenario 3 Cause 3 Mean Precision and Recall

C3 Algorithms
Relevant Tasks

(Simulated)
Irrelevant Tasks

(Simulated)

Relevant Tasks
(Auditor)

TP = 52
STD DEV = ± 9.2

FP = 78
STD DEV = ± 55.5

Irrelevant Tasks
(Auditor)

FN = 0.8
STD DEV = ± 1.7

TN = 0
STD DEV = ± 0

Precision 40%

Recall 98%

- 129 -

of all 5 runs is 52 identified evicted tasks with a standard deviation of ±9.2 tasks.

The mean FP of all 5 runs is 78 identified evicted tasks with a standard deviation

of ±55.5 tasks. The mean FN of all 5 runs is 0.8 identified tasks with a standard

deviation of ±1.7 tasks. The mean TN is 0 and so its standard deviation.

In Figure 6.13, the average actual and identified evicted tasks for the whole

simulation period (24 hours) for Scenario 3 Cause 1 on an hourly basis can be

observed. It can be seen that the diagnostic algorithms for C1 have identified

more evicted tasks than expected with a 73% precision. It can also be seen from

the two lines that about 40% of irrelevant evicted tasks were identified. The lines

are cumulative frequency representation to show the percentage of the match

between actual and found number of evicted tasks.

In Figure 6.14, the randomization of the generated data can also be seen. The

figure shows the hourly average number of the actual and identified task eviction

with standard deviation across the 5 runs of Scenario 3 Cause 1. It can be

observed that in the first 11 hours the precision of the algorithms was not high

Figure 6.13 Cumulative average task evictions over all runs of Scenario 3
Cause 1

0%

20%

40%

60%

80%

100%

120%

140%

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
u

la
ti

ve
 F

re
q

u
en

ce

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumulative Frequence Identified Cumulative Frequence

- 130 -

unlike the remaining hours. However, as shown in both figures 6.13 and 6.14,

there is probably an overlap in terms of the identified causes as 40% of which

are irrelevant.

In Figure 6.15, the average actual and identified evicted tasks for the whole

simulation period (24 hours) for Scenario 3 Cause 3 on an hourly basis can be

observed. Looking at the dotted black (identified) and solid grey (actual) lines,

Figure 6.14 Average of actual and identified evicted tasks per hour,

showing the variance across all runs of Scenario 3 Cause 1

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Scenario 3 C1 - Ave Actual Scenario 3 C1 - Ave Identified

Figure 6.15 Cumulative average task evictions over all runs of Scenario 3

Cause 3

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
u

la
ti

ve
 F

re
q

u
en

ce

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumulative Frequence Identified Cumulative Frequence

- 131 -

only 40% of the evicted tasks were identified. This is a limitation of the diagnostic

algorithms and is discussed later.

In Figure 6.16, the randomization of the generated data can also be seen. The

figure shows the hourly average number of the actual and identified task eviction

with standard deviation across the 5 runs of Scenario 3 Cause 3. It can be

observed that the precision increases overtime. However, almost 60% of

relevant evicted tasks linked to Cause 3 have not been picked up by the

diagnostic algorithms, refer to Table 6.17.

6.9 Overall Analysis

For every simulation run of every scenario, the Auditor can generate files for

each cause which include the IDs of the evicted tasks and their physical and

virtual host IDs which can be further investigated. Also, the Auditor can order the

causes in terms of extent of impact on the system. From Tables 6.6 and 6.9, it

can be observed the most dominant cause is C1 which is the Arrival of Higher

Figure 6.16 Average of actual and identified evicted tasks per hour,
showing the variance across all 5 runs of Scenario 3 Cause 3

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
u

m
b

er
 o

f
Ev

ci
te

d
 T

as
ks

Hour

Scenario 3 Cause 3 - Ave Actual Scenario 3 Cause 3 - Ave Identified

- 132 -

Priority Tasks and the least dominant cause is C2 which is Increase in Resource

Request.

The precision and recall of C1 diagnostic algorithms are relatively high across all

scenarios, as seen in Tables 6.13, 6.14, and 6.16. In Table 6.15, the 56% recall

of C2 diagnostic algorithms could be because the algorithms’ focus is looking at

one cause instead of looking at the two causes at the same time. This may have

led the algorithms to consider a number of relevant tasks as irrelevant. In Tables

6.16 and 6.17, the 73% and 40% precision percentages means that irrelevant

evicted tasks were considered as relevant by the Auditor.

The cumulative frequency distribution in the above figures has been calculated

by adding each frequency from a frequency distribution table to the sum of its

predecessors. Each graph has its own frequency distribution table.

6.10 Possible Direction for Better Accuracy

In order to further enhance the accuracy of the diagnostic algorithms, the

investigatory results of each cause for each Scenario have been combined which

has formulated an assumption.

Figure 6.17 is a combination of the Figures 6.9 and 6.11. It shows that almost

100% of all evicted tasks due to C1 and C2 could be identified. The figure shows

Cumulative average task evictions over all simulations of Scenario 2, combining

Cause 1 and Cause 2.

Figure 6.18 is a combination of Figures 6.13 and 6.15. It also shows that almost

90% of all evicted tasks due to C1 and C3 could be identified. The figure shows

- 133 -

Cumulative average task evictions over all simulations of Scenario 3, combining

Cause 1 and Cause 3.

This suggests an assumption that running a hybrid algorithm that investigates

two or more causes could return better results with higher precision and recall

instead of auditing each cause separately. When identifying the evicted tasks

and the linked cause(s), the algorithm could dynamically discard irrelevant

Figure 6.17 Cumulative average task evictions over all simulations of
Scenario 3, combining C1 and C3

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
u

la
ti

ve
 F

re
q

u
en

ce

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumulative Frequence Identified Cumulative Frequence

Figure 6.18 Cumulative average task evictions over all simulations of
Scenario 2, combining C1 and C2

0%

20%

40%

60%

80%

100%

120%

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
u

m
al

ti
ve

 F
re

q
u

en
ce

N
u

m
b

er
 o

f
Ev

ic
te

d
 T

as
ks

Hour

Actual Identified

Actual Cumulative Frequence Identified Cumulative Frequence

- 134 -

evicted tasks and be able to distinguish the relevant linked cause which could

potentially minimize the noise in the results. Further investigation is needed to

evaluate and test this assumption.

6.11 Possible Methods for Evaluation

There are other methods that can be used to evaluate the diagnostic algorithms

other than simulation, such as using another real dataset, a subset of the same

dataset used for exploration and learning, or a Cloud testbed to generate usage

data. First, real Cloud usage datasets are a very excellent option but researchers

may face a risk of making assumptions due to data obfuscation. For this

research, there was no other publicly available Cloud usage dataset. Second,

dividing a dataset into two sets, one for experimenting and the other for

evaluation, is also a good method. However, the characteristics, the features,

and the variables are the same across the two subsets which makes the scope

very specific and the evaluation not thorough. This method was not possible

because the full 29-day dataset has been used for learning. However, an

extended version of the same dataset can be used if available. Third, Cloud

testbeds, local or global, are widely used as testing platforms to experiment with

new services leveraging flexible compute node and network provisions

capabilities. The testbed itself is not a method for evaluation but the generated

usage dataset is which makes it one example of the first method, real Cloud

usage dataset. The challenges of this method are the complications of

administrative rights and the suitability and volume of the generated usage

datasets.

- 135 -

6.12 Summary

This Chapter has presented the evaluation step of the proposed diagnostic

algorithms. The framework’s aim is to find the causes of Task Eviction in a data

centre. The contribution of this Chapter is the evaluation of the diagnostic

algorithms using a simulation tool, SEED. The simulation tool has been used to

generate 15 different Cloud test datasets with different task eviction behaviours.

The Framework, PROV-TE and Diagnostic Algorithms, have been applied on

these datasets and the found results have been compared with the simulation

results. Finally, the results have been statistically analysed using precision and

recall measures to find the levels of sensitivity and reliability. The average

precision and recall of the diagnostic algorithms are 83% and 90%, respectively.

Although the diagnostic algorithms are able to identify the causes of task eviction

fairly precisely, there are still limitations relating to the overlapping of identified

causes for evicted tasks. It ended with giving a brief summary of the possible

approaches that could have been used for the evaluation other than simulation.

- 136 -

Chapter 7

Conclusion and Future Work

The first section of this Chapter presents a summary of the previous chapters

that illustrate the utilization of provenance in Cloud computing which led to

proposing the novel Provenance-Driven Diagnostic Framework as an approach

to audit and identify the causes of Task Eviction in Cloud computing. The second

section of this Chapter presents the research contributions of this study. The third

section presents the summary of achievements of this research by revisiting the

research questions. Finally, this Chapter concludes by discussing the research

limitations and possible future work to further extend this research.

7.1 Summary of Chapters

Chapters 2 and 3 have provided a detailed summary about Cloud computing.

They presented an overview on Cloud computing deployment modes and

delivery models and the challenges in adopting the Clouds. They also discussed

in detail the virtualization feature which is an essential key component in Cloud

computing. Besides, the benefits of virtualization to both the consumer and

providers has been presented, along with the method of utilizing resources which

is over-commitment. The issue of Physical Machine Overloads has been

discussed in addition to the overload mitigating strategies; namely Resource

Stealing, Quiescing, Live Migration, Streaming Disks, and Network Memory, and

Task Eviction.

The concept of provenance and the two standards of provenance models have

been discussed, OPM and W3C RROV. The potential advantages of provenance

to Cloud computing have been presented, along with the challenges and issues

- 137 -

in adopting provenance in the Clouds. Next, a number of research projects that

utilized provenance in the Clouds have been presented. Lastly, the Chapter

provided a literature review of the uses of provenance and the W3C PROV model

in the Clouds. The review of the literature revealed that PROV model is adoptable

in the Clouds but it has never been utilized with regards to the issue of Task

Eviction which led to the proposing of the Provenance-Driven Diagnostic

Framework.

Chapter 4 proposed the novel Provenance-Driven Diagnostic Framework and

the three-phased methodology to construct it. The underpinning philosophy of

the framework has been explained. The real Cloud dataset used for learning has

been empirically analysed in detail and presented. The data pre-processing of

the framework and working scenarios of tracing of task eviction workflow for the

five Task Eviction causes as an example of demonstrating PROV-TE model have

been discussed. Further, 10 diagnostic algorithms which are used to identify the

evicted tasks and the linked causes have been discussed.

Chapter 5 has presented an exploratory experiment which illustrates the use of

the Auditor for acquiring a deeper understanding of the causes of Task Eviction.

It started by giving a deeper analysis of the used Cloud dataset for the application

of the diagnostic algorithms. It then described the aim and hypothesis of the

experiment. Then it presented the application of the diagnostic algorithms in five

separate investigations, each focusing on one Task Eviction cause. It showed

the results obtained from the application of the diagnostic algorithms which

quantifies the extent of every cause in the dataset. It also explained how PROV-

TE contributes specifically to every cause and guides the investigations. It

- 138 -

concluded with identifying the most dominant and least dominant causes for

Task Eviction observed in Google’s dataset.

One of the challenges in this chapter is the volume of the dataset which led to

scaling down the data to be queried. This has increased the performance (query

response time) and was deemed small enough to fulfil the objections of the

investigations. Provenance in general faces a challenge with level of granularity,

as discussed in section 3.3.1. In section 7.4, a number of possible directions and

techniques has been introduced as future work which could help with recording

and using provenance data large datasets, such as graph database and NoSQL.

This chapter has studied and analysed a dataset that applies Task Eviction

mitigating strategy. As a result, PROV model has been extended to PROV-TE.

In case another dataset applies another mitigating strategy, such as Live

Migration, the same generic framework, section 4.4, could be used and the steps

could be followed to extend PROV model to PROV-LM and so on, as explained

in section 4.9. One of the future directions, section 7.4, the framework could be

extended to include all six mitigating strategies. The challenge that could be

faced is the selection of relevant attributes. This could increase the number of

iterations and tests until the expected accuracy level is reached.

Chapter 6 has presented the evaluation step of the proposed diagnostic

algorithms. The framework’s aim is to find the causes of Task Eviction in a data

centre. The contribution of this Chapter is the evaluation of the diagnostic

algorithms using a simulation tool, SEED. The simulation tool has been used to

generate 15 different Cloud test datasets with different task eviction behaviours.

The Framework, PROV-TE and Diagnostic Algorithms, have been applied on

- 139 -

these datasets and the found results have been compared with the simulation

results. Finally, the results have been statistically analysed using precision and

recall measures to find the levels of sensitivity and reliability. The average

precision and recall of the diagnostic algorithms are 83% and 90%, respectively.

Although the diagnostic algorithms are able to identify the causes of task eviction

fairly precisely, there are still limitations relating to the overlapping of identified

causes for evicted tasks.

The scale of the simulation can be generalized to larger environments with more

PMs and VMs, generating huge volumes of data. This aims to demonstrate the

feasibility of massive-scale simulation for implementing provenance-based

techniques.

7.2 Research Contributions

The major contributions of the research presented in this thesis are summarized

as follows:

 A provenance framework that acts as a diagnostic tool to find the causes

of an overload in the Clouds by two steps. First, the PROV model was extended

to represent a task eviction mitigating strategy, refer to section 4.6.1. Second,

relevant attributes to the strategy were identified, refer to section 4.6. Over-

commitment of resources is a beneficial policy for Cloud providers because it

maximizes profits and utilizes the idle resources. Overload is an inevitable

consequence of over-commitment if it was not administered carefully. The way

the mitigating strategies are used to cope with overload has room for

improvements, refer to section 3.2. One of which is to act proactively and identify

the causes of overload by empirically studying the strategies backwards to

- 140 -

quantify the impact. This thesis has presented a novel framework and is

provenance-driven which was tested and evaluated. This framework is capable

in identifying the causes for task and job evictions. Knowing the causes and their

behaviour could help mitigate them in the first place which proactively minimizes

the number of overload instances.

 A computational version of the model for reasoning. A querying platform

and algorithms were developed to find the causal relationship between causes

and tasks by identifying the evicted tasks and the linked causes. These are the

second and third parts of the proposed framework. The extended PROV model

(PROV-TE) underpins a number of diagnostic algorithms which were developed

by using a real Cloud dataset for learning. The diagnostic algorithms have been

operationalized using SQL queries. With the help of both PROV-TE and the

diagnostic algorithms, it has been proven possible for evicted tasks and the

linked causes to be identified. The potential user for this framework is a Cloud

provider. The framework helps providers to efficiently manage their data centres,

specifically with regards to Task Eviction policy. The Auditor presented in this

research, see section 4.9, can be utilized to be applicable for another mitigating

strategy following the systematic steps presented in Chapter 3.

 The modelling of Task Eviction behaviors in a Cloud datacentre with

provenance data for a simulations. A controlled Cloud environment was built

using the simulation tool, SEED. The configurations of both Amazon EC2 Cloud

and Google Cloud have been combined to form a hypothetical configuration and

used as the basis for the built environment. Three Task Eviction behaviours

(causes) have been modelled into the simulation tool. 15 heterogeneous and

randomized Cloud datasets were generated and used for the evaluation of the

- 141 -

diagnostic algorithms. The transferability of PROV-TE and the diagnostic

algorithms has been demonstrated by being applied on different datasets using

simulation, see Chapters 5 and 6.

7.3 Summary of Achievements

The three research questions of this thesis were discussed in Chapter 1, each

question and the success of this research answering it is listed below:

Q1. How to formulate a suitable diagnostic provenance model

that will help check the causes of overload in a Cloud

platform?

In this thesis, two standard models for provenance have been reviewed and

analysed, refer to section 2.3.2. PROV model has been chosen as the abstract

provenance model for the envisioned framework because it is a W3C standard.

Related state-of-the-art work that used PROV in Cloud computing has been

critically reviewed to understand how PROV can be extended. Also, the largely

publicly available real Cloud datasets has been empirically analysed and used

for learning. As a result, PROV has been extended to be applicable on Cloud

infrastructures and named PROV-TE model, please see section 4.6. PROV-TE

is one of three parts of the Provenance-Driven Diagnostic Framework.

Q2. How to operationalize the model?

PROV-TE is a theoretical model. In order to test its potential, it needs to be

operationalized. By empirically studying Google’s 29-day Cloud usage dataset,

10 diagnostic algorithms have been developed taking PROV-TE model as the

underpinning basis, refer to sections 4.3 and 4.8. These algorithms have been

applied on the dataset to test whether PROV-TE’s reasoning power helps

quantify the extent of Task Eviction causes, see section 4.4. Each algorithm has

- 142 -

been translated in to an SQL query and SQLite3 has been used as the query

platform. The Auditor has been presented in Chapter 4 is an instantiation of the

framework and it demonstrates how the frameworks fits in a data centre.

Q3. How to evaluate the proposed framework?

It is not effective to use the same dataset for evaluating the framework. Due to

the lack of publicly available Cloud dataset, simulation has been used as a

method for the evaluation, see section 6.2. A simulation tool has been chosen

and used to randomly generate 15 different Cloud datasets, refer to sections 6.3

– 6.6. These datasets have been used to test the accuracy and reliability of the

proposed Provenance-Driven Diagnostic Framework, see section 6.8. In section

6.11, the possible approaches that could have been used for the evaluation other

than simulation have been presented.

The outcomes of this framework could be used by Cloud providers to make better

informed decisions and to identify the maximum over-commitment ratio that fits

the data center infrastructure. Providers could use the framework to test the

infrastructure until they reach the most suitable and less damaging OCR. Cloud

brokers could make use of the framework to choose the suitable providers for

the clients. Cloud auditors can use the framework as an auditing approach that

systematically extends a standardized provenance model to make sense of

historical data. Lastly, Cloud consumers (users) can use the framework to audit

the performance and availability of the Cloud services. Access to the IaaS

Infrastructure Monitoring component is required.

Table 7.1 below revisits Table 3.1 and shows the comparison between the

different possible methods for causes identification and the proposed

provenance-driven diagnostic framework, named PROV-TE framework.

- 143 -

Table 7.1 Comparison of Different Possible Methods for Overload Causes Identification and PROV-TE Framework

Method (page in this
thesis)

Capability Scope

Prediction Detection Diagnosis Mitigation Prevention Healing Software Hardware Network

FTM by Jhawar et al
[105], [106] / (p. 43)
non-provenance based

No Yes No No Yes Yes Yes Yes Yes

Dai et al
[107] / (p. 44)
non-provenance based

Yes Yes Yes No Yes No Yes Yes No

TCloud by Verissimo et al
FTCloud by Zheng et al
[97], [108] / (p. 44)
non-provenance based

No Yes No No Yes No Yes Yes No

Chopstix by Bhatia et al
[112] / (p. 46)
non-provenance based

No Yes Yes No No No Yes Yes No

Fay by Erlingsson et al
[113] / (p. 46)
non-provenance based

No No Yes No No No Yes Yes No

D3S by Liu et al
[115] / (p. 46)
non-provenance based

Yes Yes Yes No No No Yes No No

Pip by Reynolds et al
[116] / (p. 47)
non-provenance based

No Yes Yes No No No Yes No No

CPN by Li et al
[129] / (p. 52)
Provenance based

No No Yes No No No Yes No Yes

DTaP by Zhou et al
[130] / (p. 52)
Provenance based

No No Yes No No No No No Yes

S2Logger by Suen et al
[133] / (p. 53)
Provenance based

No Yes Yes No No No Yes Yes Yes

PROV-TE framework
[138], [161] / (Chapter 4)
Provenance based

No Yes Yes No No No Yes Yes No

- 144 -

7.4 Limitations and Future Work

The work in this thesis is a beneficial first step in measuring the extent of the

causes of overload for all six mitigating strategies. Although the proposed

framework is able to identify the causes of task evictions fairly precisely, there

are still limitations relating for example to the overlapping of identified causes for

evicted tasks which can be explained by the chain of causes presented in section

5.5. PROV-TE has been developed based on Google 29-day dataset. As

mentioned in Chapter 5, there are unknown number of parameters that have

been deliberately obfuscated by the dataset provider. This limits the development

of the framework by relying on assumptions.

By definition, simulations are approximations or abstractions of the real world

[156]. Simulation models needs verification to confirm that they are correctly

implemented according to the conceptual model, assumptions and

specifications. Validation is also important which checks the accuracy of the

simulation model and its representation and imitation of the real system [157].

For example, verification can be done by statistical testing of the final simulation

output against analytical results and validation can be done by comparing

simulation and real data through tests such as t tests. A further study is needed

to verify and validate the simulation models and checks the outputs of chapter 6.

The work carried out in this thesis can be extended into several promising

directions:

 The proposed Provenance-Driven Diagnostic Framework solely focuses

on Task Eviction mitigating strategies. The framework could be extended to

include all six mitigating strategies. The power of the framework could be

- 145 -

stronger as the causes of the overload could be quantified and mitigated in the

first place based on extent of impact and the Cloud provider’s policies.

 The working of the framework has been done manually in terms of

extending the model, mapping the raw data, building the database and

developing and running the diagnostic algorithms. Automating this process would

make this framework dynamic. The framework could learn from provenance data

on the fly and extend the model and the algorithms accordingly. For example,

adding more parameters in to the database that could potentially enhance the

accuracy of the diagnostic algorithms.

 As presented in Chapters 5 and 6, the diagnostic algorithms have been

processed separately and each cause has been individually investigated. As

seen from Figures 6.17 and 6.18 in Chapter 6, when the results of the two

investigations have been combined for each scenario, the precision and recall

have increased. The method of combing the diagnostic algorithms which could

potentially increase levels of accuracy need to be further studied to evaluate the

hypothesis.

 The proposed framework uses lightweight semantics. PROV-TE is a

lightweight provenance model. Making use of heavyweight semantics by for

example utilizing ontologies and RDF is an interesting future direction which

could further enrich the added meaning and possible have a positive effect on

auditing accuracy.

 As presented in Chapters 5 and 6, relational database and SQLite have

been used for storing and querying the data. Relational databases are efficient

for a data-intensive storage. For data that contains many relationships, a graph

database which utilizes NoSQL could potentially be more efficient [158]. This

- 146 -

leads to a future work where a graph database and NoSQL could be used for

storing and querying the data which could potentially enhance the reliability and

sensitivity of the diagnostic algorithms.

- 147 -

Appendix A

First Version of PROV-TE

Figure A.1 shows the first version of PROV-TE. The version contributed to the

development of the diagnostic algorithms. After testing the output of the

algorithms, it became clear that a number of attributes needs to be considered

in the diagnosis. The results were not accurate in terms of identifying the relevant

evicted tasks linked to the causes. The difference between the two versions

includes corrections and more entities were included in the second version,

presented in section 4.6.1. The changes are:

 Activity: Update Running/Pending has been renamed to

UpdateRunningTasks.

 Agent: User is linked to Activity: UpdateRunningTasks

Figure A.1 First PROV-TE Model

- 148 -

 Entities TE_username, TE_differentmachine, TE_schedulingclass were

included in the second version.

These additions were a result of the iterations so that both PROV-TE and the

diagnostics algorithms are fit-for-purpose. Also, the overall model has been

redesigned for ease of understanding.

- 149 -

References

[1] T. Wo, Q. Sun, B. Li, and C. Hu, “Overbooking-Based Resource

Allocation in Virtualized Data Center,” in 2012 IEEE 15th

International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing Workshops, 2012, pp. 142–149.

[2] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon, “Overdriver:

Handling Memory Overload in an Oversubscribed Cloud,” in

Proceedings of the 7th ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, 2011, p. 205.

[3] Y. Choi and H. Choi, “Evaluating the Performance of Resource

Overcommitted Virtualized Systems,” in Proceedings of the 5th

International Conference on Ubiquitous Information Technologies

and Applications, 2010, pp. 1–6.

[4] S. Baset, L. Wang, and C. Tang, “Towards an Understanding of

Oversubscription in Cloud,” in USENIX Hot-ICE’12, 2012.

[5] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,

“Towards understanding heterogeneous clouds at scale: Google

trace analysis,” 2012. [Online]. Available:

http://www.pdl.cmu.edu/ftp/CloudComputing/ISTC-CC-TR-12-

101.pdf. [Accessed: 11-Mar-2013].

[6] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of Virtual

Machine Live Migration in Clouds: A Performance Evaluation,” in

Cloud Computing, 2nd ed., vol. 5931, M. G. Jaatun, G. Zhao, and

C. Rong, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,

pp. 254–265.

[7] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces :

format + schema V2.1,” pp. 1–14, 2014.

[8] M. Andreolini, S. Casolari, M. Colajanni, and M. Messori, “Dynamic load

management of virtual machines in cloud architectures,” in Cloud

Computing, vol. 34, Springer Berlin Heidelberg, 2010, pp. 201–214.

[9] L. Moreau and P. Groth, “Provenance: An Introduction to PROV,” Synth.

Lect. Semant. Web Theory Technol., vol. 3, no. 4, pp. 1–129, Sep.

2013.

- 150 -

[10] P. Townend, D. Webster, C. C. Venters, V. Dimitrova, K. Djemame, L.

Lau, J. Xu, S. Fores, V. Viduto, C. Dibsdale, N. Taylor, J. Austin, J.

McAvoy, and S. Hobson, “Personalised provenance reasoning

models and risk assessment in business systems: A case study,”

in IEEE 7th International Symposium on Service-Oriented System

Engineering, 2013, pp. 329–334.

[11] P. Groth and L. Moreau, “PROV-Overview: An Overview of the PROV

Family of Documents,” 2013.

[12] John W. Creswell, Research Design: Qualitative, Quantitative, and

Mixed Methods Approaches, 4th ed. London: SAGE Publications,

2014.

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.

Buyya, “CloudSim : A Toolkit for the Modeling and Simulation of

Cloud Resource Management and Application Provisioning

Techniques,” Softw. Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011.

[14] P. Garraghan, D. McKee, X. Ouyang, D. Webster, and J. Xu, “SEED: A

Scalable Approach for Cyber-Physical System Simulation,” IEEE

Trans. Serv. Comput., vol. 9, no. 2, pp. 199–212, Mar. 2016.

[15] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,

B. Hart, M. Smith, and P. Valduriez, “Prototyping Bubba, a highly

parallel database system,” IEEE Trans. Knowl. Data Eng., vol. 2,

no. 1, pp. 4–24, Mar. 1990.

[16] G. Manno, W. W. Smari, and L. Spalazzi, “FCFA: A semantic-based

federated cloud framework architecture,” 2012 Int. Conf. High

Perform. Comput. Simul., pp. 42–52, Jul. 2012.

[17] S. Habib, S. Hauke, S. Ries, and M. Mühlhäuser, “Trust as a facilitator

in cloud computing: a survey,” J. Cloud Comput. Adv. Syst. Appl.,

vol. 1, no. 1, p. 19, 2012.

[18] W. Venters and E. A. Whitley, “A critical review of cloud computing:

researching desires and realities,” J. Inf. Technol., vol. 27, no. 3,

pp. 179–197, Aug. 2012.

[19] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A Break

in the Clouds: Towards a Cloud Definition,” ACM SIGCOMM

Comput. Commun. Rev., vol. 39, no. 1, p. 50, Dec. 2008.

- 151 -

[20] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” 2011.

[21] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the

Clouds : A Berkeley View of Cloud Computing,” Dept. Electr. Eng.

Comput. Sci. Univ. California, Berkeley., vol. 28, no. UCB/EECS-

2009-28, pp. 07–013, 2009.

[22] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view

of cloud computing,” Commun. ACM, vol. 53, no. 4, p. 50, Apr.

2010.

[23] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf,

“NIST Cloud Computing Reference Architecture,” 2011.

[24] M. Ahronovitz, D. Amrhein, P. Anderson, A. De, J. Armstrong, E. A. B, J.

Bartlett, R. Bruklis, M. Carlson, R. Cohen, T. M. Crawford, V.

Deolaliker, P. Downing, A. Easton, R. Flores, G. Fourcade, T.

Hanan, V. Herrington, B. Hosseinzadeh, and S. Hughes, “Cloud

Computing Use Cases. White Paper.,” Cloud Comput. Use Case

Discuss. Gr., no. v 4.0, pp. 1–68, 2010.

[25] C. N. Höfer and G. Karagiannis, “Cloud computing services: Taxonomy

and comparison,” J. Internet Serv. Appl., vol. 2, no. 2, pp. 81–94,

2011.

[26] B. P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey of Cloud

Computing Systems,” in 2009 Fifth International Joint Conference

on INC, IMS and IDC, 2009, pp. 44–51.

[27] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu, “Everything

as a Service (XaaS) on the Cloud: Origins, Current and Future

Trends,” in 8th IEEE International Conference on Cloud

Computing, CLOUD 2015, 2015, pp. 621–628.

[28] H. Takabi, J. Joshi, and G. Ahn, “Security and privacy challenges in

cloud computing environments,” Secur. Privacy, IEEE, no.

December, 2010.

[29] S. Pearson, “Privacy, Security and Trust in Cloud Computing,” in Privacy

and Security for Cloud Computing, New York: Springer London,

2013, pp. 3–42.

- 152 -

[30] M. Henneberger and A. Luhn, “Community Clouds – supporting business

ecosystems with cloud computing,” 2010.

[31] Y. Xing and Y. Zhan, “Virtualization and Cloud Computing,” in Lecture

Notes in Electrical Engineering, vol. 143 LNEE, no. VOL. 1,

Springer Berlin Heidelberg, 2012, pp. 305–312.

[32] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid

Computing 360-Degree Compared,” in 2008 Grid Computing

Environments Workshop, 2008, pp. 1–10.

[33] D. Armstrong and K. Djemame, “Towards quality of service in the cloud,”

in Proc. of the 25th UK Performance Engineering Workshop, 2009.

[34] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on

concepts, taxonomy and associated security issues,” in 2nd

International Conference on Computer and Network Technology,

2010, pp. 222–226.

[35] Intel IT Center, “Planning Guide: Virtualization and Cloud Computing,”

2013.

[36] H. Chen, L. Shi, J. Sun, K. Li, and L. He, “A Fast RPC System for Virtual

Machines,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7, pp.

1267–1276, Jul. 2013.

[37] D. Merkel, “Docker: lightweight Linux containers for consistent

development and deployment,” Linux J., vol. 2014, no. 239, p. 2,

2014.

[38] IBM Co., “Introduction to Virtualization,” 2009.

[39] E. Kafetzakis, H. Koumaras, M. A. Kourtis, and V. Koumaras,

“QoE4CLOUD: A QoE-driven multidimensional framework for

cloud environments,” in 2012 International Conference on

Telecommunications and Multimedia, TEMU 2012, 2012, pp. 77–

82.

[40] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA framework for

cloud computing,” in 4th IEEE International Conference on Digital

Ecosystems and Technologies, 2010, pp. 606–610.

[41] Dimension Data, “Comparing Public Cloud Service Level Agreements,

White Paper.,” Dimension Data, p. 4, 2013.

[42] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.

- 153 -

Rabbani, Q. Zhang, and M. F. Zhani, “Data center network

virtualization: A survey,” IEEE Commun. Surv. Tutorials, vol. 15,

no. 2, pp. 909–928, 2013.

[43] R. Buyya, R. Buyya, C. S. Yeo, C. S. Yeo, S. Venugopal, S. Venugopal,

J. Broberg, J. Broberg, I. Brandic, and I. Brandic, “Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility,” Futur. Gener. Comput. Syst., vol. 25,

2009.

[44] I. S. Moreno, “Characterizing and Exploiting Heterogeneity for

Enhancing Energy-Efficiency of Cloud Datacenters,” University of

Leeds, 2014.

[45] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public

cloud,” Internet Comput. IEEE, pp. 69–73, 2012.

[46] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and Privacy

in Cloud Computing: A Survey,” in 2010 Sixth International

Conference on Semantics, Knowledge and Grids, 2010, pp. 105–

112.

[47] C.-C. Feng, “Mapping Geospatial Metadata to Open Provenance Model,”

IEEE Trans. Geosci. Remote Sens., vol. 51, no. 11, pp. 5073–

5081, Nov. 2013.

[48] J. Lacroix and O. Boucelma, “Trusting the cloud: A PROV + RBAC

approach,” in IEEE International Conference on Cloud Computing,

CLOUD, 2014, pp. 652–658.

[49] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance

in e-science,” ACM SIGMOD Rec., vol. 34, no. 3, p. 31, Sep. 2005.

[50] I. Foster, J. Vockler, and M. Wilde, “Chimera: a virtual data system for

representing, querying, and automating data derivation,” in

Proceedings 14th International Conference on Scientific and

Statistical Database Management, 2002, pp. 37–46.

[51] J. C. Dong Yuan, Yun Yang, Computation and Storage in the Cloud:

Understanding the Trade-Offs. USA: Elsevier Inc, 2013.

[52] O. Q. Zhang, M. Kirchberg, R. K. L. Ko, and B. S. Lee, “How to Track

Your Data: The Case for Cloud Computing Provenance,” 2011

IEEE Third Int. Conf. Cloud Comput. Technol. Sci., pp. 446–453,

- 154 -

Nov. 2011.

[53] P. Buneman, S. Khanna, W. Tan, and S. Khanna, “Why and Where: A

Characterization of Data Provenance,” Lect. Notes Comput. Sci.,

pp. 316–330, 2001.

[54] P. Townend, V. Viduto, D. Webster, K. Djemame, L. Lau, V. Dimitrova,

J. Xu, S. Fores, C. Dibsdale, J. Austin, J. McAvoy, and S. Hobson,

“Risk Assessment and Trust in Services Computing: Applications

and Experience,” in 10th IEEE International Conference on

Services Computing, 2013.

[55] I. Abbadi and J. Lyle, “Challenges for Provenance in Cloud Computing,”

in 3rd USENIX Workshop on the Theory and Practice of

Provenance (TaPP’11), 2011.

[56] M. Imran and H. Hlavacs, “Provenance in the cloud: Why and how?,”

Third Int. Conf. Cloud Comput. GRIDs, Virtualization, pp. 106–112,

2012.

[57] W3C, “What Is Provenance - XG Provenance Wiki,” 2010. [Online].

Available:

http://www.w3.org/2005/Incubator/prov/wiki/What_Is_Provenance.

[Accessed: 01-Oct-2013].

[58] L. Moreau, J. Freire, J. Futrelle, R. E. Mcgrath, J. Myers, and P. Paulson,

“The Open Provenance Model: An Overview,” in Provenance and

Annotation of Data and Processes, 2008, pp. 323–326.

[59] “Provenance Challenge Wiki,” 2013. [Online]. Available:

http://twiki.ipaw.info/bin/view/Challenge. [Accessed: 17-Nov-2013].

[60] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N.

Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y.

Simmhan, E. Stephan, and J. Van den Bussche, “The Open

Provenance Model core specification (v1.1),” Future Generation

Computer Systems. Elsevier, 22-Jul-2010.

[61] T. Lebo, S. Sahoo, D. McGuinness, K. Behajjame, J. Cheney, D. Corsar,

D. Garijo, S. Soiland-Reyes, S. Zednik, and J. Zhao, “PROV-O: The

PROV Ontology,” 2013. [Online]. Available:

http://www.w3.org/TR/prov-o/. [Accessed: 17-Oct-2013].

[62] L. Moreau, “PROV-XML: The PROV XML Schema,” 2013. [Online].

- 155 -

Available: http://www.w3.org/TR/2013/NOTE-prov-xml-20130430/.

[Accessed: 10-Sep-2013].

[63] M. A. Sakka, B. Defude, and J. Tellez, Document provenance in the

cloud: constraints and challenges, vol. 6164. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010.

[64] O. Hartig and J. Zhao, “Using Web Data Provenance for Quality

Assessment,” in Proceedings of the 1st Int. Workshop on the Role

of Semantic Web in Provenance Management (SWPM) at the

International Semantic Web Conference (ISWC), 2009.

[65] Y.-W. Cheah and B. Plale, “Provenance analysis: Towards quality

provenance,” in 2012 IEEE 8th International Conference on E-

Science, 2012, pp. 1–8.

[66] K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Provenance for the

Cloud,” in Proceedings of the 8th USENIX Conference on File and

Storage Technologies, 2010.

[67] V. M. Katilu, V. N. L. Franqueira, and O. Angelopoulou, “Challenges of

data provenance for cloud forensic investigations,” in Proceedings

of the 10th International Conference on Availability, Reliability and

Security, 2015, pp. 312–317.

[68] G. Birkenheuer, A. Brinkmann, and H. karl, “Risk Aware Overbooking for

Commercial Grids,” Springer Berlin Heidelberg, 2010, pp. 51–76.

[69] A. Gordon, M. R. Hines, D. Da Silva, M. Ben-Yehuda, M. Silva, and G.

Lizarraga, “Ginkgo: Automated, Application-Driven Memory

Overcommitment for Cloud Computing.”

[70] J. O. Iglesias, L. Murphy, M. De Cauwer, D. Mehta, and B. O’Sullivan,

“A Methodology for Online Consolidation of Tasks through More

Accurate Resource Estimations,” in 2014 IEEE/ACM 7th

International Conference on Utility and Cloud Computing, 2014, pp.

89–98.

[71] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,

“Heterogeneity and dynamicity of clouds at scale,” in Proceedings

of the Third ACM Symposium on Cloud Computing - SoCC ’12,

2012, pp. 1–13.

[72] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam, and N. Sharma,

- 156 -

“Towards autonomic workload provisioning for enterprise Grids and

clouds,” in 2009 10th IEEE/ACM International Conference on Grid

Computing, 2009, pp. 50–57.

[73] L. Tomas and J. Tordsson, “An Autonomic Approach to Risk-Aware Data

Center Overbooking,” IEEE Trans. Cloud Comput., vol. 2, no. 3, pp.

292–305, Jul. 2014.

[74] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient

datacenter resource utilization through cloud resource

overcommitment,” in 2015 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2015, pp.

330–335.

[75] J. Ortigoza, F. Lopez-Pires, and B. Baran, “A Taxonomy on Dynamic

Environments for Provider-Oriented Virtual Machine Placement,” in

2016 IEEE International Conference on Cloud Engineering (IC2E),

2016, pp. 214–215.

[76] R. Ghosh and V. K. Naik, “Biting Off Safely More Than You Can Chew:

Predictive Analytics for Resource Over-Commit in IaaS Cloud,” in

2012 IEEE Fifth International Conference on Cloud Computing,

2012, pp. 25–32.

[77] Y. Liu, “A Consolidation Strategy Supporting Resources

Oversubscription in Cloud Computing,” in 2016 IEEE 3rd

International Conference on Cyber Security and Cloud Computing

(CSCloud), 2016, pp. 154–162.

[78] D. Breitgand, Z. Dubitzky, A. Epstein, A. Glikson, and I. Shapira, “SLA-

aware Resource Over-Commit in an IaaS Cloud.”

[79] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and

application profiling in shared hosting platforms,” ACM SIGOPS

Oper. Syst. Rev., vol. 36, no. SI, p. 239, Dec. 2002.

[80] S. a. Baset, “Cloud SLAs: Present and Future,” ACM SIGOPS Oper.

Syst. Rev., vol. 46, no. 2, p. 57, 2012.

[81] A. Beloglazov and R. Buyya, “Managing Overloaded Hosts for Dynamic

Consolidation of Virtual Machines in Cloud Data Centers under

Quality of Service Constraints,” IEEE Trans. Parallel Distrib. Syst.,

vol. 24, no. 7, pp. 1366–1379, Jul. 2013.

- 157 -

[82] F. Caglar and A. Gokhale, “iOverbook: Intelligent Resource-Overbooking

to Support Soft Real-Time Applications in the Cloud,” in 2014 IEEE

7th International Conference on Cloud Computing, 2014, pp. 538–

545.

[83] M. Unuvar, Y. N. Doganata, A. N. Tantawi, and M. Steinder, “Cloud

overbooking through stochastic admission controller,” in 10th

International Conference on Network and Service Management

(CNSM) and Workshop, 2014, pp. 320–323.

[84] R. Householder, S. Arnold, and R. Green, “Simulating the Effects of

Cloud-Based Oversubscription on Datacenter Revenues and

Performance in Single and Multi-class Service Levels,” in IEEE 7th

International Conference on Cloud Computing, 2014, pp. 562–569.

[85] C. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee, “A

Survey on Resiliency Techniques in Cloud Computing

Infrastructures and Applications,” IEEE Commun. Surv. Tutorials,

vol. 18, no. 3, pp. 2244–2281, Jan. 2016.

[86] L. Wang, R. A. Hosn, and C. Tang, “Remediating overload in over-

subscribed computing environments,” Proc. - 2012 IEEE 5th Int.

Conf. Cloud Comput. CLOUD 2012, pp. 860–867, 2012.

[87] L. Nogueira and L. M. Pinho, “Capacity Sharing and Stealing in Dynamic

Server-based Real-Time Systems,” in 2007 IEEE International

Parallel and Distributed Processing Symposium, 2007, pp. 1–8.

[88] K. Wang, X. Zhou, K. Qiao, M. Lang, B. McClelland, and I. Raicu,

“Towards Scalable Distributed Workload Manager with Monitoring-

Based Weakly Consistent Resource Stealing,” in Proceedings of

the 24th International Symposium on High-Performance Parallel

and Distributed Computing - HPDC ’15, 2015, pp. 219–222.

[89] L. Wang, R. A. Hosn, and C. Tang, “Remediating Overload in Over-

Subscribed Computing Environments,” in 2012 IEEE Fifth

International Conference on Cloud Computing, 2012, pp. 860–867.

[90] C. Clark, K. Fraser, S. Hand, and J. Hansen, “Live migration of virtual

machines,” Proc. 2nd …, no. Vmm, pp. 273–286, 2005.

[91] L. Lundberg, “Performance Implications of Resource Over-Allocation

During the Live Migration,” in 2016 IEEE International Conference

- 158 -

on Cloud Computing Technology and Science (CloudCom), 2016,

pp. 552–557.

[92] X. Wang, X. Wang, G. Xing, and C.-X. Lin, “Maximizing the detection

probability of overheating server components with sensor

placement based on thermal dynamics,” Sustain. Comput.

Informatics Syst., vol. 3, pp. 148–160, 2013.

[93] R. Householder, S. Arnold, and R. Green, “On Cloud-based

Oversubscription,” Int. J. Eng. Trends Technol., vol. 8, no. 8, pp.

425–431, 2014.

[94] Z. Xiao, W. Song, and Q. Chen, “Dynamic Resource Allocation Using

Virtual Machines for Cloud Computing Environment,” IEEE Trans.

Parallel Distrib. Syst., vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[95] T. Leesatapornwongsa and H. S. Gunawi, “The Case for Drill-Ready

Cloud Computing,” in Proceedings of the ACM Symposium on

Cloud Computing - SOCC ’14, 2014, pp. 1–8.

[96] S. P. Kavulya, K. Joshi, F. Di Giandomenico, and P. Narasimhan,

“Failure Diagnosis of Complex Systems,” in Resilience

Assessment and Evaluation of Computing Systems, Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 239–261.

[97] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King, “FTCloud: A Component

Ranking Framework for Fault-Tolerant Cloud Applications,” in 2010

IEEE 21st International Symposium on Software Reliability

Engineering, 2010, pp. 398–407.

[98] P. Townend, P. Groth, and J. Xu, “A provenance-aware weighted fault

tolerance scheme for service-based applications,” in Proceedings

- Eighth IEEE International Symposium on Object-Oriented Real-

Time Distributed Computing, 2005, pp. 258–266.

[99] A. Bala and I. Chana, “Fault Tolerance- Challenges , Techniques and

Implementation in Cloud Computing,” Int. J. Comput. Sci., vol. 9,

no. 1, pp. 288–293, 2012.

[100] Y. Zhang, A. Mandal, C. Koelbel, and K. Cooper, “Combined fault

tolerance and scheduling techniques for workflow applications on

computational grids,” in 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid, 2009.

- 159 -

[101] S. Jain and J. Chaudhary, “New fault tolerant scheduling algorithm

implemented using check pointing in grid computing environment,”

in 2014 International Conference on Reliability Optimization and

Information Technology (ICROIT), 2014, pp. 393–396.

[102] D. Sun, G. Chang, C. Miao, and X. Wang, “Analyzing, modeling and

evaluating dynamic adaptive fault tolerance strategies in cloud

computing environments,” J. Supercomput., vol. 66, no. 1, pp. 193–

228, Oct. 2013.

[103] A. Avizienis, “The N-Version Approach to Fault-Tolerant Software,” IEEE

Trans. Softw. Eng., vol. SE-11, no. 12, pp. 1491–1501, Dec. 1985.

[104] M. N. Cheraghlou, A. Khadem-Zadeh, and M. Haghparast, “A survey of

fault tolerance architecture in cloud computing,” 2016.

[105] R. Jhawar, V. Piuri, and M. Santambrogio, “Fault Tolerance

Management in Cloud Computing: A System-Level Perspective,”

IEEE Syst. J., vol. 7, no. 2, pp. 288–297, Jun. 2013.

[106] R. Jhawar, V. Piuri, and M. Santambrogio, “A comprehensive conceptual

system-level approach to fault tolerance in Cloud Computing,” in

2012 IEEE International Systems Conference SysCon 2012, 2012,

pp. 1–5.

[107] Y. Dai, Y. Xiang, and G. Zhang, “Self-healing and hybrid diagnosis in

cloud computing,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 5931 LNCS, Springer Berlin Heidelberg,

2009, pp. 45–56.

[108] P. Verissimo, A. Bessani, and M. Pasin, “The TClouds architecture:

Open and resilient cloud-of-clouds computing,” in IEEE/IFIP

International Conference on Dependable Systems and Networks

Workshops (DSN 2012), 2012, pp. 1–6.

[109] M. Harris, “Data Center Infrastructure Management,” in Data Center

Handbook, 1st ed., USA: John Wiley & Sons, Inc, 2015, pp. 601–

617.

[110] D. Cole, “Data Center Infrastructure Management (DCIM) Overview of

DCIM,” Data Cent. Knowl., 2012.

[111] X. Ouyang, P. Garraghan, C. Wang, P. Townend, and J. Xu, “An

- 160 -

Approach for Modeling and Ranking Node-Level Stragglers in

Cloud Datacenters,” in 2016 IEEE International Conference on

Services Computing (SCC), 2016, pp. 673–680.

[112] S. Bhatia, A. Kumar, M. E. Fiuczynski, and L. Peterson, “Lightweight,

High-Resolution Monitoring for Troubleshooting Production

Systems,” in Proceedings of the 8th USENIX Symposium on

Operating Systems Design and Implementation (OSDI ’08), 2008,

pp. 103--116.

[113] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu, “Fay : Extensible

Distributed Tracing from Kernels to Clusters,” in Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles -

SOSP ’11, 2011, vol. 13, p. 311.

[114] A. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log

analysis,” Commun. ACM, vol. 55, no. 2, p. 55, Feb. 2012.

[115] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F.

Kaashoek, and Z. Zhang, “D3S: Debugging Deployed Distributed

Systems,” in Proc. of the NSDI - Conf. on Networked Systems

Design and Implementation, 2008, pp. 423–437.

[116] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A.

Vahdat, “Pip: Detecting the Unexpected in Distributed Systems,” in

Proc. of the NSDI - Conf. on Networked Systems Design and

Implementation, 2006, pp. 115–128.

[117] S. B. Davidson and J. Freire, “Provenance and Scientific Workflows:

Challenges and Opportunities,” in Proceedings of the ACM

SIGMOD international conference on Management of data, 2008.

[118] D. Ghoshal and B. Plale, “Provenance from log files,” in Proceedings of

the Joint EDBT/ICDT 2013 Workshops on - EDBT ’13, 2013, p.

290.

[119] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing in

Distributed Environments,” in Proceedings of the 13th International

Middleware Conference, 2012, pp. 101–120.

[120] S. Townend, P; Venters, CC; Lau, L; Djemame, K; Dimitrova, V;

Marshall, A; Xu, J; Dibsdale, C; Taylor, N; Austin, J; McAvoy, J;

Fletcher, M; Hobson, “Trusted Digital Spaces through Timely

- 161 -

Reliable and Personalised Provenance,” in 15th IEEE International

Symposium on Object/Component/Service-Oriented Real-Time

Distributed Computing Workshops, 2012, pp. 136–141.

[121] P. Townend, C. C. Venters, L. Lau, K. Djemame, V. Dimitrova, A.

Marshall, J. Xu, C. Dibsdale, N. Taylor, J. Austin, J. McAvoy, M.

Fletcher, and S. Hobson, “A Framework for Improving Trust in

Dynamic Service-Oriented Systems,” in 2012 IEEE 15th

International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing Workshops, 2012, pp. 136–141.

[122] K.-K. Muniswamy-Reddy, M. Peter, and S. Margo, “Making a Cloud

Provenance-Aware,” in 1st Workshop on the Theory and Practice

of Provenance (TaPP’09), 2009.

[123] S. M. S. Da Cruz, M. Manhaes, J. Zavaleta, and R. M. Costa, “Cirrus:

Towards Business Provenance As-a-Service in the Cloud,” 2012

IEEE 19th Int. Conf. Web Serv., no. i, pp. 668–669, Jun. 2012.

[124] P. Macko, M. Chiarini, and M. Seltzer, “Collecting provenance via the

Xen hypervisor,” in Proceedings of 3rd USENIX Workshop on the

Theory and Practice of Provenance (TaPP ’11), 2011.

[125] S. Townend, P; Venters, CC; Lau, L; Djemame, K; Dimitrova, V;

Marshall, A; Xu, J; Dibsdale, C; Taylor, N; Austin, J; McAvoy, J;

Fletcher, M; Hobson, “Trusted Digital Spaces through Timely

Reliable and Personalised Provenance,” in 15th IEEE International

Symposium on Object/Component/Service-Oriented Real-Time

Distributed Computing Workshops, 2012, pp. 136–141.

[126] P. L. Rupasinghe, H. H. Weerasena, and I. Murray, “Trustworthy

provenance framework for document workflow provenance,” in

International Conference on Computational Techniques in

Information and Communication Technologies, 2016, pp. 168–175.

[127] M. Ali and L. Moreau, “A provenance-aware policy language (cProvl) and

a data traceability model (cProv) for the cloud,” in IEEE 3rd

International Conference on Cloud and Green Computing, 2013,

pp. 479–486.

[128] Y. Li and O. Boucelma, “Provenance Monitoring in the Cloud,” in 2013

IEEE Sixth International Conference on Cloud Computing, 2013,

- 162 -

pp. 802–809.

[129] Y. Li and O. Boucelma, “A CPN Provenance Model of Workflow:

Towards Diagnosis in the Cloud.,” ADBIS (2), pp. 55–64, 2011.

[130] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo, and

M. Sherr, “Distributed time-aware provenance,” Proc. VLDB

Endow., vol. 6, no. 2, pp. 49–60, Dec. 2012.

[131] J. Barillari, U. Braun, D. A. Holland, D. Maclean, M. Seltzer, and S. D.

Holland, “Layering in Provenance-Aware Storage Systems,”

Aerosp. Eng., 2009.

[132] B. Lee, A. Awad, and M. Awad, “Towards Secure Provenance in the

Cloud: A Survey,” Proc. IEEE/ACM 8th Int. Conf. Util. Cloud

Comput., pp. 577–582, 2015.

[133] C. H. Suen, R. K. L. Ko, Y. S. Tan, P. Jagadpramana, and B. S. Lee,

“S2Logger: End-to-end data tracking mechanism for cloud data

provenance,” Proc. - 12th IEEE Int. Conf. Trust. Secur. Priv.

Comput. Commun. Trust. 2013, pp. 594–602, 2013.

[134] G. Meera and G. Geethakumari, “A provenance auditing framework for

cloud computing systems,” 2015 IEEE Int. Conf. Signal Process.

Informatics, Commun. Energy Syst. SPICES 2015, 2015.

[135] Y. Amanatullah, C. Lim, H. P. Ipung, and A. Juliandri, “Toward cloud

computing reference architecture: Cloud service management

perspective,” in International Conference on ICT for Smart Society,

2013, pp. 1–4.

[136] L. Moreau and P. Groth, “PROV-Overview: An Overview of the PROV

Family of Documents,” W3C Note, no. April, pp. 1–9, 2013.

[137] P. Groth and L. Moreau, “Representing distributed systems using the

Open Provenance Model,” Futur. Gener. Comput. Syst., vol. 27,

no. 6, pp. 757–765, Jun. 2011.

[138] A. Albatli, L. Lau, and J. Xu, “Application of PROV Model for Modeling a

VM Overload Mitigating Strategy: Task Eviction,” in Provenance

Analytics Workshop, 2014.

[139] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “An Approach for

Characterizing Workloads in Google Cloud to Derive Realistic

Resource Utilization Models,” in proceedings of the 7th IEEE

- 163 -

International Symposium of Service-Oriented System Engineering,

2013.

[140] H. Aljahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu,

“Multi-Tenancy in Cloud Computing,” in Proceedings of the IEEE

8th International Symposium on Service Oriented System

Engineering, 2014, pp. 344–351.

[141] S. Braun, A. Schmidt, and A. Walter, “Ontology maturing: A collaborative

web 2.0 approach to ontology engineering,” in CEUR Workshop

Proceedings, 2007, vol. 273.

[142] B. Aksanli, J. Venkatesh, and Rosing, “Using Datacenter Simulation to

Evaluate Green Energy Integration,” Computer (Long. Beach.

Calif)., vol. 45, no. 9, pp. 56–64, Sep. 2012.

[143] C. Chang, L. He, N. Chaudhary, S. Fu, H. Chen, J. Sun, K. Li, Z. Fu, and

M.-L. Xu, “Performance analysis and optimization for workflow

authorization,” Futur. Gener. Comput. Syst., vol. 67, pp. 194–205,

2017.

[144] S. Fu, L. He, X. Liao, and C. Huang, “Developing the Cloud-integrated

data replication framework in decentralized online social networks,”

J. Comput. Syst. Sci., vol. 82, no. 1, pp. 113–129, 2016.

[145] Z. Du, L. He, Y. Chen, Y. Xiao, P. Gao, and T. Wang, “Robot Cloud:

Bridging the power of robotics and cloud computing,” in Future

Generation Computer Systems, 2016.

[146] U. Rahman, O. Hakeem, M. Raheem, K. Bilal, S. U. Khan, and L. T.

Yang, “Nutshell: Cloud Simulation and Current Trends,” in IEEE

International Conference on Smart City/SocialCom/SustainCom

(SmartCity), 2015, pp. 77–86.

[147] S. Malekzai, D. Yildiz, and S. Karagol, “GreenCloud simulation QoSbox

in cloud computing,” in 2016 24th Signal Processing and

Communication Application Conference (SIU), 2016.

[148] M. Lacage and T. R. Henderson, “Yet another network simulator,” in

Proceeding from the 2006 workshop on ns-2: the IP network

simulator - WNS2 ’06, 2006, p. 12.

[149] B. Sotomayor, “The Haizea Manual,” Science (80-.)., 2009.

[150] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “MDCSim: A

- 164 -

multi-tier data center simulation, platform,” in 2009 IEEE

International Conference on Cluster Computing and Workshops,

2009, pp. 1–9.

[151] G. G. Castañé, A. Núñez, and J. Carretero, “iCanCloud: A brief

architecture overview,” in Proceedings of the 10th IEEE

International Symposium on Parallel and Distributed Processing

with Applications, 2012, pp. 853–854.

[152] G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “DCSim: A data centre

simulation tool,” Integr. Netw. Manag. (IM 2013), 2013 IFIP/IEEE

Int. Symp., pp. 1090–1091, 2013.

[153] Amazon Web Services Inc, “EC2 Instance Types – Amazon Web

Services (AWS),” 2016. [Online]. Available:

https://aws.amazon.com/ec2/instance-types/. [Accessed: 24-Oct-

2016].

[154] P. Salot, “A Survey Of Various Scheduling Algorithm In Cloud Computing

Environment,” Int. J. Res. Eng. Technol., vol. 2, no. 2, pp. 131–135,

2013.

[155] R. Birke and L. Y. Chen, “Managing Data Center Tickets : Prediction and

Active Sizing,” 2016 46th Annu. IEEE/IFIP Int. Conf. Dependable

Syst. Networks, pp. 335–346, Jun. 2016.

[156] D. Thomas, A. Joiner, W. Lin, M. Lowry, and T. Pressburger, “The unique

aspects of simulation verification and validation,” in 2010 IEEE

Aerospace Conference, 2010, pp. 1–7.

[157] J. P. C. Kleijnen, “Verification and validation of simulation models,” Eur.

J. Oper. Res., vol. 82, pp. 145–162, 1995.

[158] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A

comparison of a graph database and a relational database,” Proc.

48th Annu. Southeast Reg. Conf. ACM SE 10, p. 1, 2010.

[159] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-Oriented Cloud

Computing Architecture,” in 2010 Seventh International

Conference on Information Technology: New Generations, 2010,

pp. 684–689.

[160] Z. Liu and S. Cho, “Characterizing Machines and Workloads on a Google

Cluster,” in 2012 41st International Conference on Parallel

- 165 -

Processing Workshops, 2012, pp. 397–403.

[161] A. Albatli, D. McKee, P. Townend, L. Lau, and J. Xu, “PROV-TE: A

Provenance-Driven Diagnostic Framework for Task Eviction in

Data Centers,” in Proceedings of the 3rd IEEE International

Conference on Big Data Computing Service and Applications,

2017.

