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Abstract 

The Selective Laser Melting (SLM) process generates large thermal gradients during 

rapid melting, and during solidification certain nickel superalloys suffer from thermally 

induced micro-cracking which cannot be eliminated by process optimisation.  

This investigation sought to investigate and understand the root cause of micro-cracking 

in nickel superalloys when processed by SLM, with the aim of ultimately being able to 

predict the crack susceptibility of an alloy from composition alone. 

Microstructural analysis as well as implementation of Rapid Solidification Processing 

(RSP) theory and solute redistribution theory was used to establish SLM as a rapid 

solidification process. As a consequence, secondary dendrite arm formation and solute 

redistribution is largely inhibited, resulting in a bulk material which is near to a super 

saturated solid solution. 

The establishment of SLM as an RSP along with morphological and chemical analysis of 

micro-cracks support Elevated Temperature Solid State (ETSS) cracking as the primary 

cracking mechanism in SLM processed nickel superalloys. 

The crack susceptibility of a nickel superalloy, χ, was defined as the ratio between the 

solid solution strengthening contribution from alloying elements and apparent thermal 

stress generated by the process.  

Minor increases in the wt% of solid solution strengthening elements in Hastelloy X, a high 

crack susceptibility alloy, resulted in average reductions of crack density of 65%. Thereby 

supporting solid solution strength as a key factor in the crack susceptibility of a nickel 

superalloy. The addition of the apparent thermal stress component, further supported 
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the crack susceptibility model, with the modified Hastelloy X being predicted to have a 

lower crack susceptibility. 

Additional validation of the crack susceptibility predictor was determined by taking 

compositions and material properties from published SLM investigations and calculating 

the crack susceptibility of the respective alloy. The results were found to be in good 

agreement with the reported observations.  
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1 Introduction 

1.1 Problem statement 

Additive Manufacturing (AM) is a method of manufacturing by means of successive 

layering of processed material to achieve a 3-dimensional part. The extended design 

freedom and low material waste it allows has resulted it in being one of the fastest 

growing industries in the world.  

Although polymer based systems lead the consumer market, metal based technologies 

are the focus of engineering and functional industries such as aerospace, automotive and 

medical.  

A key target for the aerospace industry is the processing of high temperature 

performance alloys, for use in next generation turbine engines. These difficult to work 

with alloys are costly to process and design freedom is limited by conventional 

techniques.  

AM, specifically laser powder bed fusion techniques such as Selective Laser Melting 

(SLM), offer a new avenue of development and the potential step change required for the 

aerospace industry’s next generation technology.  

The alloys of focus for this investigation are nickel-base superalloys. These are the 

obvious choice for aerospace users, as they operate in the hottest part of the engine and 

must also withstand tens of thousands of hours of operation without failure.  

Despite many of the alloys being easily ‘weldable’, recent investigations have revealed 

that many of the nickel-base superalloys suffer from micro-cracking during processing. 
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Seemingly process optimisation is not sufficient to eliminate the problem, and a 

fundamental design approach is required to optimise these alloys for the SLM process. 

1.2 Aims and Objectives of Research 

 To develop an understanding of the SLM process, specifically relating to the 

influence of process parameters on material response and resultant 

microstructures and behaviour of as processed material 

 To investigate and understand the root cause of micro-cracking in nickel 

superalloys when processed by SLM 

 To develop a method for identifying if an alloy will be susceptible to micro-

cracking based on composition and fundamental material properties 

1.3 Thesis structure 

Chapter 2 will feature an extensive literature review of the following: 

 Nickel superalloys – history, applications, metallurgy 

 Fundamentals of solidification 

 Selective laser melting – process, current literature, characteristics of the process 

 Nickel superalloys processed by SLM 

 Cracking mechanisms in nickel superalloys processed by conventional techniques 

In Chapter 3 the experimental methodology for the project and preliminary 

investigations will be discussed. Although much of the specific methodology will be 

discussed in the relevant chapters, the operation of the SLM system, methods for sample 
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analysis and equipment details are discussed here. The preliminary investigations focus 

on verification of micro-cracking as a problem in a known crack-susceptible nickel 

superalloy, Hastelloy® X, as well as establishment of relationships between density and 

cracking and process parameters.  

Chapter 4 discusses the establishment of SLM as rapid solidification process, and the 

implications this has on the microstructure, material properties and therefore material 

response of nickel superalloys. As well as discussing the unique microstructure of SLM, 

and how it evolves during processing. This understanding is key to the further 

development of a hypothesis for root cause of micro-cracking in SLM processed nickel 

superalloys.  

Chapter 5 uses conclusions of Chapter 4 to discuss a hypothesis for the root cause of 

micro-cracking in SLM processed nickel superalloys. It also establishes crack 

susceptibility as a material property, referring to the likelihood an alloy will experience 

process induced micro-cracking with SLM. It is defined as the balance between the tensile 

strength of the material and thermal stress imposed on the material by the process. 

Chapter 6 develops the crack susceptibility theory further, focussing on a method for 

modelling/predicting the strengthening contribution of the alloying elements. The theory 

is then tested by means of a direct comparison between the Hastelloy® X from Chapter 3 

and a modified version with increased material strength. The two alloy powders are 

processed with SLM, and the processed material is subjected to microstructural and 

material property analysis, specifically looking at crack density and tensile performance. 

Chapter 7 develops the process induced stress contribution for crack susceptibility. 

Specifically looking at a method for simulating a stress component from composition and 
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fundamental material properties alone. Various methods are discussed and tested for 

suitability, before one is ultimately chosen. 

In Chapter 8, the complete solution for prediction of crack susceptibility is validated. This 

includes the design and manufacture of novel alloy powder as well as processing of 

additional alloys. Finally, data from published investigations on processing nickel 

superalloys by SLM is used to complete validation by means of comparison of crack 

susceptibility prediction and reported/observed behaviour. Also discussed are 

publications which may have impact on the work in this investigation, which have been 

published after, or close to the end of completion. 

Chapter 9 summarises the work conducted throughout the investigation as well 

containing conclusions and final remarks.  
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2 Background and Literature review 

2.1 Selective Laser Melting: An Additive Manufacturing technique 

2.1.1 The process 

Selective laser melting (SLM) is one of a number of processes which come under the 

umbrella of Additive Manufacturing (AM). A process is defined as being additive if it uses 

layering or epitaxial growth to construct a three dimensional object. The most common 

types of material processed are plastics (polymers) and metals (or metallic), followed by 

organic material and ceramics (Gibson, Rosen et al. 2010); SLM is a metallic process. 

SLM (and other AM technologies) has seen a sharp increase in interest in both research 

and commercial industry in recent years, and is looking set to be a part of future 

manufacturing (Gibson, Rosen et al. 2010). This is largely down to the following reasons: 

building a part by layering allows for geometries that are simply not possible with 

conventional techniques, such as internal lattice structures or complex cooling channels. 

The precision of the processes allows for fine details which are either impossible or 

extremely difficult/wasteful/expensive to achieve with casting or machining. 

Components with moving parts can be fabricated in a single build, although this is more 

difficult to achieve in the metallic processes. Finally, any material (powder) which is not 

fused can be recycled thus providing huge feedstock waste reductions compared to 

machining.  

Due to branding and commercial competition a number of different names exist for the 

SLM process; Renishaw, Realizer and SLM Solutions all use SLM, Concept Laser call it 

LaserCUSING® and EOS use Direct Metal Laser Sintering (DMLS). It may also be referred 
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to in literature as selective laser sintering (SLS) and direct laser (metal) deposition (DLD 

or DLMD), although strictly these are separate processes.  

In SLM, metallic powder is selectively melted and fused by a high powered laser. Cross 

sections of a part are fused in layers, which are built up successively to create the 

complete 3D object – see Figure 2.1. It is this fabrication of solid parts through 

consecutive layers which classes it as an AM process. 

 

 

Figure 2.1 - Schematic of the SLM build process for Renishaw SLM 125 

A similar process to SLM is Electron Beam Melting (EBM), in which the same process is 

used but, as the name suggests, it uses an electron beam rather than a laser.  
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Of SLM and EBM, neither is greatly superior to the other and both have advantages over 

the other for various applications. SLM can build components to a higher degree of 

precision than EBM, the advantage of which is twofold: finer geometries (resolution of 

≈200μm (Vilaro, Colin et al. 2012)) and better surface finish. Surface finish is of 

desirability if one wishes to keep the component as ‘one process’, having to extensively 

machine the part after build would diminish the process’ advantage. 

EBM is preferable for rapid building as it has both a larger spot size and a higher limiting 

power, but as a consequence is not able to deliver the same level of precision. Both are 

able to produce fully dense parts (Wang, Hong et al. 2009, Parthasarathy, Starly et al. 

2010, Wang 2011, Wang, Wu et al. 2011, Wang, Guan et al. 2012). 

2.1.2 Applications 

SLM is a developing technology, therefore the number of applications it is compatible 

with is ever increasing as the limiting factors are overcome. However, like any 

technology, there are certain applications which it is more suited to. 

Due to the large start-up costs (machines typically cost in excess of £250,000), running 

costs of the machines and relatively low production volume, the technology is more 

suited to high value markets such as dentistry, medical, jewellery and aerospace.  

AM is perfect for customisable components, as no moulds or separate tooling have to be 

created and subtle differences in shape and size can be easily processed in CAD software. 

It therefore lends itself well to the production of patient-specific implants for the dental 

and medical industries, of which there have been a number of reported successes; 

Vandenbroucke and Kruth (2007) being one example. A specific example of one such 

application already being implemented is joint replacements. The artificial socket is 
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constructed with the intention of creating an interface which encourages bone and tissue 

to grow into/assimilate the socket and thus reduce chances of infection or foreign body 

rejection. This is achieved by building a fine complex mesh structure as the outer layers, 

with the socket itself being machined and polished (Parthasarathy, Starly et al. 2010). The 

meshwork is of too finer detail to be created using a cast, and would be highly time 

consuming and wasteful if one were to try and machine it. 

A large sector which is investing heavily in AM technology is the aerospace industry. The 

aerospace industry demands the highest level of component integrity and performance. 

All new materials and processes are subject to extensive testing and standardisation 

before they can be approved for production use. High performance alloys, such as 

titanium alloys and nickel/cobalt superalloys, are the material of choice for many of the 

components, especially those operating at elevated temperatures (Reed 2006). 

Unfortunately, the high performance properties of these alloys make them difficult to 

form using conventional techniques. Building aerospace components with SLM offers 

huge potential cost reductions for the industry, if the technology can be optimised; and 

there has already been some success in the industry. The Rolls Royce Trent XWB-97 

engine boasts the world’s largest additive manufactured aero-engine component 

assembly; a ring of compression vanes with a 1.5 m diameter, which had been 

manufactured out of Ti6Al4V on an Arcam EBM machine (Howie 2014).  

However, there has been less success with the higher temperature performance nickel 

base superalloys – see Section 2.8. These alloys are primarily used in the hottest part of 

the jet turbine engines and are often exposed to temperatures well in excess of 540 °C 

whilst under heavy loading (Donachie and Donachie 2002). Material responses combined 

with SLM process characteristics have led to difficulties achieving the level of part 
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integrity required for aerospace components. Problem characteristics of the SLM process 

will be discussed in the following section - Nickel base superalloys will be discussed in 

further detail in Sections 2.5 and 2.6.  

 

2.2 Problem characteristics in SLM 

As with any processing technique, SLM has a number of process characteristics which can 

cause problems with material processing if not understood and/or controlled. The 

nature, impact and controllability of these characteristics will now be discussed. 

2.2.1 High thermal and residual stresses 

Residual stress can be simply defined as internal stresses which exist within a part 

without any applied force or constraint. They are strongly associated with processing, 

and it has been said that ‘every production process will introduce some amount of 

residual stress’ (P. J. Withers 2001). As their presence is deemed inevitable, it is therefore 

the management and manipulation of residual stress which has become the focus of many 

investigations. Purely, they are the stress which results from elastic strains caused by 

elastic misfits between regions. The nature of these misfits is varied, and can be anything 

from lattice dislocations to thermally-induced strains (Moat 2009).  

If of sufficient magnitude, residual stress can lead to part deformation, micro-cracks and 

limitations on load resistance/tensile performance (Mercelis and Kruth 2006).   

 

There a three types of residual stresses, which vary over increasingly smaller length 

scales. Type I stresses are continuous across grain boundaries and vary over length scales 

comparable to the size of a part, as such they are described as macro stresses. Type II 
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stresses vary over a length scale comparable to that of grain size, and are generated by 

misfit strains. Type III stresses are inhomogeneous across the grain and are caused by 

lattice defects such as dislocations and interstitial solutes (Moat 2009). Both Type II and 

III are micro stresses. Due to the length scales over which they vary, Type I stresses have 

the most influence on material strength. They are also generated by the thermal elastic 

strains associated with changes in material temperature – no more extreme than in fusion 

processes. As such, Type I stresses are the primary focus of investigations of thermal and 

residual stresses in AM processes. 

 

Note: From this point we are only concerned with the mechanisms which create residual 

stress, namely the in situ thermal stresses. However, thermal stresses are difficult to 

measure in situ and it far easier to measure the resulting residual stress of a part once 

processed. Ultimately relationships between process parameters and residual stress 

infer the same for the thermal stresses from which the residual stress arose.  

 

Mercelis and Kruth (Mercelis and Kruth 2006) described the residual stress found in SLM 

and SLS parts as arising from two mechanisms; thermal gradient mechanism (TGM) and 

the cool-down phase of molten top layers. TGM results from the steep thermal gradients 

generated by the laser interaction with the material. The rapid heating of the top surface, 

combined with the relatively slow heat conduction of the material creates a steep 

temperature gradient. When the top layer expands, it is restricted by the significantly 

cooler lower layer, inducing elastic compressive strain. However, at an increased 

temperature the yield strength of the top layer is reduced, allowing it to be plastically 

compressed. Cooling of the now plastically compressed top layer, causes it to shrink, 

inducing a bending angle towards the laser. This introduces a tensile stress in the build 
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direction. It is important to note that this mechanism occurs in the solid phase (does not 

require the material to be molten). Figure 2.2 demonstrates TGM for a laser incident on 

solid material. 

 

Figure 2.2 – Representation of TGM, with thermal strain εth, plastic strain εpl, tensile 

stress σtens and compressive stress σcomp – direct from (Mercelis and Kruth 2006) 

 

The cooling of the molten top layer induces stress in a similar way to TGM. When the 

material cools and solidifies it shrinks due to thermal contraction. This shrinkage is again 

restricted by the cooler underlying material, causing tensile stress in the top layer and 

compressive stress in the underlying layer. 

There have been several studies both observing and aiming to understand residual stress 

build up the SLM process, through both modelling and experimental analysis. 

Mercelis and Kruth performed an extensive study into residual stresses in SLS and SLM 

(Mercelis and Kruth 2006). The study aimed to model the thermal stresses induced by 

the process and then compared the predicted stress profiles with experimentally 

measured values. They used a simple model which assumed: room temperature build, 

beam theory is valid, no external forces to part-base plate combination, stress in x 

direction is independent of y co-ordinate, the upper layer induces stress as a result of 

shrinkage and that the tensile strength is equal to the material’s yield strength. 
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The model uses a baseplate of height of 20mm, with a part built in 50 layers of thickness 

of 50 μm. The Young’s modulus, E, of the baseplate and part are 210 GPa and 110 GPa 

respectively, and the yield strength of the material is 300 MPa. Figure 2.3 shows the result 

given the initial parameter values. 

 

Figure 2.3 - Residual stress in the part and base plate, interface is at 20 mm height – 

direct from Mercelis and Kruth (2006). 

The addition of a layer to the baseplate induced a compressive stress in the upper region 

and a tensile stress in the lower. The addition of further layers added to the stress profile 

of the base plate but also to the underlying layers, thereby reducing the tensile stress 

present from previous layering. 

 

Figure 2.4 gives the stress profile after the part has been removed. Both the part and the 

baseplate undergo relaxation, in the case of the part this occurs through uniform 

shrinkage (constant part of the relaxation stress) and bending deformation (linear part 
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of the relaxation stress). After removal the part’s stress profile consists of tensile stress 

on the upper and lower surfaces with compressive stress in the central zone. 

 

 

Figure 2.4- Modelled stress profile of part after removal from baseplate– direct from 

Mercelis and Kruth (2006). 

The effects of number of layers, baseplate thickness and material yield strength on the 

stress profile were also modelled. An increase in layers results in a higher final residual 

stress, with a reduction in the x-axis shrinkage as the number of layers increases, see 

Figure 2.5. This is an important result as it confirms that larger parts, as a consequence 

of increased exposures, will build up greater residual stress. 
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Figure 2.5 - Modelled progression of residual stress profiles of part attached to substrate 

(left) and removed (right) with increasing number of layers– direct from Mercelis and 

Kruth (2006) 

As baseplate thickness increases the final residual stress decreases, and bending 

deformation of the part is also decreased with increasing plate thickness. Increasing the 

yield strength of the material increases the residual stresses – although not necessarily a 

surprising result, this is of particular importance when considering the high strength 

superalloys. 

The model had good qualitative agreement with the XRD tests but a quantitative 

comparison was ‘not easy’. This was primarily because the model did not include the 

effects of TGM, only those of solidification shrinkage. It also did not account for the 

porosity that occurred in the XRD samples. Porosity reduces the stress values as the 

stress around each porosity boarder equals zero. Also worth mentioning is that the part 

is built straight onto the baseplate without the use of supports. This means in reality the 

part has to be removed by wire cutting or EDM, which itself can induce large tensile 

stresses. This method also requires additional work to recycle the base plates. The use of 

supports makes the part easier to remove and also helps with the fabrication of more 

complex geometries. When a part is built on supports, the stress profile will not be the 

same as that of the ‘as processed’ parts in the Mercelis and Kruth investigation. Although 



 
 

35 
 

the supports may have some effect, the part is more likely to have the stress profile of the 

‘removed and relaxed’ parts. 

Shiomi, Osakada et al. (2004) measured the distribution of residual stress within an as 

processed steel part fabricated by SLM. The material was a mixture of chrome 

molybdenum steel with copper phosphate and nickel powder - which potentially 

responds differently to fully prealloyed powder, but a similarity will be assumed for this 

example. A cuboid of dimensions 6⨯5⨯45 mm height⨯width⨯length respectively was 

built onto a substrate of 8⨯9⨯49 mm. Given a layer thickness of 100 μm, the built part 

consisted of 600 layers. Residual stress was measured as a maximum of 500 MPa tensile 

on the top surface down to 50-100 MPa of compressive stress 2 mm from the base plate, 

returning to tensile stress along the interface between the base plate and the part. The 

measured stress profile, see Figure 2.6, is in agreement with the stress profile predicted 

by the Mercelis and Kruth model (Mercelis and Kruth 2006), although the return to 

tensile stress before the interface is not consistent with that predicted for when the 

component is still attached to the base plate. Instead the measured profile is closer to the 

inverse quench predicted for a removed part, implying that in the experimental case 

there may not be perfect cohesion between the part and the base plate. 

Shiomi and Osakada also investigated the relationship between the top layer (maximum) 

residual stress and laser scan speed, see Figure 2.6. Although a weak parabolic 

relationship for mean values is recorded, the large error variations lead to a conclusion 

that the maximum stress is not greatly affected by the scan speed. 
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Figure 2.6 - Measured residual stress profile for as processed part attached to base plate 

in strong agreement with Mercelis and Kruth (2006) model (left), with conversely weak 

relationship between scan speed and maximum residual stress (right)– directly from 

Shiomi, Osakada et al. (2004) 

 

Moat, Pinkerton et al. (2011) studied the effects of laser pulse length and duty cycle on 

the residual stress of SLM fabricated Waspaloy and Inconel 718. Although they built thin 

walls rather than cuboidal structures, the stress profiles measured agreed well with the 

findings of Mercelis and Kruth (2006). Stresses parallel to the free surfaces were tensile, 

with those in the interior being compressive. It was found the stress profiles had a weak 

dependence on the pulse length, but pulse length had little effect on the maximum 

stresses. Increasing the duty cycle increased the stress gradient and size of the region of 

maximum stress for x-direction tensile stresses. 

Longitudinal tensile stresses near the top surface were attributed to part shrinkage, 

under the mechanism of top layer cool down. Longer pulses were found to increase the 

proportion of high residual stress compared to short pulses. The increased exposure time 

results in higher temperatures around the laser point, leading to higher cooling rates. 

This is similarly explained by TGM. 
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The featured literature focussed on relationships between process parameters and 

residual stress. However, because the residual stress can be said to derive entirely from 

thermal stress induced by the fusion process, it is actually the relationships between 

process parameters and thermal stress that were revealed. Residual stress can be 

relieved by simple post process heat treatments; therefore, as standalone problem it can 

be easily remedied. It is the other, less reversible effects of thermal stress - defects which 

occur as a material response to the stress, such as deformation or fracturing/rupture - 

that pose a greater challenge.  

2.2.2 Porosity 

Porosity refers to a pore, or number of pores present within a volume, and is usually 

quoted as a % volume or area. However, the more common case is to quote a samples 

density (% or kgm-3); this is because porosity refers to the characteristic, rather than a 

physical property.  Pores are considered detrimental because they are potential crack 

initiation sites, ultimately influencing the mechanical performance of the material. As 

such the achievement of full density with a material is usually sought before conducting 

mechanical investigations. Many of early or initial investigations into processing of alloys 

with SLM focus largely or only on densification of the material (Morgan, Sutcliffe et al. 

2004, Kruth, Levy et al. 2007, Mumtaz, Erasenthiran et al. 2008, Gu, Hagedorn et al. 2012, 

Savitha, Gokhale et al. 2012, Kamath, El-dasher et al. 2014). From these investigations it 

is gleaned that porosity in SLM occurs due to five reasons: insufficient melt overlap, 

insufficient melting/fusion depth, trapped gas, balling and vapourisation. Balling and 

vapourisation are also linked to poor surface finish, and will be discussed further in 

Section 2.2.3. Examples of porosity reported in SLM processed IN738LC (Rickenbacher 

2013) are given in Figure 2.7. 
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Figure 2.7 - a) High porosity caused by lack of fusion and b) low porosity achieved 

through parameter optimisation– adapted from Rickenbacher (2013) 

The porosity observed in Figure 2.7a has occurred due to lack of fusion, this is evident 

because whole powder particles are still present within the voids. This is an extreme case, 

at 53% porosity, and is a result of insufficient energy absorption. In Figure 2.7b the 

process parameters have been optimised leading to a porosity of only 0.2%. There are a 

few pores still present, two large spherical and a number of significantly smaller spherical 

pores. All spherical pores are caused by the trapping of gas within the melt. The gas 

expands uniformly upon heating, creating a spherical void. The larger spherical pores are 

approximately 50μm in diameter, too large to be porosity present within the powder 

itself; those are the cause of the much smaller micro-pores. The large pores are actually 

the result of insufficient overlap, where all of the available powder has been melted but 

hydrostatic forces have led to the creation of a void, in which gas can be trapped. An 

indicator to this mechanism is the alignment of pores to a pattern or direction, as it 

implies they have formed along a hatch line. This mechanism will be discussed further in 

the design of experiments in Chapter 3.  
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With the exception of trapped gas, which can originate from the powder particles, all 

porosity is controllable with laser scan and machine parameters. Eliminating or 

minimising porosity is therefore a matter of parameter optimisation specific to a given 

material.  

2.2.3 Surface roughness 

Balling is a phenomenon in which molten liquid solidifies as beads on the surface, rather 

than hemi-spheroidal drops. It occurs when the molten material does not (sufficiently) 

wet the underlying material due to surface tension, causing the liquid to spheroidise 

(Kruth, Froyen et al. 2004). The beads create a rough surface, which if built on result in 

high porosity and a high surface roughness of the part. Kruth, Froyen et al. (2004) 

investigated the physical mechanism and came up with a strategy to avoid the 

phenomenon based on laser scan parameters.  

Figure 2.8 depicts a flat, smooth and chemically homogenous surface (S), in contact with 

non-reactive liquid (L) in the presence of a vapour phase (V). If the liquid does not fully 

cover the surface, the liquid surface will intersect the solid surface at an angle θ. Θ 

corresponds to a minimum of the total free energy of the system. Due to the very short 

interaction time of the laser melting, θ can be said to obey the classical equation of Young 

(1804): 

cos 𝜃𝛾 =
𝜎𝑆𝑉 − 𝜎𝑆𝐿

𝜎𝐿𝑉
 

Equation 2.1 

where σSV, σSL and σLV are the surface energies of the system, and θγ is the intersection 

angle. If the melt pool created by a laser is approximated as a half cylinder, balling is said 

to occur when the total surface of the molten pool becomes larger than that of a sphere 
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with the same volume. Thus, in order to avoid balling, one must ensure that the length to 

diameter ratio of the melt pool is less than 2.1. 

 

 

Figure 2.8- a) the wetting of a liquid on a solid substrate, b) transition from half cylinder 

to sphere, depending on dimensions of  the molten laser pool (Kruth, Froyen et al. 2004). 

 

This is achieved through optimisation of the laser scan parameters. Kruth and Froyen 

created parameter windows for a continuous and pulsed laser system, see Figure 2.9, 

based on laser power against laser scan speed. They found that high scan speeds 

combined with high power resulted in reduced balling. The high speeds reduce the length 

of the melt track, satisfying the above ratio, whilst the high power ensures full melting of 

the powder. In contrast, other studies (Gu, Hagedorn et al. 2012) found that low power 

with low speeds also reduced balling. This is attributed the low scan speeds allowing for 

an increase in the width of the melt track through heat conduction. Again, the increased 

width means that l:d is kept below 2.1. 

 



 
 

41 
 

 

Figure 2.9 - Process windows for a) continuous wave and b) pulsed laser systems (Kruth, 

Froyen et al. 2004) 

 

In Figure 2.9, we can see that balling occurs at high powers with low speeds, however 

there is a further effect which can occur with this parameter set. The slow speed and high 

power results in a high energy density, allowing the laser melting temperature to meet 

and exceed the evaporation temperature of the material. The evaporation causes a rapid 

expansion of the particles, creating a recoil pressure on the molten pool. The vapour can 

then sometimes interact with laser radiation (if the incident intensity is high enough) 

causing it to become ionised, forming a plasma (Kruth, Froyen et al. 2004). A low ‘plasma 

recoil’ pressure can result in the flattening of the melt surface, thereby reducing any 

balling effects and improving surface roughness. High pressures, however, result in the 

expulsion of melt material and even nearby powder particles from the layer. Much like 

balling, it creates irregular voids through the layer, which obstruct a smooth layer 

deposition resulting in high porosity in the part and puckered or uneven top surfaces. 
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2.2.4 Process induced cracking 

Process induced cracking refers to the macro or micro-cracks which form as a direct 

result of the process. They can either form during processing or once processing has 

finished – although they would have to occur without external influence to still be 

considered process induced.  

Unfortunately, a large number of investigations in this field are carried out by commercial 

bodies, and therefore often the results are not made public. Although there are a few 

publicly available studies which report micro-cracking in SLM as processed material, it is 

believed the number of affected alloys far exceeds those reported. If we include reports 

for all laser deposition techniques, crack susceptible alloys reported in the public domain 

are as follows: Hastelloy X (Wang 2011, Tomus, Jarvis et al. 2013), Inconel 738 (Zhong, 

Sun et al. 2005, Rickenbacher 2013), Waspaloy (Mumtaz, Erasenthiran et al. 2008), 

CM247-LC (Carter, Martin et al. 2014), Aluminium 6061 (Fulcher, Leigh et al. 2014) and 

austenitic stainless steel (Yu, Rombouts et al. 2013). 

Figure 2.10 and Figure 2.11 display cracks observed in laser deposited austenitic steel 

and SLM processed Waspaloy respectively. A key observation is that the cracks in both 

cases initiate from a pore/defect and propagate along the grain boundary, and they are 

both jagged in morphology implying fracture of solid state material. 
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Figure 2.10 - Micro-cracking in as processed austenitic steel. Note that crack ‘1’ appears 

to have initiated at a pore. Both cracks have formed along grain boundaries also– 

adapted from Yu, Rombouts et al. (2013) 

 

 

Figure 2.11 - Top surface crack observed in SLM fabricated Waspaloy, again the crack is 

observed to lie along the grain boundary– direct from Mumtaz, Erasenthiran et al. (2008) 

 

From those materials reported, the majority of crack susceptible alloys are nickel-base 

superalloys. The key point raised from these investigations is that although parameter 

optimisation can reduce micro-cracking, it has not been sufficient to eliminate it 

(Rickenbacher 2013, Tomus, Jarvis et al. 2013). Clearly micro-cracking affects a range of 

alloys, however, as will be discussed in a Section 1.7 and 1.8, the specific mechanisms 

behind cracking may not be same for each alloy. 
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2.3 Failure by fracture and critical crack length 

 

Micro-cracks, along with other internal defects, act as crack initiation sites, that is, points 

from which a macro crack will propagate leading to component failure. It is therefore 

paramount for industries such as aerospace, where the overriding design criteria is safe 

operation, that components are as close to defect free as possible. A crack will propagate 

once the stress intensity factor, K1, exceeds the fracture toughness, K1c, of the material 

(Ashby, Shercliff et al. 2007). If we consider a crack of length cl, as depicted by Figure 2.12, 

with applied remote stress σ, then K1 and K1c are described by Equation 2.2 and Equation 

2.3 respectively.  

 

Figure 2.12- Lines of force in a cracked body under load, taken from (Ashby, Shercliff et 

al. 2007) 

 

𝑲𝟏 = 𝒀𝝈√𝝅𝒄𝒍 

 

Equation 2.2 
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𝑲𝟏𝒄 = 𝒀𝝈∗√𝝅𝒄𝒍  ≈ 𝝈∗√𝝅𝒄𝒍 

Equation 2.3                                                                                                                    

where σ* is stress at propagation and Y is 1 providing cl << width of component. K1c is a 

material property (independent of measurement technique) and is often known for 

established metals and alloys. If a crack is small, the material may yield before fracture, 

in which case σ* is equal to the yield strength σy.  The minimum crack length required for 

crack propagation, ccrit, in a material can therefore be defined as 

𝑐𝑐𝑟𝑖𝑡 =
𝐾1𝑐

2

𝜋𝜎𝑦
2

 

Equation 2.4 

or 

𝑐𝑐𝑟𝑖𝑡 =
𝐾1𝑐

2

2𝜋𝜎𝑦
2

 

Equation 2.5 

For an enclosed crack, where crack length is defined as 2cl. 

Using Equation 2.4, ccrit has been calculated for a number of common alloys and metals, 

see Table 2.1. 
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Material Yield (MPa) UTS (MPa) Elongation (%) K1c (MPa.m1/2) ccrit 
(mm) 

Nickel      

Inconel 718 800 914 3.49 98 2.4 

Inconel 718 aged 1110 1320 15 130 2.2 

Inconel 625 434 900 34.9 358 108.3 

Hastelloy X 724 777 40 400 48.6 

Iron 210 432 36 80 23.1 

316l wrought 310 620 50 72 8.6 

Titanium 570 690 25 50 1.2 

Ti6Al4V aged 1080 1270 13 100 1.4 

Al6061 T651 266 605 10 29.2 1.9 

Al 7075 110 236 16.1 39 20.0 

Table 2.1 - Mechanical properties for range of alloys and metals. Values of yield strength, 

Ultimate Tensile Strength (UTS), elongation and K1c  are all maximums in the range, 

taken from CES Edupack 2014, ccrit values are calculated. 

From initial observation, it appears that the majority of materials will only fracture if an 

internal crack is of the order of a millimetre or greater. The implication then being that a 

micro-crack (of the order of 10-100 μm) is not considered an integral problem, as the 

material will yield before it would fracture. This would be the case if there was only one 

micro-crack within the component. However, if there were multiple micro-cracks, and 

particularly if cracks were aligned providing potential link up, then it is the total crack 

length that may be considered. At this point, component size becomes an important 

consideration. If a material has a crack density, number of cracks per unit area or volume, 

smaller components are less at risk as ccrit is an absolute value. Conversely, larger 

components are more at risk of failure by fracture as they will contain more micro-cracks 

and have a greater total crack length.  

If a component of cross sectional area 40 mm2 is made of material which has a crack 

density of 10 cracks per mm2, with each crack ~ 50 μm in length, total crack length is 2 

mm. This value is comparable to the critical crack length of aged Inconel 718, one of the 

most commonly used nickel superalloys, meaning it is unlikely to be acceptable for 

service in a high loading environment.  
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If an alloy is susceptible to process induced micro-cracking, this places uncertainty on 

whether it will be suitable for service as potential total crack length could exceed ccrit 

depending on component size. Far better is to use a material with ultra-low or zero crack 

susceptibility, that way mitigating the risk of exceeding ccrit. 

Given their reported high crack susceptibility it is therefore likely that, in their current 

state, many nickel superalloys processed by SLM will not be accepted by aerospace 

industry regulators. 

 

2.4 Solidification and microstructure theory 

2.4.1 Solidification fundamentals 

Although this research concerns additive manufacturing only, solidification is a subject 

of such intricacies that it is necessary to first cover solidification fundamentals, before 

moving on to the specific cases of laser processing and additive manufacturing  

In order for a melt to solidify, heat must be extracted. This is achieved by the application 

of cooling to the melt leading to the creation of an external heat flux, qe. Heat extraction 

affects the energy of the solid and liquid states by decreasing the enthalpy due to cooling 

(of liquid and solid), ∆𝐻 = ∫ 𝑐𝑑𝑇, and due to transformation (from liquid to solid) which 

is the same as the latent heat of fusion, ΔHf. The resultant cooling rate, dT/dt or Ṫ is related 

to the external heat flux by Equation 2.6, using the latent heat per unit volume ∆ℎ𝑓 =

∆𝐻𝑓 𝑣𝑚⁄  (Kurz and Fisher 1998). 

𝑞𝑒 (
𝐴′

𝑣
) = −𝑐 (

𝑑𝑇

𝑑𝑡
) + ∆ℎ𝑓 (

𝑑𝑓𝑠

𝑑𝑡
) 

Equation 2.6 
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where c is specific heat per unit volume, dfs/dt is change in volume fraction over time and 

(A’/v) accounts for the effect of casting geometry, with the ratio of surface area, A’, to 

volume, v.  The control of heat extraction allows for the control of cooling rate which for 

a given location and time is given as  

𝑇 =̇
𝑑𝑇

𝑑𝑡
=

𝑑𝑇

𝑑𝑟
∙

𝑑𝑟

𝑑𝑡
= 𝐺 

                                                                                                                              

Equation 2.7 

where dT/dr is the temperature gradient G and dr/dt is the growth rate of the solid, or 

solidification rate, V (or Vs). In the case of simple casting, heat is extracted through via a 

chill through the walls of the mould, see Figure 2.13. Here, the solidification front moves 

in a direction parallel and opposite to the heat flux, moving from the mould wall forming 

a columnar zone. As the solid front advances, the heat flux decreases (McLean 1983) and 

therefore so do G and V. There are three distinguishable regions during the growth of the 

columnar zone regions: liquid, liquid + solid (mushy) and solid. The mushy zone is where 

microstructural characteristics, such as grain size, porosity, precipitates are established. 

But the morphology of the microstructure depends upon G and V and on the alloy 

composition (Kurz and Fisher 1998). 
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Figure 2.13 - Solidification in conventional casting– direct from (Kurz and Fisher 1998) 

The microstructural formation of a casting is shown in Figure 2.14. Initially, the relatively 

low temperatures of the mould wall induce a high cooling rate resulting in the nucleation 

of small randomly orientated equiaxed grains. The grains rapidly become dendritic and 

grow arms in preferential crystallographic directions ([001] for cubic). Those grains 

which can grow anti parallel to the heat flux eliminate others through competitive 

growth, resulting in the columnar (directional) grain morphology, Figure 2.14a. 

Directional growth is characterised by a positive thermal gradient, G. In the centre, 

dendrite branches which have detached from the columnar arms are allowed to grow 

independently. Their latent heat is extracted radially through the undercooled melt 

resulting in an equiaxed grain formation, Figure 2.14b (Kurz and Fisher 1998). This 

similarly explained by Figure 2.15. 
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Figure 2.14 - Microstructural formation in casting – direct from (Kurz and Fisher 1998) 

 

 

Figure 2.15  - Solid-liquid interface morphology and temperature distribution, s = solid 

phase, l = lquid, q= heat flux– direct from (Kurz and Fisher 1998) 
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In Directional Solidification (DS), solidification is controlled through control of heat flux. 

The most basic form uses a chill at the base of a mould, with insulating walls. This results 

in a unidirectional heat flux down through the base of the mould, and therefore the 

formation of columnar grains perpendicular to the base, with equiaxed at the top of the 

mould. 

In a pure metal, Figure 2.15a, the columnar grains have a planar interface and grow 

antiparallel to the heat flux. In alloys, or if impurities are present, the columnar crystals 

are dendritic. For the central equiaxed region, crystals grow the same in both cases, which 

is radially with heat flux direction. However, size may vary as in an alloy the growth is 

controlled mainly by solute diffusion rather than just heat flux as for pure metals. If one 

looks at the temperature profile it is observed that in columnar growth the liquid is the 

hottest part of the system, G > 0, however in equiaxed it is the crystal which is hottest, G 

< 0. This implies that the liquid must be undercooled for equiaxed crystals to form (Kurz 

and Fisher 1998). 

In the solidification of an alloy, solutes are rejected by the advancing solid front, causing 

variation of the local equilibrium melting point along the solid-liquid interface, due to 

varying local concentrations. This creates instability in the initially planar interface, 

which materialises as perturbations. The tips of the perturbations grow faster as they can 

reject solutes radially, and ultimately the planar front breaks down, forming cells. Cells 

are crystals and will only grow during the directional growth of alloys; they always grow 

antiparallel to the heat flux direction, whereas dendrites grow along the preferred 

crystallographic direction closest to parallel with the heat flux. As V increases, conditions 

become more favourable to dendrite formation and dendrites form quickly from the cells. 

However, at high V cells can form as conditions approach absolute stability, see Figure 
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2.17. The distance between the centre of adjacent cells or dendrite trunks is the primary 

(dendrite arm) spacing, λ1, and this remains the same throughout solidification through 

to full freezing. If conditions allow, secondary dendrites arms can form perpendicular to 

primary trunk, these can then also have tertiary arms, see Figure 2.16. Secondary arm 

spacing, λ2, is also a characteristic value for dendrites. Both λ1 and λ2 depend on, and can 

be used to calculate, the cooling rate (Davies, Shohoji et al. 1980).  

 

Figure 2.16- Dendrite root and tip for columnar growth at same point in solidification but 

separated by distance >> λ1. Note how λ2 evolves, beginning small at the tip and 

eventually growing to the point of dissolution of the tertiary arms at the root– direct from 

(Kurz and Fisher 1998) 
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Figure 2.17 displays the change of crystal morphology with increasing V, and also the tip 

radius R and λ1. High velocity, or rapid, solidification will be discussed in more detail in 

Section 2.4. 

 

Figure 2.17 - Crystal morphologies of Al-2Cu alloy with increasing V  along the top of the 

image - from left to right: Plane front, cellular, cellular-dendritic, dendritic, dendritic 

with secondary arms, fine cellular and plane front. Vc is the limit of constitutional– direct 

from (Kurz and Fisher 1998) 

 

The rejection of solutes from the dendrite tips results in increased concentrations of 

solute within the liquid. As this is pushed out radially it can become trapped between the 

dendrite trunks and solidifies resulting in interdendritic regions with different solute 

concentrations to the primary dendrite trunk. The mechanism is called segregation, or on 

this scale, microsegregation. To what extent a solute will segregate depends on its 

diffusion in the solid and liquid and the shape and size of the dendrite (Kurz and Fisher 

1998) – which in turn depends on V and Ṫ. Every element has a solute diffusion coefficient 
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D specific to solution, which also varies for solid Ds, liquid Dl and solid-liquid interface Di. 

Each has to be experimentally determined and thus only common solute-solution values 

are available in literature.  

If we take the simplest form of alloy, a binary system, it is theoretically possible to achieve 

uniform concentrations of solute by means of diffusion between the solid and liquid 

phases (McLean 1983). However this requires unrealistically fast diffusion rates, or, 

impractically slow solidification velocities (0.5⨯10-14 m/s for substitutional, and 0.5⨯10-

11 m/s for interstitial solutes (McLean 1983)) and thus in conventional solidification one 

will always observe some microsegregation. Figure 2.18 demonstrates microsegregation 

occurring in dendrite formation. This is often observed experimentally, where higher 

concentrations of solute are found in the interdendritic regions and are darker in 

contrast. As will be discussed in the next section, it is possible to have segregation free 

structures, with very high solidification rates.  

 

 Figure 2.18 - Dendritic structure of DS MarM246. White regions are dendrite crystals 

with black interdendritic regions visible due to differences in chemical concentrations 

being highlighted by chemical etching– direct from (McLean 1983) 
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2.4.2 Rapid solidification  

2.4.2.1 Solute diffusion and solute trapping  

Rapid Solidification (RS) will occur either due to high undercooling of the melt e.g. rapid 

quenching, or with rapidly moving temperature fields e.g. surface processing with high 

power density sources such as lasers (Kurz and Fisher 1998).  Although the name 

suggests a dependence on solidification velocity, the characteristic phenomenon of RS 

depends on the relationship between solidification velocity and diffusion. In low V 

conditions, microstructure evolves according to the relationship R2V = const where R is 

dendrite tip radius (or λ2V = const for eutectic spacing λ). Diffusion distance d = 2Dl/V, 

where Dl is the solute diffusion coefficient in the liquid adjacent to the solid-liquid 

interface. If 2Dl/V < R, the diffusion field becomes localised with respect to 

microstructure, limiting solute segregation. This point is deemed as the onset of RS, and 

occurs at critical V ~ 10-2 m/s (Kurz and Trivedi 1994).  

As V increases, it eventually becomes comparable to, and then greater than, the diffusion 

rate at the solid-liquid interface DL/λ; where DL is the solute diffusion coefficient in liquid 

and λ is the inter atomic spacing (Aziz 1982). The solute atoms are then trapped by the 

advancing solid-liquid interface and incorporated into the solid. Concurrently, the crystal 

no longer has time to change its composition so as to reach the same chemical potential 

of the melt and therefore the solid-liquid interface is no longer in equilibrium (Kurz and 

Fisher 1998). The two mechanisms are known as solute trapping and departure from 

local equilibrium, respectively. 

Michael Aziz formulated a model for the redistribution of solutes during rapid 

solidification (Aziz 1982). In which he proposed two mechanisms of growth: stepwise 

and continuous. In stepwise, the growth occurs in lateral steps of height λ, where λ is the 
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interatomic spacing. The average time between each step is τ = λ/V. If the solute atom 

does not diffuse back into the liquid before τ expires, then it is trapped within that 

monolayer as the interface advances. In continuous growth, the solute atom is being 

‘dragged’ towards its lattice site over time τ, whilst at the same time trying to diffuse out. 

Rather than being in fixed steps, the potential surrounding of the solute is continuously 

changing, making accurate solutions more difficult to write. However, ultimately 

continuous growth was proved to be in better (and very good) agreement with 

experimental results than stepwise growth, by Aziz himself and other authors (Aziz, Tsao 

et al. 1986, Aziz 1988, Ahmad, Wheeler et al. 1998). As such it will be discussed in more 

detail. 

Consider solute atoms jumping across the interface between solid and liquid. For 

continuous growth it is assumed that this occurs with a steady state flux, J. It is also 

assumed each jump requires an activation energy, which must be greater than that for 

crystallisation. For solute transition the jump is equal to λ, for crystallisation the jump is 

< λ. In the reference frame of the moving interface (moving at V), the steady state 

requirement of the net solute diffusivity flux J(z) and net solute concentration C(z) is 

𝜕

𝜕𝑧
(𝐽 − 𝑉𝐶) = 0 

Equation 2.8 

This then becomes  

𝐽𝑠→𝑙 − 𝐽𝑙→𝑠 = 𝑉(𝐶𝑙𝑖 − 𝐶𝑠𝑖) 

Equation 2.9 
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where Js→l is flux from solid to liquid and Jl→s is flux from liquid to solid, both are described 

by Equation 2.10 and Equation 2.11. Csi is the solute concentration in the newly formed 

solid and Cli is solute concentration in the liquid. 

𝐽𝑠→𝑙(𝑡) = 𝑓𝑠𝑣𝑠𝜆𝛾𝑠𝐶𝑠𝑖(𝑡)𝑒𝑥𝑝 (
−∆𝜇𝐵

0∗

𝑅𝑇𝑖
) 

Equation 2.10 

𝐽𝑙→𝑠(𝑡) = 𝑓𝑙𝑣𝑙𝜆𝛾𝑙𝐶𝑙𝑖(𝑡)𝑒𝑥𝑝 (
−∆𝜇𝐵

0∗ − ∆𝜇𝐵
0

𝑅𝑇𝑖
) 

Equation 2.11 

For Equation 2.10,  fs is the fraction of sites in the solute from which an atomic jump can 

occur, νs is the attempt frequency in the solid, ∆𝜇𝐵
0∗ is the molar free energy of activation 

to the transition state, γs is the activity coefficient of the solute in the solid, R is the molar 

gas constant and Ti is the temperature at the interface. For Equation 2.11 f, ν and γ are the 

same but for in liquid and ∆𝜇𝐵
0  is the change in standard molar free energy upon 

recrystallization.  

An interface diffusivity Di (which is smaller than Dl) and equilibrium segregation 

coefficient ke(Ti) are then defined as 𝐷𝑖 ≡ 𝜆2𝑓𝑙𝑣𝑙𝛾𝑠𝑒𝑥𝑝 (
−∆𝜇𝐵

0∗

𝑅𝑇𝑖
) and 𝑘𝑒(𝑇𝑖) ≡

𝛾𝑙

𝛾𝑠
𝑒𝑥𝑝 (

−∆𝜇𝐵
0

𝑅𝑇𝑖
), 

feeding these into Equation 2.11 and defining a dimensionless velocity 𝛽 ≡
𝑉𝜆

𝐷𝑖
 this 

simplifies to 

𝛽(𝐶𝑙𝑖 − 𝐶𝑠𝑖) = 𝐶𝑠𝑖 − 𝑘𝑒𝐶𝑙𝑖 

Equation 2.12 
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Or, if diffusion in the solid is taken to be negligible, so that Cs = Csi we get 

𝑘(𝑉) =
𝐶𝑠

𝐶𝑙𝑖
=

𝛽 + 𝑘𝑒

𝛽 + 1
 

Equation 2.13 

From this expression we see that as V → 0, the partition coefficient k(V) approaches ke, 

and if  𝑉 ≫
𝐷𝑖

𝜆
 then k(V) approaches 1. Therefore giving a transition range beginning at 

equilibrium segregation at low V, up to complete solute trapping when 𝑉 ≫
𝐷𝑖

𝜆
. The 

interface velocity range over which this transition occurs is predicted as  a few orders of 

magnitudes of V; which for the case used in Aziz (1982), is 0.1-100 m/s, see Figure 2.19. 

It is noted that this relationship was initially only for dilute solutions, and it was assumed 

that Di/λ = Dl/λ = 10 m/s with Di is taken as ~ 10-9 m2/s and Ti = Tm.  

 

Figure 2.19 - Predicted arsenic (ke =0.3) segregation in silicon with Aziz’s continuous 

growth model (b) and stepwise growth model (a), and Baker model (Baker and Gahn 

1969)(c). (d) is data from Baeri, Foti et al. (1981). Here u = V. Direct from (Aziz 1982). 
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The prediction of whether solute trapping will occur for a specific system is dependent 

on the values of V, Di and λ. However, the values chosen for Di and λ carry the most 

significance as they determine what the transition velocity range Vcrit will be. 

λ (replaced with the interface thickness δi in later works (Kurz and Trivedi 1994)), is 

usually taken as 10-9 m (Kurz and Fisher 1998), but can be replaced by a specific distance 

if using for larger length calculations. Although Aziz initially assumed Di ~ Dl it is now 

believed that Di < Dl, evidence of which was actually reported in Aziz (1982) when data 

from Baeri, Foti et al. (1981) suggested complete solute trapping of arsenic in silicon at 

0.1 m/s. Boettinger, Coriell et al. (1984) proposed the calculation of Di at interface 

temperature T0 for various compositions. For the case of Silver, T0 = 943 K, and based on 

an activation energy of 40 kJ mol-1, Di was calculated to be 6⨯10-10 m2/s. This implied a 

Vcrit ~ 0.01-10 m/s. Again this is for a dilute solution, calculations for concentrated 

solutions such as superalloys have not been conducted. Arnold and Aziz later adapted the 

Aziz model to include the atomic diffusive speed, which is the growth rate at which k(V) 

is in mid transition between ke and unity (Arnold, Aziz et al. 1999), Equation 2.14. 

𝑘(𝑉) =
𝑘𝑒 +

𝑉
𝑉𝐷

1 +
𝑉
𝑉𝐷

 

Equation 2.14 

This model was previously verified experimentally for planar interfaces using pulsed 

laser processing, but using VD as a free parameter to help fit dendrite-undercooling data. 

In Arnold, Aziz et al. (1999), VD was measured independently in a dilute Ni-Zr alloy and 

found to be 26 m/s. This implies a lower limit of V = 26 m/s to achieve full solute trapping 

than the initially predict 100 m/s. Unfortunately, what is very difficult to predict is the 
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onset of solute trapping, all of the calculated or measured values only concern full solute 

trapping, or microsegregation free structures i.e. planar. In more complex alloy systems, 

each solute atom will possess a different diffusion rate, and solute-solute interactions will 

also affect Vcrit.  

2.4.2.2 Microstructures in RSPs and laser surface treatment 

Selective laser melting, as the name suggests, is a laser melting process and employs a 

moving power source thereby creating moving temperature fields. In absence of 

established theory for SLM, it is therefore reasonable to discuss the solidification and 

microstructure formation theory of laser surface processing, as established in the late 

1980s and early 1990s. 

The characteristic solidification conditions for laser surface processing are outlined by 

Kurz and Trivedi (Kurz and Trivedi 1994) in their work on Rapid Solidification 

Processing (RSP). In RSP, microstructure selection is driven by the interface velocity Vs 

and cooling rate Ṫ, and temperature gradient at the interface G is less significant.  

Lasers transfer heat into a material through the reverse Bremsstrahlung effect – the 

Bremsstrahlung effect is the process of photon emission by an excited electron – that is 

an electron being excited by the interaction with an incident photon. In the case of laser 

processing it is the interactions between photons from the laser with free or bound 

electrons in the material (Bass 2012). In a metal, the electrons are free - separate to the 

atom – and sit in an electron cloud allowing for higher conductance through electron-

electron interactions. Interactions between the excited electrons and lattice phonons 

result in phonon vibrations. It is the vibrations that are detected as heat. If the metal 

absorbs sufficient energy, the vibrations are enough to stretch the lattice bonds to the 

extent they lose their mechanical strength and the metal melts (Deffley 2012).  
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Figure 2.20 is a schematic showing the melt pool morphology and solidification 

conditions that occur with a moving laser source. Solidification velocity Vs increases 

rapidly from zero at the base of the melt pool to ~Vb (beam velocity) at the surface via the 

relationship Vs = Vb ∙ cosθ, where θ is the angle between the velocities (Gremaud, Carrard 

et al. 1990).  

 
Figure 2.20 - Melt pool formation for laser surface processing at high beam velocities. 

Where Vs (max) ≡ Vb. - adapted from (Gremaud, Carrard et al. 1990) 

 
Therefore, a beam velocity of 1 m/s results in a peak Vs of 1 m/s at the top of the trace. 

However, the acceleration from zero at the base of the trace to such a maximum over the 

relatively short distance of the trace depth, potentially results in a departure from steady 

state theory. This would make it difficult to interpret microstructural observations as 

established phase transformation models, such as those discussed in Section 2.4.1, which 

were developed for steady-state conditions. Zimmermann, Carrard et al. (1989) 

demonstrated that a quasi-steady state condition would be satisfied providing that the 

change in Vs, through a distance of D/Vs, was significantly less that Vs - where D is the 

diffusion coefficient of the solute in liquid – see Equation 2.15. 

 



 
 

62 
 

𝐷
𝑉𝑠

𝜕𝑉𝑠

𝜕𝑥

𝑉𝑠
≪ 1 

Equation 2.15 

Taking the maximum value for (ΔVs/Δx)as 103-104 s-1 (Zimmermann, Carrard et al. 1989) 

and taking D to be of the order 10-9 m2/s (Kurz and Fisher 1998), the LHS of Equation 

2.15 has values of 10-6-10-3 when applied to typical laser surface treatment solidification 

rates. The quasi-steady state condition is therefore satisfied, and steady state growth 

theory can be applied. 

Along with additional works (Gremaud, Carrard et al. 1990, Carrard, Gremaud et al. 

1992), Kurz and Trivedi (1994) determine that solidification conditions for laser surface 

treatment will, in most cases, lead to columnar (directional) growth of dendrites. 

However Zimmermann, Carrard et al. (1989) discovered that in the laser remelting of Al-

Cu eutectics, a new phase formed in between cellular and planar forms at high 

solidification velocities. Beyond Vs = 0.5 m/s, they observed a banded structure which 

when analysed was comprised of supersaturated α-Al solid solution and wavy eutectic α-

Al/θ-Al2Cu.  

Figure 2.21 shows the interface response functions (T-V curve) for the various 

microstructures observed. Ordinarily beyond limit of absolute stability, plane front 

morphology is the most stable. However, between the velocity range of Va and the VTmax - 

maximum of Tp – steady state plane front growth is unstable in time resulting in 

oscillatory instabilities and an alternative growth of cell-dendrites and plane front 

morphology. This materialises as submicron spaced bands which are parallel to the 

solidification front (Kurz and Trivedi 1994). 
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Plane front morphologies represent microsegregation free structures, where complete 

solute trapping has occurred during solidification. Figure 2.22 shows a microstructure 

selection map, in G-V coordinates. It is observed that laser surface treatments will either 

form cell-dendrites at lower V or banded structures when pushing towards 1 m/s or 

higher. With regards to solute trapping, in order to form dendrites there must be small 

amount of diffusion, complete solute trapping will always result in a plane front 

morphology, but the banded structure clearly represents a transition between the two. 

 

Figure 2.21 - Interface response function for microstructure forms, plane font Tp, 

cellular-dendritic TD with undercooling-velocity TU. Microstructures are denoted as plane 

front P, cellular C, dendrite D and banded B - Adapted from (Kurz and Trivedi 1994) 
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Figure 2.22 - Microstructure selection map in G-V coordinates. Columnar dendrites are 

indicated by Ds, banded structure B and planar structure P- adapted from (Kurz and 

Trivedi 1994). 

2.4.3 In SLM 

The application of a concentrated heat source makes additive manufacturing more like 

welding than casting or wrought manufacturing. Although there have been a number of 

investigations on the modelling and simulation of the heat transfer process in SLM 

(Matsumoto, Shiomi et al. 2002, Gusarov, Yadroitsev et al. 2007, Gusarov and Smurov 

2009, Gusarov, Yadroitsev et al. 2009, Roberts, Wang et al. 2009, Hussein, Hao et al. 

2013), many of these only model single layers or in 2 dimensions. There are few or no 

investigations on the full modelling of microstructure formation for multi-layered SLM 

processing.  

The majority of research concerning SLM microstructure is observational (Gu and 

Meiners 2010, Thijs, Verhaeghe et al. 2010, Kempen, Yasa et al. 2011, Amato 2012, Amato, 

Gaytan et al. 2012, Vilaro, Colin et al. 2012, Wang, Guan et al. 2012). A key observation to 
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come out of these reports is that the grain structure of SLM as processed material appears 

to be relatively invariable. In that, regardless of material, machine or process parameters, 

the basic structure is the same. That is, large high aspect ratio columnar grains, with low 

angle grain boundaries, which have a preferred orientation of growth parallel to the build 

direction – see Figure 2.23. The grains themselves are made up fine of columnar 

dendrites, with only primary arms visible. Also visible is evidence of the melt 

pools/tracks and the layering process. 

 

 

Figure 2.23 - Micrographs from several studies of SLM processing of different alloys and 

processing parameters. a) IN625 processed on an EOS M270 SLM system with a power of 

200 W and scan velocity of 1000 mm/s (Amato 2012), b) Nimonic 263 processed on a 

Trumpf SLM machine with laser power of 200W and scan velocity of 100 mm/s (Vilaro, 

Colin et al. 2012), c) Ti-6Al-4V processed on a customised laser machine with a power of 

42 W and scan velocity of 200 mm/s (Thijs, Verhaeghe et al. 2010), d) Ti-6Al-7Nb on a 

SLM Realiser II (MCP-HEK) machine with power of 100W and scan velocity of 150 mm/s 

(Chlebus, Kuźnicka et al. 2011).  
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In addition to SEM analysis of microstructures, some investigations have used Electron 

Back Scatter Diffraction (EBSD) to analyse the crystallographic texture of SLM processed 

material (Bauer, Dawson et al. 2013, Etter, Kunze et al. 2015, Divya, Muñoz-Moreno et al. 

2016). From these investigations it is noted that solidification fibre texture tends to a 

preferred orientation of <001> which is parallel to the direction of growth, see Figure 

2.24. Additionally, Bauer, Dawson et al. (2013) reports that reduced energy densities, 

specifically higher scan rates, resulted in a more chaotic microstructure, whereby the 

epitaxial growth was disrupted and the texture became less distinct – see Figure 2.25. 

 

Figure 2.24 – Inverse pole figure EBSD maps direct from a) Bauer, Dawson et al. (2013) 

and b) Divya, Muñoz-Moreno et al. (2016) 
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Figure 2.25 – Inverse pole figure EBSD maps for energy densities of a) 116 J/mm3 and 

b)66 J/mm3 – direct from Bauer, Dawson et al. (2013) 

Although it appears that the SLM process places relatively tight constraints on 

microstructure, further investigative analysis is required before conclusions can be made 

with regards the particular solidification conditions and microstructure formation in 

SLM. This will be carried out as part of the investigations of this work, details of which 

are found in Chapter 4. 

2.5 Superalloys – History and Development 

The term ‘Superalloy’ refers to a group of high temperature performing alloys which can 

operate at temperatures in excess of 540°C, and have base metals of nickel, iron-nickel 

and cobalt. This study focusses on nickel- and iron-nickel-base superalloys, as collectively 

they form by far the largest group and by contrast have had relatively little attention in 

the field of additive manufacturing research. 

In this section we will discuss how and why nickel-base alloys were developed and what 

properties and attributes they have which make them the material of choice for high 

temperature applications. 
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2.5.1 High temperature superalloys: the emergence of Nickel as the material of 

choice 

In the early decades of the 20th century, it became apparent that current metals were not 

adequate for the technologies of the day and stronger, more corrosive resistant, high 

temperature materials had to be developed. The stainless steels provided some respite, 

but their strength limitations were soon highlighted and they became merely a stepping 

stone to what be eventually be required.  

With the beginning of World War II came the dawn of the gas turbine, these machines 

required materials which could withstand high loads at temperatures well in excess of 

540°C, and the alloys and steels of the time simply could not perform. As the technology 

was developed, designers were pushing for components with greater and greater 

properties, not just in high temperature strength but also in corrosion resistance and 

operational lifetime. The first true superalloys were derived from alloys used in quite 

different applications to that of aerospace. The first cobalt superalloy was derived from 

Vitallium, an alloy used in dentistry, whilst nickel-chromium alloys (Inconel and 

Nimonic) were said to have been adapted from the material used in toaster wire, 

Nichrome (Donachie and Donachie 2002).  

2.5.2 Nickel as a solvent  

As mentioned above, superalloys are not exclusively based on nickel, but nickel- and iron-

nickel-base superalloys have become the material of choice for high temperature 

applications. This section summarises the properties and chemistry of nickel and shines 

a light on the reason why its alloys dominate the aerospace industry. 
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Atomic 
number 

Atomic 
weight 

Isotopes Melting 
point (°C) 

Density 
(kgm-3) 

Crystal 
structure 

28 58.71 58,60,61,62,64 1445 8907 FCC 

Table 2.2 – Key material properties of nickel 

 

Despite an obvious success as a base metal for high temperature superalloys, if one looks 

at the material properties of nickel it is not obviously clear as to why. It has a mid-range 

melting temperature, less than half that of Carbon or Tungsten, and quite a high density - 

twice that of titanium (4508 kgm-3). However, the key property of nickel is its crystal 

structure. If one views the transition metals, they are seen to be split into three structure 

groups. Body Centred Cubic (bcc) largely to the left, Hexagonal Close Packed (hcp) in the 

centre, and Face Centred Cubic (fcc) concentrated to the right. BCC metals tend to be 

brittle and there is also a ductile/brittle transition which results in toughness decreasing 

significantly with decreasing temperature. FCC metals on the other hand are both tough 

and ductile and are thus preferred for high temperature applications. Nickel’s fcc 

structure is stable from room temperature up to its melting point. As a consequence, 

nickel does not experience any phase changes as it is heated up to this point, minimising 

thermally induced expansion or contraction. This is as a result of the significantly strong 

cohesive energy provided by the outer d-shell electrons; the same effect responsible for 

nickel’s high density (Reed 2006). 

FCC metals also have low diffusion rates, giving them considerable microstructure 

stability at elevated temperatures. Low diffusion rates are also synonymous with low 

rates of thermally activated creep, making fcc metals ideal for high temperature 

applications (Reed 2006). 

However, as can be seen from Figure 2.26, the choice of viable candidates is quite limited. 

The Platinum group metals (PGMs) are very dense and very costly, as are gold and silver, 
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and mercury is liquid at room temperature. HCP are metals can be used, but out of them 

only cobalt provides a viable candidate (Os has a poisonous oxide, Tc is radioactive and 

Re and Ru are PGMs). Cobalt-base superalloys are in fact used; however they are more 

expensive than nickel-base and nickel-iron base, thus making them less commercially 

attractive (Reed 2006).  

 

Figure 2.26 - Crystal structures of the transition metals and their position on the periodic 

table - taken from (Reed 2006) 

Commercial viability is a large driver behind alloy development; alloy development is 

driven by component design, which is driven by commercial demand. Thus it is no 

surprise that alloys based on nickel, the fifth most abundant element on earth, have 

become the industry favourite. 

2.5.3 Conventional Manufacturing 

Conventional manufacturing refers to any established manufacturing process of which 

there are industry standards in place. In the case of superalloys it specifically relates to 

casting, wrought (forging/working) and powder metallurgy. Welding of superalloys will 

be covered in detail in a later section, as it is a joining process rather than manufacturing. 
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2.5.3.1 Investment casting 

Investment casting, like any other casting, involves the solidification of molten material 

by means of heat extraction through the walls of a shaped mould. Disposable (generally 

wax) models of the component are covered in ceramic slurry, this then hardens and the 

wax is disposed of (usually with steam) leaving a moulded cavity. Molten material is then 

poured into the ceramic mould and allowed to cool and solidify. The mould is then 

destroyed to allow the removal of the components – hence ‘investment’ casting (Donachie 

and Donachie 2002), see Figure 2.27. 

 

Figure 2.27 - Diagram detailing the stages of investment casting– direct from (Donachie 

and Donachie 2002) 
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Investment casting has been used heavily over the last 60 years in the manufacture of 

superalloy components, and specifically turbine blades or aircraft jet engines. In the 

1950s nickel-base turbine blades were solid and forged from castings. However as the 

operating temperatures increased, internal cooling channels were required and 

investment cast blades took over (Donachie and Donachie 2002) 

The grain structure which results from casting depends on strength and direction of heat 

extraction. Investment casting began with standard (uninfluenced) casting which 

resulted in a coarse poly crystalline structure similar to that described in Section 2.4.1. 

Directional solidification was then implemented to create a columnar grain structure, and 

then further to that single crystal structures. The coarse polycrystalline structure is 

stronger than the finer structure of forged components at elevated temperatures, and is 

also more resistant to creep due to reduced grain boundaries (Reed 2006). The columnar 

grain structure resulted in a substantial improvement in properties and allowed for the 

use of nickel superalloys which had previously abandoned due to low ductility. The first 

alloy to be commercially fabricated with DS was MAR-M-200, known as PWA 664 for DS, 

which as cast had a high tensile strength but average ductility. Processing with DS casting 

increased its ductility whilst maintaining the high tensile strength. Unfortunately, PWA 

664 suffered from columnar grain separation at traverse grain boundaries. Addition of 

hafnium solved the issue, and the new alloy was named PWA 1422. 

Single crystals are the ultimate in creep resistance due to the absence of grain boundaries, 

and allow for more freedom with composition variations leading to more exotic, higher 

performance alloys. Again, MAR-M-200 was the first single crystal alloy, but arguably the 

first commercial application was with PWA 1480 (Donachie and Donachie 2002). 
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As the requirement for greater cooling increased, blades with more complex internal 

designs were needed. The disposable models were becoming increasingly difficult to 

fabricate, bringing about one of the first applications of AM. Techniques such as 

stereolithography and selective laser sintering are used to generate 3D patterns in either 

wax or polymer, leading to the early adopted name ‘Rapid Prototyping’. Interestingly in 

Donachie and Donachie (2002) direct fabrication of the turbine blades themselves by AM 

is already being considered. 

2.5.3.2 Wrought and forging 

Wrought alloys begin as cast ingots, but are then reheated and/or deformed numerous 

times until a desired property or microstructure is reached. The deforming process 

breaks up the coarse grains from casting into finer grain structure. Wrought alloys tend 

to be more homogenous than cast, as the segregation present is cast microstructures is 

dissolved and dispersed by the reheating and reforming. All of this means wrought alloys 

are typically more ductile than cast, lending themselves to the forming of large 

components such as turbine disks (Donachie and Donachie 2002). Any process which is 

forging or forming is considered wrought, for example: die forging, extrusion and rolling, 

see Figure 2.28. 

 

Figure 2.28 - Three common forms of wrought working – adapted from (Donachie and 

Donachie 2002) 
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The advantage of forging is the ability to impart designed material properties through the 

introduction of work energy by management and control of temperature and 

deformation. As such a range of properties can be obtained from a single alloy 

composition. However certain alloys are more forgeable than others. An alloy is 

principally forgeable if it can be deformed to a specific shape without creating surface 

ruptures or internal defects. The rating increases in multiples of 1 (easily forgeable) with 

increasing difficulty of forming i.e. more blows and more operations. 

The design requirements for stronger and higher temperature performance nickel 

superalloys lead to a range of alloys which were increasingly less forgeable. High 

temperature steels such as A-286 have a forgeability rating of 1. However, Hastelloy X, 

which is not even used in high loading applications, has a rating of 3. Astroloy, designed 

for application in turbine disks, has a rating of 5 (Donachie and Donachie 2002). 

A high rating does not mean the alloy is not forgeable; more that the energy and work 

required to form and shape it is significantly increased. However, for the ultra-high 

strength alloys such as Astroloy and Rene 95, forging was too impractical and costly.  

2.5.3.3 Powder Metallurgy processing  

Powder Metallurgy (P/M) processing is used exclusively for nickel superalloy production, 

and primarily for the high forgeability rated alloys designed for gas and jet turbine disks.  

Principally, P/M uses high pressure and heat to consolidate powder into a net shape 

‘preform’, which then requires machining and finishing to create the end product – much 

like forging. Its introduction stemmed from difficulties and cost of forging Astrology as 

well as its tendency to suffer from scattering – chemical segregation. The solution was to 

employ the rapid solidification conditions of atomisation. Prealloyed feedstock (cast 
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ingot) was atomised into powder, with fine grain structure and minimal segregation, 

which was then consolidated – but not remelted – to fully density by P/M processes. 

(Donachie and Donachie 2002). The primary P/M technique is Hot Isostatic Pressing, or 

HIP(ing). Powder is poured into stainless steel containers which are either simple shapes 

for billets or, in the case of a preform, more complex moulds. The container is then placed 

with an autoclave and heated and pressurised isostatically using an inert gas, usually 

argon. Typical temperature and pressure values for nickel superalloys are 1100-1200 °C 

with 100 MPa (Donachie and Donachie 2002). 

P/M requires fewer steps and reduced material input weight than forging (see Figure 

2.29), meaning it can achieve the same level of microstructural refinement at a reduced 

machine cost. However, increased cost of prealloyed powder feed stock combined with 

high running costs of the machines mean P/M is only used when the alloy has a high 

forgeability rating or there is a property advantage (Donachie and Donachie 2002). 
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Figure 2.29 - Process steps for forging vs HIP and Direct Hip– direct from (Donachie and 

Donachie 2002) 

 

The powder feedstock used for P/M is the same as that used for metal AM (if perhaps a 

different size range), however in the majority of AM processes, the powder is fully melted 

leading to new grain structures. The existence of P/M processing meant that there was 

no gap in supply of prealloyed powder feedstock for the new AM processes, and much of 

the relevant knowledge and understanding of powders already exists. 

2.6 Superalloys - Metallurgy 

2.6.1 Phases and microstructure 

Phases of an alloy form as a result of differing melting points of solutes within solution. 

As the solution cools, the various phases will separate by means of differing solidification 

temperatures. The first phase to from, in which the majority of the solvent element will 
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reside, is known as the primary γ phase. All other phases are collectively known as 

secondary phases and include the γ’ phase and carbides. This section details the all of the 

observed phases (beneficial and detrimental) in superalloys, including their 

microstructural contributions and the chemical forms which they take. The following list 

adapted from Donachie and Donachie (2002) and Gessinger (1984). 

 

Phase Crystal 
structure 

Chemical form Comments 
 

γ fcc structure Solid Solution This is the primary phase, it exhibits an fcc 
structure and nearly always forms a 
continuous matrix in which other 
secondary phases often reside 
 

γ’ fcc Ni3Al/Ni3(Alx,Tiy), 
with x and y 
varying between 
0.5-1 and 0-0.5 
respectively, 
depending on 
relative wt% of Al 
and Ti 

This is the principal strengthening phase in 
the majority of nickel- and nickel-iron base 
superalloys. It exhibits an fcc structure, 
which varies in lattice size by only 0 – 0.5% 
from that of the γ matrix, and thus is often 
coherent with it. It forms as precipitates 
within the γ matrix, whose shape varies 
from spherical to cuboidal and whose size 
varies with temperature and cooling rates. 
In most modern superalloys, the 
precipitates are cuboidal.  
 

γ’’ bct (ordered 
D022) 

Ni3Nb The second most important strengthening 
phase, occurs in nickel and nickel-iron base 
superalloys which have relatively high 
Niobium (Nb) contents. It precipitates 
within the matrix as coherent discs aligned 
in the {100] plane that have an average 
diameter of 600Å and thickness 50-90 Å. It 
is the principle strengthener in Inconel 718. 
 

Carbides come in 4 forms, M represents metal element, C is carbon. Principle effect is 
improvement of creep-rupture strength by reduction of grain boundary sliding, full details of 
effects are described in subsequent section: 
 
 
MC Cubic TiC, NbC and HfC, 

HfC  most stable 
Cubic structure – ‘M’ elements can be Ti, Nb, 
Hf, Ta, Thorium and Zr. Active in and at 
grain boundaries of the matrix and appears 
as globular, irregularly shaped particles 
 

M23C6 fcc Cr23C6 
(Fe,W,Mo)23C6 

Form from the breakdown of MC’s at lower 
temperatures. It can precipitate as films, 
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The topologically close packed phases or tcp phases are regarded as highly undesirable. 

They include the below phases and are detrimental to rupture strength and ductility. 

They are more likely to form with greater segregation. 

 

η hcp (D024) Ni3Ti  This is an undesirable hcp phase which can 
be found in all superalloys with high Ti:Al 
ratios after extended exposure. 
 

δ Orthorhombic Ni3Nb Observed in overaged Inconel 718. Forms 
between 815-980°C by cellular reaction. 
 

μ Rhombohedral Co2W6 
(Fe,Co)7(Mo,W)6 

Usually observed in alloys with higher 
concentrations of Mo or W. Form as course 
irregular Widmanstätten platelets at high 
temperatures. 
 

globules, platelets, lamellae and cells and 
mostly forms at grain boundaries. As films 
it is brittle having an adverse effect on 
ductility, however in globules it provides 
grain boundary strengthening. 
 

M6C fcc Fe3Mo3C 
Fe3W3C- Fe4W2C 
Fe3Nb3C 
Nb3Co3C 
Ta3Co3C 

Randomly distributed carbides, usually 
pinkish in colour. Similar effects to 
mechanical properties as M23C6, however 
are more stable at higher temperatures. M 
elements are usually Mo or W. 
 

M7C3 Hexagonal Cr7C3 Usually observed as blocky intergranular 
precipitate. In more complex alloys is 
unstable and transforms into M23C6. 

 

M3B2 Tetragonal Ta3B2 
V3B2 
Nb3B2 

(Mo,Ti,Cr,Ni,Fe)3B2 

Mo2FeB2 

Borides: Observe in Ni and Fe-Ni-base 
superalloys with a %wt of >0.03 Boron. Act 
in similar ways to carbides, also reside in 
grain boundaries. No preference of ‘M’ 
elements. 
 

MN Cubic TiN 
(Ti,Nb,Zr)N 
(Ti,Nb,Zr)(C,N) 
ZrN 
NbN 

Nitrides: Observed in alloys containing Ti, 
Nb Zr. Not insoluble in temperatures below 
the melting point. Have square rectangular 
shape. 
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Laves Hexagonal Fe2Nb 
Fe2Ti 
Fe2Mo 
Co2Ta 
Co2Ti 

More common in the iron-base and cobalt 
base superalloys, usually appearing as 
elongated globules or platelets. Precipitate 
after long term high temperature exposure. 
 

σ Tetragonal FeCr 
FeCrMo 
CrFeMoNi 
CrCo 
CrNiMo 

Most common in iron-nickel- and cobalt-
base superalloys. Similar in morphology to 
laves, but form after extended periods of 
exposure between 540°C and 980°C 
 

 
 

   

2.6.2 Alloying elements and their effects (nickel and nickel-iron) 

This short section details the various alloying elements specific to nickel-base 

superalloys. This gives a more general overview as to the choice of alloying elements. The 

below table has been created with information from Gessinger (1984) and Donachie and 

Donachie (2002).  

 

Group Elements Effect 

Matrix (γ) class Co, Fe, Cr, Mo, W, V, Ti, Al, 
C* 

Solid solution strengthening. 
*All are substitutional except 
for carbon, which is 
interstitial 
 

γ’/γ’’ Al, Ti, Nb, Ta Precipitation strengthening 
 

Carbide forming Cr, Mo, W, V, Nb, Ta, Ti, Hf Reduction of grain boundary 
sliding. Increasing creep-
rupture strength 
 

Boride forming Mo, Ta, Nb, Ni, Fe, V Similar to carbides 
 

Nitride forming Ti, Zr, Nb, C ………………………… 
 

Grain boundary active Zr, B Enhance creep strength and 
rupture ductility 
 

Additional  Co Raises solvus temperature of 
γ’ 
 

 Al, Cr, Y, La, Ce Oxidation resistance 
 

 La, Th Improve hot corrosion 
resistance 
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 Cr, Co, Si Sulfidation resistance 
 

 B, Ta Improves creep properties** 
 

 B, C, Zr, Hf Grain-boundary refiners** 
 

 Re Retards γ’ coursening 

 
 
 
** By means of the formation of borides and carbides 
 

2.6.3 Strengthening 

If one wants to control the mechanical properties of a superalloy, then one needs to be 

able to affect the microstructure. This is achieved by control of the processing conditions 

or the chemical composition (Reed 2006). A good example of strengthening by processing 

is wrought; where the microstructure of a cast alloy is physically altered by forming. 

However, in the majority of cases, an alloy’s strength is controlled by both process 

conditions and chemical composition. 

As has already been discussed in Section 2.6.2, an alloy’s chemical strength comes from 

the addition of alloying elements and the formation of phases. Depending on which phase 

is active, the strengthening effects fall into three main categories: Solid Solution 

Strengthening (SSS), precipitation strengthening and grain boundary strengthening. 

Ultimately, the strength of metals is dependent on the propagation of dislocations 

through the crystal structure. Dislocations occur in all real life materials, and the type and 

magnitude of these dislocations strongly affect a material’s properties. Dislocations come 

in 3 forms: edge, screw and mixed, where mixed is a part way between the other two. In 

real life materials it is generally mixed (Tilley 2013). 
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Figure 2.30 - Schematic of edge and screw dislocations– adapted from (Tilley 2013) 

 

Dislocations form stress fields around them, which are specific to the type of dislocation. 

When stress is applied to the material, the dislocation propagates causing local 

deformation. In a brittle material, the energy required to propagate a crack is less than 

that required to propagate a dislocation, in a ductile material the opposite is the case 

(Newey and Weaver 2013). 

2.6.3.1 Solid-solution strengthening 

When solvent atoms are placed within a solute lattice, local stress fields are formed as a 

result of both lattice distortions (differing atomic size and lattice parameters) and 

differing atomic moduli. A difference in lattice parameter results in a high stress field 

around the solute atom, which will interact with those of the dislocation and inhibit its 

propagation (Tilley 2013). A difference in modulus changes the local energy around the 

dislocation, increasing the magnitude of the energy well and hence increasing the force 

required to move past it. Both of these effects result in an increase of the yield stress of 

the lattice (lattice stress), and therefore an increase the yield strength of a material.   
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Depending on the relative size of the solute atoms, they will cause different types of lattice 

distortion. If the solute atoms size differs by less than 15% of that of the solvent atoms, 

then it can replace a solvent atom in the lattice forming a substitutional solid solution 

(Tilley 2013). If this results in increased lattice stress then it is referred to as 

Substitutional Solid Solution Strengthening (SSSS)– see Figure 2.31. Substitutional solute 

atoms generate spherical stress fields, which have no shear stress component. This 

means they cannot interact with screw dislocations, as they possess shear stress fields. 

 

Figure 2.31 - a) representation of substitutional solute atom  (green) in lattice, b) 

propagation of edge dislocation through lattice being prevented by solute atom. Stress 

fields (purple rings) of substitutional atom and dislocation repel each other, inhibiting 

further propagation– adapted from (Gedeon 2010) 

If the solute atom is similar in size or smaller than the solvent atoms, it can occupy the 

interstices of the lattice. This is known as Interstitial Solid Solution Strengthening (ISSS). 

Interstitial atoms create tetragonal distortion, which can interact with sheer stress fields 

and hence edge, screw and mixed dislocations – see Figure 2.32. As a consequence small 

interstitial solute atoms such as carbon, tend to be the more effective solid solution 

strengtheners, per unit space (Donachie and Donachie 2002). One of the most common 

examples of ISSS is in carbon solute in iron, otherwise known as steel. In this system, the 
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carbon atoms are distributed randomly throughout the fcc structure of the iron, forming 

austenite (Tilley 2013).  

 

Figure 2.32 - a) Representation of interstitial solute atom  (red) in lattice, b) as with 

Figure 2.31- adapted from (Gedeon 2010)  

 

If we now consider the stress required to move the dislocation, τ: 

∆𝜏 = 𝐺𝑏𝜖
3
2√𝑐 

Equation 2.16 

Where G is the shear modulus, b is the magnitude of the Burger’s vector, ϵ is the lattice 

strain caused by the solute and c is the concentration of the solute atoms. It can be seen 

from Equation 2.16 that an increase in the concentration of solute atoms, will lead to an 

increase in τ and thus an increase in the material’s yield strength. However, this is not a 

limitless solution as each solvent has a solubility limit for any given solute. It is also only 

applicable for a single solute in solution. In multiple element alloys, compositions must 

be carefully balanced so as to maintain a full solution and the prediction of resulting 

lattice stress is far more complex. 
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2.6.3.2 Precipitation strengthening 

In Section 2.6.1, the various elements involved in precipitation strengthening were 

highlighted. The term encompasses the strengthening effects of any precipitate 

(secondary) phase, however it is usually only in reference to the γ’ and γ’’ phases. As in 

solid solution strengthening, it is the impediment of dislocations by the precipitates 

which acts to strengthen the alloy. The effectiveness of the precipitation strengthening 

depends on a number of factors: precipitate-matrix crystal coherence, crystal order and 

precipitate size. 

The most effective strengthening is typically achieved when the precipitates crystal 

structure is coherent with that of the matrix, however semi-coherent and incoherent 

matches can still provide strengthening. In the optimal situation, the two would have the 

same crystal structure and a similar crystal lattice size. The greater the coherence, the 

more precipitate one can pack into the matrix lattice. Thereby increasing the density of 

blocking ‘elements’ and increasing dislocation impediment. In real world nickel-base 

superalloys coherence achieved is approximately 99- 100% (Donachie and Donachie 

2002). 

Precipitates such as γ’ and γ’’ have ordered crystal structures i.e. atomic position 

preference. Ordered states have greater energies than disordered, thus the introduction 

of an ordered precipitate into a comparatively disordered matrix creates an energy ‘wall’. 

The higher energies increase the force required for dislocations to propagate (Reed 

2006). 

The size of precipitates probably has the greatest effect on the mechanical properties of 

the alloy. Optimal size is dependant of the desired property; if the precipitates are too 

small they will not block any dislocations effectively, too large and the dislocation will 
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bow and strength will be lowered (Donachie and Donachie 2002). Creep-rupture strength 

benefits from smaller precipitates, whereas larger precipitates promote yield strength. In 

reality, this results in compromises or the sacrifice of one property for the gain in another. 

2.6.3.3 Carbides and grain boundary strengthening 

Principally, carbides are used to strengthen grain boundaries, increase creep-rupture 

strength, prevent grain-boundary sliding and permit stress relaxation. They can also act 

as substitutional solid solution strengtheners if they form fine precipitates within the 

matrix structure. A tertiary effect is that the carbides often tie up potential detrimental 

elements, which may otherwise cause phase instabilities during service. The several 

types of carbide usually co-exist, but they do not all form at the same time. MC are 

generally (depending on the M element) high temperature forming, and thus tend to form 

in the molten state. M6C is intermediate (816-982°C), and M23C6 and M7C3 are low 

temperature (790-816°C) (Donachie and Donachie 2002); these are generally formed by 

breakdown reactions of the MC, as seen in the below equations. 

 

𝑀𝐶 +  𝛾 → 𝑀23𝐶6 + 𝛾′ 

Equation 2.17 

 and 

𝑀𝐶 +  𝛾 → 𝑀6𝐶 + 𝛾′ 

Equation 2.18 

MC carbides are fcc in structure and are distributed heterogeneously through the alloy. 

They can be found in both intergranular and transgranular locations, often in the 

interdendritic regions. As well as forming in the melt they can also form in the 
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precipitation from supersaturated solid solutions at high temperatures (>1038°C). In 

order of decreasing stability, the preferred natural order of MC carbides is HfC, TaC, NbC 

and TiC. These are not mutually exclusive compounds and the metallic elements can 

readily substitute each other e.g. (Ti,Nb)C and even certain less reactive elements such as 

Mo can be substituted e.g. (Ti,Mo)C (Donachie and Donachie 2002). 

M23C6 is the primary grain boundary carbide and if formed correctly, occurs as irregular, 

blocky and discontinuous particles, as in Figure 2.33. In some cases, the MC particles can 

be coated in a layer of γ’ precipitate; this addition increases the ductility of the grain-

boundary layer (Gessinger 1984). The M6C carbide can also precipitate as a blocky 

particle in the grain boundaries, as well as sometimes forming in a Widmanstätten 

intragranular morphology. Unlike MC carbides, M6C have a complex cubic structure and 

can only form if the molybdenum and/or tungsten content is more than 6 at.% (Donachie 

and Donachie 2002).  

 

Figure 2.33 – M23C6 carbides precipitated along the grain boundary of an experimental 

superalloy during creep testing at 950°C and 290 MPa – direct from (Reed 2006) 

Similar to carbon, boron has been found to improve the elevated temperature creep 

properties of superalloys. The small size of the atom allows it to diffuse relatively easily 

through the matrix and as with carbon it tends to concentrate and precipitate at the grain 

boundaries of the γ matrix (Reed 2006).  
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2.7 Cracking in welding of Ni-base alloys and superalloys 

In this section, established mechanisms for welding induced cracking in nickel alloys and 

superalloys are discussed and considered. In the absence of research on cracking 

mechanisms for AM or SLM, welding is the closest process with regards to solidification 

conditions. It must be stressed that the applicability of these mechanisms to the SLM 

process is not to be assumed at this stage, but that they are kept in mind for the chapters 

and sections which follow. 

2.7.1 Solidification cracking 

The use of solidification cracking as a general term must be done so with care, as it refers 

to a specific cracking mechanism. Solidification cracking occurs in the final phase of 

solidification, where a thin film of liquid phase remains at the grain boundary, and 

sometimes interdendritic regions, at the point in time when the solid phase is beginning 

to shrink. The liquid film offers no resistance to the strains generated by the shrinking 

grains and a cracks opens up along the grain boundary (Lippold, Kiser et al. 2011). The 

‘terminal solidification films’ are eutectic type compositions, the formation of which is 

permitted by solute diffusion. The fraction of liquid film which forms can vary with alloy 

composition and is dependent on the solidification temperature range of the alloy, as well 

as solidification conditions (Lippold, Kiser et al. 2011). Solute diffusion is therefore an 

important factor in solidification cracking, as it affects both the solidification temperature 

range at the solid-liquid interface and the formation of the eutectic type phase. The 

existence of a solidification temperature range results in formation of a solid+liquid zone, 

called the mushy zone. It is within the mushy zone that the terminal liquid film forms and 

a solidification crack propagates. The longer the mushy zone exists, the greater the 

window for solidification cracking is. Higher solidification rates should therefore inhibit 
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the solidification cracking mechanism, but this is highly dependent on the diffusion rates 

of the alloy elements.  

Figure 2.34 shows solidification cracking in Alloy 625 and Alloy 230W. In Alloy 625 it was 

observed that terminal eutectic liquid phase fraction was high enough to heal the crack 

that had formed (Lippold, Kiser et al. 2011). However, in Alloy 230W, the film is so thin 

that it is not observable and only the crack can be seen. The morphology of the cracks is 

relatively unique as it follows the path of grain boundaries only, and because there has 

not been any rupturing or fracturing of solid phase material, the crack edges are relatively 

smooth. 

 

Figure 2.34 - Solidification cracking in a) Alloy 625 and b) Alloy 230W. Light area 

highlighted by arrows in a) is Nb rich eutectic which has healed the crack. In Alloy 230W 

the liquid film has a lower volume fraction and the cracks remain– adapted from 

(Böllinghaus, Herold et al. 2008).  
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The susceptibility to solidification cracking has been quantified for some alloys by means 

of determining the Solidification Cracking Temperature Range (SCTR), which is smaller 

or equal to the solidification temperature range of the alloy. Alloys which are particularly 

susceptible to solidification cracking are Alloy 625 with an SCTR = 210 K, Hastelloy X with 

SCTR = 190 K and Hastelloy W with SCTR = 145 K (Lippold, Kiser et al. 2011). As a general 

indication, the larger the solidification temperature range of a nickel superalloy the more 

susceptible it is to solidification cracking.  

2.7.2 Heat affected zone (HAZ) Liquation cracking 

HAZ liquation cracking occurs when solid material adjacent to fusion zone is exposed to 

a range of peak temperatures resulting in partial melting of the microstructure, or 

Partially Melted Zone (PMZ). Similar to solidification cracking, the partially melted 

material cannot withstand the thermally induced strains and forms a crack. There are two 

mechanisms established as causing HAZ liquation cracking, solute segregation and melt 

penetration (Lippold, Kiser et al. 2011).  

Segregation of solutes or impurities to the grain boundary depresses the melting 

temperature in the local region. In the PMZ, the material is now more likely to form a 

liquid film along the grain boundary as the low melting composition is already present. 

This is different to solidification cracking as the segregation has already occurred and it 

is subsequent heating that is driving the mechanism.  

In penetration, local melting in the microstructure is intersected by a mobile grain 

boundary. The liquid then penetrates, and moves along, the grain boundary and a crack 

forms as above (Lippold, Kiser et al. 2011).  
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2.7.3 Ductility dip cracking and ductility minimum 

2.7.3.1 Elevated temperature ductility minimum 

The elevated temperature ductility minimum is a phenomenon that occurs when nickel 

superalloys are plastically deformed at elevated temperatures. The critical temperature 

at which this occurs, is approximately 760°C or 1400 °F – an often chosen temperature 

for elevated temperature tensile testing (Arkoosh and Fiore 1972). 

The precise mechanism is detailed in Arkoosh and Fiore (Arkoosh and Fiore 1972) but 

simply: the plastic deformation initiates the rapid formation of MC carbides, the higher 

the temperature, the more carbides form. At first the carbides act against dislocation slip 

and deformation, affectively reducing the ductility of the material. This occurs to up a 

point – the ductility minimum – beyond which the depletion of solid solution 

strengthening elements in the matrix becomes more significant and normal ductility 

resumes.  

2.7.3.2 Ductility Dip Cracking (DDC) 

DDC may be perceived as a more general term as it is often used incorrectly or 

inconsistently in literature. However specifically it refers to the cracking of an alloy as 

result of a sudden dip in ductility over a temperature range (Lippold, Kiser et al. 2011). 

This can occur as a result of the mechanism detailed in Section 2.7.3.1, but also due to 

segregation of minor elements and formation of secondary phases such as carbides. In 

nickel base weld metals, cracks are always observed along a migrated grain boundary 

(Lippold, Kiser et al. 2011). Migrated Grain Boundaries (MGBs) form from the primary 

solidification grain boundaries and are a separation of the crystallographic component 

from the compositional component. MGBs carry the same high angle misorientation as 

the parent solidification grain boundary; they form as result of straightening of the 
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crystallographic boundary to a lower energy state and pull away from the solidification 

grain boundary. The formation of an MGB is more likely in multiple pass welds, due to 

reheating.  

There have been a number of theories over the years as to the mechanisms behind DDC, 

most recent of which was proposed by Young, Capobianco et al. (2008) who investigated 

the effect of chromium content in DDC of welded Ni-Cr alloys.  

Full microstructural, chemical, tensile analysis and finite element modelling all indicated 

that the DDC was caused by a combination of macro, thermal and solidification stresses 

induced by the welding, and local grain boundary stresses generated during precipitation 

of partially coherent (Cr,Fe)23C6 carbides at the grain boundaries, see Figure 2.35. 

 

Figure 2.35 - Pictorial description of PIC cracking. A) partially coherent sub-micron sized 

(Cr,Fe)23C6 form on grain boundary in reheated weld metal creating significant mismatch. 

B) precipitation creates stresses between carbides, promoting crack nucleation. C) 

macroscopic thermal and solidification stresses link the intercarbide cracks resulting in 

DDC along the grain boundary (Young, Capobianco et al. 2008). 
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This mechanism of Precipitation-Induced Cracking (PIC) can be mitigated by alloying to 

minimise the formation of the problem carbides (Cr and Fe), through Nb or Ti additions 

which form NbC and TiC instead. These simple carbides promote the formation of 

tortuous grain boundaries which more resistant to DDC (Lippold, Kiser et al. 2011). It is 

noted that chromium content is the primary factor in DDC of welded nickel alloys, and as 

such alloys with low chromium content are not as susceptible to DDC.  

 

2.7.4 Elevated temperature solid state cracking 

Elevated Temperature Solid State (ETSS) cracking is crucially different to solidification 

or liquation cracking because it occurs once the material is in solid phase. In the case of 

ETSS, the material has fractured (or ruptured if ductile) in response to high thermal 

stresses induced by the process. It is different to DDC in mechanism in that it is not caused 

by a sudden drop in ductility or exhaustion of ductility (Lippold, Kiser et al. 2011). Quite 

simply it occurs when the local stress exceeds the UTS of the material in its current state.  

ETSS cracks are visually very similar to DDC cracks and identifiable by the exposed crystal 

structure within their interiors and a distinctly jagged profile. They are most likely to 

form along the solidification grain boundaries as they are typically the path of least 

resistance. High magnification electron microscopy and EDS can be used to check for the 

presence of carbides or segregated solutes, which are indicative of DDC. If there is no 

presence of secondary phases or concentrated solutes it is then assumed that the fracture 

has occurred purely as a stress relaxation mechanism.  
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2.7.5 Elements associated with cracking mechanisms 

The majority of the cracking mechanisms detailed in the previous sections are influenced 

by the concentration of solute elements (including impurities), however which elements 

and in what concentrations varies depending on the alloy. To date, there is insufficient 

data in the public domain to draw any conclusions regarding the effects of certain solute 

elements on the ‘processability’ of an alloy for SLM. In section 2.7.3, carbon and other 

solute elements were implicated as having influence on DDC of nickel alloys and 

superalloys. However, many of these elements serve a specific purpose once the alloy is 

in operational state and therefore it is important to identify which elements, and at what 

concentrations, are detrimental to weldability.  

2.7.5.1 Carbon 

From Section 2.6, it is known that the primary purpose for carbon in superalloys is to 

form carbides. Carbides, when present in optimum size and numbers, are central for grain 

boundary strengthening and creep resistance. It is also used as an interstitial solid 

solution strengthener. 

Due to their small size, carbon atoms sit interstitially within the lattice. This allows them 

to move relatively freely through the lattice as they jump from interstice to interstice. 

This high mobility allows carbon to segregate to regions of high energy (or stress) such 

as grain boundaries, even in rapid solidification conditions. The segregation increases the 

likelihood of carbide formation, which generates localised stress fields and can lead to 

DDC (Section 2.7.3). This is a particularly prevalent problem in welding of nickel base 

alloys, resulting in the creation of low carbon (LC) versions of cast or wrought alloys. 
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Work by Collins and Lippold (Collins and Lippold 2003) reviewed the reported effects of 

carbon (and other minor element) content on weldability and micro-cracking of nickel 

based filler materials. 

In concentrations of <0.1 wt%, it is shown to have only minor effect on micro-cracking. 

However, for concentrations >0.1 wt% it can have an effect on solidification path which 

can influence micro-cracking behaviour. The reason for this is that the increased volume 

fraction of carbides at the grain boundary ensures a liquid film is retained to lower 

temperatures. This allows for increased risk of solidification cracking, but importantly 

does affect DDC. 

Although the formation of carbides has been linked to DDC (Young, Capobianco et al. 

2008), carbide formation requires both carbon and the M element in sufficient 

concentrations (Donachie and Donachie 2002) and in Young, Capobianco et al. it was  

excessive M element concentration that was highlighted as being the problem. 

In consideration of ETSS cracking, an increase in yield strength is often associated with a 

reduction in ductility or increase in stiffness. It must therefore be considered that carbon 

content could have an effect on the ETSS by reducing the ductility of the superalloy. As a 

case study, a comparison between the chemical composition and tensile performance of 

IN713C and IN713LC, high and low carbon versions of the same alloy base, is detailed in 

Table 2.3 and Table 2.4 respectively. 

Alloy/Element Ni Cr C Mo Al B Ti Ta Zr Other 

IN713C 74 12.5 0.12 4.2 6 0.012 0.8 1.75 0.1 0.9 Nb 

IN713LC 75 12 0.05 4.5 6 0.01 0.6 4 0.1 - 

Table 2.3 - Nominal compositions of IN713C and IN713LC, values in wt% (Donachie and 

Donachie 2002). 
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 UTS (MPa) Yield strength (MPa) Elongation (%) 

Alloy/Temp 21°C 538°C 21°C 538°C 21°C 538°C 

IN713C 850 860 740 705 8 10 

IN713LC 895 895 750 760 15 11 

Table 2.4 - Tensile data for room and elevated temperature of IN713C and IN713LC 

(Donachie and Donachie 2002). 

It is observed that, with the exception of a few elements, the compositions of the two 

alloys are near identical. The carbon content of IN713LC is significantly reduced, but 

there is also a large increase in the concentration of tantalum, which forms secondary 

phases and is used for precipitation strengthening. This could be the reason that IN713LC 

outperforms IN713C for tensile strength across the temperature range, whilst still having 

an increased (if only marginally) ductility. The tensile properties certainly place doubt on 

the proposal of carbon reducing ductility as a compromise for increased tensile strength, 

however the addition of tantalum and the fact that the tensile tests have been carried out 

on solution treated and aged samples muddies the comparison. Interestingly the nominal 

carbon content of IN713C is above the 0.1 wt% limit for excessive carbide formation 

leading to increased chance of solidification cracking, as highlighted by Collins and 

Lippold. This, combined with tensile properties, all but confirms that the reduction of 

carbon in nickel alloys to increase weldability is to reduce the chance of solidification 

cracking and not to increase the ductility and prevent ETSS cracking. 

2.7.5.2 Other minor elements 

Minor elements are elements within an alloy which are of ~2 %wt or less. They can be 

purposeful additions, such as carbon in steel (typically <1 %wt) or impurities, such as 

sulphur, which are inherent with the addition of certain alloying elements. 
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From Collins and Lippold (Collins and Lippold 2003), varying concentrations of C, Si and 

S in Inconel 718 between 0.007-0.05%, 0.05-0.25 and 0.0006-0.0027 wt% respectively, 

had no effect on micro-cracking under welding. However, combinations of S, P and B can 

yield better or poorer weldability depending on the ratios, making it difficult to pin point 

any one particular element. The general conclusions were as follows: 

 Sulphur should be kept as low as possible as it is a tramp element and imparts no 

particular benefit to the alloy or its weldability. Sulphide formers such as Mg, Ti, 

Zr and Mn can be used to combine with sulphur and reduce its effects. 

 Phosphorus – high P values can be used to improve creep properties, but generally 

it is to be considered in a similar vein as sulphur. 

 Boron should be kept as low as possible, but not so low as creep properties are 

affected 

 Synergistic or competitive relationships between B, C and P relative to weldability 

have been observed, but cannot be quantified.  

Savage and Krantz  investigated ‘Hot cracking in Hastelloy X’ (Savage and Krantz 1966) 

and ‘Microsegregation in autogenous Hastelloy X welds’ (Savage and Krantz 1971). 

Although not specifically named, the cracking mechanism implied is DDC rather than ‘hot 

cracking’, which is now associated with solidification or liquation cracking (Lippold, Kiser 

et al. 2011). In the 1966 study, the relationship between micro cracking and solute 

segregation was investigated, with particular focus on S, Si and Mn. Optical microscopy 

showed that micro-cracking had occurred exclusively in regions exhibiting segregation, 

and it was also confirmed that the microsegregation in the fusion zone had occurred as a 

result of the solidification process.  
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Savage and Krantz (1971) sought to identify all of the solute elements which had 

segregated, and establish which species (secondary phases) they had formed as a result. 

Solute segregation at the grain and sub-grain boundaries was confirmed by specimen-

current imaging. These regions were found to have high concentrations of Mo, S and Si, 

moderate concentrations of Cr and Mn and were depleted in Ni, Fe and Co. Powder 

analysis revealed the presence of six sulphides, three carbides, two nitrides and 2 

‘miscellaneous’ species. It was deemed, by argument of known physical properties and 

metallurgical behaviour, that only the sulphides (Co2S4, Cr5S6, Cr7S8, Fex-1Sx, MnS and 

MoS2) and carbides (M6C, M23C6, (Cr,Fe)7C3) were detrimental to crack behaviour. The 

carbides were observed to assist liquation cracking by providing ‘easy’ nucleation sites, 

whilst the sulphides are believed to reduce crack resistance and are responsible for the 

poor cracking behaviour in a ‘high sulphur’ version of Hastelloy X. 

Interestingly, although silicon is revealed to be very mobile, it is not deemed to have a 

direct influence on the cracking resistance of the alloy – contrary to more recent 

publications (Tomus, Jarvis et al. 2013, Yu, Rombouts et al. 2013).  

2.7.5.3 Possible effects of hydrogen inclusion 

Hydrogen has been shown to have a pronounced negative effect on the DDC of Ni-base 

welding filler metals (Collins and Lippold 2003). Cracking was found to be quite 

significant at temperatures between 850 – 1000°C with 1% applied strain. Rather than 

creating a new mechanism, it increased the number of susceptible grain boundaries. It 

must be stressed that hydrogen was added to melt using 95Ar-5H2 shielding gas, rather 

than being present in the metal before welding; also that samples were heated and 

loaded, and cracks which formed as consequence of welding alone were not considered. 



 
 

98 
 

Ordinarily hydrogen cracking is not a concern in fully austenitic (fcc) structures because 

hydrogen has a high solubility and low diffusivity (in austenitic structures). However, 

atomic hydrogen is an extremely mobile interstitial addition and may increase DDC 

cracking if it occurs in sufficient concentration.  Through optical microscopy, it was found 

that cracking was predominant at triple point intersections, supporting the hypothesis 

that hydrogen diffuses to regions of the crystal lattice where tensile stress concentrations 

are present, decreasing grain boundary cohesion and ultimately increasing DDC 

susceptibility. 

2.8 SLM processing: Nickel alloys, thermal stress and crack formation 

2.8.1 Nickel superalloys: microstructure, mechanical properties and defects 

There have been a number of studies on nickel superalloys processed by SLM, the 

majority of which have investigated effect of process parameters on densification and 

microstructure. To date, nickel superalloys reported to have been processed with full 

density are Inconel 718 (Amato, Gaytan et al. 2012, Wang, Guan et al. 2012), Inconel 625 

(Amato 2012, Savitha, Gokhale et al. 2012), Nimonic 263 (Vilaro, Colin et al. 2012), 

Inconel 939 (Kanagarajah, Brenne et al. 2013), Inconel 738 LC (Rickenbacher 2013) and 

Hastelloy X (Wang 2011). The range of alloys in this list should not be surprising, as the 

stability of the nickel base fcc structure means the alloy does not experience phase 

changes before melting making it easy to melt and fuse.  

The microstructure conforms to that observed in other materials. Wang, Guan et al. 

(2012) highlights the absence of γ” Ni3Nb precipitates in as processed Inconel 718, and 

attributes this to inhibition of precipitate formation due to high solidification rates. 

Conversely Amato, Gaytan et al. (2012) argue the presence of γ” precipitates through XRD 
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and TEM analysis. In the XRD, although γ”-bct Ni3Nb peaks are detected, both the (200) 

and (220) texture coincide with those for the γ-fcc matrix peak and it is conceded that 

additional evidence is required. TEM appears to show ‘lenticular-like/oblate ellipsoidal’ 

γ” precipitates coherent with [100] planes, orthogonal to the build direction, as well as 

some coincident to the [010] plane (parallel to build direction) – see Figure 2.36. 

 

Figure 2.36 - XRD spectra peaks for pre-alloyed Inconel 718 powder compared to as 

processed SLM processed Inconel 718 (left). Supporting TEM image apparently showing 

nano precipitates of Ni3Nb in as processed SLM processed Inconel 718 (right) – adapted 

from (Amato, Gaytan et al. 2012) 

Vilaro, Colin et al. (2012) observed no γ’/γ’’ precipitates in SLM processed Nimonic 263, 

stating that solidification rates were high enough to inhibit their precipitation. However, 

high magnification SEM imaging appears to show the presence of sub-micron sized 

carbides surrounding interdendritic regions. Vilaro states that the segregation of Ti 

solute to the interdendritic region is sufficient to allow the precipitation of TiC carbides. 

The microstructural features to which Vilaro refers, are actually seen to be distributed 

throughout the crystal structure, some even within the centre of a dendrite, which 
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conflicts with the statement, see Figure 2.37. Unfortunately, there is no additional data to 

confirm the chemical composition of the features. 

 

Figure 2.37 - Proposed TiC carbides highlighted by arrows, in Nimonic 263 processed by 

SLM – adapted from (Vilaro, Colin et al. 2012) 

Precipitation strengthened alloys, such as Inconel 718, therefore still require solution 

treatment and aging if the designed properties are to be achieved. Indeed, in the as 

processed state, the room temperature yield strength of Inconel 718 was reported to be 

889-907 MPa, compared to 1030-1167 MPa of wrought and aged. However once the SLM 

processed Inconel 718 was heat treated, yield strength increased to 1137-1161 MPa. UTS, 

Young’s modulus and elongation were also all equivalent once heat treated (Wang, Guan 

et al. 2012). Amato, Gaytan et al. (2012) reported similar results, but reported that the 

SLM and heat treated Inconel 718 had slightly superior tensile strength to the equivalent 

wrought. In fact for the majority cases, once heat treated and/or aged, precipitation 

strengthened alloys have comparable or superior tensile properties when processed by 
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SLM compared to wrought (Vilaro, Colin et al. 2012, Kanagarajah, Brenne et al. 2013, 

Rickenbacher 2013).  

The same is true for solution strengthened alloys such as Hastelloy X. Wang (2011) 

reports room temperature yield strength, UTS and elongation values of between 812- 816 

MPa, 923-937 MPa and 34-36 % respectively for the as processed state. Compared to max 

yield strength 385 MPa and UTS of 775 MPa and elongation 45 % of for heat treated sheet 

Hastelloy X (Inc. 1997), this represents a significant increase in tensile strength whilst 

still maintaining good ductility. Table 2.5 gives a comparison between SLM and 

conventionally processed nickel superalloys. 

 σy0.2  (MPa) σUTS (MPa) E (GPa) δ (%) 

 Con. SLM +ht Con. SLM +ht Con. SLM +ht Con. SLM +ht 

Hastelloy Xa 360 816 - 785 937 - 205  - 43 35 - 

Inconel 718b  1185 907 1161 1435 1148 1358 208 204 201 21 26 22 

Nimonic 263c 580 818 843 970 1085 1268 - 163 206 39 24 53 

a values for Con. (Donachie and Donachie 2002), SLM (Wang 2011) 
b values for Con. (Donachie and Donachie 2002), SLM and +ht (Wang, Guan et al. 2012) 
c values for Con.  (Donachie and Donachie 2002), SLM and +ht (Vilaro, Colin et al. 2012) 

Table 2.5 - Tensile properties of nickel base superalloys for conventional (Con.), SLM as 

processed (SLM) and SLM as processed  plus heat treatment (+ht).  

The increase in tensile strength for the SLM as processed states is attributed to the fine 

grain structure, due to the Hall-Petch relation for grain size and yield strength, whilst the 

columnar structure allows for maintained (or sometimes increased) ductility (Vilaro, 

Colin et al. 2012, Wang, Guan et al. 2012, Kanagarajah, Brenne et al. 2013).  

Amato, Gaytan et al. (2012) and Kanagarajah, Brenne et al. (2013) also investigated the 

consequence of the columnar microstructure on the directionality of tensile properties. 

Amato reported that Inconel 718 samples built parallel to build direction had slightly 

increased yield strength and UTS and elongation then those built perpendicular to the 
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build direction. Interestingly Kanagarajah, Brenne et al. (2013) reported tensile strength 

was similar between test orientations, but that elongation was greater by a factor of two 

for samples built parallel to the build direction. It was proposed that a difference in grain 

aspect ratio with respect to the loading axis induces different mean free paths of 

dislocation. 

Although not as frequently reported as by commercial users, there are reports of micro-

cracking in as processed nickel superalloys in the public domain. Mumtaz, Erasenthiran 

et al. (2008) mention issues of micro-cracking in processing Waspoloy. Cracking was 

reduced through the optimisation of scan parameters, is implied to not have been 

eliminated. Similarly Wang (2011) reports micro-cracking in fully dense components of 

Hastelloy X, typically thought of as a ‘weldable’ alloy. Cracking is reported to be more 

severe towards the edges of the parts, implying a relationship between cracking and the 

thermal stress as described by (Mercelis and Kruth 2006), where tensile stress builds up 

along the free surfaces. Unfortunately, neither Mumtaz nor Wang provide observational 

evidence for either the initial micro-cracking or efforts to improve it. 

Rickenbacher (2013) however, does provide observation evidence of micro-cracking in 

SLM processed Inconel 738LC. SEM micrographs, see Figure 2.38, reveal that cracks are 

of the order of 50 μm in length and are predominantly intergranular. Based on the surface 

morphology of the cracks i.e. exposed dendrites and intergranular, then cracks are 

considered (by Rickenbacher) to most likely be caused by solidification or liquation 

cracking. DDC is not considered a likely cause, although no further investigation into this 

is conducted.  
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Figure 2.38 - SEM micrographs of as processed IN738. Crack is approximately 80μm in 

length, and contrary to original author of investigation, look to be as a result of solid state 

rupturing – adapted from (Rickenbacher 2013). 

 

2.8.2 Reduction of thermal stress build up 

In Section 2.2, high thermal stress and part residual stress was highlighted as a 

characteristic problem for SLM processing. In response there have been a number of 

studies which investigated the optimisation of laser scan parameters, in particular scan 

strategy, to control and reduce thermal and residual stress (Shiomi, Osakada et al. 2004, 

Mercelis and Kruth 2006, Moat 2009, Yilbas, Karatas et al. 2011).  

In the second half of their investigation into thermal and residual stresses in SLM and SLS, 

Mercelis and Kruth (2006) found that a sectioned (chequerboard) scan pattern reduced 

the maximum tensile stress compared to a simple raster pattern. In chequerboard, the 

area is split up into a number of squares in which a raster pattern is scanned. Subsequent 

squares are then selected at random, until the entire area is complete. The raster pattern 

in each square is perpendicular in orientation with respect to its neighbour. By 

sectioning, randomising and alternating the scan orientation, it ensures patterns of stress 
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do not build up over the course of multiple layers. The scan strategy has been adopted by 

machine manufacturers, EOS and Concept Laser.  

Shiomi, Osakada et al. (2004) conducted a similar investigation into modelling and 

reduction of residual stress in chrome molybdenum steel. The modelling results are 

previously discussed in Section 2.2. Initially they found that heat treatment of as 

processed parts - held at 600-700°C for one hour, without a controlling atmosphere – 

resulted in a 70% reduction in the residual stress. This is not a surprising result as heat 

treatment is often employed to relieve residual stress after conventional processing. 

Layer rescanning – rescanning of the layer with the same or different laser scan 

parameters – was also investigated. The hypothesis being that the secondary scanning 

would reheat the solid layers below, effectively annealing them and relieving some of the 

built up stress. Again, this is similar to a conventional technique known as laser annealing, 

which a laser surface treatment is used to relief stress along the surface of a part.  In 

Shiomi, Osakada et al. (2004), the secondary scan had the same parameters as the 

primary. The result was a 55% reduction in residual stress compared to a part built 

without rescanning.  

Both Shiomi and Mercelis also investigated the effects of a heated powder bed on the 

residual stress of a part. In principle, heating of the powder bed reduces the thermal 

gradient by reducing the temperature difference between the laser incident surface and 

the powder/under lying material. Reduction of the thermal gradient reduces stress 

generated by TGM, and therefore the overall residual stress is reduced. The investigation 

found that increasing the powder bed temperature to 160°C by means of a heated 

substrate, resulted in a 40% reduction in final part residual stress. This agreed with the 

qualitative findings of Mercelis and Kruth (2006). 
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2.8.3 Post process crack and defect elimination 

One solution to the problem of defects and cracking of SLM processed material is post 

process treatments. Wang (2011) describes how internal defects in SLM processed 

Hastelloy X, such as cracks, pores and unmelted powder particles can be consolidated 

through HIPing.  

HIPing has traditionally been used as both a powder metallurgy process and for 

changing/improving the properties of already formed material. The high temperature 

and applied pressure induce plastic deformation, creep and diffusion. The isostatic 

application of pressure means that defects which are linked to the surface are not closed, 

and only truly internal defects can be consolidated. Wang (2011) offers a remedy to this, 

of simply machining off areas in which cracks remain; however, this is not ideal for a 

number of reasons. Primarily, the loss of material would have to be accounted for in the 

component design phase and would be difficult to predict. Secondly the application of 

destructive machining, as opposed to surface finishing, would add to the total process 

cost and time. 

Wang (2011) compared the tensile properties of SLM as processed and SLM + HIP’d 

Hastelloy X. Although still superior to hot forged properties, the SLM + HIP’d samples 

displayed significantly lower yield strength, UTS and elongation. The reason for this is 

understood from an investigation carried out by Amtao (2012) for IN625. Comparisons 

of the microstructure between SLM as processed samples and samples which were HIP’d 

post SLM processing can be seen in Figure 2.39. 
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Figure 2.39 - (a) SLM as processed microstructure, (b) SLM + HIP’d microstructure. Note 

different magnifications. Adapted from (Amato 2012). 

As can be seen, the fine columnar grain structure of the as processed sample has been 

dissolved and a courser random orientation equiaxed structure as formed. The increase 

in grain size results in a reduction of the tensile strength of the material, thus explaining 

the findings of Wang (2011). In the case of the investigation of Amato (2012) however, 

the SLM samples were not fully dense resulting in poor tensile performance, and 

therefore a fair comparison cannot be made. 

Amato (2012) also compared as processed and HIP’d + annealed components of Inconel 

718 for microstructural and mechanical properties. Again the same transformation of 

microstructure is observed, however the addition of annealing allows for the correct 

precipitation of γ” Ni3Nb and therefore the HIP’d + annealed components had marginally 

higher yield strength and UTS than the as processed components. 

Although annealing and heat treatments are used to precipitate out desired phases, they 

can achieve this whilst maintaining the grain structure. HIPing on the other hand will 

always result in a markedly different grain structure, which may not be desirable. 
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2.8.4 Anisotropic mechanical properties and crystal orientation 

Of the investigations carried out into the mechanical properties of SLM processed nickel 

superalloys, several report marked differences between test pieces built in the x-y 

(horizontal) orientation and z (vertical) orientation (Vilaro, Colin et al. 2012, Bauer, 

Dawson et al. 2013, Kanagarajah, Brenne et al. 2013, Rickenbacher 2013). Specifically, it 

is the elastic (or Young’s) modulus which varies most significantly, with x-y orientated 

pieces displaying higher values than those built in the z orientation. The anisotropy is 

attributed to the high aspect ratio of the grain structure; however, it can be explained 

further. 

Etter, Kunze et al. (2015) investigated the phenomenon in SLM processed Hastelloy X and 

sought to reduce the anisotropy through heat treatment. It is reported that the elastic 

tensor single crystal of Hastelloy X at room temperature is c11 = 230.40 GPa, c12 = 156.12 

GPa, c44 = 121.77 GPa. This results in a minimum of Young’s modulus of 104 GPa parallel 

to <100> and maximum of 294 GPa parallel to <111>. As with the other investigations, 

specimens tested in the x-y orientation displayed a significantly higher Young’s modulus 

than those tested in the z direction, typically 170 GPa versus 150 GPa respectively. As 

with the investigations discussed in Section 2.4.3, the fibre texture of the as built material 

was observed to be <001> parallel to the build direction, however this results in a nearly 

transverse isotropic elastic tensor, with respect to the build direction. Heat treatment of 

the specimens resulted significant grain coursing and equiaxed grain formation, 

therefore creating additional texture components and reducing the anisotropy.  

There is one other interesting point is to be considered from the above observations. 

Although a strong fibre texture is present for the overall bulk material, not every grain is 

mutually aligned. Therefore, when stress is applied across multiple grains – as would be 
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the case for Type 1 stresses generated by TGM - each grain may possess a different elastic 

modulus in that given stress plane. This variation could plausibly result in stress 

formation along the grain boundaries, creating weak points and possible crack initiation 

sites within the material – similar to grain boundary carbide formation and DDC. This 

may therefore be considered as possible explanation for why nickel superalloys display 

a high susceptibility to micro-cracking during SLM processing.  

2.8.5 Investigations in micro-cracking 

Several studies on laser metal deposition and SLM have investigated micro-cracking of 

alloys during laser powered fabrication (Li, Hu et al. 2005, Zhong, Sun et al. 2005, Tomus, 

Jarvis et al. 2013, Yu, Rombouts et al. 2013, Carter, Martin et al. 2014, Carter, Essa et al. 

2015), with Tomus, Jarvis et al. (2013), Carter, Martin et al. (2014) and Carter, Essa et al. 

(2015) relating to the specific topic of this work - nickel base superalloys processed with 

SLM.  

Zhong, Sun et al. (2005) investigated boundary liquation and interface cracking of laser 

deposited Inconel 738LC onto a directionally solidified Ni-base superalloy substrate. 

They identified that there were five separate cracking situations:  

1. Liquation cracking in substrate and liquation penetration into IN738 layer 

2. Liquation cracking in substrate and cracking in IN738 layer, but without signs of 

liquation 

3. Cracking from substrate into deposition layer without signs of liquation 

4. Cracking in substrate but no penetration into deposition layer 

5. Cracking in deposition layer originating from interface but no crack in substrate 
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Despite the high cooling rates of laser metal deposition eutectic liquation at the grain 

boundaries still occurred. One key point to highlight is that the liquation cracking 

initiated in the substrate, and only penetrated into the deposition layer. This implies that 

the lower cooling rates experienced by the substrate, as a result of thermal conductance, 

allowed the eutectics to form and thus the liquation to occur. Penetration liquation 

cracking may occur if the ‘local composition/structure conditions are favourable’.  

Indeed, the high temperature gradients and solidification rates associated with AM 

techniques are expected to inhibit liquation at grain boundaries, due to the formation of 

fine directional columnar structures and low segregation. Zhong and Sun thus attribute 

the cracking to “the comprehensive effects of various beneficial and detrimental factors 

which are dependent on the processing parameters and local composition/structure 

conditions”(Zhong, Sun et al. 2005). 

Li and Hu (Li, Hu et al. 2005) investigated the effect of carbon content on the 

microstructure and cracking of laser clad Fe-based alloys. It was found that both the 

microstructure and cracking susceptibility were very sensitive to the carbon content. 

Three powders were trialled of identical chemical compositions (Fe95.5–Ni1.5–Cr1–

Mn1–Si1 wt.%) bar the carbon content, which was 0.2, 0.3 and 0.4 wt.%. The alloys were 

clad onto a medium carbon steel substrate using 3.5 kW CO2  laser with a diameter of 

4mm. Cracks were not observed the powders of 0.2 and 0.3 wt.%, but were observed in 

the powder of 0.4 wt.%.  

The powder with the lowest carbon content demonstrated good cracking resistance, this 

was attributed to a higher plasticity as a result of the lower carbon wt.%. Also believed to 

be of importance was the nature of the solidification. The powder in question displayed 

a peritectic reaction (as opposed to eutectic), which exhausts all the liquid and δ 
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simultaneously, thereby removing the detrimental effects of remaining liquid films 

between the grain boundaries.  

Carter (2014) investigated the influence of laser scanning strategy on the microstructure 

and cracking behaviour of nickel superalloy CM247-LC. It was reported that the ‘island’ 

scan strategy (similar to a chequerboard with alternating hatch orientation) had a 

significant influence on the microstructure of the material, by creating a bimodal grain 

structure – see Figure 2.40. Larger elongated grains were present in the centre of the 

islands, preferentially orientated to [001], but these were surrounded by a highly 

misorientated fine grain structure. 

 

Figure 2.40 – Grain structure created by island scanning strategy – direct from (Carter, 

Martin et al. 2014) 

It was also reported that micro-cracks were more concentrated in the fine grain region, 

and proposed that the misorientated grain boundaries acted as weak points within the 

material. Carter proposes that the mechanism for micro-cracking is that of DDC, however 

the description presented aligns it more with that of ETSS cracking. It is also possible that 
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misorientation is creating increased stress along grain boundaries due to differences in 

elastic moduli for a given stress plane – as discussed in Section 2.8.4 

In addition to the work on CM247-LC, Carter, Essa et al. (2015) investigated the influence 

of laser scanning parameters on the microstructure and cracking behaviour of single 

crystal nickel superalloy CMSX486. A statistical design of experiments, employing surface 

response methodology was used to determine the key influencing parameters relating to 

densification and micro-crack formation. It was found that laser power and laser scan 

speed (and the interactions between the two) had the greatest influence of micro-crack 

formation. However, no clear relationship could be defined for the input nominal energy 

density. Low power (125W) and high scan speed (2000 mm/s) were calculated to be 

optimum pairing for minimum micro-cracking, however this was contrary to the 

optimum parameters for maximum density (high power and lower scan speed). Micro-

cracking was reduced to 2.24 mm/mm2 with optimum parameters of 128W laser power, 

1007 mm/s laser scan speed, and 63μm hatch spacing, whilst also achieving ~100% 

density. However, it was concluded that there would always be a compromise between 

achieving maximum density and minimum cracking.  

Tomus, Jarvis et al. (2013) investigated the effects of minor elements on the crack 

susceptibility of Hastelloy X as processed by SLM. This was conducted by comparing 

samples of a ‘low’ and ‘high’ Mn + Si content alloy built under a controlled set of 

processing conditions. This is a reapplication of the work carried out by Savage and 

Krantz (1971), although the choice of Mn and Si as controlling elements runs slightly 

contrary to the conclusions of the earlier papers. As a secondary point of investigation, 

the effect of scan speed on crack formation was also studied. Crack susceptibility was 

measured by crack density, which was determined by visual comparison.  
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It was reported that the samples built with the ‘low’ Mn + Si content powder had lower 

crack densities, and the addition of a low scan speed yielded a ‘crack free’ sample – 

although this is difficult to confirm visually in the literature due to insufficient image 

resolution, see Figure 2.41. Focused ion beam micrographs of the cracked samples 

showed that the cracks lay along the grain boundaries and are jagged in morphology; 

implying cracks are ETSS or DDC cracks, but higher magnification images would be 

required to confirm.  

 

Figure 2.41 - Micrographs from Tomus, Jarvis et al. (2013) apparently showing a 

reduction in cracking for b) ‘low’ Si +  Mn over a) ‘high’ Si + Mn content. 

 

Thermodynamic simulations were also conducted on the effect on melting temperature 

as a function of fraction of solid. This showed a decrease in melting temperature range 

with increased Mn and Si content. This is an expected result as alloying element/impurity 

content is well known to effect melting ranges. 

The effect of minor element content on cracking is attributed to an increase in 

microsegregation to the grain boundaries. This in turn increases risk of crack initiation 

at grain boundaries due to ‘unavoidable’ shrinkage strains associated with SLM. 

Although this is not the only paper to imply microsegregation as a key factor in micro-

cracking with SLM processing, it is the first to conclude it. Unfortunately, however, there 
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are a number of reasons as to why this work is not fully conclusive. Primarily, there is no 

analytical proof provided to back up the conclusion. Micrographs of the samples do show 

cracks along the grain boundaries, however in a fully dense material grain boundaries 

offer the path of least resistance for a crack to propagate. In addition, unlike with Yu, 

Rombouts et al. (2013), Tomus did not perform any type of chemical analysis on the 

cracked regions of the samples. Therefore, there is no evidence that Mn and Si were in 

proportionately higher concentrations in the crack regions, and hence that their 

segregation to the grain boundaries was driving the crack susceptibility. 

There is no doubt that the ‘high’ Si + Mn concentration samples had a higher crack density, 

but the reasons behind this have not been fully explored. As the exact wt% chemical 

composition of the ‘high’ and ‘low’ samples is not reported, there can be no 

comprehension as to the relative influence compared to the standard Hastelloy X 

specification. Furthermore, there is nothing to deny that the increase in Mn and Si 

concentrations is not having additional or alternative effects, e.g. affecting material 

properties associated with thermal stress, such as Young’s modulus or the thermal 

expansion co-efficient. 

Despite the inconclusive nature of this paper, evidence from separate investigations (Yu, 

Rombouts et al. 2013) does imply microsegregation of minor elements as a factor in 

micro-cracking. What the paper fails in doing, is clarifying whether this effect is 

significant in the standard composition of Hastelloy X, or any other nickel-base 

superalloy. 
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2.9 Improvement of processability through alloy composition 

As was discussed in Section 2.7.5, certain elements have been identified as influencing 

cracking in welded nickel alloys, leading to the creation of versions of alloys specific for 

welding. This section discusses elements which have been identified as potentially 

detrimental in SLM processing, but also alloy performance in general. In addition, 

potentially beneficial alloying elements and systems will also be discussed. 

2.9.1 Weldability, crack susceptibility and SLM 

In section 1.7.5.2, sulphur and phosphorus were highlighted as offering no benefit to an 

alloy and being detrimental to weldability (Collins and Lippold 2003). Indeed, the 

presence of impurities is rarely seen as beneficial and ‘cleaner’ alloys will always be 

preferred. However, there is now evidence to suggest that certain intentional ‘minor’ 

elements may be affecting the crack susceptibility of superalloys in SLM.  

Tomus et al. (2013) provides the first report of specific changes to alloy composition 

affecting crack susceptibility of a nickel superalloy alloy processed by SLM. Although not 

conclusive or quantified, Si and Mn content appeared to affect the crack susceptibility of 

the alloy. This was reported to be the case for autogenous welding of Hastelloy, also, in 

work by Savage and Krantz (1966, 1971) and was attributed to segregation of said 

elements to the grain boundaries.  

A review by Jena and Chaturvedi (1984) looked at the roles of alloying elements in the 

design of nickel-base superalloys. In this work, manganese is reported to be useful for 

sulphidation resistance, and excess manganese (>1%) improves oxidation resistance and 

weldability. However, the excess can lead to loss of ductility and therefore manganese is 

restricted to 0.2-1 wt%. Silicon also improves oxidation resistance but is again kept to 
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between 0.2 and 1 wt% due to embrittlement effects and influence on promotion of M6C 

carbides and Laves phases. The detrimental effects occur when Mn and Si segregate to 

the grain boundaries; this becomes more likely with higher concentrations. This raises a 

conflict of reasoning. In Tomus’ work (Tomus, Jarvis et al. 2013) the high Si + Mn content 

resulted in more micro-cracking, but a high Mn content should improve processability – 

assuming similar solidification conditions in SLM to welding. Silicon was therefore 

perhaps the more influential of the two, and likely in concentrations greater than the 

specification limits of Hastelloy X.  

Other elements that should be kept to a minimum are those which are insoluble in nickel 

such as bismuth, lead, thallium and tellurium. These have the propensity to segregate to 

the grain boundaries resulting in weakening and cracking, even when present in trace 

amounts (Jena and Chaturvedi 1984, Donachie and Donachie 2002). 

Oxygen, nitrogen and hydrogen (ONH), like carbon, are small enough to sit in interstices 

of the lattice and have high diffusion rates. Therefore, even in conditions of rapid 

solidification, they may still be able to segregate to grain boundaries and areas of high 

stress. 

Ultimately the detrimental effect of many alloying elements depends on whether they are 

allowed to segregate to grain boundaries or into sufficient concentrations to form 

precipitates. From knowledge of rapid solidification, it is proposed that segregation of 

solute elements will be limited (Section 2.4.2). This is supported by the reported 

microstructures of SLM processed alloys, which do not show evidence of significant 

secondary phase formation/precipitation (Section 2.4.3). The precise nature of 

solidification and phase formation in SLM must therefore be established as a priority 

before considerations of solute elements and their effects can be made. 
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2.9.2 Beneficial minor element additions 

In contrast there are also a number of possible minor element additions which can be 

made to help reduce crack susceptibility and improve alloy response 

Magnesium will improve the stress rupture life of an alloy by reacting with interstitial 

impurities such as oxygen, nitrogen and hydrogen. It also reduces grain boundary 

embrittlement caused by sulphur. Zirconium also reacts with sulphur, as well as carbon, 

tying up both in carbides and carbo-sulphides, again improving ductility. Hafnium and 

rare earth elements will also react with sulphur and eliminate its effects (Jena and 

Chaturvedi 1984).  

2.9.3 Low thermal expansion alloy systems 

The majority of the problem characteristics in SLM stem from the high thermal stresses. 

Equation 2.19, demonstrates that thermal stress σth it is influenced by both the process 

and material, where αCTE is mean coefficient of thermal expansion, E is Young’s modulus 

and ΔT is change in temperature. 

𝜎𝑡ℎ = 𝐸𝛼𝐶𝑇𝐸∆𝑇 

Equation 2.19 

If one wanted to keep the tensile properties of an alloy the same, or similar, then the most 

appropriate solution is to attempt to reduce the thermal expansion. 

Rather than attempting to reduce the thermal expansion co-efficient of a solid solution, 

EOS GmbH focussed on the phase change between liquid and solid, specifically 

solidification shrinkage. They developed a bronze-based multicomponent alloy called 

DM20. DM20 contains components which expand ‘during the build process’, these 
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counter the shrinkage of the bulk material resulting in an overall reduced shrinkage. The 

macro effect, is a compoent with superior dimensional accuracy and importantly, reduced 

residual stresses. Unfortunately, as this is a commercial product, the chemical 

composition data of DM20 is not publicly available and as such the exact characteristics 

of the expanding components in unknown. 

One such metal which could be implemented in a material such as DM20 is Bismuth. Like 

water, Bismuth expands in volume upon solidification (by ~ 3.32%). It has a history of 

being used in ‘low expansion’ alloys, where it (again) compensates for the solidification 

shrinkage of the bulk components (Norman 1998). The difficulty with using it for 

selective laser melting is the effective application of the expansion. In order to be 

effective, Bismuth has to be in crystal form, rather than an alloy. Bismuth also has a 

comparatively low melting temperature of 271°C, compared to the average melting 

temperature of a superalloy of ~1300°C. As a consequence, it is possible that it may be 

isolated as a eutectic phase and precipitate either inter- intra- or transgranularly, much 

like MC carbides. 

Another material of interest for thermal expansion properties, is INVAR. INVAR is an iron-

nickel alloy which has a thermal expansion co-efficient of approximately 1.2⨯10-6 K-1 

between 20-100 °C, compared to that of steel (~11-15⨯10-6 K-1). INVAR is classically 

64Fe-36Ni, although other variants exist such as Invoco (Fe–33Ni–4.5Co, has an αCTE of 

0.55⨯10-6 K-1 from 20–100 °C) which have an even lower thermal expansion co-efficient.  

The low thermal expansion of INVAR makes it perfect for use in high precision 

instruments, where a high dimensional stability is required. INVAR owes its low 

expansion properties to a ferromagnetic phenomenon, known as the Invar effect, which 

depends on the energetic state of the nearest neighbour Fe-Fe bonds. Rancourt and Dang 
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(1996) found that up to one in five magnetic exchange bonds in Invar were energetically 

unsatisfied, and as such it was a heavily frustrated system. Calculations of the ground 

state magnetovolume properties revealed that the unsatisfied bonds display the opposite 

magnetovolume action to satisfied bonds. The effect is large enough to near fully restrain 

the normal thermal expansion of the alloy from 0 -150 °C. Up until this point, the kT 

energy is anomalously used up changing the domain alignment patterns from ferro- to 

paramagnetic, rather than increasing the vibrational energy of the atom. After this point, 

the effect begins to diminish until reaching the Curie temperature (279°C), at which point 

the material becomes completely paramagnetic and normal Fe-Ni alloy expansion 

resumes (Roy, Agrawal et al. 1989). This of course means that only regions of the material 

which are at temperatures lower than 200°C will experience reduced thermal stress. 

Unfortunately in SLM, upon laser exposure temperatures fluctuate between ~2500°C and 

30°C  over a period of only milliseconds (Roberts, Wang et al. 2009). So although the 

bottom 200°C will occur with low expansion, the rest will be no different to a mild steel 

and therefore thermal stress is unlikely to be significantly lower. 

As a final note on the subject, the ferromagnetic-magnetovolume phenomenon is 

sensitive to alloy composition. Fe content has to be > 45 wt.%, with the effect only being 

substantial between 60 and 70 wt.%. This means it is effectively impossible to mimic the 

phenomenon in an established superalloy, and very unlikely that INVAR can be modified 

to meet the same standards without eliminating phenomenon.  

2.10 Chapter summary 

The relatively low number of publications specific to this investigation made it necessary 

to seek theory and understanding from areas outside of this field of research. This 



 
 

119 
 

allowed for a more holistic consideration of the potential mechanisms which influence 

the material behaviours of nickel superalloys during SLM processing. Review of rapid 

solidification theory was vital in aiding the hypothesis and ultimate validation of 

establishment of SLM as a rapid solidification process. Together with a review of cracking 

mechanisms of nickel superalloys in laser welding, and more recent publications on 

mechanisms driving thermal stress in SLM processing, this helped form a full hypothesis 

for the potential root cause of process induced micro-cracking of nickel base superalloys.  

Finally, recent publications on SLM processing of nickel superalloys were reviewed, with 

specific focus on the few which detailed micro-cracking and methods to improve or 

eliminate it. Although there was some success in reduce micro-cracking reported, none 

of the works achieved complete elimination, and chemical alteration to the alloys, rather 

than processing parameter optimisation, showed the most promise.  
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3 Principle experimental methodology and preliminary 

investigations 

3.1 Renishaw SLM125 

All samples were fabricated on a Renishaw SLM 125 machine with all metallic powder 

feedstock being supplied by LPW Technology unless stated otherwise. The Renishaw SLM 

125 uses a modulated 200W Ytterbium fibre laser to process deposited powder feedstock 

within a 125x125x125 mm build volume. The modulated laser scans in a point-to-point 

regime, rather than a continuous scan seen on other systems such as those by EOS or 

Concept Laser. 

To avoid oxidation during melting, the process is conducted within an argon atmosphere. 

This is done by both holding an argon atmosphere and running a flow of argon across the 

powder bed, which also helps to remove oxidised or partially sintered particles.  

Before melting commences, the chamber is put under vacuum to remove air from the 

chamber. Once under pressure reaches 945 mBar, the chamber is then flooded with argon 

gas until a specified oxygen content is reached. The chamber has oxygen detectors at the 

top and bottom of the build chamber. Oxygen limit readings are taken from the bottom 

detector. All of the experiments were built with an oxygen limit of <1000 ppm, although 

the oxygen content continues to drop throughout the build as more argon is introduced 

into the system to maintain chamber pressure. 

The argon flow is filtered to remove fine powder and burnt particles picked from the 

powder bed, before being recirculated back across the powder bed. The gas circulation is 
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only initiated whilst the laser is melting, as the argon atmosphere is sufficient to prevent 

any further oxidation whilst new layer is deposited. 

3.1.1 Controllable parameters 

There are seven controllable processing parameters on the Renishaw SLM 125; Point 

Distance (PD), Exposure Time (ET), Layer Thickness (LT), Focus Offset (FO), Hatch 

Spacing (HS), Laser Power (LP) and scan strategy. Layer thickness is simply the thickness 

of powder deposited for each layer, the implications of a thinner or thicker layer will be 

discussed in Section 3.1.3 (DOE). Laser power is the input power of the laser and has a 

range of 0-200 W. The effect of power on material response will be discussed in the DOE 

section. 

In the point to point regime, rather than having a continuous scan of the laser along track 

length. A scan length is made up of a series of exposure points of set exposure time, 

separated by a set point distance, which is defined as distance between the centres of 

successive exposure points– see Figure 3.1. After each exposure the laser turns off, moves 

by the point distance and then turns back on for the next exposure. Hatch spacing is the 

distance between the centres of two adjacent melt tracks. 



 
 

122 
 

 

Figure 3.1 - Representation of how point distance, exposure time and hatch spacing apply 

to scanning and melt pool geometry. 

 

Focus offset is used to alter the position of the focal point of the laser (in the z axis). This 

is used to alter the focus of the laser and thereby the incident beam width and peak 

intensity. If a laser has a particularly sharp profile, focus offset may be used to gain a 

better distribution of energy and/or reduce the peak intensity for more control over 

melting. The effect of varying focus offset on beam profile characteristics are covered the 

next section (3.1.2). 

The scan strategy, or hatch pattern, is the pattern the laser will follow for the melting of 

a two dimensional shape. The simplest form would be a repetition of parallel straight 

lines across the width of an area. If the scan alternates in a parallel direction i.e. back and 

forth, this is known as a raster pattern. Many strategies exist, each with a specific purpose, 
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whether it be to reduce residual stress or reduce build time. The Renishaw SLM 125 has 

a number of preloaded strategies, but for the purposes of consistency the same strategy 

was used throughout all experiments in this work. The strategy used was a ‘meander’ 

scan strategy, which is a raster pattern with a 67° rotation for each layer and is optimised 

to minimise residual stress. 

3.1.2 Beam measurements 

Before material investigations were carried out, it was necessary to observe the energy 

density profile of the laser beam for the Renishaw SLM 125 to assess whether it had any 

anomalies or features that may affect melting. As well as merely observing the profile, the 

peak intensity and beam diameter were also measured. In addition, the influence of focus 

offset on the beam diameter and peak intensity was also investigated.  

Understanding the profile of a laser beam is important as the distribution of energy 

incident on the surface of a material has great effect on how the material responds. The 

Traverse Electromagnetic Mode (TEM) of a laser describes the radial variation in beam 

intensity, by means of two subscripts, p and l: p represents the node along the radius of 

the beam intensity cross-section, and l represents the node along the circumference 

(Deffley 2012). A common TEM for welding and cutting lasers is TEM00, which is 

cylindrical in cross section and has a single peak Gaussian profile, see Figure 3.2. The 

concentration of energy towards the centre of the beam allows for greater precision and 

high energy densities (Mumtaz 2008).  
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Figure 3.2 – Gaussian and Doughnut profiles – direct from (Swartz 2016) 

Beam profiling was carried out using an Ophir-Spiricon® BeamGage® and BeamMic™ 

analysis software. The laser beam can be measured at operational powers by passing it 

through a series of splitters and filters, to reduce the incident energy, onto a CCD which 

measures the light intensity as counts per pixel. The profile is recorded, and analysis can 

be performed on the still, including calculations of peak intensity and beam diameter.  

3.1.2.1 Profiling and beam diameter results and discussion 

The physical effect of changing the focus offset is detailed in Figure 3.3. A positive increase 

in FO results in negative shift in the z axis of the focus point of the laser. This has the effect 

of increasing the spot size of the laser, i.e. the cross section of the beam incident on the 

substrate. 
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Figure 3.3 - Effect of changing focus offset on position of laser focal point and incident 

spot size on substrate. 

 

Before investigating the effect of FO on spot size and beam diameter, the profile of the 

focussed beam (FO set as 0 mm) was observed, Figure 3.4a. As can be seen it is a sharp 

Gaussian-type with a mild elliptical base profile (yellow circle), but appears to be without 

any secondary peak features. Focus offset was then increased in 2 mm intervals up to 6 

mm, each time observing and measuring the resulting beam profile. Figure 3.4 shows the 

x and y profiles for the beam set at 200W with an FO of 0, 2, 4, and 6 mm for a)-d) 

respectively. 
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Figure 3.4 – Laser power: 200 W, with focus offsets of a) 0.0 mm, b) 2.0 mm, c)4.0 mm and 

d)6.0 mm. White circle is the guide area, inner green circle represents beam diameter at 

13.5% of peak intensity, yellow circle represents limit of differentiable beam (from 

background). 

As expected, the increase in FO results in an increase of beam diameter and reduction of 

intensity. The beam diameter is highlighted by the inner most circle (green) and is taken 

as the 1/e2 of peak intensity, or 13.5% of the peak intensity. This method was used as the 

background noise levels were too high to enable clear distinction between the 

background and the edge of the beam. Table 3.1 lists the measured values of x, y and 

combined 1/e2 diameter values as well as the peak intensity for the four FO’s 

Table 3.1 – Beam diameter and intensity readings. Pk% of 0.0mm is what percentage of 

the peak at 0.0mm focus offset the given peak is. 

FO 
(mm) 

D%Pk 
(μm) 

D%PkX 
(μm) 

D%PkY 
(μm) 

Peak 
(cnts) 

Pk % of 0.0 mm 
(%) 

0 114 127 101 3299 100.0 

2 144 158 123 2137 64.8 

4 194 194 158 1221 37.0 

6 257 264 224 757 22.9 



 
 

127 
 

It is observed that an FO increased to 6mm results in a doubling of the beam diameter 

and a quartering of the peak intensity. It must be stressed that the laser power, and 

therefore the total energy incident on the surface, remains the same however the 

distribution of that energy is spread across a greater area. Qualitatively the increase in 

FO results in a more even distribution and takes on a more classical Gaussian distribution 

at FO’s of 4 and 6 mm. For the application of SLM, an FO of 4 or 6 mm may be preferable 

as it will result in a more even distribution energy compared to the focussed beam. The 

effect of FO on material response will be investigated Section 3.1.2. 

The relationship between FO and Beam Diameter (BD) and Peak intensity has been 

plotted below in Figure 3.5, and data for the beam profiles is displayed in Table 3.1. Both 

BD and Peak intensity have a linear relationship with FO. 

 

Figure 3.5 – Focus offset vs beam diameter and peak intensity for a laser powder of 

200W. 

Unfortunately, the method of beam measurement employed by the BeamGage™ relies on 

filters to reduce the energy of the beam incident on the CCD. It was observed, at lower 

powers, that changing to a lower grade filter resulted in a small increase of the measured 
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beam diameter. For reference the quoted value for ‘spot size’ – defined as effective fusion 

spot by Renishaw plc – is 50µm. Therefore, the measured beam diameters will not be 

taken as absolutely representative of those during processing, but the relationship 

between FO and BD and peak intensities still stand. 

3.1.3 DOE – Process parameter considerations 

In this section, the thought process behind the designing of experiments will be detailed, 

with primary focus on aiming to achieve full density. There are many approaches to 

Design Of Experiment (DOE) from heavily statistical to purely empirical, and everything 

in between. Statistical methods such as those employed by DOE software, attempt to 

minimise the number of samples or experiments by creating mathematical solutions from 

an initial test experiment. The accuracy of these solutions depends on the scatter and 

consistency of the initial results; as such they may not be ideal for new or less well 

understood processes.  

For less well understood processes, wide field screening trials followed by a series of 

narrowing field trials give the user a more complete picture of the material response; 

enabling the identification of a global feature (minimum or maximum) and then 

increasing the resolution to establish local features. The advantage to the screening trials 

is that a greater number of controllable parameters can be investigated in the same initial 

experiment; subsequent narrower field trials are then used to investigate the effects of 

individual parameters. Although the number of experiments is greater in a screening trial 

method, statistical design can still be employed in the latter stages to minimise sample 

number.  
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In the case of SLM, to achieve full density one must consider the melt pool and track 

geometries with regards to controllable parameters. Figure 3.6 represents the cross 

section of two adjacent melt tracks in an SLM process.  

 

Figure 3.6 - Schematic showing geometry of cross section of melt tracks with controllable 

parameters LT and HS highlighted in bold. Hatched area represents potential unmelted 

or consolidated region. 

The diameter of the melt track DMP and depth of the melt track ZMP are both controlled by 

the energy absorbed by the material, which in the case of the Renishaw SLM 125 is 

controlled by LP, ET and PD. The occurrence and subsequent size of the potential 

unmelted region depends on whether the choice of LT and HS is correct for melt track 

dimensions which result from the chosen LP, ET and PD.  

In the absence of literature to use as a starting point, the energy required to melt a mass 

of material, Em, can be calculated with the following equation 

𝐸𝑚 = 𝑚𝑐∆𝑇 + 𝑚𝐿𝑓 

Equation 3.1 
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where m is the mass of the material, c is the specific heat capacity, ΔT is the change in 

temperature from ambient to melting point of the material and Lf is the latent heat of 

fusion. For the case of laser fusion, the value is then divided by the absorptivity α of the 

material for the given laser wavelength. 

𝐸𝑚 =
𝑚𝑐∆𝑇 + 𝑚𝐿𝑓

𝛼
 

Equation 3.2 

If the material is in powder form however, the absorptivity is not the same as that for the 

bulk. Unfortunately, there is limited data on the relationship between powder and 

absorptivity, and usually a reduction of 50% is employed. The mass of powder can be 

worked out by assuming a volume comprised of the LT⨯HS⨯PD, and dividing by the 

apparent density of the powder (this can be measured by weighing un-agitated powder 

in a known volume). However, if one wanted to include overlap of melt pools appropriate 

increases to LT, HS and PD would have to be made e.g. for 50% overlap multiply each 

dimension by 1.5. 

From the calculated required energy, one can then use measured beam diameter to work 

out an energy density, and from this extrapolate an LP and ET. The obvious problem with 

this method it that it requires predetermined values for LT, HS and PD. Ultimately it will 

only ever serve as an approximation which can be used as a starting point for a full scale 

DOE or to aid development of a DOE.  
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3.2 Analysis techniques 

3.2.1 Sample preparation 

For initial experiments, samples were vertically sectioned using a Buehler IsoMet® 5000 

linear precision saw before being mounted in Bakelite using a Buehler SimpliMet® 100. 

However in later experiments, smaller sample size meant the initial sectioning stage was 

not required and instead twin samples were mounted orthogonally to each other and 

thus once mounted giving a vertical and horizontal section – Figure 3.8 in Section 3.2.4. 

 All mounted samples were ground and polished on an EcoMet® 250 Grinder-Polisher. 

Grinding and polishing stages were as follows: silicon carbide pads of 800, 1200 and 

2500, followed by Diamet diamond suspension of 3 and 1 μm and a final stage of 0.05 

silica suspension. Often additional polishing with 0.05 silica was required to reveal cracks 

in samples as the initial grind process can result in the covering of cracks in ductile 

materials.  

If the samples were to be analysed with electron microscopy, they were mounted in 

Buehler Konductomet, which is a graphite and mineral (SiO2) filled phenolic thermoset. 

The addition of graphite allows for conduction of electrons through the mounting, 

negating the application of conductive paints or ribbon to the sample. Given that 

secondary SEM analysis was always a possibility; samples were usually mounted in 

Konductomet.   

Etching was also performed on samples for microstructural analysis, however as etchants 

and the associated procedures are material specific, these will be detailed in the 

appropriate sections.  
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3.2.2 Microscopes 

Microstructural analysis was performed on a Nikon Eclipse LV150 optical microscope 

(OM) and Camscan S2 scanning electron microscope (SEM). Energy Dispersive 

Spectroscopy (EDS) line scans were conducted on a FEI Inspect F field emission 

microscope. 

3.2.3 Porosity analysis 

Porosity values were determined through area percentage measurements from optical 

micrographs of prepared samples. Although Archimedes analysis is more precise, it 

would not have been able to provide details of the porosity (size and morphology - 

gaseous or lack of fusion etc), nor would it give a comparable value. Although literature 

values for the density of many commercial alloys are available, these may be different to 

that of the composition provided a given supplier, and thus any numerical value for 

density would be meaningless. Porosity percentage combined with visual evidence is far 

more applicable. 

Low magnification (x50) micrographs were chosen for porosity analysis so as to have the 

biggest focal area thereby minimising the bias caused by local variations. At this 

magnification the captured sample area was 2⨯2.5 mm. The number of micrographs 

taken depended on sample size, the aim being not to overlap images or include edge 

boundaries between the mounting medium and the sample. 5⨯5 mm samples can 

accommodate four micrographs, for example. Mean values and standard errors were then 

calculated from the micrograph measurements. 
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ImageJ software was used to process the images into a binary (black and white in this 

case) image. The software then calculated the percentage of the area/features that have 

been converted to distinctive dark regions. A visual example is displayed in Figure 3.7 

 

Figure 3.7 - Representation of how OM micrograph is turned into a binary image 

 

3.2.4 Micro-crack analysis 

Crack density was determined by counts per unit area. Using an area of 0.25 mm2 

(500x500μm) square, 20 measurements were taken from each sample, enabling a 

statistically safe determination of an average per mm2 with 95% confidence level error.  

The 20 measurements were split across multiple micrographs depending on how many 

were taken per sample; for the case of a 5x5x5 mm cube this would be 5 measurements 

per micrograph, 4 micrographs per sample. In addition, micrographs were taken across 

specific regions of the sample – central, edge, top corner and bottom corner - again to 

remove local bias, see Figure 3.8.  
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Figure 3.8 - Schematic demonstrating geometry of sections and micrograph positions 

 

Another technique which can be used to quantify micro-cracking is measurement of total 

crack length for a given area/micrograph. Total crack length can be measured using 

ImageJ software.  

Both techniques have advantages. The total crack length method relies less on human 

measurements (i.e. counting), but crack density is more scalable. Also the reliance on the 

software to differentiate between a crack and an irregular pore may result in bias. 

3.3 Hastelloy X 

This section details the DOE conducted to optimise process parameters for maximum 

density, and subsequently minimum micro cracking, for nickel base superalloy Hastelloy 

X. A high density (>99.5%), or rather low porosity (<0.5%), had to be achieved before 

concentrating on cracking, as any large pores or defects would be considered equally as 

detrimental.  
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Hastelloy X was chosen as the focus alloy for the investigation because it had been 

established as high crack susceptibility alloy (when processed by SLM) in both literature 

(Wang 2011) and by commercial users.  

3.3.1 Hastelloy X Powder 

The power used in this phase of the investigation was gas atomised Hastelloy X supplied 

by LPW Technology Ltd and was sized at 20-53 μm. The composition of the powder was 

independently analysed by LSM International and is detailed in Table 3.2 along with the 

specification ranges for each alloying element. 

Element Nominal Specification (wt%) LPW Hastelloy X (wt%) 

Ni bal bal 

Cr 20.5-23.0 21.3±0.19 

Fe 17.0-20.0 19.5±0.17 

Mo 8.0-10.0 9.0±0.12 

Co 1.5-2.5 1.04±0.04 

Mn 0.2-1.0 0.48±0.03 

Si max 1.0 0.32±0.02 

W 0.6-1.0 0.56±0.03 

C 0.05-0.15 0.057±0.01 

Table 3.2 – Composition in wt% of LPW Hastelloy X with nominal specification range as 

given by LPW Technology LtD 

 

Particle size analysis was carried out on the LPW Hastelloy X powder to confirm the 

particle size range and also obtain information regarding the particle size distribution. In 

addition, SEM imaging was used to analyse the morphology of the powder. 
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Particle size distribution was measured by Laser Size Diffraction (LSD) and was carried 

out on a Malvern® Mastersizer® 3000. The particle shape was assumed to be spherical 

and a Fraunhofer scatter model was used. Powder delivery was by dry dispersion; this 

has an advantage over wet dispersion as it avoids conglomeration of smaller particles 

which can be detected as one large particle – although dry agglomeration may still occur. 

A total of 3 cycles were performed, although data presented is for the mean average, see 

Figure 3.9. The Dv (%) values, that is size of which a given percentage of the particles 

were less than, were as follows: Dv (90) 56.8μm, Dv (50) 37.7 μm and Dv (10) 24.8 μm.  

 

Figure 3.9 - Particle size distribution of LPW Hastelloy X powder, as volume density.  

 

Although the powder was sized to a 20-53 μm range, approximately 15% of the powder 

volume consists of particles which are >53μm in size and 3.5% are <20μm; with 0.6% 

being >75 μm. It is noted that the Mastersizer 3000 (a similar systems) exaggerates 

volumes for particles >45 μm as the algorithm breaks down over a certain diffraction 

angle. When the powder is observed under SEM, see Figure 3.10, it is observed that very 
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few of the particles are >53 μm in diameter. For a quantitative understanding of the 

number distribution, the volume % data is converted by dividing through by the average 

radius for each size bin. Figure 3.11 gives the particle number distribution. As can be seen, 

there is a significant shift of the peak towards the left (finer particles), with the peak 

16.8% of the particles being ~25 μm in size. 

 

Figure 3.10 - SEM micrograph of Hastelloy X powder in Secondary Electron (SE) imaging 

mode. Note that this is sample was taken from powder which had been through a 

processing run, and although sieved, some remelted particles have remained. 
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Figure 3.11 - Particle size distribution of LPW Hastelloy X powder as number frequency.  

 

In Figure 3.10 there do not appear to be any particles greater than 60 μm in size, thus the 

observational data does not fully agree with the LSD data. This could be for a few of 

reasons. Firstly, one may note the number of conjoined particles, which have partially 

recombined in the atomisation process. The conjoined particles can be detected by LSD 

as significantly larger particles, if the diameter is measured along their long axis. In 

addition, although dry dispersion was used, there is still the possibility of having 

agglomerates. Agglomerates are groupings of smaller particles which are bound by 

friction or moisture; again these may be detected as a single large particle. Finally, the 

number distribution implies only ~1% of the particles are >60 μm in size, and therefore 

may have just been outside of the field of view of the SEM micrograph. 

For the purposes of processing, volume distribution is actually more applicable as the 

user wants to know what percentage of deposited powder layer is taken up by particles 
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larger, or smaller, than a chosen layer thickness. SEM micrographs are useful for 

assessing the quality of the powder; there are also a number of techniques for measuring 

powder flow, which is an important factor in the processability of a powder. 

3.3.2 Parameter optimisation 

3.3.2.1 Densification 

Due to the number of controllable parameters, a series of trials had to be conducted to 

assess the effect of each one on porosity and cracking.  

Wang, Wu et al. (2011) processed Hastelloy X powder using a continuous laser SLM 

system, and achieved full density (>99.5%) parts. The process parameters reported were 

thus used as a guide for the initial wide field trial in this investigation. In order to compare 

the scan speed of a continuous laser to the PD and ET of a modulated laser, an apparent 

velocity, or Ap Vel. can be calculated from PD, ET and the known time between exposures 

– see Equation 3.3 

𝐴𝑝. 𝑉𝑒𝑙 =
1

𝑡𝑒𝑥𝑝

𝑥𝑃𝐷
+

1
𝑣𝑖𝑑𝑙𝑒

 

Equation 3.3 

where xPD is point distance, texp is exposure time and vidle is the velocity at which the laser 

travels between exposure spots. 

The first trial looked to find a global minimum in porosity for Ap. Vel (PD and ET). This 

was achieved by Central Composite Design (CCD) consisting of 13 experimental 

parameter pairs of ET and PD (8 plus 1 central point repeated 5 times) generated using 

DOE software Design X. Samples were built using the 13 parameter pairs built and then 
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analysed for porosity. The porosity values were then input back into the software, which 

generated a 4-part solution for achieving <1% porosity. Alternative solutions taken from 

the generated model were also built alongside the four initial ones. Samples were built as 

10x10x10 mm cubes. Figure 3.12 is a contour plot of the resulting model. The fixed 

parameters in this trial were LP: 195 W, LT: 53 μm, HS: 0.09 mm and FO: 0 mm, as taken 

from Wang, Wu et al. (2011).  

 

Figure 3.12 - Contour plot of CCD model, contours are porosity as labels, red dots are the 

9 parameter pairs. Note that maximum mathematical porosity is 100%, but model 

generated unrealistic contours >100 as no limit was input. 

 

The full set of values are plotted below in Figure 3.13, in which a clear global minimum is 

observed between 400-600 mm/s. Another notable observation is the apparent 

inconsistency of results, with the repeated samples (556 mm/s) varying between 1.13 

and 2.10 % porosity; giving a standard deviation of 36.3%. In addition, none of the four 
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solution values achieved values of <1%. This is perhaps not surprising given the variation 

of the repeated values. 

 

 

Figure 3.13 – Plot of apparent velocity against porosity for fixed parameters of LP: 195W, 
LT: 53μm, HS: 0.09 mm and FO: 0 mm. Marked on the plot is porosities of <1%, in green, 

and regions of high porosity (>5%) in red with blue representing porosities between 1% 
and 5%. 

 

Samples with porosity > 5% were classed according to the type of porosity that was 

observed. Those at Ap. Vel <400 mm/s had very large irregular pores, void of powder, 

which are believed to be caused by plasma recoiling as described in Section 2.2.3, see 

Figure 3.14a. At velocities >700 mm/s, the point energy density was not sufficient to fully 

penetrate the layer, causing lack of fusion pores throughout the sample, some of which 

were very extensive, see Figure 3.14c.  
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Figure 3.14 - The three distinct types of porosity identified in the first experimental trial: 

a) Large empty pores indicative of vapourisation, b) medium to large size spherical pores 

indicative of insufficient overlap and c) severe lack of fusion porosity as indicated by 

whole powder particles. 

The inconsistency in samples between 400-600 mm/s was attributed to the type of 

porosity seen within them. Although the samples were of 2% or less porosity, the 

majority of the pores were spherical (gaseous) and large (>50 μm); too large to be caused 

by porosity within the powder. The implication was that these were caused by 

insufficient overlap, however no discernible pattern was observed – see Figure 3.14b.  

It was therefore evident that the parameters reported in Wang, Wu et al. (2011) were not 

applicable for the Renishaw SLM 125 system, and as such a screening trial was designed 

to begin the DOE process from a base level.  

The screening trial took minimum and maximum values of PD, ET, LT and FO. The 

minimum LT the machine can process is 20μm and the maximum value was taken as the 

upper particle size limit of the powder, 53μm. Focus offset was applied to investigate the 

effect of broadening the laser beam to aid melt track overlap, and reducing the peak 

intensity to avoid vapourisation. The FO limits were set as 0 mm – in focus - and 4 mm. 

FO of 4 mm was chosen as the maximum as it was felt that the reduction in peak intensity 

for and FO of 6 mm was too great and would have likely led to extensive lack of fusion. 
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Set parameters were LP at 195 W and HS at 0.09 mm. Figure 3.15 shows a schematic 

representing the DOE for the screening experiment. 

 

Figure 3.15 - Schematic presenting parameters chosen for screening trial. Four 

processing parameters were varied using minimum and maximum values. ET and PD 

values combined to give four values for apparent velocity. 

 

The results of this trial for porosity are displayed in Figure 3.16. From the porosity plot 

we see that LT of 20 μm yielded the lowest porosities, of which, samples built with a FO 

of 4 mm had the lowest. Porosities of <0.1 % were achieved, and there was higher a 

consistency between the 20 μm layer samples compared to the 53 μm. In the LT 20, FO 4 

samples, the large spherical porosity was not present; this was not mirrored in the 53μm 

layer samples as the reduced beam intensity resulted in minor lack of fusion. 
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Figure 3.16 – Plot of porosity against apparent velocity, for the four sets of samples 

It was thus concluded that the large pores were as a result of insufficient melt track 

overlapping, and that as varying (reducing) hatch spacing may also have the same effect 

a HS vs FO trial needed to be conducted.  

For the HS vs FO trial, all samples were built with LP = 195 W, Ap. PD = 90 μm, ET = 115 

μs and LT = 20μm – these were the optimum parameters taken from the screening trial. 

The results porosity results for the HS vs FO trial are detailed in Figure 3.17. 

 

Figure 3.17 – Porosity with varying hatch spacing and focus offset 

  

Porosity appears to peak at a FO of 2 mm, finds a minimum at 4 mm before rising again 

at 6 mm. These observations agree with the findings of Deffley (2012) who investigated 
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the effects of beam diameter and laser power on weld track widths for Inconel 718. It was 

reported that an increase in beam diameter increases the width of the weld track until 

the incident energy density is reduced to the point where the width begins to decrease – 

see Figure 3.18.  

 

Figure 3.18 - Relationship between beam diameter and weld track width and beam 

expander setting for EOS M280 with fixed power and laser scan speed of 195 W and 800 

mm/s respectively. Beam expander is a non-continuous parameter with a maximum 

value of 10. Direct from (Deffley 2012) 

Additionally, when power was increased for the fully focussed beam, weld track width 

increased. Analysis of the cross section of the weld track revealed the presence of ‘wings’ 

(extended width) at the top surface of weld tracks for the higher power samples. These 

features are attributed to the increased significance of Marangoni convention over heat 

conduction within the melt pool. Initially, increased energy density allows for the 

formation of a melt pool larger than the diameter of the beam, however as the melt pool 

widens the top surface temperature at the edge of the pool decreases which increases the 

surface tension compared to the centre. The differential in surface tension induces a flow 
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of fluid from the centre to the edge, and then from the edge down back towards the centre 

(Limmaneevichitr and Kou 2000), see Figure 3.18. The increase in Marangoni convection 

transfers heat from the centre to the edge resulting in an expansion of the melt into the 

solid material at the top surface, hence creating the ‘wings’. 

 

Figure 3.18 - The effect of laser power on the flow pattern in Marangoni convection – 

direct from (Limmaneevichitr and Kou 2000) 

Figure 3.19 displays the cross sections of three of the samples from the Deffley 

experiment, and demonstrates the effect of a reduction in energy density on the cross 

sectional shape of the weld track. 

 

Figure 3.19 - Cross section of weld tracks with decreasing power from left to right for 

Inconel 718. Note the depth of the tracks remains the same as the Marangoni convection 

carries heat to the top edges. Adapted from (Deffley 2012). 
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The above can now be used to explain the relationship observed in Figure 3.17. At FO = 0 

mm, although the beam is comparatively narrow, the incident energy density is high 

enough to generate a melt pool which expands beyond the beam width develops ‘wings’ 

due to Marangoni convections. At FO = 2 mm, the beam diameter has increased peak 

energy density has reduces and the situation is now akin to the far right image in Figure 

3.19 and the effect of Marangoni convection has reduced. In the absence of the wings, the 

melt pool width is insufficient for the required overlap resulting in porosity formation. At 

FO = 4 mm the beam diameter has increased further resulting in an increase in melt track 

width and providing sufficient overlap. For FO = 6 mm, micrographs show the presence 

of lack of fusion porosity, indicating that the peak energy density was not sufficient to 

fully melt through the layer. The work from Deffley (2012) is applicable to this 

experiment as Inconel 718 is very similar to Hastelloy X in composition and the work was 

performed on an commercial SLM machine. 

Clearly, the beam diameter and energy density resultant from FO = 4 mm yields more 

consistent and stable melting. As such, FO = 4 mm was fixed for the remaining 

experiments. 

3.3.2.2 Reduction of crack density  

Once full density (99.5%) had been achieved with the screening trial, the samples from 

that trial were analysed for crack density. This involved additional polishing to reveal the 

cracks, as described in section 3.2.4. Figure 3.20 shows the results for crack density with 

apparent velocity.  
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Figure 3.20– Plot of crack density against apparent velocity, for the four sets of samples. 

Both samples built at LT 53 μm and 714 mm/s crack free but very porous. 

The crack density held to a general trend of reduction with increasing apparent velocity. 

When this observation is compared with the porosity results, it is also noted that samples 

with higher porosities tend to have lower crack density values. Examples of the extensive 

cracking seen in samples and also of the ‘higher porosity-lower cracking’ samples are 

displayed in Figure 3.21. Within Figure 3.21a, a secondary image magnifies the cracks 

within that sample and also represents the crack counting method – although it is 

stressed that the box is only representative and dimensions are smaller than that used in 

the actual analysis. 
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Figure 3.21– a) FO 4, LT 20, Ap. Vel 477, one of the lowest porosities achieved yet there is 

extensive cracking through the centre of this sample with 36 ± 3.6 cracks per mm2. b) FO 

0, LT 20, Ap. Vel 477, the same processing conditions as a) except the FO, note the 

absence of large spherical pores in a) compared with b). c) FO 4, LT 20, Ap Vel 714, low 

crack density but significant levels of lack of fusion porosity. d) FO 4, LT 53, Ap. Vel 596, 

extensive large lack of fusion pores resulting from insufficient energy penetration. 

 

As with the screening trial, crack density analysis was also performed on the samples 

from the FO vs HS trial; Figure 3.22 displays the results. 
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Figure 3.22 –Crack density with focus offset and hatch spacing 

If the results in Figure 3.22 are compared to porosity results (Figure 3.17) it is observed 

that the trend of low porosity with higher crack density – as observed in the screening 

trial also – is present. Beyond this, there is no strong pattern from which to make a 

confident conclusion.  

A final trial looked at whether crack density could be reduced by using a lower power, 

whilst still maintaining 99.9% density. It was expected that there would be a strong trend 

for low porosity of ‘high power high speed’ or ‘low power low speed’, as reported in other 

work (Deffley 2012). A range of 100-195 W and ~ 300-600 mm/s was chosen for LP and 

Ap. Vel respectively. Fixed parameters were FO = 4mm, HS = 0.09 mm and LT = 20 μm. 

All parts built at less than 150 W and one built at 150 W failed due to insufficient melting, 

which resulted from the low energy densities. Of the successful parts, those with 

porosities <0.5% are plotted in Figure 3.23. 
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Figure 3.23 – Ap. Vel vs Laser Power for low porosity samples. 

 

Figure 3.24 displays the corresponding crack density results, from which it is difficult to 

argue any particular trend, although 477 – 596 mm/s results in a drop in crack density 

for all powers.  

 

Figure 3.24 – Crack density vs Apparent velocity for laser powers of 150-195 W. 

 

At this point it was decided that the use of apparent velocity was not the most appropriate 

method of combining PD and ET. Power, exposure time and point distance are all 
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controlling variables of laser energy, either per unit time or unit length. Plotting density 

against one or two of the three is nonsensical as it neglects the influence of the other two. 

As such, LP, ET and PD have been dimensionally reduced into a single parameter of 1D 

line energy density. This is an appropriate use of energy density since layer thickness and 

hatch spacing are fixed, thus any variation in density is purely as a consequence of the 

absorbed energy. If the energy density is considered over a set length it can be described 

as Energy per point × Points per unit length or P × ET × 1⁄PD, this becomes: 

𝑷𝒕𝒆𝒙𝒑

𝒙𝑷𝑫
 ≡  

𝑸

𝒍
 

Equation 3.4                                                                                                                                                  

where P is power of the source, texp is the exposure time, xPD is the distance between 

points of exposure, Q is energy and l is line length.  

Figure 3.25 displays the LP vs Ap Vel results as 1D energy densities. It is observed that 

sample porosity has a strong relationship with energy density, whereas crack density is 

more dependent on laser power. This is understood if the Rosenthal model for a moving 

laser source is considered, in which the temperature profile has a significantly higher 

dependence on laser power than beam velocity (Rosenthal 1946).  Higher temperature 

profiles result in steeper thermal gradients, and therefore an increase in the magnitude 

of thermal stress (Mercelis and Kruth 2006) which in turn increases the susceptibility of  

micro-cracking. 

The minimum crack density achieved was 3.2 ± 1.4 cracks per mm2, for parameter set LP 

180 W, PD 50 μm, ET 150 μs, LT 20 μm, FO 4 mm and HS 0.09 mm – this had a 1D energy 

density of 0.54 J/mm. The relatively large errors on crack density are a consequence of 
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the analysis method. As cracks are counted as integers, once low numbers are reached 

the deviation between measurements become respectively larger. 

 

Figure 3.25 - Porosity (grey) and crack density (black) with 1D energy density in sets of 

laser power. 

After all controllable parameters have been tested and optimised it can be said with 

confidence that it is not possible to process this composition of Hastelloy X without 

micro-cracks – as detectable through optical or electron microscopy, when processed on 

a Renishaw SLM 125 system; proving the need for an alternative solution to parameter 

optimisation. 

3.4 Chapter summary 

In this chapter, a number of preliminary but key experiments were performed. The 

purpose of these experiments was to gain understanding in operation of the SLM system 

and the influence of process parameters on material response, as well as establishing a 

benchmark for micro-cracking of a ‘crack susceptible’ alloy for later experiments. 

A DOE approach was used to optimise process parameters for maximum density and 

minimum porosity. Crack density was reduced to a minimum of 3.2 cracks per mm2, but 
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critically, cracks could not be eliminated, providing justification for an alloy design 

approach. 

It was found that there was a relatively large process window in which >99.5% density 

could be achieved, however crack density was much more sensitive, and clear 

relationships between process parameters and crack density could not be defined. 
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4 Establishment of Rapid Solidification 

The theory of microstructure development for laser surface processing was discussed in 

Section 2.4. SLM is regarded as a laser surface process, however up until this point SLM 

has not been fully established as a Rapid Solidification Process (RSP).  

Before considerations for adapting material response can be made to improve alloy 

processability, the microstructure of the processed material must first be established, 

and to an extent predicted. This chapter looks to establish whether SLM is indeed an RSP 

and what the implications will be on the microstructure and properties of SLM processed 

material. 

4.1 Rapid solidification conditions applied to SLM 

4.1.1 Interface velocities and microstructure 

From Section 2.4.3, observations in literature imply relatively strict solidification 

conditions which result in similar microstructures for different materials and process 

parameters – although the limit to this relationship is unknown.  

In order to establish whether SLM lies in the realm of RSP, the relationships discussed in 

Section 2.4.2.2 are applied to known SLM quantities. Firstly, for the solidification 

interface velocity resultant from a moving laser beam (Gremaud, Carrard et al. 1990), we 

calculate Vs ≤ 1 m/s given typical beam velocities of 0.1-1 m/s. This places the 

solidification interface velocity firmly in the region of RS. However, the scenario is more 

complicated when considering the specific Renishaw SLM125 system, as the beam does 

not have velocity. Instead we consider the solidification for an individual melt pool. 
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Kear and Breinan (Bass 2012) described the heat transfer relationship for a single laser 

spot for thermal gradient and cooling rate. First though, the solutions of the transient 

temperature field during heat and cooling are described.  

Term Description Units Value (material Hastelloy X) 

erfc complimentary error function   

κ thermal conductivity W/cmK @RT = 9.1 

q0 absorbed power density W/cm2 750,000 

t time s  

T temperature K  

T0 initial temperature K 293 

x depth beneath surface cm  

α diffusivity = κ / (ρ⨯Cp) cm2/s @RT = 0.023 

γ t – τ s  

τ heat time (duration of laser power) s 100×10-6 

Table 4.1 - Glossary of terms – adapted from (Bass 2012) 

During heating: 

𝑇(𝑥, 𝑡) =
𝑞0

𝜅
[(

4𝛼𝑡

𝜋
)

1
2

𝑒−[𝑥 (4𝛼𝑡)1 2⁄⁄ ]
2

− 𝑥𝑒𝑟𝑓𝑐 (
𝑥

(4𝛼𝑡)1 2⁄
)] + 𝑇0 

Equation 4.1 

During cooling: 

𝑇(𝑥, 𝑡) =
𝑞0

𝜅
{(

4𝛼𝑡

𝜋
)

1
2

𝑒−[𝑥 (4𝛼𝑡)1 2⁄⁄ ]
2

− (
4𝛼𝛾

𝜋
)

1
2

𝑒−[𝑥 (4𝛼𝛾)1 2⁄⁄ ]
2

− 𝑥 [𝑒𝑟𝑓𝑐 (
𝑥

(4𝛼𝑡)1 2⁄
) − 𝑒𝑟𝑓𝑐 (

𝑥

(4𝛼𝛾)1 2⁄
)]} + 𝑇0 

Equation 4.2 
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The thermal gradient G(x,t) and cooling rate T(x,t) can then be written by partially 

differentiating Equation 4.2 with respect to x and t respectively.  

𝐺(𝑥, 𝑡) =
𝜕𝑇

𝜕𝑥
= −

𝑞0

𝜅
[𝑒𝑟𝑓𝑐 (

𝑥

(4𝛼𝑡)1 2⁄
) − 𝑒𝑟𝑓𝑐 (

𝑥

(4𝛼𝛾)1 2⁄
)] 

Equation 4.3 

�̇�(𝑥, 𝑡) =
𝜕𝑇

𝜕𝑡
=

𝑞0

𝜅
[(

𝛼

𝜋𝑡
)

1
2

𝑒−[𝑥 (4𝛼𝑡)1 2⁄⁄ ]
2

− (
𝛼

𝜋𝛾
)

1
2

𝑒−[𝑥 (4𝛼𝛾)1 2⁄⁄ ]
2

] 

Equation 4.4 

 

Solidification rate V = Ṫ/G or Ṫ=GV. 

Equation 4.5 

Equation 4.3 and Equation 4.4 can then be used to predict the solidification velocity 

range, through Equation 4.5, for a given material and laser exposure parameters. It is 

important to note at this point that this model does not consider latent heat of melting.  

In order to calculate values from Equations 4.3-4.5 it is necessary to first consider the 

initial conditions.  

The maximum power output of the Renishaw SLM125 is 200 W, therefore given a beam 

diameter ~ 100μm, the incident power density is ≅ 2.5 × 106 W/cm2. However, for the 

wavelength of the Ytterbium fibre laser, 1060 nm, the absorptivity of nickel is 0.6 (60%), 

in addition we assume a further 90% reduction as a result of material being in powder 

form, giving a q0 ≅ 150,000 W/cm2. This large reduction was determined by comparison 

of predicted melt pool depths and those from experimental trials. Although it seems 
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unnaturally low, the use of higher absorptivity values results in unrealistic maximum 

temperatures, this phenomenon is reported in other works (Roberts, Wang et al. 2009).  

For a nickel base alloy, 200W laser power combined with exposure times of ~100 μs 

result in melt pool depths of ~150μm – with a powder depth of 20 μm. 150μm is then set 

as the melt pool depth, d for the chosen q0.  

The condition of full melting implies that the temperature at the base of the melt pool, 

where x = d, will be that of the melting point of the alloy, Tm. Equation 4.1 can then be 

solved iteratively, setting it equal to Tm (for nickel superalloys 1500 K) to calculate the 

time taken for T=Tm at x=d; this is referred to as the heat time τ.   

Given that the alloy is being surface heated, the temperature at the surface continues to 

rise over time until it reaches its maximum, Tmax, at time τ. Tmax can therefore be 

calculated by solving Equation 4.1 for x = 0 and t = τ.  

Once the material has been melted to a depth d, after time τ, energy input is ceased and 

the melt begins to cool, and then solidify. As the material solidifies, the depth at which the 

temperature is equal to Tmelt moves towards the surface. Solidification is complete once 

the surface temperature is equal to the Tmelt. The time t = τ’ at which solidification is 

complete is established by solving Equation 4.2 iteratively for depth, between the limits 

of 0 < x < d. This is represented graphically in Figure 4.1. 
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Figure 4.1 - Temperature for a given depth with time.  

 

Once τ’ had been calculated, a limiting value for γ was determined and Equation 4.3 and 

Equation 4.5 could be solved. The resulting plots are given in Figure 4.2 to Figure 4.5 
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Figure 4.2 - Thermal gradient with melt depth 

 

 
Figure 4.3 -  Cooling rate with melt depth 
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Figure 4.4 - Solidification rate with melt depth 

 

 
Figure 4.5 - Solidification rate at base of melt pool 
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From Figure 4.4 and Figure 4.5 we can see that the solidification rate V is 0.5 m/s at the 

base of the melt pool, accelerating to a point of infinity at the surface. The behaviour of 

thermal gradient G and cooling rate |Ṫ| agrees with that described by Kurz and Trivedi 

(1994) for solidification with a moving laser source. However, the solidification rate 

shows a different form. This is not unexpected as the case described in this section is for 

a single laser spot with stationary source, and it does agree with the example for pure 

nickel, given in (Bass 2012). It is expected for the case of SLM, the subsequent fusion spots 

would influence the final stages of solidification, as heat is conducted from the 

neighbouring fusion point. The solidification rate would be slowed as the spot was 

partially remelted – given that the point distance is typically less than the length of the 

melt pool.  

Although this model is relatively simple, as it does not include latent heat of fusion in its 

calculations, the minimum solidification rate of 0.5 m/s serves as supporting evidence 

that SLM on a Renishaw style point to point system will still result in rapid solidification 

conditions.  

With regard to predicted microstructure, it is again first established whether 

solidification will occur in steady state conditions. Using the relationship from  

Zimmermann, Carrard et al. (1989) and the predicted Vs range, it is predicted that 

𝐷

𝑉𝑠

𝜕𝑉𝑠
𝜕𝑥

𝑉𝑠
<

10−4  and steady state growth theory can still be applied. Therefore, as with laser 

welding, the microstructure is predicted to be columnar dendritic/cellular, depending on 

beam velocity and chemical composition. This statement can be justified by consulting 

the microstructure selection map in Figure 4.6. Given a ΔT ~ 2500 K (based on an ambient 

T = 300 K and a max surface T = 2800 K – as predicted by the single spot model), and 



 
 

163 
 

distance of ~150 μm (depth of a melt pool), a G ~ 106 K/m is calculated. Using 0.1 m/s as 

the lower interface velocity limit, microstructure falls into the columnar dendrite range.  

The packing of the dendrites can be predicted by first predicting the primary DAS λ1. 

Davies et al. (Davies, Shohoji et al. 1980) determined a relationship between λ1 and 

cooling rate, given as (
𝜕𝑇

𝜕𝑡
), as shown in Equation 4.6. 

𝜆1 = 97 ± 5 (
𝜕𝑇

𝜕𝑡
)

−0.36±0.01

 

   Equation 4.6                                                                                                              

Using the relationship for directional growth of |Ṫ| = GV, and the G and V used for 

microstructure selection, a |Ṫ|~105 K/s is predicted for SLM processing. This gives a λ1 = 

1.5 ± 0.1 μm, implying fine and/or close packed dendrites. It is not expected that banded 

or planar structures will be achieved simply because the interface velocities are not 

sufficient, see Figure 4.6, nor have they been reported in SLM processing to date. 

 

Figure 4.6 - Reproduction of Figure 2.21 for easy reference 

From crystal growth theory discussed in Section 2.4.1 it is predicted that the dendrites 

will grow along the preferred crystallographic orientation, closest to the direction which 
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is anti-parallel to the heat flux, with grains prevailing through competitive growth. A melt 

pool contained within a solid material is comparable to a melt contained with a mould. 

The heat flux is therefore perpendicular to the melt pool trace (interface between melt 

and solid material) and is approximately radial, therefore resulting in radially orientated 

grains, see Figure 4.7. 

 

Figure 4.7 - Grain growth for melt pool in first layer (left) and then epitaxial growth in 

subsequent layer. 

In the successive layer, rather than nucleation at the edge of the melt trace and 

competitive growth of grains, crystal growth is continued from the previous layer and the 

dendrites advance epitaxially transcending multiple layers. As each successive layer 

remelts the majority of the previous one, only the grains at the base of the trace remain 

each time, Figure 4.7 right-hand image. The orientation of the dendrites is maintained by 

the presence of a large heat sink (substrate) which creates a strong heat flux anti-parallel 

to the build direction. All this culminates in high aspect ratio columnar grains oriented in 

the build (z) direction (Deffley 2012); this microstructure has been well documented in 

SLM investigations (Amato 2012, Vilaro, Colin et al. 2012, Wang, Guan et al. 2012, 

Rickenbacher 2013).  
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4.1.2 Solute trapping 

The prediction/observation of dendrite-cells (Amato, Gaytan et al. 2012, Vilaro, Colin et 

al. 2012, Wang, Guan et al. 2012, Rickenbacher 2013) in AM microstructures means that 

segregation free microstructures are not in general to be expected, however the 

magnitude of segregation and over what length scale it occurs has significant effects on 

material response and processed material properties. 

From Section 2.4.2.1 it is evident that the predicted critical velocity for complete solute 

trapping ranges from ~ 0.1 m/s for arsenic in silicon (Baeri, Foti et al. 1981) up to 26 m/s 

for zirconia in nickel (Arnold, Aziz et al. 1999), however as we do not expect complete 

solute trapping it is instead the onset velocity, and transition velocity range, that are 

critical to the discussion of microstructural evolution here. In order to predict this the 

following approach is taken: 

From Figure 2.19 complete solute trapping occurs when log (
𝑉𝜆

𝐷𝑖
) = 2 and onset at 

log (
𝑉𝜆

𝐷𝑖
) = −1. Therefore the interface velocity for complete solute trapping Vcomp and 

onset of solute trapping Vonset are given in Equation 4.7 and Equation 4.8. 

𝑉𝑐𝑜𝑚𝑝 = 100 ×
𝐷𝑖

𝜆
 

 Equation 4.7 

 

𝑉𝑜𝑛𝑠𝑒𝑡 = 0.1 ×
𝐷𝑖

𝜆
 

Equation 4.8 
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It is now assumed that the nickel-zirconia system, although dilute, is the closest 

representation of a nickel superalloy in literature for this problem. Therefore, using a 

λ = 10-9 m and replacing the upper limit of 100 m/s with 26 m/s 

𝑉𝑐𝑜𝑚𝑝 = 26 = 100 ×
𝐷𝑖[𝑁𝑖−𝑍𝑟]

10−9  

Equation 4.9 

Therefore 𝐷𝑖[𝑁𝑖−𝑍𝑟] = 0.26 × 10−9 = 2.6 × 10−10𝑚2/𝑠. Putting this value into 

Equation 4.8, we get a calculated Vonset = 0.026 m/s which serves as the lower limit for 

solute trapping. In order to determine when significant solute trapping will occur, we 

determine the critical velocity for significant solute trapping Vcrit by assuming 

log (
𝑉𝜆

𝐷𝑖
) ≥ 0, and hence 

𝑉𝑐𝑟𝑖𝑡 =
𝐷𝑖[𝑁𝑖−𝑍𝑟]

𝜆
 

Equation 4.10 

Giving a Vcrit = 0.26 m/s. 

This analysis implies that, for the example of the Ni-Zr system, SLM processing should 

indeed result significant solute trapping, but that is unlikely to result in segregation free 

structures – if considering Figure 4.6. The calculated Di is also of the same order of 

magnitude as that calculated via the alternative analysis  of Boettinger et al. (Boettinger, 

Coriell et al. 1984) and implies  that for the majority of cases Vonset ~ 10-2 m/s and Vcrit ~ 

10-1 - 1 m/s. 

It is therefore accepted that under SLM solidification conditions, highly mobile solutes 

may achieve very short distance diffusion, but Vs is high enough to inhibit intergranular 
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segregation, and there is no direct evidence either from the literature to date or from the 

present work to suggest otherwise. This therefore places doubt on the conclusions drawn 

on scant evidence by Tomus et al. regarding the segregation of minor elements towards 

grain boundaries and the formation of brittle/weak phases as a key factor in the 

generation of micro-cracking in nickel alloys. However, the result of increasing the Si and 

Mn content should not be ignored as it still affects the crack susceptibility, regardless of 

mechanism. 

4.2 Experimental verification 

It has been proposed in Section 4.1 that SLM processing conditions will result in the 

formation of dendrite-cells with segregation limited to interdendritic regions or near 

completely inhibited. Observational evidence from literature serves as part validation, 

but further experimentation and analysis is required to make confident conclusions. 

4.2.1 Microstructure analysis 

Samples from the parameter optimisation trial were etched to reveal microstructures and 

observed by both optical and electron microscopy.  

As seen in Figure 4.8, the grain structure is as predicted and consists of large columnar 

grains which cross multiple layers. The larger grains are of the order of 500 μm in length 

and between 50-100 microns in width, and do not adhere to melt track boundaries, 

implying that dendrites did indeed advance via epitaxial growth and were not dominated 

by the local heat flux in the melt pool.  The grains are defined only by dendrite orientation 

with no visible solute segregation to grain boundaries; the grains were only revealed by 

using a polarising filter. The orientation of the grains themselves is antiparallel to the 

bulk heat flux, which is in the negative z direction.  
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Cross sections of melt tracks are visible depending on the orientation of the dendrites; 

this varies as a result of the meander scan strategy used. The grain structure is perhaps 

not as well defined as it is in some reported in literature, Vilaro, Colin et al. (2012) for 

example, which is attributed to the meander strategy. The depth of the light shaded melt 

pool areas corresponds to the 20 μm layer thickness and the dark bands are traces of melt 

pools in different orientations.  

Cracks are observed to lie along the grain boundaries, and the morphology implies either 

DDC or ETSS cracking – this will be discussed further in Chapter 5. 

Higher magnification micrographs are displayed in Figure 4.9. From these we note minor 

levels of interdendritic segregation, which is particularly visible in the horizontal section. 

In addition, the microstructure appears to be cellular like, although this is better observed 

in the SEM imaging.   
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Figure 4.8 – Optical micrograph of etched vertical section of Hastelloy X fabricated with 

LP of 195W, PD of 53 μm and ET of 115 μs. Sample has a crack density of 34 ± 3.5 cracks 

per mm2. Note the absence of visible boundaries between grains, this is as a result of no 

segregation of solute to the edges of the grain and thus etching only reveals dendritic 

structure.  

 

Figure 4.9 - a) Vertical section shows dark interdendritic regions between light coloured 

dendrites, with micro-crack running between grains regions of different orientated 

dendrites (grains). b) Horizontal section, orientations which vary from perpendicular to 

incident line of sight are highlighted by polarisation and appear lighter in colour and 

deviate from the circular cross section of the cell-dendrites.  
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More obvious in the SEM micrographs - Figure 4.10 - than in the optical is that the 

intersecting of melt tracks has caused disruption to the epitaxial grain growth and 

resulted in the creation of smaller grains interspersed between the primary columnar 

grains. It is noted that the smaller grains increase in number with build height, as the 

influence of the heat flux reduces and competitive growth becomes more dominant.  

The lighter colour regions which mimic the melt traces are remnants of previous melt 

pool traces, highlighted by the variations in solute concentration. In the initial stages of 

the interface front acceleration, the interface velocity is sufficiently low to allow low level 

solute diffusion, hence why the base of the melt pools (melt traces) become visible with 

etching. If an established melt trace is heated or partially remelted by an adjacent or 

subsequent melt track, this allows for diffusion within the solid, thus distributing the 

concentration across a greater area.  

High magnification SEM micrographs initially imply that the crystal structure is cellular 

or cellular-dendritic with a distinct absence of secondary arms, see top corner of Figure 

4.10. However from Figure 4.11 the crystals are arguably closer to dendritic than cellular 

given the presence of dendrite trunk edge features which are potentially the initial stages 

of secondary arm growth; although they are not present on every dendrite-cell. The 

microstructure is therefore closer to cellular than first predicted, although it is consistent 

with observations from literature. Using high magnification micrographs, primary DAS λ1 

were measured at 1.05 ± 0.1 μm, which is slightly less than predicted. Using the Davies 

relationship, Equation 4.6, a cooling rate of 3⨯105 K/s may be derived which is consistent 

with the value predicted and is in agreement with a Vs ≤1 m/s, providing thermal 

gradients did not vary significantly from 105 K/m. 
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Figure 4.10 – SE mode SEM micrographs. Primary grain boundaries are visible running 

up the centre of the melt trace, a second less visible boundary is magnified in the 

secondary image. Note that the visible apexes on the crystals are not a physical feature 

and are in fact a result of the crystal orientation intersecting the observational plane.  
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Figure 4.11 - High magnification SE mode SEM micrograph showing dendrite wall 

features which may be interpreted as secondary arm nubs – magnified in white circle. 

Light edging implies minor solute diffusion to interdendritic region. 

 

Another key observation is the absence of secondary phase precipitates. Although 

strengthening phases such as γ’ or γ’’ were not expected, it was possible that small MC 

carbides may have time to form. In order for precipitation of secondary phases to occur, 

there has to be sufficient concentration of diffused solute atoms in the interdendritic 

region. This requires additional consideration of solid state diffusion, as opposed to that 

at the solid-liquid interface.  

If solute diffusion in the solid state can occur from the point at which solidification is 

complete Tm to 0.5Tm, the diffusion temperature range is therefore ΔTdif = 0.5Tm which for 

the example alloy Hastelloy X is 814 K  (Inc. 1997). Given a typical onset of melting of 

~1300 °C or 1600 K for nickel superalloys (Donachie and Donachie 2002), the following 
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calculations are applicable to the nickel superalloys as a whole, and not specific to 

Hastelloy X. 

With a cooling rate Ṫ = 3 x105 K/s, the time window for diffusion tdif = 2.2⨯10-3 s. The 

steady state diffusion distance, that is distance from the primary dendrites to the 

centre of the interdendritic region, δprecipitate = 
λ1

2⁄  ≅ 0.5⨯10-6 m. The distance 

travelled by a solute atom in a time tdif is given by X = (Ds∙tdif)1/2. 

For this scenario, tungsten and tantalum are chosen as a potential MC/precipitate 

forming solute elements. The solid state diffusion coefficient of tungsten at 1400K is 

Ds[W] = 1.1⨯10-15 m2/s and tantalum Ds[Ta] = 9.3⨯10-15 m2/s (Karunaratne, Carter et 

al. 2000) which give an upper and lower limit. This gives an X(W) = 1.5⨯10-9 m and 

X(Ta) =  4.5⨯10-9 m. 

The solute atoms will therefore only travel up to 1/100 of δprecipitate before temperatures 

inhibit atomic movement and diffusion ceases. This implies that the required magnitude 

of solute diffusion for precipitation to occur, and thereby precipitation itself, would be 

inhibited by the solidification conditions. Observations from recent studies support this 

(Vilaro, Colin et al. 2012, Wang, Guan et al. 2012).  

4.2.2 Microsegregation of minor elements 

In Section 4.1.2 it was proposed that the chemical segregation of minor elements should 

not, based on an analysis the prevalent solidification conditions, be a significant factor 

contributing to the crack susceptibility of Hastelloy X in SLM. To explore this further, EDS 

line scans were conducted across crack interfaces on 3 separate samples, two examples 

of which are displayed in Figure 4.12. Inspection of the line scans indicates variation of 

alloying elements across the scan length; however, no one element is seen to significantly 
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increase towards the crack edge, as would be expected if segregation to the grain 

boundary had occurred. Of particular interest is that Si, one of the minor elements 

highlighted by Tomus (Tomus, Jarvis et al. 2013), does not show any sign of concentration 

at the crack edge, nor do any of the primary matrix elements (Ni, Cr and Fe) deplete. The 

only significant variation is over the crack itself, where all matrix elements dip as 

expected.  

 

Figure 4.12 - Two EDS line scans of a crack at medium (left) and high (right) 

magnification. 

 

4.3 Sub-micron precipitate analysis 

In Figure 4.10, in the top image, small white specks are observed around the 

interdendritic regions, likewise in Figure 4.11. In order to establish what the features 

were, time was acquired on the FEI Inspect F Field Emission Gun (FEG) SEM. The Inspect 

F has higher magnification capabilities than the Camscan S2, and is effectively able to 

resolve features of length scales down to 10 nm making it ideal for sub-micron feature 

analysis.  In addition to higher resolutions, the Inspect F also has an EDAX module 

enabling chemical analysis by EDS. 
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Before conducting chemical analysis, an ultra-high magnification (120,000 x) image was 

taken of a dendrite and interdendritic region, Figure 4.13. It observed that the features 

are clearly part of the microstructure, and their morphology suggests they are secondary 

phase, although some appear to be extensions of the dendrite trunk. The majority are 

irregular, discontinuous and globular in morphology, implying either MC carbides or 

sigma phase (Donachie and Donachie 2002). The continuous wave like structure (bottom 

left) is similar in appearance to that of the potential secondary arms observed in Figure 

4.11, however in this image it is, in parts, separate from the dendrite trunk. From a lower 

magnification image, Figure 4.14, the continuous features are observed to be attached to 

some dendrites and of a similar colour to the edges of the dendrites. It is proposed that 

these irregular continuous features are most likely remnants of the higher solute 

concentration matrix phase formed from local diffusion to the interdendritic regions, 

which has been all but eroded by the etchant.  

The electron backscatter detector was then used in place of the secondary electron 

detector (standard imaging) as it highlights any differences in chemical composition. The 

electron back scatter is stronger from elements of a high atomic number compared to 

those with a low atomic number, and therefore a region with a higher concentration of 

heavy elements will appear brighter. This would enable an initial indication as to whether 

the features were secondary or primary phase.  

Figure 4.15, shows the back scatter micrograph of dendrites in the horizontal section. It 

is observed that there are particulates situated in the interdendritic regions, whose bright 

appearance implies a different composition to the dendrites. However, it is also observed 

that they range in relative contrast, implying the composition of the precipitates is not 
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consistent across the sample. Figure 4.15 also demonstrates the cellular structure of the 

crystals, with no hint of secondary dendrite arms.  

 

Figure 4.13 - Ultra high magnification SE mode SEM micrograph showing potential 

secondary phases. Globular particles are of the order of 50-100 nm in size. 
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Figure 4.14 – High magnification SE mode SEM micrograph showing dendrite edge 

features 

 

Figure 4.15 – Electron back scatter SEM micrograph showing cell-dendrite primary 

trunks with precipitates (brighter contrast) in inderdendritic regions 
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Figure 4.16 is a higher magnification image of Figure 4.15, used for EDS point scanning. 

Given the findings of Vilaro, Colin et al. (2012), it was expected that the features may be 

submicron MC carbides. For Hastelloy X, the most likely composition would be MoC. The 

EDS spectrum for both precipitate and dendrite is displayed in Figure 4.17. It shows a 

very weak, near non present, peak for carbon for the precipitate, and a low peak in the 

dendrite. Other than carbon, all other elements were detected at very similar levels for 

both precipitate and dendrite. Mo is arguably lower in dendrite, however. 

The same analysis was conducted on a vertical section, Figure 4.18 and Figure 4.19. This 

time the resolution is higher as the material had been more severely etched. From this 

observation plane, one observes that the precipitates are oblong globular, there is also no 

presence of the wave like features observed in standard imaging. The spectra for the 

vertical section are near identical between the precipitate and the dendrite, with no 

carbon detected in either.  

The colour contrast between the precipitates and dendrites implies a difference in 

composition, however the precipitates are likely too small to be distinguished from the 

background material using EDS. A smaller electron beam spot size would be required to 

reduce the electron beam interaction volume, allowing for particle and background 

volume to be better distinguished. Unfortunately, the spot size could not be reduced 

further on the Inspect F. Transmission Electron Microscopy (TEM) would likely provide 

a solution, however the time commitments for TEM meant that this could not be 

performed in the remaining project time. 
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Figure 4.16 – Electron back scattered micrograph of cross sectioned microstructure - 

indicating positions of EDS point scans (red crosses) 

 

 

Figure 4.17 - EDS point spectra for precipitate and dendrite in cross section 
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Figure 4.18 - Back scattered micrograph of vertical sectioned microstructure - indicating 

positions of EDS point scans (red crosses) and base of melt pool trace 

 

 

Figure 4.19 - EDS point spectra for precipitate and dendrite in vertical section 
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That the spectra are easily lost within that of the background implies the precipitates are 

of a similar composition, differing instead by crystal structure. Sigma phase therefore 

provides one likely candidate as it can have the following formula: FeCr, FeCrMo, 

CrFeMoNi and CrNiMo. Ni, Cr, Fe and Mo are the four most abundant elements in 

Hastelloy X. Sigma phase is tetragonal in crystal structure, appears as irregular globules 

which are often elongated, and forms after extended exposure at temperatures between 

540 and 980°C (Donachie and Donachie 2002). With the exception of the extended 

exposure, the characteristics of sigma phase fit with the observed precipitates. However, 

the bright contrast of the precipitates also suggests (at least some) of the precipitates are 

of significantly higher average atomic mass than the dendrites, in which case MC (Mo) 

would also fit with observations. 

An explanation for how the precipitates are allowed to form is that of recalescence driven 

by the reheating/remelting from successive laser passes and melt layers. The release of 

latent heat from an adjacent melt pool increases the material temperature to critical 

range for precipitation. The small size of the precipitates implies that the time frame in 

which they precipitate is very short, which ties in with SLM conditions.  

It is difficult to assess whether the nano-precipitates affect the material response, or as 

processed mechanical properties of the material, as no comparable investigations are 

reported in literature. Sigma phase is known to be detrimental to the ductility of nickel 

superalloys, however this is when it is present as significantly larger precipitates at the 

grain boundary (Donachie and Donachie 2002). Although Vilaro, Colin et al. (2012) 

reported the presence of similarly nano-scale carbides in the interdendritic regions, they 

did not propose any potential influence on material response or properties. Comparisons 

of tensile properties between SLM as deposited nickel superalloys and wrought 
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equivalents (particularly for solution strengthened alloys) suggest that if there is an 

influence of nano-precipitates, it is beneficial rather than detrimental. It is thus concluded 

at this point that nano-precipitates are allowed to form within the interdendritic region, 

despite rapid solidification conditions, as a consequence of the reheating patterns 

inherent with SLM. The influence of these nano-precipitates, although not quantified, is 

deemed to be insignificant at this time. 

Note, these precipitates are considered separate to the γ’’ –bct Ni3Nb phase precipitates 

reported in SLM processed Inconel 718 by (Amato, Gaytan et al. 2012), which were 

significantly larger and coherent within the cell-dendrite structure. As will be discussed 

in Chapter 8, the larger coherent precipitates may have an influence on material 

response, however this is likely to be confined to γ’’ strengthened alloy systems only. 

 

4.4 Chapter summary 

Consideration and application of rapid solidification theory, and a comparison to 

observations from this investigation and published work, resulted in the establishment 

of SLM as a rapid solidification process.  

Solidification conditions were modelled for single laser spots. Using the properties of 

Hastelloy X it was calculated that the solidification rate, Vs would be of the order of 0.5 

m/s. This was in agreement with the continuous wave model, in which Vs was 

approximated to be between 0.1-1 m/s.  

Aziz’s solute redistribution theory was applied using the proposed solidification rates, 

from which it was implied that significant solute trapping would occur, resulting in a near 

solid solution. 
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Characterisation of the microstructures of SLM processed Hastelloy X revealed it to be 

consistent with that found in literature. Cooling rates determined from primary dendrite 

arm spacings agreed with those proposed from rapid solidification theory and the 

calculated solidification rate of <1 m/s.  

Although localised micro-segregation was apparent from the presence of interdendritic 

regions and melt pool traces, the material was observed to be in single phase, and no 

grain boundary segregation was observed.  
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5 Cracking mechanism and crack susceptibility defined 

The findings in Chapter 4 now allow conclusions to be drawn on the type of cracking 

present in SLM processed nickel superalloys and the method which may be used to 

reduce and eliminate them. 

In this chapter, established theory is applied to the SLM case and a method for the 

reduction of crack susceptibility in nickel superalloys is proposed. The hypothesis is then 

tested experimentally and validated. 

5.1 Mechanism for process induced micro-cracking in SLM 

In Chapter 4 it was established that the microstructure of an SLM processed nickel 

superalloy will not vary greatly from that of large columnar grains comprised of fine 

dendrite-cells with interdendritic limited microsegregation and an absence of significant 

secondary phases or grain boundary segregation. This implied that any cracking 

mechanism in which segregation of solute atoms had to occur, was very unlikely to be 

active in SLM processing. Therefore, of the mechanisms discussed in Section 2.7, 

solidification cracking is considered unlikely and liquation cracking is to be disregarded. 

This decision is supported by observational evidence from micrographs of cracks and 

crack surfaces. In Figure 5.1 it is seen that the cracks have a distinct jagged morphology 

with evidence of rupture or fracture, as opposed to separation – which would be 

supportive of solidification or liquation cracking. Micro-cracks are observed to propagate 

along the grain boundaries only, see Figure 5.2. If solidification cracking was active, it 

would be expected to observe some smaller interdendritic cracks or cracks running along 

the base of the melt pool where the limited segregation is noted to occur.  When these 
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observations are combined with those of the EDS line scans in Figure 4.12, it all but 

eliminates solidification cracking and a cracking mechanism.  

 

Figure 5.1 – Crack observed with SEM for a range of process parameters, axis in (c) 

applies to all images. a) is from the initial density trial, a large crack is observed with 

significant solid state fracturing clear in the centre. b)  an etched sample from the LP vs 

Ap Vel trial, majority of micro-cracks follow this appearance, still appears to be fracture 

driven rather than separation – likewise with (c). d) less jagged in appearance, although 

feature central to length of the crack is fracture-like. 

The two remaining possible cracking mechanisms are DDC and ETSS. At lower 

magnifications DDC and ETSS cracks appear very similar, one could even argue that DDC 

is a type of ETSS. The primary mechanism attributed to DDC in welding of nickel alloys is 

the formation of micron scale carbides along the grain boundary. High magnification SEM 

micrographs should allow for the observation of the carbides (of the order of 1μm in size) 

either along grain boundaries or crack surfaces, see Figure 5.3. 
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Figure 5.2 – Higher magnification micrograph of sample in Figure 4.#. Cracks lie 

exclusively along grain boundaries and are all of a similar morphology. None are 

observed to propagate along melt traces. 

 

 

Figure 5.3 – High magnification SEM mode SEM micrographs of microcracks. Fabric of the 

dendrites is observed to have been disturbed and ruptured, rather than merely 

separating.  
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In Figure 5.3, no detectable carbides are observed, instead there is more evidence to 

suggest rupturing and fracture. If there were carbides, then analysis from Section 4.3 

suggests that they would not be detectable. 

Stress formation along grain boundaries due to variations in elastic modulus between 

adjacent grains, is the final mechanism under consideration. Although not specifically 

validated as a theory, reports detailed in Section 2.4.3 and 2.8.4 provide enough 

supporting evidence to suggest that it is plausible. One counter argument, however, is 

that elastic modulus is not very sensitive to composition variation, and hence the majority 

of nickel superalloys have very similar Young’s moduli. Therefore, if the elastic tensor 

anisotropy was significant in micro-crack formation, it would be expected to effect the 

majority of nickel superalloys similarly. However, it is noted from literature that 

compositionally similar alloys, e.g. Hastelloy X and Inconel 718, display markedly 

different SLM processing crack susceptibilities. Therefore, it is concluded that although 

elastic tensor anisotropy may be an influencing factor, more likely it is a contributory, 

rather than the principal, mechanism.  

Based on the evidence collected from literature and this investigation, it is therefore 

concluded that micro-cracking in nickel superalloys is predominantly caused by ETSS 

mechanism. 

5.2 Crack susceptibility defined 

ETSS cracking occurs when process induced tensile stress exceeds the local UTS of the 

material. In SLM, the high thermal gradients inherent with laser surface processing drive 

the formation of thermal stress through TGM. Logically then, a reduction in the thermal 
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gradients would reduce the local stress fields and hence reduce crack formation. This can 

potentially be achieved through optimisation of process parameters, however given that 

the temperatures required to achieve full melting of nickel superalloys will always exceed 

1200 K and in conventional machines the deposited powder is at room temperature, 

thermal gradients will always remain high. For this reason high thermal stresses are 

considered an inevitable characteristic of SLM (Tomus, Jarvis et al. 2013), and additional 

solutions must be explored.  

As discussed in Section 2.9, the processability of an alloy can be improved by altering its 

composition in order to affect the material response. ‘SLM Processability’ can be defined 

as: 

 

The ability of a material to be processed with Selective Laser Melting and possess 

mechanical properties similar or greater than that of the conventionally (wrought/cast) 

processed equivalent 

 

It was proposed by Deffley (2012) that the SLM processability of an alloy depended 

largely on two performance indicators, Thermal Stability and Thermal Shock resistance. 

Thermal stability refers to what extent a material will deform or deflect for a given heat 

input and geometry. The two material properties associated with this response are 

thermal conductivity (κ) and co-efficient of thermal expansion (αCTE). The assumption is 

that ‘good thermal stability’ refers to minimal deflection, and as such one would wish to 

maximise κ and minimise αCTE. This can also be described as maximising κ/αCTE. 

Thermal shock resistance, or TSR, refers to the material’s ability to resist crack formation 

as a result of a change in temperature for a given heat input and geometry. As described 
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above, a rupture will occur once the stress exceeds the materials UTS. However, if the 

material can relieve the stress by elastic deformation then plastic deformation and 

rupture can be avoided. As such one requires the material to be strong but low in stiffness 

and, as with thermal stability, a low thermal expansion co-efficient is also desirable. 

Therefore for a good TSR one must maximise Equation 5.1, where σUTS is the UTS 

(preferred over fracture strength when applying TSR to ductile materials), ν is the 

Poisson ratio and E is Young’s modulus. Yield strength is usually chosen over UTS as it is 

still desirable for the material to not plastically deform, however for fracture UTS is more 

applicable. 

𝑇𝑆𝑅 =
𝜎𝑈𝑇𝑆 ∙ 𝜅 ∙ (1 − 𝜈)

𝐸 ∙ 𝛼𝐶𝑇𝐸
 

 

Equation 5.1 

Maximising Equation 5.1 is not as straight forward as initially described however, as 

there are consequences to altering certain properties. A low stiffness may be desirable 

for improved TSR; however, this may not be the case for the end use application. This is 

of particular relevance when considering the application of nickel superalloys, the 

majority of which are operated under high loading (Donachie and Donachie 2002). 

Poisson’s ratio is difficult to control without also affecting Young’s modulus, so is in this 

instance to be neglected. We therefore look to reduce thermal expansion. However, work 

on symmetry relationships between alloy properties (Toda-Caraballo, Galindo-Nava et al. 

2013) finds that αCTE is inversely related to E. This means that a reduction in αCTE will 

result in an increase in E, and vice versa. Therefore, the ‘good’ TSR remit is not achievable 

through αCTE and E manipulation. It also implies that an attempt to increase thermal 
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stability may have undesired effects on the elastic modulus and mechanical strength of 

the alloy.  

Thermal stability could be increased by increasing κ. However, in metals thermal 

conductivity is directly related to electrical conductivity which is driven by the density of 

free valence electrons. At the surface, the free electrons interact with incident 

electromagnetic radiation and hinder the coupling of energy of the metal. An increase in 

thermal conductance means an increase in free electron density and therefore a 

reduction in the absorption of energy, or absorptivity (Deffley 2012). Given that the 

process relies on the absorption of energy from a laser source to melt the metal, a 

reduction in material absorptivity is to be avoided. 

It is therefore proposed that rather than the two separate performance indicators, we 

consider the crack susceptibility of an alloy, χ, which is dependent on the ratio TSR/σth(T, 

E, αCTE) , where σth is the thermal stress and is some function of temperature, T, Young’s 

modulus, E and αCTE. Given the above discussion, this is further reduced to Equation 5.2. 

χ =
𝜎𝑈𝑇𝑆

𝜎𝑡ℎ
 

 

                                                                                                                                                Equation 5.2       

For a material to withstand ETSS cracking, the inequality σUTS > σth must be satisfied. To 

reiterate, σUTS is chosen as it is the property which has the least chance of detrimental 

effect on material performance when increased.  

The following sections focus on the control and increase of σUTS through manipulation of 

alloy composition. The control of thermal stress is considered in Chapter 7. 
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5.3 Chapter summary 

From the observations and conclusions of Chapter 4, and supported by published 

literature, it was proposed that the primary cracking mechanism in nickel superalloys 

during SLM processing, was Elevated Temperature Solid State (ETSS) cracking. 

ETSS cracking was defined as occurring when the thermal stress generated by the process 

exceeds UTS of a material at a given location and temperature. Taking ETSS as the 

primary mechanism for micro-crack formation, the crack susceptibility of an alloy was 

defined as the ratio between the tensile strength of the material and the thermal stress 

generated by the process 
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6 Tensile strength contribution 

6.1 Development of tensile strength model 

The yield stress of a metal can be described using the Hall Petch equation. 

𝜎𝑌𝑆 = 𝜎0 + 𝑘𝑑𝑑
1
2 

Equation 6.1                                                                                                                                

where σ0 represents the lattice stress, kd is the locking parameter value and d is the 

average grain size. It is noted that although UTS is required for the TSR and Crack 

susceptibility equations, the Hall Petch equation for yield strength represents a more 

quantifiable relationship than one which accommodates UTS. This is not to say that UTS 

is now being disregarded, rather than the following assumption is made. The difference 

in stress Δσ between material yield (σYS) and failure (σUTS) is dependent on the ductility 

of the material. If it is assumed that ductility does not vary greatly with minor 

compositional alterations, then Δσ is fixed and therefore ΔσYS ≅ ΔσUTS.  

In Chapter 4 it was concluded that as deposited SLM material will be in a state of saturated 

solid solution, and only the primary γ matrix phase will be (significantly) present. In this 

state, i.e. in the absence of secondary strengthening phases, the lattice stress is dominated 

by the solid solution contribution. The lattice stress in Equation 6.1 can therefore be 

separated to that of the solid solution contribution, σss, and the Peierls stress σP. 

𝜎𝑌𝑆 = 𝜎𝑃 + 𝜎𝑠𝑠 + 𝑘𝑑𝑑
1
2 

Equation 6.2 
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We now consider the comparison of two hypothetical alloys, denoted j and k respectively, 

with minor compositional variations. In order to assess Δσss processing parameters must 

be fixed; this then allows the following assumptions to be made. Peierls stress and kd can 

be fixed as the alloy composition does not vary significantly enough and thermal 

conditions are identical; in addition, the contribution of σP is minimal. As discussed in 

Section 2.4 grain structure is controlled by Vs and |Ṫ| which will not vary under identical 

processing conditions, therefore d can also be fixed.  

The difference in yield strength between alloy j and k, σkYS – σjYS, then reduces to ∆𝜎𝑌𝑆 =

 ∆𝜎𝑠𝑠. It is noted that this relationship holds providing the composition modification does 

not introduce new phases.  

Gypen and Deruyttere (Gypen and Deruyttere 1977) determined a model for 

multicomponent solid solution strengthening as a function of solute concentration, when 

the binary Solid Solution Strengthening (SSS) effect of individual solutes is known. The 

SSS contribution is given by: 

𝜎𝑠𝑠 =  (∑ 𝑘
𝑖

1
𝑛𝑐𝑖

𝑖

)

𝑛

 

Equation 6.3                                                                                                               

where ci is the concentration of solute (in atomic fraction) i, and ki is the strengthening 

constant of solute i.  n is taken as ½ to be consistent with the dependence on 

concentration in Feltham’s Trough model (Feltham 1968), as proposed by Roth et al. 

(Roth, Davis et al. 1997). The values of ki are determined empirically by measuring the 

individual strengthening contribution of the element whilst in a binary alloy. Mishima 
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(1986) determined the strengthening constants for SSS elements in nickel binary alloys 

– specific values are presented in Table 6.1. 

Alloying Element Strengthening constant (MPa per At. 
Fraction) 

Al 225 
Si 275 
Zn 386 
Ga 310 
Ge 332 
In 985 
Sn 1225 
Sb 960 
Ti 775 
V 408 
Zr 2359 
Hf 1401 
Nb 1183 
Ta 1191 
Cr 337 
Mo 1015 
W 997 
Mn 448 
Fe 153 
Ru 1068 
Co 39.4 
Rh 520 
Cu 86.7 
C 1061 
Pd 492 

Table 6.1 - Strengthening constants for alloying elements of nickel 

In the full model, a thermal component is considered but not quantified, rather 

assimilated into a numerical fit. In this investigation thermal contributions are accounted 

for in the Peierls stress. 

Using Equation 6.2 and Equation 6.3, one could calculate an approximate value for the 

yield strength of an alloy as a function of elemental composition, providing the relevant 

values (σp, ki, d, and kd ) were known. However, the simplicity of this model and the nature 

of the high aspect ratio SLM grain structure would mean absolute values are unlikely to 

be consistent with those measured experimentally. Instead it is better suited to 
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predicting the SSS contribution, or for the purposes of alloy composition alternation, the 

difference in lattice stress as a result of minor solute concentration shift.   

∆𝜎𝑠𝑠 = 𝜎𝑠𝑠𝑘 − 𝜎𝑠𝑠𝑗  =  (∑ 𝑘
𝑖

1
𝑛𝑐𝑖𝑘

𝑖𝑘

)

𝑛

− (∑ 𝑘
𝑖

1
𝑛𝑐𝑖𝑗

𝑖𝑗

)

𝑛

 

Equation 6.4 

                            

with j and k again representing the two alloy compositions. This leads to a powerful 

relationship. Prediction of change in solid solution contribution is prediction of change in 

lattice stress, which is in turn prediction in change in yield strength and therefore UTS 

and ultimately, crack susceptibility. Numerically 

Δ𝜎𝑠𝑠 = ∆𝜎0 = ∆𝜎𝑌𝑆 = ∆𝜎𝑈𝑇𝑆 ∝ ∆𝜒 

Equation 6.5 

The relationship in Equation 6.5 allows for the prediction of an increase in UTS as 

consequence of alteration of the alloy composition. The next step is therefore to use 

Equation 6.4 to modify the composition of a known high crack susceptibility alloy with 

the intention of increasing its UTS and reducing its crack susceptibility.  

 

6.2 Application to reduce crack susceptibility 

Having identified Hastelloy X as a high crack susceptibility alloy, it was chosen to test the 

solid solution strengthening–crack susceptibility hypothesis, as described in Section 5.2. 

Using Equation 6.4, the composition of the Hastelloy X used in the optimisation trials (to 
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be referred to as Original unmodified Hastelloy X, OHX) would be modified to increase its 

solid solution contribution. Crucially, the composition would be kept within the Hastelloy 

X specification range, defined by Haynes International Inc. The modified alloy would then 

be processed under like for like conditions, and the crack densities would be compared 

to validate the hypothesis. Tensile properties and thermal expansion coefficients would 

also be compared to determine the validity of Equation 6.4.  

6.2.1 Hastelloy X composition alteration 

 

An independent chemical analysis of OHX powder was undertaken in order to establish 

the wt% of all detectable elements down to an accuracy of ppm, full details of which are 

given in Table 6.2.  

The relative contribution to the solid solution strength of a solute element, or potency, is 

given by its strengthening parameter ki, with absolute contribution being the product of 

ki with the solutes concentration or atomic fraction (At. Frac). The atomic fraction is the 

fraction of total atomic weight of the solute with respect to the total atomic weight of the 

lattice, and is therefore not the same as wt%. If one knows the full composition of an alloy, 

atomic fraction can be calculated from the wt% values by the following formula. 

𝑐𝑖 =  

𝑤𝑡%
𝑧
𝑀

 

Equation 6.6 

where z is the atomic weight of the given element and M is the sum of (wt%/z) for all of 

the elements in the alloy 
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The ki values from Table 6.2 were used to identify the most potent SSS elements present 

in the composition of OHX. The three most potent SSS elements were identified as 

molybdenum, tungsten and carbon.  It was decided that because of its association with 

DDC cracking and affecting alloy ductility in nickel alloys, the concentration of carbon 

would not be actively increased; it would not be decreased either, because it is still vital 

for the formation of carbides and required for lattice strengthening.  

A modified composition of OHX was therefore proposed, with increases of Mo and W to 

close to maximum specification values (10 and 1 wt% respectively). Other alterations 

include a reduction of tramp elements O, N, Cu, Pd and P, which are deemed detrimental 

to mechanical properties of the alloy in levels down to a few ppm (Donachie and Donachie 

2002), and a reduction in Mn which was highlighted by Tomus, Jarvis et al. (2013) as 

being potentially detrimental crack susceptibility in Hastelloy X. No new additions of 

potentially advantageous elements were implemented as the aim was to keep the 

material within specification. The Modified Hastelloy X (MHX) powder was then 

fabricated by a third party powder mill and supplied by LPW Technology. With the 

exception of Mo and W, exact wt% values for constituent elements were not requested. It 

was only requested that tramp elements be reduced as much as feasible and Mn was 

reduced within specification. All other alterations were only consequential of the 

intentional additions/reductions. 

As with OHX, MHX was subjected to an independent chemical analysis, this was primarily 

to obtain high accuracy data comparable to that of OHX, but also check that the desired 

changes to composition had been made. Table 6.2 details the full compositions of the OHX 

and MHX powder as well as the associated change in atomic fraction and strengthening 

parameters for each alloying element.  
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Element OHX wt% MHX wt%  Δci (At. Frac) k (MPa At. Fraction-1/2) 

Ni 47.87±0.28 46.55±0.27  -0.01 - 

Cr 21.3±0.19 21.80±0.19  0.007 337 

Fe 19.5±0.17 18.59±0.17  0.0004 153 

Mo 9.0±0.12 9.40±0.12  0.003 1015 

Co 1.04±0.04 1.77±0.05  0.007 39.4 

Mn 0.48±0.03 0.22±0.02  -0.003 448 

Si 0.32±0.02 0.31±0.02  -0.0002 275 

W 0.56±0.03 1.05±0.01  0.0016 997 

C 0.057±0.01 0.054±0.01  -0.0001 1061 

Pb (5 ± 0.5)×10-6 (3±0.3)×10-5  7×10-8 - 

O 0.049±0.005 0.025±0.003  -8×10-4 - 

Cu 0.45±0.05 0.01±0.001  -0.004 - 

N 0.048±0.005 0.009±0.001  -0.002 - 

P 0.014±0.001 0.006±0.0006  -1.5×10-4 - 

σss 309.3 ± 0.29 317.3 ± 0.3  MPa  

 

Table 6.2– Composition of OHX and MHX with concentrations, elemental strengthening 

coefficients (k) and resulting σss values. Values for k taken from Mishima et al.[32].  

Equation 6.3 was used to calculate the solid solution strengthening contribution for OHX 

and MHX as well as the predicted Δσss, all of which are given at the bottom of Table 6.2. 

The predicted difference in solid solutions strengthening contribution Δσss = 8.02 ± 1.2 

MPa. All detectable elements were included in the calculation, providing a strengthening 

constant existed for them. 
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6.2.2 Modified Hastelloy X: material response and property comparison 

 

The next step was to process OHX and MHX under identical conditions, then compare 

crack densities and microstructures. It is noted there was a limited volume of the MHX 

alloy powder available as it was a special heat. Sample size was therefore reduced to 

5x5x5 mm for the alloy comparison trials in order to maximise sample population, as 

opposed to the 10x10x10 mm cubes used the optimisation trials (Section 3.3.2). 

Samples of both OHX and MHX were built for a range of parameter sets, including the 

optimised set from Section 3.3.2, at the new smaller sample size. Density and crack 

density analysis was conducted on all samples, as described in Section 3.2. The density of 

all samples was >99.5%. Figure 6.1 displays the crack densities for MHX and OHX for a 

range of parameter sets, including the optimised set from Section 3.3.2.   

It is observed that the altered sample geometry yielded significantly greater crack 

densities across the sample range. This is apparent as all of the parameter sets were 

repeats from the optimisation trials, and therefore direct comparisons between the OHX 

10 mm cubes and 5 mm cubes can be made. The increase in cracking is attributed to the 

significant reduction in volume of the samples  which results in a reduction in residual 

heat (Roberts, Wang et al. 2009), leading to a lower quench temperature and increased 

thermal gradient (Mercelis and Kruth 2006). As the effect of sample size on crack density 

was not foreseen, an additional trial was conducted with the aim of quantifying the 

relationship, see Section 6.3. 
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For this sample set, MHX yielded significantly lower crack densities in all like for like 

samples than the standard OHX; with an average reduction of 65% observed in the 

vertical section and 57% in the horizontal section. The lowest crack density measured for 

the MHX was 1.6 ± 0.9 cracks per mm2, which was an 86% reduction against the 

equivalent OHX sample (11.6 ± 2.4 cracks per mm2). Figure 6.1 also demonstrates the 

uniform reduction in crack density across all energy densities; it shows there was a true 

reduction in the crack susceptibility of the alloy. 

 

Figure 6.1 - Crack densities of OHX (filled) and MHX (unfilled) measured in vertical (V) 

build orientation, bottom plot, and horizontal (H) build orientation, top plot. 

The reduction in cracking is visually appreciated by comparing micrographs of OHX and 

MHX samples built with the same parameters. Figure 6.2 shows 4 micrographs, 2 of OHX 

vs 2 of MHX built with the same two sets of parameters. 
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Figure 6.2 – OHX vs MHX. Horizontal sections of OHX and MHX for two sets of processing 

parameters, demonstrating the reduce micro-cracking in MHX. 

 

In order to confirm the mechanism responsible for the reduction in crack susceptibility 

and also validate Equation 5.6, OHX and MHX were compared for tensile properties 

(elongation, yield strength, UTS), Young’s modulus, Vickers Hardness and thermal 

expansion. Tensile testing was carried out at room and elevated temperature (1033 K), 

see Figure 6.3.  
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Figure 6.3- Tensile properties comparison for OHX and MHX: RT = Room Temperature, 

HT = High temperature (1033 K). 

There was no discernible increase in the room temperature tensile strength of MHX, 

however an increase in the elevated temperature UTS was observed. UTS plus standard 

deviation of OHX was 484.0 ± 4.0 MPa with MHX at 500.3 ± 2.6 MPa. This is attributed to 

the temperature sensitivity of substitutional SSS of large solute atoms. At elevated 

temperatures dislocations carry a higher energy state, and the stress required to inhibit 

their propagation increases. At this point larger substitutional solute atoms, such as Mo 

and W, become more favourable as they create larger stress fields within the lattice. Their 

large size also inhibits their diffusion within the solid, making them a more stable barrier 

at elevated temperatures. This not only explains the elevated tensile results, but also 

reinforces the argument for increasing the atomic percent of heavy SSS elements in 

favour of lighter elements such as Fe or Si to maximise TSR.  

The elastic modulus of both OHX and MHX are observed to be lower than that of wrought 

Hastelloy X (as stated on the Haynes International Datasheet), which is 205 GPa. However 

they are in very close agreement with the values measured by (Etter, Kunze et al. 2015) 
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for the same material, build orientation, layer rotation (67°) and testing conditions. As 

described by Etter (and previously in Section 2.8.4), the reduction is attributed to the 

anisotropy of the elastic tensor in the Hastelloy X single crystal. The SLM process (with 

67° rotation) produces a <001> fibre texture with respect to build direction, thus 

maintaining anisotropy (although not as strongly as the single crystal) for the bulk 

material. The typically coarser, and equiaxed grain structures of cast/wrought/annealed 

material do not possess such anisotropy and thus display more middling (in this case 

higher) elastic moduli with respect to the maximum of the single crystal.  

The reduction in measured elastic moduli is also observed in a number of other published 

works in which the tensile properties of SLM fabricated nickel superalloys have been 

investigated. Wang (2011) - Hastelloy X, Wang, Guan et al. (2012) – Inconel 718, Vilaro, 

Colin et al. (2012) – Nimonic 263, Kanagarajah, Brenne et al. (2013) – Inconel 939, all 

report elastic moduli in the region of 170-180 GPa, for alloys which have values of 

200+GPa in the conventionally manufactured condition. 

Average Vickers hardness for OHX and MHX were 277.1±3.9 and 280.9±4.0 Hv0.5 

respectively. However, there was great variation across the samples, due to the residual 

stress present, and any increase in true hardness is lost within the deviation.  

Ductility of MHX was marginally higher at room temperature, and was expected due to 

the reduction of tramp elements, however at elevated temperature a large reduction in 

ductility is observed. It is proposed that the minor alterations to the composition has 

resulted in a shift of the critical temperature range for the elevated temperature ductility 

minimum of the alloy – as discussed in Section 2.7.3 – which is typically around 1033 K 

(1400F) for nickel-base superalloys (Arkoosh and Fiore 1972).  
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It is proposed that for OHX the composition is such that the ductility minimum lies below 

the 1033 K test temperature, and therefore at the test temperature the SSS elements in 

the matrix are heavily depleted due to extensive carbide formation hence normal ductility 

resumes. For MHX, the composition is such that the ductility minimum lies close to the 

test temperature, and hence it displays low ductility. 

Inspection of the fracture surface reveals presence of carbides for both alloys, see Figure 

6.4 and Figure 6.5. OHX displays a higher concentration of carbides than MHX, indicating 

more significant carbide precipitation which is consistent with its higher ductility. It is 

emphasised at this point that this mechanism is not considered as a factor in micro-crack 

formation, as any local plastic deformation as result of thermally induced stress would 

not be over a sufficient range. The ductility minimum does pose a concern for operational 

life of the alloys however, and it is important that the sensitivity of this effect has been 

highlighted for alloy development. 
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Figure 6.4 – Fracture surface of high temperature tensile bar for OHX, carbides are 

highlighted by white circles and arrows. Taken in SE mode. 
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Figure 6.5 - Fracture surface of high temperature tensile bar for MHX white circles 

highlight precipitated carbides. Both alloys display small carbides which have formed as 

a consequence of the elevated temperature plastic deformation. Taken in SE mode. 

 

The effect of composition alteration on the thermal expansion of OHX and MHX alloys is 

displayed in Figure 6.6 and Table 6.3. There is no significant variation between the 

measured linear expansion and calculated αCTE for the OHX and MHX alloys. This is 

expected as although molybdenum and tungsten have been reported to reduce αCTE of Ni-

base superalloys, particularly in solid solution, a significant reduction (1⨯10-6m/K) 

would require increases of the order of 5 wt% (Hull, Hwang et al. 1987). The reduction 

of αCTE, and hence increased thermal stability, is therefore disregarded as a secondary 

mechanism responsible for the reduction of cracking in the MHX alloy. 
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Figure 6.6 - Thermal expansion data for OHX (solid grey line) and MHX (dashed line) 

plotted as a function of temperature. 

 

Alloy αCTE (10-6 /K) 

 303-673 

K 

303-773 K 303-873 K 

OHX 14.34 14.73 15.15 

MHX 14.47 14.76 15.17 

 

Table 6.3 - Mean coefficient of thermal expansion for OHX and MHX alloys over full and 

partial temperature ranges. 

 

For the case of MHX therefore, an increase in solid solution strength has resulted in a 

significant reduction of crack density (and thus crack susceptibility) over OHX. This result 

therefore supports the theory of crack susceptibility, based on the assumption that 

thermal stress contributions, were not significantly different. 
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6.3 Cracking with geometry, power and energy density 

After it was revealed that the smaller 5 mm cubes used in the OHX-MHX comparison trials 

(Section 6.2) cracked more severely than 10 mm cubes for the same processing 

parameters, it was deemed necessary to investigate the effect of part geometry/volume 

on micro-cracking. 

 

6.3.1 Initial findings  

 

Comparing Figure 3.25 to Figure 6.1, we can immediately see that crack density for the 

same 1D energy densities is significantly lower for the 10 mm OHX samples than for the 

5mm OHX samples. Figure 6.7 shows the same data of Figure 6.2 but this time the data 

has been separated into series of laser power. It is now apparent that the trends observed 

in the 10 mm samples for laser power and energy density are not repeated in the 5 mm 

samples.  
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Figure 6.7 - Crack densities of OHX with 1D energy density, separated into series of laser 

power. 

In Figure 6.7 and Figure 6.8 it is seen that in fact 180 W yields higher crack densities on 

average than 195 W, although the relationship is less well defined for OHX. There is an 

argument that the relationship is still dependent on energy density, although the drop 

between the two points closest to 0.4 J/mm would serve to counter this. Clarity is 

therefore required.  
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Figure 6.8 - Crack densities of MHX with 1D energy density, separated into series of laser 

power. 

 

6.3.2 DOE  

 

In order to best determine any relationships, an experiment varying sample size 

(specifically volume), power and energy density was conducted. Due to the potential inter 

variable relationships, a high sample volume DOE was deemed most suitable. The DOE 

consisted of three levels, one for each variable, with four points per variable, totalling 64 

samples. The full DOE is detailed in Table 6.4. 

Variable     

Sample size (mm) 2.5×2.5×2.5 5×5×5 7.5×7.5×7.5 10×10×10 

1D Energy Density (J/mm) 0.2 0.3 0.4 0.5 

Laser Power (W) 170 180 190 200 

Table 6.4 - DOE values for crack density with volume, power and energy density trial 
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Note there were not any repeated values, given that this is not a solution based DOE. As 

one of the proposed mechanisms driving the variation in cracking with volume was 

residual heat, care was taken in arrange samples on the build plates so that this effect 

would be minimised. 10 mm and 7.5 mm cubes were built on separate substrates, with 5 

mm and 2.5 mm cubes being sufficiently small to allow them to be built on the same 

substrate. A minimum spacing of 10 mm between each sample was used. 

Once built, samples were mounted in groups of laser power. This meant that all four sizes 

of a power and energy density pair were mounted together. This was purely to aid 

analysis, given that the primary focus of this investigation is variation with sample 

volume.  

6.3.3 General results 

 

Crack density and porosity were measured for all samples, using the methods detailed 

previously. Although this investigation was not specifically looking at porosity, it was still 

necessary to note the porosities of the samples so as to build up a more complete process 

map.  

In order to better identify trends, pivot charts were used to isolate specific fields and plot 

them against the desired result (either porosity or density). Filters can also be applied so 

that one can study a specific range or value. The global relationships for the three 

parameter variables with crack density are plotted in Figure 6.9 and Figure 6.11. It is first 

noted that there is no value for energy densities of 0.2 J/mm in crack density. This is 

because the samples had relatively high porosity and had suffered from insufficient 

fusion. Although some crack measurement was attempted, the extent and type of porosity 
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nulled any meaningful data. This by no means useless information however, as it 

demonstrates the sensitivity of the process window – 0.25 J/mm was shown to be 

sufficient for achieving full density – with 0.05 J/mm being the difference between full 

density and lack of fusion. This was the case for all sample sizes.  

Fortunately, the extensive size of the DOE meant there were still strong relationships 

observed. Crack density is observed to increase almost linearly with increasing laser 

power, Figure 6.9, and so too with energy density, Figure 6.10. However, sample volume 

does not display such a simple relationship, Figure 6.11. The 5x5x5 mm samples 

displayed the highest crack density, as opposed to the smallest 2.5 mm cubes which were 

predicted to under the initial hypothesis. In addition, 10 mm cubes display, on average, 

the second highest crack density which again counters the initial hypothesis. However, 

the results are in agreement with the initial findings, in that the 5 mm cubes display a 

high crack density that the 10 mm cubes. 

The accompanying density values are also presented. It is interesting to observe that for 

laser power and energy density, there is negative relationship between the density and 

the crack density. Thus as one pushes towards higher powers and energy densities, both 

porosity and cracking increases. This is counter to the relationship observed in the 

preliminary optimisation trials of Hastelloy X, although that was not as extensive nor 

were the variables as well defined as in this DOE. One could argue the same is negative 

relationship is present with the increasing size samples, with the exception of 2.5x2.5x2.5 

mm cubes. 
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Figure 6.9 - Averaged crack density with density for samples with laser power 

 
 

 
Figure 6.10 - Averaged crack density with density for samples with 1D line energy density 
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Figure 6.11- Averaged crack density and density with sample volume  

  

6.3.4 Laser power relationship 

 

Although the averaged crack density displays a steady increase with increasing power, 

study of the individual plots for each sample size reveal a slightly less defined relationship 

– see Figure 6.13.  

Of particular note is the comparably low value for 200W in the 10 mm sample. It is noted 

that for the 10 mm samples, particularly for those of higher powers, the cracks became 

increasingly smaller but conversely more densely populated. In addition, the 10 mm 

samples in general suffered from high porosity, as discussed, which higher power 

samples exhibiting the more severe porosity. This potentially explains the anomalous 

result, in what is otherwise a reasonably strong trend.  
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Figure 6.12 - Comparison between crack sizes in 5x5x5mm and 10x10x10mm samples of 

LP 200W, ED 0.4 J/mm.  

 
Figure 6.13 - Crack susceptibility with laser power for samples sizes 2.5-10 mm cubes 

 

 



 
 

216 
 

6.3.5 Energy density relationship 

 

Energy density values are calculated from laser power and exposure time input 

parameters, and as such energy density is in part a measure of laser power. For each 

energy density value, there are four power-exposure time pairs, giving a total of 16 

exposure time values. By plotting crack density with exposure time instead of 1D line 

energy density, the influence of laser power is removed, and a truer relationship between 

cracking and absorbed energy is revealed, see Figure 6.14. 

It is observed that although energy density appears to show a linear relationship with 

crack density, exposure time does not. In fact, there is no discernible relationship 

between crack density and exposure time, and laser power and sample size clearly have 

a dominant influence.  

 
Figure 6.14 - Averaged crack density and density values for set exposure times 

 

6.3.6 Sample size relationship 
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The initial hypothesis given in Section 6.2, was that smaller volumes would have a higher 

crack susceptibility due to reduced residual heat and increased cooling rates, therefore 

greater thermal stress. Instead what is observed implies a more complex relationship. If, 

like with laser power, the average plot is separated out – Figure 6.15 - it is observed that 

the relationship is held across all but one of the power sets. One can therefore be 

confident that this not an anomalous result and that the observed relationship is reliable. 

In fact, it is the 200W 10 mm sample which again does not conform, and would otherwise 

give a solid relationship across the full sample range.  

10 mm cubes display a higher crack density than 7.5 mm cubes on three out of four 

occasions  

 
Figure 6.15 - Crack density with sample size and laser power  

 



 
 

218 
 

 

6.3.7 Applicability to crack susceptibility theory 

The observed dominant influence of laser power on crack susceptibility, particularly over 

absorbed energy, can be used to draw some conclusions on the mechanisms for micro-

cracking during SLM processing.  

As discussed in Section 5.1, it was hypothesised that ETSS was the mechanism for 

cracking in SLM processing. Solidification cracking was discounted as it was proposed 

that the solidification rates were high enough to inhibit the remaining of a liquid film at 

the grain boundaries, and segregation to grain boundaries was observed to be inhibited 

– Chapter 4. However, the observations of secondary phase formation in Section 4.1.3 

imply that solidification conditions, although clearly still in the region of RS, may also 

allow for the formation or remaining of a liquid film.  

If this were the case, one would expect that an increase in absorbed energy or exposure 

to the laser would result in an increase in cracking. This is because the material would be 

held above the freezing temperature for longer. From the results of this investigation 

however, it was observed that there was no relationship between exposure time and 

crack density.  

Instead, laser power was observed to have a linear relationship with crack density. From 

the Rosenthal relationship (Rosenthal 1946), for a moving laser source, power is directly 

proportional to surface temperature of the material. An increase in power therefore 

results in an increase in thermal gradients. It can therefore be inferred that an increase 

in thermal gradients, as opposed to absorbed energy results in an increase in processed 

induced micro cracking. As such, it is unlikely that solidification cracking is the driving 
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mechanism behind the micro-cracking in SLM, and instead TGM driven ETSS cracking is 

more applicable.  

6.4 Chapter Summary 

In this chapter, the tensile strength contribution for the crack susceptibility model was 

developed and experimentally validated.  

By assuming minimal microstructural deviation - when comparing two nickel superalloys 

processed by SLM under similar conditions- and considering imposed microstructure, a 

comparative Hall Petch relation for tensile strength was reduced to the difference in solid 

solution strengthening contributions. The Gypen and Deruyttere (1977) model for solid 

solution strengthening was implemented, which combined with strengthening 

parameter data from Mishima (1986) allowed for the calculation of the sold solution 

contribution of any nickel base superalloy.  

Using the developed model, the solid solution contribution of Hastelloy X composition 

from Chapters 3 and 4 (OHX) was calculated. Knowing the relative solid solution strength 

potency of the alloy elements – strengthening parameter – a modified version of Hastelloy 

X, with increase solid solution strength, was designed. 

The modified composition, MHX, was processed and directly compared to OHX for micro-

cracking. MHX displayed a 65% reduction in crack density over OHX. Tensile testing of 

the two alloys revealed MHX had superior elevated temperature tensile strength and 

marginally improved ductility. This result supported the crack susceptibility theory. 

Finally, a further investigation into the relationship between laser parameters, part 

geometry and micro-cracking was conducted. It revealed that laser power had the 

greatest influence on micro-cracking, with a near linear relationship, however the 
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relationship for exposure time was less discernible. This further supported that ETSS is 

the primary cracking mechanism in nickel superalloys. 

7 Thermal stress modelling 

In this chapter, the thermal stress term of the crack susceptibility equation will be 

developed. The establishment of lattice strength having a strong influence of crack 

susceptibility has part validated the crack susceptibility equation from Chapter 5. 

However, if those minor changes in composition have a significant impact on one material 

response, it is likely that it will affect others. The obvious scenario one would want to 

avoid is one where a compositional alteration that has increased lattice stress by 5%, has 

resulted in an increase of thermal stress of 10%, thereby increasing crack susceptibility 

rather than reducing it.  

In order to avoid the unintended, the effect of compositional changes on the thermal 

stress generation must be understood, and then quantified. This will allow for converse 

simulation of both lattice stress and thermal stress, and therefore a complete simulation 

for crack susceptibility. 

It is important to note at this point that the predicted values for thermal stress do not 

have to match perfectly with reality. Besides being difficult to validate, it is not the exact 

value of thermal stress that is actually useable. Instead it is the ratio between the thermal 

stress and the solid solution strength contribution. Therefore, providing all alloys are 

assessed using the same method, all can be fairly assessed with respect to one another on 

the same scale. 
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7.1 Stress simulation discussion 

In Section 2.2.1, models for residual stress by Mercelis and Kruth (2006) and Shiomi, 

Osakada et al. (2004) were described. Although the residual stress models are in effect 

modelling the thermal stress build up, they do not describe the in situ thermal stresses 

experienced by the material during the process. The in situ thermal stress is what is 

required for the crack susceptibility parameter as it is the direct comparison between the 

material’s UTS and the thermal stress which determines whether the material will crack 

under processing.  

What is required is a method for simulating thermal residual stress as a function of 

process parameters and alloy composition.  

The most comprehensive approach is to model the thermal behaviour of the material as 

it is being processed and then apply thermal stress simulation to that model. This is of 

course a heavily involved solution and would take a stand alone project to complete. This 

work would therefore seek an established thermal model, of which there are number 

published in the public domain for both 2D and 3D cases (Matsumoto, Shiomi et al. 2002, 

Dai and Shaw 2004, Patil and Yadava 2007, Gusarov and Smurov 2009, Roberts, Wang et 

al. 2009). 

Roberts, Wang et al. (2009) work on three dimensional finite element analysis of 

temperature fields during laser AM is one of the most comprehensive studies on thermal 

modelling of SLM to date. One key aspect which elevates it from other work is the 

simulation of successive layers, this is vital when considering thermal stresses as these 

can be increased or relieved depending on the magnitude and severity of successive 

heating.  
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Lopez (2016) developed the work of Roberts with the intention of then coupling with a 

microstructure evolution model. As the work of Lopez was conducted along the same 

project timeline as this work, it allowed for close collaboration between the two. It 

therefore made sense to use the model developed by Lopez, which was in part verified by 

the experimental work on Hastelloy X from this work, to simulate temperature fields and 

consequently thermal stress for nickel superalloys processed by SLM.  

ANSYS is an engineering simulation software which is used to both develop models and 

perform simulations for process and material responses. ANSYS has inbuilt simulation 

capabilities for thermal stress, which can generate stress field simulations when provided 

with temperature field data and certain temperature dependant material properties. 

Lopez’s model would be able to provide temperature field data which was both of an 

appropriate resolution and material dependent. This could then be input into ANSYS’s 

thermal stress simulation module, resulting in a material-process dependant thermal 

stress field prediction. 

Key to an accurate prediction are values for the material’s tangential modulus for a range 

of strains and temperatures; the greater number of values provided, the greater the 

accuracy. ANSYS uses the tangential modulus to predict the stress strain behaviour of the 

material. The only way to attain these values is empirically, by performing tensile testing 

on the material and calculating the tangential modulus at various points along the stress-

strain curve. This is of course problematic if the material one is trying to simulate does 

not exist in physical form; as is the case for theoretical alloy design. In addition, tangential 

modulus is not a readily available book property, so the use of literature values as a close 

approximation is also not feasible. Therefore, as desirable as a fully comprehensive 

simulation would be, the difficulties in acquiring the relevant material data make it an 
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unviable solution at this point. The thought process for an alternative is detailed in Figure 

7.1. 

 

Figure 7.1 - Flowchart representing thought process for determining composition 

dependent thermal stress 

Given that this investigation only seeks to simulate the maximum thermal stress 

experienced by the material during processing, a full stress field model is not actually 

required. Instead simpler numerical solutions would be more appropriate, although the 

solution would still have to be process and material dependent.  
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A classic relationship for tensile stress generation as a result of a length of material being 

cooled from a peak temperature is given by Equation 7.1. 

𝜎𝑡ℎ = 𝐸𝛼𝐶𝑇𝐸∆𝑇 

Equation 7.1 

where ΔT represents the change in temperature as a result of cooling. ΔT can be obtained 

from Lopez’s model, just as was proposed for the ANSYS method. This ensures that the 

simulation would still be influenced by temperature dependent material properties and 

the process parameters.  

Similar to the ANSYS approach, the calculation of thermal stress generation requires the 

input of values for certain material properties. Unlike ANSYS though, both elastic 

modulus and coefficient of thermal expansion are both relatively easy to obtain book 

values for most alloys. The issue of theoretical alloys still remains however, as Young’s 

modulus is difficult to predict accurately from composition alone. This has the potential 

to undermine the accuracy of the simulation, particularly for cases where minor 

modifications for the composition have been made. The following assumptions minimise 

the impact of the approximation: 

As mentioned in Section 5.2, aCTE does not vary greatly with variation in alloy 

composition. The same is the case for Young’s modulus. Therefore, using book values of 

E and αCTE for the nominal composition of an alloy which is being modified within its 

specification is a fair approximation.  

For novel compositions there are two approaches for Young’s modulus. The first is use 

book values for an establish alloy that has a composition closest to that of the novel alloy. 

This would result in having to place large variation error on any calculated stress values 
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to accommodate for the potential difference between assumed and actual Young’s 

modulus. This is not ideal, however given the vast number of nickel superalloys alloys in 

existence, it is predicted that for the majority of cases a similar alloy will already exist, 

from which a close approximation can be taken. 

The second approach would be to model Young’s modulus discretely. Unfortunately, to 

date, there are no composition-thermal dependant models for Young’s modulus, and such 

an extensive level of modelling is beyond the remit of this investigation. 

Fortunately, volumetric thermal expansion can be simulated by the thermodynamics 

simulation software Thermo-Calc. Coefficient of thermal expansion is taken from linear 

thermal expansion data; however, the volumetric data can be manipulated to estimate a 

thermal expansion coefficient. As will be discussed in the following sections, Thermo-Calc 

will also be used to generate values for the thermal dependent properties required for 

Lopez’s model. Figure 7.2 demonstrates the process steps which will be taken for 

determining composition dependant thermal stress. 
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Figure 7.2 - Flowchart representing process steps and inputs for determining 

composition dependent thermal stress 

 

7.2 Temperature field simulation 

The temperature field model is built up from a single spot thermal model, up to a 3D layer 

by layer thermal model. All iterations were performed using the Finite Element Method 

(FEM), Computational Fluid Dynamics (CFD) was employed for the initial single spot 

model, however comparisons with experimental data revealed that the FEM approach 

was the most reliable. The FEM numerical models were developed using ANSYS 
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Mechanical and ANSYS Parametric Design Language, which allowed SLM process 

parameters to be designed in as input variables. 

The stages of the model are as follows: Single spot thermal model > Single line thermal 

model (multiple spot) > Single layer thermal model (multiple lines) in 2D and 3D > Layer 

by layer thermal model (multiple layers) in 2D and 3D. 

Of interest to this investigation is the final stage, which is the multiple layer 3D thermal 

model. The most obvious reason for this is because the multiple layers are the most 

representative of the SLM process, and will therefore provide the most reliable 

temperature profiles. However, there are additional reasons. This investigation requires 

the prediction of the maximum thermal stress, which is significantly influenced by the ΔT 

term of Equation 7.1. In order to be confident that the calculated ΔT from the model is the 

maximum within the HAZ, one needs to be able to simulate the HAZ in its entirety, but 

also track points within the material that are penetrated successively by the HAZ. There 

are a number of factors to be considered before deciding on how best to apply the model 

to the thermal stress situation. 

If one considers a line of exposure points on a fresh powder bed, with material and 

ambient temperature at room temperature. The greatest ΔT experienced by any given 

point is that of a point located central to the laser beam diameter, on the surface of the 

powder. However, as liquid state cannot harbour stress, it is actually only the heating and 

cooling of the material below the point of solidification which results in thermal stress 

generation. From this one may argue that the maximum ΔT is always Tm – Tamb, however 

this relies on the material being allowed to cool to room temperature before another 

exposure, which is not the case.  
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The following worked example is considered: 

Laser power and exposure time are such that the temperature of the material is 

brought up to a maximum below its evaporation temperature, for nickel Tvap = 

3003 K. Stress can only form within a solid material, and therefore maximum 

temperature from which stress can form is Tm = 1628 K for Hastelloy X. For the 

Rensihaw SLM125, the speed at which the optics traverse is quoted as 2.5 m/s. If 

a point distance of 50 μm is used, the time between each exposure point tidle = 

50⨯10-6 / 2.5 = 20 μs.  

Taking the experimentally determined cooling rate from Chapter 4, Ṫ ~ 3×105 K/s, 

the predicted ΔT between exposure points is Ṫ × tidle = 6 K.  

Of course the material is allowed to cool further as the laser continues to the scan pattern, 

and in the time taken to begin the subsequent layer. What is needed therefore is a 

temperature profile for a given point in the material over a period of time encompassing 

subsequent exposure points, hatch passes and layers.  

ANSYS allows for the calculation of temperatures for a given node, point in space, at a 

given time. If the model is run for multiple layers in 3D, but only the temperature data for 

a fixed node is recorded, this will provide the required temperature profile. From this 

profile a series of ΔT values can be extracted thus allowing for the calculation of a stress 

profile for that node and time frame.  

It was mentioned that the FEM model was built around the process parameters of the 

SLM machine, this allows for simple input of real world machine parameters and 

therefore a more direct comparison for experimental validation. The model also requires 

the input of temperature dependent material properties, with values for room 
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temperature up to and beyond melting temperature. Material density, specific heat 

capacity, enthalpy and thermal conductivity are all temperature dependent, but in turn 

also influence transfer and containment of heat within the solid. For example, thermal 

conductance of nickel increases with increasing temperature, allowing for greater heat 

transference but also greater heat extraction. The complexities of the behaviour mean 

that simply using room temperature values for the properties will result in very 

inaccurate solutions.  

7.3 Thermo-Calc: method for obtaining thermal dependent properties 

In order to accurately model the temperature fields within the SLM process, the Lopez 

model requires the input of physical material properties over a temperature range. A full 

complement of thermophysical properties for a chosen alloy may be difficult to acquire. 

Fortunately, Hastelloy X is one of a few commercial alloys featured in the K C Mills 

publication ‘Recommended values of thermophysical properties for selected commercial 

alloys’ (Mills 2002). Values in this work have been determined either experimentally or 

through a mixture of empirical and theoretical based modelling; a further discussion of 

which will be in Section 7.4.  

Although the values in Mills (2002) will allow for an initial determination of the 

temperature fields, the values for ΔT calculated from those values will only apply to the 

composition of Hastelloy X used. The remit of this investigation – modifications of 

compositions to affect material response – is dependent on being able to predict changes 

in material response as function of a modification to the alloy chemistry. As a 

consequence, simply knowing the thermophysical properties of nominal composition of 

an alloy is not sufficient.  
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What is required is a technique which can predict the thermophysical properties, over a 

range of temperatures, of an alloy of any given composition. Fortunately, this is precisely 

what the Thermo-Calc 2015b© software is designed for. Thermo-Calc performs 

thermodynamic calculations based on thermodynamic data from vast material databases. 

There is a wide range of databases available for many different material types, including 

a specific nickel superalloy database, TCNI8, which was used for this investigation. The 

databases are created by means of ‘critical assessment and systematic evaluation of 

experimental and theoretical data‘, following the CALPHAD technique. Thermo-Calc 

2015b therefore provides the best solution for obtaining thermophysical values for 

modified and novel nickel superalloy compositions. 

Of the thermophysical properties required by the Lopez model, enthalpy and heat 

capacity are direct outputs of Thermo-Calc. Density (in g/cm3) is calculated by taking the 

reciprocal of volume normalised for mass per gram. Enthalpy and volume are calculated 

with the equilibrium calculator, and heat capacity with the Scheil solidification calculator, 

which applies the Scheil-Guliver model for solidification path calculation. Thermal 

conductivity is not a direct output of the software, however. 

Instead the approach taken is similar to that taken by other investigations (Parker, 

Jenkins et al. 1961, A. Hazotte 1993, Mills 2002). This is to calculate thermal conductivity 

κ, as a function of temperature, from empirically obtained values of thermal diffusivity α, 

density ρ and heat capacity c, via the relationship given in Equation 7.2. 

𝛼 =
𝜅

𝜌𝑐
 

Equation 7.2 
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In A. Hazotte (1993) thermal diffusivity is measured by means of the ‘flash method’. In 

the flash method, a pulse of energy is applied to the front face of a thin sheet, the resulting 

energy detected on the rear face is then used to determine the thermal diffusion through 

the sample. The thermal diffusivities for several nickel base superalloys and intermetallic 

phases were measured over a 21-1400 °C temperature range. All of the alloys displayed 

the same behaviour with increasing temperature, with thermal diffusivity increasing 

linearly up until ~700-800°C at which point diffusivity plateaus for ~200°C before 

resuming the increase at a lesser rate.  Also observed is that although some influence of 

composition on the diffusivity of the alloys is apparent, the variation between AM3, MC2 

and CMSX2, for example, which have markedly different compositions, is minimal. It is 

therefore assumed that the differences between compositions within the same 

specification of an alloy will have thermal diffusivities of negligible difference.  

Values of density and heat capacity with temperature will be calculated by Thermo-Calc, 

allowing for a quasi-compositional and thermal dependent thermal conductivity to be 

calculated.  

This is considered an acceptable solution given that the thermal conductivities of nickel 

superalloys are reported to not vary greatly from a value of 11 W/m/K (Terada, Ohkubo 

et al. 1997). This is attributed to the high concentrations of the solute elements. The 

thermal conductivity of nickel monotonically reduces to a constant beyond solute 

concentration of 20 wt%. Given that typical solute concentration values range between 

30 and 50 wt%, it is therefore expected that small changes in individual concentrations 

will not affect the thermal conductivity significantly. 
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As mentioned in Section 7.2, Thermo-Calc can simulate temperature dependent 

volumetric expansion. Thermal expansion can easily be determined using the volume-

temperature data set, for any given temperature range.   

7.4 Calculation methodology  

This section demonstrates the feasibility and validity of the proposed method for 

prediction of thermal stress as detailed in Figure 7.2. Using the nominal composition of 

Hastelloy X, for which there are literature values of the key material properties, a series 

of calculations will be made and compared to empirically obtained values (either book or 

experimental values from this work). Using Figure 7.2 as the template, thermophysical 

values will first be simulated on Thermo-Calc, this will then be passed into the Lopez 

model to produce a temperature profile, which will then be used to calculate values for 

maximum thermal stress. 

The process steps detailed in the following sections are the same as those which will be 

used to perform the final crack susceptibility predictions in Chapter 8.  

The nominal composition from Mills (2002), detailed in Table 7.1, will be used for the 

validation calculations as it will allow for direct comparison with the empirical data 

presented in that work. 

Element Ni Fe Cr Mo Co W Si  Mn C 

wt% 47 18.5 22 9 1.5 0.6 0.5 0.5 0.1 

Table 7.1 - Nominal composition of Hastelloy X to be used for validation calculations 
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7.4.1 Thermo-Calc simulation of thermal dependent material properties 

Table 7.2 gives the thermophysical values calculated using Thermo-Calc from the 

composition details in Table 7.1. As stated in Section 7.3, thermal conductivity was 

calculated using thermal diffusivity values from Mills (2002) and the density and heat 

capacity values from the Thermo-Calc simulation. This provided a set of thermal 

conductivity values which were still dependant on the Thermo-Calc simulation and were 

therefore fair to be considered separate to those given in (Mills 2002) 
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Temperatu
re (K) 

HT – H293 
(Jg-1) 

Volume 
(cm3) 

Density 
(gcm-1) 

Heat 
capacity  
(JK-1g-1) 

Thermal 
diffusivity  

(m2s-1) 

Thermal 
conductivit
y (Wm-1K-1) 

301.5 4.34 0.1207 8.287 0.450 2.847 10.61 

371.5 13.17 0.1207 8.282 0.484 3.081 12.36 

471.5 87.90 0.1213 8.241 0.550 3.406 15.45 

571.5 147.26 0.1218 8.214 0.629 3.728 19.27 

676.0 322.15 0.1219 8.201 0.519 4.060 17.28 

770.0 423.91 0.1223 8.179 0.556 4.365 19.86 

870.0 478.49 0.1227 8.147 0.613 4.707 23.52 

970.0 536.68 0.1232 8.114 0.700 4.885 27.75 

1070.0 599.71 0.1238 8.080 0.841 4.939 33.57 

1170.0 668.67 0.1243 8.042 0.768 5.215 32.20 

1270.0 746.76 0.1251 7.996 0.610 5.477 26.72 

1370.0 824.97 0.1258 7.947 0.646 5.749 29.53 

1470.0 891.71 0.1264 7.911 0.689 6.009 32.76 

1530.0 933.85 0.1269 7.880 0.715 6.116 34.47 

1540.0 941.02 0.1271 7.871 0.720 - - 

1553.4 950.71 0.1272 7.865 0.724 - - 

1560.0 959.94 0.1273 7.855 0.964 - - 

1570.0 970.98 0.1275 7.844 1.086 - - 

1580.0 984.41 0.1277 7.830 1.286 - - 

1590.0 1002.00 0.1281 7.808 1.626 - - 

1600.0 1026.75 0.1286 7.775 2.225 - - 

1610.0 1063.38 0.1295 7.723 3.297 - - 

1630.0 1203.10 0.1332 7.506 8.216 5.917 364.87 

1670.0 1251.45 0.1345 7.436 0.712 5.818 30.79 

1770.0 1324.23 0.1361 7.345 0.740 5.884 31.98 

Table 7.2 - Example thermophysical property values calculated using Thermo-Calc 
simulation 

Note the absence of values for diffusivity, and therefore conductivity, between 1540 K 

and 1630K. This represents the temperature range for the ‘mushy zone’, in which the 

material is neither fully solid nor fully liquid, and the flash method cannot be used to 

determine thermal diffusivity. Values in this temperature range are instead estimated by 

ANSYS. In the liquid state diffusivity in  Mills (2002) are estimated as a flat value, whereas 

in this investigation the use of Thermo-Calc allows more chemical dependence.  
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Table 7.3 gives the associated thermophysical values reported in (Mills 2002). For the 

below values: density is calculated by applying measured thermal expansion to the initial 

volume and mass of a block of Hastelloy X at room temperature, enthalpy and heat 

capacity are experimentally determined and thermal conductivity is calculated as done 

so in this investigation. 

Given the expected variations between empirical and simulated values, and progress 

thermophysical simulation has undoubtedly made in a decade, values for this 

investigation are in very good agreement with those of (Mills 2002). 

The only exception is the value for heat capacity at 1630K. In Mills this is given as the flat 

rate for liquid phase. However Thermo-Calc is able to simulate heat capacity for both 

mushy zone and liquid state. Without experimental data, it is difficult to confirm the 

accuracy of the Thermo-Calc value for this specific case. 
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Temperature 
(K) 

HT – H293 (Jg-1) Density 
(Kgm-3) 

Heat capacity  
(JK-1g-1) 

Thermal 
conductivity 

(Wm-1K-1) 

298 33.4 8240 0.439 10.3 

373 79.7 8221 0.454 11.5 

473 128 8193 0.473 13.2 

573 178 8162 0.493 15 

673 230 8130 0.512 16.9 

773 284 8095 0.532 18.8 

873 341 8058 0.551 20.9 

973 400 8019 0.582 22.8 

1073 461 7978 0.604 23.8 

1173 525 7934 0.626 25.9 

1273 591 7889 0.648 28 

1373 659 7841 0.67 30.2 

1473 730 7792 0.692 32.4 

1533 772 7761 0.71 33.7 

1543 779.956 - - - 

1553 792.648 - - - 

1563 806.922 - - - 

1573 823.405 - - - 

1583 843.04 - - - 

1593 867.245 - - - 

1603 898.063 - - - 

1613 937.932 - - - 

1628 1112 7240 0.677 29 

1673 1146 7363 0.677 29 

1773 1214 7280 0.677 29 

Table 7.3 - Thermophysical properties from Mills (2002) 

The close agreement allows for validation of the process steps used to obtain values using 

Thermo-Calc. Additionally, because Thermo-Calc 2015b is more advanced than the 

simulations featuring in Mills, it is assumed that the values given by Thermo-Calc are 

more reliable, particularly for the mushy zone. 

7.4.2 ΔT calculations using Lopez model 

The process parameters input into the model are given in Table 7.4. Note the meander 

strategy was not modelled. This is because for the purposes of microstructure modelling 

(for which the Lopez model is created for), the meander strategy is an added complexity 

for validation. Instead a simple raster pattern was modelled. This should not dramatically 
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affect the temperatures over a few layers, although over the course of a full part would 

have an effect on the residual stress of the part. 

 

Parameter Value 

Laser Power (W) 180 

Exposure time (μs) 100 

Point distance (μm) 50 

Hatch spacing (μm) 90 

Focus Offset (mm) 4 

Layer thickness (μm) 20 

Strategy Raster 

Table 7.4 - Input process parameters for Lopez model 

 

The model run comprises of 3 layers, each with six hatches (or paths) made up of 4 

exposure points. The time between each layer, simulating the recoating of powder, was 

set at 12 seconds. Figure 7.3 and Figure 7.5 give a visual representation of the 

temperature field model for the first layer. Although the maximum temperature is 

reported for each frame, this does not represent the maximum temperature for that 

exposure point as the frames were not taken at precisely the same instance for each 

exposure. Using the temperature-colour scale along the base of the images, yellow-green 

represents the range in which melt/freezing will occur. In spots 11 and 23, the 

characteristic drop shape of a melt pool expected of a moving laser source is observed. 

This implies that the point-to-point regime results in similar thermal behaviour to that of 

a continuous laser source. 
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Figure 7.3 - 2D temperature field over time. Spot number indicated in top left corner of 

each image 

 
Figure 7.4 - Continuation from Figure 7.3 
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Figure 7.5 - Continuation from Figure 7.4 

 

Quantitative data from ANSYS is obtained by setting predetermined measurement points 

along the model area. This unfortunately makes it difficult to obtain measurements for 

the maximum temperatures achieved, as these points cannot be predicted. Figure 7.7 

shows temperature-time data for a series of nodes placed along the base of the melt pools 

in layer 1. In order to help visualise their position in the layer, the exposure points and 

associated times are represented in Figure 7.6. 
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Figure 7.6 - Representation of exposure points (spots), which time after each traverse 

hatch 

 
 

 
 

Figure 7.7 - Temperature over time for 18 nodes in layer 1 
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It is noted that the maximum temperature recorded is for node 11. Based on the time it 

is suggested this is the node closest to the temperature peak of spot 17, where exposure 

begins at 12.0032 s, rising to a maximum temperature after 100 μs (12.0033) before 

cessation of the laser, and cooling. Although the nodes are not all placed at the same 

spatial point for each melt pool, the majority display very similar behaviour. The most 

notable feature is one, typically 200 μs after temperature peak, at which the cooling is 

briefly halted. The time interval strongly suggests that the cessation of cooling is as a 

result of heat conduction from a successive exposure spot. Similar cessations or cooling 

are observed at later time intervals, and for some nodes, pre-exposure heating from 

previous exposure points is also evident.  

 

Figure 7.8 shows the isolated temperature profile from node 6, with the freezing point for 

Hastelloy X added for reference.  

0

500

1000

1500

2000

2500

12 12.0008 12.0016 12.0024 12.0032 12.004 12.0048

T
em

p
er

at
u

re
 (

K
)

Time (s)

Node 6

Freezing
point



 
 

242 
 

 

Figure 7.8 - Node 7 for layer 1 
 

The generation of thermal stress can only occur when the material is in a solid state, 

therefore only the heating/cooling that occurs below freezing point will have an influence 

on the stress generated. In the case of node 6, the most applicable cooling phase is the 

one which begins at 12.00026 seconds, as after this point the material is allowed to cool 

uninterrupted. Although heating will induce expansion and therefore stress, it is the 

cooling and subsequent contraction which is driving the TGM stress mechanism. 

Therefore, only the cooling phases will be used to determine ΔT.  

Figure 7.9 and Figure 7.10 show the temperature profiles for the same 17 nodes for the 

remaining two layers. 
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Figure 7.9 - Temperature over time for 18 nodes in layer 2 

 

Figure 7.10 - Temperature over time for 18 nodes in layer 3 

 

The key observation is that the majority of nodes measure temperatures above the 

freezing point. This is expected as the intended meltpool depth is ~ 100μm, but the layers 
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are 20 μm thick. The only node which does not record a temperature beyond Tfreeze is node 

7 in layer three, however it is still significantly heated and cooled. Node 7 is therefore 

most representative of a point in the solid material which is subjected to extreme 

temperature variation but is not remelted (resulting in elimination of stress). Two 

temperature drops are observed for node 7, ΔT1 = 379 K, and ΔT2 = 1413 – Tamb K. 

Unfortunately, the computational time required to simulate a layer cooling in its entirety 

was too great, and thus the ambient temperature at the end of each layer is not known. 

This presents a difficult situation, in that clearly ΔT2 will be greater, but its quantity is 

unknown, and therefore any value based on it would be as good as arbitrary. 

Ultimately, the decision was made not to use Lopez's model for ΔT value determination. 

Although the model offers temperature values with compositional sensitivity, the 

question of whether this is actually required has been raised. It is argued that any 

advantage gained by using such a sensitive model, is eliminated by the approximations 

required to implement its results.  

This is not to say that the Lopez model’s inclusion in this work is unnecessary. On the 

contrary, it has provided vital insight into the temperature field evolution of fusion layers 

in the SLM process and helped to validate proposals of location and occurrence of stress 

generation in the layer.  

As will be discussed further in Chapter 8, crack susceptibility cannot be an absolute value, 

instead being a quantification of the likelihood of a material cracking during the SLM 

process. Therefore, providing the same calculation steps are taken, all alloys can be 

placed on the same scale. This means a fixed ΔT can be used in place of a compositionally 

sensitive value. Providing the other key values in the thermal stress calculation have 

compositional sensitivity, it is argued that this will have minimal impact on the validity 
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of the results. Based on the temperature profiles from the Lopez model, a ΔT value of 500 

K has been chosen. 

7.4.3 ‘Apparent’ thermal stress calculations  

The changes to ΔT discussed in section 7.4.2, mean it is no longer appropriate to calculate 

a ‘maximum’ thermal stress. Instead, the values for thermal stress will now be referred 

to as the ‘apparent’ thermal stress. This will represent a magnitude of stress generated 

for a given alloy over the temperature range of 500 K. If anything, this makes alloys more 

comparable and eliminates uncertainties derived from choosing a ‘maximum’ thermal 

stress.  

‘Apparent’ thermal stress values are calculated using Equation 7.1, therefore the key 

variables are now Young’s modulus and coefficient of thermal expansion. Young’s 

modulus values will be taken from literature, and approximated when necessary. 

Thermal expansion values are calculated from thermal dependent density data output by 

Thermo-Calc. A coefficient of thermal expansion value is determined for a set 

temperature range, e.g. 300-400 K. The chosen temperature over which the apparent 

thermal stress will be calculated is 293-793 K. This range has been determined as the 

critical range over which ETSS cracking will occur, as it covers the drop from the diffusion 

limiting 0.5Tmelt down to ambient. Over this range stress will not be able to be relieved 

through atomic diffusion. Young’s modulus values for room temperature will be used, 

given the difficulty in obtaining elevated temperature values for all alloys.  

For example and clarification, the apparent thermal stress σapp-th value of Hastelloy X – 

using composition from Mills (2002) and values from Table 7.2 – is given below. Linear 
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coefficient of thermal expansion is calculated from volumetric coefficient of thermal 

expansion bCTE by simply dividing by 3. 

 E = 200 GPa  

 αCTE [293-793K] =
𝑉2−𝑉1

𝑉1(𝑇2−𝑇2)
3⁄ =

0.1243−0.1219

3×0.1219×(1170−670)
=  13.1 × 10−6 K-1 

 σapp-th = 200 × 109  × 13.1 × 10−6  × 500 = 1.31 × 109 Pa = 1.31 GPa 

 

Although absolute values are not of concern, the apparent thermal stress value is 

certainly of order of magnitude expected given the use of the room temperature E value 

– elevated temperature values are lower resulting in lower σapp-th value. 

The methodology detailed in this Chapter will be used, in conjunction with the solid 

solutions strengthening contribution methodology from Chapter 6, to determine crack 

susceptibility values for a range of alloys. The details of this will be discussed in Chapter 

8. 

7.5 Chapter Summary 

The thermal stress contribution for crack susceptibility was considered. Initially, a 

temperature field model was employed to determine the temperature gradient, and 

consequently magnitude of thermal stress, for given process parameters and alloy 

composition. However, it was made apparent that the differences in ΔT between 

compositions were minimal, and near negligible compared to the influence of elastic 

modulus – which would often have to be estimated. 

It was therefore decided to use the model only to approximate a working ΔT value, 

applicable for a base alloy set. For the case of nickel superalloys, this would be 500 K, the 

approximate range between ambient temperature and 0.5Tmelt. This was deemed 
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acceptable as the purpose was to compare nickel alloys for crack susceptibility, thus 

providing a fixed ΔT actually allows for clear comparison of material response. 

The ‘apparent’ thermal stress for alloys could then be calculated, influenced only by their 

Young’s modulus and thermal expansion, with the chosen ΔT only effecting the final crack 

susceptibility value. 
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8 Crack susceptibility model: coupling of solid solution 

strengthening and thermal stress  

 

In this chapter, the two processes developed for solid solution strengthening and 

apparent thermal stress predictions are combined, thereby forming a functional method 

for predicting the crack susceptibility of an alloy from composition alone.  

The chapter will primarily focus on validation of calculations from the predictor with 

experimental data from this investigation and that found in literature. The marked 

reduction in crack susceptibility of MHX over OHX served as good preliminary validation 

of the solid solution strengthening hypothesis, but additional effects caused by the 

composition alterations cannot be entirely ruled out. The following sections detail a 

series of additional validation investigations with both commercial and in-house 

fabricated alloy powders. 

This will be followed by an in depth discussion of the results from the predictor and what, 

if any, considerations require attention. 

A discussion of how the crack susceptibility predictor can then be reversed into a low 

crack susceptibility alloy selection model will also be detailed. This represents the 

ultimate goal of the project.  

8.1 Crack susceptibility predictor: Method 

Given the complexity of the mechanisms involved in the material response to SLM 

processing, it would not be sensible to attempt prediction of micro-cracking with a 
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discrete limit. This also in part due to the use of apparent thermal stress values, rather 

than absolute maximum values, as initially proposed.  

Instead a scale of crack susceptibility, ranging from extremely low to extremely high, is 

more appropriate. A ratio between solid solution strength and the apparent thermal 

stress will be the basis of a numerical scale along which a material will be placed.  

For example, if an alloy has σss = 270 MPa and σapp-th = 1350 MPa, a simple ratio between 

the two gives a value of 0.2 and would be considered as having a high crack susceptibility. 

The scale with associated crack susceptibility is represented in Figure 8.1. 

 

Figure 8.1 - Crack susceptibility scale, numerical value of χ scales inversely with crack 
susceptibility. 

 

8.1.1 OHX and MHX crack susceptibility comparison 

Before discussing the additional validation experiments, the full crack susceptibility 

values for OHX and MHX are presented and compared to the two alloy’s relative material 

performances in Table 8.1.  

Alloy χ Experimental observation 

OHX 0.253 Moderate cracking 

MHX 0.264 Low cracking 

Table 8.1 – Crack susceptibility predictions for OHX and MHX 
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8.2 Validation experiment: Inconel 713 LC 

Inconel 713 Low Carbon (LC) is a low carbon content version of Inconel 713, which is a 

precipitation strengthened nickel-base superalloy typically manufactured by casting. The 

reduction in carbon was made to reduce the alloys susceptibility to DDC cracking when 

welding, which was attributed to carbide formation at the grain boundaries.  

The primary strengthening phase is γ’ Ni3Al, which is enabled by a high aluminium 

content. Once solution treated IN713 LC displays impressive elevated temperature 

properties, details of which are found in Table 8.2. 

 

 

 

 

 

 

 

Table 8.2 - Elevated temperature mechanical properties of Inconel 713 LC taken from 
(Donachie and Donachie 2002)  

It is noted that IN713 LC loses little if no mechanical strength as temperature is increased 

up to 538 °C but as temperatures exceed 760°C (1400°F) then both yield strength and 

UTS reduce significantly. Of significance with regards to fracture resistance, is that the 

elongation values for IN713 LC are relatively low for a nickel superalloy and actually 

reduce with increasing temperature. 

Temperature (°C) RT (21) 538 

Yield strength (MPa) 740 705 

UTS (MPa) 895 895 

Elongation (%) 15 11 
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8.2.1 Model predictions 

Table 8.3 details the chemical composition of the IN713 LC powder used in this 

investigation. The composition was then used to calculate a solid solution strengthening 

contribution σss = 269.4 MPa. This is a significantly lower σss compared to either OHX or 

MHX and hence it is predicted that IN713LC will have a higher crack susceptibility. 

Apparent thermal stress is calculated at 1281 MPa, using data from CES Edupack 2015. 

Element (wt%) Ni Cr Mo Al Ti Ta C Zr 

Inconel 713LC bal 12 4.5 6 0.6 4 0.05 0.1 

Table 8.3 - Composition used for crack susceptibility predictions of Inconel 713 LC  

Care must be taken in using literature values of mechanical properties for predictions of 

crack susceptibility, as they are associated with the performance of the alloy in a state 

which is not necessarily similar to that of the as deposited SLM processed material. 

Precipitation strengthened alloys, like IN713 LC, require post fabrication heat treatments 

to precipitate out the strengthening phases. In the SLM as deposited state, the alloy is in 

solid solution only, and strength is near entirely derived from the grain structure and 

lattice stress.  

8.2.2 Experimental and results 

Before crack density analysis was conducted, process parameters were optimised for full 

density. This was achieved with a similar method to that used for Hastelloy X (Section 

3.3), using the optimised parameters from the Hastelloy X trials as a guide. Full density 

was achieved for a range of parameter sets, as with Hastelloy X. These were then 

dimensionally reduced into eight pairs of LP with 1D energy density, four at 180 W and 

four at 200 W. The results of the crack density analysis are displayed in Figure 8.2. 



 
 

252 
 

The first striking observation is the severity of cracking across all samples, with the 

minimum crack density value being only slightly lower than the maximum for OHX. 

Optical micrographs, Figure 8.3, display the severity of the cracking more clearly, 

showing that the cracks are not only great in number but also in size and propagation. 

The trends in Figure 8.2 suggest that either lower or higher energy densities than those 

featured may yield lower crack densities, however beyond these limits density reduces 

beyond the 99.5% ideal.  

 

Figure 8.2 - Crack density with 1D line energy density for Inconel 713 LC.  
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Figure 8.3 Optical micrograph of as processed Inconel 713 vertical (left) and cross (right) 

section 

A combination of low predicted solid solutions strength and high predicted thermal stress 

generation resulted in a high crack susceptibility rating for Inconel 713LC, which has 

been strongly supported by the experimental results.  

Tensile testing was performed for as processed specimens, the results of which are given 

in Table 8.4. It is observed that the material displayed very low ductility at room 

temperature and appears to fracture before yield at elevated temperature. This was 

technically recorded as a premature fracture, and it was proposed by the testing lab that 

a layer of unfused particles may have been the cause. However, analysis of the crack 

surface – see Figure 8.4 and Figure 8.5 - found no evidence of unfused particles or 

insufficient melting, and it is therefore believed that it was the high density of micro-

cracks within the test sample that caused zero yield fracture.  

Condition Yield 
strength 

(MPa) 

UTS (MPa) Elongation 
(%) 

Reduction of 
area (%) 

E (GPa_ 

Room temp 
(x-y) 

710 ± 7.0 836 ± 11.8 3.7 ± 0.5 5.7 ± 1.6 197 ± 10 

760°C (x-y) - 613 ± 10.3 - - - 

Table 8.4 - Tensile testing data for as processed IN713LC – tensile specimens built in x-y 

orientation 
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Figure 8.4 – SE mode SEM micrograph of fracture surface of Inconel 713LC as processed 

tensile specimen tested at room temperature. Micro-cracks are labelled and/or 

highlighted by white rings. 
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Figure 8.5 – SE mode SEM micrograph of fracture surface of Inconel 713LC as processed 

tensile specimen tested at 760°C. As expected the fracture surfaces support a brittle 

fracture, but there is also evidence of pitting implying some amount of deformation had 

occurred before failure. 

Arguably, the tensile testing for this case is not representative of the materials inherent 

tensile strength, given the high number of crack initiation points already present within 

the samples. Hardness testing provides an alternative measurement of material 

mechanical properties; however, it is not an indication of fracture toughness. Testing was 

performed for Hv0.5 with a dwell time of 10 seconds. Hv0.5 hardness for Inconel 713 LC 

was measured as 320.6 ± 23, which is significantly higher than that for OHX and MHX, 

however it is in line with the as-cast material (CES Edupack 2015). Consideration of the 

hardness result and fracture surfaces, lead to the conclusion that the SLM as processed 

Inconel 713 LC is similar to conventionally manufactured Inconel 713 LC in that it has 

high tensile strength but low ductility, with a high elastic modulus – ultimately giving it a 

low fracture toughness.  
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Mechanical testing aside, Inconel 713 LC clearly suffers from severe process induced 

micro-cracking which supports the crack susceptibility predictions. However, in this case 

thermal stress is the more significant factor. 

8.3 Validation experiment: Novel alloys 

Although the results from the Inconel 713 LC trial provide a level of validation for the 

crack susceptibility hypothesis, it is accepted that the difference in composition between 

Hastelloy X and Inconel 713 LC may allow for other compositional dependent effects. In 

order to gain confidence in the hypothesis, a repeat of the OHX-MHX comparison is 

required, but with a greater focus on the difference in solid solution contribution. That 

way, potential additional effects on crack susceptibility, such as increased ductility, can 

be confidently neglected. 

To achieve this, two alloy compositions were designed. Based on the Hastelloy X 

composition, the only designed difference would be the Mo and W content. Unlike MHX, 

there would be no intentional reduction of residuals. Also, unlike MHX, the alloys would 

not be within the specification range of Hastelloy X as the Mo and W contents would be 

exaggerated in order to better identify the materials response. The two alloys are simply 

identified as High Solid Solution (SS) and Low SS, and were designed using a solid solution 

contribution predicting spreadsheet which was developed from Equation 6.3. The 

designed compositions of High SS and Low SS are detailed in Table 8.5, along with their 

predicted solid solution contribution values. 

Alloy Ni Fe Cr Mo W Co Mn Si C σss (MPa) 

High SS 50.35 15 20 10 2 2 0.3 0.3 0.05 322.1 

Low SS 50.35 18.5 23 5 0.6 2 0.3 0.3 0.05 263.3 

Table 8.5 - Designed alloy compositions with predicted solid solution contribution 



 
 

257 
 

The two alloys were then fabricated using arc melting and processed into powder using 

a ball mill. The powders were then processed by SLM and compared for crack density. 

Details of the fabrication and processing are given in the following sub sections. 

8.3.1 Fabrication: Arc melted casting and ball milling 

Unfortunately, due to the high cost of gas atomisation, novel alloy production had to be 

conducted in house using casting methods available. Arc melt casting is a technique often 

used when one wants to create small quantities of alloy with minimal oxidation or 

contamination risk. High currents are passed from a cathode (in this case made from 

tungsten) into material which is contained with a water cooled copper mould. The arc 

formed between the tip of the cathode and the material (separated by a distance of ~ 10 

mm) as the current passes, gives the process its name. Once the current is suspended, the 

molten material is rapidly quenched, ensuring the resultant bulk material has minimum 

segregation. The processed is conducted in low oxygen content argon atmosphere to 

minimise oxidation.  

Bulk metals/elements of commercial purity were measured out according to the wt% 

required, to total a 100 g sample for each alloy. The elemental mix for each alloy was 

melted and cast as one single ingot, and was flipped and remelted 4 times to ensure 

homogeneity of the final alloy.  

The resulting ingots were approximately 40mm in diameter and 10 mm in depth. The 

next planned step was to process the bulk alloy into powder by means of attrition using 

a ball mill. The equipment used in this investigation was a Retsch PM100 Planetary ball 

mill, with a hardened steel grinding 500 ml jar, which was of sufficient hardness for 

processing a nickel base superalloy. After consultation with Retsch on the appropriate 
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grinding medium to be used, 300 10mm diameter hardened steel grinding balls were 

acquired. The advised size of feed stock was quoted as <1/3 of the volume of the grinding 

balls, which meant the alloy had to be in pieces of no more than 3mm in any dimension.  

The ingots could have been successively sectioned; however, this would have resulted in 

large material loss. Instead the ingots were sectioned into quarters, and then rolled to a 

thickness of 1 mm. The surfaces were then ground with P1200 silicon carbide grit paper 

to remove any contamination. The flattened ‘discs’ were then thin enough to be 

guillotined into the appropriate size.  

Ball milling was attempted on the alloys in the 3mm form, however after considerable 

time and many attempts, it became clear that the piece size was still too large and attrition 

would not be achievable. Attrition of the alloys would be difficult regardless of size as the 

high fracture toughness and good ductility inherent with nickel base alloys mean the 

material is more susceptible to deformation than fracturing. As such, a high volume of 

grinding medium is required (300 grinding balls) to induce a grinding regime, as opposed 

to an impact regime which occurs with freer particle movement. Despite the measures 

taken, the sample size was still too large.  

Case studies by Restch demonstrated fcc Fe alloys could be successfully processed when 

in foil form. It was decided therefore that the alloys would be melted and recast as ribbon, 

using the melt spinning technique. This was performed on the custom built melt spinner 

located in house at the Department of Materials Science and Engineering. Figure 8.6 

shows a representation of the melt spinning process. Material is placed within a silica 

crucible with a 0.5 mm opening at the tip, which is placed within an induction coil. The 

material is then heated until it is observed to be molten, at which point it is discharged 

onto a spinning copper wheel, upon which it rapidly solidifies in the form of ribbons. 
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Figure 8.6 - Schematic of melt spinner  

Before melting is conducted, the chamber is evacuated down to a pressure of 5×10-5 Torr, 

after which it is flooded with argon to a pressure of 15 psi to provide an inert atmosphere. 

Melt discharge is achieved by connecting the crucible to a pressurised argon source, 

which not only acts to force the material out of the crucible, but does so under an inert 

atmosphere.  

A voltage of 700 V was used and the wheel was spun up to 2500 rpm. The crucibles held 

approximately 25 g of material, therefore each run produced approximately 25 g of 

ribbon. A total of two runs for each alloy were conducted, giving approximately 50g of 

ribbon for each alloy.  

From the microstructure selection map of rapid solidification (Figure 4.6) it is noted that 

solidification rates and microstructure regimes of melting spinning and laser processing 

are very similar. Therefore, the chemical distribution is expected to be close to 

homogenous and there will be minimal segregation within the ribbons microstructure, 

and likewise the milled powder.  
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Once sufficient ribbon had been produced, it was processed with the ball mill. Parameters 

for most efficient attrition were determined to be 200 RPM for 15 minutes with 10 minute 

cool down periods between each run. After each run, the full content of the grind jar was 

emptied into a course sieve held over 150 μm sieve and agitated. Particles which passed 

through the 150 μm sieve was removed and stored, all remaining material was placed 

back into the grinding jar and the process was repeated. Once all the particles were <150 

μm in size, the same process was repeated but with a 53 μm sieve. The ultimate result 

being powder < 53μm in size. This powder was then of an appropriate size to be 

processed on the Renishaw SLM125.  

Before SLM processing, the powder was analysed for morphology, size and most 

importantly final chemical composition. The results of characterisation are displayed 

Table 8.6 and Figure 8.7. Chemical testing was performed by AMG Analytical of AMG 

Superalloys UK Ltd by Inductively-Coupled Plasma Optical Emission Spectroscopy (ICP-

OES) for all elements apart from O, N and H. O, N and H analysis was conducted by Inert 

Gas Fusion (IGF) at LPW Technology Ltd. 
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 High SS Low SS 

Element Design Actual Design Actual 

Ni 50.36 47.28 50.36 48.04 

Cr 20.00 19.46 23.00 21.24 

Fe 15.00 16.28 18.50 19.42 

Mo 10.00 9.34 5.01 5.32 

W 2.03 1.78 0.50 0.63 

Co 2.00 2.09 2.00 1.92 

Si 0.30 0.6 0.30 0.42 

Mn 0.30 0.26 0.30 0.36 

C 0.05 0.23 0.05 0.21 

Al 0 0.22 0 0.14 

Ti 0 0.32 0 0.40 

B 0 <0.02 0 <0.02 

Cu 0 0.08 0 0.04 

Nb 0 0.03 0 0.03 

P 0 0.006 0 0.008 

Sn 0 0.02 0 0.03 

Ta 0 0.02 0 <0.02 

V 0 0.02 0 0.03 

O1,2 0 2.31 0 2.46 

N1 0 0.0132 0 0.0166 

H1 0 0.0124 0 0.0189 

Predicted σss 322.1 331.3 263.6 285.3 
1Chemical analysis performed by IGF on LECO ONH836  
2Values not considered fully accurate as addition pushes total wt% >100  

Table 8.6 – Designed and actual composition of the two low SSS and high SSS alloys 

fabricated by arc melting-ball milling 

From Table 8.6 it is observed that although there are some exceptions, in general the 

designed composition was realised in the final composition of the powder. Of importance 

for the SSS contribution is that the Mo and W contents of each alloy were close to that of 

the contents input at the elemental stage (arc melting). It was expected that even with the 

relatively clean process of arc melting, that there would be some amount of residual 

contamination picked up. Potential sources of the copper contamination are from either 

the copper crucibles of the arc melter, or the copper wheel from the melt spinner. 

However, it is not deemed as a concern as both values are lower than those for the 
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commercial OHX and MHX alloys (0.45 and 0.01 wt% respectively). Phosphorus is also 

relatively low, and comparable to OHX and MHX (0.014 and 0.006 wt% respectively). 

The apparent additions of Al and Ti are more difficult to explain, particularly as both are 

of a similar and significant magnitude. The implication is that they were contained within 

one of the elemental additions, even though all were identified as commercially pure. As 

noted in Table 8.6 the recorded oxygen content is not recognised as being accurate. 

Although a high oxygen content was expected, the addition of O, N and H pushes total 

wt% values for both alloys beyond 100 by nearly 1wt%. ICP-OES is generally accepted as 

being highly accurate and AMG Analytical are a NASCAP accredited laboratory, therefore 

it is assumed IGF results are more likely to be inaccurate. For the purposes of discussion, 

the oxygen content of both alloys will be assumed to be <1%. 

The deviation considered most significant to crack susceptibility is the increase of carbon 

content from the input values of 0.05 wt% up to measured values of 0.2 wt%. This is 

significantly beyond what was input at the elemental stage, and the limit for most nickel 

superalloys (0.15 wt%). Beyond 0.15 wt%, the formation of carbides, and with it the 

susceptibility to DDC cracking, increases (Lippold, Kiser et al. 2011).  Although both alloys 

have the same content of carbon, it has the potential to affect the material response in a 

way other than through control of solid solution strength. This is unfortunate as this 

scenario was intended to be avoided by the arc melting process, and time constraints 

meant that it was not possible to repeat process from elemental stage.  

As a consequence of the variations of elemental composition, the predicted SSS 

contribution also changed. With the high carbon content having the greatest effect, 

increasing both predicted values by 21.7 MPa and 9.2 MPa for Low SS and High SS 
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respectively. A significant difference in σss still remained however, and therefore its effect 

on crack susceptibility could still be investigated.  

 

Figure 8.7 – SE mode SEM micrographs of alloys after ball milling. a) Low SS alloy and b) 

High SS alloy 

In order to compare the resultant powder from ball milling to that of conventionally 

manufactured powder (gas atomisation or plasma spheroidisation), SEM micrographs 

were taken of the material, see Figure 8.7. It was observed that the powder was in fact in 

flake form, as opposed to the conventional spherical morphology. The flakes were 

between 20-75 µm in size, with D50 values of 52µm and 54µm for Low SS and High SS 

respectively. It was perceived the flake would likely have a lower packing fraction than 

commercial powder, partly because of shape but also because of the observed narrower 

size distribution. Spheroidisation with the ball mill was not achievable for this material 

because of the high fracture toughness, and further processing would only have resulted 

in finer particle size.  
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8.3.2 Model predictions 

Using the σss values of the ball milled powder, combined with αCTE values determined by 

simulation on Thermo-Calc 2015b using the composition of the ball milled powders 

detailed in Table 8.6, crack susceptibility values were calculated for High SS and Low SS. 

Table 8.7 details the key values for the calculation.  

 

Alloy σss (MPa) αCTE (25-100°C) E (GPa) σth (MPa) χ 

High SSS 331 11.0⨯10-6 170 935 0.35 

Low SSS 285 12.2⨯10-6 170 1037 0.28 

Table 8.7 - Key crack susceptibility calculation components of High and Low SS alloys 

Young’s modulus was chosen to be the same for both alloys, with a value similar to that 

of MHX. This was the most logical value given the unintentional alloying additions and 

that the alloys are still closest to Hastelloy X in primary alloying elements. Interestingly 

High SS is simulated to have a significantly lower thermal expansion as well as the 

expected superior SSS contribution; the combination of which yields a clear difference in 

the predicted χ for the two alloys.  

8.3.3 SLM processing methodology 

Given the small volume of powder created, it was not possible to process the powder by 

the conventional method on the Renishaw SLM125. Full coating of the standard 

125x125mm substrate alone would likely use up the majority of the powder. To navigate 

this problem, a smaller substrate was designed and fabricated. The design and placement 

of the small substrate is displayed in Figure 8.8. 
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Figure 8.8 - Diagram of modified substrate for novel alloy fabrication  

The substrate rig consists of three parts. The first (c) is an aluminium substrate of the 

standard 125mm dimensions. Within this a circular section of diameter 40 mm and depth 

5 mm is cut out. Second (b) is a disk of just under 40 mm in diameter (to allow for easy 

inert and removal) and 5 mm depth, with a 10⨯20 mm section cut out of the centre. The 

final part (a) is that which is actually built upon. This is a 10⨯20⨯5 mm steel rectangle 

that fits into the disk. The small size of the substrate allows for it to be directly mounted 

for metallurgical analysis without the need for wasteful sectioning. This was necessary as 

the parts would be built directly onto the substrate, without supports, and the thus the 

substrates would not be recoverable. 
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Powder deposition was performed manually. Powder was manually placed in front of the 

wiper blade, which was allowed to perform the standard layering action. Once the layer 

had been melted, and the wiper arm and substrate had returned to their start and 

subsequent positions (respectively), the machine was paused, and a new deposit of 

powder was placed in front of the wiper arm. In order to maintain the argon atmosphere 

and minimise the time between layers, manual deposition was performed using the 

gloves in the machine door. The time between each layer was approximately 4 minutes. 

This was not considered to affect the thermal history of the part too greatly as the typical 

time between each layer for conventional building is ~30 seconds, which is enough time 

to allow the part to cool below the diffusion limiting 0.5Tm. 

To maximise the height of the parts, layer thickness was set at 40 μm. The parts were 

built as 5x10x1 mm ribbons. The laser scan parameters were LP 180W, ET 125µs, PD 

50µm and HS 90µm with an additional part built with the same parameters bar hatch 

spacing, which was reduced to 60 μm. The reduced hatch spacing was employed in to 

ensure sufficient overlap, given that 40 micron layers had not be attempted with previous 

alloys to this point. Due to the unique process setup, MHX was processed in addition to 

the High SS and Low SS alloys, thereby ensuring a fair comparison between the novel and 

conventional alloy powders. 

8.3.4 Results and discussion 

Composite images of the entire cross section of the 90 μm hatch spacing ribbons for all 

three alloys are shown in Figure 8.9. Note the difference in achieved build height between 

the ball-milled powder samples and the commercially fabricated MHX powder. This is 

attributed to the low packing density of the ball mill powder, resulting in layer shrinkage 

and therefore lower overall build height. This does make direct comparisons between the 



 
 

267 
 

MHX powder more difficult, as clearly the material in the ball-milled samples will have 

been remelted more often per unit height than the MHX powder, resulting in a difference 

in absorbed energy per unit volume. This will likely affect the cracking within the part 

but is not of great concern, as the role of MHX was to ensure the thin ribbon method still 

yielded micro-cracks in conventional material; this role has therefore been fulfilled.  

 
Figure 8.9 - Full cross sections of SLM processed ball milled powders and MHX powder 

The density of all three ribbons is above the 99.5% limit for full density, although the full 

layering in MHX has resulted in a slightly increase porosity. Figure 8.9 is purely for whole 

part comparison and the resolution is not sufficient for surface analysis; crack density 

analysis was conducted on the individual micrographs as with previous trials. Crack 

densities for the three powders are given in Table 8.8, with examples of the individual 

micrographs in Figure 8.10. 

Alloy Low SS High SS MHX 

HS 90 μm 21.6 ± 6.1 7.5 ± 2.4 20 ± 1.5 

HS 60 μm 8.4 ± 2.0 3.8 ± 1.7 15 ± 2.0 

Table 8.8 - Crack density (per mm2) for the three alloys for both 0.06 and 0.09 μm hatch 

spacings 
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Although in the composite images in Figure 8.9 it appears as if the High SS alloy has a 

higher crack density, it is in fact Low SS alloy that has cracked more severely. This is 

merely because at full resolution, finer cracks are observable in the low SSS alloy sample, 

see Figure 8.10. High SS displayed several large cracks across the top of the sample, 

however the low SS sample had cracks throughout, of varying sizes. It is observed that 

cracking was more severe in areas adjacent to vertical edges, as observed and noted in 

Chapter 3. MHX had crack densities comparable to the Low SS alloy, although this likely 

due to reduced energy absorbed per unit volume.  

 
Figure 8.10 - Comparison of micro-cracking between high and low SSS  

 

There is a significant reduction in cracking for the samples built with a 60μm hatch 

spacing, for all three alloys, over those built with 90μm. This is in agreement with the 

proposed cracking mechanism of ETSS, as the reduced hatch spacing results in greater 

melt track overlap therefore increased annealing and reduced thermal stress.  

In the absence of enough material to build tensile specimens, hardness measurements 

were made on the polished surfaces of the microstructural analysis samples. Although no 

quantitative comparison can be made between tensile strength and the predicted solid 

strength contributions, hardness values are representative of a materials tensile strength. 

Hardness measurements were performed on an I9 Vickers Hardness system, for HV0.5 
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with a dwell time of 10 seconds. 10 measurements were taken along the length of cross 

section of each sample. Table 8.9 displays the hardness results.  

Alloy HV0.5 

MHX 254.1 ± 3.17 

Low SS 258.3 ± 3.16 

High SS 299.1 ± 3.16 

Table 8.9 - Hardness values for novel alloys and MHX 

The High SS alloy displays a significantly higher hardness than both MHX and the Low SS, 

both of which are statistically similar. This is particularly interesting when hardness 

results are compared against the cracking results, where MHX and Low SS also had 

similar crack densities. All display the same level of variation, supporting that the High 

SS value is not an anomalous result.  

8.3.5 Conclusions 

The control sample of MHX, demonstrated the low build height ribbons were still 

representative of standard SLM processing, although the increased layer thickness (from 

20μm to 40μm) had resulted in increased cracking when compared to the trials in 

Chapter 6. 

The arc-melting-ball milling method for novel alloy powder production has shown 

promise, however there are still aspects which require refinement if it is to be considered 

in further investigations. The difference in processing between flake and spherical 

powder has also been observed, indicating that powder morphology may be an additional 

factor to micro-cracking of material during SLM processing.  

The observed relationships between both chemical composition and hatch spacing with 

crack density are in agreement the primary hypotheses of this work. The designed 

increase in solid solution strength of the High SS alloy has resulted in a reduction in 
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cracking against a version of the same alloy base with lower SSS. This result is in 

agreement with the relationship observed between OHX and MHX in Chapter 6, and 

together both support the hypothesis of solid solution strengthening being a primary 

influencing factor for crack susceptibility of nickel base superalloys with SLM processing. 

 

8.4 Crack susceptibility predictor: Discussion and Summary 

8.4.1 Additional alloys and validation comparison 

Results from the Hastelloy X, Inconel 713LC and novel alloy experimental investigations 

have all supported the crack susceptibility model, however they represent a limited range 

of alloys. In order to establish the range of applicability, more validation data from a 

larger range of alloys is required.  

Given that the predictions can only be validated by experimental data, the number of 

alloys was still limited to those for which publicly accessible SLM processed data exists, 

i.e. published investigations on the processing of that alloy by SLM. For the majority of 

cases the composition, microstructure and mechanical properties of the as processed 

alloys are reported. However, sometimes only nominal compositions are reported 

(rather than the actual composition of the powder used) and for one alloy the key 

mechanical property, Young’s modulus was not reported. In these cases, literature values 

for conventionally manufactured material were used. Additionally, the majority of 

investigations did not report the co-efficient of thermal expansion for the as processed 

state, however as previously discussed in this work, the co-efficient of thermal expansion 

does not significantly vary for SLM processed compared to conventionally manufactured 

material; or minor alterations to composition.  
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In order to assess the impact of using data for conventionally manufactured material, 

instead of SLM processed material, a second plot was created. On this plot, data for 

conventionally manufactured material was used in the crack susceptibility model, with 

the nominal composition stated being used to calculated the SSS contribution.   

The two sets of crack susceptibility values were then plotted separately – Figure 8.11 is 

for SLM as processed data, Figure 8.12 is for book value data. 

 

Figure 8.11 - Crack susceptibility of alloys based on SLM as processed properties 
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Figure 8.12 - Crack susceptibility of alloys based on conventionally processed properties 

 

Table 8.10 gives the crack susceptibility values of the two sets of data along with the 

reported process cracking behaviour of that alloy. 
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Alloy 
σSS 
(MPa) 

σth – 
SLM7 

χ – 
SLM 

Σapp-th – 
conv.7 

  χ– 
conv. 

Observed\reported 

Hastelloy X 307 10801 0.2841 1333 0.2362 
Medium crack 
density 

OHX 309 1080 0.286 - - 
Medium crack 
density 

MHX 317 1017 0.312 - - Low crack density 
IN713 LC 265 1281 0.207 1281 0.2072 V. high crack density 
IN738 LC  294 1515 0.1943 1300 0.2262 High crack density 
IN718 317 1306 0.2434 1299 0.2482 No cracking reported 
Nimonic 
263 

290 935 0.3105,2 1227 0.2362,8 No cracking reported 

IN939 297 974 0.3056 1050 0.2832,8 No cracking reported 
IN625 345 1114 0.310    
High SS 331 935 0.3549 - - Low crack density 

Low SS 285 1037 0.275 - - 
Medium crack 
density 

1Composition and E from (Wang 2011) 
2Properties and/or composition from (Donachie and Donachie 2002) 
3Composition and E from (Rickenbacher 2013) 
4Composition and E from (Wang, Guan et al. 2012) 
5Composition and E from (Vilaro, Colin et al. 2012) 
6Composition and E from (Kanagarajah, Brenne et al. 2013) and SLM Solutions IN939 Datasheet 
7Thermal expansion data taken from CES Edupack 2015 
8E taken from CES Edupack 2015 
9Composition and E from (Amato 2012) 

Table 8.10 – Solid solution contribution, apparent thermal stress and crack susceptibility 

values for alloys with SLM as processed and conventional process ‘book’ properties. With 

observations from experimental investigations on micro-cracking severity. 

Comparing the predictions from Figure 8.11 and Figure 8.12 and the observations stated 

in Table 8.10, both are in good agreement, with the exception of Inconel 718. Of note is 

also the relative significance of the apparent thermal stress, an example of which is 

Inconel 738LC; despite having a similar σss to Inconel 939, the high σapp-th value for 738LC 

gives it the lowest χ value of the group with 939 having among the highest. This ultimately 

supports the necessity for a thermal stress to be considered in the crack susceptibility 

predictions. 

There is minor discrepancy between the predictions based on SLM properties and those 

of conventionally manufactured properties. Based on conventionally manufactured 

properties, the Hastelloy X alloys are predicted as having poorer crack susceptibility than 
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was observed (with respected to other alloys), however Inconel 713LC and Inconel 

738LC predictions are closer to experimental observations (Rickenbacher 2013), 

compared to the SLM property derived predictions. The High SS and Low SS alloys from 

the novel alloy validation trials have been included with the SLM processed alloys, but 

are distinguished by an ‘x’ style marker. This is to highlight the fact that they were 

processed in modified manner compared to the other alloys – which must be taken into 

account when comparing on the plot. This is in part because from observations, the High 

SS still displayed cracking, but the cracking was less severe than for MHX when processed 

in the same manner. Taking this into account, it’s placement on the plot is in agreement 

with experimental observations, although indirectly.  

As a final comparison, solid solution strength of the alloys was plotted against apparent 

thermal stress, for an elevated temperature of 760°C – see Figure 8.13. Due to an absence 

of data, values of Young’s modulus and coefficient of thermal expansion for Inconel 718, 

Inconel 713LC, Inconel 939, Inconel 625 and Nimonic 263 were all estimated based on 

the values for alloys who had comparable properties at room temperature. 

It is observed that the relationships are largely the same as those for the room 

temperature values, however there is one key difference. For room temperature 

conditions, MHX is predicted has having a marginally higher χ value, however at an 

elevated temperature the increase is significantly greater. The placement of MHX relative 

to other alloys has remained the same, rather it is OHX which has seen a comparative 

reduction. This result is therefore more representative of observations from the 

experimental section of this work, where MHX displays a 65% reduction in micro-

cracking over OHX. 
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Figure 8.13 - Crack susceptibility of alloys based on SLM as processed properties at 

elevated temperatures 

 

The SLM property derived predictions were expected to be in closer agreement with 

experimental observations, because the composition and mechanical properties were 

taken from the same work and the observations. However, the agreement of conventional 

manufactured, or book, derived predictions with observations may be considered more 

important. 

The aim of the crack susceptibility predictor is to take composition and properties from 

an alloy, and be able to predict the crack susceptibility of that alloy before committing 

time and cost to processing it. It is therefore necessary that the predictor work effectively 

from nominal data alone.  

0.000E+00

2.000E+08

4.000E+08

6.000E+08

8.000E+08

1.000E+09

1.200E+09

1.400E+09

1.600E+09

1.800E+09

2.60E+08 2.80E+08 3.00E+08 3.20E+08 3.40E+08

A
p

p
ar

en
t 

th
er

m
al

 s
tr

es
s 

(P
a)

SSS (Pa)

OHX MHX Inconel 718 Inconel 713LC

Nimonic 263 Inconel 738LC Inconel 939 Inconel 625

X = 0.225 X = 0.25 X = 0.275 X = 0.3

X = 0.325 X = 0.35



 
 

276 
 

Conversely, from an alloy design perspective, it is important that the crack susceptibility 

model is viable for SLM processed material.  

8.4.2 Discussion of model effectiveness  

It was stated in Chapter 7 that although the Lopez model aided in understanding of the 

thermal history of selective laser melted material, ultimately it could not be applied 

affectively for the crack susceptibility model. This is largely because of the strong 

influence of thermal expansion and Young’s modulus in the thermal stress relationship, 

which render the small changes in a ΔT between two compositions of the same alloy base 

close to negligible. This was noted when performing the crack susceptibility calculations. 

When the thermal stress calculation is performed with base units, the Young’s modulus 

has the greatest influence, because it of the highest magnitude. The ΔT value is 3 orders 

of magnitude less than the thermal expansion coefficient, and 6 less than Young’s 

modulus.  

However, when there is a significant difference between compositions, for example 

different alloy bases, it may prove useful to employ the Lopez model to ascertain the 

temperature range between the 0.5Tm and ambient temperature. For example, the ΔT of 

aluminium base alloys will be significantly lower than that for nickel, given that the 

majority have Tm <900K, meaning 0.5Tm in the region of 450K.  

As discussed in Section 8.4.1 the crack susceptibility predictor agreed well with 

experimental observations when using properties for both SLM processed material and 

conventionally manufactured material, for room temperature. Although there was some 

minor disparity between the two plots, the most obvious discrepancy was Inconel 718. 

On both plots Inconel 718 is predicted as have a comparable or higher crack susceptibility 
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than OHX, yet in published investigations no cracking has been reported (Amato, Gaytan 

et al. 2012, Wang, Guan et al. 2012).  

Inconel 718 has a similar SSS contribution to Hastelloy X, however it has higher Young’s 

modulus in both SLM as-processed and conventionally manufactured states. Wang, Guan 

et al. (2012) report the as-processed yield strength and UTS of Inconel 718 as 889-907 

MPa and 1137-1148 MPa respectively. The as-processed tensile strength of Inconel 718 

is therefore significantly greater than that for Hastelloy X - Wang (2011) reports a higher 

UTS of 936 MPa, than that of this investigation, which is still lower than Inconel 718 – 

despite the similar SSS contribution. An explanation for this may come from the 

observations of possible nano-precipitates, reported in Chapter 6. Amato, Gaytan et al. 

(2012) reports the presence of 50x 250 nm ellipsoidal precipitates of γ’’ Ni3Nb – the 

strengthening phase in Inconel 718 – coherent with the Ni-Cr matrix and orientated with 

the [100] crystal structure. The precipitates appear to be ‘stacked’ in a frequency and 

spacing which coincides with the succession of melt pools during the epitaxial growth of 

the crystals. Although Amato admits the XRD chemical evidence is not completely 

unambiguous, these observations may explain the high mechanical properties of as-

processed Inconel 718.  The γ’’ phase forms between 705-900°C, and importantly can 

form over time scales of 10s of minutes over the temperature range – see Figure 8.14. It 

this therefore not unreasonable to expect that the cyclic heating of underlying layers, 

from the laser interactions above, will be sufficient to allow for the formation and growth 

of precipitates in regions where (the limited) segregation has occurred, i.e. melt traces. 

The observation that the precipitates were coherent with matrix, leads to the prediction 

that they will still act to pin and inhibit the movement of dislocations and improve the 

tensile strength of the bulk material.  



 
 

278 
 

 

Figure 8.14 – Transformation diagram for γ’ and γ’’ phases in Inconel 718 – direct from 

(Davis 1997) 

In alloys such as Inconel 713LC or 738LC, the primary strengthening phase is γ’ Ni3(Al,Ti). 

From Figure 8.14 it is observed that γ’ forms over a narrower temperature range, and 

critically requires time frames of 10+ hours for transformation. This difference in  

transformation temperatures and times may explain why precipitates of γ’ have not been 

observed in Inconel 713 or other γ’ strengthened alloys, and why they display relatively 

lower as-processed tensile properties  with respect to Inconel 718 (Vilaro, Colin et al. 

2012, Kanagarajah, Brenne et al. 2013, Rickenbacher 2013). Hastelloy X does not have 

any precipitate phases, and although suspected secondary phases were observed, they 

were significantly smaller than those from (Amato, Gaytan et al. 2012) and located in the 

interdendritic regions. 

The formation of micro-nano precipitates will be strongly influenced by the laser scan 

parameters used in processing. If laser exposure is extensive, this will allow for the 

material to be held at higher temperatures for longer, thereby encouraging the 

precipitation or growth of secondary phases – not least because solute diffusion will also 
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increase. As with a lot of comparisons between work in literature, care must be taken in 

drawing conclusions from the few examples that are present.  

The reported presence of coherent γ’’ precipitates in SLM as-processed Inconel 718 

microstructure aligns with the respectively high tensile strength. In turn this could also 

explain why Inconel 718 does not appear to suffer from process induced micro-cracking, 

in that the increased strength the as-processed microstructure (compared to if it were 

purely the γ matrix in solid solution) provides sufficient resistance to thermal stress and 

the consequential stress-rupture.  

The availability of data for elevated temperatures is likely to improve the accuracy of the 

predictions. It was demonstrated that when the data was available, the model was in 

better agreement with experimental observations. This is not unexpected, given that it is 

micro-crack formation likely occurs at elevated temperatures, in the solid material just 

below the melt layer.  

In conclusion, the crack susceptibility predictor is able to predict the likelihood of micro-

crack formation during SLM processing, based on composition, thermal expansion and 

elastic modulus only. The model is most accurate for solid solution or γ’ precipitation 

strengthen nickel alloys, although the anomaly with γ’’ strengthened Inconel 718 can be 

attributed to formation of said precipitates during SLM processing. 

Finally, it is noted that alignment of predictions and empirical data is expected to be 

dependent on the processing conditions, particularly for cases when extreme processing 

conditions are implemented. The examples from the ball milled material demonstrate 

that differences in both processing methodology and powder morphology are still 

significant factors in the formation of micro-cracks during SLM processing. 
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8.5 Low crack design model 

The low crack design model is an inversion of the crack susceptibility predictor. It will 

enable the design of low crack susceptibility alloys based on the established desirable 

properties from Section 8.4. Regrettably, time constraints on this investigation meant 

that this stage of the project could not be fully realised. Fortunately, however, it is to be 

included as part of a successive project by Harrison. As a result, this section will discuss 

only the initial plan and considerations of the model. 

8.5.1 Model plan 

Figure 8.15 demonstrates the model step by means of a flow diagram. The main inputs 

for the model are alloy base, additional alloying elements (with ranges where applicable) 

and the desired crack susceptibility value χ. Once a set of elements is chosen, an initial 

composition is generated using the minimum values of each range, with the remainder 

added to the nickel content. The solid solution contribution and thermal stress 

contribution are then calculated from this composition and the ratio between the two is 

put through a simple ‘if’ statement. If the ratio is greater than the chosen χ value, the 

composition is published, if not, the concentration of final element is increased by a 

chosen increment and the loop is performed again. The number of increments can be 

altered but is initially set at 10 per element; therefore, the size of each increment is the 

range divided by 10. The loops continue, cycling through each element until every 

possible combination has been processed. For an 8 element alloy (Ni + 7 alloying) this 

would therefore take a maximum of 108 calculations. It is proposed that if 10 or more 

combinations yield a χ greater than the input value, this will initiate a dialogue box ask if 
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the user wishes to continue. The user can then either choose to continue or alter in the 

initial elemental ranges.  

 

Figure 8.15 - Basic design model flow chart 

 

8.5.2 Input and additional model considerations 

Ultimately the purpose of this design model is to produce compositions which do not 

crack when processed by SLM. However, the operational properties of the alloy are the 

most important, and therefore allowances have to be made for alloying elements which 

may not be beneficial to the crack susceptibility rubric, e.g. Co for precipitation 

modifications. This is extended by allowing the input of limits for certain alloys, based on 

known beneficial effects, e.g. 10-20% wt Cr content to ensure corrosion resistance. 

The choice to input a target χ value is to allow for the inevitable variation of a machine 

platform’s/scan strategy’s influence on crack generation. Additionally, the user may have 
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knowledge that chosen elements will not yield an ultra-low crack susceptibility 

composition and instead are seeking for a best case composition. 

The calculations for the solid solution contribution and thermal stress contribution will 

rely on additional data libraries. In the case of the solid solution contribution this will 

simply be the list of strengthening parameter values used in Chapter 6. For the thermal 

stress contribution it is more complicated, given that a similar (to the Gypen and 

Deruyttere (1977)) model does not currently exist for Young’s modulus. Thermal 

expansion can be calculated using Thermo-Calc: although not ideal, a macro can be 

written so that the software performs iterative calculations of varying composition. It 

may prove more efficient to generate a dataset of lower resolution from which 

approximate values of thermal expansion can be extracted. However, this would have to 

be trialled first to be validated. 

Ideally the design model would be developed into a dedicated software, which could then 

accommodate more complex/additional requirements making it more applicable for end 

users. It is hoped that this will be realised in future projects. 

 

8.6 Chapter Summary 

The development of a thermal stress contribution in Chapter 7, allowed for the 

completion and validation of the crack susceptibility model in full. Although some level 

of validation had been completed in Chapter 6, for OHX and MHX, further validation was 

required.  

A combination of performing additional experiments on established and novel alloys, and 

using data and information from published literature, allowed for the creation of several 
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crack susceptibility graphs, based on properties for SLM processed, conventionally 

processed, and elevated temperature conditions.  

The predicted behaviours of the alloys agreed well with the observations from both this 

work and those found in literature. It was therefore concluded that the crack 

susceptibility model was a viable method for determining the susceptibility of a given 

nickel superalloy to SLM process induced micro-cracking.  
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9 Further considerations, summary and conclusions 

 

In this final chapter, relevant articles which have been published since the initial 

considerations of the literature review, and during the latter stages of this investigation, 

are discussed. Further considerations either prompted by said articles, or results of this 

investigation form the final discussion of this work.  

This is followed by summary of the main findings of the work conducted in this 

investigation, after which conclusions will be drawn on the individual aspects and 

investigation as a whole. As summaries were not written at the end of each chapter, they 

are separated into the respective areas. 

9.1 Recent publications and further considerations 

9.1.1 Recent publications 

Cloots, Uggowitzer et al. (2016) investigated the mechanisms behind cracking of Inconel 

738LC processed by SLM using both Gaussian and doughnut profiles. Rickenbacher 

(2013) had investigated the high temperature mechanical properties of Inconel 738LC 

processed by SLM, and noted that the alloy suffered from micro-cracking during 

processing. Cloots et al. cited Harrison, Todd et al. (2015) in the initial discussion, stating 

that the EDX method used to analyse the grain boundaries of SLM processes nickel for 

solute segregation, was not of a high enough resolution to be conclusive. Although the 

author stands by their comments, they concede that higher resolution techniques such as 

TEM are required to be completely confident of solute redistribution within the 

microstructure. 
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Rather than focussing on the lattice strength of the material, Cloots, Uggowitzer et al. 

(2016) state that the cause of the cracking is by means of thin liquid film remnant in the 

final stages of solidification i.e. solidification cracking. The qualification for this is by 

means of a rapid solidification thermophysical simulation of the liquid fraction with 

temperature – a software not dissimilar to Thermo-Calc used in this investigation. The 

results of the solidification simulation imply that zirconium diffuses significantly and 

increases in concentration up to near 28 wt% - with Ni making up the remainder - of the 

final liquid phase – Figure 9.1. Coupled with the Zr increase, a significant lowering of the 

solidus temperature of the alloy (in this phase) down to a remarkably low 682°C. The 

reason for this very low solidus temperature is not explained, and the result is simply 

accepted. Given that the melting point of Ni is 1455°C and Zr is 1855°C it is impossible 

that a phase of the two can still be liquid at 700°C, and therefore strange that this was not 

challenged/ further explained by the authors.  

 

Figure 9.1 - Liquid fraction simulation of Inconel 738LC – modified from (Cloots, 

Uggowitzer et al. 2016). Red dotted line indicates solids temperature simulated by 

Thermo-Calc 2015. 

For comparison, the exact composition of the Inconel 738LC used in the Cloots 

investigation was input into Thermo-Calc, and the same Schiell solidification model was 

performed. Figure 9.2 and Figure 9.4 show the results of the Thermo-Calc simulation. As 

can be seen in Figure 9.2, the model simulates a solidus temperature of 1091°C and, in 
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Figure 9.3 and Figure 9.4, a final Zr concentration of 2.6 wt%, all of which is far more in 

agreement with what would be expected.  Additionally, comparing the Thermo-Calc with 

the simulation in Cloots, we see that both models are in agreement up to a specific point, 

at which Thermo-Calc simulates the final freezing of the alloy but the model used by 

Cloots continues on; to what is considered an unrealistically low solidus point. 

 

Figure 9.2 - Mass fraction of liquid with temperature for Inconel 738LC as simulated by 

Thermo-Calc 2015 using Schiel solidification model. 
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Figure 9.3 - Composition of liquid phase with temperature of Inconel 738LC as simulated 

by Thermo-Calc 2015 using Schiel solidification model. 

 

Comparing Figure 9.3 to the Figure 9.1b, it is also noted that the Zr content (and all 

element concentrations) is similar in both simulations up to the crucial temperature – 

after which point Cloots’ model simulates a huge increase.  
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Figure 9.4 - Mass percent of Zr in liquid phase of Inconel 738LC as simulated by Thermo-

Calc 2015 using Schiel solidification model 

 

Cloots aims to support the solidification cracking hypothesis by sampling material from 

a grain boundary and performing Atomic Probe Topography (APT) on the sample – with 

the intention of observing an increased concentration of Zr. 

Reported is an increase in concentration of Zr from 0.04 at% in the bulk alloy to 0.5 wt% 

- 20x increase. Although certainly a significant increase, this is significantly less that the 

28 wt% simulated by the model, and is far more in line with the Thermo-Calc simulation.  

A point acknowledged by Harrison et al. is that there was localised segregation 

interdentritically. Being that the grains of SLM nickel superalloys are only ever visible by 
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orientation, not brought up by etching, the implication is that there is not observable 

chemical difference at the grain boundary. Instead, there is a chemical difference 

interdendritically, which when two grains meet will likely form part of a grain boundary. 

Therefore, if Cloots had sampled an interdendritic region, they would likely have 

observed the same chemical composition. Additionally, the grain boundary sampled did 

not feature a micro-crack. Cloots concluded that the increased Zr at grain boundary 

supported the solidification cracking theory, however given that the sampled region was 

not a crack surface there is no guarantee that the two are mutually exlusive.  

We must also consider that the grain boundaries are not the regions where the final 

instances of solidification occur. This would actually be the centre of the melt pool, as the 

solidification front will travel radially inwards from the edge of the melt pool. This would 

mean any solidification crack which occurs at this point would be in the centre of the melt 

pools, or at the very least propagating from the centre of the melt pools. Yet when 

analysing the micrographs from this investigation and others (Mumtaz, Erasenthiran et 

al. 2008, Wang 2011, Wang, Wu et al. 2011, Rickenbacher 2013, Tomus, Jarvis et al. 2013, 

Harrison, Todd et al. 2015) there is no trend to suggest the cracks are propagating from 

the centre of melt pools. Cloots argues several mechanisms for the formation of the cracks 

along the grain boundary, with one proposal being that the crack does from in the centre 

of the melt pool, but then propagates enough so that on the successive layer – despite the 

material being most remelted – a small crack remains in the solid material and through 

thermal stress is allowed to propagate and remain. This is possibility, however one would 

expect to see cracks along the top surface of processed material, which again is not 

supported well by observations in this investigation.  
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Finally, there was no detectable Zr content in either OHX or MHX and conversely the 

composition detailed in Kanagarajah, Brenne et al. (2013) – investigating microstructure 

of SLM processed Inconel 939 – gave Zr at 0.1 wt% but micro-cracking was not reported. 

Thus, if Zr content does have an influence on the crack susceptibility of nickel superalloys, 

the two are not mutually exclusive.  

9.1.2 Further considerations 

As with many projects, time constraints have inhibited the full completion of objectives 

has laid out in the beginning of the project. Most notable of which was restrictions of 

novel alloy validation imposed by equipment failures and delays in the final third of the 

project. This in turn meant batch scale production of the novel alloy powders could not 

be performed and as such more comprehensive validation by means of tensile testing and 

full scale test parts could not be realised.  

Ultimately the level of validation that was initially planned was not realised, however this 

is not to detract from the validation work that was carried out - which still yielded 

significant results. The following details the further considerations by the author, based 

on results from the investigation as a whole. 

9.1.2.1  Model for predicting elastic modulus 

 

The ability to model the elastic modulus with composition and temperature would have 

been very beneficial for this project. Elastic modulus carries significant influence on the 

thermal stress generated during the process, and therefore it would have been ideal if it 

could have been simulated as proficiently as thermal expansion.  
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As of writing there still does not exist a model which encompasses both composition and 

temperature dependence. This therefore represents a good avenue of investigation for 

future projects, and it is believed by the author that developing this understanding will 

greatly advance alloy design for laser fusion processes in the future. 

9.1.2.2 Influence of minor and residual elements 

 

As discussed in Section 1.6.1, there are a number of investigations which attribute the 

presence of certain minor and residual elements to the cracking problems of nickel 

superalloys. Although the evidence is supportive it is not currently conclusive enough.  

Certainly it would appear there is no one element, or even mechanism, responsible for 

micro-cracking in nickel superalloys. In this investigation, solid solution elements have 

been concluded to reduce the crack susceptibility of Ni-Cr-Fe based alloys. The effect of 

residual elements was considered, and chemical analysis suggested their influence was 

negligible. However, it is possible the solidification conditions are such that higher 

resolution techniques are required to verify the true extent of solute redistribution in 

SLM processing. 

Process parameters, particularly laser scan parameters, are also still significant, and the 

introduction of 1kW laser and multi-laser systems, and heated platforms by 

manufacturers will only serve to further complicate investigations. It is proposed that 

exposing material to higher energy densities may provide the necessary conditions for 

mechanisms such as liquation and solidification cracking. The variety of SLM systems, 

hatch strategies and an individual’s experience of the process, make it difficult to 

confidently compare results from published investigations.  
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Ultimately, no single investigation will be able to encompass and solve the many aspects 

of SLM processing that are yet to be understood. It is hoped, however, that this 

investigation has provided a significant step forward in this field. 

9.2 Summary of chapters 

9.2.1 Review of literature 

At the time of writing there was a relatively low number of published investigations on 

the processing of alloys by Selective Laser Melting (SLM), and only a proportion of these 

focussed on nickel base superalloys. Fortunately, many of the publications featured 

microstructural analysis, which allowed for conclusions to be drawn on the possible 

solidification rates and characteristics of Selective Laser Melting.  

In order to demonstrate understanding of solidification mechanisms and characteristics, 

extensive theory on crystal formation and rapid solidification was reported. This was 

vital in aiding the hypothesis and ultimate validation of establishment of SLM as a rapid 

solidification process.  

Although there were a number of published investigations into the processing of nickel 

base superalloys, only a fraction of these reported or investigated process induced micro-

cracking. There was not enough information to draw up a sound hypothesis from these 

reports alone, and therefore more information was sought from processing of nickel 

superalloys by laser welding.  

The key mechanisms behind the formation of residual stress, TGM and shrinkage were 

also detailed, as these were expected to be significant factors in the formation of micro-

cracks.  



 
 

293 
 

9.2.2 Experimental methodology and preliminary investigations  

Hastelloy X was chosen as the candidate alloy as it was one of the few which had 

previously been reported in publications as suffering from micro-cracking. Processing 

was performed on a Renishaw SLM 125, which had a total of 7 controllable processing 

parameters, all of which were demonstrated to have significant influence on the density 

and crack density of fabricated material.  

Characterisation was performed on both the process and material. Analysis of the beam 

profile and influence of focus offset on the beam profile revealed that when fully focussed 

(focus offset = 0 mm) the beam had a very sharp profile. This lead to the inclusion of focus 

offset in optimisation trials, to investigate the effect of energy distribution on porosity 

and cracking. 

Process optimisation was conducted in two stages. Due to the large number of 

controllable parameters it was fist necessary to conduct a screening trials and establish 

a basic processing window. After this, factorial DOE’s were drawn up to investigate the 

individual influences of each parameter on the density and crack density of the material. 

After the screening trial, layer thickness was fixed at 20µm. 

Porosity was found to fall into three primary categories: 

 Lack of fusion – insufficient melting/wetting resulting from insufficient energy for 

a given volume of powder. Often presents as irregular pores with unfused 

particles, aligned with the layer direction 

 Spherical/gaseous – either trapped gas from pores contained within the powder 

particles or trapped in voids left by sufficient track overlap 
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 Vapourisation – Large irregular pores void of material, caused by the evaporation 

and consequential vapour/plasma recoil which ejects material. Results from 

excessive energy input 

It was established that were was a relatively wide window in which full density (>99.5%) 

could be achieved with Laser Power (LP) and Exposure time (ET) once Point Distance 

(PD), hatch spacing and focus offset were all fixed/optimised. LP, ET and PD were then 

dimensionally reduced to give a single parameter of 1D Line Energy density, providing a 

more fundamental parameter on which to observe relationships.  

Crack density was reduced to 3.2 cracks per mm2 for a 10 mm cubic sample, however it 

was not possible to eliminate the cracking. This provided justification for a solution by 

alloy design.  

9.2.3 Establishment of rapid solidification and microstructure 

Review of SLM microstructures from published literature implied there was a tight 

constraint on solidification, evidenced by a consistency of grain structure and size for a 

number of different alloys. The grain structure is of high aspect ratio columnar grains, 

orientated with the build direction, which can transcend over a hundred layers. Grains 

are composed of cell-like dendrites orientated in aligned with the preferential crystal 

orientation.  

From rapid solidification processing theory, laser surface techniques typically produce 

solidification rates of the order of 0.1-1 m/s, placing them just inside RSP. If this was the 

case, it would imply that solute distribution (segregation) would be minimal leading to a 

solid solution rather than multi-phase material. 
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Solidification conditions, including cooling rate and thermal gradients were modelled for 

single laser spots. Using material properties of Hastelloy X and known melt pool 

geometries, it was calculated that solidification rate for a single melt pool would be of the 

order of 0.5 m/s.  

Aziz’s solute redistribution theory was applied using the proposed solidification rates; 

from which it was implied that significant solute trapping would occur resulting in a near 

solid solution. 

To validate the theory, samples from the optimisation trials were reanalysed with higher 

resolution techniques. The microstructure was observed to be consistent with that of 

published literature. Primary dendrite arm spacings were used to calculated cooling 

rates, which agreed with those proposed from rapid solidification theory and 

solidification rate ≤1 m/s. Etching of melt traces and interdendritic regions implied 

localised segregation in those regions, however grain boundaries were only defined by 

the orientation of cells.  

EDS line scans were performed across crack regions to determine if significant 

segregation had occurred, however no variation in solute concentration around the crack 

interface was detected. This provided support that the mechanism behind micro 

cracking, in Hastelloy X at least, is not solidification cracking or liquation cracking. 

High magnification SEM imaging revealed the presence of nano-scale globular 

precipitates. The small particle size made it difficult analyse the chemical composition of 

the precipitates, although from morphology and indirect evidence it was concluded they 

were most likely MC carbides or sigma phase.  
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9.2.4 Micro-cracking mechanism 

The conclusions from Chapter 4 allowed for theory of cracking mechanism to be 

proposed for nickel superalloys processed by SLM.  

Observations from the experimental work, along with information from literature on SLM 

processed and welded nickel superalloys lead to the proposal of Elevated Temperature 

Solid State cracking as the primary mechanism. ETSS is defined as occurring when the 

thermal stress exceeds the ultimate tensile strength of the material at a given location 

and temperature, resulting in failure by rupture or fracture. It occurs only when the 

material is in solid state.  

Using the key response indicators of Thermal Stability and Thermal Shock Resistance 

(TSR), along with understanding of TGM, an equation for determining the crack 

susceptibility of an alloy was defined. Taking ETSS as the primary mechanism for micro-

crack formation, the crack susceptibility of an alloy was defined as the ratio between the 

tensile strength of the material and the thermal stress generated by the process. 

In order to predict a material’s crack susceptibility, both tensile strength and thermal 

stress components would need to be simulated – so that they then may be controlled 

through alloy design. 

9.2.5 Tensile strength contribution 

Using the Hall-Petch relationship it was concluded that, given the constrained 

solidification conditions, only the lattice strength (composed of Peierls stress and solid 

solution contribution) of the material would be significant when comparing alloys of 

different compositions.  
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Solid solution strengthening (or hardening) theory can be used to calculate the solid 

solution contribution of an alloy based on alloying composition alone – providing the 

necessary empirically determined values exist; which for nickel they do.  

Therefore, it was proposed that the crack susceptibility of an alloy could in fact be 

determined not by tensile strength, but by solid solution contribution – as it had 

previously been established that SLM processed material would be a near solid solution. 

The hypothesis was tested by means of experimental validation. A modified version of 

the Haselloy X composition used in the preliminary investigations was designed with 

increased solid solution strength and reduced residual limits – named MHX. It was then 

processed in direct comparison to the original Hastelloy X – named OHX – and the crack 

densities, along with material properties were compared. Critically, MHX was still within 

the Hastelloy® X specification and modifications would be considered minor in 

magnitude. 

MHX displayed an average reduction in cracking of 65% over OHX. Tensile testing 

revealed that MHX displayed superior tensile strength at elevated temperatures and 

marginally improved ductility and hardness.  

Although not fully explored at this point, the effect of thermal expansion on thermal stress 

– and therefore crack susceptibility – could not be ruled out. However, both MHX and OHX 

displayed near identical coefficients of thermal expansion.  

For the case of MHX therefore, an increase in solid solution strength had resulted in a 

significant reduction of crack density (and thus crack susceptibility) over OHX. This result 

therefore supports the theory of crack susceptibility based on the assumption that 

thermal stress contributions were not significantly different 
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Finally, as a result of observations from the MHX-OHX comparison trials, some 

experimental work was conducted to investigate the effect of geometry, specifically 

component volume on the micro-cracking of material. 

Although a relationship was observed between cracking and cube volume, it was not 

linear or proportional. However, it was observed there was a dominant influence of laser 

power on the cracking of the material. Specifically, increasing power lead to increased 

crack density, whereas as there was no defined relationship for exposure time (absorbed 

energy per unit area). This result implies solidification cracking is not the primary 

mechanism for micro-cracking, as one would expect a relationship between exposure 

time and cracking if this were the case. Conversely, it supports ETSS as increased power 

results in increased surface temperatures and increased thermal gradients. This drives 

the TGM for thermal stress generation and hence increased cracking by ETSS.  

9.2.6 Thermal stress simulation 

The second part of the crack susceptibility model is the simulation or calculation of 

thermal stress experienced by the alloy as a consequence of SLM processing. 

It was established that complete 3-dimensional simulation of thermal stress for real-

world processing was beyond the resources of this investigation, however if one or more 

of the influencing components of thermal stress could be simulated, this would be 

beneficial. 

The three primary components of residual generation are the expansion of the material 

due to a change in temperature, the material’s resistance to the expansion – it’s stiffness 

– and the change in temperature i.e. co-efficient of thermal expansion, elastic (Young’s) 

modulus and ΔT. In order to predict crack susceptibility a method was required by which 
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thermal stress could be predicted based on chemical composition and fixed processing 

parameters alone.  

Presently, a model or method of simulating Young’s modulus with chemical composition 

is not in existence – and again this would be beyond the resources of this investigation. 

Therefore, Young’s modulus would have to be taken from closest known compositions if 

the alloy was not in existence. However, for predicting of known alloys, the Young’s 

modulus of the annealed state would be sufficient.  

Thermophysical calculation software can be used to calculate coefficient of thermal 

expansion, however it is not affected significantly by grain structure and therefore values 

can also be taken from literature for known alloys.  

It was initially proposed that the ΔT values be taken from a 3-dimensional temperature 

field model. With the model, one could simulate the temperature field with time, as laser 

spots were successively melted in lines, then hatches and ultimately layers. Although the 

results were initially promising, it became evident that extracting a usable ΔT value was 

not possible – due to the random nature in which the model ‘measured’ points. In 

addition, it was realised that subtle differences in a ΔT value between two similar alloys 

would be insignificant compared to the differences of E or αCTE which carried much larger 

magnitudes.  

It was therefore decided to use the model only to approximate a working ΔT value, 

applicable for a base alloy set. For the case of nickel superalloys, this would be 500 K, the 

approximate range between ambient temperature and 0.5Tmelt. This was deemed 

acceptable as the purpose was to compare nickel alloys for crack susceptibility, thus 

providing a fixed ΔT actually allows for clear comparison of material response. 
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The ‘apparent’ thermal stress for alloys could then be calculated, influenced only by their 

Young’s modulus and thermal expansion, with the chosen ΔT only effecting the final crack 

susceptibility value. 

9.2.7 Crack susceptibility predictor 

OHX and MHX had provided the first levels of validation for crack susceptibility theory, 

however more validation was required, on both commercially available and novel alloys, 

to better support the findings. 

In order to test the solid solution influence in crack susceptibility, two alloys were 

designed with identical base alloying elements but markedly different predicted solid 

solutions strengths. Based on the Hastelloy® X compositions, a High SSS and Low SSS 

alloy were designed. High SSS had significant increases in Mo and W content, whereas 

Low SSS had significant reductions, compared to the standard Hastelloy® X composition.  

The two alloys were fabricated using a novel process, by which the alloys were first cast 

by vacuum arc melting, then rolled and sectioned, before being processed into ribbons by 

melt spinning. Finally, the ribbon was processed into a powder by means of ball milling. 

Chemical testing revealed a significant increase in oxygen content, most likely from 

milling process, although both powders had similar levels. 

Due to the small volumes of powder produced, a custom rig was created to fit inside the 

standard Renishaw SLM 125. This allowed for processing of 5⨯10⨯1 mm ribbons of 

material, which could be mounted and analysed for microstructure and hardness. 

High SSS displayed lower cracking than Low SSS, which had similar crack density to MHX 

when processed in the same manner. Despite the seemingly high oxygen content, the 
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powders behaved similarly to the commercial material, and therefore the result was 

deemed reliable.  

The final stage was to use the crack susceptibility predictor method to predict the crack 

susceptibility of commercial alloys, and compare the results to those reported in 

investigations in which said alloys were processed by SLM.  

When using properties and compositions reported in the publish investigations, the 

predicted crack susceptibilities had good agreement to observations, the primary reason 

being that the Young’s modulus values were appropriate for the SLM as processed state. 

When using data from ‘book’ values, there was still majority agreement, however some 

alloys have markedly different properties depending on microstructural states, which 

was reflected in the comparison.  

Inconel® 718 proved to be only true anomaly, as it is reported to process without cracks, 

but has a similar χ to OHX. A possible explanation for the anomaly is that in an as 

processed state, SLM processed Inconel® 718 contains coherent sub-micron precipitates 

of its primary strengthening phase, γ’’. The volume fraction is significant enough that it 

could influence the tensile strength of the material, which is reflected in the very high as 

processed mechanical properties (compared to the similar composition of Hastelloy® X).  

9.3 Conclusions 

 The microstructure of SLM is unique to the process, in that epitaxial growth 

produces large high aspect ratio grains, comprised of fine cell-dendrites, 

orientated parallel to the build direction. The cell-dendrites grow epitaxially, with 

the majority growing from the vertically orientated cells that remain at the base 

of the melt pool after the successive layer. As the upper melt pool solidifies, the 
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dendrite growth continues from the underlying dendrites and the grain is 

continued. Strong heat flux imposed by the large substrate (which acts as a heat 

sink) ensures close alignment to the z axis of the cell-dendrites and therefore 

grains.   

 The high solidification interface velocities and cooling rates inhibit the formation 

of secondary dendrite arms and significant secondary phase formation. As a result, 

although there is interdendritic microsegregation, the bulk material can be 

regarded as saturated solid solution with chemical variation only over length 

scales of microns.  

 Successive melting and extension of heat affected zone – recalescance - results in 

the formation of nano-precipitates in the interdendritic regions. EDX analysis of 

the precipitates implied composition was that of sigma phase, but electron back 

scatter images imply higher density phases such as MoC. It is accepted high 

resolution techniques would be required for confirmation.  

 Microstructural analysis as well as implementation of RSP theory and solute 

redistribution theory was used to establish Selective laser melting as a rapid 

solidification process. 

 The primary cracking mechanism in SLM processed nickel superalloys is believed 

to be elevated temperature solid state (ETSS) cracking. This is supported by the 

establishment of RSP, as well as fracture analysis and relationships between crack 

density and laser power. 

 The crack susceptibility of a nickel superalloy is defined as the ratio between the 

solid solution strengthening contribution and apparent thermal stress: 𝜒 =
𝜎𝑠𝑠

𝜎𝑎𝑝𝑝−𝑡ℎ
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 Minor increases in solid solutions strengthening elements in a known high crack 

susceptibility alloy, resulted in average reductions of crack density of 65%. 

Thereby supporting solid solution strength as a key factor in the crack 

susceptibility of a nickel superalloy. 

 A thermal stress contribution has to be included in the crack susceptibility model, 

however it is not required to be fully simulated. Apparent thermal stress values 

based on a fixed ΔT and composition dependant αCTE and E are sufficient. 

 Ball milling of novel alloy ribbon is a potential method for novel alloy powder 

production, however more refinement is required to ensure production of clean 

alloys. 

 The crack susceptibility predictor was demonstrated as being applicable and 

reliable for the majority of nickel superalloys. 

 The understanding is now in place to allow for the creation of a design tool to aid 

the development of nickel superalloys optimised for selective laser melting 

 However, as more investigations are conducted, additional information will need 

to be included in the crack susceptibility model to improve accuracy and 

applicability across the full range of nickel and other alloys.  
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