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Abstract

The need for automatic recognition and understanding of speech is emerging
in tasks involving the processing of large volumes of natural conversations. In
application domains such as Search and Rescue, exploiting automated systems
for extracting mission-critical information from speech communications has the
potential to make a real difference.

Spoken language understanding has commonly been approached by identi-
fying units of meaning (such as sentences, named entities, and dialogue acts)
for providing a basis for further discourse analysis. However, this fine-grained
identification of fundamental units of meaning is sensitive to high error rates in
the automatic transcription of noisy speech. This thesis demonstrates that topic
segmentation and identification techniques can be employed for information
extraction from spoken conversations by being robust to such errors.

Two novel topic-based approaches are presented for extracting situational
information within the search and rescue context. The first approach shows that
identifying the changes in the context and content of first responders' report over
time can provide an estimation of their location. The second approach presents
a speech-based topological map estimation technique that is inspired, in part,
by automatic mapping algorithms commonly used in robotics. The proposed
approaches are evaluated on a goal-oriented conversational speech corpus, which
has been designed and collected based on an abstract communication model
between a first responder and a task leader during a search process. Results
have confirmed that a highly imperfect transcription of noisy speech has limited
impact on the information extraction performance compared with that obtained
on the transcription of clean speech data.

This thesis also shows that speech recognition accuracy can benefit from
rescoring its initial transcription hypotheses based on the derived high-level
location information. A new two-pass speech decoding architecture is presented.
In this architecture, the location estimation from a first decoding pass is used
to dynamically adapt a general language model which is used for rescoring the
initial recognition hypotheses. This decoding strategy has resulted in a statisti-
cally significant gain in the recognition accuracy of the spoken conversations in
high background noise.

It is concluded that the techniques developed in this thesis can be extended
to more application domains that deal with large volumes of natural spoken
conversations.





Declaration

I hereby declare that I am the sole author of this thesis. The contents of this
thesis are my original work and have not been submitted for any other degree or
any other university. I have designed and collected the speech dataset described
in Chapter 3. Some parts of the work presented in Chapters 3, 4 and 5 have
been published in conference proceedings as given below:

1. Saeid Mokaram and Roger K. Moore, “Speech-Based Location Estimation
of First Responders in a Simulated Search and Rescue Scenario”, in
Interspeech, 2015. (Oral presentation)

2. Saeid Mokaram and Roger K. Moore, “Speech-Based Topological Map
Estimation in a Simulated Search and Rescue Environment”, in NIPS
2015, Workshop on Machine Learning for Spoken Language Understanding
and Interaction, 2015. (Poster presentation)

3. Saeid Mokaram and Roger K. Moore, “The Sheffield Search and Rescue
Corpus”, in the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2017. (Poster presentation)

4. Saeid Mokaram, Hamideh Kerdegari, Christina Georgiou, Roger K. Moore,
Tony J, Prescott, Tony J. Dodd, “Search and Rescue 2020”, University
of Sheffield Engineering Symposium 2013 group project. (First prize in
group poster competition).

5. Saeid Mokaram and Roger K. Moore, “High-Level Context for Improving
Automatic Recognition of Conversational Speech”, Submited to Inter-
speech, 2017.





Acknowledgements

First and foremost I would like to express my sincere gratitude to Roger Moore
for giving me the opportunity to work with him. As I slowly developed in
the role of a researcher, Roger has patiently provided me with his wealth of
knowledge and insight on the subject of speech technology. I consider myself
extremely lucky to have had his guidance and advice throughout my PhD
study.

I gratefully acknowledge the University of Sheffield Cross-Cutting Directors
of Research and Innovation Network (CCDRI), Search and Rescue 2020 project,
which provided funding for this work.

My wonderful time working towards this thesis could have been very different
without the many who have supported me on the way. I would like to thank
Jon Barker, Lucia Specia, and Tom Stafford for their support during my PhD.
I would like to thank Tony Dodd for introducing me to the ‘Search and Rescue
2020’ network project.

I would like to thank Rosanna Milner for kindly helping me in editing this
thesis. I also would like to thank her for helping me in testing my recording
set-up and the main recordings.

I am also grateful to my excellent colleagues in the Speech and Hearing
research group (SpandH) for bringing a great atmosphere and for their sincere
friendship.

Last but not least, I would like to thank my family and particularly my
wife Hamideh, without whose love and encouragement the completion of this
thesis would not have been possible.

Saeid Mokaram
Sheffield, January 2017





Table of Contents

List of Figures xv

List of Tables xxiii

Abbreviations xxv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . 7

2 Background 11
2.1 Speech communications in search and rescue . . . . . . . . . . . 12

2.1.1 Speech technology for search and rescue . . . . . . . . . 15
2.1.1.1 Situation awareness . . . . . . . . . . . . . . . 15
2.1.1.2 Speech-based situation awareness . . . . . . . . 17

2.1.2 Challenges in the automatic processing of voice channels 18
2.2 Automatic speech recognition . . . . . . . . . . . . . . . . . . . 22

2.2.1 Language model . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1.1 N-gram model estimation: . . . . . . . . . . . . 26
2.2.1.2 Language model adaptation . . . . . . . . . . . 27
2.2.1.3 Model interpolation . . . . . . . . . . . . . . . 30

2.2.2 Performance of speech recognition systems . . . . . . . . 31
2.2.3 Multipass decoding . . . . . . . . . . . . . . . . . . . . . 34

2.2.3.1 Language model lattice rescoring . . . . . . . . 35



xii Table of Contents

2.3 Understanding speech conversations . . . . . . . . . . . . . . . . 36
2.3.1 Challenges using speech input . . . . . . . . . . . . . . . 37
2.3.2 Topic segmentation . . . . . . . . . . . . . . . . . . . . . 39

2.3.2.1 Segmentation techniques . . . . . . . . . . . . . 40
2.3.2.2 Evaluation metric . . . . . . . . . . . . . . . . . 44
2.3.2.3 Segmentation performance . . . . . . . . . . . . 45

2.3.3 Topic identification . . . . . . . . . . . . . . . . . . . . . 46
2.3.3.1 Technical approaches . . . . . . . . . . . . . . . 50

2.4 Topological mapping . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.1 Topological maps . . . . . . . . . . . . . . . . . . . . . . 60
2.4.2 Automatic topological mapping . . . . . . . . . . . . . . 61

3 Sheffield Search and Rescue Corpus 65
3.1 Suitable speech communication datasets . . . . . . . . . . . . . 66
3.2 Conversation task design . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Conversation scenario . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Simulated environment design . . . . . . . . . . . . . . . 71

3.3 Corpus recording . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Transcription and annotation . . . . . . . . . . . . . . . . . . . 79
3.5 Corpus description . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Locational Information Extraction 85
4.1 Speech-based location estimation . . . . . . . . . . . . . . . . . 86

4.1.1 Transition detection . . . . . . . . . . . . . . . . . . . . 88
4.1.2 Location estimation . . . . . . . . . . . . . . . . . . . . . 91
4.1.3 The impact of transcription errors . . . . . . . . . . . . . 92

4.1.3.1 Automatic transcription system . . . . . . . . . 93
4.1.3.2 Document classification system . . . . . . . . . 94
4.1.3.3 Results . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Speech-based topological map estimation . . . . . . . . . . . . . 100
4.2.1 New node detection . . . . . . . . . . . . . . . . . . . . . 101
4.2.2 Correspondence estimation . . . . . . . . . . . . . . . . . 102
4.2.3 Experiments and results . . . . . . . . . . . . . . . . . . 107



Table of Contents xiii

5 Design of a Two-Pass Speech Recognizer 113
5.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Baseline automatic speech recognition system . . . . . . 116
5.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 120

6 Conclusions 127
6.1 Reviewing the scope of the thesis . . . . . . . . . . . . . . . . . 127
6.2 Answer to research questions . . . . . . . . . . . . . . . . . . . . 131
6.3 Original contributions . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

References 137

Appendix A Examples of TF-IDF 159

Appendix B Examples of LDA 161

Appendix C SSAR Corpus Recording Forms 167
C.1 Information sheet . . . . . . . . . . . . . . . . . . . . . . . . . . 168
C.2 Personal information form . . . . . . . . . . . . . . . . . . . . . 172
C.3 Consent form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Appendix D SSAR Corpus Transcription Guidelines 175

Appendix E Examples of Manually Estimated Maps 187

Appendix F ASR Performance at Different SNRs and LMSFs 193

Appendix G List of Publications and Presentations 197





List of Figures

1.1 Three parts of the ‘Search and Rescue 2020 ’ network project. . 2

2.1 top: An overview of a typical fire response communication sce-
nario. bottom: the voice and language parameters at each stage
of the fire response process (visualized on top) are presented with
a focus on characterizing the difficulty level of the ASR task.
The triangle shaped bar indicates the ASR task difficulty at each
stage. SCBA stands for Self-Contained Breathing Apparatus. . . 13

2.2 A general architecture of a large vocabulary continuous speech
recognizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 The process of making a context-dependent language model in
the rescoring pass. The background language model is typically a
large model trained an out-of-domain data and the context-specific
language models are typically small but specific models trained
on subsets of the training corpus. A context-dependent model can
be made dynamically by interpolating these static models based
on some information about changes in the speech domain. . . . . 32

2.4 An example showing a reference utterance transcript, its ASR
hypothesis, and each word error types. C, I, D, and S stand for
correct, insertions, deletions and substitutions, respectively. . . . 33

2.5 The general architecture of a two-stage speech decoding. High-
level language model or a more sophisticated acoustic model can
be used in a second-stage decoding to rescore and re-rank the
initial decoding hypotheses. . . . . . . . . . . . . . . . . . . . . . 35



xvi List of Figures

2.6 TextTiling graph. Vertical lines indicate actual topic boundaries.
The graph indicates computed similarity of adjacent windows of
text. Peaks indicate coherency, and valleys indicate potential
breaks between tiles (reproduced with permission from Hearst and
Plaunt (1993)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 a: Dot-plotting of four concatenated Wall Street Journal articles
(reproduced with permission from (Reynar, 1994)). b) Utterance
similarity plot for a Physics lecture, with vertical lines indicat-
ing true segment boundaries (reproduced with permission from
(Malioutov and Barzilay, 2006)). . . . . . . . . . . . . . . . . . 42

2.8 Graphical representation of three primary constraints describing
a topic identification task, with example tasks for various com-
binations of these constraints (Hazen, 2011) (reproduced with
permission from Wiley Books). . . . . . . . . . . . . . . . . . . . 49

2.9 Block diagram of the four steps typically taken by a speech-based
topic identification system during the process for converting an
audio document into topic hypotheses (Hazen, 2011) (reproduced
with permission from Wiley Books). . . . . . . . . . . . . . . . . 50

2.10 Graphical model representation of LDA. The boxes are plates
representing replicates. The outer plate represents M documents,
while the inner plate represents the N repeated choice of topics (z)
and words (w) within a document (Blei et al., 2003) (reproduced
with permission from JMLR). . . . . . . . . . . . . . . . . . . . 55

2.11 Level of abstraction hierarchy for maps (Boal et al., 2014) (re-
produced with permission from Cambridge university press). . . . 60

2.12 The basic steps that are typically taken by automatic topological
map making techniques in the field of mobile robotics. The
first step is to choose the appropriate technologies to sense the
environment while a robot explores an area. The next step is to
detect when a new node (landmark) should be added to the map.
The final step is to determine whether each added node is a new
one, or one that has been visited previously. . . . . . . . . . . . . 62



List of Figures xvii

3.1 Pictograph illustration of the abstract communication model
within a search and rescue context. In this model, an indi-
vidual is represented by a circle and an inner ellipse. The inner
ellipse represents its thoughts and understandings. For instance
here, the Task Leader (TL) has an understanding (imagination)
about First Responders' (FR) status and the environment which
they are in. However, each FR has an understanding about them-
selves and their surrounding environment (self awareness). The
double arrows represent the coupled interaction between FRs and
the TL that is performed remotely via a voice communication
channel. In this model, FR goal is to explore the environment
(i.e. incident scene) and report their observations and actions
back to the control hub to update the TL knowledge about the
incident scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 (a) A user-view of the designed simulation system. (b) A top-
view of the simulated environment (Map3) which is overlaid with
the motion trajectory of a participant and their viewing directions
(small arrows) at each time. . . . . . . . . . . . . . . . . . . . . 72

3.3 (a) The topological structure of four different map settings (Map1−4)
which were explored by each participant. (b) corresponding top-
view image of each map. . . . . . . . . . . . . . . . . . . . . . . 73

3.4 top: the recording scenario, bottom: the recording set-up in two
separate quiet rooms. . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 An example of motion trajectory information plotted over the
environment map, an instance of a participant's field of view and
surrounding objects in the simulated environment. . . . . . . . . 77

3.6 A hand drawing example of the Map4 estimated by a participant
(task leader). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Some sections of a conversation between an FR and a TL as an
example of the conversations and their transcripts in the SSAR.
A ‘|’ indicates a long (about one second) pause and a ‘%’ token
indicates cough/throat clearing. . . . . . . . . . . . . . . . . . . 80



xviii List of Figures

4.1 Visualisation of self-similarity plot for one example Map1 con-
versation transcript in the SSAR corpus. Cosine similarity scores
every pair of utterances are presented with a gray levels ranging
from white for zero (no similarity), to black for one (highly
similar). Red dashed lines show ground-truth transitions between
rooms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 A typical example of transition estimation on the automatic
transcript of a conversation in the SSAR corpus. A sliding
window with the size of three was used. The ground-truth and
the estimated location transition lines are plotted. The blue line
shows the transition class membership probability estimated by
the SVM classifier. . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 A typical example of the location identification on the automatic
transcript of a conversations in the SSAR corpus. This shows the
SVM class membership probability distribution for 13 RoomType

classes estimated for each segment. In this example a participant
visited rooms in the following order: R1→ R2→ R3→ R4→ R5→

R6→ R7. The estimated sequence of visited locations is: R1→ R2→

R3→ R8→ R4→ R5→ R6→ R7. . . . . . . . . . . . . . . . . . . . 92
4.4 The location identification performance on transcription of the

development dataset as a function of number of LDA topics. The
performance on each number of topics presents the avarage of
five experiment with different initial LDA topics. . . . . . . . . . 95

4.5 The ASR transcription WERs on different SNRs are shown with a
dashed line. The red line shows the WD errors of the LDA-based
method for transition detection on the automatic transcription
of test data. The black line shows the system performance using
the TF-IDF vector representation. . . . . . . . . . . . . . . . . . 97

4.6 The transition detection performance on different transcription
WERs. The red line shows the WD errors of the LDA-based
method for transition detection on the automatic transcription
of test data. The black line shows the system performance using
the TF-IDF vector representation. . . . . . . . . . . . . . . . . . 97



List of Figures xix

4.7 The ASR transcription WERs on different SNRs are shown with
a dashed line. The red line presents the LDA-based location
identification performance (F1). The black line shows the system
performance using the TF-IDF vector representation. . . . . . . 99

4.8 The location identification performance on different transcription
WERs. The red line presents the LDA-based location identification
performance (F1). The black line shows the system performance
using the TF-IDF vector representation. . . . . . . . . . . . . . . 99

4.9 New node insertion by identifying transitions utterances (TU)
in the automatic transcription of a spoken report. Each node
comprises the utterances of its corresponding (U) segment. . . . 103

4.10 (a) Visualisation of an estimated correspondence matrix (C)
for a Map4 conversation example. Correspondence scores are
presented with gray levels ranging from white for zero, as an
indication of no match between a pair of nodes, to black for one
as a full correspondence. (b) The ground-truth correspondence
matrix (GT ) of the conversation. . . . . . . . . . . . . . . . . . 105

4.11 Visualisation of the estimated correspondence matrix C presented
in Figure 4.10a after converting it into its binary form by applying
a threshold of 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.12 A graphical visualisation of folding a sequence of estimated nodes
from places which appear to correspond with each other and
transforming it into a likely topological map. . . . . . . . . . . . 107

4.13 ROC curves at different SNRs for each map-setting. ROC curves
close to the dashed line in the diagonal explain a random estimation.109

4.14 The ASR transcription WER on different SNRs is shown with
dashed line. The AUC for each map-setting is presented as a
function of SNR. Random estimation scores a value close to 0.5. 111

4.15 The overall AUC performance of the systems as a function
of WER. The read line illustrates performance of the system
with automatic segmentation. The black line represents the pre-
segmented system performance. . . . . . . . . . . . . . . . . . . 111



xx List of Figures

5.1 A general structure of the proposed two-pass speech decoding
architecture. The location-ID module provides location estima-
tions from highly inaccurate output of the ASR system. The
second pass decoding stage is initiated whenever a new location
is identified. All of the stored word lattices related to the recently
identified location are then rescored based on the dynamically
generated language model. The best path is computed for each
word lattice as the final decoding hypothesis. . . . . . . . . . . . 115

5.2 The process of building the context-dependent language model in
the rescoring pass. The background language model is a large
model trained on out-of-domain data (Switchboard corpus tran-
scriptions) and the location-specific language models were small
but specific models trained on location-specific collections of ut-
terances in the training data. A context-dependent model was
built by dynamically interpolating these static models based on
the estimated λ1−13 coefficients. . . . . . . . . . . . . . . . . . . 119

5.3 The detailed information about the performance of the baseline
system, including its word insertion, deletion, and substitution
ratio on different SNRs. . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 WER of the baseline ASR system compared with the ELI-condition
system as a function of SNR increase. Performance of the
location-ID module as a function of SNR is also presented. . . . 121

5.5 (a) The absolute WER reductions for the system in both oracle
and ELI-conditions. (b) The WER reductions relative to the
baseline ASR for the system in both oracle and ELI conditions. . 123

5.6 Estimated LMSF on the development-sets for each SNR. . . . . . 124



List of Figures xxi

6.1 An envisaged speech decoding architecture. The speech-based
localization and mapping module can provide its estimations
from a combination of speech and other information sources.
These estimations can be used to contribute in updating the
locational information gathered during the time of a search and
rescue mission. The second decoding pass can use the collected
information to dynamically generated a location-specific language
model to be used in rescoring the generated word lattices. The
best path of each word lattice is the final decoding hypothesis. . . 135

E.1 A typical example of hand drawn topological map of the Map1.
This example map was estimated by a participant in the role of
a task leader (Participant-ID s004). . . . . . . . . . . . . . . . . 188

E.2 A typical example of hand drawn topological map of the Map2.
This example map was estimated by a participant in the role of
a task leader (Participant-ID s004). . . . . . . . . . . . . . . . . 189

E.3 A typical example of hand drawn topological map of the Map3.
This example map was estimated by a participant in the role of
a task leader (Participant-ID s004). . . . . . . . . . . . . . . . . 190

E.4 A typical example of hand drawn topological map of the Map4.
This example map was estimated by a participant in the role of
a task leader (Participant-ID s004). . . . . . . . . . . . . . . . . 191

F.1 The baseline ASR WER landscape at different SNRs and all LMSFs194
F.2 The baseline ASR performance landscapes at different SNRs and

all LMSFs. The ASR performance is normalized between zero
and one at each SNR. . . . . . . . . . . . . . . . . . . . . . . . . 195





List of Tables

2.1 Parameters to characterize ASR tasks, with examples of easy
and difficult tasks (Holmes and Holmes, 2001, chapter 15, p. 235). 19

2.2 Performance of various segmentation algorithms on broadcast
news data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Performance of various segmentation algorithms on dialogue data. 47

3.1 List of the rooms in each map and their types. . . . . . . . . . . 74
3.2 Recording set-up information and the specific recording instru-

ments used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76





Abbreviations

ASR Automatic Speech Recognition

AUC Area Under an ROC Curve

BEEP British English Example Pronunciation dictionary

ELI Estimated Location Information

FPR False Positive Ratio

FR First Responder

GMM Gaussian Mixture Models

HMM Hidden Markov Model

IDF Inverse Document Frequency

LDA Latent Dirichlet Allocation

LMSF Language Model Scaling Factor

LM Language Model

LSA Latent Semantic Analysis

LVCSR Large Vocabulary Continuous Speech Recognition

MFCC Mel Frequency Cepstral Coefficient



xxvi Abbreviations

NIST National Institute of Standards and Technology

PLSI Probabilistic Latent Semantic Indexing

PPL Perplexity

ROC Receiver/Operating Characteristic

SCBA Self-Contained Breathing Apparatus

SLU Spoken Language Understanding

SNR Signal-to-Noise Ratio

SSAR Sheffield Search and Rescue

SVM Support Vector Machine

TF-IDF Term Frequency-Inverse Document Frequency

TL Task Leader

TPR True Positive Ratio

TREC Text REtrieval Conference

WD WindowDiff

WER Word Error Rate

location-ID location identification



C
ha

pt
er 1

Introduction

The research presented in this thesis is undertaken as part of a net-
work project ‘Search and Rescue 2020 ’ funded by The University of
Sheffield whose aim is to develop novel assistive technologies to en-
hance and complement the capabilities of humans in search and rescue
missions conducted in the year 2020. This network project consists of
three interdisciplinary and interlinked projects that brings together
researchers from different departments at the University of Sheffield
such as Computer Science (COM), Psychology (PSY), Automatic
Control and Systems Engineering (ACSE), and Architecture (ARCH).
The three network projects, their interrelationship and which of the
challenges they address are highlighted in Figure 1.1.

Each of the projects will address a key technological challenge in
the area of search and rescue. However, an overarching theme of
the project is the development of technologies that aid the overall
command and control in search and rescue by providing more accu-
rate and timely sensing, situational awareness and support to the
rescue workers. This thesis focuses on ‘the role of voice communi-
cation in command and control’ as a part of this network project by



2 Introduction

Role of voice 
communication in 

command and control
(COM)

Wearable computing 
for sensing and 

navigation
(PSY, ACSE)

Localization and 
mapping of search 
and rescue assets

(ACSE, ARCH)

Figure 1.1 Three parts of the ‘Search and Rescue 2020 ’ network project.

investigating the feasibility of developing a system for estimating first
responders' location and the incident scene layout by discovering the
context and content of voice communication channels.

The rest of this chapter is organised as follows: the motivation
that supports the investigations, designs and implementations of this
thesis is presented in Section 1.1. The problems that require to be
addressed through this research is described in Section 1.2. The prin-
cipal aim and objectives to be accomplished in this work are presented
in Section 1.3. Finally, Section 1.4 presents the organisation of the
chapters that build the rest of this thesis.

1.1 Motivation

Speech is the primary means for communication between human be-
ings. People use speech to exchange valuable information for perform-
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ing their daily routines or accomplishing highly challenging collabo-
rative tasks. Despite the abundance and richness of this source of
information, when people talk to each other there is no record and
the words are effectively lost. Recent years have witnessed signifi-
cant improvements in the technology of automatic speech processing.
This has led to new interests in both the academic and commercial
worlds into the processing of natural spoken conversations and the
automatic extraction of their information content. By far the most
common place to find such interest is in tracking meetings, analysing
customer service calls and extracting valuable information (such as
topics discussed, decisions made or customer satisfaction) for man-
agement purposes. However recently, attention has been drawn to
the role of processing speech communication channels in more criti-
cal and challenging application domains such as emergency services
(e.g. fire, ambulance, etc.) (Kalashnikov et al., 2009). Techniques
are required to help extract and digest situational information for
improved decision-making.

The motivation for this thesis comes from a need for automated so-
lutions to extract valuable information from speech communications
within the Search and Rescue domain. This thesis is concerned
with discovering the context and content of communications to pro-
vide some form of understanding about an incident scene (discussed
here briefly).

In any search and rescue operation, speech is one of the most
important sources of situational information. This is the case because,
as well as being active participants in the physical aspects of crisis
response, human operators also play a central role in the coordination,
collection and interpretation of mission-critical information, and the
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communication of such information between the relevant parties is
mainly achieved using speech.

Speech is widely used for transferring critical information about
the incident scene layout and the location of rescue assets. This is be-
cause locational information is known to be one of the main enhancing
factors for situational awareness formation, and this has direct impli-
cations on the efficacy of the response (Shimanski, 2008). For exam-
ple, a commander in a control centre may issue voice commands (over
the radio) to the field operatives instructing them where to move or
warning them away from dangerous areas. Similarly, a searcher may
report back critical information about their observations, actions, and
events at their particular location, or ask for information on where
needs to be explored next.

Indeed, these communications and spoken reports can be viewed as
verbal annotations of the incident scene. Access to this fast-updating
source of information could be vital for the overall performance of
the response. In addition, transcribing and saving speech commu-
nications are necessary for post-mission analyses including retrieval
and browsing of spoken audio documents. Despite their importance,
currently human operators are identifying, transcribing and integrat-
ing such information into the mission management system manually.
Whilst individual operators can be highly reliable, the density of voice
traffic in the fast moving and dangerous situations may mean that
critical information is missed. As a consequence, there is a clear need
for the introduction of some form of automation that can either reduce
the workload on human transcribers or replace them entirely. Hence,
a bright future can be envisaged for crisis response systems which
employing speech recognition and understanding systems. Systems
can be introduced to help the current support systems for extract-
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ing critical information from all conversations. Potentially this can
contribute to situational awareness formation for both rescue workers
and managers during crisis response.

1.2 Problem definition

The importance of automatic extraction of locational information
from voice communication channels has been envisaged in the
observational-speech-system (Kalashnikov et al., 2009). However,
technical difficulties such as, highly imperfect automatic transcription
and understanding of conversational and noisy speech, present major
challenges for implementing such system.

Although the most advanced Automatic Speech Recognition (ASR)
systems have now reached the performance of humans on specific
datasets and tasks (Xiong et al., 2016), they still have a lot of dif-
ficulties in many natural scenarios. In addition to high acoustic
variations (mainly caused by environment noise condition, speaker's
accent, spontaneous speaking style, etc.), the statistical properties of
the language often varies during a conversation due to context change:
all of which makes the speech recognition task extremely challenging.
Furthermore, conversational speech is not as well-formed as spoken
queries directed at a machine, lectures or structured forms. Ungram-
maticality and disfluencies, such as false starts, repetitions, and hesi-
tations, are pervasive in conversational speech (Shriberg, 1996). As a
consequence, for information extraction from automatic recognition
of speech communications, a system needs to be designed which is
able to handle these challenges gracefully. Fine-grained identification
of fundamental units of meaning (such as sentences, named entities,
and dialogue acts) is sensitive to transcription errors and speech dis-
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fluencies (Palmer, 1999; Przybocki et al., 1999; Miller et al., 2000).
In contrast, topic detection techniques have been reported to be ro-
bust to these challenges (Fiscus and Doddington, 2002; Barnett et al.,
1997). This leads to the first research question addressed by this
thesis: can topic detection techniques be used to derive high-level in-
formation (such as location information) from speech communication
channels in a search and rescue environment?

Post-mission analyses and the retrieval and browsing of spoken
audio documents could also suffer from the imperfect transcription
of speech communication. In complex speech recognition tasks (such
as conversational speech, broadcast news and internet voice-search),
high-level contextual information is often used as prior knowledge
for guiding the search to determine the most likely sequence of spo-
ken words. This information is commonly gathered from a variety
of external sources, for instance, from a mobile phone's geolocation
signal (Chelba et al., 2015). The second research question addressed
by this thesis is: can high-level situational information derived from
speech communication channels be used top-down to improve speech
recognition performance?

1.3 Aims and objectives

The primary aim of this thesis is to investigate the feasibility of devel-
oping an automated solution for estimating first responders' location
and the incident scene layout by discovering the context and content
of voice communication channels. In light of this aim and the above
research questions, the following milestones were set as intermediate
steps towards this goal:
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• Identify the major challenges and limitations in automatic pro-
cessing of speech communication channels in a search and rescue
domain.

• Survey the related background issues and the state-of-the-art in
processing natural speech conversations.

• Provide an appropriate speech dataset comprising task-related
annotated conversations by targeting the goals and needs of the
information extraction task in the context of crisis response.

• Development and evaluation of topic-based locational informa-
tion extraction in the context of a simulated search and rescue
communications.

• Investigate the utility of exploiting the extracted high-level loca-
tional information for improving speech recognition performance.

1.4 Organization of the thesis

This thesis is structured as follows: Chapter 2 gives a brief introduc-
tion to the particular application domain of fire search and rescue
voice communication system. This includes a description of the role
of speech technology in accessing information content for situational
awareness formation. Major challenges and limitations in automatic
processing of voice channels are reviewed. To cover the related back-
ground issues and state-of-the-art methods in processing conversa-
tional speech, Section 2.2 and 2.3 provide a brief overview of speech
recognition and understanding systems that are related to the pre-
sented research work. This includes a description of the challenges
using speech input for understanding tasks and a review of the ma-
jor topic segmentation and identification approaches in the literature.
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The last section of the Chapter 2 provides a short background to au-
tomatic topological mapping methods that are utilized in Chapter 4.

Chapter 3 presents a new goal-oriented conversational speech cor-
pus. It starts with a discussion about the necessity of designing and
collecting a new speech corpus. Subsequently, the design of a conver-
sation task is described. Finally, the process of dataset collection is
described by explaining the recording set-up and annotation scheme.

Chapter 4 introduces an approach for estimating the location of
first responders by framing this problem as a topic identification task
on their spoken reports. A similar approach is then applied for per-
forming the main steps in a map building technique to interpret such
descriptions as a topological representation of the incident scene. Af-
ter describing the location identification and mapping systems, a set
of experiments were carried out on speech data with different envi-
ronment noise levels and each system performance is reported subse-
quently.

Chapter 5 investigates the utility of exploiting the high-level loca-
tion information content of a conversation for improving speech recog-
nition performance. A new two-pass speech decoding architecture is
presented. In this architecture, the location estimation from a first
decoding pass is employed to dynamically adapt a general language
model which is subsequently used for rescoring the initial recognition
hypotheses. The recognition performance of the presented system is
compared with a baseline speech recognizer by performing a set of
experiments on speech data with different noise levels.

Chapter 6 summarizes the thesis, answers to the research ques-
tions, describes the limitations of this research and discusses a num-
ber of potential directions for future works.
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Access to the information content of speech conversations is impor-
tant for situation awareness formation and the overall performance
of any search and rescue operation. Automatic systems can help
the current support systems for extracting critical information from
all conversations. The scope of this study is focused on extracting
valuable situational information from speech communication chan-
nels. The primary aim of this thesis is to investigate the feasibility
of developing an automated solution for estimating first responders'
location and the incident scene layout by discovering the context
and content of voice communication channels. This chapter pro-
vided an overview of the motivations, problems, research questions,
aims and objectives in this research.

Summary
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Background

The first part of this chapter (Section 2.1) contextualizes the work pre-
sented in this thesis by providing a brief overview of fire search and
rescue voice communication system. The role of speech technology
in accessing valuable information for situational awareness formation
is then presented in Section 2.1.1. Section 2.1.2 describes the major
challenges and limitations in automatic processing of voice channels.
A brief overview of the speech recognition and understanding sys-
tems that are related to the presented research work is provided in
Section 2.2 and 2.3. This includes a description of the challenges us-
ing speech input for understanding tasks and a review of major topic
segmentation and identification approaches in the literature. Finally,
Section 2.4 provides a short introduction to automatic topological
mapping algorithms that are utilized in Chapter 4.2 for a speech-
based topological map estimation in the search and rescue context.
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2.1 Speech communications in search and rescue

The search and rescue response is a cycle with five different phases:
preparedness, mobilization, operations, demobilization and post-
mission phase (UN-OCHA, 2012). An effective information exchange
during and between all phases results in a coordinated, efficient and,
safe response. Speech communication channels play a pivotal role in
immediately transferring back the important information following a
standardized command hierarchy from first responders to the man-
agement team and the task force leader (Schaitberger et al., 2016).

A complete communication map of the crisis response scenario can
be so complicated and dense that it is hard to illustrate graphically.
This is because it should represent the communications between all
components of a response team, including management, search, res-
cue, medical and logistics. Without paying attention to fine details,
Figure 2.1 gives an overview of a typical fire response communication
scenario, summarizing several guidelines and reports such as: Schait-
berger et al. (2016); UN-OCHA (2012); Wong and Robinson (2004)
and NYS-USAR, (2007). This figure also presents the voice and lan-
guage parameters with a focus on characterizing the difficulty level of
the automatic speech recognition task across a fire response process
from receiving calls for reporting an incident to the search and rescue
teams on the ground (see Section 2.1.2). In most cases, an opera-
tion starts by receiving calls for reporting an incident. Based on the
caller and the incident location, calls are redirected to specific centres.
The assigned centres to the incident work for the local team manager
who is located at the base of operation. The base of operation is
the focal point of communications and serves as the communications
hub on the incident scene. The team manager is responsible for the
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Figure 2.1 top: An overview of a typical fire response communication scenario.
bottom: the voice and language parameters at each stage of the fire response
process (visualized on top) are presented with a focus on characterizing the
difficulty level of the ASR task. The triangle shaped bar indicates the ASR task
difficulty at each stage. SCBA stands for Self-Contained Breathing Apparatus.
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communication and coordination between various parties involved, as
well as other search and rescue teams on the ground. Simultaneously,
the team manager documents specific incident scene events, handles
requests for additional resources and records tactical radio traffic.

According to the UN-OCHA (2012)1 statement, all components of
every search and rescue team (i.e. management, search, rescue, med-
ical and logistics) should be able to communicate within the team
and also with other actors within the theatre of operations via satel-
lite phone, VHF2/UHF3 radio, internet access and/or cellular phones.
Even in large-scale sudden-onset disasters, when there is no direct
communication between all levels, the commands and reports are
normally passed as paper messages to the radio operator who reads
them out. In this situation, the management team use predefined
tactical symbols on the paper map of the operation site to generate
an overview of the rescue operation scene based on the information
received. The management team then compiles the final information
and reports to the on-site operations coordination centre along with
information on the casualties, missing persons and other important
information regarding each work-site. In some major natural, tech-
nological and environmental disasters, the compiled information and
reports from each response team are made available on a ‘global dis-
aster alert and coordination system’ which provides the international
disaster response community with near real-time alerts about natural
disasters around the world and tools to facilitate response coordina-
tion.

In many search and rescue departments, such as the fire service, a
priority is given to face-to-face voice communications instead of over

1United Nations Office for the Coordination of Humanitarian Affairs
2Very high frequency range of radio waves (from 30MHz to 300MHz)
3Ultra high frequency range of radio waves (from 300MHz to 3GHz)
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the radio whenever the information is not needed by the task force
leader (Schaitberger et al., 2016). This is due to the limited number
of possible radio channels and also difficulty in exchanging compli-
cated and advanced information. However, the sensitive situational
awareness, command, and control information still need to be trans-
mitted over radio channels between the members of a crew and their
managers.

2.1.1 Speech technology for search and rescue

Speech technology applications in crisis response range from speech
enhancement, stress analysis and survivors detection using acoustic
listening devices (Wong and Robinson, 2004), to employing automatic
speech recognition and synthesis systems which enables firefighters to
have a hands and eyes free multimodal communication with a decision
support system (Löffler et al., 2006). A comprehensive study on the
use of speech and language technology in the context of military en-
vironments is presented by Pigeon et al. (2005). Probably the most
valuable yet challenging application of speech technology in search
and rescue missions is the extraction of mission-critical information
from voice channels. Extracting and structuring this information can
contribute to situational awareness formation which has direct impli-
cations on the efficacy of the response.

2.1.1.1 Situation awareness

Endsley (1995) introduced and defined situation awareness as the
perception of the elements in the environment with respect to time
and/or space, the comprehension of their meaning and the projec-
tion of their status after some variable has changed, such as time.
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In another work, Shimanski (2008) describes situation awareness as
“the degree of accuracy by which one's perception of his/her current
environment mirrors reality”.

One of the primary factors in accidents attributed to human error
is related to the lack of or inadequate situation awareness. This is
particularly important in complex and dynamic tasks with high infor-
mation flow, in which poor decisions may lead to serious consequences
(e.g. firefighting, air traffic control, military command and control).
Walker (1991) explained the lack of coordination in the early years
of search and rescue response. He stated that there was “not only
lack of coordination between international teams on the ground, but
often the host authorities have no idea of what the specialist teams are
capable of, what equipment they have brought with them and often in-
deed, which teams have actually arrived”. Thanks to modern technolo-
gies, today's firefighting is more coordinated and efficient compared
to those days.

The need to access more accurate information from the incident
scene automatically and to provide real-time situational awareness
for firefighters is the motivation to introduce new technologies to the
crisis response system (Löffler et al., 2006). The most important
factor for enhancing situation awareness is to increase the reliable
and up-to-date resources which are being used in decision-making.
Within the search and rescue context, accessing the incident scene
layout is known to be one of the main enhancing factors in the process
of situation awareness formation (Shimanski, 2008).
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2.1.1.2 Speech-based situation awareness

Mehrotra et al. (2004) and Ashish et al. (2008) considered voice con-
versations as a source of critical information along with other sources
like video data transmitted from cameras, sensor data streams, and
textual materials in databases. Employing advanced techniques in
speech and language processing can help the current support sys-
tems in accessing these conversations. Automatic speech recognition
has many potential applications including command and control, dic-
tation, transcription of recorded speech, searching audio documents
and interactive spoken dialogues. Spoken language understanding sys-
tems, in particular, offer the potential to enable the current support
systems to extract critical information from all conversations auto-
matically, and create situational awareness for both rescue workers
and managers during crisis response. Kalashnikov et al. (2009) envis-
aged an observational speech system which can provide these types of
situation awareness by observing the human/human communications
and understanding the context and content of such communications.
However, the limited available studies about processing voice commu-
nications in this field barely scratch the surface of its key role in the
search and rescue environment.

In some attempts, access to speech data is mainly limited to the
retrieval of speech communications from search and rescue mission
archives. For instance, Schneider et al. (2007) have designed a sys-
tem for indexing and retrieving speech data from a search and rescue
multimedia archive by recognizing a set of predefined and domain-
related keywords. To enhance the robustness and performance of the
system, the list of keywords was kept as small as possible to just a
limited number of 120 keywords. Stein et al. (2012) have presented an
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infrastructure solution for chat transcription for firefighter broadcast
communication which relies on the recognition of similar patterns that
are frequently used in public safety communications. In the context
of urban patrol and reconnaissance, Massie and Wijesekera (2008)
have envisaged an interactive voice response service which empowers
dismounted soldiers with the ability to access and retrieve tactical in-
formation assets from back-end systems using a customized interface
based on a small vocabulary continuous ASR system designed for a
limited set of users.

2.1.2 Challenges in the automatic processing of voice
channels

Processing search and rescue voice communication channels is a signif-
icantly complex task for current speech recognition and understand-
ing systems. Section 2.2 reviews the relevant speech recognition tech-
nology, but here, Table 2.1 characterizes the main parameters which
influence the difficulty of a recognition task. In accordance with the
information provided in this table, the previously presented Figure 2.1
shows the voice and language parameters and the difficulties for a
recognition task in different areas of the fire response process. For
instance, an automatic system for analysing the received calls at the
front-end of an emergency service must be capable of handling tele-
phone quality calls from an unlimited number of ordinary citizens.
The calls can be reports about different (but limited) situations in
a spontaneous speaking style. The particular task of processing first
responders' radio communications on the incident scene has its own
characteristics. In the following, the main factors that influence auto-
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Table 2.1 Parameters to characterize ASR tasks, with examples of easy and
difficult tasks (Holmes and Holmes, 2001, chapter 15, p. 235).

Task parameter Easy task Difficult task
Vocabulary choice small number of unlimited vocabulary or

distinct words acoustically similar words
Speaking mode isolated words continuous speech
Speaker enrolment known speaker any (unknown) speaker
Speaking style read speech, or speech spontaneous natural

with a strict syntax language
Environment consistently quiet variable high-level noise
characteristics
Channel characteristics studio quality, close- telephone, with variation

talking microphone in handsets and networks
Condition of speaker healthy, relaxed and unwell, tired or stressed

not stressed, but alert

matic recognition performance of these communications are described
in more detail.

Environment characteristics:
The environmental noise in a crisis response scenario can fall into

the high-noise category (aircraft, factory floor). A variety of high
acoustic noises makes this one of the most challenging environments,
not only for the automatic speech recognition systems, but also for
humans (Schaitberger et al., 2016). There is a variety of noises in
this environment. Water bridge engine noise, fire noise and the low-
air alarm inside the Self-Contained Breathing Apparatus (SCBA) are
a few of the most common. Different approaches have been suggested
to overcome the noise challenge such as using electromyography-based
speech recognition (Betts et al., 2006) or a portable microphone array
(Stupakov et al., 2012). Another difficulty, which is also associated
with environmental characteristics, is that users often change the way
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they speak when the environment changes (the Lombard effect (Lom-
bard, 1911)), for example shouting in extreme fire noise or near a fire
engine.

Speech recognition and understanding systems are typically com-
posed of sequential and independent components (see Section 2.3). A
challenge for an information extraction (or later a situational aware-
ness system) for crisis response is robustness to high errors in the
speech recognition outputs. Kalashnikov et al. (2009) suggested two
different yet complementary techniques to overcome the data quality
challenge: robustness techniques that exploit a variety of contextual
and domain knowledge/semantics to mask errors and improve data
quality, and design of data analysis techniques that can tolerate errors
in data. They suggested using more semantically enriched represen-
tation of the situation like emotion to further process the multiple
hypotheses outputs of the speech recognition system.

Channel characteristics:
Radio communication system is a key component of firefighting and

fire-ground safety. The form and function of the firefighting radios
have not improved much over the past decade (Schaitberger et al.,
2016). Although analog radio messaging suffers from bad audio qual-
ity, it is still the main channel for information exchange within most
response systems. Kushner et al. (2006) reported that human word
recognition is lower when using digital radios in comparison to analog
radios. He reported that this difference increases when a disturbing
factor, such as using a breathing mask, changes the natural utterance
and distorts the acoustic signal. Another factor that convinces fire-
fighters to use analog transducer systems is that the analog systems
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can carry valuable extra information. For example, when an analog
radio user goes into some place with low radio signal coverage, in con-
trast to digital radios, the acoustic signal gets slowly noisier which
gives the user hints before a complete loss of communication Schait-
berger et al. (2016). Other disturbing factors like shouting through
a SCBA breathing masks into a shoulder-mounted or hand-carried ra-
dio, result in a low-quality speech signal. The effect of SCBA masks
on the human voice and its intelligibility was investigated by Kushner
et al. (2006).

Physiological/psychological condition:
Search and rescue operations are often conducted under physio-

logical and psychological conditions induced by high workload, high
emotional tension, and other conditions commonly encountered in an
incident scene. These conditions are known to affect human speech.
For instance, the challenging environment of the incident scene often
force the firefighters to communicate while they are crawling on the
floor or operating in a face down position. Smoke or toxic gases can
change an individual's voice characteristics. Other relevant factors,
including fatigue, emotional and physical stress, can also change the
speaker's voice and present problems to speech processing equipment
such as voice coders, automatic speech and speaker recognition sys-
tems. Similar challenging conditions are also identified in the context
of military communication (Pigeon et al., 2005).

Speaking style:
The natural spontaneous speaking style of conversations may not

be grammatical. These conversations often include a large number of
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disfluencies (such as hesitations, errors and corrections, mispronunci-
ations, etc.) which is generally harder to recognize than read speech.

On the other hand, recognition performance can be higher com-
pared to the task of transcribing everyday speech. First responders
are trained to follow a strict standardized communications procedures
with small distinct terminologies such as voice/radio procedures and
vocabulary (NFPA, 2014). An automatic speech recognition system
can also be speaker dependent and adapt to a speaker during training
for achieving higher recognition performance.

2.2 Automatic speech recognition

Spoken language processing systems are typically composed of sequen-
tial and independent components. Automatic recognition of speech
is often the starting processing stage for further components such as
Spoken Language Understanding (SLU) systems (Tür and De Mori,
2011). The purpose of an ASR system is to convert an incoming
speech signal into the most likely word sequence. Figure 2.2 shows
the general architecture of an ASR system and its main components.
A brief introduction to each component is provided as follows.

Front-end processing:
Input speech signals are preprocessed in the first stage of speech

recognition. This initial stage, which is usually known as front-end
processing or feature extraction, provides a stream of fixed size acous-
tic feature vectors, or observations O = o1, o2, ..., ot. The front-end
processing aim is to extract compact observations for the recogni-
tion task. Two widely used speech feature representations in state-of-
the-art speech recognition systems are Mel-Frequency Cepstral Coeffi-
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Figure 2.2 A general architecture of a large vocabulary continuous speech recog-
nizer.

cients (MFCC) (Davis and Mermelstein, 1980) and Perceptual Linear
Prediction (PLP) coefficients (Hermansky, 1990). In some application
domains, such as telephone speech recognition or broadcast news tran-
scription, the front-end also isolates relevant speech segments from
the whole audio stream in a process called segmentation.

Decoding:
In the second stage, the extracted sequence of acoustic feature vec-

tors is fed into a decoder (also known as search or inference compo-
nent) to recognize the sequence of words W = w1, ..., wn (each one
drawn from a vocabulary V = v1, v2, ..., vV ) which is most likely to
have generated O. More formally, the decoder tries to find:

Ŵ = argmax
W∈V

P (W |O) (2.1)

Although P (W |O) can be modelled directly using discriminative mod-
els, Bayes' rule is used to transform equation 2.1 into the equivalent
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problem of finding:

Ŵ = argmax
W∈V

P (O|W )P (W )
P (O) (2.2)

Since P (O) is fixed acoustic evidence and does not change over the
recognition process, the search problem can be decomposed into two
parts, the acoustic modelling problem, and the language modelling
problem (Rabiner and Juang, 1993, chapter 8):

Ŵ = argmax
W∈V

P (O|W )︸ ︷︷ ︸
Acoustic Model

P (W )︸ ︷︷ ︸
Language Model

(2.3)

Two commonly used decoding algorithms are time-synchronous
Viterbi decoding, which is usually implemented with pruning and can
then be called ‘beam ssearch’, and stack or A∗ decoding (Jurafsky
and Martin, 2009, chapters 9-10). Given a sequence of cepstral feature
vectors as input, ASR systems mainly recognize the sequence of words
based on three main knowledge sources: i.e., lexicon, acoustic models
and, language models.

Lexicon:
The lexicon, also known as the pronunciation dictionary, is simply a

list of words, with a pronunciation for each word expressed as a phone
sequence. While most words have a single pronunciation, some words
may have more. The lexicon is used to map phones (the basic unit
of sound) to words used in the language model. Publicly available
lexicons like the British English Example Pronunciation (BEEP) dic-
tionary (Robinson, 1996) with about 250,000 words or the Carnegie
Mellon University American English pronunciation dictionary (CMU,
1998) with about 64,000 words, can be used for building ASR systems.
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Acoustic model:
The acoustic model represents the acoustic knowledge of how an

observation sequence can be mapped to a sequence of phones. This
acoustic knowledge is used to determine the likelihood of P (O|W ).
Since mid 1980's, almost all modern Large Vocabulary Continuous
Speech Recognition (LVCSR) systems have a Hidden Markov Model
(HMM) in their acoustic model core to construct the temporal struc-
ture of speech (Rabiner and Juang, 1993, chapter 8). In LVCSR,
HMMs are normally used to model sub-word units (i.e. monophone or
triphone models). Sub-word units are then composed to form word
HMMs according to rules specified by the lexicon. Detailed descrip-
tion about the widely used HMM-based ASR systems with Gaussian
Mixture Models (GMMs) as the state emission can be found in most
speech processing textbooks such as Jurafsky and Martin (2009) and
Gales and Young (2007). In parallel with the GMM-based systems,
various approaches using Deep Neural Networks (DNNs) (e.g. Seide
et al. (2011); Yu and Seltzer (2011) among many) have become pop-
ular for delivering better performance than the GMM/HMM systems
on a number of tasks (Hinton et al., 2012).

2.2.1 Language model

A crucial and indispensable component of an ASR system is its Lan-
guage Model (LM). The LM guides the search to determine the most
likely sequence of words by quantifying the validity of acceptable
word sequences in a given language for a given task domain (Rabiner
and Juang, 1993, chapter 8). The LM represents the prior knowl-
edge, P (W ), about the syntactic and semantic information of word
sequences. The LM can also improve the recognition performance by
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providing contextual information. The challenge in language mod-
elling is to encapsulate as much as possible of the syntactic, semantic,
and pragmatic characteristics of a language in a particular task.

Due to the complexity of natural language, it is almost impossible
to construct language models using a set of linguistic rules. For this
reason, statistical language modelling (such as n-gram modelling and,
recently, recurrent neural network language modelling) is the domi-
nant approach over the last few decades. In principle, a statistical
model is built from a large amount of training data coming from the
same population as a target domain in which the model to be applied.

2.2.1.1 N-gram model estimation:

N-grams are the most popular language models employed in the
speech recognition task. For a given sequence of words (W=w1, ..., wn),
the language model estimation using the chain rule and order-2 Markov
assumption leads to:

P (w1, ...wn) = P (w1)P (w2|w1)P (w3|w1, w2)...P (wn|w1, ..., wn−1) (2.4)

≈ P (w1)P (w2|w1)P (w3|w1, w2)...P (wn|wn−2, wn−1) (2.5)

≈ P (w1)P (w2|w1)
n∏

i=3
P (wi|wi−2, wi−1) (2.6)

The first two terms in equation 2.6 are called a unigram and a bigram,
respectively. The last one is called a trigram since two previous words
(i.e. wi−2, and wi−1) are used for conditioning. Higher order n-grams
are possible such as 4-grams, 5-grams. The n-gram model estimation
is performed using simple maximum likelihood estimates from the
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training set data:

P (wi|wi−2, wi−1) = N(wi−2, wi−1, wi)
N(wi−2, wi−1)

(2.7)

P (wi|wi−1) = N(wi−1, wi)
N(wi−1)

(2.8)

P (wi) = N(wi)∑
wi∈V N(wi)

(2.9)

where N(wi−2, wi−1, wi) denotes the number of times word sequence
{wi−2, wi−1, wi} appears in the training data.

N-gram models are easy to build but a problem arises when an n-
gram is encountered during testing that was not seen in the training
examples. In this condition, N(wi−2, wi−1, wi) is zero in the training
set, however it is non-zero in the test set. Thus it is necessary to
estimate the probability of unseen events in the training set. There-
fore, a language model is modified through a process called smooth-
ing so that no word sequence gets zero probability. The basic idea
is to reserve (subtract) some small probability mass from the rela-
tive frequency estimates of the probabilities of seen examples, and
to redistribute this probability to unseen ones. Proposed methods
differ according to the reserve value (discounting) and how it is redis-
tributed (back-off). Kneser–Ney smoothing is one of the widely used
methods in state-of-the-art systems (Kneser and Ney, 1995). More
details are seen in research presented by Chen and Goodman (1996),
Kim et al. (2001), among others.

2.2.1.2 Language model adaptation

Thanks to the exponential growth in the amount and diversity of
data available online, the quality of statistical language models has
increased. Nevertheless, this tendency appears to be reaching an
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upper limit (Rosenfeld, 2000; Bellegarda, 2004) and it is possible that
the data increase does not lead to any significant improvement in
language models. The statistical language models used in state-of-the-
art ASR systems are often trained on more data than a human being
ever be able to hear and read in a lifetime (Evermann et al., 2005).
For example, Chelba et al. (2015) trained a 5-gram model on about
695 billion words of training data for a voice-search task. However,
when tasks become a little more complex (e.g. conversational speech
or broadcast news), even the best ASR system's performance declines
significantly. This performance decrease is often associated with the
fact that the statistical language models are extremely brittle to the
highly heterogeneous nature of natural speech, with varying domains,
genres, and styles (Rosenfeld, 2000; 1995).

In order to reflect the changes that a language experiences when
moving towards different domains, language model adaptation tech-
niques (Bellegarda, 2004) are often used in ASR systems. The adapta-
tion goal is to enrich previously trained models by adding new sources
of information to maintain an adequate representation of the task con-
text under changing conditions. A variety of adaptation approaches
has been introduced for different statistical language modelling strate-
gies. The basic idea which most of them have in common is the in-
corporation of some dynamic informative features (either about the
discourse context or about the data domain) in the process of train-
ing the language model. This has been shown to be effective in many
multi-topic tasks such as multi-genre broadcast speech recognition as
shown in research by Chen et al. (2015; 2003).

A range of informative features has been employed for language
model adaptation. Among these, information derived from analysis
of the speech data was utilized in some approaches. For instance,
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Chen et al. (2001) used keyword information for model adaptation in
the task of broadcast news transcription. Shi (2014) used utterance
length and lexical features on lecture transcripts. More robust tech-
niques in the field of information retrieval, such as Latent Dirichlet
Allocation (LDA) document modelling (Blei et al., 2003) were used by
Chien and Chueh (2011), Mikolov and Zweig (2012) and Echeverry-
Correa et al. (2015).

Some adaptation approaches are based on the specific context of
the task that they are addressing. New sources of information are
often used to generate a context-dependent language model. These
new sources may come, for instance, from geolocation signals obtained
from mobile phones in voice search tasks (Chelba et al., 2015; Halpern
et al., 2016), from personalized user information such as demographic
features in a social media task (Wen et al., 2013) or from speaker
identification systems (Nanjo and Kawahara, 2003).

Other approaches are based on the analysis and extraction of se-
mantic information that the user provides. For example in a spoken
dialogue system, dialogue concepts inferred by the dialogue manager,
and represented as dialogue goals, were used to adapt the language
model (Lucas-Cuesta et al., 2013).

Adding these auxiliary features allows language models to exploit
commonalities and specialities among diverse data better. Later at
test time, it facilitates the adaptation to any target domain defined
by some prior high-level contextual information (often obtained from
a variety of knowledge sources) or the characteristics of the test data
(e.g by identifying the topic or set of topics). For n-gram language
modelling, the adaptation proceeds generally in the following steps:
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1. Making subsets of the training corpus based on some informative
features (e.g. Iyer and Ostendorf (1999)).

2. Using these subsets to build multiple domain-specific models.

3. At test time, obtaining contextual information such as locational
information (Chelba et al., 2015) or identifying the characteris-
tics of the test data such as topic for instance in (Seymore and
Rosenfeld, 1997; Seymore et al., 1998).

4. Identifying the relevance of each subset-wide model using the
obtained information.

5. Combining the models according to their relevance (via linear
interpolation) and making a mixture model of all the domain-
specific models.

2.2.1.3 Model interpolation

Model interpolation is the most known and widespread strategy for
adapting a background model to a more specific domain. This section
presents basic idea together with the definitions that have been used
in this thesis. Language model interpolation consists of taking a
weighted sum of the probabilities given by the component models.
Let P (w|h) be the probability of observing the word w given the
previous sequence of words in its history h. Given a background
model P

B
(w|h) and a domain-specific adaptation model P

A
(w|h), the

final model P (w|h) can be obtained as:

P (w|h) = (1 − λ)P
B
(w|h) + λP

A
(w|h) (2.10)

where 0 ⩽ λ ⩽ 1 serves as the interpolation coefficient.
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A very common language model adaptation case is when only a
small amount of data is available in the target domain and large
amounts in other domains. In this case, the in-domain model is com-
bined with the background model via linear interpolation. The inter-
polation coefficient λ is commonly tuned by minimizing the Perplexity
(PPL) (Jelinek et al., 1977) on some held-out data similar to the target
domain (validation or development dataset).

A generalization of this linear interpolation (equation 2.10) is used
to include several predefined domain-specific language models (Belle-
garda, 2004). The mixture model probability of K domain-specific
models (Pk) is obtained as:

P (w|h) =
K∑

k=1
λkPk(w|h) (2.11)

where λk denotes the interpolation coefficient of kth domain-specific
model. Different sources of information can be used to determine
optimum λ coefficients for interpolation of K language models in a
given task. These approaches have often been used to dynamically
adapt a background model based on some information about changes
in the speech domain (Echeverry-Correa et al., 2015; Chelba et al.,
2015). Figure 2.3 shows the widespread model interpolation set-up
for making dynamic language models. The dynamically adapted lan-
guage models are generally used in a second stage decoding process on
the lattice output of the initial recognition pass. This process is called
language model lattice rescoring which is explained in Section 2.2.3.

2.2.2 Performance of speech recognition systems

Intensive efforts from the 1980’s onwards have improved the devel-
opment of discrete word, speaker dependent large vocabulary ASR
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Figure 2.3 The process of making a context-dependent language model in the
rescoring pass. The background language model is typically a large model trained
an out-of-domain data and the context-specific language models are typically
small but specific models trained on subsets of the training corpus. A context-
dependent model can be made dynamically by interpolating these static models
based on some information about changes in the speech domain.

systems and provided a strong backbone to the modern continuous
speaker-independent ASR systems. Current fast decoding algorithms
allow continuous-speech recognition of large vocabulary sizes in near
real-time response. However, none of them are 100% correct. Thanks
to the increased computation power provided by high-performance
computing systems and recent achievements in employing deep learn-
ing in speech recognition, the most advanced ASR system by far has
just managed to reach the performance of humans in recognizing con-
versational speech (Xiong et al., 2016). However, still there is a gap
between the recognition accuracy of current ASR systems and the
accuracy of humans in recognizing speech in many real life scenarios.
This gap becomes more profound when it comes to speech recognition
in noise, with channel variability, spontaneous speech and also little
contextual and grammatical information.
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The standard evaluation metric for speech recognition systems is
the Word Error Rate (WER). The WER is an intuitive direct measure
of how much the hypothesized word string returned by the recognizer
differs from a correct or reference transcription. The first step is to
compute minimum edit distance in words between the hypothesized
and correct strings by finding the minimum number of word substi-
tutions (S), word insertions (I), and word deletions (D) necessary to
map between them. The WER is then defined as follows4:

WER = 100 × Insertions + Substitutions + Deletions
Total Words in Correct Transcript (2.12)

An example is presented in Figure 2.4 showing a reference, a hypoth-
esis, and each word error types. The WER of this example is:

WER = 100 × 1 + 1 + 1
7 = 42.8%

Reference: IT'S DIFFICULT TO *** DESCRIBE THIS ROOM

Hypothesis: IT'S DIFFICULT TO THIS RIGHT *** ROOM

Error: C C C I S D C

Figure 2.4 An example showing a reference utterance transcript, its ASR hy-
pothesis, and each word error types. C, I, D, and S stand for correct, insertions,
deletions and substitutions, respectively.

The standard statistical test for comparing ASR systems perfor-
mance is the Matched-pairs test of their word error (Gillick and Cox,
1989). This is a parametric test that looks at the difference between
the number of word errors the two systems produce, averaged across
a number of segments. While the implementation of the WER and
often Matched Pairs Sentence-Segment Word Error (MAPSSWE) test

4Since the equation includes insertions, the error rate can be greater than 100%
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is available on most speech recognition toolkits such as Kaldi ASR

(Povey et al., 2011), the standard implementation of them is pro-
vided by the National Institute of Standards and Technology (NIST)
as a free script called sclite (NIST, 2016).

2.2.3 Multipass decoding

HMM decoders mainly use the Viterbi (Viterbi, 1967) decoder which
is a dynamic programming algorithm for finding the most likely se-
quence of hidden states (called the Viterbi-path) and generate that
word string (Gales and Young, 2007). The Viterbi algorithm com-
putes an approximation of the sequence of words which is most prob-
able given the input acoustics. The accuracy of this approximation
decreases when each word in its lexicon has multiple pronunciations.
A further problem with the Viterbi algorithm is that it is impossi-
ble or expensive to incorporate more advanced language models or
other high-level knowledge sources for increasing the decoding accu-
racy (Jurafsky and Martin, 2009, chapter 10).

One solution is to modify the Viterbi algorithm (such as n-best
algorithm of Schwartz and Chow (1990) among other methods) in a
way to return multiple potential utterances instead of a single Viterbi-
path by using general and efficient knowledge sources. These multi-
pass decoders generally produce output in the form of n-best word
string hypotheses, each of which is annotated with an acoustic model
probability and a language model probability. A more sophisticated
representation is often used called a word lattice (Murveit et al., 1993;
Aubert and Ney, 1995), which is capable of efficiently representing
more information about possible word sequences. Each word hypoth-
esis in a lattice is augmented separately with its acoustic model like-
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lihood and language model probability. Later, during a second-pass
decoding, another high-level language model or a more sophisticated
acoustic model can be used to rescore and re-rank the hypotheses.
Figure 2.5 shows a modified form of the standard HMM-based ASR

architecture in Figure 2.2 using the multipass decoding strategy.

  

Search for most
likely sequences

Speech
Waveform

Front-end
Reranking
Rescoring

More sophisticated
Knowledge Sources
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Figure 2.5 The general architecture of a two-stage speech decoding. High-
level language model or a more sophisticated acoustic model can be used in a
second-stage decoding to rescore and re-rank the initial decoding hypotheses.

2.2.3.1 Language model lattice rescoring

A word lattice is a rich structure used to represent a great number of
alternative ASR hypotheses in a compact graph form G(N, A), where
the timing information is embedded into the nodes N and the arcs
A carry the symbol along with the information about the language
model and acoustic model scores. This weighted, directed and acyclic
graph is typically generated from a single-pass decoding of speech
signals using relatively simple knowledge sources. This graph can
include multiple word string hypotheses for a given spoken utterance.

Lattice rescoring refers to a second decoding pass, over the ini-
tial ASR lattice output, with the help of more advanced knowledge
sources. A domain-specific language model or a 5-gram model with
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a higher order of knowledge can be used to rescore a word lattice. In
practice, this is carried out by initially decoupling the scores of acous-
tic and language models of the transition arcs and then replacing the
previous language model probabilities with the new model probabil-
ities. In other words, the rescoring process needs to subtract the
old model probabilities and then add in the new model probabilities.
Several approaches either based on offline or on-the-fly (Sak et al.,
2010; Hori et al., 2007) composition have been presented for handling
lattice rescoring in extremely large vocabularies. Given additional
knowledge sources, include high order n-grams (Hain et al., 2012),
location specific language models (Chelba et al., 2015) and contex-
tual articulatory knowledge (Li et al., 2005; Siniscalchi et al., 2006),
lattice rescoring methods resulted in higher recognition performances
compared with conventional single pass decoding.

2.3 Understanding speech conversations

Conversation is the most natural and efficient way for humans to
exchange information and coordinate their activities. Two-party con-
versations, multiparty meetings, and lectures are various types of
conversational set-ups which exist in everyday human life. Whilst
spoken language understanding mainly refers to the understanding
of voice enquiries to personal assistants, interpreting human/human
voice communications and integrating the outcomes with relevant in-
formation sources is an emerging demand in a variety of application
domains. From meeting conversations in a company to speech com-
munications during a crisis response (Kalashnikov et al., 2009), au-
tomatic information extraction from these spoken interactions can
provide valuable situational knowledge for making better decisions.
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The aim in SLU is to extract meaning from natural language ut-
terances. Designing a general purpose framework for tracking, ex-
tracting and representing conversation content is difficult (Gokhan
Tür and Hakkani-Tür, 2011). Therefore, in practice, SLU approaches
tend to depend on the specific intended application area. However,
research in the areas of dialogue act segmentation and tagging, named
entity recognition, topic segmentation, and identification provided a
task-independent basis for further discourse analysis and understand-
ing. For example, it has been shown that dialogue acts can be used
in practical high-level tasks of extracting key information related to
action items and decisions (Morgan et al., 2009) or hot spot detection
(Wrede and Shriberg, 2003) in conversations. Named entity recogni-
tion is a crucial component of spoken information extraction systems
(Makhoul et al., 2000) for the task of performing complex search
queries on large audio archives. Topic segmentation and identifica-
tion is an essential step in understanding and information retrieval
tasks. Topic segmentation is often used to divide a long uninterrupted
transcript of a business meeting or a news broadcast into shorter and
topically coherent segments. By analysing or classifying the contents
of each segment, topics from one meeting to another can be related.
Similarly, topic detection can be used to track the progress of news
stories across different broadcasts, produce a summary with the main
headlines of a news story, or the final decision and action items of a
meeting.

2.3.1 Challenges using speech input

Dealing with speech, more specifically spontaneous speech, the first
challenge SLU approaches face is speech disfluencies: hesitations, filled
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pauses, false starts, etc. These occur frequently in highly spontaneous
speech, such as:

- E'ER IT LOOKS LIKE THE <PAUSE> THE HOB'S CAUGHT FIRE

- AND <PAUSE> IN THE CORNER THERE'S A MAN NO A WOMAN
ON THE FLOOR

The second challenge of using speech input is to deal with highly
imperfect automatic transcription of natural conversational speech
which is often contaminated with background noise. The ASR tran-
scriptions contain errors: words can be deleted, replaced or false de-
tection can insert erroneous words. Speech disfluencies and transcrip-
tion errors represent challenges to the fine-grained identification of
the fundamental units of meaning (e.g. sentences, named entities, and
dialogue acts) (Gokhan Tür and Hakkani-Tür, 2011). The Out-Of-
Vocabulary (OOV) word phenomenon in speech recognition is another
source of errors which is particularly important in the task of named
entity recognition from speech input.

Several studies have shown that named entity recognition perfor-
mance is strongly correlated with WER (Palmer, 1999; Przybocki
et al., 1999; Miller et al., 2000, among others). Miller et al. re-
ported 0.7 points of F-measure5 lost for each additional 1% of WER.
Significant performance drop has also been reported on dialogue act
segmentation and identification (Ang et al., 2005).

The impact of recognition errors on the overall performance of
topic detection systems have been studied in the NIST Topic Detec-
tion and Tracking (TDT) (Fiscus and Doddington, 2002) and Text RE-
trieval Conference (TREC) document retrieval (Barnett et al., 1997)

5The F-measure is one of the evaluation metrics used in named entity recognition perfor-
mance measurements.
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evaluation programs. In contrast with named entity or dialogue act
detection, topic detection results presented by Fiscus and Doddington
have shown that this impact was very limited. Similar results were
also presented by Barnett et al. for a document retrieval task during
the TREC program. Hazen (2011) describes the main explanation
for this phenomenon as the redundancy effect. Topics are often rep-
resented by many occurrences of salient words characterizing them.
Even if some of these words are missed or replaced, information re-
trieval methods can use the remaining informative words and phrases,
discard the noise generated by the automatic transcription module.
This phenomenon is not true for tasks related to the extraction of
fine-grained units of meaning (Frederic Bechet, 2011). The next two
sections describe the task of topic segmentation and identification in
the domain of speech conversation.

2.3.2 Topic segmentation

Topic segmentation is used to divide a complete recording or tran-
script into shorter, topically coherent segments. For spoken data,
the segmentation is often a necessary first step before topic identi-
fication and other deeper processing tasks. Topic segmentation has
been used for improving browsing or searching for a particular story
in broadcast news (Allan et al., 1998; Doddington, 1998). In another
domain, segmentation has been used to aid searching and accessing
university lecture recordings, e.g. the Lecture Browser project at the
Massachusetts Institute of Technology (Glass et al., 2007), or in the
European LECTRA and CHIL projects (Trancoso et al., 2006; Fügen
et al., 2006). In the conversation domain (such as business meetings),
where the data can be long and involve several topics, indexing by
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topic segment has been used to help a user to browse and search for
a record effectively (Banerjee et al., 2005; Lisowska, 2003).

2.3.2.1 Segmentation techniques

Topic segmentation has been approached in many different ways and
most of them share two basic insights, either individually or in combi-
nation. The first insight is that a topic change is associated with the
introduction of a new vocabulary (Youmans, 1991). This is because
when people talk about different topics, they discuss different sets of
concepts and they use words relevant to those concepts. The second
basic insight is that there are distinctive boundary features between
topics. This is mainly because of the fact that the speaker tends
to signal to the audience about switching from one topic to another
by using various words/phrases (e.g. ‘Okay’, ‘Now’, ‘So’, ‘Anyway’,
etc.) or prosodic cues (Grosz and Sidner, 1986; Hirschberg and Lit-
man, 1993; Hirschberg and Nakatani, 1998). The advantage of using
these boundary features is that they are generally independent of the
subject matter and they can be used to estimate the boundaries more
accurately in comparison to content-based techniques (Purver, 2011).

Different approaches have been introduced both for content-based
and boundary-based segmentations. Hearst introduced the TextTil-
ing system (Hearst, 1997; Hearst and Plaunt, 1993) which was one of
the early algorithms proposed to use a similarity measure for segment-
ing broadcast news. It was inspired by classical approaches in the in-
formation retrieval domain. In the TextTiling system, the discourse
is divided into windows of a fixed width (after some text preprocess-
ing like tokenization). Moving the window across the discourse, each
window is represented by a lexical frequency vector. The similarity
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Figure 2.6 TextTiling graph. Vertical lines indicate actual topic boundaries. The
graph indicates computed similarity of adjacent windows of text. Peaks indicate
coherency, and valleys indicate potential breaks between tiles (reproduced with
permission from Hearst and Plaunt (1993)).

of each pair of adjacent windows is then calculated using the cosine
distance between their lexical frequency vectors. Significant local
minima in the lexical cohesion (i.e. the smoothed similarity curve)
were considered as an indication for hypothesized topic boundaries
(see Figure 2.6). Using the same overall approach, advanced text vec-
torization techniques have been employed by (Claveau and Lefèvre,
2015) for comparing the similarity between the two windows of text.

DotPlotting (Reynar, 1998) and C99 (Choi, 2000) both used cluster-
ing on the similarity matrix between candidate segments. To decide
if the topic has changed or not, the DotPlotting-based approach re-
lies on word repetition for computing some kind of similarity. The
similarity matrix is made by plotting discourse as a two-dimensional
matrix with its words along both axes in linear order (see Figure 2.7).
A dot (i.e. non-zero entry) is placed wherever words match. Squares
can be seen corresponding to topics in areas with more frequent near-
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Figure 2.7 a: Dot-plotting of four concatenated Wall Street Journal articles
(reproduced with permission from (Reynar, 1994)). b) Utterance similarity plot
for a Physics lecture, with vertical lines indicating true segment boundaries
(reproduced with permission from (Malioutov and Barzilay, 2006)).

neighbour matching. The topic boundaries are estimated by identify-
ing the boundaries between these squares. The best set of boundaries
is estimated in an unsupervised way by maximizing the dot density
within the squares, and minimizes the density outside them. Assum-
ing a known number of boundaries, Reynar (1994) used a best-first
search algorithm to minimize the density outside the squares.

The same content-based phenomenon has also been exploited from
a generative perspective. Yamron et al. (1998); Blei and Moreno
(2001) and Purver et al. (2006), among others, used topic language
models and variants of the hidden Markov model to identify topic
segments. These systems can model the sequence of words as being
generated from some underlying sequence of topics which each has its
own characteristic word distribution. Making these systems requires
a segmented training dataset to estimate the topic language models



2.3 Understanding speech conversations 43

and the topic transition probability. However the learning process is
unsupervised (based on clustering).

In contrast to content-based approaches, a different strategy has
been proposed to look for the characteristics of boundary features.
Passonneau and Litman (1997) showed that the cue phrases and the
prosodic features that people often use to signal topic change at the
beginnings and the ends of topics could all be useful in segmenta-
tion. Different domains can have their own specific cue phrases in
addition to the general cues such as ‘So’, ‘Anyway’, etc. For instance
Maybury (1998) describes, in broadcast news, phrases such as ‘Join-
ing us’, ‘Tonight’ and ‘Welcome back’ are strongly indicative of topic
change. Such features are often automatically learned from labelled
training data and used in discriminative approaches such as a Support
Vector Machine (SVM) classifier to identify topic segment boundaries
(Georgescul et al., 2006b; 2007). SVMs are based on the idea of finding
a hyperplane that best divides a dataset into two classes. A Linear
SVM finds a hyperplane that best separates the data points in the
training set by classes label. The hyperplane is called the decision
boundary, and cuts the space into two halves one for each class. In-
tuitively, a good separation is achieved by the hyperplane that has
the largest distance to the nearest training-data point of any class.
In general, the larger the margin the lower the generalization error
of the classifier. The data often need to be mapped into higher and
higher dimensions in a process called Kerneling until a hyperplane
can be formed to segregate it. A new point can simply be classified
by identifying which side of that hyperplane the point is. Note that
this description only applies to binary classification problems and if
a dataset has more than two classes, there are other SVM approaches
(such as one-versus-all or one-versus-one). Having access to labeled
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training data, supervised boundary detection has been reported with
higher accuracy (Georgescul et al., 2007; Galley et al., 2003) com-
pared with unsupervised segmentation approaches (see Table 2.3).

2.3.2.2 Evaluation metric

The recall and precision metric has often been applied to the topic
identification problem (Hazen, 2011). However, because of the nature
of segmentation, standard evaluation metrics in classification tasks
are not always suitable. In contrast to the identification task, here
there is no correct/incorrect answer to be able to count up the scores.
Therefore, different scores have been proposed for the segmentation
task.

Since recall and precision can be inconsistent without any prepro-

cessing, Beeferman et al. (1999) proposed the Pk-score, which has

been widely used. Pk expresses a probability of segmentation error,

with higher Pk meaning a less accurate segmentation and a higher

probability of error. However, Pevzner and Hearst (2002) have shown

that the Pk-score suffers from some failures in some conditions such as:

1) penalizing missing boundaries more than false alarms; 2) heavily

penalizing near-miss errors in comparison to false alarms and missing

boundaries; 3) not detecting new segments with size smaller than k;

and 4) cannot be interpreted as an error percentage (Pevzner and

Hearst, 2002). Based on that, Pevzner and Hearst proposed Win-

dowDiff (WD) which is usually preferred for evaluating segmentation

systems. The WD can be seen as an error rate, with lower WD scores

indicating better segmentation accuracy. The WD is calculated by

taking a window of fixed width k and sliding it across the dataset.
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At each step, the difference between the number of hypothesized and

reference boundaries within the window is counted and the WD score

is the average difference values for all windows. It is defined as:

WD(ref, hyp) = 1
N − k

N−k∑
i=1

| b(refi, refi+k) − b(hypi, hypi+k) | (2.13)

where b(xi, xj) represents the number of boundaries between ith and
jth utterances (or any other minimal units, depending on the segmen-
tation task considered) in the stream x and N represents the number
of utterances. Different k values can be set, but it is standard to
define it as:

k = N

2 ∗ number of segments
(2.14)

2.3.2.3 Segmentation performance

Most segmentation efforts to date have used manual transcripts of
monologue data such as broadcast news. Table 2.2 summarizes the
performance of various segmentation algorithms on broadcast news
datasets. Segmentation of dialogue data, and in particular multi-
party meetings is considerably more difficult than monologue data.
Approaches developed for text or monologue show correspondingly
lower accuracy on dialogue data like the AMI corpus (Carletta et al.,
2006). Table 2.3 presents the performance of various segmentation al-
gorithms on dialogue data. It shows higher accuracies for supervised
methods particularly using boundary features and discriminative SVM

classifier (Georgescul et al., 2007).
Among many segmentation efforts on manual transcripts, some

results using ASR output have shown little reduction in segmentation
accuracy (Claveau and Lefèvre, 2015; Hsueh et al., 2006; Purver et al.,
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Table 2.2 Performance of various segmentation algorithms on broadcast news
data.

Methods Score
Pk WD

un
su

pe
rv

ise
d

DotPlot - 0.44
(Claveau and Lefèvre, 2015)

c99 0.21 0.36
(Choi, 2000) (Claveau and Lefèvre, 2015)

TextSeg 0.14 -
(Utiyama and Isahara, 2001)

TextTiling - 0.31
(Claveau and Lefèvre, 2015)

Watershed - 0.22
(Claveau and Lefèvre, 2015)

su
pe

rv
ise

d Maximum entropy 0.15 -
(Beeferman et al., 1999)

HMM 0.16 -
(Yamron et al., 1998)

HMM 0.14 -
including prosodic features (Tür et al., 2001)

2006). Topic segmentation for two-person dialogue has received less
attention. Few datasets are available, hence comparing system perfor-
mance is difficult. However, Arguello and Rosé (2006) experimented
on two corpora of dialogues between a student and a tutor in an edu-
cational domain. Their supervised classifier (Pk ranging between 0.10
and 0.40) outperformed the lexical cohesion method of Olney and Cai
(2005) (Pk ranging between 0.28 to 0.49).

2.3.3 Topic identification

In a broad sense, topic identification is the task of identifying the
topic that is related to a segment of recorded speech. Topic iden-
tification is also commonly referred to as text classification or text
categorization in the text processing research community. Indeed, re-
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Table 2.3 Performance of various segmentation algorithms on dialogue data.

Methods Score
Pk WD

un
su

pe
rv

ise
d c99 (Georgescul et al., 2006a) 0.54 0.69

TextSeg (Georgescul et al., 2006a) 0.40 0.49

TextTiling (Georgescul et al., 2006a) 0.38 0.40

su
pe

rv
ise

d Decision tree (Galley et al., 2003) 0.23 0.25

SVM (using boundary features) (Georgescul et al., 2007) 0.21 -

search and development in topic detection has been conducted in this
community for many years. Research into text classification resulted
in the production of a wide variety of practical systems, such as e-
mail sorting and spam filtering, sentiment classification on customer
service survey (Androutsopoulos et al., 2000; Fukuhara et al., 2007;
Gamon et al., 2005, among others). An overview of common text-
based topic identification techniques can be found in a survey paper
by Sebastiani (2002).

The successes in text classification tasks led to a widespread adop-
tion of the text processing techniques for speech-based topic identifi-
cation. For example, Rose et al. (1991) conducted one of the earliest
studies into speech-based topic identification on descriptive speech
monologues with six different topics. Topic identification is commonly
used in a variety of tasks to allow easier sorting, characterizing, fil-
tering, searching and retrieving of speech data. For example, Gorin
et al. (1996) used topic identification techniques in a customer service
system for determining a customer's purpose of call and to route each
call to an appropriate operator or automated system. Similarly, topic
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detection has been employed in a banking services call center (Kuo
and Lee, 2003), and in an IT service center (Tang et al., 2003).

In the domain of broadcast news (Allan et al., 1998; Doddington,
1998), topic detection would allow users to quickly locate particular
stories about topics of their interest. A collection of technical papers
in the area of topic detection and tracking, mainly in the broadcast
news domain, can be found in a book by Allan (2012).

A variety of constraints apply to topic identification tasks. Similar
to all machine learning tasks, the number of topic classes, the amount
of training data available for learning a model, processing costs are
some of the fundamental parameters affecting the performance of
the system. Topic identification accuracy can increase as the length
of the test sample (e.g. speech segment) increases. In addition to
these standard constraints, Figure 2.8 provides a graphical represen-
tation of three primary constraints describing a topic identification
task. Each dimension in the figure represents a specific constraint:
prepared versus extemporaneous, limited versus unlimited domain,
and text versus speech. The constraints on the tasks are loosened
as moving away from the origin until reaching the least constrained
(and presumably the most difficult) task of topic identification for an
open domain, human/human conversations at the upper-back-right
of the figure.

Standard classification error rate measure such as, the recall, pre-
cision and F1-measure metrics have often been applied to the topic
identification problem in situations where single-label categorization
is being applied (Hazen, 2011). The F1 score can be interpreted as
a weighted average of the precision and recall, where an F1 score
reaches its best value at one and worst at zero. The F1 score is the
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Figure 2.8 Graphical representation of three primary constraints describing a
topic identification task, with example tasks for various combinations of these
constraints (Hazen, 2011) (reproduced with permission from Wiley Books).

harmonic mean of precision and recall which is defined as:

F1 = 2 × precision × recall
precision + recall (2.15)

In detection tasks in which the goal is to detect which topics are
present in a document (rather than a single-label classification), the
precision/recall curve or the Receiver/Operating Characteristic (ROC)
curve (Fawcett, 2006) are widely used for characterizing the relation-
ship between misses and false alarms. The information in an ROC

curve is often presented by a single scalar value known as the Area
Under an ROC Curve (AUC) measure. AUC is the total area under
the ROC curve for all false alarm rates between zero and one.
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2.3.3.1 Technical approaches

Text classification and information retrieval techniques have been suc-
cessfully ported from text processing to speech processing. Four basic
steps in a typical speech-based topic identification system for convert-
ing audio documents into topic hypotheses are visualised as a block
diagram in Figure 2.9.

  

Feature
ExtractionASR Feature

Transformation Classification

→c →x →swd

Figure 2.9 Block diagram of the four steps typically taken by a speech-based
topic identification system during the process for converting an audio document
into topic hypotheses (Hazen, 2011) (reproduced with permission from Wiley
Books).

Speech-based topic identification is different from text-based topic
identification as the words spoken in an audio document (d) are not
known. The audio document is first processed by an automatic tran-
scription system hypothesizing the spoken words (W ) from the audio.
The Fiscus and Doddington (2002) study on the impact of recogni-
tion errors on the overall performance of topic identification systems
show that this impact is very limited compared with those obtained
on clean text corpora. They found that even inaccurate transcrip-
tion hypotheses could still be processed with standard text-processing
techniques.

Feature extraction:
The most common techniques for extracting a feature vector, c⃗, in

topic identification is the bag-of-words approach. The bag-of-words
feature of a text (such as a sentence, an utterance transcript or a
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document) is the individual counts reflecting how often each vocab-
ulary item appears in the text. Using unigram counts, the grammar
(and even word order) are disregarded. However, it is also possible
to provide a richer, though higher dimensional, representation of a
document by employing word n-gram counts. While the counts for
the words in the vocabulary are often extracted from a single-best
ASR hypothesis, they can also be estimated based on the posterior
probabilities of the words present in the word lattice output of the
ASR system. For instance, Hakkani-Tür et al. (2006) showed that
using ASR word lattices instead of a one-best hypothesis yielded per-
formance improvements in call classification tasks of approximately
5% to 10% relative reduction in error rate. The commonly used bag
of n-gram counts is used in this thesis for extracting features from
automatic transcripts of speech.

Feature transformation:
The bag-of-words feature vector is typically high in dimension, dom-

inated by more frequent words such as function words, which often
contain limited or no discriminative value for topic identification.
This raw representation of term frequency suffers from a critical prob-
lem that all terms are considered equally important. Thus, techniques
for boosting the contribution of the important content, dimensionality
reduction and/or feature space transformation are commonly applied
to transform the feature vectors into a feature space, x⃗, with a lower
dimension. A commonly used technique applies weights to features
based on their relative importance to the topic identification process,
e.g. Inverse Document Frequency (IDF) weighting (Jones, 1972). In
such weighting schemes, the premise is that words or terms which
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occur in many documents in a collection comprising of diverse topics
carry little information about a particular topic. Therefore, those
terms should be de-emphasized in the topic identification process.
Likewise, words that occur in only a limited subset of documents are
more topic-indicative and their contribution should be boosted. The
IDF weight for a term t is defined as:

idft = log N

dft
(2.16)

where N is the total number of documents in a collection and dft is the
total number of those documents that contain the term t. Using the
inverse document frequency, the estimated counts of the individual
features or terms of a document (tft,d) can be represented in Term

Frequency-Inverse Document Frequency (TF-IDF) weighting scheme as:

tf-idft,d = tft,d × idft (2.17)

For example in the task of location identification presented in Chap-
ter 4, Appendix A presents a list of first 20 trigrams received highest
TF-IDF on a document of transition-related utterances and 13 docu-
ments of room-specific utterances.

It explains for example phrases such as "okay so", "am in", "okay
so in", "okay i’am in", "into the" are some of the most informative
phrases used by most speakers as an indication of leaving a location
and/or entering a new one.

The TF-IDF was originally developed in information retrieval tasks
(Manning et al., 2009, chapter 6, p. 117–133) and often used in con-
junction with a cosine distance measure to compare the similarity of
two documents in a variety of application domains including speech-
based topic identification tasks.
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Any of the standard text document representations such as bag-of-
words and TF-IDF can be very high dimensional and sparse. An alter-
native to the direct description of a document in a high-dimensioned
term feature space is to employ latent variable modelling techniques,
such as Latent Semantic Analysis (LSA) (Deerwester et al., 1990),
Probabilistic Latent Semantic Indexing PLSI (Hofmann, 1999) and
Latent Dirichlet Allocation (LDA)6 (Blei et al., 2003). The main
premise behind these representations is that the semantic informa-
tion of a document can be represented in a low-dimension space as
weights over a mixture of latent semantic concepts.

The LDA model, in particular, has received a widespread recog-
nition in the text processing and information retrieval communities
for topic modelling of text corpora. One advantage of LDA is that
it requires less supervision. While PLSI requires a segmented train-
ing corpus to provide direct estimates of the probability distributions
over topics p(z) and documents p(o|z), LDA takes a fully Bayesian ap-
proach. It assumes a range of possible distributions, constrained by
being drawn from Dirichlet distributions. This allows a latent topic
model to be learnt entirely unsupervised, allowing the model to be
maximally relevant to the data being segmented and less dependent
on the domain of the training set and the problems associated with
human segmentation annotation.

The LDA is an unsupervised probabilistic generative model for
collections of discrete data such as text corpora. The LDA models are
learnt from a training corpus in an unsupervised, data-driven manner.
In LDA, each document can be viewed as a mixture of a finite set of
topics. In a formal definition of LDA on textual data (Blei et al., 2003),

6Note that the acronym LDA is also commonly used for linear discriminant analysis.
Despite the shared acronym, these two techniques are not related. In this thesis, LDA refers
specifically to the latent Dirichlet allocation technique.
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a word is the basic unit of discrete data. Each word can be represented
using a V -dimensional binary vector given a vocabulary of size V . A
document is a sequence of N words denoted by w = {w1, w2, ..., wN},
where wn is the nth word in the sequence. A corpus is a collection of M

documents denoted by D = {w1, w2, ..., wM}. The LDA assumes that
each document is generated using the following generative process:

1. For each document wm, draw a topic weight vector θm (K-
dimensional) from the Dirichlet distribution with scaling param-
eter α : p(θm|α) = Dir(α)

2. For each word wn, in document wm

(a) Choose a topic zn ∈ {1...K} from the multinomial distribu-
tion p(zn=k|θm)

(b) Given the topic zn, choose a word wn from p(wn|zn, β),
where β is a matrix of size V ×K and βij = p(wn=i|zn=j, β)

Several other simplifying assumptions are made in this basic model in-
cluding, the bag–of–words property of the documents and the known
fixed dimensionality of the Dirichlet distribution K (and thus the di-
mensionality of the topic variable z). Figure 2.10 visualises a graphi-
cal representation of the LDA model which is a three-level hierarchical
Bayesian model. The only observed variables in this model are words
wn and the rest are all latent (also called hidden), which are shown
by white circles. N is the number of words in the document and M

is the number of documents to analyse. α and β are dataset-level pa-
rameters representing the Dirichlet prior on the per-document topic
distributions and the per-topic word distribution respectively. The
variable θm is document-level variable representing topic distribution
for document m, and the variables zn and wn are word-level multino-
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mial variables representing the topic assignment for wn and the nth

  

z w
M

Nθα

β

n nm

Figure 2.10 Graphical model representation of LDA. The boxes are plates
representing replicates. The outer plate represents M documents, while the
inner plate represents the N repeated choice of topics (z) and words (w) within
a document (Blei et al., 2003) (reproduced with permission from JMLR).

word in the mth document respectively. The generative process of
LDA is described as the following joint distribution:

p(θ, z, w|α, β) = p(θ|α)
N∏

n=11
p(zn|θ)p(wn|zn, β) (2.18)

In order to use LDA, the key inferential problem is computing the
posterior distribution of the hidden variables given a document:

p(θ, z|w, α, β) = p(θ, z, w|α, β)
p(w|α, β) (2.19)

Computing p(w|α, β) for this distribution requires some intractable
integrals. Blei et al. (2003) have shown using variational approxima-
tion work reasonably well in various applications. The approximated
posterior distribution is:

p(θ, z|γ, θ) = q(θ|γ)
N∏

n=1
q(zn|ϕn) (2.20)

where γ is the Dirichlet parameter that determines θ and ϕ is the
parameter for the multinomial that generates the topics. The train-
ing process tries to minimise the Kullback–Leiber divergence (KLD)
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(Kullback and Leibler, 1951) between the real and the approximated
joint probabilities (i.e. equations 2.19 and 2.21) (Blei et al., 2003):

argmin
γ,ϕ

KLD
(
q(θ, z|γ, ϕ) || p(θ, z|w, α, β)

)
(2.21)

Other training methods (Griffiths and Steyvers, 2004) use Gibbs sam-
pling algorithm (Griffiths and Steyvers, 2002) which is based on the
Markov chain Monte Carlo method:

• Go through each document, and randomly assign each word in
the document to one of the K topics. Topic assignments are tem-
porary as they will be updated in the next step. This random
assignment can provide both topic representations of all the doc-
uments and word distributions of all the topics, albeit not very
good ones. Temporary topics are assigned to each word in a
semi-random manner according to a Dirichlet distribution. This
means that if a word appears twice, each word may be assigned
to different topics.

• To improve on these assignments, for each document d do:

• Go through each word w in d:

• For each topic z, compute: 1) p(z|d) which is the propor-
tion of words in document d that are currently assigned
to topic z, and 2) p(w|z) which is the proportion of as-
signments to topic z over all documents that come from
this word w. Reassign w a new topic, where we choose
topic z with probability p(z|d) × p(w|z) (according to
the generative model, this is essentially the probability
that topic z generated word w). In this step, it is as-
sumed that all topic assignments except for the current
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word in question are correct, and then updating the as-
signment of the current word using our model of how
documents are generated.

• After repeating the previous step a large number of times, the
assignments will eventually reach a roughly steady state where
they are pretty good.

Full details of the LDA method and its variational approximation
method can be found in (Blei et al., 2003).

Appendix B presents a list of {word, probability} for the 20 most
probable words in 40 topics learnt on the manual transcripts of the
Switchboard telephone speech corpus (Godfrey et al., 1992). By look-
ing at the words assigned to a single class we can see they are often
semantically related to one or multiple topics. For example, words
in the first class are mainly related to topics like ‘money’, ‘work’
and ‘values’, words in the third class are mainly related to ‘numbers’,
‘time’ and ‘values’ or words in the seventh class are mainly related to
‘education’:

• Topic1 nice, dollars, working, thousand, hundred, fifty, paid, name, several,
california, miles, top, absolutely, hope, except, rest, out, single, oil, guy

• Topic3 two, years, three, five, four, twenty, ago, couple, six, times, half, thirty,
eight, hundred, months, eighty, percent, only, major, days

• Topic7 kids, school, high, usually, know, end, month, education, schools, insur-
ance, when, health, public, up, going, having, because, side, hear, second

The inferred vector of latent concept mixing weights for a docu-
ment can be used to represent the document for a variety of tasks
including topic identification, topic clustering, and document link de-
tection (Hazen, 2011). Wei and Croft (2006) presented one of the
first large-scale evaluation of the LDA modelling on information re-
trieval tasks. It has also been successfully applied to process auto-
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matic transcription of speech data for instance in dialogue classifi-
cation task (Morchid et al., 2014a) or speech-based topic detection
(Morchid et al., 2014b). The LDA transformation was found to be use-
ful for dimension reduction of a discrete form of acoustic features in
broadcast media genre and show identification (Doulaty et al., 2016),
acoustic information retrieval in unstructured audio analysis (Kim
et al., 2009), automatic harmonic analysis in music processing (Hu
and Saul, 2009) or object categorisation and localisation in image
processing (Sivic et al., 2005).

Classification:
Given a feature vector x⃗, the final step in topic identification is

to generate classification scores and decisions for each topic using a
variety of classification techniques. Naive Bayes, nearest neighbour
and, SVM classifiers are among the most commonly applied techniques
to the topic identification problem. Hazen (2011) presents a perfor-
mance comparison among several different commonly used classifiers
on Fisher corpus (Cieri et al., 2004). SVMs in particular, have fre-
quently been applied in numerous speech-based topic identification
studies amongst: Haffner et al. (2003); Hazen and Richardson (2008)
and Morchid et al. (2014b). The SVM works with a variety of vec-
tor weighting and normalization schemes including TF-IDF and LDA.
Morchid et al. (2014b) reported that employing a multi-class SVM

classifier coupled LDA-based feature vector method outperforms the
classification results obtained by the classical TF-IDF approach in
the task of automatic theme classification of telephone conversations.
They employed one-against-one method (Weston and Watkins, 1998)
with a linear kernel for their multi-class SVM since it has been re-
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ported to yield a better testing accuracy than the one-against-rest
method (Yuan et al., 2012). Similar multi-class SVM classifier is em-
ployed in Chapter 4 for classifying transcription of speech segments
within a simulated search and rescue conversation.

2.4 Topological mapping

Automatic environment mapping7 has been extensively studied in the
field of mobile robotics for a variety of applications such as developing
fully autonomous entities capable of performing tasks in previously
unknown environments, or trying to complement and help human
operatives in hostile conditions of search and rescue by using rescue
robots (Davids, 2002) for exploring the incident scene.

In general, the representation of a physical environment can be
classified into metric-based and topological-based maps. While met-
ric maps capture the geometric properties of the environment, the
topological maps describe the connectivity of different places. Thrun
(2002) presents a comprehensive introduction to the field of robotic
mapping with a focus on indoor metric maps and Boal et al. (2014)
provides an overview of the most prominent techniques that have
been applied to topological mapping. Other types and variations of
mapping techniques have been studied in the past which exploit the
two basic forms of metric and topological maps either individually or
in combination. Boal et al. (2014) describe a fine-grained classifica-
tion for maps based on an increasing level of abstraction, comprising
of metric, hybrid, topological, and semantic maps which is visualised
in Figure 2.11.

7Note: This thesis introduces a speech-based approach for topological map estimation in
the search and rescue context (Chapter 4.2) that is inspired, in part, by automatic topological
map making algorithms that are therefore briefly reviewed here.
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Figure 2.11 Level of abstraction hierarchy for maps (Boal et al., 2014) (repro-
duced with permission from Cambridge university press).

2.4.1 Topological maps

Topological maps have been mainly studied based on cognitive the-
ories of space (Piaget and Inhelder, 1956; Lynch, 1960; Siegel and
White, 1975) and mobile-robot mapping (Kuipers and Byun, 1991;
Boal et al., 2014). The standard definition of a topological map
(Kuipers, 1978) describes it as a graph whose vertices or nodes repre-
sent distinctively recognizable places in the environment, also known
as landmarks, and the edges or links indicate travel paths connect-
ing the nodes. The nodes and edges may also be annotated with
higher-level semantic knowledge such as descriptions of a place, ob-
jects and semantic labelling about the environment, local and global
coordinate systems, distance, direction, and procedural information
on navigating between places.

While metric maps are more accurate, pure topological maps are
commonly used for navigational purposes. The London Underground
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network map8 is a good practical example of a topological map, which
presents a large-scale and complex spatial structure in an abstract
form. The topological representation resembles the environmental
perception and interpretation of human beings (Lynch, 1960). This
is because we do not need to know where we are in millimetres
and degrees to be able to navigate ourselves through an environ-
ment (Brooks, 1990). Instead, we localise and navigate ourselves
using high-level information (mainly visual) about the appearance
of scenes and landmarks associated with an internal representation
(map) (Stankiewicz et al., 2006; Garsoffky et al., 2009).

2.4.2 Automatic topological mapping

Figure 2.12 illustrates the basic steps that are typically taken by
automatic topological map making techniques in the field of mobile
robotics. The first step is to choose the appropriate technologies to
sense the environment while an agent (often a robot) explores an
area. The system acquires sensory information from one or several
sources and selected features are extracted. Sensors such as range-
finders and/or vision-based methods have been employed to interpret
environment characteristics (see Boal et al. (2014) for a comprehen-
sive literature on sensors and their corresponding features extraction
techniques).

The next step is to detect when a new node (landmark) should
be added to the map. In the process of node insertion, as the agent
explores the environment, a sequence of nodes is generated in which
each can be described based on the extracted features. Some of the
approaches place nodes periodically either in space (displacement) or

8The London Underground network map (June 2016): http://content.tfl.gov.uk/
standard-tube-map.pdf

http://content.tfl.gov.uk/standard-tube-map.pdf
http://content.tfl.gov.uk/standard-tube-map.pdf
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Figure 2.12 The basic steps that are typically taken by automatic topological
map making techniques in the field of mobile robotics. The first step is to choose
the appropriate technologies to sense the environment while a robot explores an
area. The next step is to detect when a new node (landmark) should be added
to the map. The final step is to determine whether each added node is a new
one, or one that has been visited previously.

in time intervals. In some other strategies, such as in Tapus and Sieg-
wart (2005), a new node is introduced whenever an important change
is detected in the environment indicating that the agent has moved to
a new location. This form of node insertion can produce landmarks
which each represent a place that is locally distinguishable. A land-
mark detection approach for node insertion can produce a compact
topology in which the nodes can represent a higher level of semantic
knowledge.

At this stage, building a topological map is reduced to determining
whether each node in this sequence is a new one, or one that has been
visited previously. This involves matching the recently added node to
previously detected ones, also known as the correspondence problem
or loop-closing in topological mapping. Solving the correspondence
problem is made difficult due to perceptual aliasing in the environment
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in which different places may have a similar appearance or they may
look similar to the system. In contrast, due to perceptual variability,
a single place visited more than once can nevertheless appear distinct
to the system. These problems may occur because of measurement
noise, changes in the environment or illumination effects, and, in
addition, a different viewpoint of the agent when revisiting a location.
Failure to assess the correspondence between landmarks, increases
the ambiguity of the topological map (Remolina and Kuipers, 2004).
For these reasons, correspondence detection is often carried out by
means of similarity distances measurements, such as the Euclidean
(Goedemé and Van Gool, 2008) or cosine distances (Angeli et al.,
2008).

Although several approaches have been introduced for choosing
the right matches for each node and deciding on the best topological
hypothesis, a robust way of dealing with unknown correspondences is
to delay decision making and maintain the raw similarity scores (Ran-
ganathan and Dellaert, 2011). This is frequently used by researchers
for vision-based loop closing, in situations where the perceptual alias-
ing and variability are generally higher (Garcia-Fidalgo and Ortiz,
2015; Liu and Siegwart, 2013; Angeli et al., 2008, among others).
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A brief overview of fire search and rescue voice communication
system was presented at the outset. The potential role of speech
technology in detection, integration, and interpretation of mission-
critical information was then described. The first section of this
chapter provided an outlook on the major challenges and limita-
tions in automatic processing of voice channels in such a challeng-
ing scenario. A brief overview of the speech recognition and under-
standing systems that are related to the presented research work
was provided in the next two sections. The final section provided
a short introduction to automatic topological mapping algorithms.

Summary
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Sheffield Search and Rescue Corpus

Despite the existence of language resource agencies such as LDC1 and
ELRA2, limited natural human/human spoken data is available for
research purposes due to issues such as privacy, copyright or signal
quality. For spoken language understanding tasks, the situation is
even worse. The construction of understanding systems using statis-
tical approaches requires suitable annotated data. In addition, due
to the diverse nature of understanding tasks, datasets often need to
be tailor-made to their specific needs.

This chapter is concerned with the design, corpus collection and
data transcription of a new goal-oriented conversational speech cor-
pus known as the Sheffield Search and Rescue (SSAR) corpus. Its
design targets the task of information extraction in the context of
crisis response. The first section surveys potential alternative data
sources and explains the motivation behind making a new speech
corpus. Then Section 3.2 presents the design of SSAR and its conver-

1Linguistic Data Consortium (LDC): https://www.ldc.upenn.edu/
2European Language Resources Association (ELRA): http://www.elra.info/

https://www.ldc.upenn.edu/
http://www.elra.info/
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sation task. Finally, in Section 3.5, the process of dataset collection is
described by explaining the recording set-up and annotation scheme.

3.1 Suitable speech communication datasets

In the application domain of extracting mission-critical information
from search and rescue communications, a suitable speech dataset
could be provided from three main sources: 1) radio conversation
archives of crisis intervention centres; 2) available speech corpora
which have been designed for similar or related tasks; 3) or making a
new speech corpus by recording speech conversations during exercise
sessions (either real or simulated).

Using radio conversations archives:
Technically, every search and rescue department should have their

own mission radio conversations archived for later analysis. Access to
these recordings is not possible without a good collaboration with a
rescue department. There are several other roadblocks, such as data
quality, privacy and legal limitations, which hinder us from employing
them. In addition, the corresponding metadata of the conversations
and their context (e.g. topic, the location of the rescue agents, their
actions and information about the incident scene), which is vital for
annotation, is often not recorded or provided by the departments.

Using similar or related speech corpora:
Currently available speech corpora can be used if they have the

required characteristics of a search and rescue conversation for a par-
ticular task. An appropriate speech corpus for information extrac-
tion tasks should comprise meaningful conversations. Additionally,
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for measuring the performance of the information extraction systems,
it would be ideal if each conversation contained quantitative informa-
tion about the discourse subject.

Since 1990, when the term SLU was coined by the AirTravel In-
formation System (ATIS) project (Hemphill et al., 1990), a variety of
speech corpora has been collected. Whilst the majority of these cor-
pora were designed for the more constrained task of human/machine
interactions, some notable attempts such as Switchboard (Godfrey
et al., 1992) and Fisher (Cieri et al., 2004) provide a good amount
of two-party human/human conversational speech data. The orig-
inal Switchboard comprises 2430 telephone conversations spoken by
about 500 paid volunteers on 70 different predetermined topics. Each
conversation lasts on average six minutes totalling about 240 hours
of speech. The Fisher corpus includes 16454 telephone conversations
averaging ten minutes in duration and totalling about 2742 hours of
speech. Conversations cover 40 different topics. The Switchboard and
Fisher have been extensively used in their original targeted research
areas of speech recognition, speaker identification and topic detection
rather than speech understanding or information extraction.

Call-Home (Canavan et al., 1997) and Call-Friend (Canavan and
Zipperlen, 1996) were collected in response to the need for more nat-
ural and multilingual/accented conversational speech data. In the
context of crisis response, the PRONTO corpus (Stein and Usabaev,
2012) (in German) was collected from voice communications in ex-
ercise missions by the Dortmund Fire Department, Germany. The
collection is specifically designed to study the impact of terrestrial
trunked radio codecs on keyword extraction and speech recognition.
Other recent collections, – AMI corpus (Carletta et al., 2006) and
DARPA-funded CALO (Pallotta et al., 2005) – were designed to study
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extensions of human/human conversations such as meetings, lectures,
and broadcasts.

In contrast to these corpora in which the dialogues are about gen-
eral random topics, the Maptask (Anderson et al., 1991), TRAINS

(Allen and Heeman, 1995) and Monroe (Stent, 2001) corpora are col-
lections of task-oriented dialogues. In particular, the Monroe corpus
consists of a relatively rich dialogue domain because of its larger and
more complex task of disaster handling compared to the simple tasks
of giving directions on a paper map in the Maptask and transporta-
tion planning in TRAINS. These collaborative tasks were designed to
study natural human dialogue behaviours. However, they are less
concerned about the information content of dialogues about the dis-
course subject.

Recording exercise sessions conversations:
In addition to regular physical training sessions, some rescue de-

partments conduct computer-simulated exercises as well. While the
real training sessions focus on the physical performance and training
how to work with the equipment, the simulation training tools such
as FLAME-SIM (2016) are targeting the communication performance,
tactics and decision making. Although these simulated training ses-
sions may lose some of the real characteristics of a search and res-
cue mission, such as high physical/psychological pressures or acoustic
characteristics, the essence of teamwork and communication remains
intact.

Recording these communications in a simulated environment can
open up new opportunities. For example, it is possible to track rescue
agents' locations, actions and the context they are in easily in a simu-
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lation system. This can be valuable for providing richer and more ac-
curate annotations. Recordings can also be performed in a controlled
condition such as quiet rooms and using high-quality recording de-
vices. Each speaker's voice and environment noise (in the simulation)
can be recorded in separate channels. Such controlled conditions
can result speech datasets which address particular research needs
rather than dealing with different challenges such as speaker diari-
sation, speech recognition in noise, etc. The simulation system and
the task can be designed carefully in a way to limit the conversa-
tion within the task domain while having natural and spontaneous
dialogues.

Considering the data-access issues in the real mission radio conver-
sations, and limitations on employing the available corpora in a task
of situational information extraction, constructing a goal-oriented
speech conversation corpus is a reasonable choice in this thesis. The
next section presents a conversation task design that is used to collect
speech communications in a simulated search and rescue context.

3.2 Conversation task design

3.2.1 Conversation scenario

Speech communications in search and rescue context is a good ex-
ample of human/human conversation. It is a complex communica-
tion scenario with the principal intention of exchanging information
between rescue agents and synchronizing their knowledge about an
incident scene. Figure 3.1 illustrates an abstract model of the com-
munications between first responders and task leaders using a picto-
graphic visual language introduced by Moore (2016). In this model,
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  Environment

Self awareness
FRBFRA

Imagination
TL

Observation

Indirect coupled 
interaction

Figure 3.1 Pictograph illustration of the abstract communication model within
a search and rescue context. In this model, an individual is represented by
a circle and an inner ellipse. The inner ellipse represents its thoughts and
understandings. For instance here, the Task Leader (TL) has an understanding
(imagination) about First Responders' (FR) status and the environment which
they are in. However, each FR has an understanding about themselves and
their surrounding environment (self awareness). The double arrows represent
the coupled interaction between FRs and the TL that is performed remotely
via a voice communication channel. In this model, FR goal is to explore the
environment (i.e. incident scene) and report their observations and actions back
to the control hub to update the TL knowledge about the incident scene.

the first responders' goal is to explore the environment and report
their observations back to the control hub to update the task leader's
knowledge about the incident scene. This abstract model was used
to design the underlying task for the SSAR conversations.

The SSAR task involves two participants in the roles of a first
responder and a task leader. To simulate a remote conversation, they
are located in separate quiet rooms. Wearing headsets, the task leader
is able to hear first responder's reports and talk back for asking or
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confirming any required information. The first responder is the main
speaker in this task and speaks most of the times reporting to the
task leader about the incident scene, their observations and actions.
Given pen and paper and relying on these explanations, the task
leader is asked to make an estimation of the simulated environment
structure by drawing nodes to represent rooms/locations and links
between them to show who they might be connected to each other.
The task leader is also asked to annotate each node by writing down
some of the key features about each location (e.g. room type and its
condition, or key objects and their characteristics) in a way that each
node can be identified from the others. The final goal is to have an
estimated topological map of the incident scene.

3.2.2 Simulated environment design

Inspired by the simulation training systems (e.g. FLAME-SIM) which
are used by some fire departments to practice their communication
performance and decision making, a simulated indoor environment3

was designed and built using the Unity (2016) 3D game engine. The
designed simulation system is similar to a first-person-shooter 3D
game in which a participant can explore the simulated environment
by moving an avatar around using arrow keys on the keyboard. Fig-
ure 3.2 shows a user-view and a top-view of one simulated environ-
ment. This figure is also overlaid with the motion trajectory of a
participant and the small arrows show the viewing directions at each
time.

In the SSAR task, the conversations are centred around transferring
enough information about the environment from the first responder

3An example screen recording of a simulated environment (Map4) can be accessed by the
following link: https://youtu.be/X2ZAb0q35iw

https://youtu.be/X2ZAb0q35iw
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(a)

(b)

Figure 3.2 (a) A user-view of the designed simulation system. (b) A top-view of
the simulated environment (Map3) which is overlaid with the motion trajectory
of a participant and their viewing directions (small arrows) at each time.

to the task leader in order to describe the general structure. This in-
dicates that the design of the environment map is particularly impor-
tant because the more complex the structure, the more information
is required to be transferred over speech channel during a successful
conversation. In other words, the structural complexity of an envi-
ronment map can affect the information content of a conversation.

An approach for studying the complexity and information stored
in a structure is to describe it as a graph. A generic structural model



3.2 Conversation task design 73

has been used in order to make the environment maps clear and not
too complicated to describe. In this model, each structure comprises
numbers of square rooms which can be connected to each other by
doors. These structure of connected rooms can be symbolized by an
undirected graph G = (V, E). Nodes or vertices (vi ∈ V ) represent
rooms and links or edges between them (eij ∈ E) indicate doorways.
While all the rooms have an identical square shape, different objects
and arrangements inside them give a unique identity to each.

The graph entropy, which is commonly used as the structural infor-
mation content and the complexity of a graph (Dehmer and Emmert-
Streib, 2008; Mowshowitz and Dehmer, 2012), can be used to design
different map settings with a range of complexities. The topolog-
ical structure of four map settings is shown in Figure 3.3. Each
map setting consists of a fixed number of eight rooms. Some maps
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Figure 3.3 (a) The topological structure of four different map settings (Map1−4)
which were explored by each participant. (b) corresponding top-view image of
each map.
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have multiple rooms of the same type; for example Map2 has two
bedrooms. However, different objects and arrangements inside them
gives a unique identity to each. In total thirteen different types of
indoor locations (RoomTypes), such as kitchen, bedroom or computer
lab, were simulated in all four map settings. Table 3.1 presents the
rooms in each map and their types.

Various types of ambient noises (i.e. fire noise, washing machine
noise, boiler room noise and television) were also simulated which the
first responder can hear in stereo form to provide a realistic experience.
The task leader can also hear these background noises in the first
responder's environment with a -20dB level difference and in mono
in order to simulate a natural telephone conversation.

Table 3.1 List of the rooms in each map and their types.

Room Map1 Map2 Map3 Map4

1 computer lab kids bedroom gym boiler room
2 classroom bedroom bathroom kitchen
3 bathroom living room computer lab dining room
4 kids playroom library bedroom bathroom
5 kitchen bathroom bedroom bedroom
6 canteen dining room living room living room
7 gym kitchen workshop bedroom
8 living room bedroom kitchen gym

3.3 Corpus recording

Recordings were performed in two separate quiet rooms for avoiding
external acoustic disturbances and crosstalk between the two speak-
ers' voice. Figure 3.4 illustrates a schematic of this set-up (top) and
a picture of two participants while starting a recording session (bot-
tom).
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Figure 3.4 top: the recording scenario, bottom: the recording set-up in two
separate quiet rooms.

Full instructions about how the task should be performed were
given to the participant one day before the experiment (see Ap-
pendix C). The instruction sheet describes the recording procedure,
the first responder's task of exploring and explaining, and the task
leader's task of drawing an estimated topological structure of the en-
vironment based on the first responder's explanations. In order to
motivate the participants to explore and explain the maps accurately,
they were offered an additional cash reward to their volunteering
fee for estimating each map correctly. A short practice session in a
practice map was provided to each participant just before the main
recording to help them familiarize themselves with how to move in
the simulated environment.
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The participants performed the experiment behind the closed doors
by communicating with each other through the simulated remote com-
munication system. A MOTU-896Mk3 (2016) audio interface/mixer
was used to provide the simulated communication system by mixing
the participants voices and the background environment noise with
their appropriate loudness levels for each speaker. This interface sys-
tem, together with Audacity (2016) software, was used for analog to
digital conversion and recording the speakers' voice and the simulated
environment noise on four separate channels; one channel for each
participant and two for environment noise (stereo). Table 3.2 sum-
marizes the specific recording set-up and the recording instruments
used.

Table 3.2 Recording set-up information and the specific recording instruments
used.

Microphone
Panasonic RAMSA WM-S10
(head-worn condenser)

Audio card MOTU-896Mk3
Audio recording software Audacity
File type wav
Recording sample rate 48 000 Hz
Recording sample format 16-bit
Number of channels 4

Other information about the participants' motion trajectories, ac-
tions and list of objects in their field of view in the environment were
logged in a computer readable text file. Figure 3.5 shows an example
of such motion trajectories, an instance of a participant's field of view
and surrounding objects in the simulated environment.
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Figure 3.5 An example of motion trajectory information plotted over the en-
vironment map, an instance of a participant's field of view and surrounding
objects in the simulated environment.

Each recording was started by the participant in the role of a first
responder by pressing a connect button in the simulation GUI. After
a successful connection, a beep sound was played to both participants
and the same beep sound was played again at the end of each record-
ing indicating the end of the recording. These one-second beep sounds
were later used for trimming off the start and end of the recorded au-
dio and, more importantly, for aligning the audio data with the other
logged information about the participants' motion, actions and the
observed objects in the environment.

A maximum time for each map was estimated based on some prac-
tice recordings during the process of the conversation task design.
Maximum durations were set as six, seven, eight and eight minutes
for Map1, Map2, Map3 and Map4 respectively. The majority of the
participants (>87.5%) explored the entire area of each map in the
limited time. In all experiments, the structure of the explored area
of the environment was correctly estimated by the task leader. Fig-
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ure 3.6 presents a hand drawing example of the Map4 estimated by
one of the participants.

Figure 3.6 A hand drawing example of the Map4 estimated by a participant
(task leader).

A total of 96 hand drawings (one for each conversation) is in-
cluded in the corpus. More hand drawing examples for all four maps
are available in Appendix E. Correct estimation of the visited areas
confirms that the amount of information exchanged through the voice
channel is sufficient for a human subject to estimate the structure of
the visited parts of the environment.
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3.4 Transcription and annotation

The start and the end of each recorded audio were first trimmed off
from the beep sounds. Then in a first round, segmentation and tran-
scription were generated automatically based on automatic transcrip-
tions of clean speech data. The automatic speech recognition system
used for the first round transcription was accessed through WebASR
(Hain et al., 2008). Its outputs were then reformatted to XML files
compatible with Transcriber software (Liberman et al., 1998) for an
accurate manual transcription. Then the segmentations and tran-
scriptions were revised by a trained native English speaker in a for-
mat compatible with the rules in the AMI corpus (Moore et al., 2016).
The transcription guidelines for the SSAR corpus are available in Ap-
pendix D.

Figure 3.7 presents some sections of a conversation between a first
responder and a task leader as an example of the conversations and
their transcripts. Each transcription file has been included with the
recording meta-data comprising subjects' gender, age and accent re-
gion together with information about the map setting, starting room
and conversation duration. More detailed information about each
recording has also been provided in a separate TASK-INFO text file.

3.5 Corpus description

The SSAR is a medium size multi-speaker corpus with 96 two-party
goal-oriented spoken conversations lasting from 6 to 8 minutes each
(averaging about 7.25 minutes). A total of 24 native British English
speakers (66.6% Male) with a southern accent (self-reported) partici-
pated in the recording.
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[ . . . ]
FR er i'm going through one of the other doors that I haven't been through

yet
FR er this is a bedroom
TL okay
FR there is a bed a double bed
FR there is a bedside table % with what's either a mirror or a picture

[ . . . ]
FR okay i'm going | there's no more doors going off from this room
TL okay
FR so i'm going back into the dining room with the tables and i'm going

through the only other door I haven't been through yet
TL yep
FR er this looks like a_ | wash erm | a toilet or washing room
FR er there are no doors going off from this one
FR there is a bath | with a curtain

[ . . . ]
FR I think that's everything
FR er | on your map is there any rooms I haven't explored yet
TL erm yeh | from the library there's two rooms
TL if you go from the dining room to the living room
FR okay | yep
TL and | from there | oh sorry from the living room there is two rooms
FR okay I see | okay there is a_ another bedroom it's a child's b_ with a

child’s bedroom
FR there is a_ desk with a lamp

[ . . . ]

Figure 3.7 Some sections of a conversation between an FR and a TL as an
example of the conversations and their transcripts in the SSAR. A ‘|’ indicates
a long (about one second) pause and a ‘%’ token indicates cough/throat clearing.
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All the participants were recruited as paid volunteers through the
Sheffield-student-volunteers system. The corpus totals 12 hours of
speech data and about 80K words of manual transcription with about
16K vocabulary size, about 11K utterances and about 1K dialogue
turns. Its perplexity against a standard Switchboard 3-gram language
model is 173. About 11% of the utterances contain at least a token
indicating aspiration, cough or throat clearing, laugh or other promi-
nent vocal noises. Each speaker's clean speech and the environment
noise are available on separate channels. This enables more control
over the background noise by altering the noise level or even removing
or replacing it with other noises.

Aligned with these recordings, other information about the par-
ticipants' locations, actions and objects in their field of view in the
environment are available on computer readable log-files. This in-
formation can be used as a form of conceptual annotation for the
conversations. Multiple layers of annotations in this corpus would be
of interest to researchers in a wide range of human/human conver-
sation understanding tasks as well as automatic speech recognition.
The current version does not include dialogue act tagging annotation.

While the SSAR has common characteristics with other corpora
such as the Maptask, it has its own unique features. For instance
in the MapTask, an ‘Instruction Giver’ can see their map and has
an overview of the complete structure of the environment. However,
in the SSAR, both first responders and task leaders do not have any
insight into the environment structure at the beginning of a conver-
sation. They can both discover a map gradually as the first respon-
der explores a simulated environment. This conversation task design
makes the SSAR dialogs more similar to a real Search and Rescue voice
communication scenario. In contrast with the MapTask, there is no
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labelling or landmarks on locations in the SSAR simulated environ-
ments. Therefore, the speakers have their own choice of vocabulary.
In addition, to describe a location, one speaker can refer to a set
of particular environmental features (such as objects) while another
speaker may find different characteristics for describing the same lo-
cation. In the SSAR four different levels of structural complexity is
considered to control the information content of conversations. In
the SSAR dialogues there is no eye-contact to make sure that all in-
formation about the map of the environment is transferred over the
voice channel. However, in half of the Maptask dialogues, two speak-
ers sit opposite one another and they were able to see their partner.
In contrast with the MapTask conversation which there is no time
limit for each conversation, in the SSAR, depending on the complex-
ity of each map there is a limited time for exploring and discovering
an environment map. The particular SSAR recording setup (sepa-
rate channels for each speaker's clean speech and the environment
noise) enables more control over the background noise by altering the
noise level or removing or replacing it with other noises. Such record-
ing setup provides a speech dataset addressing particular research
needs for spoken language understanding rather than dealing with
different challenges such as speaker diarisation, speech recognition in
noise, etc. Additional information (aligned with the speech record-
ings) about the participants' motion trajectories, actions and list of
objects in their field of view in the environment provides a form of
conceptual annotation for the conversations.

The spoken conversations have many characteristics of sponta-
neous spoken language such as disfluencies, false starts, and collo-
quial pronunciations. While the dialogues are spontaneous and par-
ticipants were free to talk about the simulated environment, an im-
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plicit constraint is applied to these conversations by the task and the
environment structure as the discourse subject.

To provide a suitable speech dataset in the task of information ex-
traction from speech communication channels, a new goal-oriented
conversational speech corpus was designed and collected. The SSAR

corpus was recorded based on an abstract communication model be-
tween first responders and task leaders during the search process in
a simulated crisis response training scenario. Each conversation is
concerned with a cooperative task of exploring a simulated indoor
environment by a first responder and estimating a topological map
of the environment by a task leader via asking about their obser-
vations and actions. The SSAR corpus comprises of 96 dialogues
between 24 speakers, totalling 12 hours, with 80K words transcribed
manually. The SSAR includes different layers of annotations which
can be used in a range of human/human conversation understand-
ing tasks, automatic speech recognition and related topics. This
corpus is being made available for research purposes (via LDC).

Summary
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Locational Information Extraction

In the search and rescue context, spoken language is widely used for
transferring critical information about the location of first responders
and their ambient conditions. Automatic extraction of this informa-
tion can reduce the risk of human related errors in large and fast
moving operations. However, finding clear and direct references to lo-
cational information may not be possible in such highly spontaneous
reports. Instead, such information may be described sporadically in
multiple speaker turns or across the whole conversation (or even mul-
tiple parallel dialogues). Consequently, the information from several
utterances may need to be considered for identifying locational evi-
dence.

As highlighted in Section 2.3, the fine-grained identification of
fundamental units of meaning (e.g. sentences, named entities and
dialogue acts) is sensitive to high error rate in the automatic tran-
scription of spontaneous and noisy speech. In such high error rates,
there is no guarantee that it is possible to identify relevant keywords.
In contrast, looking at the problem from a topic-based perspective
and utilizing state-of-the-art text vectorization techniques has been
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shown to result in systems that are robust to such errors (Morchid
et al., 2014a;b; Hazen, 2011).

The redundancy effect has been described as the main explana-
tion for this phenomenon (Hazen, 2011). This is due to the fact that
topics are often represented by many occurrences of salient words
characterizing them. When key concepts are missed or replaced (be-
cause of the automatic transcription errors), the surrounding words
and phrases may help in discarding the noise and identifying the in-
formation (see Section 2.3.1). In addition, latent concept modelling
techniques in text vectorization, such as LDA, provide the possibility
of matching text segments that do not share common words. This is
particularly important for being robust to the high variation in nat-
ural and spontaneous speaking style and particularly when there is
limited amount of in-domain training data.

Section 4.1 introduces an approach for estimating first responder's
location by framing this problem as a topic identification task on
their spoken reports about their observations and actions. The lo-
cation estimation is based on the notion that, significant changes
in the content of a report over time may correspond to changes in
the speaker's physical context. Identifying these changes can provide
a rough estimation of the speaker's location. Later in Section 4.2,
a similar approach is applied for landmark detection and correspon-
dence estimation as the main steps in building a topological map (see
Section 2.4) of the incident scene.

4.1 Speech-based location estimation

As highlighted in Section 2.1, critical information about first respon-
ders' observations, actions and events in their surroundings is often
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transferred through speech communication channels. First respon-
ders' spoken reports can be viewed as verbal annotations of the inci-
dent scene. Significant shifts in the content and statistical properties
of these reports would be an indication of the changes in the speaker's
physical context, such as moving from one particular location to an-
other. In addition, first responders may naturally tend to signal their
task leader about their intention of moving from one particular place
into another (similar topic boundaries; see Section 2.3.2). For exam-
ple, words and phrases such as, "okay so", "I’am in" or "so in this
room" might be used for signalling their intention of leaving a location
or entering a new one.

Plotting a self-similarity for a conversation transcript (similar to
the described DotPlotting in Section 2.3.2) can visualise such changes
and transition signals. Figure 4.1 visualises an example of this self-
similarity plot for a Map1 conversation in the SSAR corpus. In this
example, the similarity between a pair of utterances was estimated
by computing the cosine distance between their lexical frequency vec-
tors (bag-of-words). The red dashed lines show ground-truth tran-
sition moments between rooms which were obtained from the loca-
tional annotation of the conversation. The room transition bound-
aries (around the red dashed lines) are showing very low similarities
to the rest of the areas and high similarities to other boundaries.
This can indicate that, similar words or phrases are used for sig-
nalling a location change. Observing similar patterns in most of the
96 conversations in the SSAR corpus supports the idea that identify-
ing these signals can result in segmenting a long speech report into
short units where each unit may correspond to a particular visited
location. This identification can provide an estimation of the location
of the speaker. The similarity between this task and the topic seg-
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mentation/identification problem makes it possible to employ a wide
range of techniques from the conversation topic detection field.
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Figure 4.1 Visualisation of self-similarity plot for one example Map1 conver-
sation transcript in the SSAR corpus. Cosine similarity scores every pair of
utterances are presented with a gray levels ranging from white for zero (no sim-
ilarity), to black for one (highly similar). Red dashed lines show ground-truth
transitions between rooms.

4.1.1 Transition detection

As described above, it is expected to observe distinctive boundary fea-
tures when a first responder moves from one location to another. Such
features can automatically be learned from labelled training data and
used in discriminative approaches to identify transition times. Actual
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transition times (obtained from the locational annotation of conver-
sations) can be used to label utterances as ‘transition-related’ and
‘non-transition’ ones. To prepare the training data, a sliding win-
dow over the sequence of utterances was used. The utterances within
the window was labelled as ‘transition-related’ if the window crossed
a transition time. Otherwise, the utterances was labelled as ‘non-
transition’.

A text document classification approach was adopted comprising
three typical components of text preprocessing: document vector ex-
traction, discriminative modelling and document classification. After
a basic tokenization, a standard set of 50 English stop words were
removed from the text document. Each window of utterances was
presented as its raw words count vector and then projected into a
vector space model based on the described LDA vectorization prin-
ciple in Section 2.3.3. This represents the semantic information of
a document in a low-dimension space as weights over a mixture of
latent semantic concepts. A standard two-class SVM classifier with
linear kernel function was trained on the collection of training vectors.

For transition detection, the same sliding window approach was
applied to the sequence of automatically transcribed conversations
in the test dataset. After text preprocessing and document vector
extraction, the trained classifier was applied to the vector of each
window for transition detection. Figure 4.2 shows a typical example of
transition estimation on the automatic transcription of a conversation
in the SSAR corpus.
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Figure 4.2 A typical example of transition estimation on the automatic transcript
of a conversation in the SSAR corpus. A sliding window with the size of three was
used. The ground-truth and the estimated location transition lines are plotted.
The blue line shows the transition class membership probability estimated by the
SVM classifier.

The transition class membership probability estimates are shown
by the blue line. The vertical black dashed lines show ground-truth
transition moments and each vertical red line indicates an utterance
which is classified as transition-related. Over-segmentation can hap-
pen in the transition detection mainly in high ASR WER. An example
of this over-segmentation can be found at utterance 43 in Figure 4.2.
As a result of using a window of utterances, often two or, in some
instances, three successive utterances were estimated as transition-
related. In these cases, the one with highest transition class member-
ship probability was selected as the transition moment.
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4.1.2 Location estimation

Changes in the information content of a report over time would cor-
respond to shifts in the speaker's physical context. Identifying these
changes can provide a rough estimation of the location of the speaker.
Recalling Section 2.3.2, topic segmentation is often the first step be-
fore topic identification. The estimated transition times by the seg-
mentation process can be used to divide a full sequence of utterances
into smaller sections where each section is likely to be related to one
location. Similar to topic identification tasks, taking each segment as
a whole into account can result in a more accurate identification in
a high word error rate of automatic transcriptions compared with a
single utterance or a short window.

To prepare the training data, all the successive utterances in a
room were considered as a single training example and labelled as
its corresponding RoomType. Low-dimensional training vectors were
produced based on the described preprocessing and LDA vectoriza-
tion principle in the segmentation step. A multi-class SVM was then
trained on the training vectors.

For location identification, after estimating a transition time and
providing a new segmentation point, the entire segment was projected
into the vector space model. Given this vector and using the SVM clas-
sifier, each segment was classified as its most likely related RoomType.
This can provide an estimate of the RoomType in which the first re-
sponder was at each time. Figure 4.3 illustrates a typical example of
the RoomType probability estimation for each segment of the conver-
sation that was used in Figure 4.2. In this example, the first segment
is clearly more related to the RoomType1 than the rest. However,
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Figure 4.3 A typical example of the location identification on the automatic
transcript of a conversations in the SSAR corpus. This shows the SVM class
membership probability distribution for 13 RoomType classes estimated for each
segment. In this example a participant visited rooms in the following order:
R1→ R2→ R3→ R4→ R5→ R6→ R7. The estimated sequence of visited locations
is: R1→ R2→ R3→ R8→ R4→ R5→ R6→ R7.

an over-segmentation in RoomType4 resulted in a short segment and
consequently misclassification of the fourth segment as RoomType8.

4.1.3 The impact of transcription errors

The proposed speech-based location estimation system was evaluated
on the SSAR corpus presented in Section 3. The SSAR was divided
based on a K-Fold cross-validation scheme with K = 12 into a train-
ing, test and development (a held out tuning dataset) datasets with 80,
8 and 8 conversations respectively. K = 12 was used to have at least
two examples of each map in the test and development datasets. This
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is important because not all RoomTypes exist in each map and in
some conversations the entire map is not fully explored. Each of these
datasets was created randomly by selecting full-length conversations
from all four maps equally. This means the test and development sets
each comprised a total of eight conversations (two from each of the
four maps) and a total of 80 conversations for the training set (20
from each map).

To investigate the impact of transcription errors of noisy speech
on the location estimation performance, a set of experiments was con-
ducted on the automatic transcripts of the test data with different
noise levels. As a difficult babble noise for ASR systems, the CHiME-3

café (CAF) noise (Barker et al., 2016) was used to reduce the au-
tomatic recognition performance. Clean speech data of the test-set
was mixed with the noise, making different noise levels ranging from
clean speech to a Signal-to-Noise Ratio (SNR) of about 0 dB with in-
tervals of 5 dB. The original environment noise of the conversations
(included in the SSAR) were not used because, the noise level changes
during a conversation. The automatic recognition of these noisy data
provided transcriptions with different WERs ranging from 16.1% to
96.8%.

4.1.3.1 Automatic transcription system

A standard GMM/HMM ASR system was used for transcribing the test-
sets. The detailed system is described in Section 5.2.1. The acoustic
models used for the experiments were trained on approximately ten
hours of clean speech data in the training dataset of each fold using
the Kaldi open-source speech recognition toolkit (Povey et al., 2011).
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For decoding a 16K lexicon, a trigram language model was made by
interpolating a background and an in-domain language model. The
background language model was a relatively large model trained on
the transcriptions of the Switchboard telephone speech corpus (God-
frey et al., 1992) with approximately three million words. The in-
domain language model was trained on the annotations of the train-
ing subset with about 65K words. Both of the models were trained
and interpolated using the SRI Language Modeling toolkit (SRILM)
(Stolcke, 2002). The interpolation weight of these two models was
tuned using the independent development set.

The trained ASR system was used for transcribing the test-sets
with different noise levels. The dashed line in Figure 4.5 shows its
performance in terms of WER for each SNR. This system achieved
a WER of 16.1% on the clean speech version of the test-set. This
ASR system was intentionally trained on clean speech data only but
used for decoding the noisy data of the test and development sets. As
such, this recognizer has an acceptable performance on the clean data,
but its WER rises significantly on the impact of noise level increase
compared to state-of-the-art systems. This allowed the location esti-
mation system to be examined under a good range of WER with a
relatively low computational cost for ASR acoustic model training.

4.1.3.2 Document classification system

The ASR transcripts were first preprocessed by tokenizing and re-
moving a standard list of stop words using the Natural Language
Toolkit (NLTK) (Bird et al., 2009). The documents vectors were then
produced by applying the LDA scheme based on the Gensim topic
modelling framework (Rehurek and Sojka, 2010) implementation of
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the LDA for learning text topic models. The LDA models were trained
on the manual transcripts of the Switchboard telephone speech cor-
pus (Godfrey et al., 1992) in an unsupervised, data-driven manner
with symmetric priors. The Switchboard was used since it is a large
natural conversation corpus (2,400 conversations) with a broad range
of topics (about 70) which makes it suitable for training a rich topic
model.

The number of LDA topics was tuned on the transcription of the
development dataset on the task of location identification. Ground-
truth information about the transitions between rooms was used to
divide the utterances in each conversation. LDA models with different
numbers of topics, ranging from 10 to 100 topics were used to classify
each segment. Figure 4.4 illustrates the systems performance (F1-
score) as a function of number of LDA topics. Each experiment were
performed five times with different initial LDA topics. The number
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Figure 4.4 The location identification performance on transcription of the
development dataset as a function of number of LDA topics. The performance
on each number of topics presents the avarage of five experiment with different
initial LDA topics.
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of LDA topics was set to T=40 which provides a high performance as
well as low computation power in compare with other tested number
of LDA topics.

The development dataset was also used for tuning the size of the
sliding window (3 utterances) in transition detection. The LDA topic
posteriors for each document were used as its vector representation.
The SVM classifiers were trained on the low-dimensional LDA repre-
sentations of labelled conversation segments in the training set using
the Scikit-learn (Pedregosa et al., 2011) implementation of the SVM.

In order to investigate the effect of LDA vectorization, another set
of experiments was conducted using the TF-IDF vector representa-
tion. The SVM classifiers were trained on the TF-IDF representations
of labelled conversation segments in the training set to be used for
transition detection and location identification.

4.1.3.3 Results

Transition detection: The described WD-score in Section 2.3.2.2
was used as the quality measure for the transition detection. Fig-
ure 4.5 presents the results obtained by the transition detection step
on the automatic transcription of test data with different SNRs. WD

errors of both LDA and TF-IDF methods are shown to compare their
performance. The results in this graph show a lower WD error using
the LDA-based approach compared to the TF-IDF implementation.
This confirms the positive effect of the LDA vectorization approach.

It is notable that on both systems, in spite of a statistically signifi-
cant increase in WER of about 9% (from 16.1% WER on clean data to
about 25% WER on an SNR of 20 dB), the segmentation error did not
receive a high negative impact. In fact, its WD error experiences a
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Figure 4.5 The ASR transcription WERs on different SNRs are shown with a
dashed line. The red line shows the WD errors of the LDA-based method for
transition detection on the automatic transcription of test data. The black line
shows the system performance using the TF-IDF vector representation.
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Figure 4.6 The transition detection performance on different transcription
WERs. The red line shows the WD errors of the LDA-based method for transition
detection on the automatic transcription of test data. The black line shows the
system performance using the TF-IDF vector representation.
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tiny increase of about 0.02 for the LDA-based approach, which is not
statistically significant (p=0.09). However for SNRs lower than 20 dB,
the WD error increase is statistically significant. To visualise the ef-
fect of WER increase on the transition detection error, Figure 4.6
illustrates the WD scores as a function of WER. For WERs greater
than about 25%, the WD shows no or very little robustness to WER

increase on both systems.
Location identification: The F1-score, as one of the most com-

monly used ‘single number’ measures in topic identification and in-
formation retrieval tasks (see Section 2.3.3), was used to measure the
location identification performance. Since F1 was calculated at the
utterance level, it reflects both identification and segmentation per-
formance together. Therefore, this performance can be considered as
the overall quality of location estimation. Figure 4.7 illustrates the
location identification performance obtained on the automatic tran-
scription of test data with different SNRs. In this figure, the red
line presents the LDA-based identification performance as a function
of background noise. In comparison, the performance of the TF-IDF-
based identification system is shown with a black line. About an
average of 19% relative gain by using the LDA method shows the
positive effect of the LDA vectorization on the system performance
compared to the TF-IDF system at SNRs ranging from 45 dB to 10 dB.

Figure 4.8 presents the same F1 performance results as a function
of WER. The results illustrate a moderate performance drop under
the effect of WERs increase from 16.1% to about 70%. In this range
of WERs, the location identification performance (for the LDA-based
approach) experienced a decrease about 37% slower than the WER in-
crease. This moderate performance decrease demonstrates a level of
robustness to the high WER in the automatic transcription of noisy
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Figure 4.7 The ASR transcription WERs on different SNRs are shown with
a dashed line. The red line presents the LDA-based location identification
performance (F1). The black line shows the system performance using the
TF-IDF vector representation.
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Figure 4.8 The location identification performance on different transcription
WERs. The red line presents the LDA-based location identification performance
(F1). The black line shows the system performance using the TF-IDF vector
representation.
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speech. The location identification failed on extremely inaccurate
transcriptions of noisy speech. The experimental results confirm the
potential application of a topic-based perspective in providing an esti-
mation of first responders' location during a search and rescue mission
based on their spoken reports.

4.2 Speech-based topological map estimation

An understanding of the incident scene layout is one of the main en-
hancing factors for situational awareness formation and the efficacy of
a search and rescue response. Different strategies for automatic map
making have been explored mainly within the field of mobile robotics
(see Section 2.4). Techniques have been introduced for estimating
metric-based or topological-based maps by interpreting the informa-
tion provided by a robot (or multiple robots) while it is probing the
environment using a variety of sensors.

A first responder's spoken report is a verbal description of what
has been observed while exploring an incident scene. The stream of
information in such a report can be compared with the robot sensory
data. It can be hypothesised that similar strategies in mobile robot
mapping can be adopted for estimating the environment structure
from spoken reports. However, there are indisputable differences be-
tween these sources of information. In contrast with robot sensory
data which is often well structured metric values, such a detailed in-
formation is very unlikely to be found in these reports. Instead, the
spoken reports are generally about the main reference points such as
locations, events and so forth. Consequently, estimation of a metric-
map from spoken reports seems out of reach.
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Unlike the detailed information provided in metric-maps, as de-
scribed in Chapter 2.4, a topological map represents the structure
of a physical environment as an abstract graphical model consist-
ing of nodes and edges (Boal et al., 2014; Kuipers and Byun, 1991).
These light-weight maps can represent higher-level semantic knowl-
edge, such as how particular locations are linked to each other. Such
a high-level representation methodology is more similar to the en-
vironmental perception and interpretation of human beings (Lynch,
1960), which makes it more applicable in a speech-based mapping
problem.

The previous section presented how a topic-based approach can be
employed for tracking the changes in the information content of each
report for providing an estimation of a first responder's location dur-
ing a search and rescue response. Looking from a similar perspective,
a speech-based approach is introduced in this section for performing
two primary steps in topological map making on the spoken reports.
First, detecting when a new node should be added to the map and
then, estimating the correspondence of the recently added node to
the all previous ones (see Section 2.3.3).

4.2.1 New node detection

A new node can be introduced to the map whenever an important
change is detected in the environment as an indication that the agent
(i.e. a robot in mobile robot mapping) has moved to a new location
(see Section 2.4). Detection of these location landmarks results in a
compact map which the nodes can represent a high level of semantic
knowledge.
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The previous section showed that topic-segmentation techniques,
such as identifying distinctive transition features in the spoken re-
ports, provide an estimation of the time that a first responder has
moved into a new location. The estimated transition times were used
to divide a full sequence of utterances into smaller sections which each
is more likely to be related to one location. These segments of the re-
port were shown to provide enough information about the particular
locations of the speaker. By this means, each segment can offer the
required characteristics to be considered as a topological landmark.

The segmentation strategy described in the previous section was
used for identifying transition moments and segmenting the spoken
report. A node was allocated for each segment and the utterances in
each segment were retained as a fingerprint of the node. A sequence
of nodes was gradually formed by allocating a node for each segment
of the utterances. This process is illustrated in Figure 4.9.

4.2.2 Correspondence estimation

At this stage, identification of the global structure of the environment
as a topological map is reduced to determining whether each node is
a new one or if it has been visited previously. Here the utterances
in each node are the information source for estimating the correspon-
dence between a pair of nodes. The correspondence estimation was
carried out by means of similarity measurements between each pair
of nodes.

The correspondence estimation problem is made difficult due to
the fact that the spoken reports in different places may appear simi-
lar because of the automatic transcription errors. This is analogous
to the perceptual aliasing problem in automatic mapping (see Sec-
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Figure 4.9 New node insertion by identifying transitions utterances (TU) in the
automatic transcription of a spoken report. Each node comprises the utterances
of its corresponding (U) segment.

tion 2.4). To reduce the perceptual aliasing posed by the ASR errors
and improve the distinctiveness of nodes, the entire segment of utter-
ances in each node was considered as a single ‘document’ to be com-
pared against other nodes. Comparing a large segment can increase
the redundancy which can lead to higher robustness to transcription
errors.

The cosine distance, as an extensively used similarity measure
(Han et al., 2011) in information retrieval and data mining, was used
to estimate the correspondence of two nodes xi and xj by computing
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the similarity of their document vectors D⃗i and D⃗j as:

cosine(D⃗i, D⃗j) = D⃗i · D⃗j∥∥∥D⃗i

∥∥∥ ∥∥∥D⃗j

∥∥∥ =
v∑

di.dj√
v∑

d2
i

√
v∑

d2
j

(4.1)

where di and dj are components of vectors D⃗i and D⃗j of size v.
In addition to the aliasing issue, it is almost impossible that two

nodes are identical. This is because the same place may be de-
scribed differently at different times. This problem is comparable
with the perceptual variability problem in automatic mapping (see
Section 2.4). In order to reduce the variability problem, each doc-
ument was projected into an LDA vector space model to be able to
compare the semantic information of documents independent of the
vocabulary used (see Section 2.3.3). Using such a vectorization ap-
proach, two nodes can be scored with a high correspondence value as
long as their documents are semantically related and even if they do
not share similar vocabulary.

The correspondence between the most recent node (xn) with all
the previously detected ones (xi ∀i ∈ {1, 2, ..., n − 1}) was computed as:

cn,i = cosine
(

⃗LDA(Dn), ⃗LDA(Di)
)

(4.2)

where Dn denotes the document of node xn and the ⃗LDA(Dn) is the
LDA vector representation of the Dn. For a total of N nodes, all the
correspondence values were presented as a N × N symmetric matrix
with a diagonal of one, as each segment matches itself. Figure 4.10a
visualises a typical example of the estimated matrix C for a Map4

conversation in comparison with its ground-truth matrix GT (Fig-
ure 4.10b) which was made based on the SSAR location annotations.
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Figure 4.10 (a) Visualisation of an estimated correspondence matrix (C) for a
Map4 conversation example. Correspondence scores are presented with gray
levels ranging from white for zero, as an indication of no match between a
pair of nodes, to black for one as a full correspondence. (b) The ground-truth
correspondence matrix (GT ) of the conversation.

The estimated correspondence scores are presented with gray lev-
els ranging from white (zero), as an indication of no match between a
pair of nodes, to black (one) as a full correspondence between them.
The 11th and 12th nodes on the GT are representing a single loca-
tion which shows an over-segmentation in the node insertion process.
Such over-segmentations can generate short segments which may con-
tain insufficient information to be compared with the other nodes.
However, if the information content of each fragment is enough, they
receive a high correspondence value.

A likely topological representation of a matrix C can be generated
by thresholding its correspondence values and converting them into
a binary form to be used for closing the loops and constructing the
topological map graph. However, a loop-closing decision once taken
cannot be reversed and this removes valuable information.
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Figure 4.11 Visualisation of the estimated correspondence matrix C presented
in Figure 4.10a after converting it into its binary form by applying a threshold
of 0.5.

The estimated correspondence values are often preferred to retain
without modifications for use in combination with other information
scores such as a prior map or information from other mapping systems
like odometry (see Section 2.4). However, for visualising a likely topo-
logical representation of the example above, a threshold of 0.5 was
applied to the estimated C in the Figure 4.10a. This thresholding con-
verted the matrix C into a binary form which is shown in Figure 4.11.
In this case, this thresholding resulted in missing two correspondences
and adding an incorrect one. Figure 4.12 illustrates graphically how
the nodes sequence of this example can be folded into a likely topo-
logical map based on the estimated binary correspondence between
each pair of nodes. The over-segmentation error at the 11th and 12th
nodes is masked in this case. The correspondence between the first
and the last segments is missed and, the second and the fourth seg-
ments are misidentified as a same location. These errors resulted in a
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Figure 4.12 A graphical visualisation of folding a sequence of estimated nodes
from places which appear to correspond with each other and transforming it
into a likely topological map.

slightly different topological map with one edge substitution and one
edge deletion.

4.2.3 Experiments and results

Based on the experimental set-up in location identification (see Sec-
tion 4.1.3), a set of experiments was conducted on the automatic
transcripts of the test data with different noise levels. A new node
was introduced to a graph by identifying a transition using the transi-
tion estimation system. Entire utterances between the last transition
point and its previous one were allocated to this node. A document
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vector was produced for the node by applying the LDA vectorization
scheme. It was then compared against all the previous nodes by
computing their cosine similarity. Finally, the correspondence matrix
Cn×n was expanded gradually by concatenating the similarity scores
of the new node. A separate experiment was conducted using the or-
acle pre-segmented transcriptions in order to investigate the effect of
errors posed by the segmentation (new node detection) on the overall
system performance.

The accuracy of an estimated correspondence matrix Cn×n ex-
plains the quality of the final topological map. To compare an esti-
mation C against its reference GT , ROC curves (Fawcett, 2006) were
plotted for the estimation at each SNR. Since the matrix C is symmet-
ric and its main diagonal does not reflect the estimation performance
only the upper triangle (or lower) components of C (excluding its
main diagonal) are required to be compared. A full range of thresh-
olds (i.e. 0.00,0.01,0.02,. . . ,1.00) was applied to the estimated values to
be used for computing True Positive Ratio (TPR) and False Positive
Ratio (FPR) for the ROC curve as:

TPR = TP

TP + FN
(4.3)

FPR = FP

FP + TN
(4.4)

where TP , TN , FP , and FN denote true-positive, true-negative, false-
positive and false-negative respectively.

Figure 4.13 shows the ROC curves at different SNRs for each map-
setting. ROC curves close to the dashed line of the diagonal indicate
random estimations. For instance, the ROC curves presented in Fig-
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Figure 4.13 ROC curves at different SNRs for each map-setting. ROC curves
close to the dashed line in the diagonal explain a random estimation.
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ure 4.13 show that the estimated correspondence values at SNRs of
5 dB and 0 dB are randomly generated.

The AUC metric was used to score the performance of the system. The

AUC of each map-setting is presented in Figure 4.14 as a function of the SNR.

A perfect estimation receives an AUC of one and a random estimation is scored

with a value close to 0.5. Figure 4.15 illustrates the overall AUC performance

of the system as a function of WER. Results show there is no statistically

significant difference in the system performance on transcriptions with about

16% and 25% WERs. The results also show that, while the performance

reduces on WERs of greater than about 25% however, the system does not fail

completely for error rates of about below 70%.

In comparison with the auto-segmented results, the pre-segmented system

performance is plotted with a black line to illustrate the negative effect of node

detection errors on the overall system performance. This explains that the node

detection errors results in average 0.05 AUC performance reduction on WERs

less that about 70%. For WERs less than 20%, these performance differences

are barely significant (p=0.073). However, the differences are statistically

significant on WERs of about 20% to 70%.

It is notable that, while at extreme high WERs, the system performs

randomly, the variance of the results is small. This low variance is explained by

looking at the ASR transcripts. Under very low SNR conditions, and when the

estimated acoustic likelihoods are not strong, ASR generates word sequences

based on its language model. Such transcripts are not random. They are

often full of high probability general function words with almost no sign of any

important key-words. Thus, any segment of such text (as a node) looks highly

similar to every other one. This can explain the reason why there is almost no

difference between the pre-segmented and the auto-segmented results and also,

the very low variance across different samples at such high WERs.
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Figure 4.14 The ASR transcription WER on different SNRs is shown with dashed
line. The AUC for each map-setting is presented as a function of SNR. Random
estimation scores a value close to 0.5.
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Two novel approaches were presented for extracting locational in-
formation from a search and rescue speech conversation. Initially,
a speech-based localization approach was introduced to estimate the
location of a first responder in a finite set of location types. A
topic-based perspective was employed since it offers the potential
of being robust to high error rates in the automatic recognition
of noisy speech. LDA vectorization technique was used to com-
pare the semantic information of a first responder's spoken re-
ports in a low-dimension feature space. A speech-based topologi-
cal map estimation technique was then introduced that is inspired
by automatic topological mapping algorithms. The new node in-
sertion and correspondence estimation problems were framed as
topic segmentation and text document similarity estimation tasks
respectively. The impact of transcription errors on systems per-
formance was investigated by experimenting on automatic tran-
scripts of the SSAR corpus speech data with different SNRs. Results
for both systems showed no significant performance decrease at a
WER of about 25% compared with the performance on clean speech
data with about 16.1% WER. Experiments results on transcriptions
with WERs from about 25% to 70% demonstrated moderate perfor-
mance declines compared with clean speech transcripts. The results
demonstrated the feasible of using topic segmentation and identifi-
cation techniques as foundations for developing systems to extract
high-level information from natural conversations.

Summary
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Design of a Two-Pass Speech Recognizer

The need for automatic recognition of conversational speech is emerg-
ing in a variety of application domains such as search and rescue
(see Chapter 1). The automatic transcription of voice communica-
tion channels is difficult due to the high acoustic variations posed by
the environment noise conditions, spontaneous speaking style, chan-
nel characteristics and the speakers' condition. In addition to these
challenges, the statistical properties of the language often changes
during a conversation due to change in context (see Section 2.2).

Under these circumstances, and especially when the estimated
acoustic likelihoods are not so strong, an adaptive context-specific
language model can play an important role in guiding the search for
determining the most likely sequence of spoken words. High-level con-
textual information is often used to adapt a general language model
depending on the ongoing situation (see Section 2.2.1.2). State-of-
the-art ASR systems frequently obtain this information from a vari-
ety of additional sources, for instance mobile phone geolocation sig-
nals (Chelba et al., 2015), personalized user information (Wen et al.,
2013) and domain information (Wen et al., 2013). Natural conversa-
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tions often convey high-level information about the dialogue subject
and context. It can be hypothesised that, such a high-level contex-
tual information can be used along with other sources to improve the
recognition of natural conversations.

Chapter 4 has shown that a topic-based perspective can be used
to extract locational information from a highly imperfect automatic
transcription of spoken conversations in a crisis response. This chap-
ter presents a new two-pass speech recognition architecture which
dynamically adapts its language model based on high-level location
information content of a conversation.

5.1 System architecture

This section presents a two-pass speech decoding architecture with
the objective of improving the transcription accuracy of the speech
communication channels. Figure 5.1 visualises the main components
of this system. The first decoding pass is an ASR search to determine
the most likely sequences of spoken words given the decoder models.
The language model used in the first decoding pass is a general static
model trained on in-domain data. The first decoding pass produces
its multiple word sequence hypotheses in a word lattice form. The
generated lattices are retained to be rescored in the second pass. In
addition, the best word lattice path (1-best hypothesis) is computed
to be used by the speech-based location identification (location-ID)
module.

Recalling from Section 4.1, the location-ID provides location esti-
mations from highly inaccurate output of the ASR system. Relying on
a topic-based approach and LDA vectorization principle, it estimates
the speaker's location in some predefined room-types by tracking the



5.1 System architecture 115

  

Search
(ASR)

Language
Model

(General)

Acoustic
Model

Context Dependent
LM Estimation

LM Lattice
Rescoring

Location
Estimation

First decoding pass

Word Lattice

1-best
hypothesis

1-best
output

Second decoding pass

__
__
__
__
__

__
__
__
__
__

Word Lattices

Location-ID

Lexicon

Speech
Waveform

Acoustic
Vectors

λ1,2,. .. , n

Figure 5.1 A general structure of the proposed two-pass speech decoding ar-
chitecture. The location-ID module provides location estimations from highly
inaccurate output of the ASR system. The second pass decoding stage is initiated
whenever a new location is identified. All of the stored word lattices related
to the recently identified location are then rescored based on the dynamically
generated language model. The best path is computed for each word lattice as
the final decoding hypothesis.

changes in the content of a report over time. The transition detec-
tion is constantly monitoring the 1-best decoding results to identify
an estimated transition time. By detecting a transition point, the
SVM class membership probability distribution for location classes is
estimated for the recently identified segment to be used in the second
pass decoding.

The second pass decoding stage is initiated whenever a new loca-
tion is identified (i.e. after each transition detection). A context-
dependent language model is built for each identified location by
combining a collection of location-specific language models according
to their relevance obtained from the location-ID. The models were
combined via the mixture interpolation (see Section 2.2.1.3). The
interpolation coefficients (λi ∀i ∈ [1, 2, ..., n] for n location-specific
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models) were set based on the SVM location class membership prob-
ability distribution of the location-ID. Based on the language model
lattice rescoring described in Section 2.2.3.1, the dynamically gener-
ated model is then used to rescore all the stored word lattices related
to the latest identified location. Finally, the best path is computed
for each word lattice for the final decoding hypothesis.

5.2 Experimental set-up

The SSAR corpus (described in Chapter 3) was used to evaluate
the proposed system on the task of transcribing voice communica-
tion channels. The entire dataset was divided based on a K-Fold
cross-validation scheme (K=12) into training, test and development
datasets with about 10h, 1h, and 1h of data respectively (similar to
the previous chapter experiments).

5.2.1 Baseline automatic speech recognition system

The same speech decoder described in the previous chapter was used
as the baseline recognition system. The particular system acoustic
models were trained on about 10 hours of clean speech data in the
training subset using the Kaldi open-source speech recognition toolkit
(Povey et al., 2011). These models were GMM/HMM systems with
13-dimensional MFCCs with ∆ and ∆∆ (deltas and accelerations re-
spectively). MFCCs were spliced across three frames of left and right
context and reduced to a 40 feature vector using linear discriminant
analysis whose class is one of 2500 tied triphone HMM states. The
tied states are modelled by a total of 15000 Gaussians. On top of
that, the specific system was trained on adapted features using Max-
imum Likelihood Linear Transformation (MLLT) (Gopinath, 1998),
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and Feature-space Maximum Likelihood Linear Regression (fMLLR)
(Li et al., 2002) with Speaker Adaptive Training (SAT) (Anastasakos
et al., 1996).

For decoding a 16K lexicon, a 3-gram language model was built
by the linear interpolation of two models (see Section 2.2.1.3). The
background language model is a relatively large model trained on
the transcriptions of the Switchboard telephone speech corpus (God-
frey et al., 1992) with about 3 million words. The second model
was trained on the training subset annotations with about 65k words.
Both of the language models were trained and interpolated using the
SRILM toolkit (Stolcke, 2002). The interpolation weight of these two
(λb) was tuned by finding the minimum perplexity of the interpolated
language model on the held-out validation dataset. The best inter-
polation coefficient of λb=0.4 was determined and applied through-
out all subsequent experiments. The pronunciations lexicon used in
constructing the speech recognition system was the BEEP dictionary
(Robinson, 1996).

5.2.2 Experiments

Three sets of experiments were conducted on the speech data with
different levels of artificially added noise to the test and development
sets:

1. The first set of experiments was for providing a baseline recogni-
tion performance using a typical ASR system. The baseline ASR

system was used to decode the test-sets and the transcription
WER was computed.

2. The second set of experiments investigated the effect of employ-
ing location information for language model lattice rescoring in
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the described system. These experiments utilized the actual lo-
cation transcriptional tags (oracle-condition).

3. Finally in the third set of experiments, the Estimated Location
Information (ELI-condition) was obtained from the initial recog-
nition results. This estimated result was used for dynamically
generating the lattice rescoring language model.

Similar to the experiments in the previous chapter, test and devel-
opment datasets with noise levels ranging from clean speech to an SNR

of 0 dB were built by mixing the clean utterances into the background
noise (the CHiME-3 café noise). The experiments for each SNR followed
a 12-fold cross-validation scheme. For each fold, the ASR acoustic
models were trained on its clean train-set, and the best Language
Model Scaling Factor (LMSF) and word insertion penalty (Jurafsky
and Martin, 2009, chapter 9) were estimated on the development-set
for each SNR. The trained ASR system was used for decoding all pre-
segmented conversation utterances of the test-sets. The generated
lattices for each utterance was stored to be processed after a location
were identified. The best lattice path hypothesis was computed to be
used by the location-ID.

The location-ID SVM classifiers were trained on the training dataset
(See Section 4.1). By identifying a new transition point, the SVM

class membership probability distribution for 13 RoomType classes
was estimated for the recently identified segment to be used as lan-
guage model interpolation coefficients (λ1−13) in building the context-
dependent model. Figure 5.2 illustrates the process of building a
context-dependent language model.
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Figure 5.2 The process of building the context-dependent language model in the
rescoring pass. The background language model is a large model trained on
out-of-domain data (Switchboard corpus transcriptions) and the location-specific
language models were small but specific models trained on location-specific
collections of utterances in the training data. A context-dependent model was
built by dynamically interpolating these static models based on the estimated
λ1−13 coefficients.

The background language model used was the same large model
trained on the transcriptions of the Switchboard telephone speech
corpus. Each location-specific language model is a small but specific
model trained on a collection of utterances in the training data which
were related to a particular RoomType. The estimated interpolation
coefficients λ1−13 by the location-ID were used to dynamically build a
mixture model for each identified segment of a conversation. This mix-
ture model was then interpolated with the background model making
the final context dependent language model.

The context dependent language model was then plugged into the
rescoring of a word lattice. The rescoring was performed in the Kaldi
ASR toolkit by initially decoupling the scores of acoustic and lan-
guage models of a lattice's transition arcs and then replacing the
previous language model probabilities with the new language model
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probabilities. The rescored lattice was used to find a new one-best
transcription hypothesis as the output of the described system.

5.3 Results and discussion

This section presents the results of the experiments and compares
the systems performance based on their WER. Figure 5.3 illustrates
the baseline system WERs on different noise levels. More detailed
information about the performance of the baseline system, includ-
ing its word insertion, deletion, and substitution ratio on different
SNRs, is also presented. Results show that the baseline system is ca-
pable of decoding the clean version of the speech signal with about
16.1% WER. In all SNRs the word insertion rate was small (about
3%) in comparison with the substitution and deletion rate. This can
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Figure 5.3 The detailed information about the performance of the baseline
system, including its word insertion, deletion, and substitution ratio on different
SNRs.
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be related to the speaking rate of conversational speech since high
speaking rate has been reported to result in low speech insertion and
high deletion and substitution errors (Martinez et al., 1998; Nanjo
and Kawahara, 2004). The low insertion rate can also be related to
the word insertion penalty that was tuned on the development-set for
each SNR. The particular effect of these parameters on the word inser-
tion rate is not investigated within the scope of this thesis. In SNRs
of about 20 dB, 15 dB and 10 dB, the substitution rate was about
25% higher that the deletion rate. This shows that the ASR acous-
tic model mismatches with the noisy speech signal and wrong words
were hypothesised based on the language model. At extreme SNRs of
about 5 dB and 0 dB, a majority of the words were deleted because
the ASR failed to detect any speech in such low SNRs.

To compare the performance of the baseline ASR with the system
in the ELI-condition, Figure 5.4 shows their WER on different SNRs.
The performance of the location-ID module is also plotted in this
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Figure 5.4 WER of the baseline ASR system compared with the ELI-condition
system as a function of SNR increase. Performance of the location-ID module
as a function of SNR is also presented.
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figure. The recognition errors rise as a result of decreasing SNR in
both baseline and ELI-condition. It is notable that the system in
ELI-condition has performed better compared to the baseline system
with moderately lower WER in all SNRs.

To illustrate this performance difference clearly, Figure 5.5a shows
the absolute WER reduction values (transcription accuracy gain) for
both the oracle and the ELI conditions. Figure 5.5b presents these
WER reductions relative to the baseline ASR. These graphs reveal that
these transcription accuracy gains start from a small, but statistically
significant values from about 1% relative at clean speech and peaks at
about 3% relative in an SNR of 15 dB. The statistical significance of
these WER reductions are tested with the matched-pairs test (Gillick
and Cox, 1989) with a p-value<0.05.

To investigate the general gain increase in lower SNRs, Figure 5.6
illustrates the LMSF value as a function of the SNR. This graph shows
a decline on the LMSF in low SNRs. The LMSF, which is an exponent
on the language model probability, P (W ), has the effect of decreasing
the value of language model probability (since the P(W) is less than
one and the LMSF is greater than one) (Jurafsky and Martin, 2009,
chapter 9):

Ŵ = argmax
W∈L

P (O|W )P (W )LMSF (5.1)

The LMSF reduction reveals the decoder tendency of moving towards
more weight on the language model in low SNRs (see Figure F.1 and
Figure F.2 in Appendix G for the baseline ASR performance at dif-
ferent SNRs and all LMSFs). This explains the general gain increase
in higher levels of noise when a context-specific language model has
a greater effect and when the acoustic likelihoods are not so strong.
This can also explain the modest or lack of recognition improvements
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Figure 5.5 (a) The absolute WER reductions for the system in both oracle and
ELI-conditions. (b) The WER reductions relative to the baseline ASR for the
system in both oracle and ELI conditions.



124 Design of a Two-Pass Speech Recognizer

  
0 5 10 15 20 25 30 35 40 45

Signal-to-noise ratio (dB)

1
2

4

6

8

10

12

14

16

18

21

La
ng

ua
ge

 m
od

el
 s

ca
lin

g 
fa

ct
or

3

5

7

9

11

13

15

17

19

Figure 5.6 Estimated LMSF on the development-sets for each SNR.

in some previous studies such as Chelba et al. (2015) even after observ-
ing a large perplexity reduction by using a specific language model.

Figure 5.5b shows that in both the oracle and ELI condition set-
ups, their gains decrease at SNRs lower than about 15 dB. Extremely
low acoustic likelihoods at high noise levels explain these low gains.
In other words, with the absence of a reliable observation and pure
reliance on the language model prior, the ASR hypotheses are not
close to their reference. Consequently, the language model adaptation
cannot offer improvements in these conditions. In comparison with
the oracle condition, the ELI gain is lower on SNRs of 15 dB and 10 dB.
This has an additional reason which is the failure of the location-ID
module in extreme WERs of the initial transcripts (see location-ID
performance in Figure 5.4).
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This chapter has presented a new two-pass speech recognition archi-
tecture for transcribing voice communication channels within a cri-
sis response context. The speech-based location estimation system
(cf. Section 4.1) was employed to extract high-level information
about the location context from imperfect transcription output of
the first decoding pass. The estimated information was then used to
dynamically update interpolation coefficients for building a mixture
model of n context-specific language models. The context-specific
model was used for rescoring the initial word lattice in a second
decoding stage. The experiments on the SSAR corpus reported a
modest but statistically significant WER reduction on clean speech.
Experiments on different noise levels showed relatively higher word
error reductions in an SNR of about 15 dB compared with that on
clean speech data. Experiments on SNRs of about 5 dB and 0 dB
were resulted in a complete system failure because of the extremely
low acoustic likelihoods as well as the location-ID module collapse
in the extreme WERs.

Summary
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Conclusions

This chapter summarises the reported research and draws a conclu-
sion with respect to the research questions laid out in Chapter 1. It
also provides an outlook on a number of potential directions for future
work.

6.1 Reviewing the scope of the thesis

This research was motivated by the need for automated solutions for
extracting valuable information from speech communications within
application domains such as search and rescue. The primary aim of
this thesis was to investigate the feasibility of developing a system for
estimating first responder's location and the incident scene layout by
discovering the context and content of voice communication channels.

The following steps were identified at the outset as necessary mile-
stones to reach the target:

• Identify the major challenges and limitations in automatic pro-
cessing of speech communication channels in a search and rescue
domain.
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• Survey the related background issues and the state-of-the-art in
processing natural speech conversations.

• Provide an appropriate speech dataset comprising task-related
annotated conversations by targeting the goals and needs of the
information extraction task in the context of crisis response.

• Development and evaluation of topic-based locational informa-
tion extraction in the context of simulated search and rescue
communications.

• Investigate the utility of exploiting the extracted high-level lo-
cational information for improving speech recognition perfor-
mance.

A brief overview of search and rescue voice communication systems
was provided in Section 2.1. The role of speech technology in access-
ing their information content for situational awareness formation was
then discussed. Focusing on the difficulty of an automatic speech
recognition task, the voice and language parameters in this domain
were characterized. The related backgrounds in speech recognition
were presented briefly in Section 2.2. In Section 2.3, state-of-the-art
in topic detection approaches were studied in more detail.

To provide a suitable speech dataset in the task of locational infor-
mation extraction from speech communications, a new goal-oriented
conversational speech corpus was designed and collected (cf. Chap-
ter 3). The SSAR corpus was recorded based on an abstract commu-
nication model during a search process in a simulated crisis response
training scenario. Each conversation is concerned with a cooperative
task of exploring a simulated indoor environment by a first responder
and estimating a topological map by a task leader. The SSAR corpus
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comprises of 96 dialogues between 24 speakers, totalling 12 hours,
with 80K words transcribed manually. Aligned with these recordings,
other information about the participants' locations, actions and ob-
jects in their field of view in the environment are available in computer
readable log-files. This information can be used as a form of concep-
tual annotation for the conversations. It is anticipated that multiple
layers of annotations in this corpus would be of interest to researchers
in a wide range of human/human conversation understanding tasks
as well as automatic speech recognition. This corpus is being made
available for research purposes (via LDC).

Two novel approaches were presented for extracting locational in-
formation from a search and rescue speech conversation (cf. Chap-
ter 4). Initially, a speech-based localization approach was introduced
to estimate the location of a first responder in a finite set of loca-
tion types. A topic-based perspective was employed since it offers
the potential of being robust to high error rates in the automatic
recognition of noisy speech. An LDA vectorization technique was
used to compare the semantic information of spoken reports in a low-
dimension feature space. A speech-based topological map estimation
technique was then introduced that is inspired by automatic topologi-
cal mapping algorithms. The new node insertion and correspondence
estimation problems were framed respectively as topic segmentation
and text documents similarity estimation tasks.

The proposed systems were evaluated on the SSAR corpus. The im-
pact of transcription errors on systems performance was investigated
by experimenting on automatic transcripts of the SSAR corpus speech
data with different SNRs. Results for both systems demonstrated no
significant performance decrease at a WER of about 25% compared
with the performance on clean speech data with about 16.1% WER.
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Experimental results on transcriptions with WERs from about 25% to
70% demonstrated moderate performance declines compared to that
obtained on the transcription of clean speech data.

Of course presented results should be viewed with caution in con-
sidering their application to real search and rescue. This is because
the proposed systems were tested on a conversation dataset which is
collected based on a simulated task of exploring a limited number of
indoor environments. In a real scenario, location types can be more
diverse which may influence the accuracy of the location identifica-
tion system. Furthermore, an incident environment may not be well
structured and can change during the mission time. Therefore, the
dynamics of an incident scene also needs to be taken into the account
for map estimation. Nevertheless, the described systems and their
performance demonstrated the feasibility of using topic segmentation
and identification techniques as foundations for developing systems
to extract high-level information from natural conversations.

The final milestone was achieved by investigating the utility of
exploiting the extracted high-level location information for improving
speech recognition performance. A new two-pass speech decoding
architecture was presented (cf. Chapter 5). The location estimation
from a first decoding pass was used to dynamically adapt a general
language model and rescore the initial recognition hypotheses. The
experiments on the SSAR corpus reported a modest but statistically
significant WER reduction on clean speech. Experiments on different
noise levels showed the highest WER reduction of about 3% (relative
to the baseline) on an SNR of about 15 dB. A similar experiment
with oracle location information showed the highest WER reduction
of about 4% (relative to the baseline) on the same SNR of about 15 dB.
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The location identification module is a fundamental component of
the described system. Any improvement in the location estimations
can potentially result in higher recognition gains up to the oracle-
condition performance. One drawback of this architecture is that
the location identification module computes a new estimation after a
speaker has moved to a new location (when a new segment is identi-
fied). This means the location identifications, and subsequently, the
speech recognitions are not in real-time.

6.2 Answer to research questions

The first research question was: can topic detection techniques be
used to derive high-level information (such as location information)
from speech communication channels in a search and rescue environ-
ment? It has been shown (in Chapter 4) that topic detection tech-
niques can be successfully used to extract high-level locational infor-
mation from speech communication channels in a task of exploring
and describing a simulated environment. Looking from a topic-based
perspective and tracking the changes in the content of a spoken report
provided an estimation of first responders' location. The new node
insertion and correspondence estimation problems were successfully
framed as a topic segmentation and tracking task.

The second research question was: can such high-level information
be used top-down to improve speech recognition performance? It has
been shown (in Chapter 5) that a statistically significant improvement
can be obtained on noisy speech by exploiting the estimated location
information for rescoring an ASR recognition hypotheses.
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6.3 Original contributions

The main scientific contributions resulting from the research reported
in this thesis are as follows:

• Successfully demonstrated the feasibility of using topic detection
techniques for extracting high-level locational information in a
simulated search and rescue context.

• Designed and evaluated a novel topic-based approach for loca-
tion estimation in a simulated search and rescue context.

• Designed and evaluated a novel topic-based approach for topo-
logical map estimation in a simulated search and rescue context.

• Provided experimental evidence that a statistically significant
improvement can be obtained on noisy speech by exploiting the
estimated location information for rescoring an ASR recognition
hypotheses.

• Designed and evaluated a new two-pass speech decoding architec-
ture for transcribing the voice communication channels within
the search and rescue context.

• Developed a new goal-oriented conversational speech corpus for
tasks of human/human conversation understanding and auto-
matic speech recognition.

6.4 Future work

Evidence gathered throughout this research has shown the feasibility
of using a topic-based perspective for developing systems to extract
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high-level situational information from conversations in a search and
rescue domain. Nevertheless, the findings lead to new questions and
requirements for further improvements which are considered as future
research directions as follows:

• The presented speech-based location estimation system intro-
duced a new source of information to the field of localization.
One outstanding issue, which should be investigated in future
studies, is the potential for integration of this system with other
localization techniques such as Simultaneous Localization and
Mapping (SLAM) (Burgard and Hebert, 2008). This integration
can provide a strong multimodal approach for the location esti-
mation task.

• Another issue which is not investigated in this research is the
dynamic nature of a search and rescue environment. Future
investigations are required to model the dynamics of an incident
scene and first responders knowledge of an ongoing situation.

• Future studies can investigate the utility of exploiting the rich
information content of ASR lattice outputs. Instead of the single-
best ASR hypothesis, using lattices along with their information
about word confidence scores has been reported to obtain per-
formance increase in SLU tasks such as named entity extraction
and call classification (Hakkani-Tür et al., 2006). Adoption of
similar strategies can add to the robustness of the presented
systems.

• Acoustic information is what distinguishes speech processing
from text analytics. Acoustic and prosodic features can be used
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in combination with features extracted from ASR outputs for a
more accurate locational information extraction.

• The presented topological map estimation system relies on the
information content of a single speech conversation. However, in
real scenarios, a number of first responders explore an incident
scene. There are potential opportunities for processing multiple
parallel conversations. Integration of all communication chan-
nels can provide a complete view of the incident scene layout.
Overlaps between multiple observations can improve the map
estimations. Prior knowledge about the environment (e.g. an
architectural map) may also improve the identification perfor-
mance by limiting the search space for the location of a first
responder.

• A more sophisticated speech decoding system can benefit from
the integration of different location information sources. Fig-
ure 6.1 illustrates an envisaged system architecture. In this ar-
chitecture, a speech-based localization and mapping module can
provide estimations from a combination of speech and other in-
formation sources (e.g. an architectural map of a building or a
map that has been generated by rescue robots). Extraction of
locational information from speech can contribute to updating
the locational information that has been gathered during the
time of a search and rescue mission. The collected information
about an environment map and the latest information about
first responders' location can provide estimates of individuals'
location at anytime. A second decoding pass can employ this
information and estimations to dynamically generate a location-
specific language model to be used in rescoring the generated
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word lattices. This may address the mentioned real-time issue
of the introduced speech decoding system.
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Figure 6.1 An envisaged speech decoding architecture. The speech-based local-
ization and mapping module can provide its estimations from a combination
of speech and other information sources. These estimations can be used to
contribute in updating the locational information gathered during the time of
a search and rescue mission. The second decoding pass can use the collected
information to dynamically generated a location-specific language model to be
used in rescoring the generated word lattices. The best path of each word lattice
is the final decoding hypothesis.

6.5 Conclusion

Access to the information content of speech conversations is impor-
tant for situation awareness formation in any search and rescue op-
eration. Automatic systems can be introduced to help the current
support systems by extracting critical information from all conversa-
tions. The achievements presented in this thesis demonstrated the
feasibility of using topic segmentation and identification techniques
as foundations for developing systems to extract high-level informa-
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tion from natural conversations. The proposed systems for locational
information extraction exhibit to be robust to an imperfect transcrip-
tion of spontaneous and noisy speech. It has also been shown that
the derived information can be used for improving speech recognition
performance. These findings can be useful to future investigations
on processing communication channels in search and rescue missions.
They can also be beneficial for formulating the design of practical
systems in this domain as well as similar application areas.
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Examples of TF-IDF

This appendix presents a list of first 20 trigrams received highest TF-

IDF on a document of transition-related utterances and 13 documents
of room-specific utterances.

Transition: "okay", "okay so", "room", "so", "okay in", "am in", "erm", "in the",
"okay so in", "in er", "so in", "in room", "like", "first room", "started in", "okay
i’am in", "okay i’am", "started in", "into the", "got"

RoomType 1: "two", "computer", "room", "desks", "computer room", "whiteboard",
"chairs", "through", "that", "two computers", "door", "printer", "office", "doors",
"the computer", "each", "then", "the computer room", "two desks", "each"

RoomType 2: "classroom", "like", "one", "blackboard", "desk", "the classroom",
"the back", "desks", "teacher desk", "teacher", "room", "nine", "at the back",
"through", "door", "back", "then there", "coat", "desk and", "classroom erm"

RoomType 3: "bathroom", "washing", "washing machine", "toilet", "machine",
"room", "bath", "sink", "mirror", "one", "clothes", "the bathroom", "into",
"hoover", "through", "rack", "door", "laundry", "doors", "radiator"

RoomType 4: "chest", "some", "the floor", "floor", "on the floor", "of drawers",
"desk", "chest of drawers", "books", "chest of", "bed", "drawers", "poster", "like",
"toys", "wall", "on the wall", "bedroom", "lamp", "child"

RoomType 5: "kitchen", "fridge", "sink", "hob", "oven", "room", "two", "microwave",
"then", "the kitchen", "and then", "door", "in the", "cupboards", "another",
"which", "dining", "through", "on the", "like"

RoomType 6: "vending", "vending machines", "machines", "tables", "man", "room",
"there man", "vending machines and", "machines and", "three vending", "three
vending machines", "door", "canteen", "there radiator", "radiator", "cafeteria",
"on the floor", "the floor", "got", "floor"
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RoomType 7: "table", "room", "gym", "games room", "games", "trampoline",
"weights", "treadmills", "machine", "door", "machines", "exercise", "table tennis",
"pool", "cycling", "treadmill", "mats", "tennis table", "pool table", "cross"

RoomType 8: "bed", "bedroom", "room", "the bed", "double", "double bed",
"bedside", "lamp", "which", "door", "radiator", "table", "on the", "through",
"red", "into", "got", "wardrobe", "of the", "bed with"

RoomType 9: "room", "living", "living room", "one", "into", "through", "sofas",
"grandfather", "the living", "grandfather clock", "rug", "the living room", "clock",
"fan", "back", "left", "into the", "doors", "ceiling", "door"

RoomType 10: "desks", "bookshelves", "books", "library", "shelves", "like", "study",
"bookshelf", "three desks", "sort of", "sort", "and two", "smaller", "big", "back",
"this room", "books and", "desks er", "desks and", "going"

RoomType 11: "dining", "dining room", "the dining room", "the dining", "chairs",
"four", "back", "clock", "through", "go", "table", "doors", "tables", "which",
"going", "on the", "door", "wall", "two", "clock on"

RoomType 12: "like", "fire", "some", "the fire", "work", "sort", "erm there", "sort
of", "extinguisher", "drill", "looks", "workshop", "fire extinguisher", "tools",
"kind", "blue", "kind of", "saw", "shelves", "looks like"

RoomType 13: "boiler", "pipes", "boiler room", "like", "two boilers", "the wall",
"this room", "sure", "working", "not sure", "yeah", "back", "wall", "out of", "go",
"on the", "of them", "on the wall", "no other", "erm so"
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Examples of LDA

This appendix presents presents a list of {word, probability} for the
20 most probable words in 40 topics learnt on the manual transcripts
of the Switchboard telephone speech corpus.
Topic01 {nice, 0.09}, {dollars, 0.058}, {working, 0.052}, {thousand, 0.032}, {hun-

dred, 0.031}, {fifty, 0.028}, {paid, 0.025}, {name, 0.023}, {several, 0.022},
{california, 0.02}, {miles, 0.02}, {top, 0.02}, {absolutely, 0.019}, {hope, 0.018},
{except, 0.015}, {rest, 0.015}, {out, 0.013}, {single, 0.013}, {oil, 0.012}, {guy,
0.012}

Topic02 {go, 0.193}, {work, 0.114}, {home, 0.079}, {out, 0.044}, {when, 0.03},
{time, 0.024}, {gets, 0.018}, {stay, 0.017}, {spend, 0.017}, {wanna, 0.015},
{back, 0.015}, {want, 0.014}, {until, 0.014}, {often, 0.013}, {after, 0.013},
{ahead, 0.012}, {kids, 0.012}, {into, 0.012}, {outside, 0.012}, {because, 0.011}

Topic03 {two, 0.095}, {years, 0.093}, {three, 0.059}, {five, 0.051}, {four, 0.039},
{twenty, 0.037}, {ago, 0.034}, {couple, 0.031}, {six, 0.027}, {times, 0.02},
{half, 0.02}, {thirty, 0.02}, {eight, 0.018}, {hundred, 0.016}, {months, 0.016},
{eighty, 0.015}, {percent, 0.015}, {only, 0.014}, {major, 0.012}, {days, 0.012}

Topic04 {going, 0.178}, {said, 0.073}, {find, 0.046}, {keep, 0.044}, {area, 0.037},
{same, 0.033}, {point, 0.03}, {dallas, 0.029}, {up, 0.026}, {american, 0.014},
{out, 0.013}, {time, 0.013}, {group, 0.011}, {over, 0.011}, {told, 0.009},
{because, 0.009}, {stop, 0.009}, {newspapers, 0.009}, {watching, 0.009}, {hey,
0.009}

Topic05 {right, 0.537}, {now, 0.248}, {spent, 0.013}, {north, 0.012}, {student,
0.01}, {regular, 0.009}, {build, 0.007}, {road, 0.006}, {mountains, 0.006},
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{defense, 0.005}, {colorado, 0.004}, {treat, 0.003}, {spot, 0.003}, {carolina,
0.003}, {illegal, 0.003}, {essentially, 0.003}, {ends, 0.003}, {definite, 0.002},
{seriously, 0.002}, {fee, 0.002}

Topic06 {like, 0.415}, {something, 0.071}, {school, 0.055}, {feel, 0.04}, {seems,
0.037}, {high, 0.023}, {college, 0.021}, {kind, 0.02}, {stuff, 0.018}, {public,
0.013}, {schools, 0.012}, {pick, 0.011}, {kids, 0.011}, {takes, 0.01}, {because,
0.01}, {son, 0.009}, {out, 0.009}, {eat, 0.008}, {everyone, 0.007}, {cans, 0.006}

Topic07 {kids, 0.121}, {school, 0.058}, {high, 0.057}, {usually, 0.045}, {know,
0.039}, {end, 0.036}, {month, 0.028}, {education, 0.026}, {schools, 0.023},
{insurance, 0.02}, {when, 0.019}, {health, 0.019}, {public, 0.019}, {up, 0.018},
{going, 0.017}, {having, 0.014}, {because, 0.014}, {side, 0.014}, {hear, 0.013},
{second, 0.013}

Topic08 {anything, 0.106}, {everything, 0.075}, {news, 0.06}, {else, 0.054}, {ex-
actly, 0.052}, {may, 0.041}, {budget, 0.029}, {unless, 0.018}, {something,
0.018}, {personal, 0.014}, {bill, 0.013}, {late, 0.013}, {support, 0.013}, {throw,
0.012}, {current, 0.011}, {amazing, 0.011}, {television, 0.011}, {magazine,
0.009}, {finding, 0.008}, {season, 0.008}

Topic09 {his, 0.071}, {family, 0.062}, {why, 0.057}, {better, 0.055}, {texas, 0.042},
{yet, 0.03}, {definitely, 0.028}, {crime, 0.027}, {situation, 0.026}, {less, 0.025},
{making, 0.022}, {love, 0.019}, {against, 0.018}, {plan, 0.016{, {who’s, 0.014},
’social, 0.01}, {florida, 0.01}, {rate, 0.01}, {costs, 0.01}, {degree, 0.008}

Topic10 {probably, 0.156}, {either, 0.054}, {agree, 0.044}, {child, 0.04}, {small,
0.036}, {certainly, 0.033}, {best, 0.029}, {seven, 0.025}, {gun, 0.025}, {wrong,
0.02}, {sixty, 0.015}, {national, 0.014}, {morning, 0.013}, {nineteen, 0.013},
{bunch, 0.012}, {size, 0.011}, {boys, 0.01}, {crazy, 0.01}, {rid, 0.009}, {green,
0.008}

Topic11 {really, 0.458}, {live, 0.05}, {again, 0.036}, {let, 0.025}, {because, 0.02},
{tried, 0.016}, {using, 0.014}, {book, 0.013}, {much, 0.013}, {liked, 0.012},
{store, 0.011}, {longer, 0.011}, {happy, 0.01}, {kid, 0.01}, {ready, 0.009},
{obviously, 0.008}, {surprised, 0.007}, {though, 0.007}, {noticed, 0.007}, {rain,
0.006}

Topic12 {take, 0.085}, {money, 0.071}, {care, 0.061}, {many, 0.05}, {being, 0.046},
{pay, 0.04}, {buy, 0.03}, {able, 0.03}, {everybody, 0.027}, {place, 0.027},
{people, 0.022}, {health, 0.019}, {important, 0.018}, {set, 0.017}, {involved,
0.016}, {taking, 0.016}, {insurance, 0.015}, {cases, 0.014}, {start, 0.013},
{much, 0.012}

Topic13 {need, 0.088}, {course, 0.082}, {made, 0.053}, {women, 0.027}, {control,
0.023}, {terms, 0.02}, {under, 0.02}, {law, 0.018}, {lives, 0.018}, {taken,
0.017}, {needs, 0.017}, {looks, 0.016}, {level, 0.015}, {teachers, 0.015}, {hot,
0.013}, {men, 0.012}, {fall, 0.011}, {lost, 0.011}, {opinion, 0.01}, {by, 0.008}
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Topic14 {lot, 0.142}, {some, 0.137}, {know, 0.107}, {things, 0.105}, {those, 0.057},
{people, 0.057}, {these, 0.043}, {different, 0.031}, {other, 0.018}, {kind, 0.014},
{stuff, 0.011}, {recently, 0.009}, {because, 0.009}, {show, 0.008}, {out, 0.007},
{reading, 0.006}, {looked, 0.006}, {learn, 0.006}, {spending, 0.006}, {around,
0.005}

Topic15 {know, 0.479}, {say, 0.057}, {most, 0.034}, {always, 0.029}, {look, 0.025},
{hard, 0.022}, {because, 0.022}, {something, 0.022}, {people, 0.02}, {job,
0.019}, {whether, 0.013}, {looking, 0.013}, {time, 0.012}, {makes, 0.01},
{much, 0.009}, {make, 0.008}, {sense, 0.007}, {mind, 0.007}, {question, 0.006},
{whatever, 0.006}

Topic16 {any, 0.156}, {play, 0.04}, {problems, 0.038}, {seen, 0.038}, {other, 0.034},
{few, 0.032}, {happen, 0.026}, {hand, 0.02}, {kinds, 0.018}, {without, 0.018},
{wonder, 0.017}, {particular, 0.016}, {married, 0.016}, {interest, 0.015}, {war,
0.015}, {society, 0.015}, {imagine, 0.014}, {figure, 0.013}, {lately, 0.012},
{crimes, 0.01}

Topic17 {yeah, 0.946}, {fault, 0.001}, {trend, 0.001}, {dish, 0.001}, {joke, 0.001},
{annual, 0.0}, {marriage, 0.0}, {ratio, 0.0}, {tries, 0.0}, {gain, 0.0}, {impor-
tance, 0.0}, {mavericks, 0.0}, {mother-in-law, 0.0}, {noon, 0.0}, {golfer, 0.0},
{counter, 0.0}, {attract, 0.0}, {sticks, 0.0}, {inclined, 0.0}, {failure, 0.0}

Topic18 {here, 0.119}, {down, 0.066}, {back, 0.06}, {up, 0.049}, {long, 0.046},
{come, 0.035}, {out, 0.032}, {when, 0.025}, {quite, 0.025}, {came, 0.021},
{time, 0.02}, {took, 0.02}, {comes, 0.018}, {coming, 0.016}, {understand,
0.016}, {dog, 0.015}, {works, 0.014}, {happened, 0.013}, {because, 0.012},
{difficult, 0.01}

Topic19 {way, 0.14}, {new, 0.083}, {still, 0.08}, {since, 0.039}, {ones, 0.034},
{gone, 0.028}, {business, 0.025}, {which, 0.025}, {york, 0.017}, {check, 0.015},
{vote, 0.015}, {wants, 0.013}, {out, 0.012}, {cards, 0.011}, {nobody, 0.011},
{write, 0.01}, {price, 0.01}, {same, 0.01}, {kind, 0.008}, {asked, 0.007}

Topic20 {problem, 0.083}, {having, 0.054}, {company, 0.048}, {end, 0.036}, {drug,
0.031}, {change, 0.03}, {month, 0.025}, {wear, 0.023}, {test, 0.021}, {testing,
0.018}, {instead, 0.015}, {general, 0.015}, {weather, 0.015}, {up, 0.014}, {later,
0.012}, {families, 0.012}, {medical, 0.012}, {trash, 0.011}, {dress, 0.011},
{white, 0.011}

Topic21 {sure, 0.157}, {interesting, 0.066}, {read, 0.06}, {computer, 0.027}, {today,
0.023}, {running, 0.022}, {funny, 0.021}, {neat, 0.021}, {second, 0.018}, {cost,
0.017}, {ah, 0.016}, {kind, 0.016}, {starting, 0.014}, {driving, 0.014}, {books,
0.013}, {students, 0.013}, {hold, 0.012}, {beautiful, 0.011}, {union, 0.011},
{shows, 0.01}

Topic22 {about, 0.325}, {guess, 0.151}, {bad, 0.04}, {enough, 0.037}, {talking,
0.029}, {talk, 0.027}, {world, 0.021}, {thinking, 0.02}, {supposed, 0.018},
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{thought, 0.017}, {camping, 0.015}, {between, 0.013}, {weeks, 0.012}, {team,
0.008}, {talked, 0.008}, {concerned, 0.008}, {hours, 0.008}, {football, 0.006},
{much, 0.006}, {happening, 0.006}

Topic23 {more, 0.176}, {little, 0.137}, {than, 0.094}, {maybe, 0.063}, {sort, 0.061},
{bit, 0.055}, {stuff, 0.031}, {paper, 0.024}, {hum, 0.018}, {much, 0.016}, {other,
0.013}, {kind, 0.011}, {quite, 0.01}, {fine, 0.009’, "won’t, 0.009", ’areas, 0.009},
{might, 0.008}, {used, 0.008}, {bigger, 0.006}, {available, 0.006}

Topic24 {house, 0.071}, {great, 0.07}, {watch, 0.051}, {anyway, 0.045}, {fun,
0.044}, {both, 0.043}, {enjoy, 0.033}, {bought, 0.032}, {wonderful, 0.028},
{yourself, 0.022}, {fairly, 0.019}, {mine, 0.017}, {up, 0.017}, {somewhere,
0.016}, {t.v., 0.014}, {fish, 0.013}, {kind, 0.013}, {favorite, 0.012}, {built,
0.011}, {making, 0.011}

Topic25 {mean, 0.299}, {okay, 0.187}, {believe, 0.033}, {large, 0.021}, {case,
0.02}, {expensive, 0.019}, {reason, 0.019}, {experience, 0.018}, {guns, 0.015},
{exercise, 0.015}, {local, 0.014}, {necessarily, 0.011}, {feeling, 0.01}, {short,
0.01}, {fair, 0.009}, {daughter, 0.009}, {bye-bye, 0.009}, {anyone, 0.008},
{individual, 0.008}, {bye, 0.007}

Topic26 {her, 0.146}, {husband, 0.053}, {wanted, 0.046}, {help, 0.038}, {benefits,
0.036}, {young, 0.032}, {mother, 0.029}, {food, 0.026}, {service, 0.024},
{research, 0.017}, {because, 0.016}, {cause, 0.016}, {whenever, 0.015}, {killed,
0.013}, {restaurant, 0.009}, {kind, 0.009}, {children, 0.009}, {groups, 0.008},
{rights, 0.008}, {by, 0.007}

Topic27 {oh, 0.528}, {see, 0.186}, {true, 0.062}, {boy, 0.021}, {gosh, 0.013}, {bet,
0.012}, {goodness, 0.01}, {god, 0.009}, {mexico, 0.006}, {planning, 0.005},
{common, 0.005}, {product, 0.004}, {man, 0.004}, {anytime, 0.003}, {limited,
0.003}, {poor, 0.003}, {round, 0.002}, {neighbor, 0.002}, {numbers, 0.002},
{present, 0.002}

Topic28 {who, 0.089}, {use, 0.052}, {gonna, 0.044}, {try, 0.039}, {somebody,
0.035}, {state, 0.03}, {give, 0.025}, {especially, 0.024}, {people, 0.023}, {seem,
0.022}, {tax, 0.021}, {taxes, 0.021}, {someone, 0.019}, {amount, 0.016}, {noth-
ing, 0.016}, {punishment, 0.014}, {capital, 0.014}, {paying, 0.014}, {certain,
0.014}, {pay, 0.013}

Topic29 {huh, 0.083}, {fact, 0.064}, {usually, 0.059}, {sometimes, 0.058}, {tell,
0.053}, {matter, 0.027}, {nursing, 0.024}, {difference, 0.021}, {leave, 0.017},
{felt, 0.016}, {information, 0.015}, {homes, 0.014}, {consider, 0.013}, {choice,
0.013}, {street, 0.013}, {worry, 0.012}, {savings, 0.012}, {biggest, 0.012}, {cats,
0.011}, {unfortunately, 0.011}

Topic30 {good, 0.184}, {very, 0.128}, {pretty, 0.103}, {real, 0.081}, {much, 0.043},
{life, 0.023}, {wow, 0.022}, {idea, 0.02}, {sounds, 0.02}, {program, 0.019},
{easy, 0.015}, {friend, 0.012}, {movie, 0.012}, {newspaper, 0.009}, {issue,



165

0.009}, {which, 0.007}, {buying, 0.007}, {caught, 0.007}, {realize, 0.006},
{woman, 0.006}

Topic31 {what, 0.375}, {doing, 0.067}, {through, 0.037}, {kind, 0.03}, {system,
0.026}, {saying, 0.023}, {basically, 0.022}, {jury, 0.017}, {states, 0.012},
{education, 0.012}, {happens, 0.01}, {university, 0.009}, {by, 0.008}, {countries,
0.008}, {other, 0.008}, {needed, 0.007}, {completely, 0.006}, {decide, 0.006},
{united, 0.006}, {trial, 0.006}

Topic32 {thing, 0.146}, {big, 0.069}, {one, 0.057}, {only, 0.055}, {kind, 0.045},
{another, 0.042}, {type, 0.036}, {country, 0.03}, {city, 0.022}, {music, 0.021},
{such, 0.02}, {wife, 0.017}, {deal, 0.016}, {hear, 0.016}, {listen, 0.015}, {same,
0.015}, {radio, 0.01}, {other, 0.009}, {teacher, 0.008}, {stuff, 0.007}

Topic33 {getting, 0.077}, {far, 0.056}, {away, 0.044}, {run, 0.031}, {cars, 0.028},
{together, 0.028}, {myself, 0.028}, {gotten, 0.022}, {drive, 0.022}, {close, 0.02},
{left, 0.019}, {older, 0.019}, {hour, 0.017}, {tend, 0.017}, {lots, 0.016}, {into,
0.016}, {community, 0.014}, {by, 0.013}, {become, 0.013}, {ways, 0.012}

Topic34 {get, 0.265}, {every, 0.051}, {car, 0.048}, {into, 0.038}, {trying, 0.034},
{once, 0.03}, {out, 0.03}, {while, 0.028}, {when, 0.024}, {up, 0.017}, {anymore,
0.016}, {time, 0.014}, {because, 0.012}, {worth, 0.011}, {kind, 0.01}, {cold,
0.009}, {much, 0.008}, {phone, 0.008}, {wish, 0.007}, {extra, 0.007}

Topic35 {they, 0.523}, {know, 0.099}, {their, 0.08}, {want, 0.044}, {because,
0.028}, {people, 0.019’, "couldn’t, 0.012", ’out, 0.01}, {up, 0.007}, {themselves,
0.006}, {call, 0.006}, {make, 0.006}, {come, 0.005}, {whatever, 0.004}, {quality,
0.004}, {gave, 0.004}, {glass, 0.004}, {kill, 0.003}, {start, 0.003}, {carry, 0.002}

Topic36 {think, 0.475}, {should, 0.054}, {government, 0.027}, {parents, 0.022},
{found, 0.019}, {people, 0.017}, {person, 0.013}, {anybody, 0.013}, {office,
0.01}, {bring, 0.01}, {magazines, 0.009}, {because, 0.009}, {ought, 0.009},
{totally, 0.008}, {plastic, 0.007}, {seemed, 0.006}, {inside, 0.006}, {much,
0.006}, {bottles, 0.006}, {garbage, 0.005}

Topic37 {one, 0.214}, {year, 0.072}, {time, 0.055}, {day, 0.052}, {kids, 0.044}, {old,
0.042}, {last, 0.034}, {ten, 0.026}, {remember, 0.021}, {week, 0.02}, {next,
0.019}, {night, 0.017}, {saw, 0.016}, {other, 0.014}, {summer, 0.012}, {during,
0.011}, {interested, 0.01}, {twelve, 0.008}, {christmas, 0.008}, {seventy, 0.007}

Topic38 {your, 0.193}, {where, 0.19}, {own, 0.046}, {number, 0.026}, {call, 0.021},
{says, 0.018}, {death, 0.017}, {sit, 0.016}, {down, 0.015}, {cut, 0.015}, {trouble,
0.013}, {up, 0.013}, {game, 0.012}, {whatever, 0.011}, {utah, 0.009}, {penalty,
0.008}, {yard, 0.007}, {out, 0.007}, {environment, 0.007}, {salary, 0.007}

Topic39 {um-hum, 0.774}, {air, 0.016}, {federal, 0.011}, {effect, 0.008’, "would’ve,
0.006", ’deterrent, 0.005}, {warm, 0.004}, {pop, 0.004}, {aerobics, 0.004},
{pickup, 0.004}, {focus, 0.004}, {adult, 0.004}, {chicago, 0.003}, {excited,
0.003}, {outrageous, 0.002}, {element, 0.002}, {conditioning, 0.002}, {dying,
0.002}, {awfully, 0.002}, {caused, 0.002}
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Topic40 {done, 0.101}, {although, 0.032}, {along, 0.025}, {water, 0.025}, {up,
0.022}, {line, 0.022}, {cat, 0.02}, {space, 0.019}, {dad, 0.018}, {move, 0.015},
{played, 0.014}, {south, 0.014}, {around, 0.014}, {story, 0.014}, {mom, 0.013},
{apparently, 0.012}, {aids, 0.012}, {higher, 0.011}, {policy, 0.01}, {towards,
0.01}
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SSAR Corpus Recording Forms

This appendix presents the SSAR corpus recording forms. The follow-
ing documents were provided to each participant by email one day
before the recording and also in printed form on the day of recording:

• The ‘Information Sheet’ explains the recording and instruct each
participant how to perform the task.

• The ‘Personal Information’ form is used to collect participants
personal information. All the provided information except the
subjects' name and email address are available in the dataset.

• Each participant together with the lead researcher signed and
dated two copies of the ‘Consent Form’ on the day of recording
and received one copy for they own record.



The University of Sheffield

Information Sheet

The  Role  of  Voice  Communications  in  the
Search and Rescue Environment

Researchers:
Lead researcher: Saeid Mokaram (s.mokaram@sheffield.ac.uk)

Supervisor: Professor Roger Moore (r.k.moore@  sheffield  .ac.uk)

Invitation:
You are being invited to take part in a research project. Before you decide whether to
participate or not, it is important for you to understand why the research is being done
and what it will involve. Please take time to read the following information carefully and
discuss it with others if you wish. Ask us if there is anything that is not clear or if you
would like more information.

Aim:
The purpose of this experiment is to investigate an automatic solution for extracting and
structuring valuable information flowing on voice communication channels during crisis
response among responders.  For  example,  imagine the communications  between the
firefighters and command and control station. Firefighters explore the incident scene and
communicate with the Task Force Leader (TFL) in the command and control station. The
TFL tries to make a report of the situation by listening to the firefighter’s report. We aim
to  design  a  system that  can  assist  TFL  by  automatically  extracting  and  structuring
valuable information from voice communication channels.

Your task:
In this experiment,  you and another volunteer will  be participating in a conversation
which is designed to mimic a firefighter’s communications to the command and control
station.  The  firefighter  explores  a  virtual  environment  (computer  simulation)  and
communicates with the Task Force Leader (TFL) in the command and control station. The
TFL tries to make a report of the situation by only listening to the firefighter’s report.

The computer simulated environment is very similar to the conventional computer 3D
games. A practice session will  be given prior  to the experiments to help participants
familiarizing  themselves  how  to  move  and  control  their  avatar  in  the  simulated
environment. 

The experiment will  be conducted in a sound-attenuating booth for  avoiding external
acoustic disturbances. The sound-attenuating booth is located in the Speech and Hearing
lab in the Department of Computer Science at the University of Sheffield. The expected
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time for a test is maximum 30 minutes and no breaks should happen during the test so,
please  be  prepared  before  the  experiment  starts.  However,  in  case  of  emergency
circumstances or personal reason you can quit the test at any moment.

None  of  the  sounds  or  scenes inside  the  computer  simulation  could  be  considered
harmful  for  a  human.  Acoustic  noise  inside  simulation  is  less  than  80db (a  vacuum
cleaner = 80db and Threshold of discomfort = 120db).

Procedure:
If you agree to be in this study, you will be asked to do the following:

1. Mobile phones and other devices should be switched off or left outside the
sound-attenuating booth.

2. Please avoid moving the chair or table or making any movements that may cause
noise during the test

3. You need to wear a headphone and a head mounted microphone which is used for
communication and recording purposes. When both participants are ready, the
experiments will start.

4. Each volunteer should agree to play either the role of a Firefighter or a TFL.
5. Please avoid of expressing any information that would make it possible to identify

you or the other participant during the recordings.
6. At the end of first experiment, volunteers will be asked to change their roles and

repeat the experiment with their new roles.

Firefighting role: 
 You need to sit in front of the computer screen and do the practice session.
 You will play with a software in the form of computer game which simulates an

incident scene.
 The experiment will starts with pressing the Connect button in GUI.
 After a successful connection you will hear a beep sound.

 Use your keyboard to move your avatar. You can use the arrow keys  on the
keyboard to move forward-backward and left-right. If it is necessary you can
use Space-bar to jump over some obstacles.

 The experiment will automatically be terminated after 30 minutes and again the
beep sound will be heard at the end.

 Your  goal is  to explore  the  incident  scene  as  much  as  you  can and
accurately report your observations to the TFL.

 It is expected from you to explain every action that you take (e.g. taking the left
door and moving to the next room) and what you can see in which room to the
TFL.

 The explanations need to be as clear and accurate as possible to give clear view
of the situation and your location to the TFL. (e.g. what you can see and in
which room you think you are)

 Your explanation will  be used by the TFL to draw a map of  incident area and
estimate your location in that.

 You should also reply to the requests from TFL about repeating or clarifying your
situation.

 Since the TFL tries to keep track of your movement in all places that you have
visited, you can ask for any potential help (e.g. direction) in case you find
yourself lost (e.g. When you think you are visiting the same location again).

 You can accept suggestions from TFL about directions to unvisited areas.
 You are not racing against time in this experiment; so, please take your time and

explain accurately.
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Task Force Leader role:
 You will be asked to sit behind a desk.
 You will be given a rough plan of the environment (2D paper map) and two blank

papers for making notes (if it is required).
 The environment map does not contain any information about the name of the

areas/rooms or what is inside the rooms.
 Firfighter’s starting point and direction is marked with a →
 When the firefighter press the connect button you will hear a beep sound and the

experiment starts.
 The experiment will automatically be terminated after 30 minutes and again the

beep sound will be heard at the end.
 Your goal is to listen to the firefighter’s report and imagine the situation and

the firefighter’s location based on her/his explanations.
 You should add any information that you notice in the firefighter’s explanations

(conditions, landmarks etc.) in to your paper map and  draw the firefighter’s
trajectory based on your estimation of her/his location.

 You can ask for repeating or for clarifying her/his situation if you missed what s/he
said, but try not to interrupt her/his work too much.

 You should try to keep track of the firefigher movement.
 You  are  not  racing  against  time;  so,  please  be  patient  and let  the  firefighter

carefully explore the environment.
 It is very likely you lose the firefigher exact location. It is not a problem, try to

estimate it with what you have. Do not try to ask the firefigher to go back or
search the map for you.

Confidentiality:
Participants’ names will be associated with an experiment identification tag, and this tag
will be associated in turn with the participants’ recorded voice and responses recorded
via  the  keyboard.  A  file  will  be  maintained  by  the  lead  researcher  that  relates  the
experiment identification tag to the participants’ names in order that participants may be
asked to return should any experiments contain anomalous results. Once the experiment
is completed, the list of names and participant identification tags will be destroyed.

Why have I been chosen?
You have been chosen because you are a (self-reported) normal speaking and hearing
listener, who is a native speaker of English with standard southern British accent.

Disadvantages and risks of taking part: 
No possible disadvantages or risks are envisaged. 

What if something goes wrong? 
In the first instance you should contact the Principal  Investigator (contact details are
given at the end of this document) should you wish to raise a complaint. However, if you
feel  your  complaint  has  not  been  handled  to  your  satisfaction  you  can  contact  the
University's 'Registrar and Secretary'. 
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What will happen to the results of the research project? 
The outcome of this study may form part of one or more scientific publications; you will
be entitled to copies of any such publications. You will not be identified in any report or
publication.  The  data  collected  during  the  course  of  this  study  might  be  used  for
additional or subsequent research.

Who is organising and funding the research? 
This research is supported financially by the University of Sheffield. 

Who has ethically reviewed the project? 
This project has been ethically approved via the University of Sheffield’s ethics review
procedure. 

Consent:
It is up to you to decide whether or not to take part. If you do decide to take part you will
be given this information sheet to keep, and will be asked to sign a consent form. You can
still withdraw at any time without it affecting any benefits that you are entitled to in any
way. You do not have to give a reason. Information that would make it possible to identify
you or any other participant will never be included in any sort of data corpus or  report.
You can write your email address at the end of the consent form. So you might be invited
again for repeating this experiment.

Questions and contacts:
At this time you may ask any questions you may have regarding this study. If you have
questions later, you can contact:
Supervisor: Professor Roger Moore: r.k.moore@  sheffield  .ac.uk
PhD student: Saeid Mokaram: s.mokaram@sheffield.ac.uk

Date: Date (fixed)

By signing below, you are agreeing that:
1. You have read and understood the participant information sheet.
2. Questions  about  your  participation  in  this  study  have  been  answered

satisfactorily.
3. You are aware of the potential risks (if any).
4. You are taking part in this research study voluntarily.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Date dd / mm / yyyy

Participant’s Name and Signature

4/4
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The University of Sheffield

Personal Information

Participant's Personal Information

First name: Last name:

Age: Sex:

Email:

Participant's Accent Information

Do you consider yourself as a native English speaker?     Yes□ / No□

Do you believe you have a standard/southern English accent?     Yes□ / No□

If you believe you have any specific accent please mention your accent:

Where did you grow up?

1/1
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The University of Sheffield

Consent form

The  Role  of  Voice  Communications  in  the
Search and Rescue Environment

Researchers:
Lead researcher: Saeid Mokaram (s.mokaram@sheffield.ac.uk)

Supervisor: Professor Roger Moore (r.k.moore@sheffield.ac.uk)

1. I  confirm that I  have read and understand the information sheet dated
25th September 2014 explaining the above research project and have had
the opportunity to ask questions about the project.

2. I  understand  that  my  participation  is  voluntary  and  that  I  am free  to
withdraw at any time without giving any reason and without there being
any negative consequences. In addition, should I not wish to answer any
particular question or questions, I am free to decline.

3. I  understand that my responses will  be kept strictly confidential.  I  give
permission  for  members  of  the  research  team  to  have  access  to  my
anonymised data. I understand that my name will not be linked with the
research materials, and I will not be identified or identifiable in the report
or reports that result from the research.

4. I agree for the data collected from me to be used in future research.
5. I agree to take part in the above research project.

Name of participant _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Date dd / mm / yyyy

Participant’s email address: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Signature _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(or legal representative)

Lead researcher: Saeid Mokaram Date dd / mm / yyyy

Signature _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
To be signed and dated in presence of the participant.

1/2
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Copies
Once all parties have signed this, the participant should receive a copy of
the  signed  and  dated  participant  consent  form,  the  letter/pre-written
script/information sheet and any other written information sheet provided
to the participants. A copy of the signed and dated consent form should
be placed within the project's main record (e.g. a site file), which must be
kept in a secure location.

Please address any queries to:
Saeid Mokaram (s.mokaram@sheffield.ac.uk)

Participant ID tag: _ _ _ _ _ _ _ _ _ _

2/2
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SSAR Corpus Transcription Guidelines

This appendix presents the SSAR corpus transcriptions guidelines
sheet which is provided for the transcribers. It presents a brif instruc-
tion how to use the Transcriber (Liberman et al., 1998) software, how
to segment the utterances and transcribe words and noises.



Guidelines for SSAR Speech
Transcriptions

Transcription supervisor: Saeid Mokaram

Version 1.4 May 2015

** Please note that you must read the entire document before starting to transcribe. **

Background to Project
The  Sheffield  Search  and  Rescue  (SSAR)  corpus  is  a  two-party  human/human  conversational
speech corpus which was made based on an abstract communication model during search process in
a simulation environment. In this model the main speaker plays the role of a First-Responder by
exploring a simulated environment (Fig 1) and reports his/her observations back to a Task-Leader
(second speaker). The design of SSAR corpus targets the automated extraction and understanding of
valuable  information  in  human/human  conversations  in  the  context  of  crisis  response
communication scenario.

In projects related to automated speech recognition and spoken language understanding, availability
of high quality annotated databases is a critical issue. Therefore, an effort has been made to design,
collect and annotate a two-party human/human conversational speech which includes 12 hours of
audio, word level annotation, speaker location and actions information for each conversation. The
aims is to make the SSAR corpus widely available for the research community, thereby contributing
to the research infrastructure in the field. This work is a part of a PhD research which is started in
December  2012 and is  expected  to  finish  at  this  stage  by  the  end of  2015 and may continue
afterwards.

Figure 1:  Simulation environment
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TranscriberAG software
TranscriberAG is a tool for segmenting, labelling and transcribing speech documents. Here is the
link to the TranscriberAG web-page: http://trans.sourceforge.net/en/presentation.php

You can find Linux, Windows and Mac OS versions of  TranscriberAG in  ”TranscriberAG”

folder or download the latest version from the TranscriberAG web-page. For installation please
follow the “binary installations” manuals in this link: http://trans.sourceforge.net/en/install.php

After installation you need to load the provided configuration file (”config.cfg”) by following

“Options>Load_configuration_file...” in  TranscriberAG menu.

TranscriberAG is a general purpose transcribing software therefore not all its functions are required
for transcribing the SSAR corpus. A list of functions that are required is provided in the Appendix
of this guideline sheet.

Figure 2: The interface of TranscriberAG. The gray area is where the text transcriptions
are inserted. The yellow area shows the wave form of the speech signal.  The green
horizontal bar shows the speech/non-speech segments and below that is time.

Ask for help
Anytime you need help, you can contact Saeid Mokaram:

Email: s.mokaram@sheffield.ac.uk ; Mobile: 07453678187

Address:  Speech  and  Hearing  research  group,  room  141,  Department  of  computer  science,
University of Sheffield, S1 4DP
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Transcription Guidelines
The following flow chart (Fig 3) outlines briefly the basic steps of the transcription process. Each of
these steps is then explained in detail below.

Figure 3:  basic steps of the transcription process

1 How to Open a Transcription
You  may  have  received  either  “mchcommand_file.txt”   or   “sch

command_file.txt”. It includes lines of commands with the format such as (in Linux version)

“trans map1/startroom6/s022s021/16kHz_16bit/mch.wav map1/start

room6/s022s021/transcript/mch.trs”

1. First  you  need  to  open  a  command  window (terminal  Linux/Mac  or  command  prompt
Windows).

2. Then change your current directory to the “data” folder (e.g. “cd ~/trans/data”).

3. What you need to do is just copy one line at a time and past it in the Terminal. After pressing
Enter the TranscriberAG starts and automatically loads an audio file and its corresponding
automatic segmentation and transcription file.

4. Now one audio document is ready for transcription.

5. Remember to save (Ctrl+S) frequently during transcription.

6. After finishing one transcription go back to step 3 until finishing all the lines of commands.

It  is  recommended that  you make a copy of  “mchcommand_file.txt” and “sch

command_file.txt” files so when you finished with one audio document you can remove the

corresponding  line  of  command  in  the  copied  file.  It  will  help  you  keep  track  of  the  audio
documents which are not transcribed yet.

  

Correction / adjustment of
speech segments

Transcription of words and
vocalized noises

Quality control of entire transcription, including listening to all
non-speech segments.
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All the audio documents are auto-segmented and auto-transcribed. This is just to make the task
slightly easier for you; however it doesn't mean that they are correct and reliable. So you need to
check the transcriptions and correct them according to the presented standards in this guideline.

This is a two-party conversation similar to a telephone talk. The main speaker voice and the second
speakers voice are recorded on m-ch and s-ch channels respectively. This means that you will hear
one speaker at a time while you are transcribing. These two types of audio documents are slightly
different. The difference is that all the “m-ch”s are mainly speech, while all the “s-ch”s are mainly
silent with just very short speech parts (such as confirming, asking questions etc.).  Transcription
supervisor will allocate you with either m-ch or s-ch type of data.

2 Segmentation
Each audio document must be broken into small segments, ideally separating speech from non-
speech/silence regions. This task can be very time consuming, and for this reason we have used an
automatic pre-segmentation system to do a first pass on the data.

As you listen to the audio documents the main task here is to check and adjust the boundaries of the
segments. The segment boundaries should be adjusted to ensure they accurately indicate when the
speech starts, when it  stops (ensuring not to cut any sounds off at the beginning or end of the
segment).

Automatically  detected  segments  may  need  to  be  broken into  smaller  segments,  or  have  their
boundaries adjusted. Silence/pause is really the main determiner, perhaps followed by syntax.

These smaller segments are often called utterances. The speech can be broken into chunks based on
pauses within the speech stream, preferably at syntactic boundaries corresponding to sentences.

At first this may seem a little difficult as clear grammatical sentences are not often present in natural
speech. However, once you become more experienced doing speech transcriptions the task of where
to place segment boundaries becomes clearer and quite natural.

The general rule is that if you have to think too long and hard about where to place a segment
boundary, you probably don’t need to put one in.

Important things to remember about segmentation:

1. Each segment should be padded by a small buffer of silence (¼ - ½ second) on both sides
(before and after the speech) if possible.

2. Breakpoints should be inserted at natural linguistic points in the utterance such as sentence
or phrase boundaries to the extent possible.

3. Generally most of the speech segments (utterances) are only a few seconds and not more
that 1 minute in length.

4. Utterances may start or end with Vocal-Noises such as “aspiration”, “cough”, “laugh” and
etc.; if there is absolutely no silence between them and speech region you need to include
them in speech segment (the vocal-noise is mixed with part of speech). You can ignore those
vocal noises that are not loud and you can hardly hear them.
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5. Vocal noises can be at the middle of the utterances with no or a small silence gap before or
after them. You don't need to break the utterances because of them. You just need to add
proper Vocal-Noise-Tags in their place.

6. If a segment only contains vocal-noise it doesn't need to be annotated. Leave it as blank
similar to a silence segment. If it is already automatically annotated with some words or
tags, you need to remove them.

3 Words and Vocal Noise Tags
In this section we explain the steps and guidelines for transcribing the speech within a given time
segment. In general, we break noises that are made using the mouth into two categories, Words and
Vocal-Noise-Tags.

Most  of  the  speech  you  encounter  can  be  transcribed  into  words  with  standard  orthographic
representations, such as you would find in a dictionary. But you will also encounter several other
types of “verbal” events which will also need to be transcribed. These include words that may not
appear in a standard dictionary but that are common in speech, such as reduced forms like “dunno”
or “wanna”, or acknowledgements like “uh-huh”, or pause-fillers like  um, em, erm, uh, eh, yep,
yep, yeah, yup… . In addition, when speech is broken off, there may be word fragments. Finally,
there  will  be  vocal  sounds,  like  laughs and coughs and sighs  which do not  have usual  lexical
representations. For this transcription effort, we consider all except this last category to be “words”
and transcribe them as such, using a standardized set of spellings; the members of the last group are
instead transcribed using special tags more fully described below.

It is important to remember that (where possible) the transcription should be an accurate record of
what  was  actually  said,  and  speakers  should  not  be  corrected  to  make  their  speech  more
grammatically correct. For example if the participant says “I dunno” this should be transcribed as it
is heard, not as “I don’t know”.

In case you encounter spoken phrases which you are not confident what written form to use, write
what  you  think  is  correct  in  parentheses  (  e.g.  (whatcha)  )  so  later  they  will  be  checked  by
transcription supervisor.

Vocal-Noise-Tags describe sounds that are made using the mouth (or nose) but that do not have
standard lexical representations. In these transcriptions, we have reduced the number of these which
will be annotated to four, each of which has a simple symbolic representation. These will be:

Vocal Noise Tags Notes

@ aspiration

% cough, throat clearing

$ laugh

# other prominent vocal noise (e.g. creaky voice, yawn, tongue click, etc)

Table 1: Vocal-Noise-Tags
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The following text provides an example:

okay % i'm in the first room and it's a kitchen

* It will probably be useful to make a list of these symbols and keep them handy when you are
transcribing, perhaps on a sticky note glued to your monitor.

Important information about transcribing words and vocal noises

1. Transcribe verbatim, without correcting grammatical errors, e.g. “I seen this room before”.

2. Standard spoken language should be transcribed as it is spoken, e.g. “gonna” not “going to”,
“wanna” not “want to”, “kinda” not “kind of”, etc.

3. Avoid word abbreviations, i.e. “doctor” not “Dr”, and “mountain” not “Mt”.

4. Remember to watch for common spelling confusions like “its” and “it’s”, “they’re” and
“there” and “their”, “by” and “bye”, “of” and “off”, “to” and “too”, etc. which are common
in the automatic transcription.

5. Mispronunciations:  if  a  speaker  mispronounces  a  word  and  you  know  what  word  was
intended, transcribe the word as it should be spelled and mark it with an asterisk after the
last letter, e.g. spaghetti*. If you do not know what word was intended, transcribe what you
hear and mark it with parentheses, e.g. (fligop).

6. Spell out number sequences, e.g. “forty four” not “44”.

7. Acronyms should be spelt as they are pronounced, e.g. “nasa”, “t_v_ ” or “d_v_d_” (be
careful it is automatically transcribed like “t. v.” ; Please change it to t_v_ ).

8. If a speaker does not finish a word, and you think you know what the word was, you can
spell out as much of the word as was pronounced inserting a single dash as the last letter of
the word, e.g. “ I'm in a kitch- ”.

9. Punctuation should be limited in the corpus. You should only use full stops and question
marks to punctuate a ‘sentence’. Most of the speech segments are utterances (not sentences)
therefore, most of them do not need full stops. Some of the utterances are the final segment
of a 'sentence'. If you could detect them use full stops or question marks.

10. Some times there are small silence gaps at the middle of utterances (about ¼ to ½ second).
Some  of  them  are  automatically  detected  and  marked  with  |  however,  if  there  is  an
undetected silence gap you need to add | at its place or if there is a miss-detection you need
to remove the | or replace it with proper words/vocal-noise-tags. In the example below, the
speaker made a small pause after saying “there are” and then immediately starts the “two
fridge freezers”; so a | indicates this small silence.

181



Figure 4: “there are | two fridge freezers”

7. Where the speaker interrupts himself to correct or restart or repeat, you need to repeat it as it
is. For example in “two one one large cupboard area” which the speaker repeated “one” to
correct himself.

8. In similar cases when there is a small silence gap use a | . For example: “I just meant | I
mean ...”.

9. Please note that we are using British standard spelling throughout the transcriptions, i.e.
colour vs. color, realise vs. realize.

Practical Procedure

This section outlines the practical procedure for annotating the speech in transcriptions.

You should have just adjusted the time boundaries for a given segment. By the time that you have
done this, it is likely that you have understood a lot of what is said in that segment. For this reason,
it is a good idea to transcribe this segment before moving on to the next one. The following steps
will help you to accurately transcribe the speech.

Remember we are interested in a balance between quality, consistency and accuracy.

The procedure below explains how to transcribe each speech segment:

1) Is what you heard a Vocal-Noise or silence?

Yes: Type proper Vocal-Noise-Tag or | for silence.

No: Go to Question 2 .

2) Did you understand what was said? 

Yes: Go to Question 3.

No: Listen again, if you think you might know what the word is but are very uncertain,
type that word inside parentheses, e.g. (egg). If after the second listen you still don’t
know what a word is, mark the transcription with a ‘(??)’, i.e. using question marks
inside the parentheses, where that word should go. Move on to the next word and
start again at Question 1. Parentheses should not be used for any purpose other than
to indicate uncertainty in these transcriptions. You should in fact mark anything you
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are uncertain about with parentheses, so that transcription supervisor will easily be
able to identify any problem areas.

3) Are you sure about the its spelling (British standard spelling)?

Yes: Go to Question 4.

No:  Type the word as you think is correct inside parentheses, e.g. (apple). 

4) Does it seem to be a word fragment or unfinished word? 

Yes: Transcribe as many of the phonemes as you hear, marking that the word has been
cut off with a ‘-‘ as the last letter. If you are uncertain about the phonemes you hear,
mark the whole thing with parentheses. e.g. “ I'm in a kitch- ”.

No: Go to Question 5.

5) Is that an acronym:

Yes: Type as they are pronounced, e.g. “nasa”, “t_v_ ” or “d_v_d_” (be careful it is
automatically transcribed like “t. v.” ; Please change it to t_v_ ).

No: Type the word and move on to the next word and start again at Question 1.
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Appendix

The following table provides details of the TranscriberAG functions that are required when you are
transcribing the SSAR corpus.

Functions Notes

Segmentation You will note that the transcription has already been divided into speech/
non-speech segments for each channel. 

Save: Ctrl+S Remember to save frequently during transcription.

Select a section of the
transcription:
Leftclick on green bar

If  you  left  click  your  mouse  on  one  of  the  sections  in  the  green
transcription  channels,  that  section  of  the  audio  channel  will  be
highlighted. If you play the audio now it will only play the audio for that
section.

To  select  several
segments  together:
Shift+leftclick  on
green bar

If  you  left  click  your  mouse  on  one  of  the  sections  in  the  green
transcription  channels,  that  section  of  the  audio  channel  will  be
highlighted. If you play the audio now it will only play the audio for that
section.

Change  a  segment
boundary:
Ctrl+leftclick+drag
boundary

If  you  find  that  the  automatic  segmentation  boundary  needs  adjusting
(perhaps it cuts off the end of the last word that the person says) then you
should hold down CONTROL and LEFTCLICK and DRAG the boundary
to its new position.

To  add  a  section
boundary: Enter

If the automatic segmentation has missed a segment (for example a section
of silence) you should first CLICK on the green channel, then position the
cursor at the point in the audio where the section break should appear, and
then hit ENTER to add a break.

To  delete  a  section
boundary:
Shift+Backspace

If the automatic segmentation has incorrectly split what should be a single
segment into two segments, you should remove the border between them.
LEFTCLICK in the second segment (on the green bar) and hit SHIFT and
BACKSPACE.

Play/ Pause: Tab The TAB key will toggle between play and pause. However, if you have a
single segment selected, only that segment will play when you hit TAB. If
you then hit TAB again (after it has played that segment), it will play that
segment again. 
(It may be worth noting that you can modify playback options using the
appropriate  pull-down  menu.  It  is  sometimes  helpful  to  switch  to
continuous playback or pause-and-continue mode, rather than stopping at
segment boundaries.)

Quit/ Exit: Ctrl+q Quit/ Exit

Up/Down cursor keys Move between segments
Table 2
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Annotators may choose to print this summary table and keep it nearby (perhaps attaching it to their
computer screen) while they become more familiar with the software.

Task Short-cut Example Description

Save Ctrl+S (egg) You are not sure it is actually 
pronounced “egg”

Select section Leftclick on green bar (??) You don't know what is 
pronounced.

Select several 
segments

Shift+leftclick on green bars | There is a short silence gap 
inside an utterance.

Change segment 
boundary

Ctrl+leftclick+drag t_v_ Speaker pronounced TV

Add section 
boundary

Enter nasa Speaker pronounced NASA

Delete a section 
boundary

Shift+Backspace kitch- uncertain  about  the  rest  of
phonemes  you  hear  OR  it's  a
word fragment (“kitchen”)

Play/ Pause Tab              Table 4

Quit/ Exit Ctrl-q
          Table 3

185





A
pp

en
di

x E
Examples of Manually Estimated Maps

This appendix presents examples of all four maps which are estimated
by a participant (Participant-ID s004) in the role of a task leader. In
total, the SSAR includes 96 hand drawn topological estimations, one
for each recording session (conversation).
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Figure E.1 A typical example of hand drawn topological map of the Map1.
This example map was estimated by a participant in the role of a task leader
(Participant-ID s004).
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Figure E.2 A typical example of hand drawn topological map of the Map2.
This example map was estimated by a participant in the role of a task leader
(Participant-ID s004).
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Figure E.3 A typical example of hand drawn topological map of the Map3.
This example map was estimated by a participant in the role of a task leader
(Participant-ID s004).
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Figure E.4 A typical example of hand drawn topological map of the Map4.
This example map was estimated by a participant in the role of a task leader
(Participant-ID s004).
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ASR Performance at Different SNRs and
LMSFs

Figure F.1 illustrates the baseline ASR (cf. Chapter 5) WER landscape
at different SNRs and all LMSFs. Figure F.2 shows how the LMSF was
shifted towards more weight on the language model in high acoustic
noise. This figure presents the ASR performance normalized at each
SNR between zero and one.
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