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Abstract

This thesis describes a new agent-based architecture called the Limited Instruction
Set Agent (LISA). Agent-based systems are a popular approach to the implementa-
tion of autonomous behaviour, and they usually consist of a ‘reasoning’ module that
commands lower level subsystems that in turn interact with the environment. When
an autonomous system is placed in any environment, the correctness of the software
must be guaranteed for safety. This is generally done with ‘verification by model
checking’ which consists of creating a model, which represents the system and its
interaction with the environment, and then proving specifications using the model.
Most agent frameworks to date do not contemplate verification as a design feature
and they generally share a few drawbacks: the generation of a model that can be
verified by a model checking software is either done manually or by executing the
agent code recursively and exploring every possible path to list the state space of the
system. The LISA system is based on existing agent-based architectures and it is
designed to be structurally simpler than its predecessors with the aim of facilitating
the verification process. The agent program of LISA is enriched with structures
that allow to model the probabilistic nature of environmental events, so that they
can be taken into account in the verification process. The LISA program can be
automatically translated to a verifiable probabilistic model suitable for verification
with existing software tools such as PRISM. Furthermore, the system is structured
to minimise the size of its probabilistic model, and ultimately offers a faster veri-
fication process. The thesis contains a number of theoretical contributions to the
LISA programming system, including run-time verification for prediction of future
outcomes of actions, and the new methods are illustrated on the programming and
simulation with an example of autonomous surface vehicle for sea mine detection
and disposal.
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Chapter 1.

Introduction

In recent years there has been an exponentially increasing interest in the field of

autonomous robotics especially driven by the increasing quality and depth of

autonomy that current hardware and software technology is being capable to pro-

duce. From self-maintenance and indoor navigation with consumer domestic robots

such as iRobot products [39], to construction [7], to advanced task performances for

scientific [38] and military [97] applications, researchers and developers have been

able to produce robots with a spectrum of degrees of autonomy, giving autonomous

robots an important role in modern society.

Given the large community working on the topic, it should not be surprising that

an incredibly large variety of hardware and software architectures exist and are

constantly developed. A very popular approach to the implementation of software

for autonomous robots is that of creating modular architectures with different layers

of abstraction, from modules that operate at lower level, closer to the physical world,

to modules that generate abstract plans of action to direct the lower level modules. A

software architecture that reproduces some sort of autonomous behaviour is usually

referred to as an autonomous agent.

Although there exist systems that can be designed to guarantee the correctness

of specific behaviours under all circumstances, generally speaking, for a system to

1



2 Chapter 1. Introduction

be considered safe enough to be placed in a real-world scenario, verification and

validation of some sort is always needed. Software in general, and autonomous

agents in particular, are no exception to the rule.

This thesis focuses on the design, implementation and simulation of autonomous

agents that are intrinsically predisposed to be verified with popular and well ac-

knowledged verification tools. The idea is to set a framework where the program

that describes the decision-making of the autonomous agent is developed in a easy

to grasp language, that at the same time allows to include enough information to

automatically generate an abstract, complete model of the system, that can be veri-

fied by dedicated, widely recognised software. Furthermore this thesis explores the

use of verification techniques to give an additional degree of knowledge to the agent

and therefore improve the performances of the decision-making engine itself.

1.1. Related work and motivations

Autonomous control is a branch of control science that emerged as an evolution of

classical feedback control [11, 70]. The purpose of feedback control is to regulate a

system in order to make it follow a reference input. Traditionally the controller relies

on an external reference, and the controller itself does not have any decisional power

over the reference. This is where autonomous controllers come in: they are designed

to make decisions on what control reference to use and, more generally, what goals

to achieve and how to achieve them. They do so by sequencing plans from a pool of

available actions, considering their current understanding of the state of the world

[10]. This gives autonomous controllers a high level adaptivity, an ability to act

appropriately in a variety of environmental situations, under a variety of level of

uncertainty, a property that is sometimes referred to as “intelligence” [161].

Given the ever increasing affordability and computational power of hardware and

the level of connectivity offered by the internet, which makes the formation of large
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communities working on the problem more possible than ever before, most innov-

ation in autonomous decision-making is likely to come from dedicated software. A

first attempt towards software for autonomous decision-making was initially made

by using Object Oriented Programming (OOP). Early examples of development in

this direction can be found in [166, 227]. More recently in [186], Ridao presents a

layered OOP control architecture with deliberative, control execution and reactive

layers. For autonomous control, OOP frameworks are mostly associated with Hybrid

Systems (HSs) modelling, where the term hybrid refers to the use of continuous time

dynamics switched by discrete state transitions in a unified framework [6, 207]. A

few examples of this trend can be found in [14, 171, 195]. Hybrid systems are a very

broad and highly general class of system models to be directly applicable in prob-

lems of decision-making, though most robotic autonomous systems can ultimately

be represented as hybrid systems under uncertainty.

Objects in OOP are generally passive, in the sense that they only operate when

their methods are called by an external function. This behaviour is a definite limiting

factor for the development of truly autonomous decision-making software, which led

to the development of new decision-making architectures called “autonomous agents”

[213, 224], which feature software that share some similarities with objects but work

with a substantially different approach [224]. Agents have a significantly greater

degree of control over their own internal state and have active components, in the

sense that they actively execute actions in order to move closer to a goal. A formal

description of autonomous agents can be found in [213, 224, 225].

An autonomous agent is commonly described as a two part system [189]: the

agent architecture and the agent program. The agent program is a function that

maps sensory information to actions, and the architecture is a description of how

this function interfaces with lower level subsystems, also known as skills, and how

these lower level subsystems communicate with each other. Most robotic agent
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architectures are structured in a layered way, as described in [2, 88, 196]. Different

levels of interaction can be defined between the layers, which can vary based on the

spectrum of functionality that the developer intends to implement.

One of the most widely used “anthropomorphic” approaches - that is the im-

plementation of behaviour that mimics the way humans make decisions - to the

development of autonomous decision-making is the Belief-Desire-Intention (BDI)

architecture [37, 213]. Two of the most widely known implementations of the BDI

architecture are the Procedural Reasoning System (PRS) [91, 92] and AgentSpeak

[181]. The latter fully embraces the philosophy of Agent Oriented Programming

(AOP) [193], and it offers a Java based interpreter that can be customised accord-

ing to the designer’s needs.

As for any system that aims to be introduced in real-world situations, autonom-

ous controllers need to be verified against publicly acceptable standards. Formal

verification is a great tool to do so and it is traditionally carried out in one of two

ways: axiomatic, verifying mathematical models of system by theorem proofing, or

semantic, verifying numerical models of the system [224]. The most accessible and

widely used approach to the verification of autonomous system uses a semantic ap-

proach, with model checking [52]. In particular probabilistic model checking [134] is

used to analyse probabilistic models by checking wether or not a given specification

holds true in the model.

The scientific community has produced many attempts to the verification of agent-

based software architectures over the years. Some early examples can be found in

[22, 183], and more recently with [33–35].

A subsequent effort towards verifiable agents was made by Dennis et al. [60] with

a BDI agent programming language called Gwendolen, which is implemented in the

Agent Infrastructure Layer (AIL) [61, 62], a collection of Java classes intended for

use in model checking agent programs, particularly with Java PathFinder (JPF).
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An evolution of JPF is Agent Java PathFinder (AJPF) [64], which is built on top of

JPF but specifically designed to verify agent programs, also using a Linear Temporal

Logic (LTL) [177] based specification language. However JPF and AJPF introduce

a significant bottleneck in the workflow as the internal generation of the program

model, which is created by executing all possible paths, is highly computationally

expensive. In [117] it is proposed to alleviate this problem by using JPF to generate

models of agent programs that can be executed by other model-checkers. This idea

is further developed in [63], which shows how AJPF can be modified to generate

models in the input languages of Spin [113] or Prism [135]. The latter is a probabil-

istic model checker, which is very important when applied to real-world applications:

the probabilistic nature of events and sensed measurements requires the adoption of

probabilistic modelling and verification. The work presented in [63] does describe

a technique to model the full system with a probabilistic model, however a compu-

tational cost problem still remains as AJPF explores the entire execution space of

a symbolic model of the agent code. Furthermore the programmer is required to

implement the probabilistic model by modifying the methods of a specialised Java

class, making the process less accessible to users that are not familiar with Java

programming.

1.2. Contributions

The contribution of the work presented in this thesis is the investigation of a novel

agent architecture called Limited Instruction Set Agent (LISA) [118]. This new

architecture is based on the BDI paradigm, and it is structured as a three-layer

architecture [88], with agent reasoning on top, a sequencing middle layer and a

sensing and feedback control layer, with symbolic communication between all layers.

The agent reasoning is based on previous implementations of AgentSpeak such as

Jason [36, 37], and it is designed to facilitate development of complex agents while
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allowing for automatic verification. All modifications made from Jason, for the new

agent architecture, have been made for one or both of the following reasons:

• Simplify the syntax of the agent program while maintaining the required level

of expressibility for the development of rational agents.

• Reducing the size of the state space of the model required to abstract the agent

while maintaining the required level of decision-making power offered by other

BDI agent implementations.

These modifications ultimately lead to an agent reasoning that is more understand-

able for users and it is easier to verify. This thesis proposes a method to automat-

ically generate from the agent code a probabilistic model for verification with the

probabilistic model checker Prism [135, 205]. In particular, the LISA reasoning

is proven to be modellable as a Discrete-Time Markov Chain (DTMC) or Markov

Decision Process (MDP) depending on the particular application.

The agent program is developed and described with system-English (sEng-

lish) [146, 211], in a Natural Language Programming (NLP) interface that ensures

conceptual clarity of agent decisions, sharing of programming knowledge in a team

of developers and also to define shared understanding between a human operator

and an autonomous system, in terms of world model items, their relationships and

related actions. In this work, a few additions are made to the sEnglish agent

program to enable probabilistic modelling of environmental variables. With these

modifications the user will be able to include in a single, unified document, the agent

program and all the necessary information to automatically generate a probabilistic

model of agent reasoning for verification. In particular probabilistic models are pro-

posed for different kinds of environmental variables so to allow the user to include

within agent logic, a finite set of paramenters that define probability distribution

to describe the interaction of the agent with the external world. Although this ap-
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proach still requires the user to define the probability distributions, it represents an

innovative tool to facilitate and encourage formal verification of autonomous agents.

The automatically generated probabilistic model is also shown to be useful to

improve the nondeterministic decision-making capabilities of the agent with a run-

time verification process. This gives the agent the ability to use a probabilistic model

and model checking tools to look into the consequences of choices, and deliberate

on the probability of success/failure of applicable plans before committing itself to

execute one.

1.3. Structure of the thesis

The thesis is organised as follows. Chapter 2 gives an overview on what is the

definition of agent in this context, in Section 2.1, it introduces the topic of verification

of autonomous agents in Section 2.2 and it also gives an overview of the skills and

algorithms that can be used with the agent reasoning to achieve autonomy in robotic

systems in Section 2.3. Chapter 3 describes the architecture of the new agent-

based system LISA in Section 3.2, the agent reasoning in Section 3.3, described by

highlighting differences and new features compared to Jason, and the agent program

in Section 3.4 including the new features that allow the developer to include a

probabilistic model of environmental variables. Chapter 4 reports the process of

verification of the LISA reasoning by first proofing its modelability as a DTMC or

MDP in Section 4.2 and then describing the process of converting the agent program

expressed in sEnglish to a model described in the input language of Prism in

Section 4.3. The process of using the verification as a design-time tool is described

in Section 4.4 and as a mean of predicting future outcome of actions for better plan

selection at run-time in Section 4.5. Chapter 5 gives an overview of how the LISA

system can be implemented using existing tools in the robotics community and how

it can be integrated with existing algorithms. Finally Chapter 6 presents a case
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study with a possible implementation and simulation of a LISA system.



Chapter 2.

Background

This chapter gives an overview of the main topics touched upon throughout this

thesis, in order to introduce the reader to related basic definitions and concepts.

Autonomous agents are first described as a general concept with definitions and

principles of implementation, followed by basic concepts on verification, and in

particular verification of autonomous agents. An overview of possible skills and

algorithms to be later implemented within the agent framework is also presented.

2.1. Autonomous agents

A system that operates independently from human intervention, can be mainly

classified as automated or autonomous. A closed loop, automated system,

traditionally referred to as feedback system [11, 70], features a controller that reg-

ulates the input to a dynamical system so to change the output of the latter and

match it with a reference signal. However the control system itself does not have

any power over the reference input. A common (probably overused) example of this

is the steam engine: a mechanical device called fly-ball governor mounted on the

shaft, uses proportional control to regulate the heat, and therefore the rotational

speed of the shaft itself; however the reference rotational speed is regulated by a

human operator. Autonomous systems [10, 161, 220, 223] on the other hand, have

9
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a certain level of self-government over their own internal state and reference signal;

in other words they do not require an external entity to set the reference signal, but

they set it autonomously according to the design objectives. Autonomous systems

are designed to perform under significant uncertainties for extended periods of time,

without external intervention [5]. This is certainly a very broad definition, that

covers a full spectrum of systems from low degrees of autonomy, where they can

tolerate a restricted range of disturbances, to higher degrees of autonomy, where the

system plans its own action and performs them unless revoked by an operator, to

full autonomy, where the system is completely independent from human control. A

review of levels of autonomy in unmanned vehicles can be found in [212].

Generally speaking any system that shows some level of autonomy could be con-

sidered an agent. Unfortunately there is no general consensus beyond the fact that

the definition of agent is strictly correlated to that of autonomy. A general definition,

given in [224, 225], is adapted here as follows.

An agent is a computer system that is situated in some environment,

and that is capable of autonomous actions that can influence the envir-

onment in order to meet its design objectives.

In the definition above, environment is everything that is external to the agent,

sometimes also referred to as the world. In [189], Russel suggests an interesting clas-

sification for types of environments, which are described to be (or not be) accessible,

when the agent is able to sense the complete state of the environment, deterministic,

when the next state can be determined by looking at the current one, discrete, when

the state space is countable.

In case of mobile robots in real-world scenarios, the environment will usually be

inaccessible, nondeterministic and in most cases discrete, assuming that discretisa-

tion can be performed in a meaningful way for the agent. Inaccessibility is due to

the fact that the sensing equipment of the agent is inevitably limited compared to
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the amount of information available in a real-world scenario. For this reason the en-

vironment is therefore nondeterministic to the “eyes” of the machine, which implies

that when the agent performs the same action twice, the latter will not necessarily

produce the same outcome, it will not bring the environment and/or the agent to

the same state.

This level of uncertainty is most common in real-world scenarios, and it is a

significantly hard problem to approach with a classical feedback controller. The state

of the world hardly reducible to a single or even a small number of variable to be

regulated to match a reference signal, which makes the proactiveness of autonomous

agents a desirable trait.

In [225], Wooldridge et al. argue that an autonomous agent shows the following

properties.

Reactiveness The agent is able to perceive changes in the environment and it acts

accordingly in a timely fashion.

Proactiveness The agent displays goal-directed behaviour: it does not wait for a

change in the environment to happen, but it takes the initiative in order to

meet its goals.

Autonomy The agent is able to operate without human intervention, and it owns a

certain degree of control over its internal state.

Social Ability The agent is able to communicate with other agents and possibly

with humans.

An agent-based system can be described by defining two main characteristics:

the architecture and the agent program [189]. The agent program is a function

that implements the agent mapping from percepts to actions. The architecture

is the structure that describes how the agent program interfaces with lower level

control subsystems and ultimately with the environment. In [153] the architecture
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is described as ‘the backbone of robotic systems’: different architectures reflect the

agent program in different ways, so choosing the right architecture for the particular

application is a crucial step in agent-based systems development.

Over the years the research community has produced many agent architectures

(see references [210, 213] for a systematic overview), including: purely logic-based

[1, 81, 143], behaviour-based or situated [8, 42, 152, 187, 188], situation calculus

[57, 79, 144], Belief-Desire-Intention (BDI) [93, 182, 184]. These architectures are

not entirely distinct, as definitions often overlap. Most modern architectures are

structured in a layered way, where layers essentially represent abstraction levels, as

described in [88, 163], with some practical examples in [2, 164, 196, 216].

Figure 2.1 shows the general structure of any agent-based system architecture.

The agent reasoning or agent logic, is connected to other control systems with gen-

erally lower levels of abstraction, which are referred to as skills. The way the agent

acts on the environment is by issuing action commands to its skills which can in turn

apply desired changes to the output. In the same way, the agent gathers informa-

tion about the world through perception skills, which convert numerical information

coming from physical sensors into something that an agent program can work with,

namely symbolic Boolean variables or discrete structures.

Reasoning

Skills

· · ·

Environment

Figure 2.1.: Generalised structure for an agent-based control system: the agent reasoning
interfaces with the world through specialised functions called skills.
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The agent system described in this thesis is mainly based on the Belief-Desire-

Intention (BDI) architecture, which is possibly one of the best known and studied

model of reasoning agents. As the name suggests BDI agents are characterised by

three large sets of symbolic information: Beliefs, Desires and Intentions. The Beliefs

set represents the information the agent has about the world, the Desires set con-

tains optional actions that the agent might want to accomplish and the Intentions

set represents the set of options that the agent is committed to work towards. The

model was first proposed by philosopher Michael Bratman [40, 41]. Early imple-

mentations can be found in [90–92] with the PRS, which has been re-proposed and

re-implemented several times during the 90’s [44, 67, 115]. The approach taken here

is slightly different from that of PRS as plans are assumed to be linear sequences

of actions rather than the hierarchically structured collections of goals of PRS. An

interesting discussion on the role of plans in practical reasoning can be found in [178,

179]. A formal definition of BDI agent and a brief explanation of how it operates is

given in the next Subection 2.1.1.

2.1.1. Formal definition

Here follows a formal definition of a generic rational BDI agent [213, 224]. The term

“rational” indicates that the agent carries out some logic based reasoning as part of

its normal functioning.

Definition 2.1 (Rational BDI agent [118]). A rational BDI agent is a tuple

R = {F , B,B0, L,A,A0,Π}

where:

• F = {p1, p2, . . . , pnp} is the set of all atomic prepositions that can represent

beliefs or actions.
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• B ⊂ F is the Beliefs set, the set of all beliefs available to the agent. A Belief

is an atomic prepositions that represents an abstract concept.

• B0 is the Initial Beliefs set, the information about the world that is available

to the agent at the first iteration.

• L = {l1, l2, . . . lnl} is a set of logic-based implication rules on the predicates of

B. These rules help the agent give additional meaning to the set of current

beliefs.

• A = {a1, a2, . . . , ana} ⊂ F \ B is a set of all available actions. An action is

an atomic preposition that is associated to a function, which acts either on the

environment or on the internal state of the agent.

• A0 ∈ A is the set of initial actions.

• Π = {π1, π2, . . . , πnπ} is the set of executable plans or plan library. Each plan

πj is a sequence πj(λj), with λj ∈ [0, nλj ] being the plan index, where π(0)

is a logic statement called triggering condition, and πj(λj) with λj > 0 is an

action from A.

Each triggering condition for the plans in Π is composed by two parts: a triggering

event ‘e’ and a context ‘c’, and it is usually express in the form ‘e : c’. An event is a

belief paired with either a ‘+’ or a ‘−’ operator to indicate that the belief is either

added or removed. By defining the plan library, a set

E ⊆ B × {+,−} (2.1)

of events is implicitly defined by the set of all triggering events. The context is

a logic condition that the agent verifies against the current Beliefs when a plan is

triggered. The expression

B � c (2.2)
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signifies that the Beliefs set B “satisfies” a logic expression ‘c’ on predicates from

F , or in other words when the conditions expressed by ‘c’ are true on B.

Actions from A can be either internal, when they modify the Current Beliefs set

to generate internal events, or external, when they are linked to external functions.

Beliefs generated by internal actions are also called ‘mental notes’.

Usually the agent program of a BDI agent is operated through indefinitely re-

peated cycles called reasoning cycles. To facilitate the description of the reasoning

cycle of the agent, the following definition introduces dynamic subsets of the sets of

Definition 2.1 that are regularly updated throughout the agent operation.

Definition 2.2 (Operational sets of a rational BDI agent). Given a rational

BDI agent R, if ‘time’ t ∈ N≥1 is the integer count of reasoning cycles:

• B[t] ⊂ B is the Current Beliefs set, the set of beliefs available at time t. Beliefs

in B[t] can be negated (usually with a ‘~’ symbol).

• E[t] ⊂ E is the Current Events set, which contains events that are active at

time t.

• D[t] ⊂ Π is the Applicable Plans or Desires, which contains all plans πj such

that B[t] � πj(0).

• I[t] ⊂ Π is the Intentions set, which contains plans πj that the agent is com-

mitted to execute, for which λj > 0. Any plan stays in the Intentions set until

all the actions listed in it have been executed, unless a plan withdrawal action

is issued to cancel the plan.

For most BDI agent architectures the reasoning cycle is operated as follows. At the

beginning of every cycle, B[t] is updated by checking for external inputs and internal

actions; from the changes that happen at each reasoning cycle to the Current Beliefs,

a set of events is generated and added to E[t]. The plan library is then searched
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for plans that feature a triggering condition that satisfies the Current Beliefs set

(B[t] � π(0)). These plans are then copied to D[t]. A single plan from the Desires set

is then selected for execution and pushed into I[t]. Then the agent takes applicable

actions from the active plans in I[t] and execute one (or more) of them. At this point

the cycle is complete and B[t+1] is generated. A detailed mathematical description

of the LISA reasoning cycle is given in Section 3.3.

2.1.2. Agent oriented programming

As the name suggests, Agent Oriented Programming (AOP) is a paradigm for de-

scribing and implementing agent programs. AOP was initially developed as an evol-

ution of Object Oriented Programming (OOP) [219] as described in [193, 225]. Early

examples of autonomous decision-making software that uses OOP can be found in

[85, 166, 226, 227]. More agent-related approaches can be found in [18, 19], with

the Java-based framework Jade, and [186], which presents a OOP-based layered

architecture. For autonomous control, OOP frameworks are mostly associated with

Hybrid Systems (HSs) modelling, where the term ‘hybrid’ refers to the use of con-

tinuous time dynamics switched by discrete state transitions in a unified framework

[6, 207]. A few examples of this trend can be found in [14, 46, 170, 171, 195]. The

definition of hybrid system covers a large variety of systems, it is not specific to

problems of decision-making, in fact most robotic systems can be represented with

HS models.

While there are clear similarities, there are also fundamental differences between

the concept of agent and the concept of object [224]. Objects are generally passive,

in the sense that their methods are activated by external calls, for instance from

other objects, but they do not incapsulate the choice of action. An agent on the

other hand can be requested to perform an action, but it will only do it if it is in line

with the set of beliefs at the time of request. In other words in the object-oriented
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case, the decision of executing an action lies within the object that invokes it, while

in the agent case it is the agent itself that makes the decision. The key idea of AOP

is to implement agent programs in terms of high level symbolic information, such as

beliefs, desires, and intentions.

Some popular software packages and languages for AOP include

• PRS [90–92]. Precursor to BDI architectures, it provides a declarative se-

mantics for the representation of knowledge and an operational semantics

which connects the knowledge to goals.

• AgentSpeak [181]. A BDI based architecture for development of agent systems,

meant to be an abstraction of existing systems such as PRS.

• Golog [59, 79, 144]. It provides an interpreter that maintains a representation

of the environment being modelled, assuming the user explicitly defines condi-

tions of actions on the environment. 3Apl [105, 106]. It offer an operational

semantics that is defined with transition systems.

• Jack [114, 167]. A multi-agent system development architecture developed in

Java. It builds upon PRS and dMARS [67].

• Jason [36, 37]. An evolution of AgentSpeak, developed in Java and it allows

the customisation of most aspects of the agent system.

• Goal [16, 202]. BDI based, it focuses on the interface wiht the environment.

• Pddl [94, 157]. An agent programming language mainly inspired by Strips

[80] and Adl [169], in an attempt to define a common formalism for describing

planning domains.

One of the most complete frameworks for AOP is the Cognitive Agent Toolbox

(CAT) [214], which integrates the capabilities of multiple external software suites
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(Matlab, Simulink, Mcmas) and supports the development of agent reasoning

with Natural Language Programming (NLP) in a language called sEnglish [146,

211]. sEnglish uses natural language sentences in an easily readable document so

that even an untrained human operator can make sense of the reasoning process

of the agent. An sEnglish document is organised in a reasoning file and multiple

action files. The action files are descriptions of actions that can be implemented in

different programming languages or as a sequence of sEnglish sentences and that

are associated with a predicate that can be used anywhere in the reasoning file.

Similarly to Jason, a sEnglish reasoning file is structured in sections as follows:

INITIAL BELIEFS AND GOALS, INITIAL ACTIONS, PERCEPTION PROCESS, used to

configure objects for world modelling, REASONING, where the logic-based implication

rules are listed, and EXECUTABLE PLANS, the Plan Library.

sEnglish also supports the definition of an ontology, a structure that associates

atomic prepositions to common data types or structures of data types. The user can

then use these atomic prepositions within the agent program in order to improve

clarity and readability. The language used to define the ontology in sEnglish is

called Machine Ontology Language (MOL). A simple example is shown in Figure

2.2.

1 >location
2 @coordinates: vector
3 @covariance: matrix
4 >>waypoint
5 >>>global waypoint
6 >>>local waypoint

Figure 2.2.: Example of type definition of ontology using Machine Ontology Language.
Classes are indicated by a single ‘>’ symbol, subclasses by multiple ‘>’ symbols and

attributes by the ‘@’ symbol.

Although it does not influence the verification process in this particular imple-

mentation, the definition of aliases for file types in the ontology specification is a

feature that allows the user to better integrate the agent reasoning program with its
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skills. In the implementation of the verification process presented in this thesis, the

software does not take into consideration the value of a variable itself but the belief

it is associated to.

2.2. Agent verification

Autonomous agents have a considerable potential for implementation in autonomous

control systems. The great flexibility of the software programming gives the designer

a great deal of freedom to encapsulate a variety of decision-making capabilities.

However the introduction of autonomous agents in real-world scenarios brings along

safety concerns, as for example highlighted in [3], especially in applications such

as spacecraft control [101, 147]. In order to guarantee safety and improve people

confidence in autonomous agents, the system must be certifiable against publicly

accepted standards. Verification of a system is the process of checking whether or not

its implementation is correct with respect to the original specification. Approaches

to verification of software systems can be divided into two broad classes: axiomatic

(deductive) and semantic (model checking) [224].

Axiomatic verification consists of deriving a logical theory that represent the be-

haviour of the agent program and formally proving that this logical theory reflects

the original specification of the program. In other words, once an abstraction of the

system has been created, the verification consists of a proof solving. Axiomatic veri-

fication was pioneered in the late 1960s [108] and a few examples of application to

autonomous agents can be found in [154, 222], and later in [103, 104] where the au-

thors use structured operational semantics [176] to axiomatise their 3Apl language.

Verification by model checking on the other hand, is applied to a model of a system,

typically a finite-state machine, to check whether or not a specific temporal logic

[132] formula holds true in the model. Probabilistic model checking analyses prob-

abilistic models such as Markov chains and Markov decision processes [190], with
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specifications that are probabilistic extensions of temporal logic. A more detailed

description of the process is give in Subsections 2.2.1 and 2.2.2.

Some of the most popular model checking software include: Smv [53, 160], Spin

[111–113], Uppaal [17], JPF [215] and Prism [107, 135]. Popular model check-

ers that are specific to agent verification are AJPF [64], an evolution of JPF that

uses a LTL based specification language extended with descriptions of beliefs, inten-

tions etc., and Mcmas [149], which specialises in verification of multi-agent systems.

AJPF (and JPF) are ‘program’ model checkers, which means that they operate on

the agent code, rather than on a model of the program’s execution, usually the case

for traditional model checkers.

An early attempt to verification by model checking of BDI systems can be found

in [183], and similar algorithms can be found in [22]. In [32–35], the authors present

an automatic translation software from the AOP language AgentSpeak into either

Promela or Java, and then use the associated model checkers Spin and JPF re-

spectively.

A subsequent effort towards verifiable BDI agents was made by Dennis et al. [60]

with a BDI agent programming language called Gwendolen, which is implemented in

the AIL [61, 62], a collection of Java classes intended for use in model checking agent

programs, particularly with JPF. However JPF introduces a significant bottleneck

in the workflow as the internal generation of the program model, which is created

by executing all possible paths, is highly computationally expensive. In [117] it

is proposed to alleviate this problem by using JPF to generate models of agent

programs that can be executed by other model-checkers.

This idea is further developed in [63], which shows how AJPF can be modified to

generate models in the model languages of Spin or Prism. JPF uses backtracking

points to explore the entire execution space of a Java program, in AJPF this process

is used to track and number all states of the agent and to construct a symbolic
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model within the Java virtual machine. The LTL model checking algorithm is then

executed on this symbolic model. When converting to Prism, the authors use a

modified version of AJPF that uses a new class to deal with the probabilistic aspect

of the model. Probability distributions are defined with instances of this class and

the Prism model is then generated by looking at all the numbered states generated

with JPF and transition probabilities found with the new class. This method brings

along a few drawbacks: the first problem is that even though the symbolic model is

generated directly from the agent code, it still requires a significant computational

effort as the program explores the entire execution space of a Java representation

of the agent code. The second problem comes with practicality and accessibility:

probability distributions are defined in the Prism program by modifying the new

Java class presented in the article, adding an additional step to the development

process as the programmer has to modify the methods of a Java class in addition

to developing the agent logic in a AOP language. These problems are addressed

with the implementation proposed in this thesis by allowing the programmer to

include probability distributions directly into the agent code and then automatically

generate a complete Prism program for verification by model checking.

2.2.1. Verification by model checking

The problem with axiomatic verification is that proofs are not always simple, and it

is hard to generalise a technique for large classes of systems. Even systems that share

similar architectures can perform with substantially different logic. This is the main

reason for the wider use of semantic techniques, such as model checking [13, 52],

over axiomatic techniques for the purpose of verification, especially for agent-based

systems. The first probabilistic model checkers were proposed in the 1980s and 90s

[55, 56, 208], however the first industrial strength algorithms were developed in the

early 2000s [58, 102].
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The verification by model checking process, first proposed in [51], relies on the close

relationship between models for temporal logic and finite-state machines. Assuming

that a generic program P needs to be verified against a specification ψ, the process

can be summarised in two steps:

1. From P generate a modelMP that captures all possible states and computa-

tions of P.

2. Determine whether or not the specification ψ is valid onMP . If the result is

positive, then the program P satisfies the specification ψ.

In some applications it is possible to generate a model that is tailored to the given

specification so to reduce the size of the model, but often the model is independent

from the specifications. In the latter case once the model is built, different spe-

cifications can be run without having to rebuild the model. Most software used to

perform the verification on a model, for a give specification, will generate a so called

counterexample [98], that is the first sequence of states and transitions (trace) found

in the state space that does not satisfy the specification in question.

This theory can be in principle applied to any system, and therefore to any agent-

based system. The main problem lies in the fact that even assuming that the actual

model-checking (step 2) can be easily performed for any model, step 1 remains non-

trivial: given the wide variety of architectures and AOP languages, the modelling

process is very hard to automate. Even when focusing on a single architecture and a

single language, different agent programs can generate widely different models. This

thesis describes a method to alleviate the problem, with an automatic modelling

technique that includes probabilistic modelling of the environment, and applies to a

specific, but still widely applicable, set of agent-based systems.
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2.2.2. Formal definitions

As highlighted in Subsection 2.2.1 the first step for applying verification by model

checking is to construct a model of the system. The model of a system is designed

to capture important properties of the system in order to reproduce its behaviour as

completely as possible. For this particular application only discrete models will be

considered, as the goal is to represent the agent reasoning which operates in loops

(reasoning cycles) and a full transition to a new state only happens at the end of

each loop.

The description of a system at any given time is given by a “snapshot” that

captures the value of all the significant variables the model is supposed to consider:

the state [52]. The model is then complete when it also describes how the system

transitions from state to state. A common way to represent such a model is with a

state transition graph or Kripke Structure [116]. A Kripke structure consists of a set

of states, a set of transitions between states, and a function that labels each state

with a set of properties that are true in this state [52]. These structures can be

extended to include probabilistic behaviour so to model, for instance, unpredictable

behaviour, environmental uncertainties and so on. This is done for example by

specifying the probability of the system making a transition from one state to the

other. There are many probabilistic models available that can be used for the

purpose of verification by model checking, but this application is focused on two

in particular: Discrete-Time Markov Chains (DTMCs) [168] and Markov Decision

Processes (MDPs) [77].

A DTMC is a Kripke structure that allows for the definition of probabilities for

the transitions of the system. For each transition a probability value is defined that

describes the probability of it to take place. A formal definition of DTMC is as

follows [134].

Definition 2.3 (Discrete-Time Markov Chain (DTMC)). Given a fixed, finite set
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B of atomic prepositions, a (labelled) DTMC is a tuple

D = {S, s0,P ,L}

where

• S is a countable set of states.

• s0 ∈ S is the initial state.

• P : S×S → [0, 1] is a transition probability matrix where ∑s′∈S P (s, s′) = 1.

• L : S → ℘(B) is a labelling function that assigns to each state s ∈ S a set of

atomic prepositions L(s) from B that are valid in the state.

In a DTMC each element P (s, s′) of the matrix P is the probability of a transition

from state s to state s′ to take place. Note that the condition ∑s′∈S P (s, s′) = 1

implies that no deadlocks are allowed in this model, therefore all terminating states

have self-loops with probability 1. Another important property of DTMCs, and

Markov Chains in general, is that the conditional probability of future states does

not depend upon the sequence that leads to the present state. A simple example

of DTMC is represented in Figure 2.3. In DTMC and similar models there is no

notion of real-time, however it is possible to keep track of the number of transitions

as discrete time-steps. In order to include the notion of real-time one would need to

use probabilistic models such as Probabilistic Timed Automata (PTA).

The second step of verification by model checking is to determine whether or

not a given specification holds true in the model. For DTMCs the specification

language Probabilistic Computation Tree Logic (PCTL) [99] can be used, which

is an extension of Computation Tree Logic (CTL), and it captures probabilistic

relationships between states, and the likelihood of paths to happen in run-time,
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Figure 2.3.: An example of DTMC with its transition probability matrix. Circles indicate
states, arrows indicate transitions, numbers on arrows indicate the probability of the

transition to take place. Each state can be labelled with a set of labels.

where a path is simply an ordered sequence of states and transitions. Here follows

a formal definition of PCTL.

Definition 2.4 (Syntax of PCTL).

φ ::= true | a | φ ∧ φ | ¬φ | P./p[ψ]

ψ ::= X φ | φ U≤k φ

where a is an atomic proposition, ./∈ {≤, <,>,≥} and p ∈ [0, 1]. X is the ‘next’

operator, and U≤k is the ‘bounded until’ operator with k ∈ N ∪ {∞}.

Definition 2.4 shows a distinction between two types of specifications: state formu-

lae φ, which are evaluated over states, and path formulae, which are evaluated over

paths and are generally used only as parameters for state formulae. For instance a

state s satisfies a state formula P./p[ψ] if the probability of a path happening from

s satisfying the path formula ψ, lies within the range specified by ‘./ p’. Usual ab-

breviations are also allowed such as ‘F φ’ (‘eventually’, equivalent to ‘true U φ’). A

reward (or cost) is an association of a state or transition to a numerical value. A

reward structure is defined as a pair (rs, rt) of state reward function rs : S → R≥0

and a transition reward function rt : S×S → R≥0. PCTL formulas can be extended

with reward properties [134] by the addition of the reward operator R./r[·] and the
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following state formulas:

R./r[C≤k] | R./r[I=k] | R./r[F φ] (2.3)

where r ∈ R, k ∈ N and φ is a PCTL state formula. Intuitively R./r[C≤k] is true if

the expected reward cumulated before step k lies within the bounds expressed by

./ r, R./r[I=k] is true if the reward at time step k meets the bounds expressed by

./ r and R./r[Fφ] is true if the expected cumulated reward before a state satisfying φ

occurs is within the bounds expressed by ./ r. Reward properties allow to represent

richer specifications with the addition of quantities that are related to the temporal

evolution of the system, for example a state reward may describe that in one par-

ticular state the system consumes a certain amount of power, and a specification

for the model checker can be set to verify what is the expected power consumption

(cumulative reward) within a fixed number of time steps.

The second model that is considered here is Markov Decision Process (MDP).

The purpose of modelling with MDP is to generalise DTMCs with the addition of

nondeterminism. In general this allows to model how a controller might actively

make decisions on the system, where these decisions are not probabilistic in nature,

e.g. the decisions cannot be described with a probability distribution. A formal

definition of MDP is as follows [136].

Definition 2.5 (Markov Decision Process (MDP)). Given a fixed, finite set B of

atomic prepositions, a (labelled) MDP is a tuple

M = {S, s0, C,Step,L}

where

• S is a countable set of states.
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• s0 ∈ S is the initial state.

• C is an alphabet of choices with C(s) being the set of choices available in any

state s.

• Step : S×C → Dist(S) is a probabilistic transition function with Dist(S) being

the set of all probability distributions over S.

• L : S → ℘(B) is a labelling function that assigns to each state s ∈ S a set of

atomic prepositions L(s) from B that are valid in the state.

In each and every state s several choices C(s) = {a ∈ C | Step(s, a) is defined}

may be available, at least one to avoid deadlocks, each corresponding to a prob-

ability distribution over other states. At each step an action from C(s) is chosen

nondeterministically. Secondly, a state is selected randomly, according to the as-

sociated probability distribution Step(s, a). A resolution of nondeterminism in a

path of a MDP is called an adversary of the MDP. In other words an adversary is

responsible for choosing an action in each state of a MDP. This implies that once

an adversary is applied, a MDP reduces to a DTMC, otherwise called the induced

DTMC for the MDP. A simple graphical example of MDP is shown in Figure 2.4.

s1

{l1}
s2

{l2}

s3

{l1, l2}
s4

{l3}

0.9

0.1

a

b
1 0.8

0.2
c

b1
b

1
Step :




0 0.9 0.1 0
0 0 0 1
0 0.2 0.8 0
0 0 0 1
0 0 0 1




a
b

c

b

b

Figure 2.4.: An example of MDP with its transition function represented in matrix form.
Circles represent states, arrows represent transitions. Numbers on transitions represent the

probability of the transition to take place, lowercase letters represent nondeterministic
choices. Each state can be labelled with a finite set of labels.
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Similarly to DTMCs, specifications for MDPs can be written with PCTL [30],

however the semantic must be applied to all adversaries of the MDP, therefore to all

induced DTMCs. In this scenario the P./[ψ] reduces to the calculation of minimum

or maximum probabilities over the full range of adversaries for the MDP model.

The following form will be used to describe the minimum/maximum probabilities

operator.

Pmin=?[ψ] | Pmax=?[ψ] (2.4)

where ψ is a PCTL path formula.

Although formal definitions of DTMC, MDP and specification language syntax

are reported in full for better clarity in later chapters, a detailed description of the

methods and techniques used to verify DTMCs and MDPs goes beyond the scope

of this work. An excellent guide on the topic can be found in [190] and in tutorial

papers [82, 134, 136].

2.2.3. PRISM

The verification software package used in this work is Prism [107, 135, 205]. Prism

is a probabilistic model checker, developed primarily at the Universities of Birming-

ham and Oxford, that allows to verify a variety of different probabilistic models, such

as Discrete-Time Markov Chains (DTMCs), Markov Decision Processes (MDPs),

Continuous Time Markov Chains (CTMCs) and PTAs.

Probabilistic models in Prism are described using a proprietary state-based lan-

guage. The model is then compiled to symbolic data structures based on BDDs

(Binary Decision Diagrams) [43] and MTBDDs (Multi-Terminal Binary Decision

Diagrams) [87], which allow to define models with significantly large state spaces

with a reduced amount of memory, and which are fast to search and access.

Probabilistic properties in the Prism language can be expressed in one of the
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following property specification languages: PCTL (Probabilistic computation tree

logic, CSL (Continuous Stochastic logic), LTL (Linear Temporal Logic) and PCTL*,

an evolution of PCTL that inherits some properties from LTL.

One of the great advantages of Prism is the possibility of organising the descrip-

tion of the model into so called modules. Modules are independent entities within

the model that operate on specific variables. Modules can access and read values of

variables defined in other modules, but only each module is allowed to modify its

own variables. This is particularly important with this application because it allows

to synchronise different parts of the system so to make some operations execute in

parallel. This concept will be more clear in 4.

Another feature which is useful for the scope of this work is the possibility in

Prism to define reward structures, which allow to analyse characteristics of a system

that are correlated to particular states, for example a bump in energy consumption

correlated to a system being used at full power.

2.3. Skills and algorithms for autonomy

The agent reasoning of an agent-based system usually works on a high level of ab-

straction by mapping abstracted sensory information to function calls that represent

actions for lower level subsystems to execute. These lower level of abstraction sub-

systems, also known as skills, are part of the agent architecture and they are usually

developed in a language that is different from the agent program. Potentially any

algorithm or operation can be implemented as a skill of the agent, from sensing to

motion planning to actuation [194].

The approaches to the implementation of the LISA system described in this thesis

are intrinsically modular so that any skill that the agent might need during its

operation can be implemented in some way.
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2.3.1. Sensing and filtering

At the lowest level of abstraction, skills interface with the environment by command-

ing actuators and filtering sensed data. In a mobile robotic application this could

be for example waypoint following skills, which would use sensed data to adjust

motors speed so to make the robot head towards the next waypoint, or filtering and

data fusion skills [9, 71, 72, 96, 217], so to infer particular values such as position,

distance from a point and so on, by processing large amounts of data. For example

filtering can be used to predict the trajectory of an external vehicle [48]. An excellent

guide on the topic of filtering for mobile robots can be found in [199]. All autonom-

ous mobile robots that operate in unknown environments use these algorithms and

theories for localisation and mapping in one way or another, so Simultaneous Loc-

alization And Mapping (SLAM) [68, 73, 74, 162] skills are a common addition in

those instances.

2.3.2. Motion planning

A common problem that recurs all over robotics is that of motion planning. Ori-

ginally formulated as the piano movers problem [185, 192], motion planning refers

to the process of determining, given a known environment, how to gradually move

a body from an initial placement to a goal placement, while avoiding collision with

obstacles [49, 138, 140–142]. The problem is obviously not restricted to the simple

path planning in a linear reference frame: in most cases the planning has to be

computed with rigid body transformations that can be applied to a rigid body rep-

resenting the robot. This augmented state space is called the configuration space

or C-space [150]. The part of the configuration space where the robot is allowed

to move, e.g. where there are no obstacles, is called free space or free configuration

space. It is important to notice that sometimes it is necessary to take into account

the dynamics of the robot, increasing the complexity of the problem in terms of
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computational effort required to generate free paths. The computational complex-

ity also increases when modelling more Degrees Of Freedom (DOFs) as the size of

the search space grows exponentially with the number of DOFs.

Even though the motion planning problem sits in the continuous configuration

space, the computation of feasible paths is usually discrete. Over the last few decades

the motion planning problem has been tackled in a variety of different ways, however

the most popular implementations can mainly be grouped under two schools of

thought: combinatorial planning and sampling-based planning.

Combinatorial planning [95, 191] consists of characterising the configuration space

by capturing all necessary information to perform planning from any starting point

to any goal point. Most combinatorial methods first compute a roadmap: a graph

that contains a list of points in the free configuration space and ‘simple’ paths that

connect pairs of points through the free space, calculated according to predefined

criteria such as minimum clearance from obstacles, shortest path and so on. Once

the graph is constructed, the motion planning problem reduces to a simple graph

search. A few examples of combinatorial path planning algorithms can be found in

[121–123, 126]. Even though combinatorial motion planning algorithms are complete,

in the sense that they are guaranteed to find a path where there is one, they are

usually very difficult to apply where there is non-linearity, often the case for mobile

robots models. Even more so when the environment is dynamic, in which case time

can be included as part of the state space [133].

Quite differently from combinatorial algorithms, sampling-based motion planning

algorithms [124] avoid the explicit characterisation of the configuration space by

incrementally probing the free space. For each sample they use a collision detec-

tion method to check whether or not the new sample and the path to it fall within

the free configuration space. Once the goal point has been reached the algorithms

reconstructs a path back amongst the points that have been probed and possibly
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smooths out the path as much as possible to increase efficiency. The way the probing

of the ‘unknown’ space happens varies amongst different algorithms. Some of them

are based on heuristic methods and treat the problem as a graph search such as A∗

[66, 100] and more modern evolutions of it [45, 78, 128, 145, 197]. Other algorithms

probe the environment more or less randomly, for example Rapidly-exploring Ran-

dom Tree (RRT) [139] and newer implementations of it [125, 151, 218].

In [119], a framework is proposed to choose amongst multiple available path plan-

ning algorithms, based on an assessment of environmental complexity.

2.3.3. Combined motion and task planning

Apart from combinatorial and sampling-based path planning algorithms there is

yet another approach to the motion planning problem that is worth mentioning,

sometimes referred to as symbolic approach or simply discrete planning. The idea

is to discretise the continuous configuration space and then use formal methods to

generate discrete plans based on given LTL specifications [173]. Initially proposed

as a way to generate discrete plans over a discrete decision space [12, 27, 120], it

was then extended to generate continuous trajectories for mobile robots while still

satisfying temporal logic formulas [50, 75, 175, 201], and later the same principles

were applied considering dynamical models [76, 174].

The main process of the discrete planning can be summarised in three steps [75]:

1. Discrete abstraction. The robot configuration space is abstracted to a finite set

of equivalence classes, for example with cellular [54] or triangular [21] decom-

position. This results in a discrete set of prepositions that are associated with

the decomposed subsets of the continuous world. In most cases this process

requires the satisfaction of the bisimulation property [4] in order to ensure that

the satisfaction of LTL [177] specifications holds for both the discrete and the

continuous model. In this way any sequence of states in the discrete model is
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associated to one trajectory in the continuous model.

2. Discrete planning. Using formal methods, and in particular model checking, a

sequence of discrete states that satisfy a temporal logic specification is gener-

ated.

3. Controller synthesis. A control strategy is implemented at the continuous

level while preserving the satisfaction of the temporal logic formula [200]. An

example in [148].

The application of this concept can be found extensively in the literature, especially

in the HS community. The fact that it is possible to give specifications in LTL allows

to use this method to implement algorithms that “guide” lower level path planning

algorithms such as RRT, and to implement complex instructions instead of point

to point motion planning. LTL uses atomic prepositions operated with traditional

logic (∧ and, ∨ or, ¬ not) and with with temporal operators (© next, ♦ eventually,

∪ until, � always) 1. For example the following expression represents the task of

eventually visiting all of the areas in a subset of a map, in no particular order:

♦pA1 ∧ ♦pA2 ∧ · · · ∧ ♦pAn (2.5)

where pAi represents the preposition ‘area Ai explored’. Similarly for an example of

partial ordering:

(¬pA3) ∪ ((pA1 ∨ pA2) ∧©pA3) (2.6)

which represents the task of exploring area A3 only after area A1 or A2 have already

been explored.

An interesting application of this can be found in [130, 131] which uses the al-

1Note that although different symbols are used here to be consistent with the conventions of the
scientific community, the temporal operators have the same meaning as the ones used for PCTL
in Definition 2.4.
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gorithm in [172] to generate an automaton that satisfies an LTL specification and it

then uses the controllers described in [54] to integrate the automaton in a overall hy-

brid controller that satisfies the specification. In [47, 127] hierarchical abstractions

(multiple layers) are used to control swarm robotic systems. The work presented in

[221] uses optimal control to minimise a weighted average cost function to produce

optimal trajectories that satisfy LTL specifications.

Recent applications [28, 29, 158, 159, 209] have been used to integrate the discrete

planning process with sampling-based motion planning algorithms. This area of

research defines hybrid spaces consisting of discrete and continuous components.

The continuous layer is used to model high-dimensional robotic systems with non-

linear dynamics and sampling-based algorithms are used to search for feasible paths.

The discrete abstraction is used to simplify and optimise the tree search that arises

from the sampling-based algorithms while satisfying complex specifications usually

expressed with LTL. An exception to the trend of using LTL for specifications can be

found in [137] where controllers are synthesised from PCTL specifications to account

for uncertainties that can be modelled with probability distributions.

Other examples of symbolic planning can be found in [20, 86], where in order to

ensure the satisfaction of the bisimulation property these approaches use so called

motion primitives, a collection of dynamically feasible motion behaviours that the

robot can execute while still maintaining satisfaction of temporal logic specifications.

Although discrete planning has been used in several instances to implement ad-

vanced motion planning in real applications, it is still limited by the complexity

that arises when modelling high-dimensional robotic systems with complex high-

level reasoning. Another problem not yet addressed by these methods is that even

if full dynamics of the system are taken into account, and the bisimulation prop-

erty holds, at some point the physical robot may not be able to execute the control

strategy generated by the algorithm, for example it may be faced with unmapped
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obstacles or some actuators may be faulty.

The approach towards autonomy taken with discrete planning algorithms is differ-

ent from that of agent-based systems as they tend to unify planning and reasoning

in a single framework, penalising ease of implementation and modularity. One of

the great advantages of modern agent-based systems is in fact the possibility of

programming them with NLP languages and the possibility of integrating them

with potentially any kind of algorithm as skill. However the integration of these

approaches themselves as skills in an agent-based system can potentially improve

the planning capabilities of the agents, as they offer a more advanced and flexible

approach to the problem of motion planning, compared to classical sampling-based

or combinatorial algorithms. The possibility of defining complex temporal logic

specifications translates into actions that implement more complex behaviour in an

agent-based system, potentially reducing complexity of the agent reasoning and in

turn of the agent program. An agent-based architecture which implements reactive

behaviours can also address the need of replanning when the robot is faced with

unpredicted problems by interrupting the current action and re-call the algorithm

to generate a new trajectory with the latest available sensory information.





Chapter 3.

The Limited Instruction Set Agent

A novel architecture for autonomous control, called Limited Instruction Set

Agent (LISA), is presented in this chapter. The aim of this new implementation

is to provide programmers with a unified framework to describe both the agent

reasoning and a model of the environment, so that a software algorithm can

automatically generate a verifiable model, which can accurately describe agent

reasoning within its environment.

3.1. Introduction

The Limited Instruction Set Agent (LISA) is a novel agent-based system that

offers a unified framework to model and verify the reasoning process of BDI-

based agent systems.

The architecture of the LISA system is structured in a layered way, with a BDI-

based agent reasoning on top and a set of skills with lower and lower levels of

abstraction, where skills are subsystems dedicated to the execution of specific tasks,

generally run and coordinated by agent reasoning. The agent reasoning operates

with symbolic information, literals that represent abstract concepts, rather than

with numeric measurements. The translation of numerical data into symbolic in-

formation, and vice versa, is performed by the skills of the agent. From the prospect-

37
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ive of the agent reasoning, skills are actions that are executed through action calls,

commands that invoke skills associated with predicates that represent actions in the

agent program. Some of the skills are initialised at the beginning of the operation of

the agent and executed in a continuous fashion. This is generally the case for lower

levels of abstraction, for example skills that interface sensors or skills that monitor

energy consumption in a mobile platform. In most cases these skills do not share

data directly with the agent reasoning, but information is translated into perception

predicates, Boolean variables that the agent reasoning uses to reason about future

actions. The architecture of the LISA system is described in detail in Section 3.2.

The agent program is developed as an evolution of Jason [37]. Despite being

a popular and effective software package for AOP, Jason was not developed with

automatic verification in mind, and some of its features and characteristic make auto-

matic modelling for verification by model checking extremely difficult. To improve

this aspect, the LISA system features an agent reasoning process that is designed

to facilitate modelling, so to automatically generate discrete models that can be

easily verified with any probabilistic model checker. The agent program is imple-

mented using a NLP software package called sEnglish [211], which uses natural

language sentences in an easily readable document so that a human operator can

understand the reasoning process of the agent, without the need for advanced pro-

gramming training. In the LISA system the sEnglish language is enhanced with

structures that allow to define probabilistic models for environmental variables, so

that a single document can provide enough information to generate a complete and

verifiable model.

3.2. The agent architecture

The architecture of an agent-based system describes how the agent logic communic-

ates with lower abstraction subsystems to gather information that it uses to make
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decisions, and how actions calls invoke subsystems skills and ultimately operate in,

and influence the environment. The research community has proposed many agent-

based architectures, many of which share the characteristic of being structured in a

layered way, with skills at the bottom that directly communicate with the environ-

ment, and increasingly higher levels of abstraction up to the agent reasoning.

Although the principles behind the LISA system could be applied to several differ-

ent architectures, this BDI implementation is based on the three-layer architecture

[88], with communication between the middle layer to form abstract loops [163]. The

BDI-based reasoning operates on conceptualised abstract structures called literals

that can represent different aspects of the environment, of the internal state of the

agent itself or represent actions that the agent executes by activating skills.

Reasoning

Abstraction

· · ·

Sequencing

· · ·

Control

· · ·

Sensing

· · ·

Environment

numeric data
symbolic data
control

Figure 3.1.: The LISA architecture. Labelled boxes with rounded corners represent
categories of skills which can interact with each other or with other skills. The agent

reasoning activates and controls each skill. The environment is anything external to the
agent, for example sensors and actuators.

Figure 3.1 shows a schematic representation of the architecture. The first obser-

vation to be made is that this represents in fact a hybrid system. There are two

types of data flow: symbolic and numeric. Symbolic data is discrete and generally

with much lower granularity than discretised sensing signals. Symbols, or literals,
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are the basic form of data on which the agent reasoning operates. Numeric data

flows can be discrete as a result of discretisation from sensing equipment, but from

an abstract point of view they can be considered continuous. It is also important to

observe that the agent reasoning has universal control access to every subsystem, in

other words it is responsible for activating (and deactivating) each and every skill.

Skills are classified under two broad categories: single execution and continuous

execution. Single execution skills are usually associated to processes that do not

require constant monitoring, and they generate a feedback that is translated to

the agent by other dedicated skills when the execution is terminated. Continuous

execution skills are associated to processes that the agent reasoning is generally not

designed to closely monitor, i.e. lower levels of abstraction. Skills that are designed

to be active throughout the full execution of the agent have to be still activated:

the agent program offers the possibility of defining a set of initial actions that can

be used for the purpose.

In order to clarify the purpose of each group of skills, here follows a brief descrip-

tion of the functionality and operation of each subsystem.

Sensing. Information on the state of the environment at any given time comes

from physical sensors. Any sensor is susceptible to some level of noise. The

Sensing skills are responsible for translating streams of noisy data coming

from sensors into data that other skills can deal with. In most cases the

process consists of filtering algorithms associated with routines that organise

the data into standardised structures. An example of a Sensing skill could be

for instance a data fusion algorithm that computes the position of a mobile

robot relative to a map of the environment, based on data coming from several

sources. Another class of skills that falls under the classification of sensing is

that of communication skills. In the LISA system, incoming messages are

treated as percepts and passed on to Abstraction skills to verify their validity
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and ultimately deliver them to the agent reasoning. Sensing skills can also

implement mechanisms to prioritise or select incoming messages according to

the specifications of a particular implementation.

Abstraction. The agent reasoning is designed to make decisions upon a state of the

world described by a set of available symbolic predicates, rather than a set of

numerical variables. The Abstraction skills function as an interface between

agent reasoning and Sensing skills, they take care of translating a stream of

input data into a pre-defined set of Boolean variables that the reasoning is able

to deal with. For example for a mobile robot, an Abstraction skill would be

one that looks at a target position, calculates the distance from the target and

produces symbolic statements such as ‘I am near destination’ or ‘I am at
destination’. Abstraction skills are also responsible for translating incoming

messages from external agents or operators into activation or deactivation

commands for beliefs to be added or removed from the Current Beliefs set.

Sequencing. Once the agent reasoning has made its deliberations it will issue ac-

tion commands to the Sequencing skills. The Sequencing skills take care of

translating a command that is expressed in symbolic form into a sequence of

lower level actions or into a numerical instruction for the lower level skills to

operate. The communication with Abstraction skills allows access to the most

updated state of the world and to communicate back intentions and updates

for the agent reasoning. For example if the agent reasoning of a mobile robot

issues a command such as ‘Go to point X’, Sequencing skills would retrieve

the value of the variable X, then retrieve an updated map from the abstrac-

tion or Sensing skills, then execute a path planning algorithm to generate a

sequence of safe waypoints, then finally pass this information on to navigation

skills.
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Control. The Control skills represent the interface of the agent with physical ac-

tuators and, more generally, hardware that influences the world in some way,

for example motors or communication devices. The closed loop with the Sens-

ing skills allows for automatic control and monitoring of basic operations such

as movement or communication. An example for a mobile robot would be a

‘waypoint following’ skill that makes sure that the robot is heading towards

the next waypoint defined by the path planning algorithm, or a ‘send mes-
sage’ skill that for example sends pre-defined messages and monitors receipt

acknowledgments from Sensing skills.

The architecture described in this section is general enough to be applicable to

large variety of agent-based system. This structure drives the philosophy behind

the agent reasoning of LISA and in turn many traits of the implementation will

reflect it. However the agent reasoning of LISA can in fact be modified to work with

different BDI-based architectures, by tweaking the top section of the agent program

to accommodate the initialisation of different subsystems, and adjusting the action

definitions.

3.3. The agent reasoning

At the core of the decision-making of every agent there is the agent program, which

maps the information available to the agent to actions that aim to influence the world

to bring it to a state that is close enough to a goal state as per initial specifications

[189]. The agent reasoning of the LISA system is based on the BDI paradigm and it

is constructed as an evolution of Jason [37]. All modifications to the Jason structure

are made with the purpose of addressing design traits that cause an increase in

the size of the state space required to model the agent reasoning for verification by

model checking.



3.3. The agent reasoning 43

The agent reasoning is operated in iterations called reasoning cycles. The reason-

ing cycle of LISA reasoning is presented here in mathematical terms with a step-by-

step illustration, highlighting for each step what is the difference relative to Jason

and the reasons behind each improvement.

The agent program of LISA systems is developed with the NLP language system-

English (sEnglish) [211] (see Section 2.1.2). Thanks to the Cognitive Agent

Toolbox (CAT), sEnglish programs can be compiled into Jason agents, therefore

making the LISA system backwards compatible with Jason, with some restrictions

due to the addition of some features that are described in detail throughout this

section.

The ultimate goal of this implementation is to provide programmers with a frame-

work that includes automatic finite-state modelling and verification of the agent, by

allowing the inclusion of probabilistic data about the environment the agent will

be placed in. The environmental data and responses are defined within the agent

program itself. The agent program will then be automatically compiled into code

for a probabilistic model checker, as explained in details in Chapter 4.

3.3.1. From Jason to LISA

The structure of the LISA reasoning is very similar to that of Jason. The most

important difference lies with the fact that Jason allows for the handling of a single

event and then for the execution of a single action per reasoning cycle, where the

LISA system works in a multi-threaded way, avoiding the need for functions that

are external to the agent program to select events and actions. This modification

brings an advantage when generalising the process of modelling the agent reasoning

straight from the agent program, as all relevant information can be included within

the agent code.

This concept will be more clear after the step-by-step explanation of the reasoning
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cycle of Subsection 3.3.2, and with the mathematical proofs of Section 4.2. Here

all the major changes from Jason to LISA are described, grouped under six main

categories: perception, messages, beliefs, goals, logic rules and external actions.

General operation

The LISA reasoning implementation features a multi-threaded workflow, which sim-

plifies the modelling process of agent reasoning and significantly reduces the number

of states required to describe it. The operation of Jason relies on a set of functions

that are external to the agent code and that implement some choices within the

reasoning cycle, for example message selection and event selection. When develop-

ing a model of the agent reasoning, these functions have to be seen as “external” in

the sense that they make seemingly arbitrary choices against the current state of the

agent, making them a source of nondeterminism for the model. For example priority

given to one event rather than another is completely dependant on the particular

application, and can hardly be generalised if not for very special cases.

Avoiding the need for developing functions that are external to the agent code

also gives the advantage that the full operation of the agent can be defined in a

single document, with a single programming language. In the case of Jason for

example, even though default versions are provided (usually simple First In, First

Out (FIFO) queues) these functions are defined in Java and they are not easily

accessible, creating the need for the developer to investigate and understand the

underlying structure of the framework.
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Perception

In LISA perception predicates can be of two types: sensory perception (p ∈ Bs) and

action feedbacks (p ∈ Ba), therefore the Beliefs set is defined as:

B = {Bs, Ba, Bm} (3.1)

where Bm is the set of all possible mental notes, beliefs that are activated by internal

actions. The action feedbacks are percepts that actions generate in order to make the

agent reasoning aware of their outcome, i.e. success, partial success or failure. For

the purpose of modelling, this classification is very important: the different nature

of sensory percepts and action feedbacks needs to be modelled in a different way for

the model to accurately describe the behaviour of the environment.

In Jason, action feedbacks are also present to recognise when an action is com-

pleted, but not in the form of beliefs directly visible to the agent, they are im-

plemented as Boolean variables returned by the method that performs the action

call. Messages are treated as any other belief and each message can be considered

either sensory percept or action feedback depending on how it is defined in the agent

program.

Messages

A Jason agent features a message handling system for messages coming from external

agents. In Jason the handling of the messages happens internally to the agent

reasoning, as a step of the reasoning cycle. In particular messages are queued and

one message for each reasoning cycle is handled, then the message goes through a

‘social acceptance function’ that verifies whether the agent can handle it or not.

Furthermore messages themselves can directly generate events. Similarly for the

LISA implementation, messages are treated as perception beliefs, and only messages
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that match a pre-existing database are accepted. However messages cannot generate

events directly as the modification they bring to the Current Beliefs set is subject

to the application of logic based implication rules, which in Jason does not happen

until a later stage. This concept will be more clear after the step-by-step explanation

of the reasoning cycle in Subsection 3.3.2.

Messages that are not part of the message database are all transformed to a special

belief that will let the agent know that an unknown message is received, so that the

user can define a plan that manages the situation. However this task is delegated

to abstraction and Sensing skills, so that the agent reasoning only really receives

messages that are part of the database. The reason behind this is that an infinite

set of possible messages cannot be modelled as part of a finite-state machine, as it

would undermine the applicability of the modelling methods described in Chapter

4. There will also be a trade-off to be considered between the size of the message

database and the size of the resulting finite-state model.

This modification allows to avoid the modelling of the messages handling within

the model of the agent logic, therefore greatly reducing the number of states required

for the final model of agent reasoning.

Beliefs

Jason, as well as similar languages, makes extensive use of first-order logic to combine

multiple atomic predicates into more complex beliefs. In particular every belief can

be accompanied by round brackets that contain an object, which gives a context

to the initial atomic predicate. For example ‘tall(tree)’ expresses a particular

property - that of being tall - of the object tree. In sEnglish this concept is improved

even further by associating objects to variables. The variable type becomes part of

the sentence and it must be specified in the ontology file. For example in the sentence

‘Go to location L’ the object ‘L’ is of type ‘location’ which may be specified as
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a vector of coordinates, a set of Euler angles, and so on. This information can then

be used to coordinate skills, for example to apply different inputs to the same skill.

Another common feature of languages that are derived from AgentSpeak is that

there is an additional degree of abstraction over beliefs: they can be true or false but

also present or not present in the Current Beliefs set. The agent can believe that a

predicate is true or not true (the true version of it is not in the Current Beliefs set)

but also that the predicate is false or not false (the false version of it is not in the

Current Beliefs set), giving an additional degree of control over triggering events.

Although this feature is present in Jason, and in turn in sEnglish, it is dropped in

the LISA system - at this stage of development - for beliefs that are simply Boolean

variables, in favour of ease of modelling for verification purposes. The consequence

of this is that a belief that is not present in the Current Beliefs set has the same

meaning as a belief that is false, and to achieve the same level of abstraction the

programmer has to define additional beliefs to indicate different states of a particular

concept.

Goals

In Jason and similar BDI agents there is a distinction between the concept of belief

and the concept of goal. Ideally beliefs represent what the agent knows about

the world, and goals represent a state that the agent would like to achieve. In a

practical sense this distinction does not have a great influence: beliefs and goals

can both trigger plans, with the only difference being that goals are automatically

removed from the Current Beliefs set once the plan is completed. The only practical

advantage that goals can have in the agent program is that when the addition of

a goal is part of a plan it can be used to trigger and include a different plan into

the current one. This can be achieved by simply taking care of copying the required

actions in place of the goal in question. For these reasons in the LISA system the
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definition of goal is dropped in this first stage of development, by implementing goals

as mental notes. As for the modifications on beliefs, this simplifies the syntax and

therefore the process of generating a model directly from the agent code.

Logic rules

In Jason logic-based implication rules are present but yet not very well implemen-

ted, to the point that the main text itself [37] advises against their use. Rules, in

AgentSpeak derived languages, can only be used as context for plan triggering and

do not constitute a way to apply modifications to the Current Beliefs set in any

way. Logic rules are a great tool when implementing a BDI agent, as they allow

to implement advanced and complex reasoning in a schematic way, making them a

valuable addition to the sequential nature of plans. For this reason, in the LISA

system, rules are implemented so that they can make changes to the Current Beliefs

set and therefore generate events.

This feature does not directly simplify the modelling or the verification process,

but it allows to reduce the number and length of plans required to reproduce the

desired logic, and therefore reduce the state space needed to model it.

External Actions

The LISA reasoning implementation introduces a new classification for external

actions that can be either of type runOnce or runRepeated. This reflects the dual

classification of single execution or continuous execution mentioned in Section 3.2.

As the name suggests runOnce actions terminate themselves after a single execution;

runRepeated actions on the other hand, activate routines that require the agent to

actively stop their execution with a stopRepeated command. Both types send

action feedbacks to the agent in the form of beliefs. Even though this feature does

not simplify the modelling process, it gives the user a greater level of flexibility for
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the implementation of rational behaviour. For example runRepeated actions can

be used to activate continuous processes such as perception processes or waypoint

following processes.

For the purpose of modelling and verification, there will be no distinctions between

runOnce and runRepeated actions as long as the programmer takes care of properly

defining the action feedbacks for them, and stopRepeated commands are considered

as independent actions in the discrete model.

3.3.2. The LISA reasoning cycle

With reference to Definition 2.1, the reasoning cycle of a LISA R can be summarised

with the following 5 steps. The reasoning cycle of LISA systems is based on the

reasoning cycle of Jason, and it is presented here with direct comparisons to the

latter.

Figure 3.2 shows a schematic representation of the reasoning cycle of the agent.

The numbering of the functions blocks (rounded corners and diamond shapes) re-

flects each step of the reasoning cycle. Note that all the steps described here are all

part of a single time step t that is the integer count of reasoning cycles throughout

the agent operation.

Step 1: Current Beliefs update

The first step of the reasoning cycle is to update the Current Beliefs set B[t] with

the most recent available data. This operation is done by a function called Belief

Update Function (BUF), denoted with fBU in Figure 3.2, which updates the Current

Beliefs set from its previous version B[t−1] to a new version B[t]. The BUF takes as

input a set of beliefs paired with instructions on what to do with each belief, namely

add them or delete them from the Current Beliefs set. The input comes from two

sources:
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Figure 3.2.: The LISA reasoning cycle. Blocks with rounded corners represent internal
functions, diamond-shaped blocks represent external functions, white square blocks

represent static sets, grey blocks represent dynamic sets. Functions are numbered according
to the order of execution within the reasoning cycle.

• Abstraction skills generate beliefs and instructions coming from sensory per-

ception, incoming messages and action feedbacks of external actions.

• Internal actions generate mental notes.

Additionally, the BUF looks at the database of logic based implication rules and

applies all the necessary modifications to the Current Beliefs set B[t]. Generally

speaking, if there is a conflict between a mental note update issued by an internal

action and a logic based implication rule, the latter is given priority and the Current

Beliefs set updated accordingly. This represents a strong difference from Jason,

where logic based implication rules do not represent a way to modify the Current

Beliefs set, and they are only applied in Step 3 when verifying the applicability of a

plan.

Another difference lies in the fact that, in Jason, incoming messages are handled

internally to the agent reasoning, so there are additional steps in the reasoning
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cycle, that precede the Current Beliefs update, for the message checking, message

selection (only one message per reasoning cycle is allowed) and acceptance check.

In particular a dedicated function called Message Selection Function FM , which is

external to the agent program, selects the message that will be dealt with in the

current reasoning cycle. In the LISA system message handling is delegated to skills

and messages are treated as any other perception belief, so there is no need for a

dedicated function and processes for the agent reasoning to handle them.

Step 2: Current Beliefs review

The update of the Current Beliefs set generates events that will in turn trigger

plans for the agent to execute. Events are beliefs that are copied from the Current

Beliefs set B[t] to the Current Events set E[t] paired with an operator from {+,−}

that indicates that the belief has been added or deleted. This operation is done by

a function called Belief Review Function (BRF), denoted with fBR in Figure 3.2,

which maps B[t− 1] and B[t] to a new Current Events set E[t].

Events can also be classified as either internal or external. External events are

those associated with changes in perception beliefs, action feedbacks and messages

(p ∈ {Bs, Ba}) and internal events are those generated from internal actions, e.g.

addition or deletion of mental notes (p ∈ Bm). In Jason there is an additional dis-

tinction for internal events as they can be either changes in mental notes or changes

in goals. This is not the case for the LISA system as goals are also implemented as

mental notes (see Subsection 3.3.1). In Jason, events can also be directly generated

by internal actions, which is not the case for the LISA reasoning as logic rules are

applied before events are generated (see Step 1).

In Jason only one event per reasoning cycle is dealt with. This implies that the

Current Events set in Jason functions as a queue. For each reasoning cycle the BRF

pushes new events in the queue, and then, in a following step, a function called
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Event Selection function

FE : ℘(E)→ E[t] (3.2)

selects a single event from the currently available ones and passes it on for plan

handling and execution. The multi-threaded workflow of the LISA system allows to

deal with every event that is available for each reasoning cycle, hence the Current

Events set is empty at the start of the reasoning cycle. The reason for this is

that avoiding the implementation of functions such as the Event Selection Function

greatly simplifies the abstraction process for model checking, as explained in details

in Section 4.2.

Step 3: Retrieving applicable plans

Now that the set of current events is in place, the agent needs to make decisions on

what to do with each event. Each plan of Π is a sequence πj(λj), with λ ∈ [0, nλj ],

where the first element π(0) is called triggering condition. In AgentSpeak-derived

languages the latter is usually expressed in the form

ej : cj ← (3.3)

where ej ∈ E is an event called the triggering event and cj is a logic condition on

beliefs from B called the context. When an event in E[t] matches the triggering

event1 of a plan πj ∈ Π the plan is triggered. However this is not enough for the

agent to decide to commit to executing said plan. For each triggered plan the agent

checks whether or not B[t] satisfies the context (B[t] � cj). In Jason, logic based

implication rules are applied at this stage rather than during the Current Beliefs set

update.

All the plans that are triggered by an event and B[t] satisfies their context are copied
1A different expression for ‘matching’ is that the triggering event can be unified with the event
[37].
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into a subset of the Desires set D[t]. Once this operation is performed on every event

of E[t], the latter is reset to the empty set and the Desires set becomes:

D[t] = {D1[t], D2[t], . . . , Dne [t]} (3.4)

where each Dj [t] is the set of plans triggered by an event ej ∈ E[t] and ne = |E[t]|

is the number of events at time t. The function that performs these operations is

internal to the agent (in the sense that it is embedded in the framework) and it

is indicated with fP in Figure 3.2. In Jason only one event per reasoning cycle is

selected, therefore the Desires set contains only plans that are triggered by the event

that was selected in the previous step.

Step 4: Plan selection

Once all the applicable plans are copied into the Desires set, if more than one plan

was found to be applicable for any event, the agent has to make a choice on which

plan to pursue for that particular event. This operation is performed by a function

that is external to the agent program, called Applicable Plan (or Option) Selection

Function

FO : ℘(Π)→ Π (3.5)

that maps a set of plans to a single plan from the plan library. Since the Desires set is

composed by groups of plans relative to different events, the Plan Selection function

must be applied to each of them. This is clearly not the case for Jason where a

single event is selected for each reasoning cycle. When defining a discrete model

of the agent reasoning, being external to the agent reasoning, the Plan Selection

function has to be considered as a nondeterministic entity. From the prospective of

the agent program, all applicable plans are by definition equally applicable, with no

particular priority amongst them, therefore the Plan Selection function represents
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an arbitrary decision and it must be modelled as such. This issue is addressed in

Section 4.2 where the abstraction process is described including the nondeterministic

choice and a special case where nondeterminism can be avoided. In Section 4.5 a

new method is described to use the automatically generated model to implement

an advanced Plan Selection function that automatically adapts to each particular

agent.

The final result of the operation is a set of plans called intentions that are copied

into the Intentions Set I[t]. It is important to note that plans are copied into the

Desire set from the Plan library, but not exclusively, which implies that different

subsets of D[t] may have a copy of the same plan. However, if a plan is selected

multiple times in the same reasoning cycle, it will only be copied once in the Inten-

sions set. Furthermore once a plan is copied to the Intentions set for execution, if

the plan is selected again it will not be copied in the Intensions set a second time,

but it will carry on from the current state (index) unless a plan interruption action

is issued.

Step 5: Actions execution

Once a plan is part of the Intentions set, the agent is committed to execute it. The

final step of the reasoning cycle is the execution of actions from intended plans. At

the end of every reasoning cycle the agent takes the next available action from each

plan and it calls an external function from a skill, if the action is external, or passes

instructions to the BUF for mental notes to be added or removed from the Current

Beliefs set in the next reasoning cycle.

Once an action is issued, it is removed from the plan in question. The function

that performs these operations is indicated with fact in Figure 3.2.

Plans are sequential lists of actions, therefore if an action is not completed the

plan cannot carry on. Internal actions are executed within a single reasoning cycle,
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hence the agent assumes their execution to be instantaneous. The way that the

agent is made aware of completion of external actions is through action feedbacks. If

the last executed action from a plan has not returned an action feedback yet the plan

is held into a special substructure of the Intentions set called Suspended Intentions.

This operation is managed automatically by the system and the developer is not

required to implement any method that takes care of it.

In Jason, at every reasoning cycle, the agent is only able to execute a single action.

For this reason an external function called Intention Selection function

FI : ℘(Π)→ Π (3.6)

selects the plan to be executed in the current reasoning cycle. This is again an

additional source of nondeterminism for a model of agent reasoning, and one of the

reasons the LISA reasoning is implemented as a multi-threaded workflow is to avoid

the need to include FI in the model.

It becomes clear at this stage that in order to characterise the behaviour of the

agent the point to which the agent has advanced each plan must be part of the state

of the model along with the Current Beliefs set. This concept is better explored in

Section 4.2.

To summarise, the LISA reasoning cycle was based on the Jason reasoning cycle

but a few yet fundamental modifications make its operation substantially different.

The main difference is that LISA reasoning is operated in a multi-threaded way that

allows to eliminate some of the functions that are external to the agent code in the

Jason implementation: the Message Selection function (FM ), the Event Selection

function (FE) and the Intention Selection function (FI). These three functions do

not make a significant impact on the execution of the agent as they pick one item
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at a time from a pool of items rather then choosing one of them and discarding the

rest. In other words FM , FE and FI only determine the order of consideration of the

respective sets they are selecting from. There is however another function that is

external to the agent program, which still remains with the LISA implementation:

the Plan (or Option) Selection function. The reason for this choice is that this

function has a significant impact on the operation of the agent as it will choose one

of the plans from the Desires set and it will discard the rest, therefore potentially

changing the outcome of the mission.

3.4. The agent program

The agent program is the body of code that is used to describe and implement a

desired logic for the agent. There is a variety of different AOP languages (see Sec-

tion 2.1.2) in most cases dedicated to the implementation of a specific subclass of

autonomous agent. The LISA agent program is based on sEnglish with some addi-

tional features that allow the programmer to include discrete probabilistic models of

the environment along the definition of environmental variables. The ultimate goal

is to produce an agent program that is compilable to a discrete model for automatic

verification, in this case into the input language of the popular model checker Prism

[135]. One of the benefits of using sEnglish is that it uses NLP syntax, so it is

easily readable and it does not require extensive training to be used in a productive

way.

sEnglish projects are structured as follows. There are three types of files: a

main reasoning file (extension .sej) is used to describe the main logic of the agent,

an ontology file (extension .ont) allows to define hierarchies of variable types that

the agent uses to coordinate skills, and a group of action files (extension .sep), one
for each external action used in the main file, which describe the way the action

command is operated and the associated skill is invoked.



3.4. The agent program 57

The syntax of sEnglish is rather minimal and can be mainly summarised with

the following points

• Square brackets ‘[. . .]’ enclose natural language sentences.

• If preceded by a ‘hat’ symbol ‘ˆ[. . .]’ the sentence is a belief (percept or mental

note). Any sentence that is a belief can be negated with a tilde ‘~’ symbol.

• ‘+’ and ‘−’ symbols signify addition or deletion of the belief they precede from

the Current Beliefs set. The same syntax is used for expressing both events

and internal actions.

• Sentences that are enclosed by square brackets but not preceded by any symbol

represent external actions. Each external action must be associated with an

action .sep file. External actions can only be listed as part of plans or within

the list of initial actions.

• With minor exceptions (namely the triggering condition of plans), each action

or sentence is ended with a dot.

• Common keywords are used to articulate logic statements, such as and, or,
not, while and so on.

As mentioned in Section 2.1.2, the main program is structured similarly to Jason,

and in fact the sEnglish Publisher - an Eclipse plugin for sEnglish - includes a

compiler for Jason. The LISA implementation does not change the structure of the

sEnglish reasoning file itself, which is structured in sections as follows. Sections

are titled with all capital letters in the reasoning file.

1. INITIAL BELIEFS AND GOALS.
This is where the programmer reports a list of all the beliefs of B0 ⊂ B, which

are copied into B[t] at the beginning of the first reasoning cycle. Beliefs in
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this section can be expressed without being encapsulated in square brackets,

as long as they are separated on different lines and each line ands with a dot.

2. INITIAL ACTIONS.
All the actions in A0 ⊂ A listed here are executed before the first reasoning

cycle takes place. Initial actions can also be expressed without square brackets.

3. PERCEPTION PROCESS.
In this section it is possible to configure objects for world modelling and

Boolean symbolic sentences that are in turn used within the document to

represent perception inputs. In LISA all the percepts must be listed in this

section, except for action feedbacks which can be listed in the dedicated action

‘.sep’ files.

4. REASONING.
A list of all logic based implication rules L that are applied to B[t] for every

reasoning cycle. In the LISA system, rules can add or remove beliefs from the

Current Beliefs set. Rules are expressed in the form:

If <condition> then <action>

where <condition> can be any logic based rule on beliefs from B and <ac-
tion> is an internal action of addition or deletion of a mental note from B[t].

5. EXECUTABLE PLANS.
The Plan Library Π. Each plan is listed in the form:

If <triggering_event> while <context> then

<action>
<action>
...
<action>.
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where the first line is the triggering condition and <action> can be either

external, if they call external functions through their action files, or internal,

if the add or delete beliefs from the Current Beliefs set. For a practical example

of a sEnglish plan see Figure 3.3.

1 //Plan 5
2 If ^[Block explored] while ^[Areas left unexplored] and ~^[Sea state

is too high] then
3 [Activate park mode.]
4 [Generate set of waypoints Wi.]
5 +^[Re_exploring areas]
6 [Activate drive mode.].

Figure 3.3.: Brief example of plan definition in a sEnglish document. Line 2 is the
triggering condition, lines 3-6 are external and internal actions.

Action definition files are used to describe the way the agent is going to issue action

executions, e.g. invoke skills. Each .sep file lists a set of simple characteristics which

include:

• Procedure name, which has to match the file name.

• sEnglish sentences the action is associated to.

• Process, repeat mode: the subsystem in which the action is implemented in

(see Figure 3.1) and the type of action (runOnce or runRepeated)
• Input and output classes: if the skill needs inputs or outputs they must be

defined here.

• sEnglish code: the action can be defined as a sequence of sub-actions repres-

ented by other sEnglish sentences

• Performance feedback: the list of all possible action feedbacks for the action.

Procedure name, sEnglish sentences and Process, repeat mode are mandatory fields.

Additional fields are allowed for specific applications, for example matlab libraries
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and matlab url when implementing the action as a Matlab function. It is also

possible to organise actions in sections and include a section number as part of the

‘sep’ file.
In the main reasoning file, actions are invoked by using one of the sentences of

the section sEnglish sentences. In case of runRepeated actions, a stopRepeated
action can be issued by adding the prefix ‘Stop’ before the action sentence in the

reasoning file.

Figure 3.4 shows an example of the syntax for a position calculation action, note

that the ‘Execute’ command in the ‘senglish code’ field is used by the sEnglish

Publisher to generate Matlab scripts.

1 procedure name:: computing desired position and state for fixed
attitude

2 senglish sentences:: Compute desired position Pdes and desired state
vector Xdes for fixed attitude.

3 mol reference::
4 input classes and local names::
5 output classes and local names:: position [Pdes], desired state

vector[Xdes]
6 senglish code:: Execute "␣Pdes␣=␣circular_trajectory_position2

([150,120],70,tLim,t,circlePhase);
7 QuatDes=[0;0;0;1];␣Xdes=[Pdes;zeros(3,1);QuatDes;zeros(3,1)];␣".
8 matlab libraries::
9 conceptual graphs::

10 author data::
11 section number:: 2
12 performance feedback::

Figure 3.4.: Example of action definition ‘sep’ file in sEnglish, which contains all
necessary information to impelement the particular function.

3.4.1. Probabilistic modelling of the environment

In order to generate a probabilistic model of the environment directly from the agent

code, the latter has to feature the probability distributions that describe the prob-

abilistic nature of some parts of the system. This Subsection gives an overview of

how the sEnglish language is enhanced, in the LISA system, with the possibility
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of defining, within the agent code, probability distributions to describe the environ-

ment.

The way in which probability distributions of random variables are found widely

depends on the particular application. For example distributions of environmental

variables are usually inferred from large amount of data collected with physical

sensors or through simulation (a recent example in [109]), while rate of failure of

actuators and sensors are usually provided by the manufacturer.

In the LISA system framework there are only two sources of probabilistic beha-

viour, and they both come in the form of perception predicates: sensory percepts

and action feedbacks, which include messages. Beliefs in the LISA system are simply

Boolean variables, so the uncertainty comes with the amount of time that passes

between changes in the state of the variable. In particular for sensory percepts

this time can be completely random, unless there is a known underlying probability

distribution to describe its behaviour. Action feedbacks on the other hand show

a different kind of probabilistic behaviour: first of all they can only be activated

when the related action is actually invoked, and also whether they carry a message

of failure or success, they are guaranteed to eventually come true, at least within a

set time limit that generates a failure message. It is important to remember that

in this setting time indicates the integer counts of reasoning cycles, which can be

arbitrarily spaced and not necessarily equally spaced in real time.

The approach taken here to model both the probabilistic behaviour of percep-

tion beliefs and action feedbacks is to include in the agent code a finite set of key

values that characterises a pre-defined probability distribution. The particular dis-

tributions chosen for the purpose, explained in the following subsections, give no

particular advantage over other distributions, and they are shown here as a proof of

concept rather than a result. In fact this principle can be extended to any other dis-

tribution that can be completely characterised with a finite set of numerical values.
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A different approach could be for example to give a discrete, bigger, set of values

that characterises the full distribution at each consecutive time step.

Action feedbacks

Action feedbacks are percepts that action execution functions return to the agent

reasoning after the action has been executed. In the LISA framework the program-

mer has to take care of defining all possible action feedbacks and their probability

distributions. The way this is done is by including within the action definition

file (.sep) for each action all information necessary to characterise the probability

distribution.

Figure 3.5 depicts the distribution of choice for the characterisation of the prob-

abilistic nature of action feedbacks activation. The probability of an action feedback

of becoming true has a value of zero at the time of the action call and it increases

linearly from a minimum value of 1/(2σ + 1) when t = µ− σ, where σ is a variance

value, up to 1 when t = µ+σ. This is in line with the fact that action feedbacks are

bound to become true after a set period of time. At each time step the probability

of activation increases of a factor of 1/(2σ + 1).

µ − σ µ µ + σ
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Figure 3.5.: Probability distribution Praf [t] for a single action feedback activation. µ is the
average time of activation and σ is the variance. In case of multiple action feedbacks, the
probability at each time is divided proportionally amongst each action feedback according to

pre-defined weighting factors.
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The probability distribution of Figure 3.5 can be formally expressed as:

Praf [t] =





t− (µ− σ) + 1
2σ + 1 |t− µ| ≤ σ + 1

0 otherwise

(3.7)

Note that since at each time step t there is a probability Praf [t] that the action

feedback is activated, there is clearly a 1 − Praf [t] that it does not happen. This

creates self-loops in the discrete model and allows the system to be modelled as a

Discrete-Time Markov Chain (DTMC) or Markov Decision Process (MDP), as both

models do not allow for deadlocks (see Definitions 2.3 and 2.5).

When multiple action feedbacks are defined for a single action, the model accounts

for it by splitting the probability amongst them, as a weighted sum:

Praf [t] = p1 · Praf [t] + p2 · Praf [t] + · · ·+ pnaf Praf [t]

with p1 + p2 + · · ·+ pnaf = 1
(3.8)

It becomes clear from Equations 3.7 and 3.8 that this distribution can be com-

pletely characterised by including in the action definitions of the agent program a

set of three values for each available action feedback:

1. A probability value p, which represents the weighting factor in case multiple

action feedbacks for the same action are present.

2. The average number of reasoning cycles µ in which every action feedback is

expected to become true.

3. The variance σ around the average number of reasoning cycles.

The triad of values is embedded along each action feedback enclosed with square

brackets and comma separated. Note that the value of µ and σ must be equal for all

action feedbacks of an action, in fact different values specified for the other action
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Table 3.1.: Example of probability values over time for the two action feedbacks of the
example in Figure 3.6. Each time step t represents a full reasoning cycle.

t 1 2 3 4 5 6 7 8

Prcontinue[t] 0 0 0.6 · 1
5 0.6 · 2

5 0.6 · 3
5 0.6 · 4

5 0.6 0

PrAbort[t] 0 0 0.4 · 1
5 0.4 · 2

5 0.4 · 3
5 0.4 · 4

5 0.4 0

feedbacks are ignored. Figure 3.6 shows an example of the syntax described above

from an action ‘.sep’ file.
1 procedure name :: wait instructions
2 senglish sentences :: Wait for instructions.
3 process, repeat mode :: control, runOnce
4 ...
5 ...
6 performance feedback :: Continue[0.6,5,2], Abort[0.4,5,2]

Figure 3.6.: Partial example of a ‘.sep’ file action definition with action feedbacks with
probabilistic modelling (line 6) in sEnglish. The numbers in square brackets characterise

the probability distribution depicted in Figure 3.5.

Once activated, action feedbacks are detected by the agent reasoning within one

reasoning cycle, given the multi-threaded implementation of the LISA system, there-

fore the variable associated with them is deactivated after one reasoning cycle.

Table 3.1 shows what are the probability values generated for the example given

in Figure 3.6, assuming that the action ‘Wait for instructions’ is executed at

time t = 0.

Sensory percepts

Generally speaking sensory percepts present a behaviour that is less predictable

than action feedbacks as they are not guaranteed to come true within finite time

intervals, therefore needing a probability distribution for modelling activation and

one for modelling deactivation. In order to be able to describe their probabilistic
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nature over time with a finite number of numerical values, the approach taken here

is to define a single probability distribution that is symmetric around an average,

with a given variance, and evenly space copies of the same distribution over time

by a given amount, for example the average value. Another difference from action

feedbacks is that a sensory percept does not necessarily have to be deactivated after

a fixed amount of reasoning cycle. This phenomenon needs to be accounted for with

a second probability distribution for deactivation. As discussed in the introduction

to this section, the choice of distribution made for this application is not driven by

any particular advantage if not that of being easily implementable, but it is still

applicable to a large variety of phenomenons. A reasonable alternative could be

for example a discrete Gaussian distribution, which could be drawn with the same

amount of information.

An additional degree of modelling is given in the LISA system by allowing the user

to define conditionality for each percept. For example a percept of the kind ‘i am
at destination’ cannot possibly be activated when the robot is not at destination

but it is also not moving. The way this is implemented is that any percept pb defined

as conditional to a percept pa, will only have a chance to be activated if pa is active

for at least an amount of time equal to the average value for pb has passed, and if

pa becomes inactive during this time, the associated counter is reset. This concept

will be better explained in Section 4.3.

Figure 3.7 shows the distribution of choice (triangular distribution) for the char-

acterisation of the probabilistic nature of sensory percepts. Similarly to action feed-

backs the distribution is characterised by a probability value p, an average value µ

and a variance σ. The distribution is then repeated at time intervals equally spaced

by a value of µ. The same distribution is used here for both activation and deac-

tivation of the sensory percepts variables. Each distribution of Figure 3.7 can be
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µ− σ µ µ+ σ 2µ− σ 2µ 2µ+ σ

p
σ+1

p

time

pr
ob

ab
ili

ty

Figure 3.7.: Probability distribution Prs[t] for a sensory percept. µ is the average time of
activation or deactivation, σ is the variance and p is the maximum probability value.

formally expressed as:

Prs[t] =





ps


1−

∣∣∣∣∣∣∣

t− µ
σ + 1

∣∣∣∣∣∣∣


 |t− µ| ≤ σ + 1

0 otherwise

with ps ∈ [0, 1]

(3.9)

Analogue to the action feedbacks, at any time t there is always a 1− Prs[t] chance

that the activation/deactivation does not happen.

The information needed to model the probabilistic nature of sensory percept is

included in the reasoning file of the agent code under the ‘PERCEPTION PROCESS’
section. Here the programmer must list all possible sensory percepts and their

modelled probability values. Up to three set of values are needed for each percept:

1. A list of percepts or mental notes (optional) to which the percept being mod-

elled is conditional to.

2. Probability, average number of reasoning cycles and variance of activation.

3. Probability, average number of reasoning cycles and variance of deactivation.

Each set of values is, as usual, enclosed in square brackets and the three are in turn

enclosed in curly brackets. Figure 3.8 shows a simple example of a ‘PERCEPTION
PROCESS’ section with probabilistic modelling in sEnglish. Table 3.2 shows a simple
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Table 3.2.: Example of probability values over time for a percept modelled with p = 0.6,
µ = 5 and σ = 2. Each time step t represents a full reasoning cycle.

t 1 2 3 4 5 6 7 8

Prs[t] 0 0 0.6 · 1
3 0.6 · 2

3 0.6 0.6 · 2
3 0.6 · 1

3 0

example of probability values for activation or deactivation of a percept modelled as

described above with no conditional percepts and values of [0.6,5,2].
1 PERCEPTION PROCESS
2 Monitor the following booleans:
3 //Percepts
4 Sea state is too high. {[], [0.01,10,5], [0.01,10,5]}
5 I am at global waypoint. {[], [0.5,5,0], [1,1,0]}
6 Last waypoint reached. {[I am at global waypoint],[0.1,1,0],[1,1,0]}

Figure 3.8.: Example of percepts with probabilistic modelling in sEnglish. The numbers in
square brackets characterise the probability distribution depicted in Figure 3.7.

Rewards

The last verification-oriented feature introduced with the LISA system is the pos-

sibility for the programmer to describe reward structures, that then allow to use

reward properties as defined in Equation 2.3.

The reward values can be declared by listing ‘name=value’ of each reward, comma

separated and enclosed in curly brackets, on the same line of any percept declaration

within the Percept Process section, or any action within any of the executable plans.

Figure 3.9 shows an example of reward declaration of an action within a plan. In

this case, for example, if analysing the cumulative ‘fuel’ reward, each time that the

internal action of adding a belief ‘+^[Re_exploring areas]’ is performed the value of

fuel goes up by a factor of 1. The model checker can then provide with an estimate

of the total reward accumulated for example within a certain amount of time steps.
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1 //Plan 5
2 If ^[Block explored] while ^[Areas left unexplored] and ~^[Sea state

is too high] then
3 [Activate park mode.]
4 [Generate set of waypoints.]
5 +^[Re_exploring areas] {fuel=1,time=1}
6 [Activate drive mode.].

Figure 3.9.: Minimal example of reward declaration for an action in a sEnglish plan.

3.5. Conclusions

A new agent-based architecture is presented here, with a verification-oriented ap-

proach to allow for automatic modelling and verification using model checking soft-

ware. The purpose of an autonomous system is to influence the environment in order

to make it be closer and closer to the design specifications.

The LISA system is based on the BDI paradigm and features a layered architecture

with the agent reasoning on top and lower level algorithms and control systems on

lower levels of abstraction. Agent reasoning is the part of the agent that takes

decisions on what actions to take in order to achieve its tasks. Each subsystem of

the architecture is a group of skills that largely operate on the same inputs and

outputs. The way that the agent reasoning interfaces and influences the world to

achieve its design objective is by issuing action commands to the skills that in turn

convert the command to yet lower level commands or directly execute the action.

Agent reasoning is based on AgentSpeak/Jason and its features and reasoning

cycle are described in comparison to Jason. The main innovation in the LISA

system is the implementation of a multi-threaded workflow that avoids the need of

several specific functions that would be a source of nondeterminism for the discrete

model, ultimately reducing the state space required to model the agent behaviour.

The agent program is based on the sEnglish language with a few improvements on

the framework, so to allow the programmer to include probability distributions to

describe the behaviour of perception beliefs and action feedbacks.
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Including all the necessary information enables the system to generate a complete

and verifiable model of the agent reasoning, as will be discussed in the following

chapter.





Chapter 4.

Automatic verification of

agent reasoning

Verification is a crucial step in the development process of an autonomous sys-

tem, that aims to guarantee safety of the environment and the machine itself

when operating in real-world applications. Verification is usually performed by

model checking, which requires a model of the system to be verified, expressed in

a language that is specific to the model checking software of choice. This chapter

shows that the LISA system can be modelled as a DTMC or MDP and how the

agent program can be automatically translated into code for the model-checker

Prism. Model checking techniques are also considered for predicting possible

consequences of actions, so that the agent can select the best strategy.

4.1. Introduction

This chapter describes how the agent reasoning of the Limited Instruction Set

Agent (LISA) system can be automatically translated into a complete discrete

model and verified with model checking software. Although this principle could be

applied with any model-checker, this project focuses on Prism [205].

The LISA system, and agent-based systems in general, are structured with an

71
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agent reasoning that deliberates on future actions, and a set of skills that perform

said actions and gathers information from the environment. In this framework, skills

can only be activated by agent reasoning, therefore verifying the agent reasoning

represents a major step in proving the effectiveness and the safety of an agent-based

robotic system.

In order to perform formal verification on agent reasoning, it has to be abstracted

to a model that fully represents its behaviour. Such a model must include its inter-

face with other subsystems and ultimately with the environment. In the case of the

LISA system the interface is composed of symbolic data coming from Abstraction

skills and action commands to execute sequences of actions that represent various

physical and mental skills of the agent. Two finite-state models are considered for the

abstraction of LISA reasoning: Discrete-Time Markov Chain (DTMC) and Markov

Decision Process (MDP). Both models have discrete-time progression, which is in

line with the fact that the agent reasoning operates in reasoning cycles and actions

are only executed at the end of each of these cycles. DTMC models do not account

for nondeterminism, and they will only be applicable in a special case. MDP mod-

els on the other hand are proven to be applicable to any implementation of LISA

reasoning. Section 4.2 describes the abstraction process with proofs of applicability

of both DTMC and MDP.

The inclusion of probabilistic information about the environment is introduced in

Section 3.4.1 and it represents an important tool for the automatic generation of

the discrete model. The probability distributions of environmental variables that

are included within the code allow to generate complete models, in this case ex-

pressed in terms of Prism code, that can be readily verified against probabilistic

specifications, for example Probabilistic Computation Tree Logic (PCTL) specific-

ations. The process of translation of the LISA agent program to a Prism model is

described in Section 4.3.
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Once a model of the agent reasoning is generated, the verification process is

straightforward. Model checkers such as Prism offer a great variety of tools that

allow to deeply explore the properties of a system and verify that they meet design

specifications. The verification process generates counterexamples that give the

programmer knowledge about flaws in the agent program that can be iteratively

corrected. The design-time verification process of the LISA system is described in

Section 4.4.

Section 4.5 describes how the discrete model and verification tools offered by model

checkers such as Prism can be used to improve agent programs, and in particular

the LISA program. The availability of a complete probabilistic model of the system

gives the possibility of making estimates on the outcome of actions in terms of

probabilities, so that the agent can use this knowledge to opt for actions that bring

it as close as possible to a desired world state.

4.2. Abstraction to finite-state machine

In order to perform verification by model checking of any system, a complete model

of the system is needed. In case the system features probabilistic behaviours, veri-

fication by model checking can be performed on a probabilistic model. Advanced

verification queries can be used to verify probabilistic specifications, for example

PCTL specifications with the Prism model checker. A complete model of the sys-

tem is one that completely describes its internal operation and its interaction with

external entities, e.g. its interface with the world.

The operation of agent reasoning in a BDI agent-based system is intrinsically

probabilistic: inputs come in the form of perception beliefs and even though precise

patterns of activation may be known, generally speaking these are events that oc-

cur at time intervals in a probabilistic fashion and can therefore be described with

probability distributions. One of the new features of the LISA system is that the
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user is able to include probability distributions of input variables within the agent

code (see Section 3.4.1).

Even though model checkers such as Prism allow to verify a variety of models,

this project focuses on two discrete probabilistic models in particular: DTMC and

MDP. The reason for choosing only discrete time models is that the agent operates

in reasoning cycles and the state of the reasoning is not relevant until the reasoning

cycle is ended and beliefs, events and plan indices are all updated. This section

aims to show that the agent reasoning of a LISA system can always be modelled as

a MDP and in a special case it can also be modelled as a DTMC.

Figure 4.1 reformulates a diagram of the high level architecture of LISA, highlight-

ing the interface between agent reasoning and its skills. Assuming that all necessary

skills are implemented and associated to actions of the agent code, the only interface

that the agent reasoning has with the outside is composed of two classes of inputs,

percepts and action feedbacks in the form of beliefs, and one class of outputs, action

commands. Note that in this framework messages from external agents are included

as perception beliefs (see Section 3.3).

Reasoning

Skills

· · ·

Environment

Sensory percepts
and action feedbacks

Action issues

Figure 4.1.: Agent reasoning interface with the skills. Information to the agent comes in
the form of predicates representing sensory percepts or action feedbacks. The agent

reasoning controls the skills through action commands, or action issues.

A BDI agent of this type is completely defined, as per Definition 2.1, by listing all
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beliefs and actions, a set of rules and a set of plans that operate on those beliefs by

sequentially executing actions. This is in principle a system with well defined states

and transitions, assuming probability distributions of random inputs are known.

However as shown in Section 3.3, with the Jason and LISA implementations there are

some aspects of the reasoning cycle that introduce nondeterminism when modelling

the agent reasoning.

In Jason the nondeterminism comes from four functions that are external to the

agent reasoning listed here in temporal order of usage within the reasoning cycle:

• The Message Selection function (FM ) selects one out of the incoming messages

for each reasoning cycle.

• The Event Selection function (FE) selects one out of the events generated for

each reasoning cycle.

• The Plan Selection or Option Selection function (FO) selects one out of the

set of Applicable plans (or Desires set).

• The Intention Selection function FI selects one of the intentions from the

Intentions set to be carried on in the current reasoning cycle

The nondeterminism of these functions comes from the fact that they are external

to the agent code, therefore unless their operation is modelled along with the agent

reasoning they represent in fact an arbitrary choice from the perspective of the agent

code. Including a description of these functions in the model of the agent reason-

ing is possible but rather impractical: the functions are implemented externally to

the agent code, usually in a different programming language, therefore making the

modelling process significantly difficult to automate, and in most cases requiring the

programmer to have a deep knowledge of the underlying structure of the agent pro-

gram execution. For example in the case of Jason these functions are implemented



76 Chapter 4. Automatic verification of agent reasoning

in Java and to personalise them the user has to modify the default implementation

within the custom Java libraries.

In the LISA system, thanks to its multi-threaded implementation, the nondetermin-

ism is reduced to only one function: the Plan Selection function. The other functions

listed above are used in Jason because of its single-threaded execution that allows to

deal with a single message, a single event and a single intention per reasoning cycle.

The Plan Selection function however is still present in the LISA implementation

because it does not depend on the parallel execution and it plays an important role

in the operation of the agent reasoning. The outcome of the Plan Selection function

greatly influences the agent’s behaviour.

Definition 2.1, among other things, introduces the concept of plan as a sequence

π(λ) with λ ∈ [0, nλ], where π(0) is the triggering condition and π(λ) with λ > 0

is an action from A. Assuming that a plan is not allowed to be executed multiple

times in parallel, let us define a set of plan indices:

λ[t] = {λ1, λ2, . . . , λnπ} (4.1)

where each index λj ∈ N≥0 represents the state of execution of a plan at time t.

For instance, if a simple agent is programmed to have two plans, then a set of plan

indices λ[3] = {2, 4} indicates that at time t = 3 the agent is currently executing

action 2 of plan 1 and action 4 of plan 2. This information is clearly necessary to

determine the current state of agent reasoning, as it will be shown in Theorem 4.1.

Depending on the particular application, plans will not generally have the same

number of actions. For each plan πj the range of values for each index is defined as

a set Λj = {0, . . . , nλj} of natural numbers between 0 and the total number nλj of

actions. Consequently it is possible to define a set

Λ = {Λ1,Λ2, . . . ,Λnπ} (4.2)
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of all possible indices for all plans, where nπ is the total number of plans.

The following Theorem 4.1 shows a particular case where the LISA reasoning

can be abstracted as a DTMC. This is potentially an advantage over using MDP

as nondeterministic models can potentially be more computationally expensive to

verify.

Theorem 4.1 (LISA reasoning abstraction to DTMC). Given a LISA R, assuming

the existence of sets of (discrete) probability distributions Dist(Bs) and Dist(Ba),

over the set of percepts and the set of action feedbacks, if ∀ i, j ∈ [1, nπ], i 6=

j, πi(0) 6= πj(0) the LISA reasoning can be modelled as a DTMC .

Proof. A DTMC is completely characterised given a countable set of states S and a

transition function P : S × S → [0, 1].

According to the definition of LISA, for a reasoning cycle to be completed the

agent needs to be aware of E[t], in order to recall plans from the plan library, of

B[t], in order to check the plans context, and of the state of the plans, in I[t] in

order to execute the next actions. The state of a LISA is only relevant at the end

of each reasoning cycle, therefore a generic state at time t can be expressed as:

s[t] = {B[t], E[t],λ[t]} (4.3)

The set of Current Beliefs B[t] and the set of Current Events E[t] are subsets of

finite countable sets (B and E respectively), they are therefore finite and countable.

The set of current indices λ[t] for the plans of the agent is composed of values with

a finite range, that is natural numbers between 0 and the length of each plan. The

state space, given by

S = ℘(B)× ℘(E)×Λ (4.4)

is therefore finite and countable. Note that not all the states in the set S are

reachable, only a subset of S will contain states that the agent can possibly reach
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during its execution. The state of the agent is initialised with s0 = {B0, ∅,0}, where

0 is a null array of dimension nπ, and by triggering the actions listed in the set A0

of initial actions.

The transition function of a DTMC describes the way in which the state of the model

changes at every step. For each reasoning cycle actions from plans in the Intentions

Set (λ > 0) are executed and the indices are updated. If the action was external,

the index of the relative plan will only be updated if the associated action feedback

is activated, e.g. the action feedback generated an event. Plans with λ = 0 can be

triggered by new events. For each reasoning cycle, events can be generated from

changes in beliefs, namely mental notes, action feedbacks and percepts. Changes

in mental notes are given by internal actions, which are associated with the plan

indices. Changes in action feedbacks and percepts are given by known probability

distributions. If ∀ i, j, i 6= j, πi(0) 6= πj(0), e.g. if all plans have different triggering

conditions, then

∀t ∈ N≥1 ,

∣∣∣∣∣
ne⋃

k=1
Dk[t]

∣∣∣∣∣ = |D[t]| ≤ |E[t]| (4.5)

the number of applicable plans is always less than or equal to the number of events,

as each event will trigger at most one plan. This implies that the Plan Selection

function FO becomes a trivial one-to-one mapping, therefore the system does not

show any nondeterministic behaviour.

Given that the state space of the LISA reasoning is finite and countable, the trans-

itions between states can be defined with actions from plans and known probability

distributions for action feedbacks and percepts, and there is no trace of nondetermin-

ism, the modelling of the LISA reasoning with DTMC is complete.

Theorem 4.1 proves that the LISA reasoning can be abstracted as a DTMC in

the particular case when all plans have unique triggering conditions. Theorem 4.2 is

now presented to prove that when this condition does not hold, the LISA reasoning
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can still be abstracted as a MDP.

Theorem 4.2 (LISA reasoning abstraction to MDP). Given a LISA R, assuming

the existence of sets of (discrete) probability distributions Dist(Bs) and Dist(Ba),

over the set of percepts and the set of action feedbacks, the LISA reasoning can be

modelled as a MDP.

Proof. A MDP is completely described given a countable set of states S and a

transition function Step : S × C → Dist(S), with C(s′) being the set of available

choices in any state s′. As per Theorem 4.1 the set of states is given by S =

℘(B) × ℘(E) ×Λ and it is finite and countable. The initial state is still defined as

s0 = {B0, ∅,0}. If ∀ i, j ∈ [1, nπ], i 6= j, πi(0) 6= πj(0), according to Theorem 4.1,

the system does not show any nondeterminism. However, if ∃i, j ∈ [1, nπ], i 6= j :

πi(0) = πj(0), then at some time t′

∃t′ ∈ N≥1 :
∣∣∣∣∣
ne⋃

k=1
Dk[t′]

∣∣∣∣∣ >
∣∣E[t′]

∣∣ (4.6)

the number of applicable plans is greater than the number of events, therefore for

some event ek[t′] ∈ E[t] (with k ∈ [1, ne]), the application of the Plan Selection

function to the k-th subset of the Desires Set related to ek involves a nondetermin-

istic choice. Depending on the chosen plan, different future probabilistic outcomes

from action feedbacks will be activated. The nondeterministic nature of the plan

choice with FO prevents the abstraction of the LISA reasoning with DTMC models.

However, this choice represents the only nondeterministic part of the LISA reason-

ing, thus for each event ek ∈ E[t] the set of available choices is fully represented by

Ck(s′) = Dk[t′]. Once a choice is made by the Plan Selection function for each of

the available events, the transition to the next state is defined, as shown in Theorem

4.1, by looking at events generated by changes in mental notes, percepts and action

feedbacks, and by updating plan indices accordingly. Given that the LISA reasoning
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features a finite and countable state space, a finite set of choices for each state and

a well defined transition relation between states, it can be modelled as a MDP.

Theorems 4.1 and 4.2 show that the LISA reasoning can generally be modelled as

a MDP, and as a DTMC under the condition that all plans are implemented with

different triggering conditions. Assuming that probability distributions of perception

beliefs are known, the LISA reasoning can be abstracted as a MDP even if the Plan

Selection function is unknown. This allows to verify the agent reasoning with a

model checker by manually selecting the choices or even by exploring sets of chains

of choices, e.g. sets of adversaries.

The possibility of defining agents that can be abstracted in two different ways

brings along the question of what is the most efficient or effective way to do so.

On one side DTMC models are generally less computationally expensive to verify,

therefore defining agents that can be abstracted as DTMCs can potentially reduce

the computational load on the model checker, making the verification process faster.

However, in order to achieve similar behaviours, the programmer might be forced to

define agents with larger sets of mental notes, longer plans and/or more logic based

implication rules. This will make the state space larger1 as well as requiring greater

effort from the developer by limiting one of the features of BDI agent programming.

On the other hand MDP models can be more computationally expensive to verify,

potentially making the verification process slower. However this is not necessarily

the case, as allowing plans to be activated under the same conditions shift some of

the load on the Plan Selection function, allowing in turn to define code with less

beliefs and conditions and therefore generating models with a reduced state space.

The MDP model does not include the choice itself in the transition function, but

rather a set of choices that can be explored in a variety of ways. One thing that

1A larger state space generally implies larger memory required to store the model and more time
for the model checker to explore the model when verifying queries.
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is possible to do is, for example, to ask the model checker to find adversaries that

satisfy specific conditions. This is a valuable tool that can be used to implement the

Plan Selection function itself to explore the model for adversaries that minimise for

example probability of failure, and then choose a plan based on the results given by

the model checker. Assuming the correctness of the model checking software, in this

way it is still possible to guarantee a completely verified process that also includes

the Plan Selection function. This concept is explored in Section 4.5.

4.3. Generating PRISM models from agent code

The process of translating the agent reasoning code of the LISA system into a model

in the input language of the probabilistic model checker Prism is described here,

with detailed explanations of the modelling process and pseudo code of the end result

in Prism. Once the Prism model is available, the software offers a wide range of

tools for verification of properties expressed in PCTL, or in an evolution of it which

includes reward properties (see Equation 2.3).

Section 3.4 described how the reasoning of the LISA system is implemented and

an approach to a unified modelling solution that includes a probabilistic model of

the world in which the agent is placed. This is done by using NLP with sEnglish to

describe the logic and including key values within the sEnglish program to describe

the probability distribution of activation/deactivation of percepts and action feed-

backs over time. Additionally this framework allows to describe reward structures

that can be used to verify reward properties. All of this gives enough information to

automatically generate a DTMC or a MDP model in the input language of Prism.

The translation software was developed as a Matlab script. It is a simple text

processing algorithm and it typically runs in the order of tens of milliseconds on

the consumer laptop PC that was used for the testing. For this reason, and being

a one-off execution for each system, the performances of the translator itself will be
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considered negligible for the results presented in the thesis.

In [63], Dennis et al. developed a process that aims to obtain a similar result to

what is described in this section. The authors use a modified version of the Agent

Java PathFinder (AJPF) to track and number all of the states of the agent, but

then use this information to generate a Spin or Prism model for the verification

process, instead of using the AJPF for the model checking. For the Prism model

the probability values are included with a Java class that needs to be specialised

with each application. The end result of this process is a Prism model that features

a variable that indicates the state number, and where probabilities of transition are

defined from the values specified in the new Java class. The case of plan selection

when plans share the same triggering event is not contemplated, in which case the

agent possibly executes one plan at the time in the order in which they are listed

in the agent code. There are a few problems with this approach that the LISA

implementation aims to solve: first the process of exploring the model with AJPF

to find all the states of the agent is highly computationally expensive and represents a

significant bottleneck that makes the model generation quite slow. Furthermore the

programmer is required to modify the new Java class for each agent implementation

to model the environment.

The process of generating Prism models from the agent code described here is

significantly different from the one in [63]. The aim here is to generate a Prism

model directly from the agent code without exploring a symbolic model of the agent,

which overcomes the drawback of the computational load required to do so. This

is made possible by using a completely different approach to the implementation of

the Prism model: instead of using a single variable to number all the states of the

agent, a Boolean variable for each belief is defined and transition probabilities are

taken from the probability distributions defined in the sEnglish code as described

in Subsection 3.4.1. In Prism each step will have a different set of values for these
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variables, which represents in fact a state of the agent, and parallel transitions

modify single variables to change the state when appropriate.

The variables of the automatically generated Prism program can be grouped in

the following two main categories:

• Belief variables. A variable is defined for each mental note, perception belief

and action feedback. Mental notes can be inferred by looking at the plan

library of the agent program for internal actions (addition with + or dele-

tion with −), and by looking at the ‘INITIAL BELIEFS AND GOALS’ section
for prepositions that are not perception beliefs. Perception beliefs are taken

from the ‘PERCEPTION PROCESS’ section, where all percepts are listed. Action
feedbacks are found by scanning through all the action ‘.sep’ files.

• Plan index variables. A variable representing the plan index is defined for

each plan of the Executable Plans library. The range of the variable is inferred

by simply counting the number of actions for each plan. Assigning a variable

to each plan index makes the definition of variables for actions unnecessary:

actions are only allowed to be used within plans, and there is only one action

for each value of the plan index.

Prism offers the possibility of organising the model in modules, which are in-

dependent entities within the model that operate on separate variables that other

modules have read access to but cannot modify. Transitions defined in separate

modules can be executed at the same time in parallel if they are synchronised. To

do so Prism offers the possibility of assigning to each transition a label: for each

time step all the transitions with the same label are executed at once.

The synchronisation feature of Prism is used in the model described here to divide

the reasoning cycle in two sequential steps:

1. Belief update. In the first stage, the Current Beliefs set is updated by changing
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the value of the variables associated with mental notes, percepts and action

feedbacks.

2. Plan update. In this stage the plan indices are updated if the state satisfies

the required conditions, e.g. the triggering condition is satisfied or action

feedbacks of the previous actions have become true.

The synchronisation of the two steps is made possible with a dedicated module

that will be named ‘scheduler’, showed in Figure 4.2. The use of the variable ‘x’
in this way, forces the two transitions to be executed sequentially and consequently

all the transitions labelled with ‘b’ in the model, in this case belief updates, and all

transitions labelled with ‘t’, in this case plan updates, will be sequentially synchron-

ised.

1 module scheduler
2 x: [0..1] init 0;
4 [b] x=0 -> (x'=1); //belief updates
5 [t] x=1 -> (x'=0); //plans updates
6 endmodule

Figure 4.2.: Example of scheduler module used in PRISM to synchronise the steps of the
reasoning cycle.

In order to modify all the variables that make up the state of the agent at the same

time, without implementing complex and numerous transition structures to account

for each possibility, these have to be defined in separate modules. In particular there

will be a module for each plan, which controls the plan index variables, a module

for each action, where all the variables representing action feedbacks from the same

action are controlled, one for each mental note and finally one for each percept.

Additionally, special modules are included to define reward structures associated

with beliefs or actions throughout the model.

Here follows a brief description of each of these modules and how the imple-

mentation was done to reflect the LISA system reasoning and its reasoning cycle as
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described in Section 3.3.

Plan modules

As mentioned before, to each plan is assigned a variable that keeps track of the

state of the plan. Since all plans must be updated at the same time, these variables

have to be defined in separate modules so they can be modified during the same

transition. However in case two or more plans have the same triggering condition

they will be implemented in the same module, as nondeterministic choices for MDP

models in Prism must be defined within the same module.

Figure 4.3 shows pseudo Prism code for a module of a plan that the translation

algorithm generates from the sEnglish program. Note that the fact that the plan

index functions as an identifier for actions makes the definitions of action variables

unnecessary. To generate the Prism code, the translation script analyses each plan

in the main reasoning file. At the beginning of the script a structure with each plan

is created, associating to each action eventual action feedbacks, which are retrieved

from the action files. When generating the Prism code, the script looks at this

structure and creates all the necessary conditions - and negation of conditions -

necessary to implement the logic.

All transitions in the plan modules are synchronised with the label ‘t’ of the

scheduler (see Figure 4.2). The plan index is initialised with a value of 0 (line

2). If the triggering condition is not satisfied the index is kept at 0, otherwise it

is advanced to 1 to execute the first action (lines 5-6). The value of nλ is found

by simply counting the number of actions in the plan in the sEnglish reasoning

program. The triggering condition is the first line of a plan and it is expressed here

as <triggering_event> & (<context>), where <context> is a logic condition on

belief variables expressed in the usual manner. When actions are internal, they are

considered to be executable within a single reasoning cycle, so there is no need for
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1 module plan_n
2 plan_n : [0..nλ] init 0;
4 //triggering condition
5 [t] plan_n=0 & !(<triggering_condition>) -> (plan_n'=0);
6 [t] plan_n=0 & (<triggering_condition>) -> (plan_n'=1);
7 //internal action
8 [t] plan_n=1 -> (plan_n'=2);
9 //external action

10 [t] plan_n=2 & !(<action_feedbacks>) -> (plan_n'=2);
11 [t] plan_n=2 & (<action_feedbacks>) -> (plan_n'=3);
12 ...
13 //last action
14 [t] plan_n=nλ & !(<action_feedbacks>) -> (plan_n'=nλ);
15 [t] plan_n=nλ & (<action_feedbacks>) -> (plan_n'=0);
16 endmodule

Figure 4.3.: Pseudo PRISM code for a plan module of the automatically generated PRISM
program. The plan index is initially incremented if the triggering condition applies and

then if the related action feedback is true. Note that if the action is not external, the action
feedback check is omitted.

action feedbacks (line 8). When an action is external the plan index is not advanced

until at least one of the action feedbacks has a value of 1 (lines 10-11). After the last

action has been executed, the index is reset to 0 (line 15). Note that no distinction

is made between runOnce and runRepeated actions: they can both produce actions

feedbacks although it is not compulsory for runRepeated actions.

Figure 4.4 shows the pseudo Prism code for two plans that have the same trig-

gering condition. The transitions on lines 7-8 have the same condition, which tells

Prism that it is a nondeterministic choice for the MDP model.

Action modules

In the automatically generated Prism program, the action modules take care of

updating variables for action feedbacks that in turn are used by the plan modules

to update the plan indices. Action feedback variables are updated with probability

distributions as described in Subsection 3.4.1. For action feedbacks the probability

distribution used here is over time, and it is a linear curve that goes from 0 to 1
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1 module plan_1_2
2 plan_1 : [0..nλ1] init 0;
3 plan_2 : [0..nλ2] init 0;
5 //triggering condition
6 [t] (plan_1=0 & plan_2=0) !(<triggering_condition>) -> (plan_1'=0 &

plan_2'=0);
7 [t] (plan_1=0 & plan_2=0) (<triggering_condition>) -> (plan_1'=1);
8 [t] (plan_1=0 & plan_2=0) (<triggering_condition>) -> (plan_2'=1);

10 //actions for plan1
11 [t] plan_1=1 & !(<action_feedbacks>) -> (plan_1'=1);
12 [t] plan_1=1 & (<action_feedbacks>) -> (plan_1'=2);
13 ...
14 [t] plan_1=nλ1 & !(<action_feedbacks>) -> (plan_1'=nλ);
15 [t] plan_1=nλ1 & (<action_feedbacks>) -> (plan_1'=0);
16 //actions for plan2
17 [t] plan_2=1 & !(<action_feedbacks>) -> (plan_2'=1);
18 [t] plan_2=1 & (<action_feedbacks>) -> (plan_2'=2);
19 ...
20 [t] plan_2=nλ2 & !(<action_feedbacks>) -> (plan_2'=nλ);
21 [t] plan_2=nλ2 & (<action_feedbacks>) -> (plan_2'=0);
22 endmodule

Figure 4.4.: Pseudo PRISM code for a plan module for two plans that have the same
triggering condition. If the triggering condition applies the system has to make a

nondeterministic choice between the transitions of lines 7-8.
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in 2σ + 1 time and it is centred around an average value µ (see Equation 3.7 and

Figure 3.5).

Figure 4.5 shows pseudo Prism code for the implementation of an action module

with a single action feedback. The translation script scans the sEnglish project

folder for action files and creates a structure with every action, its associated action

feedback(s) and the probability distribution values that describe the activation of

the action feedbacks. When creating the Prism module for the action, the script

also scans the structure holding the plans list so to generate the necessary conditions

of activation for the action feedbacks.

1 module <action_name>
2 af: [0..(µ+ σ + 1)] init 0;
4 //activation
5 [b] !(<plan_indices>) & af<=1 -> (af'=0);
6 [b] (<plan_indices>) & af<=1 -> (af'=2);
7 //dead zone
8 [b] af>1 & af<=(µ− σ) -> (af'=af+1);
9 //transition

10 [b] af>(µ− σ) -> af− (µ− σ)
2σ + 1 : (af'=1) + (1- af− (µ− σ)

2σ + 1 ) : (af'=af+1);
11 endmodule

Figure 4.5.: Pseudo PRISM code of an action module for an action with a single feedback
(af). The implementation of the probability distribution is activated when the plan index

reaches a value associated with the action.

The action feedback variable itself is used as a counter. It is initialised with a

value of 0, when one of the plan indices that the action is associated with becomes

of the right value, the variable is updated to 2 (line 6). The progression is shifted

positively of 1 because the value 1 itself is used to detect when the action feedback

is true in the plan modules. The value is then increased at each reasoning cycle until

it reaches the lower end of the range with a value of µ−σ (line 8). Once the variable

reaches the desired range, the transition is programmed to have a probability value

according to Equation 3.7 - evaluated at t−1 - of activating the action feedback, with
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of course the complement probability of not activating included to avoid deadlocks

(line 10).

The case when an action is programmed to have more than one action feedback

is implemented in a similar way. In this case the first action feedback is used as

a counter and the only difference is in line 10 where the probability value is split

according to the weighting factors specified in the ‘.sep’ file. For example, in case

there are two action feedbacks af_1 and af_2 the Prism model becomes:

[b] af_1>(µ− σ) -> p1 ·
af_1− (µ− σ)

2σ + 1 : (af_1'=1 & af_2=0)

+ p2 ·
af_2− (µ− σ)

2σ + 1 : (af_1'=0 & af_2=1)

+ (1- af_1− (µ− σ)
2σ + 1 ) : (af_1'=af_1+1);

where p1 is the weighting factor for af_1 and p2 is the weighting factor for af_2
with p1 + p2 = 1. As usual, µ and σ represent average number of reasoning cycle

and variance, common for both action feedbacks.

Mental note modules

The mental notes of the LISA system are updated in the first step of the reasoning

cycle, but before they are stored into the Current Beliefs set, the logic based im-

plication rules are applied to them. Actions can modify mental notes in two ways:

addition or deletion. In this framework that means they can make the variable

associated to mental notes either equal to 1 or 0.

Although beliefs are gathered and logic rules are applied sequentially, the mental

notes updates are still modelled within a single synchronised step (b), so to avoid

the creation of a state space that is bigger than required. The logic behind this

implementation is shown in the truth tables of Table 4.1. In this implementation

rules are always given priority over actions, as they are applied to the beliefs after

the first step of sensing, and actions/rules that change the value of the mental note
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Table 4.1.: Truth tables for the update of the mental notes. M stands for mental note, A
for action and R for rule. The ‘+’ superscript indicates change to 1 of the mental note

while ‘−’ indicates change to 0.

M[t− 1] A+ R+ R− M[t]

0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1

M[t− 1] A− R+ R− M[t]

1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

are given priority over action/rules that do not. This results in the logic condition

(A+∧R−)∨R+ when the mental note variable is currently 0, and (A−∧R+)∨R− when

the mental note variable is currently 1. Figure 4.6 shows how this is implemented

with pseudo Prism code.

1 module mn
2 mn: [0..1] init 0;
4 [b] mn=0 & !((<plan+> & !<rule->) | <rule+>) -> (mn'=0);
5 [b] mn=0 & ((<plan+> & !<rule->) | <rule+>) -> (mn'=1);
6 [b] mn=1 & !((<plan-> & !<rule+>) | <rule->) -> (mn'=1);
7 [b] mn=1 & ((<plan-> & !<rule+>) | <rule->) -> (mn'=1);
8 endmodule

Figure 4.6.: Pseudo PRISM code of a module for a mental note mn. The logic is
implemented according to Table 4.1.

Plan conditions are simply found by scanning through the ‘EXECUTABLE PLANS’
section in the sEnglish main reasoning file for actions that start with a ‘+’ or ‘-
’ symbol. The condition is then implemented as the name of the variable of the

corresponding plans equal to the index of the action that activates or deactivates

the mental note. Similarly for the rules, the translation script scans through the

Reasoning section of the main sEnglish file and looks for rules that change mental



4.3. Generating PRISM models from agent code 91

notes.

Percept modules

Although action feedbacks and percept modules are modelled in a similar way, the

Prism model needs to be constructed differently. In the case of the action feedbacks

the variable declared to represent them was used as a counter for the number of

reasoning cycles elapsed since the action is called. This is possible because the value

of the action feedback itself is only relevant when it is activated and it is deactiv-

ated straight away after a single reasoning cycle. When modelling the perception

beliefs however a different approach must be taken as the value of the percepts is

always relevant throughout the agent program, for plan contexts and rules as well

as triggering events. Furthermore, different probability distributions can be defined

for activation and deactivation of the percept, therefore using the variable itself as

a counter is not easily implementable. This means that a new variable must be

declared to act as a counter.

The translation script gathers all the necessary information from the main reas-

oning file. By scanning the ‘PERCEPTION PROCESS’ section of the main reasoning

file, a structure with all the percepts is created, completed with activation and

deactivation probability distribution values and the conditionality list.

For each percept the probability distribution is copied at interval equally spaced

according to the mean value µ (see Equation 3.9). The distribution chosen for the

percepts, depicted in Figure 3.7, is composed by two linear segment, increasing from

0 to the specified probability value p between µ− σ and σ, where σ is the specified

variance, and decreasing to 0 between µ and µ+ σ.

Figure 4.7 shows pseudo Prism code for the implementation of percept modules.

Conditionality on other percepts is always checked and the percept variable and the

counter are reset in case the condition expressed with <cond> does not apply (line
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6). When the percept has a value of 0, the activation probability distribution is

applied. First, when the conditionality applies the counter is increased through the

dead zone, that is between 1 and µ − σ (line 8), in which case the probability of

activation is equal to 0. Second, the probability defined in Equation 3.9 is applied:

line 9 for the increasing part and line 10 for the decreasing part of the distribution.

The deactivation is handled in the same way (lines 12-14). Finally the counter is

reset when it goes out of range (line 16).

1 module sp
2 sp: [0..1];
3 c_sp: [0..(µ+ σ)];
5 //conditional probabilities not met
6 [b] !<cond> -> (sp'=0) & (c_sp'=1);
7 //activation
8 [b] sp=0 & c_sp<(µ− σ) & <cond> -> (c_sp'=c_sp+1);
9 [b] sp=0 & c_sp>=(µ− σ) & c_sp<=µ & <cond> -> ps ·

(
1 +

c_sp− µ
σ + 1

)
: (sp

'=1) & (c_sp'=0) + (1 - ps ·
(

1 +
c_sp− µ
σ + 1

)
) : (c_sp'=c_sp+1);

10 [b] sp=0 & c_sp>µ & c_sp<=(µ+ σ) & <cond> -> ps ·
(

1− c_sp− µ
σ + 1

)
: (sp

'=1) & (c_sp'=0) + (1 - ps ·
(

1− c_sp− µ
σ + 1

)
) : (c_sp'=c_sp+1);

11 //deactivation
12 [b] sp=1 & c_sp<(µ− σ) & <cond> -> (c_sp'=c_sp+1);
13 [b] sp=1 & c_sp>=(µ− σ) & c_sp<=µ & <cond> -> ps ·

(
1 +

c_sp− µ
σ + 1

)
: (sp

'=0) & (c_sp'=0) + (1 - ps ·
(

1 +
c_sp− µ
σ + 1

)
) : (c_sp'=c_sp+1);

14 [b] sp=1 & c_sp>µ & c_sp<=(µ+ σ) & <cond> -> ps ·
(

1− c_sp− µ
σ + 1

)
: (sp

'=0) & (c_sp'=0) + (1 - ps ·
(

1− c_sp− µ
σ + 1

)
) : (c_sp'=c_sp+1);

15 //counter overflow
16 [b] c_sp>(µ+ σ) -> (c_sp'=0);
17 endmodule

Figure 4.7.: Pseudo PRISM code of a module for a sensory percept sp. Activation and
deactivation of the percept are implemented separately.

Assuming the LISA program is correctly defined, all the necessary information for
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the definition of the percepts modules is found in the main sEnglish reasoning file

under the ‘PERCEPTION PROCESS’ section.

Rewards

Reward structures are defined in the LISA program by listing the name of the reward

and the value associated with it. This information is easily converted to standard

definition of reward structure in Prism by the translation script.

Figure 4.8 shows pseudo Prism code that illustrates how a reward is implemented

in the automatically generated Prism program. In this implementation, <condi-
tion_j> can be on plan indices or a beliefs. The value expressed with <value_j>
is a number that will be added to the reward when the condition applies.

1 rewards "<reward_name>"
2 <condition_1> : <value_1>;
3 <condition_2> : <value_2>;
4 ...
5 endrewards

Figure 4.8.: Pseudo PRISM code for the definition of reward structures.

The same structure is repeated for each different reward specified in the reasoning

file.

4.4. Design-time verification

Section 4.3 described how a Prism model of the system is automatically generated

from the agent code for the purpose of verification. Once the model is defined, the

verification process is fairly straightforward. Prism offers a great variety of tools

for verification, for example an integrated simulation environment where the user

can generate specific path or simulate them automatically. The specifications for

verification are defined with an extended version of PCTL as described in Subection

2.2.2.
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The approach used here to implement the agent reasoning as a discrete model is to

use separate variables for each belief and each plan index. This allows to explicitly

define arbitrarily complex properties that can touch any aspect of the reasoning

process. The model checker will then generate counterexamples [52, 98], traces in

the model that do not satisfy the PCTL specification defined by the user. This

information can be used to improve the agent program itself as an iterative process.

For example, assume that an agent is implemented to have two actions that are

opposite to each other and that should never be executed at the same time, such

as ‘go left’ and ‘go right’. Even though the designer can be careful not to make

these two actions execute simultaneously, a model checker is the only way to guar-

antee that this situation will never happen during any execution, or at least that the

probability of it to happen is contained in a limited range. For example assuming

that the agent is programmed to have π2(1)=‘go left’ and π4(2)=‘go right’, the
property:

Pmax=? [F (plan_2 = 1 & plan_4 = 2)]

will ask the model checker to generate “the maximum probability of ‘go left’ and
‘go right’ to be executed at the same time at some point in the future”.

The result of an iterative design-time verification process is an improved agent

code, which is corrected against the properties used during the verification, and a

discrete model of the code. In Section 4.5 a method is proposed to use this model

to improve the decision-making capabilities of the agent reasoning.

4.5. Run-time verification

The internal model of a system is an internal mechanism for representing both the

system and the environment, that is then used by the system itself to improve its

own performances. In [110] it is argued that an internal model allows a system



4.5. Run-time verification 95

to look ahead to future consequences of actions, without committing itself to said

actions. This is not unlike human decision-making: in most cases we first ponder a

number of options by making predictions on their possible outcomes, and then we

commit to the one we consider the most suitable according to our current beliefs. A

few example of applications of this concept can be found in [31, 65, 156].

The discrete model of the LISA system described in this chapter falls under the

definition of internal model as it includes the behaviour of the agent reasoning as

well as its interface with the world. If the verification process is performed at run-

time, the model can be used as a means of evaluation, in a probabilistic fashion,

of the outcome of possible plan choices. In this section two different methods are

proposed for using a run-time verification process for this purpose.

In many cases, most of the computational power required to verify such models

is usually spent by the model checker on building the model itself, which does not

influence the verification time. In other words, once the model is built, the user

can run different verification queries without having to rebuild the model. Modern

probabilistic model checkers such as Prism allow to verify fairly large models in

a matter of seconds, making the run-time verification process a feasible technique

to use to apply the concept of internal model for improving the decision-making

capabilities of the agent.

The first method is to implement the run-time verification process as a skill of

the agent, e.g. as a module of the full system, as illustrated in Figure 4.9. The

DTMC or MDP model is verified against a set of predefined queries. In particular,

in Prism, it is possible to check a query by selecting a starting state with the use of

filters [205]. The run-time verification is then used to generate a set of results that

will be interpreted by a ‘generate beliefs’ function that will activate or deactivate

certain beliefs in the agent Current Beliefs set.

This is in principle a skill of the agent that would be initialised at the beginning
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Reasoning

Other Skills

· · · Environment

Run-time verification skill

Discrete
Model

Queries

Verification

Generate
Beliefs

Figure 4.9.: Implementation of the run-time verification process as a skill of the agent. The
verification process is used to activate or deactivate beliefs of the agent reasoning based on

a set of pre-defined queries that are run against the discrete model.

of the execution and that would run continuously, giving the agent reasoning a

quantitative estimate on consequences of future actions therefore a deeper knowledge

on the state of the world, possibly improving its decision-making capabilities.

An example of verification query for a mobile robot could be:

R{′′fuel′′} ≥ 100 [F mission_complete = 1]

which returns 1 when “the expected reward value for ‘fuel’ cumulated up until

‘mission_complete’ becomes 1 at some point in the future, is greater than or equal

to 100”.

The LISA implementation of the BDI-based reasoning cycle uses a multi-threaded

workflow to avoid the need of defining a set of functions that are external to the

agent code. However one of these external functions, the Plan Selection function,

still plays a role in the LISA reasoning operation. When the programmer chooses to

implement the plan library with plans that have non-unique triggering conditions,

the Plan Selection function is required to select one of the plans that are triggered
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by the same triggering condition. In Jason, the Plan Selection function and the

aforementioned additional functions have to be developed in Java by overriding

default classes of the underlying structure of the agent. The second method proposed

here for using run-time verification in this framework consists of implementing a Plan

Selection function that makes use of model checking to assess probability of success

of a set of options based on user-defined specifications, and selects the most suitable

plan. A clear advantage of this approach is that, since the probabilistic model is

generated automatically, the user does not need to implement a specialised Plan

Selection function for each agent, therefore making the development process more

focused on the logic reasoning of the agent.

FO

Verification

MDP
model

Queries

Current
Beliefs Desires

Plan
Selection Intentions

Figure 4.10.: The Plan selection function implemented as a run-time verification process.
The verification process is used to generate probabilities of success for the desired plans,

which help the agent reasoning decide amongst plans that are triggered by the same
conditions.

Figure 4.10 illustrates the structure of the Plan Selection function implemented

as a run-time verification process. The structure sits within the reasoning cycle

depicted in Figure 3.2 however in the final operation of the agent this function is

still external to the agent program. Ideally the run-time verification will be fast

enough to be executed at least once for each reasoning cycle. However an even

faster execution time might be needed when more than one event triggers multiple

plans. A possible practical solution is that if the plan selection requires more than
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one reasoning cycle, the agent suspends the decision until results of the run-time

verification are available.

Prism allows to run verification starting from a state that is not the initial state

with the use of so called filters. With the MDP model that was generated at design-

time and the set of Current Beliefs, a set of queries that can be automatically gener-

ated or preprogrammed by the developer is used to perform the run-time verification

and generate probability values associated with each desired plan. These probability

values are then used by a simple Plan Selection routine that selects one of the plans

based on some predefined criteria, for example minimising the probability of failure.

Once the most suitable plan for the current situation has been selected, it is passed

on to the Intentions set for execution.

Even though the second method proposed here is limited to be used only when

there are multiple plans that share the triggering condition, i.e. the Plan Selection

function is needed, the two methods are not in principle mutually exclusive. With

the second method the agent could still be programmed to have a run-time veri-

fication skill, assuming that the computational power of the machine the agent is

implemented on allows for such a load. In both applications the run-time verification

gives the agent additional knowledge about the world in the form of probabilistic

estimates so that the agent can use this information to improve its own effectiveness.

4.6. Conclusions

The process of abstraction of the agent reasoning of the Limited Instruction Set

Agent (LISA) system to finite state machine for the purpose of design-time and run-

time verification was described in this chapter with detailed explanations of how

the agent program can be automatically translated to a model for the probabilistic

model checker Prism.

In order to perform verification of the agent reasoning a complete model of the sys-
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tem is needed, one that include both the logic reasoning of the agent and its interface

with the environment. Two discrete probabilistic models are chosen for the purpose:

Discrete-Time Markov Chain (DTMC) and Markov Decision Process (MDP). Dis-

crete time models can be considered ideal as the state of the agent reasoning is only

relevant at the end of each reasoning cycle, where beliefs, events and plan indices are

already processed and completely updated. Probabilistic models are necessary to

abstract the BDI agent based system and its environment as input variables change

in a probabilistic fashion. LISA reasoning is proven to be abstractable as a DTMC

when all plans in the Plan Library feature unique triggering conditions. The LISA

system was proven to be modellable as a MDP for any well defined implementation

of the agent code.

The process of translating the agent program to a probabilistic model in the

input language of the model checker Prism is made possible with the additional

information included in the agent program as described in Section 3.4. This gives

several advantages over previous attempts at the verification of BDI agent reasoning

in terms of performances and flexibility. In particular this approach makes possible

to avoid the execution of a simulation of the agent for the purpose of constructing

the state space and allows the programmer to focus on the development of the agent

logic without having to implement external libraries to include the probabilistic

behaviour of the environment.

Once a model of the system is constructed from the agent code, it can be used

to perform verification by model checking at design-time. Verifying specifically de-

signed queries allows to pinpoint design flaws in the agent program by analysing the

counterexamples generated by the model checker. This in turn allows to improve

the agent program by correcting design flaws in an iterative way.

A model constructed in this way can also be used for run-time verification. The

verification process can be used to make probabilistic estimates of future outcome
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of actions. This can be done in two ways in this framework: the first method is to

implement a skill of the agent that includes the verification process and generates

beliefs for the agent based on the probabilistic information. The second method is to

implement the Plan Selection function as a run-time verification process. Run-time

verification initialises the model according to the Current Beliefs and generate plan

success probabilities that are then used to select a plan that optimises performances

or minimises failure rates.



Chapter 5.

Implementation and simulation

The flexibility and accessibility of agent-based systems makes them highly suit-

able for practical applications. The logical nature and the clear schematics of

natural language agent programs of the LISA system, allows implementations in

a variety of software environments for simulation purposes as well as real-world

applications. Furthermore, the modularity of the agent architecture makes the

integration of the agent reasoning with its skills an accessible process, as skills

are not bound to be implemented in any particular language.

5.1. Introduction

The BDI agent-based system named LISA, described in this thesis, is a tool

that can prove useful in a variety of real-world applications. This chapter

describes several possible approaches to the implementation and simulation of the

LISA system.

Generally speaking, the agent reasoning of a BDI-based agent is an iterative func-

tion that takes inputs at each iteration, updates its internal state and deliberates on

commands to be executed based on said inputs. In the case of the LISA system, the

agent reasoning is mainly a logic program which does not rely on any particular fea-

ture from any language, and it can therefore potentially be implemented using a large

101
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variety of programming languages as long as they support basic Boolean logic oper-

ations. However given the numerous implementations variety of agent frameworks

and applications available to date, implementation of a stand-alone application that

runs the agent logic of LISA, with interfaces to a simulation environment, was not

considered to be within the scope of this work.

The most used BDI-based agent implementations are made using Java environ-

ments, see for example Jason [37] or Gwendolen [60]. By compiling sEnglish code

using the Cognitive Agent Toolbox (CAT) [214] it is possible to generate Jason com-

patible code that can be executed in a simulation environment as will be explained

in Subsection 5.2.1.

Given the schematic representation of LISA reasoning with the sEnglish lan-

guage, it is also possible to automatically generate a Matlab function that imple-

ments the agent reasoning and run it continuously in a Simulink model. Similarly

all the skills can be implemented as Matlab functions and included in the simula-

tion model in Simulink. A description of this approach to the implementation of

the LISA system is given in Subsection 5.2.2.

Another possible approach to the implementation of the LISA system is to imple-

ment it within popular robotic software packages such as Robot Operating System

(ROS) [180, 206] or Mission Oriented Operating Suite (MOOS)[165, 203] (in par-

ticular with the addition of Interval Programming (IvP) [23, 204]). Although both

ROS and MOOS-IvP feature the possibility of running simulation environments for

system testing, they are mostly used in practical applications, and implementing

the LISA reasoning and its skill as nodes of these software structures can be a great

tool for bringing the agent architecture to real-world scenarios. The possibility of

implementation of the LISA system in ROS or MOOS-IvP is described in Subsection

5.2.3.

Simulation of any system, especially the ones that are going to work in safety
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critical environment, is a great tool to test its capabilities and operation in a set of

controlled situations. For physical systems, such as autonomous robots, the simula-

tion environment must include a dynamical model of the machine itself together with

a model of the environment it will be operating in. A visual reference in simulation

can be a valuable tool that gives the developer an immediate feedback on how the

machine is doing in the simulated environment. Graphical models are possible in

both the Simulink related approaches and the robotics software approaches, ROS

and MOOS-IvP.

5.2. Implementation approaches

Most agent-based systems are composed of two main parts: the agent reasoning and

the agent skills. Given their intrinsically different nature the two parts can be - and

often are - developed using different languages. In the case of the LISA system the

agent reasoning is an iterative process that makes logic deliberations on symbolic

data coming from its skills at each iteration (reasoning cycle). The program that

describes the agent reasoning of the LISA system, the agent program, is developed

with the NLP language sEnglish.

Given the simplicity and schematic description of the agent reasoning, there are

clearly many ways to compile the agent program into a function to be run on specific

hardware, and in principle there is no particular advantage in using one method or

another. Since skills can also potentially be implemented in any language, building

an interface between the agent reasoning and its skills is particularly important.

This section explores a set of solutions for developing the agent reasoning and its

skills in unified environments that lend themselves well for use with either simula-

tions or real-world applications.
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5.2.1. Implementation with the Cognitive Agent Toolbox

The sEnglish language and the Machine Ontology Language (MOL) are part of a

software suite called Cognitive Agent Toolbox (CAT) developed by SysBrain Ltd.

The first natural way to implement the LISA system is by using the CAT, which

features a two part system development: an Eclipse Application Programming In-

terface (API) and a Matlab toolbox called Agent Executive Toolbox (AET). The

Eclipse API, called sEnglish Publisher, allows to develop agent programs in sEng-

lish and to compile them in Jason+, a modified version of Jason. The code for the

skills of the agent, which can be included in the action files of the sEnglish project,

can automatically be compiled into Matlab function files. The process is outlined

in Figure 5.1.

Eclipse Environment

sEnglish
document

sEnglish
Publisher

Jason+
Agent

Matlab Environment

Matlab
skills

Simulink
model

Figure 5.1.: Illustration of the Cognitive Agent Toolbox. Simulation is carried out by
running the grey shaded blocks, linked together with the Agent Executive Toolbox.

The simulation of the full system is made possible with the AET. The Jason+

agent runs as a Java application and actions are translated as function calls for

the AET to execute Matlab functions which implement skills. In the sEnglish

program, action sentences can include variable formats specified in the ontology file

as MOL. This information is used by the AET to coordinate and run the skills with

the appropriate inputs/outputs. The actions can also be programmed as runOnce
or runRepeated as explained in Section 3.3.1.

In Section 4.5 two approaches for using a run-time verification process to enhance
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the decision-making capabilities of the agent were proposed: the first was to im-

plement the verification process as a skill and the second was to implement a Plan

Selection function that uses the verification process to select plans based on prob-

abilistic results generated by it. One of the great features offered by the Prism

software is that models expressed in Prism input language can be exported in the

form of matrices to be used with other tools. In particular the user can export the

set of reachable states, the transition matrix, the reward structures and so on (see

the manual section in [205] for further details). Among similar software, Matlab

is the framework that offers possibly the widest variety of tools to work with large

matrices in a very simple and accessible way. Since all the skills are implemented as

Matlab functions, this makes the implementation of the verification process as a

skill of the agent fairly straightforward once the user takes care of exporting model

matrices from the automatically generated Prism model. As for the inclusion of the

verification process as part of the Plan Selection function, the programmer would

still be forced to modify the underlying Java structure of Jason, which is still pos-

sible but it would undermine the principle of a unified workflow introduced with the

LISA system.

This framework lends itself particularly well for simulation purposes. The fact

that most of the architecture resides in Matlab/Simulink provides the program-

mer with the possibility of developing arbitrarily complex dynamical models that

represent the physical behaviour of the robot in its environment, in the intuitive

and flexible Matlab/Simulink environment. The model can in turn be used to

generate adequate sensorial input for the skills to convert into symbolic information

that the agent reasoning can use to make deliberations and activate/deactivate other

skills when needed.

An obvious drawback to this approach is that the agent reasoning is still imple-

mented as a Jason agent. This means that some of the features of LISA cannot be



106 Chapter 5. Implementation and simulation

used in the final product. For example the multi-threaded workflow described in

Section 3.3.1 will not be translated to Jason. However assuming that the user does

not make use of some of Jason’s features such as personalising external functions

(FM , FE or FI , see Section 3.3.2 for details), the model described in Chapter 4 is

still valid and the automatic verification techniques can still be used.

5.2.2. Direct implementation with Matlab/Simulink

The implementation of the LISA with the CAT is possible by implementing all the

skills as Matlab functions and running the agent logic as an external stand-alone

application. A possible valid alternative is to also implement the logic of the agent as

a Matlab function, so to keep everything within the same environment and prevent

any interface problem.

In Section 4.3 the agent code was used to generate Prism models for verifica-

tion. This is always possible with the agent program of a LISA as it contains all

the necessary information to generate a complete model. In a similar fashion the

sEnglish program can be used to generate a Matlab function that reproduces the

agent logic and that can be run within a Simulink diagram.

Figure 5.2 shows a snippet of the Simulink diagram for an implementation of the

LISA system within a simulation environment. The agent logic is running in the

Matlab function block. At each time step of execution Simulink runs the functions

that read the input signals coming from the skills and updates the output signals.

The actions are Boolean variables in the logic program that activate blocks further

down the chain. In particular runOnce actions activate triggered subsystems that

detect the rising edge of the signal and execute a Matlab function or any Simulink

diagram once, runRepeated actions activate enabled subsystems which execute the

function continuously as long as the input remains active. In most cases the agent

reasoning will not be designed to run as quickly as the skills, the Rate transition
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fcn

LISA reasoning

act_fb

perc

state_in

actions

state_out

Rate Transition

Memory

Figure 5.2.: Partial Simulink diagram of the implementation of the LISA reasoning. The
reasoning cycle is implemented as a Matlab function, the state of the agent reasoning is
stored thanks to the Memory block. Skills can run at different sampling times thanks to the

Rate Transition block.

block simply interfaces parts of the model that work at different sampling times. In

order to remember the state of the agent reasoning, the latter is passed through a

Memory block which delays its input signal by one sampling time step. The action

variables are saved as well because runRepeated action variables need to remain

true to keep the associated actions running.

A clear advantage of this approach to the implementation of the LISA system

is that the full architecture is part of a single Simulink diagram. This makes

the LISA reasoning fully compatible with the rest of the system with a seamless

communication with its skills. For this reason the simulation of a full system that

includes a dynamical model of the physical system can be performed without steering

the attention of the programmer towards interfaces and compatibility issues.

Matlab/Simulink also offers the option to compile the model into an executable

C/C++ program. By using this tool the LISA system can be easily ported to for

example embedded systems for use in small robotics applications.

Similarly to the approach presented in the previous Subsection 5.2.1, a run-time

verification process can be implemented as a skill of the agent by using state and
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transition matrices exported from the automatically generated Prism model. This

is possibly easier in this case as the skills generate outputs that are passed directly

to the agent reasoning without external interfaces. Additionally in this case it is also

possible to implement a personalised Plan Selection function that includes run-time

verification processes within the agent program itself.

The possible drawback with this approach is that as of the time of writing, Sim-

ulink does not offer a way to multitask within the same model, or in other words

different blocks within the same model cannot execute independently. For example

if a block implementing a function takes more than a time step to execute, other

blocks within the model will not be able to keep running but they will wait for the

function to conclude. This means that although the agent reasoning and its skills

are running at different sample times, this is still a sequential execution so for each

execution of the agent reasoning there will be a fixed number of steps for the skills

to execute and the agent reasoning will hold until they are finished.

5.2.3. Implementation with other software architectures

Another possible approach to the implementation of the LISA system is to develop

it as an application of existing frameworks commonly used in robotics. For the

purpose of this application ROS and MOOS-IvP are considered, being arguably the

most widely used in the robotics community to date.

ROS

ROS is a lightweight architecture that resembles that of a conventional operating

system, and applications are developed as nodes of the structure and can commu-

nicate and exchange data with other nodes, in a peer-to-peer fashion. ROS is free

and open source, and it is supported by a very large and vibrant community. In the

robotics community, developers come from widely different backgrounds and have
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preferences for some programming languages over others. For this reason ROS sup-

ports applications written in several languages including C++, Python and Octave.

The agent reasoning of the LISA system can be implemented as a ROS applica-

tion as well as any skill that may be required, if compiled to one of the supported

languages. For example with the approach described in Section 5.2.2 there is the

possibility of compiling the agent as a C++ application that can then be used as a

node of the ROS architecture.

The CAT described in Subsection 5.2.1 also offers two ways of implementing the

LISA system, with the reasoning described in sEnglish, as a ROS application.

One is to compile the agent reasoning as a Jason+ application and interface it

with the skills that are compiled as regular ROS nodes. The second, which is under

development at SysBrain Ltd, is to compile the agent reasoning as a ROS application.

The ROS architecture also supports Gazebo [89], an open-source robot simulator

that offers a variety of physics engines, 3D graphics, sensor noise generations, sup-

ported by an active community of developers. This tool can be used as part of

the development process of LISA-based systems to simulate the agent as part of a

realistic simulated environment.

MOOS-IvP

Another suitable framework for the implementation and simulation of a LISA sys-

tem is with MOOS-IvP [23, 165, 203, 204]. MOOS-IvP is one of the most used

architectures in the field of marine vehicle autonomy, some examples can be found

in [24–26, 97]. MOOS is an inter-process communications middleware software that

is structured in a star-like fashion. The structure of the architecture features a

central node called the MOOS Database (MoosDB) and a set of applications that

communicate with each other through the MoosDB in a publish/subscribe man-

ner. IvP is a MOOS application that implements a behaviour-based architecture
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over a set of control variables, for example “direction” and “speed”. Behaviours are

internal modules of the IvP application that reproduce a particular action over a set

of control variables c1, c2, . . . , cn, and generate at every cycle a piecewise linear func-

tion called “IvP function” f(c1, c2, . . . , cn) that maps points of the decision space to

values that reflect the degree to which that control array supports the action. Once

these functions are produced, a multi-objective optimization problem is solved by

another internal module called the IvP-solver:

arg max
c1,...,cn

w1f1(c1, . . . , cn) + · · ·+ wkfk(c1, . . . , cn)

s.t. fi is an IvP piecewise defined function

wi ∈ R≥0

(5.1)

where w1, w2, . . . , wn are called priority weightings. In MOOS-IvP the priority

weightings are influenced by two main factors:

1. With every behaviour is associated a set of binary flags that give control over

the activation time of the behaviour itself. These flags can be conditionally

modified by the behaviour itself, which means that the behaviour has partial

control over its own state, and can also be associated with external variables

that can be modified by other nodes.

2. A hierarchical mode system is defined within IvP that allows to organise the

behaviour activation according to declared mission modes. Modes and sub-

modes can be declared in line with the designer’s own concept of mission

evolution, and conditional statements can be implemented so to switch between

modes. Modes can also be associated with external variables that can be

modified by other nodes.

Figure 5.3 illustrates a possible architecture of the LISA system in the MOOS-

IvP framework. The agent reasoning and each set of skills are implemented as
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Figure 5.3.: Implementation of the LISA architecture with MOOS-IvP. The agent reasoning
and the skills communicate with each other through the MOOS database.

MOOS applications. In MOOS communication between nodes happens through the

central MoosDB. IvP modules are used as Sequencing skills and they operate with

an intermediate loop with data abstracted and filtered from physical sensors. IvP

modules operates on a given set of control variables, which are then translated into

physical actions by the Control skills.

In this framework the agent reasoning can be implemented to direct and coordinate

the decision-making of IvP in two ways. The first is to implement some actions of the

agent reasoning as external function that activate or deactivate full IvP modules,

for example in situations when the system does not need an intelligent planner

for certain variables. Another way is to implement actions of the agent reasoning

as external functions that activate, deactivate or modify the weighting factors of

behaviours within IvP modules.



112 Chapter 5. Implementation and simulation

5.3. Conclusions

In this chapter a number of ways to implement the Limited Instruction Set Agent

(LISA) architecture were described. The schematic representation of the agent reas-

oning provided by the sEnglish natural language, makes the implementation of the

LISA reasoning possible in a variety of different software environments. This allows

to introduce the advantages of agent reasoning in many different simulations and

real-world applications.

The agent reasoning of the LISA system can be implemented in any language that

supports Boolean logic, and thanks to the schematic representation of sEnglish,

and the clear structure structure of the reasoning cycle, compilation and translation

tools can easily be implemented to adapt the LISA reasoning to potentially any

software environment.

The main tool for implementation of the LISA system comes with the sEnglish

package and it is called the Cognitive Agent Toolbox (CAT). The CAT provides

an API called the sEnglish Publisher that includes compilers to Jason+, a modi-

fied version of Jason, and to Matlab. The CAT also includes a tool that allows

the compiled Jason+ agent to communicate with a Simulink model which can be

integrated with dynamical models for simulation purposes. An alternative to this

framework is to implement the agent reasoning as a Matlab function, instead of a

standalone application, and still use the excellent simulation tools offered by Sim-

ulink. In this case as well a translation tool from the sEnglish program to the

Matlab implementation is a reasonably straightforward process. The LISA sys-

tem also lends itself well to be implemented with popular robotic software such as

ROS and MOOS-IvP. The interface with ROS is officially supported with the CAT,

and it works in one of two ways: as a standalone application interfaced with skills

implemented as nodes of ROS, and as a C application as a ROS node. The agent

reasoning and its skills can be similarly integrated in MOOS-IvP, with the reasoning
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implemented as a MOOS application, and IvP modules used as Sequencing skills to

direct and coordinate lower level control algorithms with optimised outputs.





Chapter 6.

A case study

This chapter describes a case study for the application of the LISA system in-

vestigated in this thesis, with an implementation of agent reasoning and a sim-

ulation environment. The scenario considered is a mine detection and disposal

mission for an Autonomous Surface Vehicle (ASV). The autonomous marine

vessel explores a predefined area, making sure the area is fully covered, and tags

spots representing potential threats.

6.1. Introduction

Consider an Autonomous Surface Vehicle (ASV) [198] with the purpose of

mine detection and disposal. The mission, schematically depicted in Figure

6.1, is to explore an area at sea that contains a number of mines and take actions

for disposal of potential threats. The ASV communicates with a control centre that

could be either another boat or an ashore facility, where humans can monitor the

outcome of the mission with the ASV giving information and motivations on the

decisions taken. It is assumed here that the ASV starts and complete its mission

from the control centre.

The ASV is built so to minimise the electromagnetic signature and avoiding setting

off mines, that are usually designed to damage much larger vessels by following their

115
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start
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Figure 6.1.: Illustration of a mission for mine detection and disposal.

electromagnetic influence. The main mission of the ASV is to survey and completely

cover the area, as illustrated in Figure 6.1.

The ASV is equipped with sensing equipment such as sonars and cameras that

allow the detection of unidentified objects in the area of interest. All the data that is

collected during the mission is continuously sent back to the control centre. Once the

ASV detects and tags objects that might be dangerous, potentially mines, human

operators in the control centre will analyse pictures and data in order to decide

whether or not the object need further investigation or intervention.

The sensing equipment gives the ASV a cone shaped visibility range. Given that

the shape and size of the visibility range is known in advance, the algorithm that

generates the lawn mower surveying path will be able to distantiate the individual

tracks so to completely cover the area of interest. In this example a track and the

area surrounding it that is meant to be covered by sensing equipment will be called

a “block”.
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6.2. Problem analysis and solution

The scenario described in Section 6.1 is a particularly suitable example of a problem

that can be approached with the use of autonomous agent systems. The mission is

composed of several subtasks that are not necessarily sequential and require some

sort of management system to engage or disable subsystems that performs them. In

particular, the ASV is required to perform the following behaviours:

• If the mission area is only specified with a polygon, a route planning behaviour

is required in order to generate waypoints to form the lawn mower path.

• Path planning is required to drive the vessel from one waypoint to the next,

avoiding static and moving obstacles along the way.

• Data processing behaviours are required to analyse data coming from sensor

such as cameras, lidar, radar, sonar and assess if possible mines are present,

weather conditions, trajectory prediction for other vessels that may come

within the range of the mission. Additionally surface coverage information

can be inferred from positioning sensors such as Global Positioning System

(GPS).

• Hardware management behaviours that convert instructions into actual com-

mands for the actuators, in this case motors, rudder and communication

devices.

These behaviors can be implemented as skills of the agent system. One could ar-

gue that this problem is also solvable with classical control. However the use of

autonomous agent systems significantly simplifies the implementation of the logic,

especially when using NLP languages such as sEnglish. Furthermore the situation

described above implies the need for decision making capabilities that are difficult to
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achieve with classical control. For instance if the weather conditions reach a critical

point, there are multiple equally valid options to be pondered about:

1. The vessel could interrupt the mission and fall back to a safe place. This would

imply giving priority to the hardware itself over the mission.

2. The vessel could continue the mission risking the integrity of the hardware but

keeping the probability of actually completing the mission to an acceptable

level.

Again, this could be achieved with an intricate set of ‘if’ statements, that could

consider every single possibility. However BDI agents significantly simplify the ap-

proach to these problems by providing an architecture that allows to modularise

and separate the logic, expressed in a human friendly language, from the lower level

control.

Formal verification of the agent reasoning provides a way to verify that the logic

reflects the original specifications, and that the agent will not try to perform specific

actions that are intrinsically wrong or even dangerous for the hardware and for its

surroundings.

Assuming probability distributions of environmental events are known, the LISA

system is a great tool to facilitate the verification of the agent reasoning. When

implementing the agent logic, the developer has the possibility of including probab-

ilistic information within the agent program, which will then be used by the system

to generate a model that can be verified, in this case with the probabilistic model

checker Prism.

6.3. LISA agent design

This section describes a simple approach that can be taken to solve the scenario of

this case study with the LISA system and the framework described in this thesis.
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This is clearly not a unique solution, and it is intended to be a proof of concept.

The plan described in Section 6.1 lends itself well for use with the LISA system as

it requires multiple lower level skills, some of them as a one time use and some of

them as a continuous operation.

The surveying is organised as follows. Once a lawn mower surveying path is gener-

ated, the ASV will be driven to the starting point and it will start the survey. Each

block is covered by going from a starting waypoint to an end waypoint, therefore

the agent will need a percept that will tell it when a waypoint is reached, and one

when the last waypoint is reached.

In this implementation two environmental conditions were considered:

• Weather. This kind of missions at open sea can be highly influenced by weather

conditions, and it is reasonable to assume that even a small vessel possess

sensing equipment able to determine the state of the weather, or at least

communication devices that can fetch this information from elsewhere.

• Coverage. Given a map, the current pose in the environment and information

provided by the sensing equipment, the system is able to assess, on the fly,

whether or not the coverage of the surveyed area is complete. Since complete

coverage is key in this scenario, the system will have to go back and cover

spots that were left unclear.

This information leads in turn to two kind of events that can be generated to

the agent reasoning. The first is when weather conditions change from normal to

excessively harsh and vice versa. When the weather becomes too harsh the agent was

designed to wait for instructions from human operators, reason being that in some

cases it is hard to give a general rule as security situations may change and humans

may still want to have the final decision, especially in military environments. The

second environmental event that can happen in this situation is that when reaching
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a global waypoint there have been areas left unexplored in the last block. In this case

the agent is faced with an important decision, that is whether to go back immediately

and re-explore the spots that were missed, or keep going on with the next block and

go back to re-explore at a later time. This decision could be implemented to be

made based on arbitrary rules, possibly dependent on sensor readings, or it could

be implemented as a nondeterministic decision that the agent is supposed to make.

Figure 6.2 shows the high level architecture for the LISA agent developed for

this example. The diagram summarises to two kinds of data input: weather data

and position data, which are not necessarily single streams of data but can be

arrays of data coming from all sorts of different sensors. The data is fused and

passed on to abstraction skills which are able to convert the information to sensory

percepts for the agent reasoning to process. A path planner is present to convert

high level instructions from the agent reasoning to sequences of waypoints, which

will be followed in a safe way, avoiding collision with obstacles. A motion planner

then converts waypoint goals into thrust and rudder command which are followed

using PI control.

Appendix B.1 reports the full sEnglish reasoning code implemented for this case

study. This agent is programmed to have four sensory percepts: ‘Sea state is
too high’, ‘I am at global waypoint’, ‘Areas left unexplored’ and ‘Last
waypoint reached’ (lines 9-12). Note that the program includes probability in-

formation that will be used by the translator to generate a probabilistic model in

PRISM input language. Table 6.1 reports a list of all the available actions and

related action feedbacks for this example. There are four actions and one of them

features two possible action feedbacks. In this case the distributions for the action

feedbacks were chosen arbitrarily, as a proof of concept rather than as an accurate

modelling exercise.

Logic based implication rules are listed from line 22 to line 26. In this case they
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Figure 6.2.: High level architecture and data flow of the LISA agent designed for the case
study.

Table 6.1.: List of Actions and related Action feedbacks for the case study.

Action Action feedback(s) Distribution(s)
Generate set of waypoints Waypoints generated [1, 1, 0]
Activate drive mode Drive mode [1, 5, 0]
Activate park mode Park mode [1, 1, 0]
Wait for instructions Continue, Abort [0.6, 5, 2],[0.4, 5, 2]
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were used to generate an ‘Error’ belief when conflicting beliefs become true at the

same time, for example if ‘Drive mode’ and ‘Park mode’ are activated simultan-

eously.

From line 28 the program lists all the executable plans. This implementation

features 10 executable plans. Some of the plans are minimal and they only per-

form modification on mental notes. With the LISA system it would be possible

to implement these operations as logic based implication rules, in the ‘REASONING’
section, however in this case a larger number of plans was implemented as a proof

of concept to show that model checking can still be performed in reasonable times

with larger models. In particular Plan 4 (line 46) and Plan 5 (line 50) were im-

plemented so to feature the same triggering condition, and test the process with a

MDP implementation.

6.4. Verification

Appendix B.2 shows the Prism model that was automatically generated from the

agent code. Variables that represent beliefs and actions are named by copying the

original atomic predicate, converting it completely to lowercase letters and substi-

tuting spaces with underscores.

For the purpose of comparing two similar models, a second implementation was

created by implementing the agent logic in a very similar way but avoiding non-

determinism in order to create a DTMC model. In Table 6.2 are reported results

obtained by running the DTMC and MDP models in Prism. All the tests were run

on a Apple laptop with dual-core Intel Core i5-4258U 2.4GHz CPU, 16 GB of DDR3

memory, and running 64-bit Mac OS X 10.11.5.

As expected the MDP model generated a state space that is almost twice as large

as the DTMC counterpart, and it uses almost three time as much memory as the

DTMC model. This is probably due to the way Prism builds models in memory: not
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Table 6.2.: Verification model building and results for
Pmin=? [F≤100 mission_complete = 1]

Model States Transitions Choices Build time Ver. time Memory Result

MDP 270 268 420 431 276 454 38.061 s 1.901 s 10.0 MB 0.6357
DTMC 157 072 231 148 N/A 38.146 s 2.052 s 3.5 MB 0.6389

all states are stored but the software constructs a Multi-Terminal Binary Decision

Diagram (MTBDD) [87] structures, an evolution of Binary Decision Diagram (BDD)

[43], which are very much dependent on the type and structure of a model rather

than the number of states.

Both models were then ran with a standard verification query that calculates the

minimum probability of completing the mission within 100 steps. The verification

engine used in Prism is the Sparse engine which resulted in considerably faster

performances compared to other engines.

The model construction time and the verification time resulted to be very similar

for the two implementations. Note that both model construction time and verifica-

tion time depend on many factors such as the computational speed of the machine,

the resources allocated by the operating system and so on. The times reported in

Table 6.2 are averaged over a sequence of runs in typical condition on the same

machine.

An example of use for verification is to verify if conflicting actions are executed at

the same time or particular predicates become true at the same time. For example

the action ‘Wait for instructions’ is defined with two possible action feedbacks:

‘Continue’ or ‘Abort’ (see Table 6.1). With this setup it is easily possible to verify

that these two action feedbacks are never active at the same time with the spe-

cification P=? [F (abort = 1 & continue = 1)] for the DTMC and the specification

Pmax=? [F (abort = 1 & continue = 1)] for the MDP. For both models the verifica-

tion gives indeed a probability of 0, as reported in Table 6.3.
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Another possible use of this tool is to verify what is the probability of the mis-

sion being complete without a particular event happening. For example in the

agent code for the case study in Appendix B.1 logic based implication rules are

defined to determine an error state. To verify the probability that the mission can

be completed without the error variable becoming true, the following query can

be run on the DTMC model: P=? [F (error = 0 & mission_complete = 1)] and

Pmax=? [F (error = 0 & mission_complete = 1)] on the MDP model. The results

reported in Table 6.3 indicate that under these conditions the probability of finish-

ing the mission without errors are relatively low. This can be due to several factors,

for example a fault in the logic could cause two conflicting predicates to be active

at the same time and trigger the error condition.

Using the same error state, another example is to verify what is probability of

an error to occur within a given number of steps. For example for 100 steps

this is achieved with the query P=? [F≤100 error = 1] for the DTMC model and

Pmax=? [F≤100 error = 1] for the MDP model. As for the previous example specific-

ation, the results in Table 6.3 indicate that there is likely a fault in the logic that

allows two conflicting predicates to be triggered at the same time.

As mentioned before, Prism allows to verify reward-based properties. For ex-

ample on line 54 of the agent program in Appendix B.1 two reward values are asso-

ciated with the internal action of adding the mental note ‘Re_exploring areas’:
‘fuel’ and ‘time’. A possible application of this is to verify what is the expected

fuel consumption when the mission is complete. This is achieved in the DTMC

with the query: R{fuel}=? [F mission_complete = 1] and in the MDP model with

R{fuel}max=? [F mission_complete = 1].

Table 6.3 shows numerical results obtained by running all of the above-mentioned

example specifications on the models automatically generated for this case study.

The similarity between the results for the DTMC and the MDP model is an in-
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Table 6.3.: Verification results for different example specifications.

Model Query Result

DTMC P=? [F (abort = 1 & continue = 1)] 0

MDP Pmax=? [F (abort = 1 & continue = 1)] 0

DTMC P=? [F (error = 0 & mission_complete = 1)] 0.4416

MDP Pmax=? [F (error = 0 & mission_complete = 1)] 0.4470

DTMC P=? [F≤100 error = 1] 0.6713

MDP Pmax=? [F≤100 error = 1] 0.6723

DTMC R{fuel}=? [F mission_complete = 1] 5.7664

MDP R{fuel}max=? [F mission_complete = 1] 5.7671

dication that the behaviour of the logic is very similar, suggesting that the MDP

implementation in this case does not give any obvious performance advantage over

the DTMC implementation.

6.5. Simulation

This section shows an example implementation of this case study in a simulation

environment. For this example the approach taken was the direct implementation

with Matlab/Simulink as described in Subsection 5.2.2.

The structure of the Simulink model is that of Figure 2.1, with the agent reasoning

implemented as a Matlab function (see Figure 5.2) which controls a set of skills,

and a dynamical model of the boat that represents the environment. In addition

a Virtual Reality (VR) 3D model is connected to visualise the position of the boat

relative to its surroundings.

The output of the agent reasoning is a vector of Boolean values that represent

actions. These action variables activate enabled subsystems, that implement run-
Repeated skills, and triggered subsystems, that represent runOnce skills.

Figure 6.3 shows a partial diagram of the system, which includes the dynamical
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Figure 6.3.: Simulink diagram of the simulated environment of a marine vessel with a
Virtual Reality 3D visualiser.

model of the boat and the 3D visualiser. A detailed description of the theory be-

hind the dynamical model is given in Appendix A.1. The model was implemented

making use of a 6-DOF equation of motion block from a Matlab toolbox called

Marine Systems Simulator (MSS) [155], with external forces manually implemented

as described in Appendix A.1. External disturbances are calculated by applying a

set of sinusoidal waves, calculating the forces that they generate along each axis.

The model takes three inputs: the thrust generated by a motor positioned in the

centre back of the boat, expressed in Newtons, the angle of the rudder expressed in

radians and a boolean variable to control the state of a virtual anchor. The output

that the model generates is a vector η with linear and angular positions, and a vector

ν with linear and angular velocities. The linear positions and velocities are relative

to a fixed frame centred in the middle of the map, the angular ones are relative to

a body frame centred in the Centre Of Gravity (COG).

The VR Sink block of Figure 6.3 operates the virtual 3D world by loading a

dedicated model file and changing its state with the inputs provided to it. Figure

6.4 shows a screenshot of the 3D world that visualises the linear and angular positions

with a 3D rendering of the boat. The virtual environment was developed with the

Simulink 3D Animation Toolbox.
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Figure 6.4.: Screenshot of the Virtual Reality 3D environment of the vessel for the case
study.

6.5.1. Skills

For this case study a set of skills, in the form of Matlab scripts, have been de-

veloped. They can be divided in three categories: Control skills, which regulate

the thrust and rudder output to the boat, Perception skills, which generate inputs

for the agent reasoning based on the simulation outputs, and Planning skills, which

generate sets of waypoints for the boat to follow.

Table 6.4.: List of the skills of the agent.

Routine Subsystem Description

Initialisation Control Initialisation of global variables and some
of the literals.
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Table 6.4.: List of the skills of the agent.

Routine Subsystem Description

Percept process Percept Calculates the current absolute speed and
tells the agent whether the boat is travel-
ling at the desired speed. Calculates the
distance from the next target and tells the
agent if the boat is approaching the target
or if it has reached it.

Path Planner Planning From the user input of destination and
the current position of the boat, gener-
ates a sequence of waypoints that the boat
will follow to avoid collision, using the al-
gorithm described in [122].

Motion planner Planning Establishes a ‘set speed’ based on the user
input and the current situation, and es-
tablishes a ‘set target’, which is the next
waypoint to pursue.

Anchor on/off Control Simulates the behaviour of a real anchor
by forcing the boat to hold the current
position.

Move towards target Control Calculates the current target relative posi-
tion and sets the rudder angle accordingly.
Sets the thrust according to the ‘set speed’
which is an input of the routine, it applies
PI control to eliminate steady state error.

6.6. Conclusions

This chapter described the application of the agent-based system LISA to a case

study. The scenario described was that of a small marine vessel, an ASV, on a

mission for mine detection and disposal in an environment delimited by a closed
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sequence of coordinates. The mission for the ASV is to explore a given area, com-

pletely covering the area with the range given by the onboard sensing equipment,

and tag potential treat that will later on be considered by human operators in a

nearby control centre.

An example agent reasoning was developed in the LISA framework to solve the

case study scenario. The agent controls the vessel to explore the unknown area in a

lawn mower path, by dividing the area into blocks. Two environmental conditions

were considered: weather changes, to account for possible safety concerns when the

weather condition becomes too harsh, and coverage control, to account for spots left

unclear when covering blocks. Changes in these environmental conditions trigger

plans that implement safety procedures, in case of harsh weather, and re-exploring

manoeuvres in case there are spots left unclear.

The example agent reasoning was implemented with two approaches, one to be

converted to a MDP and one to be converted to a DTMC. Both probabilistic models

where built with the model checker Prism, and they were both first verified with a

standard verification query that checks what is the minimum probability of complet-

ing the mission within 100 steps, and then with a series of additional queries that

tested the efficacy of the logic and illustrated how verification can be used to analyse

the agent program. The models generated in Prism were reasonably sized for such

an example with model construction times for both the MDP and the DTMC model,

on average, under 40 seconds. The MDP model, as expected, produced a structure

with a much larger state space compared to the DTMC implementation. However

verification results suggested that the MDP implementation does not provide any

immediate advantage over the DTMC implementation.

A simulation environment for the case study was also implemented with Mat-

lab/Simulink. The agent reasoning was implemented as a Matlab function, which

activate skills also implemented as Matlab functions. A 3D VR environment was
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implemented in Simulink to visualise the output of a dynamical model of the ves-

sel. The dynamical model considered is a 6DOF rigid-body dynamical model which

takes into account a set of external forces such as skin friction and drag forces.



Chapter 7.

Conclusions

7.1. Summary

This thesis described a novel agent architecture, called the Limited Instruction Set

Agent (LISA) system, which features an agent reasoning that can be automatically

verified by model checking. The idea is to enable the user to include known prob-

abilistic information in the program that describes the agent logic, allowing for the

implementation of a system that automatically generates a probabilistic model that

can be verified with known probabilistic verification tools.

The literature review formally defined rational agents and agent oriented program-

ming. Existing work on autonomous agent verification was described, highlighting

possible drawbacks that can be addressed in future development. Definitions of

formal verification and model checking were presented, with particular attention to

the models used in this project: Discrete-Time Markov Chain (DTMC) and Markov

Decision Process (MDP). A brief overview of algorithms that can be used as skills

of the agent was also given.

Amongst the numerous papers on the topic of verification of autonomous agents,

recurring problems were found. For instance the probabilistic nature of sensory per-

cepts of agents is rarely taken into account. Another problem was that the creation

131
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of a model that can be verified by a model checking software is often performed by

executing a symbolic model of the agent program to explore every reachable path,

and eventually list every reachable state in the state space, making the process

highly computationally expensive.

The LISA system aims to address these problems by creating a framework that is

structurally simpler and it facilitates verification by model checking. The architec-

ture is based on BDI and three layer architectures, with the agent reasoning on top

and two lower levels of subsystems that the agent reasoning can control and it uses

as an interface with the external world. The agent reasoning is based on Jason, an

evolution of AgentSpeak. Modifications are made to Jason so to facilitate modelling

and verification, as well as reducing the size of the state space required to build the

model.

The agent program is defined in the NLP language sEnglish, which is enriched

with structures that allow to introduce a probabilistic model of environmental events

within the agent code. This, in turn, allows to automatically generate a probabil-

istic model of the agent reasoning directly from the agent code. LISA reasoning was

shown to abstract away as a DTMC in the particular case when plans have unique

triggering conditions, and to always be abstract as a MDP. The approach proposed

here to formal verification of agent systems still requires the user to define the prob-

ability distributions to describe environmental events, however, it represents a tool

that allows to easily implement a verification process when probability distributions

are known.

The software chosen for probabilistic verification was Prism. The model generated

from the agent code was shown to be useful for both design-time and run-time

verification. Design-time verification can be used to improve and validate the agent

design for autonomous control. Run-time verification can be used to improve the

decision-making capabilities of the control agent by implementing model checking
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techniques in realtime as a means of internal model-based simulation, in order to

predict outcomes of actions and choose the most suitable strategy.

Finally, a set of possibilities for the implementation and simulation of the LISA

system was presented. In particular the LISA system was shown to be implementable

with the Cognitive Agent Toolbox (CAT), with Matlab/Simulink as well as in

popular robotic packages such as ROS and MOOS-IvP.

7.2. Results and challenges

The capabilities of the LISA framework were demonstrated with a case study. The

scenario presented is that of an Autonomous Surface Vehicle (ASV) for mine detec-

tion and disposal.

The logic behind the implementation of the agent reasoning was explained and

verification results were presented. Agent reasoning was implemented using two

different approaches, one to generate a MDP model and one to generate a DTMC

model. A possible simulation environment for the agent system was also presented,

with 6-DOF dynamical model and a VR 3D visual environment.

The case study showed promising results. Even though the logic behind this

particular example is fairly complex, the model building times for both the DTMC

and the MDP implementations of the model resulted to be of around 40 s, and the

model checking times of about 2 s for the example of specification that was used.

Some challenges were found during the development of the system. In particular,

increasing the number or the length of plans, or introducing new mental notes, res-

ults in a larger number of states required for the discrete model in PRISM, which

in turn results in larger model building and verification times. Unless there is a

disproportionate increase of the state space, this is hardly a problem for design-time

verification, especially when there are no set limitations for energy consumption,

size, weight and so on. However, in the case of run-time verification, the increase
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in verification time can potentially brake the applicability of the concept. For ex-

ample for the Plan Selection Function implementation, run-time verification would

need to be executed within a single reasoning cycle, unless there is a mechanism

in place for suspending the choice until the verification process is done. In case of

implementation as an external skill, the timing window of the run-time verification

can be generally wider, assuming that the beliefs associated with it are not required

to be updated frequently.

7.3. Future Work

The LISA system presented in this thesis shows a great potential for application in

a multitude of scenarios. There are however some points to be addressed in future

implementations.

The run-time verification framework described in Section 4.5, aside from prelim-

inary testing, has not been extensively tested in real world applications. It would

be interesting to see how this process scales up with increasingly complex reasoning

agents, and how differently it performs on machines with different levels of compu-

tational power.

In Jason and other similar AgentSpeak-derived languages, beliefs are given an ad-

ditional degree of abstraction over the true/false status of boolean variables. Agent

reasoning can believe that something is true or false but also not true or not false.

This is achieved by looking at the Beliefs set for missing information about one or

more beliefs. In the LISA implementation of the agent reasoning, this process is

still in place. However when automatically generating the probabilistic model of the

agent reasoning, this possibility has not yet been explored. Future implementation

of the translation and abstraction script could take into account this abstraction,

by giving multiple states to belief variables. However it is possible that this would

greatly increase the size of the state space if a large number of these states are
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reachable during the operation of the model.

Another interesting aspect that could be addressed in future implementation is the

application of the concept of automatic probabilistic modelling and verification to

multi-agent system [69, 129]. For example if multiple agents are implemented with

the LISA framework, a mechanism for automatically generate a model that encap-

sulate the behaviour of the group could be created, giving the means of predicting

the outcome of certain behaviours and interactions.
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Additional material

A.1. Dynamics of marine vessels

Consider a rigid body that models the structure of a small marine vessel. Although

every rigid body presents some flexibility to a certain extent, the model described

here considers the vessel to be a completely rigid body. Rigid body dynamics can be

described in a three dimensional space with the 6-DOF equations of motion, which

decomposes the dynamics along three translational axes and three rotational axes.

Figure A.1 shows a representation of the reference frames for the dynamical model.

A frame is fixed to the rigid body and centred in the COG, called the b-frame, and

a frame is fixed to the ground, called the n-frame.

Given a b-frame and an n-frame as described in Figure A.1, the 6-DOF equations

of motion can be defined as follows [83, 84]:
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Figure A.1.: Reference frames for the dynamical model.





m[u̇− vr + wq] = Rξ

m[v̇ − wp+ ur] = Rη

m[ẇ − uq + vp] = Rζ

Iξṗ+ (Iζ − Iη)qr − (ṙ + pq)Iξζ + (r2 − q2)Iηζ + (pr − q̇)Iξη = Mφ

Iη q̇ + (Iξ − Iζ)rp− (ṗ+ qr)Iξη + (p2 − r2)Iζξ + (qp− ṙ)Iηζ = Mθ

Iζ ṙ + (Iη − Iξ)pq − (q̇ + rp)Iηζ + (q2 − p2)Iξη + (rq − ṗ)Iζξ = Mψ

(A.1)

where:

m total mass of the boat

η = [x y z φ θ ψ]T Position vector of the b-frame relative to the n-frame.

ν = [u v w p q r]T Linear and angular velocities decomposed in the b-

frame.

τ = [Rξ Rη Rζ MφMθMψ]T External forces and momentums decomposed in the

b-frame.
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I0 =




Iξ Iξη Iξζ

Iηξ Iη Iηζ

Iζξ Iζη Iζ




Inertia tensor

By approximating the rigid body as a system of M distributed masses, the com-

ponents of the Inertia tensor I0 can be defined as follows.

Iξ = ∑M
i=1

(
η2
i + ζ2

i

)
mi

Iη = ∑M
i=1

(
ξ2
i + ζ2

i

)
mi

Iζ = ∑M
i=1

(
ξ2
i + η2

i

)
mi

Iξη = Iηξ = −∑M
i=1 ξi ηi mi

Iηζ = Iζη = −∑M
i=1 ηi ζi mi

Iξζ = Iζξ = −∑M
i=1 ξi ζi mi

(A.2)

where [ξi, ηi, ζi] is the position of the i-th mass mi relative to the COG.

The external forces and momentums τ can be identified as the sum of three

components: hydrodynamic forces and momentums τH , propulsion forces and mo-

mentums τP and environmental (disturbance) forces and momentums τd:

τ = τH + τP + τd (A.3)

Hydrodynamic forces in turn can be expressed as the sum of added mass, hydro-

dynamic damping and restoring forces:

τH = − [MAν̇ + CA(ν)ν]︸ ︷︷ ︸
added mass

− D(ν)ν︸ ︷︷ ︸
hydrodynamic

damping

− g(η) + g0︸ ︷︷ ︸
restoring forces

(A.4)

Added mass (also known as virtual mass) is the force generated by the volume of

water surrounding the vehicle as it moves through it. Hydrodynamic damping forces

can include skin friction, wave drift damping and damping due to vortex shedding.

Restoring forces are due to Archimedes law (weight and buoyancy).

In this implementation the external forces and momentums where implemented
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as follows:

Rξ = −Kξu
2 sign(u) +RT +Rξd

Rη = −Kηv
2 sign(v) +Rηd

Rζ = −Kζw
2 sign(w)− V̄ (z)ρwg +mg +Rζd

Mφ = −Kφ1p−Kφ2p
2 sign(p)−Kφ3sin(φ) +Mφd

Mθ = −Kθ1q −Kθ2q
2 sign(q)−Kθ3sin(θ) +Mθd

Mψ = −Kηψv
2 sign(v)−Kψr

2 sign(r) +Mδ +Mψd

(A.5)

where:

RT Thrust force (linear) along the x axis

V̄ (z) Submerged volume of the boat

ρw Water density

Mδ Momentum generated by the rudder

δ Rudder angle

m Total mass of the boat

g Gravity acceleration

The terms denoted with a ‘d’ subscript represent the components of the environ-

mental forces vector

τ d =
[
Rξd Rηd Rζd Mφd Mθd Mψd

]T
(A.6)

The propulsion term τP , which represents the control input, is composed by the

thrust force RT , expressed in Newtons and linear to the ξ axis, and the momentum

generated by the action of the rudder on the yaw, denoted with Mδ, expressed as
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follows:

Mδ = KTu
2 sign(u) cos(δ) sin(δ)

where δ is the angular position of the rudder with respect to the ξ axis.

The hydrodynamic forces make up the rest of the terms in Equation A.5. The

added mass forces and momentum are considered to be negligible in this implement-

ation, with the assumption that a small vessel features a reasonably aerodynamic

profile and it does not travel at speeds that are high enough to generate a signific-

ant displacement of water. For the hydrodynamic damping, two main factors were

considered: skin friction and drag. Skin friction terms are present on the roll and

pitch axes, and they are proportional to the respective velocities along those axes.

Drag terms are present on all axes and proportional to the velocity squared along

the relative axes. Drag forces can be expressed with the following formula [15]:

FD = 1
2ρv̄

2CDA (A.7)

where v̄ is the velocity of the vehicle along the axis in question. The mass density

of the fluid ρ, the drag coefficient CD and the area A of the vehicle facing the fluid

during motion are constants that are summarised under the ‘K’ terms in Equation

A.5. Finally the following restoring forces are considered: one linear to the vertical

axis ζ, one for the roll angle and one for the pitch angle. The vertical restoring

force is the sum of two opposing forces: the buoyancy force, proportional to the

submerged volume of the boat times the gravity acceleration, and the weight force.

The restoring forces along the roll and pitch angles are proportional to the sine of

the respective angles.
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Code for the case study

B.1. Agent reasoning code

1 INITIAL BELIEFS AND GOALS
2 Start mission.
4 INITIAL ACTIONS

6 PERCEPTION PROCESS
7 Monitor the following booleans:
8 //Percepts
9 Sea state is too high. {[],[0.1,10,0],[0.5,3,0]}

10 I am at global waypoint. {[],[0.1,10,0],[0.5,3,0]}
11 Areas left unexplored. {[I am at global waypoint

],[0.1,1,0],[0.1,1,0]}
12 Last waypoint reached. {[I am at global waypoint

],[0.1,1,0],[0.1,1,0]}
13 //Action feedbacks
14 Waypoints generated.
15 Drive mode.
16 Park mode.
17 Continue.
18 Abort.
20 Monitor the following objects:
22 REASONING
23 If ^[Abort] and ^[Continue] then ^[Error]
24 If ^[Last waypoint reached] and ~^[I am at global waypoint] then ^[

Error]
25 If ^[Drive mode] and ^[Park mode] then ^[Error]
26 If ^[I am not going back] and ^[Re_exploring_areas] then ~^[I am not

going back]
28 EXECUTABLE PLANS
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29 //Plan 1
30 If ^[Start mission] while ~^[Sea state is too high] then
31 [Generate set of waypoints.]
32 [Activate drive mode.]
33 +^[Exploring block]
34 -^[Start mission].
36 //Plan 2
37 If ^[I am at global waypoint] while ^[Exploring block] then
38 -^[Exploring block]
39 +^[Block explored]. {fuel=1,time=1}
41 //Plan 3
42 If ~^[I am at global waypoint] while ^[Drive mode] then
43 -^[Block explored]
44 +^[Exploring block].
46 //Plan 4
47 If ^[Block explored] while ^[Areas left unexplored] and ~^[Sea state

is too high] then
48 +^[I am not going back].
50 //Plan 5
51 If ^[Block explored] while ^[Areas left unexplored] and ~^[Sea state

is too high] then
52 [Activate park mode.]
53 [Generate set of waypoints.]
54 +^[Re_exploring areas] {fuel=1,time=1}
55 [Activate drive mode.].
57 //Plan 6
58 If ^[Block explored] while ^[Re_exploring areas] then
59 -^[Re_exploring areas].
61 //Plan 7
62 If ^[Last waypoint reached] while ^[Block explored] and ~^[Areas

left unexplored] then
63 [Activate park mode.]
64 +^[Mission complete].
66 //Plan 8
67 If ^[Sea state is too high] while true then
68 [Activate park mode.]
69 [Wait for instructions.] {time=1}
70 +^[Waiting for instructions].
72 //Plan 9
73 If ^[Continue] while ^[Waiting for instructions] then
74 [Activate drive mode.]
75 -^[Waiting for instructions].
77 //Plan 10
78 If ^[Abort] while true then
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79 [Activate park mode.].
B.2. Automatically generated PRISM code of the MDP

model

1 mdp

3 // ***** PLANS ***** //
5 module plan_1
6 plan_1: [0..4] init 0;
8 [t] plan_1=0 & !(start_mission=1 & (sea_state_is_too_high=0)) -> (

plan_1'=0);
9 [t] plan_1=0 & (start_mission=1 & (sea_state_is_too_high=0)) -> (

plan_1'=1);
10 //generate_set_of_waypoints
11 [t] plan_1=1 & !(waypoints_generated=1) -> (plan_1'=1);
12 [t] plan_1=1 & (waypoints_generated=1) -> (plan_1'=2);
13 //activate_drive_mode
14 [t] plan_1=2 & !(drive_mode=1) -> (plan_1'=2);
15 [t] plan_1=2 & (drive_mode=1) -> (plan_1'=3);
16 //+exploring_block
17 [t] plan_1=3 -> (plan_1'=4);
18 //-start_mission
19 [t] plan_1=4 -> (plan_1'=0);
20 endmodule

22 module plan_2
23 plan_2: [0..2] init 0;
25 [t] plan_2=0 & !(i_am_at_global_waypoint=1 & (exploring_block=1)) ->

(plan_2'=0);
26 [t] plan_2=0 & (i_am_at_global_waypoint=1 & (exploring_block=1)) ->

(plan_2'=1);
27 //-exploring_block
28 [t] plan_2=1 -> (plan_2'=2);
29 //+block_explored
30 [t] plan_2=2 -> (plan_2'=0);
31 endmodule

33 module plan_3
34 plan_3: [0..2] init 0;
36 [t] plan_3=0 & !(i_am_at_global_waypoint=0 & (drive_mode=1)) -> (

plan_3'=0);
37 [t] plan_3=0 & (i_am_at_global_waypoint=0 & (drive_mode=1)) -> (

plan_3'=1);
38 //-block_explored
39 [t] plan_3=1 -> (plan_3'=2);
40 //+exploring_block
41 [t] plan_3=2 -> (plan_3'=0);
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42 endmodule

44 module plan_4_5
45 plan_4: [0..1] init 0;
46 plan_5: [0..4] init 0;
48 //Triggering event
49 [t] (plan_4=0 & plan_5=0) & !(block_explored=1 & (

areas_left_unexplored=1 & sea_state_is_too_high=0)) -> (plan_4
'=0) & (plan_5'=0);

50 [t] (plan_4=0 & plan_5=0) & (block_explored=1 & (
areas_left_unexplored=1 & sea_state_is_too_high=0)) -> (plan_4
'=1);

51 [t] (plan_4=0 & plan_5=0) & (block_explored=1 & (
areas_left_unexplored=1 & sea_state_is_too_high=0)) -> (plan_5
'=1);

53 //Plan 4 actions
54 //+i_am_not_going_back
55 [t] plan_4=1 -> (plan_4'=0);
57 //Plan 5 actions
58 //activate_park_mode
59 [t] plan_5=1 & !(park_mode=1) -> (plan_5'=1);
60 [t] plan_5=1 & (park_mode=1) -> (plan_5'=2);
61 //generate_set_of_waypoints
62 [t] plan_5=2 & !(waypoints_generated=1) -> (plan_5'=2);
63 [t] plan_5=2 & (waypoints_generated=1) -> (plan_5'=3);
64 //+re_exploring_areas
65 [t] plan_5=3 -> (plan_5'=4);
66 //activate_drive_mode
67 [t] plan_5=4 & !(drive_mode=1) -> (plan_5'=4);
68 [t] plan_5=4 & (drive_mode=1) -> (plan_5'=0);
69 endmodule

71 module plan_6
72 plan_6: [0..1] init 0;
74 [t] plan_6=0 & !(block_explored=1 & (re_exploring_areas=1)) -> (

plan_6'=0);
75 [t] plan_6=0 & (block_explored=1 & (re_exploring_areas=1)) -> (

plan_6'=1);
76 //-re_exploring_areas
77 [t] plan_6=1 -> (plan_6'=0);
78 endmodule

80 module plan_7
81 plan_7: [0..2] init 0;
83 [t] plan_7=0 & !(last_waypoint_reached=1 & (block_explored=1 &

areas_left_unexplored=0)) -> (plan_7'=0);
84 [t] plan_7=0 & (last_waypoint_reached=1 & (block_explored=1 &

areas_left_unexplored=0)) -> (plan_7'=1);
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85 //activate_park_mode
86 [t] plan_7=1 & !(park_mode=1) -> (plan_7'=1);
87 [t] plan_7=1 & (park_mode=1) -> (plan_7'=2);
88 //+mission_complete
89 [t] plan_7=2 -> (plan_7'=0);
90 endmodule

92 module plan_8
93 plan_8: [0..3] init 0;
95 [t] plan_8=0 & !(sea_state_is_too_high=1) -> (plan_8'=0);
96 [t] plan_8=0 & (sea_state_is_too_high=1) -> (plan_8'=1);
97 //activate_park_mode
98 [t] plan_8=1 & !(park_mode=1) -> (plan_8'=1);
99 [t] plan_8=1 & (park_mode=1) -> (plan_8'=2);

100 //wait_for_instructions
101 [t] plan_8=2 & !(continue=1 | abort=1) -> (plan_8'=2);
102 [t] plan_8=2 & (continue=1 | abort=1) -> (plan_8'=3);
103 //+waiting_for_instructions
104 [t] plan_8=3 -> (plan_8'=0);
105 endmodule

107 module plan_9
108 plan_9: [0..2] init 0;
110 [t] plan_9=0 & !(continue=1 & (waiting_for_instructions=1)) -> (

plan_9'=0);
111 [t] plan_9=0 & (continue=1 & (waiting_for_instructions=1)) -> (

plan_9'=1);
112 //activate_drive_mode
113 [t] plan_9=1 & !(drive_mode=1) -> (plan_9'=1);
114 [t] plan_9=1 & (drive_mode=1) -> (plan_9'=2);
115 //-waiting_for_instructions
116 [t] plan_9=2 -> (plan_9'=0);
117 endmodule

119 module plan_10
120 plan_10: [0..1] init 0;
122 [t] plan_10=0 & !(abort=1) -> (plan_10'=0);
123 [t] plan_10=0 & (abort=1) -> (plan_10'=1);
124 //activate_park_mode
125 [t] plan_10=1 & !(park_mode=1) -> (plan_10'=1);
126 [t] plan_10=1 & (park_mode=1) -> (plan_10'=0);
127 endmodule

129 // ***** ACTIONS ***** //
131 module activate_drive_mode
132 drive_mode: [0..5] init 0;
133 //drive_mode[1,5,0]
134 [b] !(plan_1=2 | plan_5=4 | plan_9=1) & (drive_mode<=1) -> (

drive_mode'=0);
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135 [b] (plan_1=2 | plan_5=4 | plan_9=1) & (drive_mode<=1) -> (
drive_mode'=5);

136 [b] drive_mode>1 -> (drive_mode'=drive_mode-1);
137 endmodule

139 module generate_set_of_waypoints
140 waypoints_generated: [0..1] init 0;
141 //waypoints_generated[1,1,0]
142 [b] !(plan_1=1 | plan_5=2) & (waypoints_generated<=1) -> (

waypoints_generated'=0);
143 [b] (plan_1=1 | plan_5=2) & (waypoints_generated<=1) -> (

waypoints_generated'=1);
144 endmodule

146 module activate_park_mode
147 park_mode: [0..1] init 0;
148 //park_mode[1,1,0]
149 [b] !(plan_5=1 | plan_7=1 | plan_8=1 | plan_10=1) & (park_mode<=1)

-> (park_mode'=0);
150 [b] (plan_5=1 | plan_7=1 | plan_8=1 | plan_10=1) & (park_mode<=1) ->

(park_mode'=1);
151 endmodule

153 module wait_for_instructions
154 continue: [0..5] init 0;
155 abort: [0..1] init 0;
156 //continue[0.6,5,0] abort[0.4,5,0]
157 [b] !(plan_8=2) & (continue<=1 & abort<=1) -> (continue'=0) & (abort

'=0);
158 [b] (plan_8=2) & (continue<=1 & abort<=1) -> (continue'=5);
159 [b] continue>2 -> (continue'=continue-1);
160 [b] continue=2 -> 0.6 : (continue'=1) & (abort'=0) + 0.4 : (continue

'=0) & (abort'=1);
161 endmodule

163 // ***** MENTAL NOTES ***** //
165 module start_mission
166 start_mission: [0..1] init 1;
167 [b] start_mission=0 -> (start_mission'=0);
168 [b] start_mission=1 & (plan_1=4) -> (start_mission'=0);
169 [b] start_mission=1 & !(plan_1=4) -> (start_mission'=1);
170 endmodule

172 module error
173 error: [0..1] init 0;
174 [b] ((abort=1 & continue=1) | (last_waypoint_reached=1 &

i_am_at_global_waypoint=0) | (drive_mode=1 & park_mode=1)) -> (
error'=1);

175 [b] !((abort=1 & continue=1) | (last_waypoint_reached=1 &
i_am_at_global_waypoint=0) | (drive_mode=1 & park_mode=1)) -> (
error'=error);

176 endmodule
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178 module exploring_block
179 exploring_block: [0..1] init 0;
180 [b] exploring_block=0 & (plan_1=3 | plan_3=2) -> (exploring_block

'=1);
181 [b] exploring_block=0 & !(plan_1=3 | plan_3=2) -> (exploring_block

'=0);
182 [b] exploring_block=1 & (plan_2=1) -> (exploring_block'=0);
183 [b] exploring_block=1 & !(plan_2=1) -> (exploring_block'=1);
184 endmodule

186 module block_explored
187 block_explored: [0..1] init 0;
188 [b] block_explored=0 & (plan_2=2) -> (block_explored'=1);
189 [b] block_explored=0 & !(plan_2=2) -> (block_explored'=0);
190 [b] block_explored=1 & (plan_3=1) -> (block_explored'=0);
191 [b] block_explored=1 & !(plan_3=1) -> (block_explored'=1);
192 endmodule

194 module i_am_not_going_back
195 i_am_not_going_back: [0..1] init 0;
197 [b] i_am_not_going_back=0 & ((plan_4=1) & !(re_exploring_areas=1 &

i_am_not_going_back=1)) -> (i_am_not_going_back'=1);
198 [b] i_am_not_going_back=0 & !((plan_4=1) & !(re_exploring_areas=1 &

i_am_not_going_back=1)) -> (i_am_not_going_back'=0);
199 [b] i_am_not_going_back=1 & (re_exploring_areas=1 &

i_am_not_going_back=1) -> (i_am_not_going_back'=0);
200 [b] i_am_not_going_back=1 & !(re_exploring_areas=1 &

i_am_not_going_back=1) -> (i_am_not_going_back'=1);
202 endmodule

204 module re_exploring_areas
205 re_exploring_areas: [0..1] init 0;
206 [b] re_exploring_areas=0 & (plan_5=3) -> (re_exploring_areas'=1);
207 [b] re_exploring_areas=0 & !(plan_5=3) -> (re_exploring_areas'=0);
208 [b] re_exploring_areas=1 & (plan_6=1) -> (re_exploring_areas'=0);
209 [b] re_exploring_areas=1 & !(plan_6=1) -> (re_exploring_areas'=1);
210 endmodule

212 module mission_complete
213 mission_complete: [0..1] init 0;
214 [b] mission_complete=0 & (plan_7=2) -> (mission_complete'=1);
215 [b] mission_complete=0 & !(plan_7=2) -> (mission_complete'=0);
216 [b] mission_complete=1 -> (mission_complete'=1);
217 endmodule

219 module waiting_for_instructions
220 waiting_for_instructions: [0..1] init 0;
221 [b] waiting_for_instructions=0 & (plan_8=3) -> (

waiting_for_instructions'=1);
222 [b] waiting_for_instructions=0 & !(plan_8=3) -> (
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waiting_for_instructions'=0);
223 [b] waiting_for_instructions=1 & (plan_9=2) -> (

waiting_for_instructions'=0);
224 [b] waiting_for_instructions=1 & !(plan_9=2) -> (

waiting_for_instructions'=1);
225 endmodule

227 // ***** PERCEPTS ***** //
229 module sea_state_is_too_high
230 sea_state_is_too_high: [0..1] init 0;
231 c1: [0..10] init 1;
233 //[0.1,10,0]
234 [b] sea_state_is_too_high=0 & c1<10 -> (c1'=c1+1);
235 [b] sea_state_is_too_high=0 & c1>=10 -> 0.01 : (

sea_state_is_too_high'=1) & (c1'=0) + 0.99 : (c1'=0);
236 //[0.5,3,0]
237 [b] sea_state_is_too_high=1 & c1<3 -> (c1'=c1+1);
238 [b] sea_state_is_too_high=1 & c1>=3 -> 0.5 : (sea_state_is_too_high

'=0) & (c1'=0) + (1-0.5) : (c1'=0);
239 endmodule

241 module i_am_at_global_waypoint
242 i_am_at_global_waypoint: [0..1] init 0;
243 c2: [0..10] init 1;
245 //[0.1,10,0]
246 [b] i_am_at_global_waypoint=0 & c2<10 -> (c2'=c2+1);
247 [b] i_am_at_global_waypoint=0 & c2>=10 -> 0.9 : (

i_am_at_global_waypoint'=1) & (c2'=0) + 0.1 : (c2'=0);
248 //[0.5,3,0]
249 [b] i_am_at_global_waypoint=1 & c2<3 -> (c2'=c2+1);
250 [b] i_am_at_global_waypoint=1 & c2>=3 -> (i_am_at_global_waypoint

'=0) & (c2'=0);
251 endmodule

253 module areas_left_unexplored
254 areas_left_unexplored: [0..1] init 0;
256 [b] areas_left_unexplored=1 -> 0.1 : (areas_left_unexplored'=0) +

0.9 : (areas_left_unexplored'=1);
257 [b] areas_left_unexplored=0 & i_am_at_global_waypoint=0 -> (

areas_left_unexplored'=0);
258 [b] areas_left_unexplored=0 & i_am_at_global_waypoint=1 -> 0.1 : (

areas_left_unexplored'=1) + 0.9 : (areas_left_unexplored'=0);
259 endmodule

261 module last_waypoint_reached
262 last_waypoint_reached: [0..1] init 0;
264 [b] last_waypoint_reached=1 -> (last_waypoint_reached'=1);
265 [b] last_waypoint_reached=0 & i_am_at_global_waypoint=0 -> (



B.2. Automatically generated PRISM code of the MDP model 151

last_waypoint_reached'=0);
266 [b] last_waypoint_reached=0 & i_am_at_global_waypoint=1 -> 0.1 : (

last_waypoint_reached'=1) + 0.9 : (last_waypoint_reached'=0);
267 endmodule

269 module scheduler
270 x: [0..1] init 0;
272 [b] x=0 -> (x'=1);
273 [t] x=1 -> (x'=0);
274 endmodule

276 rewards "res_cycles"
277 x=0 : 1;
278 endrewards

280 rewards "fuel"
281 plan_2=1 : 1;
282 plan_5=3 : 1;
283 endrewards

285 rewards "time"
286 plan_2=1 : 1;
287 plan_5=3 : 1;
288 plan_8=2 : 1;
289 endrewards
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