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Abstract 

Cardiovascular disease is the leading cause of death worldwide, and is increasing in an 

ageing and growing population. Heart failure in adults results from a loss of functional 

cardiomyocytes (CMs), which are not replaced because the terminally differentiated state of 

adult CMs severely limits the capacity of the heart to regenerate. Thus, there is a need to 

develop strategies that enhance endogenous CM proliferation and enable cardiac repair.  

This thesis describes the characterisation of a surgical model of pressure overload, 

suprarenal aortic constriction (SAC), which results in hypertension and left ventricular 

hypertrophy. This model can be used to investigate candidates for cardiac regeneration. 

Previous work in our laboratory suggested that under hypertensive stress, mice with 

inhibited signalling of the tyrosine kinase receptor, c-Kit, had improved cardiac function and 

survival due to CM proliferation. Thus, the expression of c-Kit was evaluated in wild-type 

mice and was found at very low levels in developing and adult CMs, and was not re-

expressed in adults following SAC. Therefore, c-Kit is unlikely to contribute to the 

maintenance of CM terminal differentiation and is not a suitable therapeutic target for CM 

proliferation. 

Another approach to identifying candidates for regeneration is to understand the changes in 

gene expression and regulatory networks that lead to CM proliferation and terminal 

differentiation. Characterisation of postnatal cardiac growth identified pivotal postnatal days 

(P) of CM maturation with high CM proliferation (P2), a transition between CM division 

and enlargement (P10 and P13), and CM terminal differentiation (P70). A standardised 

protocol for mice of any age was developed to rapidly purify CMs (~95% purity). Poly(A) 

RNA was extracted from purified CMs at the aforementioned time points for high-

throughput sequencing, which identified ~3,800 differentially expressed mRNAs that 

underpin CM maturation. Thus, this data has enormous potential to identify molecular 

targets for cardiac regeneration. 
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Chapter 1 General Introduction 

1.1 Cardiovascular disease 

Cardiovascular disease (CVD) is the leading cause of death worldwide. From 1990 to 2013, 

the number of deaths from CVD increased by 41% due to an ageing and growing population 

(Naghavi et al., 2015; Roth et al., 2015). In 2011, the World Health Organization (WHO) 

set a goal, “25 by 25”, to reduce premature deaths from CVD by 25% before 2025 in 

persons aged between 30 and 70 years-old. CVD risk factors and comorbidities, such as: 

obesity, smoking, diabetes, and hypertension, may lead to sudden cardiac death, or 

mortality. Current strategies to alleviate CVD involve lifestyle changes (diet and exercise), 

medication, and surgery. Heart failure (HF) is a common end-result of a variety of CVDs, 

including ischemic and hypertensive heart disease (IHD and HHD), whereby heart 

transplantation is the only cure for patients with end-stage HF, but is limited by the number 

of donors, and requires lifelong administration of immunosuppressive drugs. To obviate 

these problems, the potential to stimulate cardiac regeneration to repair the heart is a novel 

approach to treating CVDs, although a major hurdle to realising this approach is the 

terminally differentiated state of adult cardiomyocytes (CMs), which severely limits 

regenerative repair after cardiac injury. This is in contrast to other organs, such as the liver 

and skin, which retain their regenerative potential throughout life, allowing scarless repair 

after injury with complete restoration of organ function. 

1.1.1 Hypertensive heart disease (HHD) and heart failure (HF) 

In the Framingham Heart Study (Levy et al., 1988), left ventricular (LV) mass and blood 

pressures were determined in ~5000 participants of 17- 90 years of age. This showed that 

hypertension preceded HF in 75% of patients and was the primary cause of pathological left 

ventricular hypertrophy (LVH) (Ho et al., 1993). Indeed, LVH is an independent predictor 

of cardiovascular morbidity and mortality (Lloyd-Jones et al., 2002; Levy et al., 1988). The 

clinical diagnosis for hypertension is an elevated blood pressure of >140/90 mmHg, and if 

blood pressure increases above 160/100 mmHg, the risk of HF doubles (Lloyd-Jones et al., 

2002). In response to hypertensive stress, the adult heart is restricted to hypertrophic growth 
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to normalise wall stress and preserve cardiac output (CO). The prevalence of LVH is 16% in 

women and 19% in men, which was determined by echocardiography measurements (Levy 

et al., 1988). Hypertensive heart disease (HHD) involves a sequence of events that lead to 

pathological hypertrophy associated with systolic and/or diastolic dysfunction, which may 

progress into overt HF (Drazner, 2011). HF patients are classified into four classes 

depending on the severity of their symptoms according to the New York Heart Association 

framework, which is based on exercise tolerance and fatigue, from class I: no limit of 

physical activity, to class IV: cannot undertake physical activity without discomfort (Jessup 

et al., 2009). A sensitive biomarker of HF is the circulating level of brain natriuretic peptide 

(BNP), which is determined to guide therapy (Jessup et al., 2009; Horwich et al., 2003). 

1.1.2 Pathological versus physiological hypertrophy 

Cardiac “hypertrophy” is from the Greek for “increased growth” (Maillet et al., 2013) and 

others refer to it as “above normal growth” of the heart (Dorn, 2007). An increase in 

workload on the heart leads to both physiological and pathological hypertrophy resulting 

from the cellular enlargement of CMs rather than from cell division because CMs become 

terminally differentiated after birth. This does not occur with other cell types in the heart, 

such as endothelial cells (ECs), fibroblasts, or vascular smooth muscle cells (VSMCs), 

which all retain proliferative capacity (Maillet et al., 2013). Hypertension-induced 

pathological hypertrophy is initially adaptive to maintain CO but becomes maladaptive with 

cardiac remodelling, which as a result progresses to cardiac dysfunction. This progression is 

due to altered cardiac geometry, activation of the “fetal gene program”, fibrosis, and 

inadequate angiogenesis leading to decreased myocardial perfusion and coronary blood flow 

in the heart (Dorn, 2007; Maillet et al., 2013). In comparison, physiological hypertrophy 

also results in altered cardiac geometry but with enhanced coronary blood flow and no re-

expression of the fetal gene program or fibrosis.  

In the compensatory or adaptive phase of cardiac growth, high blood pressure increases the 

afterload on the heart, which is counteracted by thickening of the LV wall to normalise wall 

stress and maintain CO. At the cellular level, cardiac growth is achieved by an increase in 

CM width as sarcomeres replicate in parallel with a subsequent increase in LV wall 

thickness (h) compared with the internal chamber radius (R), increasing the LV wall 
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thickness- to -internal chamber ratio (h/R) (Figure 1.1) (Grossman et al., 1975; Lorell and 

Carabello, 2000). This type of cardiac growth caused by pressure overload (PO) is 

characterised as concentric hypertrophy, as the circumference of the resultant hypertrophic 

LV is concentric with that of the original heart. Other cardiac diseases that result from PO 

include valvular stenosis, which obstructs the outflow of blood and, hence, increases 

afterload (Maillet et al., 2013). Over time, persistent haemodynamic overload leads to a 

decrease in the LV wall thickness to internal chamber radius ratio (h/R), which is due to an 

increase in CM length, and not width, caused by the serial replication of sarcomeres (Figure 

1.1). The resulting dilatation of the LV and ensuing volume overload is characteristic of 

eccentric hypertrophy (circumference of the dilated LV chamber has moved laterally and is 

no longer concentric with that of the original heart) (Lorell and Carabello, 2000). Other 

volume overload cardiac diseases include mitral valve regurgitation, arterio-venous shunts 

or a large myocardial infarction (MI). The altered geometry of the LV and chamber dilation 

leads to cardiac dysfunction (Dorn, 2007).  

The hallmark of pathological hypertrophy is the re-expression of the fetal genes: atrial and 

brain natriuretic peptides (ANP and BNP), α-skeletal actin (α-SKA) and β-myosin heavy 

chain (β-MHC) (Schoenfeld et al., 1998; Gulick et al., 1991). In addition the expression of 

fetal genes, LVH is associated with fibrosis due to the increased deposition and 

accumulation of collagen resulting from the proliferation of fibroblasts, which 

heterogeneously alters tissue structure and causes myocardial stiffness (Cuspidi et al., 2006; 

Weber and Brilla, 1991). Together with fibrosis and insufficient arteriogenesis to maintain 

adequate myocardial perfusion, decompensatory hypertrophy ensues with systolic and/or 

diastolic dysfunction due to chamber stiffness and impaired relaxation, a substrate for 

ventricular arrhythmias and sudden cardiac death, and also indicates the onset of HF (Kahan 

and Bergfeldt, 2005; Houser et al., 2012). Chronic LVH and diastolic dysfunction results in 

severe congestive HF that requires repeated hospitalization (Lorell and Carabello, 2000). 

Thus, there are many factors that contribute to pathological cardiac remodelling and its 

progression to overt HF.  

Physiological hypertrophy is distinguishable from pathological hypertrophy as it is 

associated with normal LV systolic and diastolic function, and does not progress to HF 

(Maillet et al., 2013; Dorn, 2007). Physiological hypertrophy, which occurs with normal 
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cardiac development, pregnancy and exercise, is reversible, unlike pathological 

hypertrophy, which is usually irreversible if increased workload is not ameliorated (Dorn, 

2007) (Maillet et al., 2013). Normal cardiac development involves the development of both 

pressure and volume overload, and therefore, consists of both concentric and eccentric 

hypertrophy (Maillet et al., 2013; Naqvi et al., 2014). Exercise-induced physiological 

hypertrophy also develops into either concentric or eccentric hypertrophy depending on the 

type of training, i.e., if it is isometric (such as weight-lifting) or isotonic (such as cycling), 

respectively (Dorn, 2007; Maillet et al., 2013). However, athletes that undertake prolonged 

endurance training regimes and increase their aerobic rather than anaerobic capacity, are 

more likely to develop pathological hypertrophy and CVD (Dorn, 2007; Maillet et al., 

2013). In contrast, only volume overload occurs with pregnancy resulting in eccentric 

hypertrophy (Dorn, 2007) , which is reversible postpartum.  
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Figure 1.1: Illustration of the changes in cardiac geometry of a normal heart that 
undergoes either concentric or eccentric hypertrophy 

Cardiac hypertrophy involves concentric or eccentric growth of the heart due to an increased 
workload on the heart. Concentric hypertrophy leads to an increase in the LV wall thickness 
(h) relative to the internal chamber radius (R) resulting from an increase in CM cell width 
due to the parallel addition of sarcomere. Eccentric hypertrophy leads to chamber dilation 
and a reduction in the wall thickness ration (h/R) with an increase in CM cell length, rather 
than width, due to the serial addition of sarcomere. Sarcomere units are shown under each 
LV chamber with thin actin filaments aligned along the z-discs and thick myosin filaments 
aligned in-between. 
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The underlying molecular phenotypes of pathological and physiological hypertrophy are 

different, and include changes in energy metabolism, contractility, fetal gene expression, 

fibrosis, and neurohumoral pathways. CMs contain many mitochondria that continually 

supply ATP primarily via the oxidation of fatty acids and also by the oxidation of glucose. 

In pathological hypertrophy, there is a shift from fatty acid to glucose metabolism, whereas 

both pathways are augmented in physiological hypertrophy leading to enhanced aerobic 

capacity (Dorn, 2007; Hou and Kang, 2012). Furthermore, the fetal gene program is 

activated in pathological hypertrophy but not in physiological hypertrophy (Maillet et al., 

2013). This leads to an increase in the ratio of slow twitch contractile protein, β-MHC, to 

the fast twitch contractile protein, α-MHC, which has higher ATPase activity. The increase 

in the β-MHC/α-MHC ratio is energetically favourable but also disadvantageous since 

contractility is reduced (Krenz and Robbins, 2004). In human hearts, β-MHC is the 

predominant isoform and the expression of α-MHC decreases by 15-fold with end-stage HF 

(Miyata et al., 2000). In contrast, the contractile protein that represents the thin filament, α-

SKA, increases with CM stretch and wall stress, and is associated with increased 

contractility (Hewett et al., 1994). Overall, contractility is reduced, which is also due to 

impaired Ca2+ homeostasis, and in particular, the reduced expression of the sarco-

endoplasmic reticulum Ca2+-ATPase 2A (SERCA2A) (Hou and Kang, 2012). Another 

change that occurs with pathological but not physiological hypertrophy, is increased fibrosis 

caused by the greater deposition of collagen types I and III (Dorn, 2007; Hou and Kang, 

2012). Pathological hypertrophy leads to increases in ANP and BNP levels, which 

counteract high blood pressure and fibrosis, respectively (Gardner, 2003). ANP does this by 

targeting the renin-angiotensin-aldosterone system (RAAS) system to inhibit renin and 

aldosterone secretion, it is also an antagonist of vasoconstriction, acting as a relaxant to 

reduce total peripheral resistance, and therefore, reduces blood pressure and volume (Atlas 

et al., 1986). Whereas BNP is produced by fibroblasts and inhibits collagen deposition, and 

moreover, Nppb-/- mice with reduced BNP expression, have higher levels of fibrosis after 

PO (Gardner, 2003; Tamura et al., 2000).  

1.1.3 Signals in cardiac hypertrophy 

There are many signalling pathways that are activated with pathological or physiological 

hypertrophy, and the neurohumoral pathway is one of these. Indeed, the main signalling 
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pathway that promotes pathological hypertrophy is through G protein-coupled receptors 

(GPCRs) that are activated by angiotensin II (Ang II), endothelin, and catecholamines 

(Heineke and Molkentin, 2006) (Dorn, 2007). Upon ligand binding, heterotrimeric Gαq/11 

proteins couple to GPCRs, and the G proteins recruit phospholipase Cβ, resulting in the 

hydrolysis of phosphatidylinositol 4, 5 bisphosphate (PIP2) into diacylglycerol (DAG) and 

inositol 1, 4, 5 triphosphate (IP3) (Salazar et al., 2007). DAG activates protein kinase C, 

which initiates the expression of pro-hypertrophic genes. IP3 leads to sustained Ca2+ release 

from sarco-endoplasmic reticulum stores, which in turn causes the activation of calcineurin 

and the downstream transcription factor (TF), nuclear factor of activated T-cells (NFAT), 

which translocates to the nucleus (Salazar et al., 2007; Heineke and Molkentin, 2006). Both 

NFAT and calmodulin kinase II stimulate the expression of prohypertrophic genes and 

cardiac growth (Salazar et al., 2007).  

Physiological hypertrophy is promoted by insulin-like growth factor 1 (IGF1) that activates 

the phosphoinositide 3-kinase (PI3K) and serine/threonine-protein kinase (Akt) pathway 

(Dorn, 2007) (Maillet et al., 2013). IGF1 is synthesised and secreted from the liver in 

response to growth hormone stimulation, and is also produced by target tissues (Maillet et 

al., 2013). IGF1 binds to heterodimers of the tyrosine kinase receptors: insulin receptor and 

IGF1 receptor (IGF1R) or to homodimers of IGF1R, which recruit adaptor proteins that 

interact with PI3K (Jung and Suh, 2014). PI3K is a heterodimer that consists of a p85 

regulatory subunit and a p110 (α, β or δ) catalytic subunit, which phosphorylates 

phosphatidylinositol 4, 5-bisphosphate to generate phosphatidylinositol 3, 4, 5-triphosphate 

(Heineke and Molkentin, 2006; Dorn, 2007). This leads to Akt recruitment and 

phosphorylation at the cell membrane, and its activation promotes protein synthesis through 

activating the mammalian target of rapamycin (mTOR) and inhibiting glycogen synthase 

kinase (GSK). Furthermore, the p110α isoform of PI3K, regulates heart and CM size in 

normal cardiac development and exercise (Shioi et al., 2000; McMullen et al., 2003).  

1.1.4  Renin-angiotensin aldosterone system (RAAS) 

Pathological hypertrophy is also associated with abnormal activation of RAAS, although the 

exact mechanisms for the dysregulation of RAAS components are not completely 

understood (Atlas, 2007). Renin is synthesised and secreted by the juxtaglomerular (JG) 
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cells in the kidney, which detect a reduction in blood pressure, or renin is released when 

there is a decrease in the delivery of sodium and chloride ions to the macular densa of the 

distal tubules. Once released, renin cleaves circulating angiotensinogen (secreted by the 

liver), forming angiotensin I (Ang I) (Atlas, 2007), although the decapeptide has no 

biological activity, it is hydrolysed to the active octapeptide, Ang II, by membrane-bound 

angiotensin converting enzyme (ACE), and to a lesser extent by the mast cell protease, 

chymase (chymotryptic-like protease). Ang II acts at the Ang II type 1 (AT1) receptor 

located in vessel walls resulting in vascular smooth muscle constriction, which increases 

vascular resistance leading to an increase in blood pressure. Ang II also stimulates the 

release of aldosterone from the adrenal glands and the antidiuretic hormone (ADH) from the 

posterior pituitary gland. This causes an increase in blood volume and pressure due to salt 

and water retention (Atlas, 2007). In addition, Ang II and aldosterone negatively regulate 

renin release while the synthesis of Ang II is also inhibited by ANP and nitric oxide (Atlas, 

2007).  

1.1.5 Surgical models of HF in mice 

Surgical models have contributed greatly to our understanding of the pathogenesis and 

treatment of LVH. In addition to myocardial infarction, surgical models of HF by aortic 

constriction result in systemic hypertension and the rapid development of cardiac 

hypertrophy. These can be performed in mice, which are the preferred species for genetic 

studies and aid “proof of principle” research. Mice are also economically beneficial, with 

relatively low housing costs and a short gestational period (~21 days) (Tarnavski et al., 

2004; Patten and Hall-Porter, 2009). However, there are very few laboratories that have the 

expertise to perform microsurgery, especially techniques involving aortic banding in mice 

(Tarnavski et al., 2004). 

Abdominal and suprarenal aortic constrictions (AAC and SAC) are performed by partially 

ligating the abdominal aorta either between the right and left renal artery or above the origin 

of both renal arteries, respectively (Figure 1.2). Both AAC and SAC are more commonly 

performed in rats. SAC surgeries carried out in mice are often incorrectly referred to as 

AAC, however, in rats, AAC specifically describes banding between the right and left renal. 

Nevertheless, both AAC and SAC reduce renal blood flow and increase systemic blood 
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pressure, resulting in PO-induced LVH. Thoracic aortic constriction (TAC), established by 

Rockman et al. (1991), is more commonly performed in mice compared with SAC. TAC 

mimics aortic stenosis, whereby the banding is located around the aortic arch between the 

innominate and left carotid arteries (Figure 1.2), which directly increases cardiac afterload 

and, thus, the workload placed on the heart (Rockman et al., 1991). Thus, all aortic banding 

models restrict blood flow through the aorta, leading to increased vascular resistance and 

high blood pressure proximal to the constriction. PO-induced LVH is evident by an increase 

in LV mass and wall thickness due to cellular hypertrophy, which in turn results in cardiac 

remodelling and decompensatory hypertrophy. This leads to impaired diastolic (relaxation 

of the heart) and systolic (contractility of the heart) function, depressed LV ejection fraction 

(LVEF), and, depending on the severity and duration of the constriction, the development of 

end-stage HF, which can manifest within weeks (Breckenridge, 2010; van Nierop et al., 

2013). 

 

 

Figure 1.2: Illustration of different surgical models of pressure overload (PO) by aortic 
banding 

A, Abdominal aortic constriction (AAC) between the right and left renal artery; B, 
suprarenal aortic constriction (SAC) proximal to the origin of the renal arteries; C, thoracic 
aortic constriction (TAC) between the innominate and left common carotid arteries. AD, 
adrenal glands; RK, right kidney; LK, left kidney; RA, renal artery; IN, innominate artery; 
LC, left carotid; LS, left subclavian. 
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In general, it is difficult to make comparisons of surgical models given the difference in 

methods used between studies, such as the species, surgical technique, severity of 

constriction, study duration, and the location of banding. Rockman et al. (1991) reported a 

~33% increase in the heart-to-body weight ratio (HW/BW) after one week of TAC surgery 

(27 G) in C57BL/6J x SJL mice, resulting in an immediate pressure gradient of 70 mmHg in 

the left carotid and 115 mmHg in the right carotid, which were both 75 mmHg prior to 

constriction. Comparisons of PO phenotypes have been made post-TAC with varying 

degrees of constriction in C57BL/6J mice, in which ambulatory blood pressures were 

monitored over a 24-hour period at four weeks after surgery (Duan et al., 2007). The aorta 

was partially ligated in the presence of differently sized needles: 25 G, 26 G, and 27 G, 

which was then removed; this resulted in elevated SBPs that were ~130 mmHg, ~145 

mmHg, and ~190 mmHg, and increases in the ventricle-to-body weight of ~11%, ~27%, and 

~56%, respectively (Duan et al., 2007). Moreover, the degree of constriction was correlated 

to the severity of LVH, whereby the higher the blood pressure the greater the fibrosis and 

expression of hypertrophy markers.  

Resulting SAC phenotypes are also dependent on the degree of aortic constriction and 

length of study. In one study, two weeks of SAC with a 29 G needle using C57BL/6 mice, 

SBP increased by 59 mmHg and LV/BW increased by ~48%, which was accompanied with 

a re-expression in fetal genes (Wettschureck et al., 2001). Our laboratory has previously 

used the SAC model with a 29 G needle in C57BL/6J mice and the LV/BW increased by 

~45% and MAP was elevated by ~ 33% after one week of surgery (Li et al., 2008). In 

another study, SAC was performed with a 25 G needle in FVB/N mice, and HW/BW 

increased by ~20 % after two weeks of the surgery but blood pressures were not measured 

(De Windt et al., 2001). There have been fewer reports of SAC compared with TAC in the 

literature, although there are some long-term SAC studies. At eight weeks post-SAC with a 

28 G needle using C57BL/6J mice, HW/BW increased by ~ 19% and the right carotid blood 

pressure was elevated by 15 mmHg compared with shams (Wu et al., 2002). In this study, 

the aortae of sham controls were also ligated with a 20 G needle, which is not usually 

performed with sham operations. Patients with hypertension often have abnormal RAAS 

activation (Atlas, 2007), and yet the activity of RAAS in mice with aortic banding has not 

been established. Our laboratory has previously treated mice with an ACE inhibitor from the 

time of SAC surgery, and this reduced blood pressure to levels that were comparable to 

shams at three days post-SAC (Li et al., 2004). In addition, AT1 receptor blockers abrogated 
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hypertrophy after two weeks of TAC surgery (Takeda et al., 2010; Li et al., 2010). These 

studies clearly demonstrate the effects of aortic banding on LV mass and blood pressure, 

which involves the RAAS but its role is not clear. In addition, they illustrate the variability 

amongst different reports of SAC surgeries and highlight the importance of characterising 

PO models of aortic banding, especially since data are lacking for short-term studies of 

SAC-induced LVH in mice. 

One of the main differences between SAC and TAC mouse surgeries is the higher mortality 

rate in SAC (30-40%) compared with TAC (10-20%) (Rockman et al., 1991; deAlmeida et 

al., 2010; Wu et al., 2002; Duan et al., 2007; Li et al., 2008), in which most deaths occur 

within a 24-hour period of the surgery. Moreover, these surgeries lead to chamber dilation 

and congestive HF after 3, 6, and 15 weeks of surgery depending on the experimental 

conditions (Breckenridge, 2010; deAlmeida et al., 2010; Hara et al., 2002). One criticism of 

all of these models is the rapid development of LVH caused by the instantaneous increase in 

blood pressure, which is unlike the slower progression of stenosis/hypertension in the 

clinical setting, and therefore, of LVH (Patten and Hall-Porter, 2009). Nonetheless, the rapid 

development of LVH is a valuable tool for developing and identifying novel targets in the 

treatment of HF.  

1.1.6 Treatments of LVH 

Current treatments for LVH usually involve a combination of antihypertensive drugs such 

as ACE inhibitors, nitrates, and Ca2+ channel blockers (dilate blood vessels), diuretics 

(reduce blood volume), AT1 receptor antagonists (block Ang II-mediated effects), and β-

adrenergic blockers (reduce heart rate). Although therapeutic interventions may prevent or 

delay the progression of LVH to end-stage HF, the only definitive treatment of severe HF is 

a heart transplant, which involves a major surgical procedure, requires life-long 

immunosuppressive therapy and monitoring, is expensive, and is often not feasible due to 

the limited availability of donors.  
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1.1.7 Endogenous cardiomyocyte (CM) turnover in the adult heart 

The adult heart has long been termed a post-mitotic organ, although data has recently 

surfaced suggesting there is a low level of CM renewal in humans. Indeed, Bergmann et al. 

(2009) used carbon dating to evaluate the age of CMs by measuring the incorporation of 14C 

into DNA after nuclear bomb testing during the Cold War. This indicated that CM turnover 

was ~1% per year at the age of 25, and declined with age to 0.45% at 75 years. Conversely, 

Kajstura et al. (2010) estimated an average 20% renewal of CMs per year from a pool of 

resident cardiac stem cells (CSCs) that expanded with age. Mollova et al. (2013) reported a 

~1.9% turnover of CMs in a young adult heart (19 years-old), similarly to Bergmann et al. 

(2009). Senyo et al. (2013) detected a comparable annual CM turnover of 0.76% in mice by 

using the non-radioactive isotope, 15N thymidine (a marker of DNA synthesis), in 

combination with genetic fate mapping to label the majority of CMs with green fluorescent 

protein (GFP). Senyo et al. (2013) showed that pre-existing CMs undergo DNA synthesis to 

form new mononucleated GFP+ CMs. These sorts of methods are very limited in humans, 

and thus, it is more difficult to elucidate whether newly formed adult CMs arose from stem 

cells or differentiated CMs (Mollova et al., 2013). Nonetheless, the low level of CM 

renewal in the heart is not enough to enable self-repair after cardiac injury.  

In the past 20 years, the field of cardiac repair or regeneration has been evolving (Laflamme 

and Murry, 2011). The ultimate goal is to therapeutically manipulate innate pathways to 

stimulate the endogenous regeneration of CMs. If we can manipulate the pathway of self-

renewal in CMs to alleviate the workload placed on individual CMs, this may translate into 

a novel therapy for cardiac regeneration after injury. Importantly, our laboratory has for the 

first time shown CM proliferation in adulthood in response to PO, using mice with genetic 

mutations of stem cell factor receptor, c-Kit, had better preserved cardiac function and 

survival, which was markedly improved compared with wild-type (WT) mice where the 

response is limited to hypertrophy (Li et al., 2008).  
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1.2 Stem cell factor receptor (c-Kit) 

Stem cell factor receptor (c-Kit) signalling mediates cell survival, migration, differentiation, 

and proliferation, and is important for haematopoiesis, pigmentation and fertility. 

Overactive c-Kit mutations are implicated in diseases such as: leukaemia, gastrointestinal 

tumours, testicular carcinoma and mastocytosis, in which more than 500 mutations of c-Kit 

have been reported (Lennartsson and Ronnstrand, 2012). The role of c-Kit in the heart is 

less clear, although c-Kit is expressed in CSCs it diminishes upon cell differentiation into 

different cardiac cell types (Tallini et al., 2009; Fransioli et al., 2008; Li et al., 2008). 

1.2.1 c-Kit structure and signalling  

c-Kit was identified from homology with the oncogene v-kit from the Hardy-Zuckerman 4 

feline sarcoma virus (Besmer et al., 1986), and is localised on human chromosome 4 and 

mouse chromosome 5. c-Kit is over 1,000 amino acids long and has a core molecular weight 

of 110 kDa but post-translational heterogeneous N-linked glycosylation generates mature 

and precursor forms of c-Kit of 145-160 kDa and 125 kDa in size, respectively (Yarden et 

al., 1987; Lennartsson and Ronnstrand, 2012). c-Kit is a member of the membrane bound 

sub-family of receptor tyrosine kinases (RTK), which structurally consist of an N-terminal 

domain, an extracellular domain (ECD) that comprises five immunoglobulin-like domains, a 

single hydrophobic transmembrane domain (TMD), a juxtamembrane domain (JMD), a 

kinase domain split into two parts (a N-lobe and C-lobe) by a kinase insert, and lastly a C-

terminal domain (Figure 1.3 and Figure 1.4). 
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Figure 1.3: c-Kit domains and tyrosine phosphorylation sites 

c-Kit domains proportional to their lengths, and a number of intracellular tyrosine 
phosphorylation sites are shown. Adapted from Roskoski (2005). 

 

c-Kit is an archetypal RTK that undergoes ligand-induced dimerization, activation and 

degradation. The ligand of c-Kit, stem cell factor (SCF; also known as Kit-ligand or steel 

factor) is a cytokine that exists as both a membrane bound and soluble protein. Soluble SCF 

forms a dimer that binds to two c-Kit monomers, resulting in c-Kit dimerisation and 

autophosphorylation. A schematic of c-Kit activation is shown in Figure 1.4 and is based on 

the crystal structure of c-Kit bound to SCF. Dimeric soluble SCF associates strongly with 

the extracellular domain of c-Kit at Ig-like domains 1-3. Ig-like domains 4 and 5 are not 

involved in SCF binding but their interaction with each other is essential for tyrosine 

phosphorylation. Upon SCF-induced dimerisation, the two transmembrane domains of c-Kit 

move within 15Å of each other, which initiates transphosphorylation of intracellular 

tyrosine residues (Lennartsson and Ronnstrand, 2012). These occur systematically in the 

following order: juxtamembrane domain (Y568 and Y570), the kinase insert (Y703, Y721 

and Y730), kinase domain 2 (Y823 and Y900) and C-terminus (Y936). Phosphorylation of 

these tyrosine residues results in the recruitment of multiple effectors involved in many 



 

15 

 

signalling pathways, including: PI3K, Src kinases, mitogen-activated protein kinases 

(MAPKs), phospholipase C and D, and adaptor proteins (Lennartsson and Ronnstrand, 

2012). Only the mature form of c-Kit is phosphorylated while the precursor form of c-Kit is 

not phosphorylated and is not expressed at the cell surface (Lennartsson and Ronnstrand, 

2012; Blume-Jensen et al., 1991). c-Kit internalisation is mediated by Cbl phosphorylation, 

which directly or indirectly binds at the phosphorylation sites, blocking activation 

(Lennartsson and Ronnstrand, 2012). Cbl proteins function as E3 ligases resulting in the 

ubiquitylation and proteasomal degradation of c-Kit (Zeng et al., 2005).  
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Figure 1.4: Structural surface representation of c-Kit homodimerisation and c-Kit 
mutations  

A, the dimeric soluble SCF ligand induces homodimerisation of c-Kit in the plasma 
membrane resulting in the phosphorylation of intracellular tyrosines that are brought into 
close contact. B, KitWv is a missense mutation at T660M in kinase domain 1. C, KitW is a 78 
amino acid deletion of the transmembrane domain. The domains are similarly coloured to 
those presented in Figure 1.3. These models were made using PDBIDs: 2e9w and 2ec8, and 
images were generated using PyMol that were kindly provided by Dr Alastair Stewart.  
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1.2.2 c-Kit expression in the heart 

There is a subpopulation of resident cardiac c-Kit+ stem cells (CSCs) in the heart, however, 

their abundance is very low (Barile et al., 2007). Endogenous CSCs that express c-Kit are 

self-renewing, clonogenic, and differentiate in vitro and in vivo into all three cardiac 

lineages; CMs, ECs, and VSMCs (Beltrami et al., 2003; Tallini et al., 2009; Ellison et al., 

2013). c-Kit+ cardiac progenitor cells (CPCs) express proteins that identify with one of the 

cardiac lineages, e.g., GATA4 or sarcomeric tropomyosin for CMs, α-smooth muscle actin 

for VSMCs, or Pecam1 for ECs, and thus are partially committed (Fransioli et al., 2008; 

Kovacic et al., 2005). Furthermore, CPCs were found to form CMs, ECs, and fibroblasts in 

vivo, regulating cardiac homeostasis and repair in the adult heart (Hosoda et al., 2009). Once 

cultured CPCs fully differentiate into one of the cardiac lineages, c-Kit expression is lost 

(Fransioli et al., 2008; Tallini et al., 2009). In contrast, Zaruba et al. (2010) found that the 

cardiomyogenic potential of adult and neonatal c-Kit+ cells was very limited in vitro and in 

vivo. 

Expression of c-Kit+ cells during postnatal cardiac development is not well documented. 

Fransioli et al. (2008) generated transgenic mice that express GFP under the control of the 

c-Kit promoter to evaluate the number of CSCs that co-express GFP, and therefore c-Kit, in 

the heart. Such cells were found infrequently in cardiac tissues at: 7.2, 7.1, 0.3, and 0 per 

mm2, at postnatal day 2 (P2), P7, P14, and P70, respectively (Fransioli et al., 2008). In 

agreement with this study, our laboratory found that c-Kit expression in cardiac tissues was 

much greater at P1-P2 than P10 by immunohistochemistry and by RT-qPCR (Li et al., 

2008). However, c-Kit co-localised with β-MHC suggesting CMs were the source of c-Kit 

rather than CSCs. In another study, Tallini et al. (2009) reported that c-Kit was expressed in 

CPCs found in the embryonic, neonatal (P2-3), and adult hearts, reaching a maximum 

number at P2 but decreasing progressively to extremely low levels in the adult (<1%). This 

was investigated using a KitBAC-eGFP mouse that was generated using a bacterial artificial 

chromosome, which expressed enhanced GFP (eGFP) under the control of the c-Kit locus. 

This was similar to Zaruba et al. (2010), who determined the total proportion of c-Kit+ cells 

in the neonatal heart was 0.65% and in the adult heart was 0.5% by fluorescence-activated 

cell sorting (FACS). Overall, these studies indicate that c-Kit is most abundant at P2, 

although it is unclear as to which cell types are responsible for c-Kit expression. This is 

important to know since the role of c-Kit in heart development has not been established.  
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1.2.3 c-Kit expression after cardiac injury 

In addition to studying the basal expression of c-Kit, its role in cardiac cells has also been 

studied in adult mammalian hearts after cardiac injury. The initial work by Beltrami et al. 

(2003) showed improved cardiac function following two injections of EGFP+ CSCs in the 

heart after MI. This resulted in the regeneration of CMs, ECs, and VSMCs. In another 

study, the number of c-Kit expressing cells was higher after MI and these cells, which were 

recruited to the site of injury, increased the number of CSCs and CPCs that differentiated 

into all three cardiac lineages (CMs, ECs, VSMCs) (Fransioli et al., 2008). In a neonatal MI 

model, CPCs differentiated into ECs and CMs, partially regenerating the myocardium, but 

after the same MI injury performed in the adult heart, CPCs only differentiated into cells 

with a vascular lineage (Jesty et al., 2012). Tallini et al. (2009) reported that after cryo-

injury there was an increased population of c-Kit+ cells that mostly formed ECs or 

fibroblasts, and only the occasional differentiated CMs expressed c-Kit, which did not lead 

to cardiomyogenesis. On the contrary, newly formed CMs after MI and PO injury were 

reportedly due to the differentiation of CSCs (Hsieh et al., 2007). It has also been suggested 

that the expansion of endogenous CSCs and their differentiation into CMs is sufficient to 

repair the heart after acute myocardial death (8-10% of the LV) using a single dose of 

isoproterenol (Ellison et al., 2013); a finding that has recently been challenged (Wallner et 

al., 2016). In the latter study, it was shown that a single injection of isoproterenol caused 

membrane injury in 10% of CMs, which was reversible, and, hence, CMs recovered in the 

absence of a contribution from the CSC population (Wallner et al., 2016). 

In contrast to the aforementioned work, Senyo et al. (2013) reported that the adult heart only 

has a very limited capacity to repair after MI, and that newly formed CMs are derived from 

the replication of pre-existing CMs and not by the maturation of stem cells. Replication of 

endogenous CMs after injury has also been shown in neonatal mice after apical resection 

(Porrello et al., 2011b) and in zebrafish after apical resection (Kikuchi et al., 2010; Jopling 

et al., 2010). Thus, the origin, frequency, and propensity of CSCs to differentiate into CMs 

in vivo is controversial and highly debated. 

In summary, the field of cardiac regeneration is in disagreement with respect to the basal 

expression and contribution of c-Kit expressing cells following injury, which may be 

context dependent (i.e., the type of injury model used). This is concerning since CSCs are 
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being clinically trialled (Bolli et al., 2011). For these reasons, the careful evaluation of c-Kit 

in different cardiac cell types of the heart after injury is important, especially as it may help 

to establish its role in the heart.  

1.2.4 Cardiac injury in mice with mutations in the c-Kit/SCF pathway 

c-Kit co-localises to the same allele as the dominant white-spotting (W) locus. Mutations at 

this locus were first observed more than a century ago in black-eyed white mice that had 

loss of skin and iris pigmentation (Durham, 1908; Little, 1917). The W mutation is the 

result of a 78 amino acid deletion of the transmembrane domain, and results in a protein of 

125 kDa, which is not expressed at the cell surface of KitW/W mast cells (Nocka et al., 1990). 

Wv is a missense mutation, where threonine has been replaced with methionine at position 

660, resulting in a dominant-negative effect on c-Kit signalling, shown in Figure 1.3 and 

Figure 1.4. KitW/W homozygotes die in utero or shortly after birth (Nocka et al., 1989), 

whereas KitWv/Wv homozygotes have a less severe phenotype but are sterile and anaemic that 

are are black-eyed white mice due to a loss of pigmentation. Compound heterozygote 

Kit W/Wv are also black-eyed white mice, are anaemic due to defective haematopoiesis, are 

deficient in tissue mast cells, and have sterility issues (Nocka et al., 1990; Theoharides et 

al., 1993; Galli et al., 1987; Nocka et al., 1989). 

Original investigations in our laboratory focussed on PO in the KitW/Wv mice, which are 

deficient in tissue mast cells, and therefore have impaired secretion of the mast cell protease, 

chymase, which forms Ang II in the heart (Li et al., 2004; Nishimura et al., 1996). 

Unexpectedly, KitW/Wv hearts showed profound CM proliferation after one week of SAC-

induced PO. Of interest, the cardiac morphology and function of adult KitW/Wv and WT mice 

were indistinguishable at baseline in terms of their mean arterial pressure (MAP), LV/BW, 

and CM area (cross-sectional area). Furthermore, microarray profiling of untreated KitW/Wv 

and WT hearts showed that only 8 of some >40,000 transcripts were differentially 

expressed. After one week of PO, the MAP and LV/BW increased similarly between WT 

and KitW/Wv mice, however, the degree of CM hypertrophy, which was determined by CM 

cross-sectional area, was markedly greater in WT hearts (WT: ~36% vs KitW/Wv: 10%). 

Although there were equivalent increases in LV mass between the WT and KitW/Wv mice 

post-SAC, in the latter this was due to a remarkable ~40% addition of CMs. Moreover, there 
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were a significant number (>150) of differentially expressed mRNAs relative to WT mice 

post-SAC, with many of the up-regulated transcripts being involved in cycle re-entry and 

cell proliferation. Further evidence of CM proliferation in KitW/Wv hearts post-SAC was the 

expression of cell cycle markers: Ki67 (all phases of cell cycle), phosphorylated histone H3 

(onset of mitosis), and aurora kinase B (cytokinesis) in mature KitW/Wv CMs but not in WT 

CMs. In addition, pulse chase experiments using bromodeoxyuridine (BrdU), an analogue 

of thymidine, was incorporated into KitW/Wv CM nuclei with DNA replication but absent in 

WT CM nuclei post-SAC. This meant the number of CMs that re-entered the cell cycle 

increased by >1000-fold in KitW/Wv hearts compared with WT (WT, 0.004%; vs KitW/Wv, 

4%). Importantly, the hyperplastic response observed in the KitW/Wv mice post-SAC resulted 

in better cardiac function and survival compared with their congenic WT littermates.  

In these studies, the basal number of LV c-Kit+ interstitial cells was low in the adult WT and 

Kit W/Wv myocardium (10 cells/ mm2) and were mostly resident CSCs. Interestingly, 

inhibition of c-Kit signalling in the KitW/Wv mice prevented the differentiation of CSCs into 

CPCs (GATA4+), which were reduced by 14-fold and 64-fold post-SAC, respectively, 

compared with WT hearts. Although the total number of c-Kit+ interstitial cells in the WT 

LV did not increase post-SAC, the CPC population expanded by 50%, whereas there was 

only a 10% increase in the number of CSCs in KitW/Wv hearts. Hence, there was a 

disproportionate expansion of CSCs and not CPCs in Kit W/Wv hearts.  

Given that c-Kit signalling is inactivated ubiquitously in all KitW/Wv tissues, a transgenic 

mouse overexpressing the KitWv mutation under the control of the CM-specific α-MHC 

promoter (characterised and provided by Jeffrey Robbins (Gulick et al., 1991; Subramaniam 

et al., 1991)) was used to generate Tg(α-MHC-KitWv mice at the University of Alabama’s 

Transgenic and Embryonic Stem Cell facility by Li et al. (2008) to study the effects of 

heart-specific inactivation of c-Kit signalling. After one week of PO, proliferative markers 

were present in Tg(α-MHC-KitWv) CMs, consistent with cell cycle re-entry. These data 

suggest that not only does the ubiquitous inactivation of c-Kit signalling in KitW/Wv mice, 

but also CM-specific inhibition c-Kit signalling from birth, prevents CM cell cycle exit, 

allowing CM cell division and proliferation after PO. 
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There have been very few studies that investigate the effects and/or phenotype of mice with 

impaired c-Kit signalling after cardiac injury, however in one such study, SAC-induced PO 

resulted in compensatory hypertrophy after 4 weeks and congestive HF after 15 weeks in 

WT mice, but HF was not observed in KitW/Wv mice (Hara et al., 2002). In agreement with 

Li  et al. (2008), cardiac function was better preserved in KitW/Wv mice than in WT mice 

post-SAC. Furthermore, KitW/Wv had reduced perivascular fibrosis and pathological cardiac 

remodelling (Hara et al., 2002). This was attributed to the deficiency of mast cells because 

when WT mice were administered tranilast, a stabiliser of mast cells, the progression of PO 

to HF was abrogated. The work of Hara et al. (2002) also highlights a beneficial phenotype 

of better cardiac function in KitW/Wv mice post-SAC, which was due to absence of tissue 

masts cells, however, the proliferation of CMs was not evaluated (Hara et al., 2002). 

In contrast to the PO model, Fazel et al. (2006) reported reduced cardiac function and 

increased mortality in KitW/Wv mice after three weeks of MI. This was due to the impaired 

mobilisation of bone marrow-derived endothelial progenitor cells, and thus, reduced EC 

proliferation, which prevented angiogenesis. Moreover, they found the KitW/Wv hearts were 

larger and the extent of CM hypertrophy was greater. In a complementary study, the c-Kit 

ligand, SCF, was overexpressed in CMs resulting in an increased number of endothelial 

progenitor cells and enhanced angiogenesis that led to a decrease in CM apoptosis, thus 

improving cardiac function and survival after 30 days of MI (Xiang et al., 2009).  

Overall, these studies demonstrate that there are a variety of mechanisms and cell types that 

are involved in the cardiac injury process in mice with impaired c-Kit signalling. c-Kit 

activates a plethora of signalling pathways and c-Kit+ precursor cells can give rise to all 

three cardiac lineages. The question we posed is whether active c-Kit signalling in CMs is a 

signal for differentiation and thus may restrict the heart to hypertrophic growth in response 

to PO, rather than the hyperplastic growth by CM proliferation, which was observed in both 

mice with global and CM-restricted inactivation of c-Kit signalling.  
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1.3 Postnatal cardiac growth  

Another approach to identifying pathways of regenerative potential is to characterise cardiac 

growth, and more specifically, the phases of cardiac growth that govern: CM proliferation, 

terminal differentiation, and enlargement, in the context of the postnatal environment.  

1.3.1 Comparative physiology of heart growth 

The heart is the first organ to form in the embryo and continues to grow as the body grows 

throughout infancy, childhood, preadolescence and into adulthood. Heart weight is directly 

related to body surface area (Gutgesell and Rembold, 1990) and body weight (Scholz et al., 

1988). Haemodynamic load is the main determinant for heart and body growth during 

development, and when the body stops growing so does the heart. Physiological and 

pathological cardiac growth are tightly coupled to preload and/or afterload. The increased 

circulatory demand during body growth drives an expansion in blood volume, increasing 

arterial blood pressure, LV wall thickness, heart rate, and CO, in the early postnatal period. 

These changes result in chamber dilation and eccentric hypertrophy that has similarities to 

those observed with volume overload, which occur simultaneously with the development of 

the coronary vasculature bed (Naqvi et al., 2014; Mrowka et al., 1996; Fleming et al., 

2011). Once fully developed, the heart pumps blood to meet the circulatory demand and 

metabolic energy requirements of the body, which vary markedly across species. For 

example, at rest the blue whale heart contracts at 6 bpm, which is one of the slowest heart 

rates known (Dobson, 2003), whereas the ruby-throated hummingbird heart contracts at one 

of the fastest rates at 615 bpm (Odum, 1945); differences in heart rate are commensurate 

with the massive difference in body mass. This highlights the direct relationship between 

blood volume, heart and body mass, which are inversely proportionate to heart rate (Holt et 

al., 1968).  

The average adult male human heart has been variously reported to weigh ~ 370 g (n= 44, 

20-40 years) (Friedman, 1951), ~300 g (n=85, 20-69 years) (Womack, 1983), ~371 g 

(n=218, 20-39 years) (Hanzlick and Rydzewski, 1990), and ~310 g (n=232, 18-35 years) 

(Molina and DiMaio, 2012). In a much smaller sample size, the average female heart weight 

was reported to be 285 g (n=17, 20-40 years) (Friedman, 1951) and ~230 g (n= 24, 20-69 
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years)(Womack, 1983). In contrast, the non-diseased heart of a newborn weighs ~20 g 

(Coppoletta and Wolbach, 1933). Thus, the heart grows by approximately 13- to 17- fold 

from birth in females and males, respectively; an estimated heart growth that is similar to 

the 20-fold increase reported by Zak (1973). Male hearts are 15-30% larger than females 

after puberty (de Simone et al., 1995). Heart weight also changes depending on disease 

status and age. Interestingly, hearts of animals that run shortly after birth (sheep, goats, and 

cattle) are one-third of the adult size compared with those that do not, which are one-sixth of 

the adult heart size (rabbits, dogs and cats). Thus, the rate of heart growth is also species 

dependent (Hudlicka and Brown, 1996). Moreover, human cardiac growth is accelerated 

within the first year of birth relative to body weight, in that the HW/BW ratio is twice of 

that observed in adults (Smith, 1928; Holt et al., 1968). The acceleration of heart growth 

(HW/BW) has also been reported in rats but only occurs within the first 4-5 days after birth 

(Anversa et al., 1980; Li et al., 1996). In mice, the HW/BW has been presumed to be 

constant throughout postnatal growth with no fluctuations from birth to adulthood (Soonpaa 

et al., 1996). However, our laboratory recently found that the HW/BW increases markedly 

in preadolescent mice between P10 and P20, in mice (Naqvi et al., 2014). It has been 

suggested that differences in heart size between species is determined by the total number of 

cells rather than by cell size (Zak, 1973; Campbell et al., 1987). If true, this implies that cell 

growth or enlargement is conserved across species, which may help to elucidate common 

growth-dependent signalling pathways that also underlie postnatal human heart growth. 

1.3.2 Factors that affect postnatal cardiac growth 

In addition to the haemodynamic changes that occur with the switch from the fetal to the 

postnatal circulation, cardiac development is also affected by nutrition and oxygen levels.  

Intrauterine growth restriction (IUGR) has been associated with the development of CVD. 

An epidemiological study of ~5,600 men in Hertfordshire (England) reported that those 

born with low birth weights had higher death rates from ischaemic heart disease (Barker et 

al., 1989). Thus, it was recommended that the period of postnatal development is an 

important time to treat or promote growth in babies with low birth weights. Offspring born 

to rats fed a low protein diet during pregnancy had lower body and heart weights, and 

significantly fewer CMs at birth (Corstius et al., 2005). Nutrition-related effects have also 
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been observed postpartum. When litters of newborn rats were adjusted to 16 (slow-

growing), 8 (normal) or 4 (fast growing) pups per litter, the average LV mass at P21 was 

approximately -40% in the slow-growing and +30% in the fast-growing group compared 

with the normal litter (Rakusan et al., 1978; Bai et al., 1990). This correlated to the number 

and size of CMs, both of which were significantly reduced in the slow-growing group. Thus, 

it has been proposed that CM proliferation contributes to rapid cardiac growth that is 

observed in the early postnatal period (Rakusan et al., 1978).  

Suboptimal exposure to oxygen also affects cardiac growth. Prenatal exposure to hypoxia 

increased the CM cross-sectional area despite comparable LV weights between normoxic 

and hypoxic groups, and, therefore, it was suggested this was due to a reduced number of 

CMs (Bae et al., 2003). In addition, prenatal hypoxia has been associated with the increased 

expression of hypoxia-inducible factor 1α (HIF-1α) in fetal hearts (Bae et al., 2003). 

Newborn rats that were subjected to hypoxia at levels of 12-15% O2 for 21 days were found 

to have significantly larger LVs and enhanced CM proliferation (Hollenberg et al., 1976). A 

more recent report suggested that postnatal oxygenation in mice induces oxidative stress, 

increasing the production of reactive oxygen species, which causes cell cycle arrest and CM 

hypertrophy within one week of birth (Puente et al., 2014). Thus, fetal and postnatal oxygen 

levels influence the total population of CMs during postnatal cardiac growth, which is also 

highly context-dependent.  

1.3.3 Cell cycle, ploidy and nucleation status in CMs 

Active molecular components of the cell cycle have been widely used to measure DNA 

synthesis and cell proliferation in CMs. The cell cycle distributed over a 24-hour period and 

consists of four transitional phases starting with gap 1 (G1), DNA synthesis (S), gap 2 (G2), 

and mitosis (M), (Figure 1.5). Cellular growth occurs during G1 and G2 phases in 

preparation for DNA synthesis or mitosis, respectively. From G1, cells enter the S phase 

where sister chromatids replicate, and the number of chromosomes and DNA content 

doubles. The cell then enters G2 and progresses to mitosis, which is categorised into four 

parts; prophase, metaphase, anaphase, and telophase. Mitosis encompasses nuclear division 

that results in two daughter nuclei (karyokinesis), and shortly afterwards, cytoplasmic 

division into two daughter cells (cytokinesis). In the first stage of mitosis, prophase, 
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chromosomes condense and the nuclear membrane disintegrates, after which, chromosomes 

align along a metaphase plate and sister chromatids separate from the centrosome (early 

anaphase). In late anaphase, sister chromatids segregate to polar ends of the cell and are 

partitioned by a contractile actomyosin ring. This brings the plasma membrane inwards, 

forming a cleavage furrow, thus, initiating cytokinesis. During cytokinesis, nuclear 

membranes reform producing two daughter nuclei. Towards the end of mitosis, the 

progressive contraction of the actomyosin ring leads to the formation of an intercellular 

bridge or midbody in the cleavage furrow of the dividing plasma membrane. This undergoes 

abscission and the daughter cells split apart, i.e., the process of cytokinesis (Steigemann and 

Gerlich, 2009; Lacroix and Maddox, 2012).  

Cell progression through each phase of the cell cycle is positively regulated by the cyclical 

or transient expression of cyclins that form holoenzymes with cyclin-dependent kinases 

(CDKs) upon phosphorylation (Hochegger et al., 2008). These cyclin-CDK couplings 

correspond to different phases of the cell cycle (Figure 1.5). Upon holoenzyme activation, 

retinoblastoma susceptibility (Rb) protein is phosphorylated releasing bound E2F (E2 

promoter binding factor). E2Fs are a family of transcription factors (TFs) that initiate the 

expression of targets genes such as cyclin E and A, and CDK1 (also known as Cdc2), which 

regulate G1, S and M phase (E2F integrates cell cycle progression with DNA repair, 

replication, and G2/M checkpoints) (Ahuja et al., 2007; Doree and Hunt, 2002). Indeed, 

E2Fs bind to ~130 promoters of genes that regulate the cell cycle (Ren et al., 2002). 

Conversely, the Rb family (including p107 and p130, also called pocket proteins) binds and 

represses the E2F-mediated transcription of cell cycle genes, thereby eliciting cell cycle exit 

and terminal differentiation. The cell cycle is also regulated by CDK inhibitors (CDKIs), 

specifically the INK4 family (p15, p16, p18, and p19), which compete with cyclins for 

CDKs (particularly CDK4/6) and, therefore, prevent their phosphorylation and activation. 

CDK1/2/4/6 are also inhibited by the Cip/Kip family (p21, p27, and p57) of CDKIs (Ahuja 

et al., 2007). Hence, the kinase activity of cyclin-CDKs are tightly regulated, and signalling 

can be terminated by inhibiting the holoenzyme through protein binding of CDKIs, or 

inhibition at CDK phosphorylation sites, or proteosomal degradation via the ubiquitin-

proteolytic pathway (Lim and Kaldis, 2013; Hochegger et al., 2008).  
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Figure 1.5: Schematic of the cell cycle 

The cell cycle consists of four phases: G1, S, G2, and M, which are regulated by the E2F 
family of TFs and specific cyclin and cyclin dependent kinase (CDK) holoenzymes (Ahuja 
et al., 2007). During G1, the cell continually grows and if it passes the regulatory restriction 
point (R) in late G1, is committed to progress into the DNA synthesis (S) phase (Cooper, 
2000). In the S phase, the DNA content of a cell doubles, i.e., from 2n to 4n, which may 
become octoploid (8n) or hexadecaploid (16n) depending on its original DNA content. After 
the S phase, a cell progresses into G2 during which the cell grows and prepares for mitosis 
(M). The M phase usually results in the division of one cell into two daughter cells, i.e., 1 x 
4n to 2 x 2n. After mitosis, cells enter G1 phase and either undergo another round of cell 
division, or remain in G1 and grow to a size similar to that of the mother cell, and then 
permanently exit the cell cycle (G0). In the example of skin fibroblasts, platelet-derived 
growth factor is a growth stimulus for cells to re-enter the cell cycle from G0 (Cooper, 
2000). Human CMs exit the cell cycle after DNA synthesis (endoreduplication), whereas 
rodent CMs exit the cell cycle after karyokinesis without the completion of cytokinesis 
(acytokinesis). Cell cycle exit may also be regulated by Rb-proteins (including p107 and 
p130) (Ahuja et al., 2007). The timing of each phase differs as indicated above (Cooper, 
2000).  
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Genes encoding proteins such as: aurora kinase A/B, Ki67, polo-like kinase 1 (Plk1), cyclin 

B, survivin, anillin and phosphorylated histone H3 (Mollova et al., 2013; Naqvi et al., 

2014), are often transiently expressed during mitosis, and are considered to be markers of 

cell proliferation, although Ki67 is expressed in all phases of the cell cycle except for G0 

and is more likely to be a marker of cells that are cycling. Some of these gene products 

interact with each other during mitosis and function as follows: aurora kinase B 

phosphorylates histone H3 and regulates chromosomal segregation; it also associates with 

survivin, Plk1 and other proteins that form the chromosomal passenger complex, which is 

necessary for central spindle formation of the midbody in late cytokinesis (Steigemann and 

Gerlich, 2009; Crane et al., 2004). Survivin also regulates microtubule formation during 

interphase (Rosa et al., 2006). The Plk family regulate all phases of the cell cycle, however, 

Plk1 is specifically expressed in mitosis (in microtubules and centrosomes during 

interphase) and cytokinesis (in kinetochores, centrosomes, microtubules, the central spindle, 

and the midbody) (Zitouni et al., 2014). When Plk1 is expressed, it is phosphorylated by 

aurora kinase A and other co-factors that lead to cyclin B - CDK1 activity and entry into 

mitosis (Zitouni et al., 2014). Furthermore, the regulatory control of Plk1 expression is 

multifaceted. Plk1 is repressed in G1 by the Rb proteins: p53 (cellular tumour antigen) and 

p21, and negatively regulated by the CDE-CHR (cell-cycle-dependent element and cell 

cycle homology region) element in its promoter. The transcription of Plk1 is then activated 

in the presence of the dREAM (Rb, E2F, and MYB) complex during the G2 phase of the 

cell cycle (Archambault and Glover, 2009). Another gene that is involved in mitosis is 

anillin, which is a Rho effector that aids the assembly of the actomyosin ring (composed of 

actin filaments, F-actin, and myosin) and is required for furrow ingression by recruiting 

GTPases (Eggert et al., 2006; Lacroix and Maddox, 2012). In addition to these genes, there 

are many more genes (~1,200) that are active during the cell cycle and could be considered 

as developmental markers in cell proliferation and differentiation (cell cycle exit) (Ren et 

al., 2002). 

DNA content and cell cycle exit varies between rodents and humans. Polyploidy describes 

the DNA content within a cell that is greater than one set of chromosomes, with n being the 

haploid content and 2n the diploid content (Laflamme and Murry, 2011). Most rodent CMs 

(~80-95%) become binucleated within two weeks after birth due to karyokinesis without 

undergoing cytokinesis and nuclei are diploid (2 x 2n) (acytokinesis, Figure 1.5) (Ahuja et 

al., 2007; Li et al., 1996; Soonpaa et al., 1996; Brodsky et al., 1991; Raulf et al., 2015). In 
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contrast to rodent CMs, most human CMs do not become binucleated and the majority are 

mononucleated (~60-75%) and tetraploid (4n) (Mollova et al., 2013; Laflamme and Murry, 

2011; Olivetti et al., 1996; Sandritter and Scomazzoni, 1964). The DNA content of ~40-

58% of human CMs increases to be >2n from 0-1 to 10-20 years of age (Mollova et al., 

2013) or from infancy to adulthood (Eisenstein, 1970). An increase in ploidy without 

karyokinesis or cytokinesis indicates that the cell cycle has exited after DNA synthesis (i.e., 

endoreduplication, Figure 1.5) (Mollova et al., 2013; Olivetti et al., 1996). 

1.3.4 Phases of CM growth  

CMs comprise one-third of the total cell population in the rat heart but constitute 65-80% of 

the myocardial mass (Nag, 1980; McMullen and Jennings, 2007). More recent estimates of 

the proportion of CMs in the mouse heart are variable from ~15% (Pinto et al., 2016; Raulf 

et al., 2015) to 56% (Banerjee et al., 2007) of cardiac cells. Postnatal cardiac growth is 

mainly achieved by the proliferation and enlargement of CMs. Indeed, Clubb and Bishop 

(1984) reported three phases of CM growth during postnatal rat development: CM 

proliferation in the neonatal period (P0-4), a transitional phase from CM proliferation to 

cellular enlargement in the neonatal to preadolescence period (P4-15), and exclusively 

cellular enlargement in preadolescence to adulthood (P16-P56+). The timing of these events 

is important since abnormal heart growth may result from a reduced number of CMs that in 

turn affects the cell size of a CM (i.e., CM hypertrophy) leading to CVDs. Determining 

developmental signals that regulate normal CM proliferation and enlargement could reveal 

changes in abnormal cardiac growth, in addition to identifying novel targets to develop 

cardiac regenerative therapies for HF.  

The timing of the three phases of CM growth reported by Clubb and Bishop (1984) is 

contentious (Li et al., 1996; Soonpaa et al., 1996; Naqvi et al., 2014). Earlier studies 

reported CM cell division occurs until weaning age at ~ 3 weeks postpartum in rats (Zak, 

1973; Claycomb, 1975; Rumyantsev, 1977). In two studies performed within the same year 

in rat (Li et al., 1996) and mouse (Soonpaa et al., 1996), different conclusions were reported 

for the timing of the transition from cell proliferation to terminal differentiation. In the first 

study using Sprague-Dawley rats (adjusted to litters of 10-12 pups), the number of CMs 

increased by 1.68-fold from P1 to P3, thereafter the cell volume increased by 2.5-fold from 
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day 3 to 12, and binucleation was completed by P12 (Li  et al., 1996). Thus, instead of a 

gradual decrease in cell proliferation, there was a rapid transition from cell proliferation to 

enlargement after birth at P3-4. Leu et al. (2001) have also reported in C57BL/6 mice that 

CM volume is constant from birth to P4 and then rapidly increases in the following 10 days. 

In contrast, Soonpaa et al. (1996) reported that CM proliferation ceases by the late fetal 

period in mice. Moreover, C3Heb/FeJ mice (adjusted to litters of 6 pups) were injected with 

[3H]-thymidine to detect DNA replication and sacrificed after a two-hour labelling period at 

P5 or P10. Ten percent of CM DNA had incorporated the isotope at P5, however, at P10 

none of the CMs were positive for the isotope (detected by autoradiographic analysis). 

Therefore, P10 coincided with the completion of CM binucleation, whereby ~90% of the 

isotope was localised in binucleated CMs after a 48-hour labelling period with a single 

injection of the isotope at P6. In addition, cell cycle proteins involved in DNA synthesis (G1 

and S phase: cyclin D1/D3, CDK4, and PCNA) showed similar levels of abundance in 

hearts at embryonic day 12 (E12) when CMs are actively proliferating and at P10 when CM 

nuclei are dividing, becoming binucleated. Altogether, Soonpaa et al. (1996) conclude that 

DNA synthesis in the fetal heart contributes to proliferation, while DNA synthesis in the 

heart contributes to binucleation. However, neither cell division, cell number nor mitosis-

related markers were assessed in this study, which focussed mainly on the S phase of the 

cell cycle. In another study using C57BL/6J mice, the incorporation of BrdU and presence 

of Ki67 was evaluated at E14.5, P1, P4, P7, P14, and P21 (Walsh et al., 2010). Both 

markers were higher at E14.5, P1, P4 and P7, compared with P14 and P21, and there were 

no data points collected between P7 and P14. The number of binucleated CMs increased to 

>98% between P5 and P8. Overall, more datasets are required for a consensus as to the 

timings of CM growth by establishing cell number and size, the presence of mitotic figures, 

especially cytokinesis to indicate cell division, as well as the changes in DNA synthesis and 

karyokinesis in rodents and humans.  

More recently in human studies, cell division has been shown to continue beyond the 

neonatal period up to 20 years of age, resulting in a 3.4-fold increase in the CM population 

number, which was simultaneous with cellular enlargement (Mollova et al., 2013). 

Extensive studies from our laboratory using C57BL/6J mice born in litters of 6-7 pups to 

normalise heart and body growth have shown that the proliferative capacity of CMs extends 

into preadolescence (Naqvi et al., 2014). CM proliferation between P14-P18 substantially 

increased the total CM population by 1.4-fold (~500,000 CMs) (Naqvi et al., 2014). This 
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was accompanied by the re-expression of mitosis-related genes at P15 relative to P13, P14, 

and P16, which were comparably lower. Furthermore, BrdU was administered by a single 

injection at P14 and by P18 ~11% of CM nuclei were BrdU+, indicating cells had entered S 

phase. However, ploidy remained the same at 2n, and therefore, cells had effectively 

undergone karyokinesis. Furthermore, aurora kinase B (a marker for mitosis) was evaluated 

by immunohistochemistry and immunocytochemistry, and was present in ~15% and ~30% 

of P15 CM nuclei, respectively, indicating these CMs were in the mitotic phase of the cell 

cycle. The latter percentage is likely to be more accurate since it is well known that CM 

nuclei are underrepresented by immunohistochemical analyses (Mollova et al., 2013; Raulf 

et al., 2015). There were also transient decreases of ~50% in the cell volume of mono- and 

bi-nucleated CMs at P15, suggesting the division of one CM into two smaller daughter cells. 

Altogether, these data indicate that the cell cycle re-entry of CMs extends beyond the early 

neonatal period into preadolescence and adolescence. 

Naqvi et al. (2014) also demonstrated that heart growth (HW/BW) accelerated by 30% from 

P10 to P17 and that the α-MHC to β-MHC ratio was significantly increased between P10 

and P14. This coincided with a surge in the levels of serum thyroid hormone, T3, from P10, 

and peaked at P12. This was interesting given that α-MHC expression is regulated by T3 

(Chizzonite and Zak, 1984; Li et al., 2014b). Inhibition of T3 biosynthesis by administering 

propylthiouracil (PTU) from P7-P14 abolished the increase in HW/BW between P10 and 

P18, as well as CM proliferation. In addition, PTU treatment prevented an increase in the α-

MHC/β-MHC ratio at P15 relative to P10 (Naqvi et al., 2014). The effects of T3 were linked 

to the IGF1/PI3K/Akt pathway, whereby the expression of components in this pathway 

increased at P15 relative to P10. Interestingly, regulatory thyroid hormone (TH) responsive 

elements are present in the promoter of the IGF1 gene and mice with deletion of thyroid 

hormones receptors (TRs) have been shown to have altered expression of IGF1 (Xing et al., 

2012). Moreover, the number of CMs is also greatly enhanced (by ~35%) in transgenic mice 

with cardiac-restricted overexpression of IGF1 (Reiss et al., 1996).  

Cardiac regenerative capacity has been assessed at 1, 2, and 21 days post apical resection of 

P1 and P7 neonatal murine hearts (Porrello et al., 2011b). The heart of a P1 pup fully 

regenerated due to CM proliferation, with minimal hypertrophy and fibrosis observed, 

however, P7 hearts failed to recover fully and had significant fibrosis (Porrello et al., 
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2011b). Similar results were obtained in a MI model of cardiac injury that was performed in 

P1, P7, or P14 hearts, where, in contrast to P1 hearts, neither P7 nor P14 hearts were able to 

regenerate (Porrello et al., 2013). The conclusion of these studies was that the cardiac 

regenerative window lies within the first week of life. Our laboratory subjected mice of 

different ages (P2, P15 or P21) to MI and at the three week follow-up, found P2 hearts fully 

regenerated, but significant injury was sustained in P21 hearts that did not regenerate, and 

an intermediate cardiac repair response resulting in a partial reduction of infarct size in P15 

hearts (Naqvi et al., 2014). The degree of regeneration correlated with CM cell cycle re-

entry, which was robust at P2, lower at P15, and absent at P21 (Naqvi et al., 2014).  

1.3.5 Metabolic switch in postnatal CM maturation 

In order for the cell to be completely functional and adapt to greater productivity during 

postnatal cardiac growth, the subcellular components of a CM must develop. During 

postnatal cardiac growth there are a number of cellular processes that take place in maturing 

CMs, including a shift in energy metabolism, mitochondrial biogenesis, improved 

excitation-contraction coupling, autonomic innervation of the heart, and the enhanced 

expression of contractile proteins, calcium handling proteins and ion channels (Maillet et 

al., 2013; Li et al., 2014b), many of which are regulated by growth hormones, such as IGF1 

and TH (Maillet et al., 2013; Li et al., 2014b). The main cellular process that is important in 

CM maturation is the metabolic switch from anaerobic to aerobic respiration. 

The metabolic pathways for generating energy in the form of adenosine triphosphate (ATP) 

(glycolysis, and lactate, glucose and fatty acid oxidation) are dependent on the availability 

of substrates and oxygen, which change during postnatal cardiac development (Lopaschuk 

and Jaswal, 2010). The supply of circulating lactate is higher than fatty acids at the neonatal 

stage of development compared with adults and mitochondrial oxidative capacity is reduced. 

The relative contributions of ATP from these metabolic pathways have been evaluated in 

the developing rabbit heart (shown in Table 1.1.). In the fetal and newborn period, the 

energy for CM proliferation is predominantly generated by anaerobic respiration in a low 

oxygen environment of 3-5% through glycolysis and lactate production (Lopaschuk and 

Jaswal, 2010), and the contribution of glucose and fatty acid oxidation to ATP is less. Fatty 

acids are metabolised by β-oxidation, the Krebs cycle and the electron transport chain, and 
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these yield more acetyl CoA, reduced coenzymes, as well as six times more ATP, compared 

with a molecule of glucose (Lodish et al., 2000). This shift in metabolism during normal 

cardiac development has been well documented.  

 

Table 1.1: Relative contributions of metabolic pathways to the production of ATP 
during rabbit cardiac development 

  

Fetal/ Newborn 

heart (P0) 

Neonatal 

heart (P7) 

Preadolescent heart 

(P21) 

Glycolysis (%) 44 5 7 

Lactate oxidation (%) 25 49 1 

Glucose oxidation (%) 18 5 12 

Fatty acid β-oxidation (%) 13 41 80 

Adapted from Lopaschuk and Jaswal (2010). 
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1.3.6 Pathophysiology in postnatal cardiac growth 

The transition from the fetal to postnatal environment causes an instantaneous increase in 

oxygenation, cardiac afterload and systemic arterial pressure (Jonker and Louey, 2016), 

which may be more problematic in babies born with CHD or born prematurely, as growth 

defects at birth affect subsequent postnatal cardiac development.  

The prevalence of CHD has risen by >50% between 2000 and 2010, and occurs in 13 out of 

1000 children (Marelli et al., 2014). There are many types of CHD that are caused by 

abnormalities in cardiac structure and function due to genetic mutations, and altered 

haemodynamics and blood flow that regulate embryonic heart development, which affect 

the early postnatal period of cardiac growth (Bruneau, 2008; Rudolph, 1970). Hypoplastic 

left heart syndrome is a severe form of CHD that is fatal without surgical intervention 

within the first few days after birth, as the heart is unable to support circulation due to 

underdeveloped structures and CM hypoplasia. The hope for the future is to develop cardiac 

regenerative medicines to treat CHD in the postnatal period and aid cardiac development 

into adult life. 

 

Preterm births (<37 weeks gestation) resulting from preeclampsia or IUGR occur in 1 out of 

10 births worldwide (Goldenberg et al., 2008; Beck et al., 2010). The proportion of infant 

deaths arising from preterm births is high, accounting for 28% mortality within 7 days of 

birth (Lawn et al., 2006), although the survival rate in developed countries is closer to 100% 

for preterm births > 32 weeks gestation (Slattery and Morrison, 2002). Preterm newborns 

with low birth weight (due to preeclampsia) had cardiac hypertrophy and greater LV outputs 

at birth compared with those born with a normal weight (n= ~30 per group). This was 

attributed to altered haemodynamics with disruptions in blood flow and volume (Leipala et 

al., 2003a). LV mass was reported to increase by 56% in preterm infants compared with 

35% in full term infants within the first month postpartum (n= ~20 per group) (Kozak-

Barany et al., 2001; Lewandowski et al., 2013). However, it was unknown whether cardiac 

problems in preterm born infants extend into adult life. Indeed, a recent study involving 

participants aged between 20 and 39 years (n= ~100 per group), showed that adults born 

preterm had a greater LV mass of 19 g, compared with adults born at full term 



 

34 

 

(Lewandowski et al., 2013). The increased LV mass in adults born preterm was associated 

with altered LV structures, higher blood pressures, and reduced systolic and diastolic 

function. Moreover, prematurity was an independent predictor of LV mass, which had a 

dose-dependent relationship with gestational age (i.e., the earlier the preterm birth the larger 

the LV mass in adults born preterm) (Lewandowski et al., 2013; Norman, 2013). This study 

suggests that an increase in LV mass of 19 g would increase the risk of cardiovascular 

events in adults by >50% (Lewandowski et al., 2013). 

Another major developmental molecule that is important in postnatal cardiac maturation is 

T3, which has profound effects on the cardiovascular system (Li et al., 2014b; Mai et al., 

2004; Kolar et al., 1992; Segar et al., 2013). Indeed, hyperthyroidism is associated with 

increased blood volume, CO, contractility, heart rate and α-MHC expression, which are 

conversely decreased in hypothyroidism (Li et al., 2014b). Thyroid hormone regulates the 

transcription of many genes upon binding to heterodimers of the nuclear thyroid hormone 

receptors (TRα and TRβ) and retinoic acid receptor, which binds with high affinity to T3 

response elements located near the transcriptional start sites of T3-responsive genes (Li et 

al., 2014b). This regulates the postnatal shift from β-MHC to α-MHC, and results in an 

increase in the expression of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2A), 

β1-adrenergic receptor, sodium and potassium channels, sodium and calcium exchanger 

(NCX), cardiac troponin I, ANP, TRα1, and adenylyl cyclase (AC) types V and VI (Maillet 

et al., 2013). 

TH is synthesised in the thyroid gland and is released in response to the secretion of thyroid 

stimulating hormone from the anterior pituitary that is regulated by thyrotropin releasing 

hormone from the hypothalamic paraventricular nucleus (Li et al., 2014b). TH also exerts a 

negative feedback effect on the release of both thyrotropin releasing hormone and thyroid 

stimulating hormone (Li et al., 2014b). Congenital hypothyroidism leads to growth delays, 

deafness, impaired neurogenesis and cardiac malformations (Li et al., 2014b). The 

hypothalamic-pituitary-axis matures in humans at midgestation and levels of T3 markedly 

increase within a few hours after birth (Fisher and Klein, 1981). In contrast to humans, the 

hypothalamic-pituitary-axis matures in rodents at a later stage between P12 and P15 and 

coincidently levels of T3 rise rapidly at P12-15 after an initial peak at P5-6 (Hadj-Sahraoui 

et al., 2000). It is of interest, therefore, that newborns with CHD are susceptible to iodine-
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induced hypothyroidism following surgical procedures involving the administration of 

iodinated contrast agents with cardiac catheterisation and/or topical use of iodine antiseptics 

(Thaker et al., 2014; Linder et al., 1996). In addition, treating CHD children with T3 for 12 

days following surgery significantly improves myocardial function (Bettendorf et al., 2000). 

Hypothyroidism is more common in preterm newborns in which T3 levels were depressed 

and reported to be less than half of that of full term newborns immediately after birth, 

however values normalise by P16 (Fisher and Klein, 1981). Thus, T3 has important effects 

on cardiac function and growth during development (Brown, 2000). 

1.3.7 Clues for regeneration in postnatal cardiac growth  

Identifying molecules that are essential for CM terminal differentiation requires an 

understanding of the temporal molecular changes that occur in CMs as they start to 

withdraw from the cell cycle. The phases of CM maturation that regulate CM number and 

cardiac size consist of CM proliferation, enlargement and terminal differentiation, and these 

are likely to be interrelated events (Jonker and Louey, 2016). However, the molecular 

signals for the terminal differentiation of CMs are elusive (Katz et al., 2016), thus, 

highlighting that many of the mechanisms involved are largely unknown. 

Terminal differentiation describes cells that have permanently withdrawn from the cell 

cycle, and thus, are not able to proliferate. In general, adult CMs are terminally 

differentiated, although a very small subset of cells divide, contributing to the low turnover 

in adult hearts (Senyo et al., 2013). The loss of a proliferative capacity leading to the 

terminally differentiated state of an adult CM is likely due to a sequence of events driven by 

master regulators. This may involve the inhibition of cell cycle genes, the loss of mitogenic 

stimuli, the effect of growth factors (IGF1, TH, Neuregulin 1 (NRG1) and fibroblast growth 

factor 1 (FGF1), the binucleation of CMs, cellular enlargement, or changes in CM 

architecture that prevent cell cycle re-entry, or the transcription of a series of master genes 

that regulate the transition from CM proliferation to enlargement (Porrello et al., 2011b; 

Naqvi et al., 2014; Soonpaa et al., 1996; Li et al., 1996; Ahuja et al., 2007; Xin et al., 

2013). It is nearly impossible to discuss all the potential signalling pathways that regulate 

cell proliferation, enlargement, and terminal differentiation. Developmental signals will 

most certainly include regulators of gene expression such as TFs and miRNAs. One of the 
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pathways that governs transcriptional activity is the Hippo pathway, which negatively 

regulates Wnt signalling to control cardiac growth and CM proliferation (Xin et al., 2013). 

Other cardiac TFs (NK2 homeobox 5 (Nkx2-5), zinc-finger-containing TF (GATA4), 

myocytes-enhancer factor-2 (MEF2), WNT, NFAT, serum response factor (SRF) have 

established roles in the embryonic cardiac development that orchestrate cell lineage 

commitment, cardiac morphogenesis and cell proliferation, and have been reported to target 

numerous genes involved in postnatal cardiac growth (Oka et al., 2007; Xin et al., 2013). 

Another TF, Meis1, was found to regulate the CM cell cycle by transcriptional activation of 

the CDKIs (p15, p16, and p21) (Mahmoud et al., 2013). Furthermore, miRNAs have 

recently emerged as having a role in regulating cell cycle arrest and regeneration (Porrello et 

al., 2011a; Katz et al., 2016).  
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1.4 Cardiomyocyte transcriptome 

Gene regulatory networks are highly conserved in embryonic cardiac development across 

species, and these are coordinated by TFs, including Nkx2-5, MEF2, GATA, and HAND, 

and their downstream target genes (Olson, 2006). Less is known about the cellular 

regulation and expression of mRNAs and noncoding RNAs during postnatal cardiac 

development, particularly in the narrow window from CM division to terminal 

differentiation. The transcriptome is the intermediate of two fundamentally important 

cellular processes of transcription (of DNA to mRNA or noncoding RNA) and translation 

(of mRNA to synthesise proteins). However, the abundance of mRNA is not always 

indicative of protein levels, since proteins are subject to post-translational modifications, 

including degradation (Vogel and Marcotte, 2012). Nevertheless, RNA-seq can be used to 

identify the molecular changes that underpin cardiac growth and may provide novel targets 

for regenerative medicine. 

1.4.1 Microarray versus high-throughput sequencing (HTS) 

The RNA content of a mammalian cell is ~10 pg depending on the cell type, however only 

one-hundredth of that RNA is mRNA (Tang et al., 2011). Rodent CMs are mostly 

binucleated by P14 (80-95%), although it is not known if both nuclei are active and whether 

CMs contain more RNA as a result. To capture the expression of mRNAs and noncoding 

RNAs, technologies are evolving from microarray to high-throughput sequencing (HTS), 

which has the advantage of nucleotide resolution and a greater dynamic range. A 

comprehensive comparison of microarray hybridization and sequencing techniques has been 

reviewed by Wang et al. (2009), which are briefly discussed below. In addition, two of the 

most widely used sequencers, Ion Torrent Proton System and HiSeq, are compared.  

Microarray assays are based on the hybridization of fluorescently-labelled cDNA samples, 

which bind to specific sequences of DNA that are printed onto a microarray chip using 

photolithography (Wang et al., 2009; Latif and Garry, 2010). The chip is scanned with a 

laser to excite the dye and the intensity of the emitted light is captured as digital information 

that corresponds to the relative expression of a gene. Microarray is limited to pre-

determined genomic sequences and has a smaller dynamic range of detection in the order of 
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100 to 300-fold (Wang et al., 2009), whereby abundant transcripts emit high-levels of 

fluorescence that saturate, and lowly abundant transcripts emit low-levels of fluorescence 

below the detection threshold. In contrast, RNA-Seq has nucleotide-resolution and can be 

used to assemble and identify novel transcripts, isoforms and variants. It also has a broader 

dynamic range in the order of 9,000-fold and enables accurate quantification of the relative 

amount of molecules between samples. Moreover, RNA-Seq requires a smaller amount of 

RNA as starting material and generates data that is more reproducible than microarray 

(Wang et al., 2009). Taken together, RNA-Seq is a revolutionary tool for capturing the 

whole transcriptome, including noncoding RNAs, to provide insights into cell biology and 

disease (Licatalosi and Darnell, 2010).  

Today the most popular sequencing platform used for RNA-Seq is the HiSeq, which is 

manufactured by Illumina. Other technologies include the Ion Torrent Proton System by 

Life Technologies (Quail et al., 2012; Loman et al., 2012; Chu and Corey, 2012; Li et al., 

2014c). Both use sequencing-by-synthesis methods with a DNA polymerase. The basic 

workflow of a HTS experiment consists of enriching a RNA population of interest (i.e., 

polyadenylated RNA or small RNA), constructing cDNA libraries, sequencing cDNA reads, 

and then aligning reads to a reference genome, followed by bioinformatic data analysis (Chu 

and Corey, 2012). The most common method for polyadenylated, poly(A), RNA enrichment 

is the use of magnetic beads with oligo (dT) sequences bound to the bead surface that uses 

base pairing to capture the poly(A) tail of the mRNA. Small RNA enrichment may involve 

size selection with nucleic acid binding beads. HTS platforms require short lengths of 

cDNA molecules to sequence, and thus, larger RNA molecules are fragmented 

enzymatically (using RNAse III), chemically or mechanically to sizes typically smaller than 

300 nucleotides. RNA fragments or small RNAs are then ligated at the 5’ and 3’ end to 

adapters with specific DNA sequences that are designed differently for each sequencing 

platform (Chu and Corey, 2012). The adapters are incorporated into cDNA synthesis by 

reverse transcription polymerase chain reaction (RT-PCR) to amplify and identify samples. 

Small cDNA may be enriched by gel size selection after electrophoresis and eluted, and then 

amplified in another round of PCR. The resulting cDNA libraries are then sequenced in 

parallel.  
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For the sequencing of cDNA libraries, HiSeq technology uses adapters to hybridize and 

tether cDNA onto the surface of a glass flow cell coated with clusters of primer sequences 

that facilitate clonal bridge amplification of the forward and reverse fragment, producing 

paired-end reads (Shendure and Ji, 2008). In contrast, the Ion Torrent Proton System 

technology uses adapters to hybridize and tether cDNA onto the surface of beads that are 

mixed with PCR reagents and oil in emulsion-PCR. The bead and fragment are contained 

within a microdroplet and the fragment is clonally amplified, producing single-end reads 

(Shendure and Ji, 2008). HiSeq uses fluorescently-labelled nucleotides that after base-

pairing to the cDNA with DNA polymerase emit light upon excitation that enables base 

calling (Quail et al., 2012). Unlike most sequencing platforms, the Ion Torrent Proton 

System is the first “post-light” sequencer (Loman et al., 2012) and has been likened to “the 

world’s smallest pH meter”. It utilises a semi conductance chip that is sequentially washed 

with one of four nucleotides, which then releases a hydrogen ion upon base-pairing with 

DNA. This alters the pH, which is detected as a change in voltage that aids base calling. 

Both of these platforms yield comparable RNA-Seq results (Li et al., 2014c).  

There are advantages and disadvantages to both platforms, for example, HiSeq sequencing 

takes longer (~27 hours) than the Ion Torrent Proton System (~6 hours). However, the 

amplification of cDNA libraries requires a more hands on approach using the Ion Torrent 

Proton System pipeline compared to HiSeq, which has this integrated into the sequencing 

process. Regardless, these technologies are rapidly evolving and newer versions continue to 

be released, reducing processing times and costs, while improving accuracy and 

accessibility. A major challenge of RNA-Seq is the downstream processing of large datasets 

that usually requires high performance computing resources and bioinformatic expertise.  
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1.4.2 Sampling the CM transcriptome 

Gene expression data has been collected from microarray analyses of CPCs at specific 

stages of embryonic heart development, and this has been compared to embryonic stem cells 

and adult CMs (Masino et al., 2004). These datasets have been valuable in identifying genes 

involved in morphogenesis, and moreover, distinct transcript signatures or molecular 

programs associated with specific stages of development (Latif and Garry, 2010). In 

general, trancriptome analysis can be used to identify downstream target genes of TFs and 

networks that direct cell differentiation and maturation, and to reveal important regulatory 

pathways (Latif and Garry, 2010). This demonstrates that sampling an isolated cell 

population at specific time points in development is useful to elucidate changes in gene 

expression that contribute to cardiogenesis (Masino et al., 2004).  

At the time that this work was undertaken, there were no sequencing datasets for purified 

CMs that have been isolated at different time points during postnatal cardiac growth. Gene 

expression studies have often used: fetal and adult cardiac tissues, CPCs, embryonic stem 

cell- or human induced pluripotent stem cell- derived CMs, immortalised CM cell lines 

(HL-1and H9c2), enriched adult CMs, or cultured neonatal CMs. These samples were likely 

used with specific aims and end-points that mostly involve comparing embryonic to adult 

time points, or sham- operated to post-cardiac injury (such as apical resection, MI, 

hypertrophy or HF) (Latif and Garry, 2010). Nonetheless, gene expression datasets for 

purified populations of primary CMs from postnatal cardiac growth are lacking.  

1.4.3 Discordant adult and neonatal CM isolation procedures 

Purifying CMs at multiple time points during cardiac growth is complex. Indeed, the heart 

comprises many different cell types, including CMs, ECs and fibroblasts that lie within the 

intricate setting of extracellular matrix proteins, blood vessels and other supporting cell 

types. CMs comprise only 15-30% (Raulf et al., 2015; Pinto et al., 2016) or ~56% (Banerjee 

et al., 2007) of the total population, however, they account for 65-80% of the adult heart 

mass (Nag, 1980; McMullen and Jennings, 2007). In addition, the populations of CMs and 

non-myocytes change during development (Soonpaa et al., 1996; Olivetti et al., 1980; 

Banerjee et al., 2007). 
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The isolation of highly enriched populations of CMs is not trivial and requires the use of 

different protocols depending on the stage of development. Such protocols were originally 

established in neonatal and adult rats, and were subsequently adapted to the mouse; a 

species widely used for cardiovascular and genetic studies. Scaling the procedure for CM 

isolations from rats to mice, which are 10-fold smaller than rats, is technically challenging 

for both the adult and neonatal mouse hearts (Liao and Jain, 2007). In general, the different 

methods for the isolation of adult and neonatal CMs also have variable processing times 

(Louch et al., 2011; Ehler et al., 2013). For adult hearts, CMs are isolated after the heart is 

digested by Langendorff retrograde perfusion with proteolytic enzymes (usually collagenase 

II), which breaks down the extracellular matrix. The heart is then teased apart into tissue 

fragments that are dissociated into a single cell suspension by gentle trituration, and CMs 

are enriched after low-speed centrifugations combined with the gradual re-introduction of 

Ca2+. CMs are either used after dissociation, enrichment, or cell culture depending upon the 

experiment. CM isolation from adult mouse hearts is more difficult compared with rat hearts 

because the aortae of the former are much smaller, and therefore, the cannulation of the 

heart for perfusion is more challenging. 

The technicality of cannulating the neonatal mouse heart is further compounded in neonatal 

and younger mice, which are much smaller than adult mice. This has led to methodologies 

to disaggregate the heart, not by cannulation and Langendorff perfusion, but by using 

scissors or other mechanical means to mince cardiac tissues into pieces (typically multiple 

hearts are processed in a single batch of 5-15). The minced hearts are then incubated with 

digestion buffer at 4°C overnight and/or subjected to sequential incubation steps with 

proteolytic enzymes (trypsin and collagenase II) to breakdown the extracellular matrix for 

10-20 minutes at 37°C (Ehler et al., 2013; Louch et al., 2011). Tissue fragments are 

dissociated into a cell suspension by trituration and the CM fraction is enriched by pre-

plating cells using uncoated culture dishes for ~2 hours. This plating step differentially 

removes the majority of non-myocytes as these cells adhere to the uncoated plastic. The 

non-adherent CMs are then plated onto a collagen-coated culture dish for 12-18 hours (Ehler 

et al., 2013; Chlopcikova et al., 2001). The main disadvantages of this method are the 

harsher disaggregation techniques that require mechanical force and enzymatic digestion to 

isolate cells, and the duration of the procedure that is typically 1-2 days (Ehler et al., 2013). 

Commercial kits have been developed for CM isolation following the digestion of multiple 

neonatal hearts over a period of 1-2 hours. These include the Pierce Cardiomyocyte 
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Isolation Kit (Thermo Fisher) that requires cell culture overnight to purify CMs, the 

Neonatal Heart Dissociation Kit (Miltenyi Biotec) followed by the Neonatal Cardiomyocyte 

Isolation Kit (Miltenyi Biotec) to purify CMs, and, the Neonatal Cardiomyocyte Isolation 

System (Worthington) that requires 1-2 days of cell culture to purify CMs. In addition, 

neonatal mouse hearts are more susceptible to over-digestion, whereby CM yield and 

viability is much lower than those from neonatal rat hearts (Ehler et al., 2013).  

Less attention has been given to the isolation of CMs from pups aged between P5 and P28, 

which are either categorized into the neonatal CM isolation protocol using sequential 

digestions (up to P10), or into the adult CM isolation protocol by Langendorff perfusion 

(>P17) (Lam et al., 2002). This is due to the aforementioned reasons that the neonatal 

mouse heart is much smaller than the adult, thus cannulating the neonatal aorta for 

Langendorff retrograde perfusion is technically challenging. In addition, the isolation of 

>P10 CMs using the neonatal method of sequential digestions also results in low CM 

viability and yield. 

CMs are usually cultured to improve their purity or a discontinuous Percoll gradient is used 

to separate CMs from non-myocytes after centrifugation (Louch et al., 2011). The latter 

technique has been developed mainly for CMs that are larger from the neonatal and adult rat 

heart (Iwaki et al., 1990; Nakagawa et al., 1995; Maisch, 1981; Chlopcikova et al., 2001), 

and is not so commonly used for neonatal or adult mice (Evans and Goodwin, 2007; Harada 

et al., 2005). This method is also complicated and time-consuming (Louch et al., 2011; 

Chlopcikova et al., 2001). Indeed, some laboratories use two different protocols, one to 

purify neonatal rat CMs using Percoll gradients and another to purify neonatal mouse CMs 

by pre-plating (Nickson et al., 2007). 

Cell type-specific information on regulatory events at key time points during postnatal 

cardiac growth requires freshly purified populations of CMs that closely emulate the in vivo 

environment. It is also important to isolate CMs from neonatal, preadolescent, and adult 

hearts in a similar manner for direct comparisons in gene expression that are not influenced 

by using different techniques or cell culture. Revolutionary advances in high-throughput 

sequencing technologies would allow us to capture the changes in transcriptional activity 

during postnatal cardiac development.  
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1.5 Aims of this study 

Although cardiac growth has been well studied in mice, the molecular determinants that 

contribute to the terminal differentiation of CMs remain unknown. The developmental 

signals associated with postnatal cardiac growth may be manipulated to stimulate 

endogenous CM proliferation as a means of cardiac regeneration for the treatment of many 

cardiovascular diseases (including CHD). One candidate gene that was identified to promote 

the terminal differentiation of CMs was stem cell factor receptor (c-Kit). In response to PO, 

genetic mouse models with global or CM-restricted inactivation of c-Kit exhibited CM 

proliferation rather than CM hypertrophy, which markedly improved survival outcomes.  

Thus, there were two overarching aims in this study. The first aim was to investigate 

whether c-Kit is re-expressed in adult WT CMs after PO, and if so pharmacological 

inhibition of the receptor may be a novel therapeutic target for stimulating the proliferation 

of adult CMs. To address this aim, a cardiac injury model of LVH, SAC-induced PO, was 

characterised in adult WT mice (Chapter 3) and the expression of c-Kit in adult WT CMs 

post-SAC was evaluated (Chapter 4). 

The second aim was to embark on the discovery of new candidates for cardiac regeneration 

by establishing the transcriptomic signatures of CMs during important stages of postnatal 

cardiac growth. To address this aim, (i) pivotal time points in postnatal cardiac growth were 

identified (Chapter 5), (ii) a standardised method to purify CM populations from any 

postnatal age was developed (Chapter 6), and (iii) transcriptomic profiles of CMs at those 

pivotal time points along the CM developmental trajectory were determined (Chapter 7). 
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Chapter 2 General Methods 

2.1 Animals  

Experimental procedures using C57BL/6J mice at the Victor Chang Cardiac Research 

Institute (Sydney) were approved by the local Garvan Institute /St Vincent’s Hospital 

Animal Ethics Committee (AEC #: 13/07) in accordance with The Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes (2004). Mice were given 

food (pellets of rodent food that had been sterilised by irradiation; Gordon’s Speciality 

Feeds) and water ad libitum. 

2.2  Tissue collection 

Mice were weighed prior to euthanasia. Neonatal mice were euthanised by decapitation 

(<P10) and older mice were euthanised by CO2 asphyxiation and cervical dislocation. 

Hearts were excised by opening the thoracic cavity with surgical scissors and the ribcage 

was retracted to carefully and quickly excise the heart, which was rinsed in saline to remove 

blood. Heart tissues were gently blotted dry, weighed, and snap-frozen in liquid nitrogen, 

which were subsequently stored at -80°C or fixed in 2% paraformaldehyde (PFA) for 3 

hours and then stored in 70% ethanol.  

2.3 Cardiac puncture 

Mice were anaesthetised with 2-4% isoflurane in an empty cage and then secured with 

surgical tape into a supine position on a heating pad at 37°C to maintain body temperature. 

Isoflurane (2-4%) was continually administered via a nose cone and the level of anesthesia 

was assessed by the toe pinch reflex, which does not occur with a deep level of anaesthesia. 

Blood was drawn using a 25-gauge (G) needle attached to 1 ml syringe that was inserted at 

45° through the diaphragm and into the cardiac ventricle. Mice were euthanised by 

exsanguination under anaesthesia followed by cervical dislocation.  
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2.4 CM isolation and enrichment 

CMs were isolated from the heart after Langendorff retrograde perfusion with collagenase II 

(Worthington) and enriched for by differential centrifugation using the O'Connell et al. 

(2007) method.  

Adult mice were injected with heparin (100 µl; 1000 UI/ml; cat. #: 02112115; Pfizer) and 

euthanised by cervical dislocation. The aorta was cannulated in situ with a 6.0 silk suture at 

the level of the diaphragm with a cannula (24 G gavage needle) attached to a 2 ml syringe. 

The heart was then mounted onto Langendorff apparatus and perfused at 37°C for 3 minutes 

with Ca2+-free perfusion buffer (9 ml of perfusion buffer: 120mM NaCl, 15mM KCl, 

0.5mM KH2PO4, 5mM NaHCO3, 10mM HEPES 5mM glucose, pH 7) at a flow rate of 3 

ml/min. The extracellular matrix was digested by perfusing the heart for 8 minutes with 

digestion buffer containing collagenase II and Ca2+ (24 ml of perfusion buffer with 3 mg/ml 

collagenase II and 43 µM Ca2+). After digestion, the atria were removed by cutting the 

artioventricular junction, the ventricles of the heart were placed in a petri dish containing 

transfer buffer (perfusion buffer and 5% FCS). The heart tissue was teased apart with fine 

scissors and forceps and tissue was dissociated into cells by trituration with a wide bore 

transfer pipette (3 ml). Once tissues were dissociated, transfer buffer was added up to 10 ml 

and CMs were counted using a haemocytometer to obtain total CM yield and viability. The 

mixture of rod-shaped (healthy) and round (dead) CMs were readily visualised under the 

microscope. CMs were enriched in a series of three low-speed centrifugations 

simultaneously with Ca2+ re-introduction to produce Ca2+-tolerant CMs. After each 

centrifugation step, cells were resuspended in transfer buffer containing increasing 

concentrations of Ca2+ (0.1, 0.4, 0.9 mM). Smaller non-myocytes were discarded in the 

supernatant after each wash. After CM enrichment, cells were resuspended in transfer buffer 

(10 ml) and CMs were counted using a haemocytometer to obtain the total CM yield and 

viability. CMs were either snap-frozen in liquid nitrogen and stored at -80°C or fixed in 2% 

PFA for 3 hours and then stored in 70% ethanol for downstream experiments. 
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2.5 CM area quantification 

A binary image (black/white) was used to measure CM area (µm2), in which a cell outline 

was automatically detected using ImageJ software. The cell area was then calculated based 

on the number of pixels within the cell outline, and normalised to the scale bar. 

2.6 RNA extraction 

RNA was extracted by phenol-chloroform phase separation. Whole hearts, ventricles, or 

CMs were homogenised in 1 ml of TRizol (Invitrogen) on a beaker of wet ice using a 

Polytron homogeniser. Phase separation was performed by adding chloroform (200 µl) to 

homogenates, which was mixed thoroughly by shaking for 15 s and incubated for 3 minutes 

at RT. Samples were centrifuged at 12,000 g for 15 minutes at 4°C. The upper aqueous 

phase was transferred to a new tube containing glycogen (5 µl; 5mg/ml) and mixed 

thoroughly by shaking for a few seconds. Isopropanol (600 µl) was added and mixed 

thoroughly by shaking for a few seconds, which was then incubated for 10 minutes at RT. 

Samples were centrifuged at 12,000 g for 10 minutes at 4°C. After centrifugation, the 

supernatant was discarded, and residual supernatant was removed after a quick spin using a 

microcentrifuge. The pellet was washed with 75% ethanol (1 ml) and mixed thoroughly by 

vortexing, which was centrifuged at 7,500 g for 5 minutes at RT. After centrifugation, the 

supernatant was discarded, and residual supernatant was removed after a quick spin using a 

microcentrifuge. The RNA pellet was air-dried under a lamp for ~30-45 minutes and RNA 

was reconstituted in DEPC-treated water (90 µl). RNA was further purified overnight by 

ethanol precipitation. Sodium acetate (10 µl; 3M) was added to RNA (100 µl) and 

thoroughly mixed by shaking for a few seconds. Ethanol (250 µl; 100%) was added, mixed 

thoroughly by vortexing, and samples were incubated overnight at -20°C. On the following 

day, samples were centrifuged at 12,000 g for 15 minutes at 4°C. After centrifugation, the 

supernatant was discarded, and the residual supernatant was removed after a quick spin 

using a microcentrifuge. RNA pellets were resuspended in ethanol (1 ml; 75%), mixed 

thoroughly by vortexing, and centrifuged at 7,500 g for 5 minutes at 4°C. After 

centrifugation, the supernatant was discarded, and residual supernatant was removed after a 

quick spin using a microcentrifuge. RNA pellets were air-dried as before, reconstituted in 

DEPC-treated water (100 µl), and stored at -80°C. 
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2.7 Real-time quantitative polymerase chain reaction (RT-qPCR) 

For RT-qPCR using Taqman probes, reverse transcription was performed with ~670 ng 

DNase-treated RNA (Turbo DNA-free, Ambion) using the SuperScript III First-Strand 

Synthesis System (Invitrogen) for cDNA synthesis. RT-qPCR reactions were set up in a 

384-well plate using cDNA samples that were diluted at 1:20. Each well contained (10 µl/ 

well): cDNA (2 µl), 2 x Taqman Gene Expression Master Mix (5 µl; Applied Biosystemes), 

RNase-free water (2 µl), and Taqman probe (1 µl). Triplicate samples were prepared as well 

as no template controls. The plate was assayed on a Roche LightCycler 480 using the 

following cycling conditions: denaturation at 95°C for 10 minutes with a 4.8°C/second ramp 

rate; 40x cycles of amplification at 95°C for 10 seconds with a 4.8°C/second ramp rate, 

58°C for 30 seconds with 2.5°C/second ramp rate, 72°C for 30 seconds with a 4.8°C/second 

ramp rate; followed by cooling at 50°C for 10 seconds with a 2.5°C/second ramp rate. 

Relative quantification was performed using the 2-∆∆CT method (Winer et al., 1999). 

For RT-qPCR using SYBR Green, reverse transcription was performed with ~400 ng RNA, 

which was DNase-treated and cDNA was synthesised using the QuantiTect Reverse 

Transcription Kit (Qiagen). RT-qPCR reactions were set up in a 384-well plate using cDNA 

samples that were diluted at 1:4. Each well (10 µl/ well) contained: cDNA (2 µl), 2 x SYBR 

Green I Master (5 µl; Roche), RNase-free water (1 µl), forward and reverse primer (1 µl; 5 

µM). Triplicate samples were prepared as well as no template controls. The plate was 

assayed on a Roche LightCycler 480 using the following cycling conditions: denaturation at 

95°C for 10 minutes with a 4.4°C/second ramp rate; 40x cycles of amplification at 95°C for 

10 seconds with a 4.4°C/second ramp rate, 62°C for 10 seconds with 2.2°C/second ramp 

rate, 72°C for 10 seconds with a 4.4°C/second ramp rate; melt at 60°C for 1 second; and 

cooling at 37°C for 1 second. Each primer pair was validated for SYBR Green assays by 

constructing a standard curve using cDNA dilutions of: 1 in 10, 1 in 100, 1 in 1000, 1 in 

1000, and primers with an efficiency of ~2 were used. Relative quantification was 

performed using the 2-∆∆CT method (Winer et al., 1999). 
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2.8 Preparing cells for immunocytochemistry 

Cells were fixed with 2% PFA in a 15 ml polypropylene tube for 5 minutes at RT. Cells 

were washed with PBS (10 ml) and the supernatant was removed after centrifugation at 100 

g or 300 g for 3 minutes at RT. Cells were resuspended in PBS (1 ml) and stored at 4°C. 

Cells were mounted onto Superfrost slides (Lomb) using slide holders with sample 

chambers, and placed into a Cyto-Tek (Sakura) centrifuge. Cell suspensions were added to 

the sample chamber and slides were centrifuged at 500 g for 5 minutes at RT. Slides were 

then stored in PBS at 4°C. 

2.9 Histology 

Freshly dissected tissues were fixed in 4% PFA for 3 hours and stored in 70% ethanol. To 

prepare tissues for embedding, specimens were placed between two biopsy foam pads, 

which were then placed in a labelled embedding cassette before processing. Samples were 

processed by dehydrating, clearing, and embedding specimens in paraffin. The tissue 

cassettes were dehydrated in a series of incubations with 70%, 90%, and 95% ethanol for 30 

minutes each on a rocker, followed by incubation with 100% ethanol for 1 hour on a rocker 

at RT (x2). Tissues were cleared of ethanol with xylene for 1 hour at RT (x2). Specimens 

were infiltrated with paraffin and xylene (50:50) for 1 hour at 60°C, followed by paraffin 

only for 1 hour at 60°C (x2). Tissues were then embedded into paraffin blocks by 

submerging samples into molten wax in a stainless steel mold, and a cassette was secured on 

top of the mold by topping up with molten wax over the cassette. The tissue-embedded 

blocks were then cooled on a cold plate for ~30 minutes until the wax had solidified and the 

samples were ready to be removed from the mold. The cassette blocks were stored at RT. 

Prior to sectioning, embedded specimens were placed on ice and individually sectioned at 5 

µm using a Leica RM2255 microtome. Paraffin ribbons were floated onto the water surface 

in a water bath set at 46°C, and specimens were mounted onto slides. The slides were dried 

vertically overnight at RT. To better preserve the tissue, dried slides were placed in an oven 

at 60°C for 15-20 minutes to melt the paraffin and cover the tissue. Samples were stored in a 

slide storage box at RT.  
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2.10 Statistical analyses 

Data were analysed and are presented as mean ± standard error of the mean (SEM) using 

GraphPad Prism 6.0 software. Statistical significances were determined using a two-tailed 

unpaired Student’s t-test, or, by one-way analysis of variance (ANOVA) followed by 

Tukey’s post hoc test, or, two-way ANOVA followed by Bonferroni’s post hoc test. 

Statistical significance was considered p<0.05.  
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Chapter 3 Characterisation of a surgical mouse model of LVH 

3.1 Introduction  

Hypertension is a major cause of pathological left ventricular hypertrophy (LVH), which is 

an independent risk factor for HF, sudden cardiac death, and mortality (Lloyd-Jones et al., 

2002; Levy et al., 1990). Hypertensive heart disease (HHD) is clinically diagnosed by an 

increase in blood pressure >140/90 mmHg, and the effect of LVH on cardiac function and 

morphology are evaluated by electrocardiography (ECG), echocardiography or magnetic 

resonance imaging (MRI) (Drazner et al., 2005; Heckbert et al., 2006; Lloyd-Jones et al., 

2002; Levy et al., 1988; Breckenridge, 2010). The main characteristics of pathological LVH 

are not merely an increase in LV mass, which can also be observed with physiological 

hypertrophy, but a hypertrophy that also involves cardiac remodelling, changes in cardiac 

geometry, the re-expression of fetal gene and fibrosis. Although initially adaptive to 

maintain CO, pathological LVH is likely to be maladaptive even from the time of its initial 

onset, as it progresses to also involve reduced coronary blood flow that results in impaired 

cardiac function and the onset of HF (Lorell and Carabello, 2000; Schoenfeld et al., 1998; 

Maillet et al., 2013). 

Surgical models of cardiac hypertrophy have contributed greatly to our understanding of the 

underlying pathophysiology and to the treatment of HF. The neurohumoral involvement is 

well known in cardiac hypertrophy and HF (Francis, 2001; Liao et al., 2003). Suprarenal 

aortic constriction (SAC) models of pressure overload (PO) were developed in larger 

species, such as dogs (Zimmerman and Kraft, 1979), rabbits (Morris et al., 1977), and rats 

(Freeman et al., 1977), and it has since been adapted to mice, which are the preferred 

species for cardiovascular and genetic studies. Measurements of blood pressure and cardiac 

function in mouse models were previously limited by the small size of a mouse, which is 

one-tenth of that of a rat (Tarnavski et al., 2004). Thus, microsurgery is technically 

challenging in the mouse and evaluation of cardiac haemodynamics and contractile function 

requires considerable expertise and technologies, such as ultra-high resolution 

echocardiography and micromanometry (Patten and Hall-Porter, 2009).  
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The severity of LVH in mice is determined by the degree of constriction of the aorta, in 

which a needle of a specified diameter reproducibly constrict the aorta, by placing the 

needle onto the aorta and then tightening a ligature around the aorta and needle; the latter is 

then removed to leave a fixed aortic constriction. The restriction of blood flow in the 

constricted aorta leads to elevations in blood pressure and increased cardiac afterload, 

resulting in concentric hypertrophy and pathological remodelling that advances to HF (Hara 

et al., 2002). Our laboratory has performed SAC in mice to model PO-induced LVH and 

found a novel target with regenerative potential after cardiac injury, which will be explored 

in Chapter 4.  

Given that the development of LVH can vary significantly depending on experimental 

conditions, the purpose of this study was to characterise the pathophysiology of SAC-

induced hypertension and LVH in mice. This work also provides a background to determine 

c-Kit expression in CMs after PO in the following chapter (Chapter 4).  
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3.2 Materials and Methods 

General Methods are described in Chapter 2. 

3.2.1 Suprarenal aortic constriction (SAC) 

Adult C57BL/6J male mice (8 week-old) were randomly assigned to sham or SAC 

surgeries. Mice were anaesthetised with 2-4% isoflurane and fur was shaved from the left 

side of the lower body. The mouse was then secured with surgical tape in a right lateral 

position on a heating pad at 37°C to maintain body temperature. Isoflurane was 

administered continuously at 2-4% via a nose cone. The surgical area was cleaned with an 

ethanol wipe. Surgery began with a lateral abdominal incision on the left side of the mouse 

using surgical scissors (Figure 3.1). The muscular wall of the abdomen was retracted for 

access and visualisation of the abdominal aorta, which was gently isolated from the 

surrounding tissue with forceps. A suture needle with 7.0 silk was used to ligate the aorta 

proximal to the origin of the renal arteries around a blunt and bent 29 G needle. Once the 

banding was tightly secured, the needle was removed. This resulted in a narrowing of the 

aortic area to approximately one-third of its original size without completely obstructing 

blood flow. Sham operations were similarly performed whereby the aorta was isolated 

without constriction. The muscular walls of the abdomen were sutured with 7.0 silk and the 

skin was closed with surgical wound clips. The area was then cleaned with iodine solution 

(Betadine). Mice were placed in recovery cages on a heating pad for 24-hours after surgery 

and food was softened with water to assist consumption. In the three days following 

surgery, mice were given buprenorphine by subcutaneous injection twice daily at 

0.075mg/kg. Mice were weighed and monitored each day over the duration of the study.  
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To analyse cardiac function and structure, echocardiography was performed 6 days after 

surgery (cohort 1) and micromanometry was performed 7 days after surgery (cohort 1 and 

2), at which time hearts or CMs were collected for subsequent analyses (Table 3.1). To 

measure plasma renin concentration and activity, blood was collected from sham and SAC-

operated mice 24-hours after surgery (cohort 3). 

 

Table 3.1: Timeline for sham and SAC surgeries 

Cohort 
 

Day: 0 1 2 3 4 5 6 7 

1 
n=11 sham 

surgery 

 

     

echo-
cardiography 

micromanometry and 
heart tissue collection 

n=18 SAC 

2 

n=10 sham 

      
micromanometry and 

CM isolation 
n=16 SAC 

3 
n=10 sham tissue 

collection 
at 24 hrs 

      

n=15 SAC 
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Figure 3.1: Images of SAC surgery 

SAC surgeries were recorded and still frames were captured. These images depict the 
following: A, the left kidney and the aorta are exposed at the suprarenal level after a lateral 
incision; B, the aorta is isolated from surrounding tissue using forceps; C, a suture needle is 
used to guide the 7.0 silk around the aorta; D, silk is looped twice around the aorta and a 
blunted 29 G needle; E, blood flow is occluded blanching the kidney after a double knot is 
tightened; F, partial blood flow is restored after the needle is removed. 
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3.2.2 Echocardiography 

In cohort 1, echocardiography was performed in a blinded fashion 6 days after sham or SAC 

surgeries (Table 3.1). Mice were anaesthetised with 3-5% isoflurane and the anterior chest 

area was shaved. Mice were placed in a supine position on an integrated heating pad with 

ECG electrodes to maintain 37°C. Isoflurane was continually administered at 1-2% through 

a nose cone. To monitor heart rate, pre-warmed ultrasound conductive gel was applied to all 

four limbs positioned near the electrodes. Gel was also applied to the thoracic region that 

was brought into contact with a MS400 transducer probe (18-38 MHz) connected to a 

VEVO 2100 echocardiography machine (VisualSonics, Canada). The probe was held in a 

clamp that was mounted onto a rack allowing sub-millimetre 3D control of its position. 

Recordings were made of the long and short LV axis that were analysed with Vevo Lab 

(VisualSonics, Canada) software.  

3.2.3 Micromanometry 

In cohorts 1 and 2, haemodynamic measurements were performed in a blinded fashion 7 

days after sham or SAC surgery (Table 3.1). Mice were anaesthetised with 3-5% isoflurane 

and the ventral neck and thoracic anterior area was shaved. The mouse was secured onto a 

heating pad in a supine position and secured with surgical tape around all four limbs and the 

tail. Anaesthetic was continually administered through a nose cone using 1-2% isoflurane. A 

midline incision was made along the ventral neck where the right carotid artery was isolated 

with fine-tip haemostats and dilation forceps. The artery was retracted and elevated using 

three 6.0 silk loops, the first was looped around the artery proximal to the heart, a second 

loop lay around the artery between the first and third, and the third was positioned distal to 

the heart along the same vessel. The distal loop was tightened and ligated while tension was 

applied to the proximal loop to occlude blood flow. A 25 G needle was used to puncture the 

artery near the distal ligature, forming an opening where a 1.2 F pressure sensor catheter 

(Scisense, Canada) was inserted and progressed beyond the second loop, which was ligated 

to minimise blood loss. The tension from the proximal loop was released and the catheter tip 

advanced into the aortic root for blood pressure recordings and then further into the LV to 

record LV pressure. Pressure traces were acquired and analysed using AcqKnowledge 

(Biopac Systems, USA) software.   
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3.2.4 Tissue and CM collection 

After micromanometry measurements were recorded, mice were euthanized by cervical 

dislocation. In cohort 1, the lungs, heart, liver and partial right kidney were quickly excised 

and rinsed in saline to remove blood. In cohort 1 and 3, the atria, right and left ventricles 

were sequentially isolated from the whole heart. Tissues were then gently blotted dry before 

weighing and were snap-frozen in liquid nitrogen and stored at -80°C. In cohort 1, LVs were 

dissected transversely into three sections, whereby the base and apex were snap-frozen in 

liquid nitrogen and stored at -80°C for downstream extraction of protein for Western 

blotting and RNA for RT-qPCR. The LV mid-section was fixed in 2% PFA for 3 hours and 

then stored in 70% ethanol for immunohistochemistry or histology. In cohort 1, the right 

tibia was removed from an incision made at the ankle and along the bone to the tibia-femur 

joint, and the tibia was cleaned of tissue and then stored in 100% ethanol at RT. The tibia 

length was measured in millimeters using the same pair of fine calibre callipers. Heart and 

LV weights were subsequently normalised to either body weight or tibia length. 

In cohort 2, CMs (3 ml) were isolated and enriched (see Chapter 2, Section 2.4) from sham- 

and SAC- operated hearts and separated into three aliquots for Western blotting (2 ml), RT-

qPCR (0.8 ml), and immunocytochemistry (0.2 ml). CMs were snap-frozen in liquid 

nitrogen and stored at -80°C for downstream extraction of protein and RNA or fixed in 2% 

PFA for 5 minutes and subsequently stored in PBS for staining.  

3.2.5 Immunocytochemistry 

Immunostaining of fixed cells was performed as follows. Slides were incubated with 80 µl 

per slide of blocking buffer (1% BSA and 0.2% Triton X-100 in PBS) for 1 hour at RT, 

which was removed by flicking slides individually. Cells were incubated overnight at 4⁰C 

with a primary antibody (Ab), rabbit anti-laminin (cat. #: ab11575, Abcam), diluted at 1:200 

in blocking buffer. Slides were washed in PBS for 5 minutes at RT on an orbital shaker (x5). 

The following steps were performed in the dark. Cells were incubated for 1 hour at RT with 

a secondary Ab, goat anti-rabbit IgG Alex Fluor 555, diluted at 1:1000 in blocking buffer. 

Cells were washed in PBS for 5 minutes on an orbital shaker (x5). Cell nuclei were stained 

with DAPI (cat. #: D9542, Sigma) diluted at 1:5000 for 10 minutes at RT. Cells were 
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washed in PBS for 5 minutes on an orbital shaker (x5). Coverslips were secured onto each 

slide with PVA-DABCO mounting medium. Slides were then stored at 4°C. Stained cells 

were imaged with a confocal microscope using the same settings (Axio Imager microscope 

equipped with a LSM 700 confocal scan head, Zeiss). 

3.2.6 Plasma renin concentration and activity  

In cohort 3, blood was drawn by cardiac puncture at 24-hours after surgery and mixed by 

inversion with Na2EDTA (1-2 mg/ml) in 1.5 ml microfuge tubes to inhibit converting 

enzymes and peptidases, thereby preventing protein degradation. After centrifugation at 

12,000 g at 4°C, the supernatant containing plasma was collected and aliquots were stored at 

-80°C. Plasma renin concentration (PRC) and activity (PRA) were analysed in duplicate by 

radioimmunoassay (ProSearch International, Australia). PRC was measured by the 

generation of Ang I in the presence of the exogenous sheep renin substrate, 

Angiotensinogen. PRA was measured using endogenous levels of renin substrate and any 

Ang I that was already present in the plasma was subtracted (Sealey, 1991). 
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3.2.7 RT-qPCR 

To measure the expression of hypertrophy markers, cDNA was synthesised using the 

Superscript III First Strand Synthesis System and RT-qPCR was performed using a Taqman 

assay. Taqman probes are detailed in Table 3.2.  

Table 3.2: Taqman probe sequences for RT-qPCR 

Gene Gene ID Taqman ID Sequence 

ANP Nppa Mm01255747_g1 GATGGATTTCAAGAACCTGCTAGAC 

BNP Nppb Mm01255770_g1 GTTTGGGCTGTAACGCACTGAAGTT 

β-MHC Myh7 Mm00600555_m1 CGGGACATTGGTGCCAAGGGCCTGA 

α-SKA Acta1 Mm00808218_g1 CTTCCGGCCGTACCACCGGCATCGT 

HPRT Hprt Mm01545399_m1 GGACTGATTATGGACAGGACTGAAA 

 

To measure the expression of renin mRNA, cDNA was synthesised using the QuantiTect 

Reverse Transcription Kit and RT-qPCR was performed using a SYBR Green assay. The 

primers (Integrated DNA Technologies) used for renin and Gapdh mRNA expression are 

shown in Table 3.3. 

Table 3.3: Primer sequences for SYBR Green RT-qPCR 

Gene Sequence Reference 

Renin Forward Primer 5'-GAG GCC TTC CTT GAC CCA TC-3' Wu et al., (2002) 

Renin Reverse Primer 5'-TGT GAA TCC CAC AAG CAA GG-3' Wu et al., (2002) 

Gapdh Forward Primer 5’-CTT GGG CTA CAC TGA GGA C-3’  

Gapdh Reverse Primer 5’-CTG TTG CTG TAG CCG TAT TC-3’  
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3.2.8 Staining for cardiac fibrosis 

Samples were fixed, processed, embedded, and sectioned, as described in the General 

Methods (Chapter 2). 

Slides with LV tissue sections were rehydrated in a series of short incubations of 3 minutes 

to remove wax by incubating with xylene (x2) and rehydrating in ethanol at 100% (x2), 

95% (x1), 70% (x1), followed by incubating in distilled water for 2 minutes. Nuclei were 

identified with Weigert’s iron haematoxylin solution by staining for 8 minutes at RT, and 

protected from light. Specimens were then washed in distilled water for 10 minutes. LV 

sections were stained with 0.1% Sirius red (cat #: 365548, Sigma) and 0.1% Fast Green FCF 

(cat #: F7258, Sigma) in picric acid to identify collagen fibres (type I and III) and 

cytoplasm, respectively. Excess stain was removed with two quick rinses in 0.5% acidified 

water (glacial acetic acid), followed by one more rinse in distilled water. Specimens were 

then dehydrated in a short series of incubation steps for 1 minute each with increasing 

concentrations of ethanol: 70% (x1), 95% (x1), and 100% (x2), followed by xylene (x2). 

Coverslips were then mounted onto slides with Depex mounting media. Images of LV 

sections were taken with a DM6000B light microscope.  

  



 

60 

 

3.3 Results  

3.3.1 Effects of SAC on blood pressure 

Haemodynamic measurements were recorded by micromanometry, and the level of 

anaesthesia was adjusted to stabilise heart rates at 500 bpm. This was to limit the effects of 

variable heart rates on blood pressure measurements in sham and SAC groups (Figure 3.2). 

Previous surgical experience with the SAC model in our laboratory suggested that not every 

SAC surgery that is performed results in the induction of hypertension. Criteria were 

established a priori to define a successful SAC surgery as systolic blood pressure (SBP) that 

was two standard deviations (SD) above the mean of the sham-operated group, which was 

127 mmHg. Thus, the threshold for a successful SAC surgery was SBP >127 mmHg, where 

the mean SBP of sham-operated mice was 109 mmHg ± 9 mmHg (SD). This translated to a 

SAC surgery success rate of 68%, where one week after SAC surgery the SBP, diastolic 

blood pressure (DBP), and mean arterial pressure (MAP), were significantly elevated by 45 

mmHg, 10 mmHg, and 18 mmHg, respectively, relative to shams. LV systolic pressure 

(LVSP) was similar to SBP, increasing by 38mmHg, and LV end-diastolic pressure 

(LVEDP) was also significantly elevated in SAC relative to sham groups. However, cardiac 

contractility (dP/dtmax and dP/dtmin) was not altered post-SAC compared to shams. 

Three mice were excluded from this study due to micromanometry technicalities. The 

mortality rate in SAC-operated mice was 32%. Half of these deaths occurred within 24-

hours of SAC surgery and the remaining mice were culled for ethical reasons because of a 

significant loss in body weight (≥10%) due to ill health. One of the mice culled due to ill 

health had severe systemic oedema, indicating congestive HF.  
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Figure 3.2: Micromanometry measurements one week post- sham or SAC surgery 

Micromanometry was performed on adult male C57BL/6J mice (9-week old) one week 
post-surgery (sham, n=18; SAC, n=15) and analysed using AcqKnowledge software. Data 
are presented as means ± SEM; independent comparisons were made by two-tailed 
Student’s unpaired t-tests; *p<0.05, **p<0.005, and ****p<0.0001. DBP, diastolic blood 
pressure; SBP, systolic blood pressure; MAP, mean arterial pressure; dP/dt, contractility 
max and min; LVSP, left ventricular systolic pressure: LVEDP, left ventricular end-diastolic 
pressure.   
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3.3.2 Effects of SAC on cardiac function 

Echocardiography was performed 6 days post-surgery and revealed a 20% increase in the 

relative LV wall thickness (h/R) of SAC-operated mice relative to sham-operated mice, 

indicating the development of concentric hypertrophy (Figure 3.3 and Table 3.4). There 

were also significant reductions in CO, LV ejection fraction (LVEF) and fractional 

shortening (FS) post-SAC relative to shams. Indeed, CO fell by 14%, which was consistent 

with an 8% reduction in LVEF due to an increase in the LV end-systolic volume (LVESV) 

that nearly doubles, and an 11% reduction in FS. Hence, less blood was ejected from the LV 

during systole post-SAC compared with shams. There were no significant changes in the 

LV end-diastolic volume (LVEDV) or stroke volume (SV) post-SAC relative to shams. 
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Figure 3.3: Echocardiography measurements six days post- sham or SAC surgery 

Echocardiography was performed on adult male C57BL/6J mice (9-week old) six days post-
surgery (sham, n=11; SAC, n=9). Data are presented as means ± SEM; independent 
comparisons were made by two-tailed Student’s unpaired t-tests; *p<0.05, and **p<0.005. 
CO, cardiac output; LVEF, ejection fraction; FS, fractional shortening; h, LV wall 
thickness; R, internal LV chamber radius. 
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3.3.3 Gross morphology of LVH following SAC 

There were no statistically significant differences in body weight or tibia length (TL) 

between sham- and SAC- operated mice (Table 3.4), thus data are presented for TL (Figure 

3.4A). Consistent with the development of LVH, heart (HW/TL) and LV (LV/TL) mass 

increased significantly post-SAC by 39% and 48%, respectively, relative to shams (Figure 

3.4). The weight of the lungs (lungs/TL) was comparable between sham and SAC mice, 

suggesting that the developing LVH phenotype had not advanced to HF. CMs were isolated 

from the cardiac ventricles, and were stained to measure cell size by CM area (Figure 3.4B), 

which shows CMs had enlarged by 17% post-SAC relative to shams.  

In Figure 3.5, the relationship between LV/TL and SBP, determined using Pearson’s 

correlation, before (R2=0.48, Figure 3.5A) and after (R2=0.92, Figure 3.5B), excluding 

animals that did not meet the criterion of SBP > 127 SBP (mmHg) is shown. The exclusion 

criterion clearly strengthened the correlation between SBP and LV/TL (Figure 3.5B), 

mainly due to the exclusion of one SAC-operated mouse that remained normotensive (SBP 

of 102mmHg) but showed a significant increase in LV mass of 90% (LV/TL= 9.1) relative 

to shams (LV/TL= 4.8). This data point is easily observed in Figure 3.5A. 
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Table 3.4: Gross morphology, micromanometry and echocardiography measurements 
one week post- sham or SAC surgery 

  sham  SAC p-value 

Gross morphology n=8 n=6 
 

BW (g) 22.55 ± 0.37 22.01 ± 0.36 ns 

HW (mg) 119 ± 4 161 ± 4 **** 

LVW (mg) 78 ± 3 111 ± 3 **** 

TL (mm) 16.1 15.6 ns 

Lungs (mg) 135.2 ± 4 126.5 ± 3 ns 

HW/BW (mg/g) 5.3 ± 0.2 7.4 ± 0.3 **** 

LV/BW (mg/g) 3.5 ± 0.1 5.1 ± 0.2 **** 

HW/TL (mg/mm) 7.4 ± 0.3 10.3 ± 0.2 **** 

LV/TL (mg/mm) 4.8 ± 0.1 7.1 ± 0.1 **** 

Lungs/TL (mg/mm) 8.4 ± 0.2 8.6 ± 0.6 ns 

Lungs/BW 6.0 ± 0.1 6.1 ± 0.4 ns 

Micromanometry n=18 n=15 
 

HR (bpm) 494 ± 4 490 ± 5 ns 

DBP (mmHg) 82 ± 2 91 ± 3 * 

SBP (mmHg) 109 ± 2 153 ± 3 **** 

MAP (mmHg) 89 ± 2 107 ± 2 **** 

dP/dt max (mmHg/S)  11266 ± 401 10763 ± 425 ns 

dP/dt min (mmHg/S) -8004 ± 313 -7682 ± 379 ns 

LVSP (mmHg) 106.9 ± 2 144.9 ± 3 **** 

LVEDP (mmHg) 7.1 ± 0.4 9.9 ± 0.8 ** 

Echocardiography n=11 n=9 
 

HR (bpm) 502 ± 4 479 ± 14 ns 

LVEDV (mm³) 28 ± 1 28 ± 2 ns 

LVESV (mm³) 2.7 ± 0.5 5.2 ± 1 * 

SV (mm³) 26 ± 1 23 ± 1 ns 

CO (ml/min)  12.8 ± 0.6 11 ± 0.5 * 
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h (mm) 1.04 ± 0.02 1.22 ± 0.03 **** 

R (mm) 1.56 ± 0.03 1.53 ± 0.04 ns 

h/R 0.669 ± 0.02 0.801 ± 0.03 ** 

LVEF (%) 90.6 ± 1.4 82.6 ± 2.9 * 

FS (%) 67.6 ± 2.5 56.2 ± 3.8 * 

Gross morphology, micromanometry, and echocardiography measurements from adult male 
C57BL/6J mice (9-week old) one week post-sham or –SAC surgery. Data are presented as 
mean ± SEM; independent comparisons were made by two-tailed Student’s unpaired t-tests; 
*p<0.05, **p<0.005, ***p<0.0005, ****p<0.0001 and ns, non-significant. BW, body 
weight; HW, heart weight; LVW, left ventricular weight; TL, tibia length; HR, heart rate; 
DBP, diastolic blood pressure; SBP, systolic blood pressure; MAP, mean arterial pressure; 
LVSP, left ventricular systolic pressure; LVEDP, left ventricular end-diastolic blood 
pressure; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-
systolic volume; SV, stroke volume; CO, cardiac output, h, LV wall thickness; R, LV 
internal chamber radius; LVEF, left ventricular ejection fraction, LVEF= ((LVEDV – 
LVESV) / LVEDV) x100); FS, fractional shortening, FS= ((LVIDd – LVIDs) / LVIDd) 
x100); ID, internal diameter; s, systole; d, diastole. 
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Figure 3.4: Gross morphology of the heart, LV and CMs one week post- sham or SAC 
surgery 

Gross morphology measurements were made at one week after sham or SAC surgery in 
adult male C57BL/6J mice (9-week old). A, heart and LV weights were normalised to TL 
(n=6-8). B, CM areas were measured using ImageJ (n=3, 30-40 binucleated CM areas per 
slide) with representative images. Top, CM membranes were stained with laminin (red) and 
DNA with DAPI (blue); bottom, replica binary images show the cell area (white) within the 
outline of each CM, and CM areas were measured in ImageJ. Scale bar is 50 µm. Data are 
presented as means ±SEM; independent comparisons were performed using two-tailed 
Student’s unpaired t-tests; *p<0.05, and ***p<0.0005. LV, left ventricle; HW, heart weight; 
TL, tibia length. 

 



 

68 

 

 

Figure 3.5: Correlation between SBP and LV/TL, before and after applying the 
exclusion criteria 

Correlation between SBP and LV/TL ratio in sham- (black dots) or SAC- (red dots) 
operated mice one week after surgery; A, all sham- and SAC-operated mice were included 
(n=17); and B, only mice that had successful SAC surgery (SBP <127 mmHg) were 
included in the study (n=13). SBP, systolic blood pressure; LV, left ventricle; TL, tibia 
length. 

 

3.3.4 Evaluation of pathological hypertrophy markers and fibrosis 

A distinctive characteristic of pathological hypertrophy is the re-expression of fetal genes, 

specifically, ANP, BNP, β-MHC and α-SKA. The mRNAs for these hypertrophy markers 

were more abundant post-SAC compared with shams in both the LV (Figure 3.6A) and in 

enriched CM fractions (Figure 3.6B). ANP, BNP, β-MHC and α-SKA mRNAs were more 

abundant post-SAC in the LV by 6-, 1400-, 3-, and 7- fold, respectively, relative to shams. 

The fold-change of ANP, β-MHC and α-SKA mRNAs was greater in the CM-enriched 

fraction (12-, 25-, and 13- fold, respectively) compared with the LV post-SAC, whereas 

BNP increased by only 4-fold in the CM-enriched fraction compared with 1400-fold in the 

LV post-SAC, and hence, changes in BNP levels were higher in the LV than in CMs.  
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Figure 3.6: Expression of pathological hypertrophy markers in the LV and in CMs one 
week post- sham or SAC surgery 

The expression of hypertrophy marker mRNAs, normalised to Hprt mRNA, were evaluated 
one week post -sham or -SAC surgery of adult male C57BL/6J mice (9- week old) from the 
(A) LV (sham, n=8; SAC, n=5) and (B) in enriched CM fractions (sham, n=7; SAC, n=8). 
Data are presented as means ± SEM, independent comparisons were made by two-tailed 
Student’s unpaired t-tests; *p<0.05, **p<0.005, ***p<0.0005 and ****p<0.0001. Nppa 
encodes ANP, atrial natriuretic peptide; Nppb encodes BNP, brain natriuretic peptide; Myh7 
encodes β-MHC, beta- myosin heavy chain; Acta1 encodes α-SKA, alpha- skeletal actin. 
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Furthermore, one week post-surgery there was evidence of perivascular fibrosis in SAC- 

operated mice compared with shams that was identified by Picrosirius Red staining, which 

detects collagen fibres (Figure 3.7). These transverse sections of the LV also demonstrated 

an increase in the thickness of the LV wall (h) relative to the radius of the internal LV 

chamber radius (R) post-SAC, and supports the h/R measurements from echocardiography 

data (Figure 3.3). 

 

 

 

Figure 3.7: Histological transverse LV sections stained for fibrosis one week post- 
sham or SAC surgery 

Representative LV sections show evidence of perivascular fibrosis (collagen deposition) 
around the coronary arteries post-SAC compared with shams. Transverse Lv sections were 
stained with Fast Green and Picrosirius Red to identify the cytoplasm and collagen, 
respectively, one week after (A) sham- or (B) SAC- surgery in C57BL/6J adult mice (9-
week old). Scale bar is 1 mm.  
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3.3.5 RAAS activation following SAC 

To further determine whether the RAAS system was activated, plasma renin concentration 

and activity (PRC and PRA) were measured at 24-hours after surgery, as well as the 

expression of renin mRNA taken from the kidney one week after surgery. PRC and PRA 

remained unchanged post-SAC (Table 3.5). However, there was a slight upward trend in 

renin mRNA levels post-SAC relative to shams, but this did not reach statistical significance 

(Table 3.5). There were no differences in HW/BW ratios between sham or SAC groups 24-

hours after surgery, as expected. 

Table 3.5: Acute and short-term effects of SAC on renin levels 

  sham SAC p-value 

24-hours post-surgery n=10 n=14 
 

HW/BW (mg/g) 4.84 4.98 ns 

PRC (Ang I ng/mL/hr) 992.4 ± 104.7 1051 ± 94.93 ns 

PRA (Ang I ng/mL/hr) 71.54 ± 7.26 71.68 ± 6.9 ns 

One week post-surgery n=7 n=5 
 

Ren/Gapdh mRNA 1.065 ± 0.2 1.75 ± 0.4 ns 

At 24-hours post –sham or –SAC surgery of adult male C57BL/6J mice (8-week old), heart 
and body weights were recorded, and blood plasma was sent to ProSearch for 
radioimmunoassays to measure plasma renin concentration and activity (PRC and PRA). At 
one week post –sham or –SAC surgery, Ren mRNA levels were measured from the kidney 
of adult male C57BL/6J mice (9-week old) and normalised to Gapdh. Ren encodes renin 
protein and Gapdh encodes GAPDH protein. Data are presented as means ± SEM. Statistics 
were performed using a two-tailed Student’s unpaired t-tests; ns, non-significant. HW, heart 
weight; BW, body weight; PRC, plasma renin concentration, PRA, plasma renin activity. 
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3.4 Discussion 

In this study hypertension-induced LVH after one week of SAC was characterised in mice. 

Post-SAC, blood pressures (SBPs) were elevated by 45 mmHg resulting in a 48% increase 

in LV mass (LV/TL), which is similar to that of previous reports in mice (Wettschureck et 

al., 2001; Li et al., 2008). The increased LV mass was due to CM hypertrophy, which was 

evident by the 17 % enlargement in CM area. This resulted in a thickening of the LV wall 

(i.e., an increase in h) and little changes to the internal LV chamber radius (R) and, hence, 

an increase in h/R; consistent with the development of concentric hypertrophy. The 

development of LVH resulted in impaired cardiac function, as evident by reductions in CO 

(-14%), LVEF (-8%) and FS (-11%). Moreover, and consistent with pathological 

hypertrophy, the re-expression of fetal genes increased post-SAC and there was also 

evidence of LV remodelling as shown by perivascular fibrosis compared with shams. 

Although there was no indication of abnormal RAAS activity, as determined by PRC and 

PRA at 24-hours post-SAC and renin mRNA one week post-SAC. Taken together, these 

results demonstrate that SAC leads to a reproducible model of hypertensive heart disease.  

Blood pressures were significantly elevated in SAC-operated mice compared with shams 

(SAC, 154/91 mmHg, n=15; vs sham, 109/82 mmHg, n=18, p<0.0001) at one week post-

SAC (Table 3.4), which is analogous to that of hypertensive patients. For SAC surgery to 

have been successful, the criterion of >127 mmHg was used. This resulted in 68% of SAC 

surgeries that were successful and resulted in hypertension. The success (68%) and 

mortality rates (32%) were comparable to those reported for rats post-SAC (Kim et al., 

2015). Blood pressures that did not meet the criteria resulted in the exclusion of four of the 

SAC-operated mice from cohort 1 (heart tissue collection) and two from cohort 2 (CM 

isolation). Three of the four SAC-operated mice that were excluded from the tissue cohort, 

had comparable SBPs and LV weights compared with sham controls. However, one of the 

four mice that was excluded from this study was normotensive but had a marked increase in 

LV mass (LV/TL, +90%), and LV wall thickness compared with shams, with diminished 

cardiac contractility (dP max/dT min), indicating that LVH had progressed to HF.  

The main defining characteristic of LVH is an increase in LV mass. One week post-SAC, 

LVs were significantly enlarged by 48% and CMs underwent hypertrophy, which is likely 

due to an increase in cell width (Figure 3.4B), and contributed to a thickening of the LV 
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wall (h/R), relative to shams. Representative images of histological transverse LV sections 

confirmed these findings (Figure 3.7). Overall, SAC resulted in the classical development of 

concentric hypertrophy, corresponding to clinical presentations of LVH (Grossman et al., 

1975; Drazner, 2011).  

Pathological LVH has a distinctive transcriptome, with the re-activation of the fetal gene 

program, a hallmark that has been extensively described. Indeed, SAC-induced hypertrophy 

was accompanied by increases in ANP, BNP, β-MHC, and α-SKA mRNA expression 

compared with shams (Figure 3.6). Post-SAC, the fold-increase of ANP, β-MHC, and α-

SKA, was greater in enriched fractions of CMs than in LV tissue, whereas the fold-increase 

in BNP was greater in LV tissues than in enriched CMs, relative to sham. After hypertensive 

stress, BNP is highly elevated in blood plasma and is also synthesised by proliferating 

cardiac fibroblasts. Both the blood plasma and fibroblasts would have been removed from 

the CM-enriched fraction, and hence, the expression of BNP mRNA was greater in the LV 

than in CMs (Gardner, 2003; Tsuruda et al., 2002). Furthermore, perivascular fibrosis was 

observed post-SAC with an increase in collagen deposition, (Figure 3.7) indicating the 

proliferation of fibroblasts that have also been observed in patients with HHD (Diez, 2007). 

In addition, the RAAS system is a critical contributor to the development of myocardial 

fibrosis, specifically Ang II and aldosterone, by inducing the proliferation of cardiac 

fibroblasts (Diez, 2007; Cuspidi et al., 2006; Weber and Brilla, 1991).  

Although the presence of ANP and fibrosis post-SAC, indicate RAAS activation, plasma 

renin concentration and activity (PRC and PRA, 24-hours post-SAC) and kidney renin 

mRNA (one week post-SAC) were not elevated (Table 3.5). SAC involves banding the 

abdominal aorta above the origin of both renal arteries, which directly reduces renal blood 

flow. One explanation for the absence in renin changes is that the increase in blood pressure 

may have restored renal perfusion despite aortic constriction, thus reducing renin release. In 

two different surgical rat models, two kidney, 1 clip (2K1C, the left renal artery is clipped) 

and abdominal aortic constriction (AAC) model, renin mRNA levels increased in the left 

ischemic kidney but decreased in the contralateral right kidney after 28 days of 2K1C and 3 

days of AAC (Moffett et al., 1986), and coincided with elevations in PRA. Renin mRNA 

levels were also increased in the left ischemic kidney two weeks after 2K1C and one week 

after AAC in mice (Wiesel et al., 1997; Zhang and Morgan, 1999). Studies in rats have 
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shown PRA increases within 15-30 minutes of SAC banding (Villarreal et al., 1984) and 

one day after SAC but returned to control values after three days (Baker et al., 1990), while 

others have not observed increased PRA levels in rats after 1, 3, 7 or 28 days of SAC 

surgery (Heller et al., 1998; Kuwahara et al., 2002). It has also been shown that cardiac 

renin mRNA levels do not increase at one week post-SAC in rats, nor did kidney renin 

mRNA or PRA levels increase at eight weeks post-SAC in mice (Heller et al., 1998; Wu et 

al., 2002). However, elevations in PRA were reported to be indicative of HF in rabbits 

(Morris et al., 1977). Thus, measurements of renin and PRA vary depending on the species, 

the surgical model, the severity of aortic constriction, and on the length of the study.  

Another possible explanation for the absence of elevated renin levels is that it is subject to 

negative feedback via Ang II, aldosterone, and ANP, which directly inhibit renin synthesis 

and release (Melo et al., 2000; Kurtz et al., 1986; Atlas et al., 1986; Atlas, 2007). This may 

explain the transient and temporal patterns of renin expression that have been previously 

reported (Heller et al., 1998; Moffett et al., 1986; Baker et al., 1990). This may also be 

reflected patients with LVH who also have variable PRA measurements. Altogether, the 

increased expression of ANP and fibrosis, which are co-regulated by aldosterone and Ang 

II, indicate RAAS activation (Ogawa et al., 1999). Thus, cardiac remodelling is a complex 

sequence of events, coordinating the expression of pathological markers and fibrosis, both 

of which are influenced by RAAS activation. A further evaluation of RAAS components are 

required to assess its contribution to the SAC model in mice. 

Overall, this study characterises SAC-induced LVH in mice, which has characteristics 

similar to those of patients with HHD, including LV enlargement, concentric hypertrophy, 

elevations in blood pressure and impaired cardiac function. Moreover, both the post-SAC 

mouse model and HHD patients, exhibit changes that are associated with pathological 

cardiac remodelling, including the re-expression of fetal genes and fibrosis. These findings 

suggest that this surgical model is a valuable research tool for understanding the molecular 

and biochemical changes underpinning LVH, which may be used for developing new 

treatments for HF. In addition, this work lays the foundation for, and extends upon our 

previously published data using a SAC model of LVH (Li  et al., 2008), in which we 

identified c-Kit as a target for CM regeneration, which will be explored in Chapter 4. 
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Chapter 4 The role of c-Kit in cardiomyocytes after LVH 

4.1 Introduction 

In the adult mammalian heart, CMs are terminally differentiated and have lost their 

proliferative capacity. This restricts cardiac growth to CM hypertrophy in response to an 

increase in workload as occurs with stresses, such as high blood pressure and valvular heart 

disease. Thus, left ventricular hypertrophy (LVH) is a major risk factor for the development 

of adverse cardiovascular events sequelae, including HF, sudden cardiac death, and 

mortality (Levy et al., 1990). 

c-Kit, or stem cell factor receptor, is an important developmental signalling molecule for 

hematopoiesis, pigmentation, and reproduction. The compound heterozygous KitW/Wv mouse 

(Figure 1.4; Chapter 1) carries a spontaneous W (null) and Wv (dominant negative missense 

mutation at T660M) mutation, leading to global impairment of c-Kit signalling (Nocka et 

al., 1989), and mice are piebald, mildly anaemic, and have an altered immune response. Our 

laboratory has previously shown that cardiac regeneration is elicited in KitW/Wv mice one 

week after hypertensive stress (Li et al., 2008). At baseline, cardiac function and 

morphology in KitW/Wv mice are indistinguishable from those of adult WT littermate 

controls, and when both are subjected to one week of suprarenal aortic constriction (SAC) 

they have equivalent increases in LV mass (Li et al., 2008). Surprisingly, CMs in the 

Kit W/Wv hearts were found to have undergone less hypertrophy than WT controls, and the 

increase of LV mass in KitW/Wv hearts was primarily the result of CM proliferation. At one 

week post-SAC, there was an addition of 40% CMs to the total KitW/Wv CM population 

compared with KitW/Wv shams. Cell cycle re-entry was evident in KitW/Wv CMs that were in 

G1/S transit (BrdU+-stained nuclei), G2/M transit (H3P+-stained nuclei) and karyokinesis 

(aurora B+-staining between nuclei). This demonstrated that the newly formed CMs 

originated from the cell division of pre-existing CMs, similar to that observed after cardiac 

regeneration in neonatal mouse and in zebrafish after cardiac injury (Porrello et al., 2013; 

Kikuchi et al., 2010; Jopling et al., 2010). Cardiac function and survival outcomes were also 

significantly better in KitW/Wv (100% vs 59% survival) compared with WT mice post-SAC. 

Therefore, a hyperplastic response dramatically improved survival outcomes by generating 

more functional CMs. 
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Evidence that supports the association of inhibited cell cycle re-entry with c-Kit activity 

came from a transgenic mouse model, Tg(αMHC-KitWv), in which c-KitWv is overexpressed 

under the control of the α-MHC promoter, which leads to CM-restricted inactivation of c-

Kit shortly after birth (Li et al., 2008). One week after SAC surgery, there were significantly 

higher levels of the aforementioned cell cycle markers in the nuclei of Tg(αMHC-KitWv) 

CM nuclei compared with sham controls, demonstrating an increase in CM cell cycle re-

entry. This suggests that the inactivation of c-Kit in CMs shortly after birth prevents the 

terminal differentiation of CMs, and allows adult CMs to divide in response to an increased 

workload. 

c-Kit is expressed in the WT heart during cardiac development. It is maximally expressed at 

P1-3 and barely detectable by P10-14 in cardiac stem and progenitor cells (Fransioli et al., 

2008; Tallini et al., 2009) and in CMs (Li et al., 2008), coinciding with CM maturation. 

Consequently, c-Kit is not detected in the adult myocardium (Fransioli et al., 2008; Li et al., 

2008) and rarely observed within vascular compartments or CMs (Tallini et al., 2009) by 

immunohistochemistry. These data support the hypothesis that c-Kit expression coincides 

with CM differentiation and cell cycle withdrawal. 

Given the reported expression of c-Kit in the differentiation of CMs from stem cells and the 

proliferation of CMs in response to PO where c-Kit is inactivated, it is possible that c-Kit 

signalling prevents CM cell division by promoting terminal differentiation, thereby 

restricting CMs to hypertrophic growth. Preliminary immunohistochemistry data from our 

laboratory (not shown) suggested that c-Kit is re-expressed in adult WT CMs post-SAC. 

The re-expression of c-Kit has also been found occasionally in terminally differentiated 

adult CMs after cryo-injury (Tallini et al., 2009). Thus, c-Kit may be a novel target for the 

development of pharmacological tools to inhibit c-Kit signalling after cardiac injury and 

thereby facilitate cardiac repair through CM proliferation, while also preventing 

pathological CM hypertrophy. To this end, the hypothesis underlying this study was that c-

Kit is re-expressed after hypertensive stress in the adult heart, and that c-Kit signalling 

blocks CM cell cycle re-entry and restricts CMs to a hypertrophic response. The aim of this 

study was to evaluate the expression and activity of c-Kit in CMs from adult WT mice post- 

sham or SAC surgery.  
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4.2 Materials and Methods 

General Methods are described in Chapter 2. Sham and SAC operations were performed as 

detailed in Chapter 3. 

4.2.1 Animal models 

C57BL/6J Tg(αMHC-KitWv) mice overexpress the dominant-negative Wv c-Kit missense 

point mutation, T660M (Figure 1.4; Chapter 1), under the control of the α-MHC promoter 

(Figure 4.1); this leads to the inactivation of c-Kit signalling in CMs from birth. We also 

have two transgenic mouse models with CM-specific overexpression of wild-type c-Kit 

under the control of the α-MHC promoter: Tg(αMHC-Kit.1) and Tg(αMHC-Kit.2) (Figure 

4.1). 

 

 

Figure 4.1: The construct used to generate transgenic c-Kit mouse models: Tg(αMHC-
KitWv), Tg(αMHC-Kit.1) and Tg(αMHC-Kit.2) 

Kit or Kit Wv cDNA was sub-cloned behind the α-MHC promoter into Sal I and Hind III 
sites. 
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4.2.2 Tissue and CM collection 

In cohort 1, sham and SAC-operated LVs (see Chapter 3, Section 3.2.1) were dissected 

transversely into three sections, whereby the base and apex were snap-frozen in liquid 

nitrogen and stored at -80°C for downstream extraction of protein for Western blotting and 

RNA for RT-qPCR, respectively. The LV mid-section was fixed in 2% PFA for 3 hours and 

then stored in 70% ethanol for immunohistochemistry.  

In cohort 2, CMs (3 ml) were isolated and enriched (see Chapter 2, Section 2.4) from sham- 

and SAC- operated hearts (see Chapter 3, Section 3.2.1) and separated into three aliquots for 

Western blotting (2 ml), RT-qPCR (0.8 ml), and immunocytochemistry (0.2 ml). CMs were 

snap-frozen in liquid nitrogen and stored at -80°C for downstream extraction of protein and 

RNA or fixed in 2% PFA for 5 minutes and subsequently stored in PBS for staining.  

4.2.3 Cell culture of HEK293T and MEL cells 

Cell culture was performed using aseptic techniques. 

Human embryonic kidney (HEK293T) cells were stored in 1 ml of Dulbecco’s modified 

Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) and 20% dimethyl 

sulphoxide (DMSO) at -80°C. Cells were quickly thawed by agitation in a 37°C water bath 

and slowly resuspended and transferred drop by drop into a 15 ml polypropylene tube 

containing pre-warmed growth medium (5ml). Growth medium contained DMEM with 

sodium pyruvate and glutamate (Invitrogen) supplemented with 10% FBS and 1% penicillin 

and streptomycin. Cells were then centrifuged at 900 rpm (~140 g) for 3 minutes at RT and 

resuspended in pre-warmed growth media (1 ml), which was then transferred to a T75cm3 

flask containing pre-warmed growth media (9 ml). HEK293T cells were cultured in a 

monolayer of a horizontally placed flask and incubated with 5% CO2 at 37°C. Once 

HEK293T cells were confluent, cells were either passaged and/or removed for experimental 

use. For passaging cells, trypsin (1 ml) was added for 3 minutes at RT and cells were 

dislodged by tapping the sides of the flask. Cells were passaged by resuspendeding in pre-

warmed media (5 ml) that was then split at 1:10 into new flasks containing pre-warmed 

medium (10 ml), twice a week. For protein or RNA extraction, cells were resuspended in 1 
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ml of chilled lysis buffer or TRizol that was spread across the monolayer with force using a 

pipette, and a cell scraper was used to aid the removal of cells. Cell lysates were then 

transferred to a 1.5 ml microfuge tube and placed on ice for immediate downstream 

processing of protein or RNA, or stored at -80°C. 

Murine erythroleukemia (MEL) cells were stored in 1 ml of 90% FBS and 10% DMSO at a 

density of 1x107 cells/ml at -80°C. Cells were quickly thawed by agitation in a 37°C water 

bath and slowly resuspended and transferred drop by drop into a 15 ml polypropylene tube 

containing pre-warmed growth medium (5 ml). Growth medium contained high glucose 

DMEM with sodium pyruvate and glutamate that was supplemented with 10% FBS and 1% 

penicillin and streptomycin. Cells were centrifuged at 500 g for 3 minutes at RT and 

resuspended in pre-warmed growth media (1 ml), which was then transferred to a small 

T25cm3 flask containing pre-warmed medium (14 ml). MEL cells were cultured in 

suspension in an upright flask and incubated with 5% CO2 at 37°C. Cells were counted 

using a Z2 Coulter Counter (Beckman) and seeded at a density of 1 x106 cells/ml. MEL 

cells were passaged approximately every two days. To do this, cells were centrifuged at 500 

g for 3 minutes at RT, media was aspirated and the cell pellet was resuspended in pre-

warmed media (5 ml) that was then split at 1:10 into new flasks containing pre-warmed 

medium (10 ml). Alternatively, cells were collected for protein or RNA extraction, in which 

case MEL cells were transferred to a 15 ml polypropylene tube and washed with PBS at 500 

g for 3 minutes at RT. For protein or RNA extraction, cells were resuspended in 1 ml of 

chilled lysis buffer or TRizol and transferred to a 1.5 ml microfuge tube. Cells were then 

placed on ice for immediate downstream processing of protein or RNA, or stored at -80°C. 

4.2.4 Stem cell factor (SCF) stimulation of MEL cells 

For stem cell factor stimulation, MEL cells were serum starved for 12 hours and 

resuspended at a density of 1x106 cells in 1 ml of DMEM containing recombinant mouse 

SCF protein (cat. #: 455-MC, R & D Systems) at 25 and 100 ng/ml. Cell treatments were 

seeded into a 12-well culture dish and incubated for 15 minutes with 5% CO2 at 37°C. 

Treated cell lysates were collected in a 2 ml microfuge tube on wet ice and washed with 

PBS after centrifugation at 200 g for 3 minutes at 4°C, and cell pellets were stored at -80°C. 
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4.2.5 Protein extraction, immunoprecipitation and Western blotting 

4.2.5.1 Protein extraction 

Proteins were extracted in ice-cold lysis buffer (50 mM Tris-Cl, pH 7.5; 150 mM NaCl; 1 

mM Na4P2O7; 1 mM Benzamidine; 5 mM Na₃VO₄; 10 mM NaF; 0.5% NP-40). A cocktail 

of protease inhibitors in the form of a tablet (cat. #: 11836170001, Roche) was freshly added 

to the lysis buffer. The detergent was omitted from the lysis buffer (i.e., 0.5% NP-40) for 

immunoprecipitation experiments to retain the native form of a protein. Cells or tissues were 

homogenised in 500 µl or 1 ml of lysis buffer on ice with a Polytron homogeniser until cells 

or tissue were fully lysed. Proteins were further solubilised by gentle agitation for 30-60 

minutes at 4°C on an orbital shaker. Lysates were pre-cleared of debris by collecting the 

supernatant after centrifugation at 12,000 rpm for 15 minutes at 4°C. The supernatant 

containing proteins was transferred into a fresh 1.5 ml microfuge tube on ice. Protein 

concentrations within a range of 0.2-5 mg/ml were determined using the Direct Detect 

method (Merck Millipore), which measures the amide bonds in protein chains by infrared 

spectrometry. 

4.2.5.2 Immunoprecipitation 

c-Kit protein was enriched by magnetic immunoprecipitation (IP) with a c-Kit Ab 

conjugated to Magna ChIP Protein A+G Magnetic Beads (cat. #:16-663, Millipore) or 

PureProteome Protein G Magnetic Beads (cat. #: LSKMAGG02, Millipore). Magna ChIP 

Protein A+G Magnetic Beads were mostly used for IP.  

Beads were washed in ice-cold PBS (500 µl) twice by vortexing and were then placed on a 

MagnaRack for 1 minute and the supernatant was discarded. To prevent non-specific 

binding of proteins, lysates (3.5 mg of protein) were pre-cleared with magnetic beads (~100 

µl) and lysis buffer (without detergent) making up to 1 ml in a 2 ml tube, which was 

incubated for 1 hour at 4°C on a rotating wheel. In a second tube, c-Kit Ab (D13A2 or M-14 

at 1:50), was bound to pre-coated IgA and IgG beads (~100 µl) by incubating for 1 hour at 

4°C on a rotating wheel. To remove excess Ab from the beads, the second tube was placed 
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on the MagnaRack for 1 minute and washed in ice-cold PBS (500 µl) twice by vortexing 

and the supernatant was discarded. The first tube containing the lysate and beads was placed 

on the MagnaRack for 1 minute and the lysate was transferred to the second tube containing 

conjugated Ab-beads. c-Kit was then enriched from the lysate using the Ab-beads by gently 

resuspending and incubating overnight at 4°C. For all IP experiments, the quantity of Ab 

and beads were used as detailed above, unless otherwise stated in the figure legend. 

To elute the bound c-Kit, the lysate and Ab-bead mixture was placed on MagnaRack for 1 

minute and the supernatant was removed. The beads were washed (x4) with 500 µl of NT2 

buffer (50 mM Tris-Cl, pH 7.4; 150 mM NaCl; 1 mM MgCl2; 0.05% IGEPAL) by placing 

onto the MagnaRack for 1 minute and the supernatant was discarded after each wash. The 

beads and eluted c-Kit were then finally resuspended in 20 µl of lysis buffer (with 0.5% NP-

40 detergent) and processed as described in the following SDS-PAGE and Western blotting 

sections.  

4.2.5.3 SDS-PAGE and transfer 

Laemmli sample buffer (0.35M Tris-Cl pH 6.8, 30% glycerol, 20% SDS, 0.012% 

bromophenol blue, and 30mM β-mercaptoethanol) was added to protein samples at a 1:6 

dilution and proteins were denatured at 95°C for 5 minutes. Denatured protein samples and 

a 10-250 kDa protein ladder (cat. #: 1610374, Bio-Rad) were separated by size using 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using the XCell 

SureLock Mini-Cell Electrophoresis System (Thermo Fisher). One or two gels were placed 

in a buffer chamber that was then filled with MOPS buffer or Tris-Acetate buffer depending 

on the type of gel used. Equivalent volumes of protein samples were loaded onto 4-12% 

Bis-Tris gels (Thermo Fisher) with MOPS buffer or a 3-8% Tris-Acetate gels (Thermo 

Fisher) with Tris-Acetate buffer. Electrophoresis was carried out at 180V for ~60-90 

minutes at RT.  

Proteins were transferred onto polyvinylidene fluoride (PVDF) membranes with transfer 

buffer at 35V for 90 minutes at RT. Briefly, gels were trimmed and placed onto PVDF 

membranes cut to size. These were cocooned with two pieces of blotting paper soaked with 

transfer buffer (10.5% glycine, 2.25% Tris, and 20% methanol) and at least two sponges 
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soaked with transfer buffer on either side of the gel. Blotting papers were cut slightly larger 

than the gel and were individually rolled onto sponges to prevent air bubbles. The layering 

of materials was performed onto an open cassette in the following order: sponges (x2), 

paper (x2), gel, membrane, paper (x2), and sponges (x4) from cathode to anode. The 

cassette was closed and placed in a buffer chamber that was then filled with transfer buffer. 

Transfer was carried out at 35V for ~90 minutes at RT.  

4.2.5.4 Western blot 

Membranes were blocked for 1 hour at RT or overnight at 4°C with blocking buffer (Tris-

buffered saline with 0.1% Tween, TBS-TW, with 5% bovine serum albumin, BSA, or 5% 

skimmed milk, as per the manufacturer’s recommendation for the primary antibody). The 

use of blocking buffer was important to prevent non-specific binding.  

Membranes were incubated with primary antibodies (Table 4.1) that were diluted at 1:1000-

1:2000 in blocking buffer for 1 hour at RT or overnight at 4°C on an orbital shaker. Excess 

primary Ab was removed by washing membranes with TBS-TW in a series of incubations: 

10 seconds (x2), 10 minutes, 10 seconds (x2), and 10 minutes, at RT on an orbital shaker.  

After the first series of washes, membranes were incubated with species-specific secondary 

antibodies conjugated to horseradish peroxidase at a 1:5,000-1:20,000 dilution for 1 hour at 

RT on an orbital shaker. The concentration of the secondary Ab was determined as per the 

enhanced chemiluminescence (ECL) guidelines. Excess secondary Ab was removed by 

washing membranes with TBS-TW in a series of incubations: 10 seconds (x2), 10 minutes, 

10 seconds (x2) and 10 minutes (using TBS without TW), at RT on an orbital shaker.  

Proteins were visualised on the membrane using one of the following ECL kits; Western 

Lightning Chemiluminescence Reagent Plus (Perkin Elmer), Pierce ECL Plus Western 

Blotting Substrate (Thermo Fisher), or SuperSignal West Pico Chemiluminescent Substrate 

(Thermo Fisher), as per manufacturer’s recommendations. The chemiluminescent 

membrane was sealed in a plastic wallet, which was secured onto the bottom of an open 

Hyperfilm cassette. X-ray film (Hyperfilm ECL, Amersham) was placed on top of the 
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membrane and the cassette was closed for variable exposure times. Films were developed 

with a SRX-101A processor (Konica Minolta) in a dark room.  

Table 4.1: c-Kit, phospho-c-Kit and GAPDH antibodies 

Anti-c-Kit Abs Company Type of Ab Targets 

MAB1356 R&D Systems rat monoclonal C-terminus 

D13A2 Cell Signaling rabbit monoclonal Residues surrounding Tyr703 

In-house c-Kit1 Affinity BioReagents rabbit polyclonal  Juxtamembrane domain 

C-19 Santa Cruz rabbit polyclonal C-terminus 

M-14 Santa Cruz goat polyclonal C-terminus 

Phospho-c-Kit (Tyr719) Cell Signaling rabbit polyclonal Phosphorylated tyrosine 719 

GAPDH Cell Signaling rabbit monoclonal C-terminus 

 

4.2.5.5 Densitometry of Western blots 

ImageJ was used to calculate the number of pixels per c-Kit protein bands or GAPDH 

protein band from sham and SAC samples. The eluted c-Kit proteins were normalised to 

GAPDH, which was measured using the IP input to control for IP loading. 

  

                                                      

1 This personalised antibody was specifically produced for our laboratory’s use by Affinity 
BioReagents and is denoted here as “In-house c-Kit”. 
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4.2.6 RT-qPCR 

To measure the expression of c-Kit mRNA, cDNA was synthesised using the Superscript III 

First Strand Synthesis System and RT-qPCR was performed using a Taqman assay. The 

Taqman probes (Applied Biosystems) used were: Hprt (Mm01545399_m1, 5’-

GGACTGATTATGGACAGGACTGAAA-3’), and Kit (Mm00445212_m1, 5’-

TTTACGTGAACACAAAACCAGAAAT-3’). Kit expression was normalised to the 

housekeeping gene, Hprt. 

4.2.7 Immunocytochemistry 

Immunostaining of fixed cells secured onto slides was performed as follows. Slides were 

incubated with blocking buffer (5% goat serum and 0.1% Triton X-100 in PBS; (80 µl per 

slide) for 1 hour at RT, after which blocking buffer was removed by individually flicking 

slides. Cells were incubated with primary antibodies diluted in blocking buffer (80 µl per 

slide) overnight at 4°C. The primary antibodies that were diluted in blocking buffer, 

included the CM-specific marker, mouse anti-myosin heavy chain (cat. #: ab 50967, 

Abcam) diluted at 1:800, and, the c-Kit Ab, rabbit anti-c-Kit D13A2 (cat. #: 3074S, Cell 

Signaling) diluted at 1:600. After overnight incubation, slides were washed in PBS for 5 

minutes at RT on an orbital shaker (x5). The following steps were performed in the dark. 

Cells were incubated for 1 hour at RT with the species appropriate secondary antibodies, 

goat anti-mouse IgG Alexa Fluor 488 and goat anti-rabbit Alexa Fluor 594, diluted at 

1:1000 (80 µl per slide). Cells were washed in PBS for 5 minutes on an orbital shaker (x5). 

Coverslips were secured onto each slide with hard mounting medium containing DAPI. 

Slides were then stored at 4°C. Stained cells were imaged with a confocal microscope (Axio 

Imager microscope equipped with a LSM 700 confocal scan head, Zeiss) using the same 

settings for all samples.   
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4.3 Results 

4.3.1 Identification of specific anti-c-Kit antibodies for Western blot 

analyses 

Before examining the expression of c-Kit in murine CMs, it was necessary to first identify a 

suitable Ab for Western blot analyses. c-Kit is comprised of 976 amino acids resulting in an 

~110 kDa protein, but due to N-linked glycosylation the mature species migrates by SDS-

PAGE fractionation at a relative molecular mass (Mr) between ~145-160 kDa, while the 

precursor is ~125 kDa (Lennartsson and Ronnstrand, 2012). Thus, c-Kit is expected to 

appear on a Western blot as two species, corresponding to the mature and immature form.  

Five previously reported anti-c-Kit antibodies were sourced to detect c-Kit: MAB1356, 

D13A2, in-house c-Kit, C-19 and M-14, as outlined in Table 4.1. In addition, immortalised 

cell lines were obtained as a convenient and abundant supply of negative or positive c-Kit 

expressing controls. In keeping with the well-known role of c-Kit in cancer, suspension 

cultures of murine erythroleukaemia (MEL) cells were propagated as c-Kit positive controls 

(Hino et al., 1995), and HEK293T cells were used as c-Kit negative controls (Tetsu et al., 

2010). All five anti-c-Kit antibodies were tested for their specificity and efficacy at 

detecting c-Kit protein in MEL cell lysates (10 µg) at a dilution of 1:1000 using the same 

film exposure time (Figure 4.2). D13A2 and M-14 anti-c-Kit antibodies detected two 

protein bands consistent with the predicted Mr’s of c-Kit at ~125 and ~145 kDa. In contrast, 

MAB1356 and C-19 revealed a number of non-specific bands and failed to detect c-Kit. 

Finally, our in-house c-Kit Ab that had been previously used to detect the re-expression of 

c-Kit post-SAC by immunohistochemistry, did not detect c-Kit by Western blotting, most 

likely because it only detects the native conformation of the receptor. For the two specific 

antibodies D13A2 and M-14, titration experiments were performed to determine the optimal 

Ab dilution (Figure 4.2). A final dilution of 1:2000 was found to provide the best signal-to-

noise ratio and film exposure time for both D13A2 and M-14.  
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Figure 4.2: Western blot analyses to determine the specificity of c-Kit antibodies 
A, HEK293T or MEL cell lysates (10 µg) served as negative and positive control cell lines 
for c-Kit expression, respectively, and were incubated with five reported c-Kit antibodies at 
a dilution of 1:1000. Membranes incubated with MAB1356, D13A2 or C-19 were blocked 
with 5% BSA, while membranes incubated with M-14 or in-house antibodies were blocked 
with 5% skimmed milk. All films were exposed for 30 minutes. B, HEK293T (-) or MEL 
(+) lysates (10 µg) were probed with two c-kit antibodies at increasing dilutions: 1:1000, 
1:2000, 1:5000 or 1:10,000. * indicates c-Kit species at 125 and 145 kDa. 
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4.3.2 Characterisation of c-Kit expression in MEL cells and in three 

cardiac-specific c-Kit transgenic mouse lines 

The specific c-Kit antibodies, D13A2 and M-14, were then tested for their ability to detect 

c-Kit in whole heart tissue lysates from wild-type (WT) and Tg(αMHC-KitWv) mice, 

including the cell line controls. D13A2 and M-14 detected two bands corresponding to the 

mature and immature forms of c-Kit in Tg(αMHC-KitWv) heart tissue and in MEL cells 

(Figure 4.3A). As expected, Tg(αMHC-KitWv) heart lysates had a greater abundance of c-Kit 

protein than MEL cells and more of the immature form of c-Kit was detected in Tg(αMHC-

KitWv) samples. Note that a longer film exposure time was necessary for D13A2 to display 

similar band intensities as M-14, suggesting that M-14 is the more sensitive Ab for Western 

blot analysis. Moreover, the expression of c-Kit mRNA (Figure 4.3B) was markedly higher 

by 2,000-fold in Tg(αMHC-KitWv) hearts compared with an eight-fold increase in MEL 

cells, relative to WT hearts, corroborating the protein expression data. c-Kit protein was not 

detected by Western blot analysis in HEK293T cells or in WT heart tissue.  
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Figure 4.3: Characterisation of c-Kit expression in HEK293T and MEL cells, and in 
WT and Tg(αMHC-KitWv) hearts 

A, HEK293T or MEL cell lysates, and wild-type (WT) or Tg(αMHC-KitWv) heart tissue 
lysates (10 µg) were separated by SDS-PAGE, transferred to membranes, and membranes 
were probed with anti-c-Kit antibodies at a dilution of 1:2000. D13A2 and M-14 films were 
exposed for 10 minutes and 3 minutes, respectively. * indicates detection of c-Kit isoforms 
at 125 and 145 kDa. B, relative quantification of Kit was normalised to Hprt in WT or 
Tg(αMHC-KitWv) hearts, or in MEL cells, relative to WT (n= 1). Kit encodes c-Kit and Hprt 
encodes HPRT.  

 

Immunocytochemistry staining of MEL cells using D13A2 showed c-Kit was localised at 

the cell membrane (not shown). Staining of HEK293T cells (not shown) and WT CMs 

(Figure 4.4) failed to detect c-Kit. Interestingly, c-Kit localisation was subcellular in the 

perinuclear region in Tg(αMHC-KitWv) CMs (Figure 4.4). This patterning, together with the 

predominance of the smaller immature species of c-Kit in Tg(αMHC-KitWv) CMs 

(determined by Western blot analysis in Section 4.3.1) suggests the c-KitWv protein may be 

misfolded, and, as a consequence, remains trapped in the endoplasmic reticulum or Golgi 

apparatus (Zheng et al., 2014; Yang et al., 2015). Note, M-14 was not a suitable Ab for 

detecting native c-Kit protein by immunocytochemistry.  
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Figure 4.4: Characterisation of c-Kit expression in WT and Tg(αMHC-KitWv) CMs 

Representative confocal images of WT and Tg(αMHC-KitWv) CMs co-stained with the CM- 
specific marker, myosin heavy chain (MHC, green), c-Kit with the D13A2 Ab (red), and 
DNA with DAPI (blue). Scale bar is 20 µm.  
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M-14 and D13A2 were further tested for their specificity of c-Kit protein expression in heart 

lysates prepared from three c-Kit transgenic mouse lines [Tg (αMHC-KitWv), Tg(αMHC-

Kit.1) and Tg(αMHC-Kit.2)] and compared with WT mice (Figure 4.5). Interestingly, 

Western blot analyses revealed the following: (1) both M-14 and D13A2 detected the same 

c-Kit protein species, (2) M-14 has a greater affinity for the denatured linear c-Kit antigen 

than D13A2, thus producing a greater signal despite a much lower film exposure time (10 

seconds vs 3 minutes, respectively), (3) comparatively, the relative abundance of c-Kit 

protein was: Tg(αMHC-KitWv) > Tg(αMHC-Kit.1) >Tg(αMHC-Kit.2), in heart lysates, (4) 

the ratio of mature to immature c-Kit forms was greater in Tg(αMHC-Kit.1) and Tg(αMHC-

Kit.2) compared with Tg(αMHC-KitWv) hearts; the latter showing a higher expression of the 

immature c-Kit species, (5) c-Kit was not detected in WT heart lysates (50 µg) with either 

Ab. The increased abundance of the immature c-KitWv species in Tg(αMHC-KitWv) relative 

to Tg(αMHC-Kit.1) and Tg(αMHC-Kit.2) hearts indicates an inability of the cell to properly 

process the c-KitWv mutant protein during biosynthesis. These findings, therefore, reveal 

differential patterns of expression of c-Kit protein between WT mice, and transgenic mice 

overexpressing c-Kit or c-KitWv. This likely reflects the altered biosynthesis and processing 

of c-Kit protein that is dependent on the transgene. 
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Figure 4.5: Characterisation of c-Kit expression in WT, Tg(αMHC-KitWv), Tg(αMHC-
Kit.1) and Tg(αMHC-Kit.2) transgenic mouse models 

Wild-type (WT, 50 µg), Tg(αMHC-KitWv) (Wv1, 10 µg); Tg(αMHC-Kit.1) (Kit1, 5 and 10 
µg), and Tg(αMHC-Kit.2) (Kit2, 5 and 10 µg) heart lysates were separated by SDS-PAGE 
and c-Kit abundance detected using M-14 or D13A2 (1:1000) primary c-Kit antibodies. 
Membranes were probed with secondary antibodies at a dilution of 1:4000. Films for M-14 
or D13A2 probed membranes were exposed for 10 seconds or 3 minutes, respectively. * 
indicates c-Kit species at 125 and 145 kDa. 

 

4.3.3 Characterisation of c-Kit expression in the WT heart and in CMs 

Given that our hypothesis was that c-Kit is re-expressed in the adult heart after hypertensive 

stress, it was important to establish the baseline abundance of c-Kit in the adult heart under 

normal physiological conditions in order to report a fold-increase. A low level of c-Kit 

should be detected in WT hearts, but not in adult CMs, because c-Kit is expressed by 

several other cell types in the heart, including adult CSCs, however, c-Kit was not detected 

in the small amount of heart lysate used for previous Western blots, as shown in Section 

4.3.2. Therefore, to increase the sensitivity of c-Kit detection, c-Kit was immunoprecipitated 

from heart lysates before Western blotting and more sensitive ECL detection systems were 

sought.  
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The chemiluminescence kit, Western Lightning ECL, had been previously used to visualise 

proteins for Western blotting studies. Two alternative ECL kits were sourced for 

comparison: SuperSignal West Pico and Pierce ECL Plus; these allow for weaker dilutions 

of the HRP-conjugated secondary Ab compared with the original kit (at dilutions of 

1:20,000 and 1:25,000, respectively, vs 1:5,000 using the Western Lightning kit). WT and 

Tg(αMHC-KitWv) heart lysates were probed with the anti-c-Kit Ab, M-14, and both the 

SuperSignal West Pico and the Pierce ECL Plus markedly enhanced the detection of c-Kit 

(Figure 4.6A). Pierce ECL Plus was the most effective of all three kits. Nonetheless, c-Kit 

was still not detectable in WT heart lysates even when loading the maximum amount of 

protein sample per lane (100 µg). 

Since the amount of protein that can be loaded into a lane for Western blot analysis is 

limited, immunoprecipitation (IP) was employed to enrich for c-Kit from heart lysates using 

magnetic beads conjugated to an anti-c-Kit Ab. IP conditions were first optimised using 

Tg(αMHC-KitWv) heart lysates as a positive control. c-Kit was immunoprecipitated from 

Tg(αMHC-KitWv) heart lysates with either M-14 or D13A2 conjugated to Magna ChIP 

Protein A+G Magnetic Beads (Figure 4.6B). M-14 was more effective at enriching for c-Kit 

than D13A2, as demonstrated by the greater abundance of eluted c-Kit relative to IP input. 

Furthermore, given that M-14 is a goat polyclonal IgG Ab and Protein G beads are designed 

for binding IgG proteins, the M-14 Ab was tested with either Magna ChIP Protein A+G 

Magnetic Beads or PureProteome Protein G Magnetic Beads for IP and compared for their 

efficiency to pull down or elute c-Kit (Figure 4.6C). More c-Kit was eluted using the M-14 

Ab conjugated to Magna ChIP Protein A+G Magnetic Beads. Thus, the combination of 

Magna ChIP Protein A+G Magnetic Beads conjugated to M-14, and Pierce ECL Plus, were 

determined as the optimal conditions for detecting c-Kit by Western blot in Tg(αMHC-

KitWv) heart lysates. 
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Figure 4.6: Western blotting and immunoprecipitation conditions were optimised to 
improve the detection of c-Kit protein 

A, WT and Tg(αMHC-KitWv) heart lysates (100 and 20 µg, respectively) were separated by 
SDS-PAGE and c-Kit protein was detected with the M-14 Ab (diluted at 1:1000). The 
secondary Ab was diluted as per manufacturer’s recommendations for each ECL kit, at 
1:5,000 for Western Lightning, and at 1:25,000 for SuperSignal West Pico and Pierce ECL 
Plus. Films were exposed for 1 second. B, Tg(αMHC-KitWv) heart lysates (400 µg) were 
used for immunoprecipitation (IP) followed by size-fractionation and immunoblotting (IB). 
IP was performed using Magna ChIP beads (200 µl) conjugated to either D13A2 or M-14 
(1:50). The IP input and supernatant (sn.), and eluted c-Kit, were separated by SDS-PAGE 
and c-Kit abundance detected with M-14 (1:1000) or D13A2 (1:500). Films were exposed 
for 1 minute. C, Tg(αMHC-KitWv) heart lysates (100 µg) were used for IP followed by IB to 
detect c-Kit. IP was performed using Magna ChIP or PureProteome Protein G beads (20 µl) 
conjugated to M-14 (5 µl). The IP supernatant (sn.) and eluted c-Kit were separated by SDS-
PAGE and c-Kit protein was detected using D13A2 (1:1000). Films were exposed for 1 
second. * indicates c-Kit species at 125 and 145 kDa.  
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To test if c-Kit could be detected in WT hearts, lysates were processed using these 

optimised IP and IB techniques. Under these conditions, a robust c-Kit signal was observed 

at the expected molecular weights of 125 and 145 kDa in adult WT heart lysates (Figure 

4.7). During the tissue solubilisation procedure, a substantial insoluble pellet was noticeable 

after homogenisation and centrifugation, and for this reason, an additional sonication step 

was incorporated to further solubilise proteins. WT heart lysates were then placed on gentle 

agitation for ~40 minutes at 4°C, and after centrifugation, an insoluble pellet was no longer 

visible and there was a marked increase in protein yield (post-sonication, 19 mg vs pre-

sonication, 5.5 mg). This resulted in a greater elution of c-Kit protein (Figure 4.7).  

To establish the baseline level of c-Kit protein in adult WT CMs, which was important to 

determine the fold-change in c-Kit expression after hypertensive stress, c-Kit was detected 

in WT CMs. CMs were isolated using the O’Connell et al. (2007) and enriched for by low-

speed centrifugations, lysed by homogenisation and sonication, followed by gentle agitation 

for ~40 minutes at 4°C on an orbital shaker to further solubilise proteins. Cell lysates (1 mg 

or 2 mg, out of a total of 3 mg) were immunoprecipitated, however, despite using these 

carefully optimised conditions, c-Kit with a Mr of either 125 or 145 kDa was not detected in 

the WT CM-enriched fraction, shown in Figure 4.7. Thus, these results indicate that in 

agreement with the same findings of others, the expression of c-Kit in WT CMs is either 

extremely low or absent. 

  



 

95 

 

 

Figure 4.7: Characterisation of c-Kit in WT hearts and in CMs 

A, WT whole heart (5.5 and 19 mg of protein) and B, CM-enriched fractions (1 mg and 2 
mg) of lysates were subjected to IP and c-Kit was detected by IB. IP was performed using 
Magna ChIP beads conjugated to M-14. IP input and supernatant (sn.), wash, and elution, 
were separated by SDS-PAGE and c-Kit protein was detected using the D13A2 Ab 
(1:1000). Films for whole heart and CM-enriched fractions were exposed for 1 second and 
10 minutes. * indicates c-Kit isoforms at 125 and 145 kDa.  

 

4.3.4 c-Kit expression following SAC 

To test the hypothesis that c-Kit is re-expressed in WT CMs after SAC-induced LVH, c-Kit 

protein levels were evaluated in enriched-CM fractions from sham- and SAC- operated 

hearts collected in cohort 2 (see Section 3.2.4 and 4.2.2). There was a robust elevation in 

SBP of 44 mmHg post-SAC (150 ± 14 SD mmHg, n= 6) relative to shams (106 ± 14 SD 

mmHg, n=7 ), and these CM samples were used in Figure 4.8 to detect c-Kit protein and 

mRNA. Micromanometry data were collected for all sham- operated mice, however, three 

animals had blood pressure traces that were obscured and could not be analysed, likely due 

to technical issues at the time of recording. Regardless, all sham- operated mice were 

included in this study. The amount of CM protein lysate used for the IP input was 3.5 mg 

(Figure 4.8A), which was the maximum protein yield that could be obtained from every 

SAC sample (n= 6), but in some cases two sham samples were combined to yield 3.5 mg 

(n= 10). Because c-Kit protein was not detected in WT CM-enriched fractions shown 

previously (see Figure 4.7B), the concentration of the secondary Ab was increased from 
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1:20,000 to 1:10,000 to boost the chemiluminescence signal. Nonetheless, c-Kit protein 

levels (normalised to GAPDH) were low and variable across sham and SAC CM samples 

(Figure 4.8A). Thus, the expression of c-Kit protein was not statistically significant between 

groups, as quantified by densitometry (Figure 4.8B). 

c-Kit mRNA levels were also measured in the LV and in CMs post-SAC (Figure 4.8C). The 

LVs that were used in Figure 4.8C and collected in cohort 1 (see Section 3.2.1 and 4.2.2), 

had displayed a significant elevation in SBP of 46 mmHg post-SAC (156 ± 5 SD mmHg, n= 

5) relative to shams (110 ± 2 SD mmHg, n= 7). Likewise, enriched-CM fractions that were 

used in Figure 4.8C and collected in cohort 2 (see Section 3.2.1 and 4.2.2), also had a robust 

elevation in SBP of 45 mmHg post-SAC (152 ± 13 SD mmHg, n= 8) relative to shams (107 

± 13 SD mmHg, n= 7). Although there was a trend towards an increase in c-Kit mRNA in 

both the LV and CMs post-SAC, neither reached a level of significance.  

Furthermore, LV sections and isolated CMs were evaluated for c-Kit expression by confocal 

microscopy post –sham or –SAC surgery by immunohistochemistry and 

immunocytochemistry, respectively. Samples were co-stained with the CM-specific marker, 

myosin heavy chain Ab, and with the c-Kit Ab, D13A2, however, c-Kit was not detected in 

CMs post-SAC (data not shown). 

Together, these results indicate that c-Kit expression is very low in CMs after PO and do not 

support the preliminary data that c-Kit is re-expressed in WT CMs after SAC-induced LVH. 
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Figure 4.8: Characterisation of c-Kit in WT CMs and in LVs one week post -sham or -
SAC surgery 

A, WT CM lysates (3.5 mg) from C57BL/6J adult male mice (9-week old) one week post –
sham or –SAC surgery (n=6) were used to detect c-Kit protein after immunoprecipitation 
(IP) and immunoblotting (IB). IP was performed using Magna ChIP beads conjugated to the 
c-Kit Ab, M-14. The elution was separated by SDS-PAGE and c-Kit was detected using the 
c-Kit Ab, D13A2 (1:1000). The secondary Ab was diluted at 1:1000 and c-Kit was detected 
with Pierce ECL Plus. Films were exposed for 10 minutes. B, c-Kit and GAPDH protein 
from the IBs produced in A were quantified by densitometry. C, WT LVs (sham=7; SAC= 
5) and CM-enriched fractions (sham= 7; SAC= 8) from C57BL/6J adult male mice one 
week post –sham or –SAC surgery were used to detect the relative expression of Kit mRNA 
(normalised to Hprt). Kit encodes c-Kit and Hprt encodes HPRT. Data are presented as 
means ± SEM, independent comparisons were made by two-tailed Student’s unpaired t-
tests.  
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4.3.5 SCF stimulation of mature c-Kit in MEL cells  

One of the original aims of this study was to test if c-Kit signalling, and thus activity, 

prevents CM cell cycle re-entry and confines CMs to a hypertrophic response. Therefore, 

concurrent with the experiments to detect c-Kit protein post-SAC, a protocol to detect c-Kit 

signalling was established using MEL cells were stimulated with SCF at 0, 25 or 100 ng/ml 

for 15 minutes. Lysates were immunoprecipitated with M14, proteins separated by SDS-

PAGE and membranes were probed with an anti-phospho-c-Kit-antibody (Tyr719) to detect 

c-Kit phosphorylation at tyrosine 719, located in the kinase insert region, which is critical 

for c-Kit signalling. The mature form of c-Kit became phosphorylated when MEL cells were 

treated with the ligand SCF at either 25 or 100 ng/ml (Figure 4.9), confirming reports that 

the larger c-Kit species, expressed at the cell surface, is necessary for ligand-induced 

dimerization and c-Kit activity. 
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Figure 4.9: Detection of c-Kit activity after SCF stimulation of MEL cells 

MEL cells (1x106 cells) were stimulated with SCF (0, 25, and 100 ng/ml) for 15 minutes, 
and cell lysates were immunoprecipitated (IP), and c-Kit phosphorylation (above) and 
protein (below) were detected by immunoblotting (IB). IP was performed using Magna 
ChIP beads conjugated to M-14. The eluted c-Kit and IP input (10 µg) were separated by 
SDS-PAGE and c-Kit phosphorylation was detected by IB using the phospho-c-Kit 
(Tyr719) Ab (1:1000) and c-Kit was detected using D13A2 Ab (1:1000), respectively. Films 
were exposed for 1 second.   
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4.4 Discussion 

This study showed that c-Kit is expressed at very low levels in adult WT CMs and does not 

increase in response to PO. The evidence, therefore, does not support the hypothesis that c-

Kit re-expression and signalling is involved in the pathogenesis of LVH, inhibiting CM cell 

cycle re-entry, and thus, limiting the heart to hypertrophic growth. 

Examining c-Kit expression in the adult WT heart required the optimisation of Western 

blotting and IP techniques, in which c-Kit+ cell and mouse line controls were used. c-Kit 

was not initially detected in WT heart lysates (100 µg of protein) by IB alone, but by 

increasing the total amount of protein that could be probed by IP with a c-Kit Ab, two c-Kit 

species were clearly observed (Figure 4.7). However, c-Kit was not detected in WT CM 

lysates (1 or 2 mg of protein), although a low level of c-Kit was detected in sham and SAC 

CM lysates (3.5 mg of protein), with enhanced chemiluminescent signal by increasing the 

concentration of the secondary Ab (from 1:20,000 to 1:10,000) and length of film exposure 

upto 10 minutes (Figure 4.8). Thus, despite using optimised techniques, the relative 

abundance of c-Kit protein one week post –sham or –SAC surgery did not change, and nor 

did the expression of Kit mRNA, in response to PO-induced LVH. To my knowledge, this is 

one of the first studies to show a lack of c-Kit expression in adult WT CMs at baseline and 

after LVH.  

In support of this data, two elegant studies were published during the course of my 

candidature using a Cre-lox recombination strategy for genetic lineage tracing of the Kit 

locus in mice, which showed that c-Kit, detected by immunofluorescence, was minimally 

expressed in adult CMs before and after cardiac injury (van Berlo et al., 2014; Sultana et al., 

2015; Liu et al., 2016b). Furthermore, in contrast to Li et al. (2008) who reported c-Kit in 

P2 CMs, van Berlo et al. (2014) observed c-Kit+ cells were rarely CMs at P0-P1, and rather, 

they were non-myocytes (van Berlo et al., 2014), which were specifically shown to be ECs 

by immunohistochemical analyses using the EC-specific marker, PECAM (Sultana et al., 

2015). This was different to the previous reports of others showing c-Kit+ cardiac stem and 

progenitor cells at this time point (Fransioli et al., 2008; Tallini et al., 2009). As reported by 

van Berlo et al. (2014) the cell size of non-myocytes and CMs at this age is similar and it is 

difficult to distinguish between cell types by immunohistochemistry. Although c-Kit 

expression was not assessed during development in this Chapter, high-throughput 
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sequencing data in Chapter 7 (see Section 7.3.6) showed expression levels of Kit mRNA 

very low in developing and adult CMs.  

In adult hearts, flow cytometric analyses indicated that 77% of c-Kit+ cells were ECs (van 

Berlo et al., 2014) and 43% of ECs were c-Kit+ (Sultana et al., 2015). Moreover, the ECs 

that were generated from c-Kit+ cells doubled in number after MI (van Berlo et al., 2014). 

Sultana et al. (2015) and colleagues used a similar lineage tracing strategy with the addition 

of an EC reporter mouse, Tie2Cre, which was used to demonstrate that c-Kit+ cells were 

derived from an EC lineage, and furthermore, after 30 days of MI surgery the c-Kit+ cells 

had retained their EC identity in the infarct region. The overall consensus was that <0.04% 

of CMs were derived from c-Kit+ cells during development and in adulthood, and did not 

increase after MI (van Berlo et al., 2014; Sultana et al., 2015). The finding that a 

subpopulation of ECs are c-Kit+ and were not CSCs, is contrary to papers that previously 

identified c-Kit+ CSCs in the heart (Beltrami et al., 2003; Ellison et al., 2013; Fransioli et 

al., 2008), adding further controversy as to the origin of c-Kit+ cells and their ability to form 

CMs. In this study, c-Kit protein was observed in WT hearts (Figure 4.7), and at very low 

and variable levels in enriched-CM fractions one week post –sham and –SAC surgery 

(Figure 4.8), while the former is likely due to the presence of other c-Kit+ cells in the heart, 

the latter is may be due to EC-contamination in the enriched-CM fractions (Figure 6.3, 

Chapter 6). 

The hypothesis that c-Kit is re-expressed in CMs after PO and blocks CM cell cycle re-

entry, offered a potential mechanism for c-Kit function that would explain the CM 

proliferation observed in KitW/Wv and in Tg(αMHC-KitWv) hearts, post-SAC. The work 

described here has shown that c-Kit is not expressed in developing CMs, and therefore, is 

not “re-expressed” or expressed in adult WT CMs after PO. In the KitW/Wv mouse model, 

both the KitW and KitWv mutations are under the control of the endogenous Kit locus, so it is 

unlikely that c-Kit, KitW or KitWv, will be expressed in the adult CMs of these mice after PO. 

While it is also unlikely that c-Kit will be expressed from the Kit locus in the Tg(αMHC-

KitWv) mouse, there is constitutive overexpression of the transgene, KitWv, under the control 

of the α-MHC promoter. Another indication that c-Kit is not a common mechanism for cell 

cycle re-entry in both mouse models is the vastly different CM transcriptomes of KitW/Wv or 

Tg(αMHC-KitWv) at baseline, relative to WT littermate controls. Kit W/Wv CMs had a 
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difference of 8 unrelated differentially expressed-mRNAs out of 40,000 compared with WT 

CMs (Li et al., 2008), whereas there were >340 differentially expressed-mRNAs in 

Tg(αMHC-KitWv) CMs relative to WT CMs (unpublished data). The combination of 

differences in these genetic mouse models and basal gene expression data indicate a highly 

dissimilar CM phenotype, and therefore, presumably, the mechanisms for CM proliferation 

after PO are distinct. 

Hara et al. (2002) subjected KitW/Wv mice to mild PO by SAC for 15 weeks and reported 

cardioprotective effects abrogating cardiac remodelling and perivascular fibrosis that were 

attributed to a deficiency in mast cells. However, the contribution of CM proliferation to 

this cardioprotective effect was not evaluated. Nevertheless, Hara et al. (2002) offer another 

indirect mechanism for the cardioprotective effect observed in KitW/Wv mice that may also 

promote CM cell division. Indirect mechanisms of action may well be a source for cardiac 

regeneration since a number of physiological processes are impaired in the KitW/Wv mice, 

including hematopoiesis and the immune response, in which tissue mast cells are absent. 

Altogether, the original finding by Li et al. (2008) of CM proliferation in KitW/Wv mice after 

hypertensive stress is impressive but the mechanism is yet to be elucidated. 

Further characterisation in our laboratory of Tg(αMHC-KitWv) mice revealed that they had 

increased cardiac growth during postnatal development from P10 to P35, which was due to 

an increase in CM population number during adolescence relative to WT hearts (Iismaa et 

al., submitted). However, adult Tg(αMHC-KitWv) CMs had only slightly increased cell 

cycling relative to WT CMs (Iismaa et al., submitted). Biochemical analyses in this study, 

showed that Tg(αMHC-KitWv) hearts had high levels of c-Kit mRNA and protein compared 

with WT hearts (Figure 4.3). In addition, the 125 kDa immature species was more abundant 

than the 145 kDa mature protein in Tg(αMHC-KitWv) hearts. This was in contrast to that 

observed in WT (Figure 4.7), Tg(αMHC-Kit.1) and Tg(αMHC-Kit.2) hearts (Figure 4.5), in 

which the larger c-Kit species was more abundant. Immunofluorescence showed that KitWv 

localisation was perinuclear in isolated Tg(αMHC-KitWv) CMs (Figure 4.4) and was not 

expressed at the cell surface, suggesting the entrapment of the KitWv mutant in the 

endoplasmic reticulum (ER) or Golgi apparatus (Zheng et al., 2014; Yang et al., 2015). This 

is not without precedence, as the missense c-KitW37 mutation has been reported to result in a 

greater abundance of the smaller c-Kit species, also detected by IB, and was also suggested 



 

103 

 

to accumulate in the ER of mast cells (Nocka et al., 1990). The high level of mutant KitWv 

protein that is overexpressed in Tg(αMHC-KitWv) CMs may result in aggregates of the 

misfolded protein in the ER, and lead to aberrant processing, degradation, and ER stress. 

This may elicit the unfolded protein response (UPR) pathway, which is protective, but under 

prolonged stress may become pro-apoptotic (Chaudhari et al., 2014). The mutant KitWv 

protein may also be contained within the Golgi apparatus, as it is expressed in a similar 

pattern to that of the Golgi matrix protein, GM130 (Yang et al., 2015). Altogether, the ER 

and Golgi may be involved in the processing and degradation of mutant KitWv protein, 

however, staining Tg(αMHC-KitWv) CMs with c-Kit with ER or Golgi markers for 

immunocytochemistry will be required to confirm its co-localisation with these organelles. 

Microarray analyses performed by our laboratory using RNA extracted from baseline 

untreated WT or Tg(αMHC-KitWv) CMs has revealed >340 statistically significant (>2-fold, 

p<0.05) differentially-expressed mRNAs (unpublished observations). Interestingly, some of 

these up-regulated transcripts are involved in the immune (interferons and 

histocompatibility complexes) and ER stress response (Eif2ak2, ATF5 and 

CHOP/Gadd153), protein ubiquitylation and degradation (Usp18, Ube1, and COP9) (Teske 

et al., 2013; Ghigo et al., 2014). Chronic ER stress evokes an inflammatory response 

through UPR pathways (Chaudhari et al., 2014) and immune cells are mobilised to remove 

apoptotic and infected CMs (Ghigo et al., 2014). To restrict the number of infiltrating 

immune cells, CMs secrete the macrophage-inhibiting cytokine 1 (GDF-15), the transcript 

for which was ~18-fold higher in Tg(αMHC-KitWv) vs WT CMs (unpublished observations). 

There are many pathways involved in ER stress and the resulting cascade of activated stress-

induced pathways involves many genes (Teske et al., 2013). A recent report showed that 

when pancreatic β-cells increase the synthesis of proinsulin in response to high glucose, the 

UPR response is activated, which triggers β-cell proliferation (Sharma et al., 2015). It is 

possible that the UPR may be balancing pro-survival and pro-apoptotic pathways involving 

ER stress-induced inflammation that subsequently leads to an increased population of CMs 

in Tg(αMHC-KitWv) hearts. This warrants further investigation. 

Overall, evidence indicates that c-Kit is not re-expressed in adult WT CMs after 

hypertensive stress. However, there may be other mechanisms involved that enable CMs to 

divide after cardiac injury in these two genetic mouse models of c-Kit inhibition that are 
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distinct. One possible mechanism in Tg(αMHC-KitWv) mice is ER stress-induced 

inflammation resulting in CM cell division that may have a role in CM regeneration. 

Moreover, it is possible that using the CM-specific α-MHC promoter to overexpress 

proteins may result in ER-stress induced responses affecting the normal cellular physiology 

of CMs, which would have wider implications in the cardiac field for transgenic studies.  
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Chapter 5 Postnatal murine cardiac growth 

5.1 Introduction 

The prevalence of congenital heart disease (CHD) and premature births (<37 weeks) are 8 in 

1000 and 1 in 10 births, respectively (Marelli et al., 2014; Beck et al., 2010). The majority 

of infants born with CHD require postnatal surgery and treatment to survive, which is often 

performed in the immediate postnatal period and has to be repeated. Normal cardiac 

development is disrupted in preterm infants (mainly as a result of preeclampsia), due to the 

early transition from the fetal to postnatal environment, predisposing infants and adults to 

CVD (Leipala et al., 2003b; Lewandowski et al., 2013; Norman, 2013; Beck et al., 2010). 

Indeed, the hearts of children born prematurely or with CHD may have a reduced number of 

CMs. This is certainly the case for conditions such as hypoplastic left heart syndrome. The 

average adult human heart weighs ~260 g in females and ~340 g in males, (Friedman, 1951; 

Womack, 1983; Hanzlick and Rydzewski, 1990; Molina and DiMaio, 2012), whereas the 

newborn heart is ~20g (Coppoletta and Wolbach, 1933), and therefore, the extrapolated 

postnatal increase in heart weight is 13- to 17- fold from birth, with cardiac growth being 

most rapid in the first year of human life (Smith, 1928; Holt et al., 1968). The heart is the 

first organ to form in the embryo and continues to grow throughout infancy, preadolescence 

and into adulthood as the body grows; heart growth is directly related to body surface area 

(Gutgesell et al 1990) and weight (Scholz et al., 1988). Therefore, CM endowment in the 

fetal and early postnatal period is critical for normal cardiac development. 

Haemodynamic load is essential for normal cardiac growth (Leipala et al., 2003a; Rudolph, 

1970) and changes in blood flow directly affect cardiac afterload and preload; this is 

particularly accentuated and problematic in CHD. Furthermore, preterm newborns with low 

birth weights initially have immature smaller hearts, which consequently become larger in 

preterm-born infants and preterm-born adults compared with those born at full term (Kozak-

Barany et al., 2001; Leipala et al., 2003a; Lewandowski et al., 2013). This suggests that 

preterm birth leads to a disruption in cardiac growth during a period that is normally 

characterised by marked CM proliferation and, thus, the total CM population is reduced. 

This may be later compensated for by CM hypertrophy resulting in larger preterm born 

infant and adult hearts (Norman, 2013). Other external factors affecting cardiac growth 
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include nutrients and oxygen, whereby suboptimal levels also alter the total CM population 

number (Hollenberg et al., 1977; Rakusan et al., 1978; Bai et al., 1990; Corstius et al., 

2005; Hollenberg et al., 1976; Bae et al., 2003).  

Cardiac growth is achieved by CM proliferation and cellular enlargement, in which the 

transition from cell division to enlargement occurs soon after birth.(Li et al., 1996; Leu et 

al., 2001; Clubb and Bishop, 1984; Walsh et al., 2010). It is widely suggested that in the 

mouse, CM proliferation ceases before birth (Soonpaa et al., 1996) or up to P5 (Li et al., 

1996), coinciding with an increase in the binucleation of CMs up to P8-10, indicative of 

terminal differentiation (Soonpaa et al., 1996; Walsh et al., 2010). Moreover, studies 

performing apical resection of the heart or MI at P7 reported that there was no endogenous 

repair of the myocardium compared with P1, indicating that the regenerative capacity of the 

heart is lost by P7 (Porrello et al., 2011b; Porrello et al., 2013). However, our laboratory has 

recently shown that the proliferative capacity of CMs extends into preadolescence (up to 

P18), with a burst of cell division at P15 that further increases the total CM population by 

1.4-fold during cardiac growth (Naqvi et al., 2014). This was supported by the re-expression 

of mitosis-related genes at P15, the presence of mitotic figures in CM nuclei, and transient 

changes in cell dimensions and the proportion of mono- and bi-nucleated CMs, consistent 

with cell division giving rise to smaller daughter cells. In addition, CM proliferation and 

heart growth was abrogated in preadolescence if the biosynthesis of serum T3 levels, which 

peaks at P12, was inhibited with propylthiouracil (PTU) administered at P7 (Naqvi et al., 

2014). The extension of cell division beyond the neonatal period has also been shown in 

human studies where cell division continues up to 20 years of age, resulting in a 3.4-fold 

increase in the total CM population number simultaneously with cellular enlargement 

(Mollova et al., 2013). These studies question our understanding of postnatal cardiac 

development and raise the possibility of treating abnormal heart growth by stimulating CM 

proliferation during this preadolescent period. 

The fetal and postnatal environments are critical in regulating normal cardiac growth, in 

which CMs permanently exit the cell cycle during postnatal development and become 

terminally differentiated. This limits the adult heart to maladaptive hypertrophy in response 

to hypertensive stress and CVDs. The timing and signals leading to CM proliferation, 

terminal differentiation, and cellular enlargement, during postnatal cardiac growth are not 
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completely understood. To this end, the following study characterises key periods in the CM 

growth trajectory of C57BL/6J mice and identifies time points that are important in CM 

development. 
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5.2 Materials and Methods 

General Methods are described in Chapter 2. 

5.2.1 Inbred C57BL/6J colony 

Breeding pairs of C57BL/6J mice were set up to yield a high number of litters, and only 

litters of 6-8 pups were used in this study. Pregnant dams were checked twice daily, in the 

morning and evening, to confirm the day of birth and litter size. Litters were assessed 

according to the JAX guidelines (Figure 5.1) to further confirm the stage of postnatal 

development. 

The stages of postnatal murine development were categorised as: P0 to P7, the neonatal 

period; P8 to P14, the transition from neonatal to preadolescence; P15 to P21 (weaning age), 

preadolescence; P22-P55, adolescence; and P56 onwards, fully grown adults. 
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Figure 5.1: Phenotype of inbred C57BL/6J mouse pups from birth to two weeks 

This image was adapted from a “JAX mouse pups appearance by age” poster 
(www.jax.org). Developmental characteristics are as follows (details provided by JAX); P0, 
blood red in colour with a slight milk spot; P1, lighter shade of red with milk spot present; 
P2, skin pigment begins to appear and ear nubs form; P3, ear flaps come away from the 
head; P4, skin colour develops and ears are fully formed; P5, increased colour density and 
thickness of skin with ears moving towards the back of the head; P6, milk spot has 
disappeared; P7, fur begins to cover pup; P8, belly begins to grow fur; P9, fur is much 
thicker and females begin to show nipples; P10, fur growth is complete and pups are more 
active; P11, teeth are protruding and eyes start to open; P12, eyes are open and pups begin 
to digest solids; P13, increased solid food intake; P14, pups gain weight by increasing food 
intake. 
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5.2.2 Heart collection, CM isolation and fixation 

Hearts were excised as described in General Methods, and were collected at 9-11 am. CMs 

were isolated as described in Chapter 6. Cardiac cells were either fixed prior to or after the 

dissociation of cardiac tissues into a single suspension or after dissociation (described in 

General Methods). For fixing cardiac cells prior to the dissociation, hearts were fixed in situ 

immediately following Langendorff retrograde perfusion by mounting the cannulated heart 

onto a syringe containing 2% PFA (2 ml), and perfusing by pressing the syringe plunger 

slowly. The heart was then placed into a beaker with 2% PFA for 5 minutes at RT. After in 

situ fixation, cardiac tissues were dissociated as described in Chapter 6 and cardiac cells 

were fixed further as detailed in the General Methods. 

5.2.3 Total T3 assay 

Mice were anaesthetised with 2-4% isoflurane. Blood was drawn by cardiac puncture at 9-

11am and left to coagulate for 1 hour at RT. Supernatant containing blood plasma was 

collected after centrifugation at 1,500 g for 5 minutes at 4°C. Serum was stored at -80°C 

until use, when it was thawed on ice.  

Endogenous total T3 serum levels were determined using an ELISA assay (cat. #. 1700, 

Alpha Diagnostic) that is based on the competitive binding of human thyroxine from serum 

samples and enzyme-labelled T3, to T3-specific antibodies immobilised on ELISA plates. As 

per manufacturer’s instructions, blood sera, standards and controls (50 µl) were dispensed in 

duplicate into wells on the ELISA plate followed by the addition of enzyme conjugate (100 

µl of enzyme-labelled T3) into each well. To enable competitive binding to immobilised T3 

antibodies, T3 was released from its binding proteins in sera by a releasing agent. The plate 

was incubated and continually mixed for 1 hour on an orbital shaker at RT. After three 

washing steps, TMB “chromogenic” substrate (150 µl) was added to each well to allow the 

colour for each reaction to develop. The intensity of the colour (blue) is inversely 

proportional to the total amount of T3 present in the sample. Stopping solution (50 µl; turns 

blue to yellow) was added after 15 minutes. The absorbance of each reaction was measured 

at 450 nm and a semi-log standard curve was calculated to extrapolate the approximate 

concentrations of T3. 
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5.2.4 RT-qPCR 

To measure the expression of mitosis-related genes, cDNA was synthesised using the 

QuantiTect Reverse Transcription Kit and RT-qPCR was performed using a SYBR Green 

assay. The primers (Integrated DNA Technologies) used for cell cycle genes and 18S 

mRNA expression are shown in Table 5.1. 

Table 5.1: Primers sequences for SYBR Green RT-qPCR 

Anln encodes Anillin; Aurka encodes Aurora kinase A; Birc5 encodes Survivin; Ccnb1 
encodes Cyclin B1; Mki67 encodes Ki67; Plk1 encodes Polo-like kinase 1. 

 

5.2.5 Immunocytochemistry 

Immunostaining of fixed cells secured onto slides was performed as follows. Slides were 

incubated with blocking buffer (1% BSA and 0.2% Triton X-100 in PBS; 80 µl per slide) 

for 1 hour at RT, after which blocking buffer was removed by individually flicking slides. 

Cells were incubated for 1 hour at RT with the primary Ab, CM-specific mouse anti-cardiac 

troponin T (cTnT, cat. #: ab10214, Abcam), diluted at 1:400 in blocking buffer (80 µl per 

slide). Slides were then washed in PBS for 5 minutes at RT on an orbital shaker (x5). The 

following steps were performed in the dark. Cells were incubated for 1 hour at RT with the 

species appropriate secondary Ab, goat anti-mouse IgG Alexa Fluor 488, diluted at 1:1000 

in blocking buffer (80 µl per slide). Cells were washed in PBS for 5 minutes on an orbital 

shaker (x5). Cell nuclei were stained with TO-PRO-3 (1 mg/ml), diluted at 1:1000 in 

Gene Forward primer Reverse primer Reference 

18S CTT AGA GGG ACA AGT GGC ACG CTG AGC CAG TCA GTG TA BMC 

Anln TAG AGT CCT CAT ATT AAC ATT AGC CAG AGT TGT AGA AAG TGT CAT AG Li et al., 2008 

AurKA ACG CTC TGT CTT ACT GTC GCC TTC AAT CAT CTC TGG Li et al., 2008 

Birc5 CAT CTA AGC CAC GCA TCC CGT CAC AAT AGA GCA AAG C Li et al., 2008 

Ccnb1 CTA AAG TCG GAG AGG TTG GTC TTC ACT GTA GGA TAG G Li et al., 2008 

Mki67 ATC ATT GAC CGC TCC TTT AGG T GCT CGC CTT GAT GGT TCC T Primer Bank 
(Harvard) 

Plk1 CAT TGA GTG CCA CCT TAG GCC ATA CTT GTC CGA ATA G Li et al., 2008 
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blocking buffer (80 µl per slide), and incubated for 10 minutes at RT. Cells were washed in 

PBS for 5 minutes on an orbital shaker (x5). Coverslips were secured onto each slide with 

PVA-DABCO mounting medium. Slides were then stored at 4°C. Stained cells were imaged 

with a confocal microscope using the same settings for all samples (Axio Observer inverted 

microscope equipped with a LSM 710 confocal scan head, Zeiss).  
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5.3 Results 

5.3.1 Postnatal heart and body weights 

Biological variation due to nutrition-mediated effects of variable litter sizes was minimised 

by using animals only from a litter size of 6-8 pups to normalise body and cardiac weight 

development. The average litter size in our C57BL/6J colony was 6.8 pups, and the most 

frequent litter size was 8 pups (Figure 5.2A). Our lab has previously published using litter 

sizes of 6-7 pups (Naqvi et al., 2014). A comparison of heart to body weight (HW/BW) 

measurements between litters of 6-7 pups and litters of 8 pups showed there were no 

statistically significant differences (Figure 5.2B). Thus, to increase the yield of useable 

litters, experiments were performed using litters of 6-8 pups. 

Growth of the heart relative to body weight is rapid, increasing by 40% from P2 and 23% 

from P10 to the peak of growth at P18 (Figure 5.2C), as mice transition from the neonatal 

period to preadolescence. During the period of accelerated heart growth from P10 to P18, 

heart weight increased by ~45% while body weight increased by ~19% (Table 5.2). 

Interestingly, the neonatal heart weighed approximately one-eighteenth of the adult heart 

after birth (P2, 7.16mgs; vs P70, 129.7mgs) and at the peak of accelerated preadolescent 

heart growth, i.e. P18, the heart weighed approximately one-third of the adult heart size 

(P18, 46.36mgs). 
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Figure 5.2: Heart-to-body weight ratios of C57BL/6J mice from litters of an average 
size 

A, the histogram shows the frequency of litter sizes in our C57BL/6J colony. B, heart to 
body weight (HW/BW) ratio was compared between litters of 6-7 pups and litters of 8 pups, 
including adult male mice, which were not statistically significant. Statistical significances 
were determined by two-way ANOVA followed by Bonferroni’s post hoc test, all points 
were non-significant. C, the HW/BW ratio during postnatal development from mice in 
litters of 6-8 pups (n=6-60 pups per time point, mostly n≥14 pups, except for P23, n=6), 
relative to P10. Data are presented as means ± SEM bars. Statistical significances were 
determined by one-way ANOVA followed by Tukey’s post hoc test; * p<0.05, † p<0.0001 
and, non-significant, ns.  
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Table 5.2: Heart-to-body weight measurements in postnatal murine development 

Postnatal age (days) HW (mg) BW (g) HW/BW 
(mg/g) 

n 

2 7.16 1.533 4.671 14 

10 31.87 5.989 5.314 26 

12 35.07 6.170 5.696 30 

13 36.03 6.148 5.870 45 

14 39.82 6.982 5.705 16 

15 47.15 7.618 6.202 60 

16 47.17 7.663 6.162 21 

18 46.36 7.111 6.536 21 

20 54.40 8.429 6.467 15 

23 60.40 10.500 5.805 6 

35 87.83 17.910 4.916 33 

70 129.70 26.410 4.902 14 

The BW and HW of developing C57BL/6J mice born into litters of 6-8, were recorded and 
the number of animals analysed per time point (n) are shown. HW, heart weight; BW, body 
weight; and, HW/BW heart to body weight ratio. Statistics are presented in Figure 5.2C. 

  



 

116 

 

5.3.2 Levels of triiodothyronine (T3) hormone in postnatal development 

An important driver of heart and body growth during the transition from the neonatal to 

preadolescence period (P10-P18) is thyroid hormone, which increases markedly from P9-10 

after birth (Chizzonite and Zak, 1984; Naqvi et al., 2014). This was also determined in this 

study by collecting blood plasma from pups aged between P8 and P25, and total endogenous 

serum T3 levels were assayed (Figure 5.3). There was a ~2.2-fold surge in serum T3 levels 

between P10 (~0.6 ng/ml) and P12 (1.3 ng/ml). Serum T3 levels further increased by ~2-fold 

as mice transitioned from preadolescence to adolescence (P18, 1.1 ng/ml; to P25, 2.1 

ng/ml). 

 

 

Figure 5.3: Endogenous serum total T3 levels during postnatal development 

Total T3 levels were measured in blood plasma using mice from litters of 6-8 at the 
following ages; P8 (n=4), P10 (n=8), P12 (n=7), P14 (n=8), P18 (n=6) and P25 (n=4) pups. 
Data are presented as means ± SEM. Statistical significances were determined by one-way 
ANOVA followed by Tukey’s post hoc test; * p<0.05, *** p<0.001, and **** p<0.0001. 



 

117 

 

5.3.3 Cell cycle gene expression during postnatal cardiac growth 

Transcript levels for the following mitosis-related genes: anillin (Anln), aurora kinase A 

(Aurka), survivin (Birc5), cyclin B1 (Ccnb1), Ki67 (Mki67) and polo-like kinase 1 (Plk1) 

were determined in the ventricles of hearts at P2 and various postnatal days up to P56. The 

following three experiments were performed independently with new samples. In the first 

experiment, the expressions of cell cycle genes were evaluated during preadolescence (P13-

P16). Transcripts for cell mitosis-related genes were more abundant at P13 as compared 

with P15 and P16, and at P14 relative to P15 (Figure 5.4A). Transcripts for survivin and 

Ki67 were more abundant at P13 than P14. 

In the second experiment, temporal changes in the expression of mitosis-related gene 

transcripts were observed in hearts over a broader spectrum of ages that included neonatal 

(P2, highly proliferative), preadolescent (P13 and P15) and adult (P35, differentiated CM) 

hearts (Figure 5.4B). The greatest abundance of mitosis-related gene transcripts was 

observed at P2, approximately 4-fold higher than at P13 (p < 0.0001). In agreement with the 

first experiment, mitosis-related gene transcripts were more abundant at P13 than at P15 (p 

< 0.01) or P35 (p < 0.01). 

In the third experiment, the expression of Ki67 transcripts was measured daily in the 

postnatal period between P10 and P18, and at P35 and P56 (Figure 5.4C). The abundance of 

Ki67 transcripts was equivalent at P10-P13, and was statistically significantly higher than at 

P14 -P18, P35 or P56. At P10-P13, Ki67 transcript levels were ~15-fold greater than in the 

adult heart at P56.  
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Figure 5.4: Expression of cell cycle genes throughout postnatal cardiac development 

RNA was extracted from ventricles of P2-P56 mice born into litters of 6-8. The expression 
of cell cycle genes were normalised to 18S ribosomal RNA. The fold-change was calculated 
relative to the oldest postnatal age in each experiment. Figures A, B and C were performed 
independently using independent samples. A, shows the expression of six cell cycle genes in 
hearts from P13-P16 pups, relative to P16 (n=6-8); B, shows the expression of five cell 
cycle genes in hearts from P2 (n=2), P13, P15 and P35 (n=4) mice, relative to P35; C, shows 
the expression of Mki67 in hearts from P10-P18 (n=5-6), P35 (n=3) and P56 (n= 4) mice, 
relative to P56. Data are presented as means ± SEM. Statistics were calculated by one-way 
ANOVA followed by Tukey’s post hoc test; * p<0.05, ** p<0.01 , *** p<0.001, **** 
p<0.0001 or non-significant, ns. Anln encodes Anillin; Aurka encodes Aurora kinase A; 
Birc5 encodes Survivin; Ccnb1 encodes Cyclin B1; Mki67 encodes Ki67; Plk1 encodes 
Polo-like kinase 1. 
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5.3.4 Morphology of developing postnatal CMs 

The morphology of maturing CMs was characterised at four stages of postnatal cardiac 

development where levels of mitosis-related gene transcripts ranged from high (P2), 

intermediate (P10 and P13) or low (P70). The preadolescent time points of P10 and P13 

coincide with the rapid surge in serum T3 levels (Figure 5.3), that is, P10 is immediately 

prior to the initial increase in serum T3 levels and P13 is 24-hours after.  

Hearts were digested by Langendorff retrograde perfusion of proteolytic enzymes (as 

detailed in Chapter 6) and cells were fixed in situ prior to tissue dissociation and CM 

isolation. This resulted in CMs that were almost 100% rod-shaped (Chapter 6, Figure 6.5 

and Figure 5.5C). CMs were stained with the CM-specific protein, cardiac troponin T, 

cTnT, and nuclei were identified using the DNA dye, TO-PRO-3, for immunofluorescence 

microscopy to evaluate the nucleation status and area of CMs. Overlapping cells were 

excluded from measurements of CM nucleation and area. Cells with two overlapping nuclei, 

possibly indicative of karyokinesis, were counted as mononucleated. Mononucleated CMs 

accounted for >90% of P2 CMs, whereas 73%, 80% and 84% of CMs at P10, P13, and P70, 

respectively, were binucleated (Figure 5.5A). 

CM areas were quantified using ImageJ, which automatically detects the outline of the cell 

in contrast to the background. This eliminates user variability, which usually involves 

selecting the diameter and width of a cell by eye. In addition, CMs are not uniform and the 

shape changes during development from small spindle-like cells to large cells with jagged 

edges located at the intercalated discs (Figure 5.5C). Average CM areas at P2, P10, P13 and 

P70 were 440, 1033, 1197 and 4286 µm2, respectively (Figure 5.5B). During the transition 

from the neonatal to preadolescent period (from P2 to P10 and P13), CM area increased by 

~2.5-fold, while, the transition from preadolescence to adult saw CMs enlarge by ~3.8-fold. 

Overall postnatal CM maturation from P2 to P70 resulted in a ~9.7-fold enlargement of CM 

area. 
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Figure 5.5: Gross morphology of developing postnatal CMs 

Hearts were perfused with 2% PFA to fix cardiac cells in situ prior to the dissociation of 
cardiac tissue. The number of nuclei per cell (A) and the CM area (B) from postnatal ages: 
P2, P10, P13 and P70 (120-380 cells from 2-3 hearts per time point), were evaluated. 
ImageJ was used to calculate the CM area (µm2). C, representative images of CMs from 
each time point were stained with the CM-specific marker, cTnT (green), and the nuclei 
dye, TO-PRO-3 (blue). Scale bar is 100 µm. Data are presented as the mean ± SEM. 
Statistics were calculated by one-way ANOVA followed by Tukey’s post hoc test; * p<0.05, 
**** p<0.0001.  
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5.4 Discussion 

To elucidate mechanisms that regulate heart growth we first sought to characterise postnatal 

cardiac growth in C57BL/6J mice. Litter sizes of 6-8 pups were used to minimise biological 

variation in HW and BW during development. The murine heart undergoes profound growth 

between P10 and P18 due to both CM enlargement and proliferation, resulting in the rapid 

increase of HW/BW by 23%. This coincided with a surge in endogenous serum T3 levels 

between P10 and P12. There was also evidence for an intermediate expression of mitosis-

related transcripts at P10-13 relative to P2 (highly abundant) and adults (lowly abundant), 

indicating an incremental reduction in cell proliferation during postnatal development. This 

study highlights the importance of our recent findings (Naqvi et al., 2014) and extends upon 

those that have been published previously (Li et al., 1996; Soonpaa et al., 1996; Leu et al., 

2001; Mollova et al., 2013). 

Careful characterisation and use of pups born into litters of 6-8 was particularly important in 

this study to reduce biological variation in all subsequent analyses of CMs, including 

morphological and molecular properties. In the postnatal period between P10 and P18, heart 

growth was rapid relative to body weight; and at P18 was one-third of the size of an adult 

heart. The neonatal heart was just one-eighteenth of the size of an adult male murine heart 

(Table 5.2). This is comparable to human heart growth from birth to adulthood, which I 

previously estimated to increase by ~17-fold in males (General Introduction). This suggests 

that cardiac growth is similar between rodents and humans. 

HW/BW ratios obtained in this study were compared with those reported previously, see 

Figure 5.6. The study by Naqvi et al. (2014) was performed in a different animal house, and 

thus the animals from our facility were characterised. The HW/BW observed in this study 

and in the Naqvi et al. (2014) study were comparable that shows good reproducibility using 

a similar experimental design, in contrast to Leu et al. (2001) and Soonpaa et al. (1996) that 

were also quite different from each other. Curiously, the HW/BW ratio data presented by 

Soonpaa et al. (1996) and Leu et al. (2001) were not consistent with their conclusions. For 

example, the data from Soonpaa et al. (1996) showed variable HW/BW ratios from P0-P20 

(Figure 5.6), yet their conclusion was that the HW/BW ratio was constant during murine 

development. On the other hand, Leu et al. (2001) showed a steady fall in the HW/BW ratio 

from P2 to P11 and an abrupt increase from P11 to P14 of 40% (Figure 5.6). Leu et al. 
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(2001) did not calculate HW/BW ratios, but rather presented their HW and BW data on the 

same graph, with HW plotted in milligrams and BW plotted in grams. Obviously, their 

graph showed a steeper rise in the heart weight trace using units of mg, compared with the 

smaller increase of the body weight trace using units of g, thereby leading them to conclude 

that heart growth was greater in relation to body weight. However, as previously described 

the calculated HW/BW ratio from Leu et al. (2001) shows otherwise (Figure 5.6), and thus 

their conclusion using different units on the same graph is misleading. 
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Figure 5.6: A comparison of reported murine heart-to-body weight ratios 

HW/BW ratios during postnatal growth from previously published data are compared with 
those presented in this study. C57BL/6J mice were used by Naqvi et al. (2014), Leu et al. 
(2001) and in this study; C3Heb/FeJ mice were used by Soonpaa et al. (1996). Naturally-
produced litters of 6-8 pups/litter or 6-7 pups/litter, were used in this study and by Naqvi et 
al. (2014), respectively, whereas litter sizes were adjusted to 6 pups/litter by Soonpaa et al. 
(1996) and there was no litter information from Leu et al. (2001). HW/BW data were 
obtained from n=6-60 (mostly n≥14 pups, except for P23, n=6) from P2-P70 in this study, 
n=5-15 from P2-P35 by Naqvi et al. (2014), n=4 from P0-P20 by Soonpaa et al. (1996), and 
n≥5 from P0-P14 by Leu et al. (2001). 
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There are apparent differences in HW/BW ratios, which might be explained by different 

experimental conditions, such as mouse strain, the size of the litter used, number of mice per 

time point, and/or period of sampling intervals. For example, Soonpaa et al. (1996) used 

C3Heb/FeJ mice, and other studies use C57BL/6J mice. Both the C3Heb/FeJ and C57BL/6J 

strains have similar body weights (Jackson Laboratories), so one may expect similar heart 

weights. In this study and that of Naqvi et al. (2014), only animals from naturally-occurring 

litter sizes of 6-8 were used, whereas Soonpaa et al. (1996) adjusted litters to 6 pups/litter 

by adding or removing pups after birth. Adjusting litter sizes after birth to normalise litter 

growth does not take into account different nutritional environments during gestation, which 

may affect postnatal development. Leu et al. (2001) provided no information about the litter 

sizes that were used. Another difference was the number of mice used to calculate the HW, 

specifically a smaller sample size of n=4 (Soonpaa et al., 1996) and n≥5 (Leu et al., 2001), 

whereas Naqvi et al. (2014) and I analysed larger numbers of mice of n=5-15 and n=6-60 

(n≥14 at all intervals except at P23, n=6), respectively. Lastly, there were differences in the 

period and intervals of sampling. Soonpaa et al. (1996) and Leu et al. (2001) collected the 

majority of data points before P10, while most of our data points were collected after P10. 

This comparative analysis highlights the importance of accurately detailing experimental 

procedures in order to identify sources of variation.  

Another important factor for cardiac growth is TH, which more than doubles between P10 

and P12 (Figure 5.3). This is similar to that observed in rats (Chizzonite and Zak, 1984) and 

in other mouse studies (Hadj-Sahraoui et al., 2000; Naqvi et al., 2014) and corresponds to 

the maturation of the hypothalamic-pituitary-axis at P12-P15 in rodents, which is completed 

by birth in humans (Fisher and Klein, 1981; Li et al., 2014b). The level of T3 was constant 

from P12 to P14 and P18, and further increased at P25. These concentrations overlap with 

those observed in other euthyroid rodents (Chizzonite and Zak, 1984; Shimoni et al., 1997; 

Naqvi et al., 2014; Hernandez et al., 2006; Hadj-Sahraoui et al., 2000). Moreover, there 

have also been reports showing T3 decreases at P20 (n=6) and P21 (n=3) (Hadj-Sahraoui et 

al., 2000; Hernandez et al., 2006), although T3 remains constant in other studies (Chizzonite 

and Zak, 1984; Naqvi et al., 2014). Thus, additional time points would be necessary to 

determine the pattern of serum T3 levels during this stage of development. One observation 

that may explain the specific increase between P10 and P12 is that according to the Jackson 

Laboratories developmental stages chart (Figure 5.1), mouse pups start teething at P11 and 
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digesting solid food at P12. This may increase dietary substrates such as iodine that 

contributes to the surge in T3 levels. 

In agreement with the literature, mitosis-related gene transcripts were highly expressed in 

the early neonatal period at P2 (Figure 5.4). Furthermore, it was clear in all three 

independent experiments that these transcripts were more abundant at P10-P13 than at P15, 

which was comparable to adult levels of expression. Thus, in this study we did not see an 

increase in the abundance of cell cycle gene transcripts at P15 relative to P13, P14 and P16 

(Naqvi et al., 2014). Rather there was a progressive decrease in cell cycle gene transcripts. 

One difference between these two studies is the subtle shift in the HW/BW curve, which 

could potentially be due to different litter sizes (6-8 pups vs 6-7 pups), although the 

HW/BWs were comparable (Figure 5.2B). Regardless, both datasets show the expression of 

mitosis-related genes beyond the neonatal period of P7, when CMs are believed to cease 

division, and growth had been mainly attributed to cellular enlargement (Soonpaa et al., 

1996). As early as the 1960s, however, Sasaki et al. (1968) used the mitotic inhibitor, 

Colcemid (demecolcine, which is related to colchicine), to arrest cell mitosis in metaphase, 

which showed the presence of mitotic figures in dividing CM nuclei up to 3 weeks after 

birth in rat cardiac tissue sections. More recently, Ikenishi et al. (2012) evaluated the 

abundance of cyclins (D1/E/A/B1) and their corresponding holoenzyme partners, CDKs 

(1/2/4), by Western blot analyses in murine cardiac ventricles from the embryo and at the 

following postnatal time points: P0, P3, P5, P7, P10, P14, P21, including adults. In the 

postnatal period, cell cycle proteins were most abundant at P5, lower at P10, but were very 

low after P14 and comparable to adults. Therefore, the abundance of cell cycle proteins 

correlate well with the expression of mitosis-related genes presented here. One of the 

limitations of these studies is the use of cardiac tissues that comprise a heterogeneous 

population of cells that includes ECs, VSMCs and fibroblasts, which also proliferate and 

cell proportions change during postnatal development (Soonpaa et al., 1996; Olivetti et al., 

1980). An accurate delineation of CM proliferation and cell cycle gene changes during 

postnatal development would thus require analyses of purified CMs.  

CM morphology was also assessed at each of the developmental time points corresponding 

to high cell cycle activity at P2, intermediate cell cycle activity at P10 and P13, as well as 

extremely low cell cycle activity at P70. Firstly, the nucleation status of CMs was evaluated 
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by immunocytochemistry, and as expected, the proportion of CMs that were binucleated 

increased from 6% at P2 to 72% at P10 to 81% at P13, and to 85% at P70 (Figure 5.5A). 

This was similar to Li et al. (1996) and Naqvi et al. (2014), as well as Ikenishi et al. (2012) 

excluding the P10 time point, which indicated 60% of CMs were binucleated. In contrast, 

Soonpaa et al. (1996) and Walsh et al. (2010) calculated that >95% of CMs were 

binucleated by ~P8. This may indicate faster cardiac growth and a more rapid maturation of 

CMs (Soonpaa et al., 1996; Walsh et al., 2010) that is different from the three 

aforementioned studies, including this study. Moreover, the CM area increased significantly 

throughout the time course, even between P10 and P13, and the time points have different 

proportions of binucleated CMs of 72% and 81%, respectively. The cell shape of adult CMs 

was highly variable as shown by the CM images in Figure 5.5C. Nonetheless, the absolute 

cell area correlated well to heart weight (Figure 5.7). However, there is a discrepancy in the 

adult CM areas that were measured in this Chapter (~4300 µm2) and in Chapter 3 (Figure 

3.4, sham: ~3300 µm2). In both experiments, CMs were isolated from C57BL/6J mice at 9-

10 weeks but two different buffers were used in this Chapter (Liao and Jain, 2007) and in 

Chapter 3 (O’Connell et al., 2007). The latter solution has a higher osmolality (~15% 

higher)2 and this difference in osmolality may contribute to changes in cell area that causes 

cells to swell or shrink depending on the intracellular osmolality of CMs. This is important 

to note for other studies, in which different protocols could lead to slight differences in 

reported cell areas and volumes.  

                                                      

2 Calculated according to the osmolarity:  

mOsM/L = ∑ of mOsM per buffer component (mOsM= molecular conc.(mM) x number of species 
(e.g. ions) into which the molecule dissociates) 
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Figure 5.7: Correlation between heart weight and CM size in postnatal cardiac 
development 

HW (●) and CM area (○) are compared during postnatal cardiac growth from the ages: P2, 
P10, P13 and P70 mice that were also presented in Figure 5.2 and Figure 5.5, respectively. 

 

In conclusion, this study describes the relationship of CM division and enlargement during 

postnatal cardiac growth, particularly in the transition from neonatal to preadolescent 

development. It is a potentially exciting finding that the overall postnatal growth of the heart 

in mice may be similarly conserved to that of humans (adult male mice, 18-fold; vs adult 

male human 17-fold). During this period of cardiac growth, cell cycle activity was 

intermediate at P10 and P13, compared with P2 and adult time points that had high and low 

levels of cell cycle genes, respectively. Furthermore, these time points coincide with a surge 

in serum T3 levels between P10 and P12, in which P10 was immediately before and P13 was 

24-hours after the surge. In addition, P10 and P13 CMs were different in size and 

binucleation status and therefore, both of these time points are of interest for phenotyping 

CM maturation. Many unanswered questions remain, for example, what role does T3 have 

during this period of growth in an in vivo setting? Do CMs stop dividing at P13, and if so, is 

there a master switch that triggers cell cycle exit? To this end, I decided to isolate and purify 

CMs (Chapter 6) at these pivotal time points during CM growth and evaluate the whole 

cellular transcriptome using RNA-Seq technology (Chapter 7).   
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Chapter 6 Purification of cardiomyocytes from neonatal, 

preadolescent, and adult mouse hearts 

6.1 Introduction 

CMs were first isolated in the late 1950’s and 1960’s from the embryonic chick heart 

(Cavanaugh, 1955), neonatal rat heart (Harary and Farley, 1960), and adult rat heart (Kono, 

1969), and since then protocols have been continually modified for particular experimental 

end-points. Isolated CMs provide a system to study: cell morphology and ultrastructure, 

contractility, electrophysiology, Ca2+ homeostasis, intracellular signalling, as well as gene 

and protein expression, contributing to a wealth of knowledge in fundamental CM 

physiology. In the era of revolutionary technologies that enable interrogation of the whole 

genome, transcriptome, and epigenome from the lab bench, new experimental end-points are 

now possible.  

In the previous Chapter, postnatal cardiac growth was characterised at pivotal 

developmental time points of CM proliferation, enlargement, and terminal differentiation. 

These three phases of CM growth have important implications for cardiac regenerative 

therapies, which are highly sought after but, thus far, have only achieved limited success. 

Hence, a better understanding of the developmental transitions of CMs from cell division to 

terminal differentiation is necessary. To delineate the cellular changes that take place during 

CM maturation at the transcript level, high-throughput sequencing provides nucleotide-base 

resolution and absolute numbers of RNA molecules, and is a tool for the discovery of novel 

transcripts, and the identification of candidate genes and gene networks. The cardiac milieu 

is intricate comprising contracting myocardium, capillaries, extracellular matrix, and gap 

junctions, along with other supporting cells. Thus, a homogenous population of CMs from 

heterogeneous cardiac tissues is needed for cell type-specific information. The adult rat 

heart has been reported to contain 30-40% CMs (Zak, 1974; Nag, 1980), and there are two 

conflicting estimations of the CM population in the adult mouse heart. In one study, ~56% 

of cardiac cells were determined to be CMs by flow cytometry (Banerjee et al., 2007), and 

in two others, ~30% of cardiac nuclei were reported to be CMs by immunohistochemistry 

(Raulf et al., 2015; Pinto et al., 2016), although if the binucleation of rodent CMs is taken 

into account, the latter estimate would be reduced to ~15% CMs. Furthermore, the 
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proportion of cardiac cell types, including CMs, ECs, fibroblasts, and VSMCs, also change 

during development (Banerjee et al., 2007).  

Isolating highly enriched populations of CMs is not trivial and different protocols are used 

for adult vs neonatal hearts. Currently, there is no universal method to isolate and purify 

rodent CMs from neonate through to adult hearts. The problem with having two different 

methods for neonatal and adult CM isolations is that they are not consistent and therefore 

experimental results may be less comparable. For example, the method for tissue digestion 

and the time taken (3-48 hours) to isolate and purify CMs from adult vs neonatal mice 

varies. In addition, an individual adult heart can be used for an independent biological 

replicate, whereas a number of neonatal hearts are pooled to provide a single biological 

replicate, which obviates the ability to evaluate biological variability between animals. 

Furthermore, protocols that require cell culture can lead to changes in gene expression and 

CM de-differentiation (Ehler et al., 2013). To preserve the in vivo status of CMs as closely 

as possible, a protocol that easily and rapidly results in purified populations of CMs from 

neonates through to adults, without cell culture, is required. 

To this end, my aim was to develop a standardised method that enables the rapid isolation 

and purification of viable CMs from hearts across all postnatal ages, within a comparable 

timeframe. Homogenous populations of CMs could then be used for RNA-Seq analyses to 

obtain cell type-specific information (Chapter 7). 
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6.2 Materials and Methods 

General Methods are described in Chapter 2 and animal use in Chapter 5. In this Chapter, 

preadolescence ascribes P10 and P13 to differentiate from neonatal mice.  

6.2.1 CM isolation, enrichment and purification from neonatal, 

preadolescent, and adult hearts 

Because we have perfected the technique of cannulating even neonatal hearts, we elected to 

isolate CMs from neonatal (P0-P3), preadolescent (P10 and P13) or adult (> P56) hearts by 

Langendorff retrograde perfusion with proteolytic enzymes to digest cardiac tissue. After 

enzymatic digestion of the extracellular matrix, the atria were removed and the ventricles 

were dissected into fragments, which were dissociated into a cell suspension by trituration 

using a pipette tip that had been trimmed to provide a large bore that easily accommodates 

CMs, which are much larger than other cell types in the heart. The heterogeneous cardiac 

cell suspension was then enriched for CMs by multiple low-speed centrifugations to 

separate the larger CMs into a pellet from the smaller non-myocytes, which remained in the 

supernatant and were discarded. This step was omitted for neonatal CMs, which are similar 

in size to non-myocytes. CMs were then purified by immuno-magnetic cell separation 

whereby non-myocytes were bound to magnetic beads pre-coated with antibodies against 

their cell surface proteins. The bead-bound non-myocyte fraction was then separated from 

CMs using a magnet, and the supernatant fraction containing CMs was collected by 

aspiration. This resulted in a large yield of viable and highly purified CMs (>90%) from a 

range of postnatal ages (neonatal to adult). This standardised method of CM purification can 

be utilised by other researchers, and hence, extensive details are provided below. 

6.2.1.1 Materials for cannulation and perfusion of the heart 

For the cannulation and perfusion of the murine heart, the following equipment and 

reagents were used: 
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Heparin (5000IU/5ml, cat. #: 02112115, Pfizer), isoflurane chamber and VetQuip Isotec 3, 

BD Falcon 15 and 50 ml tubes, Corning 500 ml filter system (0.22 µm), 1.5 ml microfuge 

tubes, surgical instruments (shown in Figure 6.1A), non-sterile 6.0 silk suture spool, 

cannulas (a 24 G gavage needle, blunted-end 30 G and 25 G needles), 2 ml syringe secured 

to a circular weighted board (approx. 8 cm), operating board, 70% ethanol, 18.2 Ω Milli-Q 

water, Langendorff perfusion system (shown in Figure 6.1C), and a digital thermometer 

probe. 

For the isolation and enrichment of CMs, the following equipment was used: 

Petri dish (60 x 15 mm), fine sharp scissors, fine straight forceps, transfer pipettes (1 ml and 

3 ml), sterile BD Filcon 200 µM cup filter, sterile BD Falcon 70 µM cell strainer, and a 

Neubauer haemocytometer (cat. #: AC1000, Hawksley). 

For the purification of preadolescent and adult CMs, the following equipment and reagents 

were used: 

Dynabeads Sheep Anti-Rat IgG, which are 4.5 µm superparamagnetic beads with affinity 

purified polyclonal sheep anti-rat IgG covalently bound to the bead surface (cat. #: 11035, 

ThermoFisher Scientific), rat anti-mouse CD31 Ab (cat. #: 550274, BD Biosciences), 

MagnaRack Magnetic Separation Rack (ThermoFisher), and 2 ml round-bottom microfuge 

tubes. 

For the purification of neonatal CMs, which are smaller and cannot be readily enriched, the 

following equipment and reagents were used: 

Neonatal Cardiomyocyte Isolation Kit (cat. #: 130-100-825, Miltenyi Biotec), MS columns 

(cat. #: 130-042-201, Miltenyi Biotec), and a MultiStand with an OctoMACS Separator 

Magnet (Miltenyi Biotec). 
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Figure 6.1: Surgical instruments and Langendorff apparatus used to cannulated and 
perfuse murine hearts 

A, surgical equipment used for the cannulation of the heart include (from left to right): 
tough cut straight sharp scissors, fine sharp scissors, mini forceps x2, blunted needles at 30 
G and 25 G, 24 G gavage needle, curved forceps x2, curved serrated forceps, and straight 
serrated forceps. B, murine hearts from the postnatal ages of P1, P10 and P70 (left to right) 
are mounted onto the Langendorff apparatus with a scale to show the differences in heart 
size. C, the Langendorff apparatus consists of a heating immersion circulator that regulates 
the temperature of the water bath, which is adjusted to maintain the perfusate at 37°C. The 
heated water is circulated through the insulating jacket of the heat exchanger. Buffers are 
incubated in the water bath and pumped through the coil of the heat exchanger by the 
peristaltic pump that controls the rate of perfusion. A pressure gradient in the heat 
exchanger is created by closing valve 1 (in the horizontal position) and opening valve 2 (in 
the vertical position), which allows the perfusate to circulate. A water-jacketed insulating 
organ bath is then moved upwards to encapsulate the mounted heart.  
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6.2.1.2 Buffers 

Perfusion (PB), digestion (DB) and transfer (TB) buffers were modified from Liao and Jain 

(2007) listed in Table 6.1. Chemical components for each buffer were dissolved in 18.2 Ω 

Milli-Q water and the pH was adjusted to 7.2 for PB and to 7.4 for TB. Buffers were filter-

sterilised using a Corning 500 ml filter system. Isolation buffer (IB) for use with Dynabeads 

comprised 0.1% BSA and 2 mM EDTA in PBS, which was adjusted to a pH of 7.4. IB used 

with the Neonatal Cardiomyocyte Isolation Kit (cat. #: 130-100-825, MACS Miltenyi 

Biotec) comprised 0.5% BSA and 2 mM EDTA in PBS, which was adjusted to pH 7.2 

(Table 6.1). IB and DB were freshly prepared at the start of the experimental day, whereas 

PB and TB can be stored for up to two weeks at 4°C. 
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Table 6.1: Buffers for CM isolation and purification 

Compound MW (g/mol) Stock conc. 
(M) 

Final conc. 
(mM) 

To add  
(ml or g) 

Supplier 

Perfusion buffer (PB), pH 7.2 
 

/L  

NaCl 58.44 5 135 27 ml Sigma 

KCl 1.98 1 4 4 ml Sigma 

MgCl2 203.30 1 1 1 ml Merck 

NaHPO4 
 

0.6 0.33 0.55 ml  

HEPES 238.31 

 

10 2.38 g Panreac 
Appli Chem 

BDM 101.10 
 

15 1.5 g Sigma 

Taurine 125.1 
 

5 0.63 g Sigma 

Glucose 180.16 
 

10 1.8 g Sigma 

Digestion buffer (DB), pH 7.2 
  

 

PB, pH 7.2    

Collagenase 
B   

0.3 mg/g 
 

Roche 

Collagenase 
D   

0.4 mg/g 
 

Roche 

Protease XIV 
  

0.05 mg/g 
 

Roche 

Transfer buffer (TB), pH 7.4 
 

/500ml  

NaCl 
 

5 135 13.5 ml  

KCl 
 

1 4 2 ml  

MgCl2 
 

1 1 0.5 ml  

NaHPO4 
 

0.6 0.33 0.275 ml  

HEPES 
  

10 1.19 g  

BDM 
  

15 0.75 g  

BSA 
  

5 g/ml 2.5 g  

Glucose 
  

10 0.9 g  

Isolation buffer (IB), pH 7.2 
 

/50 ml  
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PBS    

EDTA 372.2 0.5 2 200 µl Sigma 

BSA   0.5% 0.25 g  

MW, molecular weight 

To prepare the DB, the proteolytic enzymes collagenase B, collagenase D and protease XIV 

were added to PB at 0.3, 0.4 and 0.05 mg/g depending on the adult body weight (BW). 

Enzyme concentrations were empirically standardised for optimal heart digestion for each 

particular age. Thus, the minimum amount of enzyme required for a good quality CM 

preparation was determined for P0-P3 neonate hearts to be equivalent to the amount that 

would be used for a mouse with a BW of 5g, as listed in Table 6.3, and for P10-13 pups to 

be equivalent to the amount that would be used for a mouse with a BW of 8g. The total 

amounts of digestion enzymes required on any one day were calculated based on the total 

number of mice from which hearts were to be collected in that day. An example calculation 

is shown in Table 6.2, where the amounts of digestion enzymes were calculated for a litter 

of 6 pups aged P0-P3 for a mouse with a BW of 5 g. Enzymes were prepared as separate 

stock solutions by weighing each one separately into a 1.5 ml microfuge tube, and 

dissolving in 1 ml of PB. Individual DB aliquots were prepared for each mouse by adding 

enzyme stocks into PB, i.e., 16 ml of PB minus the required enzyme volumes for a pup, or, 

25 ml of PB minus the required enzyme volumes for an adult. The volume of DB used took 

into account the flow rate to standardise the overall time taken to perfuse pup and adult 

hearts (see Table 6.3). All buffers were kept at RT throughout the procedure. 
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Table 6.2: Preparing digestion buffer (DB) for neonatal hearts 

 
No. of 
mice 

Set 
BW 
(g) 

Total 
BW (g) 

Col B Col D P XIV 

(0.3mg/g 
BW) 

(0.4mg/g 
BW) 

(0.05mg/g 
BW) 

Litter of 6 pups  
(P0-3) 

6 5 30 
   

Stock conc. of 
enzymes (mg/ml)    

= 30 x 0.3  
= 9 

= 30 x 0.4  
= 12 

= 30 x 0.05  
= 1.5 

For one pup 1 5 5    

Conc. of enzymes 
per pup (mg)    

= 5 x 0.3  
= 1.5 

= 5 x 0.4  
= 2 

= 5 x 0.0.5  
= 0.25 

Vol. of stock to add 
to DB per pup (µl)    

= (1.59 / 9) 
x 1000  
= 167 

= (2 / 12) x 
1000  
= 167 

= (0.25 / 1.5) 
x 1000  
= 167 

Total vol. of DB 
buffer per pup (ml)    

16 

BW, body weight; Col B, Collagenase B; Col D, Collagenase D; P XIV, Protease XIV 

 

6.2.1.3 Extraction and cannulation of the heart 

The following steps were performed in preparation for the cannulation of the heart. A 

cannula of an appropriate size that is dependent on the heart size (see Table 6.3 and Figure 

6.1A) was attached to a 2 ml syringe filled with PB. The filled syringe-cannula was secured 

onto a circular weighted board to prevent movement of the cannula during the procedure. To 

ensure that no air bubbles entered the heart during perfusion, the cannula was primed with 

PB. A loop of 6.0 silk (~3 cm) was tied around the base of the cannula and set aside.  

Mice were heparinised by intraperitoneal injection (volumes listed in Table 6.3) to prevent 

blood coagulation, which would obstruct the perfusion of the myocardium through the 

coronaries. Surgical tools were surface sterilised with 70% ethanol. Twenty to thirty 

minutes after heparin administration, the mouse was euthanised by decapitation, cervical 

dislocation (CD), or isoflurane and CD, and immediately placed onto the operating board 

directly under a dissection microscope and was secured in a supine position with surgical 
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tape. The chest region was sterilised with 70% ethanol before a longitudinal incision was 

made above the diaphragm using small tough cut scissors and serrated forceps (surgical 

instruments are shown in Figure 6.1A). The thoracic cavity was exposed by cutting the 

lateral sides of the ribcage along with the skin, and the front of the ribcage was retracted and 

removed, exposing the heart. Surrounding tissues were removed including the lungs and the 

oesophagus, which was severed with a transverse cut. The heart was still attached to the 

aorta and via connective tissue to the thymus but was freed from other connective tissues. 

Cannulations were performed in situ whereby the heart was gently elevated by gripping the 

thymus with serrated forceps. Fine scissors were opened and placed horizontally underneath 

the heart at the back of the cavity, pressed against the posterior wall of the ribcage. The 

aorta was carefully isolated by cutting the connective fatty tissue that keeps the aorta in 

place along the spine, starting from the aortic arch down to the diaphragm. The aorta was 

then cut transversely so that approx. 0.5-1 cm of the ascending aorta remained intact. This 

aorta length was necessary to enable the successful cannulation of the smaller pup hearts as 

the aorta is very delicate and susceptible to breakage. The thymus and heart were released 

from the grip of the forceps and placed back into the open cavity. The operating board was 

rotated 90° clockwise so that the head of the mouse was to the left. The syringe-cannula was 

placed perpendicular to the mouse so that the tip was near the opening of the aorta. Under a 

dissection microscope, the aorta was drawn onto the cannula until the end of the cannula 

was approx. 1 mm above the aortic valves, using two fine forceps to grip either side of the 

aortic wall (fine curved forceps were used for adult and preadolescent aortae or fine mini 

forceps were used for neonatal aortae). This placement of the cannula enables retrograde 

perfusion of the heart, in which the leaflets of the aortic valve close, resulting in the 

perfusion of the myocardium via the coronary arteries. The aorta was then secured to the 

cannula by tying a silk suture twice around the tip, and the thymus and extraneous tissue 

were dissected away. The time taken to cannulate the heart after extraction was less than one 

minute.  
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Table 6.3: Detailed procedure for the purification of CMs from murine neonatal and 
adult hearts 

  P0-P3 P10-P13 Adult 

Heparin (1000IU/ml) 10 µl 20 µl 100 µl 

Incubation period after heparin 
injection (min) 

20-30 20-30 20-30 

Cannulation of the heart    

Euthanasia Decapitation CD 2-4% Isoflurane and 
CD 

Cannula 30 G blunt 
needle 

25 G blunt needle 24 G gavage needle 

Time taken to dissect, extract 
and cannulate the heart (min) 

3 3 3 

Perfusion of the heart    

Flow rate (ml/min) 1.5 2 3 

Volume of PB (ml) 4 6 9 

Time taken to perfuse with PB 
(min:sec) 

2:40 3 3 

BW per mouse for enzyme 
conc. calculation (g) 

5 8 BW 

Volume of DB (ml) 16 16 25 

Time taken for DB perfusion 
(min:sec) 

10:40 8:00 8:20 

Isolation of CMs    

Buffer for isolation Isolation buffer Transfer buffer Transfer buffer 

Filter (µm) 70 200 200 

Enrichment of CMs    

Centrifugation NA 55 g for 3 min (x3) 20 g for 3min (x3) 

Volume of buffer (ml) NA 8 10 

Purification of CMs    
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Method of purification Miltenyi 
Neonatal CM 
Isolation kit 

CD31 Ab conjugated 
to Dynabeads  

CD31 Ab conjugated 
to Dynabeads 

Volume of Ab-beads (µl) 10 12.5 25 

Incubation time with Ab-beads 
(min) 

15 15 15 

Total time taken for purification 
(min) 

18 18 18 

Total time taken from heart 
cannulation to purifying CMs 
(min) 

55 60 60 

P, postnatal day; CD, cervical dislocation; PB, perfusion buffer; BW, body weight; DB, 

digestion buffer; CM, cardiomyocyte; Ab, antibody. 

6.2.1.4 Perfusion of postnatal hearts 

The Langendorff apparatus was prepared at the beginning of each experimental day by 

cleaning the perfusate line with 70% ethanol (10 ml) followed by Milli-Q water (20 ml). 

The perfusion system was also cleaned with HCl (1M) and rinsed with Milli-Q water each 

month. Once cleaned, the heating immersion circulator was turned on and set to a 

temperature that maintains the perfusate at 37°C. This was monitored with a digital 

thermometer probe at the outflow nozzle below valve 2 (see Figure 6.1C). Prior to 

perfusion, the Langendorff apparatus was cleared with PB (30 ml) to remove air bubbles in 

the perfusate line, mainly in the coil of the heat exchanger. The Langendorff apparatus was 

then primed with PB and DB. Prior to the start of the experiment, the peristaltic pump was 

set to the appropriate flow rate (Table 6.3), which was determined according to the size of 

the heart (Figure 6.1B). 

Immediately after cannulation of the heart, the peristaltic pump was turned on to begin the 

flow of perfusate and the cannulated heart was mounted onto the Langendorff system at the 

outflow nozzle (Figure 6.1B & C). The pre-heated water-jacketed organ bath was moved 

upwards around the heart to maintain a warm environment. The heart was digested by 

retrograde perfusion with PB and DB for ~13 minutes (Table 6.3). PB was used to pre-clear 

the heart of blood from the coronary arteries, turning the cardiac tissue from red to white, 
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indicative of blood clearing, as well as the uniform perfusion, and thus, digestion of the 

heart. Towards the end of perfusion, TB was added to a petri dish at either 2 ml for 

preadolescent hearts or 3 ml for adult hearts (Table 6.3). For neonatal hearts, 2 ml of IB was 

added to a petri dish. The peristaltic pump was turned off immediately before the DB 

emptied to avoid the introducing air bubbles into the heart that would reduce cell viability. 

The water-jacketed insulating organ bath was then lowered and the atria were dissected 

away by cutting the atria-ventricular junction. The ventricles were collected into a petri dish 

containing TB or IB. 

6.2.1.5 Isolation of CMs 

Following the digestion of the heart, tissues were dissociated into a cell suspension 

containing isolated CMs. This was either carried out on the lab bench, or if CMs were to be 

cultured this was performed under sterile conditions in a biohazard hood.  

To dissociate the myocardium into a cell suspension, the ventricles of the heart were teased 

apart with fine scissors and sharp forceps into ~10 pieces in the petri dish containing TB or 

IB. Tissues were triturated by gently pipetting up and down 20-40 times using a 1 ml 

transfer pipette with trimmed tip to provide a large bore, and, thus, minimise mechanical 

shear stress. The cardiac cell suspension was then transferred from the petri dish into a 15 

ml Falcon tube. Cells were resuspended in buffer of a specified volume with either IB (3 ml) 

for neonatal preparations, or, TB for preadolescent (6 ml) or adult (10 ml) preparations. The 

cell suspension was then passed through a filter cup (filter sizes are detailed in Table 6.3) to 

remove any undigested clumps of tissue. Immediately prior to counting, cells were 

uniformly resuspended by gently pipetting and loaded onto a haemocytometer (10 µl). The 

number of CMs and percentage of rod-shaped CMs in each corner square of the grid were 

determined. Rod-shaped CMs are viable cells with an intact ultrastructure, whereas rounded 

cells with collapsed cell structures are dead, as identified by positive trypan blue staining 

(O’Connell et al., 2007; Louch et al., 2011). It was thus important to determine the yield 

and viability of the isolated CMs and only preparations with >60% rod-shaped CMs were 

used. In contrast, neonatal CMs are more robust and are usually round-shaped after isolation 

(Ehler et al., 2013). 
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6.2.1.6 Enrichment of preadolescent and adult CMs 

Preadolescent and adult CMs were enriched from cell suspensions by low-speed 

centrifugation to remove the smaller non-myocytes that remained suspended in the 

supernatant and were aspirated. This step was omitted for neonatal CMs because they are 

comparable in cell size to non-myocytes.  

Centrifugations to enrich for adult CMs were performed at 20 g for 3 minutes at RT, as 

previously detailed by O’Connell et al. (2007). Preadolescent (P10 and P13) CMs were 

smaller and optimisation of the centrifugal force was required. The number of CMs present 

in the supernatant vs pellet was assessed following centrifugation at different speeds. A 

centrifugal force of 55 g for 3 minutes at RT was determined to be optimal for preadolescent 

CMs as this resulted in a high yield of CMs in the pellet with minimal losses to the 

supernatant. After the first centrifugation, the supernatant was aspirated and cell pellets were 

resuspended in TB for preadolescent (6 ml) or adult preparations (10 ml), respectively. Cells 

were then centrifuged and washed two more times. Immediately prior to counting, cells 

were uniformly resuspended by gently pipetting and loaded onto a haemocytometer (10 µl). 

The number of CMs and percentage of rod-shaped CMs in each corner square of the grid 

were determined. 

6.2.1.7 Purification of preadolescent and adult CMs 

Preparations of enriched preadolescent and adult CMs were observed under a light 

microscope and showed there were ECs present, existing as single cells or as undigested 

threads or clumps that were separate from or attached to CMs. Immuno-magnetic cell 

separation was thus employed to remove these contaminating ECs (Figure 6.2). This 

technique is commonly used in other fields, particularly immunology. For immuno-

magnetic cell separation, Dynabeads (4.5µm superparamagnetic beads) covalently bound to 

purified sheep anti-rat IgG were pre-coated overnight with the EC-specific cell surface Ab, 

rat anti-CD31 Ab. 

In preparation for immuno-magnetic cell separation, Dynabeads (250 µl of 10x stock, 

sufficient for a total of 10 adult or 20 preadolescent preparations) were added to a 2 ml tube 
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and washed with IB (1 ml) and then the tube was placed onto the MagnaRack for 1 minute 

to allow beads to separate on the magnet, following which the supernatant was removed and 

discarded. CD31 Ab (100 µg, i.e., 10 µg of Ab was used for every 25 µl of original 10X 

Dynabead stock) was added to the Dynabeads, which were resuspended in a total volume of 

1 ml using IB. To conjugate the Ab to the beads, the mixture was incubated overnight at 4°C 

on a roller mixer. The Ab was then conjugated to the magnetic beads (Ab-beads), and stored 

at 4°C.  

Immediately prior to CM purification, the Ab-beads (100 µl for adult or 50 µl for 

preadolescent preparations) were aliquoted into a 2 ml tube. The Ab-beads were then 

washed with IB (1 ml) by placing the tube onto the MagnaRack for 1 minute after which 

excess non-conjugated Ab was discarded in the supernatant. This wash step was repeated 

two more times. Immuno-magnetic cell separation was performed by adding CM-enriched 

cell preparations (2 ml) to the pre-washed Ab-beads, which were incubated on a roller mixer 

for 15 minutes at RT. The supernatant containing the CMs (unbound cells) was collected 

after placing the tube onto the MagnaRack for 2 minutes, and transferred into a fresh tube 

that was placed onto the MagnaRack for a further 2 minutes. This was repeated once more 

to ensure the complete removal of EC-bound beads from the cell suspension. To increase 

the CM yield, some of the isolated CMs were trapped in the collection of EC-bound beads 

to the magnet in the original tube, and were subsequently recovered by washing the beads 

IB (2ml) twice. After each wash, the supernatant was transferred into a fresh tube on the 

MagnaRack, and this was repeated with a second tube on the MagnaRack, to ensure all EC-

bound beads were removed. After all the washes and transfers, the three supernatants 

containing purified CMs were combined into a 15 ml Falcon tube to a total volume of 6 ml 

for preadolescent and 8 ml for adult cell preparations. The bead-bound fraction was 

transferred into a separate 15 ml Falcon tube. Immediately prior to counting, CMs were 

uniformly resuspended by gently pipetting and loaded onto a haemocytometer (10 µl). The 

number of CMs and percentage of rod-shaped CMs in each corner square of the grid were 

determined. 
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Figure 6.2: Immuno-magnetic separation of ECs from CMs 

CM-enriched cell suspensions were transferred to a 2 ml tube containing Dynabeads pre-
coated with CD31 Ab, and incubated on a roller mixer for 15 minutes at RT. Immuno-
magnetic separation was used to remove bead-bound ECs from unbound CMs. The CM-
containing supernatant was transferred to a new tube, leaving behind the bead-bound ECs. 
This figure was adapted from the “Dynabeads Cell Separation Guide”. 

 

6.2.1.8 Purification of neonatal CMs 

Neonatal CMs were purified using the Neonatal Cardiomyocyte Isolation Kit (Miltenyi 

Biotec) that utilises an OctoMACS™ Separator magnet on a MultiStand.  

Neonatal CMs were purified as per the manufacturers’ instructions for the Neonatal 

Cardiomyocyte Isolation Kit. Briefly, isolated cells were centrifuged at 300 g for 5 minutes 

and the supernatant was aspirated and discarded. Cells were resuspended in cold IB (90 µl) 

and Neonatal Cardiomyocyte Isolation solution (10 µl) containing MicroBeads-conjugated 

to Abs against non-myocytes (the combination of Abs is proprietary information), and 

incubated for 15 minutes at 4°C with occasional mixing. During the incubation period, a MS 

column, containing ferromagnetic spheres in a matrix, was placed onto the OctoMACS 

magnet to apply a magnetic field (10,000-fold). The MS column was primed by applying 

cold IB (500 µl). After the incubation of cells and Abs, cold IB (500 µl) was added to the 
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cells, which were then applied to the MS column. Magnetically-labelled cells were retained 

in the column while the flow-through containing unlabelled CMs was collected into a 15 ml 

Falcon tube. To increase the yield of CMs, IB (500 µl) was applied three more times and the 

flow-through was collected each time. Non-myocytes, i.e. the magnetically-labelled cells, 

were collected separately by removing the column from the magnet and flushing the column 

with IB (1 ml) using a MS plunger. Immediately prior to counting, cells were uniformly 

resuspended by gently pipetting in IB (3 ml) and loading onto a haemocytometer (10 µl). 

The number of CMs and percentage of rod-shaped CMs in each corner square of the grid 

were determined. Trypan blue was initially used to assess cell viability but dye was 

routinely excluded from neonatal cells, indicating 100% cell viability. 

6.2.2 Histology 

For H&E staining of hearts and aortae see Chapter 3 (Section 3.2.8, staining with 

PicroSirius Red and Fast Green was omitted). 

6.2.3 Flow cytometry 

6.2.3.1 Fixing cells for flow cytometry 

Cell suspensions were fixed with 2% PFA for 5 minutes at RT. After fixation, cells were 

resuspended in PBS (10 ml) and centrifuged at 300 g for 5 minutes at RT. The supernatant 

was aspirated and the cell pellet was resuspended in PBS (1 ml) and stored at 4°C. 

6.2.3.2 Staining for flow cytometry 

Cell suspensions were washed with BD Perm/Wash Buffer (200 µl) twice by centrifugation 

at 300 g, and the supernatant was discarded. Cell pellets were resuspended in BD 

Perm/Wash Buffer (100 µl) and incubated for 10 minutes at RT. Cells were then centrifuged 

at 300 g for 3 minutes and the supernatant was discarded. The following steps were 
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performed in the dark. CMs were stained with the CM-specific cTnT Ab Alexa Fluor 647 

(cat. #: 565744, BD Pharmingen) that was diluted at 1:200 in BD Perm/Wash Buffer (100 

µl), and incubated for 30 minutes at RT in the dark. Samples were then washed with BD 

Perm/Wash Buffer (200 µl) two times by centrifugation at 300 g for 3 minutes and the 

supernatant was discarded. Cell pellets were resuspended in PBS and 0.1% BSA in FACS 

tubes at approx. ~50,000 cells per 100 µl. Nuclei were stained with propidium iodide (cat. #: 

81845, Sigma) at 1:100 (stock concentration:1 mg/ml), which was added 10 minutes before 

using the flow cytometer. An unstained control, using buffer without Ab, was also prepared 

in a similar manner to determine the gating strategy against each stained sample (i.e., non-

fluorescent samples vs the intensity of the fluorescent sample). 

6.2.3.3 Flow cytometry 

Tubes were loaded onto either a BD FACS Canto (BD Biosciences) or CytoFLEX 

(Beckman Coulter) flow cytometer. Nucleated cells were selected by gating those that were 

positive for propidium iodide, and CMs were selected by gating nucleated cells that were 

positive for cTnT. The gating strategy was determined by comparing the fluorescence 

intensity to unstained samples. Data were analysed and presented using FlowJo software. 

6.2.4 Immunocytochemistry 

Cell preparations were obtained after initial cell isolation, CM enrichment, and CM 

purification (including the bead-bound fraction) from each sample. 

Immunostaining of fixed cells secured onto slides was performed as follows. Slides were 

incubated with blocking buffer (3% BSA in PBS; 80 µl per slide) for 1 hour at RT, after 

which blocking buffer was removed by individually flicking slides. Cells were incubated 

overnight at 4°C with the primary Ab, mouse anti-cTnT (cat. #: ab10214, Abcam), diluted at 

1:400 in blocking buffer (80 µl per slide). Slides were washed in PBS twice and in lectin 

buffer (50mM Tris base, 0.87% NaCl, 0.02% MgCl2,0.01% CaCl2, pH 7.6) twice for 5 

minutes at RT on an orbital shaker. The following steps were performed in the dark. Cells 

were incubated for 1 hour at RT with the species appropriate secondary Ab, goat anti-mouse 
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IgG Alex Fluor 488, diluted at 1:1000 in blocking buffer, as well as an EC marker, Isolectin 

GS-IB4-568 conjugate, diluted at 1:100 (cat. #: I21412, Life Technologies), and the DNA 

dye TO-PRO-3, diluted at 1:1000 (cat. #: T3605, Life Technologies) that were mixed 

together and added at 80 µl per slide. Cells were washed in lectin buffer for 5 minutes on an 

orbital shaker (x3). Coverslips were secured onto each slide with PVA-DABCO mounting 

medium. Slides were then stored at 4°C. Stained cells were imaged on a confocal 

microscope at 25x or 40x magnification using the same settings for all samples (Axio 

Observer inverted microscope equipped with a LSM 710 confocal scan head, Zeiss). 

Multiple fields of view (10 or 15 fields) were joined using the tiling function and at least 6 

planes were summated using the z-stack function for each slide.  

6.2.4.1 Counting cell populations 

Cells were counted using ZEN software to select each nucleated cell that was: cTnT+ or 

IB4+ or cTnT- and IB4-, using the arrow tool, which records a tally. All cells were counted 

excluding those that were not wholly visible, i.e., if the whole of an individual cell was 

indistinguishable due to overlapping cells. The percentages of CMs, ECs, or other cell types 

were calculated as a proportion of the total number of cells from each sample.  
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6.3 Results 

6.3.1 Modification of the method for isolation and enrichment of adult 

CMs 

Our laboratory is experienced in producing freshly isolated preparations of enriched CMs 

that can be used for cell culture using the O’Connell  et al. (2007) method. This protocol was 

developed for measuring Ca2+ transients and contractility, and for biochemical assays that 

use freshly isolated adult CMs, as well as for biochemical assays and gene transduction that 

use cultured adult CMs. However, for transcriptomic analyses of CM gene expression 

profiles during cardiac growth (Chapter 7), it was essential to obtain freshly isolated, viable 

and highly purified populations of CMs without cell culture, from neonatal, preadolescent 

and adult hearts. Thus, the O’Connell et al. (2007) protocol was changed and adapted for 

this experimental end-point. 

The main issue with the O’Connell et al. (2007) protocol was the use of the crude enzyme, 

collagenase II (Worthington), for tissue digestion, as it is well-known to have high batch-to-

batch variation in enzymatic activity (Wolska and Solaro, 1996; Louch et al., 2011). This 

leads to inconsistencies in tissue digestion, which affects cell viability and requires batch-to-

batch optimisation. For this reason, I sought another protocol from Liao and Jain (2007), 

which uses a combination of three proteolytic enzymes that are more refined: collagenase B, 

collagenase D and protease XIV. These enzymes resulted in consistent tissue digestion and 

cell viability. A second issue of both the O’Connell et al. (2007) and Liao and Jain (2007) 

protocols was that they perform CM enrichment by sedimentation of these larger cells in 

parallel with Ca2+ re-introduction. Non-myocytes, which are smaller than CMs, are removed 

in the supernatant that is discarded and the cell pellet is resuspended in buffer with 

increasing concentrations of Ca2+, and this is repeated two more times. Although Ca2+-

tolerant CMs are used for other experimental end-points (such as measuring Ca2+ transients 

and contractility), it reduces cell viability and, thus, was omitted from this protocol. Thirdly, 

the sedimentation of CMs can be performed by low-speed centrifugation for 3 minutes 

(O’Connell et al., 2007), or by settling CMs into a pellet by gravity for 15 minutes (Liao 

and Jain, 2007). In this protocol, cells were centrifuged to ensure rapid isolation and 
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enrichment for CMs. Lastly, although both the O’Connell et al. (2007) and Liao and Jain 

(2007) protocols enrich for CMs, these fractions are contaminated with ECs that can be 

observed under a light microscope and by immunofluorescence (Figure 6.3). To remove 

ECs from enriched-CM fractions, I introduced a purification step using immuno-magnetic 

cell separation (see Section 6.3.4). 

 

 

Figure 6.3: Enriched CM fraction contaminated with ECs 

CMs were enriched for using the O’Connell et al. (2007) protocol, as detailed in Chapter 2, 
see Section 2.4. Cell membranes were stained with laminin (red) and DNA with DAPI 
(blue). ECs contaminate the CM-enriched preparation, and are present as undigested strings 
and clump together (white arrows). The scale bar is 100 µm. 
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6.3.2 Adapting the purification of CMs from adult hearts to neonatal 

and preadolescent hearts 

The procedure for cardiac tissue digestion by Langendorff retrograde perfusion, isolation 

and purification of CMs was optimised for adult hearts and then adapted for neonatal and 

preadolescent hearts. The size of the heart and aorta varies markedly between adults and 

pups. Histological sections of aortic rings and whole hearts show the relative differences in 

size (Figure 6.4). Thus, every parameter of the procedure, from the cannulation and 

Langendorff retrograde perfusion of the heart to CM purification, including concentrations 

of proteolytic enzymes, volumes of buffers, in situ cannulation techniques, sizes of the 

cannula, sizes of surgical instruments, perfusate flow rate, the centrifugational force, 

volumes of Ab-beads used for CM purification and the incubation period with the Ab-beads, 

was modified (see Table 6.3). Hence, appropriately sized cannulae and surgical instruments 

were used for cannulation and Langendorff perfusion of hearts. Furthermore, for effective 

tissue digestion the concentration of digestion enzymes was adjusted to a specific “body 

weight” that was empirically determined as 5 g for neonatal and 8 g for preadolescent pups. 

The total perfusion time of hearts was comparable between neonates, preadolescents, and 

adults, resulting in reproducible and consistent CM yields and viability. 
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Figure 6.4: Histological sections of aortae and hearts from neonatal, preadolescent and 
adult mice 

Histological sections of aortae (transversely sectioned at the level of the diaphragm) and 
hearts (sectioned coronally) from neonatal (P1), preadolescent (P10), and adult (P64) mice, 
were stained with H & E (DNA, blue; cell cytoplasm, red). 
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6.3.3 Characterisation of isolated and enriched CMs 

After enzymatic digestion of the heart by Langendorff retrograde perfusion, tissue fragments 

were teased apart and dissociated into a cell suspension by gently pipetting, thereby 

isolating CMs. The estimated yield of CMs isolated from hearts at each age was: ~1.2 x106 

at P2, ~1.4 x 106 at P10, ~1.6 x 106 at P13, and ~2.3 x 106 at P70 (also presented in Chapter 

7, Table 7.1). After CM enrichment by a series of low-speed centrifugations, the yield of 

CMs decreased by ~20%, ~17%, and ~12%, in P10, P13, and P70 cell preparations, 

respectively.  

During postnatal development, the proportion of cardiac cell types changed, whereby 58%, 

36%, 37%, and 51% of the cells isolated from the heart were CMs at P2, P10, P13, and P70, 

respectively. In addition, the proportions of ECs were 34%, 61%, 50%, and 39%, at P2, P10, 

P13, and P70, respectively. CM enrichment resulted in an increase in the proportion of CMs 

that were 56%, 52%, and 86%, of the total cell population in P10, P13, and P70 cell 

preparations, respectively. The CM enrichment step was omitted for P2 cell preparation due 

to the comparable size of CMs and non-myocytes that are not so easily separated by 

centrifugation.  

The average proportion of rod-shaped CMs, indicative of good cell viability, after cell 

isolation was 65-85% of CMs at P10 (Figure 6.8A), P13 (Figure 6.9A), and P70 (Figure 

6.10A), also shown in Chapter 7 (Table 7.1). Although neonatal CMs are usually round- 

rather than rod- shaped after cells are isolated from cardiac tissues that have been 

mechanically minced and sequentially incubated with proteolytic enzymes, a high 

proportion of neonatal CMs were rod-shaped (~50%) at P2 after cells were isolated by 

Langendorff perfusion and gentle trituration (Figure 6.5 and Figure 6.7A). Moreover, all 

neonatal cells excluded trypan blue, indicating 100% cell viability.  

Additionally, in situ fixing of hearts with 2% PFA immediately after Langendorff perfusion 

(instead of fixing only after producing the cell suspensions) yielded >95% rod-shaped CMs 

for all ages. Hence, when cells were fixed after tissues were dissociated into a cell 

suspension, the proportion of rod-shaped CMs was lower (Figure 6.5), as mentioned above. 

This indicates high cell viability following enzymatic digestion by Langendorff perfusion 
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that only decreases with the mechanical shear stress associated with gentle trituration, which 

is required to dissociate cardiac tissues into cell suspensions.  

 

 

Figure 6.5: The percentage of rod-shaped CMs that were fixed prior to the dissociation 
of cardiac tissue or after  

Cardiac cells were fixed prior to (in situ), or after the dissociation of cardiac tissues into 
isolated CMs by gentle trituration. The percentage of rod-shaped CMs was quantified for 
P2, P10, P13, or P70 preparations (n=2-4, 120-420 CMs per slide). Representative 
immunocytochemistry images of CMs fixed prior to dissociation are shown in Chapter 5 
(Figure 5.5) and those fixed after dissociation are shown in Figure 6.7A (P2), Figure 6.8A 
(P10), Figure 6.9A (P13), and Figure 6.10A (P70).  
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6.3.4 Characterisation of purified CMs 

Preadolescent (P10 and P13) and adult CMs were purified from enriched fractions by 

removing ECs using immuno-magnetic cell separation (Figure 6.2) with a CD31 Ab bound 

to Dynabeads. Neonatal CMs were purified from isolated cell suspensions by immuno-

magnetic cell separation using the Neonatal Cardiomyocyte Isolation Kit (Miltenyi Biotec), 

which employs magnetic beads bound to multiple Abs against non-myocytes. The 

proportion of rod-shaped CMs after purification remained at 65-85% for P10, P13, and P70 

(also presented in Chapter 7, Table 7.1), but decreased for P2 preparations to ~40%, 

although all P2 cells excluded trypan blue, indicating 100% cell viability. The estimated 

yield of purified CMs from heart at each age was: 9.3 x105 at P2, 6.3 x 105 at P10, 7.9 x 105 

at P13, and 1.6 x 106 at P70. After CM purification, there was an overall reduction in CM 

yield of ~23% , ~55%, ~51%, and ~30% in P2, P10, P13, and P70 cell preparations, 

respectively. 

Preliminary data was collected by flow cytometry to quantify the proportion of CMs that 

stained positively for cTnT after purification. The CM-specific cTnT Ab was diluted at 

1:200, resulting in the least overlap with an unstained control of cells from the same sample 

(Figure 6.6). Flow cytometry (Figure 6.6) indicated that there was a high proportion of CMs 

after purification of 96%, 91%, and 97% CMs from P2, P10, and P70 cell populations, 

respectively. However, this flow cytometric analysis did not provide quantitative or 

qualitative data for the EC population. If ECs were undigested and remained attached to 

CMs, they may be present in the gated cTnT+ cell population (Figure 6.6). 
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Figure 6.6: Flow cytometric analyses of purified neonatal, preadolescent, or adult CMs  

Serial dilutions of the cTnT Ab (1:10000, 1:2500, 1:500, and 1:200) were used to determine 
the appropriate Ab concentration for flow cytometry such that there is minimal overlap of 
the cTnT+ population with the unstained control of the cell population using the same 
sample. The purity of CMs after purification by immune-magnetic cell separation was 
evaluated by flow cytometry in CM preparations from P2, P10, and P70 hearts. Nucleated 
cells were identified with propidium iodide (PI) and CMs with cTnT (1:200). The gating 
strategy was established using the unstained control. 

  



 

155 

 

To account for the EC population, cell preparations were assessed by immunocytochemistry 

after CM isolation, enrichment, and purification (including the bead-bound fraction), from 

P2 (Figure 6.7), P10 (Figure 6.8), P13 (Figure 6.9), or adult hearts (Figure 6.10). CMs were 

stained with cTnT, ECs were stained with isolectin B4 (IB4), and DNA was stained with 

TO-PRO-3. The number of nucleated (TO-PRO-3+) CMs (cTnT+), endothelial (IB4+), and 

other cell types (cTnT- and IB4-), were counted and quantified as a percentage of the total 

number of cells (Figure 6.11). After purification by immuno-magnetic cell separation, the 

purity of CMs, quantified by immunocytochemistry, was 96%, 96%, 93% and 95% from P2, 

P10, P13 or P70 cell preparations, respectively. Following CM purification, the bead-bound 

fraction contained approximately 69%, 90%, 85%, and 85% of the ECs from P2, P10, P13, 

or P70 cell suspensions, respectively. The proportion of other cell types was very low 

(cTnT-, and IB4-) throughout the CM isolation, enrichment and purification procedure, 

although they did decrease after CM enrichment and purification (Figure 6.11). 
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Figure 6.7: Isolation and purification of P2 CMs 

Cells from P2 hearts were fixed and collected after isolation (A) or purification (B), and the 
bead-bound fraction (C) was collected (n=4, 10 fields of view per image at 25x). Cardiac 
cells were identified as CMs (TO-PRO-3+, cTnT+), ECs (TO-PRO-3+, IB4+), or other (TO-
PRO-3+, cTnT-, IB4-). Scale bar is 100 µm.   
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Figure 6.8: Isolation, enrichment and purification of P10 CMs 

Cells from P10 hearts were fixed and collected after isolation (A), enrichment (B) or 
purification (C), and the bead-bound fraction (D) was collected (n=4, 10 fields of view per 
image at 25x). Cardiac cells were identified as CMs (TO-PRO-3+, cTnT+), ECs (TO-PRO-
3+, IB4+), or other (TO-PRO-3+, cTnT-, IB4-). Scale bar is 100µm.  
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Figure 6.9: Isolation, enrichment and purification of P13 CMs 

Cells from P13 hearts were fixed and collected after isolation (A), enrichment (B) or 
purification (C), and the bead-bound fraction (D) was collected (n=3, 10 fields of view per 
image at 25x). Cardiac cells were identified as CMs (TO-PRO-3+, cTnT+), ECs (TO-PRO-
3+, IB4+), or other (TO-PRO-3+, cTnT-, IB4-). Scale bar is 100 µm. .  
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Figure 6.10: Isolation, enrichment and purification of adult CMs 

Cells from P10 hearts were fixed and collected after isolation (A), enrichment (B) or 
purification (C), and the bead-bound fraction (D) was collected (n=3, 15 fields of view per 
image at 25x). Cardiac cells were identified as CMs (TO-PRO-3+, cTnT+), ECs (TO-PRO-
3+, IB4+), or other (TO-PRO-3+, cTnT-, IB4-). Scale bar is 100 µm.   



 

160 

 

 

 

Figure 6.11: The proportion of CMs, ECs or other cell types quantified at various 
stages of the CM purification procedure 

Cardiac cells from P2 (n= 3, ~2000 cells per n), P10 (n=4, ~1500 cells per n), P13 (n=3, 
~1500 cells per n), or adult (n=3, ~1500 cells per n) hearts, were collected following the 
isolation, enrichment or purification steps, and the number of nucleated CMs (cTnT+), 
endothelial (IB4+), or other cells (cTnT-, IB4-) were quantified as a percentage of the total 
number of cardiac cells counted. 
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6.4 Discussion 

Here I have reported on the development of standardised methods to isolate and purify CMs 

from neonatal, preadolescent or adult hearts using Langendorff retrograde perfusion and 

immuno-magnetic cell separation. This involves in situ cannulation of the heart, enzymatic 

digestion of the myocardium, and subsequent isolation, enrichment and purification of CMs. 

Using this approach, a high yield of viable and pure CMs (~95%) is reproducibly obtained 

across a range of postnatal ages.  

The isolation and purification of CMs can be categorised into four steps that each require 

careful consideration: i) digestion of the heart by Langendorff retrograde perfusion, ii) 

dissociation of cardiac tissue into isolated CMs, iii) enrichment of CMs by removing non-

myocytes, and iv) purification of CMs by further removing non-myocytes. This procedure 

was developed and optimised for adult hearts, and was then adapted for neonatal and 

preadolescent hearts, which vary greatly in size (Figure 6.4). The advantage of this method 

is that neonatal, preadolescent and adult CMs are collected in a comparable timeframe of ~1 

hour from the time of euthanasia (Table 6.3). Optimisation took the following parameters 

into account: sizes of surgical instruments, in situ cannulation technique, cannula size, 

concentrations of proteolytic enzymes, perfusate volumes, perfusate flow rates, centrifugal 

forces required for CM enrichment, and immuno-magnetic cell separation (including the 

volume and incubation time with magnetic beads).  

The main consideration for CM isolation from neonatal and adult hearts was the large 

difference in size of the heart, CMs and aortae, between pups and adults (Figure 6.4). In 

addition, the aortae from P2, P10, and P13 pups are more delicate and, thus, more likely to 

tear than those of adults, hence the wide recognition of the technical challenges in 

cannulation and Langendorff retrograde perfusion of younger hearts (Ehler et al., 2013; 

Louch et al., 2011). This has resulted in two different methods being commonly used to 

digest heart tissues from neonatal vs adult mice. For the cannulation of adult hearts, most 

methods involve cutting the aorta just proximal to the aortic valve. The heart is then 

removed and placed into a petri dish containing ice cold buffer where it is cannulated ex 

vivo (Roth et al., 2014; Li et al., 2014a; Liao and Jain, 2007; O’Connell et al., 2007; Louch 

et al., 2011). The method described here performs cannulations in situ using most of the 

ascending aorta (0.5-1 cm), which is sufficient in length to guide the aorta onto the cannula. 
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This has enabled the cannulation of both pup and adult hearts to be successful. Once the 

heart is mounted onto the Langendorff apparatus, it is digested using proteolytic enzymes to 

break down the extracellular matrix. It is important at this step that hearts are not under- or 

over- digested so that CM structural integrity, cell yield or viability, are not compromised. 

Collagenase II is usually used in digestion buffers (Wolska and Solaro, 1996; Louch et al., 

2011), however, the batch-to-batch variation of enzyme activity requires optimisation to 

ensure consistent tissue digestions, cell yields and viability. This optimisation process leads 

to the use of extra animals, time, and reagents. An alternative digestion buffer using 

collagenase B, collagenase D, and protease XIV, according to the Liao and Jain (2007) 

method, provided consistent tissue digestion, cell yield and viability, relative to collagenase 

II (O’Connell et al., 2007). Moreover, both of these protocols were developed for adult 

hearts, and thus, all the parameters of Langendorff perfusion with proteolytic enzymes were 

tested to ensure consistent digestion of neonatal and preadolescent hearts.  

CMs were isolated after Langendorff retrograde perfusion by dissociating tissues into a cell 

suspension. Thereafter, the proportions of cardiac cells were quantified by 

immunocytochemistry (Figure 6.11), showing that the majority of isolated cells in the adult 

heart were CMs (51%) or ECs (39%). This is similar to the report of Banerjee et al. (2007) 

who estimated that 56% of adult cardiac cells were CMs by flow cytometry, but contrasts 

with others who estimated that ~30% of adult cardiac nuclei were CMs by 

immunohistochemistry (Raulf et al., 2015; Pinto et al., 2016). The main caveat for 

immunohistochemical analysis is that 20% of the nuclei were unaccounted for, and although 

~31% of nuclei were reported as CMs, rodent adult CMs are binucleated, which would 

mean only ~15% of cells were CMs. This work has found that the second major cell type in 

the adult heart was ECs and not fibroblasts, and hence on this issue, is in agreement with 

Pinto et al. (2016) but not Banerjee et al. (2007). The proportion of CMs and non-myocytes 

also changed during postnatal cardiac development, in that most P2 cells were CMs (58%) 

rather than ECs (34%), similar to that reported by Banerjee et al. (2007). At P10 and P13, 

the majority of cells were ECs (61% and 50%, respectively) and there were less CMs 

(~36%), however, Banerjee et al. (2007) reported that ~62% of cardiac cells were CMs and 

~18% were fibroblasts at P15. It is clear that the proportion of the various cardiac cell types 

changes during postnatal cardiac growth but determining the exact percentages does require 

further evaluation with more replicates and at least two methods of quantification. 
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Cell viability was assessed by the proportion of rod-shaped vs round CMs (Louch et al., 

2011; O’Connell et al., 2007; Liao and Jain, 2007). The range of viable preadolescent and 

adult CMs was 65-85% after both the isolation and purification steps, similarly reported by 

O’Connell et al. (2007) and Liao and Jain (2007). Most neonatal CM isolation protocols and 

commercial kits yield round CMs (Ehler et al., 2013) and, thus, it was a surprise that a high 

proportion of neonatal CMs were rod-shaped after Langendorff retrograde perfusion. The 

majority of neonatal CMs remained rod-shaped after purification through the magnetic 

column using the Neonatal Cardiomyocyte Isolation Kit. All neonatal CMs that were 

purified using this method excluded trypan blue dye, likely due to the more gentle digestion 

of heart tissue by coronary perfusion with digestion enzymes, which takes ~13 minutes, 

rather than mincing heart tissues with scissors and then incubating in digestion enzymes 

overnight and/or serial incubations for >15 minutes 5-8 times (Ehler et al., 2013; Louch et 

al., 2011). It was also clear that the physical dissociation of tissues by pipetting causes 

mechanical shear stress, resulting in a fewer proportion of rod-shaped CMs (Figure 6.5). 

This was evident after fixing cardiac cell in situ immediately after Langendorff perfusion 

followed by dissociating tissues into a cell suspension, which yielded a high proportion of 

rod-shaped CMs (>95%) from P2, P10, P13, and P70 hearts. Hence, the mechanical shear 

stress from gentle trituration reduces the proportion of rod-shaped CMs from >95% to 65-

85% (when cells were fixed after isolation), decreasing cell viability.  

Protocols and commercial kits for neonatal CM isolations are lengthy and use multiple 

hearts (5-15) that are pooled to increase CM yield. The use of multiple hearts per 

preparation does not allow use of independent biological replicates. One of the commercial 

kits (Pierce Cardiomyocyte Isolation Kit, Thermo Scientific) for CM isolation has reduced 

this time to 1 hour (without CM purification) and reports a yield of ~2 million neonatal CMs 

per 100 mg of tissue, which is reported to be a higher yield than other commercially 

available kits. In comparison, the protocol described here yields 1.2 million CMs per 

neonatal heart, which weighs approx. ~7 mg (Chapter 5, Table 5.2). This would be 

equivalent to 17 million CMs per 100 mg of tissue, which yields ~9-fold more CMs from a 

single heart. Therefore, the method detailed here is substantially higher than current 

protocols. The yield of adult CMs was 2.2 million CMs per adult heart, which was also 

higher by almost twice the number of CMs than the average 1.1-1.5 million CMs per adult 

heart that has been previously reported (O’Connell et al., 2007). Most protocols omit details 

of CM yield. Previous reports from our laboratory (Naqvi et al., 2014), are more 
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comparable to the CM yields reported in this work for the different ages, although they are 

reduced by ~2x105 CMs at P1, P10, and adult time points. This may be because in this study 

CMs were counted 1-2 times after each step of CM isolation, enrichment, and purification, 

to minimise delays in the length of process, and therefore, the yield is reported as an 

estimation. Another factor may be the choice of enzymes used for CM isolation, which was 

collagenase II in the O’Connell et al. (2007) protocol used by Naqvi et al. (2014), whereas 

this study used a combination of enzymes from the Liao and Jain (2007) protocol. In 

general, the estimated yield of neonatal, preadolescent and adult CMs in this study was 

higher than those reported previously. 

Careful consideration was given to the enrichment step, since CM size varies at different 

postnatal ages (see Chapter 5, Figure 5.5B and C). Low-speed centrifugations at 20 g 

enriches for adult CMs O’Connell et al. (2007). This was optimised for P10 and P13 CMs to 

55 g to minimise the loss of CMs in the supernatant that resulted in a 20% and 17% 

reduction in yield after enrichment, respectively. Because neonatal CMs are similar in size 

to non-myocytes, the enrichment step by centrifugation was omitted. Thus, it was difficult 

to distinguish with confidence round neonatal CMs from neonatal non-myocytes when 

counting cells under a light microscope, although round CMs appear to be more irregular in 

shape. Therefore, the yield of neonatal CMs is also an estimate. CM purity increased after 

enrichment by 15-20% in P10 and P13 isolated cardiac cell preparations, and by 35% in P70 

isolated cardiac cell preparations, however, contaminating ECs were still present (Figure 

6.3, Figure 6.8B, Figure 6.9B and Figure 6.10B). This is likely due to the incomplete 

digestion of ECs. ECs are usually isolated by incubating cardiac tissues with collagenase A 

for 45-60 minutes with continuous agitation (Jelonek et al., 2011). Perhaps an improvement 

to this protocol may be to incorporate the use of this enzyme provided the viability of the 

CM population is not compromised. 

Although cell culture is often used to improve the purity of adult and neonatal CMs by 

incubation for ~1-48 hours, it may lead to changes in gene expression and the de-

differentiation of CMs (Louch et al., 2011; Ehler et al., 2013). Employing immuno-

magnetic cell separation (< 20 minutes) rapidly purifies CMs without the need of cell 

culture to remove ECs from individual preadolescent and adult cardiac cell preparations, 

while the Neonatal CM Isolation Kit was used for individual neonatal cardiac cell 
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preparations. This resulted in a CM purity of ~95% that is consistent across the postnatal 

ages (Figure 6.10), as evaluated by immunocytochemistry (P2, 96%; P10, 96%; P13, 93%; 

and P70, 95%; Figure 6.11), and is comparable to the CM percentages determined by flow 

cytometry (Figure 6.6). In rats, Percoll gradients used to purify adult or neonatal CMs 

yielded similar purities of 90-95% (Maisch, 1981; Chlopcikova et al., 2001), however, CM 

purification using Percoll has been reported to be complicated and time-consuming (Louch 

et al., 2011; Chlopcikova et al., 2001). Purification of CM-enriched fractions from P10 and 

P13 hearts reduced the yield of CMs by ~30%. This may be due to a number of CMs that 

were trapped in the magnetic bead pellet, or, non-specific binding of CMs to magnetic 

beads. The first issue was addressed by washing the bead pellet a few times to release CMs, 

and the latter was partly addressed by reducing the volume of magnetic beads to half the 

amount used for adult preparations. Purification of CM-enriched fractions from the adult 

heart also resulted in a loss of ~18% CMs. Nevertheless, the yield and purity of CMs 

remained high, whereby the majority of contaminating ECs (~70-90%) were removed. 

Overall, immuno-magnetic cell separation is an easy and effective method to rapidly purify 

CMs. 

In summary, this protocol provides a standardised method that rapidly produces freshly 

purified CMs using Langendorff retrograde perfusion and immuno-magnetic cell separation 

from individual mouse hearts at any postnatal age. As evident from the studies shown in 

Chapter 7, the resulting homogenous and viable population of CMs provided high-quality 

input material for downstream profiling of CM transcriptomic signatures.  
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Chapter 7 Transcriptional profiles of CM maturation 

7.1 Introduction 

The postnatal murine heart grows rapidly, increasing in mass by ~3-fold between P10 and 

P35, commensurate with a similar increase in body weight over this period. However, heart 

(HW/BW) growth is rapid between P10 and P18, increasing by ~23%. During this period, 

serum T3 levels increase from P10 to P12, while the expression of mitosis-related genes 

decreases from P10 to P18, CMs enlarge between P10 and P13, and the proportion of 

binucleated CMs increases (a possible indicator of terminal differentiation) (Chapter 5). 

Thus, in addition to the time points of P2 and P70, which are characterised by highly 

proliferative neonatal or differentiated adult CMs (Li  et al., 1996; Clubb and Bishop, 1984; 

Naqvi et al., 2014; Porrello et al., 2011b), respectively, P10 and P13 are also pivotal time 

points for cardiac growth. Together, these four developmental time points span the key 

phases of postnatal CM growth that include CM division, enlargement, and terminal 

differentiation. Although the exact timing and determinants of these events are unclear, they 

are likely to be driven by changes in gene expression.  

In the past decade high-throughput sequencing technologies have become commercially 

available, and have enabled the discovery of novel genes, exons or splicing events as well as 

the quantitation of transcripts between different conditions or developmental stages 

(Morozova and Marra, 2008). RNA sequencing (RNA-Seq) is now more affordable and 

accessible, and is used to interrogate the transcriptome and the transcriptional changes that 

occur with CM maturation. Poly(A) RNA is most commonly used for RNA-Seq that 

captures protein-coding mRNA and a considerable number of long noncoding RNAs 

(lncRNAs) that are also polyadenylated, >200 nucleotides, and overlap with exons, introns, 

and intergenic regions (Ma et al., 2013) (Gao and Wang, 2014). The role of lncRNAs during 

development has not been established but distinct patterns of expression have been reported, 

relating to cell type and different stages of development (Batista and Chang, 2013; 

Matkovich et al., 2014). However, a couple of lncRNAs have recently been discovered and 

assigned a function in the heart to mediate cardiac hypertrophy (Wang et al., 2014; Viereck 

et al., 2016; Wang et al., 2016) and establish cardiac lineages in cardiac development 

(Klattenhoff et al., 2013). Another population of smaller noncoding RNAs are micro RNAs 
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(miRNAs), which are ~22 nucleotides and negatively regulate gene expression through post-

transcriptional regulation. Mature miRNAs bind to partially complementary mRNA 

sequences, usually in the 3’-untranslated region (UTR). This reduces the efficiency of 

translation, or leads to mRNA destabilisation through shortening of the poly(A) tail or 

mRNA cleavage (Lai, 2002). miRNAs have been implicated in stimulating or inhibiting CM 

proliferation (Porrello et al., 2011a; Katz et al., 2016; Eulalio et al., 2012; Liu et al., 2008; 

Liang et al., 2015; Zhao et al., 2007) and also in mediating cardiac hypertrophy (Wang et 

al., 2014).  

Cardiac gene expression datasets predominantly use input samples from hearts or CMs at a 

limited range of ages (embryonic, neonatal or adult), cultured CMs, or immortal CM cell 

lines. The major limitations of using such samples are that the results may be misleading 

due to the constraints of these models, whereby cell culture conditions (often used to purify 

CMs) may cause changes in the expression of genes, while cardiac tissues are heterogeneous 

containing a large proportion of cell populations that are non-myocytes. Hence, datasets 

from primary homogenous CM populations at specific postnatal stages of development are 

currently lacking. Therefore, a method to rapidly purify CMs at these time points was 

optimised (Chapter 6).  

This study describes the generation of RNA-seq datasets from purified CMs from neonatal 

(P2), preadolescent (P10 and P13) and adult (P70) mouse hearts, and provides an overview 

of the dynamic and complex changes in genes that are expressed over the course of CM 

maturation.  
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7.2 Materials and Methods 

7.2.1 Purification of CMs 

CMs were purified from individual mouse pups or adults from litters of 6-8, and three litters 

were collected per time point at P2, P10, P13 and P70. CMs were collected from mouse 

pups using the whole litter, regardless of gender, whereas P70 CMs were collected only 

from adult males due to differences in female and male cardiac growth after puberty (de 

Simone et al., 1995). CMs were isolated and purified by Langendorff retrograde perfusion 

and immuno-magnetic cell separation, as detailed in Chapter 6. Collecting a litter (i.e., 6-8 

animals) of hearts individually within a day was a time-consuming process, and so CMs 

were isolated and purified from two hearts in parallel to minimise the experimental duration. 

This involved cannulating and mounting two hearts within 5 minutes of each other onto 

separate Langendorff apparatus. Cells were re-suspended in PBS (100 µl) and stored at -

80°C, and one-quarter of each CM preparation was dedicated to RNA extraction. 

7.2.2 RNA extraction 

RNA was extracted using the miRNeasy Mini Kit (this kit contains RNeasy Mini Spin 

Columns, 1.5 and 2 ml Collection Tubes, QIAzol Lysis Reagent, RNAase-free water, RWT 

and RPE Buffers, cat. #: 217004, Qiagen Sciences) from 63 samples of purified CMs 

isolated from mice at the following ages: P2 (n=19), P10 (n=16), P13 (n=18), and P70 

(n=10). CM samples were kept on dry ice and were then rapidly thawed in QIAzol Lysis 

Reagent (600 µl) before homogenising for 3 seconds (x5) on wet ice; thereafter samples 

were incubated for 5 minutes at RT. Chloroform (140 µl) was added to each sample, which 

was mixed thoroughly and incubated for 2-3 minutes. Samples were centrifuged at 12,000 g 

for 15 minutes at 4°C to separate the phenol/chloroform solution into layers, whereby the 

upper aqueous layer, containing RNA, was carefully transferred to a new 1.5 ml microfuge 

tube at RT. To capture and bind RNA, each sample was mixed with 1.5 vol. of 100% 

ethanol (~450 µl) and applied to a silica-membrane contained within an RNeasy Mini 

column. The column was placed into a 2 ml collection tube, which was centrifuged at 8,000 

g for 15 seconds and the flow-through was discarded. This was repeated once more using 
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the remainder of the sample. Concentrated RWT and RPE Buffers were diluted with 100% 

ethanol to obtain a final volume of 67% and 80% ethanol, respectively. To remove residual 

contaminants (including phenol), the RNA-bound silica-membrane was washed with RWT 

Buffer (700 µl) and then washed with RPE Buffer (500 µl) by centrifuging at 8,000 g for 15 

seconds and the flow-through was discarded. In the final wash, RPE Buffer (500 µl) was 

added to the column, which was centrifuged at 8,000 g for 2 minutes and the flow-through 

was discarded. The column was transferred to a new 2 ml collection tube, which was 

centrifuged at maximal speed for an additional minute to dry the membrane. RNA was 

eluted by placing the RNeasy Mini column into a fresh 1.5 ml microfuge tube, and adding 

RNase-free water (30 µl) directly to the membrane, which was centrifuged at 8,000 g for 1 

minute and the RNA was collected in the microfuge tube. The eluted RNA was either placed 

on wet ice or stored at -80°C. All steps were performed at RT, unless otherwise stated. 

7.2.3 RNA concentration and quality 

The concentration and purity of RNA was assayed by adding RNA (2 µl) to a NanoDrop 

Spectrophotometer (ND-1000) and measuring UV absorbance at 260 nm and 280 nm. The 

concentration of RNA per sample was measured at 260 nm, as 1 OD260 unit is equivalent to 

40 µg/ml for single-stranded DNA and RNA. The purity of RNA per sample was measured 

using the absorbance ration of A 260 nm: 280 nm (A260/280), whereby A260/280 of 2 indicates 

pure RNA. Strong absorbance at 280 nm indicates potential contamination with protein or 

phenol. 

The concentration and quality of RNA was also assessed using the Agilent RNA 6000 Nano 

Assay and Agilent 2100 Bioanalyzer System, as per manufacturer’s recommendations. 

Briefly, gel, intercalating dye, RNA samples (100 ng as determined from the NanoDrop) 

and an RNA ladder, were added to channels of an RNA Nano Chip, which was vortexed for 

1 minute at 2400 rpm. The chip was loaded onto an Agilent 2100 Bioanalyzer, which uses 

microcapillary electrophoresis to record the size distribution of RNA molecules and assigns 

a RNA integrity number (RIN) based on an algorithm that uses multiple dimensions of the 

electropherogram using 2100 Expert Software; this algorithm takes into account the ration 

of ribosomal RNA of 28S:18S (Schroeder et al., 2006). RNA samples were given a RIN 

score between 1 (degraded RNA) and 10 (highest quality RNA). For RNA-Seq, a high RIN 
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(>8) is considered optimal (Sigurgeirsson et al., 2014); the average RIN score in this study 

was 8.9. 

The RNA concentration that was determined using NanoDrop, was a more conservative 

estimate than the Agilent assay, and thus, was used to calculate the amount of input RNA 

required for generating cDNA libraries. 

7.2.4 cDNA library construction from poly(A) and small RNA 

To minimise biological variability, equivalent amounts of RNA were taken from each CM 

sample in the same litter and pooled to generate one cDNA library per litter (n=3 litters per 

time point at P2, P10, P13, and P70). Hence, a total of 12 poly(A) cDNA libraries (1 µg of 

pooled RNA per library) were generated and 12 miRNA cDNA libraries were generated (1 

µg of pooled RNA per library). cDNA libraries from poly(A) RNA and miRNA libraries 

were constructed using the Total RNA-Seq v2 Kit (Life Technologies, cat. #: 4479789), 

please refer to the Ion Total RNA-Seq Kit v2 user guide for exact the quantities of the 

following reagents. 

7.2.4.1 Enrichment of poly(A) and small RNA 

Poly(A) RNA (including some lncRNAs) was purified from 1 µg of pooled RNA using 

Dynabeads mRNA DIRECT Micro Kit (that kit contains: Dynabeads Oligo (dT)25, 

Lysis/Binding Buffer, Washing Buffer A, Washing Buffer B and 10 mM Tris-HCl; Life 

Technologies; cat. #: 61021). Total RNA was heated at 70°C for 2 minutes and resuspended 

in Lysis/Binding Buffer that was transferred to a tube containing Dynabeads Oligo (dT)25. 

Samples were mixed thoroughly and incubated for 5 minutes at RT. This enables poly(A) 

RNA to bind to the oligo (dT)25 sequences covalently bound to magnetic beads. After 

separating the poly(A) bound magnetic beads with a magnet, other unbound contaminating 

RNA species (including ribosomal RNA and small RNA) present in the supernatant were 

removed. Beads were washed with Washing Buffers (A followed by B) and poly(A) RNA 

was eluted in Nuclease-Free Water (pre-heated to 80°C). The elution step was repeated once 
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more. The amount of poly(A) RNA recovered is assumed to be ~1% of total RNA, thus it is 

estimated that ~10 ng of poly(A) RNA was used in the following steps. 

Poly(A) RNA was enzymatically fragmented (to ~100 nucleotides) using the Total RNA-

Seq v2 Kit (Life Technologies, cat. #: 4479789). Briefly, poly(A) RNA samples were 

fragmented by incubating with RNase III and Reaction Buffer for 3 minutes at 37°C and 

then water was added. The fragmented poly(A) RNA was then purified by adding Nucleic 

Acid Binding Beads and Binding Solution Concentrate into the 1.5ml microfuge tube, 

which was incubated for 5 minutes at RT. Bead-bound poly(A) RNA fragments were 

separated with a magnet and the supernatant was discarded. Bead-bound poly(A) RNA 

fragments were incubated for 30 seconds at RT in Wash Solution Concentrate (80% 

ethanol), which was then carefully removed and discarded after separation with a magnet. 

The bead-bound poly(A) RNA fragments were air-dried for 1 minute. Fragmented poly(A) 

RNA was then eluted from the beads in Nuclease-Free Water (pre-heated to 37°C) and 

incubated for 1 minute at RT, after which RNA samples were placed on ice. To check for a 

consistent size of fragments (100-200 nucleotides), samples were loaded onto an Agilent 

Pico Chip (Agilent RNA 6000 Pico Kit) and analysed using the Agilent 2100 Bioanalyzer 

System (see Section 7.2.3). Small RNA was similarly enriched using Nucleic Acid Binding 

Beads as per manufacturer’s instructions (Ion Total RNA-Seq Kit v2), but the fragmentation 

step was omitted for small miRNA. Both poly(A) RNAs and small RNAs were concentrated 

from a volume of 10 µl to 3 µl using a Concentrator for 5-10 minutes at 60°C that were then 

used to generate cDNA libraries. 

7.2.4.2 cDNA library construction 

Poly (A) RNA fragments or small RNA were hybridized at the 3’ and 5’ ends to double-

stranded adaptors (specific DNA sequences). To do this, a hybridization master mix (Ion 

Adaptor Mix v2 and Hybridization Solution) was prepared on ice and added to RNA 

samples. The solution was mixed by trituration, briefly centrifuged and incubated on a 

thermocycler for 10 minutes at 65°C, and then for 5 minutes at 30°C for poly(A) RNA or 

16°C for small RNA. Samples were placed on ice and 2x Ligation Buffer and Ligation 

Enzyme Mix were added to each sample, and mixed by trituration. Samples were incubated 

for 1 hour at 30°C for poly(A) RNA or at 16°C for small RNA overnight on a thermocycler. 
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To perform reverse-transcription (RT), RT master mix was prepared on ice using Nuclease-

Free Water, 10x RT Buffer, 2.5 mM dNTP Mix, and Ion RT Primer v2. RT master mix was 

added to the ligated RNA sample, which was mixed by vortexing and centrifuged prior to 

incubating at 70°C for 10 minutes on a thermocycler. After incubation, 10x SuperScript III 

Enzyme Mix was added to the ligated RNA sample, which was mixed by vortexing and 

centrifuged briefly prior to incubating at 42°C for 30 minutes.  

To purify cDNA, cDNA samples were mixed with Nuclease-Free Water and transferred to 

PCR tubes containing Nucleic Acid Binding Beads and Binding Solution Concentrate that 

were mixed thoroughly by trituration. cDNA bound to the beads after adding ethanol 

(100%) and mixing samples thoroughly by trituration that were then incubated for 5 minutes 

at RT. Bead-bound cDNA was separated on a magnet for 5 minutes and then the supernatant 

was discarded. Wash Solution Concentrate was added to the samples while on the magnet 

and incubated for 30 seconds at RT, and then the supernatant was discarded. The samples of 

bead-bound cDNA were air-dried on the magnet for 1 minute. To elute the cDNA from the 

beads, PCR tubes were removed from the magnet and Nuclease-Free Water (pre-heated to 

37°C) was added to each sample, which was mixed thoroughly by trituration and incubated 

for 1 minute at RT. Samples were placed on the magnet for 1 minute and the beads were 

separated from the eluted cDNA, which was collected in the supernatant into a new PCR 

tube. 

To amplify barcoded cDNA libraries, a PCR mixture was prepared with Platinum PCR 

SuperMix High Fidelity and Ion Xpress RNA 3’ Barcode Primer. cDNA samples were 

transferred to new PCR tubes and the PCR mixture was added to the each sample. A unique 

Ion Xpress RNA-Seq Barcode BC primer (ranging from BC01-B016) was added to each 

cDNA sample that was then mixed by trituration and briefly centrifuged. PCR was carried 

out by placing the samples in a thermocycler and incubating with the following PCR 

conditions: hold at 94°C for 2 minutes; 2x cycles of 94°C for 30 seconds, 50°C for 30 

seconds, 68°C for 30 seconds; 16x cycles for poly(A) RNA or 14x cycles for small RNA of 

94°C for 30 seconds, 62°C for 30 seconds, 68°C for 30 seconds; hold at 68°C for 5 minutes. 

The amplified cDNA was purified with Nucleic Acid Binding Beads using the same method 

as detailed in the previous paragraph.  
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The yield of cDNA was measured using an Agilent High Sensitivity DNA Chip (Agilent 

High Sensitivity DNA Kit) on an Agilent 2100 Bioanalyzer System (see Section 7.2.3). 

Barcoded samples were diluted to 1000 pM and pooled, and the pooled sample was diluted 

to 100 pM, of which 10 µl of cDNA was used for sequencing. cDNA libraries were sent to 

the Genomic Core Facility at the Victor Chang Cardiac Research Institute for sequencing 

using the Ion Torrent Proton System.  

Gel size selection was performed after cDNA amplification of small RNAs to remove 

primer dimers. Samples were separated by electrophoresis on a 10% urea polyacrylamide 

gel and cDNA of 100-120 nucleotides was excised and eluted overnight in gel elution buffer 

at 4°C. On the following day, cDNA was then ethanol-precipitated.  

7.2.5 Alignment of reads and gene counts 

Sequenced reads were aligned or mapped to the mouse reference genome (version mm10) 

using the Torrent Suite software’s RNA-Seq plugin, which uses STAR and Bowtie 2 

aligners. Gene counts represent the expression value of each gene (i.e., the number of reads 

that uniquely aligned to a reference gene), which were generated for poly(A) libraries using 

HTSeq software from the RNA-Seq plugin. This plugin also uses a Picard tool that provides 

the RNA alignment metrics (including the distribution of uniquely aligned reads that 

overlap with coding or intergenic bases etc.) for quality control assessment of the 

sequencing data output.  

Small RNA-Seq data are not compatible with the RNA-Seq plugin, and therefore, small 

reads were aligned to the mouse reference genome (version mm10) using the Bowtie aligner 

and counts were generated using miRspring tools (Humphreys and Suter, 2013).  
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7.2.6 Analyses of RNA-Seq data 

The following data analyses were performed using R (v 3.2.3) and R Studio software.  

Gene counts of unique reads that were assembled using HTSeq were imported into R, and 

from here onwards this output is referred to as raw counts. Principle component analyses 

(PCA) were performed using raw counts for an unbiased analysis of the variance and 

correlation of genes between time points. The raw count dataset was normalised to the size 

of each library, which range between ~14 and 19 million coding reads per library, and the 

normalised count data was used to compare the expression or counts per million (cpm) of 

specific genes of interest across time points.  

The number of differentially-expressed (DE)-mRNAs were calculated using VOOM 

analysis tools (Law et al., 2014) with a minimum of 2 cpm per gene in at least 3 samples 

(25% of the 12 datasets). The threshold for a DE-mRNA was determined as genes with a 2 

fold-change in expression (≥2 fold, up-regulated; or ≤-2 fold, down-regulated) that were 

statistically significant with an adjusted p-value of <0.05. DE-mRNAs were determined 

using VOOM by pairwise comparisons of: 2 vs 10, 10 vs 13, 13 vs 70, 2 vs 13, 2 vs 70, and 

10 vs 70, which were all combined to establish the total number of DE-mRNAs. 

7.2.7 Functional biological category analyses of differentially expressed 

(DE)-mRNAs 

The following data analyses were performed using R (v 3.2.3) and R studio software.  

The cpm of DE-mRNAs was normalised across time points by assigning a z-score. 

� =
� − �

�
 

where � is the cpm, and µ and σ are the mean and standard deviation of the population, 

respectively.  
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DE-mRNAs were clustered by the k-means clustering algorithm, which identifies genes 

with similar patterns of expression across the time course using the z-score value. These 

clustered patterns of gene expression are presented as a heatmap. Each cluster of genes was 

enriched for functional biological categories that were statistically significant using Fisher’s 

exact test (p<0.001). A knowledgebase of functional biological categories for murine genes 

was kindly provided by Dr Joshua Ho (O'Connell et al., 2012), and draws upon multiple 

databases including: gene ontology terms, Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways, MouseCyc pathways, Mouse Genome Informatics (MGI) mouse 

phenotype–associated genes, Functional Annotation of the Mammalian Genome 4 

(FANTOM4), and mouse tissue-specific transcription factor gene sets.  
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7.3 Results 

7.3.1 Characterisation of CM inputs for RNA-Seq 

CMs were isolated and purified from individual pups (P2, n=19; P10, n=16; and P13, n=18) 

or adult male mice (P70, n=10) by Langendorff retrograde perfusion and immuno-magnetic 

cell separation using litters of 6-8 mice (n=3 litters per time point). These samples were 

used for RNA-Seq experiments as detailed in Table 7.1, which includes: the average BW of 

mice, CM yield, CM viability, RNA yield, RNA A260/280 ratio, and the RIN score per time 

point. The RNA yield was obtained from one-quarter of the purified CM samples; and thus, 

the estimated amount of RNA per CM cell is: ~5 pg/cell, 9 pg/cell, 16 pg/cell and 25 pg/cell 

at P2, P10, P13, and P70, respectively. The RNA yield at the later time points was higher 

than the average amount for a mammalian cell of 10 pg/cell (Tang et al., 2011). 

Furthermore, the average RIN score was ~8.9 across all samples, indicating high quality 

RNA that was not degraded. 

 

Table 7.1: CM input samples for RNA-Seq 

    Isolated CMs Purified CMs         

P 
BW 
(g) CM yield 

Rod- 
shaped 
CMs (%) CM yield 

Rod- 
shaped 
CMs (%) 

RNA 
(µg) 

260/2
80 
ratio 

RIN 
score n 

2 1.83 1.35x106 51 0.98x106 39 1.7 1.94 8.9 19 

10 5.43 1.42x106 70 0.63x106 70 3.3 1.98 9 16 

13 6.62 1.55x106 68 0.79x106 66 6.2 2.04 8.7 18 

Adult 26.56 2.22x106 71 1.56x106 69 14.2 2.07 8.8 10 

P, postnatal age (days) 
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7.3.2 Alignment of unique reads 

As expected, the majority of uniquely aligned reads (reads that did not align to more than 

one area of the genome, i.e., a “multi-mapper”) were either in exons (~60%) or UTRs 

(~25%), thus, mostly aligning to coding regions (Figure 7.1). A much smaller proportion of 

reads aligned to intergenic and intronic bases. In total there were ~14-19 million single-end 

reads per sample that mapped to coding regions with an average length of ~100 nucleotides.  

 

 

Figure 7.1: The distribution of unique poly(A) reads to the reference genome from 
CMs across postnatal cardiac development 

Poly(A) libraries were generated from CMs purified from P2, P10, P13 and P70 C57BL/6J 
litters (n=3 litters per time point). The majority of unique reads aligned to coding and 
untranslated region (UTR) bases, while a smaller proportion aligned to intergenic and 
intronic bases, and a minimal number of reads aligning to ribosomal bases. 
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7.3.3 Distinct transcriptional profiles of postnatal CMs  

Unbiased principal component analyses (PCA) were performed on mRNAs, lncRNAs, and 

miRNAs for each sample to assess the variance and correlation between biological 

replicates and time points. PCA plots (Figure 7.2) of mRNA, lncRNA, and miRNA datasets, 

showed biological replicates were grouped together in each time point and separated along 

the PC1 axis in order of developmental age: P2, P10, P13, and P70. The most closely related 

time points were P10 and P13, while P2 and P70 separated from P10 and P13 time points on 

the PC2 axis. Altogether, these CM datasets indicate biological replicates were highly 

reproducible and have distinct transcriptomic profiles along the postnatal trajectory of 

cardiac growth.  
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Figure 7.2: Principle component analyses (PCA) of mRNA, lncRNA and miRNA, from 
CMs across postnatal cardiac development 

Unbiased PCA plots of mRNA, lncRNA and miRNA, from purified CMs show biological 
replicates grouped together and separated time points according to postnatal age during CM 
maturation (P2, P10, P13, and P70, n=3, except for P10 miRNA replicates, where n=2). 
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7.3.4 Identifying DE-mRNAs in CM maturation 

Prior to identifying DE-mRNAs, it was important to filter out the lowly abundant reads (i.e. 

the noise) from the datasets. The majority of genes fall within a normal distribution between 

2 and 10 counts per million (cpm). A smaller proportion of genes have counts greater than 

10 cpm. The remaining genes at the far left of the histograms in Figure 7.3A had 0 cpm or 

low abundance (< 2 cpm), and thus, a threshold of 2 cpm was set to filter out potential noise. 

DE-mRNAs were identified using VOOM analyses, and the criteria for robust changes in 

gene expression was ≤ -2 or ≥ 2 fold-change with statistical significance using an adjusted 

p-value < 0.05, as shown in the volcano plots in. The proportion of DE-mRNAs after 

applying the fold-change and statistical significance criteria are shown in volcano plots, 

whereby DE-mRNAs are presented as orange coloured data points (Figure 7.3B). There 

were fewer DE-mRNAs identified at P10 vs P13 compared with P2 vs P70 (Figure 7.3B). 

The total number of up- or down-regulated DE-mRNAs for each pairwise comparison (i.e., 

P2 vs P10, P2 vs P13, P2 vs P70, P10 vs P13, P10 vs P70, and P13 vs P70) is shown in 

Figure 7.3C. Overall, a higher proportion of DE-mRNAs were down-regulated than up-

regulated during postnatal cardiac development (~60%). 
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Figure 7.3: The number of DE-mRNAs from CMs across postnatal cardiac growth 
were determined using cpm, fold-change, and statistical significance criteria  

A, the distribution of gene counts from poly(A) libraries constructed from P2, P10, P13, and 
P70 CMs, with a threshold of >2 cpm to exclude genes with very low abundance from 
subsequent DE-mRNA analyses. B, volcano plots of genes to determine DE-mRNAs for 
P10 vs P13 and P2 vs P70, using the criteria of log2 fold-change (≤ -2 or ≥ 2) and –log10 of 
the adjusted p-value (<0.05). DE-mRNAs are represented as orange data points, while 
mRNAs that do not meet the criteria are represented by grey data points. C, the number of 
DE-mRNAs that are up (red)- or down (blue)- regulated between different pairwise 
comparisons. P, postnatal age (days)  
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7.3.5 Expression levels of cardiac cell-type specific markers in purified 

preparations of CMs 

To ensure the preparations of CMs represent mostly CM mRNAs, cell type-specific markers 

that are well-defined for CMs (Myh6 and Tnnt2), ECs (Pecam1 and Vcam1), and fibroblasts 

(Ddr2 and Vim), were assessed to confirm the purity of CMs for each time point. The 

expression of CM markers was higher at all of the time points compared with non-myocyte 

markers (Figure 7.4), and were statistically significant (see Appendix A).  

 

Figure 7.4: Expression of cardiac cell markers in purified CMs 

Expression levels of mRNAs (cpm) for cardiac cell type-specific markers are shown in 
preparations of purified CMs from P2, P10, P13, or P70 mice (n=3 litters per time point). 
CMs (Myh6 encodes α-MHC; Tnnt2 encodes cTnT), ECs (Pecam1 and Vcam1), and 
fibroblasts (Ddr2 encodes discoidin domain receptor tyrosine kinase 2; Vim encodes 
vimentin).  
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7.3.6 Expression of developmental and growth signals across postnatal 

CM maturation 

The expression of genes relating to the cell cycle, physiological hypertrophy, and some TFs 

were evaluated. The expression of the mitosis-related genes that were evaluated in cardiac 

ventricles (Chapter 5, Figure 5.4) were also determined in purified CMs (Figure 7.5A). The 

abundance of these cell cycle mRNAs progressively decreased from P2 to P70 in purified 

CMs, with the exception to Rb1 (Figure 7.5A). This panel of cell cycle genes included E2f1, 

which is a TF that positively regulates the cell cycle (Ahuja et al., 2007) and its reduced 

expression correlates well with the downward trend in the expression of cell cycle genes 

(Figure 7.5A). Most of the mitosis-related genes were statistically significant between P2 vs 

P13 CMs and P2 vs P13 CMs (see Appendix B). The expression levels of Rb1, which 

negatively regulates the activity of E2f1, were steady throughout development and did not 

change with E2f1 expression.  

Cardiac growth signals were also assessed, including Igf1and TH-related genes, which are 

both associated with CM proliferation and physiological hypertrophy, i.e., the 

IGF1/PI3K/Akt pathway. Igf1, Igf1r, Pi3kca, and Akt1 mRNAs, were more abundant in 

neonatal CMs (P2) and significantly decreased over the time course of CM maturation 

(Figure 7.5B). Moreover, while the expression of Thrb (TRβ) increased significantly, Thra 

(TRα) progressively decreased in CMs across postnatal development (Figure 7.5B). Most 

growth signals were statistically significantly different across the time course of CM 

maturation, see Appendix B. 

Finally, TFs that have an established role in embryonic cardiac development (Nkx2-5, 

Gata4, and Mef2c), hypertrophy (Nfatc4), and CM differentiation (Meis1), were determined 

in CMs across postnatal cardiac growth. In general, the expression of TFs decreased 

significantly during CM maturation (Figure 7.5C), mainly between P2 vs P10, P2 vs P13, 

and P2 vs P70 (see Appendix B for statistical analyses). In addition, the expression of Kit 

mRNA (encoding c-Kit) was very low in CMs at all postnatal ages (P2, ~1.4 cpm; P10, ~1 

cpm, P13, ~1 cpm; and P70, ~0.1 cpm).  
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Figure 7.5: Expression of developmental and growth signalling genes in CMs purified 
over the course of postnatal cardiac development  

Expression levels (cpm) of cardiac developmental and growth signalling mRNAs in purified 
CMs from mice aged P2, P10, P13, and P70 (n=3 litters per time point). A, cell cycle genes: 
anillin (Anln), aurora kinase A (Aurka), survivin (Birc5), cyclin B1 (Ccnb1), Ki67 (Mki67), 
polo-like kinase 1 (Plk1), E2 promoter binding factor 1 (E2f1), and retinoblastoma (Rb1); B, 
growth signals: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (Pi3kca), 
serine/threonine kinase 1 (Akt1), insulin-like growth factor 1 (Igf1), insulin-like growth 
factor 1 receptor (Igf1r), thyroid hormone receptor β (Thrb), thyroid hormone receptor α 
(Thra); C, TFs: NK2 homeobox 5 (Nkx2-5), Gata4, myocyte enhancer factor 2 (Mef2c), 
nuclear factor of activated T cells (Nfatc4), and meis homeobox 1 (Meis1).  
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7.3.7 Functional biological category analyses of DE-mRNAs  

The total number of DE-mRNAs from all pairwise comparisons of time points (P2, P10, 

P13, and P70) across postnatal CM maturation was ~3,800 (with ≤-2 or ≥2 fold-change in 

expression; adjusted p-value <0.05). DE-mRNAs were clustered into seven unique patterns 

of expression by k-means clustering presented in a heatmap using the z-score (Figure 7.6). 

The expression profiles of all the DE-mRNAs were similar across biological replicates for 

each time point, further validating the high reproducibility of these datasets. Each cluster of 

DE-mRNAs has a defined pattern expression, shown below the heatmap as line graphs in 

Figure 7.6. The number of DE-mRNAs that were clustered together is shown beside the 

heatmap, and were associated with multiple functional biological categories (O'Connell et 

al., 2012). For example, cluster 4 represents genes that steadily decreased from P2 to P13 

and then declined more rapidly from P13 to P70 that are involved in cell cycle pathways and 

mitosis (Figure 7.6). Thus, these DE-mRNAs may identify biological processes and 

pathways that correlate with CM proliferation, enlargement and terminal differentiation 

during postnatal cardiac growth.  



 

186 

 

 

Figure 7.6: Heatmap of clustered DE-mRNAs reveal functional biological categories 
that associate with key developmental time points in postnatal CM maturation 
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Figure 7.6: Rows correspond to DE-mRNAs (3,800 DE-mRNAs; ≤ -2 or ≥ 2 fold-change; 
p<0.05) clustered by the k-means algorithm and presented as a heatmap. Columns represent 
CM samples from different postnatal time points (P2, P10, P13, and P70, n=3 litters per 
time point). The z-score scale bar indicates low expression (blue) to high expression (red) of 
DE-mRNAs, which clustered into seven unique patterns of gene expression. The number of 
DE-mRNAs in each cluster and their associated functional biological categories are 
annotated to the right of the heatmap. The defined patterns of gene expression that 
correspond to each cluster are shown in separate line graphs (using the z-score) below the 
heatmap.   
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7.4 Discussion 

This chapter describes the transcriptional profiles of purified CMs over the course of 

postnatal cardiac development. CMs were rapidly purified from three litters per time point 

(P2, P10, P13, and P70) and high quality total RNA was extracted with an average RIN 

scores of ~8.9 (Table 7.1). Poly(A) and small RNA libraries were constructed and 

sequenced. The purity of CMs using the purification method developed in Chapter 6 was 

further evident by the very low expression of non-myocyte mRNAs (ECs and fibroblasts) 

relative to CM mRNAs (Figure 7.4). Unbiased PCA of mRNAs, lncRNAs, and miRNAs, 

identified the variance and correlation of genes expressed in each library, grouping 

biological replicates together and separating time points in order of postnatal age (Figure 

7.2), demonstrating high reproducibility. A further indication of this was shown in the 

heatmap of DE-mRNAs, whereby gene expression profiles of biological replicates were 

nearly identical at each time point (Figure 7.6). Thus, these dataset show that the high 

quality input RNA from purified CMs used for sequencing yielded highly reproducible 

transcriptomic signatures that were distinct at time points across postnatal cardiac growth. 

The RNA-Seq experiment was designed to capture the transcriptome across key 

developmental time points at P2, P10, P13, and P70. RNA was prepared from CMs from 

littermates (born into litters of 6-8) that was then pooled per biological replicate at each time 

point. The combination of methods had the following advantages: i) litters of 6-8 mice were 

used to reduce biological variation in cardiac growth; ii) CMs were collected from all pups 

in a litter to minimise bias (e.g., instead of selecting an individual small/large pup from a 

litter); and iii) fresh CMs were purified rapidly. Of note, adult male CMs (i.e. P70) were 

pooled separately from adult females (these will be sequenced at a later time) since there are 

sex-related differences in cardiac growth and morphology after puberty (de Simone et al., 

1995). Altogether, these considerations are likely to have contributed to the highly 

reproducible biological replicates that are evident from PCA (Figure 7.2) and the heatmap of 

DE-mRNAs (Figure 7.6). This shows each replicate was grouped into the same time point 

along the PC1 axis by PCA and the hierarchical clustering of DE-mRNAs in the heatmap 

had comparable patterns of gene expression across replicates. 

This Chapter focusses on mRNAs, which can be used to identify biological processes and 

pathways that are important in postnatal CM maturation. The number of DE-mRNAs (≤ -2 
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or ≥ 2 fold-change; adjusted p value <0.05) was greater between neonatal (P2) and adult 

(P70) time points than between P10 and P13, which is not unexpected given that the number 

of days between ages is higher. Nonetheless, there were still ~80 DE-mRNAs between P10 

and P13, while overall there were ~3,800 DE-mRNAs over the course of CM maturation 

that dynamically changed and were distinct for each time point. In general, more DE-

mRNAs were down-regulated during postnatal cardiac development, coincidently TFs also 

decreased in expression (E2f1, Nkx2-5, Gata4, Mef2c, Nfatc4, and Meis1), many of which 

have been implicated in CM proliferation, enlargement, and differentiation (Oka et al., 

2007). These TFs (with the exception of Meis1) are established core networks that regulate 

gene expression in embryonic heart development, in which protein-protein interactions of 

TFs (such as: Gata4 and Nkx2-5; Gata4 and Nfatc4; Mef2c, Gata4, and Nfatc4; Mef2c and 

Nkx2-5) synergistically enhance the expression of multiple target genes (Akazawa and 

Komuro, 2003; Vincentz et al., 2008; Olson, 2006). Thus, if expression levels of the 

majority of TFs decrease during postnatal cardiac development, this may possibly explain 

why more DE-mRNAs were down-regulated.  

E2F1 is another TF that has a positive role in regulating the cell cycle. When E2F1 is bound 

to Rb1, transcription is repressed, however, upon Rb1 phosphorylation, E2F1 becomes 

transcriptionally active, increasing the expression of cell cycle genes (Ahuja et al., 2007). 

E2f1 mRNA expression decreased, whereas Rb1 mRNA expression did not change during 

postnatal CM development (Figure 7.5A). Previously in Chapter 5 (Figure 5.4), mitosis-

related genes were evaluated in cardiac ventricles and were more abundant in P13 hearts 

relative to adult hearts. The RNA-Seq data generated in this Chapter also showed a 

downward trend of the expression of cell cycle genes in CMs over postnatal cardiac growth 

(Figure 7.5A) Moreover, hierarchical clustering highlighted that a number of the down-

regulated DE-mRNAs over the time course were linked to the biological processes of 

mitosis, cell cycling, and DNA replication (cluster 4, Figure 7.6). Nonetheless, cell cycle 

gene expression was evident at P2, P10, and P13. Therefore, these datasets demonstrate that 

the expression of cell cycle genes extend beyond the first week of birth to P10 and P13, 

which has been similarly reported for protein levels (Walsh et al., 2010; Ikenishi et al., 

2012). This is interesting since CMs are widely regarded to cease cell division within the 

first week of birth. 
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DE-mRNAs that were down-regulated over the developmental time course were associated 

with cell differentiation, heart development, and Wnt receptor signalling (cluster 5, Figure 

7.6). Those genes associated with cell differentiation (cluster 5) may provide clues for 

candidate genes that regulate the differentiation and maturation of CMs. Indeed, one such 

pathway that was clustered with cell differentiation was Wnt receptor signalling, which is 

negatively regulated by the Hippo pathway, and has been previously identified for its role in 

cell proliferation and controlling heart size (Heallen et al., 2011). In contrast to genes that 

were down-regulated, DE-mRNAs that continually increased over the time course were 

related to the development of organelles, such as Golgi, mitochondria and sarcolemma, as 

well as a shift in metabolism to aerobic respiration (cluster 3 and 7, Figure 7.6), all of which 

have been previously documented in postnatal CM maturation (Lopaschuk and Jaswal, 

2010). One may expect the expression of genes involved in physiological hypertrophy, 

including the IGF1/PI3K/Akt pathway, (Dorn, 2007; Maillet et al., 2013; DeBosch et al., 

2006) to increase. However, these particular genes actually decreased over the time course 

of cardiac growth (Figure 7.5C). It is important to remember that transcript expression 

levels may not necessarily correlate with protein abundance or signalling activity as there 

are numerous mechanisms for post-transcriptional and post-translational regulation. A 

number of up-regulated DE-mRNAs were associated with MAPK signalling (cluster 1, 

Figure 7.6), which has been implicated in pathological hypertrophy, CM differentiation, and 

cell cycle exit (Heineke and Molkentin, 2006; McMullen and Jennings, 2007; Bernardo et 

al., 2010; Liang and Molkentin, 2003). Although the role of MAPK signalling in CMs 

during postnatal cardiac growth has not been well defined, this makes it an interesting 

pathway to investigate further. 

It is nearly impossible to elucidate the contribution and mechanisms of all of these mRNAs 

to the biological processes and pathways that are prominent in CM maturation based on 

gene expression levels alone. Indeed, future work will be required to mine the literature for 

genes that have known functions in CM maturation and those that are potentially novel. In 

conjunction with the lncRNA and miRNA datasets, bioinformatic analyses of all three RNA 

species datasets will also help to identify genes of interest (Wang et al., 2014; Matkovich et 

al., 2014). While less sensitive than RNA-Seq, RT-qPCR can be used to independently 

verify relative changes in gene expression across samples, but more importantly, protein 

abundance should be confirmed by Western blot. There are many in vitro tools available to 

study a gene of interest. An example of this is to use small interfering RNA (siRNA) to 
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knock down the transcript in cultured CMs. This has been performed to test CM 

proliferation or assess components of a biochemical signalling pathway (Mahmoud et al., 

2013; O'Meara et al., 2015). However, to fully understand the in vivo function of the gene, 

there are many genetic strategies (Mahmoud et al., 2013) that can be employed to 

overexpress or delete the gene of interest in a tissue-specific or ubiquitous manner that is 

either constitutive or inducible. Delineation of the function of a candidate mRNA product in 

normal cardiac development is highly dependent on the nature of the protein it encodes, i.e., 

if it is a growth hormone or TF. For example, another up-regulated pathway that was 

highlighted from this dataset was NFκB binding (cluster 3, Figure 7.6). NFκB is a TF that 

has an undefined role in the heart but previous reports have related NFκB to hypertrophy, 

cardioprotection and cardiotoxicity (Gordon et al., 2011). Recent in vitro methods have 

been developed to confirm the novel interaction of NFκB binding to the promoter of VEGF 

by chromatin immunoprecipitation (ChIP)-qPCR (Walton and Matter, 2015). This is carried 

out by: cross-linking proteins to the DNA, lysing cells, sonicating DNA, performing IP with 

a NFκB Ab to pull down bound DNA, and then RT-qPCR using VEGF primers. Thus, many 

techniques are available to validate and determine gene function that is primarily dependent 

on the inherent features of the protein it encodes. The next challenge is to systematically 

mine my datasets for candidate genes. 

Recently, O'Meara et al. (2015) sequenced poly(A) RNA from multiple input samples to 

investigate CM differentiation and regeneration that included: the stages of in vitro 

differentiation of embryonic stem cells to CMs; time points of CM maturation using 

neonatal (P0, P4, and P7) and adult CMs; cultured adult CMs, as well as cardiac ventricles 

and CMs at 7 days post the apical resection of a P1 heart. O'Meara et al. (2015) isolated and 

purified CMs at neonatal time points by mechanical homogenisation of cardiac tissues that 

were then incubated with proteolytic enzymes from the Neonatal Heart Dissociation kit 

(Miltenyi) and purified using the Neonatal Cardiomyocyte Isolation kit (Miltenyi) to yield 

95% CMs. Adult CMs were isolated and enriched for using the Liao and Jain (2007) method 

by Langendorff perfusion. The purity of neonatal CMs reported by this group was similar to 

that reported in Chapter 6. O'Meara et al. (2015) also performed gene ontology term 

analyses and DE-mRNAs in developing postnatal CMs were related to mitochondria, 

sarcomere, and the cell cycle, which were also documented here. However, there are many 

more processes and pathways that have been highlighted from my dataset that were not 

shown in their study. O'Meara et al. (2015) focussed on interleukin 13 signalling that 
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regulates CM differentiation and regeneration, and is mediated by STAT3/periostin and 

STAT6. This pathway was identified by mining the dataset using bioinformatics tools, 

literature referencing, and in vitro validation of signalling by treating CMs with interleukin 

13 and carrying out siRNA knockdown of interleukin 13 receptors.  

O'Meara et al. (2015) also noted that some of the DE-mRNAs determined in cardiac 

ventricles at 7 days post apical resection of a P1 heart were not reproducible in CMs, and 

they suggested this was due to the sensitivity of mouse hearts to the methods of digesting 

and purifying CMs at P7/8. Indeed, the commercial kits that were used in their study were 

developed for P0-P3 neonatal hearts, and thus, larger CMs (i.e., P7/8) may not filter through 

the iron matrix contained within the MS columns. Thus, this is further evidence of the 

challenges that are involved in isolating CMs at different ages that may have caused 

differences in DE-mRNAs. 

In summary, this Chapter describes the generation of a valuable data resource that comprises 

mRNAs, lncRNAs, and miRNAs, generated from purified populations of CMs at key 

postnatal time points during CM maturation. These RNA-Seq datasets show high 

reproducibility between biological replicates, reflecting the robustness of the CM 

purification method and the experimental design that revealed a dynamically changing 

transcriptome over the course of CM maturation. DE-mRNAs were strongly enriched for 

multiple biological processes and pathways that are well established in postnatal cardiac 

development, such as aerobic respiration, and others that are not, such as NFκB binding and 

MAPK signalling. There are also DE -lncRNAs and -miRNAs in these datasets that have 

not yet been fully analysed, and thus, future work is required to perform systematic 

bioinformatic analyses and in vitro validation of genes and their pathways that are involved 

in CM maturation. This may reveal candidates that are crucial in promoting or inhibiting 

CM proliferation, enlargement, and terminal differentiation, providing important insights 

into some of the molecular roadblocks that prevent CM regeneration in the adult heart.  
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Chapter 8 General Discussion 

The overarching focus of the work described in this thesis was to provide a detailed 

understanding of the molecular signals that contribute to CM proliferation, enlargement and 

terminal differentiation; critical processes in the postnatal maturation of CMs. To this end, 

the aims of this study were to determine the role of c-Kit in maintaining the differentiated 

state of adult CMs following cardiac injury, and, profile the CM transcriptome at pivotal 

time points during postnatal cardiac development. Insights into CM maturation at the 

molecular level may lead to the development of strategies to enhance cardiac regeneration 

through endogenous CM proliferation. It is generally believed that a molecular switch exists 

for the terminal differentiation of CMs that would control normal cardiac growth but the 

mechanisms involved in this process remain largely unknown in cardiovascular physiology 

(Chien et al., 1993; Li et al., 1996; O'Meara et al., 2015). Developmental signals of 

postnatal CM growth are defined here as molecules that are expressed or show altered 

expression that have a function in CM maturation. This work addresses questions that are 

current and highly relevant to the field of cardiac development and regeneration by 

focussing on the physiology and pathophysiology of CMs. As a result, my work has (1) 

characterised an in vivo model of pathological cardiac growth (SAC), a useful tool to 

evaluate whether candidate molecules have cardiac regenerative potential; (2) determined 

that c-Kit does not contribute to maintenance of CM terminal differentiation; (3) identified 

pivotal time points in CM maturation that contribute to normal postnatal cardiac growth; (4) 

developed a standardised protocol for the isolation and purification of CMs from mice of 

any postnatal age; and (5) profiled genes in purified populations of CMs that dynamically 

change in expression across the identified pivotal time points in postnatal CM maturation, 

thus generating the first comprehensive library of CM mRNAs, lncRNAs, and miRNAs, 

using a directly comparable method of CM isolation for P2, P10, P13, and P70 hearts.  

 

c-Kit is not a candidate for CM regeneration 

c-Kit has attracted attention as a marker of CSCs and CPCs that can differentiate into all 

cardiac lineages, including CMs, during development and after cardiac injury (Beltrami et 
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al., 2003; Hsieh et al., 2007; Ellison et al., 2013). c-Kit+ CSCs have been used in clinical 

trials for the treatment of post-MI HF patients, with moderate improvements in cardiac 

function observed (Bolli et al., 2011). However, the cardiomyogenic potential of CSCs in 

adult cardiac regeneration and repair has been challenged (Zaruba et al., 2010; Jesty et al., 

2012; Sultana et al., 2015; Wallner et al., 2016), and concerns have surfaced with respect to 

the robustness of the data presented using CSCs in the clinical trial (The Lancet Editors, 

2014). When c-Kit signalling was inhibited from birth in two mouse models, our laboratory 

previously found that CMs proliferate in response to SAC-induced PO, whereas CMs from 

WT littermates were restricted to cellular hypertrophy. The work presented in this thesis 

shows that c-Kit mRNA is expressed at very low levels in developing CMs (Chapter 7) and 

both c-Kit mRNA and protein are expressed at very low levels in adult CMs, and are not re-

expressed following SAC (Chapter 4). Thus, it is unlikely that c-Kit is “re-expressed” or 

expressed post-SAC, and does not contribute to maintaining a differentiated state of CMs. 

Since the commencement of this study, these findings have been corroborated with the work 

of others using genetic lineage tracing to show that developing and adult CMs rarely express 

c-Kit, and does not change in adult CMs after MI (van Berlo et al., 2014; Sultana et al., 

2015). Rather, c-Kit+ cells contributed to a subpopulation of ECs (van Berlo et al., 2014; 

Sultana et al., 2015), and furthermore, c-Kit+ cells were determined to have an EC origin 

that were not CSCs in the developing or adult heart (Sultana et al., 2015). Thus, although c-

Kit may not be expressed in CMs preventing cell cycle re-entry, its expression and role in 

CSCs and ECs, regardless of the disparity in cell type, may still be an important signal in 

postnatal cardiac growth and regeneration. Altogether, this suggests that c-Kit is not a 

suitable therapeutic target for the regeneration of CMs. 

 

CM-specific overexpression of mutant KitWv under the α-MHC promoter 

The original observations from our group indicated that CMs from adult KitW/Wv and 

Tg(αMHC-KitWv) mice were not terminally differentiated, since they can proliferate in 

response to cardiac injury. While it is not clear intrinsically how this occurs, Tg(αMHC-

KitWv) CMs show robust KitWv protein and mRNA expression relative to WT CMs, and the 

immature c-Kit protein (~125 kDa) was more abundant than the mature form (~145-160 
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kDa); that may have accumulated in subcellular compartments (Chapter 4). In addition, 

microarray profiling of Tg(αMHC-KitWv) CMs revealed up-regulated mRNAs were involved 

in the inflammatory and ER stress response, as well as in protein degradation (unpublished 

observations). As discussed in Chapter 4, this indicates aberrant processing of the mutant 

protein and altered cellular physiology, which together may enable adult CMs to re-enter the 

cell cycle and proliferate in response to PO. This may be due to the overexpression of a 

mutant protein under the α-MHC promoter, which is widely used for cardiac-specific 

overexpression of proteins in transgenic mouse studies. There are reports that α-MHC-

driven overexpression of a protein can lead to deleterious effects on cardiac morphology and 

function. For example, Huang et al. (2000) showed that the overexpression of the 

biologically inert GFP, in four independent transgenic mouse lines resulted in two of the 

lines with the highest GFP expression developing LVH, systolic dysfunction and HF. This 

phenotype has also been reported in inducible transgenic models using Cre-recombinase 

overexpression driven by the α-MHC promoter (Buerger et al., 2006). Hence, neither the 

insertion site nor the copy number of a transgene using the random integration approach can 

be controlled and CM-specific overexpression of a protein may result in unphysiological 

consequences (Yutzey and Robbins, 2007). Therefore, transgenic mouse models that 

overexpress proteins under the α-MHC promoter should be interpreted with caution.  

 

Phases of CM maturation in particular terminal differentiation 

Rapid growth of the preadolescent mouse heart (P10-P18) was observed by Naqvi et al. 

(2014) using litters of 6-7 C57BL/6J mice bred in the animal facility at Emory University 

(Atlanta). This specific period of substantial cardiac growth was recapitulated in this study 

using litters of 6-8 C57BL/6J mice (Chapter 5), but bred in the animal facility at the Victor 

Chang Cardiac Research Institute (Sydney). However, a specific burst in CM proliferation 

at P15 (Naqvi et al., 2014) was not observed at the level of myocardial gene expression 

despite comparable increases in HW/BW and a comparable surge in serum T3 levels from 

P10 to P12 (Chapter 5). Of course, the expression of mitosis-related genes per se does not 

confirm cell division. Rather, this has to be evaluated directly at the cellular level, 

preferably by counting CM numbers or, at least by in vivo staining for cytokinesis-related 
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events (immunocytochemistry) specifically in CMs. Although this is a difficult event to 

capture given that cytokinesis lasts for only 1 hour, and is dependent on the synchronicity 

and number of cells undergoing mitosis. Nonetheless, both studies demonstrate that 

substantial cardiac growth is achieved in the postnatal period and the presence of mitosis-

related genes in the preadolescent period indicates that cell division extends beyond the 

perinatal period. 

Three phases of CM growth have been defined (Clubb and Bishop, 1984): CM proliferation 

at P0-4, a transitional phase from proliferation to cellular enlargement between P4 and P15, 

and a quiescent stage from P16, in which CMs no longer proliferate but continue to enlarge, 

although some disagreement remains as to the exact timing of these events. Indeed, Soonpaa 

et al. (1996) suggested CM proliferation ceases before birth and terminal differentiation 

occurs as CMs become binucleated in the postnatal period between P4 and P10. Li et al. 

(1996) reported a rapid transition from CM proliferation to hypertrophy just after birth at 

P3-4. However, others have reported a gradual decrease in cell cycle genes and proteins 

within the first 3 weeks after birth (Clubb and Bishop, 1984; Walsh et al., 2010; Ikenishi et 

al., 2012). In agreement with Clubb and Bishop (1984), a similar delineation of CM growth 

phases was apparent from the work described in Chapter 5. The expression of mitosis-

related genes in the myocardium decreased progressively from P2 to preadolescence; 

transcript abundance at P13 was greater than the low levels observed at P15 and P70 

(Chapter 5, Figure 5.4). This pattern of expression is consistent with the RNA-Seq data from 

CMs, which show the expression of DE-mRNAs that progressively decrease but are still 

clearly evident at P13, compared with P70, were associated with the cell cycle, mitosis, and 

DNA replication (Chapter 7, Figure 7.6: cluster 4). This is interesting since these results 

correlate with a gradual fall in the abundance of cell cycle proteins after birth, which were 

very low at P14 (Ikenishi et al., 2012; Walsh et al., 2010). In the period of growth from P10 

to P18, there was an increase in the proportion of binucleated CMs and cellular enlargement, 

particularly at P10 and P13, which coincide with an intermediate expression of mitosis-

related genes in the myocardium (Chapter 5). Furthermore, P10 marks the start of the period 

before rapid heart growth and the immediate time point before the surge in serum T3 levels, 

while P13 is 24-hours after the initial peak in serum T3 levels. Thus, it was determined from 

these parameters that these postnatal days may mark pivotal time points during the P10-18 

period of cardiac growth. Future studies should characterise CMs at multiple sampling 

intervals between P2 and P35 to gain a complete picture of the time course of CM 
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maturation. Taken together, the data presented in this thesis indicate that the ~P13-P15 time 

points potentially mark the end of cell division, which is important since it may coincide 

with the initiation of terminal differentiation. Thus, pivotal stages of cardiac growth were 

identified using two time points from opposite spectrums of CM maturation including 

highly proliferative (P2) vs differentiated (P70) CM states; and P10 and P13, which 

represent the transitional state between CM cell division and enlargement. 

 

RNA-Seq discovery of developmental mRNA signals in cardiac growth 

The regulatory events that orchestrate CM proliferation and enlargement during normal 

cardiac growth remain poorly defined, as recognised by many in the field (Matkovich et al., 

2014; Li et al., 1996; Chien et al., 1993; Soonpaa et al., 1996). To begin to elucidate these 

events more clearly, methods were developed to rapidly purify CMs (Chapter 6) from time 

points that were identified to be pivotal in the process of postnatal CM maturation (P2, P10, 

P13, or P70). RNA was then extracted from CMs at these developmental time points to 

construct poly(A) and small RNA libraries used to generate RNA-Seq datasets (Chapter 7). 

This revealed ~3,800 DE-mRNAs over the time course of postnatal CM maturation, and 

were associated with a number of interesting biological signalling pathways and processes 

(Chapter 7). Although the main purpose was to relate candidate genes specifically to each 

phase of CM growth, this was more difficult to ascertain with large datasets because DE-

mRNAs are also involved in a number of other cellular processes, such as sarcomere or 

mitochondria development, which may not directly contribute to CM proliferation, 

enlargement or terminal differentiation. This highlights the challenges in teasing out 

functional relationships. Future work will involve mining the mRNA datasets by referring to 

the literature to identify genes of interest with novel or known roles in the heart. Moreover, 

it will be important to determine the protein level of genes of interest at the relevant time 

points to elucidate a function and signalling pathway. Delineating the mechanisms for CM 

proliferation, enlargement, and terminal differentiation, to understand normal cardiac 

growth would also, in time, reveal underlying interruptions of transcriptional activity in 

postnatal hearts that grow abnormally. Furthermore, this may lead to finding ways to 

stimulate cardiac regeneration and develop novel regenerative therapies. These datasets, 
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therefore, provide a foundation for the discovery of complex gene regulatory networks that 

drive CM maturation, the scope of which has enormous potential.  

 

Tools for investigating developmental CM biology and cardiac regeneration 

The ultimate goal for our group and many others is to harness the very limited innate ability 

of the heart to repair after injury by stimulating CM cell division, or reversing the terminally 

differentiated state of adult CMs that would then allow cell cycle re-entry and proliferation 

in response to injury. This is not only pertinent for MI patients but is also relevant to 

patients with other types of CVD, including LVH and CHD. In LVH, CMs undergo 

hypertrophy, and in CHD, CMs may also be reduced in number, leading to impaired cardiac 

function. Thus, pathways that stimulate or promote endogenous CM proliferation would 

increase the number of functional CMs, which is key to restoring or improving cardiac 

function. Currently, cardiac regeneration is mainly studied in the context of MI models, 

resulting in the death of cardiac tissue and in this setting, the aim is to replace the region of 

death with healthy myocardium to restore cardiac morphology and function. Cardiac 

regeneration has been assessed in early postnatal hearts by their response post-MI at 

different ages (Porrello et al., 2013; Naqvi et al., 2014). Is this regeneration or were the 

hearts in a phase of growth by CM proliferation at the time of injury and had continued to 

grow regardless? 

Another cardiac injury model that should be explored more widely in the context of cardiac 

regeneration is SAC-induced LVH, detailed in Chapter 3. The PO overload injury model 

lead to concentric hypertrophy that was associated with reduced CO, left ventricular ejection 

fraction, and fractional shortening; fibrosis; and the re-expression of fetal genes. Unlike MI 

that leads to regional death of the heart, which often has a variable infarct size, PO overload 

uniformly affects the whole heart, whereby CM cell size and numbers can be assessed as 

parameters for cardiac regeneration when using genetic mouse models or after treatment 

with potential regenerative therapeutics. SAC is also reliable and reproducible model of 

cardiac hypertrophy. SAC can be used as a tool to determine the function of novel candidate 

mRNAs, lncRNAs, and miRNAs, in the adult heart following cardiac injury (Wang et al., 
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2014) that may lead to the development of therapeutic agents that ameliorate LVH. Thus, 

future studies should use various cardiac injury models to investigate the expression and 

function of molecular candidates, and moreover, to realise the potential for regenerative 

therapies in treating multiple CVDs, including LVH and MI. 

This thesis describes the detailed development of methods to isolate and purify a high yield 

of CMs by Langendorff retrograde perfusion and immuno-magnetic separation at any 

postnatal age (Chapter 6). The resulting high quality RNA and reproducibility between 

biological replicates (gene expression profiles of replicates shown in Figure 7.2 and Figure 

7.6, Chapter 7) was further testament to the protocols developed to purify CMs. In addition 

to the quality of these datasets and to the best of my knowledge, there are no other RNA-

Seq datasets available from CMs isolated and purified using a universal method for all 

postnatal murine ages (P2, P10, P13 and P70). Hence, we are well placed to use this unique 

dataset to investigate the transcriptional changes that occur with CM maturation. This 

protocol may also be useful for primary cell culture with CMs from any postnatal age, rather 

than only those from neonatal or adult hearts. This would allow us to study downstream 

signalling pathways at any developmental age by treating CMs with candidate molecules, 

such as T3, or siRNA knockdown of transcripts. Overall, this CM purification protocol is a 

valuable research tool to study postnatal cardiac development.  

 

Future perspectives: the mRNA-lncRNA-miRNA relationship 

In this study, an unbiased integrative approach was employed to concurrently profile 

mRNA, lncRNA and miRNA, and comprehensively evaluate the transcriptome. Because 

lncRNAs are less abundant than mRNAs, it is possible to prioritise DE-mRNAs of interest 

by locating adjacent DE-lncRNAs to genomic regions that are active. Matkovich et al. 

(2014) recently reported ~120 cardiac-specific lncRNAs, whereby gene expression profiles 

of embryonic and adult hearts were compared, and ~22 neighbouring lncRNA-mRNA pairs 

were identified to have concordant expression, whereas 11 pairs had reciprocal expression. 

A brief exploration of gene expression datasets (Chapter 7) revealed the concordant 

expression of functionally relevant mRNA-lncRNAs-miRNAs at the Igf2/H19 locus (Figure 
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8.1A). Interestingly, both the lncRNA, H19, and the miRNA that it encodes, miR-675, were 

highly abundant in P2 CMs and at later time points the expression of H19 and miR-675 fell 

coincidently with the adjacent DE-mRNA, Igf2 (Figure 8.1B). Furthermore, Igf2, which 

encodes miR-483, and partially overlaps with the antisense lncRNA transcript, Igf2os, were 

all down-regulated over the time course of CM maturation (Figure 8.1B). H19 mediates 

skeletal muscle differentiation and regeneration (Dey et al., 2014), and more recently, a 

function for H19 and miR-675 has been elucidated in the heart to both negatively regulate 

CM hypertrophy (Liu et al., 2016a). Igf2 also affects embryonic heart development in Igf2-

deficient mice resulting in CM hypoplasia (Li et al., 2011), whereas miR-483 has more 

recently been implicated to cause CM apoptosis in response to high blood- glucose (Qiao et 

al., 2016). However, a role for Igf2os has not yet been reported. 

 

Figure 8.1: Expression patterns of mRNA-lncRNAs-miRNAs from the Igf2/H19 locus 
over the time course of postnatal CM maturation 

A, schematic of the structural organisation of the Igf2/H19 locus encoding transcripts, 
including the antisense lncRNA (Igf2os and H19), mRNA (Igf2), miRNA (miR-483and 
miR-675). B, the normalised gene count data of each transcript in the Igf2/H19 locus is 
shown with high (red) or low (blue) expression, and expression of these decrease across the 
time course of CM maturation (P2, P10, P13 and P70, n=3 litter per time point). 
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By analysing the expression of miRNAs after Ang II-induced hypertrophy, Wang et al. 

(2014) identified a functional mRNA-lncRNA-miRNA relationship. The expression of miR-

489 decreased after Ang II-induced hypertrophy. Interestingly, overexpression of this 

miRNA attenuated the hypertrophic response, and was found to target myeloid 

differentiation primary response gene 88 (Myd88) mRNA, the expression of which 

increased following Ang II-induced hypertrophy. In Myd88-knockout mice, Ang II-induced 

cardiac hypertrophy was attenuated with reduced HW/BW and CM cross-sectional area; 

fibrosis; and the re-expression of fetal genes. Wang et al. (2014) also evaluated the 

expression of a subset of lncRNAs following Ang II treatment and found that the expression 

of the lncRNA, AK04851, which was named cardiac hypertrophy related factor (CHRF) 

thereafter, had increased. CHRF also binds miR-489 and acts as a sponge to sequester miR-

489. Therefore, CHRF reduced the availability of miR-489 to bind to Myd88 resulting in the 

enhanced expression of Myd88 after Ang II-induced hypertrophy, ultimately regulating 

cardiac hypertrophy (Wang et al., 2014). This regulatory relationship demonstrates the 

combined power of such RNA-Seq datasets in uncovering multiple and novel mRNA, 

lncRNA, and miRNA, functions.  

 

Future perspectives: exploring the function of candidate lncRNAs and miRNAs 

The miRNA dataset can be probed using bioinformatics tools such as Target Scan to predict 

potential mRNA targets based on the complementarity of the miRNA seed region (a specific 

sequence of 6-8 nucleotides at the 5’ end) to mRNA that either results in target mRNA 

degradation or prevents its translation. In contrast to miRNAs, there are not many 

bioinformatic tools available to analyse lncRNAs, presumably because their annotation and 

function are not yet well defined (Matkovich et al., 2014). The poly(A) lncRNAs captured 

in my dataset (Chapter 7) may be intergenic, intronic, or partially overlapping with protein-

coding genes on either the sense or antisense strand, and have been classified in many 

different ways due to challenges in the annotation and interpretation of lncRNA (Batista and 

Chang, 2013; Ma et al., 2013; St Laurent et al., 2015). LncRNAs may regulate gene 

expression by acting sequestering miRNAs, also known as competing endogenous RNAs 

(Cesana et al., 2011; Wang et al., 2014) or they may lead to epigenetic changes that silence 
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or activate genes by mediating DNA methylation or chromatin modifications (Rinn and 

Chang, 2012; Wamstad et al., 2012; Batista and Chang, 2013).  

There are many in vitro and in vivo techniques available to explore the functions of 

candidate lncRNAs and miRNAs from these RNA-Seq datasets (similar to those discussed 

for mRNAs in Chapter 7). For in vitro evaluation of function, transcripts are often 

overexpressed or knocked down by transfecting CMs using: cloned vectors expressing the 

transcript or mutant transcript, synthetic RNA mimics, small interfering RNA (siRNA), or 

antisense sequences of oligonucleotides flanked with locked nucleic acids (LNAs) that 

perfectly complement the RNA sequence (Liang et al., 2015; Viereck et al., 2016; Wang et 

al., 2016; Eulalio et al., 2012; Wang et al., 2014). Proliferative markers or changes in cell 

size have been evaluated to determine their effect on CM proliferation or CM hypertrophy, 

respectively (Liang et al., 2015; Viereck et al., 2016; Porrello et al., 2011a; Wang et al., 

2016; Eulalio et al., 2012). For in vivo evaluation, genetic mouse models that overexpress or 

have the gene of interest deleted are characterised for changes in cardiac morphology and 

function. These are generated by cardiac-specific overexpression of the gene, or by targeted 

deletion of a gene using FLPe or Cre recombinase-mediated homologous recombination to 

excise the gene of interest, or by CRISPR-Cas9 mediated genome-editing (Zhao et al., 

2007; Liu et al., 2008; Liang et al., 2015; Wang et al., 2016; Wang et al., 2014). 

Alternatively, the transcript may be knocked down in vivo by injecting synthetic siRNA or 

LNA-modified antisense oligonucleotides (antimiRs or GapmeRs) (Porrello et al., 2011a; 

Porrello et al., 2013; Viereck et al., 2016; Wang et al., 2016; Eulalio et al., 2012; Wang et 

al., 2014). In the event that there is no apparent phenotype, these genetic mouse models may 

then be subjected to cardiac stressors, such as SAC, TAC, or MI, to further elucidate the 

function of the transcript (Viereck et al., 2016; Wang et al., 2016; Wang et al., 2014) 

(Porrello et al., 2013; Eulalio et al., 2012).  

Interactions between protein, mRNAs, lncRNAs, miRNAs and/or DNA can also be 

explored. Luciferase reporter assays have been used to detect transcript interactions by 

creating reporter constructs that contain luciferase fused to the DNA sequence of the 

transcript of interest. The luciferase activity is then compared to the same construct that has 

also been co-transfected with a second transcript of interest. For example, if the primary 

transcript is a mRNA and the second transcript is a miRNA, a reduction in luciferase 



 

203 

 

activity would confirm that the miRNA targets and inhibits expression of the mRNA (Liu et 

al., 2008; Liang et al., 2015; Porrello et al., 2011a; Wang et al., 2014). In addition, if a 

mutation of the mRNA 3’UTR abolishes the reduction in luciferase activity, this would 

further confirm a specific mRNA-miRNA interaction (Liu et al., 2008; Liang et al., 2015; 

Porrello et al., 2011a; Wang et al., 2014). Depending on the nature of the protein encoded 

by the mRNA (i.e. if the protein binds to DNA), novel lncRNA-protein interactions may be 

defined using chromatin IP (ChIP) of the protein that is bound to the promoter of the 

lncRNA (Viereck et al., 2016; Wang et al., 2016). 

 

Future perspectives: the epigenome 

Epigenetic modifications, such as temporal changes in chromatin and DNA methylation 

have been shown to regulate the differentiation of embryonic stem cells into CMs, and 

widespread changes also occur in the postnatal murine heart within two week of birth 

(Wamstad et al., 2012; Sim et al., 2015). In particular, the differentiation of embryonic stem 

cells into CMs was reported to involve an “epigenetic switch” (Wamstad et al., 2012). One-

quarter of each CM sample collected in Chapter 7 was allocated for the RNA-Seq 

experiment, and the remaining three-quarters were reserved for parallel sequencing of the 

epigenome either by evaluating DNA methylation, histone modifications, or accessible 

regions of DNA. These complementary datasets will enable active genomic regions to be 

identified, and thereby provide some insights into the epigenetic regulation of gene 

expression.  

 

Conclusion 

In summary, the substantial growth of the postnatal heart is likely to be coordinated by 

transcriptional networks that are already established regulators of embryonic cardiac 

development. To profile the postnatal CM transcriptome, a universal protocol for the rapid 

purification of CMs from any postnatal age was developed as a valuable research tool, 
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producing high quality poly(A) and small RNA as inputs for high-throughput sequencing. 

This has led to the identification of ~3,800 DE-mRNAs that contribute to the distinct and 

dynamically changing transcriptional profiles of CMs at pivotal time points in CM 

maturation. These transcripts were associated with many different pathways that can be 

investigated to unravel regulatory gene networks and gene functions that regulate postnatal 

cardiac growth. To elucidate the function of novel candidates we can use this CM 

purification protocol for in vitro studies and use SAC as a of cardiac injury model for in vivo 

experiments. Without question there is a lot to be gained from these large datasets in terms 

of providing a framework for understanding the molecular changes that underpin postnatal 

cardiac growth. However, further systematic analyses and experiments will be required to 

discover molecular targets to stimulate cardiac regeneration. 
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Appendix 

Appendix A 

  P2 P10 P13 P70 
Cardiac cell 
markers 
Myh6 vs Tnnt2 ****  ****  ****  ****  
Myh6 vs Pecam1 ****  ****  ****  ****  
Myh6 vs Vcam1 ****  ****  ****  ****  
Myh6 vs Ddr2 ****  ****  ****  ****  
Myh6 vs Vim ****  ****  ****  ****  
Tnnt2 vs Pecam1 ****  ****  ****  ****  
Tnnt2 vs Vcam1 ****  ****  ****  ****  
Tnnt2 vs Ddr2 ****  ****  ****  ****  
Tnnt2 vs Vim ****  ****  ****  ****  
Pecam1 vs Vcam1 ns ns ns ns 
Pecam1 vs Ddr2 ns ns ns ns 
Pecam1 vs Vim ns ns ns ns 
Vcam1 vs Ddr2 ns ns ns ns 
Vcam1 vs Vim ns ns ns ns 
Ddr2 vs Vim ns ns ns ns 

Expression levels of mRNA (cpm) for cardiac cell type-specific markers for CMs, ECs, and 
fibroblasts, were compared in preparations of purified CMs from P2, P10, P13, or P70 mice 
(n=3 litters per time point). CMs (Myh6 encodes α-MHC; Tnnt2 encodes cTnT), ECs 
(Pecam1 and Vcam1), and fibroblasts (Ddr2 encodes discoidin domain receptor tyrosine 
kinase 2; Vim encodes vimentin). Statistical significances were determined using two-way 
ANOVA followed by Tukey’s post hoc test; **** p<0.0001, and non-significant, ns. 
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Appendix B 

  2 vs 10 2 vs 13 2 vs 70 10 vs 13 10 vs 70 13 vs 70 

Cell cycle 
Anln ns ns * ns ns ns 

Aurka ns ns * ns ns ns 

Birc5 ns * * ns ns ns 

Ccnb1 ns ns * ns ns ns 

Ki67 ns * * ns ns ns 

Plk1 ns ns ns ns ns ns 

E2f1 ns * ** ns ns ns 

Rb1 ns ns ns ns ns ns 

Growth signals 
Pi3kca ns ** ** ns ns ns 

Akt1 *** **** **** *** **** * 

Igf1 * ** **** ns ** ns 

Igf1r **** **** **** ** *** ns 

Thrb *** **** **** * * ns 

Thra ** *** **** ns ** * 

TFs 
Nkx2.5 * ** *** ns ns ns 

Gata4 * *** **** ns ** ns 

Mef2c ** ** *** ns ns ns 

Nfatc4 ns ns * ns ns ns 

Meis1 *** *** **** ns ** ns 

Expression levels (cpm) of cardiac developmental and growth signalling mRNAs in purified 
CMs from mice aged P2, P10, P13, and P70 (n=3 litters per time point). Cell cycle genes: 
anillin (Anln), aurora kinase A (Aurka), survivin (Birc5), cyclin B1 (Ccnb1), Ki67 (Mki67), 
polo-like kinase 1 (Plk1), E2 promoter binding factor 1 (E2f1), and retinoblastoma (Rb1). 
Growth signals: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α 
(Pi3kca), serine/threonine kinase 1 (Akt1), insulin-like growth factor 1 (Igf1), insulin-like 
growth factor 1 receptor (Igf1r), thyroid hormone receptor β (Thrb), thyroid hormone 
receptor α (Thra). TFs: NK2 homeobox 5 (Nkx2-5), Gata4, myocyte enhancer factor 2 
(Mef2c), nuclear factor of activated T cells (Nfatc4), and meis homeobox 1 (Meis1). 
Statistical significances were determined using one-way ANOVA followed by Tukey’s post 
hoc test; p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, and non-significant, ns. 


