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Abstract

The thesis examines two dimensions of constructivity that manifest themselves

within foundational systems for Bishop constructive mathematics: intuitionistic

logic and predicativity. The latter, in particular, is the main focus of the thesis.

The use of intuitionistic logic affects the notion of proof : constructive proofs may

be seen as very general algorithms. Predicativity relates instead to the notion of set :

predicative sets are viewed as if they were constructed from within and step by step.

The first part of the thesis clarifies the algorithmic nature of intuitionistic proofs,

and explores the consequences of developing mathematics according to a construc-

tive notion of proof. It also emphasizes intra-mathematical and pragmatic reasons

for doing mathematics constructively. The second part of the thesis discusses pred-

icativity. Predicativity expresses a kind of constructivity that has been appealed to

both in the classical and in the constructive tradition. The thesis therefore addresses

both classical and constructive variants of predicativity. It examines the origins of

predicativity, its motives and some of the fundamental logical advances that were

induced by the philosophical reflection on predicativity. It also investigates the re-

lation between a number of distinct proposals for predicativity that appeared in

the literature: strict predicativity, predicativity given the natural numbers and con-

structive predicativity. It advances a predicative concept of set as unifying theme

that runs across both the classical and the constructive tradition, and identifies it

as a forefather of a computational notion of set that is to be found in constructive

type theories. Finally, it turns to the question of which portions of scientifically

applicable mathematics can be carried out predicatively, invoking recent technical

work in mathematical logic.
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Introduction

Recent times have witnessed transformations within mathematics so profound that

it is natural to compare the present changes to the deep reformation of mathematics

that started at the beginning of the 19th Century. A very prominent aspect is the

significant level of technical ability and specialization that is required of a mathe-

matician to produce new, interesting mathematical theorems, and the consequent

fragmentation of mathematics itself into a plurality of distinct, highly specialised

disciplines. A related important feature is the appearance of complex, very large

proofs, that require whole teams of mathematicians, possibly aided by computers,

and numerous years to complete. These changes are prompting reflection among

mathematicians on practices that have traditionally fulfilled a minority role, in par-

ticular constructive mathematics, that uses intuitionistic rather than classical logic.

This kind of mathematics is now pursued by an increasing number of mathemati-

cians and computer scientists alike, due to its prominent algorithmic nature. In

particular, it is at the heart of popular proof-assistants such as the system Coq

(Coq n.d.). Large, highly specialized proofs make the verification process difficult

and costly. The hope is that progress in the mechanization of mathematics could of-

fer more economical routes to verification in the future, and, perhaps, even help with

the discovery process. The perception of constructive mathematics’ place within the

overall mathematical enterprise is therefore changing; the constructive mathemati-

cian hopes that a more thorough realization of the importance of computational

forms of mathematics will make his discipline a more dominant form of mathemat-
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6 INTRODUCTION

ics in years to come.

The principal aim of this thesis is to examine significant aspects of a prominent

form of constructive mathematics: the mathematics that is developed in the style of

Bishop (1967). This form of mathematics has motivated foundational systems like

constructive type theory (Martin-Löf 1975) that are designed to make fully explicit

the computational character of constructive mathematics. These systems feature

two separate elements of constructivity: the logic, that is intuitionistic, and the

concept of set, that is predicative according to a distinctive notion of predicativity.

In an investigation of these two dimensions of constructivity that characterise

foundational systems for constructive mathematics, the first and principal questions

are: What is constructive mathematics? What is predicativity?

An answer to the first question requires a clarification of the principal conse-

quences of relinquishing the principle of excluded middle. The most remarkable

outcome of the use of intuitionistic logic is a modification of the notion of proof,

that enables us to confer computational content on mathematical theorems. I shall

therefore discuss an interpretation of intuitionistic logic that explicates the algorith-

mic nature of constructive proofs and also plays a role in relation to constructive

type theory’s predicativity. I shall examine prominent features of the techniques

that are introduced to “constructivise” ordinary mathematical theorems; in addi-

tion, I shall expound significant aspects of the relation between constructive and

classical mathematics.

The second question, related to what is predicativity, turns out to be more

difficult to tackle. A number of characterisations of predicativity have been put

forward within the literature, and a number of very different proposals have emerged

over the years on what counts as predicative mathematics. In particular, the variant

of predicativity that is embodied by constructive type theory is only one of three

principal variants of predicativity. The most prominent variant of predicativity is

often termed “predicativity given the natural numbers”, and has been thoroughly
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analysed over the years by mathematical logicians. A characteristic of this form

of predicativity is that it is framed within a classical context. The fact that some

variants of predicativity make use of classical, while others of intuitionistic logic

introduces further complexities to an analysis of predicativity. For these reasons a

substantial part of this thesis will be devoted to a clarification of the very notion

of predicativity and its different manifestations. The starting point of my analysis

will be the historical development of this notion, from which I shall select some

particularly significant aspects. In addition, I shall identify a predicative notion

of set that acts as unifying theme, appearing in prominent contributions to both

the classical and the constructive approaches to predicativity. Another form of

predicativity that has been put forward in the relevant literature goes under the

name of “strict predicativity”, and introduces more stringent constraints on sets

compared with predicativity given the natural numbers. It is in fact through an

analysis of this more radical approach to predicativity that important aspects of

constructive predicativity fully emerge.

My investigation focuses on particular aspects of predicativity and constructiv-

ity. Their choice is determined by my desire to bring some clarity on issues that

I feel are especially pressing, although their thorough clarification lays beyond the

remits of this thesis. The principal aim of this thesis is to explicate constructivity

and predicativity, rather than assess the prospects of constructivism or predica-

tivism. However, I shall consider the case of predicativism in the last chapter,

by investigating the prospects of a form of indispensability argument for predicative

mathematics. My interest in an analysis of this argument is determined by my inter-

est in the following question: how far can constructive and predicative mathematics

reach? A thorough investigation of this issue would require substantial technical

and philosophical work, as explained in Chapter 7. I shall report on research in

mathematical logic that suggests that the restriction to predicative and construc-

tive mathematics may not induce a serious loss when we confine our attention to



8 INTRODUCTION

scientifically applicable mathematics.

A reason for my interest in those technical results is that they show that the

exercise of reformulating ordinary mathematical theorems in weaker systems (con-

structive and/or predicative) is lucrative from both a mathematical and a philo-

sophical perspective. Only by adopting a weaker perspective we seem to be able to

single out a minimal conceptual apparatus that is required to perform large portions

of ordinary mathematics. The gain is the possibility to draw a map of mathemat-

ics that differentiates portions of it that are more or less computational in nature,

and distinguish the kinds of concepts, more elementary or more abstract, that they

presuppose.

A motivation for embarking on this project of clarification of predicativity was

the desire to determine which reasons may be adduced for predicativity. In the first

part of the thesis I shall undertake to single out a number of reasons that constructive

mathematicians have put forth for their adoption of intuitionistic logic. These are

prominently reasons that are internal to the mathematics itself or motivated by the

desire to develop an algorithmic form of mathematics. As a consequence they dif-

fer profoundly from traditional arguments for intuitionistic logic which move from

philosophical reasons and deeply intersect with prominent philosophical debates,

as the opposition between realism and anti-realism. The case of predicativity is,

once more, more complex. I shall examine some of the motives that have been

adduced for predicativity by a number of authors, starting from the fundamental

contributions by Russell and Poincaré, Weyl, but also, more recently, Nelson and

Parsons. A common interpretation of the debate on impredicativity frames it as a

re-incarnation of the traditional opposition between realism and anti-realism. The

writings by Poincaré and Nelson particularly encourage this reading. However, their

writings simultaneously suggest also a different route to predicativity, which is inti-

mately related to methodological considerations. In particular, Poincaré and Weyl

express a preference for “older”, more explicit methods in mathematics. One salient
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motivation for their preference for these more explicit methods is the desire to pro-

duce a safe, or error-free form of mathematics. Similar considerations appear in

recent discussions by mathematicians on constructive predicativity. The thought

is that methodological and intra-mathematics reasons offer a route to predicativity

which is in agreement with the motives put forth by constructive mathematicians

for the adoption of intuitionistic logic.

Summary of the thesis.

Part I: Constructive Mathematics

Chapter 1: The mathematical landscape.

In the first chapter I shall explain why a philosophical investigation of constructiv-

ity and predicativity is particularly relevant today. I shall propose a view of the

contemporary mathematical landscape that suggests that computational forms of

mathematics are gaining unprecedented attention within mathematics as a whole.

As a consequence, there is urgent need for a philosophical clarification of these forms

of mathematics. A central part of the chapter will be devoted to explaining in which

sense the adoption of intuitionistic logic renders constructive mathematics algorith-

mic and how its algorithmic nature can be exploited to offer new applications for

mathematics.

Chapter 2: Constructive Mathematics

The difference between classical and intuitionistic logic has been widely discussed

in the philosophical as well as in the mathematical literature. However, less em-

phasis has been placed in clarifying the impact that the change of logic has for the

mathematics itself. This is crucial if one wishes to ascertain that the adoption of
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a computational form of mathematics does not impair a sufficiently well developed

form of mathematics. One of my purposes in this chapter is to clarify that con-

structive mathematics is a substantial field within mathematics as a whole, that

is pursued by mathematicians for mathematical reasons, and that is fruitfully em-

ployed to produce a computational form of mathematics. The relevance of this field

for mathematics and its applications is important as a motive for the present investi-

gation. In this chapter I shall first of all address the question of what is constructive

mathematics, and how it differs from other forms of mathematics that also use in-

tuitionistic logic. I shall then give a brief indication of some of the most relevant

strategies adopted by constructive mathematicians to develop this form of mathe-

matics. Their interest for the present discussion lays in their offering instruments

for the rephrasing of large portions of ordinary mathematics in a computationally

informative way and for paving the way for similar adaptations of scientifically ap-

plicable mathematics that will be discussed in Chapter 7. I shall finally outline the

motivation that prompts some constructive mathematicians to work constructively,

emphasizing in particular intra-mathematical and pragmatic reasons.

Part II: Predicativity

The discussions by mathematicians of the Bishop school on constructive mathemat-

ics only focus on the role of intuitionistic logic: the claim is that the adoption of

a more restricted concept of proof ensures that the resulting mathematics is al-

gorithmic by default. However, a rich tradition within constructive mathematics

introduces further differences with classical mathematics that arise by complying

with a more stringent concept of set. In the case of constructive type theory, com-

pliance with predicativity gives also rise to a distinctive form of computability. In

this part of the thesis I investigate predicativity as it arises both within a classical

and a constructive contexts. The strategy will be to start from the original texts on

predicativity to begin unravelling the complexities involved with this notion.
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Chapter 3: Origins of Predicativity.

In this chapter I highlight two characterisations of impredicativity. The first is better

known, and amounts to identifying impredicativity with a form of vicious circularity

in definitions. According to one rendering of this characterisation a definition is

impredicative if it refers to a totality to which the definiendum belongs. Another

characterisation of impredicativity has been particularly stressed by Poincaré and

terms a set impredicative if its definition is not invariant. The notion of invariance

is not clearly spelled out by Poincaré, but the intuition is that a set is invariant if,

once it has been defined, it cannot be modified or “disturbed” by the definition of

putative new elements of it. This second characterisation of impredicativity conceals

a notion of set as “incompleted” that is typical of the constructive and predicative

tradition, as further discussed in Chapter 5. I shall conclude this chapter by briefly

outlining Russells “solution” to impredicativity with his ramified type theory and

Weyl’s development of predicative analysis in “Das Kontinuum”.

Chapter 4: The logical analysis of Predicativity.

In this Chapter I shall briefly outline the principal outcomes of the logical analy-

sis of predicativity (given the natural numbers) that preoccupied prominent logi-

cians in the 1950s and the 1960s. A first observation is that under the logician’s

scrutiny, predicativity becomes first of all a property of a theory, and only subse-

quently, within the context of a given theory, a property of definitions or sets. It

becomes then possible to assess if a certain portion of contemporary mathematics is

predicative or not, by recasting it within the precise formulation of carefully fixed

canonical systems. A fundamental contribution of the logical analysis of predica-

tivity was the determination of the so-called limit of predicativity, by a complex

proof-theoretic analysis. Another crucial outcome of that analysis, and also of the

so-called programme of Reverse Mathematics, is the realization that large portions
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of contemporary mathematics can be carried out within predicative theories: the

reach of predicative mathematics goes much beyond what might have been originally

expected.

A significant aspect of the debate on predicativity is that a number of different

proposals have been put forth under the name of predicativity. The most well-

known is predicativity given the natural numbers, which is the predicativity that was

carefully studied by logicians from the 1950s. It takes the natural number structure

as “given” and introduces restrictions on sets beyond it, in particular on the set

of natural numbers. Another variant of predicativity, constructive predicativity, is

characterised by its use of intuitionistic logic, and is the variant that manifests itself

in constructive type theory. Another form of predicativity, strict predicativity, has

been discussed by Nelson and Parsons, and questions the predicativity of the natural

number structure. The plurality of predicativity rises a number of questions, first

of all on the relation between these forms of predicativity.

Chapter 5: On a predicative concept of set

An analysis of Poincaré and Weyl’s discussions on predicativity highlights a crucial

role, within this debate, of a particular concept of set, according to which sets are

extensions of definitions or properties. This concept of set bears similarities to the

concept of set that is to be found in the constructive tradition (e.g. constructive type

theory). Here sets are obtained from a step by step construction, expressible through

a finite rule, starting from some initial elements and some elementary operations over

them. This predicative concept of set is remarkably different from the concept of

arbitrary set which motivates Zermelo Fraenkel set theory. I shall argue that this

notion of set is at the heart of predicativity and can be seen as offering a “common

denominator” for each of the different kinds of predicativity that have emerged

within the literature over the years. I shall single out the crucial contributions by

Poincaré (1912) to setting out this conception of predicative set. I shall then detail
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the careful formulation by Weyl (1918) that fully explicates an arithmetical concept

of set. A distinctive characteristic of Poincaré and Weyl’s reflection on predicativity

is the special status they ascribe to the natural number structure. Weyl’s principal

aim in developing a form of predicativism is, in fact, building a safe form of analysis

on the basis of the unshakable natural number structure.

Chapter 6: Strict Predicativity

In this Chapter I shall analyse strict predicativity, which arises if one applies pred-

icatively motivated restrictions to the natural number structure. Proponents of

strict predicativity claim that the principle of mathematical induction hides a form

of impredicativity. In this chapter I shall first of all explicate in detail Nelson and

Parsons’ motives for strict predicativity. Then I shall discuss Dummett’s indefi-

nite extensible concepts. I shall take inspiration from the latter to suggest that if

impredicativity is found to affect the natural number structure, then one has two

options: (i) maintain a classical view of universal quantification and abide to strict

predicativism, or (ii) give an intuitionistic reading of universal quantification and

proceed to a more encompassing form of mathematics. I shall propose to employ

Dummett’s discussion also to clarify a significant issue on the relation between pred-

icativity given the natural numbers and constructive predicativity that was left open

in previous chapters.

Chapter 7: Is impredicative mathematics Indispensable?

The main purpose of this chapter is to discuss recent claims by Solomon Feferman

and Feng Ye according to which predicative mathematics is perhaps sufficient for

all scientifically applicable mathematics. I shall see how the work by Feferman and

Ye may be used to present a form of “indispensability” argument for predicative

mathematics. Subsequently, I shall report on Ye’s work that makes use of the tech-
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niques developed within Bishop constructive mathematics to reformulate within a

strict predicativist context a substantial portion of scientifically applicable mathe-

matics. The conclusions one may be able to draw from an indispensability argument

for predicativism are less clear cut than desirable. The importance of this discus-

sion for the philosophy of mathematics goes beyond the prospects of assessing the

plausibility of predicativism. The possibility of reducing large portions of applicable

mathematics to a form of mathematics that presupposes a small (strictly finitary)

fragment of the natural number structure is remarkable. This ought to play a role

in an understanding of the relations between different parts of mathematics and

distinct mathematical structures, and in singling out the scope of different proof

methods and assumptions. It may in fact help us clarify aspects of the complex

relation between mathematics and science.
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Chapter 1

The mathematical landscape

Mathematics is presently undergoing deep transformations comparable to the fun-

damental changes that took place at the turn of the 19th and 20th Centuries. In this

chapter I shall discuss some of these alterations and the impact they are having on

forms of mathematics that use intuitionistic rather than classical logic. Throughout

this thesis I shall be concerned with the most successful form of mathematics based

on intuitionistic logic, also known as Bishop’s constructive mathematics, that will

be the focus of the next chapter.1 In the following I shall argue that the present

surge of computer applications within mathematics has the potential to substantially

modify the position constructive mathematics currently holds within mathematics

as a whole, making it a more central enterprise.

The comparison between the present changes in mathematics and the transfor-

mations of the 19th and 20th Centuries is instructive, as it suggests a reading of

today’s alterations as the reappearance of themes from the past. One way of framing

the changes that took place within mathematics starting from the 19th Century is

as the slow emerging of a new style in mathematics, and the decay of an older one.2

1Unless otherwise stated I shall also simply write constructive mathematics to denote mathemat-

ics in the style of Bishop (1967). See Chapter 2 for a characterisation of this kind of mathematics.
2Edwards (see e.g. Edwards 1988, Edwards 2008) has particularly stressed the importance of

Kronecker’s work as repository of the older computational tradition. Kronecker’s work is witness

17
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A number of authors have emphasised that the new form of mathematics was

prompted by a growing preference for conceptual reasoning and abstract characteri-

zations of mathematical concepts, with a corresponding de–emphasis on calcula-

tion.3 Another fundamental development was the increasing confidence in dealing

with the infinite, which culminated with the emergence of Cantorian set theory

(Cantor 1883, Cantor 1895, Cantor 1897). The axiomatic method, as emblemat-

ically exemplified by Hilbert’s axiomatisation of geometry (Hilbert 1899), gained

unprecedented primacy, due to the realisation of the wider applicability of general

axiomatic characterisations of mathematical concepts. This in turn had an impact

on the relation between mathematics and its applications, as mathematics became

less dependent from the stimulus of specific applications. Overall, the changes were

so dramatic that in a very influential article, Howard Stein (1988) wrote that the

19th Century witnessed the second birth of mathematics, the first having taken place

at the time of the ancient Greeks.

It is tempting to claim that we are currently witnessing a revival of the older

style, now enhanced and ameliorated by the influence of the substantial progress that

has taken place within its opposite approach. Less abstract, more computational

forms of mathematics flourish today due to stimuli originating directly from their

applications. In particular, a computational form of mathematics is gaining promi-

nence in view of the new emerging role of computers within mathematical practice,

as further discussed below. In addition, the very concept of set is undergoing care-

ful re-examination, with the aim of enabling a thoroughly computational form of

to a form of mathematics that predates the set-theoretic turn and was grounded solely on concepts

that have clear algorithmic significance. From Edwards’ constructive perspective, Kronecker’s

views, that have often been depicted as outmoded, appear therefore as anticipatory of today’s new

computational trend.
3See (Stein 1988). See also (Avigad & Reck 2001) for an analysis of the changes that took place

between the 19th and early 20th Centuries and their impact on mathematical logic, especially

proof theory.
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mathematics. As argued in Chapter 5, the roots of the present constructive concept

of set lay within the old form of mathematics, that was more directly bound to ex-

plicit description and symbolic representation. As witnessed by today’s constructive

and predicative set theories, like Martin-Löf type theory (Martin-Löf 1975, Martin-

Löf 1982, Martin-Löf 1984), the tie with symbolic representation makes the ensuing

notion of set ideal for computer applications.

The origins of the predicative notion of set are noteworthy: it emerged as a reac-

tion primarily to the new abstract notion of set that emanated from Cantorian set

theory, with its distinctive treatment of infinitary notions. The debates that gave

birth to predicativity were witness to a strong opposition to the new methodology

and to mathematical concepts that the developments of 19th Century mathematics

had brought about. Mathematicians such as Poincaré and, especially, Weyl consid-

ered the paradoxes that emerged at the turn of the 20th Century as a signal that

the new mathematics was unsafe, untrustworthy. They embarked on a task of clar-

ifying a predicative concept of set that would offer a way out: a mean of perfecting

and extending the older, algorithmic form of mathematics, while avoiding resort to

unsafe new methodologies.4

A revival today of older forms of mathematics might be surprising, especially as

it is prompted by some of the most advanced forms of technological development of

this century. It is also remarkable that the new computational form of mathematics

is proposed today for reasons that are very similar to the original ones: as a way of

securing correct reasoning and flawless proofs, as further discussed in Section 1.1.2.

1.1 A changing mathematics

A prominent aspect of today’s mathematics that particularly distinguishes it from

the mathematics of a century ago, is the rapid growth of a plurality of practices.

4See in particular the discussion on Weyl’s “Das Kontinuum” (Weyl 1918) in Chapter 5.
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Mathematicians are exploring different ways of doing mathematics; therefore today,

beside standard classical mathematics, we have fast expanding forms of constructive,

computable, non–standard mathematics, to name a few.5 In fact, a number of more

prominent practices, as the constructive one, are rapidly flourishing and already

comprise further sub–varieties within themselves, as discussed in Chapter 2, Section

2.4. This tendency to differentiation within mathematics is growing stronger,

and follows years of proliferation of numerous varieties of logics. The latter have

been prompted by a number of reasons, from philosophical motivations (as in the

case of Brouwer and Heyting’s intuitionism), to pragmatic reasons (as witnessed by

the vast number of application–driven logics emerging within theoretical computer

science today).

The incipient differentiation which characterises logic and mathematics today

is witness to a more general phenomenon. At the beginning of the 20th Century

the mathematical scene was dominated by figures like Poincaré, Hilbert and Weyl,

whose fundamental contributions spanned across wide sections of the mathematical

spectrum, deeply impacting other sciences, in particular physics. Today mathemat-

ics shares the fate of many other scientific enterprises, and, as it grows, it becomes

more and more specialised. As vividly described by David & Hersh (2011), to-

day’s mathematics requires extremely well trained individuals who understand and

practice technically demanding, difficult and often rather self–contained fields. The

plurality of logical and mathematical practices is but one aspect of this new kind of

mathematics: a complex, highly specialised and differentiated body of knowledge.

The differentiation and the technical complexity of today’s mathematics poses

unprecedented challenges for this growing discipline, with fundamental impact on

both the discovery and verification processes . The very nature of mathematics

is dramatically changing, and this has repercussions on the way mathematicians find

5There are also developing forms of finitary, strictly finitary, paraconsistent mathematics, among

others, that are more directly motivated by philosophical considerations.
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and corroborate new proofs, consequently also affecting the fundamental concept of

mathematical proof. Proofs are increasingly complex and technical, often the result

of close cooperation among a number of authors. Sometimes they are very large,

spanning across a number of journal articles and requiring years for their elaboration.

A paradigmatic example is offered by the classification of finite simple groups. Its

completion in 1981 was the conclusion of over 30 years of research, involving more

than 100 mathematicians, with the published output of some 300 to 500 articles

(Aschbacher 2005, Steingart 2012).

These changes open up the way for a new role for computers within mathematics.

1.1.1 The role of computers in mathematics

Not only the time span, number of authors, and size of the mathematical output

are undergoing transformations, but we are witnessing also radical modifications in

the process of proof itself. The ground–breaking case of the four colour theorem,

which was proven in 1976 by Kenneth Appel and Wolfgang Haken with the help

of a computer, has opened up the way for numerous examples of machine-aided

proofs. An important case of computers’ contribution to the discovery process in

mathematics is Thomas Hales’ computer–aided solution of Kepler’s sphere packing

problem. After having been stated by Johannes Kepler in 1611, the conjecture

eluded mathematicians for almost 4 centuries. It was eventually solved by Thomas

Hales and his team, following an approach suggested by Fejes Tóth in 1953. Hales’

solution crucially made essential use of computers.

The potential for computers to advance today’s mathematics has been advocated

by a number of mathematicians. For example, Dana Scott has maintained that in

today’s mathematics there is an urgent need to solve complex and large proofs, “Big

Proofs”, and this requires computers and logic to work together to make progress.6

6See Scott’s e–mail to the Foundations of Mathematics mailing list of 28-07-14,

http://www.cs.nyu.edu/mailman/listinfo/fom, in which he reported on his opening talk at the
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Scott has further expressed the hope that computers will be used to obtain more

substantial and new, perhaps unexpected or surprising results, thus advancing and

possibly redrawing completely the discovery process in mathematics. As also in-

dicated by Scott, a more significant role for computers within mathematics also

represents a major challenge, as computers have so far been mainly employed to

verify known proofs or corroborate plausible conjectures.

The example of Hales’ solution of Kepler’s conjecture raises fundamental ques-

tions on the concept of proof and its relation to the mathematical community.7

Davies (2011) reports that at a meeting of the Royal Society (convened in 2004

to discuss “The Nature of Mathematical Proof”) Robert MacPherson, Editor of

the Annals of Mathematics, described why the editors had felt compelled to accept

Hales’ proof, even though a team of experts had eventually abandoned the effort

to check all its details after several years of intense work. This case is indicative

that computer-assisted proofs are slowly gaining the status of mathematical proofs,

notwithstanding concerns of full surveyability and human reproduction and under-

standing.8

“Vienna Summer of Logic” (9th–24th July 2014).
7The following questions come to mind: does a totally or partly computerised proof count as a

mathematical proof? Do we require that a mechanised proof ought to be amenable to reduplication

by a human being? Or, perhaps, should we impose the stronger constraint that it ought to be

fully mastered by or, at least, understandable for a mathematician in order to be rightfully called a

proof? See (Tymoczko 1998) for a discussion. See also (Corfield 2003) for an analysis of the impact

of computers within today’s mathematics and for a clear demand that contemporary philosophical

reflection ought to be directly informed by contemporary mathematical practice.
8The following “Statement by the Editors on Computer-Assisted Proofs” can be read on the

homepage of the Annals of Mathematics (http://annals.math.princeton.edu/board):

“Computer-assisted proofs of exceptionally important mathematical theorems will be considered

by the Annals.

The human part of the proof, which reduces the original mathematical problem to one tractable

by the computer, will be refereed for correctness in the traditional manner. The computer part

may not be checked line-by-line, but will be examined for the methods by which the authors have
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Examples as such highlight another aspect of the potential role of computers

for today’s mathematics: the size and complexity of many of today’s proofs, not

only cause hardship for the discovery process, but interfere in profound ways with

the verification process, too. That is, a second difficulty faces contemporary math-

ematics, as it becomes more and more challenging, if not practically impossible, to

accomplish the peer reviewing process that is necessary to ascertain the correct-

ness of purported large proofs. Here again one might hope that computers could

provide much needed assistance. The interaction between humans and computers

might seem at first to introduce further intricacies: it could be argued that it be-

comes even more difficult to ascertain the correctness of a proof if it is the output

of the interaction between a human and a machine. Conceivably, on the contrary,

computers are likely to become a major game changer, by extending our capabili-

ties in a number of ways, and offering new verification strategies. For example, the

four colour theorem and the proof of Kepler’s conjecture have already been formally

verified by computer systems, and, it is argued, their verification has increased our

confidence in the correctness of their proofs.9

eliminated or minimized possible sources of error: (e.g., round-off error eliminated by interval

arithmetic, programming error minimized by transparent surveyable code and consistency checks,

computer error minimized by redundant calculations, etc. [Surveyable means that an interested

person can readily check that the code is essentially operating as claimed]).

We will print the human part of the paper in an issue of the Annals. The authors will provide

the computer code, documentation necessary to understand it, and the computer output, all of

which will be maintained on the Annals of Mathematics website online.”
9The four colour theorem has been formalised by Gonthier in 2005. Gonthier (n.d.) claims

that the formalization of the four colour theorem is “an ultimate step” in the effort of clarifying

the mathematical result, especially as the original proof contained a complex interaction between

manual and mechanical components. See also (Gonthier 2008). On 10th of August 2014 Thomas

Hales has announced the completion of the Flyspeck project, which has constructed a formal proof

of the Kepler conjecture using a combination of the Isabelle and HOL Light proof assistants. The

formal verification of the original proof has also required extensive and protracted team-work.
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1.1.2 Formal verification

Formal verification is a substantial field in computer science, that customarily relates

to the verification of a program by means of formalization, to eliminate errors.10

In the case at hand, one considers instead the verification of mathematical proofs,

carried out with the help of a “proof assistant”. This is a software that typically

implements (i.e. codifies) a version of type theory (e.g. a constructive type theory

or a form of Higher Order Logic).11

The verification of a mathematical proof usually starts from an informal, known

proof of a theorem that we wish to verify. The first task is to formulate the statement

of the theorem which complies with the given formalism, as implemented in the

proof assistant. The most common proof assistants today allow for an interactive

execution of proofs: the user conducts the formalization of a proof, and is “assisted”

by the software. The latter might suggest how to solve individual steps of the proof,

perform mechanically simple routines, or retrieve the proof of a lemma from a rich

library of already fully formalized and verified mathematical statements.12 Most

10A program is a collection of instructions within a programming language that instruct the

computer to perform a specific task.
11Most proof assistants today have a first central part “the core” that is designed on the basis

of some type theory. They then introduce “higer levels” on top of the core, which implement a

number of different formal systems, leaving to the user the choice of which one to employ in specific

contexts. This is often expressed by stating that the proof assistants are “generic”. Proof assistants

are also designed to facilitate a number of different projects, like formalization of mathematics and

verification of both mathematics and software, as well as applications to security. See, for example,

(Coq n.d., HOL n.d., Isabelle n.d.).
12In order to prove interesting, non-trivial theorems, extensive work is required to produce all

the necessary libraries of lemmata. Often the formalization process faces difficulties due to a

number of defects of informal proofs. For example, informal proofs frequently omit trivial steps,

which in many cases can be filled up by routine but tedious work. Sometimes, however, one needs

substantial new work to clarify aspects of the informal proof. In addition, there are several cases

in which the formalization brings to light mistakes in the informal argument, that also require
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proof assistants utilize also automatic proof searches to speed up the formalization

of elementary steps. The output of this long process is a mechanically verified proof

of the original mathematical statement, in all details.13 If mistakes were not found

in the original argument, and if the implementation followed sufficiently closely the

original proof, then the latter is also considered to be confirmed by the mechanization

process.14

1.1.3 The status of constructive mathematics

The outline above draws a picture of mathematics as a multi–faceted, dynamic

practice, which is fast changing. In particular, a prominent aspect of today’s math-

ematics is the emergence of more complex and lengthy proofs. This indicates a new

role for computers within mathematics, both within the discovery and the verifica-

tion processes. In particular, proof assistants are already being employed to verify

correction.
13The formalisation by Hale and his group has spanned a number of years and has required the

effort of numerous researchers. Another large enterprise is the formalisation of elementary group

theory by Gonthier and collaborators (see e.g. Gonthier, Mahboubi, Rideau, Tassi & Thry 2007). In

both cases the major outcome, beyond the particular verification exercise, is the substantial expan-

sion of the library of verified mathematical theorems available within the chosen proof assistants.

As stressed by (Gonthier et al. 2007), special care needs to be taken in making the results of the for-

malisation process as “portable” as possible. That is, one of the greatest challenges faced by devel-

opers of proof assistants today is to ensure that the libraries of theorems so produced can be shared

among different platforms. A related challenge is to ensure that the formalized mathematics be

readable by ordinary mathematicians, without requiring substantial familiarity with the ad hoc fea-

tures of a specific proof assistant. See, for example, the Isar subsystem of the Isabelle proof assistant

(http://isabelle.in.tum.de/doc/isar-ref.pdf, http://www.cl.cam.ac.uk/research/hvg/Isabelle/).
14Very challenging questions arise here regarding the relations between the original, informal

proof and its formal counterpart: the fully formalized proof(s) will be syntactically very different

from the original, informal proof, and the exact relation between them needs to be carefully

discussed. Another crucial aspect that requires consideration is the relation between different

formalizations of a single informal proof within different underlying formalisms and proof assistants.
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complex and large proofs.

Constructive mathematics, that is, mathematics that uses intuitionistic logic, is

one of the many emerging and fast expanding practices within mathematics. In

this new mathematical landscape constructive mathematics sits in a very favourable

position due to the distinctive algorithmic nature of its proofs (in a sense to be ex-

plained later). Constructive mathematics for this reason fits perfectly with computer

systems and promises to be of relevance for the many applications of mathematics

that require machine computation. In particular, constructive mathematics is at

the heart of very popular and fast expanding proof assistants, like the system Coq

(Coq n.d.).15 The reasons for the increasing popularity of Coq are complex and

plausibly include a number of sociological factors. However, one important aspect is

the fact that constructive proofs carry additional information compared with classi-

cal proofs. The use of intuitionistic logic then allows us to obtain more informative

proofs, proofs that are in fact programs.16 In addition, pioneering work is looking

into the possibility of exploiting the algorithmic nature of constructive proofs to

help us develop programs that are free from mistakes (as discussed in Section 1.2.3).

Finally, constructive proof assistants are more general, as they allow for the imple-

mentation of both classical and constructive proofs (in the latter case carrying over

the additional computational information).17

The increasing popularity of constructive proof assistants and the desire to use

them to support us in the development and the verification of complex and big proofs

has drawn unprecedented attention to constructive mathematics. In particular, it

has attracted prominent mathematicians who have manifested interest not only in

the possibility of automatic verification of mathematical results, but in the com-

15The core of the proof assistant Coq codifies an intuitionistic type theory.
16This is the case, for example, of proofs carried out in Martin-Löf type theory. See Section 1.2.1

for a clarification of this point.
17The generality of a constructive approach will be discussed at some length in the next Chapter

2, Section 2.5.1.
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putational nature of constructive mathematics.18 This has important sociological

consequences, as a change in how this practice is perceived within the mathematical

community itself has the potential of further strengthening this particular form of

mathematics.

The principal impetus for the prominence and the fast development of computer

systems with a constructive core, like Coq, is the distinctive algorithmic nature

of constructive mathematical proofs. In fact, as further clarified in Section 1.2.1,

constructive proofs may be read as very general algorithms, which tell us how to

carry out a construction step by step; for this reason, they are apt to computer

applications, including computer assisted mathematics. In the following sections I

shall further elucidate in which sense constructive proofs are algorithmic.

1.2 The computational content of mathematics

based on intuitionistic logic

Constructive mathematicians claim that constructive proofs are more informative

than their classical counterparts. They say they have “computational content” or

“computational significance” not guaranteed by a classical proof of the same the-

orem. Douglas Bridges has dubbed constructive mathematics “algorithmic mathe-

matics” (Bridges 2009). In this section, we shall look at the phenomenon that lies

behind these labels.

Intuitionistic logic is the subsystem of the classical predicate calculus which is

18Formalisation of mathematics has recently been endorsed by Field Medalist Vladimir Voe-

dovsky, who has started a successful project of formalization of advanced parts of mathematics

in Coq. Voedovsky also proposes a variant of constructive (or Martin-Löf) type theory as a new

foundation for mathematics (Univalent Foundations Program 2013). His programme has attracted

considerable attention and has stimulated new significant research that is further unveiling the

potential of constructive approaches.
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obtained by omitting the principle of the Excluded Middle (EM), according to

which for any formula A, A ∨ ¬A holds.19 The absence of the principle of excluded

middle has crucial consequences for the ensuing notion of proof. The difference

between constructive and classical proofs is usually exemplified by considering the

proofs of existential and disjunctive statements: statements of the form ∃xA(x)

and A ∨ B, respectively. A constructive proof of an existential statement ∃xA(x)

ought to exhibit (at least in principle) a witness: an object, say t, for which A(t)

holds. Classically, one can also prove such a statement by contradiction: proving

¬∀x¬A(x). However, the standard proof of the equivalence between ∃xA(x) and

¬∀x¬A(x) requires EM, and it is thus not generally acceptable constructively. As

to disjunctive statements, to prove constructively a disjunction A ∨ B, it does not

suffice to prove that it is not the case that both ¬A and ¬B hold: we further need

to say which of A or B holds. In fact, also the case of proofs of conditional and

universally quantified statements is crucially different from the classical case, as

further discussed below.20

These brief remarks already convey the thought that constructive proofs carry

with them more information than classical proofs. As a result, constructive proofs

are generally more explicit than their classical counterparts, in that they clearly

show how to construct the objects they assert to exist, and “calculate” the relevant

functions. This fact lays at the heart of the computational content of constructive

mathematics that will be discussed in the next Section.

19I shall discuss in more detail the differences between intuitionistic and classical logic and the

impact they have on mathematics in Chapter 2.
20In Douglas Bridges’ remembrance of Errett Bishop which opens (Crosilla & Schuster 2005), the

author suggests that Bishop’s “conversion” to constructive mathematics was probably prompted

by discussions he had with students during an introductory course in logic. The students expressed

uneasiness with classical (material) implication, and this drew Bishop’s attention to intuitionistic

logic.
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1.2.1 The Brouwer–Heyting–Kolmogorov explanation of

constructive proof

In order to clarify how constructive proofs work and give an idea of why a con-

structive proof is algorithmic, in the following I shall present the BHK (Brouwer–

Heyting–Kolmogorov) interpretation of intuitionistic logic. In introductory texts on

constructive mathematics, intuitionistic logic is usually presented together with the

BHK interpretation of the connectives and quantifiers (see, for example, Dummett

1977, Troelstra & van Dalen 1988, van Atten 2014). This has the purpose of offering

an informal clarification of the notion of constructive proof. The interpretation clar-

ifies what a proof of a statement is in terms of the proofs of its logical constituents;

for example, a proof of a conjunction, A ∧ B, is expressed in terms of the proofs of

its conjuncts, A and B.21

The BHK interpretation is given by the following inductive clauses.

• Absurdity ⊥ (contradiction) has no proof.

• A proof of a conjunction A∧B is given by presenting a proof of A and a proof

of B.

21To be more precise, the BHK interpretation is an explanation of what counts as a canonical

proof of a mathematical statement. Canonical here means standard or prototypical. The thought

is that the BHK interpretation clarifies the notion of canonical proof, and so lays the foundation

for understanding proofs more generally, as, for example, proofs that contain “detours”. The

distinction between canonical and non canonical proofs is of no concern in this context, but becomes

important especially when one considers formal counterparts of the BHK interpretation, as natural

deduction systems, and, in particular, extensions of them by a notion of constructive set, as in

constructive type theory (Martin-Löf 1975, Martin-Löf 1984). See also (Schroeder-Heister 2016,

Dybjer & Palmgren 2016) for introductory texts. A related distinction between canonical and

non-canonical elements of a set will be addressed in Chapter 6, for the particular case of the set of

natural numbers.
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• A proof of a disjunction A ∨B is given by presenting either a proof of A or a

proof of B.

• A proof of A → B is a construction (or method) which transforms any proof

of A into a proof of B.

• A proof p of (∀x ∈ Z)A(x) is a construction (or method) transforming any

(proof of) d ∈ Z into a proof p(d) of A(d).

• A proof of (∃x ∈ Z)A(x) is a pair 〈p, q〉, with p an element of Z (the witness)

and q a proof of A(p).

Here the symbol ⊥ represents a contradiction.22 The notion of contradiction

is required for defining negation, which is not primitive intuitionistically: ¬A is

defined as A → ⊥. According to the BHK interpretation, then, a proof of ¬A

is a construction which transforms any supposed proof of A into a proof of ⊥ (a

contradiction).

Note that the conditions for disjunction and existential quantification conform to

the intuitions already reviewed above. For example, a proof of a disjunction requires

us to present a proof of one of the disjuncts. This interpretation of disjunctive

proof, together with the interpretation of the universal quantifier, are key to the

constructive rejection of the principle of the excluded middle as a method of proof.

The Principle of the Excluded Middle (EM), in fact, states that for any proposition

A, A∨¬A holds. According to the BHK interpretation, accepting EM as a general

proof principle would require that we have a universal method for obtaining, for any

proposition A, either a proof of A or a proof of ¬A (that is, a method for obtaining

a contradiction from a hypothetical proof of A). However, if this were the case we

22If working within a language which includes arithmetic, we can define ⊥ as 0 = 1. If we

consider instead a language which does not include arithmetic, we shall take ⊥ as a primitive

symbol, denoting a contradiction.
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should be able to decide so far unresolved conjectures, like, for example, Goldbach’s

conjecture, for which we have at present no solution.23

The BHK interpretation also satisfies the requirement discussed above that a

proof of an existential statement ought to offer a witness : a proof of (∃x ∈ Z)A(x)

is an ordered pair 〈p, q〉, with p a witness in Z (that is, an element of Z which

satisfies the statement A) and q a proof of A(p).

Note also the clauses for implication and universal quantification. These refer

to a construction or method, transforming proofs into proofs, where the notion of

construction (or method) is primitive. In fact, also the notion of proof in the BHK

interpretation (as a whole) is primitive and not to be understood as proof in a

formal system. It may be explicated informally in a number of ways; for example,

as a method for solving a problem or doing a task, as in Kolmogorov (1932) (see

also Martin-Löf 1984).

The BHK interpretation is an informal explanation of the notion of constructive

proof, and, as such, it appeals to unspecified primitive notions of (informal) proof

and construction. The latter in particular would seem to require further clarification

if the interpretation is to offer an explanation of what counts as a constructive

proof, and how it differs from a classical one.24 The role of the BHK interpretation

in introductory texts on constructive mathematics is therefore mainly pedagogical,

as it offers an idea of the principal characters of the notion of constructive proof

23Golbach’s conjecture states that every even integer greater than 2 can be expressed as the sum

of two primes.
24This thought is further corroborated by the following observation. Suppose in setting out the

conditions for the BHK interpretation one takes a classical perspective at the meta-level. That is,

the right-hand side of the BHK interpretation is expressed by appeal to a classical interpretation

of the logical constants, and the notion of construction is expressed in terms of a set-theoretic

function. Then it turns out that one validates the principle of excluded middle, as clarified in

(Troelstra & van Dalen 1988, Sundholm 2004), in particular (p. 9 and Exercise 1.3.4 in Troelstra

& van Dalen 1988).
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without requiring the appeal to more sophisticated logical tools. In this chapter

the interpretation is used as an instrument for explaining why constructive proofs

may be read as very general programs, without having to introduce more complex

technical notions.

The notion of constructive proof that underlies the BHK interpretation can be

precisely characterised by utilizing formal systems, like, for example, the natural

deduction calculus (Gentzen 1935a, Gentzen 1935b).25 In this chapter we are par-

ticularly interested in clarifying in which sense a constructive proof is algorithmic.

For this purpose it is useful to consider a precisification of the BHK interpretation

which expresses the algorithmic nature of constructive proofs more directly. This

is know as the Curry-Howard correspondence, and exploits a structural similarity

between constructive proofs on the one side and programs of a certain kind on the

other. The latter are expressed within a formalism known as the typed lambda

calculus (Church 1940, Barendregt 1981, Barendregt 1991), which is the core of

prominent functional programming languages as well as of Martin-Löf type theory

and the calculus of constructions.26 Under the Curry-Howard correspondence the

proofs and constructions that the BHK interpretation mentions become (very gen-

eral) programs; as a consequence, the possible role of constructive proofs within

concrete computer applications becomes evident. I shall give an illustration of this

point in the next section, where I shall explicate the main features of the so-called

Curry-Howard correspondence with an example.

25See also (Troelstra & van Dalen 1988, Schwichtenberg & Wainer 2012).
26The calculus of constructions is the formal system that underlies the core of the proof assistant

Coq.
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1.2.2 The BHK interpretation and the computational con-

tent of constructive mathematics

In this section I illustrate with an example one strategy for explicating the algo-

rithmic nature of constructive proofs. I shall start with a statement (that can be

proved constructively) and apply to it the BHK interpretation. This will supply us

with a very general algorithm. Subsequently, I shall introduce the Curry-Howard

correspondence that allows us to produce a “program” from the informal BHK al-

gorithm.27

The following discussion is rather technical and is introduced here as a way

of substantiating the claim that constructive proofs are of relevance for computer

applications: they are very general programs. The technical details that I introduce

here will not be required in subsequent chapters. However, in later chapters I shall

refer back to the general idea of the Curry-Howard correspondence, that associates

formulas in intuitionistic logic with “programs” within suitable type systems.

We are typically interested in the algorithmic content of statements of the form

(?) (∀x ∈ Z)(∃y ∈ W )A(x, y),

that express the existence of a relation between elements of a set of inputs Z and a

set of outputs W . For example, one might wish to consider the following statement:

(??) for every even natural number n, there is a natural number m such that

n = m+m.

The aim is then to show that a constructive proof of (??) is in fact an algorithm

that produces the half of any even natural number.

27The quotes in “program” refer to the fact that I shall produce in the first instance a very

general program: an expression in the typed lambda calculus. This could also be called a “logician’s

program”. A “real program”, that may be run in computers can be obtained from that expression

by translating it into a standard functional programming language as Haskell. This further step

will be discusses in Section 1.2.3.
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In the following I shall clarify how, given a statement of form (?), the BHK

interpretation produces an algorithm which, for any input a in Z, gives an output

b in W such that A(a, b) holds. In fact, under the BHK interpretation, a proof of a

statement of the form (∀x ∈ Z)(∃y ∈ W )A(x, y) is a construction p which takes an

element a of Z to a proof pa of the statement (∃y ∈ W )A(a, y). In turn, a proof pa

of the existential statement (∃y ∈ W )A(a, y) is an ordered pair pa = 〈ba, ca〉, where

ba is an element of W (the witness of this existential statement) and ca is a proof

of A(a, ba). That is, according to the BHK interpretation, a proof of the statement

above is a construction p that takes an element a of Z and produces a pair composed

of a witness ba ∈ W and a proof ca of the fact that A(a, ba) holds. If we give an

algorithmic interpretation to the notion of construction that is appealed to within

the BHK interpretation, then p can be read as an algorithm that for each element

a of Z as input, produces a witness, ba in W , of the formula A, and a proof ca that

A does in fact hold of a and ba. In particular, in the case of the statement (??), the

algorithm produces the half of any even natural number and a proof that it is in

fact the half of the given number.

The above considerations offer a general idea of why constructive mathematicians

claim that constructive proofs can be read as algorithms. However, they do not

clarify how to transform these very general algorithms into real programs that we

can in fact apply in concrete circumstances.

This can be achieved by refining the BHK interpretation by means of the so-called

Curry-Howard correspondence (Curry 1934, Curry & Feys 1958, Howard 1980). This

is a correspondence which is peculiar to systems based on intuitionistic logic, and is

at the heart of the development of constructive proof assistants such as Agda, Coq

and Nuprl (Constable & et al. 1986, AGDA n.d., Coq n.d.).
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The Curry-Howard correspondence

The Curry–Howard correspondence highlights and precisely specifies a structural

similarity between pairs of syntactic objects in distinct theories. On the one side

of the correspondence we have formal proof calculi for the intuitionistic logic, like,

for example, the natural deduction calculus, that precisely codify the intuitionistic

notion of proof. On the other side we have variants of constructive type theory,

typically formulated as a suitable (extension of the) typed lambda calculus.

The idea is that these type theories express in a formal, accurate manner the

algorithmic notions of proof and construction mentioned by the BHK interpretation.

In particular, they give precise computational sense to the notion of “construction”

that was mentioned at page 29, in terms of very general programs. We have the

following pair of correspondences:

• on the one side formulas in the intuitionistic calculus and, on the other side,

types in constructive type theories; and

• on the one side constructive proofs of such formulas and, on the other side,

the elements of the corresponding types.

It is important to remark that the notion of type utilised in these type systems

does not coincide with the familiar notion of set from classical ZF.28 In addition,

a function in these systems is not a set-theoretic function as a graph (i.e. an ap-

propriate set of ordered pairs), but a primitive notion of function that better suits

the computational needs: essentially a function is a “program”. It is indeed the

computational character of the type theories that clarifies why the correspondence

explicates the computational content of constructive proofs.

To see how the correspondence works it is best to look at the particular case

28See (Barendregt 1981, Dybjer & Palmgren 2016, Troelstra & van Dalen 1988). See also Chap-

ters 3 and 5 for more information on the ancestry of this notion of type.
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of an implication.29 The BHK condition for implication states that a proof of an

implication A→ B is a construction that transforms a proof of A into a proof of B.

The thought is that constructively an implication A→ B behaves as a function that

transforms a proof of the formula A (i.e. a witness of the truth of A), into a proof of

the formula B (i.e. a witness of the truth of B).30 From a constructive perspective

a formula corresponds to what makes it true: its proofs. That is, a formula may be

seen as corresponding to a collection of proofs: the set or type of its proofs. The

Curry-Howard correspondence makes this intuition precise by stating that a formula

A → B corresponds to a type: the “function type” (usually also written A → B).

The latter is the collection of all (expressions denoting) functions with domain A

and range B (or, equivalently, of all “programs” that take inputs of type A and

produce outputs of type B).

This also suggests the motivation for the second pair of correspondences men-

tioned above: proofs as elements of a type. A proof of a formula C may be seen as a

witness to the truth of C, and thus as belonging to the type that corresponds to C

(the collection of all proofs of C). In the case of A→ B, a proof of this implication

corresponds to (an expression that denotes) a function from the type of proofs of

the formula A to the type of proofs of the formula B. The expression that denotes

such a function is an element of the function type A → B; typically this will be a

term in the typed lambda calculus written as λx : A.t : B.31 That is, λx : A.t : B is

an expression in the typed lambda calculus that represents a function from A to B,

or, indeed a “program” that takes inputs in A and produces outputs in B.

29I shall here consider an implication instead of the formula (?) above as it is considerably

simpler.
30See also (Sundholm 1994), where proofs of a formula A are also seen as truth–makers for A.
31The notation x : A indicates that the variable x is of type A, that is, x stands for (or can

be substituted by) an element of the set A. In addition, λ is a binder that is used to express

functions. See for example (Barendregt 1981, Seldin & Hindley 2008) for detailed treatments and

(Troelstra 1999) for an introduction to the λ-calculus.
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One can then extend considerations of this kind to all the other clauses of the

BHK interpretation, to produce an interpretation of intuitionistic proofs as functions

(or “programs”) within a type lambda calculus. The surprising fact that the Curry-

Howard correspondence clarifies is that there is a precise structural correspondence

between the workings of intuitionistic logic and the workings of a computational

calculus as the typed lambda calculus. Proving theorems in intuitionistic contexts

is the same as programming within a very general functional programming language.

1.2.3 Program extraction from constructive proofs

The computational content of constructive proofs is at the heart of an ambitious

project that is gaining currency nowadays: program extraction from proofs . The

principal aim of this project is to extract “real” programs from mathematical proofs

with the help of a constructive proof assistant. In Section 1.1.2 I have discussed the

formalization within a proof assistant of mathematics, which uses logic and program-

ming as instruments for the verification of mathematical theorems. Here, instead,

one uses a proof assistant to transform mathematical theorems into programming

tools. I shall now endeavour to give an explication of how the machinery introduced

in the previous section can help us devise new ways of programming: instead of

manually producing a program to carry out a given task, we first prove construc-

tively a formula that describes that task, and then use it to obtain automatically a

program from it.

Suppose we want a program that computes the half of every even number. Then

the first task is to write down the statement:

(??) for every even natural number n, there is a natural number m such that

n = m+m,

and prove it constructively. The aim is then to use our constructive proof assis-

tant to transform its proof into a computer program.

Once (??) has been appropriately formulated within the proof assistant, one
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begins to build an interactive constructive proof of it, as sketched in Section 1.1.2.

The skeleton of the proof will essentially look like the proof p in the previous section.

The crucial new step compared with Section 1.1.2 comes in now, as one endeavours

to transform the formal proof into a real program in some functional programming

language (for example Haskell or Scheme). The latter step can be obtained by

exploiting the Curry-Howard correspondence presented in the previous section. If

we apply the Curry-Howard correspondence to the case of the statement (??), we

obtain a correspondence between a formal constructive proof of this statement, and a

function or “program” within a relevant type system. By using this correspondence

in the direction from left to right, that is from formulas to programs, the proof

assistant can automatically transform the formalised proof into an expression in

the relevant typed system. The output is a very general program, written in the

notation of the typed lambda calculus; however, for concrete implementation into a

computer it needs to be finally translated into a programming language like Haskell.

This can also be done automatically by the proof assistant. Our constructive proof,

say p, has therefore given rise to a program, π, that is ready to be run on appropriate

inputs. In the particular case of the statement (??) above, the program will produce

the half of any even number n.32

Researchers working on program extraction from proofs usually highlight a cru-

cial advantage of this approach over traditional programming techniques. In custom-

ary programming, one devises a program so to meet its specification; for example,

in the case of the statement (??) above, one writes a program that given an even

number n produces its half. Once the program has been written and tested in a

number of examples, it needs to be further verified, to ensure that it is correct (i.e.

32See (Crosilla, Seisenberger & Schwichtenberg 2011) for further simple examples of pro-

gram extraction from proofs in the proof assistant Minlog (http://www.mathematik.uni-

muenchen.de/ logik/minlog/). See (Schwichtenberg & Wainer 2012) for a detailed exposition of

the theory underlying program extraction from proofs.
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error-free). In the present setting, instead, one produces in the first instance a fully

formalised mathematical proof of that statement, and subsequently automatically

extracts a program from it. The advantage of this latter strategy is that the ensuing

program is automatically correct, so that there is no need to carry out a separate

verification, with consequent cost reduction. The reason for the correctness of the

program can be gathered by recalling the example above of the BHK interpretation

of the statement (∀x ∈ Z)(∃y ∈ W )A(x, y). The BHK interpretation, in fact, pro-

duces not only an algorithm p that takes an element a of Z to a proof that A(a, ba)

holds for a witness ba, but also a proof, ca, of this fact. Therefore ca acts as our

guarantee that the algorithm (and thus also the program that is extracted from it)

is correct. This justifies the expression often found in the relevant literature that

the extracted program is correct by construction.

The extensive work on program extraction from proofs of the last two decades

shows that Bishop’s insight was remarkable: the use of intuitionistic logic accords

computational content to mathematical theorems.33 Further, we can develop au-

tomatic tools which produce (correct) programs from constructive proofs, provided

that we are willing to carry out the tedious task of formalising mathematical proofs.34

33Bishop’s ideas were put forward well before the projects in computer assisted computation I

discussed above were carried out. De Brujin’s AUTHOMATH project and Martin–Löf’s theory of

types (Bruijn 1968, Martin-Löf 1975) represent other pioneering work which had lasting and more

direct influence on such developments.
34It should be mentioned that in more recent years there has been intensive work also in the

direction of understanding the computational content of classical mathematics. For example, the

Curry–Howard correspondence has been extended to classical systems in (Parigot 1992, Curien

& Herbelin 2000). To my knowledge, the techniques utilised in these cases typically make

use of interpretations (or translations) of classical into constructive systems (see e.g. Berger &

Schwichtenberg 1995), and then exploit the latter’s algorithmic nature to extract computational

content. For this reason in the following I shall refer to the computational content of constructive

mathematics as “direct”.
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1.3 Conclusions

Mathematics today appears as a multi–faceted, dynamic practice, which is fast

changing. In particular, mathematical proofs are becoming more complex and

lengthy, therefore requiring new strategies for their discovery and verification. Com-

puter systems are proving particularly valuable, as they have the potential to sub-

stantially improve both the discovery and the verification processes in mathematics.

In addition, there is a surge of interest for constructive proof assistants, as they

have additional features (as the ability to extract correct programs from proofs)

that make them more versatile and appealing. As a consequence the mathematical

community is expressing interest for computer systems and for forms of mathemat-

ics that are computational in nature, as constructive mathematics. The principal

outcome of this new scenario is that among the plurality of mathematics that we

witness today, the constructive one is gaining new terrain.

At the beginning of this chapter I highlighted some of the fundamental changes

that took place in mathematics starting from the 19th Century. I claimed that the

new computational form of mathematics that we witness today suggests that we

are seeing a revival of an older mathematical style that had been supplanted by

more abstract forms of mathematics that became dominant from the 20th Century.

Quite surprisingly, the principal impetus for the new appreciation of an “older”

mathematical style is cutting edge research whose primary aim is to verify software

as well as mathematics, but also widen the applicability of mathematical methods

to encompass computer programming. A likely outcome of this process is a change

in status for constructive mathematics: from a deviant and perhaps outmoded form

of mathematics it could soon gain a more central role within the mathematical

landscape as a whole.

These changes within mathematics suggest a task for the philosopher of math-

ematics: to better understand the de facto plurality of practices, their motivations
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and the relations between them. There is a profound difference here between this

way of addressing the philosophy of mathematics and more traditional approaches.

In particular, there is a deep dissimilarity between the present way of casting con-

structive mathematic’s new role within mathematics and philosophical arguments

that aim at defending a constructive approach.35

In the next chapter I shall propose a view of constructive mathematics as directly

motivated by a preference for a more algorithmic and explicit notion of proof. In

the second part of this thesis I shall also suggest that predicativity may also be

motivated by the desire to exploit a more algorithmic notion of set compared with

the notion codified by Zermelo Frankel set theory.

35See also the introduction to (Mancosu 2008), for a discussion on a recent movement within the

philosophy of mathematics that vindicates the importance of a philosophical discussion that is more

directly influenced by the mathematical practice. The model there is the philosophy of science,

that more directly draws from the practice and the history of a subject. See also (Corfield 2003).

From the present perspective a clarification of the forms of mathematics, their historical origins,

their character, are prior to an investigation of more traditional questions within the philosophy

of mathematics.
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Chapter 2

Constructive mathematics: an

introduction

In the previous chapter I have expounded the consequences that the change of logic

from classical to intuitionistic has for the ensuing notion of proof. I have argued that

by eliminating the principle of the excluded middle we can confer computational con-

tent to the resulting mathematics. This is good news for constructive mathematics,

as the changing nature of today’s proofs demands the expansion of computer sys-

tems to assist us in the discovery and verification of mathematical theorems. This

has the potential over time of modifying the perception of both mathematicians and

philosophers on the position of constructive mathematics within the mathematical

scene. I have also demonstrated the potential of constructive proofs as instruments

for safe programming.

One might concede that a constructive form of mathematics may be attractive

for those reasons, but worry that eliminating the principle of excluded middle with

the purpose of enabling a computational interpretation of mathematics would simul-

taneously impair the development of a sufficiently broad form of mathematics. To

counter this thought in the following I shall gather further evidence of the breadth

of today’s constructive mathematics, and argue that it is a fast growing, rich com-

43
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ponent of today’s mathematics. The presence of constructive mathematics as a

substantial field within mathematics determines its interest from a philosophical

perspective, especially requiring a clarification of how is it that the elimination of

the principle of excluded middle does not impair the constructive re-development of

large portions of ordinary mathematics.

In the following I shall also address in more detail the question of the reasons

that bring constructive mathematicians of the Bishop school to adopt this form of

mathematics.1 I shall argue that their principal reasons are intra-mathematical and

pragmatic, rather than stemming from philosophical considerations. These very

motivations highlight the potential of doing mathematics also from a constructive

perspective, both for the development of mathematics as a whole and for the philos-

ophy of mathematics. The constructive perspective, in fact, uncovers a whole new

dimension of mathematical thought, as it allows us to develop new areas and study

new more general structures than those that emerge when we routinely apply the

principle of excluded middle. In addition, it offers the possibility of carrying out a

fine analysis of ordinary mathematical concepts from a computational perspective.

In this chapter I shall be concerned with constructive mathematics in the style

of Bishop (Bishop 1967), and in Section 2.2 I shall present a characterisation of

this practice. This will be used in Section 2.4 to distinguish Bishop’s constructive

mathematics from both classical mathematics and other forms of mathematics that

also use intuitionistic logic. In Section 2.3 I shall discuss common strategies that

constructive mathematicians adopt to progress their field. Finally in Section 2.5 I

shall address the motives that bring mathematicians and computer scientists today

1My principal focus in this chapter are the motivations adduced by mathematicians of the

Bishop school, as, for example, Bishop himself, Bridges and Richman. A different approach to

constructive mathematics has been proposed by Martin-Löf, whose writings display clear philo-

sophical motivation. Although Martin-Löf’s constructivism offers motivations for constructive

mathematics that are more philosophical in nature compared with the considerations addressed in

this chapter, I believe they present no conflict with the motives further discussed below.
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to work constructively.

2.1 Bishop’s constructive mathematics

The expression constructive mathematics is customarily used to refer to a form of

mathematics that uses intuitionistic rather than classical logic. In fact, the terminol-

ogy is not sufficiently uniform, and the adjectives “constructive” and “intuitionistic”

are often interchanged and utilised to designate various forms of mathematics. In

the following, I shall employ the expression “constructive mathematics” to denote

a particular form of mathematics that uses intuitionistic logic: the mathematical

practice “Bishop–style” originated in (Bishop 1967). This will be the main concern

of this Chapter. The more elaborate “mathematics based on intuitionistic logic”

will instead refer to any form of mathematics which uses intuitionistic rather than

classical logic.2

Constructive mathematics was born when Errett Bishop’s published “Founda-

tions of constructive analysis” (Bishop 1967). Here a great deal of 20th Century

analysis was developed on the basis of intuitionistic logic: from elementary analysis,

to metric and normed spaces, abstract measure and integration, the spectral theory

of self adjoint operators on a Hilbert space, Haar measure and duality on locally

compact groups, and Banach algebras. This kind of mathematics has since wit-

nessed great advances in analysis, topology and algebra, as well as the foundational

systems designed to formalize it, as constructive type theory and constructive set

theory.3 A distinctive aspect of any form of mathematics based on the intuitionistic

2I prefer this complex expression to the simpler terminology “intuitionistic mathematics”, as

within the constructive mathematical literature the latter usually refers to mathematics based on

intuitionistic logic in the tradition of Brouwer (Bridges & Richman 1987) (see also Section 2.4).
3See, for example, (Bishop 1967, Bishop & Cheng 1972, Friedman 1973, Martin-Löf 1975,

Feferman 1975, Myhill 1975, Friedman 1977, Aczel 1978, Aczel 1982, Martin-Löf 1982, Martin-

Löf 1984, Beeson 1985, Bishop & Bridges 1985, Aczel 1986, Bridges & Richman 1987, Sambin
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logic is its computational character (see Chapter 1, Section 1.2.2); in particular,

Bishop’s constructive mathematics has been a fundamental source of inspiration for

the theory and the applications to computer aided computation.4 In fact, Bishop’s

principal motive for his constructive turn in the 1960’s was the desire to develop

a computational form of mathematics that would be suitable for implementation

on a computer. The possibility to read constructive mathematics as a general and

powerful form of programming is also at the heart of Martin-Löf type theory, often

recognised as the most adequate foundational system for this kind of mathematics.5

2.2 A characterisation of Bishop’s constructive math-

ematics: mathematics based only on intu-

itionistic logic

If prompted with the question: “what is constructive mathematics?” a mathemati-

cian would probably prove a number of prominent theorems that are recognised as

constructive, and demonstrate by way of example the crucial differences between

this practice and the classical one. Logicians starting from the 1970’s have also

1987, Troelstra & van Dalen 1988, Mines, Richman & Ruitenburg 1988, Nordström, Peters-

son & Smith 1990, Sambin 2003, Crosilla & Schuster 2005, Calude & Ishihara 2005, Bridges

& Vı̂ţă 2006, Aczel & Rathjen 2008, Berger, Pattinson, Schuster & Zappe 2008, Bridges &

Palmgren 2013, Univalent Foundations Program 2013, Crosilla 2015b, Lombardi & Quitté 2015).
4See, for example, (Martin-Löf 1975, Nordström et al. 1990, Coquand & Huet 1986, Constable

& et al. 1986, AGDA n.d., Coq n.d.).
5 In agreement with the logical tradition, the expression “foundational system” is used here

to denote a formal system that suitably accommodates a form of mathematics, that is, a formal

system within which we can naturally express or codify that form of mathematics. I shall however

not suggest that such system also plays a“foundational” role for that form of mathematics in the

philosophical sense, nor that there is a way of privileging one over another foundational system if

both accommodate the relevant mathematics in suitable ways.
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attempted to clarify the nature of constructive mathematics by introducing a num-

ber of foundational systems (i.e. set and type theories) that codify this practice.6

They have further addressed the question of the relation between these different

formalisations with each other, as well as with their respective classical counter-

parts.7 Therefore to ascertain whether a given mathematical theorem or notion can

be considered constructive we need either to rely on the constructive mathemati-

cian’s insights on his field, or on the possibility of expressing it within a suitable

foundational system. In fact, constructive mathematicians usually insist on the

open-ended nature of constructive mathematics, as it is possible to foresee that as

one develops this form of mathematics new mathematical entities will be recognised

as satisfying the constructive perspective.8

It is however possible to offer a very general characterisation of constructive

mathematics that, although not completely precise, suffices to single out this prac-

tice from other significant forms of mathematics. Constructive mathematicians

Fred Richman and Douglas Bridges have stressed that constructive mathematics

is simply mathematics that uses only intuitionistic logic (Richman 1990, Bridges

2009). Bridges (2009) terms constructive mathematics “algorithmic mathematics”

and writes:

Experience shows that the restriction to intuitionistic logic always forces

mathematicians to work in a manner that, at least informally, can be de-

6See footnote 5 at page 46 for the notion of foundational system.
7See e.g. (Friedman 1973, Feferman 1975, Martin-Löf 1975, Myhill 1975, Friedman 1977, Aczel

1978, Aczel 1982, Martin-Löf 1982, Martin-Löf 1984, Beeson 1985, Aczel 1986, Griffor & Rathjen

1994, Rathjen & Tupailo 2006).
8 The open-ended nature of mathematics is a typical presupposition of the intuitionis-

tic tradition, as exemplified by Brouwer’s notion of free choice sequences (Brouwer 1975, van

Dalen 1999, van Atten 2007). An open-ended universe of sets is also clearly in agreement with

Bishop’s approach, as argued by (Simpson 2005). In addition, it is a crucial feature of Martin-

Löf type theory (Martin-Löf 1975, Martin-Löf 1984), as witnessed in particular by the notion of

reflecting universe.
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scribed as algorithmic; so algorithmic mathematics appears to be equiv-

alent to mathematics that uses only intuitionistic logic.

This characterisation of constructive mathematics comprises two claims: first

of all, constructive mathematics makes use of intuitionistic logic; secondly, it does

not add any other assumption, axiom or principle that go beyond the sole change

in logic.9 The first part of this characterisation will be the focus of Section 2.2.1.

The second component will be further clarified in Section 2.4, where I shall briefly

outline other forms of mathematics that also use intuitionistic rather than classical

logic, but, in addition, introduce assumptions that go beyond the pure change in

logic.10

Bridges’ quote is instructive in another respect, as the proposed characterisation

of constructive mathematics is given on the basis of “experience”, not by appeal to

some a priori argument. As a matter of fact, it it turns out that in order to develop

a form of mathematics that is algorithmic it suffices to modify the methodology of

mathematics to comply with intuitionistic logic. It is therefore the aspiration to

produce an algorithmic form of mathematics that enforces the shift to intuitionistic

logic. Experience shows that this shift suffices to obtain the desired kind of math-

ematics: mathematics that uses intuitionistic logic is algorithmic “by default”. I

9 Constructive mathematicians such as Richman and Bridges often note that by using such

a “formal” criterion to characterise constructive mathematics, one takes a considerably different

perspective on mathematics compared with e.g. the views expressed by Brouwer, Bishop and

others, who stressed the primacy of mathematics over logic. In fact, both the motives and the

characterisation of constructive mathematics put forth by the Bishop school witness a substantial

departure from more traditional approaches to intuitionistic logic, as further discussed in Section

2.5.
10In the second part of this thesis I shall further consider a second dimension on which construc-

tive mathematics differs from classical mathematics: predicativity. This latter aspect of construc-

tive mathematics is more prominent within the literature on foundational systems for constructive

mathematics, and especially Martin-Löf type theory. The Bishop school typically focuses on the

sole change of logic, and this will be the principal concern in this chapter, too.
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shall return to the issue of the motives for constructive mathematics in more detail

at the end of this chapter (Section 2.5).

2.2.1 The role of intuitionistic logic

Constructive mathematics shows that a change in logic, as unorthodox as the elim-

ination of the principle of excluded middle, does not preclude access to a very rich

form of mathematics. This realisation was first due to L. E. J. Brouwer, who in-

troduced his intuitionistic mathematics at the beginning of the 20th Century as a

way of better complying with his understanding of mathematics as a free activity of

the human mind (Brouwer 1907, Brouwer 1908, Brouwer 1919, van Dalen 1999, van

Atten 2004). Brouwer thus developed the first steps of a new kind of mathematics

which used intuitionistic reasoning. This new way of reasoning was later formally

codified first by Kolmogorov (1925) (in part) and, independently, by Heyting (1930),

who produced the intuitionistic predicate calculus as we know it today.

As codified by Heyting (1930), intuitionistic logic is the subsystem of the classical

predicate calculus which is obtained by omitting the principle of the Excluded Middle

(EM), according to which for any formula A, A∨¬A holds. In fact, even weakenings

of the principle of excluded middle, like the Limited Principle of Omniscience (LPO),

are considered unjustified from a constructive point of view, and for this reason

omitted.11 Note, however, that although intuitionistically one does not endorse the

principle of excluded middle in its full generality, particular instances of it might

11The Limited Principle of Omniscience states that for any binary sequence (α0, α1, ...), either

αi = 0 for all i, or there is a k with αk = 1. A sequence (α0, α1, ...) is binary if each αi is either

0 or 1. Bishop (1967) noticed that many theorems in classical analysis can be obtained by adding

LPO to a purely constructive argument, so that LPO may be seen as encapsulating the classical

content of these theorems. LPO and other weakenings of EM have also been studied in recent

times within the so called “constructive reverse mathematics project” (see Section 2.4.2). See e.g.

(Ishihara 2006) for a survey of results. See also (van Atten 2014) for an introductory explication

of the use of so-called “weak counterexamples” in mathematics based on intuitionistic logic.
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turn out to be acceptable in specific cases, like, for example, in finitary cases.12

In spite of the fact that the excluded middle is not assumed as part of intuition-

istic logic, its negation is also inadmissible from an intuitionistic perspective: we can

not add the negation of the excluded middle to the intuitionistic predicate calculus

without engendering a contradiction. This is due to the fact that intuitionistically

we can derive the double negation of EM, that is, ¬¬(A ∨ ¬A), for any formula

A. Therefore a constructive mathematician does not deny the principle of excluded

middle, although he will claim that EM lacks justification (so far), and that for this

reason we should refrain from using it in general.

This fact, and the fact that constructive mathematics can be seen as arising by

the simple elimination of the principle of excluded middle, has a crucial consequence

that will be discussed in Section 2.4: every theorem in constructive mathematics is

classically valid, too. In particular, constructive mathematics does not conflict with

classical mathematics. In fact, it can be argued that this containment metaphor

can also be reversed, and classical mathematics be viewed as a particular kind of

constructive mathematics, as further discussed in Section 2.5.1.

2.3 Constructive strategies

Relinquishing the principle of excluded middle not only enables the development of a

computational form of mathematics, but it has also given rise to entirely new areas of

mathematical research.13 The development of computational forms of mathematics

is the principal concern in this work, therefore I shall prominently consider research

in constructive mathematics that addresses the “constructivisation” of portions of

12For example, in the context of arithmetic many statements of a finite nature that are true in

classical mathematics are true also constructively. In fact, constructive mathematics differs more

substantially from classical mathematics especially when one considers infinitary objects (such as

the real numbers).
13See also Section 2.5.1.
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ordinary mathematics. In areas like, for example, analysis, the principal effort of

the constructive mathematician is to express as much as possible of classical math-

ematics in a constructive form. Here the constructive mathematician will typically

start from a given classical proof and will attempt to “constructivize it”. In fact,

constructive mathematicians often acknowledge the crucial role of classical math-

ematics as guide within the constructive practice. Given a classical theorem, the

constructive mathematician will see it as presenting a task: to find a constructive

proof of it or clarify why one is not available. Furthermore, often a careful analysis

of the original classical proof helps in finding its constructive counterpart.

The ubiquity of the principle of excluded middle in classical mathematics might

suggest that the “constructivization” of large portions of classical mathematics is

bound to meet substantial obstacles: too many significant proofs of ordinary math-

ematics use the principle of excluded middle, or constructively unacceptable con-

sequences of it.14 Already Hilbert (see e.g., Hilbert 1926) objected to Brouwer’s

intuitionism that the absence of the principle of excluded middle would deprive the

mathematician of a fundamental tool. For example, the trichotomy of the real num-

bers (i.e. the statement that every real number is either positive, negative or equal

to zero), requires for its proof a constructively unjustified appeal to EM. Fifty years

of work since Bishop’s “Foundations of Constructive Analysis” have shown that we

can develop a rich form of mathematics even without EM. How is this possible?

What does it tell us about our ordinary mathematics and the concepts which we

employ in its development?

In this section I shall expound some of the most common strategies that are

employed by the constructive mathematician to work around the absence of the

principle of excluded middle.

14See (Bauer 2016) for examples of constructivization and for a discussion of constructive math-

ematics from a constructive perspective.
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2.3.1 Definitions

The shift to intuitionistic logic is noticeable both at the level of logic and at the

level of mathematical notions and proofs. In both cases a striking difference between

classical and constructive mathematics is that the availability of EM within the

first allows for the identification of a number of statements and notions that are

distinct according to the second. More precisely, given a classical notion this will

have a number of equivalent formulations; however, many of these will turn out to

be intuitionistically inequivalent. This is witness to a more general phenomenon.

A characteristic of all forms of mathematics based on a logic weaker than the clas-

sical one is that they have a higher sensitivity to the formulation of their notions.

Here slightly distinct definitions may turn out to have very different mathematical

consequences. The constructive mathematician needs therefore to place particular

care in choosing his definitions. In fact, it turns out that most classical definitions

will carry over to constructive mathematics, although one needs to be particularly

careful in selecting out of a number of equivalent ones, those that are appropriate

for a given context.15

More radical changes are in place in some cases, like, for example, in intuitionistic

and constructive approaches to topology (Johnstone 1983, Sambin 1987, Sambin

2003). The strategy here is to adopt a shift in perspective, and reformulate the

most fundamental definitions; for example, the notion of open set is here taken as

primitive and that of point is defined in terms of the former. As a result of this

shift of perspective a new discipline, formal topology, has emerged in the last three

decades that combines the use of intuitionistic logic with a form of predicativity.16 A

15For example, in metric topology a closed set is often defined as the complement of an open

set; an alternative definition is that for which a closed set, S, contains all limits of sequences in S.

The latter definition turns out to be more useful in constructive analysis.
16See Chapter 4 for a clarification of a constructive notion of predicativity that is appealed to

in formal topology.
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compliance with predicativity requires the avoidance of any appeal to impredicative

uses of the powerset operation, that is ubiquitous in standard treatments of topology.

The outcome is a very concrete approach to one of the most abstract fields in

mathematics.17 Its concreteness, in particular, makes it ideal for applications to

computer-aided proofs.18

2.3.2 Theorems

As clarified in the previous chapter, the change in logic has a profound impact on the

notion of proof, and therefore deeply affects how one proves theorems. Sometimes

given a classical theorem whose known proofs are non-constructive, one may find a

slight modification of its classical proof that works constructively. In this case the

original classical argument may remain substantially unchanged.

In other cases, nonetheless, more substantial changes are necessary. A typical

approach is to modify the very statement of the theorem, therefore obtaining a

constructive variant of the original classical statement. Sometimes the change

17The words “concrete” and “abstract” have different uses in mathematics and in philosophy,

that are not completely unrelated. In mathematics a concrete structure (or a concrete concept)

denotes a well-understood and sufficiently simple structure (or concept), like, for example, the

natural or the real numbers. The term abstract instead refers to generalisations of these more

concrete structures (or concepts), by appeal to set-theoretic or algebraic notions. An example

is the notion of a complete totally ordered field. See also (Coquand & Lombardi 2006) for an

elaboration of the notion of “concrete” in precise logical terms and its application to a study of

constructive commutative algebra.
18Note that the change of perspective has proved fruitful. It has enabled a definition of real num-

bers as formal spaces that has been used to prove theorems in functional analysis and topology that

evade constructive treatment along a more standard Bishop-style approach. See e.g. (Cederquist

& Negri 1996, Cederquist, Coquand & Negri 1998) and (Ishihara 2006) for a comparison. See

(Johnstone 1983) for a description of the related field of pointless topology and its history. In that

expository article the author particularly emphasizes the importance of adopting a more general

perspective for mathematical progress.
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consists in using an alternative definition of some of the notions that occur in the

statement of the theorem (as discussed above). Another option is to prove an approx-

imate version of the classical theorem: for example, instead of proving the existence

of a certain real number, one proves the existence of an approximation of it, within

arbitrary precision. In cases in which the original statement is a conditional, one

may suitably weaken the consequent or appropriately strengthen the antecedent of

the implication, to obtain a theorem that is constructively provable and also suf-

ficient for the applications one is interested to preserve.19 Importantly, classically

the new statement will be equivalent to the original one, so that the “variant” is

such only from a constructive perspective. The variant, however, will be typically

endowed with a direct computational content that the original proof did not have.

It is clear from these simple remarks that constructive mathematicians need to

abandon familiar ways of reasoning. They need to acquire, with time, a distinctive

ability to choose between alternative notions and find new proof strategies. Some-

times, like in the case of formal topology, they need to radically modify their per-

spective, to see new phenomena. However, in this respect constructive mathematics

does not seem to differ remarkably from any other branch of advanced mathemat-

ics: in all cases a swift progress demands extensive familiarity with proof procedures

and strategies that are specific to the individual field and therefore require adequate

training.

The discussion above is also indicative that in order to systematically develop a

computational form of mathematics we need to change perspective, and relinquish

(for this purpose) the use of the excluded middle. Even if constructive proofs are

after all particular classical proofs, more standard approaches to ordinary mathe-

matics that routinely employ the principle of excluded middle do not enable the

development of the necessary techniques that produce by default computational

19See, for example, constructive variants of the intermediate value theorem in analysis in (Bauer

2016). See also (Bridges & Richman 1987, Schuster & Schwichtenberg 2004).
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mathematical theorems.

Attributes of proofs

One might worry that if not the nature of the research itself, perhaps the character-

istics of the resulting mathematical proofs will be substantially different from the

ordinary, and in negative respects: the new proofs might be longer, more complex,

and less elegant than the original ones. This worry is prima facie justified, as it is

well-known that a more frequent use of the principle of excluded middle at the turn

of the 20th Century was in fact motivated by the desire to obtain shorter, more

elegant proofs.

It is, nevertheless, difficult to reach general conclusions on this point: differ-

ent individual proofs and, sometimes, different areas of research manifest different

features. More importantly, judgements of complexity and elegance often hinge on

personal taste, as well as mathematical background. And the anecdotal evidence is

not all one way. Mathematicians working in constructive algebra have undertaken

a number of case studies, which provide a useful contrast.20 Here the authors have

realised that a careful reformulation of a theorem’s statement may improve on its

classical proofs in many respects. Often it suffices to re-state the goal of the theo-

rem in more elementary and algorithmic terms to easily obtain an adaptation of the

original classical proof that altogether avoids non-constructive notions. According

to the authors of this study, the resulting proof is typically simpler, shorter and

fully algorithmic. Very often it is obtained by a careful analysis of the original clas-

sical proof, from which it preserves the general structure, eliminating unnecessary

non-constructive components.21

20See (Coquand & Lombardi 2006, Lombardi & Quitté 2015). See also (Crosilla & Schuster 2014)

for a discussion.
21Note that in the present context we have not only the elimination of the principle of excluded

middle from classical theorems, but a careful replacement of abstract with more elementary and

concrete statements. In fact, the very notion of concrete statement is amenable to formal (logical)
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These examples from commutative algebra are instructive, as they show that

the development of a constructive form of mathematics (alongside the classical one)

has the potential to improve on classical mathematics in a number of respects. The

constructive perspective allows for a more detailed analysis of mathematical concepts

and proofs that populate ordinary mathematics; the outcome sometimes is a new

algorithmic proof of a theorem that only appeals to very elementary concepts. It is

the desire to obtain an algorithmic proof that suggests to re-state the goal of the

theorem in more elementary terms, and it is the compliance with intuitionistic logic

that guarantees that we do obtain an algorithmic proof.

This point is of fundamental importance to the present discussion of constructiv-

ity (and predicativity), as it suggests that with time we might be able to eliminate

unnecessary abstract and non-algorithmic components from large parts of classical

mathematics. There are two main reasons for being interested in this matter: a

practical one and a philosophical one. On the one side, there is the potential to

develop a form of mathematics that works better than the standard one in comput-

erised applications, by combining the use of intuitionistic logic with the employment

of more elementary notions. On the other side, there is the potential to reveal im-

portant insights into ordinary mathematics. In particular, ordinary mathematics

makes frequent use of classical reasoning that eludes direct computational content,

and frequently presupposes an abstract and non-computational concept of set. The

work in constructive mathematics, as well as the one discussed in subsequent chap-

ters on predicativity, is indicative that large portions of ordinary mathematics can

be made algorithmic and their abstract assumptions explained away in terms of

more elementary ones.22

clarification within this context. There is therefore a deep analogy between these undertakings

in constructive commutative algebra and the theme of predicativity that will be addressed in

subsequent chapters.
22See Chapter 6 and Chapter 7 for further discussion on this point and for a clarification of the

notion of ordinary mathematics.
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These latter considerations suggest that constructive and predicative mathe-

matics may play a role within the philosophy of mathematics as instruments for a

conceptual analysis that applies across the whole spectrum of ordinary mathematics

and delimits a portion of mathematics that is amenable to a more algorithmic and

elementary treatment.23 However, this role for constructive mathematics is only

possible if the latter does not conflict with classical mathematics. The absence of

conflict between constructive and classical mathematics is a characteristic of this

form of mathematics based on intuitionstic logic that will be further addressed in

the next section.

2.4 Varieties of constructive mathematics

In Section 2.2.1 I examined Bridges and Richman’s characterisation of constructive

mathematics as mathematics that uses only intuitionistic logic. Such a character-

isation immediately allows us to discriminate the classical from the constructive

practices: constructive mathematics is a kind of mathematics which originates by

allowing only proofs which are carried out in intuitionistic logic, while classical math-

ematics also allows for proofs which make arbitrary uses of the principle of excluded

middle. In the previous chapter I have clarified that the principal consequence of this

difference is that constructive and classical mathematics employ different method-

ologies, as these two forms of mathematics allow for different methods of proof.

This clarifies one part of the characterisation above, the use of intuitionistic

logic, but leaves unexplained the claim by Richman and Bridges that constructive

mathematics uses only intuitionistic logic. To elucidate the latter point, a compar-

ison with other kinds of mathematics, which differ in other respects from classical

mathematics, is in order.

23This point will be further pressed in Section 2.4.2.
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2.4.1 Exclusive use of intutionistic logic

The use of the word “only” in Bridges and Richman’s characterisation of con-

structive mathematics is further justified by a comparison between this form of

mathematics and other kinds of mathematics that also use intuitionistic logic.

These are Brouwer’s intuitionistic and Russian constructive mathematics

(Brouwer 1975, Markov 1954, Shanin 1968), that are distinguished by their intro-

ducing concepts that produce a conflict with classical mathematics. In particular,

Russian constructive mathematics may be framed as a particular form of computable

mathematics, that also adheres to intuitionstic logic. Brouwers’ intuitionistic math-

ematics instead differs from both classical and constructive mathematics especially

for its treatment of the continuum, by the introduction of so-called free choice se-

quences (Brouwer 1975, van Dalen 1999, van Atten 2007).

The philosophical underpinnings of these forms of mathematics are extremely dif-

ferent; however, the mathematical practices themselves can be compared. Bishop’s

mathematics can be regarded as a minimum core of all of them (Feferman 1979,

Bridges & Richman 1987, Ishihara 2006). Constructive mathematicians often ex-

plain the relation between these forms of mathematics as follows. Let BISH stand

for an appropriate mathematical theory that codifies Bishop’s constructive mathe-

matics. One may characterize the other mathematical practices as the result of the

addition of further specific principles to BISH. In particular, Russian constructive

mathematics, RUSS, can be obtained by adding appropriate principles that repre-

sent that practice, in particular a principle known as a variant of Church’s Thesis

that ensures that all functions are computable. Brouwerian intuitionistic mathe-

matics, INT, can be formally captured by adding to BISH principles that account

for Brouwer’s non-classical view of the real numbers as free choice sequences.24

24There are various ways of formally expressing the relationships between all of these kinds of

mathematics. Here I shall follow Rathjen (2005). See also Bridges & Richman (1987). Let:

Russian constructive mathematics (RUSS) = BISH + MP + CT,
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In a picture, we have:

The main idea conveyed by this picture is that by looking at constructive math-

ematics as codified by some theory, BISH (however this is formalised), it turns out

to be a sub–theory of classical mathematics, CLASS, as well as of each of the two

other kinds of mathematics based on intuitionistic logic, RUSS and INT.25 A for-

Brouwerian intuitionistic mathematics (INT) = BISH + BP0 + BI,

Classical mathematics (CLASS) = BISH + EM.

Here MP is Markov’s principle, stating that [∀n (ϕ(n) ∨ ¬ϕ(n)) ∧ ¬∀n¬ϕ(n)]→ ∃nϕ(n). Infor-

mally Markov’s principle says that if ϕ is decidable (i.e. for each natural number n, ϕ(n)∨¬ϕ(n))

and ϕ is not false for every natural number, then it must be true for some number.

CT is Church’s Thesis, according to which, if we are given a quantifier combination

∀n∃mϕ(n,m), then we can find a computable function f such that: ∀nϕ(n, f(n)). This can

also be read as stating that all total functions are computable. The combination of MP and CT

has the effect of producing a constructive variant of computable mathematics.

I shall not state BP0 in detail, but this will be a formula that states that every function from NN

to N is continuous. This principle is introduced to allow for a formal representation of Brouwer’s

theory of the creative subject, with the related notion of real numbers as free choice sequences

(Brouwer 1975, van Atten 2007). Brouwer’s mathematics also requires an appropriate form of

induction (Dummett 1977), therefore the assumption of the principle of Bar Induction, BI, which

is a form of transfinite induction on well-founded trees.

25In fact, it turns out that BISH is better seen as a proper subtheory of the intersection of

all of these theories, as there are principles, like Ishihara’s BD-N, which are compatible with each

of Browerian intuitionism, Russian constructivism and Classical mathematics, but which are not
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tiori, theorems obtained in BISH hold in each of the other varieties of mathematics,

including the classical one. This observation is at the heart of the claim by construc-

tive mathematicians that Bishop’s constructive mathematics is a generalisation of

classical mathematics, as well as of RUSS and INT (see Section 2.5.1).

A major difference between constructive mathematics and INT and RUSS is

that both the latter forms of mathematics prove statements that are classically false.

For example, in INT every function from the real numbers to the real numbers

is continuous. This clearly differs from the case of constructive mathematics, as

the latter does not prove anything which is classically false. There is no conflict

between constructive mathematics and classical mathematics. I shall also write that

constructive mathematics is compatible with classical mathematics. The picture

above clarifies that the notion of compatibility has two components: the absence of

conflict between constructive and classical mathematics and their agreement, in the

sense that there is a preservation of derivability when moving from systems that

codify constructive mathematics to those that systematize classical mathematics.

In fact, constructive mathematics is compatible also with INT and RUSS, and its

compatibility with all of these forms of mathematics has been exploited in the last

10 years or so within the so–called “constructive reverse mathematics programme”,

that I shall address next.

2.4.2 Constructive Reverse Mathematics

Independently initiated by Ishihara and Veldman (see, for example, Ishihara 2005,

Ishihara 2006, Veldman 2005, Bridges & Palmgren 2013), the constructive reverse

mathematics programme takes inspiration from Friedman and Simpson’s (classical)

reverse mathematics programme (Simpson 1999), but differs from it for its scope

of action. The classical reverse mathematics programme aims at discovering which

accepted by constructive mathematicians of the Bishop school.
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set existence axioms are needed in order to prove theorems of ordinary or core

mathematics.26 Often the theorems turn out to be equivalent to the axioms; hence

the slogan “reverse mathematics”. This programme uses the language of second

order arithmetic Z2 and has isolated five main subsystems of it that frequently occur

as the reversals of mathematical theorems. To classify a mathematical theorem one

usually shows that it is equivalent, on the basis of the next weaker system, to the

principal set existence axiom of one of these five systems. In this way one shows

which set existence axioms are actually needed for a specific mathematical theorem.

As a by–product of the analysis, one usually obtains more detailed and possibly

involved, but also more informative proofs.

Constructive reverse mathematics originates from Bishop’s observation, (see e.g.,

Bishop 1967, Bishop 1975) that (from a formal point of view) the classical mathemat-

ical practice can be recast in constructive terms by theorems of the form: EM→ ϕ.

In fact, Bishop singled out consequences of the principle of excluded middle, as the

Limited Principle of Omniscience (LPO)27 and the so–called Lesser Limited Princi-

ple of Omniscience (LLPO) (Bishop 1967, Bishop 1985), and showed that they are

often sufficient to capture the classical element figuring in a non–constructive proof

26 Set existence axioms are principles that allow us to define sets within a mathematical the-

ory. Typical set-existence axioms are comprehension axioms, that allow for the formation of a set

of all those objects that satisfy a given formula (of a certain complexity). The classical reverse

mathematics programme is formulated within the context of a theory know as “second order arith-

metic”, of which it singles out some particularly interesting subsystems. Second order arithmetic,

also termed Z2, is a theory that uses a two-sorted language, with variables for natural numbers and

variables for sets, to formalise the theory of the natural numbers and their subsets. A particularly

important comprehension principle is the principle of arithmetical comprehension. An arithmetical

formula is a formula of Z2 with no occurrence of set quantifiers (but possibly with occurrences

of number quantifiers). Arithmetical comprehension states that for each arithmetical formula, ϕ,

we can form the set {x : ϕ(x)}. In Chapter 4, I shall further discuss the reverse mathematics

programme in relation with predicativity.
27See footnote 11, page 49, for LPO.
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in analysis. Pinning down their occurrences in classical proofs thus can be seen as a

contribution to an analysis of the classical tradition, too, explaining where exactly

the non–constructivity comes into play.

The thought underlying the constructive reverse mathematics programme is that

the privileged standpoint of constructive mathematics, at the intersection of a num-

ber of different practices, allows it to act as a base from which to compare notions

and results across all of these varieties of mathematics. Thus the constructive reverse

mathematics programme aims at classifying not only theorems in classical mathe-

matics but also theorems in recursive, Russian and Brouwerian (i.e. intuitionistic)

mathematics. Constructive reverse mathematics is thus a very promising path in

the direction of a fine-grained analysis of the mathematical practice as a whole. It

also highlights a new trend within constructive mathematics, by introducing a very

detailed attention to the ingredients of a proof.

As already pointed out at the end of Section 2.3.2, one of the reasons for being

interested in these mathematical developments is because of the insights they offer

on mathematics as a whole, including ordinary mathematics. As in the case of con-

structive commutative algebra, also the reverse mathematics projects (both classical

and constructive) clarify why “weaker” standpoints in mathematics are valuable for

mathematics and its philosophy. Such a weaker standpoint may be secured by work-

ing classically within a weak subsystem of Z2, like in classical reverse mathematics,

or by working within constructive mathematics. For example, the classical reverse

mathematics programme clarifies that many ordinary theorems that prima facie

appeal to abstract (e.g. set-theoretic) notions, only require concepts that pertain

to arithmetic.28 The constructive reverse mathematics programme aims at pinning

down the non-constructive component of ordinary mathematics. In so doing it helps

clarify which theorems of ordinary mathematics are not amenable to direct compu-

tational interpretation and which may be offered computational interpretation after

28This point will be further discussed in Chapter 4.
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suitable reformulation. In fact, given its position at the intersection of a number of

mathematical practices, constructive mathematics offers the possibility of analysing

all of them from a constructive point of view.

These considerations explicate my principal reason for being interested in forms

of mathematics, like the constructive and predicative, that make fewer assumptions

than classical mathematics. They help us clarify different components of contem-

porary mathematics, their relations with each other, and they enable us to carry

out more elementary and algorithmic proofs. In the following section I shall discuss

some of the motives that constructive mathematicians of the Bishop school have

put forward for working constructively (Bishop 1967, Bishop 1975, Bishop 1985,

Richman 1990, Richman 1994, Richman 1996, Bridges & Reeves 1999, Bridges &

Palmgren 2013). These differ considerably from traditional arguments for intuition-

istic logic the philosopher is more familiar with.

2.5 Reasons for constructive mathematics

Constructive mathematics is indebted to Brouwer’s insights for his introduction

of intuitionistic reasoning. However, already Bishop expressed severe criticism of

Brouwers’ philosophical views and, especially, his non-standard view of the con-

tinuum. Not only constructive mathematics differs considerably from Brouwerian

mathematics, but their respective motivations are also extremely diverse. In the

case of Brouwer the principal motive for the development of intuitionistic logic

was a specific philosophical perspective that moved from a view of mathematics

as free creation of the human mind. I shall argue that constructive mathematicians

today are prompted instead by two main kinds of reasons, that I should like to

term intra-mathematical and pragmatic reasons . These motives move from

within mathematics itself, or are determined by the desire to facilitate applications

of mathematics in particularly relevant areas. In addition, typically constructive
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mathematicians express a preference for an algorithmic form of mathematics but do

not offer arguments for the rejection of alternative forms of mathematics (e.g. the

classical one).

Although the computational nature of constructive mathematics is arguably the

most relevant reason for the development of this form of mathematics, I shall first of

all discuss “intra-mathematical” reasons, which arise from within the mathematical

practice itself. These have been advanced by Bishop, but have been particularly

emphasized in a number of articles by Richman (Richman 1990, Richman 1994,

Richman 1996). I shall single out two aspects of one notable intra-mathematical

reason: generalisation.

2.5.1 Generalisation

Constructive mathematics is the result of the elimination of EM from classical

mathematics and it does not add any further principles that conflict with classical

mathematics. As a consequence, constructive mathematics may be seen as a gener-

alization of classical mathematics. A first sense in which constructive mathematics

may be viewed as a generalisation of classical mathematics is related to the fact

that all constructive theorems are classically true, and, in addition, they can be

given not only a classical but also a computational interpretation. This is the point

that is more relevant for the present discussion and has been mentioned in previous

sections. A second sense of generalisation is equally significant for the construc-

tive mathematician, and relates to the fact that by relinquishing the principle of

excluded middle we can discover new forms of mathematics. Here the motivation

for the use of intuitionistic logic is clearly “internal” to mathematics: it is the sheer

mathematical interest in very general mathematical “structures” which appear only

if one uses intuitionistic logic. There are numerous cases of mathematical structures

or notions that are profitably studied in an intuitionistic context because they are

more general than if approached from a classical perspective. In these contexts the
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addition of the principle of excluded middle restricts the discussion to less general

mathematical structures. To explain this point Richman (1990) uses the following

simile: constructive mathematics is like group theory and classical mathematics is

like Abelian group theory. The latter arises by the addition of the commutativity

axiom and has the effect of focusing the mathematician’s attention to particular

mathematical structures. Similarly, in some cases the avoidance of the principle of

excluded middle allows for the development of significant areas of mathematics that

would be overly simplified by the imposition of the principle of excluded middle.

The best example is given by the notion of a topos. This is a fundamental

categorical notion that has been thoroughly studied since its appearance in the

1960’s within the developments of algebraic geometry. Its fruitfulness lies in its

generality, that let us relate in new fundamental ways apparently unconnected areas

of research. The important fact to observe is that toposes are very general categories,

and, in fact, only particular instances of them (Boolean toposes) have a classical

behaviour.29

Recent interest in homotopy type theory may be taken to offer further reasons

for a constructive approach, again determined by the fruitfulness of a very general

approach (Univalent Foundations Program 2013). Here once more we have that a

more general, constructive approach allows for the revelation of unexpected relations

29The notion of elementary topos is particularly relevant in foundational contexts, as it plays

a similar role (within category theory) as that played by standard set theory as foundation for

ordinary mathematics. Indeed, the so called “internal language” of a topos is intuitionistic logic.

It is because the notion of topos is interesting and fruitful that it has gained prominence within

category theory. Indeed, its original motivation was geometric and topological, not logical. One

of the principal reasons for the interest in the notion of topos is its generality, which enables us

to relate in new fundamental ways apparently unconnected notions. In particular it allows us

to relate mathematical phenomena that the more restricted context of a Boolean topos does not

manifest. For references see, for example, the Programmatic Reading Guide supplement to the

entry on Category Theory (Marquis 2015) of the Stanford Encyclopedia of Philosophy, available

at the address: http://plato.stanford.edu/entries/category-theory/bib.html.
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between apparently distant mathematical notions (or even areas of research) and for

the development of a large new body of mathematics that is invisible from a classical

perspective.

2.5.2 Computational content

The computational nature of constructive mathematics is the most prominent reason

for working constructively, as already emphasized by Bishop. This reason has pri-

marily a pragmatic component, as the desire to develop a kind of mathematics which

is best suited to computational applications determines the choice to work with in-

tuitionistic logic. There is, however, more to the preference for a computational

form of mathematics than the desire to ease the implementation of mathematics

on computers.30 Arguably, the adherence to constructive, and, as further discussed

later on in this thesis, predicative forms of mathematics is also motivated by deeper

and more complex reasons. For example, constructive mathematicians often ex-

press a preference for a mathematical style that is more explicit and algorithmic.

They typically show a strong uneasiness with proofs by contradiction of existential

statements as they do not present us with a witness. This uneasiness is clearly not

determined by the worry of being unable to produce a program that will run on

a computer. It is instead expression of a desire to produce a form of mathematics

that is considered more satisfactory because it is algorithmic and can be developed

without recourse to highly abstract notions.31 Therefore an algorithmic form of

mathematics is pursued not only because of its applicability in computer systems

but because of a preference for algorithmic methodology.

The attitude of the constructive mathematician may be compared with that of

Poincaré and Weyl that I shall address in the second part of this thesis. In that case

30This suggests a more careful classification of the computational motive as not purely pragmatic.
31See Chapter 1, page 17 for a suggestion that there are a number of alternative styles in

contemporary mathematics.
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there is a preference for a mathematical style that is considered more satisfactory

because it is more in agreement with the tradition, and also more secure. One of

the reasons for Poincaré and Weyl’s criticism of the “new” forms of mathematics

was the worry of inconsistency. The thought was that a more careful formulation

of a “constructive” (i.e. predicative) notion of set would enable the development

of a safe form of mathematics. Some constructive mathematicians also claim that

a constructive form of mathematics gives more confidence in the correctness of the

resulting mathematics. Therefore, correctness is not only at the heart of the con-

structive enterprise through the development of constructive proof assistants for the

verification of mathematics; a constructive way of reasoning is pursued also with

the aim of gaining full confidence on its correctness.32 The thought here is that an

algorithmic way of reasoning is safer because it makes only steps that can be fully

grasped and easily verified, it relies on simpler concepts, and therefore can be fully

trusted.

The computational content of constructive mathematics and generalisation are

among the reasons that the constructive mathematician adduces to explain why

constructive mathematics is worth pursuing. These reasons are very different from

well-known arguments for intutionistic logic that have been proposed within the

philosophy of mathematics. The latter, in particular, characteristically also imply

the rejection of classical mathematics. This is the case of Brouwer’s arguments

for intuitionism but also of an influential semantic argument for intuitionstic logic

(Dummett 1975). According to the latter, intuitionistic logic is imposed by require-

ments that need to be satisfied by our language, in order to comply with its role

as instrument of communication. As a result, since classical logic does not satisfy

those requirements, one also obtains a stark rejection of classical logic.

The discussion above and in Chapter 1 proposes a very different perspective:

we have de facto a plurality of mathematics, including the constructive one. The

32See (see, e.g., Martin-Löf 2008). See also (Crosilla 2015a).
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latter is gaining more prominence within mathematics as a whole due to a number

of factors, some of which purely sociological in nature. A fundamental task for

the philosopher of mathematics is to understand the reasons for this plurality of

practices and the relations between them, as a contribution to a general clarification

of mathematics and mathematical thought. The motives for pursuing constructive

mathematics that constructive mathematicians put forth can then be seen as a

clarification of why this form of mathematics is worth pursuing. However, they do

not seem to either suffice to propose the exclusive use of intuitionistic logic, nor,

more crucially, to reject classical mathematics.

This leaves completely unresolved the issue of how to make sense of this plurality

of forms of mathematics from a more traditional philosophical perspective, and

account for it in a satisfactory manner. I contend that a clarification of the nature

and scope of constructive (and classical) mathematics is prior to that work, and I

hope that the discussion above has contributed to laying a foundation for subsequent

investigations.

2.6 Conclusion

In Chapter 1 I have highlighted the differentiation of today’s mathematics, and

discussed a possible new position that constructive mathematics may acquire in the

near future within the mathematical landscape as a result of deep changes that affect

mathematics today.

In this Chapter I have first of all further specified what is Bishop’s constructive

mathematics, offering a characterisation of it that distinguishes it both from classical

mathematics and from other forms of mathematics that use intuitionistic logic (INT

and RUSS). I have also endavoured to clarify that constructive mathematics is a

well developed, rich form of mathematics, that is witnessing fast progress. For this

purpose I have sketched some common strategies that constructive mathematicians
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typically adopt to counter the absence of the excluded middle. These have given the

way to a discussion of the motives that bring constructive mathematicians to work

with intuitionistic logic. Here I have emphasised two kinds of reasons: pragmatic and

intra-mathematical. The computational content of constructive mathematics offers

an example of reason of the first kind. Among the latter is generalisation. All of

these motives do not offer arguments for intutitionistic logic analogous to traditional

philosophical arguments. The importance of generalisation for the philosophical

discussion relates to the additional insights that a “weaker” perspective can offer

on mathematics as a whole. The constructive perspective, in fact, allows us to see

new mathematical structures as well as significant conceptual distinctions within

known parts of mathematics. The adoption of weaker systems of reference allows

for the realisation that large portions of today’s mathematics are amenable to careful

reformulation in terms of more algorithmic and elementary concepts, and therefore

can be given full computational meaning. This observation is at the centre of the

subsequent discussion on predicativity, that highlights the potential of combining the

use of intuitionistic logic with suitable restrictions on sets, for both the mathematical

and the philosophical investigation.
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Chapter 3

Origins of Predicativity

3.1 Introduction

In Part I, I have examined the impact that constructive mathematics’ compliance

with intuitionistic logic has for its notion of proof: the exclusive use of this logic suf-

fices to endow the theorems of constructive mathematics with a direct computational

content. I have then endeavoured to clarify the impact that the adherence to intu-

itionistic logic has for mathematical practice. In particular, I have described some of

the techniques that have been utilized to reproduce parts of ordinary mathematics

in computational form. I have then examined Bridges and Richman’s characterisa-

tion of constructive mathematics as mathematics that uses only intuitionistic logic.

As constructive mathematics is fully compatible with the classical tradition it offers

a further, refined insight into ordinary mathematics.

Bishop’s mathematics has been the inspiration for the development of a number

of foundational systems (i.e. set and type theories), introduced to clarify its under-

lying concept of set.1 Here from an early stage the use of intuitionistic logic has

1See, for example, (Friedman 1973, Myhill 1973, Feferman 1975, Martin-Löf 1975, Myhill 1975,

Friedman 1977, Aczel 1978, Aczel 1982, Martin-Löf 1982, Martin-Löf 1984, Beeson 1985, Aczel

1986, Aczel & Rathjen 2008).

73
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been supplemented by a form of predicativity.2 In particular, the most prominent

foundational systems for constructive mathematics today, Martin-Löf type theory

and Aczel and Myhill set theory (Martin-Löf 1984, Aczel & Rathjen 2008), not only

use intuitionistic logic but also appropriately modify the notion of set compared

with more standard classical foundational systems, like Zermelo Fraenkel (ZF) set

theory.

Predicativity is the focus of this second part of the thesis. The principal aim

of the remaining chapters is to clarify what is predicativity and thus lay down

a foundation for a further investigation of the relation between predicativity and

constructive mathematics.

The reasons for the introduction of predicative constraints in foundational sys-

tems for Bishop’s constructive mathematics will be further discussed in Chapter 4,

Section 4.4.2. Here it suffices to mention that predicativity embodies a notion of con-

structivity that is deeply-rooted in the mathematical tradition, and is perhaps more

fundamental than the notion of constructivity that originates by the adoption of the

intuitionistic logic, as it affects the notion of set. It is a form of constructivity that

has found expression both in classical and in intuitionistic settings. In the latter, the

desire to obtain a fully algorithmic form of mathematics seems to naturally promote

also adherence to predicativity, as witnessed, for example, by Bishop’s constructive

analysis in (Bishop 1967). A careful inspection of the proofs in (Bishop 1967) re-

veals that virtually all of the constructive analysis developed in that book is in fact

carried out without any need for impredicative notions (Myhill 1975).3

2As further expounded in Chapter 4, a number of variants of predicativity have been proposed

in the mathematical literature. The notion of predicativity that is appealed to in the case of

constructive mathematics is usually termed constructive or generalised predicativity (see Chapter

4, Section 4.4.2).
3A significant portion of the recent literature in constructive mathematics has aimed at obtain-

ing constructive and predicative renderings of both classical and intuitionistic impredicative proofs.

See, for example (Aczel 2006, Coquand 1992, Curi 2001, Curi 2003, Curi 2006, Curi 2007, Ishihara
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If we take the perspective put forward by constructive foundational systems as

Martin-Löf type theory, then constructive mathematics is the result of combining

two components: (i) the use of only intuitionistic logic, and (ii) a form of predicativ-

ity. From a classical, impredicative perspective, one could also say that constructive

mathematics is the result of a double restriction compared with classical mathemat-

ics:

• Intuitionistic Logic: the logic is the intuitionistic logic;

• Predicativity: sets conforms to appropriate predicative constraints.

A clarification of the notion of predicative set will be one of the central aims of this

part of the thesis, however, an intuition can be given as follows. Predicativity can be

roughly characterised as a constraint on the way mathematical objects are defined,

that enables us to conceive of the predicatively definable mathematical objects as

“built up from within” and in stages. As we typically codify mathematical objects

in terms of sets, predicativity can be seen as a restriction acting on sets: they also

are “built up from within” and in stages, from a limited initial stock of “simple

objects”.4

In very schematic form, again from a classical perspective, the restriction to in-

tuitionistic logic effected by the Bishop school substantially modifies the notion of

proof. The adherence to predicative constraints that is witnessed in the founda-

tional systems for constructive mathematics induces, in addition, a modification of

the notion of set. A crucial observation is that both constructive and predicative

mathematics are fully compatible with, and in fact refinements of, classical impred-

& Palmgren 2006, Maietti 2005, Palmgren 2005, Palmgren 2006b, Palmgren 2006a, Sambin 1987,

Sambin 2003, Vickers 2005, Vickers 2006, Vickers 2007).
4For example, according to one of the notions of predicativity that we shall discuss below, sets

are constructed by means of repeated application of simple logical operations acting on the natural

numbers. See Chapter 5, Section 5.4.
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icative mathematics.5 As a consequence they can also be seen as offering a refined

view of ordinary mathematics.

3.2 The origins of predicativity

The starting point of my analysis of predicativity will be the historical develop-

ment of this notion, from which I shall select some particularly significant aspects.

By examining the origins of predicativity, I shall focus on developments that are

largely independent from the use of intuitionistic logic that characterises construc-

tive mathematics. In fact, the discussion will also centre on proposals, like Weyl’s,

that explicitly endorsed classical logic. The principal reason for this is that I should

like to demonstrate a direct continuity between some of the ideas expressed within

classical predicativity and the constructive one.

The relation between predicativity and logic is a point that requires further

clarification. As predicativity introduces constraints on how to define sets, the most

significant aspects of predicativity may be seen as independent from the use of a

specific logic.6 In fact, predicative approaches have originally been developed within

the classical tradition; as a consequence, the cohabitation of predicativity with

5For the notion of compatibility see Chapter 2, page 60. In fact, all the predicative formal

systems contemplated in this thesis, even the classical ones to be discussed in later chapters, are

compatible with classical impredicative mathematics. This might at first seem surprising since, as

further argued in Chapter 5, one of their principal motivation was the development of a concept

of set that is radically different from the concept of set that motivates ZF set theory.
6The case of constructive predicativity is, in fact, more involved, as in the case of Martin-

Löf type theory there is a deep relation between predicativity and intuitionistic logic, due to

the Curry-Howard isomorphism (Martin-Löf 2008). See also Chapter 4, Section 4.4.2. However,

some prominent features of constructive predicativity can be discussed independently from the use

of intuitionistic logic. In fact, in Chapter 5 I shall argue that even in the case of constructive

predicativity there is a continuity of ideas that run through some of the initial discussions on

predicativity (that were cast from a classical perspective) up to forms of constructive predicativity.
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intuitionistic logic that we witness in the case of constructive mathematics is not a

necessary feature of either mathematics based on intuitionistic logic or predicativity.

The relation between predicativity and constructivity is, at least in most cases,

orthogonal to the question of the role of the intuitionistic logic for constructivity.

To witness this independence, there are examples of mathematical theories which

take one revision and not the other on board, and others which take both, or none.

More importantly, the sole use of intuitionistic logic does not guarantee adherence

to predicativity: for example, there are intuitionistic theories of sets in the style

of Zermelo Fraenkel (Friedman 1973, Beeson 1985) which are fully impredicative.7

This makes an analysis of constructive predicativity particularly complex, but in no

way can one omit due consideration of the classical tradition in an elucidation of

the constructive one.

Another clarification is necessary before examining the origins of predicativity.

I wish to draw a distinction between predicativity and predicativism. The term

predicative denotes a characteristic of (mathematical) definitions and of the objects

that are so defined.8 The term “predicativism” denotes a philosophical position

within the philosophy of mathematics which rejects as unjustified those mathemat-

ical notions that can not be defined predicatively. That is, predicativism might be

characterised as maintaining that mathematics fully coincides with the mathematics

that can be developed on the basis of predicatively definable notions. Hermann Weyl

may be seen as proposing a form of predicativism in “Das Kontinuum” (Weyl 1918),

and so may Edward Nelson in “Predicative Arithmetic” (Nelson 1986).9 The term

7The full impredicativity of intuitionistic Zermelo Fraenkel set theory (e.g. Friedman’s system

IZF) is evinced from the fact that its proof-theoretic strength equals that of ZF (Friedman 1973).
8The notion of predicativity is typically first discussed in relation to definitions, and then also

extended to those objects that can be predicatively defined. In Chapter 4 we shall see that also a

theory may be termed predicative.
9As further clarified below, these authors can be seen as proposing very different forms of

predicativism.
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“predicativity”, by contrast, is often also used to refer to a (possibly philosophically

neutral) adoption of predicative constraints. That is, predicativity often refers to a

form of mathematics that implements predicative constraints, but is not bound to

predicativism. One might, for example, consider as legitimate those forms of math-

ematics which use impredicative concepts, but express a preference for predicative

mathematics on specific grounds, for example their clarity or lack of ambiguity. In

fact, Solomon Feferman has often proffered his interest in predicativity, but has de-

nied advocating predicativism.10 There is here a clear similarity of attitude with

that of many constructive mathematicians today, who declare a preference for con-

structive mathematics, without advocating constructivism (see Chapter 2).

3.3 Poincaré and Russell

The notion of predicativity has its origins in the writings of Poincaré and Russell (see,

for example, Poincaré 1906, Russell 1906a, Russell 1908, Poincaré 1909, Poincaré

1912), and was instigated by the discovery of the paradoxes in Cantor’s and Frege’s

set theory. Adherence to predicativity resulted in the creation by Russell of ramified

type theory, which has profoundly influenced the development of logic and computer

science. A rigorous study of predicativity in the particular case of analysis was

initiated by Weyl (1918), who showed in some detail how to develop a predicative

account of the continuum.

These first elaborations of a notion of predicativity were spurred by the para-

doxes, but were part of a more general debate that was stirred by the deep method-

ological changes in mathematics starting from the 19th Century that were men-

tioned in Chapter 1. Arguably, the discovery of the paradoxes made more urgent

the ongoing clarification of the new methodology. Predicativism can be seen as

sharing important characteristics with logicism, Hilbert’s programme and intuition-

10See e.g. (Feferman 2004).
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ism. These influential philosophical programmes emerged between the end of the

19th and the beginning of the past century, in an attempt to bring clarity to a fast

changing mathematics.11 The foundational programmes attempted to either clar-

ify the nature of mathematics and give its contemporary practice full justification,

like Frege’s logicism and Hilbert’s programme, or, in the case of intuitionism and

predicativism, reform mathematics, as its current practice was seen as lacking jus-

tification. Predicativism therefore represents a perhaps less known chapter in the

fundamental contributions to the philosophy of mathematics that distinguish the

turn of the 20th Century.

The notion of predicativity emerged in an animated discussion between Poincaré

and Russell which spanned from 1905 to 1912. Notwithstanding the remarkably dif-

ferent views of these two authors, for instance, on the role of logic and formalization

within mathematics, they both converged on holding impredicativity responsible

for the onset of the paradoxes, and attempted to clarify a notion of predicativity,

adherence to which would avoid inconsistencies.

Through Russell and Poincaré’s confrontation a number of ways of capturing im-

predicativity and explaining its perceived problematic character emerged. Russell

(1906b) introduced the term predicative to denote a propositional function that

defines a class.12 Today it is common to liken the notion of propositional function

11The foundational programmes were anticipated by discussions on the methodology of math-

ematics which did not take the form of clear philosophical programmes, and instead addressed

individual features of the mathematical methodology, often stimulated by specific technical issues.

Criticism of the new methods of proof was put forward, for example, by Kronecker, and, from a

different point of view, also by the French analysts Baire, Lesbegue and Borel, as well as Poincaré.

These discussions were prompted by the new kind of mathematics and not only preceded but deeply

influenced the foundational programmes (see e.g. Michel 2008, van Dalen 1999). A thorough anal-

ysis of these pre-foundational debates and their relation with predicativity would substantially

advance the present analysis, but will have to be postponed to another occasion.
12 Note that the term “class” in both Russell and Poincaré is used to refer to a generic collection

of elements, and hence should be carefully distinguished from a (proper) class in contemporary set
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to that of open formula (i.e. a formula with a free variable).13 From a contemporary

perspective Russell’s introduction of the term predicative may be seen as an attempt

to mark a distinction between those formulas that do give rise to a class, the class

of those x which satisfy ϕ (also written as {x : ϕ(x)}), and those which do not. The

introduction of the term predicative is at the heart of Russell’s influential analysis of

the paradoxes, which imputes them to the illegitimate assumption that any propo-

sitional function gives rise to a class, the class of all the objects satisfying it. For

Russell the paradoxes showed that some propositional functions, the impredicative

ones, do not give rise to a class. He therefore set up to determine ways of clarifying

the distinction between predicative and impredicative classes.

Russell and Poincaré’s attempts to clarify predicativity produced two principal

ways of explaining this notion. The first one is expressed in terms of circularity,

while the second one features a lack of “invariance”. I shall outline each of them in

turn in the next Sections.

3.3.1 Circularity

According to one characterisation of impredicativity, a definition is impredicative if

it involves a vicious circularity, or self-reference. More precisely:

theory. In informal discussions within the latter, the term class is usually employed to refer to a

“proper class”, that is, a collection that is not a set.
13See e.g. (Feferman 2005). The interpretation of the notions of proposition and propositional

function in Russell is a matter of heated debate among Russell scholars. A common interpretation

is the one suggested by (Gödel 1944) (p. 452, footnote 9), who interprets a propositional function

as a proposition in which one or several constituents are designated as arguments. For example,

if we write the formula P (a) to denote a proposition that holds of an object denoted by a, then

P (x) will denote a propositional function, that takes arguments denoted by a, b, ... and produces

the propositions denoted by P (a), P (b), ..., respectively. Gödel also assimilates a Russellian propo-

sitional function to a concept; in fact, propositional functions share the unsaturated character of

Fregean concepts.
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A definition is impredicative if it defines an entity by reference to a

totality to which the entity itself belongs.14

This characterisation of impredicativity originates in Jules Richard’s analysis of

the paradox that bear his name (Richard 1905), and was subsequently advanced

by Poincaré (1906), and then endorsed by Russell in a number of writings.15 The

characterisation of impredicativity in terms of vicious circularity is often further

elaborated in a logically more precise form as follows: A definition is impredica-

tive if it defines an entity by quantifying over a totality which includes

the entity to be defined . Given this notion of impredicative definition, one can

express a notion of impredicative entity: this is an entity that can only be defined

through an impredicative definition. In fact, in Russell and Poincaré’s discussion the

notion of impredicativity is not restricted to the case of sets, as it applies to a num-

ber of different kinds of entities, like propositions, properties, etc. Predicativity is

then defined as the negation of impredicativity.

Russell famously introduced his “Vicious–Circle Principle” (VCP) to ban

impredicative definitions. This had a number of formulations, like, for example:

“no totality can contain members defined in terms of itself” (Russell

1908, p. 237).

Another is to be found in (Russell 1973, p. 198):

... whatever in any way concerns all or any or some of a class must not

be itself one of the members of a class.

14See (Gödel 1944, p. 455). Note that in the original literature one finds frequently the word

“totality” instead of “set”. The underlying thought is that a totality is a collection whose extent

we can determine in a precise and unambiguous way (see also Section 3.3.2). This has important

similarities with today’s notion of set as codified in Zermelo Fraenkel (ZF) set theory. However, I

shall make use of Russell’s terminology rather than utilize the word “set”, because the latter has

also additional connotations that should not be presupposed in this discussion. See also footnote

12, page 79, for a clarification of the use of the term “class”.
15See page 89 for a description of Richard’s paradox.
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The latter formulation clearly highlights the fundamental link between impred-

icativity and quantification.16

In subsequent chapters I shall examine in some detail the reasons that induce

the predicativist to perceive this form of circularity as problematic. In the next

Section I clarify the present characterisation of impredicativity by considering some

examples. I also examine early analysis of these examples and draw principally

from (Russell 1908, Whitehead & Russell 1910, 1912, 1913). For the first example,

however, I rely on an early analysis of impredicativity by Carnap (1931).

Examples: circularity

1. The logicist definition of natural number:

N(n) := ∀F [F (0) ∧ ∀x(F (x)→ F (Suc(x)))→ F (n)].

According to this definition, the concept of natural number is defined by ref-

erence to all properties, F , of the natural numbers. A circularity arises here

as the property N itself is within the range of the first quantifier. As a conse-

quence, N is defined by reference to itself. The difficulty with this definition

is often explained as follows17: suppose we wish to check a particular case,

that is, whether N(x) holds for a specific natural number x, say for x = 5. In

order to do so, it would seem that we need to check if for each property of the

natural numbers, F , F holds of 5, that is:

∀F [F (0) ∧ ∀x(F (x)→ F (Suc(x)))→ F (5)].

16This is probably the best know formulation of the VCP; however, Russell gave other formula-

tions, some of which, like the first one above, do not directly involve quantification, but, rather,

self-reference or simply the reference to, rather than quantification over, a totality that includes

the definiendum. This plurality of formulation of the VCP induces difficulties for an exegesis of

Russell’s thought, as noted already by Gödel (1944).
17See for example Carnap (1931).
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However, the property “to be a natural number”, which is expressed by the

predicate N , is one of the properties of the natural numbers. That is, to find

out whether N(5) holds, we need to be able to clarify whether the following

holds:

N(0) ∧ ∀x(N(x)→ N(Suc(x)))→ N(5)?

Hence it would seem that we need first to ascertain whether the property of

being a natural number holds of 5 in order to assess whether it holds of 5.

This is an unacceptable form of circularity.

2. The Liar. Russell (1908) first of all observes that the sentence “I’m lying” is

the same as: “There is a proposition which I am affirming and which is false.”

This in turn can be rephrased as a universally quantified statement as: “It is

not true for all propositions p that if I affirm p, p is true.” A paradox then

arises if we take this statement as affirming a proposition, which must then

come under the scope of the universal quantifier. In fact, Russell further claims

that “whatever we suppose to be the totality of propositions, statements about

this totality generate new propositions which, on pain of contradiction, must

lie outside the totality.” The thought here is that an impredicative definition

would seem to generate a new element of the very class that was used to define

it. Russell’s conclusion is that the totality of all proposition is illegitimate and

statements such as “all propositions” are meaningless.

Russell’s analysis of this paradox is particularly interesting, as it bears signif-

icant similarities to the thought underlying an alternative characterisation of

predicativity as invariance that will be discussed in the next Section. It also

clearly sets out which conclusions Russell draws from paradoxes as this. As

further mentioned in Section 3.3.2 Russell’s conclusions differ from Poincaré’s

in important respects.

3. Napoleon’s qualities. Another example (Whitehead & Russell 1910, 1912, 1913,
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p. 59) is given by the sentence: Napoleon had all the qualities of a great

general. This example and example 1 are particularly noteworthy because

they do not involve paradoxes. Here the property “having all the qualities of a

great general” refers to all such properties, and thus, when applied to a great

general, also to itself. We might wish to compare the sentence above with the

sentences: Napoleon was Corsican, or Napoleon was brave. These are utterly

unproblematic, as the properties “being Corsican” and “being brave” do not

refer to other properties (including themselves). We can see the difficulty aris-

ing with this example if we observe that in “having all the qualities of a great

general”, the locution “all qualities” refers to the totality of all qualities, which

therefore would seem to include the one referred to by this very expression.

Russell’s conclusion here is that if we take “all qualities” to refer to a presumed

totality of all qualities, then with the expression “having all the qualities of a

great general” we “generate” a new element of that totality. But this violates

the VCP, as the new quality is defined by reference to itself.18

4. Russell’s paradox. So far we have considered cases of impredicativity which

involve properties rather than classes. An example which involves classes is

the famous Russell’s “set”, that can be so defined in modern terminology:

R = {x | x /∈ x}.

Here R can be seen as arising from an application of the Unrestricted Com-

prehension schema: given any formula ϕ in the language of set theory, we

can form the set of all the x’s that satisfy ϕ, that is, {x | ϕ(x)}. In R’s

definition, in particular, one takes ϕ to be x /∈ x.

In his analysis of this paradox Russell (1908, p. 225) observes that R is defined

impredicatively as it refers to the class of all classes. If we wanted to block the

18This example is often used by Russell to explain how ramification works in ramified type

theory. See also Section 3.4.
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paradox by deciding that no class is a member of itself, then R would become

the class of all classes. But then the question arises whether R is an element

of itself, and we have to decide that R is not a member of itself, that is, that R

is not a class. Russell draws the conclusion that there is no class of all classes,

since if we supposed there is, this would give rise to new classes lying outside

the supposed totality of all classes.

This analysis by Russell confirms the thought already suggested in (Russell

1906b) (see also page 79 above) that a solution to the paradoxes can be reached

by countering the assumption that any propositional function gives rise to a

set. As further discussed in Section 3.4, Russell’s remedy to the paradoxes,

his type theory, introduces restrictions to the ranges of significances of the

propositional functions utilized to define a set.

5. Least Upper Bound principle. Finally an often mentioned example from anal-

ysis: the Least Upper Bound principle (LUB).

Every bounded, non–empty subset M of the real numbers has a least

upper bound.

This is impredicative since we define a subset of the real numbers by quantify-

ing on all subsets of the real numbers. As noted by Weyl (1918), if impredica-

tivity is seen as problematic, this particular example is critical, as it goes at

the very heart of analysis. Not only does it show that impredicativity is cru-

cially used in the ordinary theory of the continuum, but it also would seem to

impose some constraints on any predicative attempt to develop mathematics.

In fact, it would seem that if by banning impredicativity one also impairs the

availability of the (LUB), then any reasonable development of analysis would

be blocked from the start. As we shall see below, Weyl’s “Das Kontinuum”

(Weyl 1918) is particularly relevant also for Weyl’s recognition that we can



86 CHAPTER 3. ORIGINS OF PREDICATIVITY

develop a substantial portion of analysis also without the (LUB).19

3.3.2 Invariance

While Russell’s discussion of the paradoxes and the VCP has attracted vast at-

tention within the philosophical literature, another characterisation of predicativity

proposed in later writings by Poincaré is less known today (Poincaré 1909, Poincaré

1912). This is of particular relevance for an account of constructive predicativity,

as it is deeply interrelated with a predicative concept of set which is more apt to a

constructive setting (as discussed in Chapter 5).20

The context of Poincaré’s discussion of impredicativity in (Poincaré 1909, Poincaré

1912) is a reflection on the role of infinity in mathematics.21 In (Poincaré 1909,

Poincaré 1912), the French mathematician observes that the antinomies are partic-

ularly poignant in the case of infinite sets and sees their arising as consequence of an

unjustified assumption of actual infinity.22 Infinity for Poincaré is unboundedness,

or potential infinity :

There is no actual infinity, and when we speak of an infinite collection,

we mean a collection to which we can add continuously new elements.23

Poincaré saw the assumption of actual infinity as particularly problematic because,

for him, we can only reason about objects that can be defined by a finite number

19See (Feferman 1988a) for details.
20Poincaré’s thought also strongly influenced the logical analysis of this notion that begun in

the 1950’s. See Chapter 4. See also (Cantini 1981) for an insightful analysis of Poincaré’s notion

of invariance and a formal systematization of it.
21The centrality of the discussion on infinity and its role within the reflections on the method-

ological changes that took place in the 19th Century is well-known and has been briefly hinted at

in Chapter 1.
22This marks a difference with Russell, that with examples as the Liar emphasized that paradoxes

arise also in finitary contexts.
23(Poincaré 1909, p. 463), my translation.
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of words (Poincaré 1909, p. 464). As clarified in (Poincaré 1912), this view is

in turn motivated by the conviction that the existence of mathematical objects is

not independent from a thinking subject. The thinking subject, observes Poincaré,

is a human being, or “something similar to it”, and thus its finitude imposes a

requirement of definability within a finite number of words.

I shall mention further Poincaré’s definabilism in Chapter 5.24 Here Poincaré’s

discussion on actual and potential infinity is relevant because it is deeply intercon-

nected with his new characterisation of predicativity. Already in (Poincaré 1909),

the French mathematician highlights what I should like to call a sort of “instability”

of impredicative collections. Poincaré’s thought bears similarities to an observation

by Russell that was mentioned in the previous section: impredicative definitions

seem to “generate” new elements of a totality over which they generalise.25 For

example, the quality “having all the qualities of a great general” generalises over all

such qualities, and in so doing seems to produce a new element of the (presumed)

totality of all qualities. Russell and Poincaré draw apparently different conclusions

from this observation. For Russell, impredicatively defined totalities are illegiti-

mate, and quantification over them is meaningless. The adoption of the VCP in

(Russell 1908) has as effect that classes defined by impredicative definitions are

empty. Poincaré instead sees the instability of impredicatively defined collections

as indicating that their definitions are illegitimate, as they treat as immutable, or

invariant, classes that are instead open-ended and unfinished or incomplete.26

The French mathematician therefore proposes a new characterisation of predica-

tivity that is first of all phrased in terms of predicative classifications (or classes),

as follows.

24See Chapter 5 for a description of definabilism.
25See the discussion of the examples of the Liar, “Napoleon’s qualities” and Russell’s paradox

in Section 3.3.1.
26There is a strong similarity between Poincaré’s ideas and Dummett’s discussion of indefinitely

extensible concepts. The latter will be examined in Chapter 6.
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A predicative classification is one that can not be “disordered” (or

disrupted) by the introduction of new elements.

Poincaré (1909, p. 463) writes:

Hence a distinction between two species of classifications, which are ap-

plicable to the elements of infinite collections: the predicative classifica-

tions, that can not be disordered by the introduction of new elements;

the non predicative classifications which the introduction of new elements

forces to remain without end.27

A characterisation of predicative definitions is then given by claiming that a

definition is after all a classification: it separates the objects that satisfy, from those

that do not satisfy that definition, and it arranges them in two distinct classes.

Consequently a definition is impredicative if it defines a classification

that is not predicative .

The very idea of classes without end and disordered by the introduction of new

elements is very hard to grasp from a contemporary perspective, that is so much

influenced by the very static concept of set that is codified by ZF set theory.28 I shall

endeavour to clarify a predicative concept of set inspired by Poincaré’s remarks in

Chapter 5. For now the crucial point to focus on is that for Poincaré the paradoxes

highlighted the illegitimacy of impredicative definitions, because such definitions

27My translation; italics by Poincaré. The word “disordered” translates the French “boule-

verseé”.
28The claim is that it is difficult to capture Poincaré’s notion of set within a context as ZFC,

not that it is difficult to express invariance. The latter has strong affinities with the concept

of absoluteness in classical set theory. Poincaré’s reflections on predicativity have also strongly

influenced the first identifications of predicativity with the hyperarithmetical hierarchy within the

logical analysis of predicativity that will be discussed in Chapter 4, Section 4.2. See, for example,

(Kreisel 1960) for discussion. Linnebo’s (2013) modal set theory offers a way of capturing a

constructivistic (or potentialist) concept of set from a modal perspective.
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treat as completed (French “arrêté”) infinite classes that are instead “in fieri”, open

ended or incomplete by their very nature.

In the following I shall refer to this characterisation of predicativity as “invariance”:

a collection is predicative if it is “invariant under extension”.

I wish to further elucidate Poincaré’s characterization of predicativity in terms

of invariance by considering some examples.

Examples: invariance

1. Poincaré (1909) gives the following example of a predicative collection: the

collection of natural numbers that are less than 10. Poincaré clarifies that we

can recognise whether a natural number is less than 10 or not independently

of the relation between this number and other numbers. He states that when

we have defined the first 100 numbers, we know which ones are smaller and

which ones are greater or equal to 10. If we then introduce the number 101,

the numbers less then 100 that were smaller than 10 are still so, and similarly

for those that were greater or equal to 10.

It is instructive to see that Poincaré elucidates the predicativity of this collec-

tion by highlighting the importance of stable relations between a newly defined

element of a class and other elements of it. In addition, Poincaré’s explanation

of this example offers further indication of his “constructivistic” conception of

classes, as the French mathematician refers to our “introducing” the number

100.

2. An example of impredicative collection is obtained by an application of Richard’s

paradox. This paradox allows for the definition by diagonalization of the least

non–definable real number, r, by reference to the totality of all definable real

numbers. More precisely, let us consider all the real numbers that are definable

in English by a finite number of words and let D be their collection. This is
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countable as each definition can be given by a finite number of symbols. We

can then list all the elements of D, and mimic Cantor’s diagonal proof of the

non-denumerability of the real numbers to produce a new real number, r, that

is different from each element of D. But one can easily express in English a

rendering of the “algorithm” that allows for the definition of r, so that r turns

out to be a definable real number after all, and a contradiction arises.

The usual diagnosis of this paradox is in terms of circularity: the difficulty lies

in the fact that we define r by reference to the whole D, thus also to r itself.

For Russell, then, the paradox shows that D is ill-formed, and quantification

over it is meaningless. The new diagnosis suggested by Poincaré underlines

the fact that the newly defined real number r would then appear to extend

the totality of definable real numbers that was used in its definition. It is

the instability of the collection of definable real numbers that becomes for

Poincaré symptom of impredicativity and, as in Russell’s analysis, imparts

the illegitimacy of quantification over such a class.

It is worth noting that it would seem that all the cases of circular definitions

discussed in Section 3.3.1 also give rise to a lack of invariance, as they undermine

the possibility of determining in a definitive way the boundary of a collection of

entities in terms of which the definiendum is specified.29 An important aspect that

is in common to both characterisations is that they are negative, in that they tells

us what predicativity is not (variance, circularity), but they do not specify what

counts as a predicative definition. Substantial work has been carried out since

Russell and Poincaré’s early writings to further clarify in more positive terms what

is predicativity.30 The first major contribution to an elucidation of this notion has

29See (Cantini 1981) for a comparison between the strength of a formalism there introduced

to capture Poincaré’s notion of invariance and systems introduced within the “Kreisel-Feferman-

Schütte” analysis of predicativity that will be outlined in Chapter 4.
30See in particular Chapter 4.
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been offered by Russell himself, with his ramified type theory.

3.4 The developments of predicativity I: Russell’s

ramified type theory

The analysis of the paradoxes turned out to be extremely fruitful for the development

of mathematical logic, starting from Russell’s own implementation of the vicious

circle principle through his type theory.31 Russell’s type theory is one of a number

of fundamental technical achievements that were instigated by the philosophical

reflection on predicativity. The latter, in fact, is an emblematic example that stands

out in the history of the philosophy of mathematics and of logic for the fruitfulness

of interactions between philosophy and logic.

In Russell’s ramified type theory the vicious circle principle is applied to pre-

scribe a hierarchical regimentation of sets, starting from a domain of individuals.

The fundamental idea underlying Russell’s type theory was already adumbrated in

(Russell 1906b), where the author introduced the term predicative to distinguish

propositional functions that denote from those that do not denote a set (see page

79). In (Russell 1908), to prevent any occurrence of impredicativity, Russell made

two moves simultaneously.32 He introduced:

• a type restriction for “ranges of significance of propositional functions”;

• and an order regimentation for propositional functions.

The first amounts to associating a range of significance to each propositional

function, that is, a set of all arguments to which the propositional function can

be meaningfully applied. In Russell’s terms: “within this range of arguments, the

31See (Cantini 2009) for a rich discussion of the impact of the paradoxes on mathematical logic.
32The distinction between these two separate moves is retrospective, and due to Chwistek (1922)

and Ramsey (1926), as further discussed below.
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function is true or false; outside this range, it is nonsense.” (Russell 1908, p. 247)

The ranges of significance then form types, and these are arranged in levels: first

we have a type of individuals, and then types which are ranges of significance of

propositional functions defined on the individuals, and so on. For example, one

can take as individuals the natural numbers, and build predicatively sets of natural

numbers of increasing type level. In fact, Russell deliberately left open what exactly

constitutes the first level of the type–theoretic hierarchy.33 The crucial point is

that as a consequence of this regimentation of the notion of set, in type theory

quantification is only allowed “locally”, i.e. over a given type, not over “all sets”. In

addition, expressions such as x ∈ x and x 6∈ x are simply ill–formed, since in z ∈ w,

z must be of the next-lower level than w. Accordingly, Russell’s paradox does not

carry through.

This has important consequences, as it seems to suffice to block not only Russell’s

paradox, but more generally all set–theoretic paradoxes.34 Chwistek and Ramsey

observed that if one implements only this restriction, then one obtains a formalism

33Russell (1908, p. 237) wrote: “It is unnecessary, in practice, to know what objects belong to

the lowest type, or even whether the lowest type of variable occurring in a given context is that of

individuals or some other. For in practice only the relative types of variables are relevant; thus the

lowest type occurring in a given context may be called that of individuals, so far as that context

is concerned.” This quotation suggests a relativity of predicative constraints introduced by the

type theoretic structure that bears similarities with a form of relativity of predicativity further

discussed in Chapter 4.5, Section 4.5.2.
34It might be worth recalling the distinction between set–theoretic and semantic paradoxes. Set-

theoretic paradoxes are usually described as those that concern the notion of set, while semantic

(or epistemological) paradoxes involve “semantic” notions such as truth, definability, etc. Typical

examples of the first kind are Russell’s and Burali-Forti paradoxes. The second type include the

Liar, as well as Richard’s paradox of the least non-definable real number that was mentioned in

Section 3.3.2. Peano (1902-1906) and Ramsey (1926) observed that these paradoxes can be seen

as pertaining to two different kinds; only those of the first kind seem to affect our conception of

set and ought concern us when discussing the foundations of set theory (see also (Carnap 1931)).
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that is interesting in its own right. Today this goes under the name of simple type

theory and its formulation was subsequently simplified by Church (Church 1940) (see

also (Coquand 2015)). Simple type theory seems sufficient to block all set theoretic

paradoxes; however, it does not eliminate all impredicativity.35 For example, it does

not eliminate the impredicativity to be found in the Liar paradox (page 83) and in

the example above on “Napoleon’s qualities” (page 83).

The second move, ramification, can be seen as arising from the desire to elimi-

nate all impredicativity. For Russell, one of the lessons of the paradoxes was that

impredicative totalities, as, for example, the totality of all propositions, are illegiti-

mate, and hence quantifiers as ∀F make no sense when F ranges over such totalities

(see Examples 1, 2 and 3 in Section 3.3.1). One of Russell’s aims with his type the-

ory was to represent ordinary mathematical discourse without appealing to these

problematic uses of quantification. His solution was to introduce, alongside a notion

of level for ranges of significance, a notion of order for propositional func-

tions and require that a propositional function can only quantify over propositional

functions of lower order than its own. Thus in ramified type theory, one has first

order propositional functions, second order ones, etc.; in addition, the second

order propositional functions can quantify on the first order ones, but not the other

way around, and similarly for higher orders. In this way one obtains a stratification

of propositions and properties, as first order, second order and so on. To clarify

how ramification works, let us consider Example 3 from page 83 again. Recall the

properties “being Corsican” and “being brave”. These are unproblematic, as they

35It is worth noting that Zermelo Fraenkel set theory includes the separation schema, that

is a restriction of the unrestricted comprehension schema that was mentioned at page 84. The

separation schema allows for the formation of subsets of a given set by comprehension. That is,

given a set A, and ϕ a formula in the language of ZF, {x ∈ A : ϕ(x)} is a set. This restriction seems

sufficient to block the set–theoretic paradoxes, but it does not eliminate all impredicativity; this is

because there is no constraint on the formula ϕ, which might contain unrestricted quantifiers and

thus contravene to the VCP.
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do not refer to other properties. They can then be taken to be first order properties.

However, “having all the qualities of a great general” is a property of order two, as

it refers to first order properties. But as “having all the qualities of a great general”

can only refer to properties of a lower order, we can not reproduce the undesirable

circularity of the original example.

To see how ramification eliminates the threat of the semantic paradoxes, let us

consider Example 2, the Liar. This is analysed as follows by Russell (1908, p. 238):

if Epimenides asserts “all first-order propositions affirmed by me are

false”, then he asserts a second order proposition; he may assert this

truly, without asserting truly any first order proposition, and thus no

contradiction arises.

In conclusions, by introducing a type restriction and an order for propositional

functions, ramified type theory eliminates all impredicativity and therefore seems to

block all vicious circularity, and thus paradoxes of both set–theoretic and semantic

nature.

3.4.1 Reducibility and the natural numbers

Russell’s type theory was a first fundamental contribution to the clarification of

the complex question of what is predicativity in precise, logico–mathematical terms.

Its impact on mathematical logic and, more recently, computer science, has been

immense. However, as a way of developing a predicative form of mathematics Rus-

sell’s type theory encountered substantial difficulties, and eventually surrendered to

the assumption, in (Russell 1908), of the axiom of reducibility.36 This axiom was

36The introduction of the axiom of reducibility has the effect that the hierarchy of propositional

functions (first-order, second-order, etc.) collapses at level 1. Reducibility in fact states that for

any propositional function of any order, there is a propositional function of the first-order level

which is equivalent to it.
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strenuously criticised for being introduced for purely pragmatic reasons. The main

problem in the present context is that it may be seen as restoring impredicativity

within ramified type theory (Feferman 2005).

Before looking at another attempt, by Weyl (1918), to develop analysis pred-

icatively, I wish to briefly describe how Russell justified the need to introduce his

infamous axiom of reducibility in (Russell 1908). This is of relevance to the discus-

sion in Chapter 6 of a variant of predicativity discussed in recent times by Nelson

and Parson (Nelson 1986, Parsons 1992, Parsons 2008), that questions the predica-

tivity of the natural number structure. Russell (1908, p. 241) recalls that in his type

theory propositional functions are assigned an order. He then notes that proposi-

tional functions are used to state properties of mathematical objects, therefore we

can not quantify on “all properties of x” in ramified type theory. Russell then writes

(Russell 1908, p. 241-242):

it is absolutely necessary, if mathematics is to be possible, that we

should have some method of making statements which will usually be

equivalent to what we have in mind when we (inaccurately) speak of

“all properties of x.” This appears in many cases, but especially in

connection with mathematical induction.37

Russell then discusses the definition of natural number in Example 1, page 82.

This is clearly impredicative, as already noted, as it features a quantifier on all

37The principle of mathematical induction, or, simply, induction, is required to reason inductively

on the natural numbers. It states that if we can show that a property holds of 0, and that whenever

it holds of a natural number, n, it also holds of its successor, then we can conclude that that

property holds of every natural number. In modern logical terminology, within the familiar Peano

Arithmetic (PA), induction reads as follows:

[ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(Suc(x)))]→ ∀xϕ(x),

where ϕ is an arbitrary formula in the language of PA, and Suc(x) is the successor of x.
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properties of the natural numbers (including itself). In ramified type theory, that

definition therefore gives way to a reformulation in which the quantifier ∀F ranges

over propositional functions belonging to some fixed order. This, however, allows

us to obtain only partial renderings of the notion of natural number, one for each

order of propositional functions. We can not obtain therefore a general definition

of the concept of natural number, since that would require a universal quantifier

unrestricted by any order. As a consequence, many proofs by induction do not

carry through in their usual form, as they require the full generality of a universal

quantifier ranging on all propositions; for example, we can not prove in full generality

in ramified type theory that if m and n are finite numbers, then so is m+ n.38

In addition, a development of analysis in ramified type theory is also compro-

mised by the fact that, as in the case of the natural numbers, also for real numbers

one obtains real numbers for each order, and thus can not prove statements on all

real numbers.

To conclude this section, ramified type theory had two principal deficiencies:

(1) it turned out to make the derivation of ordinary mathematics awkward, if not

impossible, (2) as already the fundamental definition of the natural numbers cannot

be recast in ramified type theory, it also failed to fulfil Russell’s aim of vindicating the

logicist program.39 This prompted Russell and Whitehead to introduce the axiom

of reducibility, whose addition, however, did not retain the predicative nature of the

original ramified type theory.

38See e.g. (Feferman 2000b) for a simple exposition of the ideas underlying ramified type theory

and the difficulties it encounters.
39See also (Gödel 1944) for similar complaints.
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3.5 The developments of predicativity II: Weyl’s

“Das Kontinuum”

A fresh attempt at developing analysis from a predicative point of view was proposed

by Weyl in his book “Das Kontinuum” (Weyl 1918). Weyl developed (a portion of)

analysis from a predicative point of view without resorting to ramification; in so

doing he clarified that we can work predicatively without engendering unnecessary

complications, and that we can achieve more than previously thought.

Weyl’s principal motivation for his investigation in “Das Kontinuum” was a deep

dissatisfaction with the current status of the foundations of mathematics. The new

methodology that had recently been introduced in mathematics seemed to Weyl to

lack justification. In particular, the efforts of philosophical programmes as formalism

and logicism had left unanswered the difficulties that plagued contemporary math-

ematics, and in particular the new mathematics’ reliance on impredicativity. Weyl

found that the most worrying instances of impredicativity were those that arose at

the very heart of mathematics, in analysis, as witnessed by the impredicativity of

the Least Upper Bound principle.40

Weyl was clearly influenced by Russell’s analysis of impredicativity; however,

there are significant dissimilarities with Russell’s approach. First of all Weyl’s in-

vestigations into predicativity focus directly on mathematical practice. Weyl hoped

to achieve a reformulation of the concept of set that would warrant a non-circular,

safe foundation for a mathematical analysis of the continuum. This was meant to

offer a partial solution to what Weyl in the opening of his booklet calls Pythagoras’

problem: the difficulty of clarifying in absolutely rigorous terms the concept of the

continuum.

Secondly, a fundamental difference with Russell is that Weyl took as given, as

requiring no definition or explanation, the natural number structure with full math-

40See page 85 for the Least Upper Bound principle.
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ematical induction. Weyl (1918, p. 48) wrote: “ the idea of iteration, i.e., of the

sequence of the natural numbers, is an ultimate foundation of mathematical thought,

which can not be further reduced”. This aspect of Weyl’s thought bears similarities

with Poincaré’s views, who, criticising Russell’s introduction in (Russell 1908) of

the reducibility axiom, stressed that the natural number structure with induction

is beyond doubt, it is synthetic a priori ; thus requiring no reduction or foundation

(Poincaré 1909).41

After assuming the natural number structure as “given”, Weyl imposed restric-

tions motivated by predicativity concerns at the next level of idealization beyond

the natural numbers: the continuum. As the real numbers can be represented by

sets or sequences of rational numbers, Weyl’s fundamental question was: which

sets or sequences of rational numbers can be justified predicatively? As the ratio-

nal numbers, in turn, can be represented as ordered pairs of natural numbers, this

questioned the justification of the powerset of the natural numbers. Weyl therefore

explained how to “produce” predicative subsets of the natural numbers: he started

from the natural numbers with full mathematical induction as a base, and used the

ordinary logical operations applied to them to ascend step by step from the natural

numbers to predicative sets of natural numbers. Weyl called this the “mathematical

process”.42

Weyl was fully aware of the difficulties introduced by ramification for the devel-

opment of mathematics, and he severely criticized the axiom of reducibility; he thus

refrained from both.43 In modern terminology Weyl introduced restrictions on how

41The role of the natural numbers for Poincaré and Weyl’s predicativism will be further discussed

in Chapter 5 and in Chapter 6.
42See Chapter 5, Section5.4, for a detailed discussion of Weyl’s “mathematical process”.
43In Section 6 of (Weyl 1918) the author also considers an iteration of the mathematical process

that resembles Russell’s ramified hierarchy: one produces via the mathematical process all the sets

of the first level, and then uses them in a new application of the mathematical process to form new

sets of the second level, etc. Weyl, however, concludes that: “A ‘hierarchical’ version of analysis
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we form subsets of the natural numbers, that, in practice, justify only applications

of the comprehension schema to arithmetical formulas , that is, those formulas that

do not quantify over sets (but may quantify over natural numbers). In this way one

justifies sets of the form {x : ϕ(x)} only if ϕ does not contain set quantifiers. This

restriction prevents vicious–circular definitions of subsets of the natural numbers:

the restriction to number quantifiers in the comprehension principle does not allow

for the definition of a new set by quantifying over a totality of sets to which the

definiendum belongs.44

I wish to highlight two aspects of Weyl’s contribution. First, Weyl succeeded

in reducing to predicative methodology a significant segment of analysis, including

portions which prima facie required impredicativity.45 This opened up the way for a

is artificial and useless. It loses sight of its proper object, i.e. number [...]. Clearly, we must take

the other path [...] to abide the narrower iteration procedure.” (Weyl 1918, p. 32)

44 See Feferman (1988a) for a precise account of Weyl’s achievements. As remarked by Feferman

(1988a) (see also (Feferman 2000b)) there are some ambiguities in Weyl’s formulations, so that it

is not completely settled which system he had in mind. A frequent claim is that Weyl’s system

essentially corresponds to a subsystem of second order arithmetic known as ACA0 (Simpson 2009).

Here “second order arithmetic” refers to a theory that uses a two-sorted language (with variables

for natural numbers and variables for sets) to formalise the natural numbers and their subsets.

The claim that Weyl’s system essentially corresponds to ACA0 can be justified by Feferman’s

contention that an inspection of the proofs in “Das Kontinuum” shows that ACA0 suffices to

carry out all of Weyl’s constructions. Therefore, even if Weyl had a different system in mind, in

particular a stronger one, still, his mathematics can be carried out within ACA0. The system

ACA0 has first and second order variables, the first ranging on the natural numbers and the latter

on subsets of the natural numbers. It has the usual Peano’s axioms for 0 and successor, and

defining equations for all primitive recursive functions. Furthermore, ACA0 includes the principle

of arithmetical comprehension and the induction axiom, stating that we can reason by induction

on sets of natural numbers. Remarkably, although this system is expressed in the second order

language, it is very weak (proof theoretically), as it can be shown to have the same proof theoretic

strength as Peano Arithmetic.
45In particular, a substantial obstacle was the impredicativity of the Least Upper Bound principle
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rich literature in mathematical logic that aimed at clarifying the extent of predicative

mathematics, as further discussed in Chapter 4, Section 4.3.

Second, as witnessed by the following quotation, Weyl saw only predicative math-

ematics as fully justified; as he quickly became aware that not all of ordinary math-

ematics could be so recovered, he was ready to give up the rest, as (so far) not fully

justified. Weyl (1918, p. 1) wrote:

The house of analysis [...] is to a large degree built on sand. I believe that

I can replace this shifting foundation with pillars of enduring strength.

They will not, however, support everything which today is generally

considered to be securely grounded. I give up the rest, since I see no

other possibility.

This very bold attitude towards the foundational problem bears similarities with

Brouwer’s intuitionist attempt, which later on Weyl temporarily joined, but even-

tually abandoned as he felt it was too “awkward” and inadequate to deal with

mathematics’ applications.

3.5.1 After “Das Kontinuum”

The interest in predicativity sharply decreased soon after the publication of Weyl’s

book for a number of reasons. The most widespread assessment of predicativism

was that it did not allow for a sufficiently thorough development of ordinary math-

ematics: a too high price to pay.46 In addition, Chwistek and Ramsey noted

that simple type theory seemed to suffice to overcome the set-theoretic paradoxes

(Chwistek 1922, Ramsey 1926); therefore predicativity’s principal justification, to

(see Example 5). The LUB is used in a crucial way to prove the completeness of the real number

system. Weyl overcame this difficulty by using a form of sequential completeness instead of order

completeness, as the first does not require an appeal to the LUB. See (Feferman 1988a) for details.
46Prominent witnesses to this attitude are for example (Zermelo 1908) and (Gödel 1944).
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avoid inconsistencies, seemed lost.47 Peharps the most significant circumstance that

determined predicativity’s loss of appeal was the rapid accreditation of impredicative

set theory as the standard foundation, especially in the form of the Zermelo-Fraenkel

system with choice, ZFC.

3.6 Conclusion

In this chapter I have outlined the origins of predicativity in the reflections that

followed the substantial extension of the mathematical methodology in the 19th

and early 20th Centuries. Predicativity was directly instigated by the discovery of

the set-theoretic paradoxes, and an analysis of the paradoxes helped Poincaré and

Russell devise strategies that would make mathematics safe. The first discussions on

predicativity culminated in a ban on circularity, with the introduction of Russell’s

VCP. In subsequent years Poincaré further stressed a form of instability, or lack of

invariance, of sets that are defined impredicatively. These discussions alone did not,

however, fully specify a notion of predicativity, and rather imposed generic bans on

circular or non-invariant definitions.

The first fundamental step towards a thorough clarification of predicativity was

the creation by Russell of ramified type theory. Here one introduces appropriate

syntactic restrictions to the way sets (there called types) are defined. The types are

stratified according to levels (restricting the range of significance of propositional

functions) and orders (restricting the quantifiers occurring in propositional functions

to lower orders). This ensures that in defining a new type we only appeal to already

defined types. In particular, one does not refer to the type that is being defined,

nor to totalities of which it is a member. Russell’s ramified type theory therefore

gives justice to the “building up from within and in stages” metaphor suggested at

the beginning of this chapter.

47See Section 3.4, and footnote 34, page 92.
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Ramification, however, made the mathematics awkward; therefore a more local

approach, driven more directly by the mathematical practice, was proposed by Weyl,

who focused on the fundamental case of analysis. Weyl’s predicativism can be seen

as proposing a safe concept of set, grounded on the natural numbers and the iteration

of simple operations over them. Weyl showed how to develop a substantial part of

19th Century analysis from this constrained perspective. His efforts in clarifying the

prospects of a predicative form of mathematics have been substantially furthered by

the work of prominent mathematical logicians starting from the 1950’s. Weyl also

clearly outlined a form of predicativism, renouncing to those portions of analysis

that could not be predicatively recovered. This deeply contrasts with the attitude

of the logicians that in the 1950’s revived the discussion on predicativity, as further

analysed in the next chapter.



Chapter 4

The logical analysis of

predicativity

Poincaré’s polemic attacks addressed at the “logisticians” may make the historical

development of predicativity rather surprising, as the interest in predicativity was

revived by work in mathematical logic starting from the 1950’s. This is after all not

that surprising, as both Russell’s ramified type theory and Weyl’s analysis of the

continuum had already clarified the potential of employing the most recent advances

in mathematical logic to sharpen the philosophical discussion.1

The history of predicativity is witness to a remarkable example of cross-fertilisation

between philosophy of mathematics and mathematical logic. A critical reflection on

the new abstract methods that were introduced in mathematics in the 19th Century

gave rise to a proposal for a renewal of older methodologies; it also encouraged a

novel philosophical programme, predicativism, in the philosophy of mathematics.

The latter stimulated further technical advances, in an attempt to develop a form

of mathematics that would comply with that philosophical stance. Later on, the

1It is also worth noting that substantial progress in the mathematical understanding of pred-

icativity came from within the Hilbertian proof-theoretic tradition, that was harshly criticised not

only by Poincaré but also by Weyl (1918).
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desire to gain a fine understanding of the mathematical and philosophical implica-

tions of the proposed more restricted methodologies, determined the development

of new mathematical notions and techniques, as further outlined in this chapter.

The mathematical output of those technical investigations subsequently gained a

life of its own, promoting further substantial developments in mathematical logic

and computer science.

The new interactions between mathematics and philosophy that emerged from

the 1950’s, witness, however, profound differences with the first analysis of pred-

icativity at the beginning of the 20th Century. The most remarkable aspect is a

modification of the stated aims. In this respect, already Gödel manifested a shift of

attitude in his influential appraisal of Russell’s contribution to mathematical logic in

(Gödel 1944). There Gödel clearly expressed the view that predicativity is a fruitful

concept within mathematics, but that it should be pursued “independently of the

question whether impredicative definitions are admissible.”2 His remarks indicate

the beginning of a new phase for predicativity starting from the 1950’s; this is char-

acterised by a logical analysis of this notion that, although of relevance for the

philosophical debate on the foundations of mathematics, is carried out independently

of predicativism.

A possible explanation for this change of attitude is that the worries for the,

by then, less “new” methodology in mathematics had subsided, and impredicative

methods and set theory had become standard. It is therefore not surprising that the

new approaches to predicativity were more technically driven and less foundation-

ally committed.3 Perhaps the most relevant aspect of this new phase is the fact that

2As example of the fruitfulness of predicativity, Gödel mentions his constructible hierarchy,

that was inspired by Russell’s ramified type theory and allowed for fundamental proofs of the

consistency of the axiom of choice and of the continuum hypothesis with ZF set theory. This will

be discussed in the next Section 4.1.
3This is not to say that foundational issues were not at the centre of a significant portion of

mathematical logic. In fact, even a cursory inspection of the logical literature from the 1950’s
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different questions were now driving the discussion compared with the early days

of predicativity. The main question was not any more one of ultimate justification

of (a portion of) mathematics, but one of clarification of the boundaries and power

of predicativity. More precisely, the fundamental question became whether pred-

icative mathematics was “already (formally) sufficient to obtain the full range of

arithmetical consequences realized by impredicative mathematics” (Feferman 1964,

p. 4).

The most notable outcome of the logical analysis of predicativity was the reali-

sation that large portions of ordinary mathematics are within the realms of predica-

tivity.4 This realisation has important consequences for the philosophical debate on

predicativity, as further discussed below.

In this chapter I shall first of all review Gödel’s constructible hierarchy, which

witnesses the fruitfulness of predicativity for mathematical logic. I shall then set

out the principal milestones of the logical analysis of predicatvity. I shall conclude

the chapter with a discussion of a by-product of that analysis: a clarification that

there are distinct forms of predicativity that relate to substantially different forms

of mathematics. This plurality of predicativity suggests a relativity of predicativity

with respect to initial assumptions, as clarified in Section 4.5.2.

4.1 Gödel’s constructible hierarchy

A crucial technical contribution that influenced subsequent discussions on predica-

tivity came with Gödel’s constructible hierarchy (Gödel 1938, Gödel 1940). The

and 1960’s witnesses that foundational questions were very prominent, so that complex and subtle

new technical results were in many cases cast through a foundational light. In this respect the

logical landscape was very different from today, as now technical outcomes are very often aimed

at thoroughly independently of any wider context.
4Here the expression “ordinary mathematics” refers to mainstream mathematics. See Section

4.3, page 112, for further clarification of this notion.
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latter can be seen as taking forward Russell’s idea of ramified type theory to the

transfinite (Gödel 1944, p. 464).5

The cumulative hierarchy is well-known, as it is often considered the “standard

interpretation” of set theory. It is defined by a transfinite recursion on the ordinals

as follows: we start from the empty set, we apply the powerset operation to go from

any level of the hierarchy to its successor and then we collect all previously defined

sets at limit ordinals.6 The constructible hierarchy is defined by recursion on the

ordinals so to mimic the the cumulative hierarchy, but it differs from that at suc-

cessor steps: it replaces the full powerset operation with an operation of “definable

powerset”. That is, at each successor step one takes only those subsets of previously

constructed sets that are definable purely in terms of previously constructed sets.

Therefore at each step, the new sets are obtained predicatively from those intro-

duced at previous stages of the hierarchy.7 As remarked by Gödel (1944, p. 464),

the constructible hierarchy can be seen as reducing all kinds of impredicativity to

5Gödel’s constructible hierarchy is also indebted to (Hilbert 1926), where an inconclusive at-

tempt at settling the Continuum Hypothesis is sketched.
6The cumulative hierarchy, V , is defined as follows:

V0 := ∅,

Vα+1 := Pow(Vα),

Vλ :=
⋃
ξ<λ

Vξ (λ limit),

V :=
⋃

α∈On
Vα,

where Pow(X) is the powerset of X, i.e. the set of all subsets of X, and On is the class of all

ordinals. Note that the adjective “cumulative” refers to the fact that for each β < α, Vβ ⊆ Vα.
7 More precisely, given a set A, its definable powerset, Def(A), is the collection of all subsets

of A which are definable over 〈A,∈〉. In particular, all elements of Def(A) are subsets of A which

are definable by formulas in the language of set theory whose quantifiers range over A, and whose

parameters are elements of A. The underlying intuition is that at successor steps in the hierarchy,

one only appeals to sets that “have already been constructed”, that is, to previous levels of the
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one special kind: “the existence of certain large ordinal numbers (or well-ordered

sets) and the validity of recursive reasoning for them”. The thought is that although

at a local level, that is, at each step of the hierarchy, all new sets are defined pred-

icatively, the hierarchy as a whole manifests an element of impredicativity, given

by the assumption of the class of all ordinals. The latter is required to iterate the

definition sufficiently far, but it is problematic because the ordinals are order types

of well ordered sets, and therefore require impredicativity for their very definition.

This feature of the constructible hierarchy suggests a relativity of predicativity that

will be further discussed in Section 4.5.2.

4.2 Γ0 and the limit of predicativity

Renewed interest on predicativity emerged from the 1950’s, when fresh attempts

were made to obtain a clearer demarcation of the boundary between predicative

and impredicative mathematics. The literature from the 1950’s and 1960’s shows

the complexity of the task, and witnesses the involvement of a number of prominent

logicians (such as Feferman, Kleene, Kreisel, Gandy, Schütte, Spector, Wang), who

utilised new technical tools in a number of attempts at separating the predicative

from the impredicative. The new approach to predicativity aimed at two main

hierarchy. The constructible hierarchy, L, is defined as follows:

L0 := ∅,

Lα+1 := Def(Lα),

Lλ :=
⋃
ξ<λ

Lξ (λ limit),

L :=
⋃

α∈On
Lα.

(Gödel 1938) showed that the constructible hierarchy is a model of ZF; in addition he proved that

it is a model also of the axiom of choice and of the continuum hypothesis, thus settling the question

of their consistency with ZF.



108 CHAPTER 4. THE LOGICAL ANALYSIS OF PREDICATIVITY

targets:

• Limit: a determination of the limit of predicativity; and

• Extent: a clarification of which parts of contemporary mathematics can be

re-cast within a predicative setting.

I shall examine the first point in this section, and postpone a discussion of the

second to the next section.

The first attempts at a logical analysis of predicativity highlighted a connec-

tion between predicativity and the recently developed concept of the hyperarith-

metic hierarchy.8 The hyperarithmetical hierarchy has a fundamental place in the

development of mathematical logic because of its prominence within a number of

fundamental areas in mathematical logic: definability theory, recursion theory and

(admissible) set theory. This witnesses the centrality within logic of themes that

pertain to the predicativity debate. The proposed identification of the realm of

predicativity with the hyperarithmetic hierarchy, however, turned out to rely on

the assumption of the countable ordinals up to the first non recursive ordinal, ωCK
1 ,

along which to iterate the construction of the hierarchy.9 This is a less problem-

8This consists of a hierarchy of sets of natural numbers which can be equivalently characterised

in a number of ways. The simplest characterisation is in terms of definability, and sees the hyper-

arithmetical sets as those sets of natural numbers that can be defined both by a Σ1
1 and by a Π1

1

formulas. A Σ1
1 formula is one of the form: ∃X ϕ(X), with ϕ an arithmetical formula, that is, a

formula that does not quantify over sets (but may quantify over natural numbers). A Π1
1 formula

is one of the form ∀X ϕ(X), with ϕ an arithmetical formula. The formulas that are equivalently

definable by a Σ1
1 and by a Π1

1 formulas are called ∆1
1 formulas. Note that above the upper case

letter X denotes a second order variable, it thus stands for a set of natural numbers. There are

deep connections between the hyperarithmetic hierarchy and an initial fragment of Gödel’s con-

structible hierarchy. As already discussed, the latter can be seen as motivated by Russell’s concept

of ramification. See (Kreisel 1960) for discussion of the way the hyperarithmetical hierarchy also

captures and makes more precise the intuitions underlying Poincaré’s notion of invariance.
9See (Feferman 2005).
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atic assumption than that of the whole class of ordinals that we saw in the case of

Gödel’s constructible hierarchy, but still relies on the impredicative notion of being

a well-ordering relation.

For this reasons Kreisel (1958) suggested a different analysis of predicativity

which required the definition of an appropriate hierarchy of formal systems that

would canonically represent predicative reasoning. One could then introduce a no-

tion of predicatively provable ordinal, that is, an ordinal that can be proved to be the

order type of a wellordering relation within the given hierarchy of systems. The intro-

duction of the notion of predicatively provable ordinal has the purpose of guarantee-

ing that one progresses up along the hierarchy to a stage α only if α has been recog-

nised as provable at a previous stage of the hierarchy. A remarkable consequence of

this new course of inquiry is that it shifted the centre of research from definability

issues to provability issues. The celebrated upshot of that research is the logical

analysis of predicativity by Feferman and Schütte (independently) following lines

indicated by Kreisel (Kreisel 1958, Feferman 1964, Schütte 1965b, Schütte 1965a).

Here Russell’s original idea of ramification had a crucial role, as a transfinite progres-

sion of systems of ramified second order arithmetic indexed by ordinals was used to

determine a precise limit for predicativity.10 This turned out to be expressed in terms

of an ordinal, called Γ0, which was the least non-predicatively provable ordinal.11

10Second order arithmetic is a system that uses a two-sorted language, with variables for natural

numbers and variables for sets. It formalises the theory of the natural numbers and their subsets

(see also footnote 44, page 99). In the present context, the subsystems of second order arithmetic

that make up the levels of the hierarchy are characterised by a principle of ramified comprehension,

inspired by Russell’s idea of ramification. Each level of the hierarchy therefore is predicatively

justified. In addition, the introduction of the notion of predicatively provable ordinal has the

purpose of guaranteeing that one progresses up along the hierarchy to a stage α only if α has been

recognised as provable at a previous stage of the hierarchy.
11This ordinal is also the proof-theoretic ordinal assigned to the progression of ramified systems

mentioned above. In the branch of proof theory known as ordinal analysis, suitable (countable)

ordinals, termed “proof-theoretic ordinals”, are assigned to theories as a way of measuring their



110 CHAPTER 4. THE LOGICAL ANALYSIS OF PREDICATIVITY

Therefore, in proof theory Γ0 is often referred to as the limit of predicativity.12

Once the strength of the canonical systems of ramified second order arithmetic

(also known as ramified analysis) was determined, the aim was to use this to assess

the predicativity of other formal systems. In particular, as ramified systems are

cumbersome to work in, one needed a way of assessing the predicativity of systems

that better suited the practical needs of a codification of ordinary mathematics. The

notion of proof–theoretic reducibility was introduced for this purpose. The intuition

underlying this notion is that in order to assess the predicativity of a new formal

system it suffices to “translate” (that is, proof-theoretically reduce) it into one of

the ramified systems. The latter, thus, acted as canonical systems of reference in

terms of which the predicativity of other systems could be assessed. The outcome

was a notion of predicative justification: a formal system is considered predicatively

justifiable if it is proof–theoretically reducible to a system of ramified second order

arithmetic indexed by an ordinal less then Γ0.
13

The above analysis of predicativity is part of a more general program suggested

consistency strength and computational power. The “proof-theoretic strength” of a theory is then

expressed in terms of such ordinals. For example, the proof-theoretic ordinal assigned to Peano

Arithmetic is ε0.
12The countable ordinal Γ0 is relatively small in proof-theoretic terms. As a way of comparison,

it is well above the ordinal ε0 which encapsulates the proof-theoretic strength of Peano Arithmetic,

but it is much smaller than the ordinal assigned to a well–known theory, called ID1, of one inductive

definition. The latter ordinal is known in the literature as the Bachmann–Howard ordinal. The

theory ID1 is the first (and weakest) of a hierarchy of theories of (iterated) inductive definitions,

whose strength has been investigated in (Buchholz, Feferman, Pohlers & Sieg 1981). Their strength

is well below that of second order arithmetic, which is in turn much weaker than full set theory.

For surveys on proof theory and ordinal analysis see for example (Rathjen 1998, Rathjen 1999,

Rathjen 2006).
13See (Feferman 2005) for a more accurate informal account of this notion of predicativity and

for further references. It should be noted that the notion of predicative reducibility is not without

difficulties. Due to the technicalities involved, I shall have to postpone a discussion of this point

to a different context.
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by Kreisel and further advanced by Feferman, of understanding “what rests on what”

in mathematics (Feferman 2000a). This makes essential use of the notion of proof–

theoretic reduction of a theory to another; its purpose is to clarify in exact terms

how some forms of abstract mathematics can be reduced to more elementary ones,

by looking at formal systems which codify those forms of mathematics and study-

ing their relationship with more elementary ones (Feferman 1988a). For example,

Kreisel and Feferman considered the reduction of the infinitary to the finitary, of

the nonconstructive to the constructive and of the impredicative to the predicative.14

An important remark regarding the logical analysis of predicativity is that the

limit it imposes is an “external limit”. As clearly acknowledged by Feferman

(see, e.g., Feferman 1964), one takes an impredicative stance and attempts to clarify

the extent of predicativity from above, so to speak, or, using a metaphor due to

Rathjen in a different context, from an eagle-eye perspective (Rathjen 2005). The

convinced predicativist will not recognize the limit Γ0 as it lies beyond his reach,

its very definition being impredicative. This further clarifies the deep change in

attitude between the early discussions on predicativity and the logical analysis, as

the latter is an attempt at understanding predicativity rather than arguing for it.

4.3 Predicativity and ordinary mathematics: the

extent of predicativity

The determination of the limit of predicativity allows us to assess which theories

can be considered predicative, on the basis of a precise comparison with canonical

predicative theories. The underlying contention is that the mathematics that can

be carried out within a predicative theory is to be considered predicative, and that

those portions of mathematics that elude treatment within any of those theories are

14See (Feferman 2005) for further references.
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impredicative. This is a great achievement especially as it allows for an assessment

of the predicativity of theories that are not ramified, and therefore easier to work

with. However, by itself the determination of the limit of predicativity leaves unan-

swered the question of the exact extent of predicative mathematics within ordinary

mathematics. That is, to shed light on which theorems of ordinary mathematics can

be proved predicatively, we need to complement the proof-theoretic analysis with a

different kind of enquiry.

A second crucial contribution to the clarification of predicativity has been a

logical analysis of ordinary mathematics, to elucidate which parts of ordinary math-

ematics can be expressed in predicative terms. Here Weyl’s pioneering work in

“Das Kontinuum” constituted fundamental reference, especially for Feferman’s in-

vestigations (Feferman 1988b, Feferman 2005). More precisely, Feferman (1988b)

has carefully analysed Weyl’s text and has proposed a system, W, which codifies in

modern terms Weyl’s system in “Das Kontinuum”. System W is particularly weak

proof-theoretically as it is no stronger than Peano Arithmetic, however Feferman

has verified that large portions of contemporary analysis can be carried out on its

basis. Another source of insight are results obtained within Friedman and Simpson’s

programme of Reverse Mathematics (Simpson 2009) that was mentioned in Chapter

2, Section 2.4.2.

In attempting to clarify the extent of predicativity it is first of all important to

clarify what is intended with the expression “ordinary mathematics”. This is

mainstream mathematics, that is so characterised, for example, by (Simpson 1999,

p. 1): “that body of mathematics which is prior to or independent of the intro-

duction of abstract set-theoretic concepts”. That is: “geometry, number theory,

calculus, differential equations, real and complex analysis, countable algebra, the

topology of complete separable metric spaces, mathematical logic and computabil-

ity theory”.15 The principal outcome of the studies outlined above is that large parts

15According to Simpson, excluded from ordinary mathematics are instead “those branches of
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of ordinary mathematics can be framed within predicative systems.16 Perhaps more

surprisingly, it also turns out that if a theorem can be established predicatively, it

can already be carried out within a system as weak as Peano Arithmetic.17 Sim-

ilarly as in the case of constructive mathematics that was discussed in Chapter 2

(especially Section 2.3.2), also here the unexpected result is that, once analysed in

more detail, the apparent necessity of certain features of ordinary mathematics, like

impredicativity or classical reasoning, turn out to be a by-product of the context

in which mathematical theorems are proved, and might also depend on the specific

formulation of their statements. In the case at hand, many instances of prima facie

impredicativity become amenable to predicative treatment once we work within a

sufficiently weak system.18 In addition, like in constructive mathematics, we need

to rely on individual case studies for our findings, so that any general conclusion

can only be achieved on the basis of a thorough investigation of the mathematical

practice.

4.3.1 Fruitfulness of predicativity

The logical analysis of predicativity is a further remarkable example of the fruit-

fulness of predicativity. This fruitfulness relates first of all to mathematics, as, for

mathematics that were created by the set-theoretic revolution which took place approximately a

century ago. We have in mind such branches as general topology, abstract functional analysis,

the study of uncountable discrete algebraic structures, and of course abstract set theory itself.”

(Simpson 1999, p. 1)
16See (Simpson 1999) for details.
17See (Feferman 1988b) and (Feferman 2005) for an informal discussion and further references.
18There has been in fact extensive cross-fertilisation between reverse and constructive mathe-

matics. Simpson (1999), however, also emphasizes a difference with constructive mathematics,

in that the aim in reverse mathematics is “to draw out the set existence assumptions which are

implicit in the ordinary mathematical theorems as they stand”. Bishop’s goal, according to Simp-

son, is instead “to replace ordinary mathematical theorems by their “constructive” counterparts.”

(Simpson 1999, p. 137)
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example, a prominent chapter in proof theory was instigated by attempts to clarify

the limit of predicativity. Secondly, the fruitfulness of predicativity extends to the

philosophy of mathematics. As indicated by Kreisel and Feferman, the clarification

of the limit of predicativity helps us better understand how far the predicative per-

spective can go. As further discussed in Chapter 5, one way of framing predicativity

is in terms of definitions that “generate” from below mathematical entities, start-

ing from a limited stock of initial objects (e.g. the natural numbers) and by some

simple operations over them (e.g. the ordinary logical operations). The determina-

tion of the limit of predicativity by mathematical methods can then be seen as an

instrument for assessing how far this limited apparatus can reach.

This has two main philosophical benefits: it can be used to determine the plau-

sibility of (a form of) predicativism, or it can be employed to single out certain

portions of mathematics that rely on a selected limited stock of assumptions. As

to the first point, as indicated by Feferman (2005, p. 29), “[t]he logical problem in

each case is to characterize exactly the limits of that particular stance. The poten-

tial value for philosophy then is to be able to say in sharper terms what arguments

may be mounted for or against taking such a stance.”

As to the second point, there is a similarity, as already indicated, with the case

of constructive mathematics that was discussed in Chapter 2. In that chapter I

claimed that the generality of constructive mathematics allows for a fine analysis

of mathematics.19 Similarly here, the adoption of weaker underlying theories helps

us determine natural boundaries between parts of ordinary mathematics that are

distinguishable in terms of the assumptions they make and the methodology they

employ.20 The suggestion is that there are different parts of today’s mathematics

that rely on qualitatively different kinds of assumptions. Some assumptions are

19 It also enables us to see more: mathematical structures and distinctions that are “invisible”

to a classical eye.
20See also the discussion in Chapter 2, Section 2.3.2.
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more elementary, as, for example, the natural number structure, and others are more

involved and abstract, as the sets of ordinary set theory. It is standard practice to

think of ZFC set theory as a foundational system for virtually all of mathematics.

However, the “power” of ZFC, that is useful in many contexts, does not enable us

to clarify how much mathematics can be obtained from the simple assumption of

the natural number structure. It also does not clarify which of the frequent appeals

to more abstract structures that figure within ordinary mathematics may in fact be

eliminated.21

One might further wonder whether these considerations can also offer an insight

on whether different portions of mathematics, e.g. more abstract or more elemen-

tary ones, have distinct roles within the application of mathematics to science. In

particular, a natural question that arises is whether the above mentioned results also

suggest that we can dispense from employing more abstract concepts in developing

the mathematics that is needed for science. Recourse to the more abstract parts

of mathematics would then perhaps play an auxiliary role, for example, simplify-

ing proofs (see Chapter 7 for discussion). In this regard, Feferman has put forth

the working hypothesis that all of scientifically applicable analysis can be developed

predicatively. More precisely, Feferman has proposed the hypothesis that all scien-

tifically applicable analysis can be developed in the system W of (Feferman 1988b),

which codifies in modern terms Weyl’s system in “Das Kontinuum”. As System

21 There is a potential benefit for the epistemology of mathematics, as knowledge of more el-

ementary concepts would seem to afford easier explanation than that of more abstract notions.

Consider, for example, (Shapiro 1997). Here within an ante-rem structuralism, the epistemology

of less abstract parts of mathematics is accounted for in terms of pattern recognition. For more

abstract mathematical structures, however, Shapiro, introduces a more problematic notion of im-

plicit definition. The latter, in turn, requires the assumption of a primitive notion of coherence

that is difficult to spell out. Clarifying that pattern recognition accounts for a vast part of ordinary

mathematics, and possibly for all of scientific applications, would seem to alleviate some of the

difficulties of the ante-rem structuralist.
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W is as weak as Peano Arithmetic, and the latter is well within the boundary of

predicative mathematics, one clearly obtains the more general formulation above

of Feferman’s hypothesis.22 I shall further discuss the issue of the applicability of

predicative mathematics to science in Chapter 7, in which I shall also report on work

by Ye (2011) which suggests that even a small fragment of Peano Arithmetic may

suffice for much of contemporary applicable mathematics. I shall also claim that

more work is needed to clarify this issue, but that its consideration would greatly

enrich the present debate on the indispensability of mathematics to science.

Independence results

Given these reassuring results on the extent of predicative mathematics, one might

wonder if its reaches can account for all of ordinary mathematics. It turns out that

it does not: some exceptional ordinary theorems, like, for example, the Cantor-

Benedixson theorem (Simpson 1999) escape predicativity. In addition, a number

of combinatorial statements can not be carried out predicatively, like, for exam-

ple, variants of the Ramsey colouring theorem, and some simple consequences of

Kruskal’s theorem about embeddings of finite trees.23 This is an important insight

if predicativity is pursued with the intent of shedding light on our mathematical

practice. It appears, however, to be bad news for predicativism. In fact, if this

philosophical position bans impredicative mathematics, then it has to offer very

good arguments to outweigh the loss. This seems particularly compelling if the

portions of mathematics that are not amenable to predicative treatment may be

considered “ordinary” according to a sufficiently uncontroversial notion of ordinary

mathematics. How bad is this news for predicativism will depend on which argu-

ments are put forth for this philosophical position, and which role within them the

22See Footnote 12, page 110, for a comparison between the strength of Peano Arithmetic and

predicative analysis.
23See (Simpson 1999, Simpson 2002) for more details and bibliographic references.
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essentially impredicative portion of mathematics may play. For example, one may

wish to appeal to a form of indispensability argument that aims at showing that

predicative mathematics is sufficient for current scientific applications. In this case,

one would have to clearly assess any possible role of the impredicative portion of

mathematics for applications. I shall further discuss these issues in Chapter 7.

4.4 Plurality of predicativity

The logical analysis of predicativity aimed at determining the limits and the ex-

tent of a notion of predicativity given the natural numbers. Here one takes an

approach to predicativity like Weyl’s by assuming the structure of the natural num-

bers with full (i.e. unrestricted) mathematical induction, and imposing predicativity

constraints on the formation of subsets of the natural numbers.24 With Kreisel and

Feferman the study of predicativity became an endeavour to clarify what is implicit

in the acceptance of the natural number structure with full induction. In fact, the ap-

proach proposed by the logicians in the 1960’s goes well beyond Weyl’s. According to

a common interpretation of Weyl’s “Das Kontinuum”, Weyl only needed arithmeti-

cal comprehension, thus going no further than Peano Arithmetic in proof-theoretic

strength.25 The systems envisaged by Kreisel, Feferman and Schütte, instead, allow

for ramified comprehension iterated along predicative ordinals, going therefore much

further than Weyl’s system. However, what is in common to these two renderings

of predicativity is that they start from the natural number structure as given, and

introduce predicatively motivated restrictions above it, therefore imposing limits al-

ready at the level of the subsets of the natural numbers. The principal difference

between them is in that the second form of predicativity engenders from an iteration

24In the following I shall omit the adjective “mathematical” when referring to mathematical

induction if no ambiguity arises. See footnote 37, page 95 for a definition of mathematical induction.
25See footnote 44, page 99 for a discussion of Weyl’s system, and footnote 11, page 109 for the

notion of proof-theoretic strength.
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along predicative ordinals of a ramified mechanism that allows for the formation of

predicative subsets of the natural numbers. The justification “from below” of the

iteration through these ordinals is in fact one of the most important achievements

of the proof-theoretic analysis of predicativity. As already indicated, Weyl did not

resort to ramification, as he thought it would make the mathematics too artificial.

The more generous Γ0 approach, instead, was made possible by the logical advances

that had in the meantime taken place. In the 1960’s one could use canonical ramified

theories for the meta-mathematical analysis of predicativity and, via proof-theoretic

reducibility, develop the mathematics within more flexible type-free theories.

In the following I shall primarily be concerned with Weyl’s approach, and in

fact refer to both forms of predicativity as “predicativity given the natural

numbers”. The principal reason for this choice is that Weyl’s approach is not

only simpler to discuss within an informal account, but also particularly revealing

for the philosophical analysis.26 If a distinction between Weyl’s original approach

and the one originating within the proof-theoretic analysis of the 1960’s is required,

I shall refer to the first one as arithmetical predicativity and to latter as Γ0

predicativity.

The assumption of the natural number structure as starting point for predicativ-

ity is not uncontroversial. In fact, as reviewed in Chapter 3, Section 3.4.1, Russell

held a very different view, as, due to his logicist ambitions, he saw the very con-

cept of natural number as requiring justification. He eventually introduced both an

axiom of infinity and the axiom of reducibility in his type theory to ensure smooth

applications of mathematical induction. Different incarnations of predicativity have

appeared in the literature in more recent times, some of which have questioned the

assumption of the natural number system, in particular, the appeal, within it, to full

26In Section 4.3 I have also mentioned Feferman’s claim that in fact, when it comes to ordinary

mathematics, Weyl’s approach to predicativity seems not to be inferior than the more generous Γ0

one.
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induction. Others, originating in the constructive tradition, have instead extended

well beyond the acceptance of the natural numbers, admitting more complex induc-

tive structures; however, they have combined this with a rejection of the principle

of excluded middle.

An example of the first kind of predicativity is given by Edward Nelson’s “Pred-

icative Arithmetic” (Nelson 1986) and Charles Parsons’ criticism of the impredica-

tivity of standard explanations of the notion of natural number (Parsons 1992). This

will be discussed in the next section, while Section 4.4.2 will describe constructive

predicativity.

4.4.1 Strict predicativity

In the book “Predicative Arithmetic” Nelson (1986) proposes a form of predicativity

that is more restrictive than predicativity given the natural numbers. Compliance

with this notion of predicativity gives rise to a subsystem of Peano Arithmetic

that introduces severe restrictions to the induction principle. Nelson’s principal

motivation for his predicative arithmetic is a complaint that already the natural

number structure hides a form of impredicativity. In the following I shall present a

brief summary of Nelson’s views. A more detailed analysis of Nelson’s position is

deferred to Chapter 6.

According to Nelson, already the whole natural number structure equipped with

full mathematical induction is predicatively problematic on grounds of circularity,

and the principal culprit is the induction principle. Nelson’s concern are instances

of the induction principle that use unrestricted number quantifiers.27 These are

needed to prove even very elementary facts about numbers. However, the presence

27The context of discussion here is Peano Arithmetic, in which one has only number quantifiers,

i.e. quantifier that range over the natural numbers. In particular, there are no quantifiers ranging

over sets. An unrestricted quantifier in this context is therefore a quantifier that ranges on all

natural numbers.
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of unrestricted number quantifiers in these instances of induction is suggestive, ac-

cording to Nelson, that those applications of induction require the prior assumption

as given of the natural number structure. As for Russell also for Nelson the natural

number structure can not be taken for granted, although for reasons that are deeply

different from Russell’s.28 Consequently, as the natural numbers are not assumed as

given, their definition ought not to refer to the natural number structure itself, on

pain of circularity. For Nelson, however, some uses of induction with unrestricted

quantifiers are necessary for the definition of natural number, and this gives rise to

a vicious circle.

I shall further examine Nelson’s complaint on induction in Chapter 6. Here it

is important to remark that Nelson’s considerations bring him to develop a form

of arithmetic that introduces strict constraints on the induction principle. The re-

sult is a form of mathematics that resides within the context of what is known as

bounded arithmetic; the latter is usually seen as capturing the concept of feasible

mathematics, that is, mathematics that can be carried out in practice (Buss 1986).

Given their weakness, systems of bounded arithmetic allow for a fine study of ques-

tion of computational complexity, and are therefore at the heart of a lively field at

the intersection between logic and computer science (Dean 2016).

Another form of strict predicativity has been discussed by Parsons e.g. in

(Parsons 1992, Parsons 2008).29 The similarity with Nelson’s predicativity lies in

the fact that Parsons also claims that impredicativity already manifests itself in the

induction principle in arithmetic. Therefore the assumption of the natural num-

ber structure within predicativity given the natural numbers does not comply with

a thorough predicativist perspective. The thought is then that if one wished to

fully comply with predicativity, one ought to impose restrictions on the principle of

28Nelson puts forward a formalist stance, as further expounded in Chapter 6, Section 6.5. Note

that in Nelson’s discussion there is a complex interplay between concepts and sets that are their

extension, as further discussed in Chapter 6.
29Parson’s views will be further examined in Chapter 6.
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induction.

Notwithstanding the similarity of objections to the natural number structure,

there are also differences in Nelson’s and Parsons’ notions of predicativity. For ex-

ample, a difference between Nelson’s and Parsons’ positions arises as the first author

rejects as impredicative the totality of the exponentiation function, while the latter

admits it within his strict predicativity.30 I shall further discuss this point in Chap-

ter 6. Here it suffices to observe that this difference of perspectives is of particular

relevance for strict predicativism. If, as it seems, these forms of predicativism differ

in crucial respects, then they will also sanction different fragments of arithmetic.

The significant aspect that Nelson and Parsons’ discussion bring about is that

the assumption as given of the natural number structure that is at the heart of

predicativity given the natural numbers has not gone unchallenged. The worry

is that if one were to completely conform to predicativity, then one would have

to impose restrictions to the principle of induction that lays at the heart of this

structure. Exactly which restriction is perhaps controversial, but full induction, so

is contended, is impredicative.

4.4.2 Constructive predicativity

Themes stemming from the original predicativity debates play a prominent role

within foundational systems for constructive mathematics, and in particular in

Martin-Löf type theory (Martin-Löf 1975).31 This (unramified) type theory differs

in two fundamental respects compared with classical set theory: it uses intuitionistic

logic and also conforms to a notion of predicativity.

30A function is total if it is everywhere defined, or, equivalently, f : X → Y is total if for every

element x of X there is an element y of Y such that y = f(x).
31In the following I shall call “Martin-Löf type theory” also “constructive type theory”. Another

common terminology is “intuitionistic type theory” (Martin-Löf 1975). For an introduction to

Martin-Löf type theory see (Dybjer & Palmgren 2016, Crosilla 2006).
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One might wonder whether combining a form of predicativity with the restric-

tion to intuitionistic logic might make constructive mathematics far too weak. We

have seen in Chapter 2 that the constructive reformulation strategies of classical

statements introduced, for example, in (Bishop 1967), naturally induce also the

elimination of impredicativity.32 The principal reason for this fact is that Bishop

was interested in a computational form of mathematics, so that he carefully replaced

abstract set theoretic notions with more concrete ones. In particular, the natural

numbers held for Bishop a fundamental position.33 It is widely held that the restric-

tion to predicativity does not impair the development of constructive mathematics,

and ongoing work is further enlarging the extent of predicative constructive mathe-

matics.

From a proof-theoretic perspective, it turns out that constructive predicativity is

the most generous of all the forms of predicativity considered so far, as it allows for

systems whose proof-theoretic strength well exceeds Γ0 (Palmgren 1998, Rathjen,

Griffor & Palmgren 1998, Rathjen 2005). The reason is that while one introduces a

constraint on the logic, one also allows for more generous set-construction principles,

as further clarified below.

Traditionally, constructive foundational theories have manifested a more ‘liberal’

approach to predicativity compared with Γ0 predicativity. Here the driving idea is

that so-called generalised inductive definitions ought to be allowed in the realm

32See Chapter 2, Section 2.3. Other areas of mathematics, like, for example, topology, have

proved more difficult to reproduce within predicative reasoning, and have therefore required a

more substantial reformulation of their primitive concepts. The result, formal topology, was briefly

discussed in Chapter 2, page 52.
33Bishop (1967) insisted on an intensional notion of set that was grounded on the integers and

some simple constructions on them (as product, function space). This witnesses his desire to

develop a mathematics that would unveil the numerical content of ordinary proofs. The informal

notion of set utilised by Bishop has been source of inspiration for Martin-Löf’s type theory, and

in particular its intensional equality. The latter has recently been further analysed, clarified and

generalised by work in homotopy type theory (Univalent Foundations Program 2013).
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of constructive mathematics.34 An inductive definition of a set can be informally

presented by giving some rules for generating the elements of the set; in addition,

one has a condition stating that an element is in the set only if it has been generated

according to the given rules. For example, one may give an inductive definition of

the set of natural numbers, by stating that:

1. 0 is a natural number,

2. if n is a natural number, then so is its successor, suc(n),

3. nothing else is a natural number.35

The intuition underlying the predicative justification of inductive definitions is

related to the fact that they can be expressed by means of finite rules, and would

seem to allow for a specification of a set which proceeds from the ‘bottom up’: we

start from some initial stock of elements, and by applying the rules we produce new

elements of the set, that in turn are used to produce new ones, again by application

of the rules, and so on... The idea underlying generalised inductive definition is

that once we have inductively defined a set, say the natural numbers, then we can

further use another inductive definition to extend this, and so on. We thus build a

first subset of the set of natural numbers according to the given rules, then use this

to build a new one, and so on. The idea that seems to underlie the acceptance of

inductive definitions from a constructive perspective is that they seem to ensure that

at no stage in the building up of the new set, we need to presuppose sets “outside”

the set under construction. The thought is that we rely exclusively on increasingly

more complex fragments of the very set under definition: we proceed from within.

An important observation is that the proof-theoretic strength of so-called the-

ories of inductive definitions goes well beyond Feferman and Schütte’s bound (and

34The work of Lorenzen, Myhill and Wang is particularly relevant in this respect. See for example

(Lorenzen & Myhill 1959).
35I shall further examine the inductive definition of the natural number set in Chapter 6.
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thus also very much beyond Peano Arithmetic), as shown in (Buchholz et al. 1981).36

Following this line of reasoning, relatively strong constructive theories are consid-

ered predicative in today’s foundations of constructive mathematics (Palmgren 1998,

Rathjen 2005).37

This disparity of outcomes is rather striking and suggests that the use of intu-

itionistic logic might have a crucial role here in enabling a constructive and predica-

tive justification of notions that from a classical perspective are impredicative. In

fact theories of inductive definitions are discussed in (Feferman 1964), where they

are considered unacceptable from a predicative point of view on grounds of circu-

larity. The underlying idea is that in the build up of an inductive set, we need to

refer to the very set we are defining, thus contravening the VCP. The essence of

this objection to inductive definitions is related to the objection to induction by

the strict predicativist, which will be investigated in Chapter 6. In that Chapter I

shall propose an explanation of why an appeal to intuitionistic logic may be seen as

justifying inductive definitions.38

36Theories of inductive definitions formalize inductive definitions over the natural numbers,

therefore replacing the powerset of the natural numbers with a more “constructive” notion. See Fe-

ferman’s introduction to (Buchholz et al. 1981) for a clarification of their role within the discussions

on predicativity and the developments of proof theory in the 1970’s and 80’s.
37In particular, one has constructive theories whose proof-theoretic strength exceeds that of all

the subsystems of second order arithmetic considered in the Reverse Mathematics programme.

This has brought Rathjen (2005) to suggest that these “strong” constructively predicative theories

can be seen as offering justification for all of ordinary mathematics.
38I have not found a detailed discussion of the role of intuitionistic logic for a justification of

inductive definitions in the relevant literature, either mathematical or philosophical. In fact, my

impression is that there is widespread uncertainty on this point among a number of mathematical

logicians. The only article I am aware of that mentions the question of why inductive definitions

may be justified from a constructivistic perspective is (Parsons 1992). This considers the construc-

tivistic position put forth by Lorenzen (1955), that does not involve the use of intuitionistic logic.

Parson’s discussion therefore seems to point towards a different perspective from the one I shall

put forth in Chapter 6, as I shall propose that intuitionistic logic may play a crucial role, given
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A crucial role for intuitionistic logic within constructive predicativity is particu-

larly visible in the case of Martin-Löf type theory. Here compliance with predicativ-

ity is manifested in two ways: (1) the availability of inductive definitions (but not

stronger constructions as, e.g. powerset); (2) the Curry-Howard correspondence.39

In fact, the circumstances of the appearance of predicativity within Martin-Löf type

theory are noteworthy, as they bear surprising similarities to how predicativity en-

tered the mathematical scene at the beginning of the 20th Century: a paradox due

to Girard (1972). A first formulation of type theory countenanced an impredicative

type of all types, that gave rise to a paradox analogous to the Burali-Forti paradox.

Constructive type theory was promptly corrected by Martin-Löf (1975), and the

paradox clarified an unexpected connection between the Curry-Howard correspon-

dence and predicativity.

Martin-Löf type theory (Martin-Löf 1975) incorporates a form of Curry-Howard

correspondence.40 The Curry-Howard correspondence in the case of constructive

type theory is framed within the theory itself, as it spells out a structural similarity

between two components of this theory: the propositions on the one side (that play

the role of the formulas in our discussion in Chapter 1), and the sets on the other

side (that play the role of the types).41 The other remarkable aspect is that the

the predicativist typical understanding of classical domains of quantification.
39See Chapter 1, Section 1.2.1. To be more precise, predicativity in constructive type theory has

one additional manifestation: reflection. The latter is witnessed by the role of universes in this

type theory. A discussion of this point is, however, beyond the aims of this thesis.
40A detailed clarification of Martin-Löf type theory would require extensive discussion, therefore

in the following I shall only briefly mention the most relevant aspects of this theory, to give an

idea of the relation between the Curry-Howard correspondence and predicativity. See (Dybjer

& Palmgren 2016, Nordström et al. 1990) for an introduction and an exposition of type theory,

respectively.
41The terms “proposition” and “set” refer here to “first class objects” of the theory, that is, to

the objects that are defined by the rules that make up the formal system. As propositions are

objects of the theory, in type theory one does not have the standard set up of ZFC, in which we
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correspondence that was discussed in Chapter 1 becomes now an isomophism, and

therefore identifies propositions with sets. An analysis of Girard’s paradox shows

that it is induced by a combination of the Curry-Howard isomorphism with impred-

icativity, where impredicativity here takes the form of arbitrary quantification over

propositions. Girard’s paradox can be seen as offering two ways out: either to re-

nounce to the identification of propositions and sets, or to relinquish impredicativity.

In the case of type theory the choice was to keep the Curry-Howard correspondence.

The reasons are complex, and relate to Martin-Löf’s desire to offer a clear inductive

justification of type theory, as well as to preserve the direct computational content of

mathematical statements (see e.g. Dybjer 2012, Martin-Löf 2008).42 The alternative

has also been successfully explored, as the calculus of constructions, the type theory

that underlines the Coq system, features instead a form of impredicativity. The

Curry-Howard isomophism that characterises Martin-Löf type theory is replaced in

the calculus of construction by a one direction correspondence: to each proposition

corresponds a set, but not, in general, vice versa. This seems sufficient to prevent

the derivation of Girard’s paradox, and also is sufficient to endow the theorems of

this calculus with computational content.

It might be interesting to observe that the rationale in devising the calculus of

constructions has been to try and obtain a theory as powerful as possible, without

engendering inconsistency. In fact, attempts to expand as much as possible Martin-

Löf type theory while remaining faithful to the Curry-Howard isomorphism have also

been proposed. Here the crucial ingredients have been a combination of inductive

definitions with reflecting universes, and universe operators.43

first specify a logical calculus (e.g. classical logic) and then add the set-theoretic axioms. In type

theory the intuitionistic logic arises from the rules that explain the behaviour of the sets, which

are also the propositions.
42See also the discussion in Chapter 6.
43See (Rathjen 2005) for discussion and references.
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4.5 Analysis of Predicativity

The apparent plurality of notions of predicativity discussed in the previous sections

seems first of all to require a more sophisticated analysis of predicativity. If, as it

would seem, these are indeed different incarnations of one notion of predicativity,

then we need to better spell out the different assumptions that are implicit in each of

these approaches and give rise to different analysis of the same notion. A clarification

of these points is not only needed to obtain an understanding of predicativity but

it is also crucial for an assessment of predicativism, as further indicated below.

The logical analysis of predicativity allows for a comparison between these dif-

ferent forms of predicativity. Let us first of all suppose that we can fix appro-

priate canonical theories of reference for each form of predicativity.44 Then if we

grant proof theory (ordinal analysis) as a tool for measuring from the outside, so to

speak, the strength of these canonical theories, we can compare their corresponding

proof-theoretic strength. We have the following, in order of increasing strength:

at the bottom strict predicativity, then predicativity given the natural numbers

and then constructive predicativity, with substantial gaps between their respective

proof-theoretic strength. These gaps in proof-theoretic strength suggest that these

notions of predicativity may be related to different forms of mathematics. Thus

strict predicativity only justifies weak fragments of theories that codify the theory

of the natural numbers, like Peano Arithmetic. Predicativity given the natural num-

44This is not as easy as it might seem. In particular, the case of strict predicativity requires some

care. As further discussed in Chapter 6, the principal difficulty with strict predicativity is that it

lacks the clear formulation that we have for predicativity given the natural numbers. In fact, as

noted above, there are two distinct proposals for strict predicativity, one put forth by Nelson, and

one by Parsons. For the present considerations, however, this is not a serious issue, as it suffices

to place a generous upper bound that encompasses both proposals, as long as we remain below

Peano arithmetic. As to constructive predicativity, I shall take here the view that the canonical

theories of reference are the strongest systems to date in Martin-Löf type theory (Rathjen 2005).
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bers accords all of arithmetic; in fact, following the proof-theoretic analysis of the

1960’s, much more than that. Constructive type theory allows for the justification

of even stronger theories.

This is particularly significant for predicativism. If each of these variants of pred-

icativity is taken as imposing unnegotiable constraints on which portions of contem-

porary mathematics are justified, it might draw the divide between acceptable and

unacceptable mathematics in remarkably different places. In other terms, as pred-

icativism imposes that only predicative notions are justified, a form of predicativism

would seem to be bound to espouse one and only one of these forms of predicativity,

and consequently validate one and only one form of mathematics. However, if the

reasons adduced for the elected form of predicativity are very similar to the reasons

given for (at least one of) the other forms of predicativity, perhaps the corresponding

forms of predicativism would be difficult to separate. In other terms, the question

then arises whether a form of instability could plague predicativism, provided that

sufficiently similar arguments support the various forms of predicativism. In fact,

one might further fear that if there is an instability that forces one form of predica-

tivism (e.g. predicativism given the natural numbers) to collapse into a weaker one

(strict predicativism), then any serious difficulty faced by the latter would turn into

a serious objection to the first, too.

A predicativist, perhaps, would object to the very idea of a plurality of predica-

tivities and argue that, for example, only predicativity given the natural numbers

ought to be given the name “Predicativity”, the strict and the constructive ap-

proaches in effect manifesting other kinds of restrictions, motivated by different

concerns and representing altogether different foundational stances in the philoso-

phy of mathematics. He could, for example, appeal to specific syntactic expressions

of predicativity, like the VCP, or to the special role of the natural numbers through

the historical development of predicativity, going back to Poincaré and Weyl’s posi-

tions. This could be taken to justify the exclusive use of “Predicativism” to designate



4.5. ANALYSIS OF PREDICATIVITY 129

predicativism given the natural numbers.

This is a difficult issue, made particularly involved by the complexity of the early

discussions on predicativity, the plurality of perspectives that they expressed and the

converging of a number of distinct issues within the remit of predicativity. We have

seen, for example, the plurality of formulations by Russell of the VCP, and the close

connection that Poincaré, but not Russell, perceived between predicativity and (a

proper treatment of) infinity. In the next chapter I shall draw a line from Poincaré’s

notion of set to constructive predicativity. A notion of set that shares important

characteristicts with Poincaré’s is also prominent in Weyl’s “Das Kontinuum”, as

further discussed in Chapter 5. In addition, a very similar notion of set is at the

heart of Parson’s complaint on the impredicativity of induction, giving rise to a form

of strict predicativity. There seems to be therefore at least one way of arguing that

all of these forms of predicativity belong to one general notion of predicativity. In

the subsequent discussion I shall also argue that despite this continuity there are

also significant differences between these forms of predicativity and I shall endeavour

to elucidate some of their dissimilarities.

4.5.1 Base and constraints

In attempting to clarify the similarities as well as the differences between the forms

of predicativity presented above, it might be useful to introduce a distinction that

is modelled after the case of predicativity given the natural numbers. I shall dis-

tinguish between a base and predicativity constraints that are imposed beyond

the base. One way of explicating this distinction is by looking at the base as an

underlying conceptual apparatus that is taken for granted.45 For example, in pred-

icativity given the natural numbers one takes the full natural number structure as

base. The predicative constraints, instead, are conditions imposed on those sets

45I wish to present the notion of base in very general terms, leaving it open for the possibility

of further clarification of this notion in philosophically less neutral terms.
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that lie beyond the base (e.g. sets of elements of the base). For example, if one

defines sets of elements of the base by appeal to a comprehension principle, the

constraints could impose compliance with arithmetical comprehension, or a form of

ramified comprehension. From an impredicative perspective the constraints can be

seen as restrictions acting on the “formation” of sets that populate higher levels of

abstraction, compared with the base. In particular, from a standard set-theoretic

perspective, we would say that the constraints act at levels of the set theoretic hi-

erarchy that are higher than that of the base, to enable the “formation” only of

predicative sets. In the case of predicativity given the natural numbers one ap-

plies predicatively motivated constraints starting from the notion of powerset of the

natural numbers.

The principal reason for introducing this distinction is that it helps us clarify the

difference between the variants of predicativity that were mentioned in the previous

section. Strict predicativity may then be framed as arising if one takes as base a

strictly finitist fragment of the natural number structure, and introduces appropriate

restrictions to whatever lies beyond it.46 Now the comparison between predicativity

given the natural numbers and strict predicativity becomes more perspicuous, as

their difference can be framed principally as a difference in the choice of the base:

the whole natural number structure for the first, a suitable substructure of it for the

second. The distinction between base and constraints is, however, less appropriate

for the more complex case of constructive predicativity, due to the “interference”

there with the logic. This suggests to take this distinction as simply highlighting

some significant aspects of predicativity; it is a useful instrument assisting us in the

46This is admittedly very vague. As already remarked in footnote 44 at page 127, the very notion

of strict predicativity needs to be further sharpened. A possible way of phrasing the base is in

terms of a substructure of the natural number structure that has a restricted form of induction.

In the case of the strict predicativity suggested by Parsons, one may also introduce ramification

at the level of constraints.
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philosophical analysis of predicativity.

Let us consider again the issue of predicativism and let us examine the cases of

predicativism given the natural numbers and strict predicativism. I suggested above

that there is a worry that the first form of predicativism might collapse into the

second, if sufficiently uniform reasons can be adduced for the constraints introduced

in each case (e.g. non vicious circularity, invariance). If now we avail ourselves

of the distinction between the base and the constraints, we may suggest that the

differences between these philosophical positions lay especially within their distinct

choices of bases: it is here that a predicativist given the natural numbers will have

to concentrate his efforts to try and stabilise his position. Here, in addition, more

work will need to be carried out to clarify in which sense the base may be taken for

granted. For example, one may argue along epistemological or ontological lines for

a defence of the choice of the base.47

The distinction between base and constraints may also help us express a claim

often found in the relevant literature on predicativity, according to which the latter

is a relative rather than an absolute concept, as expanded in the next section.48

4.5.2 Relativity of predicativity

The logical analysis of predicativity suggests that the predicativity of a definition

depends on the context in which it is embedded. In fact, the proof-theoretic anal-

ysis of predicativity utilises some canonical formal systems to help determine if a

definition, and the entity that is thereby defined, are predicative. To assess if a

given entity, e.g. a set or a function, is predicative, one needs to check whether it

can be defined within a predicative system. In practice this means that we need

47See Chapter 7 for additional discussion.
48Brief hints at a form of relativity of the notion of predicativity are to be found, for example,

in (Gödel 1944, Kreisel 1960). The thought that predicativity is relative has been also expressed

by Parsons (1992) and Feferman (2005).
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to show that a predicative system can prove the existence of that entity (e.g. by

way of appropriate comprehension principles). The logical analysis of predicativity

therefore clarifies that a definition should not be considered in isolation, but within a

wider context. In case of formal theories, one would have to pay particular attention

to the set-existence principles available. In fact, a remarkable effect of the logical

analysis of predicativity was to shift considerations of predicativity from individual

definitions to whole theories. It is a theory, now, that is predicative or impredicative,

and individual definitions are assessed for their predicativity relative to the theories

they are embedded into, not in isolation. In particular, the discussion in Section

4.3 suggests the importance of adopting a sufficiently weak theory as basis for our

analysis.49

A different, more striking form of relativity appears when we consider the possi-

49An example of relativity of predicativity with respect to a context arises by considering the

operation of powerset, that given a set, A, gives the set of all of A’s subsets. It is often claimed that

this is impredicative. However, on the basis of a finitary theory of sets, e.g. the theory ZF with the

axiom of infinity replaced by its negation, powerset does not introduce impredicativity (according

to the notion of predicativity given the natural numbers). This theory, in fact, has an axiom of

powerset, but is of the same strength as Peano Arithmetic (and thus predicative according to this

notion of predicativity).

A similar situation arises in the case of a variant of Zermelo Fraenkel set theory based on

intuitionistic logic that is known as constructive set theory (Myhill 1975, Aczel 1978, Aczel &

Rathjen 2008). Here one has that the core system, CZF, is predicative according to the constructive

understanding of predicativity, as it has the same proof-theoretic strength as a system of one

inductive definition. But the addition of the principle of excluded middle to CZF gives rise to the

full system ZF, that is, a highly impredicative theory. Thus it would seem that the principle of

excluded middle in this case acts as a strong impredicative principle. The analysis of the proof that

CZF + EM = ZF suggests that the presence of the excluded middle in fact modifies the significance

of other axioms of CZF and in particular of a principle, known as subset collection, that replaces,

in that context, the powerset axiom. This is weaker than powerset on the basis of intuitionistic

logic, but it becomes equivalent to powerset if EM is added. In this context, where one has, among

other principles, an axiom of infinity, powerset in turn gives rise to full impredicativity.
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bility of a plurality of predicativities. Here one could claim that the assessment of

what counts as predicative is relative to the chosen base. Thus in predicativity given

the natural numbers a given (definition of) an entity is predicative only relative to

the prior assumption of the natural numbers as base. This suggests a more general

pattern. We may now classify as a form of predicativity also Gödel constructible

hierarchy (see Section 4.1). As already noticed by Gödel, the hierarchy is predicative

at each step, but impredicative on the whole, because of the assumption of the class

of ordinals. One way of framing the local predicativity of the constructible hierar-

chy is by claiming that the hierarchy is predicative relative to the class of ordinal

numbers.

An advantage of framing predicativity in these terms, is that one can then sep-

arate the tasks that face a predicativist as: (1) arguing for the constraints, and (2)

arguing for a specific base. More importantly, it allows us to distinguish between

different parts of mathematics, that require different assumptions and forms of rea-

soning. Here in particular, we can single out some assumptions (e.g. the natural

number structure, the class of ordinals) and see how far we can go from them by

allowing ourselves a limited number of arguably uncontroversial moves (as expressed

by the constraints).

4.6 Conclusion

In this chapter I have aimed at clarifying the fruitful interaction between philosophy

of mathematics and mathematical logic that was induced by reflections on predica-

tivity. I have also aimed at conveying the thought that predicative mathematics is

a central part of today’s mathematics as it accounts for large portions of ordinary

mathematics. In addition, predicatively motivated notions are at the core of the

logical enquiry. I have in particular outlined two main components of the analysis

of predicativity by logical means: the determination of its proof-theoretic limit, and
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the establishment of its extent within ordinary mathematics. By clarifying how far

predicativity goes we also distinguish areas of today’s mathematics that are erected

on the basis of very different kinds of assumptions, and that make use of different

reasoning tools. For example in the case of the analysis of predicativity given the

natural numbers, this allows us to see how far we can extend beyond arithmetic

without requiring new conceptual leaps to different, more abstract notions. This

has strong affinities with the perspective I have offered on constructive mathematics

in Chapter 2, where I have argued that a serious consideration of the constructive

stance can help in the philosophical analysis of mathematics in general.

Perhaps the most surprising outcome of the above investigation into predicativity

is that not one but a plurality of variants of predicativity have appeared within the

mathematical literature, so that it turns out that different predicatively inclined

mathematicians will answer differently to the question whether a given definition,

or a portion of mathematics is predicative or not. In fact, this may be seen as

rising a challenge to forms of predicativism, to ensure that sufficient argumentation

is offered to support not only predicative constraints but also the choice of base.

In the next Chapter 5 I shall endeavour to uncover a common theme that may be

seen as running through all of these forms of predicativity, relating to a predicative

concept of set.



Chapter 5

On a predicative concept of set

In the previous two chapters I have begun an investigation into a second fundamental

dimension of constructivity that characterises constructive mathematics: predica-

tivity. From a classical, impredicative perspective predicativity introduces crucial

restrictions to what counts as a set. These are witnessed by the introduction of a

combination of type restrictions and ramification in (Russell 1908) and, differently,

by Weyl’s development of an arithmetical form of analysis in (Weyl 1918). I have

then explored the fruitful interaction between mathematical logic and philosophy

that originated from a reflection on predicativity. From an external, impredicative

perspective, one can determine limits for the strength of predicative theories; in ad-

dition, one can assess predicative systems’ ability to re-capture theorems of ordinary

mathematics. I have indicated the outcomes of a logical analysis of predicativity that

shows that a substantial portion of ordinary mathematics is already predicatively

reducible.

In this chapter I shall argue that, from a different perspective, predicativity may

also be seen as arising not from constraints imposed on our ordinary sets, but from

a radically different conception of set. To elucidate this thought, I shall analyse in

more detail Poincaré’s late writings on predicativity and Weyl’s “Das Kontinuum”.

My purpose is to single out a predicative conception of set that is deeply rooted in

135
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an older form of mathematics that pre-dates the deep methodological changes that

revolutionised mathematics from the 19th Century. Simultaneously, this concept of

set also aims at introducing improvements to that tradition. A fundamental aspect

of this concept of set is its tie to a definition or uniform description, that allows

for a step by step “generation” of the set. One of the outcomes of a slow process

of clarification of this conception of set, has given rise to a notion of predicative set

that is “algorithmic”, in that it offers a procedure for the step by step “construc-

tion” of its elements. In fact, surprising similarities arise especially between Weyl’s

notion of set and the notion that we find in prominent foundational systems for

constructive mathematics today. The thought, once more, is that the older, more

explicit mathematical style that was supplanted by the advent of abstract forms of

mathematics had the potential to offer a notion of set that turns out to be ideal for

a computational form of mathematics.

In this chapter I shall further explicate this predicative conception of set, by

analysing in some detail how it evolved through Poincaré and Weyl’s reflections on

predicativity. In particular, a clarification of Poincaré’s concept of set is crucial for

an elucidation of Poincaré’s characterisation of predicativity in terms of invariance

that was discussed in Chapter 3, Section 3.3.2. However, before addressing Poincaré

and Weyl’s conception of set, it is important to clarify its relation with an alternative

notion of set to which both Poincaré and Weyl reacted: the notion of arbitrary set

that is often seen as underpinning Zermelo Fraenkel set theory with choice (Section

5.1.1).

The opposition between predicative and arbitrary sets witnesses an opposition

between alternative views of mathematical entities, requiring or not the availability

in principle of a (uniform) description or a definition. The requirement that all

mathematical entities be definable in a uniform way is often termed definabilism.1

In Section 5.3 I shall propose that Poincaré’s discussion hints at a particular form of

1See e.g. (Maddy 1997).
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definabilism, by imposing first of all the requirement that all mathematical objects

be definable through a finite number of words. This requirement places the natural

number structure at the heart of the predicative mathematical universe, as a finite

definition can be coded in terms of the natural numbers. Secondly, closer examina-

tion of the later writings by Poincaré points towards a more sophisticated form of

definabilism, according to which sets are genetically constructed from their elements

by means of finitary definitions. Poincaré’s discussion is informal and his proposal is

insufficiently clear from a contemporary perspective. In Section 5.4 I shall therefore

focus on Weyl’s specification of a concept of set as extension of a property that

is set up in full detail in (Weyl 1918). I shall highlight two salient components of

Weyl’s discussion: the central role assigned also by the German mathematician to

the natural number structure with full induction, and the “mathematical process”

that starting from the natural numbers gives rise to sets through a step by step

specification of arithmetical properties. As mentioned above, from a contemporary

perspective, surprising similarities emerge between the predicative concept of set

proposed by Poincaré and Weyl and the concept of set that is codified in Martin-Löf

type theory. I shall briefly discuss this in Section 5.5.

A reason recommends a closer investigation of the original texts on predicativity.

The previous chapter has left us with a difficulty. We have seen that a number of

alternative proposals go under the name of predicativity; however, they reach very

different conclusions on which mathematical theories are predicative. For example,

constructive predicativity legitimizes the use of generalised inductive definitions in

conjunction with intuitionistic logic, while the same are considered unjustified from

the perspective of predicativity given the natural numbers. This may cause difficul-

ties for predicativism, as discussed in the previous chapter. But, more importantly,

it may be seen as challenging the very idea that we can gather all of these varieties

of predicativity under one denomination. The present chapter aims at singling out

one theme in the predicativity debate that runs through both the classical and the
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constructive tradition. The concept of set characterised below appears in the writ-

ings by Poincaré, Weyl, Parsons, and seems particularly close to the one that figures

in Martin-Löf type theory. It would seem that an appeal to a predicative conception

of set justifies one sense in which all of these different approaches to predicativity

may be brought under a unitary framework.

5.1 Sets as extensions of predicates

Reading Poincaré and Weyl one can not but notice that they both assumed a concep-

tion of set that differs considerably from the one we are most familiar with, given our

acquaintance with ZFC.2 The concept of set underlying Poincaré and Weyl’s discus-

sion is rooted in the logical conception of set, for which a set is the extension

of a concept, that is, the collection of all the objects that satisfy (or belong to)

a given concept. As further evinced below, this conception of predicative set also

features typical aspects of the “older” form of mathematics that pre-dated the deep

methodological changes that took place at the turn of the 19th and 20th Centuries,

as reviewed in Chapter 1, Section 1.1. In particular, it retains a requirement of

finitary definability that in some respects resembles the requirement of explicit de-

finability that was typically imposed on mathematical entities, and in particular on

functions, prior to the introduction of abstract set theory.

Poincaré typically expressed his views in linguistic terms, and saw a set as given

by a definition composed of a finite number of words. Weyl made use of Husserlian

terminology and referred to judgements affirming properties and relations between

mathematical objects.3 The distinction between each of these ways of framing the

2The significant role of a different conception of set (compared with ZFC’s) within the early

debates on predicativity has been underlined in (Parsons 1992, Parsons 2002).
3Also Russell’s recourse to the notion of propositional function that we encountered in Chapter

3 suggests a similar concept of set, although the case of Russell is more complex; as indicated

by Parsons (1992, p. 153) : “Russell is perhaps not so clear because of his unclear conception of
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concept of set, as extension of a definition, or a property, is of historical and concep-

tual relevance; however, within the limits of the present context it seems reasonable

to follow Parsons (1992) and assimilate the thought of Weyl to that of Poincaré. In

the following I shall endeavour to clarify a common theme that appears across these

authors’ work, giving rise to a conception of set that Parsons (1992) describes in

contemporary terms as that for which sets are extensions of predicates.4

A crucial feature of this conception of set is that the predicates (definitions,

properties) are prior to the corresponding sets. As clarified by (Parsons 1992, p.

154), the priority of the predicates over the sets is often framed in epistemological

terms, in that the understanding of the predicate is before the apprehension of its

extension as an object. Another fundamental characteristic, expressed very neatly

by Weyl, is that the “properties” can be thought of as if they were built up in stages,

starting from the natural numbers.

In subsequent sections I shall analyse Poincaré and Weyl’s conceptions of set in

detail. In the following I shall first address the emergence of a prominent alternative

to it, given by the concept of arbitrary set. This seems necessary to appropriately

elucidate Poincaré and Weyl’s proposals as they arise as a reaction to the concept

of arbitrary set.

the relation of propositional functions to language”. Russell’s concept of set will not be discussed

below.
4To the contemporary eye the word “predicate” suggests that more should be said regarding

the background language and formal system(s) in which the predicate is expressed. The plan in

the following is to clarify first Poincaré’s views, that are expressed in very general and informal

terms. I shall then address Weyl’s discussion. This offers the possibility to clearly express the

notion of set as extension of a predicate in a way that also satisfies a contemporary perspective.

One can, for example, recast Weyl’s notion of set in terms of the extension of a predicate that is

expressible in the language of second order arithmetic, and within a subsystem of the latter that is

characterised by the arithmetical comprehension principle (ACA0). See also footnote 44, Chapter

3 for details.
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5.1.1 Sets in transition

Traditional approaches to logic (e.g. syllogistic logic) typically grant centrality to

the notion of concept. It is therefore unsurprising that the first formulations of

a modern notion of set were typically framed in terms of extensions of concepts.

Accordingly, throughout the 19th Century a set was usually conceived of as the

extensional counterpart of a concept, that is, as the collection of all and only the

objects that satisfy a given concept (Ferreirós 1996). In addition, the possibility of

faithful linguistic description of the concepts was typically taken for granted. In fact,

some of the distinctions we make today were not available at the turn of the 20th

Century, when it was natural to hope that a number of different renderings of the

notion of set (e.g. in terms of concepts or linguistict descriptions) would eventually

coincide.5

A crucial consequence of the set-theoretic antinomies that emerged at the end

of the 19th Century was the growing awareness that more care was required in

formulating the relation between concepts, sets, and their linguistic representations.6

The antinomies then can be seen as placing strain on the naive thought that there is

truthful mirroring between the three realms: concepts, mathematical objects (e.g.

sets), and their linguistic descriptions. A well-known reaction to the set-theoretic

5See (Ferreirós 2011) (especially Section 1.4) for a brief discussion of the relation between the

logical notion of set as extension of a concept and one in terms of linguistic definitions. “Concepts

may be available in at least two ways, as abstractly given, or by means of a linguistic specification;

since by 1890 and even as late as 1910 notions were still unclear and in flux, Frege and others

(including the French analysts Borel, Baire, Lebesgue) could hope that both avenues for availability

might coincide.” (Ferreirós 2011, p. 367) Ferreirós further elucidates that it was then also expected

that it would be possible to account for all sets of natural numbers in either of these ways.
6As observed by (Ferreirós 1996), the antinomies contributed to a reconsideration of the then

common view according to which the notion of set is ultimately a logical notion. A distinction

between logical and mathematical notions started to appear only at that time. Ferreirós (1996, p.

63) sees the antinomies as producing the “divorce between logic and set theory”.
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paradoxes is exemplified by Zermelo (1908), who observed that one can not take

arbitrarily concocted concepts to give rise to sets.7 As described in Chapters 3 and

4, the attempts made to clarify this point turned out to shape much of contemporary

set theory and logic.

I propose that we distinguish between two opposite attitudes to the challenge

of the paradoxes: for some the antinomies had the effect of drastically severing the

traditional tie between sets and concepts and their linguistic representations, while

for others they imposed a reinforced link between sets and concepts (and for some

also their linguistic representations).8

One reply to the antinomies was to develop formal tools that would characterise

a very liberal conception of set, one that had arisen especially, but not exclusively,

through the work of Cantor.9 The resulting sets were eventually fully emancipated

7Zermelo (1908, p. 200) writes: “In particular, in view of the “Russell antinomy” of the set of

all sets that do not contain themselves as elements, it no longer seems admissible today to assign

to an arbitrary logically definable notion [Begriff] a set, or class, as its extension.”
8In the following I shall predominantly focus on the predicativist position, and especially on

Poincaré, so that the linguistic dimension will typically be a component of the view. However, I

shall try as much as possible to ensure that my discussion does not depend on particular features

of specific languages, as a thorough discussion of this point from a contemporary perspective would

introduce substantial complexities. As my analysis of this predicative concept of set has also the

ambition of clarifying aspects of a contemporary constructive concept of set, it is interesting to

note the attitude of contemporary constructivists on the relation between mathematical concep-

tualization and its linguistic representation. As it is well known, the intuitionist tradition started

by Brouwer emphasizes the importance of the conceptual component of mathematics, eschew as

much as possible from the linguistic component. Constructivists today usually do not share the

anti-linguistic attitude of the early intuitionists, although they often assign a certain prominence

to the conceptual dimension, stressing the role of intuition and evidence within the mathematical

activity. Linguistic representation has gained, however, more prominence in recent years due to

the relation between constructive mathematics and computer computation, as the latter requires

very detailed attention to the linguistic and formal dimensions.
9See e.g. (Ferreirós 1999, Ferreirós 2011) for an assessment of the fundamental contributions
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from concepts and definitions. The outcome was a notion of “arbitrary” set, and one

of the aims, after the antinomies were discovered and their full impact realised, was

to ensure that arbitrary sets were safe. This prompted a careful formulation of an

axiomatic system that would avoid the set-theoretic antinomies. As a consequence,

Zermelo set theory was fabricated so to capture all the set-theoretic operations that

had been proposed out of the needs of the expanding contemporary mathematics,

without at the same time giving rise to any known paradox. The outcome, Zermelo

set theory and its subsequent extension, ZFC, aim at capturing a conception of set

that does not require the availability of prior concepts nor linguistic descriptions for

each set. One possible way of justifying this notion of arbitrary set is through an

appeal to what has been called quasi-combinatorialism (Bernays 1935), as further

discussed in Section 5.2.1.

Another, opposite reaction to the antinomies was not to divorce sets from con-

cepts, but to appropriately strengthen their link. For some, in fact, the antinomies

acted as a warning against the very detachment of sets from their conceptual coun-

terparts, as the paradoxes were deemed the result of too loose a connection between

sets and our conceptualisation of them. The ensuing concept of predicative set

reinforced, rather than severed, the traditional tie of sets with concepts and their

linguistic presentations: strictures were imposed on how the concepts, and the cor-

responding definitions or predicates, ought to be formed so to obtain a consistent

notion of set.

These two alternative attitudes to the discovery of the set-theoretic antinomies

underlie the opposition between the concepts of arbitrary set and set as extension

of a predicate that I shall now endeavour to further clarify. In the following I shall

indicate the main characteristics of a concept of arbitrary set, outline the concerns

that arise from a predicative perspective, and briefly sketch a prominent justification

of this notion of set in terms of Bernay’s “quasi-combinatorialism”. The main focus

by e.g. Riemann and Dedekind.
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will be, however, the predicative concept of set, which will be thoroughly discussed

in subsequent sections.10

5.2 Absolutely arbitrary sets

The concept of set as extension of a predicate profoundly differs from a concept of

arbitrary set that slowly made its way within the fast changing mathematics of the

19th Century, reaching completion with Cantorian set theory. Cantor’s “definition”

of set in (Cantor 1895, §1) contains paradigmatic aspects of this conception: “By a

set (German: Menge) we understand any collection (German: Zuzammenfassung)

into a whole of definite and well-distinguished objects of our intuition or thought”.

The most significant aspect of this new conception of set which is relevant in the

present context is the lack of uniform definability of the set in terms of its elements,

which is instead characteristic of the predicative notion of set that we shall examine

in subsequent sections.11

A note is in order. Given a common association between a set-theoretic perspec-

tive with mathematical realism, one might be puzzled by my reference to Cantor’s

“definition”, as it introduces a mention of “our intuition or thought”. This indeed

helps me clarify that the aspect I wish to focus on here is merely the availability

even in principle of a uniform description of the set, or the lack of it. I maintain

that this is a significant aspect that can be considered independently of the separate

issue of the nature of the mathematical entities and their relation with us, and in

particular, whether the uniform description is imposed by us or not.

10The concept of arbitrary set and “quasi-combinatorialism” have been extensively discussed in

the literature. See e.g. (Maddy 1997). See also (Ferreirós 2011).
11The aspect I wish to highlight is that this definition by Cantor manifests the detachment of

the sets from a uniform law; the latter was instead a fundamental component of Cantor’s first

“definition” of set in (Cantor 1883, p. 204), according to which sets are seen as elements that can

be linked into a whole by some law (Ferreirós 1996).
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The origins of the concept of arbitrary set are usually traced back to the method-

ological alterations that took place within mathematics and, especially, but not ex-

clusively, analysis, in the 19th Century.12 It is hard to overemphasise the radical

nature of the new conception of set that emerged within set theory. The new set-

theoretic perspective, in fact, countenances the mathematical treatment of sets that

are no more required to be definable. This, however, makes it difficult to eluci-

date what arbitrary sets are, as also emphasized by Ferreirós (2011). Arbitrary sets

encompass “non–definable” sets: sets that are taken to exist but for which we do

not have even in principle a linguistic definition. Ferreirós observes that we have

numerous examples of definable sets, but a specific (or “concrete”, to use the math-

ematician’s terminology) “non definable” set is simply not amenable to be presented

as an example.13 A typical arbitrary set is the powerset of the natural numbers,

that includes absolutely all (definable and “non–definable”) subsets of the natural

numbers.14

The powerset of the natural numbers is a clear witness to a new form of arbi-

trariness that appears in mathematics at the end of the 19th Century. Wang (1954,

p. 243) clarifies the importance of the conceptual leap that this form of arbitrari-

ness manifests. He stresses the difference between a “moderate arbitrariness” that

12 (See e.g. Ferreirós 2011, Stein 1988, Wang 1954).
13 “The more one reflects on this matter, the more obvious it becomes; eventually one may

come to think that the idea of a “concrete” example of an “arbitrary” anything is an oxymoron.”

(Ferreirós 2011, p. 364) See also footnote 17, page 53 for the mathematical use of the word

“concrete”.
14It is remarkable that from a classical, impredicative perspective the opposition between the

two notions of predicative and arbitrary set manifests itself in emblematic form very low in the

set-theoretic hierarchy, already at the level of the powerset of the natural numbers. It is this simple

case that will be main focus of my discussion in this chapter. Note that Ferreirós also discusses

the role of the Axiom of Choice for the notion of arbitrary set. His main argument being that

ZFC’s formalization is rather poor in capturing the concept of arbitrary set that motivates that

set theory.
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mathematicians often appeal to, and the “really arbitrary” that arises in set theory:

mathematicians often speak of arbitrary functions and arbitrary curves

when they have no precise definition of these notions and actually have

in mind only certain special functions and special curves.

Set theory, instead, aims at capturing a notion that I should like to call “absolutely

arbitrary set”, a paradigmatic example of which is the powerset of an infinite set.

Wang (1954) discusses the case of the powerset of the natural numbers, and briefly

summarises Cantor’s proof of the indenumerability of the powerset of the natural

numbers, noting its impredicativity. He also observes that Cantor’s proof only shows

that for any enumeration f of the powerset of the natural numbers, we can find a

new set x that is different from all the sets enumerated by f . This means that given

any enumeration f of the powerset of the natural number, we can extend f to a new

more encompassing enumeration of it. From this to conclude that the powerset of

the natural numbers is indenumerable we need, however, to further assume that the

powerset of the natural numbers exists.15

From the fact that no enumeration can exhaust all sets of positive inte-

gers, Cantor infers that the set of all sets of positive integers is absolutely

indenumerable. In order to justify this inference, we have to assume that

there is a set which includes all sets of positive integers [...].

Wang’s discussion may be seen as indicating that Cantor’s proof of the indenu-

merability of the powerset of the natural numbers comes at the cost of assuming

15Wang (1954, p. 244) expresses scepticism regarding the notion of arbitrary set encoded by

ZFC, on the grounds that it is unclear whether such arbitrariness is needed within the mathematical

practice. He writes that the use of uncountable (indenumerable) and impredicative sets “remains

a mystery which has shed little light on any problems of ordinary mathematics. There is no clear

reason why mathematics could not dispense with impredicative or absolutely indenumerable sets.”

See also Chapter 7, Section 7 for a discussion of this point.
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a set whose elements are both the definable and the non-definable subsets of the

natural numbers. Provided that this set exists, then Cantor’s proof shows that it is

indenumerable.16 The important aspect to remark is that this requires the assump-

tion of the existence of a totality of all definable and non-definable sets of natural

numbers, although we might be unable to specify individual elements of this totality.

This clearly differs from assuming that the natural numbers form a set, as in this

case we can, in principle, exhibit individual elements.

The impredicativity and the arbitrariness of the powerset of an infinite set is also

addressed in a fundamental article by Myhill (1975), in which the author sets out

the details of a constructive set theory that notwithstanding its use of intuitionistic

logic bears strong formal affinities with ZF set theory. Myhill replaces the powerset

axiom of ZF with a constructively weaker axiom of exponentiation, as the first is

seen as lacking constructive justification.17 Myhill’s criticism of the powerset axiom

of ZF is particularly clear, and deserves quoting:

Power set seems expecially nonconstructive and impredicative compared

with the other axioms [of set theory]: it does not involve, as the others do,

putting together or taking apart sets that one has already constructed

but rather selecting out of the totality of all sets, all those that stand in

the relation of inclusion with a given set. (Myhill 1975, p. 351)

In this Section I have offered an intuition of the concept of arbitrary set, and

16It is interesting to note that also Poincaré (1912) discussed Cantor’s related proof of the

indenumerability of the real numbers within his criticism of the arbitrary notion of set adopted

in set theory. Poincaré remarked that Cantor’s proof shows that there is no way of defining a

bijection between the natural numbers and the real numbers without producing a new real number

that would require an extension of the bijection. His conclusion is that this makes the possibility

of comparing the cardinality of any two sets, and, in particular, the existence of ℵ1 doubtful.
17The axiom of exponentiation allows us to collect in a set all the functions from a set A to a

set B. This is constructively weaker than the full powerset, and allows for the formulation of set

theories that are constructive predicative (Myhill 1975, Aczel 1978) (see also (Crosilla 2015b)).
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indicated some of the difficulties that arise from a predicatively inclined perspective.

In the next Section 5.2.1 I shall briefly consider a prominent view that may be taken

to justify the notion of arbitrary set.

5.2.1 Quasi-combinatorialism

A very influential exposition of a view that justifies the powerset of an infinite set is

given in (Bernays 1935), where it is termed quasi-combinatorialism: this arises

by taking as a set any possible combination of given objects . We can see

how quasi-combinatorialism works by considering first a finite set, B. We observe

that we can form the set of all possible combinations of its elements, P(B), which

contains 2|B| elements, each a subset of B.18 As P (B) gathers together all possible

combinations of all the elements of B, this process can be seen as an example of

“combinatorial reasoning” (Bernays 1935). The distinctive characteristic of this kind

of reasoning is that it allows for the formation of the powerset of B,P(B), without

requiring the uniform definition of each of the elements of P(B): each element of

the powerset can be imagined as the result of an “independent determination”.

Quasi-combinatorialism amounts to doing exactly the same thing for infinite

sets, too: we take all possible combinations of all the elements of an infinite set A

and collect them into a whole, the powerset of A, without requiring the uniform

definability of each of its elements.19

A fundamental motive that underlies quasi-combinatorialism is the thought that

there is no substantial difference between finite and infinite sets. As further clarified

below, both Poincaré and Weyl instead insisted on the deep asymmetry between

the finitary and the infinitary cases. It is in particular the belief that infinitary

mathematical notions only afford safe treatment through a finitary (and genetic)

description that determines the development of their predicative notion of set.

18Here |B| denotes the cardinality of B, that is, the number of its elements.
19See also Maddy (1997) for discussion of quasi-combinatorialism.
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It might be useful to expound in full generality a predicativist’s remonstrations

against quasi-combinatorialism. In the case of a set B of finite cardinality it is

typically expected that we could give, at least in principle, an explicit definition of

each of the subsets of B, if we were sufficiently pressed.20 In this case the combi-

natorial formation of P (B) works as a more economical procedure, that could then

be replaced by the explicit definition of each of the elements of P (B), the latter

offering full justification for the first. On the contrary, in the case of an infinite

set A, like, for example, the natural numbers, it is no more to be expected that we

could offer a way of describing or singling out each of the elements of P(A), were we

requested to do so. The principal complaint is that we are not offered here a precise

description of each subset of A. Therefore, if we were asked to pin down exactly the

extension of the predicate “subset of A” we would seem to be unable to do so, as

we do not possess a uniform rule that explicates how the elements of P (A) relate to

P (A) and to each other. One option for justifying P (A) is to assume at the start

the set-theoretic universe, out of which we select the subsets of A.21

5.3 Poincaré on sets and definitions

A thorough clarification of the differences between the notion of set appealed to by

the early predicativists and the arbitrary notion of set can be gathered by expand-

ing further on the views of Poincaré (Poincaré 1909, Poincaré 1912). Poincaré is

particularly explicit in framing the opposition between rival conceptions of sets as

related to the specific difficulties that arise when we wish to work with infinite sets in

mathematics. Poincaré (1912), in particular, portrays the conflict on predicativity

as deeply interconnected with contrary views on the nature of infinity, which mani-

fest the traditional opposition between potential and actual infinity. The notion of

20There is clearly an element of idealization in this contention, that is questioned by forms of

predicativity like Nelson’s strict predicativism.
21I shall further discuss this point in the next section.
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arbitrary set for the French mathematician witnesses full acceptance of actual infin-

ity, while a requirement of definability of the set through a finite definition reflects

the belief that only potential infinity is justified.

In the following, I wish, however, to refrain from using the opposition between

actual and potential infinity. An appeal to this traditional opposition, in fact, seems

unhelpful in this discussion, in as much as one does not also offer a clear account of

this distinction that would make it a profitable instrument in the understanding of

the opposition between arbitrary and definable sets.22 I shall rather try to clarify the

opposition between arbitrary sets and (a particular kind of) finitarily definable sets.

First, however, I shall briefly outline Poincaré’s reasons for the finitary requirement.

For Poincaré, as human finite beings we can only safely work with mathematical

entities that are definable by a finite number of words (see also Chapter 3, Section

3.3.2, page 87).23 In other terms, it is our finite nature that imposes that a mathe-

matical treatment of infinite classes is only possible through a finite definition. Sets

22The opposition between actual and potential infinity is identified by some authors with the

availability or not of the principle of excluded middle when reasoning about infinite collections.

Some of Feferman’s writings on predicativity, for example, may suggest such an understanding of

this opposition (see e.g. (Feferman 2005)). This identification has the remarkable advantage of

clarifying in precise mathematical terms the extent of the distinction between potential and actual

infinity; however, it also seems to elude some of the most significant aspects of this distinction

from a philosophical perspective. In particular, taken by itself, it does not clarify the distinction

between views of the set-theoretic universe which manifest a potential or an actual understanding

of infinity. See e.g. (Linnebo 2013) for a modal account that affords an explication of a potentialist

perspective.
23Poincaré writes that as the thinking subject is a human being, “or something that resembles

a human being”, it is a finite being. As a consequence, infinity is the possibility of creating as

many finite objects as one wishes. That is, infinity is potential infinity. Poincaré also clarifies that

there is an element of idealization in this position, as he assumes a form of definability in principle,

not actual definability, as it would be required by a finite being. This is clearly a very delicate

issue that would need to be fully assessed if one were to offer a philosophical defence of definabilist

positions on the basis of considerations of finitude of the human mind or the human language.
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then are the extension of finite definitions for Poincaré. In fact, as further discussed

below, this view by Poincaré is deeply interrelated with the further contention that

a class is given by a definition and does not exist independently from it.

The requirement of finite definability of sets places Poincaré’s discussion on pred-

icativity within the larger context of a position on the methodology of mathematics

that is often referred to as definabilism (or definitionism). Maddy (1997, p. 116) so

characterises definabilism:

the requirement that all mathematical things be definable in a certain

uniform way. I leave open the exact specification of this ‘uniform way’

to allow for different versions of the same general maxim.

This was a widespread position at the time of Poincaré and is particularly well

represented by the French analysts Borel, Lesbegue and Baire, whose criticism of

the axiom of choice moved directly from the contention that “it is impossible to

demonstrate the existence of an object without defining it” (Baire, Borel, Hadamard

& Lebesgue 1905, p. 314).24

Poincaré’s discussion on predicativity further specifies the finitary requirement by

imposing a genetic definition of a set in terms of (the definition of) its elements. This

relates to his requirement of invariance of a definition, and may be seen as further

specifying the “uniformity” of definitions that Maddy alludes to in the quotation

above. I shall further clarify this point in Section 5.3.2 below. First I wish to consider

Poincaré’s (1912) discussion of definitions and give an example of impredicative

24Ferreirós (2011, p. 375) writes:“It was because many mathematicians understood sets as

concept-extensions that they found it unacceptable to postulate the existence of sets such as those

guaranteed by Choice. (Similarly, many thought that functions ought to be given by explicit

formulas–a view that was strongly promoted from Berlin, as early as 1870.) To be more precise,

many mathematicians of the period were inclined towards a constructivist notion of mathematical

existence (for the real numbers) and showed definabilist preferences concerning sets of reals, all of

which caused them to object to the Axiom of Choice.”
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definition.

5.3.1 Impredicative definitions

Poincaré’s discussions on predicativity are part of a more general discussion on

legitimate methods in mathematics. Poincaré therefore addresses the issue of pred-

icativity by analysing different kinds of definitions within the mathematical practice,

and assessing the threat that impredicativity poses for correct reasoning in mathe-

matics. For example, in Poincaré (1912) distinguishes between two principal kinds

of definitions: direct definitions, and definitions by postulates. The first kind

of definitions, the direct definitions, are characterised by the fact that one could (in

principle) replace each term in the definition by its own definition, and, by going

all the way down, reach identities that hold purely in virtue of tautologies.25 These

are ideal definitions, but are not always available. The second kind of definitions

is given by means of postulates. Poincaré describes this case by explaining that in

definitions by postulate we know that the definiendum belongs to a class, however,

we need to further specify the definiendum by appeal to an additional condition, a

postulate, that it needs to satisfy. Here the principal difficulty is in ensuring the

consistency of the postulate, without which the definition would be illegitimate.

Within our context, the most significant part of this discussion by Poincaré

on definitions by postulates arises when he claims that some of these definitions

are source of disagreement between mathematicians. The disputed definitions by

postulate express a relation between the definiendum and all the objects of a class

to which the definiendum is supposed to belong. In this case some mathematicians,

but not others, claim that there is a vicious circle. Poincaré gives the following very

general example: suppose we wish to define an object X by postulating a relation

R between this object and all the elements of a “class”, G, to which it is supposed

25The notion of direct definition coincides with what is often termed explicit definition in the

philosophical literature.
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to belong.26

In the following I shall first of all offer a very general description of this example

by calling G a “class”, and suggesting one way of clarifying the difficulty that is

involved with its definition. In the next section I shall further analyse this example

by more carefully distinguishing between a definition of a class and its extension.27

This second reading better explicates the difficulties that are involved with impred-

icative definitions, given the notion of set as extension of a predicate here under

examination.

The definition of X in terms of G gives rise to a vicious circle, since it presupposes

all the elements of G, and therefore also X itself. It is interesting to see how

Poincaré (1912) frames the difficulty with impredicative definitions of this kind.

Poincaré compares here the perspectives of “Cantorians” and “Pragmatists”: the

first are depicted as defending a form of mathematical platonism and the latter as

holding predicativist positions, thus representing largely Poincaré’s standpoint. In

particular, the latter are also represented as holding a traditional form of idealism,

according to which mathematical objects do not exist independently from a (human)

thinking subject.28

The French mathematician so expresses the difficulty that arises in this case: we

can not define an object X in this way without knowing all the individuals of G,

and thus without knowing X itself. The Cantorians, observes Poincaré, do not see

a difficulty here, as from their perspective the class G is given, and the only purpose

of the definition is to discern, by reference to all the elements of G, the particular

individual that is in the relation R with all the G′s.29

26The case of Richard’s paradox that was discussed in Chapter 3, Section 2 offers a more concrete

example that falls under this scheme.
27Poincaré took sets to be definitions, therefore his discussion may be difficult to frame within

a contemporary perspective that separates the two aspects.
28Poincaré’s comparison between these alternative positions concludes with the disenchanted

observation that the two points of view are incompatible, and the disagreement irreconcilable.
29Note that X’s presupposing G is here expressed in epistemological terms. In this text, Poincaré
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This point is important and deserves further clarification. According to Poincaré,

for the Cantorians the elements of G are already given, consequently the definition

suffices to single out X from the other elements of G. However, for the predica-

tivists the elements are “constructed” through their definitions, they do not exist

independently from these definitions, and therefore a circularity is problematic, as

it requires the assumption of what we are about to construct.

There are a number of points that Poincaré’s discussion raises here. In particu-

lar, there is the contention that impredicative definitions may be seen as legitimate

from a realist perspective, but illegitimate from an anti-realist perspective. This is

a frequent reading of the debate on impredicativity, made particularly prominent by

two early influential articles that address predicativity (Carnap 1931, Gödel 1944).

A frequent interpretation of the predicativity versus impredicativity debate is in

terms of an opposition between realist and constructivistic attitudes. A common

claim is than that realism offers a way of justifying impredicativity, by granting the

mathematical entities on which impredicative definitions generalise. A definition in

this context has only a descriptive role: to select out of the totality of mathematical

entities, those that satisfy the definition. If, however, one does not presume that

mathematical entities are “given” in the first instance, for example, if one takes an

idealist perspective similarly to Poincaré’s Pragmatist, then an impredicative defini-

tion is highly problematic. A definition here is a construction of a new mathematical

entity, and thus it can not appeal to its definiendum.

I shall further discuss this example in the next two sections, in which I shall

try and generalise from this particular way of framing the opposition between pred-

icativity and impredicativity. For this purpose I shall adopt a philosophically less

sees the existence of the mathematical objects as dependent on their definability and (hence) also

on their knowability. Poincaré also writes that the Cantorian thus also knows all of the elements of

G. An epistemic reading of realism is not unusual also within more recent philosophical reflections

by constructive mathematicians, as, for example, in the writings of Bishop. See (Billinge 2003) for

critical discussion.



154 CHAPTER 5. ON A PREDICATIVE CONCEPT OF SET

committed prespective, while availing myself of some of Poincaré’s ideas. I shall

therefore detach from Poincaré’s discussion his particular view of the nature of the

mathematical entities, and rather examine the general features of a conception of

set as extension of a definition that is suggested by Poincaré’s text. From this

perspective I wish to clarify the significance of Poincaré’s notion of invariance.

5.3.2 Poincaré’s “genre” and incomplete definitions

For Poincaré definitions are classifications: they separate the objects that satisfy,

from those that do not satisfy that definition, and they arrange them in two distinct

classes. Poincaré (1912) also assimilates the definition of a class to traditional clas-

sifications by “genus proximum et differentiam specificam”: when defining

a class, one should specify (1) a “genre” that is in common to all the elements of the

class and, (2) some individuating characteristics that are specific of each element

of the class. It is the second point that is worth our attention, as it may be seen

as offering a refinement of the definabilist requirement that a definition of a set be

finitary.

Let us clarify this point by means of the example above. We aim at defining

an object X by postulating a relation R between this object and all the elements

of a class to which it is supposed to belong. Poincaré here refers to the relevant

class as given by a “genre” G: this is a general description of a property that all

the elements of the class satisfy.30 From a contemporary perspective, the “genre”

G acts as a definition of a class, and the latter is G’s extension. The crucial point

is that G does not specify how to define or “construct” each individual element of

its extension. One could also say that the “genre” G gives only an incomplete

definition or a mere specification of its extension; that is, a description of some

30As already mentioned, there is a conflation in Poincaré’s discussion between G as referring to

the definition of a class and G as referring to the extension of this definition. In the following I

shall distinguish the two aspects.
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general characteristics shared by all its elements, without an explicit definition of

the individual elements.

The incomplete nature of the “genre” is the reason why we run into difficulties

in defining X. The thought is that prior to defining X we need to fix the extension

of G, as X is defined by postulating a relation, R, with all of the G’s.31 However,

as we define X, this turns out to be a new element of the extension of G. Therefore

it seems that the definition of X enlarges G’s extension and disorders G itself.

It is worth pointing out the implicit assumptions that seem to be required for

finding fault with the impredicative definition of X. First of all, we assume that X

is specifiable only in terms of its genre G, so that we do not have a definition of it

that is independent from G. Secondly, there is the contention that the extension of

G ought to be fixed before we generalise over it to define X. In contemporary terms

this may be rephrased by stating that the extension of a definition needs to be fully

determined prior to acting as domain of quantification. Finally, the dependence of

the set on its definition also plays a role, as this is framed in such a way that we can

envisage situations in which the extension of a definition might not be fixed once

for all. The thought seems to be that if we give only an incomplete definition of a

set, if we specify no more than the “genre”, then the extension of such a definition

is not fixed once for all, and might be enlarged by subsequent definitions.

Poincaré’s own assessment appears to be that a realist attitude to mathematical

entities grants the individual elements of a set independently from the definition of

the set itself, so that a specification of the “genre” suffices to fix the relevant domain

of quantification. However, from a Pragmatist or “constructivistic” perspective of

the mathematical entities, we cannot concede the prior availability of X, and thus

we exclusively rely on the genre G for its specification. In this case, the difficulty

with impredicative definitions clearly arises.

On reflection, it seems that the move to realism Poincaré alludes to is but one

31See the next section for a clarification of the idea of “fixing” the extension of a genre.
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possible way of according impredicativity. Any way of “detaching” the elements of

a set A from A’s definition would also seem to work. This is the case, for exam-

ple, of quasi-combinatorialism, where the elements of a set are assumed as given

independently from the specification of the set itself. The discussion above also

suggests that an appeal to realism by itself does not suffice to eliminate the diffi-

culties with impredicativity, unless that form of realism also ensures an appropriate

“detachment” of sets from definitions, as indicated above.32

“Genre” and invariance

Poincaré’s discussion on the “genre” also helps clarify the notion of invariance that

was introduced in Chapter 3, Section 3.3.2. Given the view that a definition is a

classification, a distinction between predicative and impredicative definitions was

framed as follows by Poincaré: a definition is predicative if it defines a class that is

not “disordered” by the introduction of new elements, and impredicative otherwise.

If we take a view according to which a definition is prior to the class it defines,

then we can envisage situations in which the class of all the objects that satisfy a

certain definition might not be fixed in advance. Therefore, if we hold this conception

of set, then it becomes important to guarantee that the tie that links the set to its

definition does not cause an instability of the resulting set itself. This is particularly

important in view of the possibility that the set so defined could in turn act as

domain of quantification in subsequent definitions of other sets: if so its definition

needs to fix in uncontroversial terms what belongs to its extension and what does

not. Poincaré’s notion of invariance here plays a crucial role as it is introduced with

the aim of ensuring that an invariant definition fixes in uncontroversial terms what

belongs to the extension of the definition. Its purpose is to fix once and for all the

32See e.g. (Parsons 2002) for a discussion of alternative routes to impredicativity already pro-

posed within the early debates on this issue. I shall further examine another possible way out in

Chapter 6, where I shall examine Dummett’s notion of indefinite extensible concepts.
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relations between all the elements of a set with each other as well as with the rest

of the universe of sets; as a consequence, subsequent definitions of new sets will not

modify these relations nor the set itself.33

As we have seen before, the genre does not suffice to fix in a definitive way

its extension, in all those cases in which the elements of the set do not possess

independent specifications. Therefore the genre needs to be complemented by an

invariant specification of the elements of the set. In fact, Poincaré (1912) suggests

that a proper definition of a set should start with a description of some initial

elements, use them to construct new ones, and then use the latter to produce new

ones, and so on. It is in this sense that Poincaré refines definabilism by requiring not

just a finitary definition of mathematical entities, but a “genetic” construction of

the set in terms of the definitions of its elements. This also determines a uniform tie

between a set and its elements: the set is formed from the definition of its elements

according to fixed rules, not arbitrary individual choices.

Poincaré’s discussion clarifies the difficulties that impredicative definitions cause

from a predicativist perspective, and gestures towards possible solutions. From a

contemporary perspective, this requires a more detailed analysis. We shall see in the

next section that Weyl (1918) offers a clarification of this process of “construction”

of a set in precise, mathematical terms.

33A note is in order. In the discussion above I have predominantly drawn from (Poincaré 1912),

although there are similarities with the views to be found in (Poincaré 1909). There are, however,

also noticeable differences in emphasis between these two texts. In (Poincaré 1909) the discussion

on predicativity highlights more prominently the epistemological dimension. A possible reading of

(Poincaré 1909) is in semantic terms. Impredicativity here arises because of a difficulty in fixing the

meaning of mathematical expressions. Specifically, the difficulty with impredicative definitions has

to do with their lack of meaning, as their extension can not be fixed once and for all, being modified

by the very definition. If we were to rephrase the example above according to this understanding

of (Poincaré 1909), then the definition of X would be meaningless, as there is no way of fixing in

a definitive way the referent of the genre G, and thus that of X. As a consequence the definition

is also illegitimate.



158 CHAPTER 5. ON A PREDICATIVE CONCEPT OF SET

5.4 Weyl’s Mathematical Process

Weyl’s overall philosophical stance in (Weyl 1918) is remarkably different from

Poincaré’s, influenced as it is by Husserl’s phenomenology. The terminology is also

importantly different, as is the emphasis on the linguistic component. In fact, many

important distinctions that the contemporary eye does not find clearly expressed

in Poincaré are clearly formulated by Weyl.34 However, notwithstanding the differ-

ences, there are important similarities between the ensuing notions of set these two

mathematicians propose, mainly in two respects. Firstly, both mathematicians view

sets as extensional counterparts of something that is prior to sets: a definition or a

property. In addition, they express a genetic build up of sets from their elements.

Secondly, both authors highlight the importance of the natural number structure,

and the profound difference between this structure and other infinitary structures

(see Section 5.4.2).

The book (Weyl 1918) begins with the observation that although the critique of

the 19th Century of the foundations of classical analysis was right, and contributed

“immense advance in the rigor of thought”, what had replaced the old edifice, if

one focuses on the “ultimate principles”, is even more unclear than what was there

before. As recalled at page 100, the opening of (Weyl 1918, p. 1) is very explicit,

setting up as a goal for the book to correct these mistakes, and replace analysis’

present “shifting foundation with pillars of enduring strength”.

A crucial instrument in the resulting clarification of the foundations of analysis

is the notion of set, and Weyl (1918) carefully explicates a notion of set as extension

of a property that is at the centre of his reconstruction of analysis. Weyl is more

detailed than Poincaré in describing his notion of set, and his discussion makes use

of a precise logical analysis of the mathematical language. This marks a significant

34For example, Weyl clearly distinguishes between the realm of the mathematical objects, the

conceptual sphere and the linguistic one.
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difference with Poincaré, whose polemics against the “logisiticians” is well-known.

Weyl criticises the notion of set that underlies the new kind of mathematics, but at

the same time is willing to make use of the recent advances in logic to rectify its

foundations.35

The first chapter of “Das Kontinuum” is devoted to clarifying Weyl’s notion of

set36, while the second chapter of the book is dedicated to an analysis of the concepts

of natural number and, especially, the continuum. The view that sets are extensions

of properties is clearly stated at page 20, where Weyl writes:

Finite sets can be described in two ways: either in individual terms, by

exhibiting each of their elements, or in general terms, on the basis of

a rule, i.e., by indicating properties which apply to the elements of the

set and to no other objects. In the case of infinite sets, the first way is

impossible (and this is the very essence of the infinite). [...]

To every primitive or derived property P there corresponds a set (P ).

The expressions “An object a has the property P” [...] and “a is an

element of the set (P )” have the same significance.

Weyl expounds the formation of derived properties from primitive ones in the first

chapter of the book, and also states an extensional criterion of identity between sets,

35Weyl (1918, p. 23) writes: “But what was positively erected in place of the old is, if one’s

glance is directed to the ultimate principles, even more unclear and assailable than what it replaced–

although it is certain that most of the achievements of modern critical research can be used anew

as building material for a definitive founding of analysis.”
36Weyl also discusses the notion of function, that is taken as primitive. This point would deserve

further analysis, especially in view of the fact that the concept of function is usually primitive also

in the constructive tradition. Due to space constraints, I shall postpone an analysis of the role

of a primitive notion of function within predicativity and constructivity to subsequent work. For

technical work that relates to this issue see also (Cantini & Crosilla 2008, Cantini & Crosilla 2010,

Cantini & Crosilla 2012).
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identifying sets (P ) and (P ′) for properties P and P ′, if and only if the same objects

satisfy the properties P and P ′.37

The “production” in stages of new sets from properties is called the “mathemat-

ical process” by Weyl (1918, p. 22). This can be briefly described as follows: we

start from some given category of primitive objects and proceed by forming judge-

ments affirming the fact that certain properties and relations hold of objects of this

category.38 The next step is given by taking combinations of these judgements by

means of the logical operations, with the crucial constraint that quantifiers are only

allowed to range over the objects of the primitive category. This process is then

further iterated to obtain more complex judgements. A set then ensues by taking

the extension of a property affirmed by such a judgement.

In the following I shall expound in more detail Weyl’s mathematical process to

gain further insight into his notion of set.

5.4.1 Ascending from an initial category to sets

The starting point of the mathematical process is given by selecting a suitable “cat-

egory of primitive objects”, a particular example of which is the natural number

37 Weyl’s introduction of an extensionality criterion is important, as properties of sets (similarly

to definitions for Poincaré) are intensional entities, and we may have a many-one relation between

a number of properties and a set. Postulating an extensional identity criterion for sets is therefore

necessary to ensure a development of standard mathematical notions within Weyl’s system. One

may in fact worry that the intensionality of properties might be an unwelcome feature of Weyl’s

system. In fact, the availability of intensionality at the level of properties is a very intriguing

aspect of Weyl’s treatment that would require further investigation. It is important to note that

a form of intensionality is also at the heart of a contemporary constructive notion of set, and has

there proved extremely useful. See Section 5.5 below.
38See the next section for the notion of category. Weyl clarifies the notion of judgement in the

first line of (Weyl 1918, p. 1): “A judgement affirms a state of affairs. If this state of affairs

obtains, then the judgement is true; otherwise it is untrue. [...] A judgement involving properties

asserts that a certain object possesses a certain property [...].”
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structure. Categories in general play a similar role as Russell’s “ranges of signifi-

cance” (see 91, Section 3.4), eliminating the possibility of meaningless applications

of properties.39 Weyl (1918, p. 5) so further clarifies the concept of category: “each

property is always affiliated with a definite category of object in such a way that

the proposition “a has that property” is meaningful, i.e., expresses a judgement and

thereby affirms a state of affairs, only if a is an object of that category.”40 Weyl

(1918, p. 8) requires that the initial categories of objects are “immediately given

(i.e. exhibited in intuition).”41 From a purely formal point of view, Weyl’s initial

categories play a similar role as Russell’s type of individuals: they account for the

initial objects that are used to start the mathematical process (or the type theo-

retic hierarchy, respectively). Significantly, Weyl requires that the initial category

determines “a complete system of definite self-existent objects”, that is, the exten-

sion of the category is fully determined and its elements can be considered as fully

determinate (Weyl 1918, p. 8). This ensures that the initial category is a suitable

domain of quantification, and that the principle of excluded middle can be applied

to it. A paradigmatic example of initial category is the natural number structure.42

Weyl’s fundamental contention is that when we move from an initial category

(e.g. the natural numbers) to sets of its elements, we can no longer treat the latter

39See also Husserl’s concept of categories of meaning (Husserl 1900/1, Husserl 1913).
40As an example of meaningless propositions, Weyl considers the “heterological” paradox, arising

by considering words that denote properties that they do not possess. For example, the English

word “short” is not heterological, it is “autological”, as it is short, while the word “long” is

heterological, as it is short. Weyl so concludes the discussion on this paradox: “Formalism regards

this as an insoluble contradiction; but in reality this is a matter of scholasticism of the worst sort:

for the slightest consideration shows that absolutely no sense can be attached to the question of

whether the word “heterological” is itself auto- or heterological” (Weyl 1918, p. 6-7).
41There is a clear similarity here with Poincaré’s insistence that the natural numbers (and in

particular the principle of mathematical induction) are “synthetic a priori”. See also the discussion

in Chapter 6.
42The case of the natural numbers will be discussed in more detail in Section 5.4.2 below.
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as definite. The reasons for this will be clearer when we discuss the case of the

natural numbers in the next section. The important point to observe at this stage is

that while the elements of the initial category are given in intuition, sets of them are

presented as extensions of properties of the elements of the initial category. These

considerations also determine the constraint on quantification, that is only allowed

on elements of the initial category.

To ascend from the initial category to sets of its elements one considers primitive

properties of and relations between the objects of the initial category. Corresponding

to these one has judgements that assert that the properties (and relations) hold of

the relevant objects. Weyl here considers also judgement schemes, that include

variables that can be substituted by objects of the appropriate category to give rise

to true or false judgements. Primitive properties and relations give rise to primitive

judgements (or judgement schemes).43 In Section 2, Chapter 1 of (Weyl 1918) the

German mathematician delineates six “principles of the combination of judgements”.

These correspond to ways of combining judgements, starting from primitive ones,

by simple operations that “define the logical functions of the concepts “not”, “and”,

“or”, and “there is” in an exact way” (Weyl 1918, p. 12). They also include

a substitution rule for variables. The application of the six principles gives rise

to new judgements that can then be used once more together with principles 1-

6 to determine new ones, and so on. Essentially Weyl shows how to compose new

judgements from given ones by means of iterated applications of the usual first order

operations.44 Crucially quantification is restricted to the original initial category.

43To these Weyl also adds identity judgements that state identities between objects of the cate-

gory.
44As clarified at page 48 of (Weyl 1918), and further stressed by (Feferman 2000b), the roots of

this analysis by Weyl are to be found in (Weyl 1910). There Weyl was prompted by the desire

to clarify the concept of “definite property” used by Zermelo in his separation schema. As it is

well known, the separation schema was introduced to constrain the comprehension principle that,

unrestricted, had given rise to Russell’s paradox. Zermelo formulated the separation schema so
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The parallelism between properties on the one side and sets (their extensions) on

the other allows for the formation of sets as extension of properties. Therefore Weyl

offers a mathematically precise account of a predicative notion of set as extension

of a property, one that differs radically from the arbitrary notion of set that was

discussed in Section 5.1.1.

Indeed, the opposition to the notion of arbitrary set is a the heart of Weyl’s

criticism of the new form of mathematics. Weyl (1918, p. 23) writes:

The notion that an infinite set is a “gathering” brought together by

infinitely many individual arbitrary acts of selection, assembled and then

surveyed as a whole by consciousness, is nonsensical; “inexhaustibility”

is essential to the infinite. [...] Therefore I contrast the concept of

set and function formulated here in an exact way with the completely

vague concept of function which has become canonical in analysis since

Dirichelet and, together with it, the prevailing concept of set.

The aim of (Weyl 1918) therefore is to give a secure, indubitable foundation for

mathematics, one that proceeds genetically from the safety of an initial category to

the notion of set of elements of that initial category, and so on. The mathematical

process guarantees that the ensuing notion of set is free from vicious circles and

therefore correct. Weyl is also very clear in stating that what can not be so accounted

for in this way, needs to be relinquished.

In the next Section I wish to further explicate the mathematical process in the

case of analysis that lays at the centre of Weyl’s efforts in “Das Kontinuum”, and

to allow for the formation of subsets of a given set which are definable by a “definite property”.

However, he did not clearly specify what counts as a definite property. As indicated by Feferman,

Weyl (1910) clear analysis of the concept of “definite property” expresses it in terms of the first

order set theoretic language of set theory. Feferman also observes that Weyl’s analysis antedates the

analogous one by Skolem, although the latter is usually credited for the fundamental clarification

of this aspect of ZF set theory.
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clarify the role within it of the natural number system as initial category.

5.4.2 The natural numbers structure

Notwithstanding the full generality of the first pages, Weyl at page 15 focuses on

the case in which the initial category is that of the natural numbers: “the arithmetic

of natural numbers supplies us with an example of a domain of individuals”. The

formation of judgements can then again be seen as governing the production of sets

from the natural numbers by means of some “characteristic properties” that are

obtained from primitive properties and relations by applying the first order logical

operations (p. 20). As the quantifiers are now crucially restricted to the natural

numbers, from a contemporary perspective Weyl’s account can be seen as allowing

for the definition of sets of natural numbers by means of arithmetical comprehension

only (see page 99).

The importance of the natural number structure as an initial category in (Weyl

1918) should not be underestimated. As we saw at page 92, Russell left it deliber-

ately open what constitutes the first level of his type theory, the individuals. At first

also Weyl aims at a very general account of his mathematical process, and does not

fully specify what constitutes an initial category of objects. Nevertheless, he soon

clarifies that the natural number structure has a unique role within mathematics,

as it is presupposed in every mathematical discipline, and it is in any case an initial

category.

The comparison with Russell is again instructive, as Russell aimed at a definition

of the natural number structure, to witness its logical nature; Weyl, however, in a

similar vein as Poincaré before him, takes the natural numbers as starting point, as

intuitively given (i.e. synthetic a priori). In fact, at page 48 Weyl stresses that any

attempt at founding the concept of natural number on logic or on the concept of set

is deceptive, given the fundamental role in mathematics of the concept of natural
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number.45

The natural number structure is characterised by Weyl in terms of the operation

of successor and mathematical induction, the latter expressed in terms of a principle

of iteration that allows us to progress from a property P holding of 0, to P holding of

its successor, then P holding of the successor of the successor of 0, and so on, for all

natural numbers.46 Weyl (p. 37) clarifies that the principle of iteration “exploits the

characteristic feature of the natural numbers, whose sequence is the general scheme

of a procedure consisting in the iteration (endlessly repeated performance) of an

elementary process.” That is, the natural numbers are here seen as the fundamental

example of an iterative process given by the repeated application of the successor

function. As a consequence, we can reason inductively on the natural numbers.

To further clarify this point, Weyl explains that the natural numbers are “without

exception, individuals” (Weyl 1918, p. 27). The concept of individual is elucidated

by Weyl at page 15 in terms of the availability of a characteristic property that

singles out the individual as unique. In modern terminology, one could express this

in terms of the availability of a canonical representation that only that individual

satisfies. In the case of the arithmetic of natural numbers, the fundamental relation

that underlies this discipline is that of successor: it is its iteration that allows for

the unique characterisations of each natural number as individual. For example,

there is one and only one number that is the successor of no natural number, the

number 0. Then 1 can be characterized as the unique successor of 0, and so on.

Weyl expresses this with a “structuralist slogan”:

[...] it is impossible for a number to be given otherwise than through

its position in the number sequence, i.e. by indicating its characteristic

45I shall further address this point in Chapter 6.
46See (Adams & Luo 2010) for a precise mathematical characterisation of the principle of itera-

tion. See also (Cantini & Crosilla 2008) for a constructive set theory with operations that includes

a primitive operation of iteration inspired by Weyl.
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property” (Weyl 1918, p. 27).

Weyl’s discussion suggests that the natural numbers are paradigmatic in virtue

of the fact that starting from 0 the iteration of the successor operation allows us

to characterise uniquely each natural number in elementary terms, and by exclusive

appeal to its predecessors. Weyl in particular very clearly emphasises the role of

induction in the characterization of the natural numbers: not only we need an initial

element, 0, and a successor operation but also mathematical induction, to ensure

that we iterate the successor operation sufficiently far to capture all the natural

numbers.47

This is not the case, according to Weyl, for the real numbers, that require the

notion of subset of the natural numbers for their mathematical treatment, and are

therefore not individuals. Similarly as for Poincaré’s notion of invariance, the math-

ematical process is a way of extending beyond the initial structure of the natural

numbers by predicatively justified means (i.e., by arithmetical comprehension). In

this respect Weyl’s “Das Kontinuum” can be seen as contributing also to a precisi-

fication of Poincaré’s requirement of predicative definability, by giving a detailed

analysis of this notion in terms of arithmetical definability. According to the dis-

tinction between base and predicativity constraints that was introduced in Chapter

4, Section 4.5.1, Weyl clearly singles out as the base the natural number structure.

The mathematical process, then, details the predicativity constraints, and counts as

the fundamental tool that allows for an expansion from the base by the iteration of

appropriately constrained operations, enabling us to characterise a predicative no-

tion of set. On reflection, the principal ingredients of the notion of predicativity with

which Weyl refines Poincaré’s predicativity are: (1) the natural number structure,

(2) simple arithmetical operations, corresponding to the application of arithmetical

comprehension, and (3) the iteration of this process.48

47This point will be further discussed in some detail in Chapter 6.
48The iteration was then further extended within the logical analysis of predicativity to allow
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As already hinted at, Weyl’s mathematical process and its ensuing notion of set

is the prerequisite for his reconstruction on secure grounds of fundamental portions

of analysis. Predicativity then appears as a way of casting an arithmetical eye on the

continuum.49 The justification of Weyl’s mathematical analysis of the continuum

ultimately relies on the justification of the natural number structure (with induc-

tion), and the logical operations described by the mathematical process. These are

the building blocks that are used to produce genetically a notion of set as extension

of an arithmetical property.

Weyl’s notion of set and its application in “Das Kontinuum” to analysis are a

fundamental step in understanding how far this very limited conceptual apparatus

can extend and which parts of ordinary mathematics their assumption can justify.

The results obtained since in mathematical logic have further sharpened Weyl’s

analysis, as expounded in Chapter 4. There is another aspect that makes both

Poincaré and Weyl’s accounts particularly fascinating, the unexpected similarity

with aspects of the notion of set that underlies Martin-Löf type theory. A thorough

discussion of the latter is well beyond the aims of the present work. However, in the

next section I should like to highlight some aspects that are particularly significant.50

5.5 Preludes to a constructive notion of set

A recurrent theme in the constructive mathematical literature is that for which a

set is defined in terms of a law or a rule that specifies the elements of the set and

for iterations along the predicatively provable ordinals (see Section 4.2).
49Weyl expresses the conviction that we can not hope to gain exact mathematical understanding

of the “intuitive continuum”. The latter is the continuum as “given in the intuition of space”, the

arithmetical continuum is instead “constructed in a logical conceptual way” (p. 49). The exact

mathematical (i.e. arithmetical) continuum represents as far as we can go in our attempt to give

precise mathematical treatment of the intuitive continuum, in a way that is useful for science.
50See e.g. (Martin-Löf 1984, Nordström et al. 1990) for detailed treatments of type theory, and

(Dybjer & Palmgren 2016, Crosilla 2006) for more elementary introductions.
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their identity conditions. This view, for example, is presented in Bishop’s (1967)

monograph. According to Bishop a set can be specified by explaining:

• Existence: how to construct the elements of the set;

• Identity: when two elements of the set are equal.

In this thesis I have largely neglected the important issue of identity, due to space

constraints. I wish, however, to briefly observe that the notion of set as extension

of a definition or a property that emerges from Poincaré and Weyl’s writings is very

modern in this respect. This notion of set manifests, in fact, a form of intensionality

at the level of definitions (or properties), as more than one definition (or property)

may correspond to the same set. In particular, Weyl’s mathematical process shows

how to obtain sets as extensions of properties, and a set may be the extension of

a number of properties. Weyl therefore introduces an extensionality criterion for

sets: given properties P and P ′, we identify the extension of P and the extension

of P ′, if and only if the same objects satisfy the properties P and P ′.51 This has

surprising similarities to Martin-Löf type theory, that was introduced to formally

capture Bishop’s notion of set in (Bishop 1967). There are, in fact, intensional

and extensional variants of constructive type theory (see, for example, Nordström

et al. 1990). The first offers advantages for computer computation (like, for example,

decidability of type checking), while the second facilitates the treatment of math-

ematical notions.52 It is the intensional variant of type theory that has attracted

most attention in very recent times, as the full potential of intensional equality has

been realised and is currently being exploited within the Homotopy Type Theory

project (Univalent Foundations Program 2013).

51See also footnote 37 at page 160.
52In fact, variants of intuitionistic type theory have been proposed that exploit both intensional

and extensional components within a single formalism (Maietti & Sambin 2005, Maietti 2007,

Maietti 2009).
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As to the condition of existence, there is a similarity between Poincaré’s notion of

“genre” and the notion of category in (Martin-Löf 1984). At the core of constructive

type theory (Martin-Löf 1984) there is a distinction between categories and sets. The

fundamental difference between sets and categories lies in that the definition of a

set is more exacting than that of a category. In particular, the definition of a set

requires rules that specify step by step (i.e. inductively) the construction of the

set in terms of its elements.53 There is no such requirement for the definition of a

category. Martin-Löf writes (Martin-Löf 1984, p. 21):

A category is defined by explaining what an object of the category is and

when two such objects are equal. A category need not be a set, since

we can grasp what it means to be an object of a given category even

without exhaustive rules for forming its objects.

In addition, (Martin-Löf 1984, p. 22):

To define a category it is not necessary to prescribe how its objects are

formed, but just to grasp what an (arbitrary) object of the category

is. Each set determines a category, namely the category of elements of

the set, but not conversely: for instance, the category of sets and the

category of propositions are not sets, since we cannot describe how all

their elements are formed.

It is tempting to see a similarity between Martin-Löf’s categories and Poincaré’s

“genre”, the general specification of a set that is short of a complete definition (see

Section 5.3). As already clarified above, according to the predicativist, it does not

suffice to give a general condition that is common to all the elements of the set,

in particular in the case of infinite sets. We also need to offer a definition that

allows for the “generation” of the elements of the set step by step. In the case of

53See Chapter 6 for an example of inductive definition in the particular case of the set of natural

numbers.
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type theory, the thought is that there is a crucial distinction between a set and a

category. The first has a structure, can be pictured as constructed step by step from

the elements according to a uniform rule. A category, instead, gathers together a

collection of unstructured objects. Specifying a category suffices to recognise an

object as belonging to the category, when prompted with one, but it does not offer

a description (of a process of construction) of all of its elements. Martin-Löf also

insists that a set and not a category is to be thought as a domain of quantification.

Another observation relates to Weyl’s mathematical process. This may be seen

as making precise sense of Poincaré’s discussion on invariant or complete definitions.

In fact, Weyl’s process bears surprising similarities with the inductive specification

of the sets in Martin-Löf type theory. An important difference is that in type theory

one has more than the natural numbers as starting point, as one allows for gener-

alised inductive definitions (see Chapter 4, Section 4.4.2.) In addition, the process of

construction itself is more general, as it employs so-called dependent types.54 How-

ever, the overall set-up has remarkable similarities with Weyl’s strategy. In type

theory we start from some initial (inductively defined) set, among which are the

natural numbers. We then apply the logical operations to obtain complex proposi-

tions (that are essentially a generalization of Weyl’s properties). As mentioned in

Chapter 4, Section 4.4.2, the Curry-Howard correspondence is in fact an isomor-

phism in type theory, which enables an identification of propositions with sets.55

The correspondence that Weyl saw between properties and sets, that enables us to

see sets as extensions of properties, is therefore here strengthened to an identifi-

54Another important difference lies in the fact that Weyl considers the natural numbers as

individuals, fully determinate, and thus admits classical logic, while Martin-Löf type theory is

intuitionistic.
55See Chapter 1, Section 1.2.2 for the Curry-Howard correspondence. Note that in Chapter 1

I have formulated the Curry-Howard correspondence in terms of formulas and types. In the case

of Martin-Löf type theory we need to speak of propositions and sets. The underlying idea of the

correspondence is unchanged.
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cation of these two levels. The significant fact is that this identification is at the

heart of the computational reading of the notion of set in type theory. The avail-

ability of an inductive description makes a set in type theory a datatype in a very

general programming language. We can program with sets. These observations are

indicative that the notion of set as extension of a predicate better complies with

the computational vocation of type theory than the abstract notion of arbitrary set

that underpins ZFC set theory. The availability of a step by step description of the

“construction” of a set makes it computational and ideal for programming.

5.6 Conclusion

In this chapter I have analysed the opposition between two alternative conceptions

of set: set as arbitrary and set as extension of a predicate. An arbitrary set may be

seen as a collection of elements brought together independently of a law or a rule.

A set as extension of a predicate is characterised by a tie with a predicate (or a

definition or a property) which determines its extension step by step. It is the latter

notion of set that progresses through the predicative tradition and intersects with

the attempts by Poincaré and Weyl to clarify the notion of predicativity and the

nature of predicative analysis, respectively.

In this chapter, I have recalled Poincaré’s notion of set as extension of a def-

inition, and its role in clarifying the characterisation of predicativity in terms of

invariance. The latter is crucially appealed to in order to ensure the stability of the

extension of definitions, that is particularly needed whenever a set is used as domain

of quantification in defining new mathematical entities. Poincaré gestures towards

a genetic construction of sets that anticipates in a number of respects today’s con-

structive notion of set as exemplified in Martin-Löf type theory.

Weyl’s mathematical process is an exemplary attempt at clarifying in full detail

a notion of arithmetical set, and exploring how far the assumption of the natural
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number structure and simple logical operations can bring us. A fundamental con-

tribution by Weyl is the explicit recognition of the paradigmatic role of the natural

number structure within mathematics.56 Therefore with Weyl we have the offi-

cial birth of predicativity given the natural numbers. Weyl’s mathematical process

establishes a parallelism between properties and sets, and engenders an inductive

structure at the level of properties that is then mirrored by their extensions, the

sets. This has remarkable similarities with the Curry-Howard correspondence that

is at the heart of Martin-Löf type theory.

56Weyl’s intuitions have been largely confirmed by the results in mathematical logic discussed

in Chapter 4, Section 4.3, as substantial portions of ordinary mathematics can be reduced to

arithmetic.



Chapter 6

The natural number structure and

strict predicativity

In Chapter 5 I have highlighted the fundamental role of the natural number structure

within the predicativism of Poincaré and Weyl. As further discussed in Section 6.1,

for these authors the natural number set equipped with the principle of induction

is at the centre of all of mathematics. In fact, as detailed in Chapter 5 an appeal to

this structure together with simple logical operations enables for the articulation of a

predicative notion of set whose principal aim is to offer a secure and uncontroversial

foundation for mathematics (Weyl 1918). This comes at a price, as restrictions

need to be introduced at the level of those sets that are beyond the natural number

structure itself, therefore affecting the notion of power set of the natural numbers.

The latter is at the heart of analysis and therefore a new, more careful development

of analysis had to be carried out. In fact, Weyl (1918) clearly states that whatever

can not be accounted for in this way ought to be renounced.

In the present Chapter I shall consider proposals that appeal to predicative

themes to suggest an even more radical perspective, as they question the very nat-

ural number structure. One way of motivating these positions is by requiring that

predicativity constraints ought to be applied all the way through. The contention

173
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is that if they are so applied, then the principle of induction, that is essentially

required for the development of arithmetic, comes into question. The conclusion is

that we can offer no non–circular justification of the whole natural number struc-

ture. Therefore, if we wish to fully comply with predicativity we ought to introduce

restrictions already at the level of the natural number structure itself.

We can then schematically distinguish two possible predicativist strategies with

respect to the natural number structure. We might accept the natural number struc-

ture in its entirety and adopt predicativity constraints starting from the subset of

the set of natural numbers. Or we may object to the very natural number structure

and rely on an appropriate substructure of it to deliver a predicative form of math-

ematics. According to the terminology introduced in Chapter 4 these two strategies

may be distinguished by the different bases their proponents are ready to accept.1

The first strategy may be motivated by a number of reasons, like, for example,

Poincaré and Weyl’s contention that the natural number structure is synthetic a

priori. Appropriate argumentation will need to be offered in this case to clarify why

exactly the natural number structure, and no less and no more, should be accepted

as our base. In Chapter 7 I shall explore another possible way of arguing for the

assumption of the natural number structure as base. This arises if we claim that this

structure is necessary in order to develop any reasonable portion of mathematics. An

argument along these lines seems particularly persuasive if it relies on considerations

of which form of mathematics is necessary for science. A justification of the choice

of the whole natural number structure as base for a form of predicativity would

require therefore sufficient evidence that exactly the natural number structure is

necessary for the development of our best scientific theories. In Chapter 7 I shall

1In this chapter I shall be primarily concerned with strict predicativism, that arises by adopting

the second strategy. Predicativism given the natural numbers and constructive predicativism may

be seen as implementing strategies of the second kind. In the following, for simplicity, I shall refer

to the first of these two options.
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argue that more work is required to fully assess the strength of “minimal” theories

for the development of all the mathematics that is required for science, so that it is

unclear, so far, what the outcome of this strategy would be.

In the rest of this Chapter I shall consider positions that arise if we object to the

natural number structure. I shall consider two (non-exclusive) approaches. The first

is related to the desire to offer an absolutely correct and safe form of mathematics.

The thought here is that all but the most trivial assumptions ought to be considered

with suspicion in building up a correct or safe form of mathematics. The claim is

that the principle of induction is also to be placed under scrutiny, as it does not

seem to be among those most trivial assumptions. Therefore, we ought to offer a

clarification or a justification of this principle. The contention is that this can not

be done without giving rise to a form of vicious circularity: we seem to require

the assumption of induction in any attempt to justify it. The consequence of this

strategy is that it imposes the application of predicativity constraints all the way

through, thus without exempting the natural number structure itself. This gives rise

to forms of mathematics that introduce severe restriction to mathematical induction,

as discussed in Section 6.2 below.

Another route also brings an objection to the assumption of the natural numbers

as base. Here the thought is that the natural number concept requires an expla-

nation, and that the latter has to be non-circular (Section 6.6). One could in fact

claim that the natural numbers play a fundamental role within mathematics as a

basic domain of quantification. As a consequence, the concept of natural number

requires a genuine clarification that avoids any reference to this very domain; how-

ever, it is argued, any attempt at explaining it results in circularity. The perhaps

surprising conclusion that is drawn here is not that we ought to impose predicativ-

ity constraints all the way through, but that we ought to change our conception of

quantification domain, shifting to intuitionistic logic. This strategy will be the focus

of Section 6.6.
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In the following I shall first of all examine Poincaré and Weyl’s objections to any

attempts to justify induction (Section 6.1). I shall then examine Nelson’s criticism

of the induction principle in (Nelson 1986) (Section 6.3). This will be the starting

point for an analysis of a similar complaint by Parsons (Section 6.4). I shall also

consider the role of induction in the inductive definition of natural numbers (Section

6.4.2), and then examine Nelson’s thought, once more, to clarify with an example

the role of induction in the definition of natural numbers (Section 6.5). In the final

Section 6.6, I shall explore ideas suggested by Dummett’s discussion on indefinitely

extensible concepts (Dummett 1991, Dummett 1993), and see which consequences

one might wish to draw from them from a predicativist perspective.

To conclude, I shall suggest the following thought: strict predicativism can be

seen as lying at the “intersection” between predicativity given the natural numbers

and constructive predicativity. I shall suggest that if, as argued by Nelson and

Parsons, impredicativity is found to affect the natural number structure and if this

is seen as problematic, then one has two options: (i) maintain a classical view of

universal quantification and abide to strict predicativism, or (ii) give an intuitionistic

reading of universal quantification and proceed to a more encompassing form of

mathematics.

6.1 Circularity and Mathematical induction

The natural number structure plays a fundamental role within the predicativism

of Poincaré and Weyl. A crucial component of the natural number structure is the

principle of mathematical induction, or, simply, induction. This allows one to reason

inductively on the natural numbers: if we can show that a property holds of 0, and

that whenever it holds of a natural number, n, it also holds of its successor, then we

can conclude that that property holds of every natural number. In modern logical

terminology, within the familiar Peano Arithmetic (PA), induction reads as follows:
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[ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(Suc(x)))]→ ∀xϕ(x),

where ϕ is an arbitrary formula in the language of PA, and Suc(x) is the successor

of x.

Weyl is very clear in stating that the principle of induction is a fundamental

component of the natural number structure. From a contemporary perspective

Weyl (1918, p. 37) appears to suggest that the validity of induction is due to the

fact that the natural numbers are a prototypical inductively defined structure: they

can be pictured as a sequence produced through an iterated application of the suc-

cessor operation.2 That is, Weyl states very perspicuously that it is in virtue of the

fact that the natural numbers can be seen as if they were produced by repeated

applications of the successor operation that we can reason by induction on them. In

(Weyl 1918) induction is expressed in terms of a principle of iteration that allows

us to argue inductively on the natural numbers.3 Echoing Poincaré, who claimed

that the mathematical induction principle is synthetic a priori, Weyl (1918, p. 48)

highlights that iteration is a form of pure intuition; in fact, this explains its fun-

damental role within mathematics: “the idea of iteration, i.e., of the sequence of

the natural numbers, is an ultimate foundation of mathematical thought”. When

setting out his mathematical process Weyl claims that the natural numbers are not

only the primitive category that is required in order to justify analysis, but they

are “presupposed in every mathematical discipline” (Weyl 1918, p. 25). Weyl then

observes that even in disciplines such as geometry, analysis, group theory, and so

on, “the natural numbers are, from the start, related to the objects under consid-

eration.” (Weyl 1918, p. 25) In the particular case in which the natural numbers

are the only initial category, “then we arrive at pure number theory, which forms

the centerpiece of mathematics; its concepts and results are clearly of significance

2In Section 6.4.2 I shall expound in detail the inductive definition of the natural numbers.
3See also Chapter 5, Section 5.4.2.
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for every mathematical discipline.” (Weyl 1918, p. 25)

As discussed in Chapter 5, Section 5.4, in “Das Kontinuum” Weyl shows how

to build a safe and unshakable notion of set from the natural numbers by means of

“characteristic properties” that are obtained from primitive properties and relations

of the natural numbers, that is, by applying arithmetical comprehension. Weyl

therefore condemns Dedekind’s attempts to reduce the concept of natural number

to that of set as viciously circular, since, from Weyl’s perspective, the intuition of

iteration is required in order to grasp the very concept of set. In this respect Weyl

claims to be in full agreement with Poincaré, and writes (Weyl 1918, p. 48):

“the idea of iteration, i.e. of the sequence of the natural numbers, is an

ultimate foundation of mathematical thought. For if it is true that the

basic concepts of set theory can be grasped only through this “pure”

intuition, it is unnecessary and deceptive to turn around then and offer

a set-theoretic foundation for the concept “natural numbers.”

Before Weyl, in a number of writings Poincaré objected to various attempts to

reduce the natural number structure to more fundamental concepts (see, for exam-

ple, (Poincaré 1906)).4 Poincaré observed that in order to either prove the principle

of induction, or show that the definition of the natural number structure is non–

contradictory, one needs to assume the very principle of induction, thus resulting

in a vicious circularity. One of Poincaré’s main targets is Russell. In Chapter 3,

Section 3.4.1, I have mentioned the treatment of the natural numbers in Russell

(1908); there, in an attempt to establish the logicality of the concept of natural

number, Russell adopted Frege’s definition (see Chapter 3, Example 1). To impose

predictivity constraints and block a variety of paradoxes, Russell (1908) introduced

4A discussion of the role of intuition in Poincaré is beyond the remit of this thesis. However, it

is important to note that intuition (as, for example, manifested in the principle of induction) plays

a crucial role in Poincaré’s philosophy of mathematics, as it ensures creativity in mathematics, the

worry being that application of logic alone would reduce mathematics to mere calculation.
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ramified type theory (see Chapter 3, Section 3.4). This, however, makes the math-

ematics awkward, in particular giving rise to natural numbers of different orders

and preventing proofs by induction of simple arithmetical facts. When developing

his ramified type system, Russell felt compelled to introduce the axiom of reducibil-

ity to allow for proofs by induction of the necessary generality. Poincaré was very

dismissive of this solution, a crucial objection to Russell’s strategy being that it

introduces a new postulate, reducibility, that is less evident than the principle that

it is supposed to clarify.

For Poincaré and Weyl, the above considerations enforced the assumption of

mathematical induction, since any attempt to prove or reduce it ought to presup-

pose it already, or, indeed, require to resort to dubious postulates. In addition,

as promptly recognized by all parties, including Russell, mathematical induction is

essential for the development of even elementary parts of arithmetic (see Chapter 3,

Section 3.4.1, and Section 6.5 below). Therefore in (Weyl 1918) the natural number

structure in its entirety, with full mathematical induction, was accepted as a starting

point, and predicative restrictions were introduced at the next level of mathematical

idealization, affecting the concept of property of the natural numbers (and hence

that of set of natural numbers).

Poincaré and Weyl’s charge of vicious circularity in any attempt to justify in-

duction has seen new life in recent times, as a number of authors have denounced

the impredicativity of induction. If induction is impredicative, this will certainly

substantiate the difficulties noticed by Poincaré and Weyl in attempts to explain

induction away.
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6.2 Worries about mathematical induction: strict

predicativism

As noted in Chapter 4, Section 4.4.1, Nelson (1986) has objected to the assumption

of the natural number structure on the grounds that it is already impredicative.

Nelson (1986) consequently set up a form of “predicative arithmetic” that drastically

restricts the principle of induction on the natural numbers, and, consequently, the

realm of justified mathematics.5

Parsons has also maintained the impredicative character of the natural number

structure with full induction (Parsons 1992, Parsons 2008).6

5Interpretability in Robinson’s system Q seems to be the criteria for predicativity that Nelson

applies in his Predicative Arithmetic (Nelson 1986). System Q is a weak subsystem of PA with

axioms for successor, addition and multiplication, but without induction. The views expressed in

(Nelson 1986) then justify up to weak subsystems of PA that allow for forms of bounded induction

(see e.g. (Buss 1986)). It has been argued that these systems capture the concept of feasibility

(Buss 1986). As further discussed below, a distinctive characteristic of Nelson’s predicativity is

that it does not countenance the totality of the exponentiation function.
6Parsons’ notion of strict predicativity is less precisely formulated than Nelson’s. Notwithstand-

ing the similarity of arguments, there is a substantial difference of outcomes between Parsons and

Nelson’s approaches to strict predicativity. Parsons, in fact, seems persuaded that the totality of

exponentiation can be justified from a strictly predicative perspective. To corroborate this convic-

tion, Parsons refers to recent work that addresses the strength of predicative versions of Frege’s

arithmetic. The literature on this topic is very rich. See, for example, (Heck 1996, Burgess

& Hazen 1998, Ferreira & Wehmeier 2002, Linnebo 2004, Burgess 2005, Visser 2009). That

research points towards systems that are substantially weaker than primitive recursive arith-

metic, but stronger than Nelson’s, in particular they do account for the totality of exponentiation

(Visser 2009). My understanding is that Parsons believes that more work needs to be carried out

to fully clarify the extent of strict predicativity. He seems however inclined to accept at least

elementary arithmetic as justified from a strict predicative perspective. Elementary arithmetic is

a subsystem of Peano Arithmetic that is weaker than primitive recursive arithmetic, but stronger

than Nelson’s predicative arithmetic. It is a very robust and a well understood system (see also



6.2. STRICT PREDICATIVISM 181

Nelson and Parsons’ forms of predicativity give rise to different forms of math-

ematics that lie below primitive recursive arithmetic. According to an influential

analysis by Tait (1981), the latter allows for the formalization of finitary reasoning.

Therefore the above mentioned forms of predicativity have also been called strict

predicativity, as they give rise to a more constrained perspective than finitism. In

fact, Nelson’s predicativism strongly resembles a form of strict finitism. Both Nel-

son and Parsons contend that a thorough avoidance of impredicativity forces us to

accept as justified only a fragment of finitist arithmetic.

In the following I shall examine Nelson and Parsons’ objections to the induction

principle. However, before doing so, it is necessary to consider a natural objection.

If the adoption of predicativity constraints all the way through brings us to a form

of strict finitism, then one might worry that the resulting mathematics would be

far too weak to be of any interest at all. This would then make the unrestricted

adoption of predicativity constraints simply implausible and force us to argue for

a more reasonable (and generous) starting base (e.g. the whole natural number

structure). In reply one might observe that a thriving field at the intersection be-

tween mathematical logic and computer science has emerged in the last few decades,

that requires very weak systems to investigate phenomena related to computational

complexity (see e.g. Dean 2016). As a consequence strict predicative mathematics

is highly interesting. This observation, however, is unlikely to dispel the worry, if

the resulting mathematics does not have sufficient breadth to account for the appli-

cability of mathematics to science. As further examined in Chapter 7, substantial

work is needed to clarify which form of predicativism, if any, is sufficient for our

best scientific theories. In particular, Ye (2011) has argued that perhaps already

systems that can be considered within the realm of strict predicativism (according

Chapter 7). If Parsons’ strict predicativity allows for elementary arithmetic, then it is sufficient

to justify the form of arithmetic that has been used by Ye (2011) to develop substantial parts of

contemporary analysis (see Chapter 7).
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to Parsons) might suffice for expressing all scientifically applicable mathematics. In

other terms, we can not a priori rule out the adequacy for science of some version of

strict predicativism, and this makes this kind of objection, so far, difficult to press.

6.3 Nelson’s criticism of mathematical induction

Nelson’s motivation for his predicative arithmetic is briefly announced in less than

two pages at the opening of (Nelson 1986), and then expanded on by further com-

ments scattered through out the book. While the technical work which Nelson has

contributed to promoting is currently enjoying attention within mathematics and

computer science, his motivation has often caused puzzlement and perplexity.

Nelson (1986) presents his main objections to the “impredicativity of induction”

in the first two pages of his book. In a rather dense paragraph he writes:

The reason for mistrusting the induction principle is that it involves an

impredicative concept of number. It is not correct to argue that induc-

tion only involves the numbers from 0 to n; the property of n being

established may be a formula with bound variables that are thought of

as ranging over all numbers. That is, the induction principle assumes

that the natural number system is given. A number is conceived to be an

object satisfying every inductive formula; for a particular inductive for-

mula, therefore, the bound variables are conceived to range over objects

satisfying every inductive formula, including the one in question.

To ease an understanding of Nelson’s thought it might be useful to separate the

following claims.

1. There is a difficulty with the principle of induction due to its involving an

impredicative concept of number.
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2. The natural numbers are conceived of as those objects that satisfy every in-

ductive formula.7

3. In some cases of application (use) of the induction principle the formula on

which we carry out the induction contains unbounded quantifiers, that is,

quantifiers that range over all the natural numbers.

4. Suppose that one has a proof by induction on a formula A that contains

unbounded quantifiers, as in 3. By 2, the bound variables in A are thought of

as ranging over objects that satisfy every inductive formula. A is one of them.

5. Therefore the bound variables in A are thought of as ranging over objects that

satisfy A.

Nelson stops here, but I imagine the conclusion he draws is that this is an unbearable

form of circularity.

Even in this more systematic form, Nelson’s criticism of induction is far from

clear. There is evidently a form of circularity involved in uses of induction, but what

is precisely the problem with it?

Reading Nelson we might be tempted to find in his discussion the old objection

to the Fregean definition of natural numbers that was discussed in Chapter 3, Sec-

tion 1. Statements 1 and 2 in my reconstruction of his thought may suggest this

interpretation. In Chapter 3, Section 1, within a second order context, the Fregean

definition of natural number was so formulated:

N(n) := ∀F [F (0) ∧ ∀x(F (x)→ F (Suc(x)))→ F (n)],

where F is a predicate variable.8

7Note that this is a rendering of the familiar Fregean definition of natural numbers, that was

discussed in Chapter 3, Example 1.
8Nelson works within the first order context of PA, and thus presents the definition of natural

number as follows: n is a natural number if it satisfies every inductive formula. We say that ϕ
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From a logical perspective, the impredicativity of this definition is due to the fact

that we have an unrestricted quantification at the second order. This is given by

the quantifier ∀F at the front of the expression, that ranges over predicates (standing

for properties of natural numbers). A worry here is that for this quantifier to make

sense we need to already have available as a set (a totality) the collection of all

properties of the natural numbers, including N . This seems a justified worry and

points 1 and 2 in my reconstruction of Nelson’s thought (page 182) suggest that this

might be a worry for Nelson, too. However, the second order form of the definition

of natural number does not seem to be the principal worry in Nelson’s text, as it

would not directly explain his insistence on the impredicativity of induction in case

of unrestricted quantifiers.9

More precisely, Nelson’s text seems to convey a worry related to the occurrence

of unrestricted quantifiers in specific uses of induction (see points 3–5 in my recon-

struction at page 182). Recall PA’s formulation of induction at page 177. Since

the induction principle introduces no constraint on the complexity of the formula ϕ,

is inductive if the following holds: ϕ is satisfied by 0 and it is satisfied by the successor of x,

whenever it is satisfied by x. A dissimilarity between PA’s formulation of induction and Frege’s

definition of natural number is that the first is schematic, in that, unlike the Fregean definition

above, it does not explicitly quantify on formulas at the second order. One then might worry that

the conclusions I draw in the following on Frege’s definition will not necessarily apply to Nelson’s

context. The issue of the relation between PA’s formulation of induction and the second order

version of it (where we have a second order quantifier over formulas) is of relevance to this debate,

but will be presently omitted (see e.g. Isaacson 1987). The principal reason for this omission is

that in subsequent parts of this Chapter I shall consider the claim that already a not explicitly

second order form of induction involves impredicativity (Section 6.4.2), so that my analysis applies

generally.
9As further discussed below, it is also better if the main complaint does not depend on particular

syntactic features of the definition of natural numbers. In fact, if Nelson’s worry were only the

second order form of the Fregean definition of natural number, then if we could offer another,

not explicitly second order definition of the natural numbers, this might suffice to eliminate all

concerns (see Section 6.4).
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one might apply induction to a formula ϕ that contains unbounded (or unrestricted)

number quantifiers; for example ϕ could be: ∀nχ(n) or ∃nψ(n) (where χ and ψ may

contain further number quantifiers). Note that as Nelson’s context is the first order

theory PA, the concern in this case is the range of quantifiers that are first order:

quantifiers in PA range only over natural numbers, not over sets or properties of

them. Here the issue seems to be that in some particular uses of the induction

principle in which the formula we induct on has unrestricted quantifiers, the natural

number structure needs to be presupposed in order to act as domain of quantifica-

tion. That is, the natural numbers need to be assumed as given in their totality

prior to those applications of the induction principle. This seems to be the content

of point 3 in my reconstruction at page 182. However, if we furthermore suppose

that induction plays a role in the definition of the natural numbers (points 1–2),

we have an apparent circularity: we need induction to define the natural numbers,

but we need the set of natural numbers to act as domain of quantification in those

instances of induction that are needed for the definition of the concept of natural

number.

If my interpretation of Nelson’s discussion is correct, the charge of vicious cir-

cularity relates to uses of induction. One might find this problematic, since the

induction principle is typically appealed to as a principle of proof : to prove that a

property holds of all the natural numbers. It is therefore unclear what relation this

bears with impredicativity as a characteristic of definitions.

In the following Sections 6.4–6.5, I shall address the question of whether induc-

tion plays a “definitional role”, that is, whether it contributes in an essential way to

the definition of the concept of natural number. To anticipate the conclusion of my

analysis (Section 6.5), I shall observe that if the whole natural number structure is

already available, then the principle of induction is a principle of proof. However,

from a perspective that does not assume the natural numbers as given, the uses of

induction alluded to by Nelson can be seen as performing also a definitional role.
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Induction, in fact, allows us to prove that certain numbers can be computed (or that

certain expressions can be regarded as natural numbers), therefore also determining

the extension of the natural number concept.

6.4 Parsons and roles of induction

To clarify the “definitional” role of induction I shall first of all discuss ideas brought

forward by Parsons in (Parsons 1992, Parsons 2008) that closely resemble Nelson’s

charge of impredicativity of induction.

It is important to note that Parsons’ discussion presupposes a form of the notion

of set as extension of a predicate that was discussed in Chapter 5. This point will

be further discussed below.10

One possible concern with Nelson’s objection to the impredicativity of induction

is that it presupposes a crucial role for induction within the definition of the natural

numbers. Such a role is clear in the case of the Fregean definition of the concept of

10At a later stage in this chapter I shall also make use of the notion of set as extension of a

concept, as this is the notion that is used by Dummett (1993) (and also alluded to by Nelson

(1986)). In the previous Chapter 5 I have argued that the notions of set appealed to by Poincaré

and Weyl can be seen as particular precisifications of Parsons’ notion of set as extension of a

predicate, and I have endeavoured to clarify Weyl’s own way of specifying this notion. Prima

facie it would seem that depending on how we frame concepts, the notions of set as extension of a

concept and set as extension of a predicate may diverge in considerable respects. In particular, it

seems possible to frame concepts so to give rise to a notion of set as extension of a concept that

does not forbid impredicativity. This is for example hinted at by Gödel (1944) and also by Carnap

(1931) (where it is attributed to Ramsey). These considerations suggest to carefully distinguish

these two notions. However, for the present analysis the most important aspect that I wish to

highlight is that both notions introduce a tie between a concept or a predicate on the one side, and

its corresponding set on the other. In other terms, for the present discussion the crucial aspect I

am interested in, is the assumption that the predicate or the concept are prior to their extension.

The different requirements that are imposed by Parsons on the one side, and Dummett on the

other on the respective notion of set will become clear as we proceed in the discussion.
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natural number, since, as noted by Parsons (1992, p. 139), that definition in fact

reduces mathematical induction to a definition of the predicate ‘natural number’.

But can we assume the same role for induction in other definitions as well? Parsons

(1992) addresses this question. According to Parsons (1992, p. 139), who cites

Dummett (1963) for rising a similar point, the impredicativity of induction that we

observe in the Fregean definition “remains if induction is treated not as a definition

but as integral to an informal explanation of the predicate “natural number”, even

if second order logic may not be used, for example if we think of the introduction

of N as an inductive definition.” I shall discuss in detail the inductive definition of

the natural numbers in Section 6.4.2 below. For now it suffices to mention that an

inductive definition of a set may be seen as describing the construction of a set step

by step, by appeal to a finite number of rules. The thought is that an explanation

of the natural number predicate that is effected by means of an inductive definition

also requires induction to fully determine the extension of that predicate.

Parsons’ aim is to dispel a worry: if we could offer a definition of natural number

that, contrary to the Fregean one, is not expressed by an appeal to second order

logic, then perhaps also the difficulties with the alleged impredicativity of induction

might subside. The strategy in (Parsons 1992) is to claim that the impredicativity

of the Fregean definition is due to uses of induction: impredicative applications of

induction are essential to develop even elementary arithmetic. As a consequence,

the Fregean definition is not only prima facie impredicative, but we need to make

use of that impredicativity. Once we have clarified this point, then the argument

for the impredicativity of induction will also apply to any other definition of the

natural numbers that involves a similar role for induction. Parsons (1992) therefore

extends his complaint to other explications of the natural number predicate as, for

example, its inductive definition, as, he argues, it will have to make a similar appeal

to induction and therefore will be plagued with the same difficulties.11

11Parsons distinguishes between an explicit definition and an explication of the predicate “natural
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In order to assess Parsons’ argument we need to clarify if:

1. there are uses of induction that make the concept of natural number impred-

icative, as also claimed by Nelson;

2. other definitions, beyond the Fregean definition of natural number, require an

appeal to uses of induction of the kind mentioned at point 1.

Before addressing these points, it is important to recall which conclusions Par-

sons wishes to draw from the alleged impredicativity of induction. Parsons (1992, p.

139) writes: “The observation that the notion of natural number is already impred-

icative [...] seriously weakens the case for the claim, deriving from Poincaré, that

impredicativity is a sign of a vicious circle and altogether to be avoided.” Therefore

in that article Parsons does not argue for strict predicativism.

6.4.1 Defining the natural numbers

I shall consider examples of problematic uses of induction in the next Section 6.5. In

this Section I shall be concerned with the second point above, Parsons’ claim that

number”. Frege’s is an explicit definition of that predicate, as it is of the form: N(n) = ϕ(n), with

ϕ(n) a second order formula that defines N(n). However, Parsons suggests that e.g. the inductive

“definition” of natural number (to be discussed shortly) may not be regarded as a definition of

the natural number predicate, but, rather, an explication of it. For this reason he phrases his

argument as applying to any explication of the natural number predicate. The issue of the status

of the inductive “definition” of natural number is very interesting, and would deserve further

thought. As discussed in Chapter 5 the role of definitions, and in particular of explicit definitions,

in mathematics is a topic that is intimately related with the debate on impredicativity, as already

intuited by Poincaré. However, I shall avoid discussing this issue in this thesis. In the following

I shall also term the inductive definition of the natural numbers a definition, in agreement with

current mathematical terminology. Mathematical logicians see it as a particular case of what is

known as an“inductive definition”. The practice of calling this a definition is due to the fact

that the rules uniquely determine the natural number set (up to a relevant equality relation, e.g.

extensionality) and this is usually considered sufficient for the mathematical practice.
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other explications of the natural number predicate involve a problematic circularity.

In particular, I shall expound in some detail the inductive definition of the natural

numbers to which Parsons refers in (Parsons 1992) and discuss within this context

the charge of impredicativity of induction.

It is important to note that this is short of what would be required to establish

the impredicativity of the natural number concept: that would necessitate an argu-

ment to the effect that we can not offer a strictly predicative definition of natural

number. Parsons (1992) claims that both the Fregean and the inductive definitions

of the natural numbers are impredicative due to the role of induction in those defi-

nitions. In addition, he addresses an alternative “set-theoretic” definition of natural

number proposed by George (1987) and dismisses it as it shifts to the notion of finite

set essentially the same difficulty with induction. This clearly leaves open the pos-

sibility that other definitions of natural number may be offered that may be shown

not to incur in the same difficulties. In (Parsons 2008, p. 295) the author claims

that “certain explanations of the predicate “natural number” [...] are impredica-

tive.” He also adds that “it might be claimed in addition that the explanations in

question are the philosophically most attractive ones, or even that no explanation

is in sight that is not impredicative.” He observes that the latter claim represents

his position in (Parsons 1992). In Section 50 of (Parsons 2008) the author expands

on (Parsons 1992) and discusses other proposals that might be seen as offering a

predicative justification of the natural numbers like, for example, further proposals

that take as primitive a concept of finite set, instead of one of natural number.12

This issue is complex and, as further indicated in Section 6.5.2, I believe that its

assessment requires a careful analysis of strict predicativism, to be carried out not

12In particular Parsons discusses a proposal by Feferman and Hellman (Feferman & Hellman

1995, Feferman & Hellman 2000). An assessment of this proposal goes beyond the aims of this

Chapter, and is particularly complex, as Feferman and Hellman do not specify with sufficient

clarity the notion of predicativity they adopt. It is therefore difficult to fully assess their criticism

of Parsons’ claims.
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only from a conceptual but also from a technical perspective. This ought first of

all set out a notion of strict predicativity and determine its limits, in a similar way

as in the case of the logical analysis of predicativity given the natural numbers (see

Chapter 4). Without a precise characterisation of strict predicativity and with-

out such an analysis it is difficult to make any significant progress on the question

whether alternative explanations of the natural numbers could be considered strictly

predicative.

For these reasons, in the following I shall not attempt to either argue for or

even assess the stronger thesis according to which any explication of the concept

of natural number does involve a form of circularity of the kind discussed in this

Chapter. I shall be content by scrutinizing the weaker thesis that some explana-

tions of the concept of natural number manifest a form of circularity. In addition,

I shall consider the claim that the inductive definition of natural number is one

such. I shall also suggest that this definition is particularly apt to a predicativist

and constructivist perspective. Therefore, unless another, strictly predicative and

equally appealing definition of natural number is provided, a predicativist that does

not offer independent arguments for the exemption of the natural number structure

from predicativity constraints, would have to either adopt strict predicativity or, as

further discussed below, perhaps, move to intuitionistic logic (Section 6.6).

6.4.2 The inductive definition of the natural numbers

To clarify what Parsons (1992) terms the inductive definition of natural number,

it might be useful to first present a different, more typical definition.13 In a set-

theoretic context, the set of natural numbers is introduced by postulating an axiom

of infinity. A common way of presenting the axiom of infinity is by stating that a

least inductive set exists. A set A is inductive if it contains 0 and it is closed with

13For an introduction to inductive definitions see e.g. (Aczel 1977).
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respect to the successor operation: if n ∈ A then also suc(n) ∈ A, where suc(n) is

n ∪ {n}.14 Induction clearly follows from this definition, as if a predicate holds of

0 and it holds of suc(n) whenever it holds of n, then its extension is inductive. As

the set of natural numbers is the least inductive set, it is a subset of the extension

of such a predicate, that therefore applies to every natural number.

Note that the definition above has two components: first one considers all sets

that include 0 and are closed with respect to the successor operation, secondly one

adds that the natural number set is the smallest such set. The second condition

is required to weed out all those “things” that might also belong to inductive sets,

but that are not natural numbers.15 This definition seems to presuppose the pre-

existence of the set-theoretic universe from which we select out of all sets those that

satisfy certain conditions.

In the following I shall consider a different perspective, one that does not appeal

to a previously given domain of natural numbers, or, more generally, of sets. That

is, I shall consider a perspective that arises if we suppose that we might not yet

have the natural numbers available to us. The natural numbers can instead be

viewed as if they were the result of a process of construction, starting from 0 and

taking its successor, repeatedly. Similarly as in Weyl’s mathematical process, it is

as if the mathematical entities were produced starting from some initial object(s)

and by iteration of some elementary operations.16 The advantage of taking this

perspective is that we now can clarify what is required for obtaining the natural

14This is a natural set-theoretic rendering of the Fregean definition of natural numbers that was

discussed above. Such a definition of the natural numbers is termed “Pair Down” by George &

Velleman (1998), to contrast it with the more constructive, inductive or “Build Up” definition to

be considered below. George & Velleman (1998) offer a very clear description of the difference

between the standard set-theoretic definition of natural number and the inductive one.
15A celebrated example of non-natural number that we might wish to weed out from inductive

sets is Caesar, should he happen to belong to an inductive set.
16See Chapter 5, Section 5.4. The crucial difference with Weyl is that he also assumed the

natural numbers as given.
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number structure and, especially, the role within it of the principle of induction.17

If we assume this perspective, then a natural ally is the notion of set as extension of

a predicate that was discussed in the previous chapter, as the predicate can be taken

as describing a procedure that step by step “constructs” the natural numbers.18

From this perspective definitions as the one at page 190 are problematic. In fact,

the very metaphor of weeding out those sets that are “too large” becomes empty:

we do not have available at the start sets from which to eliminate any non-natural

numbers. If we wish to give a definition of natural number that is in keeping with

17The question of what is the related metaphysical picture underlying this perspective and

whether talk of construction processes ought to be understood literally or only metaphorically is

very interesting; however it can not be addressed here. My aim is to clarify which conceptual

presuppositions underlie the natural number structure and, in particular, what is the role of the

principle of mathematical induction within it. If we start from a definition of the natural numbers

as the one at page 190, than the role of the principle of induction is obscured by the fact that

it already holds as a consequence of that very definition. We therefore need to take a different

perspective, and define the numbers as if they were not already available. One might subsequently

wish to explore a number of philosophical options that might further substantiate this picture.
18Another reason for assuming a perspective that does not presupposes the natural numbers as

given is offered by Parsons. Parsons in (Parsons 1992, Parsons 2008) argues for a structuralist

position that does not “give individual identities to the objects playing the role of 0, 1, 2, etc;

therefore there should be no unique answer to the question from what domain the natural numbers

are picked out or even whether there is one.” (Parsons 1992, p. 144). The idea is not to “exclude

the case where there is a previously given domain”. However, Parsons wishes to consider a view that

does not presuppose that “some infinite structure is given to us independently of our knowledge of

the kind of structure the natural numbers instantiate.” (Parsons 2008, p. 268) Parsons then adds:

If there is no such previously given infinite structure, then it is as if we had arrived at

the concept of natural number by pulling ourselves up by our conceptual bootstraps,

so as to understand the notion of some such structure and convince ourselves of its

possibility without having in advance the conception of a domain of objects from

which the objects of the structure are picked out. (Parsons 2008, p. 268–9)
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this very general perspective, the first condition, expressing the closure of a set under

0 and the successor operation, will be restated as describing a generation process for

the natural numbers, starting from 0; while the second condition will be replaced by

an appropriate extremal clause, that states that nothing else is a natural number.

The inductive definition of the natural number is best exemplified by considering

Martin-Löf type theory (Martin-Löf 1975, Martin-Löf 1984). See Appendix 6.7 for

a precise account of the rules for the natural number set in (Martin-Löf 1984). In

this type theory one has three principal kinds of rules: introduction , elimination

and equality rules. The introduction rules introduce the canonical elements of the

set one wishes to define, in this case the natural number set. A canonical element of

a set is a prototypical or standard element of it. In the case of the natural number

set, a natural number is canonical if it is of the form 0 or suc(n), for n canonical.

It is non-canonical otherwise. For example, 2 + 2 is a non-canonical element of the

natural numbers, as we need to perform a computation to reduce it to canonical

form. There are therefore two introduction rules for the natural number set: one

tells us that 0 is a natural number, and the other that the successor of a natural

number is a natural number. The formal presentation of the elimination rule for the

natural numbers is more complex (see Appendix 6.7), but its essence is to express

the induction principle and grant recursive reasoning on the natural numbers. The

equality rules introduce suitable identity conditions. 19

The contention in the following is that through proof by induction, one role of the

elimination rules is to tell us which natural numbers enter into the natural number

structure. Therefore, the role of induction is not to weed out unwanted elements

but, rather, to “allow in” desirable ones. A specific case of application of induction,

will be discussed in Section 6.5. Here I shall give an intuition of this idea in full

generality and from a more standard perspective.

19The equality rules are very important, as indicated in Chapter 5, Section 5.5, but do not

concern us here.
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We may suppose that the inductive definition of the natural numbers defines the

extension of a concept, e.g. expressed by a new predicate, NAT . The introduction

rules tell us that 0 is a NAT , and that whenever n satisfies NAT , so does its

successor, suc(n). In other words, this establishes what counts as a canonical element

of the extension of NAT : a canonical element is of the form fixed by the introduction

rule, either 0 or suc(n) for n canonical. Therefore, if we are prompted with a

canonical expression we have a fixed procedure to ascertain that it is indeed a

canonical element of the extension of NAT . The introduction rules, however, do

not tell us whether expressions that denote non-canonical elements can be allowed

in, nor, more generally, what exactly does belong to the extension of NAT . We

might be tempted to think that we need to take “all” NATs; however, talk of “all”

NATs presupposes that we have somehow closed off the domain of this universal

quantifier, that we already have an idea of what “all NATs” means.

Seen from a more “standard” perspective, one which takes the natural number

structure as given, we can present the process of definition of NAT as a way of gain-

ing right to larger and larger fragments of the classical, externally visible structure

of the natural numbers by way of computations. That is, by successive applications

of induction we enlarge the extension of the predicate NAT (see Section 6.5) to

eventually cover all of the natural numbers.

There is here an important correlation with the discussion in Chapter 5, Section

5.3.2, where I stressed a distinction that emerges in Poincaré’s writings between

a complete definition of a set and a mere specification, or the “genre” (page 154).

Poincaré claims that from a platonistic perspective the mere specification will suffice

to select out of the mathematical objects the elements of the set so specified. From

a predicativist perspective, instead, that does not assume the mathematical objects

as given, one needs to offer also a description of (or at least a rule for constructing)

the elements of the set. In the case at hand, it would be tempting to suggest that the

introduction rules for the natural numbers offer only the “genre”, they specify the
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“canonical form” of the natural numbers, so that when prompted with a canonical

natural number n we can recognise it as such. However, they do not fix in a definitive

way the extension of the natural number concept, they do not prescribe where to

close off, or which “objects” the natural number structure definitely comprises. For

example, they do not tell us whether also 2 + 2 is a natural number or not. We

need to appeal to the recursion principle (i.e. the elimination rule) to perform a

computation and show that 2 + 2 equals Suc(Suc(Suc(Suc(0))). The elimination

rules (and the equality rules) are therefore necessary to reach a complete definition

of the natural number structure (see Sections 6.5 and 6.6 for further clarifications

on this point).

I shall consider a concrete example that corroborates the definitional role of

induction in the next Section 6.5. Here I conclude by observing that the inductive

definition of the natural numbers appears as particularly apt to a predicativist (and

constructivistic) stance. In fact, it seems to capture the idea that we do not wish

to presuppose “external” assumptions (e.g. the existence of some other sets, or the

universe of sets, or, indeed, the definiendum) while defining the natural numbers.

We start from the weakest possible assumptions, 0, and an operation of successor,

and repeatedly apply it to gain larger and larger fragments of the natural number

structure, and finally close off with induction. The definition prima facie appears

as entirely “from within”, and therefore it would be tempting to conclude that it

also complies with the VCP as well as Poincaré’s invariance: we expand step by

step from what we have constructed so far without at any time disrupting what has

already been defined.

Nelson and Parsons’ complaints on induction suggest that this impression is

misguided because of impredicative uses of induction (Parsons 1992, Parsons 2008).

If this is the case, then it is plausible that any other explanation that is acceptable

from a predicativist or constructivistic perspective ought to be subject to similar

objections.
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Parsons claims that we need induction to determine the extension of the natural

number predicate. However, the case of 2 + 2 that was mentioned above does not

suffice to confirm this claim. In this particular case we also have a much simpler

way of showing that 2 + 2 may be brought to canonical form: we simply apply the

successor to 0 twice and then twice again. We therefore need to gain some confidence

that Parsons’ claim is justified: appeals to instances of induction with unrestricted

quantifiers are necessary to determine the extension of the natural number predicate.

In the next Section 6.5, I shall go back to Nelson’s “Predicative Arithmetic” and

utilize his discussion on exponentiation to clarify this point.

6.5 Nelson on exponentiation

Nelson opens his book by formulating the induction principle and giving two ex-

amples of statements that can be proved by induction. These are two existential

statements and are chosen to illustrate the difficulties he perceives with induction.

The first is given by the formula:

θ(n) = ∃m(2×m = n× (n+ 1));

the second is:

π(n) = ∃m(m 6= 0 ∧m is divisible by all numbers from 1 to n).

There is a crucial difference between an application of induction to the first and

one to the second of these formulas. In the first case, for each n, θ(n) asserts the

existence of a number m that is bounded in terms of n, that is, it is not bigger than

n × (n + 1). In the second case, however, we can recover no bound for m in terms

of n, that is, there is no way, given n to predict how big m is going to be. This

observation is crucial for an understanding of Nelson’s approach. His predicative

arithmetic introduces appropriate restrictions that have the effect of allowing only
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for suitably bounded forms of induction; as a consequence, in predicative arithmetic

we can establish ∀nθ(n), but not ∀nπ(n).

This point is closely related to Nelson’s criticism of exponentiation.20 It is well

known that exponentiation quickly gives rise to unfeasible computations, as we can

easily realise by considering short expressions such as 555
55

. The question then is:

how do we persuade ourselves that the expression 555
55

denotes a natural number?

If we think of the natural numbers as inductively defined as in the previous Section

6.4.2, then it is clear that 555
55

is not in canonical form, as it is not a successor of

a canonical natural number. The question above may now be rephrased as follows:

how can we persuade ourselves that 555
55

can be brought to canonical form? The

thought is that we can not hope to reach a conclusion on this expression by repeated

applications of the successor, due to feasibility constraints. However, a proof by

induction will do. I shall now attempt to further clarify this point.

If we allow for the full principle of induction then we can prove that crucial

operations on the natural numbers are well-defined or total.21 For example, we can

show that if n and m are natural numbers, then n + m is also a natural number.22

Furthermore, induction allow us to prove that if n and m are natural numbers, so is

nm. Therefore, if we have full induction, we can ensure that, indeed, the expression

555
55

denotes a natural number.

However, from a “constructivistic” position, the question is whether we are enti-

20Nelson’s reasons for a ban on exponentiation have often been source of puzzlement. In the

following I shall offer my understanding of the difficulty with exponentiation, on the basis of

informal considerations. My interpretation of Nelson’s thought has been enhanced by remarks

to be found in an influential article by Leivant (1991), that proposes a new characterisation of

polynomial time computability. See, in particular, the section entitled: “A foundational delineation

of the main theorem”.
21A function is total if it is everywhere defined, or, equivalently, f : X → Y is total if for every

element x of X there is an element y of Y such that y = f(x).
22In Chapter 3, Section Reducibility we saw that these forms of induction were also a worry for

Russell, as they are not available in a suitable form within ramified type theory.
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tled to assume these instances of induction. Nelson believes that some applications

of induction are in fact justified, but others are not. Nelson’s reasons for this claim

are deeply interrelated to his formalist philosophy of mathematics, that I shall en-

deavour to clarify at the end of this section. I wish however to first attempt a

clarification of this point that does not require adherence to that particular perspec-

tive.

The crucial thought is that only those instances of induction that can be ex-

plained away in terms of the initial conceptual apparatus given by 0 and successor

ought to be justified. We can, for example, make sense of the totality of addition

and multiplication simply in terms of applying the successor operation sufficiently

far. The reason for this is analogous to the one that makes θ(n) above acceptable

for Nelson: we can bound the result of these operations in terms of their inputs. As

a consequence, a proof by induction of the totality of addition and multiplication

on the natural numbers can be seen as a useful device to make our computations

and proofs more economical, faster. But the ultimate justification of the totality of

these functions lays on the possibility of considering simply the initial conceptual

“kit” given by 0 and successor.

The case of exponentiation, so it is argued, is different, as we can not produce

similar bounds in terms of the inputs. The contention is that for exponentiation we

have no other option but to resort to a proof by induction of its totality. In fact,

Nelson’s claim is that an inductive proof of totality of exponentiation requires a

universal quantification on the natural numbers. As Leivant (1991, p. 405) clarifies:

[...] the proof by induction that exponentiation is well-defined over N

presupposes that addition is well–defined for arbitrary elements of N,

i.e., that N is already obtained as a completed totality.

The problem here seems to be the following: suppose we take a genetic construc-

tivistic view of the natural numbers. Then we are not entitled to forms of induction
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in which the inductive formula contains universal quantifiers on the set of natural

numbers, as this very set is, so to speak, in the process of construction. From this

perspective, when we prove the totality of the exponentiation function, we are in fact

showing that expressions that are obtained by using this function can be reduced

to the canonical ones. This way of looking at the natural numbers suggests that

through an inductive proof of the totality of exponentiation we are in fact defining

new natural numbers : we allow ourselves to add to the natural number structure

we have built up so far all the new numbers that can be computed by arbitrary

applications of that function. Consequently, if the inductive proof of the totality

of the exponentiation function essentially requires a universal quantification on the

natural numbers, such a proof is problematic, as it quantifies on the set of natural

numbers and, by doing so, extends it to comprise new natural numbers.23

As discussed below, the issue whether a proof of totality of exponentiation does

contravene to predicativity requires further investigations. At present, the above

discussion establishes at least that the usual inductive definitions of the totality of

exponentiation are radically different from the usual proofs of totality of addition

and multiplication.24 The relevant aspect is that contrary to the case of addition

and multiplication, the usual inductive proofs of totality of exponentiation seem

to depend not on the inputs but on the outputs of the exponentiation function at

previous (smaller) arguments. The thought is then that within a proof of the totality

of exponentiation we have to presuppose that expressions with exponentiation are

already reducible to canonical form.25

23This point will be further discussed in Section 6.6.
24See the thoughtful discussion in Cardone (1995).
25A detailed analysis of these aspects may be obtained by introducing forms of tiering or ramifi-

cation within arithmetic, or a natural device that separates variables that act as inputs from those

that act as outputs of computations. See for example (Bellantoni & Cook 1992, Leivant 1991, Os-

trin & Wainer 2005, Wainer & Williams 2005). In the treatment by Ostrin and Wainer and Wainer

and Williams, one can formally represent the idea that induction is only allowed for those numbers
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6.5.1 Philosophical perspectives

I conclude this section with a brief account of the philosophical view of mathematics

Nelson gestures at in (Nelson 1986). This offers a particular way of substantiating

the genetic constructivistic picture of mathematical entities that I have instead

adopted only for the purposes of my philosophical analysis. Nelson claims that

numbers originated “in sequences of tally marks that were used to count things”.

Subsequently, positional notation was invented, and “[i]t has been universally as-

sumed, on the basis of scant evidence, that decimals are the same kind of thing as

sequences of tally marks, only expressed in a more practical and efficient notation.”

(Nelson 1986, p. 172) The reason for this assumption, according to Nelson, is the

overwhelming belief that mathematical expressions (e.g. sequences of tally marks

or decimals) denote abstract objects. Nelson calls this belief the “semantic view”,

and repeatedly claims throughout the book that it is this view that induces our

uncritical belief in the natural number concept. Nelson, however, does not wish to

make any such “semantic” assumption, and proffers instead a formalist philosophy of

mathematics. Mathematics’ subject matter “is the expressions themselves with the

rules for manipulating them – nothing more. From this point of view, the invention

of positional notation was the creation of a new kind of number”.26 (Nelson 1986,

p. 172)

We find here, once more, a familiar theme that we have also encountered in

Poincaré and Weyl: the opposition to any form of “platonistic” assumption of math-

ematical entities. Nelsons’ concerns are more radical than those already discussed in

previous chapters, as they do not spare the natural numbers, but their motivation

that have previously been defined or proved to exist. It is interesting to note that in this context

a proof of totality of exponentiation requires an alternation of universal and existential quantifier

(i.e. it is Π2).
26Italics mine. See (Marion 2008) for a discussion of the striking similarity between these remarks

by Nelson and views expressed by Wittgenstein (1978, Sections 12, 51).
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appears to be similar in many respects.

The principal reason for Nelson’s objection to these “semantic” assumptions

is that they seem to be appealed to as a way of justifying our belief in the cor-

rectness of mathematics. Nelson believes that the consistency of even elementary

parts of mathematics, as arithmetic, should not be taken for granted. According

to Nelson “semantic” assumptions are, however, at the heart of proofs of consis-

tency of systems as weak as arithmetic. The thought seems to be that in view of

Gödel’s incompleteness phenomenon, the proof of consistency of any formalization

of mathematics that is sufficiently strong to define the concept of natural numbers

requires already a system that exceeds in some sense the resources of the original

one. Nelson’s aim is therefore to develop a very weak form of arithmetic that could

in principle be proved consistent within a strictly predicative theory. Nelson frames

these thoughts in terms of a “modified Hilbert’s programme” whose purpose is to

justify as much mathematics as possible taking as starting point a demonstrably

consistent elementary mathematics. There is only a brief hint at this thought in

(Nelson 1986), however, it is important to observe that the worry of inconsistency,

that motivated the first discussions on predicativity is still very much alive in Nelson.

6.5.2 The limit of strict predicativity

The previous sections aimed at clarifying the strict predicativist criticism of induc-

tion. I have particularly discussed the views of Nelson, and taken into consideration

the example of exponentiation. Suppose that we agree with Nelson and we think

that, indeed, there is an issue with induction as some of its applications are impred-

icative for the reasons examined above. And suppose that we also accept that those

instances of induction have a definitional role: we need them to “fill up” the natural

number structure. Therefore as ways of clarifying the concept of natural number

they are problematic.

Can we conclude from all this that exponentiation is indeed impredicative? It
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seems clear that by way of the previous discussion we have in no way determined

which functions on the natural numbers are total according to a strictly predicative

perspective and which ones are not. Or, equivalently, we have not offered yet any

means of determining from the outside, so to speak, the limit of strict predicativity.

One might suggest that, given Nelson’s discussion of strict predicativity, its external

limit could be placed somewhere around a system that allows for the totality of

addition and multiplication, but not exponentiation. For example, the system of

bounded arithmetic I∆0 would represent a strictly predicative system. In addition,

any system whose strength is greater or equal to I∆0 extended by the totality of

exponentiation is clearly impredicative.

Nelson’s criticism, in fact, suggests that there is a crucial difference between ex-

ponentiation on the one side and addition and multiplication on the other. However,

only a very careful technically informed project can answer the question of whether

indeed the totality of exponentiation offers a case of impredicativity.

A reason for doubting that we can easily reach any clear conclusion on this point

is that the logical analysis of predicativity has uncovered innumerable cases in which

a prima facie impredicativity could be eventually eliminated by a more careful anal-

ysis. As already mentioned in Chapter 4, Parsons has recently suggested that we

may be able to offer a strict predicative justification for exponentiation. Parsons’

conviction seems to rely on the fact that exponentiation can be granted on the basis

of predicative ramified versions of Frege’s arithmetic.27 The thought is that such

systems might play a similar role, within the strict predicativist context, of the sub-

systems of ramified second order arithmetic that were used for the logical analysis

of predicativity (see Chapter 4, Section 4.2); they could be regarded as canonical

systems, on the basis of which to assess the (im)predicativity of mathematical no-

tions. If one could argue for the adequacy of those systems as canonical systems for

27 See e.g. (Heck 1996, Burgess & Hazen 1998, Ferreira & Wehmeier 2002, Linnebo 2004, Burgess

2005, Visser 2009).
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strict predicativity, then Nelson’s complaint about exponentiation would appear to

be motivated by distinct, though related concerns, having to do with feasibility.28

In conclusion, it would seem that a careful analysis of the limit of strict predica-

tivity needs to address the fundamental issue of the choice of what in Chapter 4 I

called the base: which initial “objects” and which initial operations are we granted

from a purely predicativist perspective. In addition, we need to clarify how far we

can iterate permissible operations.

6.6 On Dummett’s indefinite extensible concepts

and the impredicativity of the natural num-

bers

There are important similarities between Nelson’s and Parson’s complaints on in-

duction, and themes arising within Dummett’s discussion on indefinitely extensible

concepts (Dummett 1991, Dummett 1993).29 There are differences, too, as further

evinced below. Dummett (1991) introduces the notion of indefinitely extensible

concept within an assessment of Frege’s logicist programme. From Frege’s logicism

Dummett borrows the notion of set, that is the logical notion of set as extension of a

concept mentioned in Chapter 5. Dummett (1991) offers an argument for intuitionis-

tic logic based on the notion of indefinitely extensible concept. He claims that there

are indefinitely extensible concepts; in particular, all infinite sets are extensions of

28 Some care in assessing this issue is also intimated by a comparison between finitism and

strict finitism. In an influential logical analysis of finitism, (Tait 1981) has argued that Primitive

Recursive Arithmetic (PRA) signs the limits of finitism. Kreisel (1958) has instead claimed that

one can reach full Peano Arithmetic from a finitary perspective. The disparity of outcomes in this

case suggests particular care in addressing also the more complex case of strict finitism.
29See Section 6.6.1 for a clarification of this notion. As further evinced below, there are deep

similarities also with Poincaré’s thought.
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such concepts. The fundamental consequence that Dummett (1991) draws from this

claim is that the extensions of indefinitely extensible concepts are unsuitable as do-

mains of classical quantification. Dummett’s perhaps surprising conclusion is not

that we need to appropriately restrict the notion of legitimate domain of quantifi-

cation, as the strict predicativist claims; it is rather that in mathematics we ought

to reason intuitionistically.

In the following, I shall not attempt to offer an exegesis of Dummett’s texts,

nor an assessment of his position. The purpose of this Section is instead to merge

aspects of Nelson and Parson’s discussion on strict predicativity with themes that

are suggested by Dummett’s argument for intuitionistic logic based on indefinite

extensibility. This will present us with the following picture. Suppose that with

Nelson and Parsons (and (Dummett 1963)) we find an impredicativity already in

the concept of natural number, and, furthermore, that we perceive this as a problem.

Suppose further that we think that this impredicativity requires that unrestricted

classical quantification on the natural numbers ought to be avoided. Then we have

two options: either to persist with classical logic, and restrict legitimate domains of

quantification to strictly predicative ones (according to a suitable notion of strict

predicativity); or, following Dummett’s (1991) suggestion, abandon classical logic

in favour of the intuitionistic one. The latter strategy is suggestive that a change in

logic makes the impredicativity of the natural numbers tolerable in some sense. It

therefore rises the question of why constructive predicativism does introduce some

form of predicativity beyond the natural numbers, in addition to abiding to intu-

itionistic logic.30

30This point will be briefly discussed in Section 6.6.3.
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6.6.1 Existence of indefinitely extensible concepts

Dummett’s starting point in (Dummett 1991) is Frege’s notion of set as extension of

a concept and the central idea is that some concepts, like, for example, the concept

“class that is not a member of itself” are indefinitely extensible concepts.

An indefinitely extensible concept is one such that, if we can form a defi-

nite conception of a totality of all whose members fall under that concept,

we can, by reference to that totality, characterize a larger totality of all

whose members fall under it.” (Dummett 1993, p. 26)

Let R denote the extension of the concept “class that is not a member of itself”. If

we ask whether R is an element of R we engender Russell’s paradox. We have seen

Russell’s (1908) analysis of the paradox that bears his name in Chapter 3, Section

3.3.1. Russell there suggests that the paradox would induce an enlargement of R,

were R considered as a set. Russell therefore concludes that R ought not to be a

set.

Dummett draws a different conclusion from Russell’s paradox. Given R as above,

by Russell’s paradox we are prompted with a new class, R∪{R}, that extends R and

also satisfies the given concept. Dummett’s claim is that Russell’s paradox implies

not that some concepts do not have an extension, rather that some concepts are

indefinitely extensible.

This conclusion has strong affinities with Poincaré’s analysis of Richard’s paradox

that motivates his notion of invariance (see Chapter 3, Section 3.3.2). In fact, the

example of the “genre”, G, that we encountered in Chapter 5 Section 5.3.2 readily

provides another instance of an indefinitely extensible concept. Let us frame that

example within the Fregean terminology that distinguishes between a concept and

its extension. We are given a concept G, and we wish to define a new element, X, of

the extension of G (say ext(G)), by reference to all of ext(G). The definition of X for

Poincaré has the effect of enlarging the extension of G itself. Indefinitely extensible
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concepts like G have a strong affinity with Poincaré’s incomplete definitions (see

Chapter 5).

In Chapter 5 I particularly emphasized the constructivistic outlook of Poincaré’s

conception of set. Poincaré asserts that from a realist perspective impredicativity is

unproblematic. More generally, it would seem that any conception of set that does

not tie a set to its definition and to the definition of its elements seems to be in

principle immune to the difficulties Poincaré perceives.

Dummett’s discussion is more carefully framed then Poincaré’s, and avoids any

direct reference to a constructivistic outlook; however it also assumes that the defin-

ing condition for a set (or its concept) is prior to the set itself. As a consequence,

truths about sets should be established on the basis of reasoning on definitions or

concepts, by means of valid proofs, not as a result of facts that are independently

established.31

6.6.2 Classical and intuitionistic quantification

In addition to the notion of indefinite extensible concept, Dummett (1991, p. 314)

introduces the notion of definite concept: “[a] concept is definite provided that it

has a definite criterion of application – it is determinate what has to hold good of

an object for it to fall under the concept – and a definite criterion of identity – it is

determinate what is to count as one and the same such object.”32 The distinction

31Dummett (1991, p. 303) argues for this particular, logical notion of set, since he believes it is

philosophically unrivaled: it explains the applicability of mathematics, its apparent necessity and

how we could know mathematical truths. I shall not address these claims here. In Chapter 5 I have

suggested that in some contexts, when computability issues are considered particularly relevant,

such a notion of set turns out to be more adequate than more abstract notions of set. In addition,

in Chapter 7 I shall emphasize the importance of clarifying whether more abstract notions of set

can be dispensed of when developing scientifically applicable mathematics.
32See e.g. (Linnebo 2013) for a proposal that makes the above informal characterisation of

definite concept more precise and (Feferman 2012, Linnebo 2013, Rathjen 2016) for the evaluation
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between definite and indefinitely extensible concepts is of primary importance in

relation to the notion of domain of quantification.

First, Dummett considers the case of empirical concepts, like the concept of a

star, that apply to concrete objects. He observes that a realist view of the external

world makes quantification over their extension unproblematic. That is, a sharp

criterion for whether the concept applies to a given object and a sharp identity

criteria suffice to make available standard classical quantification on the extension

of that concept. According to Dummett (1991, p. 314), in the empirical case

provided that the concept is definite, reality will of itself determine the truth or

falsity of statements that quantify over the extensions of such concepts. “On this

view, reality dispels all haziness: we need do nothing further to eliminate it.”

Secondly, Dummett considers the case of mathematical statements: his main

contention is that in this case reality does not determine their truth-values “without

any need for us to circumscribe the domain of quantification or to specify what

objects belong to it.” (Dummett 1991, p. 314) Dummett (1993, p. 25) insists that

in the case of mathematics, we need to “specify the domain outright, or form some

conception of it before interpreting the primitive predicates of a theory as applying to

elements of that domain.” He also writes that we need to “contrive adequate means

of laying down just what elements the domain is to comprise” (Dummett 1991, p.

315). Dummett’s text is suggestive of a distinction between what is required for us

to recognize that a certain mathematical entity is e.g. a real number and offering

means of circumscribing the domain of real numbers. The latter amounts to saying

which real numbers belong to the domain.

A crucial component of Dummett’s discussion is the thought that it is only clas-

sical quantification that requires a circumscribed domain. In the classical case, we

of the definiteness of mathematical statements within the context of appropriate formal systems.

In particular, (Feferman 2012, Rathjen 2016) address the question of the lack of definiteness of the

Continuum Hypothesis.
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need to offer a complete specification of the domain of quantification, one that deter-

mines in a definitive way which elements are in the domain. Classical quantification

requires that the conception of the domain be completely definite. In fact, any hazi-

ness about what elements it does or does not contain must vitiate the assumption

that quantification can be interpreted classically. (Dummett 1991, p. 313) However,

if we admit that there are indefinitely extensible concepts in mathematics, these are

such that their extension is indeterminate, it is hazy and thus not suitable as domain

of classical quantification.

Dummett’s solution to this difficulty is to renounce to classical logic for such

domains. One could justify this move by claiming that if we consider intuitionistic

rather than classical quantification, the availability of only applicability and identity

criteria is sufficient to determine a quantification domain. There is no further need

to circumscribe the domain. The reason for this is not spelled out by Dummett,

but it seems plausible to assume that it relies on the intuitionistic semantics of

the universal and existential quantifiers. According to the BHK interpretation (see

Chapter 3, Section 1.2.1), a universally quantified statement ∀x ∈ ZA(x) is true

provided that we have a method or a construction transforming any d ∈ Z into

a proof p(d) of A(d). The suggestion seems to be that an intuitionistic semantics

for the universal quantifier may be read as requiring only the ability to recognize if

any d satisfies the conditions that make it an element of Z (criteria of application

and identity) and then check if it satisfies A. The contention is that this does

not require the actual determination of each element of the domain (and bivalence

for statements about the domain) nor a full determination of the extension of its

corresponding concept.

More on quantification

It is worth pondering on this opposition between classical and intuitionistic quantifi-

cation. Dummett understands classical quantification as requiring a definite domain
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of quantification. This is in fact the understanding of quantification that underlies

the historical debates on impredicativity. A full acknowledgement of the role of this

understanding of quantification for the perceived difficulties with impredicativity is

to be found in (Carnap 1931).33 Gödel (1944) also referred to Carnap’s analysis

within his assessment of Russell’s mathematical logic. He claimed that problems

with impredicativity arise if a universal quantifier of the form ∀x ∈ Dϕ(x) is read as

(a possibly infinite) conjunction, the conjunction of all the statements ϕ(a), ϕ(b), . . . ,

for each element a, b, . . . of the set D.34 Gödel’s assessment then is that such a view

is problematic from a constructivistic perspective, but unproblematic from a realist

point of view.35 However, Gödel (mentioning Carnap) also alludes to the availability

of alternatives. He writes:

[...] one may, on good grounds, deny that reference to a totality neces-

sarily implies reference to all single elements of it, or, in other words,

33Carnap (1931) suggested that there are alternative ways of understanding quantification that

do not cause the difficulties the predicativist perceives with impredicativity. He hinted at logical

validity as granting legitimacy to quantified statements, including impredicative ones. His gesturing

in (Carnap 1931) is insufficiently clear from today’s perspective. For a contemporary approach to

impredicative theories that is inspired by Carnap’s thought see e.g. (Fruchart & Longo 1997). Note

also that the general problem Carnap raised has received renewed attention in the philosophical

debate in recent years, intersecting with a very rich discussion that was prompted by Dummett’s

indefinitely extensibility argument. See, for example, (Rayo & Uzquiano 2006).
34The informal interpretation of the classical universal quantifier on a given domain as a possibly

infinite conjunction is common in mathematical logic. See also e.g. (Priest 2008, p. 458). Note

that this seems in agreement with the standard Tarskian conditions for the universal quantifier,

by further application of rules for conjunction introduction.
35The relevant aspect here is that this understanding of universal quantification is problematic

from a constructive point of view, because it is read as requiring the availability of each individual

element of the domain (and the decidability of statements about it). In fact, (classical) quantifi-

cation is often explained by metaphors as “running through”, or “surveying” the entire domain,

and this seems to require the prior existence of each element of the domain (and the decidability

of relative statements). But these are problematic in general from a constructivist perspective.
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that “all” means the same as an infinite logical conjunction.

One might hope that intuitionistic logic might come to the rescue here. A full

development of Dummett’s suggestion would need extensive work. Here I shall

put forward some preliminary thoughts on how one might wish to proceed.36 The

suggestion is to look at the BHK interpretation of the universal quantifier clause.

Here a proof of ∀d ∈ ZA, is a uniform method that transforms a proof that d is in

Z in a proof that it satisfies the property A. Therefore in order to prove that the

quantified statement holds it might suffice to show that A holds of a generic element

d of Z. This is very much in agreement with standard mathematical practice,

as we typically prove a universally quantified statement of the form “for all real

numbers .... ” by showing its validity for a generic real number. In other terms,

this understanding of the universal quantifier opens up the possibility in principle

of establishing universal statements without the requirement that the domain be

definite. It would seem sufficient to be able to single out one generic element (with

respect to the particular problem under consideration) to carry out the proof of the

universal statement. The difficult issue is how do we ascertain that we can in fact fix

such a generic element in all cases. Equivalently, the question is how do we ensure

that the proofs we give are in fact independent from our choice of generic elements.

Here predicativity constraints may be brought back into the picture to guarantee

sufficient uniformity of the domain (see discussion in Section 6.6.3.) Another option

is to argue for a justification of impredicativity together with intuitionistic logic.

This is done in (Fruchart & Longo 1997), by appeal to technical results (among

which a genericity theorem) within a polymorphic second order lambda calculus.

Is the concept of natural number indefinitely extensible?

If we accept Dummett’s reasoning so far, the crucial question is which mathematical

concepts are indefinitely extensible, beyond the cases of R and G above. Already

36I shall here make use of the discussion in (Fruchart & Longo 1997).
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my inclusion of G within the cohort of indefinitely extensible concepts suggest that

the distinction between definite and indefinitely extensible concepts is not meant

to capture the separation between paradoxical and non-paradoxical concepts. As

in the case of impredicativity the paradoxes are the contingent motivation that

brought to our attention a deeper distinction, that between definite and indefintely

extensible concepts. Dummett’s surprising claim is that not only R but fundamental

mathematical domains such as the real and the natural numbers are the extensions

of indefinitely extensible concepts. As a consequence, intuitionistic logic ought to

be used in reasoning about them, too.

In the following I shall focus on the case of the natural numbers, that is certainly

bound to be the less persuasive of the two cases. Dummett’s reason for considering

the natural number concept as an example of indefinitely extensible concept is that

the natural numbers are a fundamental mathematical domain which is required in

order to make sense of further quantification within the mathematical discourse.

The contrast with the concept “prime number” makes this point clearer, as in this

latter case we are presupposing already a domain of natural numbers and we separate

from it the sub–domain of prime numbers. However, if we are to specify what the

concept natural number means, we ought not to appeal to the natural numbers

themselves. Consequently, this is one of those cases in which if we wish to use

classical quantification we need more than just a criteria of application and one of

identity: we need to circumscribe the domain, or to know which natural numbers

there are.

Dummett’s contention is that in this case, like in the case of Russell’s class R,

there is a form of circularity in our attempts to circumscribe the natural number

set. I presume that Dummett’s point is essentially the one raised by Nelson, Par-

sons and (Dummett 1963): to fully circumscribe the natural number set, we need

to appeal to induction and therefore incur in a form of vicious circularity that is

similar to the one that manifests itself in the case of Russell’s paradox. In fact,



212 CHAPTER 6. STRICT PREDICATIVITY

the discussion on predicativity suggests a similarity between the predicativist’s re-

quirement of complete definition and Dummett’s requirement of circumscription of

a domain of classical quantification (see Chapter 5.3.2 page 154). Sharp application

(and identity) criteria suffice to fully determine the extension of a concept in those

cases in which the elements of that extension are given in some sense; however, for

infinite sets we need a more informative process.

It might be useful to go back once more to the inductive definition of the nat-

ural numbers discussed in Section 6.4.2. Here it would seem that the introduction

rules offer criteria of application and the equality rules offer suitable identity crite-

ria. They suffice to recognize a specified mathematical entity as an element of this

set, as a natural number. To “circumscribe” the set of natural numbers, however,

we need to appeal to appropriate elimination rules, that clarify exactly which ele-

ments belong to it. That is, we need a principle of induction. We have, however,

seen that according to at least some predicativists this appeal to induction on the

natural numbers is problematic, it is circular, in that it seems to presuppose the

natural numbers as given. The natural numbers from this perspective can not be

circumscribed by appeal to an elimination rule (i.e. induction) without giving rise

to circularity. According to the predicativist, we need to introduce restrictions on

the principle of induction and revert to weaker forms of arithmetic.

However, Dummett’s discussion seems to open up another way out. Instead of

restricting the domain of quantification, we may shift to intuitionistic logic.

6.6.3 Ways out

Suppose that one is persuaded by Dummett’s argumentation and sees the natural

number concept as indefinitely extensible. Suppose that, in addition, one believes

that an indefinitely extensible concept lacks the necessary definiteness that is re-

quired for its extension to act as domain of classical quantification (according to

the predicativist’s understanding of classical quantification). Assume, finally, that
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one does not offer any alternative independent justification for the assumption of

the natural number set as a suitable domain of quantification. Then it would seem

that we are faced with two main options. We may substantially restrict the princi-

ple of induction, so to obtain a definite concept of natural number without giving

rise to vicious circularity. This is the route pursued by the strict predicativist. Al-

ternatively, we may adopt Dummett’s strategy and claim that although classical

quantification on the extension of indefinitely extensible concepts is problematic,

intuitionistic quantification is not, and shift to an intuitionistic theory.

There are three points that arise from this observation.

In Chapter 4, Section 4.4.2, I introduced constructive predicativity and reported

that constructive predicativity endorses generalised inductive definitions, even if

these are considered impredicative from a classical perspective. Dummett’s “way

out” could offer one strategy for explaining why from an intuitionistic perspective

inductive definitions may be considered acceptable.

For simplicity, let us consider the case of the inductive definition of the natural

numbers. It is useful to recall the discussion at page 195, in which I claimed the

apparent naturalness of the inductive definition of natural numbers from a pred-

icativist perspective. We start from the weakest possible assumptions, 0, and an

operation of successor, and repeatedly apply the latter to gain larger and larger

fragments of the natural number structure, to finally close off with induction. I

have then examined the strict predicativist’s objection to the predicativity of this

definition: it makes uses of induction with unrestricted universal quantifiers and

therefore presupposes as fixed and “completed” the extension of the very natural

number concept that it is in the process of defining. Dummett’s suggestion is that

the completeness of a domain of quantification is only required if we use classical

logic. If we work within an intuitionistic setting, the appeal to the set of natu-

ral numbers within those contested uses of induction becomes unproblematic; this

is because intuitionistic quantification does not need in general to presuppose as
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completed the “process” of definition of the natural numbers. We can be seen as re-

ferring only to that portion of the natural number set that has being “constructed”

so far.

The important remark is that the constructivist will claim that we can offer a

similar justification also for more complex, possibly iterated inductive definitions.

Given the step by step character of inductive definitions, any appeal to the definien-

dum within those definitions can be considered harmless as we only refer to the part

of the extension of the definition that we have constructed so far. This explains the

sense in which the circularity that arises in the case of these definitions can be con-

sidered tolerable from a constructive perspective.37 This seems also to indicate that

the characterisation of predicativity in terms of invariance is the most significant

within a constructive context. The desire to avoid vicious circularity seems instead

a more suitable characterisation in a classical context.

There is another issue that arises from the discussion above. If Dummett’s rea-

soning is correct, it would seem that the charge of vicious circularity of impredica-

tivity does not retain the same force in intuitionistic contexts. As a consequence one

might suggest that we are granted not only intuitionistic reasoning, but perhaps also

some form of impredicativity.38 In fact, Fruchart & Longo (1997) offer a persuasive

argument towards a “Carnapian” route that justifies some forms of impredicativity

within an intuitionistic formal system.39 One might then wonder what could be the

reason for the compliance with predicativity in a constructive, intuitionistic context

like Martin-Löf’s type theory.

I can see a number of ways of arguing for predicativity in this setting. One

option is to argue that we need to introduce predicativity constraints to guarantee

the uniformity of the domains of quantification that is required for the BHK reading

37See also (Parsons 1992) for a different analysis of this issue.
38Here impredicativity is to be intended with respect to constructive predicativity.
39 The context of that discussion is a second order lambda calculus known as system F, and the

principal feature that is analysed is a form of polymorphism.
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of the universal quantifier. As discussed in Section 6.6.2, an intuitionistic reading

of the universal quantifier may legitimize proofs of universal statements that are

carried out for a generic element. This clearly has the advantage of requiring us to

exhibit only one particular, though prototypical (with respect to the given problem),

element of the domain. The question this rises is: how do we ensure that the

chosen element is in fact prototypical? In constructive type theory, the restriction

to inductively defined sets seems to offer a solution. For simplicity, let us consider

again the case of the set of natural numbers (as defined in constructive type theory).

Here every element of the natural number set may be brought into canonical form,

and the canonical form of the natural numbers may be seen as ensuring the required

uniformity. In other terms we have a general description for all the natural numbers

that ensures the safety of this process. By way of comparison, in more complex

cases, like, for example, the powerset of the natural numbers, or the real numbers,

we do not seem to have in general similar resources.40

Another (related) option is to stress the importance of granting safe mathematics

“from within”. One might claim that the adoption of predicativity, and in particular

of the Curry-Howard correspondence, is determined by the desire to gain confidence

in the correctness of the resulting mathematics without any appeal to “external”

assumptions: i.e. from within. The comparison with impredicative calculi like, for

example, a second order lambda calculus known as system F, is instructive. To gain

confidence in the consistency of system F one relies on normalisation proofs, which

show that every computation terminates. However, all known proofs of normalisa-

tion (so far) appeal to impredicative reasoning in the meta-theory.41 Therefore one

would seem to have to presume the correctness of impredicative reasoning in order

to justify it. The case of constructive type theory differs because of the availability

40An alternative to adopting predicativity to grant uniformity is discussed in (Fruchart & Longo

1997). This, however, seems to presuppose the consistency of impredicative system, that will be

discussed next.
41See e.g. (Martin-Löf 2008, Dybjer 2012).
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of an inductive (or “bottom up”) specification of all the sets that are formed in that

theory. The contention then is that this inductive structure of the sets in type the-

ory grants its correctness without an appeal to an “external” proof of normalization

in the meta-theory (Martin-Löf 2008, Dybjer 2012).

Finally, the last issue relates to predicativism. Suppose that a predicativist

agrees with the analysis above, and is faced with two options: either adopting

strict predicativity or change the logic and allow for a more generous notion of

predicativity. The question is which arguments could be offered to eliminate the

impasse. I believe this requires more thought, but the following considerations

might turn in favour of the intuitionistic shift. As constructive predicativity is the

most generous form of mathematics, it would seem reasonable to opt for it, as it

allows for a more encompassing form of mathematics. In addition, an approach

that only changes the logic rather than restricting the mathematical objects, has

arguably advantages to offer in terms of its naturalness: the mathematics is much

more similar to classical mathematics. In reply a strict predicativist could attempt to

show that strictly predicative mathematics is in fact sufficient for the most salient

part of mathematics: the one that is necessary to science (see Chapter 7). The

indispensability of predicative mathematics to science will be the topic of the next

chapter.

6.7 Appendix: The natural numbers in Martin-

Löf type theory

In type theory one has not only introduction and elimination rules for the elements

of a set, but also corresponding equality rules, whose main purpose is to define the

equality relation between elements of the set to be defined. I shall here present the

natural number rules in Martin-Löf type theory (Martin-Löf 1984). My presentation
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here borrows from (Crosilla 2006).

1. N-Formation

N set N = N

2. N-Introduction

0 ∈ N 0 = 0 ∈ N

a ∈ N
suc(a) ∈ N

a = b ∈ N
suc(a) = suc(b) ∈ N

3. N-Elimination

c ∈ N d ∈ C(0)

(x ∈ N, y ∈ C(x))

e(x, y) ∈ C(suc(x))

R(c, d, e) ∈ C(c)

c = f ∈ N d = g ∈ C(0)

(x ∈ N, y ∈ C(x))

e(x, y) = h(x, y) ∈ C(suc(x))

R(c, d, e) = R(f, g, h) ∈ C(c)

4. N-Equality

d ∈ C(0)

(x ∈ N, y ∈ C(x))

e(x, y) ∈ C(suc(x))

R(0, d, e) = d ∈ C(0)

a ∈ N d ∈ C(0)

(x ∈ N, y ∈ C(x))

e(x, y) ∈ C(suc(x))

R(suc(a), d, e) = e(a,R(a, d, e)) ∈ C(suc(a))
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The elimination rule may be clarified as follows.

In the last two rules C(z) is a family of sets depending on N that is, if z is a

natural number, then C(z) is a set according to Martin-Löf type theory (see (Martin-

Löf 1984, Crosilla 2006) for an explanation of the notion of dependent family of sets).

In addition, we say that a natural number is canonical if it is of the form 0 or suc(n)

for n canonical. It is non-canonical otherwise. Therefore, for example, 2 + 2 is a

non-canonical element of N (see (Martin-Löf 1984, Crosilla 2006)).

Given an arbitrary element, c, of N (that is an element which is possibly non–

canonical), we can read C(c) as a proposition for which we require a proof (see

(Martin-Löf 1984, Crosilla 2006) for an explanation of the notion of proposition in

Martin-Löf type theory). The rule then enables us to prove C(c) by induction. We

form first of all a proof d of C(0). Then provided that for x ∈ N, y is a proof of C(x),

we give a proof e(x, y) of C(suc(x)). The rule gives us a proof R(c, d, e) (depending

from c, d and e), of the proposition C(c).

More precisely, R(c, d, e) is computed as follows.

1. Take an arbitrary element, c, of N and compute its canonical value;

2. if the result of the computation is c = 0 ∈ N, then compute d ∈ C(0), hence

obtaining a new canonical element f of C(0). Note that c = 0 ∈ N, so that

C(c) = C(0) and so f will be a canonical element also of C(c);

3. if instead the computation produces an element of N of the form suc(a) for

a ∈ N, then proceed as follows: substitute a for x and R(a, d, e) for y in e,

hence obtaining e(a,R(a, d, e)) ∈ C(suc(a)). Note that C(suc(a)) = C(c), so

that e(a,R(a, d, e)) ∈ C(c). Compute the latter, thus obtaining a canonical

element g, of C(c);

4. if a has value 0, then R(a, d, e) ∈ C(c) by (2); otherwise proceed again as in

(3).



Chapter 7

Is predicative mathematics

indispensable?

In Chapter 5 I have sketched Poincaré’s (1912) views on the debate on impredicativ-

ity. For Poincaré this is a manifestation of the classical opposition between realism

and idealism. The predicativist perceives difficulties with impredicative definitions

due to his “constructivistic” attitude towards them. From this perspective, the pur-

pose of a definition is to introduce a new mathematical entity, and therefore it ought

not to quantify on a collection of entities that includes the definiendum. A realist

philosophy of mathematics, instead may be seen as making available the domain

of quantification on which the definition quantifies, thus eliminating the perceived

difficulty. From this perspective, the purpose of a definition is to select a particular

element out of the domain, and, it is contended, there is no reason to object to an

impredicative way of accomplishing this aim. In Chapter 6 I have also explained

the role that Nelson’s formalist attitude to the philosophy of mathematics plays in

his rejection of any form of impredicativity. It is then natural to wonder whether

the debate on impredicativity is after all a new manifestation of traditional debates

in the philosophy of mathematics and whether, in particular, taking a stance on

impredicativity requires taking a stance on these more complex issues.

219
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Undoubtedly, this may be one way of framing the debate on impredicativity, and

the previous chapters suggest it is also faithful to how prominent mathematicians

that have addressed this issue have thought about it. However, reading the original

texts on predicativity one also gains a different impression. For example, Poincaré’s

discussion on kinds of definitions suggests a concern with methodological considera-

tions. It is therefore natural to propose that compliance with predicativity may be

induced also from a perspective that is in line with the reflections on constructive

mathematics that were put forth in Chapter 2. In that chapter I have presented

motives for doing mathematics constructively, and indicated that constructive math-

ematics may be motivated by intra-mathematical reasons, like its greater generality

compared with classical mathematics, and by the preference for a more explicit and

algorithmic form of mathematics. These motives may also be applied to the case of

predicative mathematics, as all the varieties discussed in this thesis are fully com-

patible with classical mathematics, of which they are, in fact, a part.1 In Chapter 6

I have indicated that since its inception predicativity has been further motivated by

the desire to secure a safe form of mathematics “from within”. By adopting a more

elementary conceptual apparatus (and, in the case of constructive predicativity, a

more algorithmic notion of proof) we seem to gain more confidence in the correctness

of the resulting mathematics. In addition, we may gain the benefit of a computa-

tional form of mathematics that is suitable for machine implementation (especially

in the constructive and strict predicative cases). In particular, the predicative no-

tion of set discusses in the previous chapter, with its inductive specification, seems

particularly apt to computational interpretations. It therefore would seem that we

can offer purely intra-mathematical and pragmatic reasons also for the development

of a constructive and predicative form of mathematics, too. In particular, it may

be argued that a constructive mathematician who is predicatively inclined does not

1In particular, all the formal systems mentioned in this thesis can be interpreted in subsystems

of ZFC. See Chapter 2, Section 2.4.1, page 60 for the notion of compatibility.
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need to take a side on complex issues as the nature of mathematical entities, or the

question of their existence. He might be only motivated by reasons that directly lie

within his own practice.

In Chapter 2, I have suggested that the motives adduced by constructive mathe-

maticians for their practice, if taken by themselves, are unlikely to offer an argument

for the exclusive adoption of intuitionistic logic in mathematics. It is natural to

wonder if predicative mathematics (of any variant) holds a stronger position in this

respect. In particular, whether the reasons mentioned above may be sufficient to

support a form of predicativism.

Let us consider the motive for predicativity of producing a safer, more convincing

form of mathematics. If a predicativist were to suggest that we ought to abandon

impredicativity on this ground, one could retort that as long as an inconsistency

has not been found within impredicative systems as ZF, we ought to allow for them.

Unless one offers good reasons for suspecting that classical mathematics may be

inconsistent, there is not sufficient ground for abandoning it on this basis. Those

considerations adduced by the predicativist might indicate reasons for a preference

for predicative mathematics. However, by themselves, they do not seem to offer any

means for objecting to impredicative methods. Therefore the predicativist seems to

require different arguments for the exclusive use of predicative mathematics.

The main focus of this chapter is to examine the prospects of a defense of pred-

icativism on the basis of a variant of indispensability argument which claims that

predicative mathematics is indispensable to science. I shall primarily attempt to

clarify what such an argument may gain for the predicativist and I shall report

on recent technical research that may help assess the relation between predicative

mathematics and scientifically applicable mathematics. I shall also argue that a

substantial amount of work is still required before reaching any definitive conclusion

on this matter. Given my tentative conclusions, the discussion in this chapter is

more speculative and should be seen primarily as a contribution to setting up the
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task for a strategy along these lines. I shall argue that even if this strategy might

not, by itself, lead to a full defense of predicativism, it is a worthwhile enquiry bound

to enrich the philosophy of mathematics, and in particular the discussion on indis-

pensability arguments. Before examining a variant of indispensability arguments for

predicativism, I shall outline other ways in which a predicativist might proceed and

the difficulties he might encounter.

7.1 Predicativism

The distinction introduced in Chapter 4 between base and constraints suggests two

tasks for a defense of predicativism. First, one needs to argue for predicativity

constraints. This line of argument aims at objecting to impredicativity. Second,

one needs to argue for the base. The latter task is required in view of the plurality

of notions of predicativity, and the principal aim is to argue for one particular variant

of predicativity against the others. The worry is that in view of the similarity of

arguments that support the various forms of predicativism, a form of instability

might arise that forces the stronger forms (e.g. predicativism given the natural

numbers) to collapse into the weakest one (strict predicativism).

I shall not examine the first point in detail in this thesis as I shall instead consider

the prospects of a different route that attempts to by-pass the complexity of that

task. I wish however to briefly suggest where one might wish to focus on. If we

take the route to predicativity that I have suggested in this thesis, it would seem

that a crucial component of the predicativist thesis is the deep tie that links a set

to the genetic construction of its elements. This was incorporated into the notion

of set as extension of a predicate, where the predicate acts as a list of instructions

for specifying the genetic “construction” of the set from its elements. In addition to

arguing for this notion of set, the predicativist would have to counter alternatives.

The most standard strategy to obviate to the difficulties that the predicativist



7.1. PREDICATIVISM 223

perceives with impredicativity is to “detach” the notion of set from prior definitions,

predicates, properties or concepts. One possibility is given by appealing to Bernays’

quasi-combinatorialism that was briefly discussed in Chapter 5.2 This might be

combined with a form of set-theoretic platonism.

Another, less standard, alternative is not to free sets from any uniform tie with

their elements, but to make use of that uniformity. The thought is that if we shift

from classical to intuitionistic logic, then quantification may not require the prior

availability of each individual element of the domain. What might suffice is the

possibility of recognising that an object does belong to the domain, and here, it

may be argued, all that is needed is a kind of uniformity.3

There are other options. One could perhaps consider holding to the logical notion

of set as extension of a concept, but reinforce, not constrain, the concepts. Hints at

a platonist reading of concepts along lines may be found in (Carnap 1931) (where

they are attributed to Ramsey) and in (Gödel 1944). Alternatively, one may argue

for the adoption of second order logic to grant a form of impredicativity.

The predicativist will have to offer ways of objecting to each of these strategies

if he wishes to offer a defense of predicativism that rejects impredicativity.

7.1.1 Securing the base

In addition to arguing for predicative constraints and against impredicative alter-

natives, the predicativists needs to address the second point mentioned at the be-

ginning of the previous section: the request for an argument for the base. In the

following I shall consider the case of predicativism given the natural numbers, as

this variant seems to offer particular difficulties. This form of predicativism, in

fact, combines the acceptance of the natural number structure with predicatively

motivated restrictions to sets that lay beyond that structure.

2See also (Maddy 1997).
3See Chapter 6, section 6.6.3 and (Fruchart & Longo 1997).



224 CHAPTER 7. IS PREDICATIVE MATHEMATICS INDISPENSABLE?

In Chapter 6 I examined Parson’s claim that if applied all the way through,

that is, also to the natural number structure, predicative restrictions give rise to

some form of strictly predicative mathematics. The predicativist given the natural

numbers then needs to offer independent arguments to support his belief in the

natural number structure as base, exempt from predicativity constraints, and needs

to ensure that in so doing he does not justify impredicativity at higher levels than

that structure.

One could perhaps appeal to the canonical representation of the natural numbers

as a way of justifying the assumption of their structure as base. As clarified in

Chapter 5, page 164, Weyl claims that the natural numbers supply us with a “domain

of individuals”. In that chapter I suggested to express this in terms of the canonicity

of the natural numbers, for which we can fix a unique representation in terms of an

initial element, 0, and the iteration of the successor operation (see page 165).4 As

discussed in Chapter 5 the crucial difference that the predicativist wishes to capture

between the natural numbers on the one side, and the powerset of the natural

numbers and other uncountable sets on the other, is the lack of uniform describability

of the latter. Therefore we had better embed the canonical describability of the

natural numbers within an account of the natural number structure as base. As

a starting point towards a justification of the base, we may wish to claim that

we are entitled to this structure as base in virtue of the canonical representability

of its elements: there is no arbitrariness in the natural numbers, while there is

in the powerset of the natural numbers. The discussion in Chapter 6 clarifies,

however, that there is a leap from the consideration of individual natural numbers

and their structure: we also need to account for the principle of induction, which

4One might worry that the availability of a plurality of alternative representations for the natural

numbers might put strain on the very idea of a canonical representation of these numbers. One

could fix a canonical representation or, as in Weyl, take the individuality of the natural numbers

as conferred by their unique position within the natural number structure.
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plays a crucial role in enabling us to close off, and obtain the whole natural number

structure, not just a fragment of it. The worry is that any justification we can

offer for our assumption of induction would seem to be different and perhaps wholly

unrelated to the canonicity of the natural numbers. Therefore we have to ensure

that a justification of induction neither clashes with the reasons for the introduction

of predicativity constraints, nor gives the way for a justification of impredicativity.5

This is indicative that a defense of predicativism is very complex.

To witness the difficulties involved in securing the base, I shall sketch a possible

strategy in relation to a particular way of understanding predicativism given the

natural numbers. One way of framing predicativism given the natural numbers is

in terms of what I should like to call a “moderate platonism”. This is an intermedi-

ate position in the philosophy of mathematics, laying in between the more radical

constructivism and platonism.6 The predicativist holds a platonist position on the

natural numbers and a constructivistic (or definabilist) position on the remaining

sets, starting from the powerset of the natural numbers. The natural numbers are

seen as existent mind-independently, but the other sets are seen as dependent on

our constructions or definitions, and because of this need to undergo restrictions

compared with the classical conception.

The cohabitation of features belonging to traditionally opposing philosophical

positions within one induces difficulties for predicativism given the natural numbers.

Maddy (1997) explores three routes to mathematical realism, that she terms

Gödelian, Quinean and set theoretic realisms, and concludes that they are all want-

ing. The first two forms of realism could prima facie inspire a predicativist’s at-

tempts to stabilize his position as a moderate platonism. The predicativist would

need to offer appropriate elaborations of these forms of realism that support all and

5See (Clark 1993, Parsons 2008) for discussion.
6See, e.g.,(Feferman 1964) for such a characterisation of predicativism given the natural num-

bers.
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no more than platonism for the natural numbers. Provided that this is possible,

the predicativist will then need to fence his position from a number of objections

that have been risen against each of the original positions (including Maddy’s), if

they also apply to the moderate case.7 My aim in the following is to suggest that a

preliminary analysis indicates that such strategies face notable difficulties.

The first strategy is complex, and aims at adapting to the present context a form

of Gödelian realism. According to (Maddy 1997) Gödel’s realism is rooted in a strong

analogy between mathematics and physical science. In (Gödel 1964) Gödel argued

for an extrinsic justification of the more theoretical parts of mathematics because,

like similar components of physical science, they are justified by their consequences.

The analogy between mathematics and science brings Gödel to appeal to “another,

more basic form of mathematical insight that plays a role parallel to that of sense

perception” (Maddy 1997, p. 90). Gödel (1951, p. 320) writes: “The truth, I

believe, is that [mathematical] concepts form an objective reality of their own, which

we cannot create or change, but only perceive and describe”.8 He also writes: “The

similarity between mathematical intuition and a physical sense is very striking. It

is arbitrary to consider ‘This is red’ as immediate datum, but not so to consider

the proposition expressing modus ponens or complete induction (or perhaps some

simpler propositions from which the latter follows).” (Gödel 1953/9, 359)

The predicativist could then hope that and appeal to a suitable form of math-

ematical intuition could allow for a platonist assumption of the natural number

structure with induction. This strategy faces a number of difficulties, first of all

the challenge of clarifying in a sufficiently perspicuous way the underlying notion of

intuition. The principal worry in this specific context is that unless such a notion

7There are other possible defences of platonism that take different routes all together, including

Maddy’s naturalism in (Maddy 1997), or forms of structuralism (Shapiro 1997). However, they

prima facie do not seem suitable candidates for the purposes at hand, as they seem “devised” to

justify much more than moderate platonism.
8Quoted in (Maddy 1997, p. 90).
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of intuition is sufficiently different from a Gödelian one, it seems arduous to utilize

it to support the mind-independent existence of all and only the natural numbers.

In fact, (Gödel 1964, p. 268) writes:

despite their remoteness from sense experience we do have something

like a perception of the objects of set theory, as is seen from the fact

that the axioms force themselves upon us as being true. I don’t see any

reason why we should have less confidence in this kind of perception,

i.e., mathematical intuition, than in sense perception, which induces us

to build up physical theories [...].

One concern is that unless suitable constraints are introduced to prevent the intu-

ition of sets beyond the set of natural numbers, one would be pushed all the way up

with Gödel to account for “all” sets. In an attempt to secure no more than the nat-

ural number set, the predicativist may wish to appeal to the reasons he has adduced

for predicative constraints. However, if Nelson and Parsons’ criticism of induction

is correct, an appeal to arguments against impredicative definitions, if applied all

the way through, would drive us to more stringent forms of predicativism that do

not spare the natural number structure.

One could perhaps appeal here, too, to the canonical representation of the natural

numbers, and suggest that we can profitably characterise a different, more funda-

mental form of intuition that is grounded on the availability of a representation for

each of the natural numbers. Provided that we can find a way of spelling this out,

the principal problem with a strategy along these lines is, again, the leap from the

intuition (however specified) of any individual natural number and the intuition of

the totality of them (see Chapter 6). The latter requires intuition of a closure prin-

ciple, mathematical induction, that differs from the intuition of individual numbers.

In other terms, the step from individual numbers to their totality involves a form of

idealization that goes well beyond the actual intuitability of the canonical represen-
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tation of any individual natural number: if there is a way of justifying induction in

terms of a form of intuition, this seems to be of a different kind as the one appealed

to for individual natural numbers. If one claims that because of this difference there

is no way of accounting for the principle of induction in a satisfactory way, then we

are brought to a weaker form of predicativism. In the quote above Gödel appealed to

the non-arbitrariness of the proposition expressing complete induction. An elabora-

tion of this thought could perhaps offer a strategy that complements the intuition of

the natural numbers with (a different, “‘Gödelian”) intuition of induction; however,

the worry is that this might concede too much, as it would seem that it could equally

well justify the assumption of much stronger set theoretic constructs. For example,

it could justify generalised inductive definitions or a form of iteration on the ordinals.

As already discussed in Chapter 4, Section 4.1, the combination of such iteration

with predicative constraints gives rise to Gödel’s constructible universe, that goes

well beyond predicativity given the natural numbers.

To summarise, the principal concern for a strategy along these lines is the risk of

instability: unless we find a perfectly calibrated account of the base in its entirety,

including mathematical induction, and nothing more, then a form of instability could

plague predicativism given the natural numbers, with the risk of being pushed all

the way up with Gödel or all the way down with Nelson. As argued in Chapter 6

given the overall motivation underlying predicativity, the most serious worry is that

of predicativism sliding down with Nelson.

The predicativist has, however, another option altogether: he might attempt

to claim that predicative mathematics is justified because it is required for the

applicability of mathematics to science, and that impredicative mathematics lacks

so far justification, as there is no actual need to appeal to it, that is, impredicativity

is dispensable. The possibility that impredicativity turns out to be dispensable has

been briefly discussed by Feferman in (Feferman 1993b, Feferman 2005) and, more

extensively, by Ye e.g. in (Ye 2008, Ye 2011) and will be the focus of the reminder
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of this chapter.

7.2 Indispensability

Weyl’s aim in “Das Kontinuum” was to clarify how far can we proceed in develop-

ing analysis from the bare assumption of the natural number structure and some

elementary operations over them. Later on the mathematical logicians of the 1950’s

and 60’s also addressed the question of how much mathematics is predicatively ex-

pressible (according to predicativity given the natural numbers); this eventually

came under more precise scrutiny within Feferman’s work and the Reverse Math-

ematics Programme, as discussed in Chapter 4, Section 4.3. Already (Weyl 1918)

offered an indication that not all of contemporary mathematics is expressible ac-

cording to predicative standards. This first assessment has been further confirmed

by the logical analysis of predicativity: each of the forms of predicativity that have

been presented in Chapter 4 Section 4.4 is short of accounting for all of contempo-

rary mathematics, in particular a substantial part of set theory evades predicative

mathematics according to any of these varieties of predicativity.

In this section I shall again focus prominently on predicativity given the natural

numbers and strict predicativity, but it should be clear how to adapt the discussion

to constructive predicativity.

Granted that predicativity can not capture the whole range of contemporary

mathematics, one may wonder whether the restriction to “core” or “ordinary” math-

ematics would accord better prospects for predicative mathematics. As further dis-

cussed below, one difficulty arises here in clarifying which criteria one ought to apply

in selecting a portion of mathematics as the “core”. A number of mathematicians

have appealed to a notion of ordinary mathematics, others have invoked a vague

notion of interesting mathematics.

As mentioned in Chapter 5, Wang (1954, p. 244) clearly expressed a common
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sentiment among a number of mathematical logicians in the 1950’s, according to

which the debate on impredicativity had left unresolved the question of which role

impredicativity plays within “core” mathematics. Wang (1954, p. 244) observed

that the use of uncountable (or indenumerable) and impredicative sets “remains

a mystery which has shed little light on any problems of ordinary mathematics.

There is no clear reason why mathematics could not dispense with impredicative or

absolutely indenumerable sets.”

The concept of “ordinary mathematics” can be elucidated as in (Simpson 1999, p.

1): “that body of mathematics which is prior to or independent of the introduction

of abstract set-theoretic concepts”. That is: “geometry, number theory, calculus,

differential equations, real and complex analysis, countable algebra, the topology of

complete separable metric spaces, mathematical logic and computability theory”.9

We have seen in Chapter 4, Section 4.3 that a large portion of ordinary mathematics

can be carried out within predicative systems, in fact, systems that are no stronger

than Peano Arithmetic suffice.

In his fundamental article, Feferman (1964, p. 3-4) writes:

It is well known that a number of algebraic and analytic arguments

can be systematically recast into a form which can be subsumed under

elementary (first order) number theory. [...] It is thus not at first sight

inconceivable that predicative mathematics is already (formally) suffi-

cient to obtain the full range of arithmetical consequences realized by

impredicative mathematics.

As Feferman quickly clarifies, not every elementary statement can be so obtained.

The logical analysis of predicativity in (Feferman 1964) readily provides us with

9See also Chapter 4, Section 4.3, page 112. Rathjen (1999) writes: “Roughly speaking, by

ordinary mathematics we mean main-stream, non-set-theoretic mathematics, i.e. the core areas of

mathematics which make no essential use of the concepts and methods of set theory and do not

essentially depend on the theory of uncountable cardinal numbers.”
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a counterexample: the very arithmetical statement expressing the consistency of

predicative analysis.10 However, Feferman suggests that one could argue that “all

mathematically interesting statements about the natural numbers, as well as many

analytic statements, which have so far been obtained by impredicative methods can

already be obtained by predicative ones”.

These quotations suggest a strategy for supporting predicativism: by showing

that predicative mathematics is already sufficient to develop “core” mathematics.

Provided that some agreement can be reached on what counts as “core” mathemat-

ics, the hope is that a logical analysis of that portion of mathematics could show

that essentially impredicative mathematics is not needed.

In recent years Feferman and Ye (Feferman 1993b, Feferman 2005, Ye 2008,

Ye 2011) have offered evidence that might support the claim that impredicative

mathematics is formally dispensable with respect to “core” mathematics, if “core”

mathematics is framed in terms of the mathematics that is applicable to science.

Here I write “formally dispensable” to indicate the availability of a reformulation of

impredicative mathematics within some predicative system.11

We are not yet in a position to decide in a definitive way whether scientifically ap-

plicable mathematics is predicatively expressible, as more work is required to clarify

whether predicative mathematics suffices for today’s science’s needs. However, it is

interesting to explore which conditional claims can a predicativist make to support

his position.

If a thorough and detailed logical investigation of the mathematics that is neces-

sary for science were carried out, I can envisage the following main possible outcomes.

1. It could turn out that predicative mathematics is already sufficient to develop

all of scientifically applicable mathematics. This would count as supporting

predicativism, by showing that its revisionary component is, after all, inno-

10See Chapter 4.
11This point will be further discussed below.
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cent. In addition, if one could clearly show that the part of mathematics that is

needed for science is exactly captured by predicativity given the natural num-

bers, then one would have offered also a way of stabilising this position against

strict predicativism. In addition, one would have shown that from a purely

formal point of view, the impredicative component of ordinary mathematics

is dispensable.

2. It could become apparent that scientifically applicable mathematics requires

impredicativity. Now predicativism would count as a drastic restriction of a

fundamental part of mathematics, and could be opposed on these grounds.

Before examining in more detail an argument for the indispensability of predica-

tive mathematics to science, a general consideration is in order: it is important to

observe that this strategy, if successful, would offer no explanation of why a form of

predicativity is indispensable to scientifically applicable mathematics. In particular,

such an argument would bear no relation with the motives for predicativity that

were discussed so far in this thesis. An indispensability argument would allow us to

conclude that, as it happens, this portion of mathematics, rather than another, is

the one that is applicable to contemporary science. Any other philosophical position

that would also single out that portion of mathematics as indispensable to science

would be equally supported by the argument.

7.3 Is predicative mathematics indispensable?

The central aim of this section is to formulate an argument for the indispensability

of predicative mathematics to our best scientific theories and clarify which conclu-

sions may be drawn from it if one were to prove the formal indispensability of

predicative mathematics. The argument is modelled after arguments invoked in a

different debate, to assess the ontological commitment of mathematics by evaluating
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its indispensability to our best scientific theories.12 In this thesis I shall not enter the

discussion on the merits of indispensability arguments within that debate. In fact, I

shall largely avoid addressing the complex question of whether, and in which sense,

considerations on indispensability to our best scientific theories can bestow justifi-

cation to a mathematical practice. Instead, I shall grant to the predicativist that a

strategy along these lines is available, that is, that an appeal to indispensability to

science is legitimate in the present context. I shall then conclude that we have so far

no determinate evidence that predicative mathematics is indispensable to science.

If, however, we were to accept the suggestions by Feferman and Ye that progress

made so far makes it reasonable to expect that scientifically applicable mathematics

can be carried within predicative systems, it seems possible that, as suggested by

Ye, very weak systems will suffice. Then indispensability arguments would have the

positive effect of strengthening predicativism against perhaps the most serious crit-

icism: its inadequacy to express the mathematics required by science. In addition,

the logical analysis would clarify whether strict predicativism is already formally

sufficient for all scientific applications. This will have an impact on the question of

which form of predicativism, if any, is to be endorsed.

In the following I shall begin my analysis by setting out a general form of in-

dispensability argument; then I shall consider adaptations of it which produce an

argument that may help the predicativist.

7.3.1 Indispensability arguments

The controversies that have surrounded indispensability arguments have not spared

their very formulation. Here I shall adopt a formulation that has the advantage of

being particularly succinct and easy to adapt to our case.

12The entry on“ Indispensability arguments in the philosophy of mathematics” of the Stanford

Encyclopedia of Philosophy contains an up to date bibliography on this subject (Colyvan 2015).
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Standard Indispensability (SI):

(P1) We ought to believe in a mathematical theory M that is indispensable to

our best scientific theories.

(P2) We ought to have ontological commitment to all and only the entities that

are postulated by a mathematical theory M that we believe in.

(P3) Mathematical entities are postulated by the mathematical theory that is

indispensable to our best scientific theories.

(C) We ought to have ontological commitment to mathematical entities.

As a first approximation, the predicativist might reformulate the argument for

his purpose as follows:

Indispensability of Predicativity (IP):

(P1) We ought to believe in a form of mathematics that is indispensable to our

best scientific theories.

(P2) Predicative mathematics is indispensable to our best scientific theories.

(C) We ought to believe in predicative mathematics.

A first task for the predicativist wishing to use an argument of this kind is to

clarify what a form of mathematics is. In full generality this is hard to achieve.

However it suffices to observe that in the present context we are only interested

in the particular cases of variants of predicative and impredicative mathematics.13

The next task then is to clarify what each of these particular forms of mathematics

is. One temptation would be to avail oneself of the logical analysis of predicativity

and, for example, define predicative mathematics given the natural numbers as

a collection of definitions and theorems that are expressible within predicatively

reducible theories (see Chapter 4, Section 4.2). However, the logical analysis of

13Therefore a clarification of the expression “form of mathematics” may be effected by a dis-

junction between strict predicative, predicative given the natural numbers, constructive predicative

and three notions of impredicative mathematics, each capturing the “complement” of a form of

predicative mathematics with respect to contemporary mathematics.
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predicativity is carried out from the outside, so to speak, by appeal to impredicative

notions. In particular, the very ordinal Γ0 lays beyond the predicativist’s reach. As

a consequence, the predicativist that wishes to employ an indispensability argument

needs to use a different strategy. A natural approach is to fix a canonical theory

which is sufficiently strong to carry out the mathematics one wishes to express, while

being predicative according to the relevant standards. For example, for predicativity

given the natural numbers, one could choose the system ACA0, or Feferman’s W

(Feferman 1988b).14 These are clearly within the predicativist-given-the-natural-

number’s remit, and they are also appropriate for the development of scientifically

applicable mathematics.

The next question is how to express the indispensability of a form of mathematics,

M , to a scientific theory, say T . This would have first of all to take into account the

adequacy of mathematics to T .

Adequacy (of M to T): within the form of mathematics M we can define

all the mathematical notions and prove all the theorems that are employed by the

scientific theory T .

Feferman (1993a) makes use of a notion of “applicable mathematics”, and writes:

Of course, there are results of theoretical analysis which cannot be car-

ried out predicatively, either because they are essentially impredicative

in their very formulation, or because they are independent of predica-

tive systems [...] However, none of those affects the working hypothesis

because they do not figure in the applicable mathematics.

Applicable mathematics could be seen as gathering together the notions and

theorem that all our best scientific theories make use of. In fact, a first task for

the predicativist wishing to appeal to an indispensability argument for predicativity

would be to clarify in full detail what is applicable mathematics, which theorems

14See note 44, page 99 for details on these systems.
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and notions belong to it.

Adequacy does not suffice to express indispensability, as if predicative math-

ematics were adequate to scientifically applicable mathematics, so would be also

impredicative mathematics. What we need here is a notion of indispensability of a

form of mathematics that also introduces some minimality requirement: a form of

mathematics M is indispensable to scientifically applicable mathematics if it suffices

to carry out this body of mathematics, but it is also “minimal” in some appropri-

ate sense. Minimality ought to encode the idea that no less comprehensive form of

mathematics can already be used to carry out scientifically applicable mathematics.

Roughly minimality could be so expressed:

Minimal adequacy: a form of mathematics M is minimally adequate with

respect to scientifically applicable mathematics if no other weaker form of mathe-

matics M ′ can express all the notions and derive all the theorems that are appealed

to by scientifically applicable mathematics.

There are difficulties in formulating this requirement in sufficiently general and

precise terms. One, for example, would have to spell out the notion of “weaker

form of mathematics” in a way that is sufficiently precise and flexible to allow

for different choices of canonical systems. Once more, given our limited aims, we

may suppose that this can be done by suitable choices of canonical systems for

predicativity and comparison of which assumptions they make. In particular, the

aspect we wish to capture is the difference in strength between strict predicativism

and the stronger forms of predicativism (as well as impredicativity). Then one could

in principle fix suitable canonical systems that (possibly modulo suitable proof-

theoretic interpretations) would enable us to pin down the difference between strict

predicative and stronger systems in terms of the amount of induction on the natural

numbers one allows for.

A reformulation of the argument (IP) that takes into account both adequacy and

a suitable notion of minimality could then be proposed as follows.



7.3. IS PREDICATIVE MATHEMATICS INDISPENSABLE? 237

Dispensability of Impredicativity (DI):

(P1) We ought to believe in a form of mathematics that is indispensable to our

best scientific theories.

(P2’) A form of mathematics is indispensable to our best scientific theories if it

is adequate and minimal for scientifically applicable mathematics.

(P3’) Predicative mathematics is adequate and minimal for scientifically appli-

cable mathematics.

(P4) We ought to reject a form of mathematics that is adequate but not minimal

for scientifically applicable mathematics.

(P5) Impredicative mathematics is adequate but not minimal for scientifically

applicable mathematics.

(C) We ought to believe in predicative mathematics and reject impredicative

mathematics.

Given this argument, what conclusions can we draw from it? By granting the

predicativist an appeal to this kind of arguments I have, for the sake of argument,

already conceded the substantial claim that (P1) is true. I have not clearly spelled

out the notion of scientifically applicable mathematics, nor given sufficient evidence

for premise (P2’). However, I shall presuppose that we can in principle determine

which mathematics is scientifically applicable by a careful and extensive investigation

of case studies of application of mathematics to physics. If one could offer sufficient

evidence for (P3’), then predicativism would be substantially strengthened, as the

common criticism that it imposes unjustified and unbearable restrictions to the

mathematical practice would not hold. At least for the crucial case of scientifically

applicable mathematics predicativism would not cause any loss. This would be in

fact a remarkable gain for predicativism. However, if premise (P3’) would turn out

to be false, we would have a serious objection to predicativism. In Section 7.3.2

I shall further report on technical work that might offer supporting evidence for

premise (P3’).
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One might wonder whether the conclusion of (DI) gives us not only a very much

needed support for predicativism but also the resources to (1) stabilize predicativism

given the natural numbers and (2) reject impredicativity. Here we enter more treach-

erous terrain. Suppose that we could establish premises (P3’) and (P5). Then we

would have the remarkable outcome that scientifically applicable mathematics, that

prima facie uses impredicativity, could already be reduced to predicative form. From

a purely mathematical point of view, we would have an important reducibility re-

sult that would also seem to imply that impredicative mathematics can be dispensed

of. A subtler question is whether we could also claim that this result implies that

we could do without impredicative mathematics within our best scientific theories.

That is to say, the difficulty is to clarify what could justify premise (P4).

Here I suggest to distinguish between formal dispensability and dispensability

proper. The question than can be rephrased as whether the formal dispensability of

a form of mathematics, that is, the possibility of reducing scientifically applicable

mathematics to predicative systems, also implies the dispensability proper, that is,

the possibility of doing without that form of mathematics within our best scientific

theories. This is a considerably more complex issue that can not be fully addressed

in this thesis.

As preliminary thought, in order to address this question one might wish to

combine a careful analysis of the role of applicable mathematics within our best

scientific theories, with considerations of theoretical virtues of scientific theories. In

particular, one may wish to borrow ideas that have emerged within the literature

on standard indispensability arguments. A first thought is that an application of

Ockham’s razor could be employed in this case to cast the non-minimal mathematical

practices as “recreational mathematics”, and thus dispensable. However, a worry

quickly emerges: an appeal to a form of Ockham’s razor ignores other characters

of a scientific theory as a whole that one might wish to consider when choosing

between different form of mathematics. These relate to aspects that contribute to
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the overall attractiveness of a scientific theory, like, for example, simplicity, economy,

explanatory power etc.15 This suggests that the notion of indispensability captured

by adequacy and minimality is not sophisticated enough: we also need to carefully

assess whether there is a gap between a formal adequacy of a form of mathematics

(in the sense of the possibility of expressing scientifically applicable mathematics

within a certain system) and its adequacy to science, that is, its performing the role

that our best scientific theories require for that form of mathematics. Consequently,

in an overall assessment of an indispensability argument of this kind, we would need

to embark on the complex task of clarifying the role of a given form of mathematics

within scientific theories. This goes beyond assessing the availability of a formal

reducibility of a form of mathematics to a “weaker” one. A difficulty in our case is

that if we wish to gain any useful insight on which portion of ordinary mathematics is

in fact indispensable to our best science, we can not allow for too generous a rounding

up, one that includes substantial portions of set theory, for example.16 This makes

this task particularly difficult. As a consequence, it would seem that one will need

to either carefully argue for premise (P4), or, more plausibly, appropriately weaken

it to account for a suitable “rounding up”, if this can in fact be determined.

There is, however, a very general conclusion that one may be able to draw, if we

could show that some predicative form of mathematics is formally indispensable (i.e.

adequate and minimal) for scientifically applicable mathematics. The predicativist

might wish to distinguish between a part of impredicative mathematics that may

turn out to be profitably employed within scientific applications and a part that

is bound to play no role within it. Let us call the second strongly impredicative

mathematics. Such a divide might be not as sharp as desirable until more work

has been carried out, both technical and philosophical. However, if premise (P3’)

15See, for example, (Quine 1986, Field 1980). An explanatory role of mathematics within science

has been at the centre of recent debates on standard indispensaiblity arguments.
16See (Quine 1986).
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were found to be true, we can expect that one could give some general rounding up

of predicative mathematics that is useful for science without reaching the strongly

impredicative. One way to re-phrase this is by claiming that if we could enforce

a demarcation between scientifically applicable and non-applicable mathematics,

then we could also hope to single out a portion of impredicative mathematics that

plays no significant role at all within applicable mathematics; no theoretical virtue

can rescue this part of mathematics, and if (P3’) were true, strongly impredicative

mathematics may be dispensed of.

The discussion so far clarifies that the crucial task for the predicativist is to offer

support to premise (P3’), that will be the focus of the next section.

7.3.2 Supporting the indispensability of predicative mathe-

matics

Having addressed the issue of which kind of conclusion a predicativist may draw from

a “dispensability” argument, it is now time to look at the prospects of deciding

whether (IP) and (DI)’s crucial premises (P2) and (P3’), respectively, are true.

There are two points the predicativist needs to clarify:

1. Is predicative mathematics (formally) adequate to science?

2. Which is the minimal form of predicative mathematics that is (formally) ade-

quate to science?

If the first question could be answered positively, then an answer to the latter

question would represent a first step in stabilizing the predicativist’s position, by

clarifying the formal relation between possibly different predicative theories that are

adequate to science.

As to the first question, as already mentioned at in Chapter 4 Section 4.3, Fefer-

man has argued that the case can be made that all scientifically applicable math-
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ematics can be codified by predicative theories. Over the years he has extensively

tested the following working hypothesis:

All of scientifically applicable analysis can be developed predicatively.

More precisely, Feferman has argued that all scientifically applicable analysis can

be developed in the system W of (Feferman 1988b), which codifies in modern terms

Weyl’s system in “Das Kontinuum”. As system W is of the same proof theoretic

strength as Peano Arithmetic, this gives us an upper bound for scientifically appli-

cable mathematics that would enable the justification of no more than arithmetic

as a base.17

Feferman further points to the work carried out in Reverse Mathematics and in

Bishop style constructive mathematics as additional evidence in support of his thesis,

as the results obtained there also confirm that large portions of contemporary anal-

ysis can be carried out on the basis of theories whose strength does not exceed that

of Peano Arithmetic.18 In fact, Feferman observes that the Reverse Mathematics

project has shown that “an exceptional amount of analysis is already accounted for

17Feferman (1993b, p. 443) writes: “In considering what mathematics is actually used in science

it suffices to restrict attention to physics since, among all the sciences, that subject makes the

heaviest use of mathematics and there is hardly any branch of mathematics, that has some scientific

application, which is not applied there. It would be foolish to claim detailed knowledge of the

vast body of mathematics that has been employed in mathematical physics. However, in general

terms one can say that it makes primary use of mathematical analysis on Euclidean, complex,

and Riemannian spaces, and of functional analysis on various Hilbert and Banach spaces. Any

logical foundation for scientifically applicable mathematics should, at a minimum, cover all of 19th

century mathematical analysis of (piece-wise) continuous functions on the former kind of spaces

and should then go on to cover the theory of (Lebesgue) measurable functions and basic parts of

20th century functional analysis on the latter spaces.”
18Of fundamental importance in this context is Friedman’s article (Friedman 1977), that pioneers

the idea of restricting set theoretic induction to give rise to proof theoretically weak constructive

set theories that are simultaneously mathematically very expressive. The strategy of weakening

set induction to account for no more than mathematical induction has been extensively exploited

in proof theory in the last few decades. See also (Feferman 1979).
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on finitistically justifiable grounds” (Feferman 1993b) (see also (Simpson 1988)).19

The question then naturally arises of how much scientifically applicable mathe-

matics can be carried out in systems that are weaker than arithmetic. It is in the

work by Ye that this question has been directly addressed (Ye 1999, Ye 2000, Ye

2008, Ye 2011).

A conjecture of finitism

Ye (2011) aims at showing that substantial portions of analysis only require a frag-

ment of Primitive Recursive Arithmetic, that essentially corresponds to Elementary

Arithmetic (EA). This is a fragment of quantifier-free primitive recursive arithmetic

19Feferman (1993b) discusses the impact of the mathematical results mentioned above for stan-

dard indispensability arguments in the philosophy of mathematics. Feferman’s principal claim is

that standard indispensability arguments are “vitiated”. Feferman (1998, p. 297) writes: “...if one

accepts the indispensability arguments, practically nothing philosophically definitive can be said of

the entities which are then supposed to have the same status–ontologically and epistemologically–

as the entities of natural science. That being the case, what do the indispensability arguments

amount to? As far as I’m concerned, they are completely vitiated.” The main reason for Feferman’s

conclusion is the following: Feferman’s working hypothesis is that scientifically applicable mathe-

matics may be developed in the system W of (Feferman 1988b). That system is proof-theoretically

reducible to Peano Arithmetic, which, in turn, is reducible to intuitionistic arithmetic, i.e. Heyting

Arithmetic (see Chapter 4, page 112 for system W ). According to Feferman, the latter allow for

an understanding of infinity in terms of potential rather than actual infinity. Therefore, accord-

ing to Feferman, we gain no clear insight on ontological commitment. The reason for mentioning

Feferman’s discussion is that one might worry that the indispensability arguments to be discussed

below will also be facing Feferman’s own criticism. The reasons why this is not the case is that the

kind of indispensability arguments discussed in this chapter substantially differ from the original

ones: their aim is not an assessment of the ontological commitment of scientifically applicable

mathematics, but a clarification of whether predicative mathematics includes all scientifically ap-

plicable mathematics. Feferman’s main contention that predicative mathematics seems sufficient

for scientifically applicable mathematics supports rather than undermine the present arguments.
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(PRA), that proves the totality of only elementary recursive functions.20

Primitive recursive arithmetic (PRA) is often seen as codifying the limit of fini-

tary reasoning, following Tait’s analysis (Tait 1981). Ye’s choice of EA instead of

PRA brings us to a more constrained context than a form of finitism. This is due

to his desire to single out the minimum necessary for applications: “The reason for

restricting to elementary recursive functions here is to recognize the fact that, in

scientific applications, perhaps elementary recursive functions are all the functions

we actually need.” (Ye 2011, p. 40)21 The choice of Elementary Arithmetic is not

arbitrary. EA has often been considered a remarkable theory as it is simultaneously

20In the following for simplicity (contravening to standard conventions) I shall also use the

abbreviation EA to refer to Elementary Arithmetic without presupposing a specific formalisation

of the underlying theory. EA proves the totality of addition, multiplication and exponentiation. In

particular, closed terms in EA are constructed from numerals and elementary recursive functions

by composition, bounded primitive recursion, finite sum, and finite product. There are a number of

formal systems that have been proposed to formalize elementary arithmetic. See (Ye 2011), Section

2.1.1 for details of Ye’s system SF of strict finitism. See also (Avigad 2003) for an introductory

discussion of elementary arithmetic, its formulations and relevant conservative extensions. Note

also that in the following I shall conform to Ye’s use of “strict finitism” to denote a position that

countenances no more than elementary arithmetic. This use of the term “strict finitism” somehow

diverges from other uses of it, that refer to an even more stringent philosophy of mathematics,

that does not countenances the totality of exponentiation. See also Chapter 3, Section 6.
21 Ye’s choice of system has further philosophical aims, as the availability of a very weak system

for formalising applicable mathematics is crucial for his nominalistic strategy. Ye proceeds in two

steps. First he argues for the (probable) eliminability of infinitary notions in favour of strictly

finitary ones. This is supported by his extensive technical work that shows that a conspicuous

part of analysis is expressible within a strictly finitary system. Second, he claims that from this,

one can achieve the elimination of abstract mathematical notions in favour of concrete ones. The

latter reduction is to be achieved by an interpretation of strict finitism along psychologistic lines.

Ye (2008, p. 32) writes: “According to this philosophy, human mathematical practices are human

brains’ cognitive activities, and what really exist in human mathematical practices are human

brains and mathematical concepts and thoughts inside brains realized as neural circuitries (and

there are no alleged abstract mathematical entities ‘outside the brains’).”



244 CHAPTER 7. IS PREDICATIVE MATHEMATICS INDISPENSABLE?

proof theoretically extremely weak, but mathematically very robust, in the sense

that it is difficult to come up with natural mathematical statements that are not

expressible within EA.22

Ye proposes the following Conjecture of Finitism (CF): “Strict finitism is

in principle sufficient for formulating current scientific theories about natural phe-

nomena above the Planck scale and for conducting proofs and calculations in those

theories” (Ye 2011, p. 38). In fact, the claim Ye defends throughout the book is that

his system SF that codifies Elementary Arithmetic is sufficient for the development

of scientifically applicable mathematics.

Ye offers two main considerations to support his conjecture. First of all, he

offers some “intuitive reasons”, which relate to the finitary nature of applications to

science: when we engage in science we only need finitary and discrete magnitudes,

and approximations, the appeal to infinitary notions and continuity only having

an instrumental role. Secondly, he shows that one can develop large portions of

analysis within his system SF. He then concludes that the applicability of infinitary

mathematics to science is rooted in the applicability of the strictly finitary one. As

to the first point, Ye writes:

22As reported in (Avigad 2003, p. 258), on April 16, 1999, Harvey Friedman posted the following

conjectured to the Foundations of Mathematics mailing list: “Every theorem published in the

Annals of Mathematics whose statement involves only finitary mathematical objects (i.e., what

logicians call an arithmetical statement) can be proved in elementary arithmetic.” For example,

in particular, the conjecture implies that Fermat’s last theorem is derivable in EA. Avigad (2003)

reports a number of case studies that indicate some progress towards assessing the prospects of

this conjecture. However, caution is required in discussing this point. Avigad (2003, p. 259) also

writes: “We are a long way from settling even the more restricted conjecture [regarding Fermat’s

last theorem]; making real progress towards that end will require combining a deep understanding

of some of the most advanced methods of modern number theory with the proof theorist’s penchant

for developing mathematics in restricted theories. But the conjectures are interesting because many

proof theorists consider them plausible, whereas, I suspect, most mathematicians would lay long

odds against them.”
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In almost all mathematical applications, the physical entities we deal

with are finite and discrete. Macroscopically, the universe is believed to

be finite; microscopically, current well-established physics theories de-

scribe only things above the Planck scale (about 10−35m, 10−45s etc.).

Except for the theories about the microscopic structure of space-time,

such as the theories of quantum gravity, all scientific theories in a broad

sense, from physics to cognitive psychology and population studies, de-

scribe only finite things within the finite range from the Planck scale to

the cosmological scale. In these theories, infinity and continuity in math-

ematics are idealizations to gloss over microscopic details or generalize

beyond an unknown finite limit, in order to get simplified mathematical

models of finite and discrete natural phenomena. (Ye 2011, p. 1)

This can be summarised by claiming that we have reasons to believe that physical

quantities and states in the actual applications can be represented by the functions

available to strict finitism because we will only need finite precision in representing

physical quantities above the Planck scale.

As to the second point, Ye needs to show how to actually eliminate all appeals

to infinitary notions within the mathematics that is applied to science. (Ye 2011)

comes to a partial achievement of this goal. Ye (2011) develops large portions of

contemporary analysis on the basis of SF. I shall outline below some of the strategies

adopted by the author to recast in strictly finitary terms large portions of analysis.

First, however, it is necessary to block a possible objection to the overall project that

Ye himself considers and addresses. One might observe that we might be able to

translate ordinary mathematical constructions into strictly finitary ones, and then

derive within this more constrained context the corresponding parts of analysis;

however, the resulting mathematics might turn out to be substantially different

from the original. If this were the case, one might worry that we would be unable to

retain the confidence that the applicability to science that we have so often tested
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for the original theory will also translate into applicability of the strictly finitary

version of mathematics. To counter this objection Ye clarifies that:

the theorems in strict finitism have very similar syntactical formats as

the corresponding theorems in classical mathematics. [...] a physics the-

ory formulated with strict finitism states the same physical facts and

regularities as the original one formulated with classical mathematics.

They are actually the same physics theory with different mathematical

formalisms. Therefore, the development of an applied classical mathe-

matical theory within strict finitism implies that the applications of that

theory can be automatically translated into the applications of strict

finitism.

These considerations are similar in spirit to those that are put forth by the

constructive mathematician to clarify that the change of logic from classical to intu-

itionistic does not induce a distortion of ordinary mathematics (see Chapter 2). In

fact, Ye’s work takes as starting point the development of Bishop style mathematics,

of which he further refines the techniques to allow for a finitary treatment. In par-

ticular, as in the case of constructive mathematics, also here there is no conflict with

the results obtained within standard classical mathematics. This is of fundamental

importance not only for Ye’s claim relating the applicability of the mathematics

developed so far in SF; but it is also required to make more plausible the claim that

progress can be made to produce strictly finitary counterparts of other classical re-

sults that have so far not been tackled. In addition, the “miniaturization” achieved

so far of classical results to the context of SF does not make use of any “ad hoc”

devices, but of a combination of a number of strategies that can be further applied.

Like Feferman before him, Ye is also optimistically cautious and claims that

“[m]ore work has to be done in developing applied mathematics within strict finitism,

as well as in analysing what could be a counterexample to the conjecture, in order
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to support the conjecture better. However, based on the reasons we already have,

a positive answer to the conjecture seems plausible.” (Ye 2011, p. 28) The basis

of this belief is given by the fact that “the general techniques used here seem to

show that applied mathematics within strict finitism can advance much further.”

(Ye 2011, p. 27)

Finitary strategies

It is important to clarify why Ye is cautiously confident that more progress can be

attained towards confirming (CF). Ye’s work takes largely inspiration from Bishop’s

style mathematics, by using extensively the techniques developed in that context

to “constructivise” classical results. Therefore, large parts of his treatment follow

rather closely (Bishop & Bridges 1985). However, some ingenuity is required, as

sometimes the definitions need to be stated more carefully and the recursive con-

structions in the proofs need to be explicitly carried out within the more limited

apparatus available.23 In addition, the last part of the book (Ye 2011) extends the

results in (Bishop & Bridges 1985) by addressing directly the mathematical needs

of quantum mechanics (see also (Ye 2000)).

One might still be wary and wonder how is it possible that a formalism as

limited as Ye’s allows for a suitable treatment of analysis, given the substantial use

of sets and functions within contemporary analysis. The strategies adopted here is

analogous to those used by e.g. Feferman in his predicative development of analysis

23In Elementary Arithmetic one can only apply bounded primitive recursion on numerical terms

and induction on quantifier-free formulas. See Section 2.2.2 and 2.2.3 (Ye 2011) for an indication

of general strategies the author adopts to ease the treatment of ordinary notions within a strict

finitist context and to address difficulties related to restrictions on the induction. Interestingly Ye

also uses Bishop’s “numerical quantifiers” to ease the treatment of ordinary notions in his strictly

finitary system. These were developed by Bishop in (Bishop 1970) in an attempt to apply the

techniques of Gödel’s Dialectica interpretation (Gödel 1958) to offer a foundation for constructive

mathematics, but, to my knowledge, have since been largely forgotten.
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as well as in constructive mathematics (Feferman 1988b, Bishop & Bridges 1985).

One crucial idea is to utilise sets and functions in the “metalanguage” whenever

possible. This strategy is so explained by Feferman (1993b, p. 446):

“In all of the indicated formal systems one can speak within the lan-

guage of these systems about arbitrary real numbers, functions of real

numbers, sets of real numbers, etc. Only the existence principles (closure

conditions) concerning these objects are much more restricted than in

the case of systems of set theory like Zermelo’s.

The idea is to utilize expressions referring to sets in a fashion that is similar to

how expressions involving classes are usually introduced in ZF. Classes in ZF are

abbreviations for formulas or conditions that some sets may satisfy, they are not

first class objects of the theory, but ‘syntactic sugar’ that we employ to simplify the

development of the mathematics. Similarly, here sets are “conditions for classifying

terms of various types” and functions are “terms that apply to terms satisfying some

conditions and produce other terms satisfying some other conditions” (Ye 2011, p.

80). Sets and functions can be appealed to in order to express conditional statements

of the form: “provided that we can construct a term so and so, then ....”. This in

particular clarifies that no direct appeal to sets and functions is made, although

they are used in the actual development of the mathematics to gain generality and

economy. It is also clear that given this use of sets and functions, quantification

over them requires particular care. For example a quantification: “for all sets A”

corresponds to a statement: “for all formulas so and so”, and “for all a ∈ A” is an

abbreviation for a statement of the form: “whenever we can construct a term, a,

that satisfies the formula so and so, then... ”.24 In cases of quantification that is not

nested, one can understand quantification as a form of schematic claim defined by

24Note that typically one needs to specify conditions for being a member of a set, and identity

conditions for sets.
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formulas of some form. However, in the case of nested quantifiers and combinations

with other logical constants, particular care is required.

Consequences for predicativism

The above is only a glimpse of some of the strategies utilised in (Ye 2011) to develop

a strictly finitary form of analysis that is workable and sufficiently similar to the

classical one. The principal reason for reviewing here very briefly how the author

proceeds in constructing a form of strict finitist analysis is to offer some support to

the author’s claim that although more work is required to fully test the conjecture

(CF), still the fundamental mathematical mechanism that is required to further

extend the work accomplished so far is in place.

One can conclude that Ye’s case for (CF) is based then on three components: (1)

some general considerations related to the finitary nature of applications to science,

(2) the success so far encountered in miniaturizing to the strictly finitary case large

portions of ordinary analysis and (3) the conviction that the procedures utilized so

far can be further extended.

It is then natural to ask: how can a predicativist make use of this work to support

predicativism by an appeal to indispensability and dispensability arguments as (IP)

and (DI)?

It is difficult to draw general conclusions on this issue, as each of the three points

above seem to require further investigation before one can reach any definitive con-

clusion. In particular, we would need to embark on a detailed analysis of which

portions of mathematics are in fact used in our best scientific theories, to see how

far Ye’s technical work has achieved and what is still left to do. As to the chances

of further extending the present work, one would need to ensure that the restricted

form of induction available in strict finitism suffices for developing any further parts

of mathematics that might be required for science. However, for what concerns the

purely mathematical component, a preliminary analysis suggests that it is at least
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possible that the mechanism that is in place will suffice to grant a formal reduction

of scientifically applicable mathematics to system SF. Interestingly, system SF cod-

ifies Elementary Arithmetic, which seems to be a system Parsons is ready to accept

as strictly predicative. As a consequence, strict predicativism (à la Parsons) could

turn out to be formally adequate for scientifically applicable mathematics. This is

clearly a remarkable prospect, and a very valuable insight on ordinary mathematics.

If this were the case, we would also have that both the other forms of predicativism

would be formally adequate for science, although not minimal. In particular, this

would suffice to block a possible objection that may be risen to constructive math-

ematics: the possibility that constructive mathematics is not adequate to science.

The work of Feferman, Ye and the Bishop school makes it plausible that constructive

mathematics has all the necessary tools to be formally adequate for science.25

More crucially, one might object to the “intuitive reasons” that Ye appeals to,

which relate to the finitary nature of applications to science.26 An assessment of

the latter is required to press any argument for the dispensability of impredicative

mathematics, as are the issues of theoretical virtues of scientific theories that were

discussed at page 238.

This preliminary analysis of “dispensability” arguments highlights that the task

for the predicativist is extremely complex and the chances of success are so far

unclear.27 However, once more I wish to highlight the benefit that an analysis as

25See also the discussion in (Billinge 1998).
26For example, see (Ye n.d.).
27 The (in)dispensability arguments discussed above differ considerably from another kind of

indispensability argument that may be mounted against predicativity and take inspiration from

contemporary research by Harvey Friedman into the incompleteness phenomenon. A discussion of

this point is particularly complex and would require substantial space. Here I simply wish to em-

phasise that a different choice of the concept of “interesting mathematics” might have a radically

different impact on the overall outcome of discussions of indispensability. This second kind of argu-

ment moves from within mathematics itself and exploits recent debates on whether the assumption

of large cardinal axioms in set theory can be justified in view of their elementary consequences.
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the one undertaken by Feferman and Ye holds for a clarification of the concepts that

are involved in mathematics and of their role, within mathematics and science. I

wish to conclude with an observation.

7.3.3 Indispensability and platonism?

Indispensability arguments have traditionally been presented in very general terms,

stating that mathematical objects exist, without clarifying in detail which math-

ematical objects are deemed to exist, according to those arguments. There is a

reason for this, as for nominalism the existence of only one mathematical entity is

bad news. It would seem therefore that the platonist can be content with arguing

that at least one mathematical object exists.

A very general estimate of the ontological commitment implied by indispens-

ability arguments was once offered by Quine (1986) in terms of Zermelo set theory.

According to the investigations reported on in the previous sections, however, this

If this were the case, then the argument would aim at establishing that impredicative mathemat-

ics is indispensable for “core” mathematics, as strong forms of impredicativity are required to

explain elementary, lower level mathematics. Friedman’s recent examples of “concrete” forms of

incompleteness have sparked a debate that has questioned not only the choice of the portion of

mathematics that is deemed “interesting” but also the naturalness of the examples themselves and

whether the impredicative notions involved ought to be taken at face value. Friedman is presently

working to produce further examples to show that strongly impredicative notions are needed in

the proof of natural elementary statements. The principal aim of these examples is to corrobo-

rate the thought that the ordinary mathematics of the future will require the assumption of large

cardinal notions. If this were the case then a fundamental consequence would be that the often

presupposed demarcation between elementary and strongly impredicative mathematics would be

fully unjustified: even elementary mathematics would involve impredicativity in an essential way.

The outcomes of this work and the relevant discussion are therefore of fundamental importance for

an overall assessment of the prospects of predicativism. However, I shall have to omit a discussion

of this point as the debate is still insufficiently developed to allow for a self-contained treatment,

and the possible outcomes seem at present widely open.
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seems far too generous. Zermelo set theory would seem to already embody elements

of the strongly impredicative component of mathematics.

Feferman (1993b) writes:

Answers given in the past to these [indispensability] questions have been

extremely broad, on the order of: mathematical analysis is indispensable

to science, the real numbers and functions and sets of reals are the ba-

sic objects of analysis, set theory provides our best account of the real

number continuum and of functions and sets in general, so the entities

and principles of set theory are justified by science. This sweeping pas-

sage leaves undetermined just which of those entities and principles are

thereby justified, except perhaps to say that the farther reaches of set

theory are evidently unnecessary for science and so may be disregarded.

A research project aiming at clarifying exactly which portion of contemporary

mathematics is needed for science is a valuable contribution to the philosophy of

mathematics, though difficult to pursue. It would be especially useful to fully clarify

if arithmetic already formally suffices for all scientifically applicable mathematics.

The discussion in the previous sections suggests that the platonist ought to be

careful in his appeal to indispensability arguments. The strategy of supporting

platonism by a recourse to indispensability arguments may leave the platonist with

a very meagre ontolgy. This is particularly significant as indispensability arguments

have often been deemed the most compelling arguments for platonism. However, if it

turns out that these arguments can, at best, support a form of moderate platonism,

or, perhaps, a restricted form of finitism, this would modify our perception of what

platonism in fact is. Platonism is often contrasted with revisionist approaches to

mathematics, and is also often seen as a natural ally of standard set theory and

impredicative methods. However, if platonism were supported by indispensability

arguments, and if arithmetic were shown to be formally sufficient to develop all of
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scientifically applicable mathematics, then this would place strain on this common

association between platonism and impredicativity. A platonist who wanted to grant

ZFC set theory would have to turn to different arguments to support his views.28

The discussion in this chapter also clarifies once more that the relation between

realism and impredicativity needs to be spelled out carefully. It is usually common to

assume that a realistic attitude to the mathematical entities resolves the difficulties

with impredicativity. However, we seem to require a more detailed account of this

realistic attitude, what it comprises, as well as how it is spelled out. We need to

ensure that that form of realism, like Poincaré’s Cantorian’s realism, does in fact

grant sufficient room for impredicativity. There is here a strong affinity with the

conclusions the logician draws from an analysis of impredicative systems like, for

example, Girard’s system F or the calculus of constructions. Here to prove the

consistency of these calculi one normally carries out a normalization proof, showing

that every computation terminates. All known proofs so far require impredicative

reasoning in the meta-theory. For example, the normalization proof of Girard’s

system relies on set-theoretic reasoning at the meta-level. This suggests that in

order to justify impredicative systems we need to resort to impredicativity at the

meta-level.

7.4 Conclusion

In this chapter I have first of all suggested that a predicatively inclined mathemati-

cian may pursue predicative mathematics on the basis of the sort of methodological

preferences and intra-mathematical reasons that constructive mathematicians typi-

cally adduce for working with intuitionistic logic. This further supports the thought

that predicativity is a natural component of constructive mathematics in the Bishop

tradition.

28See e.g. (Maddy 1997).
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I have advanced some preliminary thoughts on how a predicativist could pro-

ceed in supporting his philosophical stance. I have suggested that an argument for

predicativism would have to carefully account not only for the introduction of the

constraints but also for the choice of its base. In this respect, I have considered the

particular case of predicativism given the natural numbers and suggested that the

discussion on strict predicativism from the previous chapter suggests that an argu-

ment for the natural number structure as base is particularly complex to achieve. It

requires finding the right balance between complying with predicativity constraints

for sets of natural numbers, while accepting the natural number structure as base,

therefore also accounting for the principle of induction.

The predicativist may suggest that suitable forms of indispensability arguments

might come to help in delivering a defense of predicativism and also in stabilising the

base of stronger forms of predicativism, in particular predicativism given the natural

numbers. I have proposed possible formulations of indispensability arguments that

aim at assessing the role of predicative mathematics with respect to our best scientific

theories. I have also reported on work by, among others, Feferman and Ye that gives

support to the claim that very weak theories may already be formally adequate for

expressing scientifically applicable mathematics. This work, if fully carried out,

would give a much needed support to predicativism, in that it would block (at lest

within the context of scientifically applicable mathematics) the frequent objection

that it cripples the mathematics too far. Therefore from a purely formal point of

view, an appeal to indispensability to science seems to offer the potential to clarify

whether predicative mathematics of some sort is sufficient for science. It would

also help us determine which base is indispensable, and therefore offer a way of

justifying the choice of the base. In the particular case of predicativism given the

natural numbers, if full arithmetic were found to be indispensable for science, then

this could stabilise its position; if, however, a fragment of arithmetic would turn

out to be sufficient, the predicativist given the natural numbers will need to offer a



7.4. CONCLUSION 255

different kind of argument for his choice of base.

The crucial question is which conclusions may be obtained from the formal in-

dispensability of a form of mathematics. Suppose that in the near future we were

able to show that Ye’s system SF is already formally sufficient to capture scientif-

ically applicable mathematics. This does not imply in any way that impredicative

mathematics is dispensable from science.29 As mentioned above, more work (not

only technical but also philosophical) needs to be carried out for a full evaluation

of the relation between formal indispensability of a form of mathematics to science

and its actual capability to fulfil an appropriate role within science.

My overall impression is that it is doubtful that indispensability arguments may

be successfully used to reject impredicative mathematics in general. To go from

the formal adequacy and minimality of a portion of ordinary mathematics with

respect to scientifically applicable mathematics to the dispensability of what lays

beyond it, is a huge step. If fully carried out, a research project of this kind could

clarify the centrality of predicative mathematics within applicable mathematics.

But the rejection of impredicativity does not follow from this. In particular, beyond

the difficult task of assessing the role of mathematics within our best scientific

theories (as discussed above), a full defense of predicativism, and thus the rejection

of impredicative mathematics, will also require a defence of premise (P1) that I have

accorded to the predicativist for the sake of argument.

Beyond the purpose of addressing the prospects of predicativism itself, the dis-

cussion in this chapter had the aim of clarifying once more the potential of a careful

analysis of mathematics on the basis of weak systems. The complex task of produc-

ing new proofs of ordinary theorems within constructive and predicative systems has

required the development of sophisticated tools that would have not been normally

required (and perhaps found) if we were working within a more standard context.30

29Incidentally, neither Feferman nor Ye make a claim of this kind.
30See Chapter 2, Sections 2.3 and 2.4.2 and Chapter 4 4.3.
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This has both a mathematical and a philosophical benefit. We are uncovering the

computational content of large portions of mathematics, thus paving the way for

computer applications. In addition, we are explicating the relation between dif-

ferent parts of mathematics, and their underlying assumptions. For example, we

have realised the surprising fact that large portions of infinitary and impredicative

mathematics can be carried out by appealing only to a restricted finitary apparatus.

This offers the potential for a clarification of which concepts or entities are required

for which portions of mathematics, and lays the foundation for an analysis of how

to justify them. In addition, by investigating the more specific question of which

portions of mathematics are indispensable to our best scientific theories, we may

contribute to an understanding of the complex relation between mathematics and

science.



Conclusion

In this thesis I have laid down the foundations for a philosophical study of two

dimensions of constructivity that are to be found in foundational systems for con-

structive mathematics: intuitionistic logic and predicativity. In the following I shall

review the principal outcomes of the thesis and also lay out suggestions for future

work.

In the first part of the thesis, I have clarified in which sense constructive math-

ematics is algorithmic, by demonstrating the workings of the BHK interpretation

and the Curry-Howard correspondence. I have then explored the impact that the

compliance with a constructive notion of proof has for mathematics. I have espe-

cially focused my attention on techniques that have been developed to progress this

form of mathematics. These techniques are among a number of tools that have been

extensively used to reduce substantial portions of ordinary mathematics not only

to constructive, but also to predicative formulations. They enable a fine analysis

of ordinary mathematics in terms of a constructive core. Finally, I have examined

intra-mathematical and pragmatic reasons that motivate constructive mathemati-

cians to adopt intuitionistic logic in their research.

Further work needs to be carried out to elucidate the relation between classical

and intuitionistic forms of mathematics; this would benefit from careful investigation

of specific case studies. A thorough philosophical evaluation of the motives induced

by constructive mathematicians for the adoption of constructive mathematics is

also important, and could offer a contribution to contemporary debates on logical

257
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pluralism.

In the second part of the thesis I have begun an investigation of predicativity. The

starting point was a distinction between two characterisations of predicativity: one

in terms of circularity and one in terms of invariance. The characterisation in terms

of circularity is at the heart of Russell’s ramified type theory, whose introduction

had enduring impact on mathematical logic and computer science. It also figured

prominently within the logical analysis of predicativity that aimed at clarifying, from

an impredicative perspective, the limits of predicativity given the natural numbers.

Numerous issues would deserve further investigation in this context, like, for

example, the process of reflection that enables the ascent along the progression

of systems of ramified second order arithmetic. Here a comparison with Feferman’s

notion of “unfolding” (that was introduced to avoid any reference to ordinals) would

be particularly illuminating.31 In addition, the notion of proof-theoretic reducibility

requires further consideration.

The characterisation in terms of invariance gestured at by Poincaré is bound up

with a constructive concept of set that deeply differs from ZFC’s. This predicative

concept of set may be seen as offering a unifying theme that brings together the

three variants of predicativity that were discussed in this thesis: strict predicativity,

predicativity given the natural numbers and constructive predicativity. It is recog-

nisable in the writings by Poincaré, Weyl, Parsons and also figures in constructive

type theory. The central character of this conception of set is the dependence of a set

on a (finitary) definition which explicates a process of “generation” of the elements

of the set. The resulting predicative sets are clearly badly affected by impredicative

methods of definition. Poincaré’s discussion on invariance may be seen as pointing

towards a possible strategy for “stabilizing” sets as extensions of definitions.

The characterisation of predicativity in terms of invariance was here considered

especially in relation to the underlying concept of set. Future work will have to fur-

31See (Feferman 2005) for references.
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ther analyse this notion, its relation with the alternative characterisation in terms of

circularity, and its role within the logical analysis of predicativity. Possible relations

with formal aspects of constructive type theory should also be explored.

Another fundamental contribution to the study of predicativity and to an ex-

plication of the predicative concept of set was Weyl’s “Das Kontinuum”. Weyl’s

mathematical process may be seen as fully explicating the construction of predica-

tive sets from an initial base of “uncontroversial” elements and by application of

simple logical operations. The contemporary eye can not but notice with surprise

the similarity of Weyl’s mathematical process with the inductive construction of

propositions and sets in constructive type theory.

In my discussion I have introduced the notion of predicativity “base” as an instru-

ment for clarifying the differences between predicativity given the natural numbers

and strict predicativity. I have deliberately left open how to frame the base from a

philosophical perspective. It would be desirable to offer a more precise delineation

of the base, including an analysis of possible philosophical interpretations of it. A

philosophical challenge is then to clarify what is the philosophical difference be-

tween the entities appealed to in the base, and the ones that are “generated” under

predicative constraints.

While Weyl’s mathematical process assumes as base the natural number struc-

ture with full mathematical induction, Nelson and Parsons object to it on grounds

of circularity. I have analysed in some detail Nelson’s complaint on induction, and

drawn similarities with Parson’s discussion on the circularity of the inductive defi-

nition of the natural number structure.

Substantial work is still required to fully clarify the very notion of strict predica-

tivity. In particular, an assessment of exactly how far strict predicative restrictions

ought to go requires a philosophically driven logical analysis, similar to the logical

analysis of Γ0 predicativity. As suggested by Parsons, results obtained within the

investigations on predicative versions of Frege’s arithmetic are likely to offer very
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useful insights.

In my attempts to further elucidate strict predicativity I was drawn to an analysis

of Dummett’s indefinite extensible concepts, which has brought to the unexpected

insight that a different way out, compared with strict predictivity, is available to

those who share Nelson and Parsons’ worry on induction: instead of restricting in-

duction one could opt for intuitionistic logic. This would have the apparent benefit

of granting a more generous portion of mathematics and a relatively more standard

approach. The discussion of Dummett’s “way out” had the advantage of fully ex-

plicating the role within the debate on impredicativity of a specific understanding

of classical domains of quantification. The intuitionistic “way out”, that is pro-

posed to avoid the impasse given by the combination of this view of quantification

domains with the predicative concept of set, seems also to help resolve a difficulty

that was caused by the plurality of notions of predicativity: the fact that inductive

definitions are considered predicative from a constructive but impredicative from

a classical perspective. The thought is that given a different understanding of the

workings of quantification, from a constructive perspective some circularity may be

tolerable.

We are therefore left with a task: explicate the reasons for the introduction of

predicativity constraints in constructive systems. More work is required to fully

assess the latter point. The writings by Martin-Löf are particularly relevant in

this case. In addition, one ought to compare these motivations with Fruchart and

Longo’s “Carnapian” route to intuitionistic impredicative type theories that was

only quickly outlined in Chapter 6.

A legacy of Weyl’s “Das Kontinuum” is his investigation of the mathematical

extent of predicative mathematics (given the natural numbers). Weyl’s work was

subsequently extended by Feferman and the reverse mathematics project and the

outcome was the surprising realisation that predicative mathematics (in the sense

of Weyl) suffices to carry out large portions of ordinary mathematics.
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I have repeatedly emphasised the possible benefits of these insights for the phi-

losophy of mathematics; this deserves, in fact, to be worked out in detail. One

option is to consider the impact of these technical results on the epistemology of

mathematics. Another possible direction of investigation aims at clarifying which

are the minimal mathematical assumptions that are required to carry out scientifi-

cally applicable mathematics. I have suggested a kind of indispensability argument

that ought to help clarify what would be required to show that a form of predica-

tive mathematics is indispensable to science. I have reviewed technical results that

might bring some support for the formal indispensability of weak predicative forms

of mathematics. I have then emphasized the difficulties that lay ahead in drawing

precise conclusions from a formal indispensability result, should that be confirmed.

My analysis in Chapter 7 points towards a vast possible research project that ought

to employ both mathematical and philosophical instruments to further clarify the

relation between predicative mathematics and the needs of our best scientific theo-

ries.



262 CONCLUSION



Bibliography

Aczel, P. (1977), An introduction to inductive definitions, in J. Barwise, ed., ‘Hand-

book of Mathematical Logic’, Vol. 90 of Studies in Logic and the Foundations

of Mathematics, Elsevier, pp. 739 – 782.

Aczel, P. (1978), The type theoretic interpretation of constructive set theory, in

A. MacIntyre, L. Pacholski & J. Paris, eds, ‘Logic Colloquium ’77’, North–

Holland, Amsterdam-New York, pp. 55–66.

Aczel, P. (1982), The type theoretic interpretation of constructive set theory: Choice

principles, in A. S. Troelstra & D. van Dalen, eds, ‘The L.E.J. Brouwer Cente-

nary Symposium’, North–Holland, Amsterdam-New York.

Aczel, P. (1986), The type theoretic interpretation of constructive set theory: In-

ductive definitions, in R. B. Marcus, G. J. Dorn & G. J. W. Dorn, eds, ‘Logic,

Methodology, and Philosophy of Science VII’, North–Holland, Amsterdam and

New York, pp. 17–49.

Aczel, P. (2006), ‘Aspects of general topology in constructive set theory’, Proceedings

of the second workshop of Formal Topology, Special issue of the Annals of Pure

and Applied Logic 137, 3–29.

Aczel, P. & Rathjen, M. (2008), Notes on constructive set theory. June 2008.

Adams, R. & Luo, Z. (2010), ‘Classical Predicative Logic-Enriched Type Theories’,

Annals of Pure and Applied Logic 11(161).

263



264 BIBLIOGRAPHY

AGDA (n.d.), http://wiki.portal.chalmers.se/agda/pmwiki.php.

Aschbacher, M. (2005), Highly complex proofs and implications of such proofs, in

A. Bundi & et al., eds, ‘The nature of mathematical proof, papers of a discussion

meeting’, pp. 2401–2406.

Avigad, J. (2003), ‘Number theory and elementary arithmetic’, Philosophia Mathe-

matica 11(3), 257–284.

Avigad, J. & Reck, E. H. (2001), ‘Clarifying the nature of the infinite: the develop-

ment of metamathematics and proof theory’, Carnegie Mellon Technical Report

CMU-PHIL-120 .

Baire, R., Borel, E., Hadamard, J. & Lebesgue, H. (1905), Five Letters on set theory.

Translated in (Moore 1982).

Barendregt, H. P. (1981), Lambda Calculus: Syntax and Semantics, Vol. 103 of

Studies in Logic and the Foundations of Mathematics, North–Holland.

Barendregt, H. P. (1991), ‘Introduction to generalized type systems’, Journal of

Functional Programming 1(2).

Bauer, A. (2016), ‘Five stages of accepting constructive mathematics’, Bulletin of

the American Mathematical Society .

Beeson, M. (1985), Foundations of Constructive Mathematics, Springer Verlag,

Berlin.

Bellantoni, S. & Cook, S. (1992), ‘A new recursion-theoretic characterization of the

polytime functions’, Comput. Complexity 2(2), 97–110.

Benacerraf, P. & Putnam, H. (1983), Philosophy of Mathematics: Selected Readings,

Cambridge University Press.



BIBLIOGRAPHY 265

Berger, J., Pattinson, D., Schuster, P. & Zappe, J. (2008), Trends in Constructive

Mathematics. Selected papers, Mathematical Logic Quarterly, Vol. 54, N. 1.

Berger, U. & Schwichtenberg, H. (1995), Program extraction from classical proofs,

Springer Berlin Heidelberg, pp. 77–97.

Bernays, P. (1935), ‘Sur the platonisme dans les mathématiques’, L’Enseignement
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Type Theory, in P. Dybjer, S. Lindström, E. Palmgren & B. Sundholm, eds,

‘Epistemology versus Ontology, Essays on the Philosophy and Foundations of

Mathematics in Honour of Per Martin-Löf’.
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Lombardi, H. & Quitté, C. (2015), Commutative Algebra: Constructive Methods,

Netherlands, Springer.

Lorenzen, P. (1955), Einfuhrung in Die Operative Logik Und Mathematik, Berlin,

Springer-Verlag.

Lorenzen, P. & Myhill, J. (1959), ‘Constructive definition of certain analytic sets of

numbers’, Journal of Symbolic Logic 24, 37–49.



BIBLIOGRAPHY 279

Maddy, P. (1997), Naturalism in Mathematics, Oxford University Press.

Maietti, M. E. (2005), Predicative exponentiation of locally compact formal topolo-

gies over inductively generated ones, in L. Crosilla & P. Schuster, eds, ‘From

Sets and Types to Topology and Analysis: Practicable Foundations for Con-

structive Mathematics’, Vol. 48 of Oxford Logic Guides, Oxford University

Press.

Maietti, M. E. (2007), Quotients over minimal type theory, in B. Cooper, B. Löwe

& A. Sorbi, eds, ‘Computation and Logic in the Real World - Third Conference

of Computability in Europe, CiE 2007’, Vol. 4497 of LNCS, Springer–Verlag.

Maietti, M. E. (2009), ‘A minimalist two–level foundation for constructive mathe-

matics’, Annals of Pure and Applied Logic 160(3), 319–354.

Maietti, M. E. & Sambin, G. (2005), Toward a minimalist foundation for construc-

tive mathematics, in L. Crosilla & P. Schuster, eds, ‘From Sets and Types

to Topology and Analysis: Towards Practicable Foundations for Constructive

Mathematics’, Vol. 48 of Oxford Logic Guides, Oxford University Press.

Mancosu, P. (1998), From Brouwer to Hilbert. The Debate on the Foundations of

Mathematics in the 1920s, Oxford: Oxford University Press.

Mancosu, P. (2008), The Philosophy of Mathematical Practice, Oxford University

Press, Oxford.

Marion, M. (2008), Wittgenstein, Finitism, and the Foundations of Mathematics,

Oxford University Press.

Markov, A. A. (1954), Theory of Algorithms, Vol. 42, Trudy Mat. Istituta imeni

V.A. Steklova, Moskva: Izdatel’stvo Akademii Nauk SSSR.



280 BIBLIOGRAPHY

Marquis, J.-P. (2015), Category theory, in E. N. Zalta, ed., ‘The Stanford Encyclo-

pedia of Philosophy’, winter 2015 edn.
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Weyl, H. (1910), ‘Über die Definitionen der mathematischen Grundbegriffe’,

Mathematisch-naturwissenschaftliche Blätter 7, 93–95 and 109–113.

Weyl, H. (1918), Das Kontinuum. Kritischen Untersuchungen über die Grundlagen

der Analysis, Veit, Leipzig.

Whitehead, A. N. & Russell, B. (1910, 1912, 1913), Principia Mathematica, 3 Vols.,

Vol. 1, Cambridge: Cambridge University Press. Second edition, 1925 (Vol

1), 1927 (Vols 2, 3); abridged as Principia Mathematica to *56, Cambridge:

Cambridge University Press, 1962.

Wittgenstein, L. (1978), Remarks on the Foundations of Mathematics, Oxford,

Blackwell. revised sec. ed.

Ye, F. (1999), Strict Constructivism and the Philosophy of Mathematics, PhD thesis,

Department of Philosophy, Princeton University.



288 BIBLIOGRAPHY

Ye, F. (2000), ‘Toward a constructive theory of unbounded linear operators’, The

Journal of Symbolic Logic 65(1), 357–370.

Ye, F. (2008), A strictly finitistic system for ap-

plied mathematics. Draft article available online at:

https://sites.google.com/site/fengye63/strictlyfinitisticsystemforappliedmath.

Ye, F. (2011), Strict Finitism and the Logic of Mathematical Applications, Synthese Li-

brary.

Ye, F. (n.d.), Response to Xu and Leitgeb. Draft article available online at:

http://www.academia.edu/4737533/.

Zermelo, E. (1908), ‘Untersuchungen über die Grundlagen der Mengenlehre, I’, Mathema-

tische Annalen 65, 261–281. Translated in (van Heijenoort 1967), pages 199–215.

(References are to the English translation).


	Introduction
	I Part I: Constructive Mathematics
	The mathematical landscape
	A changing mathematics
	The role of computers in mathematics
	Formal verification
	The status of constructive mathematics

	Computational content
	The Brouwer–Heyting–Kolmogorov explanation of 99993em.5constructive proof
	BHK and computational content
	Program extraction from constructive proofs

	Conclusions

	Constructive Mathematics
	Bishop's constructive mathematics
	Characterising constructive mathematics
	The role of intuitionistic logic

	Constructive strategies
	Definitions
	Theorems

	Varieties of constructive mathematics
	Exclusive use of intutionistic logic
	Constructive Reverse Mathematics

	Reasons for constructive mathematics 
	Generalisation
	Computational content

	Conclusion


	II Part II: Predicativity
	Origins of Predicativity
	Introduction
	The origins of predicativity
	Poincaré and Russell
	Circularity
	Invariance

	Russell's ramified type theory
	Reducibility and the natural numbers

	Weyl's ``Das Kontinuum''
	After ``Das Kontinuum''

	Conclusion

	The logical analysis of predicativity
	Gödel's constructible hierarchy
	0 and the limit of predicativity
	Predicativity and ordinary mathematics
	Fruitfulness of predicativity

	Plurality of predicativity
	Strict predicativity
	Constructive predicativity

	Analysis of Predicativity
	Base and constraints
	Relativity of predicativity

	Conclusion

	On a predicative concept of set
	Sets as extensions of predicates
	Sets in transition

	Absolutely arbitrary sets
	Quasi-combinatorialism

	Poincaré on sets and definitions
	Impredicative definitions
	Poincaré's ``genre'' and incomplete definitions

	Weyl's Mathematical Process
	Ascending from an initial category to sets
	The natural numbers structure

	Preludes to a constructive notion of set
	Conclusion

	Strict Predicativity
	Circularity and Mathematical induction
	Strict predicativism
	Nelson's criticism of mathematical induction
	Parsons and roles of induction
	Defining the natural numbers
	The inductive definition of the natural numbers

	Nelson on exponentiation
	Philosophical perspectives
	The limit of strict predicativity

	Indefinite Extensibility
	Existence of indefinitely extensible concepts
	Classical and intuitionistic quantification
	Ways out

	Appendix: The natural numbers in Martin-Löf type theory 

	Is predicative mathematics indispensable?
	Predicativism 
	Securing the base

	Indispensability
	Is predicative mathematics indispensable?
	Indispensability arguments
	Supporting the indispensability of predicative mathematics
	Indispensability and platonism?

	Conclusion

	Conclusion


