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Abstract  

Patello-femoral problems affect nearly a quarter of the population and remain a common 

cause of knee replacement revision surgery. Minimally invasive treatments such as 

osteochondral substitutions are early interventions that can be used to prevent or delay the 

need for these replacements. Lack of pre-clinical testing is a major challenge in getting these 

promising treatments to clinical trials. The purpose of this research was to develop a platform 

that can get these products one step closer to clinical trials and hence getting them out in 

the market as a viable product for treating osteochondral lesions.   

The aim of this project was to develop and validate a design specification for the pre-clinical 

testing of natural patello-femoral joint (PFJ). A characterization study was carried out to 

investigate the suitable animal model required to simulate a human joint that requires 

osteochondral substitutions. The size of the porcine PFJ was closer to the human PFJ and 

the material properties of its cartilage were also similar to the human cartilage. Therefore, 

the porcine PFJ was chosen as the animal model to develop the methodologies for this 

project.  

A methodology was developed to investigate wear of the natural porcine PFJ by adapting a 

single station knee simulator to apply the porcine PFJ gait cycle to the joints. The position of 

the patella with respect to the femur determined through a contact point study was used to 

set up the samples in the simulator. A positive (cobalt chrome on natural cartilage) and 

negative (cartilage on cartilage) control was used to investigate the wear. This study showed 

the potential of using an Alicona Infinite focus G5 optical profiler to assess the change in 

cartilage topography in natural joints. The contact area and pressure in the PFJ was measured 

using Tekscan pressure sensors. This study showed the change in contact mechanics across 

a gait cycle and the effect of sample geometry on the contact mechanics of a joint.  

In-vitro simulation can reduce the need for animal testing and progress the preclinical trials 

for new tissue substitutions. Developing the methodology in a human knee is not practical. 

However, by establishing an animal model can bring this a step closer. The methods 

developed in this thesis can contribute towards creating a pre-clinical testing system that can 

be used to assess early interventions to the PFJ.  
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Nomenclature 

A/A Adduction/ Abduction 

AF Axial Force 

ANOVA One-way analysis of variance 

A/P Anterior/Posterior 

CL Confidence Limit 

ECM Extra cellular matrix 

F/E Flexion/ Extension 

GAG Glycosaminoglycan 

ISO International Organization for Standardization 

LVDT Linear Variable Differential Transformer 

Micro-CT Micro Computed Tomography 

M/L Medial/ Lateral 

MRI Magnetic resonance imaging 

MSD Minimum significant difference 

OA Osteoarthritis 

PBS Phosphate Buffered Saline 

PFJ Patello-femoral joint 

S/I Superior/Inferior 

SD  Standard deviation 

SSKS Single station knee simulator 

TFJ Tibio-femoral joint 
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Chapter 1. Literature Review 

Advances in technology and regenerative medicine have improved the lifestyle of people but 

the need for better treatments for the ageing population is in greater demand. As people 

live longer the healthcare system demands a better way of improving the quality of life for 

older people, in order to reduce the cost of public health care. Therefore, it is ever more 

important to have earlier interventions to improve the health of the ageing population.  

Osteoarthritis (OA) is a degenerative joint disease caused by the gradual loss of articular 

cartilage in the synovial joint leading to joint stiffness and pain. It is the leading cause of 

disability among people over 65 and knee OA in particular can greatly reduce the mobility of 

the patient and compromise their quality of life. Although OA might be common in the 

elderly, damage to cartilage affects the young active population as well as the elderly. 

Chondral defects have a variety of causes. This study focuses on improving the in- vitro 

testing methods for early intervention therapies to treat osteochondral lesions in the 

patello-femoral compartment of the knee joint.  

1.1 Patello-femoral joint 

The knee is the largest synovial joint and arguably the most complex joint in the body. It 

facilitates major locomotion in a person whilst supporting several times body weight (Al-

Turaiki, 1990). The knee is a tri-compartmental joint consisting of the tibia, femur and 

patella. This makes up the medial and lateral tibio-femoral joint (TFJ) and the patello-femoral 

joint (PFJ). The bony anatomy of the patello-femoral joint is shown in Figure 1.1.   

 

Figure 1-1: Bony anatomy of the right patello-femoral joint (Gray, 1918) 
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1.1.1  Biomechanics 

The patello-femoral joint (PFJ) consists of the patella and distal femur; it is the most complex 

compartment in the knee as a result of the tracking mechanism of the patella (Dhaher and 

Kahn, 2002). The geometry of the articulating surface of a synovial joint has a significant 

impact on its contact mechanics. Considering the curvature of its articular surface, the 

geometry of PFJ can be classified as a saddle joint. The articulation within the tibio-femoral 

joint (TFJ) is a combination of rolling and sliding of the femoral condyles along the tibial 

plateau whereas the articulation in the PFJ consists of the patella sliding over the patellar 

femoral groove. The area of the intercondylar groove of the femur with the adjacent anterior 

aspect of the condyles is known as the femoral groove, trochlea or intercondylar fossa ( Al-

Turaiki 1990; Dhaher & Kahn 2002; Gorniak 2009).  

The patello-femoral joint consists of the patella and the femur which are tightly held 

together by the soft tissues. The patella is the largest sesamoid bone (small round bone 

formed in a tendon where it passes a joint) in the body (Maquet, 1990). The cartilage on the 

vertical central ridge of the patella is the thickest in the body and can be up to 7 mm thick ( 

Koskinen 1993; Grelsamer & Weinstein 2001). The cartilage in the condyles which is 

approximately 3.5 mm thick becomes thinner towards the lateral and medial borders 

(Koskinen, 1993).  

Cartilage helps the patella to glide smoothly over the groove located between the superior 

medial and lateral femoral condyles. The PFJ has a concave intercondylar groove and a 

convex patellar surface geometry. There is slight projection in the lateral femoral condyle 

and the retropatellar surface is also larger on this lateral side. This feature prevents the 

lateral dislocation of the patella (Walker et al., 1968; Brien, 2001). The PFJ movements along 

different axes and planes are shown in Figure 1.2 (Leal et al., 2015).  
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Figure 1-2: Patello femoral joint movements along different axes and planes (a) medial-lateral translation (b) 

medial lateral tilt (c) internal-external tilt (Leal et al., 2015) 

The patello-femoral joint allows flexion, extension and rotation. The 6 degrees of freedom 

with respect to the tibia and femur are shown in Figure 1.3. 

 

Figure 1-3: Six degrees of freedom of the knee with 3 rotational and 3 translational motions (Komdeur et al. 2002) 

At 0° the knee is fully extended and as the flexion increases the angle becomes larger (Al-

Turaiki, 1990). The patella ligament is attached to the proximal tibia and the quadriceps 
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tendon joins the quadriceps  muscles that attach to the proximal femur (Koskinen 1993; 

Mason et al. 2008; Gorniak 2009).   

The articulation of the joint and the tracking of the patella is controlled by the function of 

the quadriceps and hamstring muscles. The quadriceps tendon and the patellar tendon form 

the quadriceps mechanism that straightens the knee by tightening the quadriceps muscles 

to pull the tendons. As the leg straightens, the vastus medialis obliquus and vastus lateralis 

control the position of the patella in the femoral groove (Brien, 2001).  

The quadriceps exerts an oblique pull on the patella that forms a laterally obtuse angle 

known as the Q angle or quadriceps angle; the angle between the quadriceps muscles and 

the patella tendon. The Q angle is 10°-15° during extension and lies between the lines of 

action in the frontal plane. In flexion, the femur rotates laterally and the Q angle becomes 

zero (Brien, 2001). Women have a larger Q angle than men. Typically the Q angle in men is 

14⁰ and 17⁰ in women due to their greater physiological valgus at the knee and wider hips 

(Maquet, 1990).  

When the quadriceps contract, the patella moves proximally to the groove. Due to the lack 

of side support in this region the height of the patella to the groove determines the 

kinematics of the patella (Zaffagnini et al., 2016). The patella improves the biomechanical 

function of the knee by playing a major role in the extensor mechanism. It produces anterior 

displacement of the quadriceps tendon throughout the entire range of motion. This reduces 

the force required as the patella lengthens the moment arm and centralises the resultant 

forces. Without the patella, the force needed for extension could increase by up to 13% at 

90° flexion and 31% at full extension ( Reilly & Martens 1972; Dowson 1981; Nordin & Frankel 

2001).   

The patella increases the contact area between the patellar tendon and the femur. This 

distributes the compressive stress on the femur and reduces the patello-femoral contact 

stress. The low coefficient of friction of the articular cartilage helps the patella to transmit 

the quadriceps power over the distal femur to the tibia while the patella protects the anterior 

aspect of the joint from trauma. The patella also prevents the additional wear of the 

quadriceps tendon and improves cosmesis (Hungerford & Barry 1979; Koskinen 1993; Ellison 

2007; Maiti 2012). 
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The patello-femoral joint reaction force (PFJR) is caused by the muscular activity of the knee 

during flexion and extension. It changes with the angle of knee flexion and magnitude of the 

quadriceps force. During level walking, the reaction force in PFJ can be up to  0.5 times the 

body weight whereas in the TFJ it is 3 times the body weight (Reilly and Martens, 1972).  

The PFJR increases with increasing angles of flexion. The angles are low during walking and 

therefore the quadriceps forces are lower. In deep knee bend activity the angle is higher and 

therefore the quadriceps forces and patellar tendon forces will also increase in order to 

equilibrate the PFJR. At these conditions the PFJR has been calculated to be 7.6 times body 

weight (Reilly and Martens, 1972).  This is why patients with patello-femoral problems often 

experience pain when stair climbing and descending. They compensate by the push-off with 

the unaffected leg to decrease the muscle force during the stair walking (Wallace et al., 2002; 

Besier et al., 2005; Eckstein et al., 2005; Chinkulprasert, Vachalathiti and Powers, 2011; 

Suzuki et al., 2012).  

1.1.2 Contact mechanics  

Many researchers have investigated the contact mechanics of the PFJ (Matthews, 

Sonstegard and Henke, 1977; Hungerford and Barry, 1979; Maquet, 1990; Brien, 2001; 

Nordin and Frankel, 2001; Herrmann et al., 2012; Kittl, Schmeling and Amis, 2015; Zaffagnini 

et al., 2016). The contact area and position of the patella at different degrees of flexion is 

shown in Figure 1.4. 

 

Figure 1-4: Contact area and position of patella at different degrees of flexion (Maquet, 1990) 

The earliest patello-femoral contact area study was conducted by Aglietti et al. (1975) on 

patella retrieved from cadavers. They found that the contact area increases with increasing 

flexion up to an angle of 60⁰ after which it remains almost the same up to 90°.  This increase 

in contact area occurs as the patella slides down in the patella femoral groove during the 
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flexion to achieve congruency in the joint. Over 90° flexion the area starts to decrease until 

120° and then shows a slight increase at 120 to 135 degrees. At any angle of knee flexion the 

contact area of the PFJ is considerably lower compared to other synovial joints such as the 

TFJ and hip. Hence the contact stress on the PFJ can be considerably higher (Ahmed et al. 

1983; Besier et al. 2005).  

A recent literature review carried out on the biomechanics of the PFJ also concluded that the 

contact area in the patella moves from distal to proximal where-as that of the groove moves 

against the patella from proximal to distal. At full extension the patella is rarely in contact 

with the femur. However, at 135⁰ there are two contact points in the femoral groove which 

articulate against the odd facets of the patella (Kittl, Schmeling and Amis, 2015). The entire 

retropatellar surface is never in full contact with the femur. The contact area increases with 

increasing level of flexion moving proximally on the patella through the increasing pull of 

quadriceps muscles.  From full extension at 0° to full flexion at 135°, the patella descends 

vertically about 7 cm to the intercondylar notch ( Hungerford & Barry 1979; Nordin & Frankel 

2001; Brien 2001).  

1.1.2.1 Contact mechanics study  

The contact area and contact pressure have been investigated by many researchers (Ahmed, 

Burke and Yu, 1983; Heino et al., 1999; Clark, Herzog and Leonard, 2002; Hsieh et al., 2002; 

Lee, Morris and Csintalan, 2003; Besier et al., 2005; Bachus et al., 2006; Merkher et al., 2006; 

Li et al., 2011; Jansson et al., 2013; Leichtle et al., 2014; Padalecki et al., 2014; Geeslin et al., 

2015; Lorbach et al., 2016; Kim et al., 2016) to understand the load distribution and 

pathology of diarthroidal joints.  

Various methodologies have been recorded in the literature to investigate the contact 

mechanics in diarthroidal joints. Different methods use a variety of tools for measuring 

contact area; in- vitro studies using pressure sensitive films such as Tekscan and Fuji films, as 

well as invivo studies using MRI scans and the use of computational methods are also 

common. Pressure sensors are often inserted into the joints arthroscopically and fixed in 

place using sutures. This technique ensures adequate and constant fixation of the sensors in 

each sample. Studies have documented reduced resistance during motion and comparable 

positioning of the sensors in every sample (Lorbach et al., 2016).  
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Many studies have used Fuji films to investigate the contact mechanics in the PFJ (Ahmed, 

Burke and Yu, 1983; Liggins, Hardie and Finlay, 1995; Lee et al., 2001; Clark, Herzog and 

Leonard, 2002; Bachus et al., 2006). Fuji film was used on a custom made loading apparatus 

designed by Ahmed et al. (1983) to measure the contact area in cadaveric knees at 0° to 130°. 

The mechanical system consisted of a brass cap attached outside the patella from which five 

strings representing the five quadriceps muscles were attached as a pulley system to a 

transducer. The ratio of contact area to the total surface area at various knee flexion angles 

was measured. They found that even when the quadriceps force was doubled, the contact 

area only increased by 25%. This shows the influence of the congruency of the joint in the 

contact mechanics. For the same normal force, the PFJ contact stress was larger than even a 

meniscectomised TFJ.  The average contact stress at the PFJ was twice as much as the TFJ 

during the walking down-ramp and climbing up and down the stairs.  

Clark et al. (2002) used feline PFJs to measure the contact area and pressure using Fuji films. 

They observed an exponential increase in contact area with force and a linear increase in 

mean and peak contact pressures. As the contact load increased, the contact area increased 

to keep the contact pressure constant. This could be an indication why in osteoarthritic joints 

the contact areas are significantly increased to reduce the peak contact pressures. By 

increasing the contact area the joint can regulate the pressures on the cartilage as the 

applied forces are increased. 

MRI is another method that can be used to investigate the contact mechanics. Besier et al. 

(2005) used MRI imaging to compare the contact area in men and women at 0°, 30° and 60°, 

under loaded and unloaded conditions. Under load bearing conditions there was a 24% 

increase in contact area, and a 34% larger contact area in men than in women. Except at full 

extension, the unloaded contact area was significantly higher in men with a maximum at 60° 

flexion. When results were normalised by patellar dimensions there was no significant 

difference between the two groups. This was influenced by the finding that 78% of the 

variation in patellar size is due to the positive correlation between patellar area and subject 

height.  

MRI is a non-invasive technology that can also be used in patients for diagnostic purposes. 

Whereas pressure sensitive films such as Fuji film and Tekscan sensors can only be used for 

in- vitro investigations. Although MRI cannot be used to assess contact pressure, it can be 
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used to measure contact area.   Since there is a substantial amount of research data available 

for Fuji studies compared to MRI, it is clear that comparing the two could demonstrate the 

effectiveness of MRI for measuring contact area.  Importantly, a study conducted by Heino 

and collegues compared the contact area in cadaveric knees using MRI and the Fuji film 

method. Results showed a 95% correlation between the two methods, suggesting MRI as a 

non-invasive method to measure contact area that is comparable to the Fuji film method 

(Heino et al., 1999).  

The contact area measured by Besier et al. (2005) using MRI was 5.20 cm2 in men and 3.96 

cm2 in women. However, the  contact area measured by Heino et al. (1999) from Fuji film 

was 3.04 cm2 and from MRI was 2.94 cm2. This variation could be due to various reasons. 

Besier et al. measured the area in 8 men and 8 women whereas Heino et al reported 

measuring just 6 cadaveric samples. There was a large variation between these samples, 

ranging from 1.4 – 4 cm2 in Fuji film and 1.5 – 4.5 cm2 in MRI. This could be due to the small 

sample size or the influence of gender as shown by Besier et al.  

Males have a larger patella and contact area comapred women as they are generally larger 

than women and the surface area of their patella may be almost 20% greater (Clark, Herzog 

and Leonard, 2002; von Eisenhart-Rothe et al., 2004). A larger contact area allows improved 

load distribution which can reduce the peak stress and thereby reduces wear (Besier et al., 

2005; Gorniak, 2009).  

Studies conducted using pressure sensitive films often attempt to use minimal dissection 

techniques to allow the film to be inserted between the joint without disrupting the 

surrounding tissue and keeping the joint intact as much as possible. This allows the muscle 

forces to be applied appropriately to replicate the in- vivo contract mechanics. Tekscan is 

one of the most successful and commonly used techniques to study the contact mechanics 

of the knee joint in- vitro (Bachus et al., 2006; Jansson et al., 2013; Leichtle et al., 2014; 

Padalecki et al., 2014; Geeslin et al., 2015; Wang et al., 2015; Kim et al., 2016; Lorbach et al., 

2016).  

Application of Tekscan to study the effect of contact mechanics in different pathological 

conditions is very common. Wang et al. (2015) investigated the contact pressure on the tibial 

plateau at various meniscal conditions using Tekscan pressure sensors. They observed a site 

dependent variation in all conditions and specimens, suggesting the influence of the 
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geometry of the joint. Padalecki et al. (2014) have investigated the effect of meniscal tear in 

the cadaveric human TFJ and found significant decrease in contact area and increase in 

contact pressure at such conditions.  

Leichtle et al. (2014) investigated the effect of total knee replacement (TKR) on the PFJ 

contact mechanics. They noticed that the PFJ peak pressure increased up to 3 times in knees 

with TKR compared to normal knee. They also observed a wider area pattern for the patello-

femoral contact point in the normal knees. The contact area decreased in TKR knees and 

with a dotted pattern on a TKR joint and a line-shaped pattern with a resurfaced patella.  

Contact mechanics studies on cadaveric knees using Tekscan have shown a contact area up 

to 7.21 cm2 in the normal patella whereas the area in chondromalacia patellae reduced to 

6.35 cm2 (Kim et al., 2016). This small sample size of 10 human knees and the difference in 

test conditions makes it difficult to compare this contact area to the results found from the 

Fuji film and MRI studies by other authors. A comparison study was carried out by Bachus et 

al. (2006) using an Instron material testing machine to compare the contact area and 

pressure results from Tekscan and Fuji film sensors. They showed that either of the 

techniques was accurate to ± 5% of a known value and Tekscan was comparatively more 

accurate than Fuji film. However, the application of these techniques in natural joints might 

not necessarily show the same results.  It could be less accurate in natural joints where there 

could be a substantial influence of the complexity of joint curvatures. 

1.2 Articular cartilage 

Articular cartilage is a biphasic viscoelastic tissue with exceptional mechanical properties. It 

is a weight-bearing, load distributing and lubricating connective tissue that can withstand 

large compressive forces. The hierarchical structure of articular cartilage is shown in Figure 

1.5. The complex and unique structure and composition of articular cartilage gives the tissue 

an extraordinary mechanical durability which allows specialised biomechanical functions. It 

provides a lubricating bearing surface with a low coefficient of friction which makes it ideal 

for synovial joints. Its ability to distribute load can minimise the peak stress on subchondral 

bone and protect it from high compressive loading (Haberth, 2002; Scott, 2011). 
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Figure 1-5: Hierarchical structure of articular cartilage (Mow et al. 1992) 

At heel-strike the pressure in the fluid film deforms the articular surface. As the surfaces 

glide over each other, this increases the surface area as well as reducing the escape of fluid 

between the surfaces. Articular cartilage has the ability to distribute loads so that the 

subchondral bone does not deteriorate under peak stresses (Newman 1998).  

1.2.1 Structure 

Articular cartilage can be divided into four distinct zones as shown in Figure 1.6. The 

structure and composition of the components change with the zone. Water content 

decreases from 80% in the superficial zone to 65% in the deep zone and the proteoglycan 

concentration increases with depth (Mow et al., 1990).  
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Figure 1-6: Zonal arrangement in articular cartilage showing the cellular organization (A) and collagen fibre 
architecture (B) (Newman 1998) 

The outermost and the thinnest layer is called the superficial zone. It has the lowest 

coefficient of permeability and mainly contains horizontally oriented type II collagen which 

gives great resistance to shear. The cells are flat and elongated but these less active cells 

have a low healing potential.  In this zone, the cells synthesise an extracellular matrix (ECM) 

with high collagen concentration and low proteoglycan concentration compared to the other 

zones.  

The middle zone is also known as the transition zone as its morphology and composition is a 

transition from the superficial and deep zone. The chondrocytes in this zone have a much 

more rounded morphology and are much more active than in the superficial zone and the 

collagen fibres are also larger. The high concentration of collagen arranged perpendicular to 

each other gives good resistance to compression. 

The deep zone also known as the radial zone has the largest concentration of proteoglycans. 

The cells are oriented in a columnar manner perpendicular to the surface. It has mainly type 

II collagen which is vertically oriented and has the largest collagen fibres. These fibres pass 

into the tide mark, which is a faint line seen under a microscope that separates the calcified 

zone from the uncalcified zones. The calcified zone acts as a barrier to cellular invasion. The 

cells mainly synthesise type X collagen and calcify the ECM. It has a very sparse population 

of cells and they are almost inactive.  

Even though the connection between the articular cartilage and the underlying bone is 

strong its nature is not well known. The role of subchondral bone is critical in supporting the 
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structure and function of cartilage. The subarticular tissues include calcified cartilage, which 

provides a transition between the stiff subchondral bone and the compliant articular 

cartilage. The subchondral bone can be further classified into the subchondral bone plate 

and the trabecular bone. The subchondral bone plate is the bone layer that separates the 

calcified cartilage from the marrow spaces (Li & Aspden 1997; Kawcak et al. 2001; Day et al. 

2004). The subchondral bone is vascular and contains marrow spaces. None of the vessels of 

the bone pass into the articular cartilage as they terminate in its immediate vicinity. Vascular 

channels connect the marrow spaces of trabecular bone with the calcified cartilage layer, 

thus nourishing the deeper cartilage layers including the osteocytes in the subchondral bone 

plate that cannot be nourished by synovial fluid (Kawcak et al., 2001). 

There is evidence to indicate that initial damage to the subchondral bone may trigger 

changes in the overlying articular cartilage which may lead to osteoarthritis (Grynpas et al., 

1991; Amir et al., 1992; Li and Aspden, 1997; Li et al., 1999; Bobinac et al., 2003; Coats, 

Zioupos and Aspden, 2003; Mrosek et al., 2006; Castañeda et al., 2012). Radin et al  

popularised the view of osteoarthritis progress over the initial damage of subchondral bone 

rather than damage to the cartilage itself (Radin and Paul, 1971; Radins and Paulq, 1972; 

Radin and Rose, 1986). Rabbit legs were tested by stiffening the subchondral bone to test 

this hypothesis. These studies suggested negative results for treatments such as micro 

fracture. A study by Muraoka et al. (2007) on guinea pigs with progressive osteoarthritis has 

shown an increased thickness of osteochondral bone plate. Changes in the subchondral bone 

can alter the stiffness of the bone which could affect the mechanical properties of the 

articular cartilage.  

Cartilage is an avascular tissue that relies on the synovial fluid for nutrients. Synovial fluid is 

a dialysate of blood plasma without clotting factors. It contains high molecular weight 

hyaluronate and also other glycosaminoglycans (GAGs) in minute amounts. Hyaluronate and 

lubricin are believed to be responsible for the viscosity and low coefficient of friction of 

cartilage (Northwood, 2007).  

Synovial fluid plays a very important role in the biotribology of articular cartilage. It not only 

provides nutrients but also acts as a lubricant in reducing friction and wear. It reduces the 

shear stress on the joint surface as the shear occurs within the lubricant. This reduces  wear 

and provides smooth movement for a longer durability (Dowson, 1981). It is a non-
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Newtonian fluid which decreases the viscosity with increasing shear. In arthritic joints the 

fluid is less viscous and hence less efficient at reducing the shear stress on the cartilage 

resulting in a higher wear. Normal synovial fluid has the highest viscosity followed by the 

fluid from the osteoarthritic joint and the fluid from rheumatoid joints has the lowest (Wright 

and Dawson, 1976).  

Visco-elastic properties of the synovial fluid have been studied to understand the 

biomechanics of the joint. At high shear rates of 1000/s the fluid is 10 times more viscous 

compared to lower rates of 0.1/s showing the non-Newtonian nature of synovial fluid 

(Cooke, Dowson and Wright, 1978). Several studies (Approach 1969; Graindorge et al. 2005; 

Liang 2008) have been carried out on the lubricating properties of the joint, especially with 

regards to hyaluronan and lubricin. In a normal healthy joint the viscosity of synovial fluid is 

twice that of water. Unlike normal serum, several proteins such as fibrinogen and 

prothrombin are absent in the synovial fluid to prevent clotting.   

1.2.2 Composition 

Articular cartilage consists of 20% solid and 80% fluid with the solid phase consisting of 50-

73% collagen and 15-30% proteoglycan. The fluid phase has 58-78% water and the remainder 

is the dissolved electrolytes including sodium, calcium, chloride and potassium ions. It has 

cells known as chondrocytes that maintain and remodel the ECM (Mow et al., 1990; 

Hussainova, 2007).  

Water is the major constituent of articular cartilage representing 65-85% of the wet weight. 

70% of this water is trapped in proteoglycan and the rest is contained in the intra-fibrillar 

space of collagen. The interaction of water with the matrix has significant influence on the 

mechanical properties of the tissue. It helps to provide lubrication and aids diffusion of 

nutrients from the synovial fluid. It has a significant role in creating the osmotic pressure 

which contributes to the mechanical properties of the tissue. The inorganic ions dissolved in 

water balances the fixed charges on proteoglycans and generates a swelling pressure (Mow 

et al., 1990).  

Chondrocytes are the one and only cell type in articular cartilage. Even though they account 

for only approximately 5% of the total tissue volume, they are highly specialized 

mesenchymal cells responsible for the synthesis and maintenance of the tissue (Ateshian 

and Hung, 2006). The shape and distribution of chondrocytes varies with depth. Mature 
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chondrocytes are spherical in shape with scalloped edges reaching up to 24,000 cells/ mm3. 

The cell numbers decrease with age, reaching their lowest in a 30 year old adult (Mow et al., 

1990; James and Uhl, 2001; Haberth, 2002).  

Collagen is a protein formed from the triple-helical structure of three polypeptide chains 

(Balasubramanian et al., 2013). Two-thirds of the dry weight of cartilage is contributed by 

the different types of collagen in its ECM. Articular cartilage primarily contains type II 

collagen which accounts for 90% of the collagen content of the tissue and the rest is collagens 

III, VI, IX, X, XI, XII and XIV. The helical structure assembles to form collagen fibrils which then 

aggregate to form collagen fibres. Each fibril is linked to each other and to the other 

components in the ECM by cross linking (Haberth, 2002). The mechanical integrity of 

cartilage is influenced by this extensive cross-linking and the changes in its fibrillar 

construction in different zones. The swelling pressure generated by the proteoglycans is 

resisted by the network of fibrils formed by the collagen (Eyre, 2002).  

Proteoglycans (PG) are polysaccharides of proteins constituting about 5-10% of the wet 

weight of cartilage. They consist of several negatively charged GAG chains covalently 

attached to a link protein. The large high molecular weight PG aggregates by binding to a 

hyaluronan backbone stabilised by a globular link protein. This link can be lost during tissue 

degeneration due to the depolymerisation of hyaluronan (Mow et al., 1990).  

The elasticity and stiffness provided by the aggrecan gives cartilage its high compressive 

strength. The hydrophilic nature of PG attracts water to form aggregates and this swelling 

property of PG gives cartilage its compressive mechanical behaviour. The negatively charged 

GAGs repel each other which results in an open structure and is space filling (Hauser, 2009). 

The common GAGs in cartilage are chondroitin sulphate, keratan sulphate and hyaluronic 

acid (HA) or hyaluronan. The viscous but rigid structure of cartilage is due to the ability of 

chondroitin sulphate to hold large quantities of water (Mow, 1969).   

1.2.3 Biphasic theory 

The biphasic theory introduced by Mow et al. provides a convincing explanation of the mixed 

phase behaviour of articular cartilage. It assumes that cartilage has an immiscible and 

intrinsically incompressible solid matrix phase and interstitial fluid phase (Mow et al., 1990). 
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Lai et al. (1991)considered the electromagnetic interactions between the charged ions in the 

matrix to incorporate an ionic phasic and also developed a triphasic model.  

Under the biphasic theory the load is initially carried by the fluid phase and then transferred 

to the solid phase. The fluid phase reduces friction and protects the underlying cartilage 

surface by shielding the solid phase from high levels of stress (Setton, Zhu and Mow, 1993).  

In a biphasic material the load is shared between the solid and fluid phase depending on the 

porosity of the tissue. Cartilage has a high proportion of fluid and the porous permeable solid 

ECM which allows water to be excluded from the cartilage when a load is applied. This 

creates a pressure gradient called the interstitial fluid pressurisation which is responsible for 

the load bearing capacity of articular cartilage. This pressure protects the solid matrix from 

most of the biomechanical loading and prevents cartilage degeneration. Hence the variation 

in cartilage permeability can be an indication of the why some patients are susceptible to 

some joint disease rather than others (Little, Bawolin and Chen, 2011).  

1.2.4 Mechanical properties 

Due to the inhomogeneity of the tissue caused by the varying structural arrangement of the 

collagen, cartilage behaves as an anisotropic material. Being a visco-elastic, anisotropic and 

non-homogeneous tissue, it is necessary to make assumptions while creating any model for 

cartilage. A biphasic model assumes cartilage has a solid and fluid phase while a triphasic 

model includes a third ionic phase (Ateshian et al., 2004).  

The mechanics of the joint have to be considered as a composite structure, with the thin 

compliant cartilage layer integrated to the stiffer and stronger subchondral substrate. The 

nerve endings in the outer layer of the joint capsule are sensitive to the mechanical stimuli 

and have been shown to sense the rate and direction of joint movement. Studies have shown 

that mechanical stimulation is necessary to maintain healthy cartilage. Cyclic loading of 

cartilage exerts a pumping action on the interstitial fluid that enables the circulation of 

products to and from the chondrocytes (Levangie and Norkin, 2011). 

1.2.4.1 Tensile property 

The aniosotropic behaviour of cartilage makes it difficult to predict the deformation and 

reaction to loading and direction.  Due to non-homogeneous nature, each non-calcified 
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zone in the cartilage shows different properties. This difference from zone to zone arises 

from the difference in composition and organisation in each zone. Therefore, each zone 

will respond differently in different directions although the load is applied at the same 

point. This happens due to the way the collagen fibres are organised, resulting in obliquely 

isotropic or orthotropic behaviour in the superficial zone. A greater resistance to tensile 

strength is displayed along the direction in which the collagen fibrils are arranged (Sophia 

Fox et al. 2009; Mow et al. 1992). 

 

Figure 1-7: Tensile properties of articular cartilage (Sophia Fox et al. 2009) 

At the initial phase of tensile stress, the collagen fibers are undergoing realignment or 

“uncrimping”, which marks the toe region. The collagen fibers are stretched at the next 

phase and the straightened collagen fibers marks the linear region. The final stage is when 

the collagen fibers cannot withstand more tensile forces and the fibers breaks to mark the 

failure region (Sophia Fox et al. 2009; Nordin & Frankel 2001).  

The tensile modulus of cartilage depends on the depth of the tissue and the zonal 

arrangement of collagen fibers. At physiological strain levels the tensile modulus of human 

cartilage range from 5 to 10 MPa(Nordin & Frankel 2001). The equilibrium tensile modulus 

of osteoarthritic cartilage was found to be around 1.36 MPa. In normal bovine cartilage it 

ranges from 0.2 to 13.4 MPa (Mow & Huiskes, 2005) and in porcine it is from 10-24 MPa 

(Macbarb et. al. 2012). 
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1.2.4.2  Viscoelastic properties 

The visco elastic property  of cartilage is provided by the linearly charged HA (Mow et al. 

1992; Balazs 1982). The negatively charged sulphates in PG attract cations that attract 

water molecules to minimise the difference in osmotic pressure. This gives PG, its gel like 

consistency that makes them capable of absorbing shock and withstanding pressure. 

Degeneration disintegrates the aggrecan structure and loses its water holding capacity 

which breaks down the collagen meshwork (Haberth, 2002). Shear behavior of cartilage is 

an interaction between the PG network and the collagen fibers. One way of understanding 

the viscoelastic behavior of the solid matrix is through pure shear tests under small 

torsional displacements of cylindrical samples. Collagen fibers can stretch and deform 

under these shear forces. The equilibrium shear modus have shown to vary from 0.05 to 

0.25MPa in humans (Abbot et al. 2003). At high shear rates of 1000/s the fluid is 10 times 

viscous compared to lower rates of 0.1/s showing the non-Newtonian nature of synovial 

fluid (Cooke, Dowson and Wright, 1978).  Porcine condylar tissue shows dynamic shear 

modulus of 0.3 to 0.5 MPa and bovine showed 1.0 to 3.0 MPa (Nordin & Frankel 2001).   

1.2.4.3 Compressive property 

Articular cartilage is loaded under compression in vivo and hence it is particularly important 

to understand the biomechanics of the tissue under compressive loading. Elastic modulus 

and permeability are the main properties that are determined to define the compressive 

properties of cartilage. The elastic modulus of a solid material can be defined as the 

resistance to the change in its length (Serway and Jewett, 2012) . It is the ratio of its stress 

to the resulting strain i.e., (stress ÷ strain). Permeability is the measure of the ability of a 

material to transfer a fluid under a pressure difference. In cartilage it can be defined as the 

ability of the interstitial fluid to move through the ECM across a pressure gradient. It may 

depend on the pressure applied, viscosity of the fluid and the pore size of the material (Little, 

Bawolin and Chen, 2011). 

The compressive properties of cartilage vary with depth. This is because deeper zones have 

more PG concentration and the high negative charge of PG makes the molecules repel each 

other leading to an expansion of the PG network and therefore limiting the free flow of 

interstitial fluid. This increases the compressive stiffness (McCann, 2009).  



 
 

18 | P a g e  
 

There are three main types of compressive testing as shown in Figure 1.8; Confined 

compression, unconfined compression and indentation. Typically, in confined compression, 

a circular cartilage sample is placed inside a cylindrical container and compressed with a 

piston of the same diameter that prevents lateral expansion. However, in unconfined 

compression the cartilage sample is typically compressed between two plates with larger 

diameters to the sample, allowing for lateral expansion.  

 

Figure 1-8: Examples of compression tests  

(a) confined compression (b) unconfined compression (c) indentation (Little, Bawolin and Chen, 2011) 

Under compression, the interstitial fluid flows out of the matrix and the fluid flows back in 

when the load is taken away. Cartilage has a low permeability which ensures that the fluid is 

not quickly pressed out hence protecting the solid part in the matrix (Newman, 1998). Creep 

deformation studies are carried out by applying a constant compressive load to the cartilage 

and maintaining it for a period of time. Unconfined compression provides a free-draining 

condition and creep deformation occurs until equilibrium is reached. At this stage the load 

is entirely carried by the solid matrix (Pawaskar, 2006).  

1.2.4.4 Indentation  

In Indentation, the load is applied through an indenter several times smaller in diameter than 

the sample itself. Unlike the cartilage samples in confined and unconfined compression, 

indentation samples are cylindrical plugs of cartilage attached to the subchondral bone (in 

situ). Therefore, indentation resembles a closer physiological environment which allows 

accurate measurements. In all 3 types of compression tests, a step force is applied and the 

displacement is measured over time.  The sample set up is the major difference. 
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Indentation can be used to measure the permeability, elastic modulus and Poisson’s ratio of 

the cartilage. It is important to maintain constant measurement of conditions as the material 

properties could change in different conditions such as hydration of the sample, size and 

shape of the indenter, rate and magnitude of the loading (Wang and Peng, 2015).  

When a constant load is applied through an indenter, the exudation of interstitial fluid 

occurs. This cause creep indentation which reaches equilibrium when the interstitial; flow 

ceases and the load is completely supported by the solid phase (Mow et al., 1980). This creep 

response of cartilage is shown in Figure 1.9.  

 

Figure 1-9: Creep response of cartilage under constant compressive load (Mow et al. 1980) 

There are several arguments about the results from indentation tests compared to confined 

and unconfined compression testing. The elastic property of the tissue is dependent on the 

type of test. While the Poisson’s ratio is independent of the test applied, elastic modulus can 

be affected by the type of tests. Korhonen et al have shown that the Young’s modulus from 

confined and unconfined compression could be up to 79% lower compared to the 

indentation method (Korhonen et al., 2002).  This could be due to the damage that occurs to 

the fibrous tissue during sample preparation for the confined and unconfined tests.   

The typical Poisson’s ratio is under 0.4 and often could approach zero. Previously, cartilage 

was considered as an incompressible material as cartilage mostly constitutes to water and 

water is incompressible. Therefore the Poisson’s ratio was assumed to be 0.5. As cartilage is 

biphasic material, the fluid flows out of the cartilage when it is loaded and therefore making 

it compressible. The elastic modulus and permeability of cartilage in the knee joint is 

summarised in Table 1.1. Human cartilage has been shown to have higher elastic modulus 

than bovine or porcine cartilage (Athanasiou et al., 1991; Taylor, 2012; Fermor, 2013; 

Nebelung et al., 2016). The difference in results could be due to various reasons. The type of 
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indenter used for the test has an effect on the values obtained, especially on the 

permeability of the tissue. The permeability obtained from a 3 mm hemispherical indenter 

(Taylor, 2012; Fermor, 2013) was up to 30 times higher than the permeability through a 1.5 

mm flat indenter (Athanasiou et al., 1991). This could be because with a hemi-spherical 

indenter the contact stress on the cartilage is much higher, which resists the interstitial fluid 

flow to reduce permeability. The assumptions made on the finite element model for the 

analysis can also contribute to the results.  

Table 1-1: Elastic modulus and permeability of cartilage in the knee and the various techniques used by other 
researchers 

Sample Elastic modulus 

(MPa) 

Permeability  

(1015m4/Ns) 

Technique Author 

Bovine femoral condyle 0.9 0.43-0.45 1.5mm flat 
indenter  

Athanasiou et 
al. 1991 

Bovine femoral condyle 1.17 40.49 3mm hemispheric 
indenter 

Fermor 2013 

Bovine femoral head 1.84 30.03 3mm hemispheric 
indenter 

Taylor 2012 

Bovine groove 0.86 63.3 3mm hemispheric 
indenter 

Fermor 2013 

Bovine groove 0.47 ± 0.15 1.42±0.58 1.5mm flat 
indenter  

Athanasiou et 
al. 1991 

Porcine femoral condyle 0.74 71.8 3mm hemispheric 
indenter 

Fermor 2013 

Porcine femoral head 1.15 55.3 3mm hemispheric 
indenter 

Taylor 2012 

Porcine groove 1.04 44.9 3mm hemispheric 
indenter 

Fermor 2013 

Human femoral condyle 0.70-0.59 1.18-1.14 1.5mm flat 
indenter  

Athanasiou et 
al. 1991 

Human femoral condyle 4.48 - 3mm hemispheric 
indenter 

Taylor 2012 

Human femoral condyle 4.48 -5.96 - 1.5mm flat 
indenter  

Nebelung et al. 
2016 

Human groove 0.53 ± 0.094 2.17 ±0.73 1.5mm flat 
indenter  

Athanasiou et 
al. 1991 

1.2.4.5 Thicknesses 

Cartilage is several millimetres thick depending on the area and the patella cartilage is the 

thickest in the body. There are several methodologies to measure the thickness of cartilage 

which include using Vernier Calipers, microscopes, histology and ultrasound measurements 

(Kempson et al., 1971; Fermor, 2013; Nebelung et al., 2016; Robinson et al., 2016). However, 
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the needle probe method is the most common technique used to measure the thickness of 

articular cartilage (Athanasiou et al., 1991; Shepherd and Seedhom, 1999; Taylor, 2012; 

Nebelung et al., 2016).  

The indentation test introduced by Hori and Mocros used a blunt needle attached to a 

standard depth micrometre to measure the thickness. This technique was later improved by 

(Hoch et al., 1983) who used a sharp needle attached to a load transducer to measure the 

thickness by piercing through rabbit cartilage at 20 μm/s (Hori and Mockros, 1976; Hoch et 

al., 1983). The thickness from the needle probe method is calculated from the resistance of 

the needle piercing through the cartilage - as the distance between resistance in initial 

contact and the steep increase in resistance when the needle touches the much stiffer bone.  

Nebelung et al. (2016) measured the thickness of femoral cartilage using needle probe, MRI 

and histology methods. Although all methods showed a large variation across the samples 

there were no significant differences (p=0.063) between the methods. Studies conducted by 

McLure (2012) in the same lab with the same equipment and conditions have also validated 

the use of the needle probe method. The method principle was validated by creating a 

dummy specimen of a known thickness and measuring it using the needle probe method. 

This showed no significant difference (p=0.046) in thickness between the actual and 

calculated values. The method was also validated against recognized methods such as the 

Shadowgraph method (Nikon profile Projector) and Micro-CT method. The Shadowgraph 

results were significantly higher than those calculated from the needle probe and Micro-CT 

method. There was no significant difference between the needle probe and Micro-CT 

method.   

Froimson et al. (1997) carried out an indentation test using a penetrating needle probe on 

human patella and femoral regions that were in contact with each other at 30° and 90° of 

knee flexion. They observed that the patellar cartilage was more permeable and thicker than 

the other regions. They showed a 30% lower compressive aggregate modulus in the patellar 

region compared to the opposing cartilage on the femoral trochlea region.  

The thickness of cartilage in the knee joint is summarised in Table 1.2. Human cartilage is 

comparatively thicker than the porcine, ovine and bovine cartilage. Ovine cartilage is the 

thinnest ranging from 0.6- 0.86 mm whereas human cartilage is 1.08- 3.57 mm.  The age of 

the species is also a factor that affects the thickness of the cartilage. Studies have shown that 
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cartilage becomes thinner with age (Fermor, 2013). The region where the samples are 

obtained is another factor. Cartilage from the patello femoral groove is comparatively thicker 

than the cartilage in the hip or ankle. 

Table 1-2: Thickness of cartilage in the knee and the various techniques used by other 
researchers 

Sample 
Technique Thickness (mm) Author 

Bovine condyle 

 

Histology 1.28±0.17 Fermor 2013 

Needle Probe 1.19-0.94 Athanasiou et al. 1991 

Bovine groove 

 

Histology 1.6 ± 0.85 Fermor 2013 

Needle Probe 1.52 Shepherd & Seedhom 1999 

Needle Probe 1.38 ± 0.19 Athanasiou et al. 1991 

Bovine hip Needle Probe 1.32±0.13 Taylor 2012 

Human condyle 

 

Needle Probe 2.31-2.21 Athanasiou et al. 1991 

Histology  2.2 ± 0.3 Robinson et al. 2016 

Human femur  

  

Needle Probe 2.77 Nebelung et al. 2016 

MRI 2.6 Nebelung et al. 2016 

Histology 2.82 Nebelung et al. 2016 

Human groove 

 

Needle Probe 1.76-2.59 Shepherd & Seedhom 1999 

Needle Probe 3.57±1.12 Athanasiou et al. 1991 

Human hip 

 

Needle Probe 1.82±0.18 Taylor 2012 

Needle Probe 1.08-2.40 Shepherd & Seedhom 1999 

Ovine (mature) 

groove 

Histology 0.6 ± 0.20 Fermor 2013 

Needle Probe 0.63 Shepherd & Seedhom 1999 

Ovine (young) 

groove 

Histology 0.8 ± 0.10 Fermor 2013 

Needle Probe 0.86 Shepherd & Seedhom 1999 

Porcine condyle Histology 2.23±0.20 Fermor 2013 

Porcine groove 

 

Histology 2 ±0.70 Fermor 2013 

Needle Probe 2.04 Shepherd & Seedhom 1999 

Porcine hip Needle Probe 1.22±0.05 Taylor 2012 
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1.3 Pathology and treatments 

1.3.1 Patello-femoral disorders  

Patello-femoral problems affect nearly a quarter of the population and remain a common 

cause of knee replacement revision surgery. Even though it is the most common contributor 

to knee pathology, it still remains one of the most neglected and least understood areas in 

terms of proper diagnosis and treatment. The complexity of the joint articulation is the main 

factor which contributes to these limitations, and pathology commonly occurs in young 

adults, especially women and those active in sports (Draper et al. 2011; Fitzpatrick et al. 

2011; Leal et al. 2015).  

According to Merchant, PFJ disorders can be classified into trauma, patello-femoral 

dysplasia, idiopathic chondromalacia patellae, osteochondral lesions and osteochondritis 

dissecans  (Merchant, 1988).  Damage to cartilage tissue which also extends into the 

underlying bone is a challenging case to treat. Cartilage has poor healing capacity and some 

treatment techniques for the full thickness cartilage lesions often lead to the formation of 

fibro cartilage which has inferior biomechanical properties compared to articular cartilage.  

Any abnormalities in the anatomy for specific species can have an adverse effect on the 

biomechanics and pathology of the joint. The anatomy varies between the species 

depending on their functional needs. Animals that walk on their toes are called unguligrades. 

Species such as pigs, sheeps and cows are unguligrade quadrupeds. They require slightly 

different anatomical features for their appropriate biomechanics compared to the bipedal 

humans. Sheep have been shown to have narrower intercondylar notch. This feature 

coupled with the ligaments helps them with the correct functioning of the joint. However, 

humans with a narrower intercondylar notch do not allow the proper functioning of the joint. 

This will cause a continuous pinching of the anterior cruciate ligament which will result in 

higher cartilage wear (Osterhoff et al., 2011).  

1.3.1.1 Patella instability 

The movement of the patella in the femoral groove is known as patella tracking. Patella 

instability is caused by abnormalities in the morphology of the patella that leads to 

dislocation or mal-tracking. Normally, the forces passing through the patella onto the front 

of the knee are dissipated evenly. With lateral patellar maltracking the joint loading forces 
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will be greater on the lateral PFJ, which can lead to pressure overload on the lateral side of 

cartilage (Ateshian and Hung, 2005). People are born with various anatomic variations in the 

joint that may cause patellar dislocation. This is a serious condition where repeated 

dislocation may lead to rapid degeneration of the PFJ.  

Abnormally large Q angle: This is a condition in which there is a greater than normal angle 

where the femur and the tibia come together at the knee joint. The patella normally sits at 

the centre of the Q angle within the femoral groove. When the quadriceps muscle contracts, 

the Q angle decreases, pushing the patella to the outside of the knee. Where the Q angle is 

larger than normal, the patella tends to shift outwards with greater pressure. So, as the 

patella slides through the groove, it shifts to the outside, which in turn creates a greater 

pressure on one side of the cartilage (Ellison, 2007).  

Trochlear dysplasia: This is a condition which can lead to patellar dislocation. Van Haver et 

al developed a statistic shape analysis to describe the geometrical complexity of this 

condition. By comparing joints with and without dysplasia, they showed that the medial 

lateral width and the notch width were smaller in dysplastic femurs compared to the 

controls. They also discovered that the femoral groove could be shifted to the anterior/ 

proximal/ lateral direction in this condition (Van Haver et al., 2014).   

Uneven patello-femoral condyles: This causes medial-lateral dislocation. This condition can 

create a situation in which the lateral groove is too shallow, causing the patella to slip 

sideways out of the groove, resulting in a patellar dislocation. This is not only painful but can 

also damage the articular cartilage underneath the patella (Mehl et al., 2014).  

Patella alta: This is superior inferior dislocation. The patella sits high on the femur where the 

groove is very shallow. The sides of the femoral groove provide only a small barrier to keep 

the high-riding patella in place. A strong contraction of the quadriceps muscle can easily pull 

the patella over the edge and out of the groove, leading to a patellar dislocation (Zaffagnini 

et al., 2016).  
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1.3.1.2 Osteochondral lesions 

According to Mehl et al. (2014) patella cartilage lesions are more challenging to treat and 

have less chance of healing, compared to damage in the femoral condyles. Anatomical 

features such as patellar height, shape of the patella and trochlear groove, and patellar tilt 

can all influence the direction and magnitude of PFJ forces.  Any abnormalities in these 

features could contribute to the damage to the PFJ cartilage.  

Osteochondral lesions are a major problem in the knee affecting more than 9 million 

Americans with over 2 million undergoing surgical procedures. The International Cartilage 

Repair Society (ICRS) grades the severity of these lesions as described in Table 1.3.  

Table 1-3: ICRS grading of cartilage lesions (ICRS, 2016) 

Grade Description 

 

G
R

A
D

E 
0

 

 

White glossy cartilage 

 

G
R

A
D

E 
1

 

 

Superficial rubbing and discolouring on the cartilage 

 

G
R

A
D

E 
2

 

 

Scratches propagating to under half the thickness of the cartilage 

 

G
R

A
D

E 
3

 

 

Scratches propagating to over half the thickness of the cartilage, 

just before it reaches the subchondral bone 

 

G
R

A
D

E 
4

 

 

Full thickness that goes beyond the cartilage damage and expose 

the underlying bone as shown in Figure 1.10.  
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Figure 1-10: Partial and full thickness defects (Kelc Robi, 2013) 

Osteoarthritis (OA) is a degenerative disorder that occurs as a result of biochemical 

breakdown of the cartilage which can harmfully change the articular cartilage as well as the 

underlying bone. Secondary osteoarthritis, as seen in young adults, is due to the gradual 

degeneration of synovial joints resulting from situations such as trauma, which eventually 

affects the articular cartilage and the underlying subchondral bone. Due to the limited 

healing capacity of the tissue, even minor cartilage damage could progress into OA. Primary 

osteoarthritis, seen in the elderly, arises spontaneously in intact joints without any clear 

initiating factor. This is due to the alteration in the structure and composition of collagen 

fibres and proteoglycans that decrease the tensile strength of the articular cartilage. The 

nutrient supply to the cartilage also reduces with age (Wyndow et al., 2016).  

Osteoarthritis is more common in the PFJ than in the TFJ, even in patients under the age of 

50. Patello femoral disorders often result in the progression of OA (Hinman et al. 2014; 

Wyndow et al. 2016). A recent literature survey showed that 44% of the patients were 

affected by OA in both PFJ and TFJ. 25% of those affected had isolated OA in the PFJ only but 

isolated TFJ cases were very uncommon. 63% of the patients were affected by OA in both 

the medial and lateral PFJ (Hinman et al., 2014).  

With age, the repetitive motion of a specific joint may lead to the degeneration and wear of 

its articular surfaces. Gorniak (2009) observed this specific pattern in 50 patallae and 50 
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distal femurs from 13 male and 13 female cadavers of mean age 73 and 85 respectively. The 

patella and femoral condyle wear patterns found from this study are shown in Figure 1.11.  

 

Figure 1-11: Area of wear in patella (left) and femur (right). The medial side of each patella and femur is on the 
right side of the diagram (Gorniak, 2009) 
Patella: (A) Area of wear in male and female cadavers, (B) right and left patella  
Femur: (A) Three common wear sections on the anterior and posterior medial condyle and the posterior lateral 
condyle,  
(B) Superimposed wear for males and females showing wear in that section, (C) Superimposed wear for right and 
left sides for cadavers with wear in that section 

 

The most prevalent patellae wear area were the long continuous horizontal wear in the 

middle. Wear scars in both genders were mainly confined to the horizontal medial side of 

the patella. The lateral, medial and odd facets in females were more affected than in men. 

The wear area was smaller in men compared to women which relates to the finding of Besier 

et al. (2005) which shows a larger contact area in males compared to females. A larger 

contact area can distribute the applied load more evenly and reduce the peak stress to 

reduce the wear.  

The appearance of areas of common wear for the patellar facets and the femoral condyles 

supports the concept that each joint may have a joint-specific wear pattern (Gorniak, 2009). 

High patello-femoral joint reaction force corresponds to this common patellar facet wear. 

There is greater medial patellar facet and odd facet wear than lateral facet wear, suggesting 
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higher medial than lateral patello-femoral joint reaction force. High odd facet wear may 

result from medial patellar facet thinning, producing a change in patello-femoral mechanics 

over time. The wear area on the patella also matched the contact area between the PFJ at 

45-90 degrees of knee flexion discussed in Section 1.1.2.  

1.3.2 Treatment options 

Although most patello femoral disorders can be treated non-operatively depending on the 

severity of the condition, joint replacements are the common end stage solution for severe 

osteochondral damage. However, there are minimally invasive surgical interventions that 

can be performed at the earlier stages to delay the need for artificial joints. There are several 

treatments including micro fracture (MF), autologous chondrocyte implantation (ACI) and 

osteochondral autograft transplantation (OAT). Suitable repair and restoration techniques 

should be able to replace the damaged area with hyaline-like or hyaline cartilage that can 

improve function (Berta et al., 2015).  

Micro fracture is one of the most popular reparative techniques which allows the entry of 

mesenchymal stem cells and growth factors into a chondral defect to induce the formation 

of fibro cartilage (Lewis et al. 2006). Autologous chondrocyte implantation (ACI) is a cartilage 

restorative procedure in which a concentrated solution of chondrocytes is inserted into a 

periosteal flap fixed around the defect. This procedure is another widely used surgical 

procedure for the restoration of damaged cartilage (Tuan 2007). It is often only used as a last 

resort when the other procedures have failed and is ideally used in defects where the 

subchondral plate is intact. The cost effectiveness of this method and its ability to produce 

hyaline-like cartilage is still controversial. Using a combination of different techniques has 

proven effective in cases in which using a single technique is not suitable or has failed (Duif 

et al., 2015).  

All marrow-stimulating techniques such as microfracture lead to the formation of fibro 

cartilage which is inferior compared to the mechanical function of articular cartilage. 

Therefore a technique is essential to create hyaline like cartilage that can provide a more 

durable surface than that of the fibro cartilage. In 1996, Laszlo Hangody introduced the use 

of cylindrical plugs in osteochondral surgery and this has been an established surgical 

procedure ever since (Hangody et al., 1997). This is widely known as osteochondral autograft 

transplantation (OAT) or mosaicplasty.  
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The efficiency of the different treatment options are often evaluated from short term and 

long term clinical follow up studies to rate the success of the procedures. The clinical 

outcomes are assessed through various approaches such as patient reported outcomes and 

functional outcomes, clinical scoring systems, appearance of the lesion through radiological 

evidence, coverage of hyaline cartilage and its properties through histological evidence as 

well as need for re operations or the occurrence of post-operative complications (De Caro et 

al., 2015; Lynch et al., 2015). There are a range of clinical scoring systems used in various 

follow up studies and hence there are limitations (De Caro et al., 2015).     

1.3.2.1 Osteochondral transplantation 

Mosaicplasty is a surgical treatment introduced by Hangody to repair osteochondritis 

dissecans. It involves obtaining small cylindrical plugs of bone with healthy hyaline cartilage 

on the surface (Hangody et al., 1997). To treat the lesion in the high load bearing regions 

such as femoral condyles, grafts are taken from a minimal load bearing surface such as the 

patella femoral groove and transferred to the prepared defect site. OAT is the only technique 

that can restore the structure of the articulating surface with autologous material with the 

least fibro cartilage fill. It is particularly useful in full thickness lesions involving damage to 

the cartilage as well as the underlying subchondral bone. It can be used for predominantly 

large defects that cannot be treated or that have failed other procedures (Ahmad et al., 

2001; Scott, 2011; De Caro et al., 2015; Lynch et al., 2015) 

There are several clinical follow up studies that have compared the success of OAT to other 

techniques. A 4 year follow up study on paediatric patients showed significantly healthier 

cartilage from OAT compared to MF (Gudas et al., 2005). A 10 year study in athletic patients 

showed quicker recovery and functionality from OAT than MF (Gudas et al., 2012). A 9.8 year 

follow up study on a randomised patient population observed no significant difference in the 

two procedures but found a larger occurrence of re-operations after MF (Ulstein et al., 2014). 

Horas et al. (2003) recorded improved clinical scores and faster recovery time in patients 

with OAT treatment compared to AC from short term biopsy studies. Although there was no 

significant difference in these clinical scores 2 years post recovery, upon histomorphological 

evaluation it was observed that the cartilage formed from ACI mostly consisted of fibro 

cartilage. This study was limited by its small sample size and short term follow up. A 10 year 

follow up by Bentley et al. (2003) found improved clinical scores in ACI and a higher failure 
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rate in OAT patients. However, the quality of cartilage produced through the procedures was 

not investigated. Gudas et al. (2012) observed that more OAT patients with lesions smaller 

than 2cm2 returned to sports than those with lesions larger than 3 cm2. They also reported 

a higher incidence of failures in the patellar region compared to the condyles. 

Despite the effectiveness of the procedure in most defects that fails other treatment, 

significant limitations causes this technique to be inaccessible to certain cases. Larger lesions 

and those damages extending to the subchondral bone often need allografts rather than 

autografts. The outcome of the treatment depends on the cell viability in the allografts and 

the biomechanical properties of the ECM. Preserving the features of the allografts from 

harvesting, during storage and while testing before being released by the tissue bank is a 

significant challenge. This is why autografts are preferred over allografts and are more 

successful (De Caro et al., 2015). Therefore, alternative solutions such as tissue substitutions 

are required to meet patient needs and demands.          

1.3.2.2 Osteochondral substitutions 

With the PFJ being a low weight bearing joint, the femoral groove is often used as a donor 

site for these treatments. Previously following donation from the femoral groove the donor 

site was left untreated. However, these are now filled by other osteochondral substitutes. 

Therefore, there is a requirement for osteochondral substitutions in the patello-femoral 

region either to treat these donor sites or when the patello-femoral region itself is affected 

(Garretson 2004; Nho et al. 2008; Nishida et al. 2012).  

Advances in tissue engineering have introduced various biomaterials as bone and cartilage 

scaffolds. They require specific material properties for the cells to integrate with the new 

scaffold and produce their extra cellular matrix (ECM). An appropriate scaffold for 

osteochondral tissues will be bi-phasic as it allows improved reconstruction of both bone 

and cartilage. In these scaffolds one material represents bone and the other cartilage. 

Multiphasic scaffolds will have an additional interphase which marks the transitional area 

from the cartilage to the subchondral bone (Nukavarapu and Dorcemus, 2013).  

Autografts has shown significantly high success rates compared to allografts. However, 

donor site morbidity is a major disadvantage. Allografts and xenografts can trigger immune 

response and cause the body to reject the graft (Hangody, 2008). Tissue substitutions are 
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acellular and the lack of genetic material reduces the risk of immune response. These grafts 

can provide a scaffold that give the mechanical stability while the host cells populate the 

grafts and integrate into the surrounding tissue. However,  depending on the design of the 

implant and the surgical procedure there are still complications and failures associated with 

it (Bowland, 2015; Farr et al. 2016).  

Biomechanics and stability of osteochondral grafts contribute to the success and failure of 

these techniques. Differences in the congruency between the host and graft and its lack of 

integration are also limitations. Integration may require a longer recovery time and partial 

integration may lead to detachment of the graft from the donor site (Kon et al. 2014). 

Inappropriate placement of grafts can induce abnormal stress-strain distribution which can 

cause loosening or breakage of grafts within the host site that leads to failure. There is a 

larger failure rate when the graft length is shorter than the defect depth. Therefore, 

availability of correct sizes for each defect is an important factor. The ease implantation 

during surgery is also essential as placing the graft at an angle could effect the contact 

pressure within the joint  (Koh et al. 2006; Wu et al., 2002; Bowland et al., 2015).   

Currently there are no pre-clinical testing carried out to investigate the difference in design 

or surgical technique used for these substitutions. However, there is clear evidence that 

these factors does have an effect on the success rates of the implants  and this shows a gap 

in the research.  

1.3.2.2.1 Synthetic approaches 

Hydrogels are one of the common and earliest cartilage substitutions (Freeman et al., 2000; 

Northwood and Fisher, 2007; Ma et al., 2010). Due to the biphasic nature of the material it 

has an advantage towards the lubrication side and its structure can be engineered to mimic 

the material properties of cartilage (Baykal, 2013). Osteochondral composites engineered by 

seeding patient’s own cells in 3D porous scaffolds are a promising technique. As the cells 

produce the ECM for the tissue the scaffold slowly degrades at a defined rate. Collagen, 

gelatin and fibrin are commonly used as natural biomaterial scaffolds (Benders et al., 2013).  

A substantial amount of work has been done on developing synthetic grafts and there are 

many making their way to clinical trials. Some of the recent ones are detailed in Table 1.4.  
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Table 1-4: Tissue engineered products for osteochondral repair (Nukavarapu & Dorcemus 2013) 

Product name Company Material 

Agili-C Bi-phasic 

Implant 

Cartiheal LTD Bone phase composed of aragonite and trace 

elements such as strontium and magnesium, and 

a cartilage phase composed of modified 

aragonite and polymers 

Bi-phasic 

osteochondral 

composite 

National Taiwan  

University 

Hospital 

Autologous chondrocyte-laden biphasic 

cylindrical plug of DL-poly-lactide-co-glycolide, 

with lower body impregnated with tricalcium 

phosphate as the 

osseous phase 

Cartilage repair 

device 

Kensey Nash 

Corporation 

Bioresorbable scaffold with two layers, one 

collagen fibrils and the other calcium mineral 

held together by biodegradable polymer 

material 

MaioRegen® Fin-Ceramica 

Faenza Spa 

Biomimetic nanostructured osteochondral 

scaffold consisting of deantigenated Type I 

equine collagen and magnesium enriched- 

hydroxyapatite 

MaioRegen is a multi-layered scaffold that includes a tide mark layer between the usual 

cartilage and subchondral layer design. The cartilage layer is made up of type I collagen 

whereas the subchondral layer mainly consists of magnesium-enriched hydroxyapatite (Mg-

HA). The unique intermediate layer is composed of Mg-HA and collagen to reproduce the 

tide-mark. A 6 month study in a sheep model showed promising results including evident 

cartilage and trabecular bone development in both MaioRegen plugs and cell seeded 

MaioRegen (Kon et al., 2012; Fin-Ceramica Faenza Spa, 2013).  

TRUFIT™ CB Plug, a synthetic resorbable biphasic osteochondral substitute from Smith & 

Nephew is another product. It is made with Smith & Nephew POLYGRAFT™ technology to 

mimic the mechanical properties of the surrounding tissue and consists of polylactide-

coglycolide copolymer, calcium sulphate and polyglycolide (Williams and Gamradt, 2008). 

Unlike MaioRegen that comes as a rectangular piece which is then cut to shape, Trufits are 

cylindrical plugs that come with a delivery device and trimming knife (Smith and Nephew, 

2013). Therefore, Trufit is placed at an advantage as an easier to use product.     
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1.3.2.2.2 Tissue engineering approaches 

The stages in a tissue engineered osteochondral substitution technique are shown in Figure 

1.12. The damaged site is prepared and an implant site is made. The osteochondral graft is 

implanted and the cells populate the scaffold. The tissue engineered substitute integrates 

with the recipient tissue.  

 

Figure 1-12:  Stages in a tissue engineered osteochondral substitution technique (Adapted from Maioregen® (Fin-
Ceramica Faenza Spa 2013) 

1.3.2.3 Decellularised osteochondral grafts 

Using biodegradable scaffolds to grow chondrocytes in- vitro often takes considerable time 

and expense. Even when tissue engineered cartilage is successfully achieved, the integration 

of this new cartilage tissue with the underlying subchondral bone remains a challenge 

(Redman, Oldfield and Archer, 2005; Ohba, Yano and Chung, 2009; Zhang, Hu and 

Athanasiou, 2009).   

Clinical trials using decellularised tissues have been successful in creating natural tissues such 

as dermis, bladder, peripheral nerves and heart values  that have compatible biomechanical 

and material properties (Andrus and O’Rourke, 2007; Bolland et al., 2007; Bannasch et al., 

2008; Luo et al., 2011; Rössner et al., 2011; Crapo, Gilbert and Badylak, 2011; Joda et al., 

2011; Khorramirouz et al., 2014; Chian, Leong and Kono, 2015; Coakley et al., 2015; Greaves 

et al., 2015; Greco et al., 2015). Decellularisation has vast potential to create non-

immunogenic xenogeneic tissue substitutes which will solve the limitations of donor tissue. 

There are several promising attempts to decellularise osteochondral grafts, many of which 

are moving towards clinical trials (Elder, Eleswarapu and Athanasiou, 2009; Kheir et al., 2011; 

Fermor, 2013; Fermor et al., 2015).  



 
 

34 | P a g e  
 

Schwarz et al. (2012) used their unique techniques to decellularise various bovine and 

porcine cartilages. Although the shape and size of the scaffolds were maintained, SEM 

analysis showed denatured collagen. Micro-CT analysis demonstrated that the porosity was 

greatly increased which led to higher linear modulus. Using the same decellularisation 

technique, analysis showed different scaffold strength depending on the source of cartilage 

(Goldberg-bockhorn et al., 2012). Osteochondral decellularisation is more challenging as the 

same technique must work on both cartilage and bone.  

Porcine chondrocytes were seeded using a novel centrifuging technique into decellularised 

porcine osteochondral grafts from which even the proteoglycans were removed. The cell 

seeded constructs were cultured in a bioreactor for up to 3 weeks. Histological analysis 

showed the ability of the decellularised scaffold to sustain cell viability at all-time points. 

DMMB assay supported the ability of the scaffold to sustain the accumulation of ECM 

produced by the cells. There was an overall increase in proteoglycan concentration, 

especially at weeks 2 and 3 suggesting that the cells were recovered from the stressful new 

environment. There was a high rate of cell proliferation and increased cell density (Scanlon, 

2012). These results could be promising if the cells could be equally distributed, as currently 

cell distribution is limited to the superficial layer.  

Kheir et al. (2011) used a different technique for decellularising porcine osteochondral grafts. 

Analysis showed the absence of cells and also revealed near to complete DNA removal. 

Although the GAG content was reduced, there was minimal disruption to the collagen 

network. The decellularised cartilage showed a significant change in the elastic modulus and 

permeability compared to native tissue. Cytotoxicity assays showed favourable in vivo and 

in vitro compatibility of the decellularised tissue. This study was the first in this research area 

to have achieved complete removal of cells from an osteochondral tissue. 

The process of decellularisation varies with the research group by the use of different freeze-

thaw cycles and then the use of different chemicals for washing. More research and careful 

selection of decellularisation techniques are needed to fully make the grafts non-

immunogenic while maintaining the biomechanical integrity of the tissue constructs.  
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1.4 Biotribology 

Tribology is defined as ‘the science and technology of interacting surfaces in relative motion 

and the practices related to it’ (Czichos, 1978). Biotribology is the study of wear, friction and 

lubrication in a biological system.  Articular cartilage provides a lubricating surface with a low 

coefficient of friction which reduces the wear of the cartilage itself. 

1.4.1  Lubrication 

Lubrication provides a low coefficient of friction which is an important factor in the natural 

functioning of synovial joints. It is a major challenge in articular cartilage as it needs to carry 

high loads over a long period of time. In the lifetime of a person a major synovial joint will 

have to withstand about 10 times the body weight on cartilage over a surface area of about 

3 cm2, articulating about a million cycles per year (Hussainova, 2007). The schematic of the 

three main types of lubrication regimes are shown in Figure 1.13 and are described in the 

following sections.   

 

Figure 1-13: Types of lubrication regimes (Akkok 2013) 
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1.4.1.1 Fluid film lubrication 

The motion of bearing surfaces draws in a layer of the lubricant between the surfaces.  Fluid-

film lubrication occurs when the lubricant prevents contact between the bearing surfaces. 

The load is supported by the pressure in this fluid film. This will reduce the friction and wear 

of the surfaces to a minimum. The characteristics of this type of lubrication depend upon the 

viscosity of the fluid, shape and thickness of the film and the velocity of movement in the 

joint (Wright and Dawson, 1976; Hamrock, 1984).  

There are different forms of fluid film lubrication. Hydrodynamic lubrication is caused by the 

tangential movement of two non-parallel surfaces that are completely separated by a 

cohesive fluid film. The converging wedge that forms during motion creates a lifting pressure 

between the surfaces. This type of lubrication is capable of carrying low loads with relatively 

high speeds between bearing surfaces. It can provide a much lower co-efficient of friction 

than boundary lubrication (Hamrock, 1984).  

When the cartilage surface deforms under the high hydrostatic pressure, 

elastohydrodynamic lubrication occurs(Walker et al., 1968; Wright and Dawson, 1976). 

When the bearing surface separated by the fluid film moves perpendicular to each other at 

high velocity, it gives rise to squeeze film lubrication. The viscosity of the fluid between the 

surfaces produces pressure which forces the lubricant out. This system is capable of carrying 

very high loads for a short period of time. As the fluid is forced out, the layer of fluid lubricant 

becomes thinner and the joint surfaces come into contact (Wright and Dawson, 1976; 

Hussainova, 2007; Stewart, 2010).  

1.4.1.2 Boundary lubrication 

With excessive joint reaction force, the fluid film is overcome and boundary lubrication 

occurs. Certain substances in the lubricating fluid migrate to the solid boundary forming a 

protective layer which prevents contact between surfaces.  The absorption of glycoprotein 

from the synovial fluid makes the cartilage act as a low shear modulus material. This gives it 

the boundary lubrication where the load is said to be carried by the surface asperities rather 

than by the lubricant. Boundary lubrication happens when the speed of joint movement is 

very low with a low viscous lubricant under a very high load (Bosman, 2010, 2011).  
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1.4.1.3 Mixed lubrication 

Mixed lubrication is a transition lubrication system in which there is a mixture of fluid film 

and boundary lubrication occurring simultaneously.  Sometimes the surface is partially 

separated by the fluid film and where this fluid film lubrication discontinues there is some 

contact between the asperities. Although this contact area is affected by boundary 

lubrication, there will be an increase in friction. This is where the mixed lubrication comes in 

to play (Stewart, 2007; Reddi, 2008). In this system the load is carried by both the pressure 

in the fluid film and by the boundary lubricated contacts. Weeping and boosted lubrication 

are the two types of mixed lubrication regimes proposed for articular cartilage (Callaghan, 

2003).  

Lewis and McCutchen were the first to suggest a ‘weeping lubrication’ created by the release 

of interstitial fluid from the ECM. Due to the high water content, cartilage is lubricated 

through a ‘weeping’ behaviour where the water exudes to the surface like a compressed 

sponge when a load is applied. Fluid builds between the surfaces creating a fluid film that 

increases the hydrostatic pressure that can support the load applied. As long as this 

hydrostatic pressure remains high enough, it can maintain a lower coefficient of friction 

(Accardi, Dini and Cann, 2011; McNary, Athanasiou and Reddi, 2011).  

Articular cartilage is a porous and permeable tissue that allows water and small solutes to 

pass through. When the joint is loaded, the high pressure reduces the thickness of the fluid 

film which causes the water in the synovial fluid to permeate the cartilage. This increases the 

concentration of hyaluronic acid and high molecular weight proteins in the synovial fluid and 

viscous gel of lubricating layer is formed. This boosted lubrication layer protects the cartilage 

when fluid film lubrication breaks down  (Walker et al., 1968; Callaghan, 2003; Accardi, Dini 

and Cann, 2011).  

1.4.1.4 Lubrication of cartilage 

Lubrication theories are developed through friction testing and in vitro compression testing. 

To reduce friction in weeping lubrication the majority of the load is shown to be carried by 

the interstitial fluid pressurisation (Mccutchen, 1962). Cartilage has a low permeability which 

helps to resist the fluid flow to create large drag forces. This may contribute to its ability to 

maintain this high fluid pressurisation (Ateshian and Wang, 1995).  
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The introduction of biphasic lubrication has emerged as an important mechanism in 

explaining the biotribology of cartilage. In a biphasic material the load is shared between the 

solid and fluid phase depending on the porosity of the tissue. Cartilage has a high proportion 

of fluid and the porous permeable solid matrix which allows water to be excluded from the 

cartilage when a load is applied. This creates a pressure gradient called the interstitial fluid 

pressurisation which is responsible for the load bearing capacity of articular cartilage. Under 

this biphasic theory the load is initially carried by the fluid phase and then transferred to the 

solid phase. The fluid phase reduces friction and protects the underlying cartilage surface by 

shielding the solid phase from high levels of stresses (Setton, Zhu and Mow, 1993).  

As it is dependent on time dependant biomechanical conditions and loading, it has become 

critically important in fully simulating the biomechanics fully. A finite element model created 

by Graindorge et al. showed increased effectiveness in the lubrication of BSAL under cyclic 

loading compared to static loading (Graindorge et al., 2005). Most of the load was supported 

by the surface layer itself and was greater than that supported by the fluid in the bulk of the 

cartilage. This could be due to the much less solid content of the thin BSAL which hence 

improved efficiency of its load carrying capacity. An earlier study by Malcom (1976) 

investigating the effect of static and dynamic loading on the lubrication and friction supports 

this theory. This pin on plate study on bovine cartilage showed considerably low friction in 

dynamic loading compared to static loading which implies a more effective lubrication. 

Recent research has proposed a biphasic surface amorphous layer (BSAL) covering the 

surface of healthy articular cartilage that could explain the low friction coefficient. This layer 

is 2 -200 μm thick and has a low elastic modulus. Unlike the superficial layer of cartilage, 

BSAL is a non-collagenous layer mainly consisting of proteoglycan molecules. It is not a 

distinct separate layer but just a continuation of the superficial layer itself. As the BSAL is 

softer than the underlying cartilage it can maintain a high fluid pressure for a long period of 

time (Graindorge et al., 2005). This allows it to transfer the load more effectively and support 

up to 90% of the external load. This results in less solid to solid contact to reduce the 

coefficient of friction and this kind of fluid support tends to increase between congruence 

surfaces.   

There are theories suggesting the change in lubrication regime with the various stages in gait 

cycle. Wright & Dowson (1975) used a simple pendulum machine to study human cadaveric 
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hip joints lubricated with synovial fluid. They concluded that there was squeezed film 

lubrication at heel strike which then became elasto- hydrodynamic followed by squeezed 

and boundary condition; and the free swing at the end of the gait cycle was hydrodynamic. 

This agrees with the earlier finding of Walker et al. who observed fluid film lubrication in the 

swing phase. Pin on plate studies using human femoral cartilage over glass on a dry joint 

resulted in a reduction in friction at increasing speed. The friction was reduced as the fluid 

was squeezed out of the cartilage to enable elasto-hydrodynamic lubrication (Walker et al., 

1968; Wright and Dawson, 1976). It is to be noted that the load in each of these test 

conditions was different and may have influenced the results.   

1.4.2 Friction and wear 

Friction plays an important role in the proper functioning of a synovial joint as it is a measure 

of resistance to the sliding experienced by the articular cartilage when the knee is in motion.  

A co-efficient of friction (CoF) can be measured to quantify friction between two surfaces; 

the higher the CoF, the larger the friction. Human joints tend to have extremely low CoF as 

low as 0.02 (Katta et al. 2008; Stewart 2007; Schmidt & Sah 2007; Graindorge et al. 2005). 

Low friction helps synovial joints to glide over easily. Difficulty in moving the joints is caused 

by higher friction which releases heat energy and causes swelling in joints (McCutchen, 1962; 

Furey and Burkhardt, 1997).   

Wear can be described as the progressive loss of material from the surface as a result of 

relative motion at the surface. In tribological studies of artificial joints the material can be 

weighed to determine the amount of materail lost due to wear. It has been shown that wear 

of an artificial joint can lead to osteolysis and loosening of the implant  (Abu-Amer, Darwech 

and Clohisy, 2007; Revell, 2008) 

Wear can be influenced by a number of factors and studies have been carried out to 

investigate the parameters that affect the wear of cartilage (Lipshitz, Etheredge and 

Glimcher, 1975, 1980; Lipshitz and Glimcher, 1979; Furey and Burkhardt, 1997; Russell, 

2011). It is influenced to varying extent by the load, friction, contact area, lubrication regime, 

properties and characteristics of the materials and its surfaces as well as the mechanism by 

which the wear occurs. 
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Measuring the surface roughness is one of the main ways of assessing wear in natural and 

artificial joints. Gravimetric measurements of wear are possible in artificial joints but that is 

not always possible with natural joints. Therefore, measuring the surface roughness of the 

cartilage can give an indication of the damage made on the cartilage in a wear test.   

Some typical measurements of thoroughness are Ra, Rp, Rv, Rt, Rz and Rmax. Ra, Rp, Rv and 

Rt are illustrated in Figure 1.14 and 1.15. Rz is the mean peak to valley height of a roughness 

profile whereas Rmax is the maximum peak to valley height of roughness profile within a 

sampling length (Lc).   

 

 

Figure 1-14: Average roughness of profile (Ra) 

 

Figure 1-15: Maximum peak height (Rp), Maximum valley height (Rv), Maximum peak to valley height (Rt) 

While Ra is the arithmetic average of the 2D roughness, Pa and Sa are the averages of the 

unfiltered raw profile and the 3D roughness respectively. Depending on the cut off 

wavelengths applied during analysis, these values change. The larger cut off wavelength 

includes the waviness and a smaller cut off wavelength reduces the waviness.  

Various techniques including MRI, scanning electron microscopy (SEM), atomic force 

microscopy (AFM), stylus profilometry, ultrasound and interferometry have been used to 

measure the surface topography of cartilage  (Park, Costa and Ateshian, 2004; Saarakkala et 

al., 2009; Russell, 2010; Ghosh et al., 2013; Brill et al., 2015; Wang and Peng, 2015; Nebelung 

et al., 2016).  
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The typical roughness values of articular cartilage measured using various techniques is 

shown in Table 1.5. The results in the table show the variation between measurements 

techniques used in cartilage surfaces. This could indicate that the surface roughness can vary 

depending on the technique used. Therefore, for comparison purposes it is important that 

the same technique and measurement parameters such as magnification and cut off 

wavelength are used.  

Ghosh et al. (2013) showed that the roughness values increased linearly with magnification 

using the SEM method. Smyth et al. (2012) showed significant difference in roughness values 

at different locations. These could be an indication of differences in joint lubrication and how 

the cartilage in each joint is adapted to its function.  

The roughness obtained by Ghosh et al. (2013) from SEM stereoscopic imaging was 

comparatively higher than those obtained from AFM. However, the AFM values obtained by 

Moa-Anderson et al. (2003) were 5 times larger than those from Ghosh et al. (2013) and 

Peng & Wang (2013). Moa-Anderson et al values were closer to the values obtained by 

Russell (2010) using Talysurf method.  

AFM is capable of high resolution roughness measurements at submicron levels. It is widely 

used for frictional and mechanical measurements of cartilage. Wang & Peng (2015) used 

AFM to measure the roughness of cartilage wear particles and showed an increase in Sa 

values with the progression of OA. However, this technique requires a very long scanning 

time and is only capable of scanning small areas up to 25,000 μm2. Therefore, it is impractical 

for quantitative analysis of the surface topography of cartilage for larger areas (Shekhawat 

et al., 2009; Peng and Wang, 2013). Although widely used, SEM does not provide quantitative 

measurements of the surface topography (Shekhawat et al., 2009). It is mainly used to 

investigate the ECM arrangement within cartilage. The method is time consuming and 

difficult as the samples needed to be dried and gold plated before the SEM analysis (Gan et 

al., 2013). The samples could be subject to undesired dehydration and deformation that 

could potentially affect the results. 
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Table 1-5: Typical roughness values of articular cartilage  

Sample Technique Roughness (µm) Reference 

Healthy Bovine cartilage AFM Ra= 0.083-0.114 (Ghosh et al., 2013) 

Healthy Bovine cartilage AFM Sa= 0.086-0.136 (Ghosh et al., 2013) 

Fresh bovine cartilage AFM Ra= 0.450 (Moa-Anderson et al., 
2003) 

Frozen bovine cartilage AFM Ra= 0.495 (Moa-Anderson et al., 
2003) 

Human knee cartilage Grade 0 AFM Sa= 0.068 (Peng and Wang, 2013) 

Human knee cartilage Grade 1 AFM Sa= 0.110 (Peng and Wang, 2013) 

Human knee cartilage Grade 2 AFM Sa= 0.111 (Peng and Wang, 2013) 

Human knee cartilage Grade 3 AFM Sa= 0.119 (Peng and Wang, 2013) 

Horse Mid carpal  Dektak 150 Stylus 
Profilometer 

Ra= 2.29±1.48 (Smyth et al., 2012) 

Horse Radiocarpal Dektak 150 Stylus 
Profilometer 

Ra= 1.60±0.69 (Smyth et al., 2012) 

Horse Carpometacarpal  Dektak 150 Stylus 
Profilometer 

Ra= 1.65±0.91 (Smyth et al., 2012) 

Bovine trochlear groove Interferometry Ra= 1.15 ± 0.4 (Shekhawat et al., 2009) 

Bovine condyles Interferometry Ra= 0.60 ± 0.1 (Shekhawat et al., 2009) 

Human talar cartilage Grade 0 Interferometry Ra= 0.80 ± 0.3 (Shekhawat et al., 2009) 

Human talar cartilage Grade 1 Interferometry Ra= 1.00 ± 0.3 (Shekhawat et al., 2009) 

Human talar cartilage Grade 2 Interferometry Ra= 1.70 ± 0.9 (Shekhawat et al., 2009) 

Natural human cartilage Optical coherence 
tomography 

Ra= 2.5 (Saarakkala et al., 2009) 

Degenerated human cartilage Optical coherence 
tomography 

Ra= 18.5 (Saarakkala et al., 2009) 

Healthy Bovine cartilage SEM  Ra= 0.165-0.175 (Ghosh et al., 2013) 

Healthy Bovine cartilage SEM  Sa= 0.183-0.261 (Ghosh et al., 2013) 

Healthy bovine cartilage  Talysurf Stylus 
Profilometer 

Ra= 0.43 (Russell, 2010) 

Cartilage on cartilage wear Talysurf Stylus 
Profilometer 

Ra= 0.52 (Russell, 2010) 

Cartilage on steel wear Talysurf Stylus 
Profilometer 

Ra= 1.80 (Russell, 2010) 

Natural human cartilage Ultrasound Ra= 9 (Saarakkala et al., 2004) 
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1.4.2.1 Friction and wear studies on cartilage 

Friction and wear studies of cartilage have shown an increase in the CoF from change in 

sliding velocity, type of lubrication used and; the level and duration of load (Forster and 

Fisher, 1999; Krishnan, Mariner and Ateshian, 2005; Katta, 2007; Katta et al., 2009; Chan et 

al., 2011)   

Studies have looked at the effect of static and dynamic loading on friction (Forster et al., 

1995; Katta et al., 2007; J Katta et al., 2008). The CoF have been shown to increase when a 

static load was applied for a prolonged period of time. However, there was a reduction of 

CoF upon the retrieval of this static load as the cartilage was allowed to rehydrate itself. 

Katta et al. (2008) showed an increase in friction at high contact stresses. This may have been 

due to the reduced fluid load support caused by the dehydration of cartilage. Under dynamic 

loading conditions, increasing the stroke length helped to reduce the CoF even at a higher 

level of stress.  This is because even at higher stress the longer stroke length will give time 

for the cartilage to recover. However, a longer period of preload did not allow the cartilage 

to rehydrate and hence the friction was higher. Therefore, the contact mechanics have been 

shown to have an effect on the CoF due to the lubrication regime. 

Lipshitz et al. carried out wear studies of cartilage articulating against metal plates of known 

roughness profiles (Lipshitz and Glimcher, 1979).  They found the wear to be linear to the 

sliding speed, contact pressure and time. The wear rate of pins articulating on a smooth 

surface decreased with time and reached a plateau when at a given surface pressure.  The 

chemical index was made by measuring the hydroxyproline content in the lubricant after 

wear test. Scwartz and Bahadur (Schwartz and Bahadur, 2007) used osteochondral pins for 

wear studies using an in-house dual axis wear simulator. Wear rates of cartilage pins 

subjected to multi-directional sliding on a stainless steel surface were compared with the 

wear rates against a polymeric material. The wear rates on stainless steel were more than 

twice that of the polymeric counterface after 10,000 cycles under 39 N. This difference could 

have been due to the variance of contact pressure between the two types of material. To 

estimate contact pressure, they measured the storage and loss moduli in each case. For a 

frequency of 0.1 to 10 Hz, the storage modulus changed from 470 to 1010 kPa and the loss 

modulus changed from 176 to 249 kPa. 



 
 

44 | P a g e  
 

1.4.3 Tribology models for assessment of cartilage wear and friction 

Tribological studies have used using simple geometrical configuration sliding devices like pin-

on-plate systems and pendulum devices like arthrotripsometers as shown in Figure 1.16. In 

the sliding devices a pin and/or plate made of cartilage, metal and/or glass slide against each 

other. In pendulum devices, the joint acts as a fulcrum where one surface rocks over the 

other (Northwood, 2007).  

 

Figure 1-16: Schematic of a pendulum device (Radin and Paul, 1971) and pin-on-plate device (Furey and Burkhardt, 
1997)  

Lipshitz & Glimcher (1979) studied the wear properties of bovine osteochondral pins worn 

against stainless steel plates of different surface profiles. This type of pin on plate system 

became a common method in future tribological studies (Anon 1975; Lipshitz et al. 1980; 

Northwood & Fisher 2007; Lipshitz & Glimcher 1974; Krishnan et al. 2005; Kock et al. 2008). 

There are many studies that have measured the CoF using cartilage-on-ceramic, cartilage-

on-metal and cartilage-on- cartilage using both animal and human tissue.  

A pin on plate system is the most common and simple system used for cartilage tribology 

studies. It consists of a pin (made of cartilage or other material) articulating against a flat 

plate (made of cartilage or other material). The Pin-on-plate set up allows the calculation of 

contact areas between the articulating surfaces which could be used as a function of load. 

Although this approach does not reflect in- vivo conditions, it is possible to vary the factors 

independently to study the effect of each factor under in- vitro conditions (Taylor 2013; 

Russell 2010; Katta et al. 2008).  
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Due to the complexity of designing experiments for biological tissues, the literature  on the 

wear of natural tissues is not as vast as the studies on friction tests. Most wear tests are done 

on cartilage-on-metal (J Katta et al., 2008; Russell, 2010; McNary, Athanasiou and Reddi, 

2011; Shi, Sikavitsas and Striolo, 2011; Taylor, 2013). Protein absorption in pin-on-plate 

systems is a common cause of change in friction. Albumin is a protein present in synovial 

fluid which can be absorbed by materials such as glass and form a layer that affects the 

frictional properties of these materials. Therefore, tribological models that use glass may 

have significant limitations in their studies (Jay, 1992; Roba et al., 2010). 

Although pin on plate systems can provide relevant results for hemi-arthroplasty implants, 

they do not replicate the behaviour in a natural synovial joint. The pin-on-plate apparatus 

are followed by joint simulators which are also used for wear assessments where the 

machine simulates the movement in a joint for several million cycles. The wear rate and 

other assessments can then be followed.  

Joint simulators are also used to generate wear particles from different materials used in 

joint replacements. For testing a whole joint, a joint simulator is essential. The advantage of 

testing a whole joint is that it allows the contact geometry of the joint to remain intact to 

achieve the in vivo lubrication flow dynamics. It also helps to simulate the physiological 

biomechanics which control the biphasic lubrication.  

One of the challenges is in measuring the wear of cartilage, which cannot be done 

gravimetrically, as in artificial joint replacement wear tests. Several techniques such as 

measuring the hydroxyproline content in the lubricant and measuring the change in cartilage 

thickness have been established to assess the wear of cartilage-on-cartilage specimens. The 

load, type of lubrication and sliding velocity have all shown to have an effect in the wear 

(Lipshitz, Etheredge and Glimcher, 1975; McGann, Vahdati and Wagner, 2012).  

Assays developed by Woessner and Farndale et al to measure the concentration of GAG and 

hydroxyproline can be used to assess the cartilage wear through the lubricating fluid 

(McGann, Vahdati and Wagner, 2012). Studies by Katta et al and Lipshitz et al have used this 

technique to quantify the amount of wear of cartilage samples (Lipshitz and Glimcher, 1979; 

Lipshitz, Etheredge and Glimcher, 1980; Katta et al., 2007; J Katta et al., 2008).  
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Wear testing of animal joints in joint simulators has shown changes in the morphology of 

wear particles and visible damage in the cartilage surface. Wear particles obtained from 

healthy and arthritic patients has shown that the shape of the wear particles can be used as 

an indication of the degree of osteoarthritis (Kuster, Podsiadlo and Stachowiak, 1998).  

Quantification of the wear rate in vitro is now considered an essential step in the 

development of new joint replacements prior to clinical trials. In vitro simulator testing of 

hip and knee (tibiofemoral joint—TFJ) prostheses has been common practice for over two 

decades. Little research exists around in vitro simulation of wear in the patello-femoral joint 

(Ellison et al., 2008). Although not as common or extensive as the TFJ studies, researchers 

have investigated the wear in artificial PFJs. Studies differ in their load and kinematic inputs 

as well as their wear assessments.  Some of these studies are summarised in Table 1.6. 

Different scenarios were tested to investigate various physiological conditions such as 

walking and stair climbing. The degrees of flexion, constrained of each parameter and 

loading conditions were all factors that influenced the test settings.  

 Table 1-6: Artificial patello femoral simulator studies 

Author Inputs Wear assessment Comments 

(Hsu and 

Walker, 1989; 

Burroughs et 

al., 2006) 

Flexion Extension 

(F/E), Anterior 

Posterior (AP) load 

Fuji films and 

grading methods 

Limited to two degrees of 

freedom in the PFJ and 

assessment was based only on 

visual examination 

(Ellison, 2007) F/E, 

Adduction/Abduction 

(A/A), Axial load 

S/I and M/L 

displacement  

Gravimetric 

measurements 

M/L displacement was 

constrained. Maximum S/I was 

10 mm. Patella tilt was left 

unconstrained and monitored 

(Korduba et al., 

2008) 

Controlled and 

uncontrolled M/L 

displacement (patellar 

shift), F/E, patellar 

compressive force 

(Axial load) 

Gravimetric 

measurements 

Constrained M/L showed 

higher wear compared to 

passive M/L 

(Maiti, 2012; 

Maiti et al., 

2014) 

Axial load passing 

through the centre of 

the patella, F/E, M/L 

rotation and tilt, M/L 

and S/I displacement 

Gravimetric 

measurements 

M/L displacement was 

unconstrained. Maximum SI 

was 20 mm. Higher kinematics 

with ML rotation ≤ 4⁰ and 

physiological scenario with  ≤ 

1⁰ were tested 
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Knee joint simulator studies have been developed to study the wear of artificial patello 

femoral replacements in human joints. The active motions were gathered from the gait cycle 

published by Ellison (2007) and Maiti (2012). They investigated the wear in artificial patello 

femoral joints using the Leeds hip simulator and six station knee simulators respectively. 

Their gait cycle represented a human patello-femoral gait cycle to test their artificial implants 

(Ellison, 2007; Ellison et al., 2008; Maiti, 2012). 

 Van Haver et al. (2013) used a knee rig to investigate the kinematics of the cadaveric PFJs. 

This system applied flexion and extension under 700 N body weight and a force of up to 2700 

N on the quadriceps tendon. They showed the contact area on 20-60⁰ knee flexions moving 

from distal to proximal in the patello femoral region. They observed the mean contact area 

increase from 80.2 ± 3.3 at 20⁰ to 349.5 ± 10.1 mm2 at 60⁰. The contact pressure also 

increased from 0.9 ± 0.2 to 5.9 ± 0.7 MPa. However, the repeatability of the tests in this rig 

was only tested on two knee joints with four repeats of flexion extension. Hence the 

validation of this system and its methodologies need to be further analysed in order to apply 

this system for investigating further research questions.  
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1.5 Rationale 

Patello-femoral problems can affect nearly a quarter of the population and remain a 

common cause for revision surgery in total knee replacements (Hinman et al., 2014; Maiti et 

al., 2014; Wyndow et al., 2016). Joint replacement seems to be the final solution for 

improving the quality of life for patients suffering from final stage osteoarthritis. Minimally 

invasive interventions such as osteochondral transplantation are promising alternatives that 

could prevent or delay the need for such replacements (Nho et al., 2008; Draper et al., 2011; 

Fitzpatrick et al., 2011).  Autologous osteochondral transplantation can be a successful 

treatment but is limited to the treatment of small osteochondral defects due to donor site 

morbidity. Large defects treated with the same technique require allografts which may have 

the risk of immunological rejection (Freeman et al., 2000; Northwood and Fisher, 2007; Ma 

et al., 2010).  

Decellularisation is a process by which the cells are removed from a tissue, leaving only its 

ECM scaffold which can then be implanted into the recipient site to be populated with the 

recipient’s cells. The University of Leeds have developed an acellular porcine cartilage bone 

matrix that can be used as an osteochondral substitute. This has the potential to be used in 

the treatment of osteochondral defects of any size. These decellularised grafts have been 

shown to be biocompatible in both in- vitro and in- vivo studies (Kheir et al., 2011). Currently 

there are no in- vitro studies developed for the pre-clinical testing of these grafts. The 

tribology and wear of these grafts need to be investigated before they can be approved for 

clinical trials. Hence there is a scope for an in- vitro model that can help to translate these 

substitutions from lab to the market.  

This research develops a tribological knee simulator for the natural PFJ that can result in the 

advances in the understanding of the tribology and biomechanics of the joint that can serve 

as a simulation platform for investigating conditions such as osteochondral substitutions. 

The methodology developed has the potential to become the standard for the in- vitro study 

of any osteochondral substitutions that can be used in a PFJ. It could be used to assess the 

suitability of the product before it is used for clinical trials.  
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1.6 Aims and Objectives 

1.6.1 Aim 

The overall aim of the project was to develop and validate a design specification for the 

pre-clinical testing of the human patella-femoral joint.  

1.6.2 Objectives 

1. Determine a suitable animal model for the development of the method 

The geometry of the bovine and porcine PFJs will be investigated to establish a 

suitable animal model that closely replicates the human PFJ. Cartilage from the 

chosen model and human cadaveric joints will be characterised to compare the 

material properties. The elastic modulus, thickness and permeability of the joints will 

be determined to make the comparison. 

    

2. Develop an animal model to investigate the biomechanics and wear of the PFJ using 

a single station knee simulator (SSKS) 

This stage will define the biomechanical simulation cycle to replicate the kinematics 

of the natural PFJs. The SSKS will be modified to accommodate the animal model and 

to apply the patello-femoral gait cycle. A methodology will be developed and 

validated to set up the animal model for the simulator study.  

    

3. Develop a simulator study to investigate the contact mechanics in the PFJ  

A consistent and repeatable method will be developed to investigate the contact 

mechanics in the natural PFJ. The contact area and contact pressure will be measured 

using a Tekscan pressure sensor for different conditions.  

    

4. Develop a simulator study to investigate the wear in natural joints 

The SSKS will be used to generate wear on the negative (cartilage on cartilage) and 

positive (metal against cartilage) controls. The wear will be assessed by grading the 

wear on the cartilage, measuring the wear area on the cartilage and the surface 

roughness of the cartilage. There must be significant difference in the measured 

wear on the negative and positive control.  
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Chapter 2. General materials and methods 

This chapter describes the generic materials, instruments and calibration, and the 

methodologies used throughout this thesis. Any methodologies developed for specific 

studies in this project are discussed in the respective chapters.  

2.1 General materials  

2.1.1 Phosphate Buffered Saline (PBS) 

PBS was used for storage, rinsing and hydration of tissue throughout the study. It is an 

isotonic solution and is non-toxic to cartilage tissue. It was prepared by dissolving 10 tablets 

of PBS (MP Biomedicals, US) in 1L of distilled water. Cartilage surfaces were always kept 

hydrated by wrapping in PBS soaked tissue. PBS was used instead of water because the 

cartilage will swell due to the ionic charge effect of the water.  

2.1.2 Lubricant- New born calf serum 

New born calf serum (NBCS) (Gibco, Life Technologies, New Zealand) was diluted with PBS 

to make the lubricant. A concentration of 25% (v/v) NBCS was used to obtain similar protein 

level in the lubricant as observed physiologically in the synovial fluid. The protein in the 

lubricant contributes to the boundary layer to reduce friction in the joint (Saikko, 2003; 

Wang, Sharkey and Tuan, 2004).   

2.1.3 PMMA Bone Cement 

Polymethyl methacrylate (PMMA) bone cement was used to secure the tissue samples into 

the correct position and orientation in the knee simulator fixtures. The cement, consisting of 

a cold cure solid powder and a liquid monomer (WHW Plastics, Hull, UK), was prepared 

according to the manufacturer’s instruction. It was mixed at a 2:1 solid to liquid ratio in a 

fume cabinet. 

2.1.4 Bovine, porcine and human tissue 

The bovine tissue was obtained from 18 month old bovine femurs with an intact and 

untampered patello-femoral groove. The porcine tissue was taken from the right legs of 6 

month old Large White pigs obtained from the abattoir within 48h of slaughter. The average 

weight of the pigs was 76kg.  
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Human tissue was obtained from 6 donors after ethical approval from Leeds West Research 

Ethics Committee [REC number 11/YH/0025]. Six fresh-frozen human knees (5 left knees and 

1 right knee,) were obtained from 4 female and 2 male donors of an age range of 52-85, with 

an average age of 64.5 years.  

2.1.5 Femoral Component - PFC Sigma 

A PFC sigma (press fit condylar sigma design) femoral component for a right knee as shown 

in Figure 2.1 was used for the positive control in the wear study described in chapter 7. This 

component was manufactured (PFC Sigma, DePuy, Warsaw, Indiana) from Co-Cr-Mo alloy. It 

had a surface roughness (Ra) of 0.02 μm (ASTMF75-01, 2001), which is within the accepted 

orthopaedic implants surface finish of <0.1 μm (ISO 7207-2:2011). It had a 7° angulation on 

the trochlea to replicate the geometry of the natural joint. 

 

Figure 2-1: Press fit condylar sigma design femoral component used as the positive control 

2.1.6 Microset replicating compound  

Microset 101RF silicon compound (Nuneaton, Warwickshire, UK) is designed for producing 

high resolution 3D replicas. It is a mixture of two part polymer in a cartridge that is dispensed 

as a semi-viscous liquid. The cartridge and gun system allows quick and easy dispensing. The 

Microset compound produces flexible replicas with a resolution of more than 0.1 microns 

that sets within 5 min and can be easily peeled from the surface without any trace.  It was 

used to mark the contact points as discussed in Chapter 6.  

2.1.7 AccuTrans replica moulds  

This was a low-viscosity casting silicone from AccuTranss® (AccuTranss®, Switzerland).  Its 

time dependent shear thinning property can be used to obtain detailed impressions of 

surfaces (Goodall, 2015).  This elastic compound can be used in smooth, textured and rough 
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surfaces. These flexible but accurate moulds are even perfect for curved surfaces, horizontal 

or vertical planes. They are long lasting and the moulds are permanent upon removal from 

the sample. Therefore there is no risk of smudging the material and producing inaccurate 

surface profiles. They are non-toxic and have no side effects or reaction to the samples. 

These are available in a range of colours and this study used the brown colour for the wear 

study replicas (AccuTrans, 2015). 

Unlike other replica mixtures, AccuTrans is a compound and does not require any mixing. It 

takes less than 4 min to set at room temperature.  The main advantage of this over the 

Microset is that as the AccuTrans moulds are firmer compared to Microset molds the prints 

are permanent upon removal from the sample. This allows the replicas to retain the shape 

of the samples.  

2.2 General equipment  

2.2.1 Linear Variable Differential Transformer (LVDT) 

An LVDT (RDP D5-200H; Electrosence, PA, USA) was used in this study to determine the 

radius of curvature of the femoral groove of knee joints and also in the indentation rig for 

measuring the displacement of the indenter tip from the cartilage surface. LVDT, also known 

as a linear variable differential transformer, is a type of transducer used to measure linear 

displacement. It converts the linear displacement from a reference point into a proportional 

electrical signal containing phase (for direction) and amplitude (for distance).  

The LVDT was calibrated using standard stainless steel slip gauges (Broomfield Carbide 

Gauges, UK). The indenter tip of the LVDT was placed on a flat platform of height 7.5 cm and 

this was taken as the zero position. The voltage on the A2D indicator connected to the LVDT 

was recorded. Slip gauges of known thickness (starting from 1 mm) were placed between 

the zero point and the indenter. The voltage was recorded at each increment of slip gauge 

and a spirit level or bubble level was used to ensure that the LVDT was perpendicular to the 

slip gauges. Once the slip gauges reached up to 2 mm, the height was reduced and the 

change in voltage was again recorded for each height until it reached the zero point. Linear 

regression was used to fit a line to the calibration data to covert these output voltages into 

displacement in millimetres.   
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2.2.2 Micro Computed Tomography (Micro-CT) 

A Micro-CT (XtremeCT, Scanco, Switzerland) was used to scan the femoral samples to 

measure the radius of curvature of the femur. It is an efficient, non-destructive and accurate 

imaging technique. It takes high resolution X-ray images at angular views while the sample 

rotates. A computer stacks the slices of images and the user can scroll through the cross 

sections along different planes and inspect the images to study the microarchitecture of the 

specimen (Bruker, 2013; B-cube, 2016).  

2.2.3 SolidWorks 

SolidWorks (Dassault Systèmes, Waltham, MA, USA), a solid modelling CAD software, was 

used to create all the design drawings for all components manufactured throughout this 

project. It was also used to create a theoretical model of the patello-femoral contact for the 

contact point study described in Chapter 6. Additionally, it was also used to design the angle 

fixtures for the contact point study, the fixture manufactured to cement the patella for 

obtaining osteochondral plugs and the fixture for the simulator studies.  

2.2.4 Image-Pro Plus  

Image-Pro Plus 7.0 software (Media Cybernetics, Silver Spring, USA) is an image analysis tool 

used to count, measure and classify objects through the images. Images were captured with 

a Canon SLR camera with x20 lens for quantification. The images were exported to the Image 

pro software and the images were calibrated using the reference scale in the pictures. The 

inner boundary of the marking was traced and a mask was applied. The area covered by the 

mask was calculated by the software and this was recorded as the value for the area.  This 

software was also used to calculate the radius of curvature of the femur from the Micro-CT 

images, to find the areas of the samples from the images and to locate the position of the 

patella on the Tekscan in the contact mechanics study.  

2.2.5 Alicona optical surface metrology unit 

Infinite Focus G5 (Alicona, Austria) is an optical device for 3D surface measurements. The 

small depth of focus of the optical system and the vertical scanning capability of the device 

combines to provide the topographical data at variation of focus. A set of algorithms then 

reconstructs this topographical data into a 3D image. It has objectives of different 

magnification ranging from 2.5 x to 100 x and has a vertical resolution as low as 20 nm. 
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At higher magnification, an improved axial and lateral resolution is possible. However, this 

will reduce the area that can be reconstructed in a single scan. ISO conforming 

measurements for 3D models require at least a length of 4 mm.  The ImageField functionality 

in Alicona IF G5 can provide large enough measurements to comply with the ISO standard. 

This ImageField functionality can provide 3D models for large measurements that can be 

used to analyse volume changes. The device reconstructs multiple 3D models by stitching 

together several single 3D models that are made to overlap slightly with each other. Based 

on the colour and topographical information, this technique is able to form large 3D models 

through several smaller 3D models.  

2.2.6 Single station knee simulator (SSKS) 

A single station knee simulator (SSKS) is an electro-mechanical dynamic testing rig used in 

this project to study the biotribology and biomechanics of the porcine PFJs. A simplified 

diagram of the simulator is illustrated in Figure 2.2.   The calibration and the application of 

the SSKS in this project will be discussed in detail in Chapter 7.  

The simulator (Simulator Solutions, Stockport) has six degrees of freedom and was used to 

apply the gait cycle in the wear studies and the loads and displacements for the contact 

mechanics study. It has the potential to facilitate the testing of different conditions, new 

tissue substitutions and various interventions under a wider range of gait scenarios.  
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Figure 2-2: Simplified diagram of the single station knee simulator for the patello-femoral joint
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2.3 Methodology for the preparation of natural tissue samples 

This section discusses the procedure used to prepare the natural tissue samples from 

bovine, porcine or human knee joints. Once the tissue had been prepared, the samples were 

stored appropriately depending on when the samples were used for the test. Samples were 

either refrigerated at 4°C for a short time of up to 6h or frozen at -20°C up to a maximum of 

6 months. Frozen tissues were thawed at room temperature or thawed overnight at 4°C, for 

a maximum of 3 freeze-thaw cycles.  

2.3.1 Patello femoral joint dissection 

The dissection of the porcine and bovine PFJ is described in Chapter 3 Section 3.2.1 and the 

dissection method for the human PFJ is described in Chapter 5 Section 5.2.2. Chapter 7 

further discusses the methods used to prepare the samples for the simulator studies.  

2.3.2 Obtaining osteochondral plugs 

Osteochondral plugs were cylindrical grafts of subchondral bone with the articular cartilage 

attached to it. These were used to characterise the material properties of the articular 

cartilage.  

An 8.5mm diameter coring tool from a mosaicplasty kit (Smith & Nephew, Andover, MA) as 

shown in Figure 2.3 was used to extract the osteochondral plugs. The markings on the end 

of the coring tool identified the depth when the tool was inserted into the bone. Each plug 

was extracted to a depth of 10 mm. The specific height was chosen to fit the collets used to 

hold the plugs during testing and also to ensure consistency.  

 

Figure 2-3: Coring tool from the Smith and Nephew mosaicplasty kit 

Once the patello-femoral joint was separated from the knee, the femur was clamped down 

with the cartilage surface of the joint extended from the table. Initial outlines for the plugs 

were marked by pressing the coring tool against the cartilage surface until it reached the 
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subchondral bone. This procedure helped to position the coring tool during the extraction 

process and avoided slippage during hammering.  

Once all the plugs were correctly marked, the coring tool was placed over each plug and 

hammered in to a depth of 10 mm (using the markings on the coring tool). The plugs were 

removed with a swift sharp motion to break off the plug. Once the coring tool was detached, 

the plug came with it and was removed by inserting a rod into the bony end of the sample. 

The bone end of the plug was flattened using a file. An image of the osteochondral plug is 

shown in Figure 2.4.  

 

Figure 2-4: A fully prepared osteochondral plug for the cartilage characterisation study 

It was necessary to grip the patella while taking the plugs; however, it was not possible to 

secure the patella straight into the vice without damaging the sample. The patella was 

therefore fixed in PMMA cement and then secured in the vice.  The plugs were then 

obtained as described above.  

2.4 Mechanical characterisation of cartilage 

Mechanical creep indentation was conducted on osteochondral plugs to determine the 

elastic modulus and permeability of the cartilage specimens.  

2.4.1 Indentation rig 

A custom made indentation rig (Abdelgaied et al., 2015) was used to study the time 

dependant behaviour of articular cartilage as shown in Figure 2.5. It consisted of an 

aluminium shaft to which the indenter was attached; which together applied a total load of 

24 g on the cartilage. The motion was steered by a linear bearing to reduce friction within 

the apparatus. To avoid the impact of the indenter on the cartilage, the release velocity of 

the shaft was controlled by a dashpot filled with silicon oil.  
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Figure 2-5: Indentation rig  (Taylor, 2012) 

A linear variable differential transducer (LVDT) as described in Section 2.2.1 measured the 

displacement and a piezoelectric force transformer measured the resistance force in the 

indentation rig. The LVDT (RDP D5-200H; Electrosence, PA, USA) had a sensitivity of 0.4 µm 

at 10 mm range and 0.04 N at 2 N range for the piezo-electric force transformer (Part No: 

060-1896-02, Electrosence, PA, USA). The voltage output of these sensors was recorded 

using custom made Labview 8 software (National instrument, TX, USA).   

The LVDT and the force sensor were calibrated to convert the voltage outputs to millimetres 

and Newtons respectively. Calibration for the LVDT is described in Section 2.2.1. To calibrate 

the piezoelectric force transformer, the indenter tip was placed on a flat platform without 

applying any load. Calibrated masses of 50 g were added incrementally and the change in 

voltage was recorded. Once it reached 200 g, the masses were removed one by one while 

still recording the decrease in voltage until the whole mass reached zero. This adding and 

removing of loads was carried out to characterise any hysteresis in the force sensor. A linear 

regression was used to fit a line to the calibration data to convert these output voltages into 

load in Newtons.  
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The calibration graph for the piezoelectric force transformer and the LVDT for the 

indentation test is shown in Figure 2.6 and 2.7 respectively 

 

Figure 2-6: Calibration graph for the piezoelectric force transformer 

 

Figure 2-7: Calibration graph for the LVDT 

2.4.2 Indentation test 

Osteochondral plugs secured in a collet were fixed inside an O-ring to prevent motion during 

the test and were then placed within a stainless steel bath as shown in Figure 2.8. The bath 
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was filled with PBS to cover the surface to hydrate the cartilage. A flat rigid indenter of 

diameter 2.5 mm was positioned ~1 mm away from the cartilage surface.  The stainless steel 

bath, O-ring, collet and the indenter are shown in Figure 2.9.  

 

Figure 2-8: Indentation set up with the osteochondral plug under the indenter 

As the osteochondral plugs used in this study provided a flat surface for indentation a flat 

indenter was used in this study instead of a hemi spherical indenter used in previous studies 

in the same lab (McLure, 2012; Taylor, 2012; Fermor, 2013). A flat indenter can provide a 

larger contact area between the indenter and the cartilage and hence reduces the contact 

stress at the surface. 

 

Figure 2-9: From left to right- Stainless steel bath, O ring to fix the collet in place, the collet and flat indenter 
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When the indenter was released, a constant load of 0.24 N was applied through the indenter 

and the data was captured at a sampling frequency of 10 Hz for one hour to allow 

equilibrium deformation to be reached. On completion of the indentation test the plugs 

were removed and kept covered in PBS soaked tissue for one hour to rehydrate and recover, 

before the cartilage thickness measurements were carried out.  

The impact speed was decreased by dropping the indenter shaft through a silicone oil filled 

dashpot. LabView 8 software (National Instruments, TX, USA) collected and stored the data 

from the LVDT (measured the indenter displacement) and the piezo-electric force 

transformer (measured the resistance force) to produce a cartilage deformation curve for 

the experimental data. 

2.4.3 Cartilage thickness measurement 

An Instron material testing machine (Instron 3365, Bucks, UK) was used to pierce the 

cartilage with a needle to measure its thickness. This method is known as the needle 

indentation or needle probe method (McLure, 2012; Taylor, 2012; Fermor, 2013). Once the 

osteochondral plugs were secured in the PBS bath, the needle attached to the Instron was 

manually positioned ~1 mm above the cartilage surface as shown in Figure 2.10. The needle 

was lowered into the cartilage at a rate of 4.5 mm/min and its resistance was measured 

using a 50 N load cell.  
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Figure 2-10: The needle attached to the Instron is positioned just above the cartilage 

The thickness was calculated from the resistance of the needle piercing through the 

cartilage - as the distance between resistance in initial contact and the steep increase in 

resistance when the needle touched the much stiffer bone. A sampling frequency of >50 Hz 

enabled the force sensors to detect the moment when the needle touched the cartilage 

surface, pierced through the tissue or touched the bone surface. The thickness was 

calculated from the difference in deformation levels at these points as shown in Figure 2.11. 
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Figure 2-11: Schematic of how cartilage thickness was determined from needle indentation (adpated from 

Fermor, 2013) 

In Figure 2.11, the equations for Line A and Line B is used to obtain the thickness values. 

The sample calculation is shown below. 

Line A    y=m1x + c1 

Line B    y=m2x + c2 

Thickness = (c2-c1)/(m1-m2) 

2.4.4 Deriving the mechanical properties using an FE model 

An axisymmetric biphasic poroelastic finite element model (ABAQUS, version 6.9-1 Dassault 

Systemes, Suresnes Cedex, France) created and published by Pawaskar et al. (2010) was 

used to derive the elastic modulus and permeability. The model was a representation of 

how the data from the results were collected in the experiment.  

Several boundary conditions were set as follows: 

Poisson’s ratio of cartilage = 0  (Jin et al., 2000) 

Water content of cartilage = 74.7% (Elder, Eleswarapu and Athanasiou, 2009) 

Thickness of cartilage = Thickness of each plug obtained from the needle probe study 

Elastic modulus of subchondral bone = 1510 MPa (Mitton et al., 1997) 

Poisson’s ratio of subchondral bone = 0.3 (Shirazi, Shirazi-Adl and Hurtig, 2008)  

http://www.sciencedirect.com/science/article/pii/S0021929012001819#bib13
http://www.sciencedirect.com/science/article/pii/S0021929012001819#bib20
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The cartilage thickness measured for each plug provided the geometric information for the 

FE model to derive the properties from the cartilage deformation curves generated during 

indentation. The indenter was created in the model as an analytical rigid body with 2.5 mm 

diameter flat tip. The FE model created is illustrated in Figure 2.12.  

 

Figure 2-12: Finite element model of an osteochondral pin 
This schematic shows the axis of symmetry, and the imposed fluid flow restrictions 

The deformation curve obtained through this FEM was matched with the curve created by 

the experimental data. A displacement vs time graph was produced by the FEM as shown in 

Figure 2.13.  MATLAB (version 7.4, MathWorks Inc, Boston, MA, USA) was used to calculate 

the best fit between the final 30 % of FE curve and experimental curves. A curve fitting 

process was repeated until it reached the maximum squared error (R2 value) by altering the 

input material properties. An R2 value greater than 0.85 was accepted as significant for 
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biological tissues (Fermor, 2013). In the FE model, the inputs used as elastic modulus and 

permeability to give the highest R2 values was recorded as the determined material 

properties for that sample. 

 

Figure 2-13: Experimental curve and curve produced by the finite element model   

2.5 Methodologies for wear study 

2.5.1 Calculating wear area using flexible film method 

The flexible film method was used to measure the area of a surface (Lizhang 2010; Taylor 

2012). In this project, this method was applied to determine the total surface area of the 

patella and the wear area on the cartilage.  

A single layer of cling film was placed over the area to be measured, making sure that there 

were no air bubbles. The area was traced using a permanent marker as shown in Figure 2.14. 

The film was removed from the surface and carefully placed over a flat surface ensuring that 

the film was not stretched. A photograph of the marked film was taken with a ruler next to 

it. This procedure was repeated 3 times on the same area. The area inside the marked region 

was calculated using ImagePro Plus.   
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Figure 2-14: Measuring the area of patella cartilage (a) Images of the patella for measurement (b) flexible film 

over the patella (c) image of the film for calculation 

A study by (Taylor, 2012) validated this method by measuring the area of a known defect on 

a custom made metal acetabular cup. The cup was designed in Solidworks and the defects 

were created using a laser sintering machine. The area known from the design was 

compared to the calculated area from the ImagePro Plus, which showed good repeatability 

and accuracy. For an actual area of 281.32 mm2 the flexible film reading was 263.32 ± 10.39 

mm2.    

2.5.2 Validating Accutrans for obtaining cartilage replicas 

Microset was used to obtain replicas from the cartilage surface to measure the surface 

roughness using Talysurf. This thesis introduced the application of Alicona to measure 

surface roughness of the cartilage from the wear study. Microset was not compatible with 

the Alicona method due to various reasons and therefore AccuTrans molds were used to 

obtain the replicas.  

AccuTrans moulds were firmer and the geometry of the replica was maintained when 

removed from the sample. Upon scanning both replicas in the Alicona IF G5, the results were 

much clearer using AccuTrans compared to Microset. The black glossy surface finish of the 

Mircoset caused reflections, which resulted in areas of missing data (Figure 2.15). AccuTrans 

with its brown colour and matt finish allowed better-quality image capture (Figure 2.16).  
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Figure 2-15: : Patella cartilage scan from Microset 

 

Figure 2-16: : Patella cartilage scan from AccuTrans 

Therefore, it was concluded that AccuTrans was the most suitable material to make replicas 

for the natural joints. This section details the validation of the use of AccuTrans as the replica 

material.  

Talysurf Surface profilometer was used to measure the surface roughness of a roughness 

standard with an Ra of 0.5 µm and another standard with an Ra of 0.8 µm (Figure 2.17) . 

This was compared to the Ra measured from the replicas of these standards taken using 

Microset and AccuTrans molds. Three lines each were taken for each measurements and 

three molds each were taken using each replica material. The mean roughness values and 

the 95% confidence limits for the measured standard and the replica molds are shown in 

Figure 2.18 
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Figure 2-17: Roughness standard used to measure the Ra for 0.8µm  

 

Figure 2-18: Surface roughness of the actual standard, measured standard on Talysurf, measured from AccuTrans 
replicas and Microset replicas 

The surface roughness measured from the AccuTrans molds were closer to the roughness 

of the actual standard measured using Talysurf compared to the roughness measured using 

Microset molds. This shows that the AccuTrans is more accurate than Microset for 

replicating the surface and hence suitable for the purpose of this study. This method shows 

good repeatability as the error bars were small in both cases. But neither of them were 

accurate, as the readings were significantly lower than the measured roughness. However, 

as this is only used for relative comparison of roughness in pre and post wear study, this is 

still valid for the purpose of the study.  
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2.6 Methods for statistical analysis 

For every experiment a minimum of 6 samples were tested and each measurement was 

taken at least 3 times for each quantity. Microsoft Excel (version 2010, Microsoft), SPSS 

version 21.0 (IBM Corp, 2012) and OriginPro version 8.5.1 (OriginLab; Northampton, MA) 

was used to analyse the numerical data in this project.  

The results are presented as the mean (n≥6) ± 95 % confidence limits. The descriptive 

statistics part in the data analysis package of Microsoft Excel was used to calculate the mean, 

95% confidence intervals (α = 0.05) and standard deviation.  

95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑖𝑚𝑖𝑡 = 𝑀𝑒𝑎𝑛 ± t 5%(n − 1) ×standard error 

where, n is the sample size, 

standard error = standard deviation / √n 

when n=6, t5% (n-1)= 2.447  

Student t-test was carried out using SPSS to compare the means of two groups of data. If 

there were more than two groups, One-way analysis of variance (ANOVA) was used to 

compare the means of these groups. A p-value under 0.05 was accepted as significant and 

those that showed a minimum significant difference (MSD) were further analysed using 

Tukey test. OriginPro was used to carry out the ANOVA and also a Tukey test as necessary.  
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Chapter 3. Geometry of the patello-femoral joint 

3.1 Introduction  

The aim of this project was to develop a methodology to investigate the biomechanics and 

wear of the natural patello-femoral joint (PFJ). Before commencing this it was essential to 

investigate an appropriate animal model of the PFJ and understand its characteristics. The 

purpose was to choose an animal model which had dimensions similar to that of the human 

joint. The animal model should have cartilage with similar material characteristics to the 

cartilage of the human tissue that would potentially require osteochondral transplantation. 

Availability, ease of dissection, repeatability and comparison to other methods were also 

factors that needed to be considered. Bovine and porcine PFJs were available as the possible 

alternatives for the animal model at this stage of methodology development.   

This chapter describes the study undertaken to investigate the geometry of the bovine and 

porcine PFJ. This was important since the geometry of the articulating surfaces can influence 

the contact mechanics of the joint and hence the tribology. The dimensions of the patello-

femoral sample, area of the patella and radius of curvature of the groove were determined 

to define the geometry of the joint. This chapter reports the methods, results and 

conclusions drawn from the studies carried out to characterise the bovine and porcine PFJs. 

3.2 Materials and methods 

Right knee joints from 6 month old Large White pigs and 18 month old cows (n=6) were used 

in this study. All the joints were healthy and had shiny, white and slippery cartilage with no 

visible defects.   

3.2.1 Dissection of the patello-femoral joint 

As shown in Figure 3.1, the bovine patella was separated from the patello-femoral groove 

by removing the soft tissues around it that kept the PFJ intact. The patella was then cleaned 

using a scalpel to remove all the soft tissues around it and making sure the cartilage was not 

damaged.  
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Figure 3-1: Dissection of a bovine knee joint to separate the patella and the patello-femoral groove. Left to right: 

Bovine femur with intact PFJ, Soft tissues removed to obtain the patella, patello-femoral groove exposed   

In porcine dissection, the femur was separated from the tibia and hip. The soft tissue around 

the knee was removed using a scalpel to separate the tibia from the intact knee. To cut the 

femur from the hip, most of the soft tissues around the rest of the leg were removed and 

the femur was secured in a vice.  The femur was cut using a hacksaw to remove the hip, 

leaving approximately half the length of the femur. The patella was removed from the 

femoral groove and both components were cleaned using a scalpel to remove any soft 

tissues around the bone without damaging the cartilage. A cleaned patella and femur are 

shown in Figure 3.2.  

   

Figure 3-2: Porcine femoral groove (left) and patella (right) with all the soft tissues removed 
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3.2.2 Dimensions of the joint 

The bovine and porcine PFJs were dissected to obtain the patella and groove as described 

in Section 3.2.1 and 3.2.2 respectively. The patello-femoral groove was cut from the femur 

ensuring all the cartilage surface of the groove was retained. The typical size of the bovine 

and porcine grooves is shown in Figure 3.3.  

 

Figure 3-3: Typical size of the bovine (left) and porcine (right) patello-femoral grooves respectively 

The measurements for the dimensions (height, length and width) of the patella and the 

groove were taken using a Vernier Calliper. Each measurement was taken 3 times for each 

of the 6 samples. The dimensions obtained for this study are illustrated in Figure 3.4 and 

described below:  

o Patellar length (L(p)): distance from the apex (inferior) to the base (superior). 

o Patellar width (W(p)): distance between the medial and lateral cartilage surface. 

o Patellar height (H(p)): distance from the articular surface to the retropatellar surface 

was measured by placing the Vernier Calliper at the middle of the patellar length. 

o Patello-femoral length (Lg(m) and Lg(l)):  distance from the superior to the inferior 

edge of the articular cartilage on the medial and lateral side respectively.  

o Patello-femoral width (W(g)):   distance between the medial and lateral side  
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Figure 3-4: Dimensions of the femoral groove and patella.  

M=medial, L=lateral, S=superior, I= inferior  

Lg(l)= length of lateral groove, Lg(m)= length of medial groove, W(g)= width of the groove 

L(p)= length of patella, W(p)= width of patella 

3.2.3 Area of patella 

The area of the articular surface of the patella was determined by overlaying the flexible 

film method described in Chapter 2 Section 2.5.   

3.2.4 Radius of curvature of the patello-femoral groove 

Three methods were investigated to measure the radius of curvature (RoC) of the patello-

femoral groove using porcine samples. The first method used a Vernier Calliper to measure 

the dimensions of the sample from which the curvature was calculated. The second 

method used an LVDT to trace the curvature from which the radius was measured. The 

final method used a Micro-CT to scan the sample to show the curvature of the groove for 

each Micro-CT section. These methods were assessed and compared; and one was chosen 

for use in this study based on the accuracy and consistency of the method.  

Porcine legs were dissected to obtain the samples as described in Section 3.2.1. The 

sample was fixed in PMMA cement such that the articulating surface of the femoral 

groove was parallel to the base of the cemented sample. Once the samples were 

prepared, they were refrigerated (4°C) or frozen (-20°C) until the measurement was 

carried out.  

The same 6 samples were tested using the 3 methods to ensure consistency and reliability 

of data.  
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3.2.4.1 Vernier Calliper method 

A Vernier Scale Calliper was used to measure the dimensions of the samples. The 

instrument was always verified using a known gauge block before each test.  The height 

and length of the femoral groove were measured as shown in Figure 3.5. 

 

Figure 3-5: Taking the measurements from the sample using the Vernier Calliper.  

Left: Femoral groove in the Frontal plane. Right: Femoral groove in the Sagittal plane 

The length was measured from the superior end to the inferior end of the patello-femoral 

cartilage. The height was calculated by placing the sample between the Vernier Calliper 

such that the lower end of the Vernier touched the flat base of the sample and the top 

part rested on the midpoint of the patello-femoral groove (found using the previously 

measured length). Each measurement was taken 3 times for each sample.  

Using the Pythagoras theorem, the RoC was calculated as shown in Equation 1 and as 

explained in Figure 3.6.  

 

Figure 3-6: Diagram explaining the radius of curvature calculation in equation 1 

3.2.4.2  LVDT method 

A differential transducer was used to trace the curvature of the groove to determine the 

radius of curvature of the patello-femoral groove. The LVDT set up on the porcine samples 
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is shown in Figure 3.7. The position of the LVDT and its course of perpendicular displacement 

in the groove with respect to the reference line are shown in Figure 3.8.  

 

Figure 3-7: Sample set up for LVDT study: Left- LVDT equipment, Right- LVDT needle on the sample surface. 

 

Figure 3-8: Movement of LVDT tracking the groove (left) and the output from the LVDT (right) 

The LVDT consisted of a needle end (Figure 3.7, extreme right) which was positioned on top 

of the cartilage surface. The output from the LVDT tracked the course of vertical 

displacement of this needle from the reference point, which was the bottom of the sample 

(Figure 3.8, left), as it moved from the superior end to the inferior end of the patello-femoral 

groove. The LVDT recorded the distance between the tip of the needle and the bottom of 

the sample (reference line) every 5 mm. This was used as an input into SolidWorks as shown 

in Figure 3.9. An arc was drawn over the perpendicular lines (the height recorded by the 

LVDT) covering as many tips as possible. The radius of the arc, as shown in Figure 3.9, 

determined in SolidWorks, gave the RoC.  
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Figure 3-9: The displacement from the LVDT plotted against the reference line and an arc of known radius drawn 

3.2.4.3 Micro-CT method 

A Micro-CT as described in Chapter 2 Section 2.2 was also used to determine the RoC of the 

femoral groove. Two HDCs (high density crystals) were placed on either end of the patello-

femoral surface to mark the radius of the groove. This helped to track the Micro-CT slice 

that marked the RoC of the groove from the stack of Micro-CT image slices for that sample.  

The samples were thawed and placed inside a sealed bag ready to be scanned. The bag was 

then placed in a cylindrical container in such a way that the articulating surface was facing 

upwards. The specimens were then scanned using Micro-CT. A series of images were 

obtained along an orthogonal axis to the patello-femoral cartilage surface with an isotropic 

voxel dimension of 26 μm. 240 slices of each sample were taken and the slices that showed 

the HDCs were taken for analysis. ScanIP software environment (Simpleware Ltd, Exeter, 

UK) was used to perform the subsequent image processing and analysis.  

The slices were analysed to select 3 slices with both visible HDCs. The Micro-CT slice/image 

is shown in Figure 3.10 and the bright white dots on the surface are the HDCs. These mark 

the curvature of the groove and hence a circle was drawn to connect the two crystals.  These 

images obtained from the Micro-CT scanner had a 5 mm scale embedded in the image. This 

was used as a scale factor in Image Pro Plus to draw a circle of known radius using the 

software. The radius of the circle gave the RoC for the sample. The measurement was 

repeated 3 times on each image for each of the 6 samples.  



 
 

77 | P a g e  
 

 

Figure 3-10: Micro-CT image showing the slice containing the crystals and a circle of known radius drawn 

connecting the crystals using ImagePro Plus 

3.2.4.4 Evaluating the methodologies 

The results (n=6) from these three methods were analysed to evaluate and compare the 

three methodologies. The average radii calculated using Vernier caliper, Micro-CT and LVDT 

were 27.61 ±4.41 mm, 29.96 ±1.29 mm and 30.90±3.03 mm respectively.     

Micro-CT technique was the most direct method, though there are inherent assumptions 

associated with image distortion. The 95% confidence limit shows the least variation in the 

results. Micro-CT also needed the minimal number of calculations; therefore the room for 

error was minimal. Therefore, the results were considered to be the most accurate amongst 

the three.   

The radius of curvature for each sample was calculated 3 times using the Vernier and Micro-

CT method but only once for LVDT. The LVDT method was also time consuming and complex; 

leaving more room for error. Therefore, this method was omitted and further analysis was 

carried to compare the Micro-CT and Vernier Calliper methods.  

Analysing the Micro-CT and Vernier Caliper results using Student t-test showed no 

significant difference (p=0.193) in the RoC found between the two techniques. The Vernier 

Calliper method was less time consuming and unlike Micro-CT the measurements could be 
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taken straight after dissection. Therefore, the Vernier calliper method was used throughout 

the study to find the RoC.  

3.3 Results 

The dimensions of the bovine and porcine patellae and patello-femoral grooves are 

presented in Table 3.1 as determined by the Vernier Calliper method. Bar graphs 

representing the size of the bovine and porcine patello-femoral groove and patella are 

shown in Figures 3.12 and 3.13 respectively. The bovine groove was much deeper than the 

porcine groove and had a prominent anterior projection on its lateral condyle.  

Table 3-1: Dimensions (mm) of the porcine and bovine patella and patello-femoral groove. Data is presented as 

the mean (n=6) ± 95% confidence limits 

 Mean ± 95% CL 

 Porcine Bovine 

Lg(m) 49.2 ±2.0 114.5±9.4 

Lg(l) 46.5±2.3 84.6±7.2 

W(g) 31.6 ±2.0 64.4±6.0 

H(p) 27.9 ±2.4 51.6±10.2 

L(p) 38.8 ±2.3 66.9±10.9 

W(p) 28.1 ±2.0 49.8±11.5 

 

Figure 3-11: Mean lengths of the two condyles of bovine and porcine PFJ 

The mean radius of curvature of the porcine groove and the true area of the patellar 

cartilage were 31.96 ± 2.7 mm and 878.0 ± 141.6 mm2 respectively. The bovine patello-
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femoral groove had a mean radius of curvature of 63.5 ± 5.4 mm and a patellar area of 

2842.7 ± 299.42 mm2. The elliptical shape of the femur increases the contact between the 

femur and the tibia and the radius of curvature of the condyles projects the patella 

anteriorly to increase the leaver arm of the extensor muscles.   

In order to compare the size of the bovine and porcine patello-femoral joint, the 

measurements were compared using Student`s t-test. There was a statistically significant 

difference (p<0.05) between all the dimensions. The results clearly showed that the bovine 

joints were twice as large as the porcine joints. The lateral condyles on the bovine joints 

were smaller than the medial condyles. The superior-inferior length of the articular surface 

of the medial condyle in the bovine groove was almost 30 mm longer than the length of the 

lateral articular surface. 

 

Figure 3-12: Sizes of bovine and porcine femoral grooves. Data is presented as the mean (n=6) ± 95% confidence 

limits 
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Figure 3-13: Sizes of bovine and porcine patella. Data is presented as the mean (n=6) ± 95% confidence limits 

3.4 Discussion 

The aim of this study was to investigate the geometry of the bovine and porcine PFJ to 

establish a suitable animal model that closely replicates the human PFJ in order to develop 

the whole PFJ tribological simulation model. The dimensions of the patella and the patello-

femoral region were measured; the area of the patella and the RoC of the patello-femoral 

region were also calculated to define the geometry. In addition, the investigation of the 

geometry was also used to address the possibility of developing a simpler geometrical 

configuration as an interim step prior to developing the whole joint model.  

Animal models are used to develop new methodologies and can be used to compare the 

effect of various abnormalities in the joint. Although it might not provide quantitative data 

that is directly comparable to humans, there is still the possibility to compare the level of 

damage caused by various abnormalities or change in parameters applied to a normal joint. 

This study was used to develop an animal model that was then used for the contact 

mechanics and wear studies in the single station knee simulator.  

Porcine and bovine knees were dissected to study the anatomy of the joints and the 

dissection process was analysed. In terms of dissection, the porcine samples were easier to 

obtain compared to the bovine samples. As the bovine bones were much denser than 
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porcine bone, cutting the patellar groove was more difficult with the bovine knee. This was 

because the bovine joints were skeletally mature but the porcine joints were from young 

pigs which still had its growth plates. Figure 3.14 shows the Micro-CT image of a patello-

femoral groove from a porcine joint used in this study. The growth plate in the bone is clearly 

visible in this image, which shows that the animal has not reached skeletal maturity.  

 

Figure 3-14: Labelled Micro-CT image of the porcine patello-femoral  groove 

Bovine joints were much larger compared to porcine joints and required different 

equipment for the dissection procedure. The porcine joints were much easier to handle 

during dissection and hence made the equipment more efficient as there were no issues of 

slipping or gripping while undertaking dissection. Overall, the porcine dissection took less 

time and effort; it was also possible to obtain more accurate sample geometry due to the 

ease of dissection.    

The dimensions of the patella and the patello-femoral groove obtained from the bovine and 

porcine samples showed that the bovine joints were much larger than the porcine. These 

were compared to the anatomical dimensions in 92 human patellae obtained in a study 

carried out by Baldwin et al. They also calculated the dimensions using a Vernier calliper 

after the patellae were obtained from a total knee arthroplasty (Baldwin and House, 2005).  

The dimensions of the tissues from the three species are shown in Figure 3.15. The length 

of human patella was 35.7 mm and that of porcine and bovine was 38.83 mm and 66.88 mm 
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respectively. The bovine patella was almost double the length of the human patella whereas 

the porcine was closer in length to the human patellae. Similarly, the height of the bovine 

tissue was higher than the porcine and human patella. The width of the human patella was 

46.1 mm whereas that of the porcine and bovine was 28.1 mm and 49.8 mm respectively.  

This was the only dimension in which the bovine was similar to humans.    

 

Figure 3-15: The sizes of patella from bovine, porcine and human** (Baldwin & House 2005) 

The height of the porcine patella was 27.9 ±2.4 and that of bovine was 51.6±10.2.  The 

biomechanics of the PFJ requires the patella displacing the lever arm from the patello-

femoral groove pivot point in order to reduce the quadriceps forces. A larger patella height 

reduces the work of the muscles that deals with the joint reaction forces (Sullivan et al., 

2014). The human patella was much closer in height to the porcine than to the bovine. 

Therefore, it would have shown similar biomechanics in the joint.  

Vernier calliper, LVDT and Micro-CT were used to measure the RoC of the samples. The three 

methods were compared to validate the most repeatable methods for measuring the RoC. 

This method could also be used to find the centre of rotation of the femur when the PFJ is 

assembled in the simulator for contact mechanics and wear study discussed in Chapter 8 

and 9 respectively.  

0

10

20

30

40

50

60

70

80

90

Width Length Height

D
im

e
n

si
o

n
s 

(m
m

)

Bovine

Porcine

Human (**)



 
 

83 | P a g e  
 

The Vernier calliper method was the easiest and least time consuming technique. It could 

also be used to measure each sample before they are cemented in the fixtures. Reduced 

time ensured that the samples were less exposed to air and drying and hence thad less 

chance of dehydration. Compared to the other techniques, the Vernier calliper method also 

enabled measurement with least risk of physical damage to the cartilage especially due to 

least handling time required.  

The results supported the accuracy of the Vernier calliper method compared to the other 

two techniques. The Micro-CT method was the most accurate due to the least calculation 

requirements and least chance for error and the results using the Vernier calliper method 

were compared to the Micro-CT method results. There was no significant difference 

(p>0.05) between the results obtained using the Micro-CT and Vernier calliper methods.    

A porcine model has previously been developed under similar conditions for investigating 

the tribology and biomechanics of the tibio femoral joint (Liu et al., 2015). Therefore, using 

the same model for the PFJ study was also advantageous in terms of repeatability of tests 

and comparing the results between the two joints.  

Investigating the geometry of the joint helped to establish an animal model and to consider 

the possibility of a pin-on-plate system for preliminary studies. The methods developed in 

this study such as measuring the RoC of the patello-femoral groove and calculating the area 

of the patella were also applied in other parts of this project. The RoC was also used to locate 

the centre of rotation of the femur while fixing the sample in the simulator. The method of 

calculating the area was used to measure the wear area in the samples after the wear tests.  

3.5 Conclusion 

Methodologies have been evaluated to determine the geometry of the PFJ and applied to 

the porcine and bovine joints. The geometry and size of the porcine joint was more 

comparable than the bovine joint, to the human joint. It was also more accurate to prepare 

the porcine samples for the tests than using a bovine joint. Therefore, the porcine joint was 

chosen as the animal model for this project.  
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Chapter 4. Material properties of the porcine patello-femoral 

cartilage 

4.1 Introduction  

The aim of this project was to develop a methodology to investigate the biomechanics and 

wear of the natural patello-femoral joint (PFJ). The geometry of porcine and bovine PFJs was 

compared in Chapter 3 to determine an appropriate animal model for this project. It was 

concluded that the porcine joint was more comparable to the human joint and hence, the 

porcine PFJ was investigated further in this part of the study.  

This chapter describes the characterisation of the porcine patello-femoral cartilage. The aim 

of this part of the study was to characterise the material properties of various locations of 

the porcine patello-femoral cartilage by measuring the thickness, equilibrium elastic 

modulus and the permeability of the cartilage. The equilibrium elastic modulus is the 

resistance of a material to the change in its length and permeability is a measure of the 

ability of that material to transfer a fluid through it. The biphasic material properties of the 

cartilage from the various locations in the PFJ were then compared.  

4.2 Materials and methods 

Right knee joints from 6 month old Large White pigs (n=6) were used in this study. All the 

joints were healthy and had shiny, white and slippery cartilage with no visible defects. The 

PFJs were dissected as described in Chapter 3 Section 3.2.1. 

4.2.1 Osteochondral plugs  

Osteochondral plugs (n=6) obtained from the porcine femoral groove and patella were used 

to determine the material properties of the porcine cartilage. Osteochondral plugs (Ø=8.5 

mm) were extracted from 8 locations in the femoral region and 5 locations in the patella as 

shown in Figure 4.1. The location of each plug marked in Figure 4.1 is described in Table 4.1.  

The purpose of this study was to compare the material properties of cartilage in the femoral 

groove with that of the patella. Therefore, a number of locations were selected to cover 

most of the area in the joint.   
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Figure 4-1: Locations of plugs obtained from the femur (left) and patella (right) 

M/L = medial lateral, S/I = Superior Inferior 

Table 4-1: The location of each plug marked in Figure 4.1 

Label of plug Location 

Plug-1 Femur- Superior/Lateral 

Plug-2 Femur- Superior/Medial 

Plug-3 Femur- Superior/Femoral groove 

Plug-4 Femur- Condyle/ Lateral 

Plug-5 Femur- Condyle/ Medial 

Plug-6 Femur- Inferior/Femoral groove 

Plug-7 Femur- Inferior/Lateral 

Plug-8 Femur- Inferior/Medial 

Plug-a Patella- Superior/Medial 

Plug-b Patella- Superior/Lateral 

Plug-c Patella- Centre Ridge 

Plug-d Patella- Inferior/Medial 

Plug-e Patella- Inferior/Lateral 

Each plug was wrapped in a piece of tissue drenched with PBS and frozen in a labelled 

container at -20°C for up to 3 months, until further use. The frozen plugs were left at room 

temperature for up to 2h for thawing before each test. Once defrosted, a plug was tested 

the same day. Previous studies have shown that this freeze-thaw process does not affect 

the frictional properties (Forster and Fisher, 1996) or material properties (Athanasiou et al., 

1991) of the articular cartilage up to a maximum of two freeze-thaw cycles.  
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4.2.2 Method to determine the equilibrium elastic modulus and permeability 

Indentation testing was carried out to determine the mechanical behaviour of the cartilage 

and to determine the equilibrium elastic modulus and permeability. A custom made 

indentation rig as described in Chapter 2 Section 2.4.1 was used for the mechanical testing 

of the osteochondral plugs. A flat rigid indenter of diameter 2.5 mm was used for the 

indentation tests. This gave an indenter to plug ratio of 1:3.2.   

A finite element model was used to obtain the equilibrium elastic modulus and permeability 

using the experimental data obtained from the indentation tests and the thickness of 

cartilage from the needle probe tests as described in Chapter 2 Section 2.4. The FE model 

assumed that cartilage has a constant permeability. The deformation in the model was kept 

between 5-10% of the cartilage thickness. The weight of the indenter and the load applied 

to the cartilage can affect the deformation. The higher load causes a higher deformation 

and hence affects the FE model.  This FE model (Pawaskar, Fisher and Jin, 2010) has been 

discussed in detail in Chapter 2 Section 2.4.4.   

4.2.3 Method to determine the thickness of the cartilage 

After indentation, the osteochondral plugs were rested for at least 1 hour before 

determining the thickness of the cartilage. The thickness was measured by the needle 

indentation method using an Instron, as described in Chapter 2 Section 2.4.3. Each 

osteochondral plug was pierced 6 times and the mean (n=6) for each plug was taken.   

4.3 Results 

The mean permeability, equilibrium elastic modulus and thickness of each location of plug 

are shown in Figures 4.2- 4.7. The labelling of the plugs and their location was shown in 

Table 4.1. Statistical analysis was carried out to compare the data between sample groups. 

Single factor ANOVA revealed no significant variation (p=0.074) between the mean 

permeability of any of  the sample groups. However, there was significant variation amongst 

the groups for the equilibrium elastic modulus (p=0.017) as well as the thickness of the 

cartilage (p=0.026).   
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Figure 4-2: Permeability of cartilage in the porcine patello-femoral joint. The data is presented as the mean (n=6-

12) ± 95% confidence limits. Data was analysed by one way analysis of variance which revealed no significant 

variation in the data (p= 0.074)  

 

 

Figure 4-3: Permeability of cartilage in the porcine patello-femoral joint 
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Figure 4-4: Equilibrium elastic modulus of cartilage in the porcine patello-femoral joint. The data is presented as 

the mean (n=6-12) ± 95% confidence limits. Data was analysed by one way analysis of variance followed by the 

Tukey test (p<0.05) which revealed a significantly higher equilibrium elastic modulus (*) in location E (patella 

inferior/ lateral) compared to locations A (patella superior medial) and 3 (superior femoral groove). 

 

 

Figure 4-5: Equilibrium elastic modulus of cartilage in the porcine patello-femoral joint 
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Figure 4-6: Thickness of cartilage in the porcine patello-femoral joint.  The data is presented as the mean (n=6-12) 

± 95% confidence limits. Data was analysed by one way analysis of variance followed by the Tukey test (p<0.05).  

It showed that the cartilage in Plug-2 (superior medial femur) was significantly thicker than others except Plug- 5 

(medial femoral condyle), Plug-5 was significantly thicker than others except Plug- 1 (superior lateral femur), 2 

(superior medial femur) and B (superior lateral patella); and Plug-B was significantly thicker than Plug- 6 (inferior 

trochlea).   

 

 

Figure 4-7: Thickness of cartilage in the porcine patello-femoral joint 
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The equilibrium elastic modulus of cartilage plugs from the groove ranged from 0.6 MPa in 

Plug-3 to 1.18 MPa in Plug-5 and in the patella the range was from 0.81 MPa in Plug-A to 

1.64 MPa in Plug-E. The overall equilibrium elastic modulus in the patella (1.28 ± 0.36 MPa) 

was slightly higher than the equilibrium elastic modulus in the groove (0.96 ± 0.14 MPa). 

The mean permeability in the patella (3.16 ± 0.77 x 10-15m4/Ns) was similar to the 

permeability in the groove (2.99 ± 0.57 x 10-15m4/Ns). It ranged from 2.01 x 10-15m4/Ns of 

Plug-6 to 3.85 x 10-15m4/Ns of Plug-3 in the groove and 1.99 x 10-15m4/Ns of Plug-E to 4.08 x 

10-15m4/Ns of Plug-D in the patella.  

In the groove, the highest equilibrium elastic modulus was 1.18 MPa in Plug-5 which was 

from the middle of the medial condyle. Plug-4 from the middle of the lateral condyle had a 

modulus of 1.06 MPa which was also higher compared to the other locations.  The lowest 

modulus was 0.60 MPa for Plug-3 from the superior end of the femoral groove, which was 

significantly lower than the modulus of Plug-E from the inferior end of the lateral patellar 

facet. The equilibrium elastic modulus of Plug-E was also significantly higher compared to 

Plug-A from the superior end of the medial patellar facet.  

The thickness of cartilage in the groove ranged from 1.5 mm in Plug-6 to 3.36 mm in Plug-2 

and in the patella the range was from 1.7 mm in Plug-D to 2.34 mm in Plug-B. Even though 

the overall thickness of cartilage in the groove (2.09 ± 0.33 mm) and the patella (2.06 ± 0.29 

mm) was similar, the variation between the locations within the groove and the patella was 

noticeable in Figure 4.6.  

In the groove, the highest thickness was 3.36 ± 0.53 mm for Plug-2 which was from the 

superior-medial location. Plug-5 from the middle of the medial condyle had a thickness of 

2.8± 0.57 mm which was also larger compared to the rest of the sites.  The thickness of Plug-

2 was significantly higher than every other plug except Plug-5. The thinnest cartilage was 

1.65± 0.47 mm on Plug-4 from the middle of the lateral condyle followed by the second 

thinnest for Plug-3 at 1.84± 0.50 mm from the central ridge on the superior femoral groove. 

The average thickness of the patella was 2.06 mm, with the thickest at 2.34 mm (Plug-B) and 

the thinnest location at 1.7 mm (Plug-D).  

A Tukey test (p< 0.05) was carried out on the equilibrium elastic modulus and thickness of 

the cartilage to determine where the significant differences existed between the sample 

groups. The equilibrium elastic modulus of Plug-E on the patella was siginificantly higher 
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than Plug-A in the patella and Plug-3 in the femoral groove. The Tukey test also showed that 

the thickness of Plug-2 was significantly higher than all other plugs from the patella as well 

as the groove, except Plug-5. Similarly, the thickness of Plug-5 was significantly higher than 

all the other plugs except for Plug-1 and Plug-2 in the femoral groove and Plug-b from the 

patella. However, Plug-B had significantly thicker cartilage compared to Plug-6.  

The overall material properties of the groove and patella samples are presented in Table 

4.2.  The 95% confidence limit shows that the variation in the data was greatest for the 

permeability compared to the other two material properties. There was no significant 

difference (p < 0.05) between the overall material properties in the patella and the patello-

femoral groove.  

Table 4-2: Overall (mean ± 95% CL) material properties of cartilage in the porcine femoral groove and the patella  

 Femoral groove Patella 

Thickness (mm) 2.09 ± 0.33 2.06 ± 0.29 

Equilibrium elastic modulus (MPa) 0.96 ± 0.14 1.28 ± 0.36 

Permeability (x 10-15m4/Ns) 2.99 ± 0.57 3.16 ± 0.77 

The overall thickness of the cartilage in the patello-femoral groove (2.09 ± 0.33 mm) was 

similar to the cartilage thickness in the patella (2.06 ± 0.29 mm). The difference between 

the permeability of the patella (2.99 ± 0.57 x 10-15m4/Ns) and the femoral groove (3.16 ± 

0.77 x 10-15m4/Ns) was below 6%. However, the overall equilibrium elastic modulus of the 

femoral groove (0.96 ± 0.14 MPa) was 25% lower than the patella (1.28 ± 0.36 MPa).  

4.4 Discussion 

This study characterised the material properties of articular cartilage from the porcine PFJ 

by measuring the thickness, permeability and equilibrium elastic modulus of the cartilage. 

The needle probe method was used to measure the thickness of the cartilage and 

indentation tests were carried out to determine the equilibrium elastic modulus and 

permeability.   

Osteochondral plugs were obtained from various locations in the patella and the femur. The 

position for each plug was marked on the PFJ sample before starting the extraction. This 

ensured that the plugs were consistently obtained from the correct location of each sample. 
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Indentation can measure the interstitial fluid flow through the extracellular matrix 

(permeability) and the deformations of this matrix (equilibrium elastic modulus) as a 

response to the pressure applied over time. This method is widely used for the study of 

cartilage biomechanics for various reasons (Lu and Mow, 2008). Firstly, it does not require 

complex techniques to prepare the samples. Secondly, as the method is non-destructive the 

same samples can be used for further analysis such as measuring the thickness of cartilage 

and histology studies. Finally, the biphasic material properties are determined in situ on the 

bone. This provides a more relevant result than any other technique as it closely resembles 

the physiological condition of the tissue.  However, the assumptions in the finite element 

model used to determine the results may not reflect the in situ conditions as such.  Cartilage 

is assumed to have constant permeability, and the cartilage is not homogenous or isotropic. 

Unlike confined or unconfined compression, indentation resembles a closer physiological 

environment which allows correct measurements. Korhonen et al have shown that the 

young’s modulus from confined and unconfined compression could be up to 79% lower 

compared to the indentation method (Korhonen et al., 2002).  This could be due to the 

damage that occurs to the fibrous tissue during sample preparation for the confined and 

unconfined tests.   

During indentation, the load was applied perpendicular to the sample to ensure that the 

stress on the cartilage surface was uniform and it was axially symmetrical within the sample. 

Uneven contact could have led to higher stress concentration which in turn lead to tissue 

damage (Charles Swann, 1988).  

In the current study, a 2.5 mm flat indenter was used, which gave an indenter to plug ratio 

of 1:3.2.  Previous studies (McLure, 2012; Taylor, 2012; Fermor, 2013) conducted in the 

same lab by other authors used a 3 mm hemi-spherical indenter on porcine cartilage from 

the knee and hip. They used a 9 mm plug which gave an indenter to plug ratio of 1:3. They 

reported permeability in the order of e-16m4/Ns which was 10 times lower than that found 

in the current study. The equilibrium elastic modulus was also higher in these studies. These 

differences in elastic modulus and permeability can be due to the geometry of the indenter.  

A hemi-spherical indenter can be beneficial for surfaces that are mostly curved as they 

require a small point of contact to obtain the correct results. With a hemi-spherical indenter 

the contact stress on the cartilage is higher, which resists the interstitial fluid flow to reduce 



 
 

93 | P a g e  
 

permeability. As the osteochondral plugs used in this study provided a considerably flat 

surface for indentation it was possible to use a flat indenter. A flat indenter provided a larger 

contact area between the indenter and the cartilage and hence reduced the contact stress 

at the surface. Higher contact stress can cause higher deformation which would have 

affected the validity of the FE model for this high deformation.  

Equilibrium elastic modulus and permeability are affected by the load experienced by the 

cartilage within the joint. The equilibrium elastic modulus depends on the stress applied to 

the tissue and larger stress produces a higher equilibrium elastic modulus. Permeability 

allows the fluid to transport the nutrients across the tissue. It helps the tissue to withstand 

high compressive loads and maintain its fluid film lubrication, which ultimately reduces 

wear. Permeability decreases through the layers of cartilage across a pressure gradient 

(Landínez-Parra, Garzón-Alvarado and Vanegas-Acosta, 2012).  

Due to the biphasic nature of cartilage, permeability is a primary factor when determining 

its deformation and visco-elastic properties. Previous studies (Lai and Mow, 1980) that have 

investigated the permeability of cartilage have shown a wide range of values on a very low 

scale (in the order of 10-15 to 10-16 m4N/s). The porosity of cartilage is very high, (20-30% 

solid content and 70-80% water content), therefore the low permeability and strong 

resistance to fluid flow is primarily due to the proteoglycan network’s strong affinity for the 

water molecules. GAGs help to resist the interstitial fluid flow to reduce permeability ( 

Maroudas 1968; Athanasiou et al. 1991; Setton et al. 1993). 

Considering the biphasic nature of the cartilage, detecting the contact in the contact 

mechanics of a joint is an important factor for analysis. The boundary conditions of the fluid 

flow are dependent on the contact, which in turn affects the interstitial fluid pressurisation. 

During a creep indentation study, when the impermeable rigid indenter is applying a load 

to the cartilage, fluid flow cannot occur on the surface normal to the cartilage. On the other 

hand, in vivo flow will vary with the pressure difference across the two cartilage surfaces. 

Whether it is an experimental analysis with an indenter or the interface between two 

cartilage surfaces, there is a free flow in area with no contact (Pawaskar, Fisher and Jin, 

2010). 

Previous studies have shown that in the femoral groove the equilibrium elastic modulus is 

lower and the permeability is higher compared to the femoral condyles (Athanasiou et al., 
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1991). In this study, the equilibrium elastic modulus of the femoral groove was 25% lower 

than the patella. A higher equilibrium elastic modulus would demonstrate stiffer cartilage 

which restricts the fluid flow. The patella had a higher equilibrium elastic modulus than the 

groove which means it was much stiffer than the cartilage in the groove. However, rather 

than showing a larger permeability in the groove the values for the patella and groove were 

very similar.  

Greater stiffness leads to lower permeability and vice versa. Therefore, the region with a 

higher equilibrium elastic modulus normally shows lower permeability. Although the overall 

permeability was similar in the groove and the patella, at certain regions this difference was 

observed. Plug-E displayed the highest equilibrium elastic modulus and the lowest 

permeability. Plug-3 showed the lowest equilibrium elastic modulus and it had one of the 

highest levels of permeability as well.  

After the indentation test was carried out, the osteochondral plugs were wrapped in tissue 

drenched with PBS and stored in the fridge for at least 1 hour before commencing the 

thickness measurements. This was carried out to allow the cartilage to recover to its normal 

state as the indentation would have deformed the cartilage (Fermor, 2013).  

The 95% confidence limits showed that the variation of the thickness measurements was 

much smaller compared to the variation of the equilibrium elastic modulus and 

permeability. Therefore, there was a higher variation in the indentation results between 

each sample compared to the thickness measurements between the samples. This may be 

due to the sample itself or the methods used to measure these parameters. The samples 

were freeze-thawed which would have had a greater effect on the equilibrium elastic 

modulus and permeability rather than the thickness. The major effect could have been on 

permeability as there was significant variation between the location for the thickness and 

equilibrium elastic modus but not on permeability.   

The thickness of the cartilage in this study was measured using the needle probe method. 

There are other methods in the literature that are used to measure the thickness of cartilage 

in diarthrodial joints, as detailed in Section 1. 3.5. The needle probe method was compared 

to other methodologies by many researchers in the past (Pawaskar, Fisher and Jin, 2010; 

Abdelgaied Latif, Jin and Wilcox, 2012; McLure, 2012; Nebelung et al., 2016). They applied 



 
 

95 | P a g e  
 

this methodology as it proved to be the most efficient method compared to the others with 

no significant difference in the results.  

Nebelung et al measured the thickness of femoral cartilage using needle probe, MRI and 

histology methods (Nebelung et al., 2016). Although all methods showed a large variation 

across the samples there were no significant differences (p=0.063) between the methods. 

Studies conducted by McLure (2012) in the same lab with the same equipment and 

conditions have also validated the needle probe method against recognized methods such 

as Shadowgraph method and Micro-CT method. This study is discussed in detail in Chapter 

1 Section 1.2.4.3. These studies have shown the accuracy and reliability of the needle probe 

method in producing accurate values of cartilage thickness. 

The Micro-CT method was most accurate due to having the least number of steps in the 

methods as well as fewer calculations and chances for human error.  Although Micro-CT was 

shown to be the most accurate method of measurement as it takes a longer time it was not 

feasible for this study, especially due to the risk of the cartilage drying out.  

In the current study, this needle probe technique was carried out using an Instron. This 

procedure carried out in a mechanical testing machine such as an Instron is a more accurate 

method compared to using a needle probe indenter. This is because the transition from the 

softer cartilage to the bone is much clearer in the Instron tests which make further 

measurement steps more accurate. Also, in a needle probe indenter the weight of the 

indenter has a significant role in characterising the thickness. A lighter weight will under 

estimate the thickness and a heavier indenter could indicate a higher thickness value. 

Abdelgaied Latif et al characterised the cartilage thickness of ovine facets and found that a 

weight of 3.5 N was necessary for that particular study to obtain the desired results 

(Abdelgaied Latif, Jin and Wilcox, 2012).  

In the current study, the thickness measurement method involved piercing the cartilage and 

it was ensured that the holes were made as close to the centre of each plug as possible. This 

was done to avoid any errors caused by dehydration (if any, as it was continuously covered 

in PBS) or even excessive hydrophilic swelling (always wrapped in wet tissue rather than 

immersing in the liquid). Tissue closer to the centre was least likely to be affected by these 

factors.  
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Studies  have shown that the thickness of cartilage decreases with age during skeletal 

maturity (Julkunen et al., 2009; Fermor, 2013; Gannon et al., 2015). There is also an increase 

in equilibrium elastic modulus with maturity which is mainly caused by the change in the 

arrangement of collagen fibres with age. There is evidence of differences in anatomical 

features and material properties between the joints of skeletally mature and young animals 

(Fermor 2013). The growth plate in the bone was clearly visible in the Micro-CT images taken 

from the samples used in this study, which shows that the animal has not reached skeletal 

maturity. In this study, the pigs were ~6 months old and the cartilage thickness was around 

2 mm. 

Cartilage thickness also varies with species. The thickness of the femoral groove in humans 

is ~3.57 mm (Athanasiou et al., 1991), bovine is 1.37-1.52 mm (Athanasiou et al., 1991; 

Fermor, 2013) and porcine is 1.7-2.4 mm (Fermor, 2013). The human cartilage is twice as 

thick compared to the other species. As humans have a bipedal posture unlike pigs and 

cows, there will be a larger load placed on human cartilage compared to the other species. 

This could be one of the reasons for the need of thicker cartilage in human knees.  

The geometry of the joint can affect the characteristics of cartilage as the properties adapt 

to the appropriate functioning of the joint depending on its geometry. More congruent 

joints such as hips have thinner cartilage compared to less congruent joints such as a knee 

(Shepherd and Seedhom, 1999). Studies showed the presence of thinner cartilage in the 

hips compared to knees in porcine, bovine and ovine joints. The thickness in the hips (Taylor, 

2012) were 1.22, 1.32 and 0.52 mm whereas that of the knees (Fermor, 2013)  were 2.23, 

1.28 and 0.71 mm respectively. Human cartilage was 80% thicker in the knees, bovine 

cartilage showed no difference and porcine cartilage was 37% thicker in the knees.   

The structural composition of cartilage varies with depth. This will also contribute to the 

change in material properties. This study was limited to the surface layer of the cartilage 

whereas a number of other studies have shown a variation of properties across the layers 

(Ficat and Maroudas, 1975; Jurvelin, Buschmann and Hunziker, 1997; Treppo et al., 2000; 

Chen et al., 2001; Wang et al., 2002). Boschetti et al. (2004) showed an increase in 

equilibrium elastic modulus and a decrease in permeability with depth. Studies  have shown 

a higher permeability near the joint surface which helps create an improved fluid flow 

(Mccutchen, 1962; Maroudas and Bullough, 1968). However, the restricted fluid flow in the 

deep zone showed a lower permeability. This is supported by the tissue composition where 
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there is a higher collagen content and different orientation of its fibres in the deeper zone. 

Maroudas (1968) showed that this permeability is inversely proportional to the fixed charge 

density of the ECM.  

Tissue composition plays a major role in the mechanical behaviour and functioning of the 

tissue. Ligaments acquire their tensile strength through collagen fibres that are orientated 

in the direction of stress whereas cartilage has cross-linked fibres that can withstand the 

swelling pressure of proteoglycans. Future studies could encompass histology studies to 

investigate the effect of various contents of the tissue and its effect on the properties of the 

cartilage.   

4.5 Conclusion 

This study characterised the porcine patello-femoral cartilage and determined its thickness, 

equilibrium elastic modulus and permeability. There were differences in properties within 

various regions in the patella and the femoral groove showing that the material properties 

can be location dependent. This data can be used to explain the suitability of this animal 

model as the surrogate for the actual human joint in the next chapter.  
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Chapter 5. Characterisation of the human patello-femoral joint 

5.1 Introduction  

The animal model developed during the course of this project aims to provide the basic 

information for future development of an in-vitro model using human cadaveric tissue for 

the pre-clinical testing of tissue substitutions in the PFJ.  The work described in this chapter 

was carried out to characterise the human joint tissues by determining the geometry of the 

human PFJ and the material properties of its cartilage.  The results from the studies of the 

human joint tissues were compared to the results obtained for the porcine and bovine joint 

tissues described in the previous chapter. This chapter compares the suitability of the animal 

model developed for this project.  

5.2 Materials and methods 

5.2.1 Materials 

Six cadaveric human knees, 5 left knees and 1 right knee, were used for this study. The 

tissues were obtained with full ethical approval from Leeds West Research Ethics Committee 

[REC number 11/YH/0025] . The tissues were obtained from 4 female and 2 male donors 

with an age range of 52-85, with an average age of 64.5 years.  

5.2.2 Dissection of human PFJ   

The entire dissection process was carried out in a class II safety cabinet and any instruments 

in contact with the human tissue were specifically assigned for human tissue use only. The 

frozen samples were all defrosted overnight in a 4ᵒC refrigerator before dissection.  

 A human knee with the soft tissue and patella removed is shown in Figure 5.1. The patella 

was separated from the femur using a scalpel. All tissues around the PFJ were removed. 

Observations such as the viscosity of synovial fluid, quality of the bone during cutting and 

the colour and condition of the cartilage were made for each sample during the dissection 

process and were recorded.  
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Figure 5-1: Human knee with the soft tissues and patella removed 

5.2.3 Determining the geometry of human PFJ   

The dimensions of the patella and patello-femoral groove were measured using a Vernier 

Caliper as described in Section 3.2.1. The area of the patella and the area of cartilage wear 

in the patello-femoral joint were measured using the flexible film method as described in 

Chapter 2 Section 2.5.   

Dimensions of the patello-femoral groove and patella are illustrated in Figure 5.2. In the 

groove, W (g) is the width of the groove from one condyle to the other and L (m), L (t), L (l) are 

the lengths of the medial condyle, trochlea and lateral condyle respectively. These were 

determined with respect to the red line illustrated in Figure 5.2 which marks the beginning 

of the patello femoral groove from the main femoral condyles. In the patella, W (p) is the 

width measured from the most medial to the most lateral aspect of the patella of on its 

widest side and L(p) is the length of the patella covered in cartilage from the apex to base. 
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Figure 5-2: Dimensions of the left human patello-femoral groove and patella (n=6) 

5.2.4 Obtaining the osteochondral plugs   

The femur was held in a vice placed inside a class II safety cabinet. The entire osteochondral 

plug extraction process was carried out inside the safety cabinet. The patella was cemented 

into a metal tray using PMMA cement in order to secure it in the vice inside the cabinet for 

extracting the plugs. The plugs from the femoral groove were extracted on the same day as 

dissection. 

Osteochondral plugs (Ø=8.5 mm) were extracted from 3 locations in the patello-femoral 

region and 2 locations in the patella. The location of plugs from the femur and patella is 

shown in Figure 5.3. The corresponding positions of the locations are explained in Table 5.1. 

Each plug was wrapped in a piece of tissue drenched with PBS and frozen in a labelled 

container at -20°C and was tested within a week.   
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Figure 5-3: Location of osteochondral plugs from the left human PFJ (n=6) 

Table 5-1: Table describing the location of osteochondral plugs taken from the human patello-femoral joint 

Plug Position 

F1 Patello-femoral groove 

F2 Medial patello-femoral condyle 

F3 Lateral  patello-femoral condyle 

Pa Lateral patella facet 

Pb Medial patella facet 

5.2.5 Determination of material properties of the cartilage 

The material properties of the human PFJ cartilage were determined using the 

osteochondral plugs. The thickness, equilibrium elastic modulus and permeability of the 

cartilage were measured as described in Chapter 4 Section 4.2. All instruments and 

equipment in direct contact with the human tissue was either made separately for the 

purpose of use with human tissue or autoclaved to be used for the purpose.   
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5.3 Results 

5.3.1 Observations during dissection  

The six human tissue samples used in this study were clearly very different from each other; 

in terms of age, gender, size and condition of the bone and cartilage.  

The condition of the bone (bone quality) and the synovial fluid (viscosity and colour) was 

determined purely based on the visual observation during dissection and the ease of 

dissection. The cartilage was graded according to the ICRS grading system described in 

Chapter 1 Section 1.3.1.2 as shown in Figure 5.4. The area of wear in Grade 4 cartilage was 

determined using the cling film method described in Chapter 2 Section 2.5.   

 

Figure 5-4: ICRS grading of cartilage wear 

The visual inspection of the 6 knees revealed variation in appearance as shown in Table 5.2. 

Sample G10-14 was characteristically white and glossy in appearance whereas the other 5 

knees had a yellow discolouration typically seen in age related changes. This can be due to 

the presence of advanced glycation end products (AGEs) seen in aged tissues. AGEs can 

induce collagen crosslinking which affects the mechanical properties of the cartilage by 

increasing the equilibrium elastic modulus (Fermor, 2013).  

Sample G10-14 from a 52 year old female, appeared to have a healthy joint with clear 

synovial fluid and white glossy cartilage surface. However, sample G01-15 from an 85 year 

old male had visible cartilage damage. The femoral groove had a full thickness lesion of 388 

mm2 and the patella had a similar Grade 4 wear area of 561 mm2. The synovial fluid was 

yellowish in colour and was observed to be less viscous compared to the fluid from sample 

G10-14.  

During dissection a difference in bone quality was also observed.  Compared to these human 

joints, the porcine bones were relatively easy to cut through. The apparent softness in the 

porcine joints highlighted the skeletal immaturity of the tissues. Although the human joints 
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were skeletally mature and expected to have relatively harder bones, there were some 

exceptions. The three eldest joints were relatively easier to cut through as the bone was dry 

and crumbly. This could have been due to osteoporosis. The other two joints were easier to 

cut through due to their softer bone that released a large amount of fluid during the 

dissection. Sample G10-14 was relatively hard compared to all the others. The bone was not 

dry, not soft, with no crumbling and there was no significant fluid release compared to the 

others. This joint had a clear and viscous synovial fluid and the cartilage seemed almost 

bluish white. This was the healthiest of all the joints.  

  



 
 

104 | P a g e  
 

Table 5-2: Observation made on the 6 human samples 

Donor Sample Observations 

G01-12 

  
 

 Age: 64 

 Gender: Female 

 Left knee 

 ICRS grading (PFJ): Grade 1 

 Bone quality: Very dense 

 Synovial fluid: Highly 

viscous, light yellow colour 

G01-15  

 

 Age: 85 

 Gender: Male 

 Left knee 

 ICRS grading (PFJ): Grade 4 

 Wear area (femoral 

groove) = 388 mm2 

 Wear area (patella) 

= 561 mm2 

 Bone quality: Very soft 

 Synovial fluid: Less viscous, 

dark yellow colour 

G02-14 

  

 Age: 70 

 Gender: Female 

 Left knee 

 ICRS grading (femoral 

groove): Grade 1 

 ICRS grading (patella): 

Grade 3 

 Bone quality: Very porous, 

dry and crumbling 

 Synovial fluid: Highly 

viscous, light yellow colour 
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G04-13 

  

 Age: 62 

 Gender: Male 

 Left knee 

 ICRS grading (femoral 

groove): Grade 1 

 ICRS grading (patella): 

Grade 2 

 Bone quality: Very porous, 

dry and crumbling 

 Synovial fluid: Less viscous, 

yellow colour 

G10-14 

  
 

 Age: 52 

 Gender: Female 

 Left knee 

 ICRS grading (PFJ): Grade 0 

 Bone quality: Normal 

 Synovial fluid: Normal, 

almost clear 

G26-12 

  

 Age: 54  

 Gender: Female 

 Right knee 

 ICRS grading (femoral 

groove): Grade 3 

 ICRS grading (patella): 

Grade 4 

 Bone quality: Very soft 

 Synovial fluid: Less viscous 
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5.3.2 Size of the human patello-femoral joint 

The size of the human patella femoral groove and patella samples is shown in Table 5.3. W 

(g) is the width of the groove from one condyle to the other and L (m), L (t) and L (l) are the lengths 

of the medial condyle, trochlea and lateral condyle respectively. W (p) is the width of the 

patella on its widest side and L(p) is the length from the apex to base. 

Table 5-3: Size (mm) of the human patella femoral samples 

Sample W(g) L(m) L(t) L(l) W(p) L(p) 

G01/12 35.09 30.13 32.91 35.42 23.75 24.82 

G26/12 46.52 34.815 40.01 44.335 31.84 27.66 

G02/14 47.24 42.47 46.53 55.62 30.08 35.01 

G04/13 36.34 29.63 33.29 34.26 24.43 24.9 

G10/14 54.97 36.38 42.17 50.16 37.02 28.75 

G01/15 36.56 30.44 35.52 37.16 24.49 24.3 

 

5.3.3 Material properties of the human PFJ cartilage 

The material properties of the cartilage in the groove and patella of the 6 human samples 

were determined. The individual thickness, equilibrium elastic modulus and permeability of 

each location of plug is shown in Tables 5.4- 5.6.  

As discussed in Section 5.3.1, there was a large varaiation in the condition of sample availabe 

for this study. They had different gender, age and pathological conditions. Therefore, it is 

not ideal to take the mean of all samples to determine the average material property of the 

region. The values obatined must be considered individually as each sample will 

demeonstrate different material properties depending on its conditions. Therefore, it will 

be inconclusive to determine which factors have contributed to the certain material 

properties of the tissue.  

In general, tissue with the lowest elastic modulus showed the largest permeability. This 

pattern was clear in all plugs from sample G10/14 which was the most healthiest samples 

out of the six. The poor bone quality of sample G02/14 and G04/13 made it difficult to obtain 

suitable sample height for indentation testing.   
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Table 5-4: Thickness of cartilage in each sample 

 F1 F2 F3 Pa Pb 

G01/12 2.05 1.78 2.70 2.55 2.50 

G26/12 3.34 2.62 1.97 1.80 4.05 

G02/14 2.23 1.62 2.02 4.10 5.60 

G04/13 2.94 2.20 2.05 2.51 3.07 

G10/14 1.52 2.72 3.18 2.50 3.05 

G01/15 2.63 3.02 2.88 3.04 2.90 

Table 5-4: Elastic modulus of cartilage in each sample 

 F1 F2 F3 Pa Pb 

G01/12 1.25 x 0.58 0.85 0.86 

G26/12 1.42 1.40 0.55 0.42 x 

G02/14 1.05 0.73 x 1.53 x 

G04/13 x 0.30 0.24 x 0.58 

G10/14 0.35 0.21 0.60 0.39 0.28 

G01/15 1.81 2.22 0.19 9/491.65 x 

Table 5-6:- Permeability of cartilage in each sample 

 F1 F2 F3 Pa Pb 

G01/12 2.50 x 2.32 3.22 3.02 

G26/12 1.21 1.20 3.15 2.19 x 

G02/14 5.29 1.24 x 2.06 x 

G04/13 x 2.73 1.52 x 9.65 

G10/14 3.27 5.43 8.81 5.87 7.54 

G01/15 5.73 1.82 2.14 1.01 x 
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5.4 Discussion 

The aim of the study was to characterise the human PFJ in order to validate the animal 

model for the pre-clinical testing of tissue substitutions. By comparing the results from the 

animal joints obtained in Chapter 3 and 4, this chapter aimed to determine the major 

similarities and differences between the porcine model and the human joint tissue.  

The dimensions of the patella and the femoral groove of 6 fresh-frozen cadaveric joints were 

measured. The cartilage was characterised by measuring its thickness, equilibrium elastic 

modus and permeability.  

Geometry of patello-femoral joints 

The sizes of the bovine and porcine PFJ were determined in Chapter 3. These were 

compared to the size of the human PFJ in this chapter.  

The size of the bovine, porcine and human patella is compared in Figure 5.50. The porcine 

patella is 32% narrower than human whereas the bovine is 22% wider than human. The 

bovine patella length is twice the size of the human patella but the porcine patella is only 

15% longer than the human patella. The porcine patella is 33% thicker but the bovine patella 

is almost 2.5 times the height of the human patella.  

The size of the bovine, porcine and human patello-femoral groove is compared in Figure 5.6. 

The porcine groove is 28% narrower than human whereas the bovine is 48% wider than 

human. The length of the bovine groove was significantly larger than the human grooves. 

The bovine medial groove is almost 3.5 times longer and the lateral groove is almost twice 

as long compared to the human grooves. However, the porcine lateral groove is almost the 

same length as the human and the human medial groove is just 32% smaller than the 

porcine medial groove.    

Results showed that the bovine joints were significantly larger than the porcine and human 

joints. Although the porcine joints were slightly smaller than the human joints, the 

difference was not as large as the difference between the bovine and human joints. This 

was one of the reasons the porcine joints were chosen for the animal model as they were 

much closer in size to the human joints compared to bovine and hence more appropriate.  
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Figure 5-5: The sizes of bovine, porcine and human patella from this study 

 

Figure 5-6: The sizes of bovine, porcine and human patello-femoral groove from this study 

The size of human patella determined from this study was compared to other studies in the 

literature as shown in Figure 5.7. Overall, the results of the present study were consistent 

with the previous studies with a larger sample size (Baldwin and House, 2005; Osterhoff et 

al., 2011).  
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The length of the patella from Osterhoff et al. (2011) was larger than the other two. This 

was because the current length and the length from Baldwin & House (2005) were both 

measured from the cartilage surface nearer to the apex to cartilage surface nearer to the 

base. However, Osterhoff et al. (2011) measured the length from the patella bone rather 

than the cartilage.  

 

Figure 5-7: Dimensions of the human patella from this study (n=6) compared to other studies from the literature. 
Baldwin (n=92), Osterhoff (n=24) 

There were many common features of the human PFJs observed in the current study. The 

femoral groove had a slight concavity on the medio-lateral direction that became more 

distinct towards the intercondylar notch. The ridge between the odd facet and the medial 

facet was more distinct in some patellae than the others. This was consistent with the 

literature as  there were more  patterns of anatomical features recorded in previous studies 

(Kwak et al., 1997). Hence the various types of patello-femoral anatomies could affect the 

contact mechanics and wear study results.  

According to the literature, the wear of the lateral patellar facet is the most prevalent. This 

may suggest that the lateral facet is mostly overloaded compared to the other facets 

(Fulkerson and Hungerford, 1990; Arendt, Fithian and Cohen, 2002; Saleh et al., 2005). The 

lateral facet is larger than the medial facet and the patella is controlled by the lateral 

projection in the lateral patello-femoral condyles. In certain conditions, however where the 

pull of the ligament is weak, the patella could slip off the groove despite this projection. This 
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dislocation could also happen in joints with healthy ligaments if this lateral projection is not 

prominent enough for the patella to track the groove.  

The lateral retropatellar surface in both human and bovine samples was larger than the 

medial side. The lateral femoral condyle of the femoral groove also showed a slight 

projection. These features contribute to controlling the lateral dislocation of the patella. 

This difference in the feature of the human trochlea was also observed by Osterhoff et al 

who compared human joints to ovine joints.  However, this feature was not prominent in 

the porcine samples. This could be due to the skeletal immaturity of the joints and could 

develop further with age.   

Pigs and cows are unguligrade (walk on their toes) quadrupeds (walk on four legs), which 

mean their knees experience different biomechanics compared to human knees. This could 

be why mature porcine, ovine and bovine grooves are more defined and deeper than human 

knees. Their patellae would need betţer positioning than the human patella that can glide 

over a shallower trochlea without dislocation (Osterhoff et al., 2011).  

Material properties of patello-femoral cartilage 

The material properties of the human PFJ cartilage were characterised by measuring the 

thickness, equilibrium elastic modulus and permeability of the cartilage from the medial and 

lateral facet of the patella, medial and lateral condyles of the femoral groove and the 

trochlea. The overall material properties of the human cartilage were compared to the 

porcine cartilage discussed in Chapter 4 as shown in Figure 5.8.  
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Figure 5-8: The overall material properties of the human PFJ and porcine PFJ 

The porcine cartilage was 23% thinner and 21% less permeable than human cartilage. 

However, human cartilage was 30% less stiff compared to porcine cartilage. Although the 

same techniques and conditions were used to characterise both porcine and human 

cartilage, the 95% confidence limits on the human results were larger compared to porcine.  

This inconsistency in the results was almost certainly due to the type of samples available. 

The human samples were from adults of different age, gender and pathological condition 

whereas the porcine samples were obtained from 6 month old pigs with visible healthy 

cartilage.    

The properties on opposing cartilage surfaces were shown to have differences. Athanasiou 

et al. (1991) demonstrated lower equilibrium elastic modulus and higher permeability in the 

human femoral groove compared to the condyles. In the current study, the equilibrium 

elastic modulus of the femoral groove cartilage was lower than the patella cartilage and the 

permeability of the patella cartilage was lower than the cartilage from the groove.  

Like any tissue, articular cartilage deteriorates with age. Cartilage has been found to become 

stiffer and less permeable as the GAG content decreases and collagen content increases 

with age. Although the porosity of cartilage is very high, the proteoglycan network’s strong 

affinity for water molecules and the ability of the GAGs present in the proteoglycan network 

resist the interstitial fluid flow to reduce the permeability. Reduction in GAG concentration 
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causes higher permeability which eventually causes the matrix to “wash out” into the joint 

cavity and hence, decreasing the overall stiffness  (Ateshian et al., 1997; Kwak et al., 1997; 

Wang, Hung and Mow, 2001). This could be one reason why the porcine cartilage had a 

higher stiffness and lower permeability compared to the human cartilage.  

The cartilage thickness varied across the species, with the human patella having the thickest 

cartilage. In the current study, the human patella cartilage was 51% thicker and the femoral 

groove cartilage was 16% thicker compared to the porcine cartilage. Several studies in the 

literature also support this species difference. The thickness of the femoral groove cartilage 

in humans is ~3.57 mm (Athanasiou et al., 1991), in bovine it is 1.37-1.52 mm (Athanasiou 

et al., 1991; Fermor, 2013) and in porcine it is 1.7-2.4 mm (Fermor, 2013). This could be due 

to various reasons such as the weight of the animal and the loading in the joint. Athanasiou 

et al. (1991) reported a greater thickness than the femoral groove cartilage thickness found 

in the present study. This could be due to several reasons such as the sample size, age of 

donors and the conditions of the cartilage. Athanasiou et al. (1991) analysed 4 healthy 

cadaveric knees with an average age of 34 whereas the current study analysed 6 knees from 

an average age of 64.5 with varying pathology.   

Studies have shown an increase in cartilage thickness with body weight (Stockwell, 1971; 

Shepherd and Seedhom, 1999). This could explain why the cartilage is thicker in males than 

in females as males are generally heavier than females (Draper et al., 2006). As humans have 

a bipedal posture unlike pigs and cows, there will be a larger load placed on human cartilage 

compared to the other species. These animals are unguligrade quadrupeds that walk on the 

tips of their toes. In addition, their knees are not capable of full extension (Osterhoff et al., 

2011).  

The thickness of cartilage also varies with the joint which is related to the congruence of a 

joint. Congruent joints such as hips have thinner cartilage compared to incongruent joints 

such as the knee. Studies have reported a much lower thickness value in the hips compared 

to knees in human, porcine, bovine and ovine joints (Shepherd and Seedhom, 1999; Taylor, 

2012; Fermor, 2013). The thickness of the cartilage in the hips was reported as 2.40, 1.22, 

1.32 and 0.52 mm whereas that of the knees was 2.59, 2.23, 1.28 and 0.71 mm respectively.  

The location in the joint also has an effect. In the current study, the medial patello-femoral 

condyle cartilage was the thinnest (2.33 ± 0.58 mm) and the thickest cartilage was in the 

medial patellar facet (3.5± 1.27 mm).  
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The present study was limited to the material measured from the surface layer of the 

cartilage. The structure and composition vary through the depth of the articular cartilage 

and hence the material properties.  A number of experimental studies have shown this 

variation in different species including human (Chen et al. 2001; Jurvelin et al. 1997; Treppo 

et al. 2000; Wang et al. 2002; Maroudas 1968; Gannon et al. 2015).  

Boschetti et al. (2004) measured the permeability and equilibrium elastic modulus of 

cartilage from human cadaveric hip joints. Three consecutive layers of cartilage obtained 

from the osteochondral plugs were tested. The results showed that the equilibrium elastic 

modulus increased with depth whereas the permeability decreased with depth. A similar 

study conducted by Chen et al. (2001) showed  the same trend in the material properties 

with depth. However, in the Boschetti et al study the permeability was determined through 

confined compression and equilibrium elastic modulus through unconfined compression.  

Overall discussion 

The current study was carried out to compare the species and find the appropriate model 

for the simulator study. Porcine joints were chosen as the animal model for the study as 

they were much closer in size to humans compared to bovine joints. The material properties 

of the porcine joints were 70% closer to the human cartilage.  

Tissue composition plays a major role in the mechanical behaviour and functioning of the 

tissue. The joints used in the current study were from different donors with potentially 

different pathological conditions. In order to analyse the cartilage in each joint, 

measurement of biomechanical properties of the cartilage is not sufficient. To understand 

the disease process, it is essential to determine the biochemical composition of the tissue 

as well as its material properties. Therefore, to explain the determined mechanical 

properties, future studies should also encompass histology studies to investigate the effect 

of various contents of the tissue.   

As the methods for both porcine and human cartilage were the same for the current study 

it is still valid for comparison. Therefore, the variation in properties across the layers of 

cartilage might not have a huge impact. The animal model will be created for short term 

wear study purposes. The histology studies will be useful in long term study where the 

composition of the tissue might change during the test.  



 
 

115 | P a g e  
 

Determining the geometry of the PFJ can contribute to the understanding of the 

biomechanics of the joint. The geometry of the PFJ investigated in this chapter and the 

previous chapter was limited to the length, width and height dimensions. Other 

measurements such as the sulcus angle, trochlea inclination, patellar tilt and displacement 

were not determined. These parameters can provide vital information regarding any 

abnormalities that could have influenced the results.  

5.5 Conclusion 

The geometry of the human PFJ and the material properties of its cartilage were 

determined. It was concluded that the geometry of the joint and its cartilage material 

properties varied with species. However, the porcine joints were closer in size to the human 

joints compared to the bovine joints. The material properties of porcine joints also showed 

strong similarities to the properties of the cartilage in the human joints. Therefore, the 

porcine joint is acceptable as an animal model for this study.  
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Chapter 6. Contact point study 

6.1 Introduction  

It was important to determine the position of the patella with respect to the femur as it was 

required to understand the starting position of the patella during the gait cycle. The starting 

point can be defined as the position of the patella with respect to the femur at the start of 

the gait cycle at full extension. 

In similar in-vitro studies carried out on a tibio-femoral joint, the position of the tibia with 

respect to the femur was secured by placing a steel brace to fix the tibia and femur while 

the ligaments and tendons were holding the two bones in place (Liu et al., 2015). With the 

patella-femoral joint (PFJ), however a more sophisticated method was required as the 

patella slipped while the braces were being fixed. The patella was also difficult to locate 

within an intact joint due to the large amount of associated tissue coverage.  

Various methods were attempted and proved unsuccessful before the approach outlined 

below was taken. A nail was hammered through the patella while holding the whole leg at 

a certain angle (full extension).  This was later carried out using a drill instead of the nail. 

The drill bit was left in the sample and the soft tissue around it was removed in order to 

fasten a set of braces to secure the patella in this position. This method was unsuccessful 

due to the following reasons. It required several pairs of hands since the leg needed to be 

held at a certain angle during the drilling. The process of holding the leg at a fixed angle was 

also not repeatable. The patella moved while drilling and the braces would not have held 

the patella in the correct position with respect to the desired angle.  

The aim of the study discussed in this chapter was to determine the position of the patella 

with respect to the femur at 20 and 40 degrees in order to identify the neutral position of 

the sample set up in the simulator study. In the experimental model, the porcine leg was 

secured in a custom made fixture capable of holding the leg at the desired angle and the 

whole structure was frozen. A theoretical model was also built using SolidWorks to support 

this experimental data and to assist the analysis of the data.  
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6.2 Materials and methods 

Materials included 6 porcine PFJs, Microset 101RF replicating fluid and the bespoke fixture 

used to hold the legs whilst freezing at a certain angle.  

6.2.1 Determination of contact point 

A bespoke fixture was designed and manufactured for this project to carry out the freeze-

drill method. The relative position of the patella with respect to the femur was estimated 

using this method. . A labelled image of the fixture with the sample is shown in Figure 6.1. 

The fixture was designed to hold the porcine leg at 0, 20, 40 and 60⁰ angles in order to 

determine the position of the patella with respect to the femoral groove. The design 

required the fixture to be capable of freezing the sample at any of these angles and 

therefore all the components were manufactured using stainless steel.  

 

Figure 6-1: Fixture holding the porcine leg at 20 degree angle 

The fixture consisted of two long rectangular plates with a small metal bar to which a 50 

mm long rod was connected which had a diameter of 6 mm. The rectangular plates were 

held together by a screw that allowed it to move as a hinge joint. The angle between the 

plates was adjusted using two thin metal rods connected to the sides of the plates. These 

plates could be fixed at an angle of 0, 20, 40 or 60 degrees depending on the test. The legs 

were fixed by placing the metal rods through the bone canal which were connected to the 

two metal plates.  

The leg was manoeuvred to locate the patella and was marked using a permanent marker 

pen. The ankle and femur were cut using a saw to expose the bone marrow. Two long thin 
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rods were inserted through either end of the bone through the marrow and the specimen 

was placed on top of the fixture. This ensured that the patella was assembled on top of the 

hinge part of the fixture. The two rods were fixed on the rectangular bars at the end of the 

fixtures. Plastic tape was wrapped around the specimen to ensure that it was secure while 

the whole assembly was placed inside a freezer. It was left for a minimum of 20 hrs freezing 

at -20⁰ C.  

While still frozen, a scalpel was used to pierce through the marking of the patella to locate 

the superior and inferior ends of the patella. A hand drill was used to drill two holes through 

the patella such that each hole lay at opposite ends. This identified the position of the patella 

on the femur after dissection. Once the drill markings were completed, the tissue was left 

to thaw for up to 4hrs before dissection. Patello-femoral dissection was carried out as 

described in Chapter 3 Section 3.2.1. Once the patella was separated from the femur, a 

photograph of the articular surface of the patella and femur was taken with a ruler for 

reference.  

This study was carried out at 20⁰ and 40⁰ using 6 replicates for each. The 20⁰ angle was 

chosen as this was considered as the neutral position for the porcine joints at full extension.  

The neutral position is the angle at the beginning of the gait cycle and unguligrade animals 

such as pigs have been shown to have a starting angle of 20 degrees (Liu et al., 2015). The 

40 degree angle was also tested to trace the kinematics of the patella. The PFJ gait cycle 

applied in the simulator study did not exceed 40 degrees flexion with respect to the femur 

and therefore angles beyond that were not investigated.  

The outline of the patella and its holes were traced on the image and this was super imposed 

on the image of the femur. This would determine the position of the patella on the femur 

at that particular angle where the holes were created. An example of this process is shown 

in Figure 6.2.  
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Figure 6-2: Tracing the outline of the patella and placing it on the femur with respect to the drill holes made as a 

guide. Left: Position of patella at 20 degrees, Right: Position at 40 degrees of knee flexion 

6.2.2 Estimating the contact point using the Microset method 

The contact point from the freeze drill method was betţer visualised using the Microset 

101RF (replicating fluid) as a medium. Microset was applied to the same samples after the 

freeze-drill method. This made it easier to visualise the relative position of the patella on 

the femur. 

The Microset silicon rubber replica black fluid was coated over the articular surface of the 

patella. The transparent part of the rubber replica was not allowed to mix with the black 

component of the mixture as this would have set the liquid rubber to the solid form. The 

patella was then carefully placed over the femoral groove such that the holes on the patella 

and femur made during the freeze-drill method were perfectly aligned. A nail was used to 

guide through the hole on the patella to reach the hole on the femur to ensure that the 

patella was placed on the correct position.  

Once the position had been determined using the nail, the patella coated with the Microset 

was pressed against the femur, using hand pressure alone. When the patella was removed 

the Microset impression on the patello-femoral region showed the contact point at the 

specific angle at which the joint was frozen. An example of an image captured after the 

Microset impression is shown in Figure 6.3. 
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Figure 6-3: Left: Microset applied to the patella cartilage and placed over the femur using the drill holes as guide. 

Right: The Microset impression from the patella made on the femur representing the contact point. 

6.2.3 Theoretical model 

6.2.3.1 Literature data 

A representation of the data from the literature that describes the dynamic interactions 

within the joint is shown in Figure 6.4, 6.5 and 6.6.  This study was conducted to provide 

data to create the theoretical model described in Section 6.2.3.2 

The model of a right knee created by Hermann et al representing the dynamics of the patella 

is shown in Figure 6.4. The patella travels from the posterior to the inferior of the groove 

during knee flexion with respect to the femur (Herrmann et al., 2012, 2013).  

 

Figure 6-4: Dynamics of the patella in a right knee (Herrmann et al., 2012). The figure illustrates how the patella 

travels on the femur from 0-120 degrees of flexion  
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The 3D anatomical representation displaying the contact mechanics in the knee joints at 

various degrees of flexion is shown in Figure 6.5. The geometrical data and the joint 

dynamics needed to create this computational model were obtained from the in-vivo 

experimental work carried out by the authors. MRI images of healthy knee joints at normal 

loading conditions were taken at 0-50 degrees of flexion. The contact mechanics pattern in 

the model showed close connections with their in-vivo experimental work. This was also 

consistent with the literature (Akbar et al., 2012).  

 

Figure 6-5: 3D anatomical model of the femoral groove  and patella contact mechanics (Akbar et al., 2012). The 

highlighted regions shows the contact between the patella and femur at 0-50 degrees of flexion.  

A recent literature review was carried out on the biomechanics of the PFJ (Kittl, Schmeling 

and Amis, 2015). The contact data obtained from the literature survey is summarised by the 

image shown Figure 6.6. Kittil et al concluded that the contact area in the patella moves 



 
 

122 | P a g e  
 

from distal to proximal, whereas that of the groove moves against the patella from proximal 

to distal. At full extension the patella is rarely in touch with the femur. However, at 135⁰ 

there is a two point contact in the femoral groove which articulates against the odd facets 

of the patella.  

 

Figure 6-6: Contact area between the patella and femoral groove (Kittl, Schmeling and Amis, 2015). The marked 

regions shows the contact between the patella and femur at 0-135 degrees of flexion.  

6.2.3.2 Creation of the model in SolidWorks 

A simple model of the patella and femoral groove was created in SolidWorks using the 

dimensions obtained from the porcine samples in Chapter 3 and the position of the patella 

described in the literature (Akbar et al., 2012; Herrmann et al., 2012; Kittl, Schmeling and 

Amis, 2015) described in Section 6.2.3.1. 

The model of the patella consisted of an oval patella with a ridge in the middle which created 

equal sized medial and lateral facets. The femoral component was modelled with condyles 

of constant radius. The lateral femoral condyle was made larger compared to the medial 

condyle. To maintain simplicity, the condyles were made parallel to each other without the 

natural lateral angularity of the trochlea.  

The patella was allowed to tilt and move in S/I direction. The femur was fixed at its centre 

of rotation and was allowed to rotate in flexion and extension. The aim was to find the 

contact point at the starting position of the gait cycle. Therefore, the position was replicated 

for the 20 degrees of flexion.  
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The patella and femur were aligned according to the literature data gathered previously. 

According to the kinematics of the patella shown by Herrmann et al. (2012), the patella sits 

at the superior end of the femur at around 20⁰. So the femur was rotated to 20⁰ and the 

patella was positioned to align it according to the position shown by Herrmann et al. (2012).  

6.3 Results  

6.3.1 Determination of contact point 

The results for the determination of contact point using the freeze-drill method are 

presented in Figure 6.7 and 6.8. The outer marking of the patella traced on the femur shows 

the relative position of the patella with respect to the femur when the knee is flexed at 20 

and 40 degrees respectively.  

The patella was initially positioned at the superior end of the femur and closer to the lateral 

side of the condyles when the knee was flexed at 20 degrees. Increasing the angle of flexion 

to 40 degrees moved the patella towards the medial side of the condyles. The patella also 

travelled down the groove as the flexion increased and it also moved downwards from the 

superior end towards the middle of the groove.  
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Figure 6-7: Position of patella at 20 degrees knee flexion for the 6 samples. The outer marking of the patella traced on the femur shows the relative position of the patella with 
respect to the femur when the knee is flexed at 20 degrees 
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Figure 6-8: Position of patella at 40 degrees knee flexion for the 6 samples. The outer marking of the patella traced on the femur shows the relative position of the patella with 
respect to the femur when the knee is flexed at 40 degrees 

g 
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6.3.2 Microset method 

The drilled position from the freeze-drill method was kept during the Microset method by 

using the drilled holes as guides. During this step it was obserevd that the the superior end 

of the femur was in contact with the inferior to middle portion of the patella. From the 

Microset markings, it was clear to see where this middle position was. The results from the 

Microset method are collated in Figure 6.9.   

  

Figure 6-9: The contact point between the patella and femur obtained from the Microset study.  Left – contact 
points on the patella and femur at 20 degrees. Right- contact at 40 degrees  

This method made it easier to depict the contact point showing the main areas of contacts 

in the femur and patella. In the groove, the contact point lay on the superior end of the 

femur and it was also noticed that there was always a contact on the lateral side of the 

femur. In the patella, the contact point was mostly towards the middle of the patella in the 

medial/lateral as well as superior/inferior direction.  

Although this method made the contact positions clearer, the Microset markings were not 

good enough to calculate the contact area. However, this method did help to position the 

patella from the freeze-drill results as it enabled visualisation  of the contact on the patella 

and also the femur. 
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6.3.3 Theoretical model 

The SolidWorks model assembly was created to support and present the experimental data 

in determining the contact points. The side view (Medial/ Lateral) and front view (Superior/ 

Inferior) of the model for a right knee. The contact points at 20 degree angle are shown in 

red markings in Figure 6.10 and 6.11. The computational model using SolidWorks showed 

contact points at the superior ends of the femoral condyles and the inferior of the patella. 

The contact points from the Akbar et al and Kittl et al studies lay on the groove that follows 

the lateral tilt of the femoral groove. This was replicated on the 20 degree SolidWorks as 

shown in the Figures below, which reflected the contact point obtained from the 

experimental data. 

 

Figure 6-10: Left- Medial View of the SolidWorks model representing the sample set up at the starting point in the 

simulator, Right – Lateral view of the SolidWorks model at starting point 
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Figure 6-11: Left- Anterior View of the SolidWorks model, Right – Posterior view of the SolidWorks model 

showing the whole articular surface of the femoral groove 

6.4 Discussion 

It was important to understand the contact mechanics of the joint to better interpret the 

tribology. The contact point between the patella and femur was therefore a very important 

factor. It was also necessary to fix the samples in the neutral position when testing for 

contact mechanics and wear studies using the simulator.  The aim of the study was to 

determine the contact point between the femur and patella to establish the neutral 

position. 

An experimental model was first created which was then validated using a theoretical model 

created in SolidWorks using the data from the literature and results from Chapter 3. 

The results from the experiments showed that the patella followed the femoral groove. At 

20° the patella was placed higher and lateral compared to when it was at 40°. At the higher 

flexion it followed the groove downwards. The contact point shown in the Microset results 

also agreed with this finding and made this conclusion clearer.  

It is worth noting that the contact area marked with the Microset was mostly situated in the 

central region for the patella and proximal for the femur. This showed that at lower angles 
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of flexion of 20-40° the central region of the patella is in contact with the proximal region of 

the femoral groove.  

The theoretical model of the patella and femur was created in SolidWorks. The model was 

made from the dimensions obtained from the study in Chapter 3 and the patella was 

positioned using the data from the Hermann et al (2012) study. The contact point created 

through this model was identical to the data shown in Akbar et al (2012) and Kittl et al (2015) 

study. This matched with the results obtained from the experimental results.   

The experimental results were similar to the theoretical model created from the literature 

data. It was comparable to other researchers’ data from the literature. The kinematics of 

the patella recorded in the literature model agreed with the motion and positions replicated 

from the experimental model discussed in this chapter (Herrmann et al., 2012, 2013). The 

positions of the contact points relating to these kinematics also showed similarities (Akbar 

et al., 2012; Herrmann et al., 2012; Kittl, Schmeling and Amis, 2015).  

However, there were a few challenges that need to be considered. Under physiological 

condition, the load bearing leg will exert a higher force. In this situation, although the flexion 

angle was replicated, the loads on the leg would have been the same as when it would be 

in supine position at various angles.  

The pressure applied during the Microset study to mark the contact point was carried out 

manually and hence would not have been consistent. Using a marker that does not spread 

with contact will give a better indication of the contact point and could even help to obtain 

quantitative data.  

The process of removing the hips and ankle from the leg to secure the joint in the fixture 

could have damaged the soft tissues. However, the impact of this could not have caused any 

variations in the results as the study was focussed on low degrees of flexion.  

The quadriceps muscles play a key role in stabilising the patella and preventing dislocation. 

They are only engaged in higher degrees of flexion where they pull the patella dorsally into 

the femoral groove. At lower degrees of flexion, however the patella normally does not 

engage with the femoral groove. The force at the medial patellar retinaculum is also the 

lowest at the beginning of flexion. It decreases from 210N at full extension to just 18 N at 

20 degrees of flexion (Akbar et al., 2012; Kittl, Schmeling and Amis, 2015).  
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According to Wiberg (1941), the displacement of the patella relative to the femur is about  

5-7 mm. The current study attempted to obtain a qualitative indication regarding the 

contact point and did not measure the actual displacement of the patella. This was enough 

for the purpose of this study, as the maximum displacement of 7 mm would have only been 

achieved in full extension. However, the relatively small flexion angle in this study means 

that the displacement might not be even half as much, which would have needed a much 

more sophisticated methodology to measure. Nevertheless, future work could attempt to 

quantitatively measure the patella dynamics in order to obtain a more established validation 

on the positioning. This could include applying a constant pressure on the patella for the 

Microset method rather than using just hand pressure.  

6.5 Conclusion 

The overall results from the experimental methods and the theoretical model created in 

SolidWorks using the findings from the literature were used to cement the sample at the 

neutral position. The result from this study enabled positioning of the patella with respect 

to the femur. It was concluded that at the beginning of flexion the patella sits on the superior 

end of the femur and travels down wards as flexion progress.  
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Chapter 7. Developing the methodologies for investigating the 

biotribology of the porcine patello-femoral joint 

7.1 Introduction 

The aim of this study was to establish a wear model for the study of the natural patello-

femoral joint (PFJ).  

Initially, it was planned to use a pin-on-plate system for a preliminary study of the 

biotribology of the PFJ cartilage using the whole patella button. However, after due 

consideration this was not implemented. The pin-on-plate system could possibly have been 

used as a simpler system to study the biotribology of the cartilage surface before developing 

further using the more complex full joint simulation for wear testing. The porcine patello-

femoral samples were however, larger than the available space on the current pin-on-plate 

friction rig; therefore it was not feasible to use the available rig. Design of a new friction rig 

was considered to accommodate the porcine PFJ model but this was not viable as discussed 

below.  

Firstly, the friction rig would have needed to run with a stroke length of at least 20 mm to 

get significant data, assuming that the middle of that stroke length would pass through the 

contact area when the knee was at 45° flexion. This is because the simplest way of fixing the 

groove plate would have been to have a flat base for the groove.  The patella would then 

have been articulating directly over the groove. This would have replicated the 45° flexion 

and any other degree of flexion would mean that the flat position of the groove was not 

possible. Alternatively, the patella could have been placed at an angle. However, this would 

have further complicated the friction rig design which was not considered to be a 

worthwhile option for a simple set up.  

Secondly, the co-efficient of friction would vary according to the change in curvature of the 

groove. Consequently, the pin would have needed to move upwards to reach the middle of 

the sample and it would have been considerably easy for the pin to move down to the other 

half. This would have resulted in a change in co-efficient of friction as the first half would 

have had a larger co-efficient of friction in contrast to when the pin was effortlessly sliding 

down the other half.   This was a further reason for not implementing the pin-on-plate study.  
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Developing the methodology to investigate the biotribology of the porcine PFJ was one of 

the most novel aspects of this project. A practical and consistent method was essential for 

mounting the porcine PFJ in the single station knee simulator (SSKS) in order to investigate 

the biomechanics and biotribology of the joint.  

This chapter discusses the steps taken to consistently mount the PFJ on the simulator and 

run a wear study of the porcine PFJ using a SSKS. It also introduces the use of an Alicona IF 

G5 surface profilometer to assess the wear of cartilage in natural joints. A positive and 

negative control was used to establish the methods which can be used to compare the 

results for any future testing of cartilage substitution therapies. The positive control will be 

the worse case scenario that produces a higher wear. Cartilage articulating against healthy 

cartilage should have the least friction and hence produce least wear. Whereas, cartilage 

against metal is expected to show a greater friction resulting in higher wear and hence a 

larger roughness value.   

7.2 Materials and Methods 

The materials and equipment used for this study are detailed in Chapter 2. This chapter 

focuses on the novel methodologies developed for this part of the study. This section 

describes the methods developed using a SSKS to investigate the wear in a porcine PFJ under 

a normal gait cycle. A positive and negative control was also developed for porcine PFJs 

using the SSKS.  

An artificial femur articulating against a porcine patella was the positive control and a 

natural patella articulating against a natural patello-femoral groove was the negative 

control. The artificial femur was a femoral component (PFC Sigma, Depuy) as described in 

Chapter 2 Section 2.1.5. Six samples were tested for each condition.  

7.2.1 Modifying a Single Station Knee Simulator   

The general description of the single station knee simulator (SSKS) is described in Chapter 2 

Section 2.2.6.  The SSKS used in this study has 6 degrees of freedom. An image of the SSKS 

showing the 6 axes for a PFJ with polarities is shown in Figure 7.1.  
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Figure 7-1: Image of the SSKS displaying the 6 axes for the PFJ for a right knee with the polarities 

7.2.1.2 SSKS Calibration 

The SSKS allowed 6 degrees of freedom. M/L displacement and I/E rotation depend on the 

geometry of the joint and hence these were left passive. Axial force (AF), SI displacement, 

flexion/extension and A/A rotation were driven.  

The machine sensors were calibrated at the beginning and end of each series of tests. A flow 

chart explaining the steps followed for the calibration of the machine is shown in Figure 7.2.  
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Figure 7-2: Flow chart explaining the steps followed for the calibration of the machine 

Calibration ensured that the load and displacement sensors measured and produced the 

correct values. The calibration was performed by comparing the output values of the in-situ 

simulator sensors with the output values of external and independently calibrated sensors. 

Loads were monitored through the 6 axis load cell and motions were monitored through 

linear magnetic position sensors and optical encoders in the motors.   

There was no calibration required for the ML displacement and IE rotation as these were 

left passive. There was no calibration procedure for the angular displacements such as FE 

and IE but they were validated against independent measurement gauges. The angular 

displacement was validated using a digital protractor and was monitored during the tests 

using gauges placed on each displacement axis. These were accurate to ± 0.5⁰. The main 

calibration was the axial force and SI displacement as discussed below.  
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AF calibration determined the relationship between the axial load cell and the load at the 

bearing surface as shown in Figure 7.3. This calibration was validated by repeating the 

procedures with a second load cell.  

 

Figure 7-3: A typical graph following load calibration showing the relationship between the axial load cell and the 

load at the bearing surface 

The linear displacement calibration was carried out using a set of slip gauges. SI 

displacement calibration was performed in 2 stages. Stage 1 determined the relationship 

between the sensor position and the actual distance positions. Stage 2 determined the 

relationship between the displacement sensor and the motor position. The polarity of the 

axis was such that superior was positive and inferior was negative. For SI axis calibration, SI 

motor demand position was calibrated against the actual position. The calibration was 

validated by repeating the procedure using a further set of slip gauges.   

7.2.1.3  Fixtures for PFJ mounting 

To design the fixtures to accommodate the natural PFJ in the SSKS, a design specification 

was produced. The aim of the design specification was to highlight the requirements for a 

fixture that could be used to carry out wear tests in a natural PFJ. The specific design 

requirements are given in Table 7.1.  
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Table 7-1: Design requirements for the SSKS fixtures 

  

 Able to contain a porcine PFJ and allow a sample size of 50 by 50mm  

 Able to fit into the SSKS with an allowed height of up to 90mm 

 Able to attach the existing gaiters to contain the lubricant 

 Able to withstand the dynamic forces applied (up to 1kN) 

 Should have features that prevent it from rotating once fixed in SSKS 

 Made from a material that is easy to handle and cleaned 

 Need to be attached to the SSKS with respect to the axis of rotation 

 Consider the CoR of the sample and how it is aligned with the simulator 

 Made from a material that can be put into the freezer or a Micro-CT machine 

The dimensions of the PFJ and the availability of sample space in SSKS were calculated to 

design the fixtures to accommodate the patello-femoral samples for the experiments. The 

fixtures were manufactured using Delrin polymer material and had ridges to attach the 

gaiters to contain the lubricant during the wear studies.   

The fixtures were required to hold a porcine PFJ and it needed to be attached to the SSKS 

with respect to the axis of rotation. The dimensions of the sample obtained from Chapter 

2 and the sample space in the SSKS were used to design the fixture in SolidWorks. It also 

took into account the centre of rotation of the sample and how it would be aligned with 

the simulator. A labelled diagram of the fixtures for the patella is shown in Figure 7.4 Left.  
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Figure 7-4: Left: Fully assembled patella fixture. The rectangular sample space is marked with the depression side 

for reference in yellow. Right: Manufactured Delrin PFJ fixture with the sample 

The sample space was made rectangular with a depression at one end. The rectangular 

shape made sure that even if the cement was not attached to the Delrin, the sample did not 

rotate in the fixture. A dip at one side was made as a reference point so that the sample was 

always cemented with the superior side facing the dip end. The cylindrical hole also ensured 

that the sample and PMMA did not come loose from the fixture.  

There were 4 main parts to the full patella-femoral fixture in the SSKS; these consisted of 

the patella base and mount and femur base and mount. The labelled assembly of the full 

PFJ fixtures in the simulator with the sample is shown in Figure 7.4 Right.  The femoral 

sample was cemented in the femur mount and the patella was cemented in the patella 

mount. The base was the fixture connecting the mount to the simulator. It was designed 
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such that the mounts could be removed from the rest of the assembly and could be used 

separately to cement the sample into the fixture.  

7.2.2 Setting up the porcine PFJ sample 

Figure 7.5 shows the porcine set up in the fixtures, labelled with the forces and 

displacements applied by the simulator to show the 6 degrees of freedom. 

 

Figure 7-5: Left- porcine PFJ assembled in the simulator within its fixtures.  

Right – sample with the serum contained within the gaiter. 
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7.2.3.1. Preparing the sample  

The porcine PFJ was dissected as described in Chapter 3 Section 3.2.1. The patella 

component was then cut into the sample shape to provide a flat base using a custom made 

rectangular cutting jig as shown in Figure 7.6. The flat base ensured that the patella was 

cemented securely in the fixture and it allowed the patella to be at the correct position while 

following the femoral groove. The patella was placed inside the jig such that the cartilage 

faced the screw end although the screws were not tightened in order to avoid damaging 

patellar cartilage. The jig with patella was fixed in a vice grip and the patella base was cut 

using a hacksaw. The prepared patella samples are shown in Figure 7.7.  

 

Figure 7-6: Patella placed inside the cutting jig 

 

Figure 7-7: Left- Full patella with curved base, Right- Dissected patella with the flat base 

The femur was placed in the vice grips and was cut into shape using a hacksaw. It was cut 

such that the entire cartilage surface was preserved for the testing and had a minimum 

height of 25 mm to allow the centre of rotation (CoR) to lie on the sample. The prepared 

femoral samples are shown in Figure 7.8 and the steps following to cut the sample are 

shown in Figure 7.9.  
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Figure 7-8: The desired shape and size of the femoral sample. Left- Side view of the femoral sample cut from the 

femur. Right- Top view of the femoral sample and patella showing its articular cartilage 

 

Figure 7-9: Steps taken to cut the femoral groove sample from the femur 

The artificial femur as described in Chapter 2 Section 2.1.5 was attached to a mount the 

same size as the natural femoral mount. Therefore, it was able to be attached to the femoral 

base component of the same SSKS fixture.  

7.2.3.2. Sample mounting  

The sample was cemented to the ‘neutral’ position. This is defined as the position of the 

patella with respect to the femur at the start of a gait cycle and with all axes in their zero 

positions. This was obtained through the contact point study discussed in Chapter 6. The 
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radius of curvature (RoC) of the femoral groove, determined as described in Chapter 3 

Section 3.2.4, was used to mark the centre of rotation (CoR) of the femur on the sagittal 

plane of the femoral sample before cementing.  

For cementing the femoral component, the femoral fixture was placed in the replica 

simulator frame. This frame consisted of a replica of the femoral frame that held the fixture 

in the simulator. It had a pin on either side that went through the femoral axis of rotation in 

the simulator. The femoral sample was placed on the fixture such that the CoR marked on 

the sample aligned with the pins on the frame as shown in Figure 7.10 Right.  

     

Figure 7-10: Left- Alignment of the patella at the centre of the fixture 

Right: Alignment of the femoral component using CoR locating pins in the replica frame 

The patella was cemented on the fixture first. The diagram of the patella in the superior and 

anterior view from the simulator is shown in Figure 7.11. The superior view shows the 

patella mount and its centre. The centre of the patella was aligned with the centre of the 

patella mount as shown in Figure 7.10 Left and 7.11 Left.  

When the patella mount was fixed in the SSKS, the assembly was locked in such a way that 

the patella was aligned to the M/L rotation (horizontal line) and the SI displacement (vertical 

line). M/L tilt occurs in the coronal plane as shown in Figure 7.12 Right. This was the reason 

the bottom of the patella was made flat during dissection. This aligned the patella in the 

coronal plane at an angle of zero degrees. The patella was aligned with the sagittal plane 

and was at the centre of the SI displacement as shown by the vertical lines on Figure 7.11 

Left and 7.12 Left.  As the simulator allowed movement about the z axis of the sagittal plane, 

the height of the patella during cementing was not significant.  



 

142 | P a g e  
 

 

Figure 7-11: Diagram of the patella in the mount at superior and anterior view of the simulator 

The position of cementing of the femur was determined by locating the position on the 

femur where its superior end had to be in contact with the inferior part of the patella as 

shown in Figure 7.12. The replica frame locating pins shown in Figure 7.10 Right were used 

to ensure that the CoR at the femur was correct.  According to the contact point study 

discussed in Chapter 6, one third of the length of the patella from its inferior end needed to 

touch the femur at one-third of its superior end.  

 

Figure 7-12: Cementing the patella and femur at the same position as its alignment at the starting point of the 

gait cycle 

Once the sample was cemented into the fixture, the femoral fixture was secured into the 

simulator. A gaiter was used to encapsulate the joint and hold the lubricant. The 25% (v/v) 

calf serum lubricant was poured into the gaiter and the fixture containing the sample and 

lubricant was secured into the simulator.  
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7.2.3.3. Porcine PFJ Gait cycle 

The SSKS was capable of applying 6 degrees of freedom. In this study the FE, SI, AA and AF 

were active and ML displacement and rotation were passive. The active motions were 

gathered from the gait cycle published by Ellison et al. (2008) and Maiti et al. (2014). They 

investigated the wear in artificial patello femoral joints using the Leeds hip simulator and six 

station knee simulators respectively. Their gait cycle represented a human PFJ gait cycle to 

test their artificial implants (Ellison et al., 2008; Maiti et al., 2014). In this project, their gait 

cycle was modified to the kinematic limits of a porcine PFJ as discussed below.   

The patello-femoral gait cycle used in this study is show in Figure 7.13. The x-axis of the 

graph shows the stages of gait cycle which consisted of 128 input/ reference points for the 

SSKS. The input curves in the Maiti et al. (2014) gait cycle had sharp transitions which caused 

difficulty in the electromechanical simulator to achieve certain targets, especially the axial 

loads. Therefore, the curves were smoothed to allow the simulator to apply the inputs 

efficiently. 

 

Figure 7-13: Porcine patello-femoral gait cycle. 
FE= Flexion/Extension, SI= Superior/Inferior displacement, AA= Adduction/Abduction, AF= Axial Force 

The major modification to this profile was the scaling factor that converted the values of the 

human gait cycle to the porcine joint. The axial force was divided in half. Since humans are 
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bipedal and pigs are quadrupedal the pigs will have a larger distribution of forces. The rest 

of the parameters were scaled down using a factor of 2.5 as established by Liu et al. for a 

porcine TFJ gait cycle. This TFJ model was used to investigate the biomechanics and 

biotribology of the joint using  the knee simulator (Liu et al., 2015).  

7.2.3 Wear study 

A standard porcine gait cycle as described in Section 7.2.3.3 was applied for 5 hours during 

the wear test with 25% (v/v) bovine calf serum as the lubricant. Two types of tests were 

carried out; one with a natural patella against artificial femur as the positive control and the 

other with a natural patella against natural femur as the negative control.  

Once the test was finished, the sample was removed from the SSKS and the lubricant was 

separated. The cartilage was carefully dried with a tissue to take a replica mould for wear 

assessment. The patella wear area was measured using the flexible film method as 

described in Chapter 2 Section 2.5. The intensity of the wear on the patella and femoral 

groove was then graded using the ICRS grading system described in Chapter 1 Section 

1.3.1.2, as shown in Figure 7.14.  

 

Figure 7-14: ICRS grading of cartilage wear 

7.2.3.1. Sample preparation for surface analysis using profilometer 

The samples for surface analysis were prepared by taking replicas of the natural patella. Due 

to the large curvature of the femoral groove it was difficult to obtain the replicas and scans 

from Alicona IF G5. Therefore, the roughness profiles of the femoral grooves were not 

considered in this study.  

A thick layer of AccuTrans synthetic rubber replicating compound was spread over the 

articulating surface to make replicas. The replica of the cartilage surface was prepared pre 

and post wear test. AccuTrans was spread over the cartilage surface and left to set for 2 

minutes and the patella was removed to leave the replica as shown in Figure 7.15.  
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Figure 7-15: Impression of the patella made from AccuTrans mould 

The Alicona Infinitefocus (IF) G5 surface profilometer as described in Chapter 2 Section 2.2.5 

was used to evaluate the surface roughness of the cartilage. A vertical strip (red box of width 

3 mm) from superior to inferior (S/I) and a horizontal strip (green box of width 5 mm) from 

medial to lateral (M/L) as shown in Figure 7.16 were scanned from each of the samples. The 

procedure in Alicona IF G5 implemented ISO 4287, 4288, 11562 and ASME B46 1-2002 for 

the process according to the profile lengths.  

 

Figure 7-16: The area scanned using Alicona IF G5 

Before the wear test, the 4 corners of the patella were marked using a 1 mm diameter drill 

bit. This allowed the AccuTrans to enter into the drilled holes and make reference points on 

the moulds. These were taken as the reference points during the Alicona IF G5 scanning. An 

S/I scan displaying the two reference points is shown in Figure 7.17. The reference point was 
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roughly at the middle of the S/I scan whereas the M/L reference points were more towards 

the Inferior end.  

 

Figure 7-17: The S/I reference points from an S/I scan 

7.2.3.2. Obtaining results from Alicona IF G5  

The replicas were scanned in Alicona IF G5 surface profilometer at 10x magnification. The 

scanned data was then processed by the Alicona IF G5 software to provide a 3D image. The 

3D model of the roughness standard reconstructed using this method is shown in Figure 

7.18.   

 

Figure 7-18: 3D model of a S/I scan 

A line p1 and p2 was drawn with respect to the S/I and M/L reference points respectively. 

Line p1 was drawn from the centre of the S/I reference point whereas line p1 was drawn 3 

mm superior to the M/L reference point. The surface roughness of these lines was then 

analysed. The reference points made sure that the same area was analysed pre and post 

wear study.  

The surface profile extracted from the scan used for the measurement is shown in Figure 

7.19. An 800 µm cut off wavelength was used to measure the surface roughness of cartilage 

in this study.  This was because shorter wavelengths are better at capturing the finer 

irregularities seen in the early stages of cartilage damage (Brill et al., 2015). Larger 

wavelengths of 2500 µm were used in previous studies which compared the roughness of 

cartilage against other artificial materials (Russell, 2010).  



 

147 | P a g e  
 

 

Figure 7-19: Surface profile extracted from the S/I scan at 800 µm cut off wavelength 

The Ra  values for each location were recorded pre and post wear study for the positive and 

negative control. Ra is the arithmetic average of the 2D roughness profile, measured as the 

average height of the peaks and valleys from the mean line calculated within the sampling 

length.   

The mean ± 95% confidence limits for the p1 and p2 locations of the 6 samples for negative 

and positive control were calculated for the pre and post wear tests.  A Student’s t-test was 

carried out to compare the roughness between the pre and post wear study in the two 

conditions.  

7.3 Results 

7.3.1. ICRS grading and wear area 

In the negative control all 6 samples tested displayed Grade 1 wear. There was no visible 

damage to the cartilage but there was deformation on the cartilage surfaces that were in 

contact. The wear study caused the cartilage to compress and extrude water from the tissue 

at the point of contact and this was seen as the deformation. It was marked as shown in the 

femoral sample in Figure 7.20. This deformation was more visible directly on the sample 

compared to the deformation depicted in the photograph. The area was marked and 

calculated using the flexible film method.  



 

148 | P a g e  
 

 

Figure 7-20: The area of deformation caused by the wear study is marked in red 

The positive controls displayed a larger deformation compared to the negative controls. 

However, Grade 1 wear occurred on all but one sample on which Grade 2 wear occurred.  

The deformation on the negative controls was no longer visible after the cartilage was 

allowed to rehydrate. However, only 2 femoral grooves from the positive controls were fully 

recovered after 2.5 hours of observation.   

The area affected by the wear study in the positive control was 123.2 ± 13 mm2 in the patella 

(approximately 14% of the total patella area). In the negative control the patella area was 

106.1 ± 11 mm2 (approximately 11% of the total patella area) and the femoral groove area 

was 178.7 ± 42 mm2.   

7.3.2. Surface analysis using Alicona IF G5  

Roughness values changes with change in cut off wavelength as shown in Table 7.2. The 

roughness of healthy cartilage (n=15) at various cut of wavelengths was recorded. The 

results showed that the roughness increased with increasing cut off wavelength.  

Table 7-2: Change in Ra in healthy porcine cartilage with respect to cut-off frequency 

Cut off wavelength (µm) Ra (µm) 

80 0.183 ± 0.04 

250 0.368 ± 0.10 

800 0.6855 ± 0.19 

2500 3.2175 ± 0.93 
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The average surface roughness (Ra) obtained from Alicona IF G5 for the positive and 

negative controls, pre and post wear study, are shown in Figure 7.21.  

 

Figure 7-21: Roughness values from positive and negative control, mean (n=6) ± 95 % CL, where p1 is the S/I and 
p2 is the M/L scan 

Although the post wear values were higher than the pre wear values in both conditions, 

there was no significant difference (p> 0.05) between the pre and post wear roughness. 

Therefore, the wear model established in this study was not enough to produce significant 

difference in wear.  

7.4 Discussion 

A method has been developed to apply physiological loading cycles to porcine PFJs to 

investigate the wear on natural joints. The wear area on the cartilage surface post wear test 

was calculated using the flexible film method and graded according to the ICRS grading 

standard. Replicas of the articular cartilage of the patellas were taken pre and post wear 

test. These replicas were analysed using Alicona IF G5 surface profilometer to measure the 

surface roughness of the cartilage pre and post wear study. 

Developing the methodology to investigate the biotribology of the porcine PFJ was one of 

the most novel aspects of this project. A practical and consistent method was essential for 

mounting the porcine PFJ in the SSKS in order to investigate the wear. For the reproducibility 

of the tests it was necessary to maintain the same test conditions and follow the same 

procedure to prepare the samples. 

0

0.5

1

1.5

2

2.5

3

Positive Negative

Su
rf

ac
e 

ro
u

gh
n

es
s,

 R
a 

(µ
m

)

Pre p1 Post p1 Pre p2 Post p2



 

150 | P a g e  
 

Establishing a methodology to measure the radius of curvature (RoC) of the patello-femoral 

groove was essential to fix the samples in the SSKS. It was more accurate to develop a simple 

methodology to measure the actual RoC of each sample rather than assuming a constant 

RoC based on the literature as each sample had a large degree of variation in the shape and 

size.  

There are several improvements that could be applied to increase the reliability and 

repeatability of this method. The validation of the methodology was the most limiting factor 

due to the lack of similar research carried out to date for comparison. If the biomechanics 

of the joint and kinematics of the patella is not replicated correctly, this could influence the 

model of lubrication in the cartilage that could affect the friction and the wear in joints. The 

assessment of wear particles could be used as an analysis to determine this change. This 

could happen in the absence of muscle compensation during joint kinematics, as seen in 

knee models that have soft tissues removed (Stachowiak and Podsiadlo, 1997).  

The porcine gait cycle applied in this study was adapted from the human PFJ gait cycle used 

in the same lab to test artificial PFJs (Ellison et al., 2008; Maiti et al., 2014; Liu et al., 2015). 

This could also be improved by combining the latest PFJ kinematic data from the literature. 

The adaptation and rescaling of the human gait cycle to the porcine gait cycle could have its 

limitations. However, this was the best option available as there was no existing data for the 

kinematics of porcine PFJs. Future studies on determining porcine kinematic data and 

patella position parameters will provide valuable data for validating these animal models 

for in-vitro simulations. However, this was not under the scope of the current project and 

hence the latest available data from the same laboratory was used for consistent 

comparative purposes.  

A porcine model was used for the purposes of developing the method. There will be 

challenges when this method needs to be applied to human PFJs. There could be challenges 

in using human PFJ such as ethical approval, health and safety, tissue disposition and 

maintaining the tissue free of contamination by microbes. The size, cartilage properties, 

protein content in joint fluid, ligaments and material properties of the tissue can all 

contribute to the differences in the biomechanics of the joint.  

Cartilage wear studies using pin on plate systems are carried out over a period of 24 hours 

(Russell, 2010). This usually involves a cylindrical plug reciprocating on a flat plate under 

constant loading conditions. Whole joint wear tests are usually limited to 2-4 hours 
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(Stachowiak and Podsiadlo, 1997; Taylor, 2012; Liu et al., 2015) to reduce the damage 

caused by the gradual decomposition of the tissue. The current study was carried out for 5 

hours in room temperature. Longer test duration needs to be explored to produce more 

wear but this will require the joint to be maintained for a longer period of time.  

Even though it is was not fully under the scope of this project, the SSKS had special design 

features that allowed the testing of viable tissue over extended periods of time and under 

aseptic conditions. Compared to previous simulators, the test volume in the SSKS was 

significantly increased to permit the setup of a sealed test chamber under aseptic 

conditions, with direct temperature control. This will be a great asset for the future work 

that requires advanced control of certain parameters and will enable longer duration of 

wear tests.  

There were no visible clearly defined wear patterns observed after the wear study. 

However, the deformation on the area of articulation on the cartilage was evident. This was 

more noticeable on the positive control than the negative. The area of deformation was 

marked and measured. The flexible film method used in this study allowed the 3D curvature 

of the sample to be considered while calculating the area. Hence this was a better method 

than calculating the area from the 2D direct image of the sample itself (Taylor, 2012). In the 

current study the wear was more visible directly on the sample than from a photograph. 

Therefore, assessing the wear using this method has been recognised to be more 

appropriate. The potential for error in this method will be in the area of human error when 

marking the boundary for the wear area.  

ICRS grading can provide a qualitative analysis of the wear surface. However, in order to 

obtain a quantitative measure other sophisticated methods need to be implemented. 

Surface roughness has been shown to be a predictor of wear in many retrieval studies and 

it is true in the case of cartilage as well. A rougher surface creates higher friction and hence 

more chances of wear (Taylor, 2013). The roughness values vary across the literature 

depending on the techniques used. Alicona IF G5 is a non-contact method while for some of 

the others methods such as AFM and Talysurf is measured using a stylus. Currently, there is 

no study in the literature showing the roughness of cartilage using Alicona IF G5. Therefore, 

a direct comparison was not possible.  

There is a large variation between measurements techniques and research groups. Some of 

the factors that could influence the results are the type of instruments used and the set up 
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applied for each method. The roughness obtained by Ghosh et al. (2013) from SEM 

stereoscopic imaging was comparatively higher than those obtained from AFM. However, 

the AFM values obtained by Moa-Anderson et al. (2003) were 5 times larger than those from 

Ghosh et al. (2013) and Peng & Wang (2013). The values obtained by Moa-Anderson et al 

were closer to the values obtained by Russell (2010) using the Talysurf method.  

Parameters such as resolution, magnification and cut off wavelength chosen for each of the 

studies could be the other factors. For a direct comparison the same methods and testing 

parameters are required. Using an SEM, Ghosh and colleagues showed that the roughness 

values increased linearly with magnification Ghosh et al. (2013). The rough surface features 

are more prominent in longer cut-off frequencies and smaller features are elevated by 

shorter wavelengths. Studies have shown that shorter wave lengths were capable of 

capturing irregularities seen in the early stages of cartilage damage. Therefore a cut-off 

frequency of 800 µm was chosen for this study (Brill et al. 2015).  

AFM is capable of high resolution roughness measurements at submicron levels. It is widely 

used for frictional and mechanical measurements of cartilage. However, this technique 

requires a very long scanning time and is only capable of scanning small areas. Therefore, 

AFM is impractical for quantitative analysis of the surface topography of cartilage for larger 

areas (Shekhawat et al., 2009; Peng and Wang, 2013). Although widely used, SEM does not 

provide quantitative measurements of the surface topography (Shekhawat et al., 2009). The 

method is also time consuming and difficult as the samples needed to be dried and gold 

plated before the SEM analysis (Gan et al., 2013). The samples could have undesired 

dehydration and deformation that could affect the results.  

Alicona IF G5 was used to measure the surface roughness of the cartilage. It can resolve 

roughnesses of up to 0.03 µm Ra value. The Alicona IF G5 is a non-contact measurement 

device unlike devices such as contacting Form Talysurf (Taylor Hobson, Leicester, UK) that 

uses a stylus which is dragged across the surface. Deflection of the stylus is picked up by a 

laser to recreate the surface topography. The stylus instruments require direct physical 

contact, which limits the measuring speed and are limited to the surface geometry of the 

material being measured and the measurements are 2D.  

A pilot study was carried out using Talysurf and several difficulties were observed while 

measuring the roughness of the patella. The main problem was the inefficiency of the stylus 

to follow the steep curves in the patella. The steepness was too much for the slow speed of 



 

153 | P a g e  
 

the stylus to cover and this gave a few points where the stylus was not in contact with the 

material. In cases with large scars the stylus seemed to bend on contact whereas the non-

contact Alicona IF G5 did not have any problem with the surface geometry and by 

individually adjusting the focus of the light and the brightness for each sample, the steep 

curves in the moulds were more easily captured.   

Ferrography is a microscopic examination method that can be used to obtain wear particles 

from the lubricating fluid in a natural joint. This is widely used to qualitatively characterise 

the wear particles rather than quantitative wear volume measurements (Stachowiak and 

Podsiadlo, 1997). Modern particle counters have been claimed to detect wear volume as 

low as 0.02% of the total sample volume (Oungoulian et al., 2012). Other methods of wear 

detection also exist that include the measurement of biomechanical assays for collagen and 

GAG measurement. However, the problem lies in obtaining the lubricating fluid that contain 

the wear particles. If all the fluid or particles are not collected from the joint, the 

measurement will not be accurate. Other debris such as the cement that is used to fix the 

joint or the bone and other tissues around the joint can also be collected along with the 

lubricating fluid. This migration can complicate the analysis.    

There was no significant difference in roughness values between the negative and positive 

control. Therefore, the  

The current study shows the potential of Alicona IF G5 in assessing wear in natural joints. A 

negative and positive control was used in this study to describe the methods. This could be 

applied to wear studies on joints with tissue substitutions such as osteochondral grafts to 

compare the tribology of the substitutions. Alicona IF G5 is able to scan large surfaces in 3 

dimensions. It is much faster and easier than other instruments such as Talysurf. In future 

this feature could be used to explore the potential for volumetric measurements. This will 

enable the determination of the volume loss in natural cartilage.  

Currently, there is no study in the literature showing the application of Alicona IF G5 in the 

assessment of wear in the articular cartilage. This will be the first of its kind. The method 

developed in this thesis can be applied to whole joints with osteochondral substitutions. 

This will allow investigating the wear patterns in the joints when these substitutions are 

implanted. This is a promising technique to compare the effect of different types of 

substitutions and their implant techniques.  
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7.5 Conclusions 

This chapter established the methods for testing porcine PFJs in a SSKS. A positive and 

negative control was developed to apply different methods of measuring wear. The 

application of Alicona IF G5 was used to analyse the surface roughness at each test condition 

which showed that the roughness values in the positive control was larger than the negative 

control. However, there was no significant difference in the wear which implies that the 

wear model established in this study is not sufficient to produce significant wear.   
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Chapter 8. Contact mechanics of the porcine patello-femoral joint 

8.1. Introduction 

Contact area and pressure can be predictors of wear and failure in joint replacements (Hsieh 

et al. 2002; Clark et al. 2002; Lee et al. 2003; Bachus et al. 2006; Merkher et al. 2006) and 

are also applicable to joint substitutions. Various in-vitro techniques have been used to 

study the contact mechanics in diarthrodial joints including Fuji film , Tekscan, piezoelectric 

transducers and dye injection methods (Liggins et al. 1995; Lee et al. 2001; Garretson 2004; 

Li et al. 2004; Bachus et al. 2006).  However, the variations in parameters such as load, 

flexion and type of joint used for the testing can make direct comparison difficult. Therefore, 

the present study systematically investigated the effect of load, flexion and displacement 

on the contact mechanics of the porcine patello-femoral joint (PFJ) using Tekscan pressure 

sensors.  

The aim of this study was to develop and apply a methodology to investigate the contact 

mechanics of PFJ using Tekscan in an SSKS. The contact mechanics of the joint were 

investigated by measuring the contact area and contact pressure at various points in a 

porcine PFJ gait cycle. The effect of constant load, flexion angles and displacement were 

determined to better interpret and understand the contact mechanics at these various 

points in the gait cycle.   

8.2. Materials and methods  

The materials included a single station knee simulator as described in Chapter 7, porcine 

PFJs and Tekscan sensors as described below.  

8.2.1 Porcine PFJ 

Right knee joints from 6 months old Large White pigs were used in this study. All the joints 

were healthy and had shiny, white and slippery cartilage with no visible defects. The patello-

femoral samples were prepared as explained in Chapter 7 Section 7.2.2.  Six samples were 

tested for each study; these consisted of the gait study and the fundamental study. The gait 

cycle study was carried out first followed by the fundamental study.  

8.2.2 Tekscan sensors 

A Tekscan sensor (Model 4000, saturation pressure 10.3 MPa) with the I-Scan software 

(Tekscan, Inc., South Boston, MA), as shown in Figure 8.1, was used to measure the contact 
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area and contact pressure between the patella and the femur under different conditions 

during the contact mechanics study. This particular Tekscan sensor was used because it was 

most suited for the load applied in this study as well as the area and geometry of the sample 

that was being measured.   

 

Figure 8-1: Left– A Tekscan sensor connected to the handle, Right – Labelled diagram of a Model 4000 sensor  

(Obtained from Tekscan®) 

The proximal end of the sensor was attached to the handle with a USB connection to enable 

data connection to the computer. The dimension of each sensor was 27.9 mm (width) x 33 

mm (length) x 0.1 mm (thick). It contained 572 sensel measurement points with a sensel 

density of 62 sensels per cm2.  

8.2.3 Calibration 

The Tekscan sensors were calibrated using an Instron material testing machine (Instron 

3365, High Wycombe, Bucks, UK) as shown in Figure 8.2. A 4 mm thick polyurethane sheet 

with an elastic modulus of ~0.7 MPa was placed on either side of the sensor during 

calibration to provide a similar compliance to cartilage. The sensors and the rubber sheets 

were of the exact same dimensions and these were compressed between metal plates on 

the Instron in order to produce an area of uniform pressure with 10 pre-conditioning cycles 

to 2 MPa.    
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Figure 8-2: Tekscan sensor was placed between two rubber sheets and compressed between two metal plates in 

the Instron during calibration 

Each sensor was calibrated individually as they were unique in terms of digital output. They 

were equilibrated to 10%, 50% and 90% of the maximum expected load for the study to 

normalise the readings and to ensure identical output for an applied uniform force. As 

readings were to be taken across the full range of the sensor, an identical two-point power 

law calibration was performed. This used two readings, taken at 20% and 80% of the peak 

expected loads, which were 250 N and 750 N respectively. 

As it was the first time these sensors had been used, the response needed to be 

characterised. Therefore, the output load from the Tekscan was checked before and after 

the contact mechanics study by applying a known load using the Instron material testing 

machine. These Tekscan verification results are shown in Figure 8.3. The overall output force 

was higher compared to the applied load in both cases. Before the test, the Tekscan outputs 

were almost 5% higher than the Instron input and this increased to 13% after the test. 

Therefore, there was an 8% overall increase in the Tekscan output at the end of the contact 

mechanics study.  
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Figure 8-3: Tekscan verification curves from the Instron pre and post study with regression lines 

Another set of verification tests were carried out to investigate the sensitivity to load in the 

input and output systems. The SSKS was used to apply the input loads and the output forces 

were measured using the Tekscan pressure sensors and an external load cell.   

Pressure sensors were placed between the rubber sheets as before. This set up was fixed 

inside the SSKS dummies and a constant load of 100 N was applied through the SSKS for 10 

seconds. The output was measured from the Tekscan sensors as well as from an external 

load cell, similar to the SSKS axial load calibration process. The process was repeated, 

increasing the load in increments of 100 N until it reached 1000 N.  
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Figure 8-4: Output from external load cell and Tekscan compared to the input from the SSKS before and after the 

contact mechanics study 

The Tekscan verification curves from the SSKS before and after the contact mechanics study 

is shown in Figure 8.4. The load cell results showed only minor differences pre and post-test, 

indicating that the SSKS was consistent in its load application. The Tekscan results were, 

however higher post study after a load of 400 N. In the previous verification curve (Figure 

8.3), it was noticed that there was an 8% increase in the Tekscan results after the contact 

mechanics study.  In the current verification curve, the overall Tekscan output force was also 

higher compared to the applied load in both cases. Pre-test, the Tekscan outputs were 

almost 4% higher than the SSKS input and this increased to 13% post-test. Therefore, there 

was a 9% overall increase in Tekscan output compared to the SSKS input load at the end of 

the contact mechanics study.  

8.2.4 Setting up the test 

The samples were prepared as described in Chapter 7 Section 7.2.  The pressure mat on the 

Tekscan was placed over the patella, making sure that the patella was positioned on the 

centre of the sensor. Only one sensor was placed between each sample and was secured 

with vinyl electric tape around the edges. It was necessary to ensure that the sensor did not 
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move during the test as this could have interfered with the readings and also made it difficult 

to plot the relative position of the joint.  

Pressure was applied to the medial, lateral, superior and inferior corners of the patella. This 

was used to determine the location of the patella on the pressure maps later.  The contact 

mechanics were mapped with respect to the patella because as the pressure sensor was 

attached to the patella there was no angular displacement in the patella. Hence the four 

markers identified for each specimen would be the same throughout the test which 

maintained the repeatability of the study.  

8.2.5 Running the test 

In terms of the SSKS, A/A was fixed but the ML displacement was unconstrained to allow 

the PFJ to find its neutral position in these axis. The axis of the PFJ in the SSKS is discussed 

in Chapter 7 as shown in Figure 7.1. The sample with the Tekscan was placed inside the SSKS 

at the neutral position as established by the contact point study described in Chapter 6. The 

simulator and Tekscan were activated together and the contact mechanics was recorded for 

10 continuous frames.  

Two types of test were carried out; these consisted of the fundamental contact mechanics 

study and the contact mechanics at five different stages in the gait cycle. The gait cycle study 

was carried out on the sample first, and this was then kept hydrated for an hour before it 

was used for the fundamental study. This ensured that the cartilage was able to recover to 

its original state before the next test commenced. The same 6 samples were used for the 

two studies to ensure that the results from the fundamental study could be compared to 

the gait cycle study without any variation among samples within the two tests.  

For the gait cycle study, 5 points were taken from the porcine PFJ gait cycle. The gait cycle 

marked with these 5 points is shown in Figure 8.5.  The points were chosen such that the 

main points in the different stages in the gait cycle were covered. The first two points were 

in the stance phase, the third point was half way through the gait cycle and the last two 

points were in the swing phase. The corresponding load, flexion and SI displacement were 

applied to the joint.  
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Figure 8-5: Porcine patello-femoral gait cycle. HS= Heel strike, TO= Toe off 

FE= Flexion/Extension, SI= Superior/Inferior displacement, ML= Medial/Lateral rotation, AF= Axial Force  

The fundamental study was then carried out to systematically investigate the effect of 

flexion, load and displacement. Flexion at 0, 5 and 10 degrees and load at 100, 300 and 600 

N was used. Displacement at 5, 0, -5 and -10 mm (5 mm in superior direction, neutral 

position, 5 and 10 mm in inferior direction respectively) were also investigated.  

The 36 test conditions carried out for the fundamental study are shown in Table 8.1. The 36 

numbers in the Table correspond to the different conditions tested in this study. For 

example, for condition #1 the axial force was 100 N, 0 degree flexion and SI displacement 

was 5 mm. Similarly, for #36 the axial force was 600 N, 10 degree flexion and SI displacement 

was -10 mm. 
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Table 8-1: Parameters for the fundamental study 

36 test conditions with varying Load (axial force, N), flexion (FE, degrees) and displacement (SI, mm) 

 a b c 

AA Fixed/0 

ML displacement unconstrained 

ML rotation unconstrained 

Axial Force (N) 100 300 600 

FE = 0 Condition Number 

SI=5 1 13 25 

SI= 0 2 14 26 

SI= -5 3 15 27 

SI=-10 4 16 28 

FE = 5 Condition Number 

SI=5 5 17 29 

SI= 0 6 18 30 

SI= -5 7 19 31 

SI=-10 8 20 32 

FE = 10 Condition Number 

SI=5 9 21 33 

SI= 0 10 22 34 

SI= -5 11 23 35 

SI=-10 12 24 36 

8.2.6 Analysing the contact mechanics recordings 

 

Figure 8-6: Marking the location of patella on the pressure map 

The pressure map created from the Tekscan software for the reference points of the patella 

was exported to Image Pro plus along with the image of the corresponding patella. A 

photograph of the patella was taken using a Canon SLR camera with a ruler next to it. The 

dimensions of the Tekscan pressure mat and hence the Tekscan pressure map image was 

33 mm by 28 mm. The size of the patella and the pressure map was used to calculate the 
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position of the patella using ImagePro Plus. This method was applied to trace the position 

of the patella on the contact mechanics results.  

8.3 Results 

Two typical recurring patterns of contact mechanics were observed. Out of the 6 samples 

tested, 2 samples showed type 1 pattern and 4 samples showed type 2 pattern. These 

patterns were the same in both tests. Pattern 1 had a larger contact area compared to 

pattern 2. Pattern 2 showed higher peak pressure compared to pattern 1.  

8.3.1 Gait cycle study 

The typical pressure maps for pattern 1 and 2 observed in the gait cycle study are shown in 

Figure 8.7 and 8.8. In type 1 pattern, the beginning of the gait cycle showed a larger contact 

area.  

 

Figure 8-7: Pattern type 1 with larger contact area showing the 5 stages  (as indicated in Figure 8.6) in the gait 

cycle 

 

Figure 8-8: Pattern type 2 with smaller contact area showing the 5 stages in the gait cycle 

The mean contact area for the 6 samples is shown in Figure 8.9. The contact area decreased 

across the different stages of the gait cycle. The area in the stance phase was larger 

compared to the contact area in the swing phase. The contact areas in stage #1 and #2 in 

the stance phase were very similar.  One way ANOVA was carried out to compare the 5 

stages in the gait cycle. There were no significant differences (p>0.05) in the contact area 

between the stages.  
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Figure 8-9: Mean contact area over a gait cycle . Data is presented as the mean (n=6) ± 95% confidence limits 

The change in mean contact pressure and peak contact pressure during a gait cycle is shown 

in Figure 8.10 and 8.11 respectively. One-way ANOVA showed no significant differences 

(p>0.05) in the mean and peak contact pressures between the stages.  

 

Figure 8-10: Mean contact pressure over a gait cycle. Data is presented as the mean (n=6) ± 95% confidence limits 
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Figure 8-11: Mean peak pressure over a gait cycle .Data is presented as the mean (n=6) ± 95% confidence limits 

The trends in peak contact pressure and mean contact pressure throughout the different 

stages in the gait cycle were similar. However, the error bars in the peak contact pressure 

were higher compared to the mean contact pressure. The highest contact pressure was 

observed in stage #4.  The mean contact pressure reached 1.81 ± 0.19 MPa and the peak 

pressure reached 4.62 ± 1.15 MPa at this stage. The lowest pressure was at the end of the 

swing phase (stage #5) where the mean contact pressure was 1.29 ± 0.25 MPa and the peak 

pressure reached 3.42 ± 0.77 MPa.  

8.3.2 Fundamental study 

The typical pressure maps for pattern 1 and 2 observed in the fundamental study are shown 

in Figure 8.12. In pattern 1, the area decreased from superior to inferior displacement 

whereas the contact area increased from superior to inferior displacement in pattern 2. In 

pattern 1, the contact area decreased with increasing flexion. The contact also moved from 

superior-lateral position to Inferior-medial position for each flexion angle. However, these 

trends were not evident in pattern 2.  
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Figure 8-12: Pattern type 1 (left) and pattern type 2 (right) showing the change in contact mechanics with respect to SI (left to right) and FE (top to bottom) 
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The effect of flexion on contact area and pressure at different load and displacement is shown 

in Figure 8.13 and 8.14 respectively.  

 

Figure 8-13: Effect of flexion on the contact area at different loads and displacements (Mean (n=6) ± 95% confidence 

limits) 

 

Figure 8-14: Effect of flexion in the contact pressure at different loads and displacements (Mean (n=6) ± 95% CL) 
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There were no significant differences (p > 0.05) between the flexions at any given load or 

displacement. However, the contact pressure significantly (p= 0.013) increased with increasing 

load. The 95% confidence limits also showed a larger variation in the contact area at higher 

loads.   

There was almost no change in the contact area across various flexion angles at a displacement 

of 5 mm in the superior direction and at the neutral position the contact pressure also stayed 

the same across all three flexion angles. On the other hand, the contact pressure decreased 

with increasing flexion at a displacement of 5 mm in the superior direction and at the neutral 

position the contact area decreased with flexion.    

The effect of displacement and flexion on the contact area and contact pressure at 300 N is 

shown in Figure 8.15 and 8.16 respectively.  

Across various loads, flexion had no effect on the mean contact area or pressure at the 5 mm 

superior position (SI=5) and the 10 mm inferior position (SI= -10). However, at neutral position 

(SI= 0) the contact area decreased with increase in flexion and at 5 mm inferior (SI= -5) the area 

increased with the flexion.  

As shown in Figure 8.15, from neutral to the inferior position the contact pressure increased 

with an increase in flexion. Similar trends were also observed at axial loads of 100 N and 600 N. 

At the different flexion angles the overall contact area was maximum at the neutral position 

(SI=0) and minimum at 10 mm inferior (SI= -10).  
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Figure 8-15: Contact area at 300N (Mean (n=6) ± 95% confidence limits) 

 

Figure 8-16: Contact pressure at 300N (Mean (n=6) ± 95% confidence limits) 
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8.4 Discussion 

Contact area and contact pressure have been an area of interest for many (Clark, Herzog and 

Leonard, 2002; Hsieh et al., 2002; Lee, Morris and Csintalan, 2003; Bachus et al., 2006; Merkher 

et al., 2006; Li et al., 2011). Contact mechanics studies have contributed to the understanding 

of load distribution and pathology in diarthroidal joints, using a range of methodologies. 

Different researchers have used different methods and tools; in vitro studies using pressure 

sensitive films such as Tekscan and Fuji films, in vivo studies using MRI scans and the use of 

computational methods are common. However, there has been little research carried out to 

investigate the contact mechanics in the PFJ, especially using Tekscan sensors (Leichtle et al., 

2014; Wang et al., 2015; Kim et al., 2016; Lorbach et al., 2016). 

This chapter discusses the development and application of a methodology using Tekscan 

pressure sensors to investigate the contact area and contact pressure in the porcine PFJ. A 

fundamental study was carried out to systematically investigate the effect of flexion/extension, 

axial force and superior/inferior displacement on the contact mechanics of the joint. This 

showed the change in contact mechanics when all the test conditions were kept the same and 

just one variable was changed. A gait cycle study was also carried out to replicate the conditions 

in five different stages in the gait cycle and the contact mechanics was investigated. 

In the gait cycle study, the contact area changed across the 5 points in the gait cycle. The contact 

area in the stance phase was larger compared to the contact area in the swing phase. This is 

because, during swing phase the feet do not touch the ground and there is no body weight 

applied. The highest contact pressure was observed in stage #4, just after the toe off region at 

the end of stance. This change in contact pressure was an indication of how the load is 

distributed during a normal walking cycle. At stance phase almost the entire body weight is 

applied but at swing phase, the leg lifts off the ground and the full body weight is not applied. 

Therefore, these points showed lower values.    

In the fundamental study, an increase in contact area was observed with increasing load. This 

was consistent with the contact area results presented by Clark et al. using Fuji films in feline 

PFJs. They observed an exponential increase in contact area with force (Clark, Herzog and 

Leonard, 2002). The forces in the PFJ decreased across the gait cycle. The contact area 
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decreased with this decreasing load but there was no trend in the mean and contact pressures. 

This is because as the contact load increases, the contact area will increase to maintain a 

constant contact pressure in the joint.  

In the fundamental study, the pressure increased with increasing flexion. A similar influence of 

flexion was noted by Geeslin et al. (2015) who investigated the influence of ligaments in the 

contact mechanics of cadaveric TFJ using Tekscan. They also observed a greater change in 

contact mechanics at larger flexion angles. TFJs with a meniscal tear showed 37- 52% decrease 

in contact area and 55-87% increase in contact pressure when flexion increased from 0-90⁰. The 

current study also observed larger contact pressures in conditions with lower contact area.  

The contact pressure showed an increase with respect to the position of the patella. There was 

a larger contact pressure in the inferior displacement compared to the superior.  This trend was 

more noticeable at lower loads. The contact area and contact pressure increased with 

increasing load despite the change in displacement or flexion.  

The contact area obtained in this study agrees with the results from the literature. Brechter et 

al. (2003) measured contact area in human cadaveric PFJ using Fuji Film and MRI. A custom-

made apparatus was used to apply a compressive load at 30⁰ flexion. In the current study, 

similar to Brechter et al, there was a large variation between the samples, ranging from a 

contact area of 1.4 - 4.5 cm2. However, the mean contact area in Brechter et al method was 

larger than the mean contact area in this study. They were in the range of 3 cm2 and the current 

study was below 2.4 cm2. Their study was on human cadaveric joints that would have a larger 

surface area compared to the porcine joints in this study.      

There was also a large variation between the samples in the contact pressure, ranging from 

1.06-2 MPa across the gait cycle. As seen from the fundamental study, the position did not have 

much effect on the contact pressure at higher loads. The position moved from superior to 

inferior across the gait cycle while the load was increasing.  

Pattern 1 and pattern 2 were seen on both the fundamental and the gait cycle study, ie, the 

same pattern on the same samples was observed. This implies that the pattern was related to 

the shape of the samples rather than the test conditions. The change in pattern observed under 
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the same test conditions clearly shows that the variation was due to the geometry of the 

individual patello-femoral joint as the curvature of the surface can influence the contact points 

on the pressure sensors.  

Other studies have also observed this change in contact mechanics across the samples. Brechter 

et al. observed a large variation between the 6 samples tested, ranging from 1.4 – 4 cm2 in Fuji 

film and 1.5 – 4.5 cm2 in MRI (Brechter et al., 2003). Wang et al. (2015) investigated the contact 

pressure on the tibial plateau at various meniscal conditions using Tekscan pressure sensors. 

They observed a site dependent variation in all conditions and specimens. This also suggests the 

influence of the geometry of the joint in its contact mechanics.  

The geometry of the joints was shown to have an effect on the contact mechanics. The tests 

were conducted with exactly the same conditions on each sample but the results varied across 

the samples. The geometry of each sample was different in terms of the area of the patella and 

the curvature of the groove. All the samples used in this study were from pigs of the same age 

range obtained from the same abattoir. No visible correlation was observed between the 

weight of the animal and the geometry of their joints. Some of the heavier animals had the 

smallest patella and the flattest groove.  

Biological variation exists incoherently and the change in geometry between the samples is one 

of the reasons for the variation in contact mechanics across the samples. Larger patellae would 

have larger contact area as they simply had a larger surface area for the contact (Besier et al., 

2005; Gorniak, 2009). Nevertheless, this is not always true because other factors such as the 

curvature of the joint will also contribute to the contact area.  

The contact mechanics of the joint can change with the anatomy of the patella and femoral 

groove. This was observed in several studies conducted on human samples in the past (Wiberg, 

1941; Kwak et al., 1997). Kwak et al. (1997) characterised the surface topography of the joint 

and found the types of patella found among the population. Through clinical images and surface 

analysis of these joints they observed a link between the anatomy and pathology caused by 

unequal distribution of loads such as patellar misalignment.  
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Although not measured during the dissection process, it was observed that some patellae had 

a more distinct ridge between the odd and medial facet compared to others. This was supported 

by Gunnar Wiberg’s statement that there was a higher contact pressure between a convex 

patellar facet articulate against a convex femoral condyle. In these types of joints, the ridge 

between the medial and odd facet of the patella were distinctive (Wiberg, 1941).  

During the dissection process in this study, a difference in the geometry of the joint in terms of 

the curvature of the femoral condyles and patella facets was observed. In some patellae the 

ridge between medial and lateral facet was not distinct although the femoral groove was deep 

and defined. This scenario could explain the two different patterns observed in this study. When 

the geometry allows the articulating surfaces to mate appropriately, the contact area will be 

larger as seen in pattern 1. Otherwise, there will be a larger concentration of stress in areas 

where the mating of the surfaces is difficult. This is why pattern 1 had a larger contact area 

compared to pattern 2 and pattern 1 showed lower peak pressures compared to pattern 2.  

Studies conducted using pressure sensitive films often use minimal dissection techniques to 

allow the film to be inserted between the joint with minimal disruption to the surrounding 

tissue to keep the joint as intact as possible (Leichtle et al., 2014; Padalecki et al., 2014; Lorbach 

et al., 2016). This is often carried out using arthroplasty technique and the sensors are sutured 

in place (Jansson et al., 2013; Wang et al., 2015; Lorbach et al., 2016). However, the current 

study was carried out on a knee model that had all the soft tissues removed. This simplifies the 

process and allows the sensors to be placed without surgical interventions. Although this was a 

static study, the Tekscan method had advantages over other techniques used by several studies 

in the past. The sensors were capable of calculating static and dynamic contact mechanics and 

were also more accurate than other techniques such as Fuji film. Bachus et al. (2006) compared 

Fuji and Tekscan on a known surface using Instron and found that Tekscan can produce an 

accuracy of over 95% on plain surfaces. However, the results from this study showed a larger 

discrepancy between Tekscan and actual applied load.     

Studies using intact knee joints usually fix the sensors within the joint using sutures (Lorbach et 

al., 2016). In the current study it was fixed to the patella using plastic tape to ensure that the 
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film did not move during testing. Fixing the sensors allowed adequate and constant fixation of 

the sensors in each sample. This ensured that the position was comparable in every sample.  

Many researchers have investigated the contact mechanics using Tekscan pressure sensors in 

an intact whole joint (Padalecki et al., 2014; Geeslin et al., 2015; Wang et al., 2015; Kim et al., 

2016; Lorbach et al., 2016). Having a simple model like the one developed in this study has 

several advantages.  

As the kinematics was displacement driven rather than force driven, it did not require the 

presence of muscles and other soft tissues around the bones. Unlike the whole intact joint that 

require a specially trained individual to carry out the arthroplasty to insert the sensors at the 

correct position, the placement of the sensors in this model could be done very easily without 

prior training. The simplicity in dissection, setting up and conducting the experiment makes it a 

consistent method that could be followed by researchers from various skill sets and 

background. The presence of soft tissue was a risk to the sensors in an intact joint. Exposure to 

an aqueous environment has been shown to degrade the sensors and affect the results (Jansson 

et al., 2013). 

There is limited data in the literature that investigates the limitations of Tekscan and the 

variations in the results. Jansson et al showed a reduction of 4.6% load output per hour when 

Tekscan was exposed to aqueous environment. This suggested diminished Tekscan output on 

tests carried out in moist environment (Jansson et al., 2013). The verification tests carried out 

on the sensors in the current study showed an up to 7% increase in Tekscan load at the end of 

the contact mechanics study. This may have affected the contact pressure results in this study. 

However, as the same conditions were followed for both the fundamental and gait cycle study, 

the comparison between the studies were still reasonable.  

The accuracy of Tekscan on uneven complex geometries such as the knee is not as accurate as 

the results on an even plane. This could be due to a number of reasons. There were possible 

risks of the crinkling of the sensor and excess load saturation over the calibration limit (LaPrade 

et al., 2014; Padalecki et al., 2014; Geeslin et al., 2015). During the experiment, although it did 

not occur in this case, crinkling of the sensors could damage individual sensels that could lower 

the outputs. In the future the chances of these errors could be minimised by adjusting the data 
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set with respect to the neighbouring cells by taking the mean of the surrounding rows and 

columns of sensels.   

The small sample size of this study was another limitation. Patterns and trends would be easier 

to identify if the sample size was larger. Increased sample size could also reduce the effect of 

factors such as geometry that causes the large variation between the samples. However, at this 

stage for developing the methodology this sample size was adequate to demonstrate the 

feasibility of this method.   

8.5 Conclusions  

This study showed the capability of Tekscan pressure sensor in determining the contact area 

and contact pressure between the patella and its groove at various points in a gait cycle using 

a joint simulator. There was a significant increase in contact area and pressure with increasing 

load. Through the fundamental study it was concluded that the significance of displacement 

and flexion on the contact mechanics can be influenced by other factors. The results showed 

that the geometry of the joints had an effect on the contact mechanics.  
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Chapter 9. Overall Discussion and Conclusions 

Preclinical testing is a vital stage before administrating a new drug or implanting a new device 

or tissue. It helps to assess the safety and reliability of the product and can identify potential 

adverse effects on the patient. It is a requirement before a drug, device or tissue is considered 

safe for clinical trials in humans. These preclinical tests are often carried out in vivo in animals 

and the choice of animal model based on that which most closely represents the anatomy 

and/or physiology and/or mechanism of the condition being treated in humans (Suzuki et al. 

2008; Ding 2016; Yang 2016; Bar-Cohen 2015). Such in vivo animal trials can be costly and are 

not always successful. This highlights the need for in vitro preclinical testing, which is less costly 

and able to screen out interventions that are not likely to be successful, reducing costly failures. 

According to the U.S Food and Drug Administration (FDA.gov, 2016), animal testing is required 

for most medical devices. Many in-vitro studies are not yet validated scientifically as an 

alternative for animal testing. However, FDA and many other institutions have ongoing research 

and development work aiming to replace the need for animal testing (FDA.gov, 2016). This is 

where the work in this thesis contributes. It fills the gap before in vivo animal testing, screening 

out devices and interventions that are likely to fail.  

This final chapter discusses how the thesis has met the overall aims and objectives of the 

project. The main aim was to develop a methodology using a tribological knee simulator to 

investigate the biomechanics and wear in natural patello-femoral joints (PFJs). The first 

objective was to choose an appropriate animal model for the study. Secondly, a single station 

knee simulator (SSKS) was modified to test the natural PFJs. Finally, various methodologies were 

developed and tested to investigate the contact mechanics and wear in the joints. 

In this chapter, the methods established and the conclusions made from the investigations will 

be evaluated. The limitations of the studies and improvements that can be implemented will 

also be discussed. There are future works that can continue from the studies discussed in this 

thesis. These were either not in the scope of this current project or not achievable due to the 

timescale of the project. However, these will benefit the long term goals of this project which 

is the pre-clinical assessment of the biotribological performance of osteochondral substitutions.  
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Developing the methodology to investigate the wear in porcine PFJs was one of the most novel 

aspects of this project. Simple geometrical pin-on-plates systems are a well-established model 

for the study of cartilage tribology (Lipshitz and Glimcher, 1974, 1979, Lipshitz, Etheredge and 

Glimcher, 1975, 1980; Krishnan, Mariner and Ateshian, 2005; Northwood and Fisher, 2007; Kock 

et al., 2008) . A more complex model has been developed in this thesis to investigate a whole 

natural PFJ.  A porcine tibio-femoral (TFJ) model has been previously developed in the same lab 

to investigate the tribology of the natural joint using a knee simulator (Liu et al., 2015). This 

thesis reports a practical and consistent method that was established to investigate the 

biomechanics and biotribology of the PFJ using the same simulator.  

This thesis describes the development of an in-vitro model that can be used for the pre-clinical 

testing of tissue substitutions in the PFJ. A methodology that simulated the wear in natural 

joints using a simulator with 6 degrees of freedom has been developed. The wear was assessed 

using ICRS grading, wear area measurements and surface roughness measurements. The 

contact area and pressure at different conditions were measured using Tekscan sensors. The 

simulator model and the experiments conducted in this study provide a platform for replicating 

the in-vivo behaviour of the natural PFJ under different physiological conditions.   

Choosing an animal model  

The first stage of this project investigated an appropriate animal model for the PFJ. The animal 

joint was required to be similar in size to the human joint in order to carry out comparative 

studies. Bovine and porcine PFJ were available as the possible alternatives for the animal model.  

The geometry and size of the porcine joint was more comparable to the human joint than the 

bovine joint. It was also more accurate to prepare the porcine samples for the tests than using 

a bovine joint as it was easier to handle. A porcine model was previously developed under 

similar conditions for investigating the tribology and biomechanics of a TFJ (Liu et al. 2015). 

Therefore, using the same model for the PFJ was also advantageous in terms of repeatability of 

tests and comparing the results between the two joints. Therefore, the porcine joint was chosen 

as the animal model.  

Tissue substitutions methods such as osteochondral transplantation are minimally invasive 

treatments required to repair damaged articular cartilage in diarthrodial joints. This project 
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developed a PFJ model that can be potentially used for applications such as the testing of tissue 

substitutions that repair PFJ cartilage lesions. Therefore, the cartilage in the animal model must 

also have similar material properties to the human cartilage that would potentially require 

osteochondral transplantation. The porcine and human patello-femoral cartilage was 

characterised by measuring the thickness, equilibrium elastic modulus and the permeability of 

the cartilage. The results did not show any significant differences between porcine and human 

patello-femoral cartilage and hence porcine cartilage was concluded to be suitable for this 

study. However, the difference in the age and species may affect the biological composition of 

the tissue. Since the porcine tissue was sourced from young (6 months) animals the skeletal 

maturity of the porcine tissue was a limitation of this model with noticeable differences in the 

bone density, presence of growth plate and difference in material properties of its cartilage.  

Developing the simulator study 

The contact point study investigated the position of the patella with respect to the femur. This 

was required to define the starting (neutral) position of the patella during the gait cycle. It was 

concluded that at the beginning of flexion the patella sits on the superior end of the femur and 

travels inferiorly as flexion progresses. This kinematics was similar to that observed in human 

PFJs (Herrmann et al., 2012). The results from the experimental method and the theoretical 

model created in SolidWorks based on findings from literature (Akbar et al., 2012; Herrmann et 

al., 2012; Kittl, Schmeling and Amis, 2015) were used to define the neutral position of the PFJ. 

The assumptions described in Chapter 6 to create the simplified SolidWorks model were a 

limitation to the computational part of this study. This simple model was however appropriate 

for the purpose of this study as described in Chapter 6. In the future, a complex model (for 

example, a dynamic model) that can provide more intricate geometrical analysis of the joint 

could be explored to provide a stronger validation for this contact point study. 

Custom made fixtures were designed and manufactured in order to mount the sample into the 

simulator in a consistent and repeatable manner. One of the challenges of using natural tissue 

is the variability between samples.  There was a large variation in the geometry of the centre of 

rotation of the patello-femoral groove so a method was developed to determine the radius of 

curvature of the patello femoral groove. This was used to determine the centre of rotation for 
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each sample before it was cemented into the fixtures. Therefore, this ensured consistency 

throughout the study.  

Once the samples were cemented in the fixtures, they were mounted on the SSKS for testing. 

In terms of kinematics, a porcine gait cycle was developed for the dynamic testing profile, which 

was adapted from the artificial PFJ gait cycle and porcine TFJ gait cycle (Ellison et al., 2008; Maiti 

et al., 2014; Liu et al., 2015) used previously in the same laboratory.   

Wear study 

A single station knee simulator (SSKS) was modified to carry out the contact mechanics and 

wear study on the porcine PFJ. New fixtures were designed and manufactured to hold the 

specimens in the simulator. The wear study introduced the use of an Alicona IF G5 optical 

profilometer to assess the change in cartilage topography in natural joints. It was used to 

analyse the surface roughness at each test condition which showed that the roughness values 

in the positive control of cartilage on metal was larger than the negative control of cartilage on 

cartilage.  

Alicona IF G5 is not yet recorded in the literature as a tool for assessing cartilage wear. It has 

several advantages over other profilometers. Unlike surface measurement tools such as AFM 

and Talysurf, this does not require a contacting stylus for surface measurements. The current 

study established the use of Alicona for surface roughness measurement carried out on rubber 

replicas obtained from the surface of the samples tested. The results obtained using this 

method underestimated the surface roughness of cartilage by ~40%. 

Alicona IF G5 is capable of scanning large surfaces in 3D which can help to better understand 

the surface topography compared to a 2D trace. In future studies this feature could be used to 

explore the potential for volumetric measurements to quantitatively measure the cartilage loss 

from wear studies. The volume measurement module located in the analysis software (IF 

Measure Suite) of the Alicona can be used to calculate the volume of cartilage defects (mm3) as 

the total volume below the surface. A reference plane/mesh can be placed on the sample 

surface and the volume between the plane and the material underneath can be measured. In 

order to quantify the change in volume extending below cartilage surface level (volume of wear/ 
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deformation) a baseline measurement of the volume that extends below the cartilage surface 

of negative control samples can be compared to the volume of wear in the experimental groups. 

This method can quantify the wear/ deformation by measuring the change in geometrical 

volume of the cartilage samples. It is a promising technique to compare the effect of different 

types of substitutions and their implant techniques on the wear of cartilage.   

The current wear study was carried out for 5hrs at room temperature. The positive control of 

cartilage against metal showed cartilage deformation and increased surface roughness. 

However, there was no visible cartilage damage or loss. Longer test duration, higher loads and 

motions may all produce higher wear but this will require the joint to be sustained in the 

simulator for a longer period of time. Since natural tissue degrades, further extended duration 

testing over 24 hrs is not currently feasible using the current set up and conditions.  

However, this may be possible in the future if PFJs can be mounted aseptically and tissue kept 

alive for longer with the addition of special design features to the simulator. Compared to 

previous simulators in the lab, the test volume in the current machine can be significantly 

increased to permit the setup of a sealed test chamber under aseptic conditions, with direct 

temperature control. There are certain chemicals that can be added to the lubricator to keep 

the tissue alive for longer. These methods can be used in the future to prolong the duration of 

wear tests to obtain quantitative wear data. This will broaden the scope for the tissue 

substitutions that can be tested using this system.  

The current wear study did not produce significant wear in the positive control and therefore 

was not successful as a test protocol. The gait cycle representing the walking motion is not 

sufficiently severe to produce wear and therefore future studies must apply a larger flexion 

angle representative of daily activities such as stair climbing. This will increase the motion and 

severity of the test which can produce greater wear comparable to worse case scenarios.   

Contact mechanics 

Contact area and pressure can be used to predict the wear and failure of osteochondral 

substitutions. This thesis discussed the development and application of a methodology to 

investigate the contact mechanics of the PFJ using a Tekscan. The contact mechanics of the joint 
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was investigated by measuring the contact area and contact pressure at various points in a 

porcine patello-femoral gait cycle. Several researchers have reported the study of contact 

mechanics in natural joints using different techniques. Although the current study was able to 

provide quantitative area and pressure measurements, the variations in parameters such as 

load, flexion and type of joint used by other researchers has made it difficult for a direct 

comparison. 

Two types of test were carried out; the fundamental contact mechanics study and the contact 

mechanics at five different stages in the gait cycle. The same 6 samples were used for the two 

studies to ensure that the results from the fundamental study could be compared to the gait 

cycle study without any variation among samples within the two tests. The fundamental study 

was carried out to systematically investigate the effect of flexion, load and displacement. There 

were two patterns of contact mechanics observed in the 6 samples in each test type, which 

indicated the difference in the geometry of the samples.   

In the gait cycle study, the contact area decreased across the gait cycle. The contact area in the 

stance phase was larger compared to the contact area in the swing phase. This was because, 

during swing phase the feet do not touch the ground and there is no body weight applied. The 

highest contact pressure was observed just after the toe off region at the end of stance. This 

change in contact pressure was an indication of how the load is distributed during a normal 

walking cycle.  

The fundamental study showed that the contact area increased with increasing load and the 

pressure increased with increasing flexion. It also displayed larger contact pressures in 

conditions with lower contact area. The contact pressure showed an increase with respect to 

the position of the patella, with a larger contact pressure in the inferior position compared to 

the superior.  This trend was more noticeable at lower loads. The contact area and contact 

pressure increased with increasing load despite the change in displacement or flexion. 

The complexity of the surface geometry of the knee can affect the accuracy of Tekscan.  It works 

well on plane surfaces as there is risk of uneven load saturation in sensels around curved 

surfaces (LaPrade et al., 2014; Padalecki et al., 2014; Geeslin et al., 2015). This is usually caused 
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by the creasing in the sensors around the curved surfaces, in which case it could be resolved by 

adjusting the challenging data set with respect to the neighbouring cells by taking the mean of 

the surrounding rows and columns of sensels.   

Future work 

This thesis has established the suitability of a porcine model as a valid biomechanical surrogate 

for human joints for the purposes of developing a preclinical test method for the PFJ. The 

model/method developed in this research project will in the future be used for testing the 

performance of tissue engineered solutions for the treatment of osteochondral lesions in the 

PFJ and will aid the understanding of the biomechanics of the joint under various conditions.  

The sample size of n=6 could be considered a limitation of this study. Patterns, trends and 

significance would be easier to identify if the sample size was larger. It could also reduce the 

effect of inherent biological factors such as geometry that causes the large variation between 

the samples. In future studies, to reduce variation, the samples could be measured and divided 

into batches depending on the size and geometry of the samples. Measuring the radius of 

curvature of the groove, femoral sulcus angle, length and width of the femoral groove and 

patella, the curvature on the femoral condyles and the patellar facets could all contribute 

towards categorising the samples.  However, at this stage for developing the methodology this 

sample size was adequate to demonstrate the feasibility and applications of the methods.   

The purpose of this model was to simulate the dynamic motions of the PFJ using displacement 

control in an SSKS. The displacement control system does not require the muscles and soft 

tissue around the joint to apply the kinematics. This simplified the experiment, eliminated any 

discrepancies that could have been caused by the disruptions in the muscle forces and gave 

consistent input kinematics for each sample. A more complex model comprising the entire soft 

tissues could be developed in the future for more applications. It could investigate the effect of 

various muscle forces or surgical techniques on the contact mechanics and wear of the joint.  

The methodology established in this study could be developed further to establish longer 

duration of test method. Future studies to determine porcine kinematic data and patella 

position parameters could be carried out to improve the test profiles for porcine kinematics. 
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Certain in-vivo studies currently carried out on live animals (Martinez-Carranza et al. 2016) 

could be simulated at least on some level using the in-vitro test methodologies and cadaveric 

human tissue. The animal model developed could be used to generate pre-clinical data to 

transition many lab based tissue engineered products to the treatments in patients. This could 

also reduce the number of live animal needed for the pre-clinical studies.  

The integrity of the graft and subsequent loosening from the recipient site is a common 

challenge in OAT procedure (Trattnig et al., 2007; Turtel et al., 2015). The biomechanics of the 

graft in an in-vitro animal joint has never been investigated before. The model could be used to 

investigate the interactions of osteochondral grafts and substitutions within a natural joint. The 

capability of this system to apply physiological loading and kinematics will make this a perfect 

simulation for these types of studies. 

The contact mechanics study could be used to investigate the integrity of grafts in the joint. It 

could provide the pressure difference on the graft interface and assess how well the plugs fit 

into the recipient site. Although in the current study, Tekscan was used for static loading on 

natural joints, these sensors are capable of real time data acquisition. Future work could 

investigate the use of Tekscan sensors on dynamic loading of the joints which could provide a 

visual representation of how the plugs interact within the joint during the gait cycle.  

Conclusion 

The methodologies developed and tested in this study have the potential to investigate the 

contact mechanics and wear in human PFJ under different conditions and to develop the pre-

clinical testing of the osteochondral substitutions. This thesis has established the suitability of 

a porcine model as a valid biomechanical surrogate for human joints for this purpose.   
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