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ABSTRACT 

In systems engineering and especially in manufacturing systems, first-principle 

models have been widely used for systems modelling. However, advanced 

manufacturing systems are often complex and information intensive rendering 

conventional modelling approaches via first-principle models inconvenient for use due 

to their high computation cost and on some instances limited accuracy. The main 

objective of this thesis is to develop parsimonious transparent, interpretable and 

computationally efficient soft-computing techniques and human-centric systems to 

address challenges associated with modelling complex manufacturing systems such as 

high-nonlinearity, measurement imprecision and sparsity as well as low process 

repeatability.  

A new data-driven modelling framework based on granular computing (GrC), 

radial basis function neural fuzzy (RBF-NF) system and conflict measure is proposed 

in order to allow for the quantification of the uncertainty present during the initial 

structure identification of a RBF neural fuzzy system. Such framework can be easily 

translated into human language via simple linguistic rules in order to describe the 

underlying dynamics behaviour of complex industrial processes with good 

generalisation capability, tolerance to input imprecision and low computational cost.  

A new perpetual learning approach for neural-fuzzy systems is proposed. The 

proposed perpetual learning framework combines more advanced system’s features 

such as the ability to continuously learn from batch data and periodically update its 

structure to accommodate new data/information without significantly disturbing the 

previously gained knowledge and, therefore, allowing for the ability to have an open 

structure while taking into consideration the trade-off between interpretability and 

accuracy.  

To confirm the effectiveness of each of proposed frameworks in this thesis, a 

rigorous set of simulation results is presented on well-known benchmark functions as 

well as real industrial case studies. The perpetual learning concept has great potential 

for successful implementation in systems where lifelong learning is required.  
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CHAPTER 1 - INTRODUCTION  

1.1. INTRODUCTION  

 cross a wide variety of fields and disciplines such as in social systems, 

political systems, medical systems, advanced manufacturing systems, etc., 

large amounts of data is being routinely generated, collected and stored in 

large databases [1, 2]. These databases are a possible ‘treasure trove’ of 

useful and valuable source of hidden information. However, in real situations when 

dealing with information, uncertainty often emerges in form of deficiency in 

information. It appears in almost every system’s measurement as a result of 

incompleteness, impression, fragmentary, vagueness, and contradiction associated with 

measurements [3]. Due to the aforementioned reasons, information obtained from a 

system is often not fully reliable [4].  

This leads to a need for computational theories and tools to assist humans in 

quantifying information and then extracting useful knowledge out of uncertain events. 

From a historical point of view, the study of uncertainty has not been adopted within 

the scientific community until the late nineteenth century when physicists noticed that 

Newtonian mechanics did not address the issue of uncertainty [5]. Subsequently, they 

went on and developed new methods known as statistical mechanics that could capture 

a form of uncertainty, which could be described as a probability theory or generally 

referred to as a random uncertainty [5]. The development of the statistical mechanics 

triggered the need for the developments of methodologies that consider the influence 

of uncertainty on real-world problems [6]. Such methodologies aimed to improve the 

robustness of the models. In this sense, a credible solution to the problem is achieved 

and at the same time the amount of uncertainty is quantified.     

1.1.1. TECHNIQUES FOR HANDLING UNCERTAINTY 

For more than two centuries, the issue of uncertainty has been a vital research area 

in order to aid making decisions and develop models that mimic the human cognition 
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when dealing with complex systems. Until the late twentieth century, the probability 

theory had been the leading theory for processing and quantification of information 

uncertainty. However, as a consequence of the gradual evolution of the correct 

processing and quantification of uncertainty, the probability theory was challenged by 

many authors. First, it was challenged by Max Black in 1937 [7] when he studied a type 

of uncertainty associated with linguistic information called vagueness. Then Lotfi 

Zedeh in 1965 [8] challenged not only the probability theory but also the theory (i.e., 

classical binary logic) upon which probability theory was based. Moreover, Zadeh went 

on and introduced fuzzy sets theory in his pioneering paper [8]. On one hand, Zadeh 

extended the notion that instead of the classical set {0, 1}, the mapping of the 

membership function is defined in the real unit interval [0, 1]. To put it in another way, 

the notion of fuzzy set denoted by a group of elements where each element in a universal 

set is characterised by a membership function that takes values in the interval [0, 1]. 

Fuzzy set theory was introduced to deal with a certain types of uncertainty associated 

with intuitive information or linguistic information. On the other hand, in 1976 Shafer 

extended the theory of evidence introduced by Dempster 1967 to produce a complete 

mathematical theory of evidence which allows to make decisions based on information 

from more than one source [9]. The concept of fuzzy set theory was extended by 

Negoita et al. [10] to the possibility theory which is dedicated to deal with incomplete 

information [11]. In 1982, Pawlak introduced another mathematical theory known as 

rough sets theory to deal with uncertainty associated with linguistic information [12]. 

A paper was published by Klir in 1993 in which the author reviewed the advances and 

shortcomings in the development of theories for measuring of uncertainty [13].  

Despite a number of theoretical frameworks have developed to deal with 

uncertainty [8, 9, 12, 14-16], there has been a debate about which is the best theoretical 

framework that is adequate to correctly capture, process and then effectively describe 

uncertain situations. It is highly difficult to answer which is the best theoretical 

framework for the quantification of uncertainty.  Since the main sources of uncertainties 

can be broadly categorised into: a) random event; b) experimental error; c) uncertainty 

in judgement; d) lack of evidence and e) lack of certainty in evidence [4], it is obvious 
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that several types of uncertainties exist. Therefore, the selection of which theory can be 

used to quantify uncertainty is problem-dependent [3].     

1.1.2. KNOWLEDGE BASED-SYSTEMS IN SYSTEMS ENGINEERING 

Specific to systems engineering particularly in the fields of data analysis, systems 

modelling, reasoning under uncertain situations, and decision-making, in the last three 

decades a lot of attention has been paid from some researchers and practitioners in order 

to capture, process and understand the nature of uncertainty associated with complex 

systems. Uncertainty and imprecision usually arise as a result of incomplete 

information and lack of knowledge reflected in system’s structure, inputs, and 

parameters. In systems engineering, uncertainty can be broadly categorised into two 

types, namely, aleatory uncertainty and epistemic uncertainty [17, 18]. On one hand, 

the aleatory uncertainty refers to the inherent randomness in nature as a consequence 

of system natural variability. This type of uncertainty cannot be reduced or eliminated 

by collecting more information or knowledge. It is sometimes also called irreducible 

uncertainty, random uncertainty, natural variability, or real-world uncertainty. 

Probability theory is the most widely used theoretical framework in dealing with this 

type of uncertainty [17, 18]. On the other hand, the epistemic uncertainty refers to 

uncertainty that emerges as a lack knowledge (information) of the physical world as 

well as a lack of ability to measure and model the physical world. Unlike the former 

type of uncertainty, the epistemic uncertainty can be reduced or eliminated by collecting 

more knowledge about the problem and appropriate methods.  It is sometimes also 

referred to as knowledge uncertainty, information incompleteness, or subjective 

uncertainty [17, 18]. Fuzzy sets theory has high potential to handle human ambiguity 

by modelling epistemic uncertainty through fuzzy sets and their corresponding 

membership functions.  

In this context, the essence of uncertainty-based information relies on the 

theoretical framework within which uncertainty relating to solve various real-world 

problems is formalised. In systems engineering, there has been an increasing interest 

on system features with a special focus on transparency and interpretability. Such 

features play an important role for a better understanding of complex and poorly 

understood systems.  To put it in another way, the more interpretable the information 
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of a system under investigation, the better its comprehension. Therefore, extracting 

meaningful information, processing, and then translating it to ‘easy to interpret’ 

information is a critical step towards developing computational models, especially in 

case when dealing with complex and highly nonlinear systems. However, in some of 

advanced and more complex systems, obtaining knowledge about systems from experts 

is difficult. This is mainly due to complex nature and lack of understanding of the 

systems themselves. To overcome the aforementioned limitation, during the last two 

decades data mining has been used to derive knowledge from process data. Data mining 

also termed knowledge discovery in databases is one of the most pursuits that humans 

perform almost on a daily basis. It is a power technique for data processing, analysing, 

and summarising these data in order to extract meaningful knowledge. Part of the 

knowledge may be known to experts, but the other part is completely new to non-

experts. The extracted knowledge aids people understand and recognise some of the 

intricacies associated with complex systems. 

 Owing to the complexity and uncertainty associated with many real-world 

systems, conventional approaches to systems modelling that usually based on first-

principle mathematical models or differential equations often offer poor modelling 

performance.  In this sense, fuzzy systems including fuzzy sets theory and fuzzy logic 

appear to be an effective and a suitable tool for accurate modelling/representing of 

complex systems and at the same time has the ability to provide system transparency, 

which is primarily due to their ability to utilise interpretable linguistic rules that are 

extracted from process data/information. These linguistic rules can be used to facilitate 

the understanding and analysis of the system under investigation in a qualitative or 

semi-qualitative manner near to human reasoning [6]. For this reason, in the literature 

efforts have been devoted for developing fuzzy systems with a good balance between 

interpretability and complexity. According to [19], in fuzzy systems interpretability and 

accuracy are two conflicting requirements. That means, a fuzzy system with a low 

degree of interpretability often more accurate or vice versa.  

In a deeper context, several studies have primarily concentrated on the 

establishment of functional equivalence between a class of fuzzy logic systems and a 

type of neural networks called radial basis function (RBF) [20, 21]. RBF-NN is a 
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prominent non-linear input/output mapping for complex systems [22]. It has shown a 

great success in performing many tasks such as exact functions approximation, 

regularisation, noisy interpolation, and pattern recognition [23].  Despite the RBF-NN 

is regarded as a black-box model, it is a powerful modelling tool when it is combined 

with fuzzy logic (FL) by taking advantages of both neural networks (learning 

capability) and fuzzy logic (transparency and interpretability) [24]. That means, the 

initial structure of the RBF-NN identification can be achieved similarly to that 

employed in FL systems [25, 26]. In other words, the RBF-NN parameters which 

represent the consequent and premise parameters in fuzzy systems are estimated 

systematically from observational data via a clustering approach and then the 

parameters are adjusted more precisely via a gradient-based approach to complete the 

modelling process [26]. In this context, neural-fuzzy systems appear as a modelling 

paradigm that combines the advantages of FL systems regarding transparency with the 

advantages of NNs in terms of learning capabilities.    

1.1.3. APPLICATIONS OF RULE-BASED SYSTEMS IN  MANUFACTURING 

SYSTEMS 

A large and growing body of literature has applied the neural fuzzy systems to 

modelling of complex manufacturing processes such as in metal processing [26-29]. 

Such manufacturing processes are known in industry for their high complexity and 

nonlinearity. Therefore, the interpretability of neural fuzzy systems (NFSs) is a very 

important property, since it allows the transformation of process data into human 

knowledge. The extracted knowledge can also be combined with expert knowledge to 

aid understanding the dynamic behaviour of the system as well as to confirm the 

system’s validity [27]. For this reason, the interest of the researchers and practitioners 

in interpretability of NFSs has grown, which has led to the appearance of a great 

quantity of research work with the intention of developing more interpretable rule-

based models without losing the overall accuracy of the models. 

Studies relating to interpretability improvement in NFSs have been focusing on 

developing data-driven computational intelligence modelling frameworks that usually 

include the initial structure identification, partition validation, input selection, rule-base 

simplification, and constrained parametric optimisation. However, studies on 
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improving system’s feature including simplicity, interpretability and transparency as 

well as on strong link with human reasoning (human-centricity) are quite few [27, 30]. 

For instance, in [27] Panoutsos and Mahfouf developed a data-driven computational 

framework based on granular computing theory. The purpose of this work was to 

provide good modelling performance as well as to maintain the overall transparency 

during the modelling process. More recently, Solis and Panoutsos presented a 

systematic NFS based on granular computing, and neutrosophic logic [29, 31]. These 

studies aimed at reducing uncertainly during the information granulation process in 

order to enhance the system transparency and interpretability   

1.1.4. TYPE-2 FUZZY LOGIC SYSTEMS 

Quite recently, researches on type-2 fuzzy logic systems (T2-FLSs) have attracted 

much attention [32-34]. This is due to their ability to better handle the measurement 

noise and linguistic uncertainties. Therefore, particular efforts have been devoted to 

develop neural fuzzy systems by taking advantages of type-2 fuzzy sets with the view 

of handling the linguistic uncertainty that cannot be handled via the fuzzy sets of type-

1.  For instance, in [35] the authors published a paper in which they established the 

functional equivalence between the IT2-FLS and interval type-2 radial basis function 

neural network. 

1.1.5. MODELLING OF FRICTION STIR WELDING 

As discussed above, due to the high degree of complexity and nonlinearity 

associated with many manufacturing systems, the resulting process data are often 

vague, imprecise, and uncertain.  It is often difficult to extract meaningful knowledge 

out of such data and use this knowledge to create computationally efficient and 

interpretable models. Among complex manufacturing systems is Friction Stir Welding 

(FSW), which was invented in 1991 by Wayne Thomas at TWI, United Kingdom [36] 

as a practical and non-conventional solid-state welding technique. The success of the 

process and the excellent weld quality produced by the process is evident by the number 

of applications [37]. Due to thermo-mechanical coupling of the process, the relationship 

between the process conditions (inputs), internal process variables and the final quality 

in the friction welding process is nonlinear and complex. For this reason, several 
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attempts have been made by researchers and metallurgists to describe these phenomena. 

For instance, researchers and metallurgists often conduct a number of experimental 

trials to study/analyse the influences of process parameters on weld quality and then 

design the standard/optimal parameters according to the obtained laws. However, this 

technique is costly and requires a lot of efforts, experience, and time which make it very 

difficult to establish a precise first-principle mathematical model. In addition to the lack 

of physical knowledge, complexity and uncertainties in the process conditions, the 

actual effects of the process input parameters and internal process variables on the final 

weld quality are hard to quantify. Therefore, this case demonstrates the need for better 

techniques for modelling the FSW process. On one hand, process models, both 

mathematical and physical, are efficient tool to analyse and predict the performance of 

the process. And on the other hand, establishing the relationship between the process 

conditions (inputs), and internal process variables and then relate them to the final post-

weld prosperities is of paramount importance for such process. Therefore, studying 

these correlations could be beneficial to design a practical, safe, and optimal FSW 

process as well as process monitoring and control. 

Numerous studies have attempted to develop models via analytical and numerical 

modelling approaches including finite elements analysis (FEA) models and 

computational fluid dynamics (CFD) in order to identify the link between process input 

parameters, internal process variables and post-weld properties. A comprehensive 

review of the latest developments in the field of analytical and numerical modelling of 

FSW process, microstructures, and mechanical properties can be found in [38]. Despite 

the intensive researches on FSW modelling via analytical and numerical modelling 

approaches, the main drawbacks and limitations lie in their high computation cost, and 

limited accuracy [38]. For these reasons, analytical and numerical modelling 

approaches are not feasible for real-time use.  

In the last decade, a fewer community of researches and metallurgists have 

embraced the use of data-driven computational intelligence (CI) models via developing 

soft-computing techniques for modelling of FSW. Mathematical models via data-driven 

computational models were developed to remedy the aforementioned drawbacks and 

limitations of analytical and numerical models. These data-driven CI methods include 
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artificial neural networks (ANNs), fuzzy logic systems (FLSs), genetic algorithms 

(GAs), etc. Such data-driven CI models are widely used in the area of engineering and 

material science. For instance, in [39] an ANN was used to model and study the effects 

of the FSW process parameters on the weld mechanical properties for aluminium 

sheets. In more recent studies [40] [41, 42], systematic data-driven modelling 

frameworks to model the FSW process for  aluminium alloys were developed. The aim 

of these studies was to develop interpretable, accurate, and robust neural fuzzy systems 

for modelling the correlations between the input parameters, the internal process 

variables (namely bending forces), and the final weld quality.  

Reviewing the past and on-going researches that focus on the area of data-driven 

modelling, monitoring, and control of FSW, a very limited number of researches has 

been reported but all of them are focused of FSW for aluminium, however in the field 

of steel friction stir welding, no previous research has been conducted on this field.  

1.2. PROBLEM STATEMENT  

In the field of soft-computing, several theoretical frameworks have been proposed 

in order to capture, process and then describe various types of uncertain and incomplete 

or imprecise information. Among them is fuzzy sets theory, which is considered as the 

main theoretical framework for dealing with uncertainty in a very intuitive and natural 

manner.  A considerable amount of literature has been published on the development 

of fuzzy systems with a good balance between interpretability and accuracy. These 

studies include data clustering methodologies to extract fuzzy rules from data while 

maintaining the interpretability of the FLS during learning via optimisation algorithms 

and after learning via rule-base simplification approaches [19, 26, 43-45]. 

More studies can be found in literature with a particular focus on achieving a trade-

off between interpretability and accuracy. For instance, in [46] Zhou and Gan presented 

a taxonomy of interpretability according to the different components of the FLS and 

they divided the interpretability into two categories namely: low-level interpretability 

and high-level interpretability. The former can be obtained with regard to semantic 

criteria of fuzzy sets by optimising the membership functions (MFs). While the later 
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can be obtained when dealing with the consistency, completeness, and coverage on 

fuzzy rules after the parametric optimisation with regard to the criteria on fuzzy rules.   

It appears from the aforementioned literature that numerous studies have been 

conducted for improving interpretability of FLSs. However, few of them focused on 

the field of neural fuzzy system, especially in RBF-NN modeling. Therefore, more 

research is needed for further investigation of the interpretability of neural fuzzy 

systems. Moreover, in most of the advanced manufacturing systems, human operators 

are often an integral part of the manufacturing process chain. On the one hand, human 

operators routinely require performing cognitive tasks such as reasoning and visual 

information processing. On the other hand, soft-computing techniques and data-mining 

methods are very efficient at information processing and knowledge extraction. This 

rapid advances in manufacturing systems and soft-computing techniques culminated in 

the need for human-centric computational frameworks. Such computational 

frameworks aid the efficient integration of human knowledge and skills into the 

manufacturing process chain. This may involve human-machine interaction, human-

like information capture, as well as human-centric platforms designed to support 

‘collaboration’ with humans.  

The salient motivation behind the use of neural fuzzy system is that it has the ability 

to deal with incomplete or imprecise and uncertain information in away akin to the 

human reasoning. It also has the ability to granulate information and the granulated 

information can be used to focus and facilitate the analysis and interpretability of 

complex systems on aspects of interest to the user. These intriguing traits are preferable 

when the system is too complex to be analysed via first-principle models and can be 

merely interpreted qualitatively. However, traditional approaches in designing the 

neural fuzzy systems are unfortunately over-dependent on expert-knowledge and 

usually entail tedious manual interventions. Furthermore, repeating the whole 

modelling process each time a new batch of data becomes available is often a laborious 

and non-automated process as well as time-consuming. Consequently, there is no 

guarantee that the new process model will keep a good performance comparable to the 

original model. Research to date has tended to focus on adaptive learning methods for 

type-1 FLSs and type-2 FLSs with application to time-varying data [47-49] [50-53]. To 
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our knowledge, no research has been carried out on batch incremental learning in the 

field of type-2 FLSs.  There is a need to include more advanced system’s feature. Such 

features include ability to learn from an initial batch of data (with the help of an 

appropriate training algorithm) and periodically adapt to new process data when these 

are available. An additional need is to include the capability to interact with a changing 

environment in a perpetual fashion and also to have an open structure; this entails to 

dynamically expand the system’s structure to fit in/accommodate new data/information 

– without significantly disturbing the initial model structure. 

The rest of the thesis work will be focused on the use of various concepts developed 

in soft-computing and human-centric intelligent systems including information 

granulation, fuzzy sets theory, fuzzy logic systems, artificial neural networks and 

incremental learning for modelling purposes.  

From process perspective, the focus of this thesis work will be on developing 

parsimonious, interpretable and computationally efficient real-time process models that 

have the capability of taking advantage of expert-knowledge to handle imprecision, 

inconsistency, incompleteness, sparsity, quantity and complexity of the associated 

process data. On the one hand, process models that mimic the ability of humans in using 

simple linguistic interpretable rules extracted from raw data in order to describe 

complex systems. On the other hand, process models that can be used for real-time 

prediction and on-line monitoring - through process modelling and optimisation - to aid 

the process operator in making effective decisions as well as to guide the process into 

optimum operation conditions by take into account a set of desirable objectives.    

Such efficient computational frameworks are tested against well-known 

benchmark data sets as well as a real industrial case study of steel friction stir welding 

for the first time using real manufacturing data.  

1.3. RESEARCH AIM AND OBJECTIVES  

The central aim of this research work is to develop parsimonious, transparent, 

interpretable and computationally efficient soft-computing techniques and human-
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centric systems for complex manufacturing processes with particular application in 

modelling of steel friction stir welding.  

In order to achieve its aim, this research work accomplishes the following 

objectives:  

 The goal of the first study is to quantify the uncertainty during the initial 

structure identification of the RBF neural fuzzy system. According to [46], 

the interpretability in data-driven fuzzy systems can be categorised into two 

main components namely: a) low-level interpretability and b) high-level 

interpretability. These two components can be used to facilitate the analysis 

and gain a deep insight into the factors involved into developing data-

driven fuzzy systems. This study takes benefit of the mathematical 

equivalence between the RBF-NN and a class of fuzzy inference systems 

called type-1 FLS under certain conditions to investigate the relationship 

between uncertainty during the initial structure identification phase and the 

interpretability of the RBF-NF system as well as the overall system 

accuracy.  

 The second study aims to systematically develop an interval type-2 RBF 

neural fuzzy (IT2-RBF-NF) system. The IT2-RBF-NF system is 

mathematically equivalent to an interval type-2 fuzzy logic system (IT2-

FLS) under certain conditions and optimised via an adaptive back-error 

propagation (adaptive-BEP) approach. On the one hand, the advantages of 

principles of iterative human-like information capture in granular 

computing (GrC) and the additional degree of freedom from the footprint 

of uncertainty (FOU) in type-2 fuzzy sets (T2-FSs) are used to extract 

meaningful information and handle the linguistic uncertainties associated 

with meaning of words contained in the rule-base of the IT2-RBF-NF 

system. And on the other hand, the proposed system is used to develop a 

new generalised model-based real-time process monitoring framework in 

steel Friction Stir Welding. The proposed real-time process monitoring 

framework relies on frequency-based information is capable of 

discriminating the quality of welds produced by friction stir welding 
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process and providing real-time feedback to the process operator(s) in 

linguistic format (natural language – rule-based system) on the 

performance of the process. The intention of this study is also to execute a 

number of simulation examples in order to confirm the appropriateness and 

efficiency of the proposed IT2-RBF-NF system against different data-

driven models including multiple linear regression (MLR) and multilayer 

perceptron neural network (MLP-NN) models as well as type-1 radial basis 

function neural fuzzy (T1-RBF-NF) system. 

 Finally, a new perpetual (incremental) learning framework is developed. 

The objective of this study is to include the ability of the IT2-RBF-NF 

system to continuously learn from batch data and periodically update its 

structure to accommodate new data/information without significantly 

disturbing the previously gained knowledge. Therefore, the ability of the 

system to have an open structure with a particular focus on achieving the 

trade-off between interpretability and accuracy to make it feasible for 

lifelong learning use.  The intention of this study is also to execute a number 

of simulation examples in order to evaluate the performance of the 

proposed perpetual learning framework on well-characterised benchmark 

functions as well as a real industrial case study.  

1.4. ACHIEVEMENTS AND CONTRIBUTIONS 

1.4.1. ACHIEVEMENTS  

The main achievements of this thesis can be listed under the following headings: 

 In Chapter 3, a data-driven computational intelligence modelling 

framework based on the well-known modelling framework of adaptive 

neuro-fuzzy inference systems (ANFIS) and subtractive clustering 

optimised via a gradient decent approach is provided as a benchmark 

modelling paradigm for preliminary modelling analysis. The proposed 

modelling framework is applied to a real industrial data related to the 

prediction of spindle peak torque in steel friction stir welding. The data sets 
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were obtained from The Welding Institute (TWI Ltd), Technology Centre 

(Yorkshire), United Kingdom.  

 Chapter 4 presents a new conflict measure during the iterative human-like 

information capture in granular computing (GrC) that was initially 

proposed in [27] in order to estimate/evaluate the uncertainty arises as a 

result of conflict during the iterative data granulation process. The proposed 

conflict measure is calculated via Shannon entropy theory to extract 

information related to the data uncertainty while carrying out the 

granulation process and guide the iterative granulation process into 

merging information granules with low uncertainty. Thus improving the 

interpretability of the information granules at the low-level component of 

interpretability (in form of distinguishability between fuzzy sets). The 

resulting information granules are used to construct the initial parameters 

of a Radial Basis Function (RBF) based neural-fuzzy model optimised via 

the adaptive back-error propagation (BEP) algorithm. The effectiveness of 

the proposed GrC based RBF-NF system is verified by using a well-known 

benchmark data set and applied to modelling of steel friction stir welding. 

Finally, the predictive performance and interpretability of the proposed 

modelling framework with and without conflict measure is compared with 

the preliminary results presented in Chapter 3.   

 In Chapter 5, a twofold contribution is presented; firstly, it is introduced an 

interval type-2 RBF neural fuzzy (IT2-RBF-NF) system that is 

mathematically equivalent to an interval type-2 fuzzy logic system (IT2-

FLS) under certain conditions and optimised via an adaptive back-error 

propagation (adaptive-BEP) approach. On the one hand, the advantages of 

principles of iterative human-like information capture in granular 

computing (GrC) and the additional degree of freedom from the footprint 

of uncertainty (FOU) in type-2 fuzzy sets (T2-FSs) are used to extract 

meaningful information and handle the linguistic uncertainties associated 

with meaning of words and linguistic propositions contained in the rule- 

base. Secondly, a new generalised model-based real-time process 

monitoring framework in steel Friction Stir Welding is developed. The 
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proposed real-time process monitoring framework relies on frequency-

based information is capable of discriminating the quality of welds 

produced by friction stir welding process and providing real-time feedback 

to the process operator (s) in linguistic format (natural language – rule-

based system) on the performance of the process. Finally, a number of 

simulation examples are carried out in order to confirm the appropriateness 

and efficiency of the proposed IT2-RBF-NF system against multiple linear 

regression (MLR) and multilayer perceptron neural network (MLP-NN) 

models as well as a type-1 radial basis function neural fuzzy (T1-RBF-NF) 

system, which is similar to the one developed in Chapter 4. 

 In Chapter 6, a new perpetual learning framework that is based on the IT2-

RBF-NF system is proposed. A number of simulation examples are carried 

out in order to evaluate the performance of the proposed perpetual learning 

framework on well-known benchmark functions as well as a real industrial 

case study. 

1.4.2. PUBLICATIONS 

Conferences and Journals 

 Ali Baraka, George Panoutsos, and Stephen Cater, ‘Perpetual Learning 

Framework based on Type-2 Fuzzy Logic System for a Complex 

Manufacturing Process’, 17th IFAC Symposium on Control, Optimization 

and Automation in Mining, Mineral and Metal Processing, August 31-

September 2, 2016, Vienna, Austria. 

 Ali Baraka, George Panoutsos, and Stephen Cater, ‘Real-time quality 

monitoring for friction stir welding AA2219-T845 aluminium aerospace 

alloy via model-based spectral analysis’, 11th International Symposium on 

Friction Stir Welding, 17-19 May 2016, Cambridge, UK. 

 Ali Baraka, George Panoutsos, and Stephen Cater, ‘A real-time quality 

monitoring framework for steel friction stir welding using computational 

intelligence’, Journal of Manufacturing Procesess, 20, pp.137-148, 2015. 
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 Ali Baraka, George Panoutsos, Mahdi Mahfouf and Stephen Cater, ‘A 

Shannon Entropy-Based Conflict Measure For Enhancing Granular 

Computing-Based Information Processing’, the 10th IEEE International 

Conference on Granular Computing (GrC), 22nd -24th October 2014, 

Noboribetsu, Hokkaido, Japan.   

 Ali Baraka, Adriana A. Gonzalez-Rodriguez, George Panoutsos, Kathryn 

Beamish and Stephen Cater, ‘Manufacturing Informatics and Human-in-

the-loop: A case of study on Friction Stir Welding’, the 3rd EPSRC 

Manufacturing the future conference, 23rd-24th September 2014, Glasgow, 

UK. 

Seminars: 

 A. Baraka and G. Panoutsos M. Mahfouf, and Stephen Cater, ‘Steel FSW: 

Data mining, modelling, and support decision systems’, TWI Colloquium, 

05 June 2014, Rotherham, UK. 

 A.M. Baraka, A. Rubio Solis, A.A. Gonzalez-Rodriguez, J.C. De 

Alejandro and G. Panoutsos, ‘Human-Centric Approaches for Modelling 

Complex Processes’, University of Sheffield Engineering Symposium 

(USES), 20 May 2013, Sheffield, UK. 

Journal Papers in Preparation:  

 Ali Baraka and George Panoutsos, ‘Perpetual Learning for Type-2 Neural-

Fuzzy Systems’, to be submitted to a soft-computing journal. 

 Autonomous Rule-based Systems and their applications to advanced 

manufacturing systems, to be submitted to soft-computing and materials 

science journals respectively based on the material from Chapter 6. 

1.5. THESIS OUTLINE 

The thesis is structured into 7 chapters and one appendix. The next paragraphs will 

describe a chapter-by-chapter overview of the contents of this thesis.  



 

 16 

Chapter 1, titled ‘Introduction’, provides background information and the basic 

notions necessary to understand this research work and examines the important 

contemporary challenges of advanced manufacturing systems. The concepts of soft-

computing and human-centric intelligent systems are briefly introduced. The emphasis 

in this chapter has been on drawing the attention of the reader to the most important 

trends and to highlight the modelling of complex manufacturing systems via soft-

computing and human-centric approaches.  

Chapter 2, titled ‘Modelling of Complex Systems via Soft-Computing and Human-

Centric Approaches’, provides a review about the existing techniques found in soft-

computing and human-centric computational intelligence systems a particular focus 

will be put on fuzzy sets, fuzzy logic systems, fuzzy and neural fuzzy modelling, 

artificial neural networks and information granulation. As far as fuzzy logic systems 

are concerned in the development of this research, a general survey on different types 

of information uncertainty is provided. This is mostly due to the type of topics related 

to the modelling of uncertainty considered in this research work. 

Chapter 3, titled ‘Friction Stir Welding and Process Modelling’, provides a 

literature review about the current developments in the field of Friction Stir Welding 

process. Fundamental knowledge and basic understanding of the process are presented. 

These include the principal of operation, development and reasons for using this 

welding technique with relevance to the advantage of this process for manufacturing of 

metal joining. This chapter also covers a comprehensive literature review on the main 

areas related to the analytical and numerical modelling approaches, and data-driven 

modelling approaches as well as monitoring and control of the FSW process. The 

chapter concludes by demonstrating the possibility of using data-driven modelling 

approaches for modelling of steel FSW for real-time applications. Furthermore, 

preliminary modelling results for the Friction Stir Welding (FSW) prediction of internal 

process variables, namely the spindle peak torque by using the well-known modelling 

framework of adaptive neuro-fuzzy interference systems (ANFIS) and subtractive 

clustering are provided. 
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Chapter 4, titled ‘Interpretability Measures in RBF-NF Systems using Iterative 

Granular Computing’, presents a new conflict measure during the iterative human-like 

information capture in granular computing (GrC) in order to estimate/evaluate the 

uncertainty emerges as a result of conflict during the iterative data granulation process. 

On one hand, the proposed conflict measure is calculated via Shannon entropy theory 

to extract information related to the data uncertainty while carrying out the granulation 

process. Such information is used to guide the iterative information granulation process 

into condensing (merging) the granules (data) with low conflict, and therefore 

producing better quality information granules. On the other hand, the resulting 

information granules are employed to construct the initial parameters of a RBF-NF 

system optimised via the adaptive back-error propagation (BEP) algorithm and applied 

to modelling of steel friction stir welding. Finally, a comparative study is carried out to 

compare the performance of the proposed granular computing based RBF-NF 

modelling framework with and without conflict measure against the preliminary results 

presented in Chapter 3. 

Chapter 5, titled ‘An Interval Type-2 Neural Fuzzy System: IT2-RBF-NFS’, 

concentrates on the development of an interval type-2 radial basis function neural fuzzy 

system (IT2-RBF-NFS) that is mathematically equivalent to interval type-2 fuzzy logic 

systems (IT2-FLSs). The main focus of this chapter is twofold, on the one hand, a new 

modelling framework is presented by taking advantages of principles of iterative 

human-like information capture in granular computing (GrC) and the extra degree of 

freedom from the footprint of uncertainty (FOU) in type-2 fuzzy sets to take into 

account for the linguistic uncertainties associated with meaning of words and linguistic 

propositions contained in the rule-base. An adaptive back-error propagation (adaptive-

BEP) approach is used to optimise the initial structure of the proposed modelling 

framework. And on the other hand, a new generalised systematic human-centric model-

based real-time process monitoring framework in steel Friction Stir Welding is 

developed based on the presented IT2-RBF-NFS. The proposed real-time process 

monitoring framework relies on discrete frequency-based analysis of key internal 

process variables (namely axial (𝐹𝑧) and traverse (𝐹𝑥) forces) that is capable of 

providing real-time feedback to the process operator (s) in linguistic format (natural 
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language – rule-based system) on the performance of the process. The proposed model-

based monitoring framework is also used to forecast in real-time (during welding) 

quantitative markers of weld quality extracted from the welding tool feedback forces. 

The chapter concludes by comparing the performance of the proposed model-based 

approach against a baseline (multiple linear regression), multilayer perceptron (MLP) 

as well as RBF-NF models. 

Chapter 6, titled ‘A New Perpetual Learning Framework for IT2-RBF-NFS’, 

concentrates on the development of a new perpetual learning framework based on the 

iterative human-like information capture in Granular Computing (GrC) and IT2-RBF-

NF system presented in Chapter 5. The proposed framework has the ability to evolve 

through incremental and structural parametric learning. Such framework relies on the 

creation of new rules, which are added to the original model to update its structure. The 

updated model is then optimised during the incremental process. An iterative rule 

pruning strategy is also included in the structure in order to remove any inconsequential 

rules as a result of the incremental update routine. The strength of such as a framework 

is that this framework uses rule growing/pruning strategy, which makes the proposed 

framework feasible for lifelong learning mode. The chapter concludes by evaluating 

the performance of the proposed perpetual framework on complex benchmarking 

functions in system identification as well as a real-industrial case of steel FSW for the 

modelling of spindle peak torque.   

Chapter 7, titled ‘Conclusions and Future Work’, includes the main findings of this 

research work. It also presents recommendations for future research.  
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CHAPTER 2 - MODELLING OF COMPLEX SYSTEMS VIA SOFT-

COMPUTING AND HUMAN-CENTRIC APPROACHES 

2.1. INTRODUCTION  

is chapter includes a literature review on the existing techniques found in soft-

computing and human-centric computational intelligence systems. A 

particular focus will be put on the fields of fuzzy logic systems, fuzzy and 

neural fuzzy modelling, artificial neural networks and information granulation. 

2.2. SOFT-COMPUTING AND HUMAN-CENTRIC COMPUTATIONAL 

INTELLIGENCE SYSTEMS 

The term ‘soft-computing’, sometimes referred to as computational intelligence 

(CI) was coined by Lotfi Zadeh, the inventor of fuzzy sets theory [54]. Soft-computing 

is the integration of soft-computing techniques and tools such as fuzzy logic (FL) [55], 

neural networks (NNs) [56], evolutionary genetic algorithms (GAs) [57], and 

probabilistic reasoning that are designed to model or deal with and enable solutions to 

real-world problems which are not modelled or too difficult to model mathematically 

via conventional (hard) computing techniques such as classical sets theory. Moreover, 

this fusion of different methodologies aims to exploit the human tolerance for 

imprecision, approximate reasoning, partial truth and uncertainty in order to achieve 

tractable, robust and low-cost solutions [54]. Each constituents of soft-computing has 

its inherited advantages and disadvantages, for example, FL is based on knowledge-

driven reasoning and mainly concerned with approximate reasoning and imprecision; 

and NNs are data-driven learning and curve-fitting approaches [58]. In this regard, the 

integration of different techniques allows for the combination of domain knowledge 

and empirical data in order to develop a flexible computing paradigm and solve 

imprecisely and precisely formulated complex problems.   

The rapid advances in computer science and information communication 

technologies culminated in the development of truly widespread human-centric 

computing frameworks. Such computing frameworks would require platforms that have 

the ability to support different operators or users working in varying environments. 

These computing platforms would be required to engage and play more active roles in 

T 
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performing a wide range of tasks such as intelligent data analysis, data management 

and information sharing, human/machine interaction, decision-making, etc. It would be 

also required to develop seamless and transparent computational systems based on the 

concept of human-centredness that are able to adjust by humans by being moral natural, 

intuitive to use and consistently integrated within environment [59]. A human-centric 

system approach involves performing research on understanding the interaction, 

collaboration, and coordination between users and machines, and machines and 

machines. Some of the recent existing trends in the development of human-centric 

systems include, but not limited to systems modelling, intelligent data summarisation 

and analysis, ubiquitous computing, intelligent interface, etc. [60].  

In systems modelling, data-driven computational intelligence (DDCI) models such 

as fuzzy rule-based systems (FRBSs) [61], neural-fuzzy systems (NFS) [26], artificial 

neural networks (ANNs) [56] as well as evolutionary genetic algorithms (GAs) [57] 

have shown great successes in solving various real-world problems such as those 

associated with industrial, academic, and medical applications. However, recently, 

there has been a growing demand on system features with a special focus on simplicity, 

interpretability and transparency as well as on strong link with human reasoning 

(human-centricity) [27, 30]. Fuzzy systems are powerful data-driven modelling  

techniques when combined with optimisation techniques such as back-error-

propagation and multi-objective optimisation [41]. Fuzzy rule-based systems (FRBS) 

use natural descriptive language to describe complex processes in a very transparent 

way and the modelling outcome is more interpretable (characteristic of fuzzy logic). 

While ANNs are regarded as black-box modelling paradigms because they are geared 

towards processing of raw numeric data. As a consequence, ANNs are very difficult to 

be analysed, interpreted, and understood.  

Over the past few decades, fuzzy systems have received significant interest from 

various fields and many studies have clearly demonstrated that fuzzy systems are 

considered to be a very popular modelling technique in soft-computing [60]. This is due 

to their use of concept of human reasoning approaches to mimic human tolerance for 

incompleteness, uncertainty, imprecision and fuzziness in the processes of making 

effective decision. The concept of human reasoning in fuzzy systems adds the strength 
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of being close to human knowledge and interpretation [62, 63].  One of the advantages 

of fuzzy systems theory is to be used as universal approximates to approximate 

mathematical functions or to approximate real systems where analytic functions or 

numerical relations are not available to govern the relation between the input(s) and 

output(s). Thus, fuzzy systems have high potential to model and comprehend complex 

systems such as social systems, political systems, medical systems, complex 

manufacturing processes, etc. Such systems are often characterised by information 

incompleteness, imprecision, vagueness or unreliability. Owning to the high degree of 

vagueness and imprecision in many real-world problems, it is often difficult to 

model/represent them via accurate first-principle mathematical models. Fuzzy systems 

including fuzzy sets theory and fuzzy logic provide an effective method to represent 

uncertainties and deal with conditions which are inherently ill-defined and imprecise 

[6]. 

Since the concept of granular of computing (GrC) was first introduced by Zadeh 

in [64, 65] and Lin in [66] as a conceptual computing paradigm that concerns with the 

processing of complex information entities – in form of information granules. In 

essence, information granules arise in the process of data abstraction and knowledge 

extraction from information [30]. In the past two decades, several mathematical 

frameworks and tools geared for processing complex information granules have been 

proposed in conjunction with other methodologies such as interval analysis, rough sets 

and fuzzy sets [30, 67]. Subsequently, the role of the human-like information processing 

of granular computing has become profoundly visible in the development of transparent 

human-centric systems [60]. The integration of the human-like information processing 

paradigm of GrC (human-like feature), and fuzzy logic (interpretability feature) 

incorporated also with neural networks (learning feature) [27] leads to improved system 

transparency and accuracy. Consequently, the general data-driven computational 

intelligence (DDCI) paradigm provides interpretability, accuracy, and user-friendliness 

as well as facilitates the activity and visible role of the system’s developer 

(transparency) [68]. The very essence of developing human-centric systems focuses on 

how to develop systems that support interaction, interpretation/understanding of 

numeric raw data/ information with descriptive, linguistic and qualitative input arriving 
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from the user(s). In addition, the user-based information processing ability has to be 

taken into consideration when developing human-centric computational intelligence 

(HCCI) models.  

2.3. FUZZY LOGIC AND FUZZY SYSTEMS 

As pointed out in the previous section, due to high degree of vagueness and 

complexity associated with real-world problems, it becomes more difficult to build 

precise mathematical models to model/represent the underlying physical process of a 

system [6]. Fuzzy logic systems have high potential to model/represent complex 

systems and provide system transparency, which is primarily due to their ability to 

utilise simple linguistic interpretable rules in the form of IF-THEN statements. These 

linguistic rules are extracted from process data and can be employed to facilitate 

understanding and analysis of the system under investigation in a qualitative or semi-

qualitative manner near to human reasoning [6]. It has been proved that any fuzzy 

system can be considered as a nonlinear universal approximator [69, 70]. 

2.3.1. FUZZY SETS 

Fuzzy sets are types of sets (classes) that allow their elements to have different 

degrees of membership. In classical bivalent set theory, any element either belongs to 

that set (class) or does not belong to that set (class). For instance, a given set 𝐴, the 

membership function has a value of 𝜇𝐴(𝑥) to each 𝑥 ∈ 𝑈 i.e. 

               𝜇𝐴(𝑥) = {
1         𝑖𝑓             𝑥 ∈ 𝑈
0         𝑖𝑓             𝑥 ∉ 𝑈

                                                            2-1 

or 

𝜇𝐴: 𝑈 → {0, 1}  

where 𝑈 is the universe of discourse  

In [8], Zadeh extended the notion that instead of the classical set {0,1}, the 

mapping of the membership function is defined  in the real unit interval [0, 1]. A fuzzy 

set is defined as “A fuzzy set in the universe of discourse 𝑈 is characterised by a 
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membership function 𝜇𝐴(𝑥) that takes values in the interval [0, 1]”[71] given by the 

relationship: 

                              𝐴 = {
𝑥, 𝜇𝐴(𝑥)

𝑥
∈ 𝑈}                                                                     2-2 

0 ≤ 𝜇𝐴(𝑥) ≤ 1  

where 𝜇𝐴(𝑥) is the membership function which maps each element 𝑥 of the universal 

set 𝑈 to a membership degree between 0 and 1 [5]. 

Generally, different shapes/types of membership functions (MF) can be employed 

to map a particular fuzzy logic system, the selection of which is an application 

dependant. The most common membership function shapes are: Gaussian functions, 

trapezoidal-shape functions, bell-shaped functions, and S-shaped function as shown in 

Fig. 2.1. The mathematical expressions for the membership functions can be expressed 

as [6, 71]:  

 Gaussian MF 

𝑓(𝑥; 𝑐, 𝜎) = 𝑒−[
𝑥−𝑐
𝜎
]
2

                                                                                            2-3 

The graphical representation of the Gaussian membership function is shown in Fig. 

2.1 (a). 

 Triangular MF 

       𝑓(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0,             𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
,            𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
,            𝑏 ≤ 𝑥 ≤ 𝑐

0,             𝑥 ≥ 𝑐

                                                    2-4 

The graphical representation of the triangular membership function is shown in 

Fig. 2.1 (b). 
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 Trapezoidal MF 

𝑓(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{
  
 

  
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

1,                 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑

0,         𝑥 ≥ 𝑑

                                                   2-5 

The graphical representation of the trapezoidal membership function is shown in 

Fig. 2.1 (c). 

 Generalised Bell MF 

𝑓(𝑥; a, b, 𝑐) =
1

1 + |
𝑥 − 𝑐
𝑎 |

2𝑏                                                                                     2-6 

The graphical representation of the generalised bell membership function is shown 

in Fig. 2.1 (d). 

 Sigmoid (S-shaped) MF 

𝑓(𝑥; 𝑎, 𝑏) =

{
 
 

 
 

          0,                   𝑥 ≤ 𝑎

             2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

,           𝑎 ≤ 𝑥 ≤
𝑎 + 𝑏

2

       1 − 2 (
𝑥 − 𝑏

𝑏 − 𝑎
)
2

,          
𝑎 + 𝑏

2
≤ 𝑥 ≤ 𝑏

     1,                        𝑥 ≥ 𝑏

                                 2-7 

The graphical representation of the sigmoid (S-shaped) membership function is 

shown in Fig. 2.1 (e). 

 Z-shaped MF 

 𝑓(𝑥; 𝑎, 𝑏) =

{
 
 

 
 

1,                         𝑥 ≤ 𝑎

1 − 2 (
𝑥 − 𝑏

𝑏 − 𝑎
)
2

,              𝑎 ≤ 𝑥 ≤
𝑎 + 𝑏

2

2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

,                       
𝑎 + 𝑏

2
≤ 𝑥 ≤ 𝑏

0,                           𝑥 ≥ 𝑏

                                   2-8 
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The graphical representation of the Z-shaped membership function is shown in Fig. 

2.1 (f). 

 

Figure 2.1. Shapes of membership functions. 
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2.3.2. FUZZY SYSTEMS  

A fuzzy system as shown in Fig. 2.2 basically composes of four components:  

fuzzification, fuzzy inference engine, fuzzy rule base and defuzzification [71].  

 

Figure 2.2. T1-FLS block diagram. 

The fuzzification is a component that transforms the real value of the input variable 

𝑥 to a fuzzy input. It simply calculates a set of membership functions for the crisp 

value 𝑥. There are three types of fuzzification methods are frequently used, which are 

Gaussian, singleton, and triangular fuzzification method [71]. The defuzzification, in 

contrast to fuzziffication, is a way of mapping a fuzzy quantity from the fuzzy inference 

engine into a quantifiable value to be used in the real-world. There are numerous 

defuzzification methods, but the most prevalent used  are centre of gravity (COG), 

centre of area (COA), maximum membership (MM), middle of maxima (MOM), and 

centre average (CA) defuzzifiers [6, 71]. 

The fuzzy rule-base (knowledge base) is the heart of a fuzzy system, which consists 

of a set of fuzzy rules in form of IF-THEN rules. The most popular knowledge bases 

are: Mamdani-type [72] and Sugeno-type (TSK) [73]. A Mamdani-type fuzzy logic 

system rule has the following form: 

𝑅𝑢𝑙𝑒𝑟: 𝑰𝑭 𝑥1𝒊𝒔 𝐴1
𝑟𝒂𝒏𝒅……𝒂𝒏𝒅 𝑥𝑑𝒊𝒔 𝐴𝑛

𝑟  𝑻𝑯𝑬𝑵 𝑦𝑟 𝑖𝑠 𝐵𝑟                                        2-9 
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where 𝑟 = 1, 2, … ,𝑀 and 𝑀 is the number of fuzzy rules in the rule-base; 𝐴𝑛
𝑟  and  𝐵𝑟 

are fuzzy sets in the input space 𝑈𝑑 ⊂ 𝑅 and  𝑉 ⊂ 𝑅  respectively and 𝑥1, … , 𝑥𝑑 ∈  𝑈𝑑 

and 𝑦𝑟 ∈ 𝑉 are the fuzzy system’s input and output respectively. A Sugeno fuzzy model 

is different from Mamdani-type in the way that the consequent parts are deterministic. 

A Sugeno-type can be expressed as a set of linguistic IF…THEN rules as follows: 

 𝑅𝑢𝑙𝑒𝑟: 𝑰𝑭 𝑥1𝒊𝒔 𝐴1
𝑟𝒂𝒏…𝒂𝒏𝒅 𝑥𝑑𝒊𝒔 𝐴𝑛

𝑟  𝑻𝑯𝑬𝑵 𝑦𝑟  = 𝑓𝑟(𝑥) =∑𝑎𝑟𝑥𝑟 + 𝑎𝑟0 

𝑛

𝑟=1

      2-10 

where the premise part is the same as Mamdani-type, however, the consequent part is 

deterministic. 𝑓𝑟(x) can be a linear or quadratic function and 𝑎𝑟 and 𝑎𝑟0 are the linear 

parameters of the consequent part of the Sugeno model. The defuzzifier is not used in 

this case. 

The fuzzy inference engine is the process in which the fuzzy logic operations are 

used to combine the fuzzy input sets from the input space 𝑋 with the IF-THEN rules 

from the fuzzy rule-base to form the fuzzy output sets in 𝑌. The fuzzy logic operations 

include intersection, union, complement, containment, and Cartesian product. More 

details on fuzzy sets operations can be found elsewhere [71].  

2.3.3. NEURO-FUZZY SYSTEMS 

The construction of classical fuzzy system (mostly Mamdani-type) involves the 

process of finding appropriate MFs and fuzzy rules. This process is based on expert-

knowledge and experience and it is not always easy and often a tiring process of trial 

and error, which will restrict the applications of the classical fuzzy systems. Particularly 

when the expert knowledge is lacking or not available, thus traditional knowledge-

based fuzzy model cannot be generated. Therefore, the concept of applying learning 

mechanisms to classical fuzzy systems was introduced in the early 1990s. The neuro-

fuzzy system was first proposed by Jang [74], where an adaptive-neuro-fuzzy inference 

system (ANFIS) framework was introduced. ANFIS is a hybrid combination of ANNs 

and fuzzy inference systems (FIS) [75]. Since it integrates both artificial neural 

networks and fuzzy logic systems, it has potential to capture the learning capability of 

the neural networks and transparency and interpretability of fuzzy logic system. The 
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structure of ANFIS is flexible, easy to modify, and learn its parameters adaptively. The 

ANFIS can construct a mapping between input-output based on both expert knowledge 

and numerical data. Currently, there are several neuro-fuzzy systems exist in the 

literature. Most notable are fuzzy adaptive learning control proposed by Lin and Lee 

[76], NEuro-Fuzzy CONtrol (NEFCON) developed by Nauck et al. [77] and other 

variants from these development [78-80]. 

Classical fuzzy systems can also be combined with genetic algorithms (GAs) to 

enhance the learning ability of the fuzzy systems, the scope of fuzzy systems 

applications can be expanded. The learning process in genetic fuzzy systems is regarded 

as an optimisation process of the rule-base of fuzzy systems.  There are three genetic 

algorithms available for optimising the rule-base: the Michigan approach [81],  the 

Pittsburgh approach [82], and  the iterative rule learning approach [83].  

As the field of neuro-fuzzy systems matures and grows in visibility, there is an 

increasing concern about the development of more sophisticated neuro-fuzzy systems 

to solve different kinds of problems in various applications [84-87]. Some of the more 

recent existing trends in the development of neuro-fuzzy systems can be found in [88-

92].  

2.4. TYPE-2 FUZZY SETS AND SYSTEMS  

As just discussed, the concept of fuzzy (type-1) logic was introduced by Lotfi 

Zadeh in 1965 [8] as an extension of classical sets to mimic human actions in its use of 

approximate reasoning in the process of decision making. The goal is to represent 

uncertainty and vagueness mathematically in order to provide a formalised tool for 

dealing with information incompleteness, imprecision, and inconsistency of many 

complex real-world problems. Since knowledge can be expressed in form of linguistic 

rules (natural language) by using fuzzy sets, many real-world complex problems can be 

greatly simplified. 

Type-1 fuzzy logic systems (T1-FLSs) have been extensively applied in many real 

world applications [93-95]. However, many real-world applications exhibit 

measurements noise and modelling uncertainties. The effects of all types of 
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uncertainties cannot be minimised and modelled by using type-1 fuzzy logic systems. 

Thus, the concept of general type-2 fuzzy sets (T2-FSs) is also introduced by Lotfi 

Zadeh in 1975 [96] as an extension of the ordinary type-1 fuzzy sets.  Since the degree 

of membership functions in T2-FLSs are themselves fuzzy, while the degree of 

membership functions in T1-FLSs are crisp. This property provides extra degree of 

freedom and flexibility in modelling the uncertainties frequently encountered in real-

world modelling tasks.  Thus, type- 2 fuzzy sets can better model uncertainties and 

minimize their effects. In [33] Karnik et al. have developed the theory of type-2 fuzzy 

sets. More details on the theoretical background and design principles of type-2 fuzzy 

system (T2-FLS) are described in [34]. T2-FLSs measure the entire systems uncertainty 

and thus they appear to be a more promising method for handling uncertainties (e.g. in 

a noisy changing environments) than their type-1 counterparts. The studies in [97-99] 

confirmed the effectiveness of the T2-FLSs in better handing the measurement noise 

and modelling uncertainties.  

When a system is characterised by a large amount of uncertainties, a desired level 

of accuracy may not be achieved via the use of T1-FLSs. In such cases, the use of T2-

FLSs is a preferable methodology as appeared in the literature in many applications 

where uncertainties occur, such as time series forecasting [100], decision making [101, 

102], solving fuzzy relation equations [103], data pre-processing [104], survey 

processing [99], fuzzy logic control of mobile robot [98], and many more [105, 106].  

2.4.1. GENERAL TYPE-2 FUZZY SETS 

 Type-2 fuzzy set (T2-FS) as introduced by Lotfi. A. Zadeh [96] has a membership 

function (MF) that is itself a fuzzy set in [0, 1] [96, 107], unlike a normal fuzzy set (T1-

FS) where the membership function has a crisp number in [0, 1]. In [108], Mendel 

defines the definitions of T2-FSs as:   

A type-2 fuzzy set (T2-FS) in a universe of discourse  𝑈 is denoted as 𝐴 ̃which is 

characterised by its membership function (MF) 𝜇�̃�(𝑥, 𝑢), i.e, 

              �̃� = {((𝑥, 𝑢), 𝜇�̃�(𝑥, 𝑢))|∀𝑥 ∈ 𝑈, ∀𝑥 ∈ 𝐽𝑥 ⊆ [0, 1]}                           2-11 

in which 0 ≤ 𝜇�̃�(𝑥, 𝑢) ≤ 1.  
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Eq. 2-11 can also be expressed as  

                     �̃� = ∫ ∫ 𝜇�̃�(𝑥, 𝑢) (𝑥, 𝑢)⁄

𝑢∈𝐽𝑥
𝑥∈𝑈

,      𝐽𝑥 ⊆ [0, 1]                              2-12 

where 𝑥 is the primary variable of �̃� and 𝑥 ∈ 𝑈. 𝑢 is the secondary variable of �̃� and 

𝑢 ∈ [0, 1]. 𝐽𝑥 is called the primary MF and the amplitude of 𝜇�̃�(𝑥, 𝑢), called a secondary 

grade of 𝐴 ̃. 

Shown in Fig. 2.3 is a general type-2 Gaussian membership function built from 

synthetic random data in three-dimensional representation. As can be seen from Fig. 

2.3, the membership value or membership grade for each element of the type-2 fuzzy 

set is a fuzzy set in [0, 1], whereas the membership grade of type-1 fuzzy set (normal 

fuzzy set) is crisp value in [0, 1]. 

 

Figure 2.3. Three-dimensional representation of general type-2 membership function. 

2.4.2. GENERAL TYPE-2 FUZZY LOGIC SYSTEMS  

General type-2 fuzzy logic system (T2-FLS) has similar structure to the type-1 

fuzzy logic system (T1-FLS), which is still based on expert knowledge [108]. In T1-
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FLS, the expert knowledge is represented by IF-THEN linguistic rules and implied 

uncertainty, and thus a T2-FLS is also characterised by linguistic terms having 

uncertain premise part and/or consequent part which are then translated into T2-FSs. 

The T2-FLS block diagram shown in Fig. 2.4 consists of 5 stages [108]: 

1. Fuzzification: is the process of mapping crisp inputs into T2-FLS to activate 

the inference engine. 

2. Rule base: the rules in a T2-FLS represent fuzzy relation between the input 

space 𝑋 and the output space 𝑌. The rules have similar multiple-antecedent 

multiple-consequent IF-THEN form as in T1-FLS, however, the antecedents 

and consequents are type-2 fuzzy sets.  

3. The inference engine: uses type-2 fuzzy set-theoretic operations to combine 

fuzzy rules from the rule base into a mapping from input type-2 fuzzy sets to 

output type-2 fuzzy sets.  In T2-FSs theory [108], new set-theoretic operations 

of  join (⊔) and meet operators (⊓) are introduced and used instead of union (∪) 

and intersection (∩) set-theoretic operators in type-1 fuzzy logic theory. The 

inference engine can be divided into three further stages: antecedent calculation, 

implication, and aggregation or combination. The output of the inference engine 

is type-2 fuzzy sets (known as combined or aggregated sets).   

4. Type-reduction: is the process of transforming the output T2-FSs from the 

inference engine into T1-FSs known as the type-reduced sets. 

5. Defuzzification: is the process of transforming the output of the type reduction 

process into a defuzzified crisp number. 

General T2-FLSs are computationally intensive as compared to their type-1 FLSs 

counterparts due to the added type-reduction (TR) stage which relies on computing the 

centroids of a large number of T1-FSs (i.e. embedded sets) into which the T2-FS is 

decomposed.   
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Figure 2.4. General type-2 fuzzy logic system block diagram [108]. 

Although the T2-FLS structure in Fig. 2.4 brings some advantages while dealing 

with uncertainties, it also increases the computational cost. 

2.4.3. INTERVAL TYPE-2 FUZZY SETS 

When 𝜇�̃�(𝑥, 𝑢) = 1, ∀ 𝐽𝑥 ⊆ [0, 1] in Eq. 2-13, then the secondary membership 

functions are interval sets such that  𝑢�̃�(𝑥, 𝑢) can be called an interval type-2 

membership function (IT2-MF) [108].  Therefore, the T2-FS �̃� can be shown as: 

                                �̃� = ∫ 𝑢�̃�(𝑥) 𝑥⁄𝑥∈𝑈
= ∫ [∫ 1 𝑢⁄

𝑢∈𝐽𝑥
] 𝑥⁄ , ∀ 𝐽𝑥 ⊆   0, 1𝑥∈𝑈

                2-13                                       

A Gaussian primary membership function having uncertain mean (centre) in 𝑚, 𝑚 ∈

[𝑚1, 𝑚2] and fixed standard deviation (spread) 𝜎 having an interval type-2 secondary 

membership function can be called an interval type-2 Gaussian membership function 

as in Eq. 2-14.  The interval type-2 Gaussian membership function can be expressed as 

[109]:  

             𝑢�̃�(𝑥) = 𝑒𝑥𝑝 [−
1

2
(
𝑥 − 𝑚

𝜎
)
2

] ,     𝑚 ∈ [𝑚1, 𝑚2]                                  2-14 
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where 𝑚 is the uncertain mean for the Gaussian function in the interval [𝑚1, 𝑚2], 𝑚1 

and 𝑚2 are the means (centres) for the lower and upper membership functions 

respectively, and 𝜎 is the standard deviation. 

 

Figure 2.5. Three-dimensional representation of interval type-2 membership function. 

From the three-dimensional representation of the IT2-MF in Fig. 2.5, it is obvious 

that the T2-FS is bounded by lower and upper MFs, which are denoted by 𝜇�̃�(𝑥) and 

�̅��̃�(𝑥) respectively. The region between was called by John and Mendel the footprint 

of uncertainty (FOU) [33]. Both of the lower and upper membership functions are type-

1 membership function (T1-MF).  Hence, the Eq. 2-15 can be re-expressed as:  

�̃� = ∫ [ ∫ 1 𝑢⁄

𝑢∈[𝜇�̃�(𝑥),    𝜇�̃�(𝑥)]

] 𝑥⁄

𝑥∈𝑈

                                                                       2-15 

2.4.4. INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS 

Due to the great computational complexity involved in processing T2-FLSs 

especially during the output processing unit (type-reduction and defuzzification stage), 

the interval type-2 fuzzy logic system (IT2-FLS) is the most widely used type of T2-
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FLS [33, 107, 108]. Here the secondary membership function is an interval i.e. the 

secondary grades are all equal to unity. Using this type of fuzzy set makes the 

computation of meet and joint operations relatively easy and hence a considerable 

reduction in the type reduction stage [110]. It also distributes the uncertainty equally 

among all acceptable primary memberships.   

The type-reduction process is an extension of the various forms T1 sets 

defuzzification process that we have. This is possible because of the Zadeh’s Extension 

Principle [111]. There are many T2-FS TR methods [110], the most widely used are: 

1. Centroid Type Reduction.  

2. Centre of Sets Type Reduction.  

3. Height Type Reduction.  

The great computational resource required is clear from the centroid type reduction 

algorithm (exhaustive method) [110]. However if this was an interval type-2 sets (IT2-

FS), the computational resource required is greatly reduced as shown by Karnik and 

Mendel in [111]. Variations of aforementioned methods exist and are now widely 

researched upon in order bring about a more efficient and computationally feasible 

type-reduction and defuzzification process. Some of the methods/representations 

developed in simplifying the output processing stage include, but not limited to, Wu-

Mendel approximation [112], N-T algorithm [113], the Collapsing defuzzification 

method [114],  and the sampling method [115].   

In this thesis, the research activities are focused on the IT2-FLSs. 

2.5. ARTIFICIAL NEURAL NETWORKS 

An ANN, also known as a connectionist model is computational model that is 

inspired by structure and functionalities of neurobiological nervous systems such as the 

brain and process information [116]. It consists of a number of independent, simple 

processors – the neurons. These neurons are connected with each other via weighted 

connections – the synaptic weights. Thus, an ANN is actually parallel distributed 

processing system. Each neuron is a processing unit in an ANN. It is a model that 

performs the basic mathematical operation of an ANN and produces an output 
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according to an activation function. The activation function expresses a nonlinear or 

linear function that maps the input into output and is denoted by ℎ(. ). Fig. 2.6 illustrates 

the simple neuron model introduced by McCulloch and Pitts [117]. The McCulloch-

Pitts (MCP) model is used in most of ANN models. The output of the neuron can be 

expressed by the following two equations [117]: 

𝑣𝑗 =∑𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗

𝑀

𝑖=1

                𝑗 = 1,… , 𝐾                                            2-16 

The variables 𝑣𝑗  are then transformed by the activation function ℎ(. ) to give output 

values 𝑦𝑗 

𝑦𝑗 = ℎ(𝑣𝑗)                                                                                               2-17 

where 𝑥1, … , 𝑥𝑀 are the ANN inputs, 𝑤𝑗1, 𝑤𝑗2, … , 𝑤𝑗𝑀  are the synaptic weights, 𝑏𝑗 are 

the bias parameters, 𝐾 is the number of neurons, 𝑀 is the number of inputs, and ℎ(. ) is 

the activation function.  

 

Figure 2.6. Artificial neural network general structure. 
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The choice of activation function is determined by the nature of the data and usually a 

continuous or discrete function that maps real numbers into the interval [-1, 1] or [0, 1]. 

The most popular activation functions used in ANNs are illustrated in Fig. 2.7. 

 

Figure 2.7. Activation functions. 

The mathematical expressions for the activation functions can be expressed as 

[117]: 

 Hard limiter (threshold) 

              ℎ(𝑥) = {
+1,           𝑥 ≥ 0
−1,           𝑥 < 0

                                                                                       2-18  
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 Semi-linear function  

ℎ(𝑥) = {

1,                                         𝑥 > 𝑎
𝑥

2𝑎
+
1

2
,                              − 𝑎 ≤ 𝑥 ≤ 𝑎

0,                                        𝑥 < −𝑎

                                         2-19 

 Logistic function 

ℎ(𝑥) =
1

1 + 𝑒𝛽𝑥
                                                                                                  2-20 

 Hyperbolic tangent function  

ℎ(𝑥) = 𝑡𝑎𝑛ℎ(𝛽𝑥)                                                                                            2-21 

 Piecewise linear function  

                        ℎ(𝑥) = {

1

𝑏−𝑥+0.5𝑥2
,                𝑥 < 0

1 −
1

𝑏+𝑥+0.5𝑥2
,         𝑥 ≥ 0

                                                           2-22                                                      

The ANN architecture shown in Fig 2.7 is the simplest type of feed-forward neural 

networks, and it is known as a single hidden layer network (perceptron). The number 

of layers of adaptive weights is important to determine the network properties. A neural 

network with multiple layer of artificial neurons (computation nodes), where only one 

forward weighted connections from the input terminals towards the network’s output 

are used, is known as multilayer perceptron (MLP) or multilayer feed-forward neural 

networks (MLF-NNs) [118]. Each MLP consists of input terminals, a number of hidden 

neurons connected between the input terminals (input layer of source nodes) and output 

layer. As mentioned in [119], multiple layers of artificial neurons with nonlinear 

activation functions allow the neural network (NN) to map nonlinear and linear 

relationships between input and output (i.e., universal function approximators).  

 ANNs have a powerful learning ability, that is, they can be trained to map any 

input-output behaviour. The weighted connections are adjusted to capture/encode the 

problem information from the raw data. A variety of parametric identification 

methodologies (learning techniques) can be employed to tune the weight of each 

connection in order to reduce the error between the actual output and calculated output 
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form the network. This can be achieved via minimising a predefined cost function. In 

general, there are three types of learning strategies [120]: supervised learning, 

unsupervised learning, and reinforcement learning.  

Supervised learning is the process of providing the NN with a series of input data 

patterns and comparing the network’s output with the correct “target” output. Some of 

the supervised learning algorithms include learning vector quantisation (LVQ), 

recurrent cascade correlation (RCC), back-error propagation (BEP), etc. [118, 120]. 

In unsupervised learning strategy, the target output is not known for the training input 

vectors. The NN modifies its weighted connections so that the most similar input vector 

is assigned to the same output unit. The learning process extracts the statistical 

properties of the training patterns and group similar vectors into clusters (classes). 

Common unsupervised learning algorithms include Kohonen self-organising map 

(SOM), Binary adaptive learning theory (ART1), etc. [118, 120].  

Reinforcement learning, in this methodology the target output “teacher” is assumed to 

be presented but the correct answer is not presented to the NN. The NN is only 

presented with an indication of whether the output answer caused an error or not. The 

NN uses this information to improve its performance. The reinforcement learning 

strategy can be used in case where the knowledge required to use supervised learning 

is not available. If sufficient information is available, the reinforcement learning can 

easily handle a specific problem. However, it is usually better to employ the other two 

strategies because they are direct and their underlying mathematical formulation is 

usually well understood.  This learning strategy is common in robotics [120]. 

The back-error-propagation (BEP) learning algorithm is the most computationally 

straightforward learning algorithm for training the feed-forward neural network (FNN) 

topologies such MLP [121]. The BEP algorithm is a generalisation of the delta rule, 

known as the least means square (LMS) algorithm. Hence, it is also called the 

generalised delta rule. This kind of learning methodology uses a gradient optimisation 

technique to minimise a cost function (objective function) normally equivalent to the 

mean square error (MSE) between the correct and predicted outputs. The BEP indicates 

backward propagation of the error signal between the correct output and the network’s 
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output. Once an input pattern is provided to the network, the output of the network is 

calculated and compared with a particular output [118, 120]. The error of each output 

unit is also calculated. The error signal is then back-propagated, and a closed-loop 

control system is therefore established. The weight parameters are adjusted such that 

the error signal decreases after a number of iterations. The gradient of the objective 

function can be used as a termination criterion so that the algorithm can be terminated 

when the gradient or the change in the objective function is sufficiently small per each 

iteration [116].               

2.6. RADIAL BASIS FUNCTION NEURAL NETWORKS  

The Radial Basis Function neural network (RBF-NN) is a non-linear feed-forward 

neural network that has been used as an alternative approach to the MPL, since it has a 

simpler structure and a much faster learning process. The idea of RBF-NN derives from 

the theory of function approximation [22]. Some remarkable differences between the 

RBF-NN and MLP can be listed [116, 122]: 

 The architecture of RBF-NN consists of only a single hidden layer, while the 

MLP-NN consists of more than one hidden layer. 

 The activation function of each hidden unit (neuron) in an MLP-NN process the 

inner product of the input vector and weighted connections “weight parameters” 

vector of that hidden unit. Conversely, the activation function of each hidden 

unit in a RBF-NN processes the Euclidean norm distance between the input 

vector and the prototype “centre” of that hidden unit. 

 The RBF-NN uses exponentially decaying localised nonlinear activation 

function to construct local approximations to nonlinear input-output mapping. 

Consequently, the learning is fast. On the other hand, the MLP-NN uses global 

activation function to construct global approximations to nonlinear input-output 

mapping. 

  Due to the localised activation function in the RBF-NN and its influence to its 

neighbourhood is determined by its variance, the localised feature prevents the 

RBF-NN from extrapolation beyond the learning patterns. On the contrary, the 

MLP-NN has greater generalisation capability in the regions of the input space 
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of the training patterns where little or no training data is available, and thus the 

MLP-NN is a good candidate for extrapolation. 

 In the localised RBF-NN, only a few receptive-field units in the hidden layer 

have significant activations for a given input pattern, meaning that the network 

adjusts the weight parameters only in the neighbourhood of same point and 

maintains constant weights in the other regions, thus less learning time for 

convergence of error surface. However, the MLP-NN based on the gradient-

search techniques requires large number of iterations, each iteration involves a 

large amount of computation to converge and also often gets stuck into a local 

minima [123].   

 The RBF-NN typically requires much more training patterns and more number 

of receptive-field units in the hidden layer to achieve a desired level of accuracy 

similar to that of the MLP-NN, which results in the problem of curse of 

dimensionality. 

The general architecture of the RBF-NN is composed of one hidden layer of special 

receptive-field units, which pre-processes the input pattern and feed a single layer 

perceptron (see Fig. 2.8). Each receptive-field unit 𝑘 in the hidden layer consists of the 

centre 𝑥𝑘of a given cluster (partition) 𝑘 of the input space. The corresponding nonlinear 

activation function 𝜑𝑘(. ) represents the similarity between any input pattern 𝑥 and the 

centre 𝑥𝑘  by means of a distance measure.   

                   𝜑𝑘(𝑥) = 𝜑𝑘(‖𝑥 − 𝑥
𝑘‖),           𝑘 = 1,… ,𝑀                                                  2-23  

where 𝑀 is the number of nonlinear functions which are known as radial basis 

functions, and  ‖. ‖denotes a norm that is usually Euclidean distance.  

For a given set of 𝑁 data points in a 𝑑-dimensional space, the input 𝑥𝑘 ∈ ℛ𝑑 is 

mapped from the input space into the 𝑖-th dimension of the output space 𝑡𝑑according 

to the following mapping function: 

     𝑓(𝑥) = ∑𝜔𝑘𝜑𝑘(‖𝑥 − 𝑥
𝑘‖)                              

𝑀

𝑘=1

                                            2-24 
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where 𝜔𝑘 represents the weight connections between the hidden units 𝑘 and the output 

unit 𝑖. 

 

Figure 2.8. Structure of a RBF-NN based on interpolation theory. 

According to the theory of multivariable interpolation in high-dimensional space, 

the interpolation problem can be expresses as follows [124]: 

                 𝑓(𝑥𝑑) = 𝑡𝑑                                                                                                           2-25   

where  𝑥𝑑is  𝑑-dimensional space for the input data 𝑥 and 𝑡𝑑  is  𝑑-dimensional space 

for the output data (target) 𝑡. 
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The interpolating surface is constrained to pass through all the training data points. 

When the interpolation conditions from Eq. 2-26 is inserted into Eq. 2-25, a set of 

simultaneous linear equations for the weight parameters 𝜔𝑘 can be obtained: 

                

[
 
 
 
 
 
𝜑11 𝜑12 . . . 𝜑1𝑀
𝜑21 𝜑22 . . . 𝜑2𝑀
. . . . . .
. . . . . .
. . . . . .

𝜑𝑀1 𝜑𝑀2 . . . 𝜑𝑀𝑀]
 
 
 
 
 

[
 
 
 
 
 
𝜔1
𝜔2
.
.
.
𝜔𝑀]

 
 
 
 
 

=

[
 
 
 
 
 
𝑡1
𝑡2
.
.
.
𝑡𝑀]
 
 
 
 
 

                                                2-26 

where 

 𝑡 = [𝑡1, 𝑡2, … , 𝑡𝑀]
𝑇,  

 𝜔 = [𝜔1, 𝜔2, … , 𝜔𝑀]
𝑇 and 

 Φ =

[
 
 
 
 
 
𝜑11 𝜑12 . . . 𝜑1𝑀
𝜑21 𝜑22 . . . 𝜑2𝑀
. . . . . .
. . . . . .
. . . . . .

𝜑𝑀1 𝜑𝑀2 . . . 𝜑𝑀𝑀]
 
 
 
 
 

 

Equation 2-25 can be written: 

             𝛷𝜔 = 𝑡                                                                                                          2-27 

where 𝛷 is the interpolation matrix, 𝜔 is weights vector, and 𝑡 is the target output.  

According to Micchelli’s theorem [125], for a set of 𝑁 data points, the 𝑁 − 𝑏𝑦 −

𝑁  interpolation matrix Φ, whose its 𝑖𝑘𝑡ℎ element  𝜑𝑖𝑘 = 𝜑(‖𝑥𝑖 − 𝑥
𝑘‖)  is non-

singular. Provided the inverse matrix Φ−1 of the interpolation matrix Φ. The weights 

vector 𝜔 can be represented as 

                       𝜔 = 𝛷−1𝑡                                                                                                    2-28    

A number of nonlinear functions can be used as a radial basis function, the 

following functions are the most popular (see Fig. 2.9) [116]: 
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Figure 2.9. Plots of radial basis functions. 

The mathematical expressions for the radial basis functions can be expressed as [116]: 

 Gaussian 

                   𝜑(𝑟) = 𝑒
−[

𝑟2

2𝜎2
]
                                                                                    2-29 
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 Inverse Multi-quadratics  

                     𝜑(𝑟) =
1

[𝜎2 + 𝑟2]𝛼
,     𝛼 > 0                                                           2-30 

 Multi-quadratics 

                      𝜑(𝑟) = [𝜎2 + 𝑟2]𝛼, 0 < 𝛼 < 1                                              2-31 

 Linear 

                       𝜑(𝑟) = 𝑟                                                                                              2-32 

 Cubic 

                        𝜑(𝑟) = 𝑟3                                                                                         2-33 

 Thin-plate spline   

                         𝜑(𝑟) = 𝑟2 𝑙𝑛(𝑟)                                                                               2-34 

where 𝑟 > 0 represents the distance from any input pattern 𝑥 to a centre 𝑥𝑘 for the same 

input variable, the parameter 𝜎 is used to constraint the smoothness of the interpolating 

radial basis function.  

The most commonly used RBF in modelling and function approximation is usually 

the unnormalised multivariate Gaussian function. The Gaussian function can be 

expressed as follows: 

                                       𝜑(𝑥, 𝑥𝑘) = 𝑒𝑥𝑝 (−
‖𝑥−𝑥𝑘‖

2

2𝜎𝑘
2 )                                                         2-35 

where 𝑥 represents any input pattern, 𝑥𝑘 and 𝜎𝑘 are the centre and spread for the same 

input variable. 

The use of Gaussian function is motivated from the point of view of kernel 

regression and kernel density estimation. The Gaussian function possesses the property 

of locality that is 𝜑(𝑥, 𝑥𝑘) ⟶ 0 as ‖𝑥‖ ⟶ ∞, which makes it highly desirable [118]. 

Consequently, the final results of RBF-NN can be easily interpreted, in contrast to the 

distributed nature of knowledge representation in MLP-NN, which makes the final 
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results difficult to interpret. In addition, the Gaussian function is the only RBF that can 

be factorised, which makes it desirable for hardware implementation of the RBF-NN 

[118].  The RBF-NN with a localised Gaussian function is a receptive-field network, 

which provides the most accurate output when the input 𝑥 is close the centre 𝑥𝑘 of a 

receptive-field unit (neuron). For a suitably optimised/trained RBF-NN structure, 

similar input vectors (i.e., similar features), namely, input vectors that are near to each 

other, always produce similar outputs, while distant input vectors generate nearly 

independent outputs. Meaning that the RBF-NN partition the input data space into a 

number of clusters and each cluster is represented by only a few receptive-field units. 

The input layer activates the receptive-field units representing the input cluster, to 

which the input data pattern 𝑥 belongs. The output layer linearly combines the outputs 

of the receptive-field units to generate the appropriate output vector. This constructs 

separation surfaces among classes of data in the input space (see Fig. 2.10). 

 

(a) (b)    

Figure 2.10. An example of separated surfaces generated by a) a MLP-NN b) a RBF-

NN [118]. 
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Since the output of the RBF-NN is a linear combination of Gaussian probabilities, 

the interpretation of the RBF-NN becomes visible from a statistical point of view. The 

Gaussian basis function as the posterior probability 𝑝(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘|𝑥) of input vector 𝑥 

belong to cluster 𝑘. In a similar way, the output weights 𝜔𝑘can be interpreted as the 

posterior probability 𝑝(𝑥𝑘|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘) of class 𝑥𝑘 given the presence of cluster 𝑘 [126, 

127]. The learning of the RBF-NN requires the determination of the Gaussian radial 

basis function (𝑥𝑘 and 𝜎𝑘) and the output weights parameters by minimising a suitable 

objective function. Several learning algorithms can be employed to optimise the RBF-

NN parameters, one possible learning strategy could be the BP algorithm in which the 

partial derivatives of the cost function with respect to the RBF-NN’s parameters have 

to be evaluated via the gradient descent procedure.  The BP algorithm is a supervised 

learning strategy that yields high accuracy performance but with some disadvantage: a) 

it is a nonlinear optimisation problem which in general requires more computational 

effort and can trap into a local minima of the cost function, b) if the width parameters 

𝜎𝑘 are not constrained to be small, the highly desirable feature of the basis functions 

can be lost, with a high drawback for both interpretation and computational speed. More 

efficient hybrid learning strategies have been developed using a two-stage strategy. The 

first stage specifies and fixes suitable centres for the Gaussian RBF and their respective 

widths, and then the second stage adjusts the output weights. These learning strategies 

have proven to be much fast than the BEP algorithm [128].    

2.7.  GRANULAR COMPUTING FOR HUMAN-CENTRIC INFORMATION 

PROCESSING 

The concept of granular of computing (GrC) was firstly proposed by Zadeh in [64, 

65] and Lin in [66] as a unified and coherent computational paradigm based on the 

human cognition of constructing, describing, and processing information granules. In a 

broad sense, GrC covers any methodologies, techniques, theories, and tools that make 

the use of information granule to solve complex problems [129]. Although the term 

GrC is relatively new, the first appearance of the concept was introduced by Zadeh in 

1979 under the term information granulation (IG) in his pioneering paper [130]. There 

are many reasons for the study of information granulation. From a philosophical and 

theoretical perspective, many researchers argued that information granulation is very 
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essential to human thinking and problem solving, and hence has a very significant effect 

on the design and implementation of human-centric intelligent systems. Since the GrC 

concerns human cognition (thinking) and problem solving, the fundamental three 

concepts underline this ability are: a) granulation, b) organisation, and c) causation. 

Granulation involves the process of dividing a large granule  into smaller parts; 

organisation refers to the ability of forming small parts into a large granule; and 

causation refers to the association of causes with effects [64]. From a more practical 

perspective, the significance of information granulation and simplicity derived from 

information granulation in problem solving are perhaps some of the main reasons. In 

many situations, when a problem associates with incompleteness, uncertainty, or 

vagueness information, it may be difficult to differentiate distinct boundaries between 

information granules. For example, the granules of an image of any landscape consists 

of continents, countries, and oceans. If more detailed processing is required with a high 

level of abstraction, smaller information granules are sought with a certain criterion, 

and then these information granules are rearranged to constitute another finer 

information granules such as regions, provinces, states, seas, etc [30].  

The concept of information granulation is inspired by the ways in which humans 

granulate and manipulate information [64]. The point departure in information 

granulation is the concept of a generalised constraint in which the granules can be a) 

crisp (c-granular) or b) fuzzy (f-granular). The latter represents perceptions in the sense 

that: a) the boundaries of the perceived values of variables are not sharply defined and 

b) the perceived values of variables are partitioned into small parts (information 

granules), with a granule being a bunch of points/objects drawn together by the criteria 

of similarity, indistinguishability, coherency, proximity or functionality [131]. For 

instance, Figs. 2.11 and 2.12 show crisp and fuzzy granules of the variable temperature 

(a perception of temperature) respectively and both of the granules can be described as 

very hot, hot, cold, etc.  
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Figure 2.11. Crisp granulation of temperature. 

 

Figure 2.12. Fuzzy granulation of temperature. 

The main modes of generalisation in IG are fuzzification (f-generalisation); 

granulation (g-generalisation); and fuzzy granulation (f.g-generalisation), which refers 
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to combination of f-generalisation and g-generalisation. Figs. 2.13, 2.14, and 2.15 

illustrate the concepts of fuzzification, granulation, and fuzzy granulation respectively. 

F.g-generalisation underlines the fundamental concept of linguistic variables, IF-THEN 

rules, and fuzzy graphs in fuzzy logic systems (FLSs). Crips granules (c-granular) have 

been successfully applied in conjunction with other methodologies such as set theory 

and interval analysis [132], probabilistic reasoning [131], decision trees [133], 

Dempster-Shafer theory [134], etc. However, they suffer from the ability to deal with 

entities/objects. Thus, the f-granular can be used to reason with entities/objects because 

it is inspired by the remarkable human ability to operate on and reason with perception-

based information.  

 

Figure 2.13. Fuzzification: crisp set → fuzzy set 

 

Figure 2.14. Crisp granulation: crisp set → crisp granules. 
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Figure 2.15. Fuzzy granulation: crisp or fuzzy set→  fuzzy granules. 

In the context of information granulation, emerging human-like frameworks such 

as granular computing (GrC) are proposed as computational mechanisms that process 

complex information entities [135] [30]. In other words, GrC processes and extracts 

information out of numerical data to mimic the ability of the human beings to build 

information granules, manipulate them and communicate the final results to external 

environment. It may easily establish some connections between the concept of GrC and 

those of concept formation, knowledge discovery in databases (KDD), and data mining. 

The concept of formation can be viewed as the representation, characterisation, 

description, and interpretation of information granules representing certain concepts. 

While the concepts of knowledge discovery in databases and data mining refer to 

establishment of relationships between information granules such as association and 

causality.  

2.8. CHALLENGES AND RESEARCH DIRECTIONS   

In many real-world problems, it is often difficult and very challenging to derive 

reliable, and accurate first-principle model to represent the dynamics behaviours of 

complex systems. This is due to the high non-linearity and complexity associated with 
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the systems. It is even more challenging to formulate real-time efficient models to 

approximate the dynamic behaviours of the systems and at the same time to provide a 

comprehensive understanding of influence of the process parameters on the system’s 

response. In such a situation, data-driven computational intelligence (CI) modelling 

strategies can be exploited to build not only adequate and accurate process models, also 

transparent and interpretable process models based on experimental data. However, 

according to the theory of data modelling and knowledge discovery, quality of the data 

has a major impact on the performance of the model as the databases are rich source of 

hidden information. Knowledge derivation and information extraction out of the 

databases is regarded as the most critical step towards developing of human-oriented 

efficient (i.e., mimic the human cognition) CI models, since it aids  to extract 

meaningful information and provide knowledge that can be easily understood by human 

operators as well as non-experts. The interaction between the derived knowledge and a 

personnel user can be performed via the use of simple linguistic interpretable rules 

(rule-based systems). To construct a computationally efficient and interpretable process 

model, a good quaintly data is required to extract knowledge from and use it in the 

modelling process. However, in reality most of the processes produce a small quantity 

of data that are often characterised by the presence of imprecision, inconsistency, 

incompleteness and sparsity.  For example, a company manufactures aerospace 

products, FSW at its early stages, and some special bladder cancer with a few number 

medical records.  

The main focus of this research work will be on the development of systems that 

can augment the cognitive capabilities of humans i.e. human-centricity or human-

centric intelligent systems (HCISs). HCISs are different from traditional systems in 

many aspects in the way that they aid humans in performing cognitive tasks.  

2.9. SUMMARY   

This chapter has reviewed various key theoretical concepts of fuzzy sets such as 

different shapes of membership functions, fuzzy sets operations, fuzzy logic systems, 

rule-base, fuzzy inference engine, fuzzification, defuzzification, and comparison 

between Mamdani type fuzzy model and Sugeno type fuzzy model.  
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Since Zadeh first introduced the notion of a fuzzy set in 1965 [8] and afterwards 

went on to extend the concept via the idea of linguistic terms and introduced type-n 

fuzzy sets (TnFSs), which includes T2-FSs [136], the popularity and use of FLSs has 

been extraordinary. The concept of T2-FSs and T2-FLS, both general and interval are 

described. The footprint of uncertainty (FOU) was introduced in [33] to provide a very 

convenient verbal description for the entire domain of support of all the secondary 

grades of a T2-MF to better handle the uncertainties associated with the meaning of 

words. The general components of T2-FLSs including, the fuzzification, rule-base, 

inference engine processes, type reduction and defuzzification, and operators are also 

presented. A theoretical background related to ANNs with a particular focus on Radial 

Basis Functions Neural networks is also included. 

In addition, the basics of granular computing for human-centred of information 

processing and different types of uncertainty measures related to uncertain based-

information are presented since it is of great importance for the work of this theses.  

In the next chapter, on the one hand an overview on Friction Stir Welding including 

the process description that is helpful for understanding the process and identifying 

some of the challenges will be provided. A comprehensive review of the process 

modelling, monitoring and control will also be presented.  And, on the other hand a 

neural fuzzy modelling framework based on the Adaptive Neuro-Fuzzy Inference 

(ANFIS) and subtractive clustering is applied to FSW data, which were collected from 

TWI Ltd., Technology Centre (Yorkshire), United Kingdom.  
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CHAPTER 3 - FRICTION STIR WELDING AND PROCESS MODELLING 

3.1. INTRODUCTION 

he main objective of this chapter is to present Friction Stir Welding as a 

manufacturing process and review recent developments. In this chapter 

fundamental knowledge will be presented and in so doing will provide insight 

to some basic operational issues, which relates to the welding process. The principal of 

operation, development and reasons for using this welding technique with relevance to 

the advantage of this process for manufacturing of metal joining, will be discussed. In 

addition, a comprehensive literature review on the main areas related to the analytical 

and numerical modelling approaches, data-driven modelling approaches, and 

monitoring and control of the FSW process will be covered. Some preliminary results 

for the FSW prediction of internal process variable namely spindle peak torque, by 

using the well-known modelling framework of adaptive neuro fuzzy interference 

systems (ANFIS) and subtractive clustering are provided. 

3.2. PROCESS DESCRIPTION  

3.2.1. PRINCIPLE OF OPERATION 

Friction Stir Welding (FSW) is a practical and non-conventional solid-state 

welding technique which was invented in 1991 by Wayne Thomas at TWI, United 

Kingdom [36]. In FSW, a constantly rotating, cylindrical shouldered tool with a profiled 

pin rotates and traverses at a constant rate along a pre-specified joint line, the tool’s pin 

is slowly plunged into butting edges of two firmly clamped sheets of the parent material. 

Material in the joint line is plasticised by frictional heat generated between the tool’s 

pin and the work-piece. The tool is moved along the weld joint when the material has 

been sufficiently softened. The plasticised material is transferred from the advancing 

side of the tool’s pin to the retreating side and vice versa forming a solid joint on cooling 

[137]. In order to provide a stable welding process, the use of a backing plate and 

applied side clamping forces are important. Fig. 3.1 shows the schematic drawing of 

FSW process. 

T 
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Figure 3.1. Schematic diagram of FSW process. 

The FSW process involves four stages [138]; 

1. Pin’s initial contact phase 

In the first stage, the non-consumable rotating tool’s pin makes initial contact and starts 

penetrating into the work pieces.  This contact generates sufficient frictional heat which 

results in making the surroundings around the tool’s pin become viscous. The main 

controllable process parameters of this stage are the penetration angle, penetration 

depth, penetration rate, and tool rotational speed. 

2. Dwelling phase 

The second stage begins once the shoulder makes contact with the surface of the 

materials being welded, the tool dwells inside the material for some time. This time 

known as the dwell time and it depends on the process operator. 

3. Welding phase 

The third stage is the steady state stage or welding stage in which the tool advances 

along a predetermined welding path. As the tool travels along the welding line, viscous 
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material from the advancing side of the pin is transferred to the retreating side and vice 

versa. 

4. Pulling out phase 

Finally, once the welding stage completes, the tool is pulled out and this is known as 

the pulling out stage. 

3.2.2. TOOL DESIGN  

Tool design is the most important aspect of FSW process development [139, 140]. 

The tool geometry has a critical impact on the frictional heat generation, plastic material 

flow and the stirring action in the joint line and consequently controls the traverse rate 

at which FSW can be conducted. The FSW tool has dual functions: 

 At the initial stage of the tool penetration, the heating mainly occurs as a result 

of the friction between the tool’s pin and surface of the parent material to 

plasticise the work piece material. Additional heat is generated by plastic 

deformation of the material [137].  

 The second function of the tool is to ‘stir’ and ‘move or transfer’ the material 

from the advancing side to retreating side and vice versa. The microstructural 

features and process loads are controlled by the tool design [137].  

The design and choice of the material from which is manufactured must take into 

account the following features [140]:  

 ability to reduce welding forces 

 ability to flow plasticised material easily 

 ability to facilitate the axial auguring effect  

 ability to increase the interface between the tool’s pin and the plasticised 

material, thereby more heat will be generated. 

 For FSW of steels, the pcBN and hybrid pcBN/WRe tool families are currently 

among the best performing tools [137].   
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3.2.3. ADVANTAGES OF FRICTION STIR WELDING 

The main advantages of FSW process result from the fact that materials joining 

occurs in the solid phase without liquefying the parent material avoiding possible 

metallurgical complications such as porosity, cracking or detrimental metallurgical 

changes [141]. When compared to other conventional welding techniques, FSW is well-

recognised in industry for its being [141, 142] 

 environmentally friendly 

 versatile 

 lower energy consumption 

 time efficiency 

 the excellent post weld mechanical properties.  

 Friction stir welds have low distortions and shrinkage, no filler wire required, no 

gas shielding required for aluminium alloys, no arc or toxic fumes, no porosity, and no 

spatter. Additionally, there is no requirement for welder certifications, no post weld 

grinding, brushing or pricking required, and the appropriateness for automation and 

adaptable robot use to produce complex curvature welds. Friction Stir Welding has 

some limitations over other joining methods such as the moderately slow feed rate 

(welding speed), rigid side clamping forces device and backing plate, and exist hole at 

the end of the welds [140, 143]. 

3.2.4. APPLICATIONS OF FRICTION STIR WELDING  

FSW has been successful in welding different grades and thicknesses of aluminium 

alloys and its extension to weld a variety of materials including plastics [144], metal 

matrix composites, titanium [145], magnesium [146], and copper [147, 148]. Since its 

patenting, FSW is considered to be one of the most important developments in materials 

welding and its applications are widespread in many industrial sectors such as in 

aerospace components, railway industry, construction industry, land transportation, 

automotive, spacecraft, marine, etc. [149]. Whilst most of the efforts to date have been 

concentrated on FSW of aluminium alloys and the process is well established, there is 

a considerable interests on it for different grades of steels.  Due to the lower heat inputs 

associated with the FSW process (as compared to conventional welding techniques), it 
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is expected to minimise the distortion and residual stress which is extremely important 

in welding of thicker materials, such as in shipbuilding and heavy manufacturing 

industries [37, 150]. 

Due to the high cost and relatively poor performance of the tool required, the 

transfer of the FSW process into the steel sector is less advanced. The initial technology 

barrier used to be the high cost and the relatively poor performance of the tool required, 

however this case is now improving due to the development of tools that are capable of 

producing industrially useful lengths of welds in steel. FSW of steel is performed at 

temperatures of up to 1,100˚C (measured at the tool), hence the tool must retain its 

strength at these high temperatures while being subjected to complex bending, 

rotational and fatigue loads. An additional complexity is that the FSW of steel is 

characterised by the presence of phase transformations which deem the process 

optimisation even more challenging [151].  

3.2.5. TYPES OF POTENTIAL FSW FLAWS AND DEFECTS 

Although the friction stir welding process usually produces fewer and generally 

less serious flaws and defects than conventional welding, it can still produce imperfect 

welds. Therefore, it is necessary to distinguish between defects and flaws [151, 152]. A 

defect is regarded as an imperfection in a welded part whose appearance is deemed 

harmful to the integrity of the weld and it must be removed. The common imperfections 

in friction stir welds are joint line remnants, lack of penetration, poor quality surface 

and inadequate plastic flow [153, 154]. While a flaw is considered as an unpremeditated 

imperfection in a welded part whose appearance may or may not affect the integrity of 

the welded part. After a careful inspection, it could be considered as a tolerable flaw 

and can be accepted or as a defect and must be removed.  Some of common defects and 

flaws are: 

A. Joint line remnant 

The joint line remnant, sometimes called oxide entrapment or lazy S is a curve line 

that sometimes can be observed in all or part of the weld when inspected in cross-

section [151]. It results from the oxide interface between the material surfaces during 
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the formation of the friction stir weld is inadequately disrupted in order to form a joint 

line. Thus, it appears to consist of oxide particles from the work-pieces surfaces, drawn 

into and distributed throughout the weld during the material flow around the tool.   If 

the oxide particles are small and widely distributed the oxide entrapment has little or 

no impact on weld strength. A continuous entrapment through the weld is however 

unacceptable [143]. 

B. Lack of penetration  

If the tool pin is too short or the tool plunge depth is incorrectly set, or there is poor 

alignment of the tool relative to the weld line, there will be insufficient plasticisation 

and a lack of material flow at the bottom of the weld resulting in partial welding. In 

some cases, this will be an indication for a poor weld, often referred to as a kissing 

bond, where the parent materials are in close contact but not completely welded. The 

kissing bond defect is hardy to be detected by both visual inspection and by non-

destructive testing techniques such as radiography. In more serious cases, the 

discontinuity between the parent materials that were welded is clearly visible. Since the 

lack of penetration can be a potential source of many factors that affect the joint line 

life such as fatigue cracks and corrosion. It is considered to be one of the most serious 

types of defect in friction stir welding [155, 156].          

C. Poor quality surface (galling, excess flash, under-cutting) 

A surface galling is type of flaws that occurs while welding some grade of alloys, 

especially at high tool rotational speeds. This is due to the high shear rates experienced 

at high tool rotational speeds. Also, the collection and redistribution of very soft 

material generated by the tool. Irregular surface that results can be an initiation source 

for cracks, particularly where cyclical loading is applied [157]. 

The flash is a type of flaw that occurs due to the softening of material by the 

excessive tool/shoulder frictional heat during the process.  Surface flash is quite usual 

at the start of the weld since the tool must displace its own volume of material upon 

penetration to the material. This can be reduced by using a pilot hole at the weld start  

[153].   



 

 59 

Undercutting occurs if the downward force applied to the weld is too high, 

especially under a combination of low welding speed and high tool rotation speed which 

results in very high plasticised material in the weld region, the weld surface will be 

depressed below the surrounding parent material. The undercutting can be a potential 

site for the initiation of cracking [151].    

D. Inadequate plastic flow (voids and wormholes) 

An adequate level of plastic flow is required to make a friction stir weld. Inadequate 

or abnormal material forging (mixing or stirring) results in voids [143]. For example, 

with the tool rotating and travelling, the plasticised material around the tool’s pin 

transfers from the advancing side to the retreating side, hence the tool will leave a cavity 

behind the advancing side. If the plasticised material flowing back from the retreating 

side is not sufficient to fill the vacated region completely and instantly before it gets 

cool, such volumetric defects will occur. Voids can be located at any part of the weld 

and they can be reduced or eliminated by a) increasing the axial force; b) increasing the 

tool rotational speed (or temperature) and c) reducing the shear strain rate on the welded 

material [151].   

3.2.6. WELD QUALITY ASSESSMENT  

Surface quality evaluation in a friction stir weld is a relatively simple and fast 

process, replying on a visual inspection [151]. In general, it provides a reasonably 

accurate indication to the quality of weld made.  For instance, from an expert 

knowledge, when the surface quality of the weld is good and there no internal defects 

visible at the tool exit hole, it is a valid indication that the friction stir welding process 

is performing well. When the process starts to deteriorate, the surface quality changes 

perceptibly, thus, the weld surface quality is a primary factor used to assess the final 

quality of the welds made. The weld quality assessment is based on a visual inspection 

of the weld by taking into account the following factors [151]: 

 Weld surface smoothness; 

 consistency of the characteristic ripple markings formed by the FSW process; 

  the appearance or nonappearance of undercutting at the welded region edges; 
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 the appearance or nonappearance of flash;  

 and the appearance or nonappearance of detectable defects such as surface 

breaking voids; 

 evidence of heating of the steel adjacent to the welded region. 

Fig. 3.2 shows a weld made in 6 mm thick DH36 steel grade at a moderately low 

welding speed of 156 mm/minute. It can be observed that the weld surface is quite 

smooth with the rippled surface effect characteristic of conventional friction stir 

welding demonstrating an even spacing as the tool progresses from image right to left. 

The surface shows no signs of hot tears or ‘stickiness’ associated with the steel at the 

weld surface being too hot and over plasticised, nor does it show evidence of the cold 

tearing and machining characteristic of a friction stir weld being too cold. The weld 

surface is not undercut, i.e, depressed below the surface of the parent material. This 

particular weld would be assessed as having good to excellent surface quality (i.e. 

absence of the fine fill form flash would rate it as excellent). 

 

Figure 3.2. A weld made in 6 mm thick steel at a traverse speed of 156 mm/min and a 

tool rotation rate of 200 rpm. 

By way of comparison, Fig. 3.3. shows a weld with poor surface quality. It can be 

seen that there is a considerable degree of thick flash appear on the retreating side of 

the weld, and the weld surface has a cyclical variation superimposed over the usual 
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smooth ripple features. The large quantity of flash is characteristic of the weld being 

hot and the tool unable to contain the plasticised steel effectively. However, there is no 

visible undercutting, nor signs of surface voids and / or hot tearing. The primer 

alongside the weld also remains relatively unaffected by the heat of the welding process, 

i.e displays no burning or blistering. This would be considered a poor friction stir weld.  

 

Figure 3.3. A weld made in 6 mm thick at a traverse speed of 400 mm/min and a tool 

rotation rate of 550 rpm. 

Fig. 3.4 shows two samples of the welds produced using the same process 

conditions of traverse speed at 400 mm/minute and tool rotational speed of 450 rpm. In 

Weld WD 119 sample, the surface is relatively smooth and welded region is of even 

width along its length and there is no enormous flash produced and the weld surface is 

free from macro defects such as surface breaking voids and ‘stick and slip’ scuffing. 

Therefore, this weld would be considered a high quality friction stir weld. In contrast, 

the weld in WD 122 specimen has a wider welded region at the start of the weld and 

over-plasticised with considerable quantities of flash departing from under the tool 

shoulder. The friction stir welding process also exhibits hot tearing which results in 

surface breaking voids as the weld transitions from the plunge stage to the welding 

stage. Although the same process conditions were used to make the weld, the friction 

stir welding process produced a poor quality weld. 
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Figure 3.4. Butt weld of 6 mm thick DH36 steel grade using pcBN tool with tool 

rotational speed 400 rpm and welding speed of 325 mm/min:  A WD119 

sample with good quality (upper) and WD 122 sample with poor weld quality 

(lower) (Figure taken from [158]). 

3.3. MODELLING, MONITORING AND CONTROL OF FRICTION STIR 

WELDING  

3.3.1. OVERVIEW  

Modelling is the process of constructing a simplified mathematical model from a 

complex physical system. In this process, numerical methods or models are used to 

describe a complex physical system [159, 160]. Modelling the FSW process is a very 

complicated task as the behaviour of the process includes physical couplings, very large 

plastic deformations and strain rates, material flow, mechanical stirring, surface 

interaction between the tool and the parent material, and high temperature within and 

around the stirred zone [161]. It also produces complex dynamic microstructural 

evolution, high shear forces in the plastically deformed material, and high temperature 

around the tool to nearly the temperature of the material melting point. The thermo-

mechanical mechanisms occurring during the process can scarcely be fully quantified, 

in particular those concerning the contact conditions between the tool and parent 

material. In addition, there is no consensus on the type of law or equation (first principle 

model) to be used for the constitutive behaviour of the material flow at high 



 

 63 

temperatures and under high strain rates [137]. An understanding of the temperature 

history is essential, as it affects the microstructure and mechanical properties of the 

weld. Therefore, FSW is highly thermo-mechanically coupled process which makes it 

very challenging for researchers attempting to describe these phenomena using three 

types of modelling approaches (analytical, numerical and data-driven methods) [38, 

160, 162]. 

3.3.2. CURRENT RESEARCH 

3.3.2.1. ANALYTICAL AND NUMERICAL MODELLING OF FRICTION STIR 

WELDING 

An analytical modelling approach is a mathematical model that uses exact 

theorems to present a closed form solutions of the governing differential equations 

which describes the process. The solutions to the equations or formulas that are used to 

describe changes in a system can be expressed as a mathematical analytical function 

[162]. A numerical modelling approach is a mathematical model that uses some sort of 

incremental time-stepping procedure to determine the state of a model and obtain its 

behaviour over time. The results obtained from such model is purely numerical, so that 

if someone wants to investigate/study the model’s behaviour at different initial 

conditions, different initial values have to be fed in at the start of the modelling process 

and run the same incremental time-stepping procedure all over again which is time-

consuming and computationally expensive [163].   

Over the past few years analytical and numerical modelling methods have been 

intensively used for elucidating various aspects of the complex thermo-mechanical 

coupling phenomena associated with FSW. These computational models could also be 

helpful to better understand and visualise the influence of process input parameters on 

FSW process. The first numerical models appeared in the literature [164-166] to 

investigate the temperature history and they are based on Rosenthal’s equation to 

describe the quasi-steady temperature field assuming a constant uniform pressure 

between the tool and the surface of parent material. The studies reported in [167] and 

[168] developed a three dimensional thermo-mechanical model based on FEA 

approaches. This model was used to investigate/study the thermal history and thermo-

mechanical behaviour in the butt-joining of aluminium alloy 6061-T6. Their developed 
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model can be extended to optimise the FSW process parameters to minimise the 

residual stress of the weld. In [169], Chen and Kovacevic continued their previous study 

and successfully studied the thermal history, stress and compute the mechanical forces 

in the lateral, vertical, longitudinal and directions.  Other researchers have used CFD 

approaches to study the material flow and spatial velocity filed around the rotating 

tool’s pin [170, 171]. There are other several analytical methods have been developed 

to calculate the heat transfer rate and materials flow but they are computational 

expensive [172-179]. A comprehensive review of the latest developments in the field 

of analytical and numerical modelling of FSW process, microstructures, and 

mechanical properties can be found in [38]. For instance, in the study reported in [169], 

the temperature was calculated based on Fourlier’s equation: 

                    𝜌𝑐
d𝑇

d𝑡
= div(𝜅. grad𝑇) + 𝑞 in Ω                                                         3-1 

where 𝜌 is the material density, 𝑐 is the heat capacity, 𝑇 is the temperature, 𝜅 is the 

conductivity, and 𝑞 is the power generated by friction between the tool and the top of 

the workpiece and by the plastic deformation work of the central weld zone. 

The main source of heat in FSW is generally considered to be the friction between 

the rotating tool and the welded materials, and the “cold work” in the plastic 

deformation of material in the vicinity of the tool. The heat generation rate at the contact 

surface between the tool shoulder and the top surface of workpiec can be derived from 

the friction in the element at radius 𝑟 is: 

                     d�̇� = 2𝜋𝜔. 𝑟2𝜇(𝑇)𝑝(𝑇)d𝑟                                                                   3-2 

The heat generation rate over the entire interface of the contact is calculated by: 

                  �̇� = ∫ 2𝜋𝜔. 𝑟2𝜇(𝑇)𝑝(𝑇)d𝑟
𝑅0

𝑟0

=
2

3
𝜋𝜔𝜇(𝑇)𝑝(𝑇)(𝑅0

3 − 𝑟0
3)             3-3 

The heat generation rate at the interface between the shoulder and the top of the 

workpiece surface is a function of the coefficient of friction 𝜇, angular velocity 𝜔, and 

radius 𝑟. As the 𝜇(𝑇) and 𝑝(𝑇) are dependent on the local temperature and the radius 𝑟, 

Eq. 3-3 is difficult to evaluate. As the temperature increases, the friction coefficient is 
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expected to decrease, and the plastic formation of the weld region increases. In this 

model, the 𝑝 is an experimental value and the friction coefficient was kept constant  in 

order to approximate the study effect of both factors of thermal and plastic effects 

during FSW, and the performance of model was verified against measured temperature 

history.  

In spite of the intensive researches on FSW modelling by using approaches based 

on analytical models such as FEA and CFD models, however, all of these models have 

their own drawbacks and limitations, also the high computation cost, and limited 

accuracy which make it difficult for real-time use. Over the last few years, another 

solution has been suggested for modelling and optimisation of FSW, which is the use 

of data generated from the process. Consequently, data-driven modelling methods such 

as fuzzy logic systems, neuro-fuzzy systems, neural networks, and genetic algorithms 

are expected to provide a better solution for the modelling of FSW. In addition, low 

computation cost associated with the data-driven modelling approaches (as compared 

to the analytical and numerical modelling approaches) makes them feasible for real-

time use. In this thesis, the research work is focused on the use of data-driven 

computational intelligence models for the modelling of friction stir welding. Therefore, 

a comprehensive review on data-driven modelling of FSW is provided in the next 

section. 

3.3.2.2. DATA-DRIVEN MODELLING FOR FRICTION STIR WELDING 

Based on the above motivations for the use of data-driven modelling to model the 

FSW, a comprehensive literature review related to this area is presented in this section. 

In [39], Okuyucu et al. used an ANN to model and study the effects of the FSW process 

parameters (traversing speed and rotation speed) on the weld mechanical properties 

namely: tensile strength, elongation, yield strength, and hardness for aluminium sheets. 

Moreover, in [178] Lakshminarayanan and Balasubramanian developed a three layer 

ANN to predict tensile strength of AA7039 aluminium welds, the developed  model is 

capable of predicting the tensile strength within the range that it has been trained, but 

the generalisation ability was not good. The same model was used for the same 

modelling purpose by Jayaraman et al. [180]. The studies in [181] and [182]  introduced 

a genetically optimised neural network model for the selection of optimum process 
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conditions  for the Friction Stir Spot Welding (FSSW), in these studies the process 

conditions are utilised as inputs to the model and the outputs are selected as the weld’s 

penetration load and tensile force. Additional experiments were used to verify the 

obtained optimum process parameters.   

The majority of the previous studies [183-187] based on neural networks modelling 

approaches focused on FSW of aluminium alloys, but the effects of the FSW process 

parameters on the microstructure, mechanical properties, and final weld quality are still 

needed to be further studied and interpreted. Moreover, there is a demand for reliable 

and accurate FSW models. In [40] Zhang et al. introduced  a systematic data-driven 

modelling  framework to model the FSW process for  AA 5083 aluminium alloy, the 

proposed modelling framework confirmed to be interpretable, accurate, and robust and 

thus it can be further utilised to aid the optimal design of FSW process. Also, in [188] 

Zhang et al. studied the correlations between the input parameters, the internal process 

variables  (namely bending forces), and  the final weld quality. They have successfully 

developed a quality indicator to monitor the process in an on-line manner. In [41] Zhang 

et al. extended their previous work and successfully developed a multi-objective 

modelling approach  to model the intricate FSW behaviours. The proposed modelling 

approach is used to forecast internal process variables, grain size as well as mechanical 

properties. 

3.3.2.3. MONITORING AND CONTROL OF FRICTION STIR WELDING  

Weld quality of a friction stir weld is determined by the combination of process 

parameters and internal process variables [151]. Therefore, to produce a steady FSW, 

process parameters (e.g. feed rate, spindle speed, tilt angle, plunge depth, etc.) and 

internal process variables (e.g. temperature, torque, forces, etc.) have to be monitored 

and controlled during the process.  Measuring techniques of tool torque and feedback 

forces (𝐹𝑥, 𝐹𝑦, and 𝐹𝑧) have to be implemented. A comprehensive investigation was 

made to establish the best practical methods for monitoring the crucial parameters 

during the FSW process and then selecting the best and most economical method. For 

all the various feedback forces, and tool torque measurements will be conducted by a 

method of strain gauging in one form or another. On the other hand, temperature history 

of the tool could be measured using a simply embedded thermocouple in the rotating 
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tool or infrared thermal imaging camera, embedded sensors in the parent material. All 

these options also have their limitations, mainly being cost. 

In the field of FSW monitoring and control, classical closed and open loop force 

and position control mechanism have been introduced in some researches [189, 190]. 

In the study reported in [191]  a multi-input/multi-output (MIMO) neuro-fuzzy 

controller for nonlinear  and complex curvature surface was proposed. The proposed 

monitoring/ control scheme consists of integrated sensor monitoring, fuzzy logic 

controller trained with back error propagation algorithm to generate on-line fuzzy rules. 

Despite the simulation results showed that the process conditions (temperature and 

torque in this study) were well maintained within limited ranges from their reference 

values, the proposed control scheme needs to be investigated in wide range of input 

parameters and process conditions and process parameters in order to prove its 

feasibility.  

A recent study in [192], has investigated the effects of the number of tool rotations 

on the quality of friction stir spot weld of an aluminium alloy. The authors concluded 

that there is a linear relationship between the number of tool rotations during the spot 

weld of an aluminium alloy and the resulting tensile shear strength. In addition, a 

modified open-loop position control was proposed to monitor and limit the energy 

generated during the welding by regulating the dwell time. In [193], Su et al. proposed 

a methodology for measuring some of the process internal variables (namely the 

traverse force (X-axis), axial force (Z-axis) and the tool torque) simultaneously under 

different welding conditions for the FSW of AA2024-T4 aluminium alloys. The studies 

reported in [194] [42] investigated the frequency spectra of the tool feedback forces in 

X, Y, and Z axes and it was concluded that the frequency spectra of the feedback forces 

is more likely to contain useful information about the weld quality. Therefore, it would 

useful to use the information from frequency domain to build monitoring tools. In [194], 

the authors proposed a model-based classification algorithm that takes advantages of 

frequency domain information to build a weld quality marker for aluminium alloy. 

However, this model-based approach was proved to be not feasible as the changing 

process parameters also change the behaviour of the frequency domain information. 

Hence, the modelling performance cannot be generalised for different process 
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conditions, as the model needs to be retrained every time the process condition is 

changed which would limit the usability of the model in real-time.  Most of the research 

on the area of FSW monitoring is focused on tool design, parent materials, 

basic/fundamental understanding of the process, and post-weld properties [183-187]. 

3.3.3. CHALLENGES AND RESEARCH DIRECTIONS  

Reviewing the past and on-going researches that focus on the area of data-driven 

modelling, monitoring, and control of FSW, a very limited number of researches has 

been reported but all of them are focused of FSW for aluminium, however in the field 

of friction stir welding of steel, no previous research has been conducted for steel 

friction stir welding.  The focus of this thesis work will be in the field of data-driven 

modelling, process monitoring, and control for steel friction stir welding.   

The previous studies reported and covered in the previous sections revealed a 

number of challenges, which makes the modelling process of FSW more complicated. 

This is mainly due to the following reasons: 

 The complex thermo-mechanical behaviour makes the process highly non-

linear. 

 Measurements uncertainty of the real industrial data (noise, operator errors, 

etc.). 

 Low process repeatability due to constraints on the quantity and quality of the 

real industrial data that results in similar statistical properties. 

 High interaction between the multiple input parameters. 

 Sparse and complex data space. 

 The quality of the weld produced by FSW is influenced by a number of different 

factors in combination. These factors cannot be gauged due to some practical 

reasons, hence further complicating and creating more challenging process 

modelling conditions (for instance persistent tool tip temperature).  

The focus of this thesis work will be on developing simple and computationally 

efficient real-time process models that have the capability of taking advantage of 

expert-knowledge to handle imprecision, inconsistency, incompleteness, sparsity, 
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quantity and complexity of the associated process data. On the one hand, CI models 

that mimic the ability of human beings in using simple linguistic interpretable rules 

extracted from raw data in order to describe complex systems. On the other hand, CI 

models that can be used for on-line monitoring and real-time prediction (i.e. through 

process modelling and optimisation) to aid the process operator in making effective 

decisions as well as to guide the process operator to prevent overheating issues and 

problems related to tool wear leading to poor performance and hence poor weld quality.  

The rest of the thesis work will be focused on the use of various concepts developed 

in human-centric intelligence systems including fuzzy sets theory, fuzzy logic systems 

and ANNs for modelling purposes.  

3.4. SOFT-COMPUTING AND HUMAN-CENTRIC SYSTEMS FOR 

MODELLING OF FRICTION STIR WELDING 

Friction stir welding is widely used in the industry for joining of metals and the 

success of the process is evident by the number of applications [37]. To guarantee the 

desired weld quality, it is crucial to have a complete control over the relevant process 

parameters on which the quality of a friction stir weld is based. Therefore, it is very 

important to select, design, control and optimise the FSW parameters for obtaining the 

desired weld quality. However, due to some uncertainty and thermo-mechanical 

phenomena (such as very large plastic deformations and strain rates, material flow, 

mechanical stirring, etc.), the relationship between the process parameters (inputs), 

internal process variables and the final quality in the friction welding process is 

nonlinear and complex, and it is very difficult to establish a precise first-principle 

mathematical model. Generally, researchers and metallurgists have to make a lot of 

welding experiments to study/analyse the influences of process parameters on weld 

quality and then design the standard/optimal parameters according to the obtained laws. 

Since the invention of the process, intensive researches on FSW modelling via 

analytical and numerical modelling approaches such as FEA and CFD models have 

been conducted, however, all of these models have their own drawbacks and 

limitations, also the high computation cost, and limited accuracy which make it difficult 

for real-time use [38]. The last decade, a fewer community of researches metallurgists 

have embraced the use of data-driven computational intelligence (CI) models via 
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developing soft-computing techniques for modelling of FSW.  

Whilst a research of the literature revealed few studies, which applied data-driven 

computational intelligence models in FSW in general, no single study exists reported 

for the data-driven modelling of FSW for steel. The main purpose of such CI models is 

to construct from numeric process data a relationship between the process input 

parameters, internal process variables, and final weld quality. In contrast to other data-

driven CI models appeared in the literature, neural-fuzzy model approaches offer good 

level of accuracy (precision) and transparency (interpretability) due to their ability in 

combining the learning capability of neural network and capability of fuzzy systems in 

utilising simple linguistic interpretable rules extracted from complex high dimensional 

raw data.    

The real industrial data used in this research work is a collection of a set of 

experimental trials conducted at TWI Ltd., Technology Centre, Yorkshire, United 

Kingdom. In order to be familiar with the process under investigation and the associated 

process data, several meetings were held at TWI Ltd with an expert to discuss the 

project’s background and provide an insight of the data acquisition. The data set 

consists of 191 measurements on welding of two similar DH36 steel plates, which is 

used for shipbuilding applications [195]. The raw data set is provided in the Appendix. 

The experiments were conducted by using different levels of process parameters 

(rotation speed and welding speed) in order to obtain the best process parameters. 

During each experiment the data evolution for the internal process variables (namely, 

tool torque, axial force and traverse force) was recorded. Full details on data pre-

processing and preliminary analysis is provided in Chapter 5.  

In FSW, two input parameters are used to control the process: the rotation speed of 

the tool in the direction of clockwise or counter-clockwise and welding speed along the 

weld line. For the design of stable, safe, and practical steel FSW, it is very important to 

study relationships between the process conditions (inputs) and internal process 

variables. Establishing the correlations is helpful in avoiding the overheating and tool 

wear problems during the process. Due to the reasons mentioned in Section 3.4, and the 

complexity and high non-linearity of the data space and its sparsity; there are areas of 



 

 71 

low data density and areas of high data density (i.e. process operation envelope). By 

way of illustration, Fig. 3.5 shows the histogram of tool rotation speed and welding 

speed. 

 

Figure 3.5. Data density example. 

3.4.1. MODELLING OF FSW USING A NEURAL-FUZZY APPROACH  

In a narrow sense, in the field of soft-computing a neural-fuzzy approach refers to 

the use of various technologies such as fuzzy systems, neural networks (NNs), and 

evolutionary computation to constitute some form of hybrid architecture.  NFS is a 

computing paradigm that utilises on the one hand the capabilities of FLSs such as FSs, 

linguistic fuzzy rules, fuzzification, FIS, and defuzzification in order to develop 

interpretable yet transparent efficient process models. On the other hand, a NFS 

maintains the learning capabilities as well as generalisation properties of NNs to 

perform functional approximation for complex and highly non-linear systems. 

Moreover, a NFS has the ability to describe real system by using a set of linguistic rules 

and quantifying the uncertainty in a simple way, which can be easily translated into 

human language (rule-based systems). 

As one of the earliest architectures for neural-fuzzy modelling approach, the 

ANFIS model [74] primarily represents a Sugeno-type fuzzy system in a special five-
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layered feed-forward neural network [77]. ANFIS implements linguistic IF-THEN 

rules of the form 

 𝑅𝑟: 𝑰𝑭 𝑥1 𝒊𝒔 𝐴𝑗1𝑨𝑵𝑫…𝑨𝑵𝑫 𝑥𝑛 𝒊𝒔 𝐴𝑗𝑛𝑻𝑯𝑬𝑵 𝑦 = 𝑝0
(𝒓) + 𝑝1

(𝑟)𝑥1 +⋯+

𝑝𝑛
(𝑟)𝑥𝑛                                                                                                                         3-4  

where 𝐴𝑗1, … , 𝐴𝑗𝑛 denotes the membership functions for the antecedent part, 𝑥 =

(𝑥1, … , 𝑥𝑛)
𝑇 is the input vector and 𝑝0, … 𝑝𝑛  are the linear parameters of the consequent 

part of the Sugeno model and 𝑟 denotes the 𝑟𝑡ℎ  rule. Fig. 3.6 illustrates the ANFIS 

architecture: 

 

Figure 3.6. ANFIS architecture [74]. 

The functions of the various ANFIS layers are given below: 

Layer 1 computes the membership degree of each input value.  

Layer 2 uses the set-theoretic operator of t-norm “AND” to perform the aggregation 

and to determine the degree of fulfilment of each rule. 
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Layer 3 normalises each fuzzy rule and the outputs of this layer are called normalised 

firing strengths. 

Layer 4 performs the consequent part “THEN”. 

Layer 5 computes the final output 𝑦 of the ANFIS architecture.  

More details on adaptive neuro-fuzzy systems can be found in [75, 116]. 

In ANFIS, the number of MFs for each input variable has to be decided in advance. 

However, the selection of an appropriate number of MFs for each input variable is based 

on a priori knowledge. Thus, it would be required to use an offline systematic selection 

approach to determine the appropriate number of membership functions for each input 

variable and therefore select the best structure of the fuzzy model in terms of accuracy 

and generalisation. The process of designing an ANFIS model usually consists of two 

steps, namely rule generation or initial model creation and system optimisation. Rule 

generation refers to the partitioning of the input space and identifying the corresponding 

set of rules, while system optimisation can be the optimisation/tuning the membership 

parameters and rule base. One of the methods that may be used to automatic generation 

of initial structure of an ANFIS model is clustering. Clustering is concerned with the 

partitioning/grouping of a numerical data set into several groups based on the similarity 

within a cluster/group to produce a concise representation of a system's behaviour. K-

means clustering [196], Fuzzy C-means [197] are among other clustering methods that 

have been used to aid the design of neural fuzzy systems. However, in these methods 

the number of clusters must be determined in advance regardless of whether the 

obtained clusters are meaningful or not. Correct specification of the number of cluster 

is very important, however, because a large number of clusters results in an 

unnecessarily complicated rule-base, while a small number of clusters leads a poor 

model. Consequently, subtractive clustering algorithm [198] has been proposed for 

determining the "optimal" number of rules in a rule-base. Subtractive clustering is a fast 

and one-pass clustering algorithm for estimating/selecting the appropriate number of 

clusters and the cluster centres in a data set. More details on subtractive can be found 

elsewhere in [198]. 

Once the initial structure of the fuzzy model is specified via the subtractive 

clustering algorithm, the membership functions of the antecedents and consequent 
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parameters are adjusted. The BEP learning algorithm can be utilised to tune both the 

antecedents and consequent parameters [199]. Fig. 3.7 illustrates the overall flow 

diagram of the data-driven model based on ANFIS model and subtractive clustering.         

 

 

Figure 3.7. Data-driven model based on ANFIS and subtractive clustering. 

3.4.2. PRELIMINARY MODELLING RESULTS   

The proposed data-driven modelling framework is used as a benchmark model to 

model and predict the internal process variables namely spindle peak torque in this 

research work as shown in Fig. 3.8.  
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Figure 3.8. FSW modelling via ANFIS model. 

The proposed data-driven model is used to derive the correlation between the FSW 

parameters of the DH36 steel plates and internal process variables. In the following 

modelling case relating to modelling of the spindle peak torque, the spindle torque is 

the amount of torque required by the shoulder to maintain the tool plunge depth into the 

joint line of the work-pieces, rotation rate, and applied force on the tool in the traverse 

direction. For the purpose of comparison, a Multiple Regression Linear (MRL) [126] 

model was utilised as a baseline and the results are provided in the Appendix. From the 

analysis of the results obtained it can be confirmed that the linear model provides only 

a basic level of prediction performance.  

A more advanced nonlinear data-driven CI model of ANFIS technique was then 

used, for cross validation purposes, the data set was split into two sets, 133 (70%) data 

points to train the ANFIS model, and 58 (30%) data points to test the generalisation 



 

 76 

capability of the final model. By using this cross validation method, the interpolation 

capability of the model is expected to be improved with the risk of over-fitting. To 

avoid the over-fitting problem and improve the generalisation capability of the model, 

𝑘-fold cross validation strategy is used in which the training set is split into 𝑘  (i.e. 10 

folds in this study) equally sized subsets and each time, one of the 𝑘 subsets is used as 

the testing set and the other subsets are combined together to form the training set. Then 

the average error across all 𝑘 runs is calculated. While the k-fold method systematically 

results in relatively low variance as the algorithm needs to run 𝑘 times, thus becoming 

computationally expensive. Following the flow diagram in Fig. 3.7, the clustering 

algorithmic procedure employed for the initial structure identification of the ANFIS 

model is the subtractive clustering, which groups similar data points based on a density 

measure.  

Since there is no prior knowledge about the number of clusters, with a number of 

systematic simulations (increased/reduced the radius cluster), it was established that the 

appropriate cluster radius specification was set to 0.40 which produced five clusters 

(five rules in the rule-base). The ANFIS model having less fuzzy rules (large cluster 

radius) achieved less accuracy performance but the rube-base is simpler in structure and 

more interpretable. However, the ANFIS model having more fuzzy rules (small cluster 

radius) captured more information about the dynamics of the process being modelled 

and achieved better accuracy performance with lack of interpretability and simplicity.  

To discuss the results obtained from the Subtractive clustering and hence in relation 

to the initial structure of fuzzy rule-base, it would be worth to provide an illustrative 

example of the final shape of the membership functions (MFs) after subtractive 

clustering. Therefore, in Fig. 3.9 the initial universe of discourse after the application 

of Subtractive clustering for the dimensions that linguistically describe the welding 

speed and rotation speed is presented.  The initial rule-base can be employed to describe 

the complex and non-linear behaviour between welding speed, rotation speed and the 

predicted spindle peak torque, which can be achieved by taking advantage of fuzzy 

logic systems. The corresponding fuzzy rules in linguistic format is as follows: 
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Rule 1: IF Welding Speed is very small AND Rotation Speed is very small, THEN Peak 

Torque is 𝑦 = 𝑝0
(1) + 𝑝1

(1)𝑥1 +⋯+ 𝑝𝑛
(1)𝑥𝑛 

Rule 2: IF Welding Speed is high AND Rotation Speed is high, THEN Peak Torque is 

𝑦 = 𝑝0
(2) + 𝑝1

(2)𝑥1 +⋯+ 𝑝𝑛
(2)𝑥𝑛 

Rule 3: IF Welding Speed is small AND Rotation Speed is Small, THEN Peak Torque 

is 𝑦 = 𝑝0
(3) + 𝑝1

(3)𝑥1 +⋯+ 𝑝𝑛
(3)𝑥𝑛 

Rule 4: IF Welding Speed is Very High AND Rotation Speed is Very High, THEN Peak 

Torque is 𝑦 = 𝑝0
(4) + 𝑝1

(4)𝑥1 +⋯+ 𝑝𝑛
(4)𝑥𝑛   

Rule 5: IF Welding Speed is Medium AND Rotation Speed is Medium, THEN Peak 

Torque is 𝑦 = 𝑝0
(5) + 𝑝1

(5)𝑥1 +⋯+ 𝑝𝑛
(5)𝑥𝑛 

where 𝑥 = (𝑥1, … , 𝑥𝑛)
𝑇 is the input vector and 𝑝0, … 𝑝𝑛  are the linear parameters of 

the consequent part of the Sugeno model.

 

Figure 3.9. The initial rule-base of ANFIS model constructed by using subtractive 

clustering. 

Due to the variability produced by the subtractive clustering, a systematic number 

of simulations were conducted to select the appropriate number of clusters (fuzzy rules) 

it was established that the optimum number of fuzzy rules is 5 for the prediction of 
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spindle peak torque, hence through 10-fold cross-validation experimentation for 

training the initial rule-base structure of the model. The initial rule-base was optimised 

via back error propagation approach based on gradient descent procedure due to its 

efficiency in optimising the proposed type of neural fuzzy systems [199]. Table 3-1 and 

Fig. 3.10 show the effects of increasing the number of clusters (fuzzy rules) on the mean 

squared prediction accuracy for peak torque prediction. Meaning that the accuracy 

performance of the ANFIS model was compared by evaluating the root-mean-square 

error (RMSE) with its standard deviation (SD) and mean-absolute error (MAE%) 

between the current model output and desired output. The results obtained after a 

number of systematic simulations in the range between 3-17 clusters are summarised 

in Table 3-1. This table contains the information required to make a judgement on 

which model could have a good balance between prediction accuracy and 

interpretability of the rule-base.  Fig. 3.11 illustrates the measured versus predicted 

initial model performance for spindle peak torque for the training and testing 

respectively. Visible in the simulation plots also 2 × standard deviation bands. 

Table 3.1. RMSE and MAE% for the ANFIS modelling framework. 

  

RMSE±SD  

 

RMSE±SD  

 

MAE%±SD 

 

MAE% ±SD 

Number 

of 

Clusters 

Training Testing Training Testing 

3 46.18±7.48 48.23±9.11 11.48±1.56 13.92±3.75 

5 45.96±5.46 47.13±6.01 11.42±1.32 13.15±3.04 

6 42.60±3.14 51.34±7.71 10.86±1.24 12.98±2.87 

8 42.11±2.06 51.17±8.34 9.97±1.18 12.89±2.65 

11 41.34±1.15 63.55±8.87 9.62±1.03 14.51±6.90 

17 35.65±0.96 239.55±15.10 8.09±0.96 27.63±17.73 
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Figure 3.10. Comparison of performance indices based on the RMSE and MAE% for 

ANFIS modelling framework with different number of rules. 

 

Figure 3.11. Data fit, peak torque prediction by using subtractive clustering to 

construct the initial fuzzy rule-base. 
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From the preliminary modelling results obtained from the ANFIS modelling 

framework, it is evident that the model was not able to provide good prediction accuracy 

and some data points were not correctly predicted. Despite k-fold cross-validation 

strategy was used to construct the final model, the model still suffers from over-fitting 

problem and there is a non-linear relationship between the process parameters and 

spindle peak torque. This may due the learning algorithm or complexity, sparsity and 

inconsistency associated with the process data.    

3.5. SUMMARY  

Despite considerable interests in the Friction Stir Welding (FSW) technology in 

past decades, the basic physical understanding of the process is still insufficient. 

Clearly, the complete understanding of the material flow around the rotating tool is 

crucial to optimise parameters of the FSW (including tool rotational speed, welding 

speed, spindle tilt angle, and penetration depth) and design of tool geometry. In this 

chapter, various topics related to the FSW process were presented including principle 

of operation, tool design, advantages and applications of the process, and weld quality 

assessment. A comprehensive literature review on FSW modelling (analytical, 

numerical and data-driven computational intelligence approaches) was also covered 

and the recent developments in the field of process monitoring and control were 

presented.  

Preliminary modelling results based on the well-known ANFIS modelling 

framework were also described, including the subtractive clustering approach and 

application of back error propagation approach based on gradient descent procedure. 

Finally, some modelling results for the prediction of peak torque variable in the 

complex manufacturing process of FSW were discussed. 

In the next chapter, a data-driven modelling framework based radial basis function 

neural networks (RBF-NNs), human-like information capture of granular computing 

(GrC) with an application of a conflict measure for the evaluation and analysis of 

uncertainty during the information granulation (IG) will be introduced.   
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CHAPTER 4 - INTERPRETABILITY MEASURES IN RBF-NF 

SYSTEMS USING ITERATIVE GRANULAR COMPUTING 

his chapter presents a new conflict measure during iterative information 

capture in granular computing (GrC), in order to estimate/evaluate the 

uncertainty present during the iterative data granulation process. On one hand, 

the conflict measure is calculated via Shannon entropy theory to extract information 

related to the data uncertainty while carrying out the granulation process. Subsequently, 

this information is used to guide the iterative granulation process into condensing 

(merging) the granules (data) with low conflict, therefore producing better quality 

information granules. On the other hand, the resulting information granules are utilised 

to construct the initial parameters of a radial basis function (RBF) neural-fuzzy 

structure to model the steel friction stir welding process. 

The predictive performance and interpretability of the proposed modelling 

framework is compared to the preliminary results obtained in Chapter 3 and results in 

recent literature.        

4.1. INTRODUCTION 

In systems engineering, one of the main objectives of fuzzy logic modelling is to 

develop interpretable and computationally efficient models. These may describe real 

systems or natural phenomena with nonlinear behaviour through the construction of a 

linguistic rule-base. The rule-base description of a given system can be achieved by 

establishing relationships between the relevant system inputs and outputs in the form 

of IF-THEN linguistic rules. Each fuzzy rule maps a fuzzy region from the antecedent 

space to another fuzzy region in the consequent space. The linguistic interpretability of 

fuzzy logic models can hardly be maintained when using ANNs [26] such as MLPs 

[24]. In fact, fuzzy models combine some distinctive properties that make them 

particularly interesting such as the facility to formulate the system knowledge based on 

transparent and interpretable  linguistic rules, the capacity of integrating linguistic 

information from human experts with observational data, and the ability of performing 

universal function approximation for complex and nonlinear functions with simpler 

computational models [44].  

T 
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In spite of the rapid development of hybrid modelling approaches based on FLSs 

[26], ANNs [56] and GAs [57] and their successful application to a variety of real-

world problems, most existing fuzzy modelling approaches focus on model accuracy, 

rather than interpretability and simplicity of the obtained models, which are considered 

a primary advantage of fuzzy logic rule-based systems (FLRBSs). In many situations, 

users require the model not only to perform good global predictions but also to provide 

meaningful linguistic descriptions of the system behaviour. Such descriptions can be 

extracted and possibly combined with expert knowledge, not only to aid understanding 

the system, but also to validate the model obtained from process data via a parsimonious 

but understandable rule-base.  

RBF-NN is one of the data-driven CI modelling paradigms that is often used for 

modelling of nonlinear and complex systems [22]. RBF-NN is a non-linear input/output 

mapping which is used for performing many tasks such as exact functions 

approximation, regularisation, noisy interpolation and pattern recognition of process 

data in a multi-dimensional space due to its ability to learn from data and improve its 

performance by adapting to the changes in the environment [23]. Although, the RBF-

NN is a black-box model, it is a powerful modelling tool when it is combined with 

fuzzy logic (FL) by taking advantage of both Neural Networks (learning capability) and 

fuzzy logic (transparency and interpretability) [24].  

Several studies have established the mathematical equivalence between the RBF-

NN called T1-RBF-NF system and a class of FISs [20, 21] and thus the RBF-NN can 

be considered as a fuzzy inference model of type-1 under certain conditions. That 

means, the initial structure of the RBF-NN identification can be achieved similarly to 

that employed in FLSs [25, 26]. In other words, the RBF-NN parameters which 

represent the consequent and premise parameters in fuzzy systems are estimated 

systematically from observational data by using a clustering procedure and then the 

parameters are adjusted more precisely to complete the modelling process. In FLSs 

theory [200, 201], parsimony is a very important feature as it is closely related to the 

interpretability of the fuzzy model as a result of a good distinguishable fuzzy rule-base 

that determines the degree of transparency in the FIS. In order to construct 

parsimonious FLSs, it is required to generate distinguishable fuzzy sets and at the same 
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time preserve global model accuracy. The distinguishability of fuzzy sets is considered 

as one of the most important aspects for the interpretability of FL systems. By the way 

of comparison between RBF-NN and FL systems, the former often suffers from loss of 

interpretability due to the parametric optimisation process, which is usually performed 

via the use of a gradient-based procedure [26].  

To produce distinguishable fuzzy sets, in [200, 201] the authors suggested a 

procedure to design interpretable fuzzy systems based on a collection of interpretability 

constraints, i.e., a group of formal properties that are imposed on the components of 

fuzzy models (fuzzy sets, rules, etc.) to prevent unintelligible  configurations. For 

example, a metric similarity measure to quantify distinguishability as a result of the 

degree of overlapping between two or more FSs and this measure is used to evaluate 

how much is the interpretability of a fuzzy system influenced by the degree of overlap 

between fuzzy sets. Meaning that, high degree of overlap between the fuzzy sets results 

in less distinguishable fuzzy sets and therefore less interpretable rule-base. In [46] Zhou 

and Gan divided the interpretability into two categories based on  the two learning 

phases (i.e. initial structure identification  phase and parametric optimisation phase) that 

involves in the design of FLSs. In a deeper context, the authors described the 

interpretability during the initial structure identification phase and it was dubbed low-

level interpretability; while the interpretability during the parametric optimisation 

phase was denoted as high-level interpretability.  

The low-level of interpretability of fuzzy models is the interpretability that can be 

obtained with regard to semantic criteria on fuzzy sets by optimising the membership 

functions (MFs). Whilst the high-level of interpretability is the fuzzy model 

interpretability that associated with the parametric optimisation phase and it can be 

obtained when dealing with the consistency, completeness, and coverage of the fuzzy 

rules with reference to the criteria on fuzzy rules. The transparency, parsimony, and 

readability as well as simplicity of the fuzzy rules are among the criteria that can also 

be taken into consideration at the high-level interpretability.  

A prevalent approach to design the RBF-NN is to first select the number and 

locations of centres (prototypes) in the hidden layer via an unsupervised learning 
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procedure to discover a structure in the input training data [202]. In particular, popular 

clustering algorithms to partition (cluster) the input space can be used – such as the hard 

C-means clustering or k-means clustering algorithm [203, 204],  the Fuzzy C-means 

(FCM) clustering [197], the subtractive clustering [198] and recently the iterative data 

granulation algorithm of granular computing (GrC) [27]. Almost all the existing 

clustering algorithms that appeared in the literature operate on numeric data and 

produce prototypes (i.e., data representatives) that are again completely numeric [30]. 

In this sense, the form of these prototypes does not reflect the number of data points 

they represent and how the initial data distribution looks like [30].    

Particularly the emerging computing paradigms of granular computing (GrC) have 

been used for processing of information in forms of ‘information granules’ in a 

transparent and interpretable way [135]. The information granules are used to estimate 

the initial parameters of the RBF-NN at the low level interpretability. In the field of 

GrC, granulation is a computational paradigm that is different from the aforementioned 

data clustering algorithms in its ability to imitate the human ability in terms of 

grouping/arranging similar objects together based on predefined compatibility 

measures. In the field of human-centric intelligent systems (HCISs), GrC is an 

emerging computing framework of human-like information processing that deals with 

processing and representing information in form of information granules. The process 

of forming these information granules is called iterative information granulation [205]. 

Each information granule consists of complex information entities that are 

grouped/arranged together during the information granulation due to their similarity 

(shape, orientation), indistinguishability, functional adjacency (distance, size, volume), 

coherency, cardinality, and density.  

In data-driven computational intelligence models, the process of abstraction of raw 

data, knowledge acquisition, identifying valid, and potentially meaningful information 

in numeric data is a nontrivial step towards the development of efficient HCIS since it 

provides to CI models with the ability of acquiring knowledge that can be 

understood/communicated to users. The acquired knowledge is also used to estimate 

the initial parameters (structure) of the RBF-NN model. However, most of the real-

world data that are available often associated with uncertainty because of measurement 
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imprecision, inaccuracy, scatter, scarcity, high non-linearity, limited data size, low 

process repeatability, or other errors.  The information explosion/extraction in such data 

has raised an urgent demand for the development of knowledge discovery approaches 

that have the ability to handle such challenges.  

A number of statistical and machine learning approaches (i.e., CI approaches) that 

depend on data pre-processing techniques aim at representing uncertainties such as 

those involve noise reduction and outliers detection as well as errors elimination [206, 

207]. In some cases, outliers and noise are produced as a consequence of the process 

itself and they contain useful information that represent part of the process dynamics. 

These information can be employed in the modelling process. In addition, noise 

reduction or outliers detection (removing some data points) is not always 

feasible/desirable in practice [27]. 

 The iterative human-like computational framework of GrC in the form proposed 

in [27] represents an explanatory and effective data analysis tool and a useful data 

clustering technique. It has also demonstrated its efficiency as a tool for constructing 

the initial structure of the RBF-NF system. Even through, it has proven its efficiency, 

during the iterative granulation adding/inserting a new information granule to the input 

space in particular in the case where two or more information possess a similar 

compatibility measure results in a degree of uncertainty about which information 

granules to be merged. This phenomenon produces a grade of conflict uncertainty 

among the new information granules and accordingly the final information granules do 

not represent the accurate distribution of the input space of the process under study (i.e., 

producing low quality information granules).  

Since the acquired knowledge (in the form of granulated data) from the iterative 

information granulation can be utilised to estimate the initial parameters of the RBF-

NF system (fuzzy logic rule-base), however generating information granules with high 

level of uncertainty will result in FL rule-base with high degree of overlap between FSs 

and less distinguishable FSs (i.e., low quality FL rule-base). Less distinguishability 

leads to loss of transparency and then the interpretability of rule-base might be lost.  
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According to [29] [31, 208-210], a number of information uncertainties may 

present during the iterative granulation process, for instance uncertainty caused due to 

lack of boundaries between the information granules (fuzziness), conflict between 

granules, incompleteness , etc. In this sense, uncertainty can broadly be categorised into 

three basic types: a) fuzziness (shapelessness or vagueness), b) non-specificity, and c) 

discord (dissonance or conflict). Researchers from different fields have proposed 

mathematical frameworks to model/deal with uncertain data, for instance fuzzy sets 

theory [8], possibility theory [14, 15], evidence theory [9], the theory of fuzzy measures 

[16] and rough sets theory [12].  

This chapter addresses the issue of uncertainty present during the iterative IG 

process where a new measure that is able to capture the uncertainty caused by conflict 

is proposed. In this context, a Shannon-based uncertainty measure is introduced to 

measure the conflict during the iterative information granulation and use it as a guide 

to enhance the IG process. This measure provides an extra degree of freedom, which 

makes the compatibility creation able to drive the compatibility search into merging the 

information granules with low conflict. Thus, better quality information granules, more 

transparent, interpretable and consistent FL rule-base is obtained.  

The main contributions of this chapter are twofold, on the one hand, the 

information granulation process is utilised to estimate the initial location of the centres 

(prototype) in the field-receptive units in the hidden layer of the RBF-NF model. On 

the other hand, a new modelling framework based on the granulation process presented 

in [27] and the Shannon entropy-based conflict measure [209, 211] is proposed in order 

to estimate the uncertainty/conflict between the granules during the granulation process 

to improve the quality of the information granules at low-level interpretability (i.e., 

initial structure identification of a RBF-NN). Therefore, the main objectives of this 

chapter can best be treated under two headings: 

 The two levels of interpretability (low-level and high-level of interpretability) 

during the development of RBF-NF system are described in full detail. A 

particular focus will be put on the low-level interpretability process of 
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information granulation for estimating the initial RBF-NF system parameters 

(initial FL rule-base). 

 A systematic data-driven neural-fuzzy (NF) modelling framework based on the 

iterative human-like information capture of granular computing (GrC) and 

RBF-NF system is proposed. A new uncertainty measure that takes into account 

the uncertainty present during the iterative IG process is introduced. This 

uncertainty measure is used to evaluate/quantify the degree of conflict among 

information granules during the iterative IG process. The initial structure of the 

RBF-NF system is optimised via the use of the adaptive back-error propagation 

(BEP) to improve its performance.  

4.2. INTERPRETABILITY MEASURES IN THE RBF-NF SYSTEM 

STRUCTURE 

According to [20], T1-FLSs and RBF-NNs are functionally equivalent under some 

moderate conditions. Thereby, interpretability property from fuzzy logic systems and 

learning property of ANNs can be exploited and explored from a unified modelling 

framework (known as neural fuzzy systems). That implies the RBF-NN may be easily 

translated into human language (rule-based systems) in the fuzzy logic system and vice 

versa. Nevertheless, this interpretability is often ignored and most of the researches 

have been devoted to approximation capabilities of neural-fuzzy systems.  

When neural fuzzy systems are developed from process data to approximate 

nonlinear functions, learning methods are used to optimise the FLSs and improve their 

approximation accuracy. However, most learning methods are set-up for accuracy, 

which often causes a lack of interpretability in the constructed rule-base. Over the past 

years, several methods have been proposed to improve the interpretability of FL 

systems [212-215]. In [216], the authors discuss the difference between the RBF-NN 

and interpretable T1-FLSs. The authors also proposed some conditions that should be 

fulfilled for rule-based systems to be considered interpretable: 

 Completeness and distinguishability of rule-based systems: Fuzzy rules 

that are generated based on clustering of all the input variables in the rule-

base should be complete and well distinguishable. Fuzzy partitioning 
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corresponds to initial structure identification for rule-base. Each fuzzy 

partition represents a linguistic variable in the rule-base to facilitate the 

easy interpretation of complex systems. The completeness of rule-based 

systems means that for each input variable, at least one fuzzy partition 

(fuzzy set) is fired. 

 Consistency of the rule-based systems: Rule-base consistency means that 

there is no any contradictory rules in the rule-based systems in the sense 

that rules with similar premise/antecedent parts should have similar 

conclusion/consequent parts. For instance, if any two antecedents in a 

rule-base are similar but produce a completely different consequent, as a 

result, there is an inconsistency in the rule-based system. 

 The number of features or variables in the antecedent parts and the 

number of fuzzy rules in the rule-based systems: The number of variables 

in the antecedent parts and the number of fuzzy rules in the rule-base both 

should be as small as possible.  

For instance in [46], Zhou and Gan proposed a taxonomy of interpretability for 

fuzzy linguistic rule-based systems in terms of low-level interpretability and high-level 

interpretability. On the one hand, the authors in [46] proposed several semantic criteria 

(semantics-based interpretability) that can be applied on the fuzzy set level by 

optimising membership functions (MFs) to achieve low-level interpretability. The low-

level interpretability improvement relies upon the modification of the MFs by imposing 

some constraints towards better distinguishability, a moderate number of MFs, better 

coverage or completeness of the fuzzy partitions in the input space, as well as 

complimentary and normalisation. On the other hand, high-level interpretability of the 

linguistic fuzzy rule-based systems is achieved on the fuzzy rule level by carrying out 

overall complexity reduction in terms of complexity-based interpretability criteria such 

as a moderate number fuzzy rules and features (variables). In addition, high-level 

interpretability can be achieved by imposing semantic-based interpretability constraints 

on the fuzzy rules such as consistency of the rule-base, parsimony and its transparency 

of rule-base structure, fuzzy rules fired at the same time, and cointension. However, the 



 

 89 

taxonomy presented in [46] is only used to analyse the interpretability of linguistic rule-

based systems.  

According to [19], when dealing with the trade-off of interpretability-accuracy of 

the obtained model, two main requirements may be considered: 

1. Linguistic fuzzy modelling (LFM): This field of study is mainly devoted to build 

fuzzy models with good interpretability through the use of linguistic fuzzy rule-

based systems. Such fuzzy systems are heavily based on simple linguistic 

interpretable rules (or Mamdani) extracted from raw data/information in order 

to describe complex systems. The antecedent and consequent parts of the 

Mamdani-type fuzzy logic systems make the use of linguistic variables with 

their linguistic terms (meanings) and the corresponding MFs. 

2. Precise fuzzy modelling (PFM): This field of study is mainly focused on the 

construction of fuzzy models with good accuracy through the use of Takagi-

Sugeno FRBSs. A Takagi-Sugeno FRBS is different from Mamdani-type in the 

way that the consequent parts are deterministic without an associated meaning. 

Since the T1-FLSs and RBF-NNs are mathematically equivalent under some 

moderate conditions, a RBF-NN can be regarded as a FLS of type-1. The development 

of a type-1 FLS generally involves two learning stages, the structure identification stage 

(initial rule-base) stage and the parametric optimisation stage. These two stages are 

often carried out sequentially; the structure identification stage is used to build the 

initial structure of rule-base and then the parametric optimisation stage is used to tune 

the parameters of each linguistic fuzzy rule. Thus, the taxonomy of interpretability in 

the RBF-NN can also be categorised into two different levels namely a) low-level 

interpretability during the structure identification of the RBF-NN via the use of 

clustering algorithm, and b) high-level interpretability during the parametric 

optimisation stage of the initial rule-base (i.e., initial parameters of the RBF-NN) via 

the application of a gradient descent approach. Fig. 4.1 illustrates the two levels of 

interpretability at the RBF-NN modelling framework.  
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Figure 4.1.Interpretability levels for the RBF-NF system. 

As pointed out in [46], the semantic criteria that may be considered at the low-level 

interpretability of the RBF-NN include: 

1. Distinguishability of the MFs: Distinguishability is an essential and basic 

criterion for obtaining interpretable rule-base, because, in each input space 

partitioning distinctive boundaries between the fuzzy sets should be clearly 

defined in the universe of discourse of a variable. Each MF corresponds to 

a linguistic variable with a clear semantic meaning therefore it becomes 

hard to assign distinct linguistic variables (labels) to indistinguishable 

fuzzy sets. According to [217], a clustering algorithm is required to 

estimate parameters of the radial basis function (RBF) (locations of the 

centres). The initial parameters of the RBF are then used to construct the 

initial rule-base. The initial rule-base is optimised via the use of a gradient-

based approach to construct the final rule-base system. For this reason, the 
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initial locations of the RBF centres and their associated distinguishability 

play an important role in the construction of the final rule-based systems. 

2. Normalisation of the MFs: In the universe of discourse at least one data 

point should have a MF equal to one and all the MFs in the universe of 

discourse of a variable should be normal. 

3. Moderate number of MFs: The number of MFs (linguistic labels) for each 

input variable in the rule-base should be a small as possible while 

preserving a good level of accuracy. A smaller number of fuzzy rules 

(number of RBFs in the hidden unit of the RBF-NN) allows us to better 

understand the semantic meaning of each MF. 

4. Completeness or coverage of fuzzy partitioning: The entire universe of 

discourse of a variable should be partitioned in a way that all the MFs 

generated should cover the entire universe of discourse and every data 

point in universe of discourse should belong to at least one of the fuzzy 

partitions (fuzzy sets) and should be linguistically represented by a fuzzy 

set. 

5. Complementary: For each element in the universe of discourse, the sum of 

all its corresponding MFs should be close or equal to unity. This guarantees 

the meanings among the all elements are uniformly distributed.   

To achieve interpretable MFs (low-level interpretability) [46] in the linguistic 

fuzzy rule-based systems in terms of semantic criteria on input space fuzzy partitioning, 

several constructive techniques have been applied, such constructive techniques 

include: (1) applying regularisation techniques in the objective function for estimating 

parameters of the MFs; (2) multi-objective optimisation techniques for estimating the 

antecedent parameters of the linguistic FRBSs by taking into consideration the good 

trade-off between low-level interpretability and global model performance; (3) Fuzzy 

set merging approaches and (4) user-oriented interactive approach. 

In a similar fashion, high-level interpretability of the RBF-NN is achieved on the 

optimised RBF-NN structure (i.e., fuzzy rule level) by carrying out overall complexity 

reduction and taking into consideration the following factors:  
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a) Consistency of the rule-base: The degree of consistency in the RBF-NN is 

measured by the absence of contradictory rules in the rule-base, i.e., fuzzy rules 

with similar antecedent parts should have similar consequent parts. 

b) Parsimony and simplicity of rule-base structure: According to [46], the best 

model is the simplest in its structure and the one that fits the system behaviours 

well – meaning that the number of fuzzy rules in the rule-base must be as small 

as possible while preserving a satisfactory level of model performance. A larger 

number of fuzzy rules would result in a lack of global interpretability of the 

system. For high dimensional systems, a parsimonious linguistic FRBS is very 

desirable.  

c) Transparency of rule-base structure: According to [43], transparency is a 

measure of the ability of extracted fuzzy rules from training the RBF-NN to 

characterise human knowledge in an interpretable way (i.e., transformation of 

process data (information) into (human) knowledge) in order to permit a deeper 

understanding of the system under study. 

d) Completeness: For any input vector to the RBF-NN, at least one fuzzy rule 

should be fired in order to prevent the FLS from breaking the inference. Due to 

the nature of the RBF-NN, an input space fuzzy partition with very low 

activation may deteriorate the overall interpretability of the model. Therefore, a 

tolerance threshold is required to be taken into consideration for rule-activation 

during FSs and rule generation to avoid activating the rule-base at very low 

level. 

A detailed overview of the existing interpretability measures and methods for 

achieving more interpretable FLS is presented in [19]. Therefore, this study aims to 

provide a computational framework in order to deal with two contradictory 

requirements in the development of RBF-NN (interpretability and accuracy). 

4.3. ITERATIVE DATA GRANULATION 

In the field of knowledge discovery in databases and data mining, data clustering 

can be broadly split into two main categories namely; a) partitioning clustering [218] 

and b) hierarchical clustering [219]. The former groups data based on optimising a 

certain criterion function and the number of clusters has to be determined beforehand. 
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One of the disadvantages of partitioning clustering is that it is sensitive to the initial 

locations of the clusters centres and sensitive to noise and outliers [116]. The latter 

groups similar objects in hierarchical structure based on some measures of similarity or 

distance. In addition, the number of clusters does not need to be specified and outliers 

can be easily identified. Moreover, it is static and not sensitive to the initial locations 

of the centres [220]. In this context, the IG process aims at grouping data points with 

similar features and characteristics. To achieve the iterative IG, a compatibility measure 

based on the granular similarity that calculates ‘compatibility index’ is usually 

employed. 

Even through, the term ‘granule’ was initially introduced by Zadeh in [130] into 

the field of fuzzy logic theory under the term information granulation, the term 

‘Granular of Computing’ (GrC) was first proposed by Zadeh in [64, 65] and Lin in [66]. 

GrC is a unified and coherent computational paradigm that imitates human cognition 

in terms of constructing, describing and grouping similar objects together according to 

their features and characteristics [30, 221]. GrC aims at processing of complex 

information entities – information granules – that are formed by condensing data at 

numeric level and then extracting meaningful knowledge. Information granulation 

plays a significant role in extracting previously unknown, implicit and meaningful 

knowledge out of data [222, 223].  The use of information granulation in this research 

work is motivated from the ability to represent the information granules in form of 

hyper-boxes located in a high dimensional data space [67, 129]. 

 Several methodologies, techniques, theories, and tools geared towards the 

processing of information granules have been proposed to solve complex problems 

[129]. Set theory and interval analysis, fuzzy sets, rough sets, shadowed sets are some 

of the existing formal frameworks in which information entities (granules) are 

constructed [30]. In [67], Pedrycz proposed a mathematical formalism based on interval 

analysis for the analysis of information density of the granular structures. These 

granular structures arise as a result of the granulation process. The proposed framework 

represents a clustering algorithm that operates on a numeric raw data and granulates 

through it. The proposed methodology aims at capturing the information through the 

process of organising and abstracting data based on their similarities and characteristics 
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in the form of granules.  According to Pedrycz [67], a high level of data abstraction can 

be achieved via the use of a clustering approach based on granulation through a process 

of condensing the original data into granules. The granular clustering approach as 

described in [30, 67] is a dual-stage iterative algorithm that can be carried out as 

follows: 

  Find the most two closet (compatible) information granules according to a 

predefined compatibility measure and merge them together to build a new 

information granule. The new information granule contains both original 

information granules. Thus, the size of the data set is reduced and the same time 

the clustering algorithm condenses data. 

  Repeat the first stage of finding the most two closest information granules and 

building a new information granule until a satisfactory data condensation is 

achieved or a predefined criterion is met.  

The compatibility criterion between any two information granules can be 

calculated according to their similarity, functionality, coherency, compactness, or 

indistinguishability. To illustrate the concept of compatibility measure, consider two 

information granules (hyper-boxes) 𝐴 and 𝐵 as depicted in Fig. 4.2.  

 

Figure 4.2. Two information granules A and B in a 2-dimensional space. 
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To point at the locations of the information granules in the space, in this study𝐴−, 

𝐴+denote to the lower and upper bound of granule 𝐴 respectively while 𝐵−, 𝐵+denote 

to the lower and upper bound of granule 𝐵 respectively. The compatibility between 𝐴 

and 𝐵, 𝑐𝑜𝑚𝑝𝑎𝑡(𝐴,𝐵)  can be expressed in two components: a) the distance between 

granule 𝐴 and granule 𝐵, 𝑑(𝐴,𝐵) ; b) the size of the newly formed information granules 

that resulted as a consequence of merging 𝐴 and 𝐵. Fig. 4.3 illustrates some geometric 

properties of a resulting information granules 𝐶 formed as a result of merging two 

compatible information granules 𝐴 and 𝐵. 

 

Figure 4.3. Information granule C formed as result of merging A and B. 

Therefore, the compatibility criterion can be calculated in the form 

   𝑐𝑜𝑚𝑝𝑎𝑡(𝐴,𝐵) = 1 − 𝑑(𝐴,𝐵)𝑒
−𝛼𝑉(𝐶)                                                                       4-1 

where 

 𝑑(𝐴,𝐵) =
‖𝐴− − 𝐵−‖ + ‖𝐴+ − 𝐵+‖

𝐿𝑝
                                                                     4-2 
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with ||.|| is an 𝐿𝑝 distance between two objects (i.e., distance between two numeric 

vectors in this case), 𝑝 > 1. The value of 𝑝 can be varied through the spectrum of well-

known distances (Hamming distance (𝑝 = 1), Euclidean distance (𝑝 = 2), etc).  

 𝑉(𝐶) = 𝑣𝑜𝑙𝑢𝑚𝑒(𝐶) =∏𝑙𝑒𝑛𝑔𝑡ℎ𝑖(𝐶)

𝑛

𝑖=1

                                                              4-3 

 𝑙𝑒𝑛𝑔𝑡ℎ𝑖(𝐶) = 𝑚𝑎𝑥(𝐴𝑖
+, 𝐵𝑖

+) − 𝑚𝑖𝑛 (𝐴𝑖
−, 𝐵𝑖

−)                                                    4-4 

Note that the compatibility measure in Eq. 4-1 is not only based on merging the 

closest information granules but also the resulting information granule should be 

compact. Compactness means the size of the information granule in every dimension is 

nearly equal. The maximum value of the computability measure (𝑐𝑜𝑚𝑝𝑎𝑡(𝐴,𝐵) = 1) can 

be attained when the volume of the resulting granule 𝑉(𝐶) is reduced to zero. Therefore, 

the compactness factor 𝑒−𝛼𝑉(𝐶) guarantees that only dense and compact information 

granules are being formed. However, to calculate the compatibility measure in Eq. 4-1, 

the   original data set has to be normalised in the interval [0, 1]. 

The definition of compatibility criterion can vary between authors. It can be purely 

based on geometry of granules (size, volume, or distance), similarity between granules 

(shape, orientation), or density (ratio between cardinality and volume). In [27], 

Panoutsos and Mahfouf extended the compatibility measure that was introduced by 

Pedyrcz [67] to a compatibility measure that instead of using the volume of the resulting 

granule it is defined as a function of distance between two information granules and the 

density of the resulting granule formed from merging of two information granules. The 

density of the resulting granule can be expressed as a ratio between cardinality of each 

granule and the length of the resulting information granule in multi-dimension. 

Therefore, in this chapter the compatibility measure that is used during the granulation 

process is defined in the following set of equations:  

                 𝑐𝑜𝑚𝑝𝑎𝑡 (𝐴,𝐵) = 𝑑𝑀𝐴𝑋 − 𝑑(𝐴,𝐵). 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟                                  4-5

  

where  



 

 97 

𝑑𝑀𝐴𝑋 is the maximum distance in the input data set; and 𝑑(𝐴,𝐵) is weighted the average 

distance between two information granules A and B calculated in multi-dimension; 

such as: 

   𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑒−𝛼𝑅                                                                             4-6 

  𝑅 = (
𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝐴,𝐵) 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑀𝐴𝑋⁄

𝐿𝑒𝑛𝑔𝑡ℎ(𝐴,𝐵) 𝐿𝑒𝑛𝑔𝑡ℎ𝑀𝐴𝑋⁄
)                                                      4-7 

and   

  𝑑(𝐴,𝐵) =
∑ 𝜔𝑖(𝑚𝑎𝑥(𝐴𝑖

+ − 𝐵𝑖
+) − 𝑚𝑖𝑛 (𝐴𝑖

− − 𝐵𝑖
−))𝑑

𝑖=1

𝑑
                                   4-8 

With 𝐴𝑖
−, 𝐴𝑖

+ are the lower and upper boundaries for information granule A in 

dimension 𝑖; and 𝜔𝑖 is the dimensional weighting importance factor for dimension 𝑖 and 

𝑑 is the total number of dimensions; 𝛼 the weight in the interval [0, 1] that is used in 

order to balance the requirements between distance and compactness; 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑀𝐴𝑋 

represents the total number of granules in the input data set; the term 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝐴,𝐵) 

is the number of granule of the resulting information granule; 𝐿𝑒𝑛𝑔𝑡ℎ𝑀𝐴𝑋 is the 

maximum length of an information granule in the input data set; 𝐿𝑒𝑛𝑔𝑡ℎ(𝐴,𝐵) is the 

length of the resulting information granule in multi-dimension; such that: 

      𝐿𝑒𝑛𝑔𝑡ℎ(𝐴,𝐵) =∑(𝑚𝑎𝑥 (𝐴𝑖
+ − 𝐵𝑖

+) − 𝑚𝑖𝑛 (𝐴𝑖
− − 𝐵𝑖

−))

𝑑

𝑖=1

                          4-9 

The extended version of the compatibility measure proposed by Panoutsos in [27] 

geared towards merging of compact granules with a high cardinality. In addition, to 

calculate the compatibility measure in Eq. 4-5, there is no need to normalise the original 

data set, since the reference is the maximum distance in the raw input data 𝑑𝑀𝐴𝑋. 

To illustrate the concept of the compatibility measure during data granulation 

process, an artificial 2-dimensional raw data is considered containing of 200 data set 

[195], as shown in Fig. 4.4. As the iterative IG process advances coarser information 

granules are created as illustrated in Fig. 4.4. The top snapshot of the figure shows the 

original pre-granulated raw data consisting of 200 data points. As the information 
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granulation evolves 50 information granules are created as shown in the middle 

snapshot and finally 5 information granules are created.  

 

Figure 4.4 Iterative data granulation process – two dimensional data example. 
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The evolution of compatibility measure during the data granulation cycle is shown 

in Fig. 4.5, where the weighting importance factor 𝛼 = 0.5. It can be noted that from 

the evolution curve at the beginning of the granulation algorithm, the gradient of the 

compatibility criterion is relatively small which implies that highly compatible 

information granules are being merged. By way of contrast, at some point in the data 

granulation cycle (i.e., at the later stage), the gradient of the compatibility criterion 

becomes larger which indicates that highly incompatible granules are being merged. 

When the compatibility measure falls under a certain threshold, it can be concluded that 

the information granules are no longer more compatible. This effect can be used as a 

criterion to terminate the granulation process and to establish the minimum or optimal 

number of granules required for capturing the dynamics of a particular process. This 

can be used as a termination criterion for the granulation process.      

 

Figure 4.5 Compatibility measure example. 
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As it is pointed out in [67], the optimal number of information granules that 

represent the dynamics of a particular process can be obtained from the intersection of 

two gradient lines as shown in Fig. 4.5. 

 

Figure 4.6. Initial fuzzy model creation.  

According to Fig. 4.6 such final information granules from Fig. 4.4 are employed 

to elicit the initial multidimensional fuzzy rule base. The geometrical lower and upper 

boundaries of the final information granules are employed to estimate the initial 

parameters of the RBF-NF system. 

The average hyper-box limits of each information granule can be used to calculate 

the initial centres 𝐶𝑖
𝑗
 as follows: 
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                  𝐶𝑖
𝑗
= [𝐶1

1, … , 𝐶𝑖
𝑗
, 𝐶𝐾

𝑀 ]                                                                            4-10 

where is the 𝑖𝑡ℎ input and 𝑗𝑡ℎ hidden unit. 𝐾 is the total number of input data points.  

with  

                      𝐶𝑖
𝑗
=
1

2
(𝑚𝑎𝑥(𝐴𝑖

+ − 𝐵𝑖
+) − 𝑚𝑖𝑛(𝐴𝑖

− − 𝐵𝑖
−))                                4-11 

                      𝐶𝑖
𝑗
=
1

2
(𝑚𝑎𝑥𝑋𝑖 −𝑚𝑖𝑛𝑋𝑖)                                                                 4-12 

where  𝑚𝑖𝑛𝑋𝑖  and 𝑚𝑎𝑥𝑋𝑖 are the minimum and maximum multidimensional length of 

the resulting granule at dimension 𝑖. 

The width parameter of the Gaussian membership function in the RBF-NF system 

is be calculated via the following equation  [116]: 

                      𝜎𝑖
𝑗
=
𝑑𝑚𝑎𝑥

√2𝑀
                                                                                          4-13 

where 𝑀 is the number of final information granules (centres) and 𝑑𝑚𝑎𝑥 is the 

maximum distance between the two centres of information granules of interest. 

4.4. A HUMAN-CENTRIC APPROACH FOR MODELLING OF COMPLEX 

MANUFACTURING SYSTEMS 

This section presents the results obtained by using the human-like iterative 

granulation process described above for the granulation of input raw data in order to 

estimate the initial structure of the fuzzy rule base, which is then tuned/optimised via 

the use of an adaptive back-error propagation (BEP) algorithm that is fully described in 

Section 4.4.3.   

 

4.4.1. NEURAL-FUZZY GENERAL ARCHITECTURE 

The raw input data are compressed (clustered) across each dimension to capture a 

particular process dynamics. The granulated data (final condensed information 

granules) are employed to construct the initial structure of fuzzy rule-base.  As it is 
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suggested in Chapter 2, the neural-fuzzy model that is considered in this research work 

is a 3-Layer RBF-NN and has the structure shown in Fig. 2.8 (in Chapter 2) [26]. 

Fig. 2.8 represents a multi-input and single output FLS described by Eq.4-14. The 

FLS with a single consequent part of a Mamdani-type fuzzy logic system and Gaussian 

membership functions (MFs) in the antecedent and consequent parts. The product 

operation is used in the inference engine and output is mapped via  centre of gravity 

defuzzification method [26]. The input/output relationship of the FLS can be expressed 

in the following form: 

      𝑦(𝑥) =∑𝜔𝑗(∏𝜇
𝐴𝑖
𝑗(𝑥𝑖)

𝑛

𝑖=1

)

𝑀

𝑗=1

∑(∏𝜇
𝐴𝑖
𝑗(𝑥𝑖)

𝑛

𝑖=1

)

𝑀

𝑗=1

⁄                                         4-14 

with 𝜇
𝐴𝑖
𝑗(𝑥𝑖) is a membership function of a Gaussian type of  𝑥𝑖 that belongs to the 𝑗𝑡ℎ 

linguistic rule.  

     𝜇
𝐴𝑖
𝑗(𝑥𝑖) = 𝑒

−[
𝑥𝑖−𝐶𝑖

𝑗

𝜎
𝑖
𝑗 ]

2

                                                                                          4-15 

𝑖 =  1, … , 𝑛 and  𝑗 =  1, … ,𝑀.  

where 𝜎𝑖
𝑗
 and 𝐶𝑖

𝑗
 are the width and centre parameters of each fuzzy MF respectively, 

𝑀 is number of fuzzy rules, and 𝑛 is the number of inputs.  

4.4.2. INITIAL RULE-BASE CREATION BASED ON ITERATIVE DATA 

GRANULATION 

As is described above, the IG is an iterative process that calculates the 

compatibility measure between data points (granules) and finds the two data points 

(granules) with the highest compatibility measure at each iteration, and then merge 

them together geometrically to form a new information granule that contains both the 

original granules until a predefined number of information granules is achieved or a 

specified termination criterion is met.  

The relationship between an information granule in multi-dimension and a 

linguistic fuzzy rule is one-to-one relationship as shown in Fig. 4.6. The initial structure 
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of the FIS can be expressed as a collection of linguistic fuzzy rules (granules) in the 

following IF-THEN rules: 

                          𝑹𝒖𝒍𝒆𝒊: 𝑰𝑭 𝑥1 𝑖𝑠 𝐴1
𝑖  𝑎𝑛𝑑, … , 𝑎𝑛𝑑 𝑥𝑑  𝑖𝑠 𝐴𝑑

𝑖 , 𝑻𝑯𝑬𝑵 𝑦 𝑖𝑠 𝐵𝑖                   4-16 

 

where 𝑥1, … , 𝑥𝑑, are the input vectors, 𝐴1
𝑖 , … , 𝐴𝑑

𝑖
 are the fuzzy sets, 𝑖 = 1, … ,𝑀, 𝑀 is 

the number of rules, 𝑖 is the index of the rules. 

4.4.3. PARAMETRIC STRUCTURE OPTIMISATION 

After the initial structure of the model is constructed from the iterative data 

granulation process and its initial parameters are estimated, a number of training 

algorithms can be utilised to parametrically tune the model and optimise its structure. 

Among them is the adaptive back-error propagation (adaptive-BEP) learning algorithm 

which is proven in the past to be very efficient in optimising similar granular based 

models [26]. The conventional BEP learning algorithm requires large number of 

iterations, each iteration involves a large amount of computation to converge and also 

often gets stuck into a local minima [123]. To circumvent this issue, the adaptive 

version of BEP is utilised, where the learning rate and momentum factor of the learning 

algorithm are adjusted during the optimisation process in order to enhance its 

convergence properties. Hence, a performance index 𝑃𝐼 can be defined as follows: 

                     𝑃𝐼 =
1

𝐾
∑𝑒𝑘

2

𝐾

𝑘=1

                                                                                     4-17 

                  𝑒𝑘 = (𝑦𝑘 − 𝑦𝑘
𝑑)                                                                                    4-18 

The update rule for the centre estimation: 

∆𝐶𝑖
𝑗(𝑖𝑡𝑒𝑟 + 1) = 𝛾∆𝐶𝑖

𝑗(𝑖𝑡𝑒𝑟) − 𝛽𝑒𝑘𝑔𝑖(𝑦𝑘 − 𝑦𝑘
𝑑) ((𝑥𝑖 − 𝐶𝑖

𝑗(𝑖𝑡𝑒𝑟)) (𝜎𝑖
𝑗
)
2

⁄ )         4-19 

The update rule for the width parameter estimation: 

∆𝜎𝑖
𝑗(𝑖𝑡𝑒𝑟 + 1) = 𝛾∆𝜎𝑖

𝑗(𝑖𝑡𝑒𝑟)

− 𝛽𝑒𝑘𝑔𝑖(𝑦𝑘 − 𝑦𝑘
𝑑) (∑(𝑥𝑖 − 𝐶𝑖

𝑗(𝑖𝑡𝑒𝑟))
2

2

𝑖=1

(𝜎𝑖
𝑗
)
3

⁄ )         4-20 

The update rule for the output weight estimation:  
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∆𝑤𝑖(𝑖𝑡𝑒𝑟 + 1) = 𝛾∆𝑤𝑖(𝑖𝑡𝑒𝑟) − 𝛽𝑒𝑘𝑔𝑖                                                                             4-21 
                                  

with  

𝑔𝑖 = 𝜇𝑖(𝑥) ∑𝜇𝑖(𝑥)

𝐾

𝑖=1

⁄                                                                                                       4-22 

where 𝐾 is the total number of training data points, 𝛽 learning rate, 𝛾 momentum factor, 

𝑒𝑘 is the training error of the 𝑘𝑡ℎ data point, 𝑖𝑡𝑒𝑟 is the iteration number index, 𝑦𝑘
𝑑 is 

the 𝑘𝑡ℎ true data point, and  𝑦𝑘 is the 𝑘𝑡ℎ model’s output. 

The performance index 𝑃𝐼 is used for the continuous adaptation of the algorithm as 

follows: 

 If     𝑃𝐼(𝑖𝑡𝑒𝑟 + 1) ≥ 𝑃𝐼(𝑖𝑡𝑒𝑟) then 𝛽(𝑖𝑡𝑒𝑟) = ℎ𝑑𝛽(𝑖𝑡𝑒𝑟), 𝛾(𝑖𝑡𝑒𝑟 + 1) 

 If 𝑃𝐼(𝑖𝑡𝑒𝑟 + 1) < 𝑃𝐼(𝑖𝑡𝑒𝑟) and |
∆𝑃𝐼

𝑃𝐼(𝑖𝑡𝑒𝑟)
| < 𝛿 then 𝛽(𝑖𝑡𝑒𝑟 + 1) =

ℎ𝑖𝛽(𝑖𝑡𝑒𝑟), 𝛾(𝑖𝑡𝑒𝑟 + 1) = 𝛾0 

If 𝑃𝐼(𝑖𝑡𝑒𝑟 + 1) < 𝑃𝐼(𝑖𝑡𝑒𝑟) and |
∆𝑃𝐼

𝑃𝐼(𝑖𝑡𝑒𝑟)
| ≥ 𝛿 then 𝛽(𝑖𝑡𝑒𝑟 + 1) = 𝛽(𝑖𝑡𝑒𝑟), 𝛾(𝑖𝑡𝑒𝑟 +

1) = 𝛾(𝑖𝑡𝑒𝑟)                                                                                                             4-23 

where 𝛿 is the threshold for the rate of the relative performance index, and ℎ𝑖 and ℎ𝑑 

are the increasing and decreasing factors respectively. The performance index 𝑃𝐼 

follows the behaviour of a RMSE energy function where the following constraints are 

imposed: 

0 < ℎ𝑑 < 1 

                                                      ℎ𝑖 > 1                                                                   4-24 
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Figure 4.7. Granular computing based RBF-NN modelling framework 

4.5. A NEW CONFLICT MEASURE FOR REDUCING UNCERTAINTY AND 

IMPROVING THE INTERPRETABILITY DURING THE ITERATIVE DATA 

GRANULATION  

The iterative data granulation described above aims at extracting of implicit 

information, identifying valid, previously unknown patterns and then deriving 

meaningful knowledge from data. The iterative data granulation is a critical step 
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towards the development of efficient data-driven CI models. This is because the 

extracted knowledge from the granulated data (final granules) is utilised to create the 

initial structure (initial rule-base) of the model. During the granulation process, at each 

iteration the two information granules with the highest compatibility criterion are 

merged to create a new information granule. However, during the iterative information 

process uncertainty could present in different forms. For example, uncertainty could 

occur as a result of: a) when more than two granules have similar values of the 

compatibility criterion, b) when one of the information granules of interest is an outlier 

but not necessarily an erroneous information granule, or c) the distance between the 

two most compact granules is large which leads to information incompleteness while 

merging. As such, the iterative IG process could ultimately lead to the creation of 

granules that do not represent the correct distribution of the input space of the process 

under study (i.e., sparse distribution within the resulting information granule).  

Since the acquired knowledge (in the form of information granules) from the 

iterative data granulation process is utilised to estimate the initial parameters of the 

RBF-NN (fuzzy logic rule-base), but creating highly uncertain information granules 

(low quality information granules) will lead to the creation of highly overlapped or less 

distinguishable FSs in the rule-base (i.e., low quality fuzzy logic rule-base). Less 

distinguishability leads to loss of transparency and then the overall interpretability of 

rule-base might be lost (low-level of interpretability and high-level of interpretability). 

The uncertainty during the iterative granulation process is not taken into consideration 

in the compatibility measure proposed by Pedrycz in [67] and the extended 

compatibility measure introduced by Panoutsos in [27]. 

 In this research work, a computational paradigm in which uncertainty present as a 

consequence of conflict during the iterative IG process is quantified and used to direct 

the IG process into merging the granules with low-conflict. More specifically, the 

conflict caused during the iterative IG process can represent a loss of distinguishability 

and transparency in the rule-base structure (linguistic fuzzy rules) and their 

characterisation. For instance, Fig. 4.8 shows a case where uncertainty caused by 

conflict occurred and its effect on the construction of the final linguistic rules. As a 

consequence of the conflict during the iterative IG process, the final information 
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granules can be misinterpreted and hence lack of overall model parsimony.  The 

proposed uncertainty measure uses the Shannon entropy theory to capture and process 

conflict uncertainty present during the iterative merging operation of the granules. The 

conflict type of uncertainty is very common in some manufacturing processes such as 

friction stir welding, for instance information conflict may present as a consequence of 

low process repeatability where two similar process parameters in the input space 

produce slightly different results in the output space.  

 

Figure 4.8. Uncertainty caused by conflict during granulation and its effect to the rule-

based structure. 

4.5.1. IMPROVING LOW-LEVEL INTERPRETABILITY IN THE RBF-NF 

SYSTEM VIA MEASURING CONFLICT DURING THE ITERATIVE 

GRANULATION PROCESS 

In information theory, uncertainty is a type of deficiency that usually emerges when 

dealing with information. The sources and kinds of uncertainties may be classified as: 

a) random event; b) experimental error; c) uncertainty in judgement; d) lack of evidence 

and e) lack of certainty in evidence [4]. The information obtained from a system is often 
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not fully reliable due to incompleteness, impression, fragmentary, vagueness, and 

contradiction associated with measurements [3]. In general, a number of theories have 

been proposed to model and deal with uncertainty.  They include fuzzy sets theory [8], 

possibility theory [14, 15], evidence theory [9], the theory of fuzzy measures [16] and 

rough sets theory [12].  The essence of information uncertainty relies on the 

mathematical theory within which uncertainty relating to solve various real-world 

problems is formalised [3].  

In information theory, three basic types of uncertainty have been identified by Klir 

and Yuan [5]: a) fuzziness, b) non-specificity, and c) discord. Fuzziness refers to lack 

of definite or sharp boundaries (i.e. imprecise boundaries). Discord or strife expresses 

the disagreement in choosing among several alternatives and non-specificity or 

imprecision, which occurs when two, or more alternatives are left unspecified. The 

latter one has been studied within context of plausibility measures and belief measures 

[9], while the former two have been studied under fuzzy sets theory [224]. It is noted 

that in [5], uncertainty can be widely partitions into two facets: fuzziness and non-

fuzziness (ambiguity). The general two facets of uncertainty can be viewed in Fig. 4.9. 

Fuzziness occurs when the boundary of a set is not sharply defined. Many studies have 

been devoted on measures of fuzziness [211, 225, 226].  On the other hand, non-

fuzziness occurs due to randomness and/or non-specificity associated with a system. In 

this case the output of a system is unambiguously (crisply) defined. The total non-

fuzziness comprises at least two components: uncertainty due to randomness and to 

non-specificity. Several researchers have proposed different uncertainty measures for 

these two facets of non-fuzziness. In [227] Hohle proposed a measure to estimate the 

level of conflict present in a body of evidence, whereas Yager [228] introduced a 

measure called dissonance or conflict. However, in [229] authors highlighted some 

limitations associated with the measure of conflict that was proposed by Hohle and they 

proposed a new conflict measure. In [230], authors introduced an uncertainty measure 

to quantify the non-specificity in a possibility distribution and Dubios and Prade went 

on and extended the measure to any body of evidence [231].  

A list of different non-fuzzy existing measures is summarised in [232, 233]. In 

[234] Lamata and Moral highlighted that the uncertainty of a system is a composite of 
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two different type of uncertainties, called global uncertainty measures. Another type of 

composite measures called total uncertainty (TU) that also defined as the sum of non-

specificity and a new conflict measure they called discord was introduced by Klir and 

Ramer [229].     

 

Figure 4.9.Three basic types of uncertainty measures [5]. 

In order to quantify the degree the conflict during the granulation process and then 

attenuate its effect. The conflict measure (CM) is defined within the theory of evidence 

framework [9]. The evidence theory also known as Dempster-Shafer theory is one of 

the most prevalent mathematical frameworks for dealing with uncertainty [235]. 
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Various definition of uncertainties have been introduced [224, 232, 233], the 

uncertainty measure considered in this study is defined as [209]: 

                𝐶𝑜𝑛(𝑚1(𝐴),𝑚2(𝐵)) = −𝑙𝑜𝑔2(1 − 𝑘)                                             4-25 

with 𝑋 is the universe of discourse, 𝑚 is basic probability assignment, 𝑚(𝐴) is the 

degree of belief or evidence that the element of interest belongs to the set 𝐴, 

𝑚1(𝐴),𝑚2(𝐵) are basic assignments representing two bodies of evidence. For each set 

A∈X, the value of 𝑚(𝐴) expresses the degree of evidence supporting the evidential 

claim that a specific element of the universe of discourse 𝑋 belongs to the set 𝐴. The 

conflict function takes the values from 0 to ∞ and it is a monotonic function increasing 

with the value of 𝑘, and  

            𝑘 = ∑ 𝑚1(𝐴𝑖).𝑚2(𝐵𝑗)
𝑖,𝑗

𝐴𝑖∩𝐵𝑗=𝜙

                                                                  4-26 

𝐶𝑜𝑛(𝑚1(𝐴),𝑚2(𝐵)) = 0 if only if 𝑚1(𝐴) and 𝑚2(𝐵) do not conflict at all (i.e., 𝑘 =

0), and 𝐶𝑜𝑛(𝑚1(𝐴),𝑚2(𝐵)) = ∞ only if they conflict totally (i.e., 𝑘 = 1).  

In this research work, the basic assignment function is defined as the degree of 

inclusion between the granules of interest [195]. The degree of inclusion 𝐼𝑛(𝐴,𝐵) 

between two information granules can be expressed as the ratio of two volumes as 

follows [67]: 

𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝐴, 𝐵) = 𝐼𝑛(𝐴,𝐵) =
𝑉𝑜𝑙𝑢𝑚𝑒(𝐴 ∩ 𝐵)

𝑉𝑜𝑙𝑢𝑚𝑒(𝐴)
=
𝑉(𝐴 ∩ 𝐵)

𝑉(𝐴)
                         4-27 

where  𝐼𝑛(𝐴,B) is the inclusion of granule A into granule B, and A ∩ B  is the degree of 

overlapping of granule 𝐴 upon granule 𝐵. 

  𝑉(𝐴 ∩ 𝐵) =∏𝑙𝑒𝑛𝑔𝑡ℎ𝑖(𝐴 ∩ 𝐵)

𝑛

𝑖=1

                                                                      4-28 

  𝑙𝑒𝑛𝑔𝑡ℎ𝑖(𝐴 ∩ 𝐵) = 𝑚𝑎𝑥(𝐴 ∩ 𝐵) − 𝑚𝑖𝑛 (𝐴 ∩ 𝐵)                                           4-29 
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 𝑉(𝐴) = 𝑣𝑜𝑙𝑢𝑚𝑒(𝐶) =∏𝑙𝑒𝑛𝑔𝑡ℎ𝑖(𝐴)

𝑛

𝑖=1

                                                            4-30 

 𝑙𝑒𝑛𝑔𝑡ℎ𝑖(𝐴) = 𝑚𝑎𝑥(𝐴𝑖
−, 𝐴𝑖

+) − 𝑚𝑖𝑛 (𝐴𝑖
−, 𝐴𝑖

+)                                                  4-31 

The inclusion measure in Eq. 4-27  𝐼𝑛(𝐴,B) is a monotonic function that satisfies the 

following conditions: 𝐼𝑛(𝐴,𝐼) = 1 and 𝐼𝑛(𝐴,∅) = 0 where 𝐼 and ∅ are the unit hyper-box 

and the empty set in the multidimensional space respectively [30]. Fig. 4.11 shows how 

to calculate the inclusion between two information granules A and B and all the cases 

for one-dimensional information granules with the corresponding values of the 

inclusion measure. 

 

Figure 4.10. Computing the inclusion using the intervals of the granules A and B. 
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From Eq. 4-25, the conflict function between the granules of interest A and B can 

be written as follows: 

     𝐶𝑜𝑛(𝐴, 𝐵) = −𝑙𝑜𝑔2(1 − (𝑘))                                                                     4-32 

    𝑘 = ∑ 𝐼𝑛(𝐴,𝐵). 𝐼𝑛(𝐵,𝐴)
𝑖,𝑗

𝐴𝑖∩𝐵𝑗=𝜙

                                                                       4-33 

To measure the uncertainty associated with the conflict function, the conflict 

measure (CM) can be expressed via the Shannon entropy (eH) [236],  in Eq. 4-34 shown 

below. 

                𝑒𝐻 = −∑(𝑝𝑖)log (𝑝𝑖)

𝑛

𝑖=1

                                                                          4-34 

The term 𝑝𝑖 represents the probability of occurrence of an event 𝑖, where  0 ≤ 𝑝𝑖 ≤ 1 

and  

                  ∑𝑝𝑖 = 1  

𝑛

𝑖=1

                                                                                            4-35 

Here 𝑝𝑖 is computed as the conflict function that indicates the degree of inclusion 

between two information granules. Therefore, the conflict measure can be stated as: 

                   𝐶𝑀 = −∑(𝐶𝑜𝑛(𝐴, 𝐵))𝑙𝑜𝑔2(𝐶𝑜𝑛(𝐴, 𝐵))

𝑛

𝑖=1

                                     4-36 

The extended compatibility criterion proposed in [27] is used to calculate the 

compatibility between information granules to allow merging the most compact 

information granules while at the same time the conflict uncertainty present during the 

granulation is taken into consideration to direct the iterative IG process into merging 

the information granules with low degree of conflict. Fig. 4.11 illustrates the proposed 

GrC-CM based RBF-NF system modelling framework. 
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Figure 4.11. Granular computing based RBF-NN modelling framework and conflict 

measure. 
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4.5.2. HIGH-LEVEL OF INTERPRETABILITY IN THE RBF-NF SYSTEM 

As is discussed earlier, there is still no standard interpretability measure to assess 

how good overall model interpretability is and it depends on many factors such as 

consistency, parsimony, simplicity, and completeness of the rule-base structure. 

Consistency of the rule-base has received much attention by researchers and 

practitioners this is because seriously inconsistent fuzzy rules will deteriorate the 

performance and make the fuzzy system inexplicable [19, 24, 237, 238]. The degree of 

consistency in the rule-base is measured by the absence of contradictory rules in the 

rule-base, i.e., fuzzy rules with similar antecedent parts should have similar consequent 

parts. The consistency index (𝐶𝑜𝑛) between two linguistic fuzzy rules 𝑅𝑢𝑙𝑒𝑖 and 𝑅𝑢𝑙𝑒𝑘 

is calculated as follows [239, 240]: 

                          𝑹𝒖𝒍𝒆𝒊: 𝑰𝑭 𝑥1 𝑖𝑠 𝐴1
𝑖  𝑎𝑛𝑑,… , 𝑎𝑛𝑑 𝑥𝑑  𝑖𝑠 𝐴𝑑

𝑖 , 𝑻𝑯𝑬𝑵 𝑦 𝑖𝑠 𝐵𝑖              4-37 

                          𝑹𝒖𝒍𝒆𝒌: 𝑰𝑭 𝑥1 𝑖𝑠 𝐴1
𝑘 𝑎𝑛𝑑,… , 𝑎𝑛𝑑 𝑥𝑑  𝑖𝑠 𝐴𝑑

𝑘 , 𝑻𝑯𝑬𝑵 𝑦 𝑖𝑠 𝐵𝑘            4-38 

             𝐶𝑜𝑛(𝑅𝑢𝑙𝑒𝑖, 𝑅𝑢𝑙𝑒𝑘) = 𝑒𝑥𝑝

[
 
 
 

−
(
𝑆𝑅𝑃(𝑅𝑢𝑙𝑒𝑖, 𝑅𝑢𝑙𝑒𝑘)
𝑆𝑅𝐶(𝑅𝑢𝑙𝑒𝑖, 𝑅𝑢𝑙𝑒𝑘)

− 1.0)
2

(
1

𝑆𝑅𝑃(𝑅𝑢𝑙𝑒𝑖, 𝑅𝑢𝑙𝑒𝑘)
)
2

]
 
 
 

                        4-39 

where 𝐴1
𝑖
,𝐴j
𝑖
, … ,𝐴d

𝑖  and 𝐵𝑖 are the antecedent and consequent parts of the 𝑖𝑡ℎ fuzzy rule 

respectively. 𝐴1
𝑘
,𝐴j
𝑘
, … ,𝐴d

𝑘 and  𝐵𝑘 are the antecedent and consequent parts of the 𝑘𝑡ℎ 

fuzzy rule respectively.  SRP and SRC are the similarity of consequent premise 

(antecedent) and the similarity of the rule consequent respectively. They are defined as 

follow: 

            𝑆𝑅𝑃(𝑅𝑢𝑙𝑒𝑖, 𝑅𝑢𝑙𝑒𝑘) = 𝑚𝑖𝑛𝑟=1
𝑀 𝑆(𝐴j

𝑖 , 𝐴j
𝑘)                                                 4-40 

           𝑆𝑅𝐶(𝑅𝑢𝑙𝑒𝑖, 𝑅𝑢𝑙𝑒𝑘) = 𝑆(𝐵𝑖, 𝐵𝑘)                                                              4-41 

where 𝑀 is the number of rules, 𝑟 is the index of the rules, and 𝑆(. , . ) is the similarity 

measure between two fuzzy sets 𝐴 and 𝐵 and is defined as follows [241]: 

            𝑆(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
                                                                                       4-42 
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where ∩ and ∪ represent the intersection and union operators respectively. |. | denotes 

the cardinality of the resulting fuzzy set. 

From Eq. 4-39, the degree of consistency between two fuzzy rules tends to be high 

when the values of SRP and SRC are in proportion, provided that the value of SRP is 

high. If the fuzzy rules possess similar premise and similar consequent, the degree of 

consistency reaches its highest value of one. If the fuzzy rules possess similar premise 

but different consequent, then the degree of consistency takes the value in the 

range [0,1]. Additionally, if the SRP of two fuzzy rules is very low the degree of 

consistency is always high regardless of how the relation between SRP and SRC 

changes [19].  

4.6. SIMULATION RESULTS  

To demonstrate the benefits of the proposed modelling framework, in this section a 

comparative study between the proposed GrC-RBF-NF and GrC-RBF-NF with conflict 

measure for two different simulation examples is provided. The first simulation 

example uses the IRIS plant database [242], which is probably one of the most popular 

and widely used best-known benchmarking databases in pattern recognition. In the 

second simulation example, the proposed framework is applied to a real-industrial 

problem. The prediction of spindle peak torque of steel Friction Stir Welding is 

investigated. Steel FSW is a complex thermo-mechanical process that exhibits highly 

non-linear and complex as well as sparse databases as it was discussed in Chapter 3. 

4.6.1. EXAMPLE 1: IRIS PLANT DATASET PATTERN CLASSIFICATION  

4.6.1.1. MODELLING RESULTS BY USING DATA GRANULATION 

In this example, the proposed granular computing RBF-NF modelling framework 

is employed for classification of the IRIS database which was obtained from UCI 

Machine Learning Repository and generated by R.A. Fisher [242]. The IRIS data set 

consists of three classes, viz; 1) IRIS Setosa, 2) IRIS Versicolour and 3) IRIS Virginica 

of 50 objects each, where each class of objects refers to a type of an IRIS plant. Four 

numeric attributes namely 1) sepal length, 2) sepal width, 3) petal length and 4) petal 

width are used to predict the belongingness to the class of IRIS plant. The first class is 
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linearly separable/distinguishable from the remaining two classes and the latter two 

classes are not linearly separable from each other. For the purpose of modelling, the 

initial dataset (150 instances) was split randomly into two sub-sets: 105 (70%) data 

points to train the model and 45 (30%) data points to test the generalisation capability 

of the final model.   

Two simulation studies were carried out to compare the performance of the 

proposed modelling framework with a different number of fuzzy rules (three and five 

in this research work).  The same simulation conditions were also considered in order 

to fairly evaluate the performance of the models. The initial structure of RBF-NF 

system is identified via the iterative granulation process described in Section 4.3. The 

initial structure of the rule-base is optimised via the adaptive-BEP described in Section 

4.4.3. The performance indices based on the RMSE and MAE% of the final models are 

shown in Table 4-1. Fig. 4.12 depicts the data fit of the 5-rule RBF-NF model for the 

training and testing respectively. It is obvious from results obtained that model with 

more rules produced better prediction classification performance with more than 98% 

accuracy. The results obtained from the proposed modelling framework are better than 

those reported in [35] for the same classification problem with the same number of 

linguistic rules. 

The fuzzy rule-base of the obtained model can be expressed as a collection of 

linguistic rules in the following form:    

 𝑹𝒖𝒍𝒆𝒊: 𝑰𝑭 𝑆𝑒𝑝𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝒊𝒔 𝐴1
𝑖  𝑨𝑵𝑫𝑆𝑒𝑝𝑎𝑙 𝑊𝑖𝑑𝑡ℎ 𝒊𝒔 𝐴2

𝑖  𝑨𝑵𝑫 𝑃𝑒𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝒊𝒔 𝐴3
𝑖   

                  𝑨𝑵𝑫 𝑃𝑒𝑡𝑎𝑙 𝑊𝑖𝑑𝑡ℎ 𝒊𝒔 𝐴4
𝑖 , 𝑻𝑯𝑬𝑵 𝑡ℎ𝑒 𝐼𝑅𝐼𝑆 𝑃𝑙𝑎𝑛𝑡 𝒊𝒔 𝐵𝑖                            4-43   

𝐴1
𝑖 ,… , 𝐴4

𝑖
 are the FSs, 𝑖 = 1, … ,𝑀, 𝑀 is the number of rules, 𝑖 is the 𝑖𝑡ℎ fuzzy rule. 

Table 4.1 Performance of the GrC RBF-NF model classification in Example 1. 

Number 

of rules 

RMSE±SD MAE%±SD 

Training Testing Training Testing 

3 0.10±0.01  0.16±0.01 1.01±0.02 1.99±0.02 

5 0.07±0.00 0.10±0.00 0.66± 0.00 1.17±0.01 
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The consistency matrix representation for the final rule-base is shown in Table 4-

2. The consistency index is used to analyse the degree of consistency among the fuzzy 

rules. The higher the value the more consistent the rules [19]. 

 

Figure 4.12. Data fit of the 5-rule RBF-NF model for the classification prediction of 

IRIS dataset after iterative data granulation.  

Table 4.2 Consistency matrix for the 5-rule RBF-NF model for the classification 

prediction of IRIS dataset after iterative data granulation. 

Rule no. 1 2 3 4 5 

1 1.0000 0.7320 0.8237 0.5934 0.9249 

2 0.7320 1.0000 0.8014 0.7821 1.0000 

3 0.8237 0.8014 1.0000 0.9123 0.7675 

4 0.5934 0.7821 0.9123 1.0000 0.8231 

5 0.9249 1.0000 0.7675 0.8231 1.0000 

Even though, the proposed granular based modelling framework produced a good 

level of generalisation capability, the corresponding final rule-base suffers from the 

lack of distinguishability between MFs in the input space (particularly in petal length 

and petal width dimensions) and output space as shown in Fig. 4.13. This is due to the 

iterative granulation process described in Section 4.3 doses not take in account the 

uncertainty presents as a result of the conflict during the granulation process. Lack of 

20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of data

C
la

s
s
 p

re
d
ic

ti
o
n

Training

 

 

 IRIS Setosa

 IRIS Versicolour

 IRIS Virginica

Predicted Class

Actual Class

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

4
Testing 

Number of data

C
la

s
s
 p

re
d
ic

ti
o
n

 

 

 IRIS Setosa

 IRIS Versicolour

 IRIS Virginica

Predicted Class

Actual Class



 

 118 

distinguishable in the FSs of each rule in the rule-base degrades the overall 

interpretability of the rule-based system. Therefore, in the following Section the results 

obtained in the case where the iterative granulation process is modified to include a 

conflict measure (CM) will be presented.  

 

Figure 4.13. The final rule-base of RBF-NF model constructed by using granulation 

and adaptive-BEP. 
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4.6.1.2. MODELLING RESULTS BY USING IMPROVED INTERPRETABILTY 

GRANULATED DATA 

In like manner, the same modelling procedures described in Section 4.4 were 

carried out. The 150 IRIS plant data points for training and testing purposes and the 

initial structure identification for the RBF-NF were identical to those used in the 

previous Section. The performance indices based on the RMSE and MAE% of the 

granular based conflict measure (GrC-CM) modelling framework are summarised in 

Table 4-3. The simulation results obtained by using the iterative data granulation 

process based on conflict measure and the adaptive-BEP for the 5-rules RBF-NF model 

is depicted in Fig. 4.14.  

Compared with the previously obtained results from the previously developed 

framework without including the conflict measure, it is clear that the training 

performance and the generalisation capability of the proposed modelling framework 

based GrC-CM is better than the GrC-RBF-NF in terms of accuracy. Furthermore, from 

the final rule-based system constructed by using the proposed modelling framework 

based GrC-CM and adaptive-BEP shown in Fig. 4.15, it is obvious that the MFs in the 

input space (particularly in petal length and petal width dimensions) and output space 

are more distinguishable than of those in Fig. 4.13. Moreover, the consistency indices 

among the fuzzy rules in Table 4-4 are higher than those reported in Table 4-2. It can 

be concluded that in general the GrC-RBF-NF-(CM) outperforms the GrC-RBF-NF, 

while the proposed iterative granulation based on conflict measure better quality 

information granules/rules that are more distinguishable to be optimised in order to 

construct more interpretable rule-based system as compared to the iterative data 

granulation for setting the initial structure of the rule-base.     

Table 4.3 Performance of the GrC RBF-NF model based conflict measure 

classification in Example 1. 

Number 

of rules 

RMSE±SD MAE%±SD 

Training Testing Training Testing 

3 0.10±0.01  0.16±0.01 1.01±0.01 1.99±0.02 

5 0.06±0.00 0.09±0.00 0.59±0.00 1.07±0.01 
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Figure 4.14. Data fit of the 5-rule RBF-NF model for the classification prediction of 

IRIS dataset with and without conflict measure. 

Table 4-4 shows the consistency matrix representation for the final 5-rule model 

for the classification prediction of IRIS dataset after iterative data granulation with 

conflict measure. 

Table 4.4 Consistency matrix for the 5-rule RBF-NF model for the classification 

prediction of IRIS dataset after iterative data granulation with conflict 

measure. 

Rule no. 1 2 3 4 5 

1 1.0000 0.7320 0.8137 0.8034 0.9239 

2 0.7320 1.0000 0.8014 0.7821 1.0000 

3 0.8137 0.8014 1.0000 0.9123 0.7675 

4 0.8034 0.7821 0.9123 1.0000 0.8231 

5 0.9239 1.0000 0.7675 0.8231 1.0000 
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Figure 4.15. The final rule-base of RBF-NF model constructed by using granulation 

based on conflict measure and adaptive-BEP. 
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4.6.2. EXAMPLE 2: STEEL FRICTION STIR WELDING DATA 

4.6.2.1. MODELLING RESULTS BY USING DATA GRANULATION 

For cross validation purposes and also for comparison reasons, the data set used in 

this Chapter was split identically into two sets similar to that presented in Chapter 3, 

133 (70%) data points to train the RBF-NF model, and 58 (30%) data points to test the 

prediction performance of the final model. By using this cross validation method, the 

interpolation capability of the model is expected to be improved with the risk of over-

fitting. To circumvent the risk of over-fitting and to improve the generalisation 

capability of the model, 10-folds cross validation approach described in Chapter 3 is 

used.   

Since there is no prior knowledge about the number of clusters (granules), a 

systematic of number simulations (increased/reduced the number of granules) was 

carried out similar to those results obtained from the subtractive clustering approach in 

Chapter 3. It was found that the appropriate number of information granules is between 

3 and 17 granules. However, the simulation results with the model having less fuzzy 

rules (small number of granules) achieved less accuracy performance but the rube-base 

is simpler in structure and more interpret/able. In contrast to the model with more fuzzy 

rules (large number of granules) captures more information about the dynamics of the 

process being modelled and achieved better accuracy performance with lack of 

interpretability and simplicity.  

The geometrical boundaries of the final information granules are unitised to 

estimate the initial parameters of the RBF-NF model and then to construct the initial 

multidimensional rule-base as described above. A number of simulation runs were 

carried out in order to determine the value of the weighting importance factor 𝛼 at which 

compact and distinguishable information granules can be obtained. The final 

compatibility criterion during the iterative granulation cycle is presented in Fig. 4.16. 
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Figure 4.16. Compatibility criterion evolution. 

A comparison of the performance index for the RBF-NF using the human-like 

information capture of granular computing with a different number of fuzzy rules 

(centres/granules) varies in the range between 3 and 17 is shown in Table 4-5. The 

performance index based on the RMSE is used to measure the training and testing 

performance. The performance index based on the MAE is used to measure the overall 

performance of the model for training and testing in percentage (MAE%). The number 

of fuzzy rules (centres/granules) is suggested to 5 granules. The evolution of the RMSE, 

learning rate, and momentum rate are depicted in Fig. 4.17. In Fig. 4.18 plots of 

simulation results obtained by using the iterative data granulation process and the 

adaptive-BEP are illustrated. It is evident from the simulation results that the model 

was not able to provide good predictions accuracy and some data points were not 

correctly predicted. This is mainly due to the peak torque of the rotational tool is a 

highly non-linear characteristic in relation to the FSW process parameters, and then the 

peak torque dataset produced from the process is sparse and difficult to be mapped 

(modelled) as a consequence of the conflicting data points that exist.  
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  Table 4.5. RMSE and MAE% for the GrC-RBF-NF modelling framework. 

Number 

of 

Clusters 

RMSE±SD MAE%±SD 

Training Testing Training  Testing 

3 46.16±7.00 48.22±7.78 12.68±2.73 11.47±1.59 

5 42.83±3.14 49.27±4.04 10.70±1.30 11.08±1.42 

6 43.66±3.20 43.46±3.17 11.07±1.45 11.16±1.63 

8 43.05±2.98 43.01±3.01 10.81±1.38 10.66±1.49 

11 41.27±0.63 44.26±0.71 10.08±1.19 11.29±1.78 

17 42.63±1.43 44.81±2.57 10.56±1.23 11.54±1.83 

 

 

Figure 4.17. Root mean square error, learning rate and momentum rate during the 

adaptive BEP algorithm. 
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Figure 4.18. Data fit, peak torque prediction by using data granulation to construct the 

initial fuzzy rule-base. 

  The final rule-base can be used to describe the complex and non-linear behaviour 

between welding speed, rotation speed and the predicted spindle peak torque, which 

can be achieved by taking advantage of fuzzy logic systems. The corresponding fuzzy 

rules in linguistic format is as follows: 

Rule 1: IF Welding Speed is medium AND Rotation Speed is medium, THEN Peak 

Torque is very small 

Rule 2: IF Welding Speed is high AND Rotation Speed is high, THEN Peak Torque 

is small  

Rule 3: IF Welding Speed is very small AND Rotation Speed is very small, THEN 

Peak Torque is medium 

Rule 4: IF Welding Speed is high AND Rotation Speed is high, THEN Peak Torque 

is high 

Rule 5: IF Welding Speed is small AND Rotation Speed is small, THEN Peak 

Torque is very high 
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From a statistical point of view, the neural-fuzzy model based on the human-like 

iterative information of GrC to elicit the initial rule-base structure outperformed the 

neural-fuzzy model (ANFIS) based on the subtractive clustering described in Chapter 

3.  Furthermore, the iterative data granulation offers more transparency, simplicity and 

efficiency in grouping similar data points together based on their features. Unlike the 

subtractive clustering, the final information granules constructed by the iterative 

granulation process does not depend on the number and initial location of centres. Thus, 

the granulation process involves transparency and distinguishability at the low level of 

interpretability. However, it is obvious from the fuzzy rules of the GrC based neural-

fuzzy model shown above, Rule 2 and Rule 4 are two conflicting rules. These fuzzy 

rules have same antecedents but different consequents. As a result of these conflicting 

rules, the overall interpretability of the rule-base is lost. Therefore a conflict measure is 

introduced in order to improve the quality of the final rules. In the next section, the 

simulation results obtained by using the iterative data granulation process based on 

conflict measure will be presented.   

4.6.2.2. MODELLING RESULTS BY USING IMPROVED INTERPRETABILTY 

GRANULATED DATA 

For comparison reasons, the same modelling procedures described in Section 4.4 

were carried out. The data points for training and testing purposes and the initial 

parameters for the RBF-NF were identical to those used in Section 4.6.2.2. In Table 4-

6 and Fig. 19, the performance indices based on the RMSE and MAE% of the 

previously developed models obtained via Subtractive based ANFIS, GrC-RBF-NF and 

GrC-RBF-NF-(CM) are illustrated. The training performance and the generalisation 

capability of the granular based conflict measure (GrC-CM) modelling framework is 

better than the previously obtained results from the subtractive based ANFIS and GrC 

models. In Fig. 4.20 the simulation results obtained by using the iterative data 

granulation process based on conflict measure and the adaptive-BEP for 5-rules model 

are shown. 
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Figure 4.19. Comparison of performance indices based on the RMSE and MAE% for 

ANFIS, GrC-RBF-NF and GrC-RBF-NF-(CM) modelling frameworks with 

different number of rules. 

 

Figure 4.20. Data fit, peak torque prediction by using data granulation based on 

conflict measure to construct the initial fuzzy rule-base. 
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  Table 4.6. RMSE and MAE% for the ANFIS, GrC-RBF-NF and GrC-RBF-NF-

(CM) modelling frameworks. 

 

 

 

Number 

of 

Clusters 

 

 

 

 

 

Data-

driven 

model 

type 

 

RMSE±SD 

 

MAE%±SD 

Training Testing Training  Testing 

 

3 

ANFIS  46.18±7.48 48.23±9.11 11.48±1.59 13.92±3.75 

GrC 46.16±7.00 48.22±7.78 12.68±2.73 11.47±1.59 

GrC-CM 46.19±7.69 48.22±8.10 12.19±2.50 11.20±1.14 

 

5 

ANFIS  45.96±5.46 47.13±6.01 11.42±1.32 13.15±3.04 

GrC 42.83±3.14 49.27±4.04 10.70±1.30 11.08±1.42 

GrC-CM 42.10±2.02 46.48±2.52 10.60±1.28 11.00±1.39 

 

6 

ANFIS  42.60±3.14 51.34±7.71 10.86±1.24 12.98±2.87 

GrC 43.66±3.20 43.46±3.17 11.07±1.45 10.16±1.63 

GrC-CM 42.24±1.89 46.56±2.09 10.89±1.22 11.59±1.55 

 

8 

ANFIS  42.11±2.06 51.17±8.34 9.97±1.18 12.89±2.65 

GrC 43.05±2.98 43.01±3.01 10.81±1.38 10.66±1.49 

GrC-CM 41.75±0.98 45.86±1.02 10.56±0.87 11.86±1.14 

 

11 

ANFIS  41.34±1.15 63.55±8.87 9.62±1.03 14.51±6.90 

GrC 41.27±0.63 44.26±0.71 10.08±0.75 11.29±1.02 

GrC-CM 40.25±0.41 46.36±0.78 10.08±1.19 11.30±1.78 

 

17 

ANFIS  35.65±0.96 239.55±15.10 8.09±0.96 27.63±17.73  

GrC 42.63±1.43 44.81±2.57 10.56±1.23 11.54±1.83 

GrC-CM 42.15±1.43 45.84±3.09 10.69±1.10 11.26±1.18 

 

In general, the proposed conflict measure scheme proved to be more efficient and 

robust in terms of granulating most compact and at the same time low conflict 

information granules. The proposed CM framework offers more distinguishable 

information granules, this is due to it is ability to direct the merging operation into the 

two information granules which have the highest compatibility criterion and lowest 

conflict measure at each iteration of the granulation process. Since the final information 

granules can be regarded as a fuzzy model representation due to the ability of extracting 
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simple linguistic interpretable rules from the final granules in order to describe complex 

systems. However, the linguistic rule-based system obtained by using the iterative 

granulation process and shown in Fig. 4.21 suffers from the lack of distinguishability 

between the MFs in the input and output dimensions.   

The iterative granulation process never takes into account the uncertainty caused 

by conflict while merging, hence producing information granules that are less 

transparent and less distinguishable. Lack of transparency and distinguishability affects 

negatively the overall interpretability of the linguistic rule-based system. Fig. 4.22 

shows the final rule-base of RBF-NF model constructed by using granulation based on 

Conflict Measure and adaptive-BEP. It is evident that from the consistency indices and 

Fig. 4.22, the MFs in the final rule-base of the GrC-RBF-NF-(CM) model are more 

distinguishable of those in the rule-base of the GrC-RBF-NF. This is due to the ability 

of the proposed CM in producing better quality information granules. The 

corresponding fuzzy rules in linguistic format is as follows: 

Rule 1: IF Welding Speed is medium AND Rotation Speed is medium, THEN Peak 

Torque is very small 

Rule 2: IF Welding Speed is very high AND Rotation Speed is very high, THEN 

Peak Torque is small  

Rule 3: IF Welding Speed is very small AND Rotation Speed is very small, THEN 

Peak Torque is medium 

Rule 4: IF Welding Speed is high AND Rotation Speed is high, THEN Peak 

Torque is high 

Rule 5: IF Welding Speed is small AND Rotation Speed is small, THEN Peak 

Torque is very high 

 

The consistency matrices representation for the 5-rule RBF-NN model with and 

without conflict measure are shown in Tables 4-7 and 4-8 respectively. 
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Table 4.7 Consistency matrix for the 5-rule RBF-NF model constructed by using 

granulation and adaptive-BEP. 

Rule no. 1 2 3 4 5 

1 1.0000 0.7614 0.6517 0.8514 0.8071 

2 0.7614 1.0000 0.7105 0.7921 0.6798 

3 0.6517 0.7105 1.0000 1.0000 0.9643 

4 0.8514 0.7921 1.0000 1.0000 0.5127 

5 0.8071 0.6798 0.9643 0.5127 1.0000 

 

Figure 4.21. The final rule-base of RBF-NN model constructed by using granulation 

and adaptive-BEP. 
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Table 4.8 Consistency matrix for the 5-rule RBF-NN model constructed by using 

granulation based on conflict measure and adaptive-BEP. 

Rule no. 1 2 3 4 5 

1 1.0000 0.9815 0.6517 0.8514 0.8071 

2 0.9815 1.0000 0.7105 0.7921 0.6798 

3 0.6517 0.7105 1.0000 1.0000 1.0000 

4 0.8514 0.7921 1.0000 1.0000 0.9643 

5 0.8071 0.6798 0.9643 0.8721 1.0000 

 

 

Figure 4.22. The final rule-base of RBF-NF model constructed by using granulation 

based on conflict measure and adaptive-BEP. 
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In summary, the iterative granulation process based on a predefined compatibility 

criterion is modified to include a conflict measure. The conflict measure is utilised to 

capture the uncertainty during the granulation in order to enhance the overall quality of 

the granulated data (representation of underlying process data) and interpretability of 

the linguistic fuzzy rules. The proposed conflict measure does not affect the ability of 

the iterative human-like information capture of granular computing in grouping similar 

data according to their features. It is only used as an index to guide the information 

merging process towards granules with less conflict.  

4.7. SUMMARY 

In this Chapter, a new conflict measure during the iterative human-like information 

capture in granular computing (GrC) in order to estimate/evaluate the conflict 

uncertainty present during the iterative data granulation process is introduced. The 

uncertainty index is calculated via Shannon entropy theory in order to capture the 

uncertainty and to serve as a guide into solutions to low-conflict information granules. 

The conflict measure is employed to direct the iterative IG process into merging 

(condensing) the granules (data) with low conflict, and therefore producing better 

quality information granules. The resulting information granules are used to construct 

the initial parameters of a radial basis function (RBF) based neural-fuzzy model 

optimised via the adaptive back-error propagation (adaptive-BEP) algorithm.  

The main trait of the proposed methodology is used to estimate/quantify the 

uncertainty as a result of conflict occurred during the iterative data granulation.  This 

results in an improved granulated information set (better quality information granules) 

in terms of transparency and distinguishability as well as interpretability. The proposed 

framework was successfully applied to modelling of real-industrial data of steel Friction 

Stir Welding. This manufacturing process is known of its complexity, highly non-linear 

behaviour and the production of sparse and limited measurements.  

The simulation results show an enhanced granulated information capture (model 

interpretability) and an achieved generalisation performance compared with similar 

data-driven modelling approaches. The proposed methodology achieved prediction 

accuracy with more than 90% in forecasting the spindle peak torque based on the 
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process input parameters of welding speed (mm/min) and tool rotation speed (rpm).  

The improved information granules from the raw input data are used to extract simple 

linguistic interpretable rules that can be exploited by the process operator to describe 

the dynamic behaviour of the process. In addition, to better understand the effects of 

the process input parameters on the internal process variables as well as aid the process 

operator (s) in optimising the process.  

The results obtained by the proposed methodology led to the writing of articles that 

were presented at the 3rd EPSRC Manufacturing The Future Conference in Glasgow, 

United Kingdom and the 10th IEEE International Conference on Granular Computing 

in Noboribetsu, Hokkaido, Japan respectively. The results were also presented at the 

2013 University of Sheffield Engineering Symposium in Sheffield, United Kingdom and 

the 2014 TWI Colloquium in Rotherham, United Kingdom respectively. 

In the next chapter, a new model-based approach relies on an interval type-2 radial 

basis function neural fuzzy (IT2-RBF-NF) system is proposed in order to take into 

consideration for uncertainties associated with the linguistic meaning and input noises. 

The proposed model-based IT2-RBF-NF system will be used to develop a generalised 

model-based real-time quality monitoring for steel friction stir welding. 
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CHAPTER 5 - AN INTERVAL TYPE-2 NEURAL FUZZY SYSTEM: IT2-RBF-

NFS 

his chapter introduces an interval type-2 radial basis function neural fuzzy 

(IT2-RBF-NF) system that is mathematically equivalent to interval type-2 

fuzzy logic systems (IT2-FLSs).  

The main contribution of the work presented in this chapter is twofold, on the one 

hand a new modelling framework is presented by taking advantages of principles of 

iterative human-like information capture in granular computing (GrC) and the extra 

degree of freedom from the footprint of uncertainty (FOU) in type-2 fuzzy sets to take 

into account for the linguistic uncertainties associated with meaning of words. The 

proposed modelling framework is optimised via an adaptive back-error propagation 

(adaptive-BEP) approach. 

And on the other hand, the proposed modelling framework is used to develop a 

new generalised systematic human-centric model-based real-time process monitoring 

framework in steel Friction Stir Welding is presented. The proposed real-time process 

monitoring framework relies on discrete frequency-based analysis of key internal 

process variables (namely axial (𝐹𝑧) and traverse (𝐹𝑥) forces) that is capable of 

providing real-time feedback to the process operator (s) in linguistic format (natural 

language – rule-based system) on the performance of the process. The proposed model-

based monitoring framework is also used to forecast in real-time (during welding) 

quantitative markers of weld quality extracted from the welding tool feedback forces. 

5.1. INTRODUCTION 

As it was pointed out in [24, 69, 243], fuzzy logic systems are powerful modelling 

techniques when they are combined with neural networks due to their ability to handle 

numerical data and linguistic information. However, dealing with linguistic information 

is problematic especially the determination of the MFs in the antecedent and consequent 

parts of the rule-base [69]. This is due to controversy between two or more experts in 

meaning of words [69]. As stated by Mendel in [110]  ‘Words can mean different things 

to different people’. For instance, an expert might intend that 50 miles per hour is high 

T 



 

 135 

speed with membership grade of 0.70 another might say 50 miles per hour is not fast 

enough and the membership grade is 0.84. This non-uniqueness/ difference in selecting 

size and shape of the membership function arises the need for a better modeller (in 

terms of an interval) to capture the opinion of different experts. In other words, a 

modeller that takes into account the linguistic uncertainties/non-uniqueness in the rule-

base. Another sources of uncertainty can occur in the FLSs are the measurements and 

process noise [33] that are used to tune the antecedent and consequent parameters in a 

FLS. Other sources of uncertainty that make fuzzy sets of higher order pertinent are 

elucidated in [110]. 

Since knowledge can be expressed in form of linguistic rules (natural language) by 

using fuzzy sets [8], many real-world complex problems can be greatly simplified. 

However, many real world applications exhibit measurements noise and modelling 

uncertainties [93, 94, 244-247].  The effects of all types of uncertainties cannot be 

minimised and modelled by using type-1 fuzzy logic systems [93, 94, 244-247]. Thus, 

the concept of general type-2 fuzzy sets (T2-FSs) was introduced by Lotfi Zadeh in 

1975 [96] as an extension of the ordinary type-1 fuzzy sets.  Since the degree of 

membership functions in T2-FLSs are themselves fuzzy, while the degree of 

membership functions in T1-FLSs are crisp [32, 107, 110]. This property provides extra 

degree of freedom from the type-2 footprint of uncertainty (FOU) and flexibility in 

modelling the uncertainties frequently encountered in real-world modelling tasks [248].  

Thus, T2-FSs can better model uncertainties and minimise their effects [97]. In 

addition, T2-FLSs use large number of T1-FSs which are embedded within the FOUs 

of the T2-FSs [97]. The use of such a large number of embedded T1-Fs to describe the 

relationship between the input and output variables will result in much smaller number 

of fuzzy rules with greater accuracy, hence, T2-FLSs lead to overall better accuracy, 

simplicity, information interpretability, and then to permit a deeper understanding of 

the system under investigation [34, 249].  In [33] Karnik et al. have developed the 

theory of T2-FSs. More details on the theoretical background and design principles of 

type-2 fuzzy system (T2-FLS) are described in [34]. T2-FLSs measure the entire 

systems uncertainty and thus they appear to be a more promising method for handling 

uncertainties (e.g. in a noisy changing environments) than their type-1 counterparts 
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[108]. The studies in [97-99, 248] confirmed the effectiveness of the T2-FLSs in better 

handing the measurement noise and modelling uncertainties.  

In practice, T2-FSs theory and T2-FLSs is more computationally expensive 

compared to their T1-FSs and T1-FLSs counterparts [108]. This is mainly due to the 

complexity and computational load results from the large number of computations that 

are needed to obtain type-2 MFs for each variable in the input space. In addition to the 

number of iterations required to perform a type-reduction from T2-FSs to reduced T1-

FSs [250, 251]. In this sense, IT2-FSs become more prevalent and the most widely used 

type of T2-FSs. The use of IT2-FSs is motivated from the fact that the secondary grades 

in the secondary MF is an interval and all equal to unity which considerably reduces 

the computational burn in the type-reduction stage to some extent [109]. Moreover, the 

concept of interval T2-FSs offers a mathematical tool to handle the linguistic 

uncertainty in the rule-base and then better understanding of real complex systems from 

a linguistic perspective. In this research work, an interval type-2 fuzzy logic system 

(IT2-FLS) modelling framework is used to simplify and minimise the computational 

cost in order to produce a real-time capable system. The proposed IT2-FLS is of type 

interval type-2 radial basis function neural fuzzy (IT2-RBF-NF) model as they are 

mathematically equivalent in their design [35, 108].  

This chapter is devoted to the development of a human-centric rule-based 

modelling framework based on an interval type-2 radial basis function neural fuzzy 

(IT2-RBF-NF) system optimised via an adaptive-BEP approach. The proposed 

framework takes advantage of the mathematical equivalence between the T1-FLS and 

RBF-NN as described in Chapter 4 to develop a new IT2-RBF-NF system that is 

mathematically equivalent to an interval type-2 fuzzy logic system (IT2-FLS). The 

initial rule-base structure and FOU of the IT2-RBF-NF system are estimated directly 

from the iterative data granulation approach used in Chapter 4. The proposed IT2-RBF-

NF system incorporates IT2-FSs within the RBF (fuzzification) layer of the NN in order 

to take into account the linguistic uncertainty associated with the system’s variables. 

The antecedent and consequent parts of each linguistic fuzzy rule in the IT2-RBF-NF 

system is an IT2-FS and the consequent part is of the Mamdani type fuzzy model, and 

the output of the network is calculated via average of the interval type-reduced set 
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obtained from the Karnik-Mendel iterative type-reduction approach [108, 109].  

Specific to the field of FSW quality monitoring via data-driven computational 

intelligence (CI) models, a very limited number of studies have been reported [40] [188] 

[41] but none of the CI models based on type-2 fuzzy sets theory. In [192], Cox et al. 

have recently investigated the effects of the number of tool rotations on the quality of 

friction stir spot weld of an aluminium alloy. The authors concluded that there is a linear 

relationship between the number of tool rotations during the spot weld of an aluminium 

alloy and the resulting tensile shear strength. In another study [193], Su et al. proposed 

a measuring approach to measure some of the internal process variables (namely the 

traverse force (X-axis), axial force (Z-axis) and the tool torque) simultaneously under 

different welding conditions for the FSW of AA2024-T4 aluminium alloys.  

The studies reported in [194] [42] investigated the frequency spectra of the tool 

feedback forces in X, Y, and Z axes and it was concluded that the frequency spectra of 

the feedback forces is more likely to contain useful information about the weld quality. 

Therefore, it would useful to use the information from frequency domain to build 

monitoring tools. In [194], the authors proposed a model-based classification algorithm 

based on an ANN structure that takes advantages of frequency domain information to 

build a weld quality marker for aluminium alloy. However, this model-based approach 

was proved to be not feasible as the changing process parameters also change the 

behaviour of the frequency domain information. Due to different process conditions 

(including input parameters, materials, tool, etc.) different internal process variables 

(different dynamic behaviour) will be generated and therefore different welding 

performance (post-weld properties). As a consequence, the modelling performance 

cannot be generalised for different process conditions, as the model needs to be re-

trained or re-calibrated every time the process condition is changed which would limit 

the usability of the model in real-time.   

Building on from the development of the IT2-RBF-NF system, a new generalised 

systematic human-centric model-based real-time process monitoring framework in 

steel Friction Stir Welding is presented. The proposed real-time process monitoring 

framework relies on discrete frequency-based analysis of key internal process variables 
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(namely axial (𝐹𝑧) and traverse (𝐹𝑥) forces) that is capable of providing real-time 

feedback to the process operator (s) in linguistic format (natural language – rule-based 

system) on the performance of the process. The proposed approach relies on a dynamic 

IT2-RBF-NF model, that instead of forecasting directly the weld quality, it forecasts a 

‘moving threshold’ that can be used by the operator as an indicator of weld quality. 

Thus, there is no need to re-tune or re-calibrate the model for every time the welding 

conditions change.  

The main contributions of this chapter can best be categorised as follows:  

 A new model-based approach that relies on an IT2-RBF model that is 

mathematically equivalent to an IT2-FLS in its design, is developed. The IT2-

RBF model can be described via simple linguistic interpretable rules extracted 

from raw data in order to describe dynamic behaviour of the process. The initial 

parameters of the IT2-RBF-NF (initial rule-base structure) and the FOU are 

estimated directly via the iterative data granulation approach used in Chapter 4. 

The iterative information-capture of granular computing has demonstrated its 

ability in capturing meaningful information from raw process data where only 

non-linear, complex, and scarce measurements are available and exploit such 

information to build a linguistic rule-base. The initial parameters of an IT2-RBF 

based interval type-2 neural-fuzzy model are then optimised via the adaptive 

back-error propagation (BEP) algorithm and applied to modelling of steel 

friction stir welding. 

 The proposed model-based IT2-RBF-NF system is used to forecast in real-time 

(during welding) quantitative markers of weld quality. Part quality thresholds 

are extracted from the frequency spectra of the feedback forces (namely axial 

(𝐹𝑧) and traverse (𝐹𝑥) forces). As already mentioned in Chapter 3, due to the 

dynamic behaviour of the process, a static model predicting the weld quality 

threshold would need updating (tuning) for every time the welding conditions 

change [194].  Therefore, the proposed approach relies on a dynamic model, 

that instead of predicting directly the weld quality, it predicts a ‘moving 

threshold’ that can be used by the operator as an indicator of weld quality. Thus, 

there is no need to re-tune or re-calibrate the model. The proposed monitoring 
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framework also takes advantage of the proposed model-based approach to 

provide continuous linguistic-based feedback to the operator(s) – rule-based 

human-centric system – on the performance of the process.  

 The effectiveness of the proposed model-based approach to better handle 

uncertainties and produce reasonable predictive performance is tested against 

multiple linear regression (MLR) and multilayer perceptron neural network 

(MLP-NN) models as well as type-1 radial basis function neural fuzzy (T1-

RBF-NF) model. 

5.2. IT2-RBF-NF RULE-BASED MODELLING STRUCTURE  

In the literature, there are several studies established the mathematical equivalence 

between the RBF-NN denoted as T1-RBF-NN and a type of FIS denoted as T1-FLS 

under some certain conditions [20, 21, 252], and accordingly this mathematical 

equivalence demonstrates that the RBF-NN can be considered as a T1-FLS sharing 

characteristics such as universal function approximation, fuzzy rule-base, low and high 

level of interpretability, etc. Therefore, advances in FSs theory and FLSs may be 

applied on RBF-NNs under some certain conditions. Additionally, the same conditions 

may be extended to type-2 fuzzy set theory and an interval type-2 radial basis function 

neural network (IT2-RBF-NN) [35] can also be considered as mathematically 

equivalent to an IT2-FLS [107] when the following conditions are met [21]: 

1) The number of the receptive-field unites in the hidden layer of the RBF is 

equal to the number of linguistic IF-THEN rules in the FLS. 

2)  The MFs within each fuzzy rule are selected as Gaussian MFs. 

3) The T-norm operator used to calculate each fuzzy rule’s firing strength is 

multiplication. 

4) The outputs of both the RBF-NN and the FIS of FLS are computed using 

the same defuzzification method (i.e., either COG or weighted sum).  

Another line of thought on the mathematical equivalence between the IT2-RBF-

NN and IT2-FLS demonstrates that the IT2-RBF-NN initial parameters which 

represents the antecedent and consequent parameters in the IT2-FLS can be estimated 

systematically via a data clustering approach and then the parameters are optimised to 
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complete the modelling process. To further understand the concept, this section 

introduces an interval type-2 neural fuzzy system (IT2-NFS) by incorporating the 

iterative human-like information granulation in granular computing (GrC) used in 

Chapter 4, a six-layered interval type-2 radial basis function neural fuzzy (IT2-RBF-

NF) model and parametric optimisation via an adaptive back-error propagation 

(adaptive-BEP) approach. 

5.2.1. INTERVAL TYPE-2 RADIAL BASIS FUNCTION NEURAL-FUZZY 

SYSTEM  

5.2.2. IT2-RBF-NF SYSTEM ARCHITECTURE  

Since the proposed IT2-RBF-NF system represents a type of extension of IT2-

FLSs and inherits some properties from NNs such as universal function approximation, 

regularisation, interpolation, adaptation, generalisation and learning capabilities [253]. 

The RBF-NN uses exponentially decaying localised non-linear activation functions 

(basis functions or T1-MFs) to construct local approximations to nonlinear input/output 

mapping [22]. Likewise, the IT2-RBF-NN may be seen as a non-linear input/output 

mapping that uses interval type-2 non-linear activation functions (IT2-MFs). Therefore, 

the components of the proposed IT2-RBF-NF can be considered as a six-layered multi-

input/single output (MISO) model. The configuration of the six-layered IT2-RBF-NF 

system is illustrated in Fig. 5.1. The proposed structure can be seen as an IT2-FLS with 

a singleton fuzzifier whose T-norm is the product operator, the antecedent parts use the 

IT2-FSs (Gaussian IT2-MFs) having fixed means (centres) and uncertain standard 

deviations (spreads), the consequent part of each linguistic fuzzy rule is of the Mamdani 

type, and the KM type-reducer which is proposed by Karnik and Mendel [108, 109].  

Each linguistic fuzzy rule has the following IF-THEN form: 

                     𝑹𝒖𝒍𝒆𝒊: 𝑰𝑭 𝑥1 𝑖𝑠 �̃�1
𝑖  𝑨𝑵𝑫,… , 𝑨𝑵𝑫 𝑥𝑑  𝑖𝑠 �̃�𝑑

𝑖 , 𝑻𝑯𝑬𝑵 𝑦 𝑖𝑠 �̃�𝑖                      5-1 

where 𝑥1, … , 𝑥𝑑, are the input vectors, �̃�1
𝑖 , … , �̃�𝑑

𝑖  are the interval type-2 fuzzy sets, 𝑖 =

1, … ,𝑀, 𝑀 is the number of rules, 𝑖 is the index of the rules. The detailed mathematical 

functions of each layer of the six-layered IT2-RBF-NF are described below. 
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Figure 5.1 IT2-RBF-NF system general structure. 

1) Layer 1 (Input Layer):  

This layer only transmits the current input values to the next layer directly without 

performing any computation. Each node in this layer represents one crisp variable from 

the multidimensional input data �⃗� = [𝑥1, … , 𝑥𝑑] ∈ 𝑅
𝑑, where 𝑑 is the number of input 

variable. 

2) Layer 2 (Fuzzification Layer):  

Each node in this layer uses an interval type-2 MF to perform the fuzzification 

process in order to produce the upper and lower intervals [𝜇
�̃�𝑗
𝑖   
, 𝜇

�̃�𝑗
𝑖 ]. With the choice 

of a Gaussian primary MF having fixed mean 𝑚𝑗
𝑖 and uncertain standard deviation that 

the value in the interval 𝜎𝑗
𝑖 ∈ [𝜎𝑗1

𝑖 , 𝜎𝑗2
𝑖 ] can be stated as (see Fig. 5.2): 
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�̃�𝑗
𝑖(𝑥𝑗) = 𝑒𝑥𝑝 [−

1

2
(
𝑥𝑗 −𝑚𝑗

𝑖

𝜎𝑗
𝑖

)

2

] ≡ 𝑁(𝑚𝑗
𝑖, 𝜎𝑗

𝑖; 𝑥𝑗),   𝜎𝑗
𝑖 ∈ [𝜎𝑗1

𝑖 , 𝜎𝑗2
𝑖 ]                  5-2 

where �̃�𝑗
𝑖(𝑥𝑗) is the 𝑖𝑡ℎ fuzzy set in input variable 𝑥𝑗. It is clear that the IT2-FS is 

bounded by the upper MF 𝜇
�̃�𝑗
𝑖  and lower MF 𝜇

�̃�𝑗
𝑖  

, and the area in between is called the 

footprint of uncertainty (FOU). The upper membership function (UMF) is  

                      𝜇
�̃�𝑗
𝑖 = 𝑁(𝑚𝑗

𝑖, 𝜎𝑗1
𝑖 ; 𝑥𝑗)                                                                                          5-3  

and the lower membership function (LMF) is  

                     𝜇
�̃�𝑗
𝑖   
= 𝑁(𝑚𝑗

𝑖, 𝜎𝑗2
𝑖 ; 𝑥𝑗)                                                                                          5-4  

Each node in this layer corresponds to a linguistic variable (e.g. fast, very fast, etc.) and 

the output of each node can be represented as an interval (FOU) [𝜇
�̃�𝑗
𝑖   
, 𝜇

�̃�𝑗
𝑖 ]. 

 

         (a)                                                                          (b) 

Figure 5.2. The interval type-2 Gaussian MF with uncertain standard deviation in (a), 

which has lower (thick dashed line) and upper (thick solid line) boundaries. 

The primary MF at input variable of 5 is an interval [ℎ(𝑜), ℎ(𝑜)], with uniform 

interval secondary MF in (b). The shaded region in (a) is the FOU. 

3) Layer 3 (Rules Firing Layer): 

 This layer performs the join ⊔ and meet ⊓ operations, which are new concepts 

introduced in type-2 fuzzy logic theory that are used instead of intersection and union 

operators in type-1 fuzzy logic theory [112]. The output of this layer is an interval type-

1 fuzzy set (i.e. rule node firing strength). The node rule firing strength 𝐹𝑖 is calculated 
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by using an algebraic product operation as follows: 

𝐹𝑖 = [𝑓𝑖(𝑥𝑗), 𝑓
𝑖
(𝑥𝑗)]                                                                                   5-5 

Where 𝑓𝑖(𝑥𝑗)  and 𝑓 (𝑥𝑗) can be written, where * denotes the meet operation under 

product 𝑡-norm: 

𝑓
𝑖
= 𝜇

�̃�1
𝑖 (𝑥1) ∗ …∗ 𝜇�̃�𝑝𝑖

(𝑥𝑝) =∏𝜇
�̃�𝑗
𝑖

𝑛

𝑗=1

                                               5-6 

  𝑓𝑖 = 𝜇�̃�1𝑖  
(𝑥1) ∗ … ∗ 𝜇�̃�𝑝𝑖  (𝑥𝑝) =∏𝜇

�̃�𝑗
𝑖   

𝑛

𝑗=1

                                             5-7 

4) Layer 4 (Compensatory Firing Layer): 

Each node in this layer has its corresponding firing strength, which is calculated 

from the previous layer 3. The layer defines the consequences of the rule nodes and the 

links between this layer and the next layer consist of interval weighing factors [𝜔𝑙
𝑖, 𝜔𝑟

𝑖 ] 

which will decide outputs of this network. 

5) Layer 5 (Type-reducer Layer): 

This layer generates a T1-FS output, which is then converted to a numeric output 

through the defuziffication layer. This T1-FS is also an interval set [𝜔𝑙
𝑖, 𝜔𝑟

𝑖 ], which is 

determined by its two end points (i.e, left end-point 𝑙, and right end-point 𝑟). The 

centroid of the type-2 interval consequent set �̃� in Eq. 5-5, for the case of centre-of-sets 

𝐶𝑂𝑆 type-reduction method [108], 

𝐶𝑒𝑛𝑡𝑟𝑖𝑜𝑑�̃�𝑖 = ∫ …
𝜃1∈𝐽𝑦1

 ∫
1

∑ 𝑦𝑖𝜃𝑖
𝑁
𝑖=1 ∑ 𝜃𝑖

𝑁
𝑖=1⁄𝜃𝑁∈𝐽𝑦𝑁

        =    [𝜔𝑙
𝑖, 𝜔𝑟

𝑖 ]           5-8 

The extended output is computed as follows: 

𝑌𝐶𝑂𝑆 = [𝑦𝑙
𝑖, 𝑦𝑟

𝑖] = ∫ …
𝜔1∈[𝜔𝑙

1,𝜔𝑟
1]

 ∫ ∫ …
𝑓1∈[𝑓1,𝑓

1
]𝜔𝑀∈[𝜔𝑙

𝑀,𝜔𝑟
𝑀]

  

∫
1

∑ 𝑓𝑖𝜔𝑖𝑀
𝑖=1 ∑ 𝑓𝑖𝑀

𝑖=1⁄𝑓𝑀∈[𝑓𝑀,𝑓
𝑀
]

      5-9  
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Each node in this layer calculates this interval output. The outputs 𝑦𝑙 and 𝑦𝑟 can be 

computed as follows: 

𝑦𝑙 =
∑ 𝑓𝑙

𝑖𝜔𝑙
𝑖𝑀

𝑖=1

∑ 𝑓𝑙
𝑖𝑀

𝑖=1

                                                                               5-10 

𝑦𝑟 =
∑ 𝑓𝑟

𝑖𝜔𝑟
𝑖𝑀

𝑖=1

∑ 𝑓𝑟
𝑖𝑀

𝑖=1

                                                                              5-11 

According to [108, 109], the interval type-reduced sets in Eq. 5-10 and Eq. 5-11 can be 

expressed as: 

                        𝑦𝑙 =
∑ 𝑓

𝑖
𝜔𝑙
𝑖𝐿

𝑖=1 + ∑ 𝑓𝑖𝜔𝑙
𝑖𝑀

𝑖=𝐿+1

∑ 𝑓
𝑖

𝐿
𝑖=1 + ∑ 𝑓𝑖𝑀

𝑖=𝐿+1

                                                    5-12  

                          𝑦𝑟 =
∑ 𝑓𝑖𝜔𝑟

𝑖𝑅
𝑖=1 + ∑ 𝑓

𝑖
𝜔𝑟
𝑖𝑀

𝑖=𝐿+1

∑ 𝑓𝑖𝑅
𝑖=1 +∑ 𝑓

𝑖
𝑀
𝑖=𝑅+1

                                                  5-13 

where 𝑀 is the number of rules in the rule base of the IT2-RBF, 𝑖 is the index of the 

rules, and [𝜔𝑙
𝑖, 𝜔𝑟

𝑖 ] represents the centroid interval of the consequent type-2 FS of the 

𝑖𝑡ℎ rule. 𝜔𝑙
𝑖, 𝜔𝑟

𝑖  are also called the weighting factors of the consequent part of the IT2-

RBF [254]. The values of 𝐿 and 𝑅 can be obtained from the iterative Karnik-Mendel 

type-reduction method [108, 109]. 

6) Layer 6 (Defuzzification Layer): 

Once 𝑦𝑙 and 𝑦𝑟 are obtained by using the KarnikMendel iterative type-reduction 

approach, the type-reduced set can be defuzzified to compute the output values of the 

system (crisp). For an interval type-reduced set, the defuzzified output 𝑦. In this layer, 

the defuzzified output is then computed by the average of 𝑦𝑙 and 𝑦𝑟. 

                              𝑦 =
1

2
(𝑦𝑙 + 𝑦𝑟)                                                                                     5-14 

5.2.3. INITIAL STRUCTURE IDENTIFICATION OF THE IT2-RBF-NF SYSTEM   

The iterative human-like information granulation of granular computing (GrC) 

described in Chapter 4 is used to group similar entities in the input space according to 
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a predefined similarity measure. The iterative GrC is used to process numeric data in 

order to obtain the information relating to clusters (granules). This algorithm has shown 

its efficiency and simplicity in extracting information out of raw data, inspired by the 

human cognition of grouping similar objects together better than other well-known data 

clustering methods such as the mountain [255] and fuzzy C-means (FCM) algorithms 

[256]. The information that these clusters (granules) provide is then used to estimate 

the initial structure of the IT2-RBF-NF model.  

The granulated input space determines the number of linguistic rules extracted 

from the input raw data as well as the number of FSs on the universe of discourse of 

each input variable.  In this approach, the relationship between an information granule 

in multi-dimension and a fuzzy rule is one-to-one relationship. Geometrically, one 

information granule corresponds directly to one fuzzy linguistic rule; the centres of the 

MFs 𝑚𝑗
𝑖 are defined by calculating the average hyper-box limits of each information 

granule. Other parameters relating to the MFs (spread parameters 𝜎𝑗
𝑖 ∈ [𝜎𝑗1

𝑖 , 𝜎𝑗2
𝑖 ]) to 

automatically generate IT2-FMFs from training data can be defined using three 

common methods. Common methods are based on histograms, heuristics, and interval 

type-2 fuzzy C-means (IT2-FCM) [257]. The histogram method uses a suitable 

parameterised function chosen to model the smoothed histograms of sample data. The 

heuristic method simply generates the IT2-FMF using heuristics type-1 fuzzy 

membership function (T1-FMF) and a scaling factor. The IT2-FCM method is the 

derived formulas of the IT2-FMFs similar to the well-known fuzzy C-means clustering 

(FCM) algorithm. A detailed description of each method is discussed in [257]. In this 

research work, the heuristic method based on Gaussian membership function is used to 

represent the distribution of the training data due to its simplicity.  

The spread parameters for type-1 Gaussian membership functions 𝜎𝑗
𝑖  is estimated 

by the method proposed in [258] and hence its calculation is done via the following 

equation:  

                      𝜎𝑗
𝑖 =

1

𝑟
(∑‖𝑚𝑘

𝑖 −𝑚𝑗
𝑖‖
2

𝑟

𝑘=1

)

1
2

                                                            5-15 
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where 𝑚𝑘
𝑖  are the 𝑟-nearest neighbours of centroid 𝑚𝑗

𝑖 in the dimension 𝑖. A suggested 

value for 𝑟 is 2. 

Once a T1-FMF is selected to represent a given data set, the IT2-FMFs are obtained 

by scaling the T1-FMFs by a factor 𝑘𝑣  between 0 and 1. The factor 𝑘𝑣 controls the 

interval between the LMF and UMF of the FOU in which the width parameters vary as 

follows: 

For LMF  

                   𝜎𝑗1
𝑖 = 𝑘𝑣 𝜎𝑗

𝑖                                                                                                            5-16 

And for UMF 

                   𝜎𝑗2
𝑖 =

1

𝑘𝑣
 𝜎𝑗
𝑖                                                                                                           5-17 

The scaling factor is constrained [259] in the range 𝑘𝑣 ∈ [0.3, 1]. The factor also 

controls the area of the FOU. The smaller the 𝑘𝑣, the larger the FOU, which insinuates 

the greater uncertainty in the IT2-FMFs. The FOU adds an extra degree of freedom in 

the T2-FLSs to account for uncertainty.   

5.2.4. PARAMETRIC OPTIMISATION  

Once the initial structure of the IT2-RBF-NF model is constructed and its initial 

parameters 𝑚𝑗
𝑖, 𝜎𝑗

𝑖 ∈ [𝜎𝑗1
𝑖 , 𝜎𝑗2

𝑖 ], and [𝜔𝑙
𝑖, 𝜔𝑟

𝑖 ]  are estimated, a number of training 

algorithms can be utilised to parametrically tune the model and optimise its structure. 

Among them is the adaptive-BEP learning algorithm which is proven in the past to be 

very efficient in optimising similar granular based models [35]. In the BEP learning 

algorithm [260], the updating of the IT2-RBF-NF parameters depends on the status of  

𝑥𝑘 as compared 𝜎𝑗1
𝑖 , 𝜎𝑗2

𝑖  and 𝑚𝑗
𝑖  as well as the status of rule 𝑖 as compared to 𝐿 and 𝑅 

calculated during the type-reduction stage. The conventional BEP learning algorithm 

requires large number of iterations, each iteration involves a large amount of 

computation to converge and also often gets stuck into a local minima [254, 260]. To 

circumvent this issue, the adaptive version of BEP is utilised in previous study [35], 

where the learning rate and momentum factor of the learning algorithm are adjusted 
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during the optimisation process in order to enhance its convergence properties. By using 

the BEP, for 𝐾 input-output training data points (�⃗�𝑘: 𝑦𝑘
𝑑), 𝑘 = 1,… , 𝐾. Hence, a 

performance index 𝑃𝐼 or cost function (error function) can be defined as follows: 

                        𝑃𝐼 =
1

𝐾
∑𝑒𝑘

2

𝐾

𝑘=1

                                                                                   5-18 

                    𝑒𝑘 = (𝑦𝑘 − 𝑦𝑘
𝑑)                                                                                     5-19 

The rule update for the IT2-RBF-NFS’s parameter 𝜃𝑖 can be written as:  

                     𝜃𝑖(𝑖𝑡𝑒𝑟 + 1) = −𝛽
𝜕𝑒𝑘
𝜕𝜃𝑖

+ 𝛾𝜃𝑖(𝑖𝑡𝑒𝑟)                                             5-20 

where 

                       𝑒𝑘 = 
1

2
 (𝑦𝑘 − 𝑦𝑘

𝑑)
2
                                                                         5-21 

The error function derivatives with respect to parameter 𝜃𝑖 can be calculated by 

using the chain rule as follows:  

                         
𝜕𝑒𝑘
𝜕𝜃𝑖

=
𝜕𝑒𝑘
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑦𝑙

𝜕𝑦𝑙
𝜕𝜃𝑖

+
𝜕𝑒𝑘
𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑦𝑟

𝜕𝑦𝑟
𝜕𝜃𝑖

                                            5-22 

where  

                           
𝜕𝑒𝑘
𝜕𝑦𝑘

= (𝑦𝑘 − 𝑦𝑘
𝑑)                                                                           5-23 

                        
𝜕𝑦𝑘
𝜕𝑦𝑙

= 
𝜕𝑦𝑘
𝜕𝑦𝑟

=
1

2
                                                                             5-24 

                        
𝜕𝑒𝑘
𝜕𝜃𝑖

=
1

2
 (𝑦𝑘 − 𝑦𝑘

𝑑)  [
𝜕𝑦𝑙
𝜕𝜃𝑖

+
𝜕𝑦𝑟
𝜕𝜃𝑖

]                                               5-25 

                       
𝜕𝑦𝑙
𝜕𝜃𝑖

=
𝜕𝑦𝑙

𝜕𝑓
𝑖

𝜕𝑓
𝑖

𝜕𝜃𝑖
+
𝜕𝑦𝑙
𝜕𝑓𝑖

𝜕𝑓𝑖

𝜕𝜃𝑖
                                                           5-26 

                         
𝜕𝑦𝑟
𝜕𝜃𝑖

=
𝜕𝑦𝑟

𝜕𝑓
𝑖

𝜕𝑓
𝑖

𝜕𝜃𝑖
+
𝜕𝑦𝑟
𝜕𝑓𝑖

𝜕𝑓𝑖

𝜕𝜃𝑖
                                                             5-27 
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𝜕𝑓

𝑖

𝜕𝜃𝑖
= ⌈∏𝜇

𝐴𝑗
~𝑖

𝑛

𝑗=1

⌉ ∗
𝜕𝜇

𝐴𝑗
~𝑖

𝜕𝜃𝑖
                                                            5-28 

                            
𝜕𝑓𝑖

𝜕𝜃𝑖
= ⌈∏𝜇

𝐴𝑗
~𝑖

𝑛

𝑗=1

⌉ ∗
𝜕𝜇

𝐴𝑗
~𝑖

𝜕𝜃𝑖
                                                           5-29 

According to [35, 260], when computing the derivatives of 𝑦𝑙 and 𝑦𝑙with respect 

to the parameters of the antecedent and consequent parts it is necessary to know their 

locations. Therefore, the derivatives can be computed as follows: 

                            
𝜕𝑦𝑙

𝜕𝑓
𝑖
= {

(𝜔𝑙
𝑖 − 𝑦𝑙)

(∑ 𝑓
𝑖

𝐿
𝑖=1 + ∑ 𝑓𝑖𝑀

𝑖=𝐿+1 )
,                   𝑖 ≤ 𝐿

0,                                                          𝑖 > 𝐿

                  5-30 

                             
𝜕𝑦𝑙
𝜕𝑓𝑖

= {

(𝜔𝑙
𝑖 − 𝑦𝑙)

(∑ 𝑓
𝑖

𝐿
𝑖=1 + ∑ 𝑓𝑖𝑀

𝑖=𝐿+1 )
,                   𝑖 > 𝐿

0,                                                          𝑖 ≤ 𝐿

                 5-31 

                              
𝜕𝑦𝑟

𝜕𝑓
𝑖
= {

(𝜔𝑟
𝑖 − 𝑦𝑟)

(∑ 𝑓
𝑖

𝑀
𝑖=𝑅+1 + ∑ 𝑓𝑖𝑅

𝑖=1 )
,                   𝑖 > 𝑅

0,                                                          𝑖 ≤ 𝑅

               5-32 

                                
𝜕𝑦𝑟
𝜕𝑓𝑖

= {

(𝜔𝑟
𝑖 − 𝑦𝑟)

(∑ 𝑓
𝑖

𝑀
𝑖=𝑅+1 + ∑ 𝑓𝑖𝑅

𝑖=1 )
,                   𝑖 ≤ 𝑅

0,                                                          𝑖 > 𝑅

              5-33 

Let 𝜃𝑖 to be 𝑚𝑗
𝑖 to calculate the partial derivatives with respect to centre estimation:  

From Eqs. 5-2, 5-28 and 5-29 

                              
𝜕𝜇

𝐴𝑗
~𝑖

𝜕𝑚𝑗
𝑖
=    

(𝑥𝑗 −𝑚𝑗
𝑖)𝑁(𝑚𝑗

𝑖, 𝜎𝑗1
𝑖 ; 𝑥𝑗)

(𝜎𝑗1
𝑖 )2

                                       5-34 

                              
𝜕𝜇

𝐴𝑗
~𝑖

𝜕𝑚𝑗
𝑖
=    

(𝑥𝑗 −𝑚𝑗
𝑖)𝑁(𝑚𝑗

𝑖, 𝜎𝑗2
𝑖 ; 𝑥𝑗)

(𝜎𝑗1
𝑖 )2

                                      5-35 

The update rule for the centre estimation can be obtained by substituting Eqs. 5-26, 5-

27, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33, 5-34, and 5-35 into 5-25 and then into Eq. 5-37. 
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                     ∆𝑚𝑗
𝑖(𝑖𝑡𝑒𝑟 + 1) = −𝛽

𝜕𝑒𝑘

𝜕𝑚𝑗
𝑖
+ 𝛾∆𝑚𝑗

𝑖(𝑖𝑡𝑒𝑟)                                   5-36 

For the update rule for the width parameter estimation: 

For 𝜎𝑗1
𝑖 , from Eqs. 5-2, 5-28 and 5-29 

                                      
𝜕𝜇

𝐴𝑗
~𝑖

𝜎𝑗1
𝑖 = (𝑥𝑗 −𝑚𝑗

𝑖)𝑁(𝑚𝑗
𝑖, 𝜎𝑗1

𝑖 ; 𝑥𝑗),   
𝜕𝜇

𝐴𝑗
~𝑖

𝜎𝑗1
𝑖 =     0                        5-37  

Substituting Eqs. 5-26, 5-27, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33 and 5-34 into 5-25 and 

then into Eq. 5-37. 

                       ∆𝜎𝑗1
𝑖 (𝑖𝑡𝑒𝑟 + 1) = −𝛽

𝜕𝑒𝑘

𝜕𝜎𝑗1
𝑖
+ 𝛾∆𝜎𝑗1

𝑖 (𝑖𝑡𝑒𝑟)                                  5-38 

For 𝜎𝑗2
𝑖 , from Eqs. 5-2, 5-28 and 5-29 

                                   
𝜕𝜇

𝐴𝑗
~𝑖

𝜎𝑗2
𝑖 =   (𝑥𝑗 −𝑚𝑗

𝑖)𝑁(𝑚𝑗
𝑖, 𝜎𝑗2

𝑖 ; 𝑥𝑗),   
𝜕𝜇

𝐴𝑗
~𝑖

𝜎𝑗2
𝑖 = 0                            5-39  

Substituting Eqs. 5-26, 5-27, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33 and 5-39 into 5-25 and 

then into Eq. 5-38. 

                        ∆𝜎𝑗2
𝑖 (𝑖𝑡𝑒𝑟 + 1) = −𝛽

𝜕𝑒𝑘

𝜕𝜎𝑗2
𝑖
+ 𝛾∆𝜎𝑗2

𝑖 (𝑖𝑡𝑒𝑟)                                  5-40 

Similarly the corresponding rule update form [𝜔𝑙
𝑖, 𝜔𝑟

𝑖 ]  can be obtained from the 

following equations: 

The update rule for the output weight estimation:  

                     ∆𝜔𝑙
𝑖(𝑖𝑡𝑒𝑟 + 1) = −𝛽

𝜕𝑒𝑘

𝜕𝜔𝑙
𝑖
+ 𝛾∆𝜔𝑙

𝑖(𝑖𝑡𝑒𝑟)                                      5-41 

                    ∆𝜔𝑟
𝑖 (𝑖𝑡𝑒𝑟 + 1) = −𝛽

𝜕𝑒𝑘

𝜕𝜔𝑟
𝑖
+ 𝛾∆𝜔𝑟

𝑖(𝑖𝑡𝑒𝑟)                                      5-42 

where 𝐾 is the total number of training data points, 𝛽 learning rate, 𝛾 momentum factor, 

𝑒𝑘 is the training error of the 𝑘𝑡ℎ data point, 𝑖𝑡𝑒𝑟 is the iteration number index, 𝑦𝑘
𝑑 is 

the 𝑘𝑡ℎ true data point, and  𝑦𝑘 is the 𝑘𝑡ℎ model’s output. 
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The performance index 𝑃𝐼 is used for the continuous adaptation of the algorithm as 

follows: 

 If     𝑃𝐼(𝑖𝑡𝑒𝑟 + 1) ≥ 𝑃𝐼(𝑖𝑡𝑒𝑟) then 𝛽(𝑖𝑡𝑒𝑟) = ℎ𝑑𝛽(𝑖𝑡𝑒𝑟), 𝛾(𝑖𝑡𝑒𝑟 + 1) 

 If 𝑃𝐼(𝑖𝑡𝑒𝑟 + 1) < 𝑃𝐼(𝑖𝑡𝑒𝑟) and |
∆𝑃𝐼

𝑃𝐼(𝑖𝑡𝑒𝑟)
| < 𝛿 then 𝛽(𝑖𝑡𝑒𝑟 + 1) =

ℎ𝑖𝛽(𝑖𝑡𝑒𝑟), 𝛾(𝑖𝑡𝑒𝑟 + 1) = 𝛾0 

If 𝑃𝐼(𝑖𝑡𝑒𝑟 + 1) < 𝑃𝐼(𝑖𝑡𝑒𝑟) and |
∆𝑃𝐼

𝑃𝐼(𝑖𝑡𝑒𝑟)
| ≥ 𝛿 then 𝛽(𝑖𝑡𝑒𝑟 + 1) = 𝛽(𝑖𝑡𝑒𝑟), 𝛾(𝑖𝑡𝑒𝑟 +

1) = 𝛾(𝑖𝑡𝑒𝑟)                                                                                                              5-43 

where 𝛿 is the threshold for the rate of the relative performance index, and ℎ𝑖 and ℎ𝑑 

are the increasing and decreasing factors respectively. The performance index 𝑃𝐼 

follows the behaviour of a RMSE energy function where the following constraints are 

imposed: 

0 < ℎ𝑑 < 1 

                                                           ℎ𝑖 > 1                                                              5-44 

5.3. FRICTION STIR WELDING PRELIMINARY DATA PRE-PROCESSING 

AND ANALYSIS  

As already stated in Chapter 3 and due to the complexity and non-linearity nature 

of Friction Stir Welding process, establishing relationship between the process 

conditions (inputs) and internal process variables and then relate them to the final post-

weld properties is of paramount importance for the manufacturing industry. Therefore, 

studying these correlations could be beneficial to design a practical, safe, and optimal 

FSW process. In addition, real-time online monitoring of the internal FSW variables 

could provide a source of information on the underlying process conditions and expose 

possible causes of defect formation.  

Some important recent findings [194] [42] indicate that the frequency spectra of 

the tool feedback forces in X, Y, and Z axes and it was concluded that the frequency 

spectra of the feedback forces is more likely to contain useful information about the 

weld quality. Therefore, this section is devoted to cover the steel friction stir welding 

experimental trials including, the process parameters, the parent material, the welding 

tool, the interval process variables, the experimental settings, the data acquisition, 
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frequency analysis of the internal process variables, statistical correlation analysis and 

the post-weld tests for quantifying the weld quality.  

5.3.1. PROCESS PARAMETERS, MATERIAL, TOOL, EXPERIMENTAL 

TRIALS, AND DATA ACQUISITION 

Friction Stir Welding is a multi-input and multi-output (MIMO) system which 

involves process parameters (tool rotational speed, welding speed, plunge depth, dwell 

time and tilt angle), and process conditions (tool geometry, machine stiffness, parent 

materials properties) [191]. These process parameters determine the internal process 

variables (axial (downward) force 𝐹𝑧, forward (traverse) force 𝐹𝑥, side force 𝐹𝑦, 

spindle torque, temperature, tool power, heat generation, etc.). All these parameters and 

internal process variables influence the thermo-mechanical state in the matrix, e.g. 

velocities, strains, temperatures and stresses. Furthermore, they influence the 

sliding/sticking or partial sliding/sticking condition at the tool/matrix interface [160] 

[38, 162, 261]. 

5.3.1.1. PROCESS PARAMETERS  

The tool rotational speed (rpm), the welding speed (mm/min), axial pressure, the 

tool design, and the tilt angle of the tool are the main independent variables usually 

employed to control the FSW process [139, 140]. The tool rotational speed results in 

stirring of material around the tool’s pin while the translation of the tool moves the 

stirred material from the advancing side to the retreating side of the tool’s pin. The 

applied axial pressure on the tool also has influence on the quality of the weld. Meaning 

that a very high pressure results in overheating and thinning of the joint, while a very 

low pressure results in insufficient heating and voids [140, 143]. The tool’s tilt angle is 

also an important process parameter, especially to aid producing welds with “smooth” 

tool shoulders. It is measured with respect to the parent material surface [137]. 

Fig. 5.3 presents a systematic example of FSW parameters, it is clear that at the 

beginning of the process the tool rotational speed in clockwise or counter-clockwise 

direction and welding speed (feed rate) has to be small to generate sufficient heat to 

plasticise the material in order to avoid tool fracture and void formation.  As the 
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thickness of the parent material increases, the tool rotational speed has to be increased 

to match this increase in the heat conduction away from the weld line until a stabilised 

temperature is obtained [262]. This can be clearly observed in the temperature history 

of the parent material in Fig. 5.4. The tool rotational speed is regarded as one of the 

most momentous process parameters. 

 

Figure 5.3. Example of FSW input process parameters for DH36 butt weld, 6 mm 

thick welded via pcBN tool with tool rotational speed of 400 rpm and welding 

speed of 325 mm/min. 

5.3.1.2. INTERNAL PROCESS VARIABLES 

The main independent variables in the FSW determine the peak temperature, axial 

force (𝐹𝑧), traverse force (𝐹𝑥), the torque required by the spindle to maintain the rotation 

rate, and the power features of the process. As the tool rotational speed and axial 

pressure increase, the temperature increases significantly. While the temperature 

decreases slightly with increasing the welding speed. The tool rotational speed is used 
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to stir and mix the material around the rotating toot’s pin, and then the translation of 

tool shifts the stirred material around the tool’s pin from the advancing side to the 

retreating side of the tool’s pin, and completes the welding process. Higher 

temperatures can be generated with higher tool rotational speed, this is due to higher 

friction heating. Thus, more intense stirring and mixing of parent material. The 

mechanism of heat generated in FSW is based on generating friction between the tool 

and parent material. The heat generated is conducted to both the parent material as well 

as the tool. The amount of heat conducted into the plate dictates the temperature 

distribution of the parent material. This in turn affects the material flow, microstructure 

evolution, and mechanical properties of the weld region [38, 162, 261].  

 

 

Figure 5.4. Example of FSW temperature history recorded from 8-therocouples: 

DH36 butt weld, 6 mm thick welded via pcBN tool with tool rotational speed 

of 400 rpm and welding speed of 325 mm/min. 
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The axial (downward) force 𝐹𝑧 significantly depends on the tool plunge depth. 

Insufficient axial force results in insufficient heat at the tool/material interface, whereas 

excessive axial force produces excessive shoulder penetration into the material, which 

causes excessive flash at the edges of the shoulder [263]. It was also reported that [264], 

the axial force influences the surface texture and fatigue performance of FSW. The side 

force 𝐹𝑦 is the force from the clamping system that holds and prevents parent materials 

from being pushed away by the force generated by the rotating tool (𝐹𝑧). The traverse 

force 𝐹𝑥 increases with the thickness of the parent material because the dimensions of 

the tool’s pin increases at the same time. Insufficient traverse force causes void 

formation below the surface on the advancing (front) side of the weld [265]. 

Different materials result in different welding performance due to their difference 

in chemical composition and mechanical properties. Fig. 5.5 shows an example data 

record for the spindle torque and feedback forces (𝐹𝑥 and 𝐹𝑧) of butt weld of 6 mm 

DH36 steel grade using pcBN tool with tool rotational speed of 400 rpm and welding 

speed of 325 mm/min. The four different welding phases can be identified (plunging, 

dwelling, welding, and pulling out). Once the tool is plunged into the parent material, 

the feedback forces (axial and traverse forces) and spindle torque rise steady during the 

first part of the plunge phase. The initial smooth rise in the feedback forces and spindle 

torque is caused by the tool’s pin permeating the matrix. In the dwelling phase, the tool 

can no longer maintain in a vertical displacement and it starts to rotate until the 

surrounding material reaches a stabilised temperature (below the melting point of the 

parent material) in order to prevent the tool wear.  As the tool travels along the joint 

line, the material cools and solidifies resulting in a solid state joining of materials. After 

the initial response period, the feedback forces and spindle torque remain relatively 

stable, thus indicating the process has reached its stability (welding phase). It is within 

this phase where the process is stable and useful welds are made. 
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Figure 5.5. Example of FSW internal process variables: DH36 butt weld, 6 mm thick 

welded via pcBN tool with tool rotational speed of 400 rpm and welding speed 

of 325 mm/min. 
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5.3.1.3. DATA ACQUISITION  

Since the internal process variables are those features that can be monitored during 

the FSW and can provide a rich source of information about the undergoing process 

and the weld.  A collection of data (25 trials) on the axial force (𝐹𝑧) and traverse force 

(𝐹𝑥) under different process conditions have been provided by TWI Ltd., Technology 

Centre (Yorkshire), United Kingdom, for the welding of two similar DH36 steel plates 

6 mm thick. This material is used for shipbuilding applications.  All the welds were 

made on the same material with a pcBN weld tool. The welding trials were made using 

several different levels of tool rotational speed, and welding speed in order to obtain 

experimentally suitable welding conditions (see Fig. 5.6).  

 

Figure 5.6. Essential parameters, internal process variables and post-weld properties 

involved in FSW. 
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The data acquisition rate (sampling rate) for feedback force signals was 1 Hz. The 

studies in [42, 188, 194] reported that the amplitude of the low frequency components 

of feedback forces (𝐹𝑧 and 𝐹𝑥) has some direct correlation with the weld quality in the 

same process, whilst higher acquisition rate offers no significant benefits. In addition, 

one of the objectives in this research work is to build a data-driven computational 

framework that can be employed in real-time, inline to the process, with minimum 

computational cost; using low sampling rate also aids with this objective. Due to the 

specific requirements of obtaining experimentally suitable welding conditions, the 

overall data space for the FSW process is very complex and sparse. There are areas of 

low density and areas of high density (i.e. process operation envelope) (see Fig. 5.7). A 

good model of the process should be able to handle the complexity and sparsity 

associated with the data space and provide reliable predications in all density areas 

[158].    

 

Figure 5.7. FSW data density of experimental trials. 

5.3.2. FREQUENCY ANALYSIS 

Frequency analysis is a common and powerful tool for analysing unwanted 

variations (energy) in a time series data. By decomposing a time series signal into 
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frequency domain, it would be easier to define both the predominant modes of 

variability and how those modes vary in time. The process of decomposing a time series 

into simpler Fourier series and analysing the series is called Fourier analysis. In signal 

processing, the Fourier transform (FT) often decomposes a time series into simple 

sinusoidal components of different frequencies known as frequency spectrum. 

Therefore, the Fourier analysis is also considered as frequency analysis.  The FT’s 

advantage lies in its ability to analyse a signal in the time domain for its frequency 

component [266]. The Fourier transform works by first converting a function in the 

time domain into a function in the frequency domain. The time domain signal can then 

be analysed for its frequency component because the Fourier coefficients of the 

converted function represents the contribution of each sine and cosine function at each 

frequency component. To estimate the FT of a function from a finite length of its 

sampled points, the discrete Fourier transform (DFT) is often employed [267]. The 

sampled points are intended to be typical of what the original signal looks like at all 

other times. A variety of techniques can be used to calculate the discrete Fourier 

transform. One of them is the fast Fourier transform (FFT) algorithm [268].  FFT is a 

non-parametric technique which is used to quickly evaluate the power spectral density 

(PSD) of a signal from the signal itself. 

For FSW, the research studies in [269-271] investigated the tool forces in X, Y, Z 

planes (𝐹𝑥, 𝐹𝑦 and 𝐹𝑧) and it was revealed that useful information about the weld 

quality relevant to ‘wormhole’ defects is more likely to be obtained from the frequency 

spectra of the feedback forces. A wormhole defect is considered to be one of the most 

common, and difficult to detect, FSW defects and it refers to a continuous void 

underneath the weld surface. The study in [272] also found that the feedback forces 

oscillations can be useful for detecting the gaps at the weld line. The related study in 

[194] also highlights the importance of the frequency spectra of the force X and Y 

planes in detecting a wormhole defect. Many FSW related studies [273-276] showed 

that the plasticised material flow is highly periodic in its behaviour to the tool 

movement. For that reason, the stability of the spindle frequency (tool rotational speed) 

oscillation in the traverse force (𝐹𝑥) and lateral (side) force (𝐹𝑦) is a valid indication 

of a good weld without wormhole defect. Therefore, the frequency spectra of the 
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feedback forces could provide a rich source of information for analysis. In this work, 

the Fast Fourier Transform (FFT) algorithm was used to determine the DFT for the 

axial (𝐹𝑧) and Traverse (𝐹𝑥) force signals. The DFT can either be computed for the 

entire signal in time domain or else the signal can be windowed first. Windowing the 

signal is the process of selecting segments from the time domain signal in order to get 

a perspective of what the frequency spectrum is at a particular moment in time. In this 

research work, all the signals in time domain are windowed for 4 seconds during the 

welding phase. The sampling rate determines the bandwidth of the FFT, so with a higher 

sampling rate, higher frequencies can analysed. But this offers no significant benefits 

as stated earlier. 

To evaluate the quality of welds, a visual inspection on the surface of the welds 

was conducted by an expert. For every single weld, an overall quality index is designed 

to represent the general situation for weld quality. The value of this index could be 0 or 

1, where 0 indicates defect free (good quality) while 1 indicates poor quality (defective 

weld). More details on the weld quality assessment and the factors that needed to take 

into consideration while assessing the weld quality are fully presented in Chapter 3.   

As an illustration, Figs. 5.8 and 5.9 show the axial force signals and traverse force 

signals for 8 specimens at tool rotational speed of 450 rpm and welding speed of 400 

mm/min respectively. All the force signals are windowed for 4 seconds during the 

steady state welding phase. Then the DFT of the windowed signals was calculated by 

using the FFT algorithm. Figs. 5.10 and 5.11 show an example of the DFT of the axial 

and traverse forces for 8 different specimens respectively. In these figures, it is clear 

that the defect-free specimens produce smaller frequency-components (amplitudes in 

the frequency spectra) at the lower frequency spectrum including the DC component 

(i.e. at zero frequency), whilst the specimens with some defects have larger amplitudes 

at the lower frequency components. Consequently, the amplitudes of the low frequency 

components in the frequency spectra may have a correlation with weld quality. 
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Figure 5.8. Examples of axial force signals recorded for Butt weld of 6 mm thick 

DH36 steel grade welded via pcBN tool with tool rotational speed 450 rpm 

and welding speed of 400 mm/min, WD119, WD120, WD121 and WD124 

were reported as good welds and WD122, WD123, WD125 and WD126 were 

reported as poor welds. 

 

Figure 5.9. Examples of traverse force signals recorded for Butt weld of 6 mm thick 

DH36 steel grade welded via pcBN tool with tool rotational speed 450 rpm 

and welding speed of 400 mm/min, WD119, WD120, WD121 and WD124 

were reported as good welds and WD122, WD123, WD125 and WD126 were 

reported as poor welds. 
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Figure 5.10. Discrete Fourier Transform of axial force signals for Butt weld of 6 mm 

thick DH36 steel grade welded via pcBN tool with tool rotational speed 450 

rpm and welding speed of 400 mm/min: WD119, WD120, WD121 and 

WD124 were reported as good welds and WD122, WD123, WD125, and 

WD126 were reported as poor welds. 

 

Figure 5.11. Discrete Fourier Transform of traverse force signals for Butt weld of 6 

mm thick DH36 steel grade welded via pcBN tool with tool rotational speed 

450 rpm and welding speed of 400 mm/min, WD119, WD120, WD121 and 

WD124 were reported as good welds and WD122, WD123, WD125, and 

WD126 were reported as poor welds. 

Threshold to 

classify the 

good welds 

from the poor 

welds 
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5.3.3. CORRELATION AND REGRESSION ANALYSIS  

To further understand/investigate the relationship between the quality of the welds 

produced by FSW and the moving threshold extracted from the frequency spectra of 

the tool feedback forces, this section presents correlation and regression analysis.  

Correlation and regression refer to the relationship between two causally correlated 

variables, the independent variable is the one that is capable of affecting the other, and 

the dependent variable is the one that is capable of being affected by the other [277]. 

For instance, in FSW the tool rotational speed will tend to increase the temperature, 

whereas a change in temperature will not affect the tool rotational speed. In this 

relationship between tool rotational speed and temperature, the tool rotational speed is 

the independent variable and the temperature is the dependent variable. The welding 

parameters are independent variables and both the internal process variables and weld 

quality are dependent variables. In statistics, the primary measure of linear dependence 

(correlation) between two variables is the Pearson’s product–moment correlation 

coefficient r [277]. Its range [−1.0, +1.0], where 𝑟 =  −1.0 for a perfect negative 

correlation and 𝑟 =  +1.0 for a perfect positive correlation. The midpoint of its 

range, 𝑟 =  0.0 corresponds to no correlation. Values falling in the range [−1.0, 0.0] 

represent varying degrees of correlation in the negative direction, while those falling in 

the range [0.0, +1.0] represent varying degrees of correlation in the positive direction. 

For purposes of interpretation, the correlation coefficient can be translated into terms 

of percentages (𝑖. 𝑒. , 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  𝑟 × 100). 

In this research work, the correlation coefficient 𝑟  was employed to study the 

dependency between the feedback forces (𝐹𝑧 and 𝐹𝑥) and the weld quality. The 

Pearson’s product–moment correlation coefficient r is calculated between the 

amplitudes of the DC frequency components in the frequency spectra of the feedback 

forces and the weld quality. As shown in Figs. 4.12 and 4.13 show the scatter plot and 

regression line of 8 specimens: overall weld quality index (0 indicates defect-free or 

good quality, whereas 1 indicates poor weld quality) versus the weld quality threshold 

from the frequency spectra of the axial and traverse force signals respectively. The 

correlation coefficients r for the frequency spectra of the axial and traverse force signals 

are 0.93 (93%) and 0.96 (96%) respectively. The high value of 𝑟 indicates a high linear 
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correlation between the amplitudes in the frequency spectra and the overall weld 

quality. 

 

Figure 5.12. Scatter plot and regression line of 8 FSW specimens: overall weld quality 

index (0 means defect free or good quality while 1 indicates poor weld 

quality) versus extracted thresholds from frequency spectra of the axial force 

signals. 

 

Figure 5.13. Scatter plot and regression line of 8 FSW specimens: overall weld quality 

index (0 means defect free or good quality while 1 indicates poor weld 

quality) versus extracted thresholds from frequency spectra of the traverse 

force signals. 
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Based on the frequency analysis and statistical correlation analysis, useful 

information can be extracted from the frequency spectra of the feedback force signals 

and create a threshold (marker) that can be used to categorise (classify) the good welds 

from the poor welds. However, in reality this threshold cannot be generalised for 

different process parameters because different process parameters result in different 

feedback force signals’ behaviour, and therefore different thresholds. The relationship 

between the change in process parameters and thresholds is non-linear. As is discussed 

earlier in this chapter, the model-based approach that is used for the monitoring 

framework relies on the prediction of the non-linear behaviour of the change of this 

threshold. Successful forecasting of this threshold enables the process operator(s) to 

classify (discriminate) weld quality. 

5.4. A NEW MODEL-BASED REAL-TIME MONITORING OF FRICTION STIR 

WELDING VIA SPECTRAL ANALYSIS 

This section presents a new generalised and systematic model-based real-time 

monitoring framework relies on the previously IT2-RBF-NF model. The proposed 

monitoring framework takes the advantage of principle of human-like information 

granulation in granular computing (GrC) used in Chapter 4 to extract meaningful 

knowledge out of raw data. The extracted knowledge is utilised to elicit the initial 

structure of the IT2-RBF-NF model, and the initial structure is then optimised via the 

adaptive-BEP to improve its performance in predicting in real-time (during welding) 

quantitative markers of weld quality. Part quality thresholds are extracted from the 

frequency spectra of the feedback forces (axial (𝐹𝑧) and traverse (𝐹𝑥) forces) as shown 

in Section 5.2. The proposed model relies on a dynamic model that instead of predicting 

directly the weld quality, it predicts a moving threshold that can be used by the 

operator(s) as an indicator to discriminate the good welds from the bad welds. Thus, 

there is no need to re-tune the model when the process condition is changed. The 

proposed real-time model-based monitoring framework (see Fig. 5.14) is validated in 

different material, tool, and weld geometry combinations. The first case study is related 

to shipbuilding grade steel friction stir welding and the second case study is related to 

the FSW-based joining of an aluminium alloy. The results are provided in the following 

sections.   
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Figure 5.14. Flow chart of the GrC-based IT2-RBF-NF proposed monitoring 

framework. 

5.4.1. APPLICATION TO STEEL FRICTION STIR WELDING  

The FSW data set is used consisting of 25 measurements (See Table 5-1). The 

measurements include the process parameters (welding speed and tool rotation speed) 

and weld quality thresholds extracted from the frequency spectra of feedback force 

signals (axial and traverse forces) as described in Section 5.3. During the first stage of 

the modelling process the data set has been split into two sets, 25 data points to train 

the model and 5 data points for validation purposes. The training raw data is then 

compressed into information granules as described Chapter 4 in via the iterative data 

granulation approach that are true representatives of the process dynamics. The 
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compressed information granules are used to construct the initial structure of the model 

(number of rules and initial parameters 𝑚𝑗
𝑖, 𝜎𝑗

𝑖 ∈ [𝜎𝑗1
𝑖 , 𝜎𝑗2

𝑖 ], and [𝜔𝑙
𝑖, 𝜔𝑟

𝑖 ]). The initial 

GrC-IT2-RBF-NF model is trained via the adaptive-BEP algorithm as shown in the 

previous Section. After a number of systematic simulations (increased/reduced the 

number of granules), it was established that the predictive performance of the model 

was acceptable in the range between 3 to 7 linguistic rules.  

The predictive performance of the model having 3 rules is less compared to the 

model having 5 rules. In contrast to the model having 7 linguistic rules, the predictive 

performance is better but not a substantial predictive performance improvement 

compared with the IT2-RBF-NF model with 5 linguistic rules. Hence, the 5-rule IT2-

RBF-NF model was selected as the best model (optimal number of rules is five) in terms 

of balancing simplicity (in structure) and good predictive performance. In general, the 

rule-based human-centric models with more linguistic rules (hence more antecedent 

and consequent parameters to be optimised) often lead to better predictive performance 

due to their ability to capture more information about the dynamics of the process (with 

the danger of over-fitting during the parametric learning phase). However, this results 

in a lack of simplicity and interpretability, while models with few number of linguistic 

rules and parameters result in simpler models that facilitate the easier interpretation, 

albeit with lower predictive performance.  In addition, one of the main objectives of 

this research work was to maintain the overall system structure as simple as possible in 

order to create a low cost computational paradigm that can be feasible for real-time use.  

To avoid over-fitting during the parametric optimisation phase and to establish the 

best model training regime, the k-fold cross-validation approach (𝑘 = 10 in this 

research work) was utilised where the modelling process was repeated ten times. 

Performance indexes based on RMSE and MAE between the true threshold and model 

predicted threshold were used to evaluate the performance of the IT2-RBF-NF models 

developed. For the purpose of comparison and to confirm the appropriateness of the 

proposed model, a performance analysis was performed against a baseline (multiple 

linear regression (MLR) Model) and well-known multilayer perceptron neural network 

(MLP-NN). The performance of the proposed IT2-RBF-NF model is also tested against 

its type-1 radial basis function neural network (T1-RBF-NN) model counterpart that is 
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described in details in Chapter 4 using the same number of linguistic rules. The 

proposed monitoring framework is applied to two cases related to axial and traverse 

forces used as the main internal process variables for the process real-time monitoring. 

The two cases are detailed below:  

Table 5.1 Process paramerers of 25 experimental trials used for modelling ( including 

training and testing data). If the value of the indicator is below the threshold, 

the weld can be classified as a  good weld ortherwise the weld is of poor 

quality [158]. 

Weld 

Sample 

Welding 

Speed 

[mm/min] 

Rotation 

Speed 

[rpm] 

FFT Threshold 

Values for 

Axial Force 

Signals  

FFT Threshold 

Values for 

Traverse Force 

Signals  

1 100 200 138.41 53.55 

2 125 200 95.35 57.33 

3 110 200 71.60 26.01 

4 143 200 71.77 24.35 

5 200 400 108.36 40.16 

6 350 450 115.13 60.37 

7 250 300 112.54 69.83 

8 500 600 107.10 76.74 

9 500 575 175.58 99.12 

10 325 400 160.58 83.09 

11 275 400 103.03 48.64 

12 250 400 79.35 30.47 

13 325 450 115.40 64.18 

14 400 450 141.52 79.66 

15 400 450 141.52 79.66 

16 400 450 141.52 79.66 

17 400 450 141.52 79.66 

18 400 450 141.52 79.66 

19 400 450 141.52 79.66 

20 400 450 141.52 79.66 

21 400 450 141.52 79.66 

22 156 200 137.89 51.13 

23 350 500 119.03 52.79 

24 350 550 119.88 66.79 

25 300 300 91.46 42.90 
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5.4.1.1. TOOL AXIAL FORCE CASE  

The following case relating to the axial force case, as it is illustrated in Fig. 5.15 

the prediction performance of the 5-rule IT2-RBF-NF model for the training and testing 

performance respectively. Fig. 5.15 shows the experimentally measured and the 

corresponding predicted values from the model.  The simulation results show a 

relatively good performance in the prediction of weld quality threshold with more than 

80% of the predicted values lie within the 80% confidence limit. 

 

Figure 5.15. The 5-rule IT2-RBF-NF weld quality threshold model for the axial force. 

 

The system’s simulated behaviour between the process parameters and the 

predicted weld quality threshold; the mean IT2-RBF-NF model along with its standard 

deviation (SD) is depicted in Fig. 5.16. From the three-dimensional surface, it can be 

seen that the simulated behaviour of the threshold for establishing weld quality 

produced by FSW is in a non-linear relationship with respect to the process parameters.  
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Figure 5.16. The response surface of the 5-rule IT2-RBF-NF weld quality threshold 

model for the axial force (mean +/- SD). 

The improved interpretability of the IT2-RBF-NF model can be demonstrated in 

the linguistic human-centric rule-based structure generated to forecast the weld quality 

threshold. Fig. 5.17 shows the fuzzy rule-base of the 5-rule IT2-RBF-NF model (each 

row represents one rule). 

 

Figure 5.17. The rule-base of the 5-rule IT2-RBF-NFweld quality threshold model for 

the axial force. 
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The corresponding linguistic rule-base in Fig. 5.17 can be employed to describe 

the non-linear relationships between the welding speed, rotation speed and the predicted 

weld quality threshold produced by FSW, which can be achieved via the linguistic 

hedges approach from the interval type-2 Fuzzy Logic structure of the model. Such a 

rule-base structure from the axial force IT2-RBF-NF model can be interpreted in a 

linguistic format as follows:  

Rule 1: IF Welding Speed is high AND Rotation Speed is very high, THEN Weld 

Quality Threshold is low 

Rule 2: IF Welding Speed is very low AND Rotation Speed is very low, THEN 

Weld Quality Threshold is medium  

Rule 3: IF Welding Speed is very high AND Rotation Speed is medium, THEN 

Weld Quality Threshold is Medium  

Rule 4: IF Welding Speed is low AND Rotation Speed is low, THEN Weld 

Quality Threshold is very small 

Rule 5: IF Welding Speed is medium AND Rotation Speed is high, THEN Weld 

Quality Threshold is high 

A multiple linear regression (MLR) model described in more details in [126]  was 

employed as a baseline for comparison purposes. From the performance analysis of the 

modelling results obtained, it can be confirmed that the MLR model provides only a 

basic level of modelling performance (see Tables 5-2 and 5-3). Two more advanced 

model-based non-linear modelling methods were then used, a MLP-NN model which 

has been proven to provide good classification accuracy in the same process in the past 

[194], as well as a type-1 NF system [42], which also has been applied in the past with 

good prediction performance. In addition, it provides a useful comparison between the 

proposed type-2 FLS and its type-1 FLS counterpart. The MLP-NN used for 

comparison purposes consists of two hidden layers, each hidden layer composed of 100 

hidden units having the hyperbolic tan transfer function trained via the adaptive-BEP 

approach. A detailed description about the MLP-NN modelling approach is given 

elsewhere [278].   

Similarly to the previously presented modelling results, the regression line between 

the experimentally measured and the corresponding predicted weld quality threshold 



 

 171 

values for the developed MLP (Fig. 5.18) and T1-RBF-NN (Fig. 5.19) models for the 

axial force, along with summative comparison tables (see Table 5-2 and 5-3) including 

the RMSE and MAE% for training and testing performance of all the developed 

models. 

 

Figure 5.18. The 2-hidden layers, 100 hidden units weld quality threshold model for 

the axial force.  

 

Figure 5.19. The 5-rule T1-RBF-NN weld quality threshold model for the axial force.  
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Table 5.2 Performance of the multiple linear regression and multilayer perceptron 

weld quality threshold models for the axial force. 

Performance 

Index  

MRL Model MLP-NN Model 

Training Testing Training Testing 

RMSE±SD 26.20±5.43 31.03±10.93 19.26 ±2.40 26.02 ±3.80 

MAE %±SD 20.15±6.12 28.27±9.39 13.16±2.18 13.73±2.31 

 

Table 5.3 Performance of the T1-RBF-NN and IT2-RBF-NF weld quality threshold 

models for the axial force. 

Model 

Type 

T1-RBF- NN IT2-RBF-NF 

Number 

of 

Rules  

RMSE±SD MAE%±SD RMSE±SD MAE%±SD 

Training Testing Training Testing Training Testing Training Testing 

3 25.13 

±5.10 

32.59 

±7.64 

20.66

±2.96 

25.04±

3.73 

21.09 

±2.17 

24.30 

±3.07 

15.43±

1.03 

17.11±

1.06 

5 20.67 

±2.18 

28.49 

±3.18 

15.63

±2.14 

20.34±

2.83 

18.89 

±0.95 

22.35 

±1.02 

12.02±

0.83 

12.72±

0.91 

7 19.23 

±2.00 

26.14 

±2.98 

14.77

±2.00 

18.79±

2.75 

17.45 

±0.90 

21.19 

±0.94 

11.98±

0.64 

12.06±

0.67 

     

From the performance analysis and regression plots of the MLP-NN, T1-RBF-NN, 

and IT2-RBF-NF models, it is clear that all the non-linear model-based methods have 

achieved relatively good predictions accuracy (RMSE, MAE %) within the process 

envelope (operating window). However, the IT2-RBF-NFS has a smaller RMSE and 

MAE% as well as a much smaller standard deviation (SD) intervals compared to the 

other models, indicating that the IT2-RBF-NF model demonstrates its ability to handle 

effectively the uncertainties associated with the input data. The extra degree of the 

freedom from the IT2-MF FOU of the IT2-RBF-NF model has high tolerance to the 

input noise and thus its ability to take into account the uncertainties associated with the 
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meaning of words. The additional flexible parameters provided by the IT2-MF FOU in 

the IT2-RBF-NFS is used to better handle the numerical uncertainty associated with 

system inputs and outputs. Therefore, the IT2-RBF-NF model has the potential to 

achieve better predictive performance (generalisation/ testing performance) and robust 

(low SD) response. 

5.4.1.2. TOOL TRAVERSE FORCE CASE  

    In a like manner to the axial force, the modelling results presented in this section 

include the measured/predicted performance for training and testing (Fig. 5.20), as well 

as the three-dimensional simulated model behaviour (Fig. 5.21) and its corresponding 

linguistic rule-base (Fig. 5.22). 

 

Figure 5.20. The 5-rule IT2-RBF-NF weld quality threshold model for the traverse 

force. 

 

 



 

 174 

 

Figure 5.21. The response surface of the 5-rule IT2-RBF-NF weld quality threshold 

model for the traverse force (mean +/- SD). 

 

 

Figure 5.22. The rule-base of the 5-rule IT2-RBF-NF weld quality threshold model 

for the traverse force. 
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The linguistic rule-base structure from the traverse force IT2-RBF-NF model 

presented in Fig. 5.22 can be interpreted in a linguistic form as follows: 

Rule 1: IF Welding Speed is very high AND Rotation Speed is very high, THEN 

Weld Quality Threshold is very high 

Rule 2: IF Welding Speed is very low AND Rotation Speed is very low, THEN 

Weld Quality Threshold is low  

Rule 3: IF Welding Speed is medium AND Rotation Speed is low, THEN Weld 

Quality Threshold is medium  

Rule 4: IF Welding Speed is low AND Rotation Speed is high, THEN Weld 

Quality Threshold is very low 

Rule 5: IF Welding Speed is high AND Rotation Speed is medium, THEN Weld 

Quality Threshold is high 

 

Figure 5.23. The 2-hidden layers, 100 hidden units weld quality threshold model for 

the traverse force. 
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Figure 5.24. The 5-rule T1-RBF-NN weld quality threshold model for the traverse 

force. 

The same comparative modelling procedures were utilised for the traverse force 

case. Tables 5-4 and 5-5 show the overall summative performance analysis of the 

developed models. As in the axial force case, it is evident that the prediction 

performance on the traverse force models is very similar in terms of their overall model 

accuracy, i.e. the MRL model (linear method) fails to capture the process dynamics, but 

other non-linear methods (MLP-NN, T1-RBF-NN, and IT2-RBF-NF models) are 

almost equally accurate. The main difference again, is the robustness of the proposed 

IT2-RBF-NF model, which exhibits the lowest SD intervals of prediction. 

Table 5.4 Performance of the multiple linear regression and multilayer perceptron 

weld quality thresholds models for the traverse force. 

Performance 

Index  

MLR Model MLP-NN Model 

Training Testing Training Testing 

RMSE±SD 20.12±8.23 20.12±8.29 11.12 ±1.37  14.74 ±2.88 

MAE%±SD 27.08±7.16 27.08±7.20 18.26 ±14.83 25.67±5.16 
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Table 5.5 Performance of the T1-RBF-NN and IT2-RBF-NF weld quality threshold 

models for the traverse force. 

Model 

Type 

T1-RBF- NN IT2-RBF-NF 

Number 

of Rules 

RMSE±SD MAE%±SD RMSE±SD MAE%±SD 

Training Testing Training Testing Training Testing Training Testing 

 

3 

17.35 

±6.99 

22.00 

±5.88 

26.86

±3.21 

33.14±

10.71 

14.36 

±2.97 

17.29 

±3.09 

21.60

±2.52 

24.48

± 2.89 

 

5 

12.16 

±2.41 

14.97 

±3.18 

21.31

±1.93 

28.29±

2.13 

10.76 

±0.72 

13.43 

±0.83 

18.13

±0.54 

20.15

±0.61 

 

7 

11.76 

±2.19 

13.79

±2.78 

20.99

±1.84 

25.69±

1.91 

9.86 

±0.64 

12.23±

0.78 

16.95

±0.23 

19.79

±0.28 

 

Overall, from the frequency spectral analysis, the statistical correlation analysis 

and the modelling results it is confirmed that indeed there is a non-linear relationship 

between the weld quality threshold in the frequency domain and the input process 

parameters. This non-linear behaviour is modelled successfully via the IT2-RBF-NF 

model, while having the ability to also provide continuous linguistic feedback to the 

operator(s) about the performance of the process. The successful modelling of this 

moving threshold enables the creation of a process monitoring system that would be 

capable of classifying in real-time the quality of produced welds in steel FSW based on 

axial and traverse force signals. To put it more simply, from the linguistic rule-base of 

the final IT2-RBF-NF model, continuous feedback in a linguistic format (rule-based 

human-centric system) can be provided to the process operator(s). The computational 

demands and efficiency of the IT2-RBF-NF model are only modest (almost 

instantaneous single weld quality threshold prediction on a standard PC), therefore the 

real-time application (while welding) of the proposed reliable monitoring system is also 

feasible.  
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5.4.2. APPLICATION TO ALUMINIUM FRICTION STIR WELDING 

In this section the generalised model-based real-time monitoring framework that 

relies on the IT2-RBF-NFS is validated in different material and weld tool 

combinations. The dataset in this research work has been obtained with the help of TWI 

Ltd, South Yorkshire, UK, where 31 experimental trials were conducted for the welding 

of an aerospace-grade aluminium plates in 76 mm thickness (AA2219-T845) welded 

via a 38 mm TriFlat weld tool [279]. All the welds were made with a 38 mm TriFlat 

weld tool. All welds were made with different levels of tool rotational speed and 

welding speed in order to determine the process envelope for welding AA2219-T845 

aluminium alloy. The data acquisition rate for all relevant signals was set to 1 Hz.  Figs. 

5.25 and 5.26 show data records for the 31 experimental trials for the traverse and axial 

force signals respectively. The histogram of tool rotational speed and welding speed for 

the overall data space for the FSW process is plotted in Fig. 5.27. It can be shown that 

the data space is complex and sparse; there are areas of low data density and areas of 

high data density (i.e. process operation envelope).  

 

Figure 5.25. Traverse force signals recorded during 31 experimental trials using a 38 

mm TriFlat weld tool with different levels of tool rotational speed and welding 

speed. 
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Figure 5.26. Axial force signals recorded during 31 experimental trials using a 38 mm 

TriFlat weld tool with different levels of tool rotational speed and welding 

speed. 

 

Figure 5.27. FSW data density of 31 experimental trials. 

The quality of the welded samples was quantified by process experts via visual 

assessment of the surface area. Based on surface assessment, an overall quality index 
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is obtained to represent the general situation for weld quality, whose value could be 0 

indicates excellent weld quality or 1 indicates poor weld quality.  

In the same way to the work conducted in the previous section, the DFT for the 

feedback force signals is calculated.  By way of illustration, Figs. 5.28 and 5.29 show 

the DFT of the traverse and axial force signals for 31 welds at different levels of tool 

rotational speed and welding speed respectively. All the force signals are windowed for 

the whole steady state welding stage. In these figures, it is obvious that the defect-free 

welds produce smaller frequency components at the lower frequency spectrum 

including the DC component, whilst the defective welds produces larger amplitudes at 

the lower frequency components. Consequently, the amplitudes of the low frequency 

components may have a correlation with weld quality. 

Based on the frequency and correlation analysis, useful information can be 

extracted from the frequency spectra of the feedback force signals. The frequency 

spectra information can be used to establish a threshold in order to separate (classify) 

the good welds from the poor welds. However, in practice different process parameters 

result in different thresholds (i.e. different force signals ‘behaviour’) and therefore this 

threshold cannot be generalised for different process parameters. The relationship 

between the process conditions and the resulting weld quality threshold is nonlinear. 

As discussed earlier, the model-based approach that is used for the monitoring 

framework depends on the prediction of the nonlinear behaviour of the threshold for 

different process conditions. Successful prediction of this marker enables the process 

user to classify weld quality. 

Table 5-6 presents the FSW data set used consisting of 31 measurements. The 

measurements include the process parameters (welding speed and tool rotation speed) 

and weld quality thresholds extracted from the feedback force signals (traverse and 

axial forces) as described earlier. During the first stage of the modelling process the 

data set has been split into two sets, 25 data points to train the model and 6 data points 

for validation purposes. After a number of systematic simulations (increased/reduced 

the number of granules), it was established that the optimal number of granules is five. 

These five granules are used to construct the initial structure of the model (number of 
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rules and initial parameters). The initial structure of the IT2-RBF-NF model is trained 

via the adaptive back-propagation (BEP) algorithm. Performance indexes based on 

RMSE and MAE% between the true threshold and model predicted threshold was used 

to evaluate the performance of the neural fuzzy models developed. 

 

Figure 5.28. Discrete Fourier Transform of the traverse force signals. 
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Figure 5.29. Discrete Fourier Transform of the axial force signals. 
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Table 5.6 Process parameters of 31 experimental trials used for modelling (including 

training and testing data). If the value of the indicator is below the threshold, 

the weld can be classified as a good weld otherwise the weld is of poor 

quality. 

Weld 

Sample 

Welding 

Speed 

[mm/min] 

Rotation 

Speed 

[rpm] 

Threshold 

Values for 

Traverse 

Force  

Threshold 

Values for 

Axial 

Force  

WDNo.02 50 150 41.9892 105.8636 

WDNo.03 50 150 43.0203 94.3488 

WDNo.04 50 150 42.2466 100.0358 

WDNo.05 50 170 38.7740 100.1951 

WDNo.06 50 190 41.7373 99.9398 

WDNo.07 60 190 45.3140 99.8043 

WDNo.08 70 190 44.2371 100.2622 

WDNo.09 80 190 47.8541 100.0881 

WDNo.10 90 190 50.9214 99.8174 

WDNo.11 90 210 50.3309 100.0018 

WDNo.12 90 250 57.2531 100.1225 

WDNo.13 90 250 51.2287 84.9336 

WDNo.14 100 250 52.6585 84.8498 

WDNo.15 100 250 55.8986   99.7639 

WDNo.16 120 250 62.0890 99.7583 

WDNo.17 100 190 52.1112 99.7003 

WDNo.18 110 190 53.2582 99.9864 

WDNo.29 80 170 46.3304 100.0211 

WDNo.20 100 170 53.8700 99.9506 

WDNo.21 100 180 51.8012 100.3040 

WDNo.22 100 210 50.3391 100.1607 

WDNo.23 120 210 55.3761 99.7559 

WDNo.24 120 210 56.6503 99.9345 

WDNo.25 120 250 62.7591 99.5400 

WDNo.26 130 240 63.0390 100.2984 

WDNo.27 130 240 66.1035 114.8705 

WDNo.28 130 220 64.9960 115.0037 

WDNo.29 140 230 69.6559 115.2312 

WDNo.30 140 210 66.1871 115.0800 

WDNo.31 140 190 65.3498 114.9401 

WDNo.32 160 190 73.5770 115.0809 

 

The proposed framework was applied to two cases related to traverse and axial 

forces used as the main signals for the process monitoring; the two cases are detailed 

below:  
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5.4.2.1. TOOL TRAVERSE FORCE CASE 

In the following case relating to the traverse force signals for the process 

monitoring. Using the proposed model-based framework, a 5-rule fuzzy model was 

developed after structure identification and parametric optimisation. The rule-based 

fuzzy model is presented in Fig. 5.30.  

 

Figure 5.30. The rule-base of the 5-rule IT2-RBF-NF weld quality threshold model 

for the traverse force. 
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From the rule-based fuzzy model, the corresponding linguistic rules can be written 

as follows: 

Rule 1: IF Welding Speed is very high AND Rotation Speed is medium THEN Weld 

Quality Threshold is very high  

Rule 2: IF Welding Speed is very low AND Rotation Speed is very low THEN weld 

quality threshold is very low  

Rule 3: IF Welding Speed is low AND Rotation Speed is high THEN weld quality 

threshold is low  

Rule 4: IF Welding Speed is high AND Rotation Speed is very high THEN weld quality 

threshold is high  

Rule 5: IF Welding Speed is medium AND Rotation Speed is low THEN weld quality 

threshold is medium  

The prediction performance of the obtained model: RMSE = 1.79, 1.78 and MAE 

% = 2.82, 2.23 for model training and testing respectively. Simulation results of the 

model for training and testing are shown in Fig 5.31. According to the simulation 

results, the model gives good prediction and generalisation with 97.78 % accuracy. 

 

Figure 5.31. The 5-rule IT2-RBF-NF weld quality threshold model for the traverse 

force. 

To provide more details and also to verify the physical interpretation of the 

obtained model, Fig. 5.32 illustrates the system’s simulated behaviour between the 
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welding speed, rotation speed and the predicted weld quality threshold. From the 

surface plot, it can be clearly seen that there is a nonlinear relationship between how 

the threshold changes with respect to the process conditions. It can also be observed 

that, with increasing rotation speed, the weld quality threshold tends to increase. This 

trend follows the expected behaviour from the knowledge experts.   

 

 

Figure 5.32. The response surface of the 5-rule IT2-RBF-NF weld quality threshold 

model for the traverse force: If the value of the indicator is below the 

threshold, the weld can classified as a good weld, otherwise the weld is of 

poor quality. 

5.4.2.2. TOOL AXIAL FORCE CASE  

Similarly, a 5-rule fuzzy model was developed for the axial force case using the 

proposed framework. After structure identification and model optimisation, the rule-

based fuzzy model is presented in Fig. 5.33.  
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Figure 5.33. The rule-base of the 5-rule IT2-RBF-NF weld quality threshold model 

for the axial force. 

The corresponding linguistic format is as follows: 

Rule 1: IF welding speed is very low AND rotation speed is very low THEN weld 

quality threshold is medium  

Rule 2: IF welding speed is very high AND rotation speed is high THEN weld quality 

threshold is very high  

Rule 3: IF welding speed is low AND rotation speed is low THEN weld quality 

threshold is medium  

Rule 4: IF welding speed is medium AND rotation speed is very high THEN weld 

quality threshold is very low  

Rule 5: IF welding speed is high AND rotation speed is medium THEN weld quality 

threshold is low  

The prediction performance of the obtained model: RMSE = 1.79, 1.78 and MAE 

% = 3.32, 3.23 for model training and testing respectively. Simulation results of the 
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model for training and testing are shown in Fig. 5.34. According to the simulation 

results, the model gives good prediction and generalisation with 96.77% accuracy. The 

simulated model behaviour is shown in Fig. 5.35. 

 

Figure 5.34. The 5-rule IT2-RBF-NF weld quality threshold model for the axial force. 

 

 

Figure 5.35. The response surface of the 5-rule IT2-RBF-NF weld quality threshold 

model for the axial force: If the value of the indicator is below the threshold, 

the weld can classified as a good weld, otherwise the weld is of poor quality. 
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The simulation results show the effectiveness of the IT2-RBF-NFS approach to 

handle linguistic uncertainties and achieve reasonable process performance markers 

(~98% accuracy in testing data). The successful application of the proposed model-

based framework enables the creation of a process monitoring system that would be 

capable of classifying in real-time the quality of produced welds in aluminium FSW 

based on axial and traverse force signals. 

From the simulations results presented in the previous sections, it is clear that the 

proposed IT2-RBF-NFS outperformed the MRL and MLP-NN models as well as its 

type-1 radial basis function neural network counterpart mainly in generalisation terms. 

It also proved its efficiency and high prediction accuracy for fitting data in the presence 

of high input uncertainty. 

In practical terms, it is clear that the data space for steel FSW is more complex and 

highly non-linear than the data space for aluminium FSW. This is mainly due to steel 

FSW is performed at high temperatures of up to 1,100˚C (measured at the tool), hence 

the tool must retain its strength at these high temperatures while being subjected to 

complex bending, rotational and fatigue loads. An additional complexity is that the 

FSW of steel is characterised by the presence of phase transformations which deem the 

process optimisation even more challenging [151]. Therefore, the proposed model-

based monitoring framework has great potential for successful implementation in 

different materials, weld tools, and tool geometry combinations. 

5.5. SUMMARY 

In this chapter, a new systematic IT2-RBF-NF modelling framework is presented. 

The aim was to develop a parsimonious, robust and computationally efficient human-

centric rule-based neural fuzzy modelling framework that can be easily translated into 

human language via simple linguistic rules in order to describe the underlying dynamics 

behaviour of complex industrial processes with good generalisation capability, 

tolerance to input imprecision and low computational cost.  

The proposed modelling framework was used to develop a new generalised model-

based real-time process-monitoring framework to analyse the performance and 
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behaviour of the steel FSW process and further validated in aluminium FSW process. 

On one hand, the proposed monitoring framework relied on frequency domain analysis 

of key process variables to establish markers (thresholds) of weld quality. On the other 

hand, such markers (thresholds) are subject to change as the weld input parameters also 

change.  It was also demonstrated that how the feedback forces (axial (𝐹𝑧) and traverse 

(𝐹𝑥) forces) on tool during welding can be used to forecast/estimate the resulting weld 

quality threshold on different levels of process conditions. The proposed monitoring 

framework has proven its computational efficiency and robustness. It can also be used 

in line to the process, in real-time, to non-destructively (indirectly) evaluate the 

performance of the FSW process and the quality of the welds produced.  

The modelling results showed an achieved prediction accuracy of more than 80% 

and 98% in the prediction of the weld quality thresholds on different levels of process 

conditions for welding of 6 mm thick DH36 shipbuilding-steel grade, welded via a 

pcBN weld tool and 76 mm thickness (AA2219-T845) aerospace aluminium grade 

welded via a 38 mm TriFlat weld tool respectively. In addition, the interpretability 

attribute of the developed human-centric rule-based neural fuzzy model can be used to 

provide continuous linguistic feedback on the performance of the process to the process 

operator(s). The use of linguistic rules can also be beneficial to the process operator(s) 

to gain an insight into the effects of the process conditions on the final weld quality and 

to monitor and prevent performance deterioration and overheating problems related to 

significant tool wear conditions.  

This chapter is concluded by comparing the performance of the presented model-

based approach against a linear model – as a baseline – as well as two common non-

linear model-based methods, which exhibited good predictive performance in the past 

in complex manufacturing processes. The modelling results showed that while the 

linear model poorly models the relationship between the input parameters and weld 

quality threshold, as expected, the non-linear model-based methods provide similar 

levels of good predictions accuracy. It is noticeable that the proposed model-based 

approach outperforms all others in terms of the robustness of the predictions accuracy, 

as the standard deviation obtained in the predictions is the lowest among all of the other 

models. This confirms the ability of the IT2-RBF-NF model to perform better in the 
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presence of high input uncertainty due to the extra degree of the freedom from the IT2-

MF FOU of the IT2-RBF-NF has high tolerance to the input noise and thus its ability 

to take into account the linguistic uncertainty in the fuzzy rules. Additionally, the extra 

flexible parameters provided by the IT2-MF FOU in the IT2-RBF-NF system helps 

handle the numerical uncertainty associated with system inputs and outputs. 

The results obtained from this chapter led to the publication of an article in the peer 

reviewed journal ‘Journal of Manufacturing Processes’ with the title: A real-time 

quality monitoring framework for steel friction stir welding using computational 

intelligence, and an article that was presented at the 11th International Symposium on 

Friction Stir Welding in Cambridge, United Kingdom with the title: Real-time quality 

monitoring for friction stir welding AA2219-T845 aluminium aerospace alloy via 

model-based spectral analysis.    

In the next chapter, a new perpetual learning framework based on the IT2-RBF-NF 

system that has been developed in this chapter is proposed in order to accommodate 

new input-output mappings and new classes of data as well as make the system/model 

feasible for lifelong leaning mode. 



 

 192 

CHAPTER 6 - A NEW PERPETUAL LEARNING FRAMEWORK FOR IT2-

RBF-NFS 

his chapter presents a new perpetual learning framework based on the iterative 

human-like information capture in granular computing (GrC) and IT2-RBF-

NF model as described in Chapter 5. 

 On one hand, the proposed framework evolves through incremental and structural 

parametric learning. Such framework relies on the creation of new rules, which are 

added to the original model to update its structure. The updated model is then optimised 

during the incremental process.  

On the other hand, an iterative rule pruning strategy is used to remove any 

inconsequential rules as a result of the incremental update routine. The strength of such 

perpetual learning framework is that this framework uses rule growing/pruning 

strategy, which makes the proposed framework feasible for lifelong learning mode.   

6.1. INTRODUCTION  

In the field of data-driven computational intelligence modelling, the learning 

methodologies can be broadly divided into two main categories: offline (batch) learning 

and online learning [280-282]. The former method assumes that all the data points are 

available to the model before the learning process starts and can be accessed repeatedly, 

while the latter assumes one data point arrives at a time from a possibly infinite stream 

[283, 284]. In a broad sense, on one hand, the offline leaning methods are concerned 

with real-world problems when a set of data is obtained and used to train/learn an 

approximating function before the function is used in the application [285]. On the other 

hand, online learning methods are applied to complex and continuously changing 

characteristics real-world problems, such as chaotic time series prediction [286],  

dynamic auditory-visual signal analysis [287], and ambient intelligent environments 

[288]. Such dynamic in nature case studies require sophisticated computational 

frameworks that are able to adapt incrementally in an online manner [283], learn and 

generalise from data automatically [289], and dynamically change their structure and 

create new rules [290].  

T 
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In the literature, some of the frameworks that have been introduced to deal with 

such problems for instance adaptive decision-making modelling and control systems 

[291],  multi-modal information processing systems [287] intelligent agent-based 

systems [292, 293]. A number of adaptive learning approaches exist in Computational 

Intelligence (CI), namely online learning [47-49], incremental learning [294-296], 

lifelong learning [48], and knowledge-based learning neural networks [297-299]. 

Recent research on online learning concentrates on adaptive learning approaches to 

follow time-varying distributions [283, 299, 300]. Incremental learning is the process 

of repeatedly training a model with new data without completely disturbing the old 

model [301]. Lifelong learning also termed perpetual “continuous learning” addresses 

learning through the whole lifespan of a system [302]. In [47] a dynamic evolving 

neural fuzzy system for the prediction of time-series data was proposed; this  approach 

requires to normalise all data prior to training, which infers that all the data points must 

be present prior to any training.  

Other dynamic neuro-fuzzy system approaches include a self-organising fuzzy 

neural network [303], a self-constructing neural fuzzy inference network [304], a 

dynamic fuzzy neural network  [305-307] and a dynamic parsimonious fuzzy neural 

network  [290]. However, the aforementioned methods never prune the rules once 

generated, regardless of their relevance. Therefore, a large number of inconsequential 

rules may be generated each time new data sets (information) are available. Other 

alternative approaches for online learning which adapt the feature of rule creation and 

pruning mechanisms exist, such as the sequential adaptive fuzzy inference system 

[281], and the most recent sequential probabilistic learning for adaptive fuzzy inference 

system  [283].  In on-line learning, only one data pattern is provided at a time and then 

discarded after the learning process has been completed. The online methodology is not 

very demanding on computing resources and at the same time it fits well with 

dynamically changing environments. 

To this point the focus has been on the adaptive learning methods, particularly in 

addressing the recent advances in the field of type-1 fuzzy logic system. However, as 

already discussed in Chapter 5 recent research on type-2 fuzzy logic systems (T2-FLSs) 

have attracted much attention [32-34]. This is due to their ability to better handle the 
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measurement noise and modelling uncertainties. Therefore, particular efforts on online 

learning methodology have also been recently focused on type-2 fuzzy logic systems. 

In [308], a self-evolving interval type-2 fuzzy neural network is proposed, in which the 

structure and parameters learning are carried out in an online manner. The parameters 

of antecedent and consequent parts are optimised via the gradient descent algorithm and 

rule-ordered Kalman filter algorithm respectively; its performance was validated for 

time-varying systems. In [309], the authors proposed a mutually recurrent interval type-

2 neural fuzzy system  for the identification of non-linear and time-varying systems. 

The proposed structure also used the gradient descent and rule-ordered Kalman filter 

algorithm for parameters tuning.  

In more recent studies [50-53] online leaning methods have been proposed. In [50], 

a TSK-Type-based self-evolving type-2 fuzzy neural network is proposed to improve 

the system’s robustness in noisy environments [50], and a Mamdani-type IT2-NFS with 

on-chip incremental learning ability is introduced [51]. This system [51] utilises a 

simplified type-reduction  operation into an interval Type-2 NFSs to reduce the 

computational cost.  In [52], Lin et al. proposed an interval type-2 NFS for online 

system identification and feature elimination. The proposed structure possesses a self-

organising property that can automatically generate fuzzy rule and optimised via a 

gradient descent based approach.  

The aforementioned adaptive learning methodologies that have been proposed so 

far incrementally evolve their structure and optimise the parameters. The online 

adaptive learning ability of such methodologies makes it suitable for learning data 

streams that are generated from non-stationary environments, for example in processes 

where time-series data are generated (i.e., evolving data) [47].  However, in some 

applications, data streams are generated periodically from non-varying environments 

(i.e., static, non-dynamic relationship-based data) [27].  

The development of a human-centric rule-based system from static data is a dual-

stage process, which includes the structure learning stage and the parameter learning 

phase. These two stages are often performed sequentially; the first stage is employed to 

construct the initial structure of rule-base. This stage can be carried out via the iterative 
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human-like information granulation of GrC as described in Chapter 4. Then in the 

second stages, a parametric optimisation approach is used to optimise/tune the 

parameters of each rule in the rule-base as well as the inference mechanism. However, 

developing efficient data-driven computational models require significant effort and the 

training process is over-dependant on expert knowledge. Repeating the whole 

modelling process is often a laborious and non-automated process as well as time-

consuming. Consequently there is no guarantee that the new model will maintain a good 

performance comparable to the original model. The batch learning approach is often 

assumed, where the model structure uses all training data simultaneously and allowed 

to employ them as often as required.  

In some industrial/manufacturing applications, obtaining batch data is a slow and 

expensive process and the data set can only be obtained periodically. Therefore, there 

is a need to for the system to have the ability to learn from an initial batch of data (with 

the help of an appropriate training algorithm) and periodically adapt to new data sets 

when these are available. An additional need is to include the capability to interact with 

a changing environment in a ‘perpetual’ continuous fashion and also to have an open 

structure; this entails to dynamically expand the system’s structure to accommodate 

new data/information – without significantly disturbing the initial model structure. A 

rule pruning mechanism would also be required in order to remove/prune insignificant 

and/or redundant rules that have limited contribution to the system’s performance.  

In this chapter, a new perpetual learning framework is proposed, where the initial 

model can incrementally update its structure to accommodate new data sets in type-2 

fuzzy logic systems. The proposed perpetual learning framework is able to detect 

effectively any change in the data distribution via a novelty detection process and 

expands its structure to cover the new input data space without significant loss on the 

overall performance of the model (including original and new data combined). The 

proposed system is realised based on an Interval Type-2 Radial Basis Function Neural 

Fuzzy (IT2-RBF-NF) system that has been developed in Chapter 5. The proposed 

perpetual learning system has also the ability to improve its structure periodically by 

removing inconsequential rules.  
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The motivation for the creation of this mathematical framework that is in classical 

approaches to data-driven CI modelling, the model training process needs to be 

completed initially by the user. If new process data become available, the model 

training exercise needs to be carried out again, thus creating a new model from scratch. 

This is often a laborious and non-automated process, which needs significant expert 

knowledge. The proposed perpetual learning framework has the ability to 

acclimate/adapt to new information in an additive and lifelong learning fashion in order 

to accommodate new input-output mappings and new data clusters.   

Therefore, the main contributions of this chapter can best be treated under the 

following headings:  

a) Develop a new perpetual (incremental) learning framework that is based on 

granular computing IT2-RBF-NF model optimised via the adaptive back-error 

propagation (BEP) algorithm. This modelling framework has been developed 

and fully described in Chapter 5. By using such a human-centric modelling 

framework, it is possible to capture meaningful information out of non-linear, 

complex, and scarce process data to build a rule-based system with good 

modelling performance and at the same time good overall system transparency 

(interpretability).  

b) The proposed structure has the ability to continuously learn from new process 

data – in an incremental learning fashion by modifying (adapting) the existing 

model. This is usually achieved via expanding the structure of the existing 

model by creating new rules to accommodate the new data without 

significantly disturbing the existing model. An iterative rule pruning strategy 

is used as the main feature that prunes/removes the inconsequential/redundant 

fuzzy rules after each incremental step, which allows the model to be used in a 

lifelong learning mode.  

c) The performance of the proposed structure is demonstrated using a number of 

simple as well as complex non-linear benchmark functions. Simulation results 

show that the performance of the original model structure is maintained and it 

is comparable to the overall model performance after the final incremental 

model updating routine. The efficiency and effectiveness of the proposed 
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structure is also evaluated in case where more frequent/periodic model updates 

are required with good prediction performance. Finally, this chapter is 

concluded by applying the proposed methodology to a real-industrial problem. 

The prediction of spindle peak torque of steel Friction Stir Welding is 

investigated. As was mentioned in Chapter 3, FSW is a complex thermo-

mechanical process that involves highly non-linear and complex as well as 

sparse databases. 

6.2. A NEW PERPETUAL LEARNING FRAMEWORK WITH RULE GROWING 

AND PRUNING 

This section explores theoretical approaches to the proposed perpetual learning 

framework. As was explained in Chapter 5, the development of an IT2-RBF-NF system 

generally involves two learning stages, the structure identification stage and the 

parametric optimisation stage.  One characteristic of this model-based approach is that 

it is suitable when sufficient amount of process data is collected and used to construct 

the rule-based system. Once the model is constructed, it has a fixed structure (fixed 

rule-base) with the desired level of accuracy. However, the model having a fixed 

structure cannot always extrapolate well each time new process data become available. 

This is due to different characteristics/dynamics of a complex system under different 

input conditions. To improve the extrapolation capability of a model when new process 

data are available, in general there are two strategies to achieve this. The first strategy 

is to develop an entirely new model taking into consideration the specific features of 

the new data, which are not covered by the ‘old’ model.  In this case, it is required to 

use the two learning procedures in order to develop a new model that covers the new 

input data patterns. However, in practice, developing an entirely new model often 

requires a lot of efforts and it is over-dependent on expert knowledge.  The second 

strategy is concerned with modifying (adapting) the existing model. This is usually 

achieved via a dual-step procedure: in the first step, the structure of the existing model 

is expanded by creating new fuzzy rules to accommodate the new data without 

significantly disturbing the original model and in the second step the updated model is 

further fine-tune to improve its generalisation capability.  
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The work presented in this chapter is focused on the idea of offline perpetual 

(incremental) learning in which additional knowledge is added to the original model 

based on the second strategy. In the proposed framework, the modelling scheme is 

designed to learn from an initial dataset (via the two learning stages) but at the same 

time incrementally updates its structure to adapt to new process data when these are 

available without deteriorating the performance of the original (core) model and 

significantly disturbing the knowledge acquired from the initial database. Additional 

system’s characteristics include the ability of the system to interact with the external 

environment in a perpetual mode (i.e. life-long learning mode) and having a 

dynamically expandable structure (i.e. an open structure) in which the system has the 

ability to add/create new rules and remove/prune redundant rules (knowledge 

maintenance).  

In this research work, a number of key characteristics of incremental (perpetual) 

learning are adopted as follows [294, 301, 310]: 

a) An initial data set is trained to construct the initial/original model  

b) Each time, a new data set is sequentially – batch by batch – made available to the 

system 

c) The system dynamically expands its structure to accommodate the uncovered data 

by the original model without significantly disturbing the original structure 

d) There is the ability to ‘memorise’ the knowledge acquired from the original model 

e) There is the ability to improve the system’s structure over time by pruning rules that 

evolved to be inconsequential and/or redundant, which allows the model to be used 

in a perpetual learning mode. 

In order to explain and understand the proposed perpetual learning framework, it 

would be useful to show its overall structure. Fig. 6.1 shows the overall structure of the 

proposed perpetual learning framework.  
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Figure 6.1. The structure of the perpetual learning framework. 

The overall perpetual learning structure can be divided into components, which are 

described as follows: 

 Granular computing based IT2-RBF-NF System: The iterative information-

capture of granular computing is employed to elicit the initial structure of 
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the IT2-RBF-NF model as it was described in Chapter 5. In this approach, 

one information granule corresponds directly to a fuzzy rule. The 

parameters of each rule are defined and then optimised via the adaptive-

BEP algorithm.  

  New process data: This includes the data that are belong to a totally or 

partially new input space – different data distribution – as compared to 

those used to construct the original model. 

 Incremental model update: When the new process data are available to the 

model. The model can dynamically expand (modify) its structure to cover 

these data without significantly disturbing the original model. 

To achieve the designed perpetual (incremental) learning framework, the 

following steps are introduced: 

 Novelty detection and the creation of new rules: This step is used to filter 

and classify the new input data based on a pre-defined threshold into novel 

and partially novel data. The novel data are used to create new rules to cover 

the input space of these data. The new rules are optimised and then added 

to/merged with the original model rules to update the structure of the 

original model (old and new rules combined). 

 Interpretability improvement via iterative rule-pruning mechanism: This 

aims at removing the inconsequential/redundant rules as a result of the 

incremental update (rule growing) process in order to improve overall the 

interpretability and to prevent the massive rules growth.   

 Accuracy improvement via constrained optimisation: The pruned 

incrementally updated model is fine-tuned via a constrained parametric 

optimisation algorithm to improve its accuracy. 

Fig. 6.2. depicts the incremental model update and a detailed description 

about the incremental model update process is provided in the following 

sections. 
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Figure 6.2. The structure of the incremental model update framework. 

6.2.1. NOVELTY DETECTION AND NEW RULES CREATION 

To start the perpetual learning process, when new data are available to the original 

model, they pass through a novelty detection unit before they are fed to the incremental 

learning process. Novelty detection is the process of identifying the new or partially 

new data that the original model is not aware of during the training process. Several 

statistical and neural networks based approaches can be used to estimate whether a test 

dataset belongs to the same distribution or not [311, 312]. In this research work, a 
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simple novelty detection approach based on multidimensional Euclidean distance is 

used where the novelty is assessed by calculating the distance of each data sample from 

the cluster centres of previously elicited model (original model) [313]. The new data 

are then split into two data sets (namely novel and partially/non-novel data) based a 

predefined threshold.  The novel data consist of the data that are totally belong to a 

different data distribution – new input space – as compared to the old/original process 

data, while the partially/non-novel data consist of the data that close or belong to the 

data distribution of the original data (i.e. mostly covered by the input space of the 

original data). 

Each of the two data sets is treated differently by the incremental learning process.  

The partially/ non-novel data are fed to the existing model and if the model performance 

on these data is acceptable, then nothing to be modified to the existing model. 

Otherwise, the existing is fine-tuned without disturbing the existing structure 

(constrained tuning) to improve the performance of the original model on the 

partially/non-novel data. Since the input space of the non-novel/partially data is mainly 

covered by the original model (by one or more rules), there is no need to generate a new 

rule but only fine-tune the previously developed (existing) model. The novel data are 

utilised to generate new rules to cover the input space of the novel data, using the same 

GrC-IT2-RBF modelling approach. The new rules are optimised and then merged with 

the rest of the IT2-RBF-NF system rules to form a new IT2-RBF-NF model (see Fig. 

6.2). 

After the initial structure of the model is expanded to accommodate both the old 

data and new data, now the incremental learning structure contains all the knowledge 

required by the system. However, each time the model receives new data it generates 

new fuzzy rules and incrementally updates its structure. The proposed perpetual 

learning framework never removes the rules once created regardless of their 

importance. As a consequence of the incremental model updating process, a number of 

inconsequential/redundant rules will be generated. To circumvent the massive rule 

growth, an iterative rule pruning mechanism is introduced in order to dispose of the 

insignificant rules and improve the incrementally updated structure (i.e., interpretability 

improvement) as well as make the proposed framework feasible for lifelong learning. 
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6.2.2. INTERPRETABILITY IMPROVEMENT VIA RULE PRUNING 

MECHANISM  

After the rule-base structure of the IT2-RBF-NF model is updated by introducing 

new rules to accommodate the new data, thus creating a model with more rules (updated 

model).  As a result of the incremental updating process, the updated model often 

contains redundant information in terms of fuzzy rules. In addition, the continuous rule 

growth after each model-updating rule contradicts with the main the requirements to 

allow the incremental updating routine to be used in a perpetual learning mode. In this 

light, an iterative rule-based pruning approach is used to minimise/reduce the number 

of fuzzy sets in the universe of discourse of each input variable and eliminate possible 

inconsequential/redundant rules after each incremental updating routine. The proposed 

iterative rule-pruning mechanism can be achieved via a four-step procedure, which 

includes 

1) removing redundant fuzzy sets,  

2) merging similar fuzzy sets,  

3) removing redundant fuzzy rules, and 

4) merging similar fuzzy rules.   

These four operations are controlled by thresholds 𝑇ℎ1 − 𝑇ℎ4. Fig. 6.1 shows a 

flowchart of the iterative rules pruning algorithm. A detailed description about the 

iterative rule-pruning algorithm is provided in the following sections.  

The obtained rule-based system is improved in its structure, including the variation 

of the fuzzy sets and fuzzy rules, considering the simplicity and interpretability issues. 

Pruning the inconsequential rules results in distinguishable fuzzy sets and thus 

simplified fuzzy rules. It also controls the growth in the number of rules over time. 
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Figure 6.3. Iterative rule pruning algorithm. 

6.2.2.1. MERGING SIMILAR FUZZY SETS 

According to [241], when the rule-base is acquired from process data, it may 

consist of redundant/superfluous information in the form of similarity between fuzzy 

sets. A rule-based system with many similar fuzzy sets becomes superfluous, 

unnecessarily complex and computational expensive [44]. Since the linguistic 

interpretability of such a model lies in the idea of assigning qualitatively meaningful 

variables to fuzzy sets. However, it is difficult to assign qualitatively meaningful 

linguistic variables to highly similar fuzzy sets. Similarity between FSs can be defined 

as the degree to which the FSs are equal.  For instance, Figs. 6.4(a) and 6.4(b) depicts 

two indistinguishable and distinguishable interval type-2 fuzzy sets, respectively. In 

Fig. 6.4(a), IT2-FSs are distinguishable with less degree of overlap, while in Fig. 6.4(b) 

IT2-FSs are seriously overlapped with high degree of similarity.  
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   (a)                                                  (b) 

Figure 6.4. Example of IT2 fuzzy sets: (a) distinguishable fuzzy sets. (b) 

Indistinguishable (highly overlapped) fuzzy sets. 

To measure the degree of overlap between two fuzzy sets, a similarity measure is 

generally used. Although a quite extensive research has been carried out in the area of 

type-1 fuzzy sets similarity measures [237, 241, 314], only a few number of similarity 

measures for T2-FSs have appeared to date [315-317]. For two IT2-FSs 𝐴 ̃and �̃�, 

calculation of their similarity degree 𝑆( 𝐴 ̃, �̃�) is much more complex than of their type-

1 fuzzy sets counterparts, particularly for those with primary Gaussian MFs. In this 

research work, the Jaccard’s similarity measure [316] is used to measure the similarity 

between two type-2 FSs. The Jaccard’s similarity measure between two IT2FSs 𝐴 ̃ and 

 �̃� is defined as 

                    𝑆𝐽(𝐴 ̃, �̃�) =
𝑓(𝐴 ̃ ∩ �̃� )

𝑓(𝐴 ̃ ∪ �̃�)
                                                                          6-1 

  

where 𝑓 is a function satisfying 𝑓(𝐴 ̃ ∪ �̃� ) = 𝑓(𝐴 ̃) + 𝑓(�̃� ) for disjoint 𝐴 ̃ and �̃�. 

For simplicity, the function 𝑓 is chosen as the cardinality (Card). Then the 

Jaccard’s similarity measure can be written as  

 𝑆𝐽(𝐴 ̃, �̃�) =
𝐶𝑎𝑟𝑑(𝐴 ̃ ∩ �̃� ) 

𝐶𝑎𝑟𝑑(𝐴 ̃ ∪ �̃�)
                                                                                    6-2 
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          𝑆𝐽(𝐴 ̃, �̃�) =
∫ min (𝜇

�̃�
(𝑥), 𝜇

�̃�
(𝑥)) 𝑑𝑥 + ∫ min (𝜇�̃�(𝑥), 𝜇�̃�(𝑥))𝑑𝑥𝑋𝑋

∫ max (𝜇
�̃�
(𝑥), 𝜇

�̃�
(𝑥))𝑑𝑥

𝑋
+ ∫ max (𝜇�̃�(𝑥), 𝜇�̃�(𝑥))𝑑𝑥𝑋

             6-3 

The similarity measure can be used to quantify/estimate the degree of similarity 

between IT2-FSs in the rule base. If the similarity value 𝑆𝐽(𝐴 ̃, �̃�) is larger than a 

predefined threshold 𝑆𝐽𝑇ℎ then 𝐴 ̃ and  �̃� are considered as being highly overlapped 

fuzzy sets. Therefore, 𝐴 ̃ and  �̃�  can be merged to form a new FS that is representative 

of the merged FSs. The choice of a suitable threshold 𝑆𝐽𝑇ℎ is an application dependent. 

The lower the value of the threshold, the more fuzzy sets are merged. Generally, there 

are three possible methods for merging highly overlapped fuzzy sets [241]: 

1) replace 𝐴 ̃by  �̃�; 

2) replace �̃� by �̃�; 

3) replace both 𝐴 ̃ and  �̃� by a new fuzzy set �̃�. 

In this research work, the third method is used, where the newly merged IT2-FS 

(�̃�) is formed by the combination of the FOUs of both 𝐴 ̃ and  �̃� in order not to lose 

any information from the merging process. By substituting this new fuzzy set 

representative of the merged sets for each input variable in the rule-base, the number of 

FSs to constitute the rule-based system is reduced as shown in Fig. 6.5.  

 

Figure 6.5. Merging similar fuzzy sets. 

To illustrate the concept, Table 6-1 shows the similarity matrix representation for 

the IT2-FSs in Fig. 6.6(a). A threshold 𝑇ℎ1 for merging similar FSs is then defined, 
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where 𝑇ℎ1 ∈ [0,1]. If 𝑆𝐽(𝐴 ̃, �̃�) > 𝑇ℎ1, i.e., the FSs 𝐴 ̃and  �̃� are highly overlapped, 

then these two FSs should be merged into one new FSs. With 𝑇ℎ1 = 0.75 and from 

Table 6-1, 𝑆𝐽(�̃�, �̃�) > 𝑇ℎ1, then the FSs �̃� and �̃� are merged to form a new FS �̃� 

without losing any information from both �̃� and �̃�. The resulting FSs in the same 

universe of discourse after the merging process is shown in Fig. 6.6(b). 

 

                              (a)                                                                  (b) 

Figure 6.6. Example of three IT2 fuzzy sets: (a) IT2-FSs before the merging 

operation. (b) Resulting IT2-FSs after the merging operation. 

Table 6.1 Similarity matrix for the three IT2-FSs in Fig. 6.4 (a) when the Jaccard 

similarity matrix is used. 

IT2-FS �̃� �̃� �̃� 

�̃� 1.0000 0.2277 0.1791 

�̃� 0.2277 1.0000 0.7645 

�̃� 0.1791 0.7645 1.0000 

 

6.2.2.2. REMOVING REDUNDANT FUZZY SETS 

A fuzzy set in the antecedent part of linguistic rule is said to be redundant if it has 

a MF 𝜇�̃�(𝑥) ≈ 1, ∀𝑥 ∈ 𝑋, it is similar to the universal set 𝑈(𝜇𝑈(𝑥) = 1) and can be 
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removed [241]. The similarity of a FS 𝐴 ̃ to the universal set 𝑈 is calculated by 𝑆𝐽(�̃�, 𝑈). 

If the 𝑆𝐽(�̃�, 𝑈) is greater than a predefined threshold 𝑇ℎ2, then this FS is considered as 

a redundant FS. As a result, the corresponding FS should be removed. Fig. 6.7 depicts 

an illustration of the IT2-MFs relating to a redundant FS. 

 

Figure 6.7. An illustration of the IT2-MFs relating to a redundant fuzzy set. 

6.2.2.3. MERGING SIMILAR FUZZY RULES  

Two fuzzy rules are said to be similar enough for merging if only the antecedent 

of the rules are equal and the consequents do not [318]. Two fuzzy rules with different 

consequents but very similar antecedent parts usually indicates conflicting rules [318]. 

Therefore, conflicting rules are either merged together to form a new rule or one of 

them is removed. For instance, the following linguistic rules may be regarded as similar: 

𝑹𝒖𝒍𝒆𝟏: 𝑰𝑭 𝑥1 𝑖𝑠 ′𝑙𝑜𝑤
′𝑎𝑛𝑑 𝑥2 𝑖𝑠 ′ℎ𝑖𝑔ℎ

′, 𝑻𝑯𝑬𝑵 𝑦 𝑖𝑠 ′ℎ𝑖𝑔ℎ′ 

       𝑹𝒖𝒍𝒆𝟐: 𝑰𝑭 𝑥1 𝑖𝑠 ′𝑙𝑜𝑤
′𝑎𝑛𝑑 𝑥2 𝑖𝑠 ′ℎ𝑖𝑔ℎ

′, 𝑻𝑯𝑬𝑵 𝑦 𝑖𝑠 ′𝑚𝑒𝑑𝑖𝑢𝑚′ 

The above two rules can be merged into one rule as follows: 

𝑹𝒖𝒍𝒆𝒏𝒆𝒘: 𝑰𝑭 𝑥1 𝑖𝑠 ′𝑙𝑜𝑤
′𝑎𝑛𝑑 𝑥2 𝑖𝑠 ′ℎ𝑖𝑔ℎ

′, 𝑻𝑯𝑬𝑵 𝑦 𝑖𝑠 ′𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑒𝑦 ℎ𝑖𝑔ℎ′ 
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To evaluate the similarity degree between two linguistic fuzzy rules, the similarity 

measure of every FS pair has to be calculated [318]. For the 𝑗𝑡ℎ fuzzy rule 𝑅𝑢𝑙𝑒𝑗, the 

corresponding IT2-FSs are �̃�1
𝑗
, �̃�𝑖

𝑗
, … , �̃�𝑑

𝑗
. In similar fashion, the corresponding 

antecedent parts of the 𝑘𝑡ℎ fuzzy rule 𝑅𝑢𝑙𝑒𝑘, the are �̃�1
𝑘, �̃�𝑖

𝑘, … , �̃�𝑑
𝑘. Therefore, the 

similarity measure can be expressed as follows: 

          𝑆𝐽(𝑅𝑢𝑙𝑒𝑗, 𝑅𝑢𝑙𝑒𝑘) =∏𝑆𝐽(�̃�𝑖
𝑗
, �̃�𝑖

𝑘)

𝑑

𝑖=1

                                                            6-4 

where 𝑆𝐽(�̃�𝑖
𝑗
, �̃�𝑖

𝑘) is the Jaccard similarity measure of two IT2-FSs �̃�𝑖
𝑗
 and �̃�𝑖

𝑘 and it is 

defined in Section 6.2.3.1. If  𝑆𝐽(𝑅𝑢𝑙𝑒𝑗, 𝑅𝑢𝑙𝑒𝑘) is greater than a predefined 

threshold 𝑇ℎ3, then the FS pairs of these two fuzzy rules are similar. Therefore, these 

two rules are also considered to be similar and then merged into a new rule 𝑅𝑢𝑙𝑒𝑛𝑒𝑤. 

The antecedent and consequent parts of the new rule 𝑅𝑢𝑙𝑒𝑛𝑒𝑤 are obtained via the 

merging operation described in Section 6.2.3.1. 

6.2.2.4. REMOVING REDUNDANT FUZZY RULES 

If the membership value of an IT2-FS is always near zero over its entire universe 

of discourse, i.e., 𝜇�̃�(𝑥) ≈ 0, ∀𝑥 ∈ 𝑋, its corresponding rule is considered redundant 

[241]. Since this redundant rule will almost never be fired, which means its output is 

always near zero. A threshed  𝑇ℎ4 is also defined to determine whether the rule is 

redundant or not. If 𝜇�̃�(𝑥) <  𝑇ℎ4, then the corresponding fuzzy rule is deemed 

redundant. Therefore, the redundant rule should be removed [241]. In general,  𝑇ℎ4 is 

defined in the range [0, 0.01].   

The rule-pruning algorithm depicted in Fig. 6.3 is an iterative algorithmic process 

where at each iteration, the similarity measure between all pairs of IT2-FSs for each 

input variable is calculated. The pairs of IT2-FSs having the highest similarity value 

𝑆𝐽(𝐴 ̃, �̃�) > 𝑇ℎ1 are merged to form a new IT2-FS. Then the rule-base of the IT2-RBF-

NF model is updated by substituting this new IT2-FS for the IT2-FS merged to form it. 

The process of calculating the similarity measure on the updated rule-base structures 

continues until there are no more IT2-FSs for which 𝑆𝐽(𝐴 ̃, �̃�) ≥ 𝑇ℎ1. Thereafter, the 
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IT2-FSs that have similarity  𝑆𝐽(𝐴 ̃, �̃�) ≥ 𝑇ℎ2 to the universal set 𝑈 are removed. 

Finally, the similarity measure between all pairs of linguistic rules for entire rule-base 

is computed. The pairs of fuzzy rules having the highest similarity value 𝑆𝐽(𝐴 ̃, �̃�) >

𝑇ℎ3 are merged to form a new IT2-FS. Repeat the process of merging similar fuzzy 

rules until there are no more rules for which  𝑆𝐽(𝐴 ̃, �̃�) ≥ 𝑇ℎ3. Then the redundant rules 

are removed based a predefined threshold 𝑇ℎ4. The rule-pruning algorithm is 

summarised as follows: 

Iterative rule pruning algorithm:  

Given a linguistic rule-base 𝑹 = {𝑹𝒖𝒍𝒆𝒋}𝒋=𝟏
𝑵

, where 𝑹𝒖𝒍𝒆𝒋 is the 𝒋𝒕𝒉 rule, 

choose thresholds 𝑻𝒉𝟏 − 𝑻𝒉𝟒 

 𝑹𝒖𝒍𝒆𝒋: 𝑰𝑭 𝒙𝟏 𝒊𝒔 �̃�𝟏
𝒋
 𝒂𝒏𝒅,… , 𝒂𝒏𝒅 𝒙𝒅 𝒊𝒔 �̃�𝒅

𝒋
, 𝑻𝑯𝑬𝑵 𝒚 𝒊𝒔 �̃�𝟏

𝒋
             

Step 1: Calculate the similarity matrix in 𝑹, 𝑺𝑱(�̃�𝒊
𝒋
, �̃�𝒊

𝒌), 𝒊 = 𝟏,… , 𝒅, 𝒋 = 𝟏,… ,𝑵, 

𝒌 = 𝟏,… ,𝑵. Select two most similar IT2-FSs 𝑺𝑱𝒎𝒂𝒙(�̃�𝒊
𝒋
, �̃�𝒊

𝒌) =

𝒎𝒂𝒙𝒋≠𝒌{𝑺𝑱𝒎𝒂𝒙(�̃�𝒊
𝒋
, �̃�𝒊

𝒌)}. 

 

Step 2: If 𝑺𝑱𝒎𝒂𝒙(�̃�𝒊
𝒋
, �̃�𝒊

𝒌) ≥ 𝑻𝒉𝟏, then merge the two IT2-FS to form a new fuzzy set. 

Continue until: no more IT2-FSs have similarity measure such that 𝑺𝑱(�̃�𝒊
𝒋
, �̃�𝒊

𝒌) ≥

𝑻𝒉𝟏, 𝒋 ≠ 𝒌. 

 

Step 3: Calculate similarity measure of a FS �̃�𝒊
𝒋
 to the universal set  𝑺𝑱(�̃�𝒊

𝒋
, 𝑼). If the 

similarity value 𝑺𝑱(�̃�𝒊
𝒋
, 𝑼) ≥ 𝑻𝒉𝟐, then the �̃�𝒊

𝒋
 is considered to be a redundant fuzzy 

set and should be removed from the antecedent of 𝑹𝒖𝒍𝒆𝒋.  

 

Step 4: Calculate the similarity matrix between the rules in 𝑹, 

 

 𝑺𝑱(𝑹𝒖𝒍𝒆𝒋, 𝑹𝒖𝒍𝒆𝒌) =∏𝑺𝑱(�̃�𝒊
𝒋
, �̃�𝒊

𝒌)

𝒅

𝒊=𝟏

 

 

where 𝑺𝑱(�̃�𝒊
𝒋
, �̃�𝒊

𝒌) is the Jaccard similarity measure of two IT2-FSs �̃�𝒊
𝒋
 and �̃�𝒊

𝒌. If 

 𝑺𝑱(𝑹𝒖𝒍𝒆𝒋, 𝑹𝒖𝒍𝒆𝒌) ≥ 𝑻𝒉𝟑, then the IT2-FS pairs of these two fuzzy rules are similar 

and merged into a new rule 𝑹𝒖𝒍𝒆𝒏𝒆𝒘.  

Continue until: no more rules have similarity measure such that 𝑺𝑱(𝑹𝒖𝒍𝒆𝒋, 𝑹𝒖𝒍𝒆𝒌) ≥

𝑻𝒉𝟑, 𝒋 ≠ 𝒌. 

 

 Step 5: Remove the redundant fuzzy rules if  𝝁
�̃�𝒊
𝒋(𝒙) ≤  𝑻𝒉𝟒, ∀𝒙 ∈ 𝑿. 
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6.2.3. ACCURACY IMPROVEMENT VIA CONSTRAINED OPTIMISATION 

After rule-base pruning achieved via rule pruning mechanism shown above, the 

obtained rule-based system is structurally simpler and interpretably more tractable. 

However, with less modelling performance compared to the originally created model. 

In rule-based systems, interpretability and accuracy are two contradictory and 

conflicting modelling requirements [19], as improving interpretability of rule-based 

systems – pruning the inconsequential rules – generally  degrades the performance of 

the model and vice versa. To improve the accuracy of the pruned model, a parametric 

fine-tuning based on the same adaptive-BEP in the parametric fine-tuning process is 

introduced. A good trade-off between model accuracy and interpretability requires 

imposing constraints on the parametric optimisation. To better understand this trade-

off, Fig. 6.8 depicts a trade-off relation between accuracy and interpretability based on 

constraints. 

 

Figure 6.8. A typical trade-off relation between accuracy and interpretability based on 

imposing constraints. 

 Clearly from the trade-off relation above, imposing strong constraints on the 

parametric optimisation leads to models that are very poor in terms of accuracy (i.e., 

keep some of the information from the pruned model), even though the results obtained 
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for interpretability can be satisfactory, the overall model accuracy is in general very 

poor. In contrast to imposing relaxed constraints (i.e., keep most of the information 

from the pruned model), a satisfactory level of model accuracy can be achieved. 

However, as a consequence of imposing the relaxed constraints, model interpretability 

may not be good enough.  

To further understand the proposed framework, an algorithmic procedure of the 

proposed perpetual learning framework is illustrated as follows: 

Perpetual Learning Algorithm: 

Step 1: The first batch of data is available.   

Step 2:  Generate the initial interval type-2 fuzzy rules: 

Step 2-1: Determine the antecedent parameters from the iterative data granulation 

process.  

Step 2-2: Initialise the values of the consequent parameters.  

Step 2-3: Use the adaptive back error propagation to optimise the initial IT2-

RBF-NF structure. 

Step 2-4: Measure the performance of the model using RMSE. 

Step 3: A new batch of data is available. 

Step 4: Pass the new batch of data set into the novelty detection algorithm using a 

predefined threshold. 

Step 4-1: Construct new rules to accommodate the novel data. 

Step 4-1-1: Generate the initial new rules using the iterative data granulation 

process. 

Step 4-1-2: Optimise the initial structure of the new rules by using the adaptive 

back error propagation algorithm. 

Step 5: Merge/Integrate the original model with the generated rules to expand the 

structure of the original model. 

Step 6: Apply the iterative pruning mechanism described in Section 6.2.2 to manage 

the redundant rules and improve the structure of the incrementally updated 

model. 

Step 7: Optimise the pruned structure with constraints and measure its performance 

using RMSE on both old data and the new data. 

Step 8: If new incoming data points are available go to Step 4; otherwise stop. 

 

6.3. SIMULATION RESULTS  

To confirm the efficiency of any modelling framework, it is common to test its 

performance on well-characterised benchmark functions. Therefore, in the first 

simulation the performance of the proposed framework is demonstrated using a number 
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of simple uni-modal non-linear benchmark function as well as two complex non-linear 

benchmark functions. These non-linear functions are probably one of the most popular 

benchmarking functions in system identification. The second simulation uses a multi-

modal non-linear function to confirm the sustainability of the proposed framework in 

case where more frequent model updates are required with good prediction 

performance. Finally, the real-industrial case study of steel friction stir welding for the 

predictive modelling of the spindle peak torque is used. FSW exhibits highly non-linear 

and complex as well as sparse databases as a consequence of its thermo-mechanical 

complexity. 

6.3.1. EXAMPLE 1: UNI-MODAL FUNCTION IDENTIFICATION 

The system to be identified is represented by an equation as follows:  

                        𝑓(𝑥1, 𝑥2) = 2𝑥1
2 + 𝑥2

2                                                                               6-5  

The non-linear static system is taken from [319]. One hundred data points were 

generated randomly from −0.5 ≤ (𝑥1, 𝑥2 ) ≤ 0.5 and the corresponding output data 

were obtained from Eq. 6-5. The data set has been divided into 75 (75%) data points to 

train the model and 25 (25%) data points to test the prediction performance of the final 

model. The training raw data are granulated into 5 information granules (optimal 

number of information granules in this case) via the iterative data granulation process 

as shown in Chapter 4. The extracted optimal information granules are then mapped 

into linguistic type-2 fuzzy logic rules to elicit the initial structure of the IT2-FLS rule-

base. Once the initial structure of the IT2-FLS rule-base (5 fuzzy rules) is obtained, the 

initial IT2-RBF-NF structure (see Chapter 4) is optimised via the adaptive-BEP 

algorithm. After structure identification and parametric optimisation, a 5-rule-based 

model was produced. The prediction error of RMSE = 0.0040 and 0.0031 for training 

and testing respectively. The system approximation results using the produced fuzzy 

model are shown in Fig. 6.9 and 6.10.  
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(a) Actual system output. 

 

(b) Output of the IT2-RBF-NF system. 

Figure 6.9. Non-linear system approximation.  
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Figure 6.10. Measured versus predicted output of the IT2-RBF-NF model for training 

and testing. 

Perpetual Learning Performance: 

In this modelling scenario, a hundred random data points in the range between 

−0.65 ≤ (𝑥1, 𝑥2 ) ≤ 0.65   (i.e. generate new data that are not covered by the original 

data) was generated.  When the new data are available to the developed model, they 

pass through a novelty detection unit before they are fed to the incremental learning 

process. The novelty detection unit based on multidimensional Euclidean distance 

where the novelty is assessed by measuring the distance of each data sample from the 

cluster centres of the core model. The new data are then split into two data sets (namely 

novel and partially/non-novel data) based a predefined threshold (set to 0.5 in this case).  

The novel data contain the data that belong to a completely new data distribution – 
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totally new input space – as compared to the original data, while the partially/non-novel 

data consist of the data that close or belong to the data distribution of the original data 

(i.e., mostly covered by the input space of the original data). The performance of the 

model is tested on the new data (both partially novel and totally novel data), as it was 

expected, the performance of the model on the novel data is far worse than its 

performance on the partially novel data since the input space of the novel data is totally 

new and never seen by the original model. The performance of the model on the 

partially novel and totally novel is presented in Table 6-2.   

Table 6.2 Performance of the original model on the new data for non-linear function 

approximation in Example 1. 

IT2-RBF-NF system Initial Model (Core Model) 

Number of rules  5 

Number of parameters 20 

RMSE for partially  novel data 0.01 

RMSE for totally novel data 0.08 

 

Each of the two data sets is treated differently by the incremental learning 

algorithm.  The partially/ non-novel data are fed to the existing model directly, and if 

the model performance on this data set is acceptable, then nothing to be modified to the 

existing model. Otherwise, the existing is fine-tuned without significantly disturbing 

the existing structure (constraint tuning) to improve the performance of the core model 

on the partially/non-novel data. The novel data set is used to generate new rules to cover 

the input space of the novel data set, using the same GrC-IT2-RBF modelling approach. 

The new rules are then added to the rest of the existing IT2-RBF-NF model rules. The 

new data set produced 4 rules, and they are combined with the existing 5 rules to 

construct a new IT2-FLS with 9 rules.   

Using the proposed iterative rule-pruning mechanism described in Section 6.2.2, 

two rules were merged based on merging thresholds 𝑇ℎ1 − 𝑇ℎ3 of 0.8 and 𝑇ℎ4  of 0.01 

in this case. The simplified 8 rules FLS is then fined-tuned to improve its accuracy. The 
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performance of the updated model is tested on the old/original data set as well as the 

new data set (training and testing). The results are shown in Fig. 6.11.   

 

Figure 6.11. Performance of the updated model on the whole data set. 

From the simulation results, it is clear that the incremental updating algorithmic 

process provides a reliable model updating procedure that results in an open structure 

(i.e., dynamically expandable structure) without neglecting any previously gained 

knowledge. It is shown from Table 6-3 that the proposed framework is able to 

model/learn from an initial process data and incrementally updates its structure when 

needed and at the time improves its structure by removing the inconsequential rules. 

The performance of the updated model on the original data set is maintained, and its 
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performance on the new data after the incremental update is comparable to the original 

performance (see Fig. 6.11).     

Table 6.3 Performance of the original model and updated model for non-linear 

function approximation in Example 1. 

IT2-RBF-NF system Initial Model (Core Model) Incrementally updated model 

Number of rules  5 8 

Number of parameters 20 26 

Training RMSE 0.0040 0.0089 

Testing RMSE 0.0031 0.0093 

 

6.3.2. EXAMPLE 2: MULTI-MODAL NON-LINEAR FUNCTION 

IDENTIFICATION 

This example employs the proposed framework to model a well-known complex 

multi-modal benchmark function, which is taken from [320]. The multi-modal function 

is generated from the following equation: 

                                    𝑓(𝑥1, 𝑥2) = 𝑠𝑖𝑛 (2𝜋.√(𝑥1
2 + 𝑥2

2))                                                 6-6      

One thousand data points were generated randomly from −0.5 ≤ (𝑥1, 𝑥2 ) ≤ 0.5 

and the corresponding output data were obtained from Eq. 6-6. The data set has been 

divide into 75 (75%) data points to train the model and 25 (25%) data points to test its 

prediction performance. The training raw data are granulated into 13 information 

granules (optimal number of information granules) via the iterative IG approach. The 

granulated data are then mapped into linguistic type-2 fuzzy rules to elicit the initial 

structure of fuzzy rule-base. After the initial structure of IT2-FLS (13 fuzzy rules) is 

obtained, the initial IT2-RBF-NF structure is optimised via the adaptive-BEP approach. 

After structure identification and parametric optimisation, a 13-rule model was 

produced. The simulation results of the system approximation, with RMSE = 0.0090 

and 0.0079 for training and testing respectively are shown in Figs. 6.12 and 6.13.  
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Figure 6.12. Measured versus predicted output of the IT2-RBF-NF model for training 

and testing. 

 

(a) Actual system output. 



 

 220 

 

(b) Output of the IT2-RBF-NF system. 

Figure 6.13. Non-linear system approximation.  

Perpetual Learning Performance: 

To test the generalisation ability of the proposed incremental learning structure in 

a more complex system identification problem, a synthetic new data set that contains 

both novel and partially novel data in the range −0.65 ≤ (𝑥1, 𝑥2 ) ≤ 0.65 was 

generated. The performance of the original model on the new data is presented in Table 

6-4. 

Table 6.4 Performance of the original model on the new data for non-linear function 

approximation in Example 2. 

IT2-RBF-NF system Initial Model (Core Model) 

Number of rules  13 

Number of parameters 52 

RMSE for partially  novel data 0.0092 

RMSE for totally novel data 0.1431 

After the new data are passed though the incremental update process, 14 new rules 

are generated from the iterative data granulation process. The updated model (27 rule-
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based system) is then pruned and fine-tuned to construct the final updated model (20 

rules), when the pruning thresholds were set to 𝑇ℎ1 − 𝑇ℎ3 of 0.8 and 𝑇ℎ4 of 0.01. Fig. 

6.14 shows the performance of the updated model on both the old and new data. For 

the purpose of comparison, Table 6-5 also shows the performance of the original model 

(13 rule-based system) and the updated model (20 rule-based system). As it can be seen, 

the incremental learning framework has an adaptive behaviour by incrementally 

updating itself to accommodate the unseen input data set. The incrementally updated 

model is able to retain a good performance without ignoring any previously gained 

knowledge.   

 

Figure 6.14. Performance of the updated model on the whole data set. 
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Table 6.5 Performance of the original model and updated model for non-linear 

function approximation in Example 2. 

IT2-RBF-NF system Initial Model (Core Model) Incrementally updated model 

Number of rules  13 20 

Number of parameters 52 80 

Training RMSE 0.0090 0.0079 

Testing RMSE 0.0079 0.0080 

6.3.3. EXAMPLE 3: MUTI-MODAL BUTTERFLY FUNCTION 

IDENTIFICATION 

In this example, a double-input and single-output static complex multi-modal 

butterfly function is chosen to be a target system for the proposed incremental learning 

strategy. The function is taken from [321] and represented as 

𝑓(𝑥1, 𝑥2) = (𝑥1
2 − 𝑥2

2).
𝑠𝑖𝑛(𝑥1

2 + 𝑥2
2)

(𝑥1
2 + 𝑥2

2)
 ,          −0.5 ≤ (𝑥1, 𝑥2 ) ≤ 0.5              6-7 

For which 1000 data points are generated. The same modelling procedures were 

adopted. A 15-rule-based model is developed.  Figs. 6.15 and 6.16 show the results of 

the obtained model for the butterfly function approximation. 

 

(a) Actual system output. 
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(b) Output of the IT2-RBF-NF system. 

Figure 6.15. Multi-modal butterfly system approximation.  

Perpetual Learning Performance: 

In this simulation, the same incremental learning process was adopted by 

generating a new data set in the range of −0.65 ≤ (𝑥1, 𝑥2 ) ≤ 0.65 to make the function 

more complex. Tables 6-6 and 6-7 show the performance of the original model (15 rule-

based system) on the new data and the updated model (24 rule-based system) 

respectively.  

Table 6.6 Performance of the original model on the new data for non-linear function 

approximation in Example 3. 

IT2-RBF-NF system Initial Model (Core Model) 

Number of rules  15 

Number of parameters 60 

RMSE for partially  novel data 0.0528 

RMSE for totally novel data 0.3759 
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Table 6.7 Performance of the original model and updated model for non-linear 

function approximation in Example 3. 

IT2-RBF-NF system Initial Model (Core Model) Incrementally updated model 

Number of rules  15 24 

Number of parameters 60 96 

Training RMSE 0.0496 0.0464 

Testing RMSE 0.0507 0.0474 

 

 

Figure 6.16. Measured versus predicted output of the IT2-RBF-NF model for training 

and testing. 
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Figure 6.17. Performance of the updated model on the whole data set. 

Clearly from the simulation results, the incremental learning structure has a 

dynamic behaviour by updating itself to accommodate the unseen input data set. The 

obtained updated model is able to maintain a good performance (as compared to the 

original model) without ignoring any previously gain knowledge.  The updated model 

has the ability to capture the complex dynamic of the system well as depicted in Fig. 

6.17.   

In the next simulation example, on one hand, the sustainability of the perpetual 

framework in case where more frequent/periodic incremental model updates are 

required will be demonstrated. And on the other hand, two simulation studies are carried 

out: in the first case the perpetual learning framework is geared towards accuracy by 

imposing weak/relaxed constraints while in the second case the perpetual learning 

framework is geared towards interpretability by imposing strong constraints.  
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6.3.4. EXAMPLE 4: ITERATIVE INCREMENTAL LEARNING FOR MULTI-

MODAL NON-LINEAR FUNCTION IDENTIFICATION 

In this example, it will be shown that how the proposed perpetual learning 

framework can produce a sustainable incremental updates - iterative incremental update 

- that can handle the changing in the input conditions. A hypothetical case of many 

steps (2% incremental step in this study) for the non-linear complex function in example 

2 has been created. The incremental step was kept at 2% in order not to generate a 

highly novel data that the model will find it difficult to capture the core dynamics of 

the post-updated system. Bigger incremental step needs more data sets to cover the 

input space of the system and thus generating more rules which results in complex 

structure. An incremental update for 10 iterative incremental steps was carried out such 

that after each step the model expands its structure by adding rules to accommodate the 

novel data and at the same time improves its structure by pruning the inconsequential 

rules over time.  

In the following case relating to iterative incremental updates where weak/relaxed 

constraints are imposed on the iterative rule pruning algorithm (0.6 in this case) and 

constrained parametric optimisation (0.6 in this case). Consequently, a large number of 

inconsequential rules is generated after the final incremental step. In other words, the 

perpetual learning framework is geared towards accuracy. The performance of the 

iterative incremental updates is summarised in Table 6-8. As shown, the number of 

rules grows but not by a substantial increment due the pruning mechanism applied to 

the incrementally updated architecture at each step. The incremental learning 

architecture is able to maintain a good performance without ignoring any previously 

gained knowledge. From Table 6-8, it is concluded that the proposed incremental 

framework produces good accuracy after 10 incremental steps. Fig. 6.18 shows the 

simulation results of the incrementally updated model after 10 steps. Although 

incrementally updated model after 10 steps with nearly three times rule base size (38 

rule-based system) of that of the core model (13 rule-based system), the updated 

structure is able to learn more accurately over time. In summary, the results show that 

the incremental learning framework achieves good balance between model accuracy 

(by inserting new rules) and complexity (by deleting insufficient rules), while yielding 
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sustainable and reliable incremental update architecture that can be adapted 

incrementally in a lifelong learning mode (continuous rule growing and pruning).  

 

Figure 6.18. Performance of the updated model after 10 incremental steps (with 

weak/relaxed constraints): Regression line for training and testing. 
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Table 6.8 Performance of the updated model during 10 iterative incremental updates 

(with weak/relaxed constraints) for multi-modal function approximation in 

Example 2. 

Step 

No. 

Number of Rules Training RMSE Testing RMSE No. of 

added 

rules 

Before 

incremental 

update 

After 

incremental 

update 

Before 

increment

al update 

After 

increment

al update 

Before 

incremen

tal 

update 

After 

incremen

tal 

update 

1 13 

 (Core 

Model) 

15 0.0090  

(Core 

Model) 

0.0099 0.0079 

(Core 

Model) 

0.0093  3 

2 15 17 0.0099 0.0063 0.0093 0.0062 2 

3 17 19 0.0063 0.0058 0.0062 0.0058 2 

4 19 21 0.0058 0.0083 0.0058 0.0081 2 

5 21 24 0.0083 0.0068 0.0081 0.0061 3 

6 24 27 0.0068 0.0108 0.0061 0.0107 3 

7 27 30 0.0108 0.0061 0.0107 0.0065 3 

8 30 32 0.0061 0.0055 0.0065 0.0054 2 

9 32 35 0.0055 0.0072 0.0054 0.0057 3 

10 35 38 

 (Final 

updated 

Model) 

0.0072 0.0053 

 (Final 

updated 

Model) 

0.0057 0.0053 

(Final 

updated 

Model) 

3 

 

In the following case, strong constraints are imposed on the iterative rule-pruning 

algorithm (0.9 in this case) and constrained parametric optimisation (0.9 in this case). 

On one hand, imposing strong constraints deteriorates the performance of the perpetual 

learning over time (i.e., after a number of incremental steps), and on the other hand it 

preserves a low number of rules over time with a good level of interpretability. Fig. 

6.19 shows the simulation results of the incrementally updated model after 10 steps. 

Table 6-9 summarises the performance index based on RMSE for the 10 incremental 

steps. It is evident that as a result of the strong constraints, the rule-base size of the 

updated model (18 rule-based system) is not big as compared to the rule-base of the 

original model (13 rule-based system), but the final performance of the updated 
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structure is not as good as the final updated model in case where weak/relaxed 

constraints are imposed. 

 

Figure 6.19. Performance of the updated model after 10 incremental steps (with strong 

constraints): Regression line for training and testing. 
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Table 6.9 Performance of the updated model during 10 iterative incremental updates 

(with strong constraints) for multi-modal function approximation in Example 

2. 

Step 

No. 

Number of Rules Training RMSE Testing RMSE No. of 

added 

rules 

Before 

incremental 

update 

After 

incremental 

update 

Before 

increment

al update 

After 

increment

al update 

Before 

incremen

tal 

update 

After 

incremen

tal 

update 

1 

13 

 (Core 

Model) 

14 

0.0090  

(Core 

Model) 

0.0114 0.0079 

(Core 

Model) 

0.0125  1 

2 14 14 0.0114 0.0147 0.0125 0.0180 0 

3 14 14 0.0147 0.0201 0.0180 0.0234 0 

4 14 15 0.0201 0.0289 0.0234 0.0270 1 

5 15 16 0.0289 0.0356 0.0270 0.0319 1 

6 16 16 0.0356 0.0468 0.0319 0.0491 0 

7 16 17 0.0468 0.0542 0.0491 0.0580 1 

8 17 18 0.0542 0.0604 0.0530 0.0510 1 

9 18 18 0.0604 0.0693 0.0510 0.6810 0 

10 18 18 

 (Final 

updated 

Model) 

0.06913 0.0720 

 (Final 

updated 

Model) 

0.6810 0.0786 

(Final 

updated 

Model) 

3 

 

In general, from the above simulation examples when dealing with rule-based 

system, overall system accuracy and interpretability are two conflicting requirements, 

as improving global system accuracy of FL models generally degrades overall system 

interpretability of FL models, and vice versa. Hence one challenging problem is how to 

select the thresholds (𝑇ℎ1 − 𝑇ℎ4) in the iterative rule pruning algorithm to remove the 

inconsequential rules as a result of the incremental update process. A careful selection 

of these thresholds determines the number of redundant rules to be removed. Thus, 

improving the overall interpretability of the updated model. Small thresholds result in 

a large number of redundant rules to be removed, and then more interpretable fuzzy 

model but less global model accuracy. In addition, the constraints on the parametric 

optimisation after the incremental updating algorithm play an important role on the 
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overall system accuracy. Imposing strong constraints leads to less accurate modelling 

performance but more interpretable fuzzy rule. While imposing weak constraints leads 

to good global system accuracy but this requires abolishing all the knowledge 

maintained from the original model. 

6.3.5. APPLICATION TO STEEL FRICTION STIR WELDING 

 In this section, the effectiveness of the proposed perpetual learning framework is 

verified over a real industrial case study. Simulation studies are carried out in this part 

in order to apply the proposed perpetual framework to the modelling of steel friction 

stir welding data. A number of experimental trials for welding of a shipbuilding-grade 

steel (DH36), were carried out at TWI Ltd, Technology Centre (Yorkshire), United 

Kingdom. The aim was to determine the process operating window by changing the 

levels of the welding parameters (i.e., tool rotational speed and welding speed). The 

proposed perpetual learning framework is applied to the prediction of spindle peak 

torque. The raw data consists of in total 55 data samples, the data set is shown in the 

Appendix. For the purpose of modelling, a care has taken to split the database so that 

the new dataset covers mostly an input space that is not covered by the initial ‘old’ 

dataset (i.e., new input process parameters that are not covered by the initial ‘old’ 

dataset). The process dataset has been split as follows:  

a) Initial dataset (36 data points) which has been divided into 27 (75%) data points 

to train the model and 9 (25%) data points to test the prediction performance of 

the original model; 

b) New dataset (19 data points), which has been used to test the incremental 

modelling framework. 

6.3.5.1. INITIAL MODEL PERFORMANCE 

The initial dataset (including training and testing data sets) is used to train and then 

test the performance of the initial model respectively. After a number of simulations, it 

was established that the optimal number of granules is five. After performing the 

iterative data granulation to the training dataset, the initial training dataset is granulated 

into five information granules. The extracted granulated data are then mapped into 

linguistic fuzzy rules to construct the initial rule-base structure. Finally, after the 
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parametric optimisation stage, a 5-rule IT2-FLS is created. The prediction performance 

obtained from the 5-rule IT2-FLS is: MAE = 7.51% and 8.04% for training and testing 

respectively. Fig. 6.20 illustrates the regression line between measured and predicted 

peak torque within the 2 × standard deviation band for the modelling performance on 

training and testing respectively. 

 

Figure 6.20. Performance of the initial model. 
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6.3.5.2. INCREMENTAL LEARNING PERFORMANCE  

The new dataset (19 data points) is split into two subsets (training and testing). The 

new training set is then presented to the incremental learning framework. The 

performance of the original model on the new dataset is shown in Table 6-10.  The 

incremental learning framework classifies the training data into novel and partially 

novel data set. The latter is used to fine-tune the initial model via the adaptive error-

propagation algorithm and the former is used to generate new fuzzy rules that represent 

the new dataset. 4 new rules are obtained from the granular computing algorithm (i.e. 

optimal number of rules to cover the new dataset). The new fuzzy rules are trained via 

the same algorithmic procedure as the initial IT2-RBF-NF model. Subsequently, the 

newly generated fuzzy rules are combined with the rest of the fuzzy rules in the 

modelling structure.  

Following the rule-pruning process (with 𝑇ℎ1 − 𝑇ℎ3 = 0.9 and 𝑇ℎ4 = 0.01), two 

rules are removed based on a pre-defined similarity thresholds; the resulting rule-base 

is further optimised (fine-tuned) as described in Section 6.2.3. 

The resulting model is tested for its performance on the initial dataset as well as 

new dataset (training and testing). The results are shown in Fig. 6.20. The prediction 

performance obtained from the 7-rule IT2-FLS is: MAE = 8.61% and 9.84% for training 

and testing respectively. As illustrated in the model fit plot for the training data set, the 

incremental learning framework is able to preserve a good prediction performance, in 

fact it is able to correctly construct input-output mappings similar to the original model. 

Similar behaviour is observed for the testing data set for old and new datasets. The 

model is able to predict correctly the new – unseen – input patterns. 

Table 6.10 Performance of the original model on the new dataset. 

 Number 

of rules 
Number of 

parameters 
RMSE for 

partially 

novel data 

RMSE for 

totally 

novel data 

MAE% for 

partially 

novel data  

MAE% 

for totally 

novel data 

IT2-RBF-

NF system 
5 20 38.13 56.07 6.61 20.31 
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Figure 6.21. Performance of the incrementally updated model on the old/new data. 

From the simulation results, the proposed perpetual learning framework has the 

ability to achieve a good balance between accuracy and interpretability without 

ignoring any previously gained knowledge from the original model. An iterative rule 

pruning mechanism is used as the main feature that removes the redundant fuzzy rules 

after each incremental step, which allows the model to be used in a lifelong learning 

mode. Moreover, no pervious perpetual learning framework that is based on granular 

computing interval type-2 neural fuzzy systems for offline (batch) learning have been 

reported and this was the first attempt to develop such perpetual (incremental) learning 

structure. 
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6.4. SUMMARY 

The work in this chapter is devoted to the development of a new perpetual learning 

framework. On the one hand, a perpetual learning framework   was presented to provide 

a reliable incremental model updating routine that resulted in an open - dynamically 

expandable - structure without ignoring any previously obtained knowledge from the 

original model. On the other hand, the proposed framework has satisfied the 

requirements needed for continuous learning as it is able to handle the short and long-

term change in the input conditions in a lifelong learning mode by incrementally 

updating its structure to accommodate the change in the process input data distribution.  

The incremental updating algorithm also incorporated an iterative rule pruning strategy 

to remove the inconsequential rules as the result of the incremental update process with 

compromising the prediction accuracy.  

The proposed framework was tested against four case studies, which include three 

well-known non-linear benchmark function and one real industrial case study.  In each 

case study, the simulation results of the proposed methodology was verified by 

increasing the complexity of the function. The results showed that the ability of the 

proposed methodology to update/create new rule in order to accommodate the unseen 

input data set and maintain good overall prediction performance on the system (initial 

dataset, and initial/new dataset combined) and at the same time without ignoring any 

previously gained knowledge from the original model. The sustainability (i.e., iterative 

model updates) of the proposed incremental methodology was also tested against a 

multi-modal complex function where more frequent/periodic model updates are 

required while maintain overall system accuracy. It was demonstrated that the proposed 

framework was able to periodically/incrementally model the new data when these are 

available. The overall system prediction performance on the initial dataset is preserved 

and the performance on the new dataset is comparable to the overall original 

performance. 

The results obtained from the chapter led to the writing of two articles: an article 

that was presented at the 17th IFAC Symposium on Control, Optimisation and 

Automation in Mining, Mineral and Metal Processing in Vienna, Austria and another 

article that is ready to be submitted to a soft-computing jouranl. 
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In the next chapter, conclusions of the research work presented in thesis will be 

drawn and the future work related to this research work will be discussed. 

 

 



 

 237 

CHAPTER 7 - CONCLUSIONS AND FUTURE WORK 

his chapter summarises several major contributions in this thesis and provides 

recommendation for future works. 

7.1. CONCLUSIONS  

The main objective of this research work is to develop parsimonious, transparent 

interpretable and computationally efficient soft-computing techniques and human-

centric systems with applicability in various engineering and scientific domains, where 

in this particular work, the developed techniques are applied to the modelling of steel 

friction stir welding data obtained from TWI Ltd., Technology Centre (Yorkshire), 

United Kingdom. The developed computational frameworks aim to deal with various 

challenges such as uncertainty, imprecision, inconsistency, incompleteness and spasity 

arise in complex systems, including friction stir welding. Therefore, this thesis makes 

important contributions towards developing efficient human-centric systems. 

Chapter 4 developed a systematic data-driven neural-fuzzy (NF) modelling 

framework based on the iterative human-like information capture of granular 

computing (GrC) and RBF-NF system. The iterative human-like computational 

framework of granular computing (GrC) in the form proposed in [27] represents an 

explanatory and effective data analysis tool and a useful data clustering technique. It 

has also demonstrated its efficiency as a method for constructing the initial structure of 

the RBF-NF system. Even through, it has proven its efficiency, there was no an 

uncertainty measure to quantify the degree of conflict among information granules in 

case where two or more information possess a similar compatibility measure. As was 

pointed out in this chapter, as a result of conflict among information granules during 

the iterative granulation process, the granulated data do not represent the accurate 

distribution of the input space of the process under study (i.e., producing low quality 

information granules). Accordingly, the two levels of interpretability (low-level and 

high-level of interpretability) during the development of RBF-NF system were fully 

described. The low-level interpretability can be obtained with regard to semantic 

criteria on fuzzy sets such as consistency and distinguishability during the formation of 

fuzzy sets (granulated data). While the high-level interpretability can be achieved on 

T 
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the final fuzzy rules after the parametric optimisation process with regard to criteria on 

fuzzy rules such as the consistency, completeness, and coverage.  

A particular focus were put on the low-level interpretability during the information 

granulation process for estimating the initial RBF-NF system parameters (initial FL 

rule-base) and a new uncertainty measure calculated via Shannon entropy theory was 

proposed  in order to take into consideration the uncertainty as a consequence of conflict 

among information granules during the iterative information granulation process. This 

uncertainty measure was used to evaluate/quantify the degree of conflict among 

information granules during the granulation process and to guide the merging operation 

into forming better quality information granules in terms of their distinguishability. The 

initial structure of the RBF-NF system was then optimised via the use of an adaptive 

back-error propagation (BEP) approach to improve its performance. Finally, the 

effectiveness of the proposed framework was tested against a popular benchmark data 

set as well as applied for the first time to the prediction of peak torque data in steel 

friction stir welding. It was concluded that the degree of distinguishability among the 

information granules that are formed from the iterative information granulation has a 

significant influence on the interpretability of the initial FL rule-base at low-level and 

at high-level of interpretability as well as transparency of the final FL rule-base.   

It was also concluded that the integration of the human-like information capture in 

granular computing [67, 135, 322] and fuzzy logic theory [8, 61] in modelling systems 

engineering will add more transparency to the overall system. Since the iterative 

human-like information of granular commuting uses the principle of information 

granulation in order to mimic the human cognition in terms of grouping/arranging 

similar objects together. This intriguing human-centricity feature can be used to focus 

and facilitate the analysis and interpretability of complex systems in a transparent way 

on aspects of interest to the user.   

In the first part of Chapter 5, a new data-driven modelling approach relied on a six-

layered IT2-RBF structure that is mathematically equivalent to an IT2-FLS in its design 

was developed. In the same way to the design of an IT2-FLS, the proposed IT2-RBF-

NFS can be seen as an IT2-FLS under some certain conditions having a singleton 
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fuzzifier whose T-norm is the product operator, the antecedent parts use the Gaussian 

IT2-MFs, and the consequent part of each fuzzy rule of the Mamdani type. The IT2-

RBF-NFS can be described via simple linguistic interpretable rules extracted from raw 

data in order to describe dynamic behaviour of the process. The initial parameters of 

the IT2-RBF-NF (initial rule-base structure) and the FOU were estimated directly via 

the iterative data granulation approach used in Chapter 4. Despite the important 

advances have been made and a number of algorithms were developed to simplify the 

computational cost in the type-reduction stage, in the research work, the Karnik-Mendel 

type reduction was used as the starting point to reduce the T2-FSs from the inference 

engine to T1-FSs and then the defuzzified crisp output was calculated via the average 

of the interval type-reduced sets. The initial parameters of an IT2-RBF based interval 

type-2 neural-fuzzy model were optimised via the adaptive back-error propagation 

(BEP) algorithm. 

In the second part of Chapter 5, the proposed model-based IT2-RBF-NF system 

was used to develop a new generalised monitoring system for the first time in FSW in 

order to forecast in real-time (during welding) quantitative markers of weld quality. On 

the one hand, part quality thresholds were extracted from the frequency spectra of the 

feedback forces (namely axial (𝐹𝑧) and traverse (𝐹𝑥) forces). On the other hand, a 

dynamic model, that instead of predicting directly the weld quality, it predicts a 

‘moving threshold’ that can be used by the operator as an indicator of weld quality was 

developed. By using such model there is no need to re-tune or re-calibrate the model 

every time the welding conditions change. This intriguing generalisation feature 

remedied the drawbacks and limitations of the static models and also made the 

monitoring systems feasible for real-time use.   The proposed monitoring framework 

also takes advantage of the proposed model-based approach to provide continuous 

linguistic-based feedback to the operator(s) – rule-based human-centric system – on the 

performance of the process. Finally, the effectiveness of the proposed model-based 

approach to better handle uncertainties and produce reasonable predictive performance 

was tested against multiple linear regression (MLR) and multilayer perceptron neural 

network (MLP-NN) models as well as its type-1 radial basis function neural fuzzy (T1-
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RBF-NF) model counterpart. Some important conclusions drawn from this research 

work include: 

 The ability of the proposed IT2-RBF-NFS to handle effectively the 

linguistic uncertainty in the rule-base.  

 The proposed IT2-RBF-NFS has high tolerance to the input noise and the 

ability to produce an accurate and robust performance.  

 A good prediction performance compared to MRL and MLP models as well 

as its type-1 RBF-NFS counterpart. 

 The ability to provide a generalised reliable and online monitoring system 

with modest computational cost and real-time feasibility.    

 The proposed data-driven framework could be extended to various 

industrial applications for modelling, process monitoring and control 

purposes. 

Lastly, in Chapter 6, a new perpetual (incremental) learning framework that is 

based on granular computing presented in Chapter 4 and the IT2-RBF-NF system 

presented in Chapter 5 was developed. An adaptive back-error propagation (BEP) 

algorithm was used to optimise the initial IT2-RBF-NFS. The main motivations for 

developing such mathematical framework was to include advanced system’s features 

such as the ability to accommodate new data when these made available to the system 

without significantly disturbing the existing knowledge from the initial model.   

Therefore, a perpetual learning framework was developed to include the ability of the 

IT2-RBF-NF system to continuously learn from new process data – in an incremental 

learning fashion – by  creating new IT2 fuzzy rules and modifying (adapting) the 

existing model. An iterative rule pruning strategy was also used as the main feature to 

prune/remove the inconsequential/redundant fuzzy rules as a result of the incremental 

model update process, which allows the model to be used in a lifelong learning mode.  

The performance of the proposed structure was demonstrated using a number of 

simple and complex non-linear benchmark functions as well as real industrial case. 

Simulation results showed that the performance of the original model structure is 

maintained and it is comparable to the overall model performance after the final 
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incremental model updating routine. The efficiency and effectiveness of the proposed 

structure was also evaluated in case where more frequent/periodic model updates are 

required with good balance between interpretability and accuracy.  

In conclusion, this thesis has achieved its aims and objectives. 

7.2. SPECIFIC FUTURE WORK FOR THIS THESIS 

Despite the proposed soft-computing techniques and human-centric systems prove 

to be promising, more research is required in some areas for further improvements. 

Therefore, this section presents several suggestions for future works from both 

modelling systems engineering perspective and process perspective: 

 Further investigation and experimentation into the two levels of interpretability 

in neural fuzzy systems (low-level of interpretability and high-level of 

interpretability) is strongly recommended. A number of possible future studies 

are needed to assess and include different types of uncertainty that may present 

during the iterative human-like information granulation for instance, as a result 

of discord, conflict, ambiguity, and congruency. More research work should be 

carried out to develop the theoretical foundations of these types of uncertainty. 

These theoretical aspects are important, which could help us to further improve 

the quality of the granulated data. Thus improving the interpretability on both 

levels (on the fuzzy sets and the final fuzzy rules).  So far, however, too little 

attention has been paid in this area; for instance, in [29, 31] Solis and Panoustos 

studied two types of uncertainty (namely fuzziness and ambiguity) during the 

information granulation using neutrosophic sets theory.     

 The interpretability studies in the development of RBF-NF system 

recommended that studying the effects of uncertainty during the information 

granulation could be extended to IT2-RBF-NFS. This includes investigating 

the interpretability at low-level and high level of interpretability in the IT2-RF-

NFS. From real-time applicability point of view, the computational overhead 

associated with the computation of type-reduced sets using the iterative KM 

algorithm can be further reduced by using approximate type-reduction 
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methods; for instance the Wu-Mendel uncertainty bounds approximation 

method [112] is one of a wide range of type-reducers appeared in literature.  

 The proposed IT2-RBF-NFS takes advantages of principles of human-like 

information granulation in granular computing to extract meaningful 

knowledge out of uncertain data and the additional degree of freedom from the 

T2-FS FOU to handle the linguistic uncertainties associated with meaning of 

words and linguistic propositions contained in the rule- base. Such 

computational framework offered an efficient data-driven modelling approach 

to deal with epistemic uncertainty (i.e. knowledge uncertainty). Consequently, 

further research could be to combine the IT2-RBF-NFS with the existing 

theoretical frameworks such as Mote Carlo method and Bayesian method that 

have been developed to deal with aleatory uncertainty (i.e. random uncertainty) 

in order to take into account both epistemic and aleatory uncertainties in the 

process of making decisions in complex systems.  

 The development of the perpetual learning framework may open up a new field 

of research to develop fully autonomous or semi-autonomous human-centric 

systems for model updating routine without any involvement from the system’s 

designer. It appears from the research work conducted in this thesis, no attempt 

was made to develop model-based autonomous or semi-autonomous human-

centric systems.    

 The proposed perpetual learning framework assumes that the new input data 

that are presented to the model are valid to be used in the incremental learning 

process. The perpetual learning framework also does not take into account a 

case where the new input data that are available to the incremental learning 

framework include ‘noise’ data points. Therefore, further research could be 

conducted on checking the validity of new input data before they are fed to the 

incremental process. Further work should be focused on the performance of the 

framework in the presence of ‘noise’ data points. 

 Specific to the friction stir welding process, future research aspects could 

include: a) collect and analyse high resolution data for various internal process 

variables e.g., vibration of the machine and temperature of the tool and then 

relate them to the post-weld properties (including mechanical properties, 
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microstructure features and weld quality); b) develop real-time model-based 

autonomous or semi-autonomous systems for quality control to   – non-

destructively – evaluate the resulting weld quality; and c) develop real-time 

decision support systems (DSSs) for tool design.  

7.3. FUTURE RESEARCH DIRECTIONS 

Advanced manufacturing systems are awash with a mammoth amount of data that 

are being generated from daily process routine and stored in databases. Some of the 

data are carrying meaningful information and others may simply be noises. The data 

are often characterised with the presence of several issues such as high dimensionality, 

nonlinearity, collinearity, uncertainty, missing measurements, outlier, etc. Hence, these 

issues should be taking into consideration while carrying out the information extraction 

process. The manufacturing industry is looking for techniques to deliver innovations 

that address these issues. Since the extracted information could be employed in the 

production lines and/or to develop data analytics for prediction, process monitoring, 

soft-sensing, fault diagnosis, process optimisation, and control.   

Advanced manufacturing systems are information intensive and process operators 

are often play an important role in making decisions during the manufacturing process 

chain. On the one hand, human operators are required to perform tasks in dangerous 

environments and/or to perform cognitive tasks that are difficult to perform 

computationally. On the other hand, ICT services, offline/real-time data usage, data 

generation, data architecture, data-assist systems, and data-based optimisation are very 

efficient at capturing, processing and then quantifying information from process data. 

The manufacturing industry roadmap should focus in the areas such as human-machine 

interaction, linguistics-based techniques to data mining and information extraction, 

human-in-the-loop robotics, and real-time decision support systems designed to 

collaborate/interact with humans and to aid making decisions at multiple levels in the 

manufacturing process chain. 

The stricter demands for manufacturing process certification and quality assurance 

in many applications such as automotive, aerospace, rail industry, food production, etc 

and the worldwide overcapacities raised the need for efficient process monitoring tools 
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in line to the process. Additionally, in order to ensure a constant and reproducible 

product quality, the development of autonomous or semi-autonomous systems for 

process monitoring and quality control will be indispensable for maintaining the 

complex manufacturing process chain with high productivity. Therefore, data-driven 

computational intelligence concepts and human-centric systems within the automation 

systems will be the basis for a reliable, exceptional and reproducible manufacturing 

systems.   
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 APPENDIX 

A.1. STEEL FRICTION STIR WELDING DATA AND PRELIMINARY 

MODELLING RESULTS  

This section presents the process data and preliminary modelling results in Chapter 

3. 

Steel Friction Stir Welding Data: 

Table A.1 presents the data set used in Chapter 3 consisting of 191 measurements, each 

raw represents a single experiment. 

Table A.1 Process conditions of 191 weld samples used for modelling (including 

training and testing data). 

Weld Sample Welding 

Speed 

[mm/min] 

Rotation Speed 

[rpm] 

Spindle Peak 

Torque [Nm] 

1 100 240 382.12 

2 100 200 278.00 

3 100 200 274.56 

4 200 200 303.73 

5 100 160 311.75 

6 100 160 305.21 

7 100 160 318.65 

8 100 160 290.51 

9 100 160 282.85 

10 100 160 258.46 

11 100 160 258.46 

12 100 160 258.46 

13 100 160 258.46 

14 100 160 258.46 

15 100 160 258.46 

16 100 200 319.47 

17 100 200 319.47 

18 100 200 319.47 

19 100 200 319.47 

20 125 200 259.50 

21 125 200 259.50 

22 125 200 259.50 

23 125 200 259.50 

24 125 200 259.50 

25 125 200 259.50 

26 125 200 259.50 

27 125 200 271.66 

28 125 200 271.66 

29 125 200 271.66 
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30 125 200 271.66 

31 125 200 271.66 

32 125 200 271.66 

33 125 200 293.61 

34 125 200 293.61 

35 125 200 293.61 

36 125 200 293.61 

37 125 200 293.61 

38 125 200 293.61 

39 100 200 272.61 

40 100 200 272.61 

41 100 200 272.61 

42 100 200 272.61 

43 100 200 272.61 

44 100 200 272.61 

45 75 200 329.87 

46 75 200 329.87 

47 75 200 329.87 

48 75 200 329.87 

49 90 240 329.87 

50 90 240 329.87 

51 100 220 415.87 

52 90 240 415.87 

53 100 200 415.87 

54 100 200 402.46 

55 110 200 402.46 

56 120 200 402.46 

57 130 200 431.36 

58 143 200 431.36 

59 156 200 431.36 

60 200 400 314.78 

61 250 400 298.08 

62 275 400 322.78 

63 350 500 290.40 

64 350 500 316.34 

65 400 500 309.15 

66 325 400 328.84 

67 375 400 297.48 

68 400 450 286.71 

69 350 450 302.65 

70 250 300 352.87 

71 500 600 305.15 

72 500 650 307.70 

73 500 575 310.94 

74 500 700 324.45 

75 325 400 347.44 

76 325 400 344.37 

77 325 400 342.52 

78 325 400 321.11 

79 325 400 330.24 

80 325 400 372.10 

81 275 400 336.33 



 

 272 

82 275 400 354.63 

83 325 400 313.85 

84 110 200 442.22 

85 325 400 451.96 

86 400 550 344.32 

87 400 550 346.49 

88 400 550 256.15 

89 480 550 256.15 

90 400 550 318.96 

91 400 550 313.91 

92 400 550 329.32 

93 400 550 337.00 

94 400 550 254.09 

95 400 550 318.90 

96 450 575 312.41 

97 300 400 331.14 

98 300 400 324.92 

99 100 200 360.07 

100 100 200 265.58 

101 100 200 363.23 

102 100 200 328.36 

103 100 200 328.36 

104 400 550 306.58 

105 100 200 341.72 

106 300 400 236.66 

107 100 220 339.20 

108 100 240 339.20 

109 100 260 339.20 

110 100 240 289.80 

111 100 240 210.26 

112 100 240 303.52 

113 125 200 330.27 

114 140 200 330.27 

115 125 200 409.20 

116 135 200 409.20 

117 150 200 409.20 

118 400 550 207.88 

119 450 700 257.97 

120 450 600 225.40 

121 350 450 285.36 

122 350 500 285.36 

123 315 500 285.36 

124 250 300 338.38 

125 250 360 338.38 

126 250 300 306.61 

127 250 450 250.05 

128 250 450 294.99 

129 250 450 318.20 

130 250 450 281.64 

131 250 400 281.64 

132 250 450 281.64 

133 250 450 281.32 
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134 250 450 291.09 

135 250 450 276.57 

136 300 450 276.57 

137 325 450 219.56 

138 300 450 288.58 

139 250 450 214.87 

140 500 700 242.71 

141 100 200 360.78 

142 100 200 326.74 

143 100 200 384.52 

144 100 200 352.34 

145 100 200 353.48 

146 100 200 346.46 

147 100 200 339.48 

148 100 200 344.29 

149 100 200 362.73 

150 100 200 296.74 

151 100 200 317.71 

152 100 200 311.84 

153 100 200 278.23 

154 325 400 361.04 

155 325 400 302.63 

156 325 400 380.52 

157 325 400 209.19 

158 400 450 289.46 

159 400 450 246.13 

160 400 450 248.51 

161 400 450 275.62 

162 400 450 275.51 

163 400 450 256.13 

164 400 450 257.82 

165 400 450 277.87 

166 400 450 222.37 

167 130 200 395.24 

168 143 200 395.24 

169 156 200 395.24 

170 130 200 307.38 

171 143 200 307.38 

172 156 200 307.38 

173 100 200 327.08 

174 100 220 356.18 

175 100 240 368.82 

176 150 240 365.53 

177 150 260 297.94 

178 150 300 284.35 

179 300 500 342.36 

180 350 500 292.09 

181 350 500 372.41 

182 350 500 321.11 

183 400 550 322.31 

184 400 600 322.31 

185 350 550 301.64 
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186 315 550 301.64 

187 245 550 301.64 

188 300 500 332.98 

189 300 250 332.98 

190 300 300 332.98 

191 300 280 293.75 

 

Multiple Regression Linear Model results: 

The performance indices based on the RMSE and MAE% of the MRL model are 

shown in Table A.2. The simulation results obtained by using the MRL model are 

depicted in Fig. A.1. It is clear that the MRL model provides only a basic level of 

predication performance and therefore more advanced nonlinear data-driven CI models 

are needed to model the nonlinear relationship between the process parameters and the 

internal process variables. 

 

Figure A.1. Data fit, peak torque prediction by using multiple linear regression model. 
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Table A.2 Performance of the multiple linear regression model for spindle peak 

torque. 

Performance Index  MLR Model 

Training Testing 

RMSE±SD 57.12±23.01 60.38±30.19 

MAE %±SD 30.94±21.67 34.85±29.92 

 

A.2. STEEL FRICTION STIR WELDING DATA FOR PERPETUAL LEARNING 

FRAMEWORK    

The initial data set (old data set) used in Chapter 6 to construct the initial model and 

test its performance is shown in Table A.1, each raw represents a single experiment. 

Table A.3 Process conditions of 36 weld samples used for constructing the initial 

model (including training and testing data). 

Weld Sample Welding Speed 

[mm/min] 

Rotation 

Speed [rpm] 

Spindle Peak 

Torque [Nm] 

1 325 450 219.56 

2 140 200 330.27 

3 130 200 431.36 

4 250 450 281.64 

5 300 400 331.14 

6 350 550 301.64 

7 120 200 402.46 

8 200 400 314.78 

9 300 300 332.98 

10 200 200 303.73 

11 350 500 290.40 

12 250 300 352.87 

13 90 180 329.87 

14 100 160 311.75 

15 150 200 409.20 

16 315 500 285.36 

17 156 200 431.36 

18 100 260 339.20 

19 100 240 382.12 

20 275 400 322.78 

21 100 220 415.87 

22 75 240 329.87 

23 90 240 329.87 

24 300 500 342.36 

25 300 450 276.57 

26 250 400 298.08 
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27 250 360 338.38 

28 75 200 329.87 

29 125 200 259.50 

30 315 550 301.64 

31 375 400 297.48 

32 300 250 332.98 

33 135 200 409.20 

34 325 400 347.44 

35 350 450 302.65 

36 300 280 293.75 

 

Table A.1 presents the new data set used in Chapter 6 to test the prediction performance 

of the incremental learning framework.  

Table A.4 Process conditions of 19 weld samples used for perpetual learning. 

Weld Sample Welding Speed 

[mm/min] 

Rotation 

Speed [rpm] 

Spindle Peak 

Torque [Nm] 

1 400  500   309.15 

2 400  450   286.71 

3 500   600   305.15 

4 500   650   307.70 

5 500   575   310.94 

6 500   700   324.45 

7 400   550   344.32 

8 480   550   256.15 

9 450   575   312.41 

10 450   700   257.97 

11 450   600   225.40 

12 400   600   322.31 

13 110   200   442.22 

14 143  200   431.36 

15 245   550   301.64 

16 150   300   284.35 

17 150   240   365.53 

18 100   200   278.00 

19 150   260   297.94 

 


