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Abstract 

 

Autosomal-dominant polycystic kidney disease (ADPKD) is one of the most common 

monogenic diseases with a worldwide incidence of 1/1000. It is caused by mutations in PKD1 

or PKD2. Around 10% of all end-stage renal disease results from ADPKD, translating into 

an annual cost of €1.5 billion across Europe. Although tolvaptan has recently been licensed 

for use in patients with evidence of rapid disease progression, it is only moderately effective 

and associated with significant side effects, resulting in the urgent need to identify new 

treatments. 

 

In this project, a pkd2 zebrafish mutant (pkd2hu2173) was used for compound library screens 

with commercial drug libraries. The dorsal tail curvature phenotype, the most penetrant 

ADPKD-related trait in this mutant, was chosen as the assay read-out. After thorough 

testing, the most promising compounds were studied in three-dimensional mammalian cyst 

assays using both canine (MDCK) and human (Ox161c1; PKD1-/-) cell lines. Experiments in 

cyst assays largely confirmed the hit compounds as relevant to cyst formation and expansion. 

Several hits linked to pathways previously implicated in other ADPKD models including 

androgens, prostaglandins and TGFβ but the precise role of others remains to be identified. 

 

Using a novel kidney calcium-reporter zebrafish line enpep:Gal4;UAS:GCaMP7a, in vivo Ca2+ 

levels were found to be reduced in pkd2 mutant fish compared to sibling controls. Genetic 

interactions between pkd2 and elipsa, a ciliary protein, were observed for tail curvature and 

glomerular dilatation, providing the first evidence of a non-redundant function for pkd2 in 

the zebrafish pronephros.  

 

In conclusion, this study has identified several new compounds and pathways relevant to 

cystogenesis using a zebrafish pkd2 model and provided the first evidence of a non-

redundant function for pkd2 in the zebrafish kidney. The zebrafish pkd2 mutant will continue 

to be a useful model to study ADPKD pathogenesis and potential treatments. 
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Introduction 
 

1. PKD – polycystic kidney disease 

ADPKD, autosomal-dominant polycystic kidney disease, is one of the most common 

monogenic diseases worldwide with estimated incidences of 1/400 to 1/1000 (Sutters et al., 

2003). Although the prevalence of diagnosed ADPKD cases varies between populations, 

potentially due to differences in screening policy and health care delivery, autopsy studies 

suggest that more than 1/500 people could be affected (Chan, 1993; Dalgaard, 1957).  

In ADPKD, the diseased kidneys contain numerous fluid-filled epithelial cysts (see Figure 1 

A) which may develop from any part of the nephron and cause bilateral renal enlargement. 

Cysts arise as spherical dilatations or small out-pouchings, enlarge progressively and 

eventually separate from the rest of the renal tubule. Cyst development is generally 

accompanied by the destruction of renal parenchyma, interstitial fibrosis, cellular infiltration 

and loss of functional nephrons (reviewed in (Chang et al., 2008)). However, cysts are not 

limited to the kidneys and extrarenal manifestations most commonly include cysts in the 

liver, but also in the spleen, pancreas, arachnoid membrane and seminal vesicles. Other non-

cystic vascular manifestations such as intracranial arterial aneurysms, artery dissections and 

coronary artery aneurysms are present in a minority of patients (reviewed in (Torres & Harris, 

2009)).  

Typically, ADPKD patients present between 20 - 40 years of age but cases in childhood 

(under 15 years) and even in utero have been reported. Common symptoms include 

abdominal pain, polyuria, urinary tract infections, haematuria and hypertension (reviewed in 

(Loftus et al., 2013) and (Wilson, 2004b)). Abdominal pain is the most reported symptom in 

adults and can be caused by cyst haemorrhage, infection or renal stones. Around half of all 

ADPKD patients will have reached end-stage renal disease (ESRD) by the fifth decade of 

life (Hateboer et al., 1999). Glomerular filtration remains normal in most patients until the 

fourth to sixth decade of life, despite the constant growth of cysts, due to compensatory 

hyperfiltration. By the time filtration rates decline, the kidneys are markedly enlarged and 

distorted.  

Diagnosis typically relies on imaging techniques. For cost and safety reasons, renal ultrasound 

is the most widely used method. However, MRI (magnetic resonance imaging) or CT 

(computer tomography) provide increased sensitivity to detect smaller cysts. CT or MRI 

render pictures at much higher resolutions and cysts of 3 mm rather than 10 mm are easily 

detected (Bae et al., 2010).  
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ADPKD accounts for ca. 10 % of patients with ESRD which translates into ca. 35,000 

patients across Europe – making ADPKD the fourth most common cause of ESRD (Torres 

et al., 2007). The clinical and economic burden caused by this disease is enormous with an 

estimated annual cost of € 1.5 billion for ESRD within the 27 EU-member states alone 

(currently including the UK) (Spithoven et al., 2014). Risk factors for ADPKD include 

genotype, age, sex, kidney function and total kidney volume (reviewed in (Ong et al., 2015)). 

Of note, males with ADPKD typically have a faster progression and larger cystic kidneys 

than female patients (Cornec-Le Gall et al., 2013; Harris et al., 2006). 

To date, only one drug has been approved to slow the progression of ADPKD (tolvaptan). 

However, this treatment is associated with high rates of adverse effects related to increased 

aquaresis (thirst, polyuria and nocturia, (Torres et al., 2012)) and a low incidence of liver 

toxicity. A preventative treatment for this devastating disease has not yet been found.  

  
Figure 1 (A) Image of a polycystic kidney with a plethora of cysts by Ed Uthman from Houston, TX, USA - Adult 
Polycystic Kidney, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=3062826. (B) Survival rates 
of heathly controls (green), patients with a PKD2 mutation (red) and patients with a PKD1 mutation (blue) by 
age based on data in (Hateboer et al., 1999). 

 

2. The genetic basis of ADPKD 

Two genes have been linked to ADPKD: PKD1, which harbours mutations in ca. 85 % of 

patients, and PKD2, accounting for the remaining 15 %. Mutations in PKD2 are characterised 

by a later onset and slower rate of progression to ESRD (PKD1 53.0 years and PKD2 69.1, 

see Figure 1 B, (Hateboer et al., 1999)) but phenotypically, patients with mutations in PKD1 

and PKD2 are clinically indistinguishable. The existence of a third gene causing ADPKD, 

PKD3, was debated in the past but has now largely been excluded (Paul et al., 2014).  

Patients with a truncating mutation in PKD1 generally have the worst renal prognosis. Non-

truncating mutations of PKD1 result in intermediate progression rates and PKD2 mutations 

show the best prognosis (reviewed in (Ong et al., 2015)). Slower disease progression with 

PKD2 mutations has been attributed to the formation of fewer cysts in the early stages of 
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disease rather than slower cyst growth (Harris et al., 2006). Intriguingly, mutations in the 5’ 

half of PKD1 also correlate with earlier onset of renal failure and more frequent aneurism 

ruptures compared to mutations in the 3’ half (Rossetti et al., 2003) – however, this has not 

been confirmed in later studies (Cornec-Le Gall et al., 2013). No such associations have been 

reported for PKD2 (Magistroni et al., 2003). Deleterious mutations in either one or both PKD 

genes have been shown to always result in the clinical ADPKD phenotype (Giamarchi et al., 

2010; Newby et al., 2002). Transheterozygous patients (PKD1+/-;PKD2+/-) have also been 

reported and exhibit a more severe clinical progression than simple heterozygotes (Pei et al., 

2001). A strong intrafamilial phenotypic variability, even with identical mutations, suggests 

additional modifiers, which could be either genetic or environmental (Persu et al., 2004).  

The two protein products of PKD1 and PKD2, PC1 (polycystin-1) and PC2 (polycystin-2) 

respectively, form a heterodimeric complex via their C-terminal tails (see Figure 2 A) which 

is thought to function as a receptor-ion channel. The PC1/PC2 complex is interacts with a 

variety of other proteins regulating multiple signalling pathways that maintain tubular 

structure and function in the kidney (reviewed in (Ong & Harris, 2005b)).  

There has been a consensus that the PC1/PC2 complex acts as mechanosensor in primary 

cilia mediating flow-dependent Ca2+ influx which in turn activates Ca2+ release from 

intracellular stores like the ER, e.g. via PC2, see Figure 2 B (Koulen et al., 2002; Nauli et al., 

2003)  – although this has been recently disputed (Delling et al., 2013). Cystic cells isolated 

from ADPKD patients lack flow-sensitive calcium signalling, show reduced ER calcium 

stores and lower intracellular calcium concentrations (Xu et al., 2007). Manipulation of a 

single primary cilium in cultured canine kidney cells caused an increase in intracellular 

calcium levels in the stimulated cell as well as the surrounding ones (Praetorius, Frokiaer, et 

al., 2003; Praetorius et al., 2001; Praetorius & Spring, 2003). Cells treated with antibodies for 

PKD1 and PKD2 did not show these calcium transients, which are dependent on intracellular 

and extracellular calcium pools (Koulen et al., 2002; Nauli et al., 2003). This suggests the 

PC1/PC2 complex initiates flow-induced intracellular calcium signalling. Overexpression, 

haploinsufficiency or absence of PC2 gradually decreases Ca2+ release form intracellular 

stores (Torres & Harris, 2009). 
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Figure 2 (A) Diagram of the PC1 (left) and the PC2 (right) and their interaction through coiled-coil domains in 
the C-termini. Homology domains are shown in the key. (B) Polycystin complex as mechanosensory calcium 
channel in primary cilia without and with flow (left and right respectively). 

 

3. The polycystin family across various species 

In the next paragraphs, protein structure, expression, interaction partners and putative 

functions of PC1 and PC2 will be described in detail with a focus especially on human, rodent 

and zebrafish data. Zebrafish were the main model organism studied during this project and 

are therefore focussed on particularly. Similarly, there will be a greater focus on PKD2 and 

PC2, as a knockout model of this gene was used. A more detailed account of zebrafish and 

their value as model will be given in the following chapters: “Zebrafish as a model organism” 

and “Zebrafish models of ADPKD: pkd-deficient embryos”. 

Figure 3 depicts the evolutionary relationships of PKD1 and PKD2 (A and B respectively) in 

humans, mice and zebrafish with orthologue sequence identity given in percent. The 

zebrafish pkd1b gene is missing in Figure 3 A, as current database annotations suggest it is 

not a direct orthologue of human PKD1. 

To clarify, human polycystin genes are referred to as PKD genes, rodent orthologues are Pkd 

genes and the zebrafish varieties are denoted as pkd genes. These traditional denominations 

will be upheld throughout the text and will help identify the referenced species. 

 
Figure 3 Schematic evolutionary trees of (A) PKD1 and (B) PKD2 genes of Homo sapiens, Mus musculus and 
Danio rerio with sequence identiy in percent. Data derived from the Ensembl database 
(http://www.ensembl.org), August 19th 2016. 
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3.1. Human PKD1 

PKD1 was identified in 1995 by the International Polycystic Kidney Disease Consortium ( 

The International Polycystic Kidney Disease Consortium, 1995) and is located on 

chromosome 16p13.3 and translates into the 460 kDa polycystin-1 protein. It is a 4,302-

amino acid type I membrane glycoprotein with a long N-terminal extracellular domain (3,074 

amino acids), 11 transmembrane domains (1132 aa) and a short intracellular C-terminus (197 

aa) (Hughes et al., 1995). PC1 interacts with PC2 via a coiled-coil domain in the C-terminus 

to form a heterodimer (Figure 2 A); this interaction has been shown to be critical for 

functional regulation of both proteins (Newby et al., 2002).  

The entire PC1 N-terminus has been proposed to have the biomechanical properties of a 

mechanosensor (Qian et al., 2005). It might sense laminar flow in the nephric tubules and 

trigger a PC2-dependent Ca2+ signal, hence acting as a sensor for the glomerular filtration 

rate (Figure 2 B) (Qian et al., 2005). In addition to its mechanosensory function, the PC1/PC2 

complex has been implicated in mediating or regulating cell-cell and cell-matrix adhesion 

(reviewed in (Wilson, 2011)). Homotypic PC1 interactions via the PKD domains and 

heterophilic interactions of PC1 with the E-cadherin/catenin complex (and other proteins), 

as well as increased integrin-mediated adhesiveness to collagen in PKD cyst cells have been 

described (Huan et al., 1999; Ibraghimov-Beskrovnaya et al., 2000; Roitbak et al., 2004; Streets 

et al., 2003; Streets et al., 2009; Wilson et al., 1999).  

PC1 has been localised to multiple subcellular locations in renal epithelial cells including 

primary cilia, cytoplasmic apical vesicles, focal adhesions and a variety of lateral membrane 

junctions (tight junctions, adherens junctions and desmosomes) (Boletta et al., 2001; Griffin 

et al., 1996; Huan et al., 1999; Kim et al., 2000; Newby et al., 2002; Scheffers et al., 2000; Wilson 

et al., 1999; Yoder et al., 2002), reviewed in (Ong, 2000)). 

In humans, 40 splice variants of PKD1 and three paralogues have been reported (listed in 

Table 1) (Martin et al., 2004). To date (accession 18.08.2016), 2323 different PKD1 mutations 

have been identified in patients, of which 1895 are definitely pathogenic, most of them 

unique to a single family (Autosomal Dominant Polycystic Kidney Disease Mutation 

Database: PKDB, http://pkdb.mayo.edu/).  

Gene name & Ensembl 
identifier 

Length in 
aa 

Length in bp 
(cDNA) 

Chromosome ID 
% 

PKD1     ENSG00000008710  4302 14138 16  

PKD1L1 ENSG00000158683 2849 9092 7 14.74 

PKD1L2 ENSG00000166473 2459 7379 16 25 

PKD1L3 ENSG00000277481 1732 5199 16 16.40 
Table 1 The PKD1 family in Homo sapiens. Data derived from the Ensembl database (http://www.ensembl.org), 
August 18th 2016. 
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3.2. Pkd1 in model organisms 

Pkd1 was first fully sequenced in mice in 1995 ( The International Polycystic Kidney Disease 

Consortium, 1995) and many knockout and overexpression mouse strains have been created 

since. Homozygous knockout models are almost all embryonic lethal (Kim et al., 2000; 

Lantinga-van Leeuwen et al., 2007; Lu et al., 2001). In mice, Pkd1 is expressed at high levels 

in embryos but down-regulated shortly after birth (reviewed in (Ong & Harris, 2005b)). 

Levels of Pkd1 expression have been increased and decreased in mice, both of which resulted 

in cystic kidney phenotypes - stressing the importance of PC1 dosage for normal tissue 

architecture (Lantinga-van Leeuwen et al., 2004; Pritchard et al., 2000). Conditional Pkd1 

knockouts show varying progressions of PKD but the developmental stage at which gene 

inactivation occurs, determines disease severity (Piontek et al., 2007; Takakura et al., 2009). 

In one model, inactivation of Pkd1 before postnatal day 13 results in severe cystic kidneys 

within 3 weeks, whereas inactivation at day 14 or later results in cysts only after 5 months 

(Piontek et al., 2007). Of note, heterozygous Pkd1 knockout mice without symptoms also 

exhibit decreased intracellular Ca2+ levels at approximately half of WT concentrations, 

although these animals did not develop cysts (Ahrabi et al., 2007). Cartilage defects like an 

undulating spinal chord and jaw phenotypes have been observed in addition to cystic kidneys 

in Pkd1 knockout animals (Boulter et al., 2001; Kolpakova-Hart et al., 2008). 

In zebrafish, pkd1 is present as two paralogous genes, pkd1a and pkd1b, that are more closely 

related to human PKD1 than the PKD1L orthologues (Mangos et al., 2010). pkd1a is broadly 

expressed in chondrogenic tissues and pkd1b is primarily expressed in the nervous system 

(Mangos et al., 2010). pkd1a knockdown results in hydrocephalus, jaw defects and kidney 

cysts (but only in 10 - 20 % of morphant embryos) and pkd1b knockdown does not cause a 

visible phenotype. Disruption of both pkd1 paralogues however, results in a multi-organ 

phenotype similar to pkd2 loss-of-function but without L/R asymmetry defects (see below, 

(Mangos et al., 2010)). This suggests that pkd1b may have overlapping or redundant functions 

with pkd1a, and its knockout is necessary for a fully penetrant phenotype (Mangos et al., 

2010). In pkd1 double knockdown zebrafish, renal dilations were observed in ca. 20 % of the 

embryos.   

Tissue expression of murine Pkd1 is similar to zebrafish - occurring in the notochord, floor 

plate as well as other chondrogenic tissues (Boulter et al., 2001), but has also been detected 

in the perichondrial mesenchyme in the head (Lu et al., 2001). Delayed ossification of the 

skull and spinal chord in Pkd1-deficient animals are similar in both species (Lu et al., 2001; 

Mangos et al., 2010). The low penetrance of cyst formation seen in pkd1 knockdown zebrafish 
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experiments mimics that of gene knockout after post-natal day 14 in juvenile mice and may 

suggest the necessity of additional factors than Pkd1 mutation for cysts formation (Piontek 

et al., 2007; Takakura et al., 2008). The mouse orthologues of human PKD1 and PKD1L1 

genes are listed in Table 2. 

Ensembl identifier & gene 
name 

Length in 
aa 

Length in bp 
(cDNA) 

Chromosome ID 
% 

Pkd1   ENSMUSG00000032855 4293 14170 17 100 

Pkd1l1 ENSMUSG00000046634 2521 7631 11 15.59 

Pkd1l2 ENSMUSG00000034416 2461 7386 8 17.64 

Pkd1l3 ENSMUSG00000048827 2201 6606 8 14.40 
Table 2 The Pkd1 family in Mus musculus. Data derived from the Ensembl database (http://www.ensembl.org), 

August 18th 2016.  

Zebrafish gene annotations are less sophisticated for the pkd1-family compared to mammals. 

Furthermore, there are five paralogues, one of which has not yet been annotated. Currently, 

no pkd1l1 and pkd1l3 genes are annotated, although there were at the beginning of this 

project, suggesting a recent change in annotations.  

Ensembl identifier & gene 
name 

Length in 
aa 

Length in bp 
(cDNA) 

Chromosome ID 
% 

pkd1a    
ENSDARG00000030417 

3629 15472 1 100 

pkd1b    
ENSDARG00000033029 

3827 12367 12 25.27 

pkd1l2a 
ENSDARG00000105344 

1124 4430 7 19.75 

pkd1l2b 
ENSDARG00000101214 

1442 6338 7 19.69 

             
ENSDARG00000099162 

2153 6459 24 17.47 

Table 3 The pkd1 family in Danio rerio. Data derived from the Ensembl database (http://www.ensembl.org), 
August 18th 2016. 

 
 

3.3. Human PKD2 

PKD2 was identified in 1996 (Mochizuki et al., 1996), is located on chromosome 4p21 and 

gives rise to the 110 kDa polycystin-2 protein. It is a 968-amino acid type II membrane 

glycoprotein with six-transmembrane domains and intracellular N- and C-termini. The N-

terminus contains a ciliary-targeting RVxP motif (Arginine, Valine, X, Proline) (Geng et al., 

2006). PKD2 has significant homology to the transient receptor potential (TRP) family of 

store-operated calcium channels and is likely to function similarly as a non-selective calcium 

channel, hence its further denomination as TRPP2 (Giamarchi et al., 2006). It can function 

both alone or in the presence of PC1 (Gonzalez-Perrett et al., 2001; Hanaoka, Qian, et al., 

2000; Qian et al., 1997). 

http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000034416
http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000048827
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PC2 has been localised to primary cilia, apical monocilia, endoplasmic reticulum (ER)/Golgi 

membranes, lamellipodia, mitotic spindles and the basolateral cell surface. Unlike PKD1, its 

expression appears to be maintained at a constant level into adult life (Cai et al., 1999; 

Foggensteiner et al., 2000; Gallagher et al., 2000; Luo et al., 2003b; Newby et al., 2002; Ong & 

Harris, 2005b; Rundle et al., 2004). Apical monocilia can function as mechanosensory flow 

sensors with intracellular calcium release in response to cilia bending and PC2 antibodies 

have been shown to block this flow-induced calcium release (Nauli et al., 2003; Praetorius et 

al., 2001).  

To date (accession 17.08.2016), 463 different PKD2 mutations have been identified of which 

438 are definitely pathogenic, most of them unique to a single family (Autosomal Dominant 

Polycystic Kidney Disease Mutation Database: PKDB, http://pkdb.mayo.edu/). In humans, 

seven splice variants and two paralogues have been reported for PKD2, the latter are listed 

in Table 4.  

Gene name & Ensembl 
identifier 

Length in 
aa 

Length in bp 
(cDNA) 

Chromosome ID 
% 

PKD2     ENSG00000118762 968 5056 4 100 

PKD2L1 ENSG00000107593 805 3043 10 48.45 

PKD2L2 ENSG00000078795 523 2333 5 46.47 
Table 4 The PKD2 family in Homo sapiens. Data derived from the Ensembl database (http://www.ensembl.org), 
August 18th 2016.  

 

3.4. Pkd2 in model organisms 

Pkd2 is a Ca2+-permeable cation channel associated with primary cilia and proposed to be 

involved in a ciliary mechanosensory complex. In the zebrafish pronephros, pkd2 has been 

localised to the basolateral membrane as well as luminal cilia, suggesting it may function both 

as a ciliary mechanosensory channel as well as a Ca2+ release channel in ER membranes 

(Obara et al., 2006). Mammalian studies have localised PC2 to intracellular ER and Golgi 

membranes and to apical, non-motile cilia of renal epithelia and mouse node cells 

(Foggensteiner et al., 2000; Pazour et al., 2002).  Pkd2 loss-of-function has been shown to 

cause L/R patterning defects in mice and in zebrafish (Bisgrove et al., 2005; Pennekamp et 

al., 2002).  

Mouse knockouts of Pkd2 develop embryonic kidney cysts, vascular and heart septal defects 

and randomized organ laterality (Pennekamp et al., 2002; Wu et al., 2000). In mouse models 

with targeted disruption of Pkd1 or Pkd2, renal development progresses normally until 

embryonic day 14.5 when cysts begin to form (Boulter et al., 2001; Kim et al., 2000; Lu et al., 

1997; S. Muto et al., 2002; Wu et al., 1998). This suggests that polycystins are not essential for 

nephron induction but for maturation and maintenance of the tubular architecture (Ong & 
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Harris, 2005b). Homozygous Pkd2 knockout mice usually die in the embryonic period; in 

heterozygous animals, a mild renal cyst phenotype can be detected in older mice but is highly 

variable (Boulter et al., 2001; Lu et al., 1997). Mouse orthologues of PKD2 and PKD2L genes 

are listed in Table 5. 

Ensembl identifier & gene 
name 

Length in 
aa 

Length in bp 
(cDNA) 

Chromosome ID 
% 

Pkd2    ENSMUSG00000034462 966 5219 5 100 

Pkd2l1 ENSMUSG00000037578 760 3321 19 49.74 

Pkd2l2 ENSMUSG00000014503 621 2421 18 44.44 
Table 5 The Pkd2 family in Mus musculus. Data derived from the Ensembl database (http://www.ensembl.org), 

August 18th 2016. 

Pkd2, unlike Pkd1, mutations cause asymmetry defects in murine and zebrafish models. PC2 

in the monocilia of the mouse embryonic node or the zebrafish equivalent, the Kupffer’s 

vesicle (Essner et al., 2002), could mediate asymmetric Ca2+ signalling prior to L/R (left/right) 

establishment (McGrath et al., 2003). Pkd1 has not been linked to this phenotype; however, 

recent studies have revealed Pkd1l1 to be expressed in the node and mutations in this 

paralogue lead to L/R asymmetry defects in mice (Field et al., 2011; Kamura et al., 2011). 

Interestingly, no significant differences have been detected regarding cilia number or length 

in the zebrafish Kupffer’s vesicle in pkd2 morphants or in the mouse embryonic node of 

Pkd2 mutants (Bisgrove et al., 2005; McGrath et al., 2003; Obara et al., 2006). This indicates 

that in Pkd2 mutants, ciliary structure is normal, but signal transduction is disrupted.  

In zebrafish, pkd2 is located on chromosome 1, consists of 3336 bp (14 exon mRNA, 904 aa 

protein) and shares 67 % conservation compared to human PKD2. Zebrafish pkd2 

knockdown animals (morphants) exhibit a 51 % rate of reverse heart looping and a similar 

rate for gut looping (Bisgrove et al., 2005). At 40 hpf, pkd2 morphants have a rather unique 

phenotype: an upward curled tail, hence the further denomination of the pkd2 mutant - curly 

up or cup (from when it was isolated in a phenotype-based screen in the mid-1990’s (Brand et 

al., 1996)). In addition to L/R asymmetry and body axis defects, pkd2 morphants exhibit 

cystic kidneys, cardiac oedema and hydrocephalus; phenotypes also found in Pkd2 mouse 

mutants (Wu et al., 1998; Wu et al., 2000). One previous study suggests that the mechanisms 

leading to the formation of pronephric cysts in pkd2-deficient zebrafish are different from 

other cystic mutants (Sullivan-Brown et al., 2008). Notably, cyst development seems to be 

restricted to the glomerulus in pkd2 morphants, contrary to general dilations in other cystic 

mutants. Obara et al. reported evidence that supports the theory of a partial occlusion of the 

pronephric tubules, which could lead to a build-up of fluid causing glomerular dilatation 

(Obara et al., 2006). However, “cystic kidneys” of pkd2 knockdown and ciliary knockout 

http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000034462
http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000037578
http://www.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=ENSMUSG00000014503
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models as described in the zebrafish literature are rather dilated glomeruli and not truly renal 

cysts. 

In early development, pkd2 mRNA is widely expressed in the zebrafish embryo; the domains 

of highest expression later becoming ciliated tissues, including the pronephric duct primordia 

and the Kupffer’s vesicle (KV). Maternal pkd2 was not observable by in situ hybridisation 

(Bisgrove et al., 2005) although it has been detected using RT-PCR (Schottenfeld et al., 2007; 

Sun et al., 2004). Zygotic expression is initiated at the onset of gastrulation in the blastoderm 

margin. At this point, pkd2 is found in the hypoblast of the dorsal midline and to the dorsal 

forerunner cells. In the early somite stages, pkd2 is ubiquitously expressed but with higher 

expression in the KV which persists to the 6-somite stage. Subsequently, expression is 

detected in the pronephric duct primordia and the neural floorplate and at 24 hpf, in the 

brain. Later, at 3 dpf, pkd2 expression is reduced to the pharyngeal arches and the pectoral 

fin buds (Bisgrove et al., 2005). 

The expression patterns of pkd2 and pkd1a overlap partially, particularly around the 

Kupffer’s vesicle at the tailbud stage, the head regions at 24 hpf, the pharyngeal arches and 

pectoral fins at 72 hpf. There are no discernible regions of co-expression of pkd2 and pkd1b. 

Table 6 lists the annotated pkd2 and pkd2l genes in zebrafish, however at this stage no pkd2l2 

paralogue has been identified. 

Ensembl identifier & gene 
name 

Length in 
aa 

Length in bp 
(cDNA) 

Chromosome ID 
% 

pkd2    ENSDARG00000014098 904 3336 1 100 

pkd2l1 ENSDARG00000022503 790 2718 13 45.19 
Table 6 The pkd2 family in D. rerio. Data derived from the Ensembl database (http://www.ensembl.org), August 
18th 2016. 

In zebrafish, both pkd1 orthologues (a and b) and pkd2 have been reported to regulate 

extracellular matrix (ECM) formation and a malfunction of this regulation leads to the 

development of a dorsal axis curvature (Mangos et al., 2010). Knockdown of col2a1 mRNA 

(collagen II type alpha 1) or the use of collagen-crosslinking inhibitors rescued the curly tail 

phenotype. It has been suggested that PC1 and/or PC2 regulate a negative feedback loop 

that normally inhibits deposition of multiple collagens (Mangos et al., 2010). An altered ECM 

status has been associated with the ADPKD phenotype in human and animal tissues as well 

as cell culture models (Candiano et al., 1992; Igarashi et al., 2002; Malhas et al., 2002; Schafer 

et al., 1994; Somlo et al., 1993; Subramanian et al., 2012). In mRNA profiling studies on 

kidneys of a PKD rat model (Han:SPRD), matrix genes are prominently upregulated in cystic 

tissues (Riera et al., 2006). It appears polycystins are required for the transition from 

persistently collagen-expressing embryonic cells to a mature differentiated phenotype and a 

http://www.ensembl.org/Danio_rerio/Gene/Summary?db=core;g=ENSDARG00000014098
http://www.ensembl.org/Danio_rerio/Gene/Summary?db=core;g=ENSDARG00000022503
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disruption leads to an overproduction of ECM and a distortion of the embryonic axis 

(Mangos et al., 2010). 

Apart from PC1, PC2 has been reported to interact with a number of key proteins including 

fibrocystin, inositol trisphosphate receptor (IP3R), ryanodine receptor (RYR) and several 

other TRP channels (reviewed in (Mangolini et al., 2016)). The association of PC2 with a 

variety of other calcium channels especially in the ER (IP3R, RYR, (Anyatonwu et al., 2007; 

Li et al., 2005)) and in primary cilia (TRPV4, (Kottgen et al., 2008)) suggest a pleiotropic role 

of PC2 in cellular calcium signalling – some of these interaction partners are depicted in 

Figure 4 and will be elaborated upon in greater detail in the next two chapters. Protein 

phosphorylation can regulate PC2 trafficking and localisation: retrograde trafficking between 

the ER, Golgi and plasma membrane is dependent on Ser812 (Kottgen et al., 2005) and the 

N-terminal Ser76 is critical for localization to the lateral plasma membrane but not to primary 

cilia (Streets et al., 2006). 

  
Figure 4 PC1 and PC2 in various cellular compartmens and their putative interaction partners. ER: endoplasmic 
reticulum, IP3R: inositol triphosphate receptor, RYR: ryanodine receptor, STIM: stromal interaction molecule, 
PI3K: phosphoinositide 3-kinase. 
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4. Why do cysts form? 

Two main hypotheses have been proposed as to why and how renal cysts form in ADPKD: 

a two-hit model and a threshold model. Both hypotheses have merits in their own rights, but 

neither fully explains the situation and it is possible that a combination of the two represents 

the truth. Additionally, a third hypothesis has been proposed recently, the “third-hit” 

hypothesis, which might involve stress factors such as renal injury (Weimbs, 2011).  

To explain the focal nature of the cysts, since only ~ 1 % of nephrons develop cysts in 

ADPKD, a two-hit mechanism with loss-of-heterozygosity has been proposed (Germino, 

1997; Grantham et al., 1987; Pei et al., 1999; Qian et al., 1996; Wu et al., 1998). In this model, 

a germline mutation in one allele and a somatic mutation/reduced expression of a second 

allele of either PKD gene is required for cystogenesis (Pei et al., 1999; Watnick et al., 1998; 

Wu et al., 2002).  

The second theory on how cysts form is called haploinsufficiency, or threshold model. Here, 

the loss of one allele leads to a 50% reduction in gene dosage and despite the presence of a 

normal allele, a phenotype arises due to stochastic changes in protein concentration 

(Lantinga-van Leeuwen et al., 2004). This hypothesis is supported by the observation that 

hypomorphic alleles can cause cyst formation (Hopp et al., 2012; Jiang et al., 2006; Pei et al., 

2012) and the severity of cyst formation has been linked to quantitative changes in gene 

dosage of Pkd1 in mouse models: ~40 % PC1 cause a slowly progressive form and ~20 % 

PC1 a rapidly progressing form of ADPKD (Hopp et al., 2012). The precise thresholds could 

vary between animals, developmental stages, tissues, cell types and nephron segments 

(Fedeles et al., 2011; Piontek et al., 2007; Raphael et al., 2009). Interestingly, in all ADPDK 

model organisms, even in hypomorphs, cyst development is focal (Hopp et al., 2012). 

To this date it remains unclear how the loss of polycystin-function leads to the clinical 

phenotype, but five key cellular abnormalities associated with cyst formation have been 

identified: Increased cell proliferation and apoptosis, enhanced fluid secretion, abnormal cell-

matrix interactions, alterations in cell polarity and abnormal ciliary structure or function 

(reviewed in (Chang et al., 2008) and (Wilson, 2011)). How these are linked to mutations in 

PKD1 or PKD2 remains largely unclear. Two of the most consistent signalling abnormalities 

reported in ADPKD models are changes in intracellular calcium and cAMP concentrations, 

the former is reduced and the latter elevated in patient tissues and models (reviewed in 

(Mangolini et al., 2016; Torres et al., 2006)). Most of the key abnormalities mentioned above 

could be directly or indirectly linked to this deregulation of Ca2+ and cAMP and will be 

elaborated upon in the next paragraphs (illustration of interactions in Figure 5). 
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Upon activation, the PC1/PC2 complex is thought to initiate extracellular Ca2+ entry, which 

in turn triggers Ca2+ release from internal stores. High intracellular Ca2+ levels inhibit the 

production of cAMP by inhibiting Ca2+-sensitive cAMP-synthesising adenylate cyclases (AC5 

and AC6) or stimulating Ca2+-sensitive phosphodiesterases (PDE1) which hydrolyse cAMP 

(Choi et al., 2011; Sussman et al., 2014; Torres et al., 2014; Ye et al., 2016). In ADPKD 

however, Ca2+ levels are decreased and consequently cAMP concentrations increase 

(Yamaguchi et al., 2006). The exact causes of this decrease in intracellular Ca2+ remain debated 

but it has been hypothesised that loss of the polycystin genes in the cilia results in loss of 

ciliary Ca2+ signal transduction. Alternatively, loss of PC2 could lead to impairments of ER 

calcium release; PC2 itself is proposed to be an ER Ca2+ release channel (Giamarchi et al., 

2010; Koulen et al., 2002; Mekahli et al., 2012) and its loss might impair Ca2+ fluxes. 

Additionally, PC2 has many interaction partners in the ER, most of which are other Ca2+ 

channels, i.e. RyR and IP3R (Anyatonwu et al., 2007; Li et al., 2005), and the absence of this 

interaction might inhibit ER Ca2+ release.  

Increased cell proliferation and apoptosis have been consistently associated with ADPKD 

in several models and an increase of tubular proliferative activity (e.g. transgenic expression 

of oncogenes or growth factors) leads to cyst formation (Calvet, 1998). Of note, lowering 

intracellular Ca2+ levels in WT cells can result in increased proliferation and Ca2+ channel 

activators reportedly rescue the proliferative response in cyst-derived cells (Yamaguchi et al., 

2006). Elevated cAMP concentrations caused by decreased intracellular Ca2+ concentrations 

could lead to cyst formation via two pathways: enhancing fluid secretion via the activation 

of apically located Cl- channels (Wallace, 2011) and by stimulating cell proliferation via 

several mechanisms including the B-Raf/MEK/ERK pathway (MEK: mitogen-activated 

protein kinase kinase, ERK: extra-cellular-signal-regulated kinase, reviewed in (Mangolini et 

al., 2016)). In cell culture models of ADPKD, forskolin, an activator of adenylate cyclase 

stimulates cyst formation by increasing cAMP synthesis (Hanaoka & Guggino, 2000; 

Yamaguchi et al., 1995). Similarly, renal deletion of a Ca2+-inhibitable adenylate cyclase (AC6, 

adenylate cyclase 6) in Pkd1-/- mice improved renal outcomes (Rees et al., 2014). A reduction of 

intracellular Ca2+ inhibits a negative regulator of B-Raf but normal growth can be restored in 

cystic cells by restoring Ca2+ levels, inhibiting the cAMP-dependent B-Raf activation 

(Yamaguchi et al., 2006). The activation of the B-Raf/MEK/ERK pathway in ADPKD also 

causes an increase in mTOR (mammalian target of rapamycin) signalling and therefore 

protein synthesis by inhibiting the negative regulator of mTOR, the TSC1/TSC2 (tuberous 

sclerosis) complex (Aguiari et al., 2003; Mekahli et al., 2013).  
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Other pathways linking defects of the polycystin complex to cell cycle regulation include the 

JAK/STAT pathway and the transcriptional regulator ID2 (reviewed in (Ong & Harris, 

2005a)). PC1 and PC2 affect JAK2/STAT3 (Janus kinase/Signal Transducer and Activator 

of Transcription), which, in turn, appear to regulate the transcription of the cyclin-dependent 

kinase inhibitor p21; therefore increasing proliferation even in non-cystic tubules (Bhunia et 

al., 2002; Chang et al., 2006). PC2 also has been implicated in retaining p21 in the cytoplasm 

by binding to the ID2 protein (Li et al., 2005). Generally, regulation of proliferation underlies 

complex signalling cascades (well beyond the ones mentioned here), all of which may be 

deregulated in ADPKD. 

Enhanced fluid secretion is essential for cyst formation and it appears that tubular epithelia 

may switch from an absorptive to a predominantly secretory phenotype in ADPKD. Fluid 

secretion appears to be mainly driven by Cl- efflux causing passive movement of Na+ and 

water (Grantham et al., 1995). A study proposed that loss of functional PC1 in ADPKD 

results in the upregulation of store-operated Ca2+ entry after a Ca2+-release stimulus and that 

the subsequent activation of transepithelial Cl– secretion plays an important role in cyst 

development and expansion (Wildman et al., 2003). 

The constant destruction of healthy parenchyma due to cyst expansion could also enhance 

the formation of abnormal cell-matrix interactions. In ADPKD patients, cyst epithelia sit on 

an expanded basement membrane of altered composition and a defect in laminin alpha 5 has 

been shown to cause PKD in mice (Goldberg et al., 2010). Furthermore, PC1 has directly 

been implicated in cell-cell adhesion in renal epithelial cells, a disruption of which could be 

an early initiating event for ADPKD cyst formation (Streets et al., 2003), as well as cell-matrix 

adhesion (Wilson, 2004a). 

Several papers have reported abnormalities in cell polarity in cystic tissues, however these 

finding have not always been consistent in all models (reviewed in (Chang et al., 2008; Wilson, 

2004a)). Altered basolateral trafficking, abnormalities in planar cell polarity or oriented cell 

division could all play a role in ADPKD pathogenesis. 

Genes that lead to structural abnormalities of primary cilia have been commonly associated 

with a cystic phenotype and many cystoproteins, including PC1 and PC2, have been 

immunolocalised to primary cilia or centrosomes. In PKD1-null cells, flow-induced ciliary 

Ca2+ signals are severely impaired (Nauli et al., 2003; Nauli et al., 2006; Xu et al., 2007) and 

implicate a ciliary connection. However, zebrafish and mouse models do not exhibit 

deformed cilia or reduced cilia numbers (McGrath et al., 2003; Obara et al., 2006). 
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Nevertheless, cilia could be implicated in ADPKD, if not due to structural cilia defects then 

via impaired signal transduction. 

 
Figure 5 Diagram of deregulated pathways in ADPKD with focus on two main components, calcium and cAMP 
as well as their putative effects. Proteins or pathways upregulated in ADPKD are indicated with red and 
downregulation in blue letters. AC: adenylate cyclase, cAMP: cyclic adenosine monophosphate, ER: 
Endoplasmic reticulum, ERK: extra-cellular-signal-regulated kinase, IP3R: inositol triphosphate receptor, JAK2: 
Janus kinase 2, MEK: mitogen-activated protein kinase kinase, mTOR: mammalian target of rapamycin, PC1: 
polycystin-1, PC2: polycystin-2, PDE1A: phosphodiesterase 1 A, PI3K: phosphoinositide 3-kinase, RYR: 
ryanodine receptor, STAT3: Signal Transducer and Activator of Transcription 3, TSC: tuberous sclerosis, VP2R: 
vasopressin 2 receptor. Information mainly based on the reviews of (Mangolini et al., 2016; Torres et al., 2006). 

In summary, polycystins are essential for the maintenance of a differentiated tubular 

epithelium phenotype, see Figure 6. Reduction in one of these proteins below a critical 

threshold results in a phenotypic switch characterised by inability to maintain planar polarity, 

increased rates of proliferation and apoptosis, expression of a secretory phenotype and 

remodelling of extracellular matrix. The molecular mechanisms responsible for these 

phenotypic switches are unknown but given the proposed participation of the polycystins in 

numerous signalling pathways at multiple subcellular locations, they are likely to be complex 

(reviewed in (Torres & Harris, 2009)). 
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Figure 6 Progression from classical tubular renal structures with subsequent PKD gene loss (green cells) to cystic 
epithelia.  

 

5. Current treatment targets and clinical trials 

Presently, only one drug has been approved for treatment of ADPKD, tolvaptan (marketed 

by Otsuka as JINARC in the UK). Current therapies mostly target the symptoms of the 

disease but tolvaptan delays the onset of ESRD by about 6.5 years (Erickson et al., 2013). 

There is no preventative treatment for ADPKD at the moment. The most important 

therapeutic measure is blood pressure control as heart disease is the main factor concerning 

morbidity and mortality; infection and neurological events (like aneurysm rupture) are the 

next common causes (Fick et al., 1995; Perrone et al., 2001). Interestingly, L-type calcium 

channel inhibitors like nifedipine, often used to treat hypertension, have been reported to 

have adverse effects on renal outcomes and it has been proposed that other drugs might be 

more beneficial for ADPKD patients (Astor et al., 2008; Saruta et al., 2009).  

Until recently, GFR (glomerular filtration rate) was the main indicator for clinical trial success 

but since it only starts declining in the later stages of the disease, it may not be a good 

predictor for treatment outcome in the early stages. Renal growth occurs early in disease, has 

been shown to be exponential in patients and is likely to be a good early surrogate marker 

for disease progression (Grantham et al., 2008). 

Three main strategies have emerged from recent findings in an attempt to delay the onset of 

ESRD: Reducing cell proliferation, lowering cAMP levels and inhibiting fluid secretion. A 

number of preclinical and clinical trials are currently underway or have been completed and 

some promising compounds are in the development pipeline. Primarily, the aberrant 

signalling pathways Ca2+, cAMP and mammalian target of rapamycin (mTOR) (Leuenroth et 

al., 2007; Tao et al., 2005; Torres et al., 2009), have been implicated in ADPKD and clinical 

trials targeting these pathways have been conducted. Other treatment options such as 
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somatostatin analogues, HDAC inhibitors and curcumin, mostly aiming to modulate the 

same three signalling cascades - Ca2+, cAMP and mTOR - are also currently being explored 

but will not be elaborated upon here.  

As described previously, low intracellular Ca2+ levels in ADPKD allow an increase of cAMP 

concentration, which enhances fluid secretion and proliferation. mTOR is a kinase which 

regulates cell proliferation and cell size. In patients with ADPKD, the mTOR pathway has 

been shown to be upregulated in cystic kidney tissue. mTOR can be inhibited by tuberin 

(TSC2 protein) and it has been suggested that loss of the tuberin-binding site in PC1 could 

enhance ADPKD phenotypes (Wildman et al., 2003). Rodent preclinical trials with the 

mTOR inhibitor rapamycin were very promising (Serra et al., 2010), however, initial clinical 

trials with rapamycin and sirolimus have been disappointing (Grantham et al., 2011; Levey et 

al., 2011; Tao et al., 2005). A recent clinical trial suggested that a low-dose treatment with an 

mTOR inhibitor improves renal function (Braun et al., 2014) and the natural compound 

resveratrol, which has been linked to mTOR inhibition, represses renal growth in a PKD rat 

model (Han:SPRD, (Wu et al., 2016)). 

Vasopressin V2 receptor antagonists and somatostatin have shown positive effects in 

inhibiting disease development and progression in rodent models and in clinical trials 

(Gattone et al., 2003; Higashihara et al., 2011; Torres et al., 2012; Torres et al., 2007; Torres et 

al., 2004). These drugs inhibit fluid secretion and cell proliferation via a decrease of cAMP 

levels through the inhibition of adenylate cyclases (reviewed in (Torres & Harris, 2009)).  

Triptolide, an active diterpene of the Chinese medicine Lei Gong Teng, is currently undergoing 

phase III clinical trials. It successfully reduced renal expansion in murine models and in a 

small, uncontrolled clinical trial (Chen et al., 2014; Leuenroth et al., 2010; Leuenroth et al., 

2008; Leuenroth et al., 2007). Although the proposed mechanism of action for triptolide is 

to activate PC2 channel, other modes of action are also possible.  

Once disease progression has reached ESRD, the only remaining treatment options besides 

symptom reduction are dialysis or kidney transplantation. Transplantation, being the 

treatment of choice, has no greater risk of complications in ADPKD patients compared to 

the general population. In cases where a nephrectomy is indicated, hand-assisted 

laparoscopic nephrectomy is favourable to open nephrectomy regarding blood loss, 

postoperative pain and recovery time (Desai et al., 2008; Kramer et al., 2009). 
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6. Zebrafish as a model organism  

The zebrafish, Danio rerio, has become a very popular model organism during the past 

decades. Owing to the relatively low cost, short generation time (2-3 months) and easy access, 

it provides a comparatively inexpensive alternative in vivo model to mammalian systems. A 

single female can lay up to 200 eggs per week, which develop rapidly into transparent 

embryos. Most major structures and organs are formed by 48 hpf when the larvae hatch and 

begin swimming freely. The embryo’s transparency allows for in vivo imaging of internal 

organs by using fluorescent markers. Zinc-finger nucleases and TALEN methodologies have 

in the past provided tools for targeted gene editing whereas the recently developed 

CRISPR/Cas9 system has advanced gene manipulation to a more efficient level. The 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system was 

discovered as part of the immune system in bacteria and archaea (Horvath et al., 2010). 

Recent studies, however, have utilized it to create target-specific mutagenesis in a variety of 

models, zebrafish being amongst them (Chang et al., 2013; Hwang et al., 2013). 

6.1. Zebrafish development 

The development of zebrafish is very rapid and some of the stages and their timing after 

fertilisation depicted in Figure 7. By 24 hpf anlagen of all organs and other vital structures, 

such as the blood vessels and spinal column have formed and subsequently mature to full 

function (stages of development extensively described in (Kimmel et al., 1995)). Kidney 

formation, for instance, is completed by 48 hpf and glomerular filtration matures until about 

4 dpf. Classically, this rapid development in a transparent embryo have made zebrafish a 

useful tool for geneticists and developmental studies. Their small size, easy handling and 

rapidly growing bioinformatics databases also make them an interesting model to address a 

variety of basic research questions.  
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Figure 7 Examples of zebrafish stages of development with respective times post fertilisation. 0 h: fertilisation 
and one-cell stage; 0.75 h 2-cell stage; 2 h: 64-cell stage; 3.25 h: high stage; 8 h: 75 % epiboly; 16 h: 14-somite stage; 
24 h: Prim-5 stage; 72 h: protruding mouth stage. By Ed Hendel - CC BY-SA 4.0, 
https://commons.wikimedia.org/ 
w/index.php?curid=37054608. 

 

6.2. Zebrafish chemical screens 

High-throughput chemical screens are typically conducted in cell culture models, however 

zebrafish have emerged in recent years as an in vivo alternative. Three zebrafish embryos in 

250 µl medium containing drugs of interest can comfortably develop in a single well of a 96-

well plate for 2-3 days. In the past 15 years, a multitude of small molecule screens have been 

performed on zebrafish. There are different approaches to finding active compounds in small 

molecule screens (Peterson et al., 2011; Rennekamp et al., 2015) and during this project a 

phenotype-driven approach was taken – an ADPKD-related phenotype was chosen as 

readout in the absence of a validated target. Screens can use a validated target as readout i.e. 

modulation of a particular gene or pathway related to the desired outcome, but since no such 

target has been described for ADPKD zebrafish models, a phenotypic screen was conducted. 

Some examples of previous screens aiming to discover novel drug candidates for specific 

disease phenotypes include: an aortic coarctation phenotype (Hong et al., 2006), protection 

from aminoglycoside-induced utricular hair cell loss (Owens et al., 2008) and long QT 

syndrome (Peal et al., 2011). HDAC inhibition, identified as a potential APDKD-modifier 

during a small-scale compound screen on zebrafish pkd2 mutants, has subsequently proven 

effective in rodent models, underlining the general validity of this approach (Fan et al., 2012; 

Xia et al., 2010). 
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7. Mammalian and zebrafish renal development 

The main functions of the kidneys in any species are removal of nitrogenous waste and 

homeostasis of ion, metabolite and fluid concentrations (osmolality), as well as pH levels 

within vital levels. Basically, blood is first filtered by the glomeruli and ions or small molecules 

are recovered from or excreted into the filtrate by active epithelial transport (Jacobson, 1981). 

The functional units of the kidney are called nephrons and each nephron has three major 

sub-units: glomerulus, tubule and collecting duct. The glomerulus acts as a blood filter with 

specialised basket-like cells, the podocytes. Small molecules, ions and blood fluid pass 

through the podocytes’ slit-diaphragm, a sort of “mesh”, into the urinary space. This 

glomerular filtrate is then drained into tubules where salt and water are reabsorbed and the 

remaining waste is transported via the collecting duct to the excretion site. 

Three distinct kidney types with increasing complexity arose during vertebrate evolution: 

pronephros, mesonephros and metanephros. In the course of embryonic development, the 

pronephros is the first to form and in teleost fish and amphibians, this is the functional 

kidney of early larval life (Vize et al., 1997). In juvenile stages during fish and frog 

development, a mesonephros forms around and along the pronephros by adding more 

nephrons from surrounding tissues and this mesonephros then functions as the final adult 

kidney. The most complex kidney form, the metanephros is found exclusively in amniotes 

(mammals, birds and reptiles) and is especially adapted to produce concentrated urine by 

water retention. In mammals, the pronephros is only a vestigial organ and the mesonephros 

is the functional kidney during foetal life. Both structures are transient and will degenerate 

(see Figure 8) or in case of males, become part of the reproductive system (Dressler, 2006). 

 
Figure 8 Schematic depiction of the sequential development and degeneration of the pronephros and 
mesonephros, as well as the induction of the ureteric bud and metanephric mesenchyme during kidney 
development in mammals. By Ashley Sawle - CC BY-SA 3.0, https://commons.wikimedia.org/w/ 
index.php?curid=7047612. 
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During the embryonic and early larval stages, the zebrafish kidney consists of a pronephros; 

two glomeruli which are fused at the midline, just ventral to the dorsal aorta, and two laterally 

extending tubules connecting into ducts (Drummond, 2000). The development of the 

zebrafish kidney is depicted in Figure 9 and basically completed by 2 dpf; maturation of 

filtration commences from thereon. In zebrafish, cells destined to form the pronephros arise 

from the ventral mesoderm. There, a particular band of tissue, the intermediate mesoderm, 

gives rise to kidney and blood cells (Kimmel et al., 1990). Tubule formation takes place by 

mesenchyme to epithelial transition, which is completed with polarisation of the epithelia at 

24 hpf (Drummond et al., 1998). Vascularisation of the glomerulus does not take place until 

36-40 hpf (tubule development has long been completed) when the glomerular primordia 

come in contact with the overlying dorsal aorta. Subsequently, by 40-48 hpf, endothelial cells 

invade the glomerular epithelium (via vegf - vascular endothelial growth factor signalling, (Majumdar 

et al., 1999) and become surrounded by podocytes. Filtration commences after shear stress-

induced capillary formation and is leaky at 48 hpf but matures to size-selectivity by 4 dpf 

(Kramer-Zucker, Wiessner, et al., 2005). Later in larval life, the mesonephros develops by the 

addition of nephrons from the surrounding mesenchyme - this will remain the functional 

kidney throughout adult life. 

 

Figure 9 Stages of early zebrafish renal development with timescale as well as dorsal and lateral views of the 
developing organ. Based on descriptions in (Drummond et al., 2010). gl: glomerulus; pt: pronephric tubule, cl: 
cloaca. 

The zebrafish pronephric kidney is composed of the same cell types as all vertebrate kidneys 

and the transcription factors regulating organogenesis have highly conserved functions in 

mammalian and teleost kidney developments (Drummond et al., 2010). Tubule segmentation, 

responsible for the highly specialised secretion and absorption functions of individual 

segments, is controlled by conserved genes. Furthermore, seven of the ten metanephric 
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mammalian segments have been found in zebrafish and the absence of the remaining 

segments can be attributed to the lack of need of a freshwater species to conserve water as 

rigorously as terrestrial species (Wingert et al., 2011; Wingert et al., 2007). Defects in genes 

associated with human polycystic kidney disease also cause pronephric “cyst” formation in 

zebrafish, underlining the relevance of fish to study this type of disorder (Hostetter et al., 

2003; Liu et al., 2002; Low et al., 2006; Otto et al., 2003; Sun et al., 2004; Sun et al., 2001). 

There are, however, also notable differences comparing the zebrafish pronephros to the 

mammalian metanephros. As described before, the absence of the thin limb segment (the 

loop of Henle) can likely be attributed to the low requirement of freshwater teleosts for water 

retention and urine concentration. The complex collecting duct system in mammals with its 

thousands of nephrons is not required in a two-nephron pronephros and hence only a single 

short segment connects to the cloaca for drainage. Most intriguing is the entirely unique cell 

type present in a particular segment of the teleost pronephros: cell clusters that are known 

as the Corpuscles of Stannius and responsible for calcium and phosphate homeostasis 

(Kaneko et al., 1992).  

8. The ciliary hypothesis of ADPKD 

Cilia are hair-like organelles that protrude apically from non-dividing polarized cells in almost 

every cell or tissue in the body. There are two classes of cilia: motile and non-motile (or 

primary) cilia. The structural components between those ciliary types are the same but 

ultrastructurally, motile cilia have a “9+2” and primary cilia a “9+0” design; the motile “+2” 

refers to the presence of a central pair of microtubules (Figure 10 A). The assembly of cilia 

is facilitated by a specialised process, microtubule-dependent intraflagellar transport (IFT), 

which is highly conserved throughout evolution – see Figure 10 B (Pazour, 2004). 

ADPKD is generally considered a ciliopathy, although no structural or motility defects in 

renal cilia have been described in murine and zebrafish pkd1 or pkd2 knockout models 

(Obara et al., 2006; Sullivan-Brown et al., 2008). Cystic kidneys are often associated with 

defects in ciliary function and it could be hypothesised that loss of Pkd2 results in loss of 

ciliary signalling (Kramer-Zucker et al., 2005; Pazour, 2004). Interestingly, no significant 

differences have been detected regarding cilia number or length in the zebrafish Kupffer’s 

vesicle in pkd2 morphants or in the mouse embryonic node of Pkd2 mutants (Bisgrove et al., 

2005; McGrath et al., 2003; Obara et al., 2006). This indicates that in Pkd2 mutants, ciliary 

structure is normal, but signal transduction is disrupted.  

One of the main differences comparing the fish pronephros and the mammalian 

metanephros are the different types of cilia found in these tissues. Mammalian metanephric 
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cells have mainly primary cilia (non-motile) with occasional motile cilia in humans (Kramer-

Zucker et al., 2005; Ong & Wagner, 2005) whereas the zebrafish pronephros is completely 

lined with motile cilia, which contribute to fluid movement (Kramer-Zucker et al., 2005). A 

loss of motility in motile cilia, also called ciliary dyskinesia (or Kartagener syndrome) leads 

to poor mucociliary clearance in the respiratory tract, loss of fertility and situs inversus in 

humans. In zebrafish it causes a classical ciliary mutant phenotype, including renal dilations 

in zebrafish (van Rooijen et al., 2008). Renal cysts are not a symptom in the human syndrome, 

possibly owing to the fact that the zebrafish pronephros is lined with motile cilia whereas the 

mammalian kidney exhibits non-motile cilia. These ciliary differences therefore raise an 

important limitation of zebrafish embryos as models for ADPKD.  

Renal epithelial cells are sensitive to flow (Praetorius et al., 2001) and both zebrafish 

pronephric motile cilia and mammalian metanephric non-motile cilia are PC2-positive. It has 

been shown that non-motile cilia can function as mechanosensors for flow (Nauli et al., 2003; 

Praetorius et al., 2001) and even motile cilia, previously thought to be non-sensory, have been 

shown to possess sensory functions (Bloodgood, 2010). PC2 has been localised to motile 

cilia in other tissues such as the female reproductive tract and the mouse embryonic node; 

they may relay mechanosensory information via beat frequency or changes in membrane 

potential (Andrade et al., 2005; McGrath et al., 2003; Stommel et al., 1980; Woolf et al., 2004).  

However, there are obvious differences when comparing zebrafish classical ciliary mutants 

(some of which are listed in Table 7), where e.g. the intraflagellar transport is disrupted and 

functional cilia are lacking, with pkd mutants. First, the axis curvature phenotype is opposite 

i.e. ventral in cilia mutants and dorsal in pkd2 mutants. Furthermore, in another zebrafish 

model of ADPKD (polaris mutant) restoration of ciliary length rescued the L/R axis defects 

but cyst development was not prevented (Brown et al., 2003). These studies suggest that pkd2 

loss-of-function may not be a classical ciliopathy. Although no structural or motility cilia 

defects were observed in PKD knockout models, a recent zebrafish study suggests that ciliary 

stability is influenced by pkd2 and CaMK-II (Ca2+/calmodulin-dependent protein kinase type II) as 

embryos deficient in these genes (morphants) fail to from pronephric ducts properly. 

Additionally, these embryos exhibited anterior renal cysts and destabilised cloacal cilia with 

ciliary disassembly starting at 48 hpf and no motile cilia remaining by 72 hpf (Rothschild et 

al., 2011). Constitutively active CaMK-II was able to restore duct formation in pkd2 

morphants suggesting pkd2-mediated Ca2+ signalling plays a role in cilia stability. 
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Table 7 List of some classical ciliary mutants described in recent publications. This list is by no means complete 
and merely serves to illustrate common phenotypes. References: 1 (van Rooijen et al., 2008), 2 (Omori et al., 2008), 
3 (Malicki et al., 1996), 4 (Brand et al., 1996), 5 (Sullivan-Brown et al., 2008), 6 (Zhao et al., 2011), 7  (Zhao et al., 
2007), 8 (Chen et al., 1997), 9 (Sun et al., 2004). 

However, the fact that pkd2 morphants display situs inversus (Bisgrove et al., 2005), which is 

classically linked to defects in motile cilia left/right patterning, suggests ADPKD is a 

ciliopathy. In the mouse node as well as the zebrafish Kupffer’s vesicle, beating cilia create a 

unidirectional flow, which is necessary for asymmetric left-right pattering and correct axis 

formation (Kramer-Zucker et al., 2005; Nonaka et al., 1998). If this flow is disrupted either 

by defects in ciliary structure or function, L/R patterning becomes randomised. Interestingly, 

nodal cilia are structurally primary cilia (9+0) but are motile. As pkd2 mutants develop cilia 

normally and pkd1 mutants to this date have not been described to exhibit L/R defects (but 

PKD1-deficient cells are unable to respond to fluid flow with a Ca2+ influx (Nauli et al., 2003)), 

it may be surmised that PKD1 and PKD2 have additional functions than mere 

mechanosensing in the cilium and that the modes for cyst formation may not be the same as 

in “classical” ciliopathies.  

Interestingly, Pkd1 is not expressed in the mouse node and it used to be unclear how Pkd2 

could act as mechanosensory channel without its presumed sensor Pkd1. However, recent 

studies have revealed that Pkd1l1 is expressed in the node and mutations in Pkd1l1 lead to 

L/R patterning defects (Field et al., 2011; Kamura et al., 2011). Calcium transients in the 

cytoplasm are abolished by loss of PC1 or PC2 function (Nauli et al., 2003), but in cilia, 

PKD1L1 and PKD2L1 are responsible for calcium entry (DeCaen et al., 2013; Delling et al., 

2013). Interaction of PC2 with TRPV4 or TRPC1 in the cilia may also be responsible for 

flow detection (Bai et al., 2008; Kottgen et al., 2008). However, neither PKD1L1, TRPC1 or 

TRPV4 mutations have been linked to cystogenesis (reviewed in (Mangolini et al., 2016)). It 

is therefore difficult to attribute the phenotypes solely to either loss of cilia structure, motility 

and flow or to loss of mechanosensors and/or signal transduction. 
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Figure 10 Schematic depictions of ciliary structure. (A) Motile 9+2 and primary cilia 9+0 microtubular structures 
inside the cilium. (B) Graph of intraflagellar transport (IFT) along the ciliary microtubules with IFT particles 
(purple) and PKD1 and PKD2 protein products with various interaction partners attributed to cilia and ciliary 
functions.  

 

 

9. ADPKD models 

9.1. Rodent models 

There are many different rodent models mimicking the effects of ADPKD, which are 

reviewed in detail in (Happe et al., 2014; Nagao et al., 2012) and will be summarised here 

briefly.  

Many murine models with mutations in Pkd1 and/or Pkd2 have been generated some of 

which are tissue-specific, hypomorphic, conditional or tissue-specific and conditional. Most 

of the knockouts and inducible knockouts show a very rapid progression. Interestingly, the 

time point of inactivation seems to play crucial role in severity. Hypomorphic alleles typically 

display a slower progression rate. Of note, murine overexpression models with human 

proteins also recapitulate the development of cystic kidney, indicating that gene dosage is 

important.  

Furthermore, there are some non-Pkd1/Pkd2 rodent models that also develop polycystic 

kidneys. Some of these comprise models that mimic ARPKD (autosomal-recessive PKD) 

more closely, such as the Pck rat or the Pkhd1 mouse, and others nephronophthisis, like Jck 

mice and Cy rats. 

9.2. Zebrafish models of ADPKD: pkd-deficient embryos  

The pkd2hu2173/hu2173 mutant used during this project was identified from a library of 

mutagenized fish in the early 2000s during an ENU-mutagenesis screen. The pkd2 hu2173 

mutant allele carries a point mutation in exon 5 leading to a truncated protein (Freek van 

Eeden, unpublished). In this mutant, a guanine base is replaced with an adenine resulting in 

a stop codon in amino acid 302 of 904. Reduced to one-third of its original length, the 
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resulting protein is presumed to have lost its function, creating a null mutation in 

homozygous animals. The typical axis deformation with its upward curled tail as described 

from morpholino injections (Bisgrove et al., 2005) has been observed and can be seen in 

Figure 11. Table 8 summarises all pkd2 mutant alleles described to date (accession 

02.09.2016) with their associated phenotypes and publications. Additionally to pkd2 mutant 

alleles, a number of pkd2 knockdown strategies with different morpholinos have also been 

published. A summary of the morpholinos and the respective phenotypes can be found in 

Table 9.  

 

 

 
Figure 11 Zebrafish pkd2hu2173/hu2173-/- mutant with dorsal axis curvature at 2 dpf and age-matched WT sibling.  

 

 
Table 8 List of pkd2 mutant alleles described to date (accession 02.09.2016). Based on information from zfin.org. 
References: 1 (Busch-Nentwich, 2013), 2 (Sun et al., 2004), 3 (Mangos et al., 2010), 4 (Paavola et al., 2013), 5 
(Amsterdam et al., 2004), 6 (Yuan et al., 2015), 7 (Bisgrove et al., 2005), 8 (Brand et al., 1996), 9 (Le Corre et al., 
2014), 10 (Schottenfeld et al., 2007), 11 (Chen et al., 1997), 12 (Goetz et al., 2014), 13 (Haffter et al., 1996), 14 (Heckel 
et al., 2015), 15 (Roxo-Rosa et al., 2015), 16 (Cao et al., 2009). 
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Table 9 pkd2 morpholinos and respective morphant animals described to date (accession 02.09.2016) according 
to zfin.org.  References: 1 (Sun et al., 2004), 2 (Cao et al., 2009), 3 (Fogelgren et al., 2011), 4 (Giamarchi et al., 
2010), 5 (Paavola et al., 2013), 6 (Schottenfeld et al., 2007), 7 (Sullivan-Brown et al., 2008),  8 (Francescatto et al., 
2010), 9 (Sussman et al., 2014), 10 (Zhao et al., 2011), 11 (Pavel et al., 2016), 12 (Bisgrove et al., 2005), 13 (Obara et 
al., 2006), 14 (Coxam et al., 2014), 15 (Goetz et al., 2014), 16 (Mangos et al., 2010), 17 (Fu et al., 2008), 18 (Gao et 
al., 2010), 19 (Kottgen et al., 2008), 20 (Le Corre et al., 2014), 21 (Vasilyev et al., 2009), 22 (Roxo-Rosa et al., 2015). 

Renal cyst formation has so far only been observed in pkd2 morphants but not in mutants, 

see Table 8 and Table 9 (also described by (Cao et al., 2009; Schottenfeld et al., 2007; Sun et 

al., 2004)). Generally, pkd2 morphants have been shown to develop cystic kidneys, left-right 

asymmetry defects and dorsal-axis curvature - except for renal cysts, these phenotypes have 

been confirmed in mutants. Even though a variety of mutants with renal dilations have been 

associated with body axis curvatures, almost all descriptions encompass ventrally curved 

body axes (Drummond et al., 1998). This makes the curly up or cup phenotype unique. An 

altered ECM has long been associated with ADPKD in human and animal tissues, as well as 

cell culture models and mRNA expression in these tissues shows an upregulation in matrix 

genes (Candiano et al., 1992; Riera et al., 2006; Schafer et al., 1994; Somlo et al., 1993). In 

chemical pkd2 knockdown with a morpholino, it has been shown that the curvature 

phenotype is linked to alterations in ECM secretion or assembly (Mangos et al., 2010). An 

analysis of somite and actin fibre morphology revealed no significant difference (Freek van 

Eeden, unpublished), supporting the theory of ECM overproduction as the primary cause 

for dorsal axis curvature rather than other structural defects (Mangos et al., 2010). 

A number of pathways that seem to influence the curly tail phenotype have been proposed 

and are summarised in Table 10. Published work suggests that increased collagen production 

(Mangos et al., 2010) and/or deposition (Le Corre et al., 2014) play major roles in causing the 
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curly tail phenotype. Generally, pkd knockdown or knockout is characterised by an 

upregulation of collagen-synthesising enzymes (confirmed by in situ hybridisation) and 

knockdown of one of these enzymes, col2a1 (collagen type II alpha 1), reduced the dorsal axis 

curvature (Mangos et al., 2010). Furthermore, knockdown of sec10, an exocyst protein linked 

to ciliogenesis, as well as sec24d knockdown, involved in Golgi to ER transport, caused a 

decrease in curvature severity (Fogelgren et al., 2011; Le Corre et al., 2014). Interestingly, 

chemical knockdown of Golgi/ER transport with Brefeldin A (BFA) also reduced the cup 

phenotype. In combination, these experiments suggest that ECM overproduction and/or 

overdeposition cause the curly tail in pkd-deficient animals. HDAC inhibition also seems to 

decrease curvature severity in pkd2 mutants via an unknown mechanism (Cao et al., 2009). 

cAMP has been implicated in the curvature phenotype with the observation that knockdown 

of pde1a (phosphodiesterase a 1), a calcium-inducible cAMP-degrading enzyme, aggravates the 

pkd2 curly tail (Sussman et al., 2009). Of note, cell culture experiments have revealed a 

complicated relationship of cAMP levels and collagen expression via TGFβ (Perez-Aso et al., 

2014). Moderate stimulation with cAMP (~ 150% control concentration) stimulated collagen 

1 and 3 syntheses whereas maximal increases of cAMP (~ 16,000% of control) inhibited 

collagen 1 but increased collagen 3 production via the TGFβ pathway (Perez-Aso et al., 2014). 

 
Table 10 List of pathways influencing zebrafish the pkd2 curvature phenotype. References: 1 (Mangos et al., 2010), 
2 (Fogelgren et al., 2011), 3 (Le Corre et al., 2014), 4 (Cao et al., 2009), 5 (Sussman et al., 2014). 

No significant differences were observed at early developmental stages when blood velocity, 

heart rate and cardiac output in pkd2 mutant with WT animals were compared (Freek van 

Eeden, unpublished). However, a recent study reported lower heart rates and increased 

arrhythmia in pkd2 mutants (Paavola et al., 2013). As systole and peak velocities were similar 

in WT and pkd2 mutants a diastolic dysfunction has been suggested. Using isolated hearts in 

pacing chambers revealed impaired intracellular calcium cycling with the lack of a plateau 

phase (Paavola et al., 2013). Additionally, heart looping is randomised in pkd2 knockdown 

and knockout animals (Sun et al., 2004).  
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10. Project aims 

This project has three main aims: the phenotypic study of zebrafish ADPKD models, 

utilisation of one of these models in a large-scale compound screen and evaluation of renal 

calcium levels in vivo in wild-type animals and ADPKD zebrafish models. 

During the characterisation of ADPKD zebrafish models, pkd2 morphants, the 

pkd2hu2173/hu2173 mutant and a cystic disease zebrafish model, the ciliary elipsa mutant, were 

phenotypically examined. Based on a study in mouse models (Ma et al., 2013), complex 

interactions of cilia and pkd2 were hypothesised which were re-evaluated in zebrafish. To 

this purpose, a cilia/pkd2 double knockout line were be created in this project to compare 

zebrafish phenotypes to findings in murine studies.   

Subsequent to the initial characterisation, an in vivo compound screen was be conducted on 

one of the models with an ADPKD-related phenotype as readout. Cao et al. have shown that 

the curvature phenotype is a suitable read-out in a small-scale chemical screen (Cao et al., 

2009). In this project a large-scale compound screen with two chemical libraries, spanning 

~2400 small molecules, was conducted and findings were validated in two independent 

three-dimensional cyst culture models. The cell lines used for this purpose comprise canine 

MDCKII cells, a well-established renal cyst model, and human PKD1-/- Ox161c1 cells. 

Lastly, a zebrafish renal calcium-reporter line was be established to study pronephric calcium 

levels in vivo. This was be the first description of pronephric calcium in zebrafish and the first 

in an intact organism (murine studies depend on the exteriorisation of the organ due to their 

opaque skin (Burford et al., 2014; Szebenyi et al., 2015)). Cell culture experiments suggest 

lower intracellular calcium in PKD-deficient cells, therefore lower pronephric calcium levels 

were be expected in pkd2-/- zebrafish embryos. After the initial characterisation of renal 

calcium in wild-type animals and ADPKD models, the compounds identified during the 

chemical screens were tested on their ability to modify pronephric calcium. 

In conclusion, novel insights into the interplay between ADPKD and its modifying factors 

were be gained during this project and, hopefully, new avenues for potential therapeutic 

targets of this devastating disease were be presented.   
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Materials and Methods 

1.1. Zebrafish maintenance 

Zebrafish were kept under standard conditions (14 h light/10 dark cycle, temperature 26 – 

28 °C (Brand et al., 2002)). Rearing occurred in E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 

mM MgSO4, 0.33 mM CaCl2 and methylene blue) and staging according to (Kimmel et al., 

1995). To prevent pigmentation, larvae were treated with PTU (phenylthiourea) beginning 

24 hpf (28 °C) when necessary (Karlsson et al., 2001). Zebrafish lines in this project included, 

amongst others, LDWT (London wild type), AB, wt1b:GFP, UAS:GCaMP7a and pkd2hu2173. 

The wt1b:GFP line was originally generated by (Perner et al., 2007) and exhibits GFP 

fluorescence from 17 hpf in all parts of the developing pronephros. GFP expression in this 

line has also been described in the exocrine pancreas, gut, heart sac, eyes and gill arches. The 

elipsatp49d mutant strain, is a ciliary mutant (point mutation, leading to a truncation of the 

protein) with loss of cilia from 30 hpf and was kindly provided by Jarema Malicki (Omori et 

al., 2008). GCaMP7a allows real-time visualisation of intracellular calcium concentrations as 

it is a modified GFP that increases fluorescence in Ca2+ presence (Muto et al., 2013). Animals 

were sacrificed using an overdose of Tricaine and fixed in 4 % PFA/PBS 

(paraformaldehyde/phosphate buffered saline).  All procedures adhered to Home Office 

legislation. 

1.2. Morpholino injections 

Morpholinos are nucleic acid analogues complementary to an RNA target region and capable 

of knocking down the expression of a specified gene. In this project a previously published 

pkd2 morpholino (Sun et al., 2004) complementary to the ATG region of the zebrafish pkd2 

gene (5’-AGGACGAACGCGACTGGAGCTCATC-3’) and a p53 morpholino (5’-

GCGCCATTGCTTTGCAAGAATTG-3’) were injected into the 1- or 2-cell stage of 

zebrafish embryos. The morpholinos were synthesised by Gene Tools, LLC/USA. The final 

amounts injected of the pkd2 morpholino were 2 ng/embryo and 1 pmol/embryo for the 

p53 MO in a volume of 1 nl.  

1.3. Creating transgenic zebrafish lines 

Plasmids were created using the MultiSite Gateway Three-Fragment Vector Construction 

Kit (Invitrogen/USA) according to manufacturer’s instructions. The fluorescent marker 

cmlc2:eGFP was used to visualise the transgenes (cmcl2, cardiac myosin light chain 2, drives 

expression in the heart, (Huang et al., 2003)). Transgenic lines created during this project 

comprise of enpep:Gal4 and podocin:Gal4. The podocin promoter (He et al., 2011) was derived 

from a plasmid kindly provided by Lwaki Ebarasi from the Karolinska Institute, 
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Stockholm/Sweden, the enpep promoter was cloned by Eleni Leventa and cloned into a 

middle entry vector during this project (promoter described in (Seiler et al., 2011)) and the 

Gal4 plasmid was obtained from Nikolay Ogryzko. Final constructs contained a cmlc2:GFP 

marker and Tol2 sites and were coinjected at 25 ng/nl with 25 ng/nl Tol2 mRNA (transcribed 

with mMessage mMachine kit (Life Technologies/USA) according to manufacturer’s 

instructions) into one-cell stage embryos. Subsequently founders were identified by screening 

the offspring for GFP fluorescence and stabile transgenic lines established. 

1.4. DNA extraction 

1.4.1. DNA extraction from multiple embryos 

Up to 20 embryos were placed in 310 µl extraction buffer (10 mM Tris HCl pH 8, 10 mM 

EDTA, 100 mM NaCl), 2% SDS (sodium dodecyl sulphate) and 4 µl 25 mg/ml proteinase 

K and incubated 75 minutes at 42 °C. After the tissue was dissolved, the solution was 

centrifuged for 5 min at 13000 rpm and the supernatant transferred into a sterile Eppendorf 

tube. 225 µl 4 M NaCl were added, the solution was mixed and centrifuged for 5 min at 

13000 rpm. The supernatant was transferred into a sterile Eppendorf tube and 420 µl 

isopropanol were added. The components were mixed and centrifuged for 5 min at 13000 

rpm. The supernatant was discarded and the DNA pellet washed with 250 µl 70 % EtOH, 

centrifuged briefly and the supernatant was discarded. This last wash step was repeated a 

second time. The pellet was then air-dried after which the DNA was diluted in 50 µl TE 

buffer (10 mM Tris pH 8 and 1 mM EDTA).  

1.4.2. DNA extraction from single embryos 

DNA extraction from single embryos was necessary for various applications, such as 

sequencing fish imaged on the lightsheet.  

Single embryos were dechorionated, placed individually in sterile tubes and 50 µl of embryo 

digestion buffer (10 mM Tris HCl pH 8, 1 mM EDTA, 0.3 % Tween20 and 0.3 % NP40) 

were added. The embryos were subsequently heated for 10 min to 98 °C after which 2 µl 

proteinase K stock solution (25 mg/ml stock) were added. The embryos were then kept at 

55 °C for 3 h, which was followed by an inactivation step for 10 min at 98 °C. 2 µl supernatant 

was subsequently used for PCR reactions.  

 

 

http://www.bms.dept.shef.ac.uk/personnel/person.php?id=294
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1.4.3 DNA extraction from fin clips 

DNA extraction from fin clipped tissue is typically used to identify carriers of recessive 

phenotypes such as pkd2hu2173 or elipsa.  

Fin clips were conducted according to Home Office recommendations and clipped materials 

were transferred directly into 50 µl fresh base solution (1.25 M KOH and 10 mM EDTA in 

MilliQ H2O) in a 96-well plate. The removed tissue was then incubated for 30 minutes at 95 

C and the plate vortexed for 5 seconds. Subsequently 50 µl neutralisation buffer (2 M 

TrisHCl in MilliQ H2O) were added to each sample and the plate vortexed again for 10 

seconds. Lastly, the extract was centrifuged for 2 min at maximum speed and 1.5 µl 

supernatant used per PCR reaction. 

1.5. Bacterial cultures, plasmid isolation and restriction digests 

Plasmid or circular DNA can easily be propagated and multiplied in bacteria such as New 

England Biolabs’ 10-beta E. coli strain. The transformation of plasmids into 10-beta cells 

occurred according to manufacturer’s specifications. Bacterial colonies were selected with 50 

µg/ml kanamycin, 100 µg/ml carbenicillin or 12.5 µg/ml chloramphenicol depending on 

plasmidic antibiotic-resistance genes.  Glycerol stocks were prepared with a 1:1 ratio of 

culture and 80 % filter sterilized glycerol and stored at – 80 °C. For most subsequent 

applications the plasmid DNA was re-extracted from the bacteria. For small bacterial cultures 

(up to 10 ml) this was done using the QIAprep Spin Miniprep Kit (Qiagen/the Netherlands) 

according to the manufacturer’s manual. For larger cultures up to 100 ml the NucleoBond 

Xtra Midi Kit (Macherey-Nagel/Germany) was employed according to manufacturer’s 

instruction for high-copy plasmid purification protocol.  

Restriction enzymes digests, e.g. to test whether a plasmid contains expected sequences, were 

performed with New England BioLabs (USA) enzymes according to manufacturer’s 

instructions.  

1.6. PCR 

PCRs were conducted according to manufacturer’s specifications with 2x ReddyMix by 

Thermo Scientific/USA, 5x Firepol Master Mix by SolisBioDyne/Estonia or Phusion High-

Fidelity DNA Polymerase by New England BioLabs/USA. High-fidelity polymerases are 

less likely to produce mistakes while amplifying and were used in sensitive applications such 

as cloning. The subsequent table lists (Table 11) the oligonucleotides (designed with Primer3) 

used in various PCR applications. Generally, an annealing temperature of 50 °C was used.  

Primer name Primer sequence 

Aa changes 1_for CGCATTTTCGCATTAAGACAGA 
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Aa changes 1_rev TCTCCAGTATCCTCTTCCCAC 
Aa changes 2_for AGCAGATGGACAGGTTGGTT 
Aa changes 2_rev GTTGATTTGTGCAAGCTGTGT 
attB1R-podocin GGGGACTGCTTTTTTGTACAAACTTGCCGTGATCAGAGATCTGTTG 
attB4F-podocin GGGGACAACTTTGTATAGAAAAGTTGTCTTGAAGACAATCGCGGGTT

A 
elipsa for new TGTCTGTTTTCCAGGAGAGGA 
elipsa ID for TGTCTGTTTTCCAGGAGAGGA 
elipsa ID rev CTTCTCTCGTTCCCGCTCTT 
elipsa rev new TCTCTTTCTCGGCCTTTGTC 
Gal4 probe For primer TCTATCGAACAAGCATGCGA 
Gal4 probe Rev primer TAATACGACTCACTATAGGGACCTTTGTTACTACTCTCTTCCG 
pkd2 seq for TTTGTGTGGGTCTGGAATGA 
pkd2 seq for new ATGAGGATCTGCGAGACGAG 
pkd2 seq new new for CAATGAGGACAAGGCACCAT 
pkd2 seq rev CTGGGATCGACAACAAGACA 
pkd2 seq rev new GAAGTCCAAGAACACCGCTC 
Seq enpep clones For TGAGGAGAGTGTGTGGGTTC 
Seq enpep clones Rev CGACGGCCAGTGAATTATCA 
Seq podocin clones For GCACTGGCCTCCTGATATACT 
Seq podocin clones Rev CGACGGCCAGTGAATTATCA 

Table 11 List of oligonucleotides ordered from IDT (Integrated DNA Technologies, USA) used in various PCR 
applications.  

1.6.1. PCR purification 

PCR products have to be purified and cleaned of salts and residual nucleotides for certain 

applications such as DNA sequencing. This was done for cloning purposes by either using 

the MinElute PCR Purification Kit (Qiagen/the Netherlands) or, if unspecific amplification 

had occurred, the MinElute Gel Extraction Kit (Qiagen/the Netherlands) according to the 

manufacturer’s manuals. For sequencing, if no unspecific amplification occurred, PCR 

product was purified by adding 5 µl product to 3.95 µl MilliQ H2O, 0.05 µl Exonuclease I 

and 1 µl SAP (shrimp alkaline phosphatase) before incubation for 45 min at 37 °C and 

inactivation for 15 min at 80 °C.  

1.7. Measurement of glomerular and tubular dilation 

To measure the pronephros pkd2hu2173/hu2173-/-;wt1b:GFP embryos and wt1b:GFP-positive 

siblings were anaesthetised and immobilised in methylcellulose. Imaging occurred dorsally 

and glomerular area or tubular diameter was measured using ImageJ. Statistical analysis was 

conducted with GraphPad Prism. 

1.8. Antibody staining 

To assess cellular proliferation in the pronephric kidney a phospho-Histone H3 (pH3) 

antibody was chosen to stain cells in M-phase. 

Embryos were fixed overnight in 4 % PFA and transferred into methanol (MeOH) via a 

series of increasing concentration. Embryos were stored at – 20 °C in 100 % MeOH. Staining 

commenced by rehydrating the embryos with a series of increasing concentrations of PBTw 
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(PBS with 0.1 % Tween-20) in MeOH followed by 4 washes of 5 min in PBTw. To improve 

permeabilisation embryos were incubated for 1 h in 10 µg/ml proteinase K, refixed in 4 % 

PFA for 20 min, washed 5 times for 5 min in PBTw and subsequently incubated in acetone 

form 7 min at – 20 °C. This was followed by 5 washes of 5 min in PBTw and a 2 h incubation 

step at room temperature in blocking solution (2 % blocking reagent, 0.1 % v/v Triton X-

100, 1 % DMSO). The primary antibody then was applied at a concentration of 1:200 

(ab5176) in blocking solution overnight at 4 °C. The following day the solution was removed, 

followed by five 20-minute washes in PBTw, a second 2 h block in blocking solution and 

incubation with the secondary antibody at a concentration of 1:1000 (Alexa Fluor 488). This 

was followed by five 20-minute washes, refixation in 4 % PFA for 30 min and transfer to 80 

% glycerol via a series of increasing glycerol concentration. Stained embryos were stored at 

– 20 °C until imaging. 

1.9. In situ hybridisation 

To image gene-expression patterns in situ hybridisation was performed which allows 

visualisation of mRNA expression. 

In situ probe synthesis was achieved by mixing the following reagents at room temperature 

(in order) before incubation for 2 h at 37 °C 1 µg linearised template DNA, MilliQ H2O (to 

13 µl total), 2 µl 10x DIG-UTP NTP labelling mix, 4 µl 5x transcription buffer, 0.5 µl RNAse 

inhibitor and 1 µl T7 RNA polymerase. Afterwards 1 µl of RNAse-free DNAseI was added 

before continuing incubation at 37 °C for another 20 min and stopping the reaction by 

adding 1 µl 0.5 M EDTA. Removal of DNA was checked on an agarose gel before continuing 

as follows: add 80 µl MilliQ H2O and vortex, precipitate RNA with 33 µl 10 M NH4Ac and 

350 µl ice cold EtOH by incubating at -20 °C for 2 h, spin at 13,300 rpm and 4 C for 30 

min and wash pellet with 0.5ml 70% ETOH before a final spin at 13,300 rpm at 4 C for 10 

minutes. The supernatant was then removed, the pellet air-dried for ca. 5 min, resuspended 

in 100 µl MilliQ H2O and stored at -80 C. Typically 1 µl probe was used for 200 µl 

hybridisation mix. 

Embryos were fixed overnight in 4 % PFA and transferred via a series of increasing 

concentration into methanol. Embryos were stored at – 20 °C in 100 % MeOH at least over 

night. Staining commenced by rehydrating the embryos with a series of increasing 

concentrations of PBTw in MeOH followed by 4 washes of 5 min in PBTw. To improve 

permeabilisation embryos were incubated for 30 min in 10 µg/ml proteinase K (in 48 hpf 

embryos, 24 hpf embryos require no proteinase K treatment), refixed in 4 % PFA for 20 min 

and washed 3 times for 5 min in PBTw. Embryos where then incubated in pre-hybridisation 
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mix (50 % formamide, 5x SSC (saline-sodium citrate buffer), 0.1 % Tween20, 9.2 mM citric 

acid, 50 mg/ml heparin, 500 µg/ml tRNA – all diluted in MilliQ H2O) for 1 h at 70 °C. The 

hybridisation mix was subsequently replaced with pre-hybridisation mix containing 500 ng 

probe and incubated over night at 70 °C.  Next day the following washes occurred at 70 °C: 

100% hybridisation buffer (50 % formamide, 5x SSC, 0.1 % Tween20, 9.2 mM citric acid – 

all diluted in MilliQ H2O) for 5 min, 75% hybridisation buffer/25 % 2x SSC for 15 min, 50% 

hybridisation buffer/50 % 2x SSC for 15 min, 25% hybridisation buffer/75 % 2x SSC for 

15 min and 2x SSC for 15 min. Subsequently the following washes occurred at room 

temperature: 75% 0.2 x SSC/25 % PBTw for 10 min, 50% 0.2 x SSC/50 % PBTw for 10 

min, 25% 0.2 x SSC/75 % PBTw for 10 min and PBTw for 10 min. The samples were then 

incubated in blocking buffer (2 % blocking reagent in PBTw) at room temperature for several 

hours before a 1:5000 solution of anti-DIG antibody in blocking reagent was applied and 

samples transferred onto a shaker at 4 °C in the dark. On the third day of staining all steps 

were conducted at room temperature in the dark: First, a quick rinse with PBTw and four 

half-hour washes with PBTw were done, followed by applying an alkaline phosphate (AP) 

buffer (100 mM Tris pH 9.5, 100 mM NaCl, 0.1% Tween20 in MilliQ H2O) for 15 min which 

was subsequently exchanged for AP buffer with 50 mM MgCl2 (remainder as before) in two 

washes of 10 min. For the final staining 3.4 µl NBT and 3.5 µl BCIP were added per ml of 

AP buffer and the staining developed in the dark and checked regularly. Once the staining 

had reach sufficient colouring, the reaction was stopped by washing embryos three times for 

5 min at 4 °C in the dark.  

1.10.  In vivo compound screen on pkd2-/- zebrafish  

1.10.1. High-throughput compound screen 

To conduct a high-throughput chemical screen exposing pkd2-/- zebrafish to two chemical 

libraries, Microsource Discovery’s Spectrum library and the Published Kinase Inhibitor Set 

(PKIS, formerly GlaxoSmithKline and subsequently transferred to the University of North 

Carolina), zebrafish embryos were exposed in the following manner: 

At ca. 24 hpf chorions were removed with pronase (2 mg/ml for 13 minutes), embryos were 

washed briefly and transferred back to 28 °C. As the curly tail phenotype does not appear at 

the same stage in all embryos (onset approx. 27 – 30 hpf), pkd2 mutants were sorted into a 

separate dish containing screening medium (E3 medium, 0.75 x PTU and 1 % DMSO) as 

the curvature became apparent. Three embryos were subsequently transferred in 150 µl 

screening medium to each well of a 96-well plate and 100 µl prepared compound solution 

(compound diluted in screening medium, prepared the day prior and kept at – 20 °C) were 
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added to a final compound concentration of 10 µM. Exposed plates were incubated at 28 °C 

for 24 hpf before imaging each well with the Ash Phenosight system (automated 96-well 

plate microscope taking a single brightfield and GFP fluorescent image of each well allowing 

image acquisition of one plate in 10 minutes). Curvature analysis commenced using ImageJ 

software with the method described in (Mangos et al., 2010). DMSO exposed controls were 

eventually combined as no significant differences between experimental days were observed 

and a large control group was established 

Initial hits were chosen via a student’s t-test and re-tested in a second round. Additionally, 

all compounds were re-tested where more than one embryo had died in the previous 

exposure round. Compounds were either re-tested at 10 µM (if it was apparent that one 

decaying embryo had deprived the others of oxygen needed for development) or 0.3 µM if 

the compound was toxic, after careful assessment of the images. Final hit compounds were 

determined using one-way anova analysis combining all data collected. 

Subsequently hit compounds were re-ordered and re-testing commenced using the same 

conditions as before, also testing a variety of concentrations, or by starting exposures at late 

epiboly stages, in the latter embryos were not dechorionated. Imaging always commenced 

between 49-52 hpf (curvature is fully developed by 48 hpf and remains stable). Hit 

compound sources are listed below in Table 12 and further compounds of interest, which 

were ordered for mechanistic studies, are catalogued in Table 13.  

Chemical Supplier Cat no. 

2,5-di-tert-butyl-4-hydroxyanisole Sigma-Aldrich 447323 

diclofenac Sigma-Aldrich 93484 

zinc pyrithione Sigma-Aldrich H6377 

5alpha-androstan-3,17-dione Microsource Discovery Systems, Inc. 00107108 

5,7,4’-trimethoxyflavone Microsource Discovery Systems, Inc. 00300384 

hexamethoxyquercetagetin Microsource Discovery Systems, Inc. 01505383 

prenyletin Microsource Discovery Systems, Inc. 00100101 

pimpinellin Microsource Discovery Systems, Inc. 00300013 

sphondin Microsource Discovery Systems, Inc. 00300005 
Table 12 Hit compounds re-ordered due to screen. 

Chemical Supplier Cat no. 

flutamide  Sigma-Aldrich F9397 

naringenin Sigma-Aldrich W530098 

nifedipine Sigma-Aldrich N7634 

sodium pyrithione Sigma-Aldrich H3261 

testosterone Sigma-Aldrich R1881 

11-ketotestosterone Sigma-Aldrich K8250 

Bay K8644 Sigma-Aldrich B112 

Tolvaptan Sigma-Aldrich T7455 

Zinc chloride BDH 103794P 
Table 13 Further compounds to study mechanistic functions.  
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All chemical structures shown in this thesis were obtained from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/) and can still be accessed there. 

1.10.1. Compound exposure with more than three larvae 

After initial screening was completed and exposure of more than three embryos per 

treatment group became desirable, in particular for exposure of renal GCaMP7a embryos, 

exposures were conducted with up to 20 embryos per well in 6-well plates with 3 ml medium 

while keeping all other conditions the same unless otherwise stated. For earlier exposures, 

for example from epiboly, dechorionating was not an option as the embryos are too fragile 

at these states and exposures were conducted without removing the chorion. Thapsigargin 

treatments occurred by exposing the fish to 5 µM thapsigargin for 25 min and 2-APB (2-

aminoethoxydiphenyl borate) was exposed for 2 h. 

1.11.  Cell culture 

Cells were thawed after removal from the liquid nitrogen tank by heating them gently until 

semi-liquid, adding medium and transferring them to a prepared T75 flask with medium. To 

freeze cells confluent flasks were trypsinized, cells centrifuged for 5 min at 1000 rpm and 

resuspended in 90 % growth medium/10 % DMSO before rapidly transferring them to -80 

°C in an appropriate box.  

Cell lines were maintained in T75 flasks with the appropriate medium at the appropriate 

temperature. Canine MDCKII cells (first described in (Barker et al., 1981)) were grown at 37 

°C in Gibco DMEM/F-12 medium with 10 % FBS, 1 % Penicillin/Streptomycin and 1% L-

glutamine. Immortalised, patient-derived Ox161c1 cells (first described in (Parker et al., 

2007)) were grown at 33 °C in Gibco DMEM/F-12 medium with 5 % Nu-Serum, 1 % 

Penicillin/Streptomycin and 1% L-glutamine.   

1.12.  Three-dimensional cyst culture 

Three-dimensional cyst assays have been a long-standing method of studying cyst formation 

processes (McAteer et al., 1986; Yamaguchi et al., 1995). In 3D assays, cells are seeded into a 

matrix (i.e. collagen or matrigel) where they grow into spherical cysts over time (ca. 20 days) 

and are supplied with nutrients and/or drugs from the medium above (see Figure 12). After 

the growth/exposure period, the cysts are imaged and cyst size can be analysed as a marker 

for expansion or reduction processes. Two cell lines, which have been used during this 

project, will be described in more detail in the next two paragraphs. 
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Figure 12 Schematic depiction of a three-dimensional cyst assay. 

 

1.12.1. MDCKII cells 

MDCKII cells were isolated in 1958 from normal renal epithelial cells of a female Cocker 

Spaniel (Barker et al., 1981). This cell line is able to form cysts in a collagen matrix and has 

been shown to exhibit a well-established cell polarity with distinct basolateral and apical 

polarization (McAteer et al., 1986; O'Brien et al., 2002). Forskolin, an activator of adenylate 

cyclase, has been shown to have very strong cystogenic effects (Yamaguchi et al., 2000), 

(Hanaoka & Guggino, 2000; Yamaguchi et al., 1995)). Although MDCKII cells have not been 

derived from an ADPKD model, the common underlying processes of cystogenesis have 

been studied in depth using this line. Figure 13 depicts an example of typical DMSO and 

forskolin treated MDCKII cyst cells after 19 days of exposure. 

 
Figure 13 Example images at the endpoint of 3D cyst culture with MDCKII cells. (Left) DMSO control at day 19. 
(Right) 5 µM forskolin positive control at 19 days of exposure.  

Cells were grown to confluence, washed in PBS, trypsinized before centrifuging for 5 min at 

1000 rpm and resuspended in small amount of medium (ca. 400 µl). 70 % rat tail collagen, 

20 % 11.76 mg/ml NaHCO3 and 10 % 10 x MEM (minimum essential medium) were mixed 

gently on ice and 20,000 cells/ml matrix were added. 70 µl of collagen/cell mix was 

subsequently added to each well in a 96-well plate which polymerised in the incubator for ca. 

10 min. Afterwards medium was added (Gibco DMEM/F-12 medium with 10 % FBS, 1 % 

Penicillin/Streptomycin and 1% L-glutamine) containing DMSO as control or the 

compounds of interest. 5 µM forskolin served as positive control. The medium (with 

compound) was prepared at the day of seeding the cells in a quantity sufficing the entirety of 
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the assay. Medium on the cells was exchanged every 2-3 days for 19 days. Cysts were imaged 

on days 10, 14 and 19 and analysed with ImageJ. 

The rat tail collagen (enriched with collagen-I) had been extracted previously by one of my 

colleagues using the following protocol: Rat tail tendons were removed with forceps and 

kept in PBS on ice before discarding the PBS and adding 100 ml of 0.1 % acetic acid per rat 

tail. This mixture was stirred at 4 °C for a minimum of 72 h before centrifugation at 27,000 

g for 20 min at 4 °C. The supernatant was used in subsequent experiments and stored at 4 

°C. 

1.12.2. Ox161c1 cells 

Ox161c1 cells were derived from cystic renal tubules of a female ADPKD patient with a 

PKD1 null-mutation in the N-terminal extracellular domain. The cells were subsequently 

immortalized and found to form cysts when grown in a matrigel matrix (Parker et al., 2007). 

The Ox161c1 cell line was obtained by transducing a primary culture with a replication-

defective retroviralnvector (containing the temperature-sensitive LT antigen and the catalytic 

subunit of human telomerase). The LT antigen destabilizes at higher temperatures whereas 

a shift to 33 °C allows normal proliferative growth (Streets et al., 2003). The PKD1 mutation 

in this cell line is predicted to cause a truncating mutation and the cells can therefore be 

described as PKD1-/- Human Ox161c1 cells form markedly smaller cysts and forskolin has a 

less pronounced effect in comparison to canine MDCKII cells. Although this cell line is less 

robust, it carries a PKD1 mutation and thus can more closely the disease state. Figure 14 

displays Ox161c1 cells exposed to DMSO or forskolin for 20 days. 

 
Figure 14 Example images at the endpoint of 3D cyst culture with Ox161c1 cells. (Left) DMSO control at day 20. 
(Right) 5 µM forskolin positive control at 20 days of exposure. 

Cells were grown to confluence, washed in PBS, trypsinized before centrifuging for 5 min at 

1000 rpm and resuspended in small amount of medium (ca. 400 µl). Matrigel and 20,000 

cells/ml matrix were mixed gently on ice. 100 µl of matrix/cell mix was subsequently added 

to each well in a 96-well plate which polymerised in the incubator for ca. 10 min. Afterwards 

supplement medium was added (Gibco DMEM/F-12 medium with 10 % FBS, 1 % 

Penicillin/Streptomycin, 1% L-glutamine, 10 ng/ml hEGF, 5 µg/ml Hydrocortisone and 1x 
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ITS) containing DMSO as control or the compounds of interest. 5 µM forskolin served as 

positive control. The supplement medium (with compound) was prepared at the day of 

seeding the cells in a quantity sufficing the entirety of the assay. Medium on the cells was 

exchanged every 2-3 days for 20 days. Cysts were imaged on days 10, 14 and 20 and 

subsequently analysed with ImageJ. 

1.13.  Lightsheet microscopy 

Alternatively to confocal microscopy, which illuminates the entire sample at once, usually 

with a high laser power, lightsheet microscopy has been established in recent years and 

commercial microscopes have become available such as the Zeiss Lightsheet Z.1 system. In 

lightsheet microscopy, only a very thin plane of the embryo is illuminated at a very low light 

intensity, causing less damage to the animals and a lower amount of GFP-bleaching. 

For lightsheet microscopy, anaesthetised embryos were immobilised using 0.8 – 1 % low-

melt agarose, which was drawn up with the embryo into a thin glass capillary where it 

polymerised. During the imaging process, the embryos were suspended from the capillary in 

an agarose cylinder into the imaging chamber containing embryo medium with tricaine. 

Images were processed with the ZEN black software from Zeiss. 

 

1.14. Statistical analysis 

All statistical analyses were performed using the GraphPad Prism software. The relevant 

analyses, as required for the individual datasets, were conducted and detailed information 

about the tests used is stated in the legend of each figure where appropriate. Data that did 

not reach statistical significance but exhibited a recognisable behaviour, judged by eye, are 

referred to throughout this thesis as “trends”. No particular threshold of p-values was 

applied for such a statement.  
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Results and Discussion Chapter 1: Characterisation of 
zebrafish PKD models 

 

Introduction 

 

Zebrafish pkd2 mutants and morphants share some phenotypes, like L/R patterning defects 

and a curly up tail, other traits, however, such as renal dilations, have been described 

exclusively in knockdown animals (see Introduction Chapter 9.2.). In order to select a trait 

for chemical library screens, the main aim of this project, a detailed characterisation of the 

pkd2hu2173 allele animals and pkd2 morphants was carried out. 

Furthermore, ADPKD is described to be a ciliopathy although a variety of arguments can 

be made against such a classification (see Introduction Chapter 8.). However, as PC2 and the 

PC-complex are localised to a large extent in primary cilia, the effect of cilia-abolition is of 

interest in pkd2-/-. Particularly so, as a previous publication in a mouse model described that 

loss of cilia in  Pkd mutants improved the renal cystic phenotype (Ma et al., 2013). This 

publication reports that crossing Pkd mutant lines, which develops very large renal cysts, to 

a ciliary mutant line (Kif3a), which develops small kidney cysts, led to a less severe cystic 

phenotype in the double mutant animals compared to the Pkd single mutants (but cysts were 

still more severe than in the Kif3a mutant line). This research suggests that loss of 

malfunctioning ciliary polycystins is beneficial in an ADPKD model.  

The elipsatp49d, referred to as elipsa, mutant strain was first described in (Drummond et al., 1998) 

and further characterised in (Omori et al., 2008) as a ciliary mutant. It probably has early 

ciliogenesis (since there are no observed L/R polarity defects, see Figure 27 A), but lacks 

cilia from at least 30 hpf (personal communication Niedharsan Pooranachandran). elipsa (or 

traf3ip1) encodes a ciliary trafficking protein that mediates interactions between ift20 and rab8 

and this complex in turn facilitates IFT (intraflagellar transport) particle movement along the 

ciliary axoneme. Loss of elipsa therefore leads to loss of ciliogenesis. The elipsa transcript was 

reported as enriched in ciliated tissues such as the olfactory pits, lateral line organs and 

pronephric ducts (Omori et al., 2008). elipsa mutants developed dilated pronephric glomeruli 

and tubules as well as a ventral axis curvature, which is characteristic for many ciliary mutants 

((Kramer-Zucker et al., 2005; Sullivan-Brown et al., 2008), example in Figure 24 B). A curly 

down tail is not always accompanied by pronephric dilations (Brand et al., 1996; Sullivan-

Brown et al., 2008) but it is commonly associated with disruptions of the intraflagellar 

transport, like in elipsa mutants. 
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In the following chapter pkd2 mutants, pkd2 morphants and the ciliary elipsa mutant, as well 

as a cross of the two mutant lines, will be described in detail. 

 

Results 

 

11. Characterisation of pkd2 models 

11.1. pkd2hu2173 mutation 
 

The pkd2hu2173/hu2173-/- zebrafish mutant, henceforth referred to as pkd2-/-, was created during 

an ENU-mutagenesis screen and carries a point mutation in exon 5, leading to a truncated 

protein (Freek van Eeden, unpublished). In this mutant allele a guanine base is replaced with 

an adenine base in position 1327 of the mRNA (see Figure 15 A), resulting in a stop codon 

at amino acid 302 of 904. The truncation occurs in the first extracellular loop (Figure 15 B). 

The channel pore of the PC2 protein is formed by the two transmembrane domains closest 

to the C-terminus (Pavel et al., 2016) and as the pkd2hu2173 allele is predicted to result in a 

truncation in the first extra-cellular loop, well before the channel pore, presumably causing 

a null mutation. Phenotypically, the pkd2-/- zebrafish mutant shows the typical body axis 

deformation with its upward curled tail described for pkd2 morpholino-injected embryos 

(chemical gene knockdown, originally described in (Sun et al., 2004)), see Figure 17.  

  
Figure 15 (A) Aligned DNA sequences of WT, pkd2+/- and pkd2-/-; mutation of pkd2hu2173 framed by orange box. 
(B) Schematic depiction of polycystin 2 with the approximate site of truncation in pkd2hu2173 marked with red 
arrow. (C) PC2 amino acid alignments for zebrafish WT and pkd2hu2173, human and mouse.  
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11.1.1. Mutant development 

pkd2-/- zebrafish embryos develop the characteristic dorsal axis tail curvature previously 

described in pkd2 morphants (Cao et al., 2009; Schottenfeld et al., 2007; Sun et al., 2004) which 

has been attributed to excessive extracellular matrix deposition (Mangos et al., 2010) or 

production (Le Corre et al., 2014). This unique tail phenotype led to the original dubbing of 

the mutant strain as “curly up”, or “cup” (Brand et al., 1996). The first indications of the tail 

curvature can be observed by 24 - 25 hpf in some embryos (Figure 17 A), although the 

phenotype does not appear simultaneously in all individuals and onset can be delayed until 

about 29 hpf. Following initial onset, the curly tail becomes increasingly pronounced; by 48 

hpf (Figure 17 C) the curvature has fully matured. There is some level of correlation between 

a delayed curvature onset and a less pronounced curvature phenotype, but this was not 

significant (Figure 16 A).  

  

Figure 16 (A) Correlation of pkd2-/- curvature onset and severity. 180° - straight tail, 0° - tail crosses body axis; 
example images of curvature next to y-axis. No significances via one-way anova with Tukey’s multiple 
comparison test. Error bars indicate SD. (B) Heart looping ratios in WT, pkd2-/- and pkd2 siblings. n = 100 for 
each group. 

Left/right polarity randomisation, another phenotype previously described in morphants, 

was confirmed for pkd2-/- with a rate of 49.3 % heart looping reversal (Figure 16 B). This 

indicates a full gene knockout, or null mutant, as there was complete randomisation.  

Cardiac, trunk and head oedema became apparent at 4 dpf (Figure 17 F and I) and continued 

to develop during the next 24 h. By 5 dpf (Figure 17 G and K) oedema severity increased to 

the point where cardiac function was strongly impaired upon which the embryos were 

sacrificed. 
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Figure 17 Morphology of pkd2-/- and WT embryos during development (A) 24 hpf, (B) 32 hpf, (C) 48 hpf, (D) 53 
hpf, (E) 3 dpf, (F) 4 dpf, (G) 4.5 dpf, (H) 5 dpf. (I, J, K) Dorsal view of head region at 4, 4.5 and 5 dpf respectively. 
Arrowheads indicate oedema.  

As cystic expansions in the kidneys were not initially observed in pkd2-/- mutants, although it 

had been described in morphants (Cao et al., 2009; Schottenfeld et al., 2007; Sun et al., 2004), 

a more detailed analysis was performed. Glomerular sizes were measured in pkd2-/- and 

siblings utilizing the renal GFP expression of the wt1b:GFP line for imaging. The results are 

depicted in Figure 18. At 2 dpf, just after renal filtration onset, and 3 dpf glomerular size was 

similar between pkd2-/- and siblings. At 4 dpf and 5 dpf pkd2-/- glomeruli were significantly 

smaller compared to their siblings’. Interestingly, the mean kidney size still increases in pkd2-

/- over time, but not at the rate of sibling controls. 

      
Figure 18 Glomerular sizes in 2 to 5 dpf pkd2 -/- and siblings. Mean glomerular areas with SEM: 2 dpf, 2856 ± 436 
pkd2-/- and 2847 ± 404 sibs; 3 dpf, 3396 ± 678 pkd2-/- and 3447 ± 856 sibs; 4 dpf, 3647 ± 504 pkd2-/- and 4035 ± 
1040 sibs; 5 dpf, 4341 ± 1380 pkd2-/- and 5026 ± 1128 sibs.  Significances via unpaired t-test; *: p ≤ 0.05. n = 20 for 
each group and day with both glomeruli measured, i.e. 40 measurements per time and genotype. 
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11.2. pkd2 morphant 
 

Morpholino (MO) knock-down experiments were performed using a previously published 

morpholino sequence (first description in (Sun et al., 2004)). Several publications since 

reported a dorsal axis curvature, L/R polarity defects and cystic kidneys in morphant animals 

(Francescatto et al., 2010; Schottenfeld et al., 2007). Injections with an initial morpholino 

batch ordered from GeneTools, LCC, USA resulted in none of the above described 

phenotypes and high rates mortality. Correspondence with the manufacturer revealed 

improper synthesis and a second batch was obtained. Subsequent injections at 2 ng pkd2 MO 

per embryo (as in (Cao et al., 2009)) produced the described phenotypes at high penetrance, 

with the exception of renal cysts. Cystic kidneys, or rather dilated glomeruli, were observed 

infrequently, at approximately 10 - 20% of injected embryos (example, see Figure 19 A). 

Concentrations lower than 2 ng caused great phenotype variability (Figure 19 B) and 

injections with 4 ng morpholino per embryo as previously reported in (Schottenfeld et al., 

2007; Sun et al., 2004) resulted in high lethality and severe off-target effects (not shown).  
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Figure 19 pkd2 MO injections into WT strains compared to pkd2 -/-. (A) Cystic kidney (white arrowhead) at 2 dpf 
in pkd2 MO. (B) Phenotype variability of 0.25 ng MO injected LDWT fish. Variability in pkd2-/- (C, E) and 2 ng 
pkd2 MO injected AB fish (D, F) at 53 hpf and 5 dpf, respectively.  

Body axis curvature, hydrocephalus and L/R randomisation were faithfully recapitulated in 

pkd2 MO as previously described (Francescatto et al., 2010; Schottenfeld et al., 2007). The 

high prevalence of cystic kidneys in previous publications, however, was not observed. Most 

publications have reported between 60 % and 90 % glomerular dilations in pkd2 morphant 

embryos, but only 10 – 20 % of embryos were observed with the phenotype during this 

project. As hydrocephalus and cystic kidneys were not present in pkd2 mutants (also noted 

by (Cao et al., 2009)) this might indicate they were the result of off-target morpholino effects. 

Both features have been observed as off-target effects in a variety of other morpholinos 

(Freek van Eeden oral communication). 

Cardiac, trunk and ocular oedema were less pronounced in morphants compared to mutants, 

especially with regard to ocular oedema, a phenotype which was completely lacking in the 

morphants. Known off-target effects such as smaller eyes and necrosis in the brain were 

observed in MO-injected embryos (Figure 19 F) and subsequently the pkd2 morpholino was 
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coinjected with a p53 MO to negate this (Robu et al., 2007). Co-injections with the p53 

morpholino are commonly done to minimize off-target effects. In this case, however, it did 

not result in visible improvements (Figure 20). This indicated the off-target effects observed 

in pkd2 morphants were not mediated via p53-induced apoptosis. 

Interestingly, phenotypes also varied between injections into two different wild-type strains 

LDWT and AB (see Figure 20 A and B). AB fish exhibited a more pronounced curvature 

and fewer deaths as well as reduced off-target effects (small eyes and necrosis in the brain). 

Subsequent sequencing of the morpholino target region revealed a single base mutation in 

LDWT (see Figure 20 C). The less severe cup induction in LDWT could be the result of this 

mismatch between morpholino and DNA sequence. Further experiments were hence 

conducted utilising the AB wildtype strain for pkd2 MO injections.  

 
Figure 20 Phenotype analysis in pkd2 morphants (2 ng per embryo) at 4 dpf in LDWT and AB background with 
and without coinjection of p53 MO (1 pmol/embryo) to negate off-target effects. (A) Curvature in respective 
embryos classified according to severity in degrees with 0° being WT. N ≥ 44 embryos per group (44-71 embryos). 
(B) Eye phenotypes in respective embryos. (A) and (B) No significant differences via two-way anova with Tukey’s 
multiple comparison test. N ≥ 36 embryos per group (36-71 embryos).  (C) Sequences of the morpholino and 
LDWT and AB target sequences with the mutation in LDWT in red.  

Quantification of the cystic kidney phenotype in pkd2 morphants revealed an early expansion 

at 2 dpf and 3 dpf, which then plateaued while the sibling glomeruli caught up in size by 4 

and 5 dpf (Figure 21).  
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Figure 21 Glomerular sizes in 2 to 5 dpf pkd2 morphants and siblings injected with 2 ng/embryo. Mean 
glomerular areas with SEM: 2 dpf, 2801 ± 217  pkd2-/- MO and 1618 ± 50 sibs; 3 dpf, 3665 ± 343 pkd2-/- MO and 
2474 ± 55 sibs; 4 dpf, 3155 ± 119 pkd2-/- MO and 2992 ± 93 sibs; 5 dpf, 3515 ± 296 pkd2-/- MO and 3136 ± 119 sibs. 
Significances via unpaired t-test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01. n = 20 for each group and day with 
both glomeruli measured, i.e. 40 measurements per time and genotype. 

 

11.3. Model disparities – kidney phenotype 

As described above, zebrafish pkd2 mutants and morphants exhibited several differences, 

particularly with regard to the cystic kidney and oedema phenotypes – with mutants never 

developing the former but more severe oedema (oedema depicted at 5 dpf in Figure 22 A). 

To evaluate whether the renal mutant phenotype could be rescued through the presence of 

maternal mRNA deposited in the egg, injections with a sub-phenotypic dosage of pkd2 

morpholino into the mutant embryos were performed. A sub-phenotypic dose was chosen 

to distinguish maternal effects from potential off-target MO effects. This low dose should 

be sufficient to reduce maternal pkd2 RNA levels, which has previously been described as 

non-detectable via in situ hybridisation (Bisgrove et al., 2005). The pkd2 morpholino used 

during this project was an ATG MO and targeting the transcription start site of a protein 

ensures knockdown of both embryonic and maternal RNA message. The sub-phenotypic 

working dose of 0.05 ng/embryo was established by injecting a range of concentrations into 

WT embryos, assessing for lack of curvature and heart looping defects. 0.05 ng/embryo was 

the highest concentration not showing above phenotypes and injections into a pkd2+/- in-

cross commenced. These sub-phenotypic injections significantly enhanced the curvature 

phenotype in MO injected mutants but had no effect on glomerular size (Figure 20). These 

results demonstrate likely effects of maternal pkd2 mRNA on the tail curvature but not on 

glomerular dilatation. Generally, this indicated the possibility that the pkd2 morpholino 

caused off-target effects in the glomerulus. 
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Figure 22 (A) pkd2 mutant and morphant embryos at 5 dpf, arrowheads indicating oedema. (B) Curvature severity 
comparing siblings, MO injected siblings, pkd2-/- and MO injected pkd2-/- at 3 dpf. 180° - straight tail, 0° - tail 
crosses body axis; example images of curvature next to y-axis. Significance via unpaired t-test; **: p ≤ 0.01. Error 
bars indicate SD. (C) Glomerular dilation of siblings, MO injected siblings, pkd2-/- and MO injected pkd2-/- at 
days 2, 3, 4 and 5. n = 20 for each group. No significant differences via two-way anova with Tukey’s multiple 
comparison test. Error bars indicate SEM. 

In the absence of observable pronephric dilations in the pkd2 mutants, the possibility of an 

earlier cellular phenotype was considered i.e. upregulated proliferation. In murine models of 

cystic renal disease, an early increase in proliferation is often seen before the onset of cyst 

formation (Bello-Reuss, 2007; Ramasubbu et al., 1998; Saadi-Kheddouci et al., 2001). To 

assess whether increased cell proliferation was present in zebrafish models, a 

phosphohistoneH3 (pH3; M-phase marker) antibody staining was conducted on pkd2 

mutant and morphant embryos and respective controls. Figure 23 shows an increase in 

proliferation in the glomeruli at 2 dpf (not significant) and 3 dpf (significant) in the morphant 

embryos compared to their siblings. Renal filtration only commences at around 40 - 48 hpf 

and glomerular dilation occurs afterwards in morphant glomeruli, hence earlier time points 

were not evaluated. The renal tubules were not dilated in pkd2 morphants (similar to reports 

in (Sullivan-Brown et al., 2008)) and showed no change in proliferation rates. pkd2 mutants 

showed no significant difference in proliferation anywhere along the pronephros compared 

to the controls at 2 dpf and 3 dpf, suggesting there is no pkd2 regulation of proliferation in 

the pronephros at these stages.  
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Figure 23 Proliferative cells in pkd2 mutant and morphant embryos with respective controls at 2 and 3 dpf in the 
glomeruli (A), the tubules (as far as wt1b:GFP is expressed) (B) or the entire proximal pronephros (C) identified 
by pH3 antibody staining. n = 6-13 per group. Significances via unpaired t-test; ***: p ≤ 0.001, *: p ≤ 0.05. Error 
bars indicate SD. An example of a successful pH3 antibody stain can be seen in Figure 39. 

 

As the main aim of this project was to conduct a compound screen on an ADPKD-related 

phenotype in zebrafish, pkd2 mutants and morphants were exposed to 10 different chemicals 

at different concentrations. Further to the differences in glomerular dilation and proliferation 

in mutant and morphant embryos, an initial compound test found that the morphants 

collectively fared worse during drug exposures. Specifically, exposed morphants exhibited 

higher rates of necrosis, in particular in the brain, and a generally delayed development 

compared to unexposed controls (data not shown). 

Due to these marked differences between pkd2 mutant and morphant phenotypes, it was 

decided to abandon the original plan of conducting a large-scale compound screen on the 

cystic kidney phenotype of morphants in favour of using the dorsal axis curvature in mutants 

as a readout. This curly up phenotype is unique and all knockout or knockdown models 

described so far in the literature causing the cup phenotype in zebrafish are pkd1- or pkd2-

related (Bisgrove et al., 2005; Mangos et al., 2010; Sun et al., 2004).  

12. Characterisation of elipsa and elipsa/pkd2 double mutants 
 

The lack of a cystic phenotype in pkd2 mutants contrasts with that reported for other ciliary 

mutants in zebrafish where pronephric cysts are a constant feature (Kramer-Zucker, Olale, 

et al., 2005; Sullivan-Brown et al., 2008). Since pkd2 and the PC complex are localised to 

primary cilia (although not exclusively), the lack of a cystic phenotype was surprising.  

To test the hypothesis that pkd2 could modify the phenotype of a cystic zebrafish mutant, 

elipsa mutants, which develop a cystic phenotype, were crossed with the pkd2 mutant line to 

obtain double mutants.  
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12.1. A classical “cystic kidney” zebrafish line, the elipsa mutant 

The curvature in elipsa mutants phenotype first became apparent at 26 - 28 hpf (Figure 24 

A), when interestingly, it looked like the emerging pkd2 curly up phenotype. Until about 32 

hpf the curvature continued to curl upwards, but by 48 hpf, the phenotype had transformed 

to a downward curl. The exact timing of this transition was not observed. The tail curvature 

subsequently matured until ca. 72 hpf.  

 
Figure 24 Morphology of elipsa/elipsa. (A) Curvature onset at 26 hpf compared to sibling. (B) Matured curvature 
at 5 dpf in contrast to sibling. 

Most ciliary mutants reported in the literature exhibit dilated glomeruli and tubules (Kramer-

Zucker, Olale, et al., 2005; Sullivan-Brown et al., 2008); in comparison, pkd2 morphants have 

dilated glomeruli but normal tubules. The arrowheads in Figure 25 A depict dilated elipsa 

glomeruli at 52 hpf, not long after the onset of renal filtration, and Figure 25 C indicates a 

dilated pronephric tubule – quantifications of these phenotypes will be provided in the next 

chapter.  

 
Figure 25 Detailed pronephric images at 52 hpf of (A) dilated glomeruli (indicated with white arrowheads) in 
elipsa mutant, (B) and (C) renal tubules in sibling and elipsa mutant, respectively. White bars in (B and C) 
indicate the width of dilated renal tubules. 
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12.2. elipsa/pkd2 double mutant – enhanced renal and curly up phenotypes 

pkd2 mutants, as described above, exhibited a pronounced curly up phenotype, whereas the 

ciliary elipsa mutants were characterized by a curly down phenotype, which has been observed 

in various ciliary trafficking mutants with similar severities (Kramer-Zucker et al., 2005; 

Sullivan-Brown et al., 2008). Interestingly, pkd2/elipsa double mutants displayed an enhanced 

dorsal axis curvature compared to pkd2 siblings from as early as 32 hpf (Figure 26 A, 

quantified in Figure 27 C). This phenotype continued to become more pronounced until 50 

hpf (Figure 26 B, quantified in Figure 27 F) at which point the pkd2 curvature was fully 

developed. In the double mutants, however, the tail curvature continued to develop until 

about 72 hpf (Figure 26 C) which is similar in duration to the elipsa curvature maturation. 

Since analysis of elipsa and pkd2 mutants necessitated a distinction of curly up from curly down, 

a straight tail was defined with a 0° angle and dorsal curvatures resulted in positive angles 

and ventral curvatures showed negative values (more details in Figure 27 B). 

 
Figure 26 elipsa, pkd2 and double mutants with siblings at 32 hpf (A) and 50 hpf (B). (C) Severe dorsal axis 
curvature in 3 dpf double mutants. 

The renal dilation phenotype in pkd2/elipsa mutants was enhanced beyond that of elipsa levels 

(significant at 2 and 3 dpf (Figure 27 C and D)), indicating that loss of pkd2 in the elipsa 

mutants enhanced the cystic kidney phenotype. There also was a larger spread of glomerular 

size in the double mutants compared to elipsa single mutants and average cystic size was 

significantly enhanced.  

elipsa mutants have been confirmed to lack cilia from the age of 30 hpf (Niedharsan 

Pooranachandran, personal communication) but the fact that heart looping was not 

randomized (Figure 27 A), suggests early stage cilia were present as they are required in the 

Kupffer’s vesicle to control body axis formation (Kramer-Zucker et al., 2005). pkd2 mutants, 

on the other hand, lack the left-determining signal during early body axis formation in the 

Kupffer’s vesicle and PC2 in its role as a calcium channel is crucial for further signalling 

cascades during this developmental process (Bisgrove et al., 2005; Schottenfeld et al., 2007). 

Considering the functions of elipsa and pkd2, it was not surprising that double mutants 

exhibited body axis randomization as determined by heart looping randomisation (Figure 27 

A). 
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Figure 27 Various comparisons of siblings, pkd2-/-, elipsa/elipsa and elipsa/pkd2. (A) Heart looping ratios. n  ≥ 
13 for each group. (B) Schematic indication of tail curvature measurements. (C) and (D) Glomerular size at 2 and 
3 dpf respectively. Significances with one-way anova with Tukey’s multiple comparison test; ****: p ≤ 0.0001, **: 
p ≤ 0.01, *: p ≤ 0.05. (E) and (F) Severity of tail curvature at 32 hpf and 50 hpf respectively. Box on left: Examples 
of curvature severity with corresponding scale in degrees. Significances with Kruskal-Wallis test with Dunn’s 
multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01. Error bars indicate SD. 

Since the glomerular dilation phenotype in pkd2 morphants was accompanied by an increase 

in proliferation, proliferation rates were subsequently quantified in elipsa single mutants and 

elipsa/pkd2 double mutants at 2 dpf. Interestingly, both showed an increase in proliferation 

in the glomeruli (Figure 28 A) with the double mutants having a slightly lower proliferation 

rate compared to the elipsa single mutants (not significant). This diverged from the level of 

glomerular expansion, where double mutants surpass the elipsa dilation phenotype. Tubular 

proliferation levels showed the same trend (not significant, Figure 28 B). Overall 

proliferation in the pronephros (as identifiable via the wt1b:GFP transgene) was only 

significantly increased in elipsa mutants; the double mutants showed a trend towards an 
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increase in proliferation. This suggests the increase in dilation was not solely driven by 

proliferation. 

 
Figure 28 Average proliferation levels assessed via pH3 antibody staining in elipsa/elipsa, pkd2/elipsa and 
siblings at 2 dpf. (A) Average proliferation in the glomeruli, (B) in the pronephric tubules and (C) in the entire 
pronephros as determined by wt1b:GFP expression. Siblings: n = 7, pkd2/elipsa: n = 14, elipsa/elipsa: n = 7. 
Significances with one-way anova with Tukey’s multiple comparison test; **: p ≤ 0.01, *: p ≤ 0.05. Error bars 
indicate SEM. An example of a successful pH3 antibody stain can be seen in Figure 39. 

Interestingly, pronephric tubular dilation was also more severe in elipsa mutants compared to 

the double mutants at 5 dpf (not significant, Figure 29). Glomerular area beyond day 4 could 

unfortunately not be measured, as the distorted tissues above the kidney made it impossible 

to get clear images of the GFP expression below. It was difficult at these stages to capture 

measurable images in pkd2 embryos as the curly up phenotype refracted the light, but became 

completely unfeasible in the double mutants due to the severe tail curvature. It is therefore 

possible that double mutants showed an aggravated early phenotype which was subsequently 

surpassed by the ciliary mutant. 

 
Figure 29 Renal tubular dilation at 5 dpf in pkd2-/-, elipsa/elipsa, pkd2/elipsa and siblings. Significances via one-
way anova with Tukey’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001 and non-significant (ns): p > 
0.05. Error bars indicate SEM. 
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Discussion 

 

1. Disparities between pkd2 zebrafish models 

pkd2-/- zebrafish embryos have been used to study pkd2 function by several groups although 

they have consistently been reported not to develop pronephric cysts. Describing cystic 

kidneys in the zebrafish embryo pronephros is generally burdened with inaccuracy. What has 

been described in the literature as “cystic kidneys” in zebrafish embryos, in particular with 

regard to pkd2 morpholino knockdown, is not, in truth, a cystic kidney. In general, cysts are 

defined as fluid-filled sacs surrounded by a membrane. Zebrafish “cystic kidneys”, however, 

are merely dilated glomeruli, which remain part of the embryonic pronephros. Dilated 

glomeruli could be caused by a variety of factors, such as an increase in proliferation, an 

occlusion of renal tubules as suggested by (Obara et al., 2006) in pkd2 morphants, or the lack 

of cilia (abolishing filtrate movement). The latter two could both cause a build-up of fluid 

into the glomeruli, potentially inflating these structures due to hydrostatic pressure. With 

respect to zebrafish pkd2 models, this raises the possibility of maternal mRNA contribution 

in mutants or off-target effects in morphants.   

There are several possibilities why pkd2 mutants and morphants differ with regard to their 

phenotype. All publications to date, described glomerular dilations in pkd2 morphants to 

varying degrees of penetrance (Cao et al., 2009; Francescatto et al., 2010; Obara et al., 2006; 

Sun et al., 2004) whereas pkd2 mutant alleles did not exhibit this trait (Cao et al., 2009; 

Schottenfeld et al., 2007; Sun et al., 2004). In recent years, zebrafish morphant data has come 

under scrutiny for failing to adequately predict mutant phenotypes. More precisely, many 

morphants exhibited novel traits which were not recapitulated in respective mutant strains 

(reviewed in (Schulte-Merker et al., 2014)). This could be due to the fact that chemical 

knockdowns can cause unpredictable off-target effects other than the classical necrosis in 

the brain and eye, both of which are widely observed (Robu et al., 2007). Furthermore, 

morpholinos targeting the translation start site of a protein also remove maternal mRNA 

contributions deposited in the eggs upon laying. Blocking the maternal contribution in the 

case of pkd2 caused an enhancement of the curvature phenotype but did not induce 

glomerular dilations – ruling out the effect of maternal effects on the latter. 

A recent study by (Rossi et al., 2015) proposed a different explanation for mutant/morphant 

disparities: Genetic knockout of a gene could lead to compensatory changes in other 

members of the same protein family therefore alleviating knockout phenotypes. They 

supported their hypothesis by injecting morpholinos into respective mutant strains and 
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showing that the homozygous mutants had a higher resistance towards the knockdown by 

exhibiting milder phenotypes than their heterozygous or WT siblings. This suggests other 

genes were compensating for gene loss to some degree. Experiments carried out in this 

project only targeted maternal mRNA contributions and no inference to compensatory 

effects in pkd2 mutants can be made. Therefore, injections of the pkd2 morpholino (2 

ng/embryo rather than a sub-phenotypic dose) into the pkd2 mutant strain would need to 

be carried out to shed light on whether there are genetic, compensatory effects preventing 

glomerular dilation. 

Interestingly, pkd2 mutants not only had no dilated renal phenotype but their glomeruli 

actually decreased in size compared to siblings from day 4. This development of smaller 

glomerular size in pkd2 mutants could potentially be explained by the onset of oedema, which 

corresponds in timing (see above). Trunk oedema especially could increase hydrostatic 

pressures compressing the nearby kidney and prevent proper inflation of the glomeruli. 

Another explanation could be reduced blood pressure: Blood flow might be restricted in the 

tail area due to the curvature and severe cardiac oedema could prevent normal cardiac output. 

Both of these factors combined would result in decreased renal blood flow, hindering normal 

inflation of the glomeruli. 

Of note, the pronephric phenotype in pkd2 morphants did not show a persistent increase in 

glomerular size over all time points measured. Quantification of the cystic kidney phenotype 

in pkd2 morphants revealed an early expansion at 2 dpf and 3 dpf, which then plateaued 

while sibling glomeruli caught up in size by 4 and 5 dpf. Morpholino effects, both targeted 

and off-target, wear off over time (the capacity for binding new RNA transcripts diminishes) 

and morphant phenotypes are therefore often transient. In this case, the glomerular data also 

suggests that no tubular occlusion occurred, contrary to previously published data (Obara et 

al., 2006), since the same individuals were imaged over the entire course of the experiment. 

If the tubules were obstructed, glomerular dilation should continue to persist and increase in 

severity beyond 3 dpf, which was not the case. 

2. Classic “cystic kidney” mutant and pkd2/elipsa double knockout 

As pkd2 mutants did not exhibit an obvious renal phenotype, a classical zebrafish “cystic 

kidney” mutant, the ciliary elipsa mutant, was also evaluated. elipsa (traf3ip1) mutations cause 

abolition of renal cilia from 30 hpf by disrupting IFT from this time point (in earlier 

development cilia are unaffected but fail to be maintained from 30 hpf (Omori et al., 2008)). 

Like all other IFT mutants, this line exhibited a downward curly tail and renal dilations. 

Pronephric glomeruli and renal tubules along the entire length of the embryo were dilated. 
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Since elipsa mutants did not have laterality defects, it can be assumed that cilia form at early 

stages of development and become abolished subsequently. Interestingly, the axis curvature 

in its early stages looked exactly like the dorsal curly tail of pkd2 mutants. How this then 

transformed into a down curl was not evaluated.  

A genetic study in mice (Ma et al., 2013) suggested that abolition of cilia in PKD mutants 

improved renal outcomes, indicating that improper polycystin function in the cilia 

contributes to cyst severity. In that study several Pkd mutant lines were crossed to a Kif3a 

knockout line (IFT disrupted) – both mouse strains form renal cysts but loss of Pkd1 or Pkd2 

causes the more severe phenotype. In double knockout mice, however, renal outcomes were 

alleviated compared to Pkd-/ - (but enhanced compared to Kif3a-/-). Of note, kidney-specific 

Pkd1 knockout mice (Shibazaki et al., 2008) exhibited a more severe and earlier phenotype 

than the kidney-specific Kif3a ciliogenesis knockout (Lin et al., 2003). The zebrafish 

pkd2/elipsa double mutants exhibited an aggravated curly up phenotype compared to pkd2-/- 

and an increase in glomerular dilation compared to elipsa/elipsa. This suggested a likely genetic 

interaction between these two proteins, which will be discussed below. 

A graphic scheme of the interactions described in the two paragraphs above, is depicted in 

Figure 30. In order to explain the phenotypes, it might be useful to think of the various 

players in basic genetic functions: Wild-type pkd2 generally serves to counteract the cup 

phenotype and its loss results in an upward curl, it therefore can be described as having a 

down-curling function. It could be speculated that the downward curl in the cilia-less elipsa 

mutants is driven by a loss of inhibition of pkd2 function and the over-activated pkd2 causes 

as the curly down phenotype. This would suggest there is an inhibitory factor of pkd2 located 

in the cilia. If this, however, were the only factor influencing tail curvature, double mutants 

should exhibit the same severity as pkd2 mutants in this trait. The fact that the double mutant 

phenotype is aggravated is somewhat difficult to explain and it would need to invoke a 

second partially redundant signal specifically from the cilia or a non-ciliary function of pkd2 

after ciliary abolition. This ciliary factor also promotes downward curling but to a lesser 

extent than pkd2 itself. Thus in a double mutant, the pkd2 and the ciliary function, both 

originally promoting a downward curl, are lost and the dorsal curvature phenotype becomes 

aggravated.  

With regard to the renal dilation phenotypes, loss of cilia causes an expansion of glomerular 

area; hence some sort of ciliary signal inhibits “cystic kidneys”. In pkd2/elipsa double mutants 

this phenotype became exaggerated and it could be hypothesised that pkd2 itself also has a 

weak cyst-suppressing function, which is not strong enough to drive renal dilation on its own 

if lost, but can enhance an already cystic phenotype. 
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To comply with the rule of maximum parsimony, implying the solution with the fewest 

factors required is the most likely, the ciliary signal inhibiting renal dilations and repressing 

the curly up phenotype have been summarised as “cilia” in Figure 30, although that function 

could stem from one or more multiple proteins in the cilia. It could be speculated at this 

protein with a paralogous function to pkd2 be a pkd2l (pkd2 like) protein, i.e. pkd2l1a (pkd2 

like 1 a) or pkd2l1b (pkd2 like 1 b) or another calcium channel, although we have no proof of 

either.  

 
Figure 30 Schematic network of pkd2 and cilia, depicting the complex interactions used to explain pkd2, elipsa 
and pkd2/elipsa mutant phenotypes. 

Additionally to this complex network, there seem to be tissue-specific differences regarding 

the levels of pkd2 and elipsa gene interaction. The exaggerated renal dilation phenotype in the 

zebrafish double mutants suggests that pkd2 and elipsa converge on the same pathway and 

therefore enhance each other. Considering the slightly different premise of the experiments, 

this also does not entirely contradict the mouse publication (Ma et al., 2013) as the Pkd/Kif3a 

double mutant mice were also reported to exhibit a more severe phenotype than the ciliary 

mutation on its own. The increase in severity of the curly up phenotype in the double mutants 

suggests pkd2 to be downstream of the ciliary pathway, as pkd2 produces the dominant trait. 

Conversely, the duration of curvature formation in the double mutants correlates with that 

of elipsa single mutants (lasting until 3 dpf), rather than pkd2-deficient animals.  

It is possible that depending on the tissue and/or phenotype elipsa and pkd2 act in different 

manners. The curvature phenotype suggests pkd2 to be downstream of a ciliary signal, 

whereas the cystic phenotype indicates pkd2 and cilia act in parallel the same pathway with 

the loss of both enhancing a cystic phenotype. These differences strongly suggest a context-

specific function.  
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Results and Discussion Chapter 2: Screens for chemical 
modulators of the pkd2 curly phenotype in zebrafish and 
validation in cell culture 3D cyst assays 

 

Introduction 

 

The main aim of this project was to find novel therapeutic targets for treatment ADPKD by 

conducting  high-throughput chemical library screens on an ADPKD-related phenotype in 

a zebrafish model. It was shown that the cystic kidney phenotype of pkd2 morphants was 

not recapitulated in pkd2 mutants in addition to a range of other discrepancies (see Results 

and Discussion Chapter 1). As a consequence, and in order to avoid potential morpholino-

artefacts, the curly tail phenotype of pkd2 mutants was chosen as ADPKD-related readout 

in subsequent chemical screens. Unfortunately, this trait shows high phenotypic variability 

(Figure 32 C). In addition, the curvature phenotype did not appear in all embryos at the same 

time but its onset was spread across ca. 4 hours (25 – 29 hpf). Also, the later the onset, the 

less pronounced the curvature (Results and Discussion Chapter 1). Therefore, rigorous re-

testing was necessary to reduce the risk of obtaining false positive hits. Two small-molecule 

libraries were screened for their effects on the curly tail phenotype, the Spectrum collection 

and the PKIS (Published Kinase Inhibitor Set) set.  

The Spectrum compound collection provided by Microsource Discovery Systems, Inc. 

contains 2000 compounds – 50 % of which are clinical trial-stage drugs, 12 % are 

internationally marketed chemicals and the remaining 38 % are natural products (Rennekamp 

et al., 2015). In recent years this set of chemicals has been used in multiple zebrafish screens 

with a variety of phenotypic readouts (Baxendale et al., 2012; Kitambi et al., 2012; Ridges et 

al., 2012; Saydmohammed et al., 2011). 

The PKIS library was utilised in a second screen on the pkd2 curvature during this project. 

This compound collection was originally developed by GlaxoSmithKline (GSK) and 

subsequently transferred to the University of North Carolina (UNC) within the timeframe 

of the project. The particular version of the PKIS collection used here was PKIS 1, consisting 

of 367 kinase-inhibiting compounds, covering a wide range of the 518 known kinases 

(Manning et al., 2002). 

Since only small amounts of compound were available from the drug libraries, testing 

commenced at a fixed concentration of 10 µM. Screening at 10 µM ensured a validation run 

could be performed where necessary. Screening the effects of compounds on pkd2 mutants 
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commenced in 96-well plates, with three embryos per compound, exposed to 10 µM 

concentrations for 24 h (more detailed information is given in the Materials and Methods 

section). A schematic depiction of the screen workflow can be found in Figure 31. 

 
Figure 31 Workflow of compound screen on pkd2 tail curvature phenotype. 

 

Results  

 

1. Utilising pkd2-/- zebrafish as ADPKD-related screening tool 

TSA (trichostatin A) had been described previously as repressor of the curvature phenotype 

in a small-scale compound screen on pkd2 mutants and served as positive control (Cao et al., 

2009). The analysis method of curvature severity was also derived from this publication and 

will be described in detail below. TSA, a HDAC inhibitor, proved to have a very narrow 

therapeutic index with a rapid onset of toxicity (400 nM - retardation of growth) and loss of 

curvature-repressing properties at slightly lower dosages (100 nM). Additionally, TSA caused 

an accumulation of blood in the area of the duct of Cuvier (Figure 32 B). Nevertheless, it 

was possible to utilise TSA as positive control, but the narrow therapeutic range and severe 

adverse effects discounted it as a promising candidate for further study. A quantification of 

TSA’s effect on the tail curvature is depicted in Figure 32 D. 
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The analysis of pkd2 tail curliness commenced by drawing a line from the lens in the eye to 

the end of the yolk extension and a second line from the yolk extension to the tip of the tail 

– the angle between those two lines served a measure of severity (example, see Figure 32 A). 

WT embryos therefore have an angle of 170 – 180 degrees, and in pkd2 larvae, the smaller 

the angle, the more severe the cup phenotype. Negative values indicate the tail had crossed 

the body axis. 

 
Figure 32 (A) pkd2-/- embryo at 3 dpf with schematic indication of curvature measurement. (B) Accumulation of 
blood in 2 dpf embryo exposed to 200 nM TSA from 27 hpf. Arrowhead indicates pooled blood in the duct of 
Cuvier (C) Curvature analysis at 2 dpf in pkd2 mutants, morphants and siblings. Significances via Kruskal-Wallis 
test with Dunn’s multiple comparison test; ****: p ≤ 0.0001 and non-significant (ns): p > 0.05. (D) Analysis of 
curvature of pkd2 mutants exposed from 27 hpf to DMSO or 200 nM TSA. Significance via Mann-Whitney test; 
**** p ≤ 0.0001. (C) and (D) 180° - straight tail, 0° - tail crosses body axis; example images of curvature next to y-
axis. Error bars indicate SEM. 
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2. Screen of the Spectrum collection 

2.1. Zebrafish screen of Spectrum compounds 

After the initial testing round was concluded, 200 compounds of interest were identified via 

t-test (see Materials and Methods) and re-testing commenced. The second test round and 

more rigorous statistical analysis (see Materials and Methods) reduced that number to 20 

drugs and further testing with a cherry-picked batch of additional compound material 

(provided with the screening plates) eliminated another 7 chemicals. In the end, 13 

compounds were identified to significantly and reproducibly alter the curvature phenotype 

(Figure 33). Of these 13 chemicals, 10 aggravated the curvature and three repressed the 

phenotype. Interestingly, most of the enhancing compounds clustered into three distinct 

chemical classes: three compounds were steroids, another three chemicals were coumarins 

and two compounds were flavonoids. Another flavonoid, naringenin, was subsequently 

included in further studies as it had been previously observed to induce dorsal curvature 

(Robert Wilkinson, personal communication). 

 
Figure 33 Combined data on hit compounds of the Spectrum library after initial compound screen, validation and 
cherry-picked compound exposures. Enhancers of pkd2 curvature in red, repressors in green. Chemical classes 
as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s 
multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. 

Hit compounds and more detailed descriptions, including relevant literature, can be found 

in Table 14.  
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Table 14 List of Spectrum library hit compounds, their effect on pkd2-/- curvature phenotype, the chemical class, 
CAS number and further information. 1 https://pubchem.ncbi.nlm.nih.gov/compound/norethynodrel, 2 (Chang 
et al., 2011; Li et al., 2015; Sharifi, 2012), 3 (Imamura et al., 1998; Maninger et al., 2009), 4 (Stein et al., 2006), 5 (Yang 
et al., 2002), 6 (O'Neill et al., 2013), 7 (Singhuber et al., 2011), 8 (Bala et al., 2014), 9 (Takahashi et al., 2006), 10 

(Okabe et al., 2014), 11 (Erlund et al., 2001), 12 (Liu et al., 2016), 13 (Wu et al., 2016), 14 (Bao et al., 2016), 15 (Alam et 
al., 2013; Ikemura et al., 2012), 16 (Vaz et al., 1996), 17 (Salas et al., 2016), 18 (Xie et al., 2014), 19 (Sheng et al., 2015), 
20 (Passalacqua et al., 2015), 21 (Yarishkin et al., 2009), 22 (Danesh et al., 2015), 23 (Naldi et al., 2015), 24 (Fusi et al., 
2001; Fusi, et al., 2001; Sgaragli et al., 1993), 25 (Firdous et al., 2014), 26 (Waheed et al., 2014). 
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2.2. Effects of Spectrum library and related compounds in zebrafish 

2.3. Further testing in pkd2 mutants 

 

Following the initial screen, chemicals were re-ordered from different suppliers where 

possible (to eliminate the possibility that curvature-modulating effects were due to batch 

impurities). Manufacturers of new batches can be found in the Materials and Methods 

section and in the Materials List. Furthermore, new compound material was obtained to 

ensure that the effects observed were not due to breakdown products. 

To conduct functionality studies, some chemical classes were augmented with additional 

compounds. In the steroid class, apart from androstandione, the most potent human 

androgen, DHT (dihydrotestosterone, (Vollmer, 1963)), and the most potent fish androgen, 

11-KT (11-ketotestosterone, (Hossain et al., 2008)), were tested. Additionally, flutamide, an 

anti-androgen, which was described previously to counter androgen-effects in zebrafish 

(Schiller et al., 2013; Schiller et al., 2014), was obtained.  

2.3.1.1. Curvature enhancers 

In the steroid class, see Figure 34 A, androstandione proved to be more potent than any of 

the other steroids, enhancing the dorsal curvature from 2 µM (lowest concentration tested) 

whereas DHT and 11-KT only significantly altered the curvature at 50 µM and 30 µM 

respectively. Of note, androstandione was even more potent than observed initially at 10 µM 

screening concentration - the effect plateaued at 30 µM when all embryos exhibited tails that 

curled well beyond the body axis. 

11-KT has been described as more potent in zebrafish than DHT (Hossain et al., 2008), 

which was confirmed in this assay. As androstandione was even more potent than 11-KT, 

this suggested the possibility that this compound could be acting not only via the classical 

androgen receptor (AR) pathway but also by an additional unknown mechanism. Flutamide 

had no effects on the curly phenotype, indicating that intrinsic androgen levels play no role 

in body axis curvature.  

All three coumarins (Figure 34 B) reproducibly enhanced the curvature as seen in the screen. 

Pimpinellin continued to be the strongest enhancer in this group but did not show any dose-

response effects at the concentrations tested and neither did sphondin, the weakest coumarin 

enhancer. The effects of prenyletin reached a maximum at 50 µM.  

Amongst the flavonoids (Figure 34 C), trimethoxyflavone remained the most potent 

curvature modulator but showed no dose-response curve at the concentrations tested. 

Naringenin caused an enhanced curvature at 55 µM but was difficult to dissolve at higher 
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concentrations; the compound precipitated from 70 µM. Furthermore, 

hexamethylquercetagetin proved very toxic at originally screened concentrations and was 

unable to recapitulate curvature-enhancing effects at non-toxic levels.  

 
Figure 34 Results of tests with Spectrum library curvature-enhancing compounds. Box in top left corner: 
Examples of curvature severity with corresponding scale in degrees. (A) Androgens and flutamide (anti-
androgen). (B) Coumarins. (C) Flavonoids. In most compounds more concentrations were tested but proved 
toxic; depicted are only concentrations causing no adverse effects. Significances via t-test (if two groups in graph) 
or one-way anova with Dunnett’s multiple comparison test (if more than 2 groups); ****: p ≤ 0.0001, ***: p ≤ 
0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. 
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2.3.1.2. Curvature repressors 

Within the repressor group (Figure 35), one compound was a composite of two chemicals: 

zinc pyrithione contains both zinc and pyrithione ions. Subsequently sodium pyrithione and 

zinc chloride were obtained to determine which part of the compound was actively 

modulating the curvature phenotype (Figure 35 A). Zinc pyrithione was more toxic in re-

tests than in the original compound batch and showed efficacy from as little as 0.25 µM and 

toxicity above 0.75 µM. Sodium pyrithione was also a potent repressor at 0.75 µM, in a similar 

manner to zinc pyrithione, indicating that the pyrithione ion was the active ingredient, 

especially as zinc chloride had no effect on the curly tail. 

Diclofenac, the only repressor identified in the Spectrum screen with a well-known 

mechanism of action, also proved to be more toxic freshly obtained and had a narrow 

therapeutic range, repressing the curvature only at 0.3 and 0.4 µM and losing potency at lower 

concentrations (Figure 35 B). The effects of dihydroxyanisole were not reproducible with 

the re-ordered compound (Figure 35 B), suggesting that perhaps it had degraded in the library 

aliquot and a product of this process reduced the curvature. Alternatively, there is the 

possibility of impurities or cross-contamination being the cause of the original effect.  

Brefeldin A (BFA), another described curvature repressor (Le Corre et al., 2014) and ER to 

Golgi transport inhibitor (Donaldson et al., 1992; Klausner et al., 1992), was also tested to 

serve as secondary control. Although BFA was mildly toxic at the previously described 

concentrations of 1.5 to 2 µg/ml (Le Corre et al., 2014), there were no adverse effects at 1 

µg/ml and the curvature reducing effect was replicated (Figure 35 B).  
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Figure 35 Further tests of Spectrum library with curvature-repressing compounds. Box at top: Examples of 
curvature severity with corresponding scale in degrees. In most compounds more concentrations were tested but 
proved toxic; depicted are only concentrations causing no adverse effects. Significances via t-test (if two groups 
in graph) or one-way anova with Dunnett’s multiple comparison test (if more than 2 groups); ****: p ≤ 0.0001, 
***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05 and non-significant (ns): p > 0.05. Error bars indicate SEM. 

As the curvature phenotype had already begun to develop at the time point of the original 

compound screen (pkd2-/- could only be distinguished from siblings using the curvature 

phenotype for sorting), it could be argued that the developmental programme of the curly 

tail was already established, explaining why the repressors were unable to completely abolish 

the phenotype. To test this theory, embryos were exposed to the repressors from earlier time 

points, such as late epiboly and 24 hpf (before curvature onset) up to 2 or 3 dpf. There were, 

however, no marked effects on the curvature phenotype at any of the time points tested 

(Figure 36), suggesting that the curvature-reducing compounds have no effect on the actual 

developmental programme but rather inhibit the phenotype once it arises. 
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Figure 36 Repressor compound exposures from late epiboly or 24 hpf with comparison to the original screen 
setup (exposure from 27 hpf). Box on left: Examples of curvature severity with corresponding scale in degrees. 
(A) Diclofenac, (B) pyrithione, (C) dihydroxyanisole and (D) BFA. Significances via one-way anova with 
Dunnett’s multiple comparison test; ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. 

 

2.3.1.3. Compound co-exposures 

Further experiments to study individual compound classes’ mechanisms of action 

commenced by studying combination co-exposures (Figure 37). Here, the most potent 

representatives of the chemical classes were chosen: Pimpinellin for the coumarins, 

trimethoxyflavone amongst the flavonoids and androstandione as an androgen.  

First, the enhancing chemicals were tested in co-exposures and the results are depicted in 

Figure 37 A. Combination of either flavonoid or coumarin with the steroid produced additive 

effects with regard to the curvature, although only the flavonoid/androgen exposure was 

significantly different. The coumarin and flavonoid co-exposure had no additive effects. This 

might indicate that coumarins and flavonoids share the mechanism of action whereas the 

steroids are enhancing the curvature via a different pathway.  

Figure 37 B illustrates that flutamide, an anti-androgen, had no effect on the curvature 

individually and was also unable to overcome the effects of androstandione at any of the 
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concentrations tested. Higher amounts of flutamide in combination with the steroid proved 

toxic. 

Unlike flutamide, diclofenac was able to reduce the effects of androstandione significantly, 

as well as the effects of pimpinellin (Figure 37 C). There was no observable influence of 

diclofenac on the potency of the flavonoid. This shows that diclofenac was able to reduce 

the effect of even the most potent enhancer; however, it was not able to negate it. 

 
Figure 37 Co-exposures of various Spectrum compounds. Box in top left corner: Examples of curvature severity 
with corresponding scale in degrees.  (A) Steroid, coumarin and flavonoid combinations. (B) Anti-androgen and 
androgen combinations. (C) Enhancer and diclofenac co-exposures. All significances via t-tests; *: p ≤ 0.05 and 
non-significant (ns): p > 0.05. Error bars indicate SEM. 
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2.3.1.4. Androstandione and the connection to L-type calcium channel 
inhibition 

As the AR (androgen receptor) is not markedly expressed in zebrafish embryonic tissues at 

the stages when the screen was conducted (Bertrand et al., 2007), and androstandione was 

more potent than 11-KT, supposedly the most powerful fish androgen (Hossain et al., 2008), 

other mechanisms of action for this steroid were considered. Interestingly, several L-type 

calcium channel inhibitors such as nifedipine also enhanced the curvature in the screen, but 

were initially rejected as a result of stringent cut-offs. Furthermore, there is evidence that 

DHT is a potent L-type calcium channel inhibitor (Scragg et al., 2004). This, combined with 

the consideration that pkd2 is a calcium channel and its knockout causes the curly tail 

phenotype, led to a re-evaluation of the L-type calcium channel inhibitors and subsequently 

nifedipine and BayK8644 (L-type channel activator) were ordered. Nifedipine, as in the initial 

screen results, was a weak curvature enhancer, whereas BayK8644 had no effect on the curly 

tail (Figure 38 A). Interestingly, although BayK8644 individually did not affect the curvature, 

it was able to abolish the enhancing effects of nifedipine, even exhibiting a trend towards 

repressing curliness, in co-exposures (not significant).  

Surprisingly, co-exposure of nifedipine and androstandione resulted in a reduced efficacy 

compared to androstandione and there was a greater variability in phenotype severity (Figure 

38 B). This could suggest that androstandione is the more potent L-type inhibitor of the two 

and co-exposure led to competitive inhibition, therefore causing a wider spread. BayK8644 

was able to reduce androstandione’s effects in co-exposures, but this was not significant. 

 
Figure 38 Effects of L-type calcium channel modulators on: (A) pkd2 curvature and (B) steroid-induced 
enhancement of pkd2 curvature in co-exposure with androstandione. Box on left: Examples of curvature severity 
with corresponding scale in degrees.  All significances via one-way anova with Dunnett’s multiple comparison 
test.; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. 
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Some evidence in human studies suggest that receiving L-type calcium channel inhibitors 

worsens renal outcomes of ADPKD patients (Abe et al., 1983; Astor et al., 2008; Fujiwara et 

al., 1998; Homma et al., 2013; Saruta et al., 2009). To test the effects of nifedipine on 

glomerular expansion in zebrafish, pkd2 mutants and siblings were exposed to nifedipine or 

DMSO. Figure 39 A demonstrates that nifedipine slightly reduced glomerular size in siblings 

compared to DMSO controls but more importantly - there was a significant difference in 

glomerular area between siblings and pkd2 mutants in the nifedipine-exposed group, showing 

that nifedipine enlarged renal size in pkd knock-out fish. This seems to confirm PKD 

knockout-specific effects of L-type calcium channel inhibitors. 

Androstandione has been linked in a few recent publications to increases in proliferation, 

especially with regard to prostate cancer patients receiving anti-testosterone treatments 

(Chang et al., 2011; Li et al., 2015; Sharifi, 2012). Mechanistically it has been proposed that 

cancers convert androstandione to DHT thereby undermining therapy. As pkd2 mutants 

have a slightly higher proliferation in the ventral parts of the body axis, which might affect 

the tail curliness (see DMSO controls in Figure 39 B), the effect of androstandione on 

proliferation levels were analysed. Contrary to expectations, androstandione downregulated 

proliferation significantly in pkd2 mutants and proliferation in siblings also showed a 

downward trend (Figure 39 B).  
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Figure 39 Effects of nifedipine and androstandione on glomerular expansion and overall proliferation 
respectively. (A) Glomerular area at 2 dpf in pkd2 mutants and siblings exposed to DMSO or 10 µM nifedipine. 
Significances via one-way anova with Tukey’s multiple comparison test; ***: p ≤ 0.001, *: p ≤ 0.05. Error bars 
indicate SEM. (B) Example image of pH3 stain used for quantification with wt1b:GFP transgene to localise the 
cells to renal epithelia. (C) Effects on proliferation on pkd2 mutants and siblings of androstandione and DMSO 
controls. Significances via Chi-squared tests. *: p ≤ 0.05. DMSO treated siblings: n = 25, DMSO treated pkd2 
mutants: n = 19, androstandione treated siblings: n = 30, androstandione treated pkd2 mutants: n = 15. 

 

2.3.1.5. Known ADPKD modulators tolvaptan and triptolide 

Lastly, the effects of known PKD modulators tolvaptan and triptolide on the tail curvature 

were tested. Tolvaptan is currently the only drug approved for slowing the progression of 

ADPKD and triptolide is currently in a phase III clinical trial (https://clinicaltrials.gov/ct2 

/show/NCT02115659). Tolvaptan is a vasopressin 2 receptor antagonist and lowers cAMP 

levels in patients but may cause severe adverse effects, leading to high dropout rates in clinical 

trials (Torres et al., 2012). Although zebrafish have several vasopressin type 2 receptors 

(avpr2a, avpr2b and avpr2l - arginine vasopressin receptor), which are expressed at these 

developmental stages (at least in the central nervous system (Iwasaki et al., 2013), no other 

data was published at the time this thesis was written), tolvaptan did not affect the curly tail 

(Figure 40 A). This could be explained due to tolvaptan not binding to the zebrafish receptor 
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variety, or it binding only to one of the paralogues, which might be insufficient to reduce the 

phenotype. Alternatively, the zebrafish ADPKD-related phenotype of a curly tail might not 

be regulated via the vasopressin/cAMP pathway. 

The latter theory is furthered by the observation that exposures with other known ADPKD 

modulators, such as 8-bromo-cAMP, PGE2 and forskolin, did not affect the pkd2 curvature 

at any of the concentrations tested (8-bromo-cAMP: 10 µM to 1 mM, forskolin: 0.1 to 0.5 

µM – overall very toxic, PGE2: 0.05 µM to 5 µM – toxic at higher concentrations, data not 

shown). Forskolin and 8-bromo-cAMP have both been used previously in zebrafish (10 µM 

forskolin and 1 µM 8-bromo-cAMP; in 4 dpf larvae (Kumai et al., 2014)), but they had no 

effect on the curvature phenotype. 

Triptolide is a traditional Chinese medicine derived from the Thunder God Vine, Tripterygium 

wilfordii and reportedly represses ADPKD by activating PC2 (Leuenroth et al., 2008), although 

other mechanisms are also discussed. Since zebrafish pkd2 mutants have no functional PC2 

but triptolide was still able to reduce the curvature phenotype, this suggests that it is not 

acting via PC2 in zebrafish (Figure 40 B). It was however, also very toxic to embryos and 

only the lowest concentration tested (0.5 µM) did not result in noticeable toxicity. 

 
Figure 40 Effects of ADPKD drugs on pkd2 curvature. Box on left: Examples of curvature severity with 
corresponding scale in degrees. (A) Tolvaptan, a vasopressin 2 receptor antagonist. Higher concentrations were 
tested, but resulted in precipitation. (B) Triptolide, currently in clinical trials. Significances via one-way anova 
with Dunnett’s multiple comparison test (A) and unpaired t-test (B); ****: p ≤ 0.0001. Error bars indicate SEM. 

 

2.4. Spectrum and related compounds in WT, elipsa and pkd2-/-  

pkd2 mutant zebrafish did not exhibit a discernible renal phenotype but ciliary mutants, such 

as elipsa, characteristically have glomerular dilations (see Results Chapter 1). These renal 

dilations in zebrafish are commonly referred to as “cystic kidneys” in the literature, although 

expanded glomeruli are very different compared to cysts (fluid-filled capsules distinct from 

the surrounding tissues via a membrane) in an organ. The phenotype most closely resembling 

renal cysts in zebrafish embryos described to date are dilated glomeruli. WT controls, elipsa 
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mutants and pkd2 mutants were exposed to chemicals of interest and glomerular size 

evaluated. 

Figure 41 shows the results of these compound exposures with regard to the glomerular area 

of WT, pkd2 and elipsa embryos. In WT embryos (Figure 41 A) 11-KT, flutamide and 

nifedipine decreased glomerular area significantly, whereas sphondin and trimethoxyflavone 

increased it. Interestingly, androstandione did not significantly affect the glomeruli, but co-

exposure with nifedipine caused an additive effect beyond the potency of nifedipine alone. 

This decrease of glomerular size in the co-exposure could be attributed to the arising cardiac 

oedema phenotype - decreasing cardiac output and subsequently hindering glomerular 

inflation.  

In compound-exposed pkd2 mutants, (Figure 41 B) flutamide caused smaller glomeruli, as it 

did in WT embryos, suggesting that, although it had no effect on the curvature phenotype, 

there is some effect on glomerular morphology. Nifedipine and androstandione co-exposure 

in  

pkd2-/- did not cause any oedema but also reduced glomerular area, indicating that perhaps 

oedema were not the driving force behind the shrinkage observed in WT embryos. None of 

the tested compounds exhibited the ability to increase glomerular size in pkd2 mutants.  

In elipsa mutants (Figure 41 C), which have a glomerular dilation phenotype, none of the 

compounds reduced glomerular area significantly. Interestingly, four compounds aggravated 

the already dilated renal phenotype: all of the coumarins (prenyletin, pimpinellin and 

sphondin) and triptolide, with the latter being unexpected. Triptolide decreases pkd2 

curvature (see above) but in this cystic kidney model it exacerbated the phenotype.  



83 

 

 
Figure 41 Glomerular area of WT (A), pkd2 (B) and elipsa (C) after exposure to various compounds. Chemical 
classes as indicated. Mean of DMSO baseline indicated with black line. Significances via one-way anova with 
Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. 

In addition to renal size, the effects of compounds on the body axis were also quantified in 

WT and elipsa mutants (Figure 42 A and B respectively). For WT embryos tail curvature 

measurements were conducted as previously described, meaning a straight tail corresponded 

to 170-180°. As some of the exposed elipsa embryos switched from a ventral curvature to a 
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curly up phenotype, distinction between positive and negative angles became necessary and a 

straight tail was defined as 0° (analysis more thoroughly explained in Results Chapter 1). 

WT embryos were largely unaffected by most of the compounds with the exception of 

androstandione, which caused a significant dorsal axis bend. The phenotype did not so much 

resemble a pkd2 curly tail but rather the dorsal axis bending of gamma-secretase inhibitors 

such as DAPT (Arslanova et al., 2010). Interestingly, similar to the results in glomerular area, 

androstandione/nifedipine co-exposure seemed to exaggerate this effect, although 

nifedipine itself did not affect the curvature on its own.  

In elipsa mutants, androstandione and androstandione/nifedipine co-exposure both caused 

the curvature phenotype to switch from ventral to dorsal, indicating a very potent curly up 

effect of androstandione. Pimpinellin, sphondin and trimethoxyflavone reduced the ventral 

curl of elipsa significantly, suggesting they have a dorsal curling effect on body axis mutants 

(elipsa and pkd2) but not on WT embryos. Of note, triptolide alleviated both elipsa and pkd2 

curvatures, suggesting it might activate a pathway enabling embryos to develop a straight 

body axis.  
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Figure 42 Curvature of WT (A) and elipsa (B) after exposure to various compounds. Chemical classes as 
indicated. Mean of DMSO baseline indicated with black line. Significances via one-way anova with Dunnett’s 
multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. 

 

3. Spectrum compound validation in a 3D-cyst culture assay 

In order to extend the findings of the zebrafish compound screen to a mammalian system, 

two cell lines were exposed to the Spectrum compounds in three-dimensional cyst assays. In 

these assays, cells are seeded into a matrix and form cysts over the time course of the 

experiment, which can subsequently be analysed by measuring cyst area. The lines used 

during this project comprised canine, renal MDCKII cells and ADPKD-patient-derived 

Ox161c1 cells with a Pkd1-null mutation. 
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3.1. Cystic MDCKII cells: determination of effective dosages 

As there was no literature on any of the Spectrum compounds regarding performance in cyst 

assays at the time of the experiments, a dose-range experiment with single replicates was 

conducted to test the chemicals with regards to cell toxicity and ability to affect cyst size. The 

results are shown in Figure 43. All of the compounds showed the behaviour predicted from 

zebrafish data and the most efficient concentrations were subsequently chosen for two 

triplicate exposure experiments. The optimal concentrations were determined as follows: 

0.01 µM for zinc pyrithione and 0.1 µM for hexamethylquercetagetin (both, as in zebrafish, 

were rather toxic); 1 µM for androstandione, prenyletin, sphondin and trimethoxyflavone; 

10 µM for pimpinellin, naringenin, diclofenac and dihydroxyanisole. 

 
Figure 43 MDCKII dose-range assay on day 10 of exposure (A) and day 19 of exposure (B). Chemical classes as 
indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s 
multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. 
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3.2. Cystic MDCKII cells: Spectrum compound validation 

Figure 44 depicts the combined results of two experiments with biological triplicates of 

MDCKII cells exposed to the Spectrum hit compounds after 10, 14 and 17 days of exposure. 

At day 10 of the experiment, naringenin remained at control levels whereas zinc pyrithione, 

previously a repressor, exhibited aggravated cyst growth. The latter remained true until day 

14 but by day 17, the endpoint of the assay, the expanding phenotype was reverted to cyst 

repression. Sphondin did not have an effect in one of the two experiments and subsequently 

the combined data suggested it did not cause a cyst expansion in MDCKII cells. Of note, 

sphondin was also the weakest of the coumarins in the zebrafish screen.  

Generally, all of the compounds with the exception of sphondin behaved as expected at the 

endpoint of the MDCKII cyst assay. None of the enhancers reached the potency of the 

positive control (forskolin) in terms of cyst-expanding capabilities. Forskolin expanded cysts 

to about 2.5-times the area in comparison to the strongest compounds of the Spectrum 

library. Nevertheless, the expansion compared to the DMSO control was highly significant 

in most cases (sphondin and androstandione treated MDCKII cells showed highly significant 

expansion at days 10 and 14 which were lost by day 17, perhaps suggesting earlier 

mechanisms).  

Amongst the repressors, diclofenac exhibited a second interesting ability besides cyst size 

reduction: It caused a shift in the ratio of cystic to tubular structures in the MDCKII cells 

(Figure 45).  
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Figure 44 Cyst area of MDCKII cells after compound exposures of 10, 14 and 17 days. Chemical classes as 
indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s 
multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001. Error bars indicate SEM. 
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Figure 45 (A) Ratio of tubular structures over total number of structures in MDCKII 3D cyst assays in DMSO 
control and diclofenac exposures of 17 days. Significance via t-test; ****: p ≤ 0.0001. Error bars indicate SD. (B) 
Example images of tubular structures after 10 day of diclofenac exposure in MDCKII cells.  

 

3.3. Cystic MDCKII cells: Further testing of Spectrum compounds – co-
exposures 

Further to individual treatments, co-exposures of various compounds were conducted in 

MDCKII cyst assays (Figure 46, Figure 47 and Figure 48).  

Figure 46 depicts the effects of enhancer combinations on MDCKII 3D cultures, where the 

strongest enhancing compounds from the steroid, coumarin and flavonoid class were tested 

in co-exposures. Overall, there was a high variability in cyst size over the time course of the 

experiments (co-exposures were analysed in comparison to the more potent single 

compound). Conversely, at day 10, pimpinellin/androstandione exposure led to an additive 

effect whereas trimethoxyflavone/androstandione caused a decreased cyst size in 

comparison to respective controls. At day 14, MDCKII cysts were generally smaller in all of 

the tested combinations than in individual chemical treatments, which did not chance on day 

17. No clear additive effects in terms of cyst expansion were observed.  
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Figure 46 MDCKII enhancer co-exposures. Mean of DMSO baseline indicated with black line. Significances via 
Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05 and non-
significant (ns): p > 0.05. Error bars indicate SEM. 

Further exposures with the steroid pathway modulators (Figure 47) flutamide and DHT 

revealed that flutamide, which had no effect on pkd2 zebrafish curvature but caused a 

decreased renal size, caused a large increase in cyst size in MDCKII assays. This was 

unexpected as steroids, such as androstandione and DHT increased cyst area; therefore, the 

assumption was made that the steroid antagonist flutamide should decrease cyst size. 

Flutamide was included to block the influence of DHT but proved a more potent enhancer 

on its own. Co-exposures of DHT and flutamide led to expansions similar to those observed 

in flutamide treatments; no additive or negating effects were observed. 

 
Figure 47 MDCKII steroid modulator exposures. Mean of DMSO baseline indicated with black line. 
Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01. Error 
bars indicate SEM. 

Finally, the cyst-repressing compounds were tested in co-exposures with low levels of 

forskolin to test their potency in overcoming cystogenesis (Figure 48). All repressors were 

able to reduce the expansion process significantly, but only diclofenac was potent enough to 

overcome the effects of forskolin completely and reduce cyst size to below DMSO control 

levels.  



91 

 

 
Figure 48 MDCKII repressor and forskolin co-exposures. Mean of DMSO baseline indicated with black line. 
Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: 
p ≤ 0.01. Error bars indicate SEM. 

 

3.4. Spectrum compounds in a cell culture model of ADPKD: Ox161c1 cells 

To test all compounds and compound combinations in a secondary model, ADPKD-patient-

derived Ox161c1 cells, which carry a PKD1 mutation predicted to cause a protein truncation, 

were also exposed to the various drugs (more detailed information on Ox161c1 cells can be 

found in the Materials and Methods section 1.12.2.). This cell line served as second validation 

of the Spectrum compounds in a human cell culture model of ADPKD. 

Previous experiments in our laboratory had shown that Ox161c1 cells tolerated similar 

compound concentrations as MDCKII cells (Morgane Lannoy, personal communication); 

hence the assays were conducted as described above in two experiments with biological 

triplicates each. 

3.5. Cystic Ox161c1 PKD-cells: Spectrum compound validation 

Similar to MDCKII assays, Ox161c1 3D cell culture experiments largely validated the 

zebrafish screen results (Figure 49). Differences in cyst area were, however, less pronounced 

and statistically significant results were more difficult to confirm in Ox161c1 cells. Although 

there were trends for the repressors to decrease cyst size, these findings were not significant 

and, on the same note, all enhancers exhibited trends towards expanding processes but not 

all reached significance thresholds. All compounds, without exception, behaved as predicted 

at all time points measured, including sphondin and zinc pyrithione. Of note, although 

significant expansions were less frequent than in the MDCKII cells, the most potent 

expanding compounds performed at the same level or above that of the positive control in 

Ox161c1 cells - suggesting that forskolin was less effective in its cyst-inducing potency in 

this cell line (similar observations communicated by a colleague; Morgane Lannoy). 
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Figure 49 Cyst area of Ox161c1 cells after compound exposures of 10, 14 and 20 days exposure in (A), (B) and (C) 
respectively. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via 
Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 
0.05. Error bars indicate SEM. 
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3.6. Cystic Ox161c1 PKD-cells: Further testing of Spectrum compounds – co-
exposures 

Co-exposures of the most potent enhancers from each compound class showed no additive 

effects in Ox161c1 cells, quite the contrary: All compound combinations bar 

androstandione/trimethoxyflavone at day 20 caused a decrease in cyst size in comparison to 

individual compounds (Figure 50).  

 
Figure 50 Ox161c1 enhancer co-exposures. Mean of DMSO baseline indicated with black line. Significances via 
Kruskal-Wallis test with Dunn’s multiple comparison test; **: p ≤ 0.01, *: p ≤ 0.05 and non-significant (ns): p > 
0.05. Error bars indicate SEM. 

Flutamide exposure of Ox161c1 cells did not result in a decrease of cyst size, as expected of 

a steroid antagonist, but rather increased cyst area (Figure 51). DHT performed as expected 

but co-exposures of DHT and flutamide did not show an additive effect. 

 
Figure 51 Ox161c1 steroid modulator exposures. Mean of DMSO baseline indicated with black line. Significances 
via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 
0.05. Error bars indicate SEM. 

Co-exposures of the repressors with forskolin in Ox161c1 cells revealed the same pattern as 

in MDCKII experiments. Diclofenac was strong enough in its inhibition properties to not 

only overcome forskolin stimulation, but was able to repress cyst size to below base levels 

whereas zinc pyrithione and dihydroxyanisole merely reduced cyst area (Figure 52). Further 

to combination exposures with forskolin, Ox161c1 cells were also co-exposed to the 

strongest enhancer (androstandione) and the most potent repressor (diclofenac). Here, 
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diclofenac was again able to overcome cystogenic effects and cyst size remained below 

control levels at all times (significant at days 10 and 14). 

 
Figure 52 Ox161c1 repressor and forskolin co-exposures. Mean of DMSO baseline indicated with black line. 
Significances via Kruskal-Wallis test with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p 
≤ 0.05. Error bars indicate SEM. 

 

4. Screen of the PKIS collection (kinase inhibitor library) 

4.1. Zebrafish PKIS screen results 

As there were very limited amounts of compound provided with the PKIS collection, only 

the first screen round and one validation set could be conducted initially. After the first 

exposure round, 123 compounds of interest were determined and after a secondary 

validation step 18 compounds of interest remained (Figure 53). Similar to the Spectrum 

collection, the majority of these hit compounds were enhancers, with only a rough quarter 

being repressors. As the Spectrum library had already yielded an interesting set of enhancers 

- and suppressors are of greater interest with regard to their potential therapeutic values - 

only the four repressing compounds were pursued from this set. The four repressors of 

interest were GW785804X, GW780159X, SB-698596-AC and GW682841X.  
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Figure 53 Hit compounds of PKIS library after initial compound screen with validation round. Enhancers of pkd2 
curvature in red, repressors in green. Mean of DMSO baseline indicated with black line. Significances via one-
way anova with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error 
bars indicate SEM. 

Table 15 contains information regarding the PKIS repressor compounds, including the name 

they will be referred to from here on. Interestingly, PKIS_04 and PKIS_59 were very similar 

in chemical structure (Figure 54). 

 
Table 15 List of PKIS repressor compounds with significant effect on pkd2 curvature including name, referred 
name, kinase the compound was designed against, most potent known target and further information. 1 (Elkins 
et al., 2016), 2 (Singh et al., 2003), 3 (Gellibert et al., 2004), 4 (Witherington et al., 2003), 5 (Gellibert et al., 2006). 

 
Figure 54 Chemical structure of PKIS hits in relation to ALK5 inhibition potency. Chemical structures obtained 
from PubChem (https://pubchem.ncbi.nlm.nih.gov/). 
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After a new batch of the chemicals was obtained following the materials transfer from GSK 

to UNC, testing continued. Exposures revealed that PKIS_96 did not replicate previous 

results with regard to the pkd2 mutant curvature, whereas the three remaining compounds 

did (Figure 55 A). Interestingly, in all compounds there also was a trend towards slightly 

enlarged glomeruli, which was, however, not significant (Figure 55 B). Although PKIS_96 

was unable to reproducibly repress the curvature, time constraints at the end of the project 

made it necessary to conduct experiments in parallel; hence this compound was taken 

through all assays and is depicted in the results below. 

 
Figure 55 Effect of re-ordered PKIS repressor compounds on pkd2 curvature (A) and glomerular area (B). 
Significances via one-way anova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001. Error bars indicate 
SEM. 

As with the Spectrum compounds, PKIS repressors were also tested on WT and elipsa 

evaluating their effects on glomerular size and tail curvature (Figure 56). None of the 

compounds had any significant effects on either WT feature. Similarly, glomerular size in 

elipsa/elipsa was unaffected, although there were trends towards enlargement in PKIS_04 and 

PKIS_96. One compound, PKIS_41 significantly reduced the elipsa down curl phenotype 

and PKIS_04 exhibited a similar tendency. 
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Figure 56 Curvature of WT (A) and elipsa (C) as well as glomerular area in WT (B) and elipsa (D) after exposure 
to various compounds. Significances via one-way anova with Dunnett’s multiple comparison test; *: p ≤ 0.05. 
Error bars indicate SEM. 

Subsequent to initial characterisation of the PKIS repressors in zebrafish, cell culture assays 

with MDCKII and Ox161c1 cells were carried out for validation purposes. The results of 

these three-dimensional cyst assays are described in the following two paragraphs. 

4.2. Validation of PKIS compounds in cyst culture: MDCKII cells 

MDCKII assays with PKIS repressor compounds were carried out in the same manner as 

tests with the Spectrum compounds (biological triplicates in two independent experiments 

each). Exposures to different concentrations of the PKIS repressors in MCKII 3D cyst 

assays revealed the following (Figure 57): PKIS_04 and PKIS_59 exhibited dose-dependent 

capabilities to decrease cyst size at all time points measured. PKIS_41 conversely caused an 

expansion of cyst area at 0.1 µM, no effect in comparison to base line levels at 1 µM and a 

reduced cyst size at 10 µM at all time points. PKIS_96 was toxic at concentrations at 1 and 

10 µM whereas 0.1 µM did not have a significant effect on MDCKII cystogenesis.  
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Figure 57 Cyst area of MDCKII cells after PKIS compound exposures of 10, 14 and 17 days exposure. Mean of 
DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison 
test; ****: p ≤ 0.0001, *: p ≤ 0.05. Error bars indicate SEM. 

 

4.3. Validation of PKIS compounds in a cell culture model of ADPKD: 
Ox161c1 cells 

The exposure results of PKD1-/- Ox161c1 cells to PKIS were less conclusive than the 

MDCKII experiments in the sense that none of the PKIS compounds exhibited dose-

dependent effects (Figure 58). 0.1 µM PKIS_04 and 1 µM PKIS_59 showed an insignificant 

increase in cyst sizes at days 10 and 14 respectively. The remainder of the compounds 

behaved according to expectations. 10 µM of PKIS_04, PKIS_59 and PKIS_41 showed a 

significant decrease in cyst area at day 20 and lower concentrations showed similar trends. 

PKIS_96 exposures resulted in less cytotoxicity than in MDCKII cells but at 10 µM cells 

showed signs of stress. 
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Figure 58 Cyst area of Ox161c1 cells after PKIS compound exposures of 10, 14 and 20 days exposure. Mean of 
DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison 
test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. 

 

4.4. Target of phenotype reduction: Alk5 

Since PKIS_96 had failed to repress the curvature reproducibly in zebrafish and proved 

rather toxic in cell culture, this compound was excluded during target analysis. Similarly, 

PKIS_41 exhibited an inconsistent behaviour in MDCKII cells, although it did not in the 

Ox161c1 line. Two heat maps of potential targets were therefore generated one including 

and one excluding PKIS_41 (Figure 59 B and A respectively). PKIS_04 and PKIS_59 were 

structurally highly related and alongside with PKIS_41 designed to inhibit ALK5 (also known 
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as TGFBR1 - transforming growth factor, beta receptor I). Interestingly, ALK5 was not 

amongst the kinases tested in the first characterisation of the PKIS compound collection 

used for heat map generation (Elkins et al., 2016). However, ALK5 inhibiting properties of 

these compounds have been described in independent papers (Gellibert et al., 2006; Gellibert 

et al., 2004). Amongst the kinases tested and available for heat map generation KDR was the 

most relevant target for PKIS_04 and _59 and MAP4K4 was most prominent candidate 

when combining all three repressors.  

 
Figure 59 Heat maps of known kinases inhibited by PKIS repressor compounds with the top 25 inhibited kinase 
targets in decreasing order. Numbers represent percentage of inhibition; dark yellow 65 % and above, yellow 40 
% and above, light grey 35-40 %, dark grey 30-35 %, grey/blue 20-30 %, light blue 15-20 % and dark blue > 15 %. 
(A) Structurally similar compounds PKIS_04 and PKIS_59. (B) Combined data of all three curvature repressors. 

Interestingly, although KDR and MAP4K4 were the most likely targets based on the 

information contained in the heat maps, there were more potent inhibitors of both kinases 

in the original library. These more specific inhibitors, however, had no effect on the curly 

tail phenotype (Figure 60, KDR and MAP4K4 in A and B respectively). This suggested 

neither KDR nor MAP4K4 were the targets driving the curvature reduction.  
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Figure 60 Potent KDR (A) and MAP4K4 (B) inhibitors in PKIS1 compound collection. Data from original 
compound screen on pkd2 curly tails. Box on left: Examples of curvature severity with corresponding scale in 
degrees. No significances via one-way anova with Dunnett’s multiple comparison test; p > 0.05. Error bars 
indicate SEM. 

Since neither of the most promising, known targets seemed to cause the phenotype reduction 

and the chemicals had a tendency to inhibit a plethora of kinases, two, structurally-unrelated, 

ALK5 inhibitors with higher specificity were obtained: SD-208 ((Uhl et al., 2004); IC50: 49 

nM, according to UCN) and SB431542 ((Inman et al., 2002); IC50: 94 nM, according to UCN), 

structures in Figure 62. Both chemicals have been described previously in biological systems 

as Alk5 inhibitors: SD208 had anti-cancer properties in malignant glioma in mice via TGFβ 

inhibition (Uhl et al., 2004) and SB431542 suppressed TGF-beta-induced proliferation in 

human osteosarcoma cells (Laping et al., 2002). 

In exposures of pkd2 mutant zebrafish both compounds, SD208 and SB431542, were able 

to repress the curvature according to expectations. SD208 potently alleviated the phenotype 

at 10 µM whereas much higher concentrations were necessary for SB431542, where only 100 

µM caused a significant change (100 µM SB431542 had been described as TGFβ inhibitor at 

these developmental stages in zebrafish by (Park et al., 2008)). TGFβ inhibition therefore is 

the likely effector in reducing the curly tail phenotype in pkd2-null zebrafish embryos. 

https://en.wikipedia.org/wiki/TGF-beta
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Figure 61 Effects of various concentrations of known Alk5 inhbitors on pkd2-/- curvature. Box on left: Examples 
of curvature severity with corresponding scale in degrees. (A) SD208. (B) SB431542. Significances via one-way 
anova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate 
SEM. 

 
Figure 62 Structure of alternative Alk5 inhibitors tested during this project. Chemical structures obtained from 
PubChem (https://pubchem.ncbi.nlm.nih.gov/). 

 

Discussion 

 

1. Zebrafish pkd2 mutants as ADPKD screening tool 

Overall, the results of two drug library screens with the zebrafish pkd2-/- curly tail as 

ADPKD-related readout and subsequent validation of compound efficacy in 3D cyst assays 

with two different cell lines, demonstrates that the tail curvature phenotype in pkd2-deficient 

fish is a valid predictor for cystic behaviour. How the mechanism of generating this curly 

tail, possibly caused by overproduction or –deposition of ECM, relates to the mechanism 

underlying cystogenesis remains unclear. Nevertheless, pkd2 mutant fish embryos proved to 

be a robust and valid model for screening potential ADPKD-candidate drugs. Interestingly, 

compound exposure of the elipsa mutant “cystic kidney” phenotype did not consistently lead 

to predicted outcomes. As this phenotype in ciliary mutants is very severe, it may have been 
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irreversibly altered by the time of exposure or involve a different mechanism. Furthermore, 

a dilated glomeruli phenotype in zebrafish, typically declared a “cystic kidney” in the 

literature, has very little in common with actual cystic behaviour. It should be noted that cilia 

in the zebrafish pronephros are motile and their beating motion thought to contribute to 

fluid movement along the tubule (Kramer-Zucker et al., 2005). Loss of cilia therefore might 

lead to an inability to expel filtrate at normal rates, creating a backlog of fluid into the 

glomeruli, hence causing dilation. Thus, the underlying mechanism for cystic dilatation may 

be very different from that in mammalian kidney cyst formation. These differences are 

potential disadvantages in using zebrafish embryos as a model to study ADPKD – cilia are 

motile rather than non-motile in the kidney and the pronephros consists of just two 

nephrons compared to up the to two million nephrons in a human adult (Bertram et al., 

2011). pkd2-deficient zebrafish are not viable past 5 dpf and to date, no adult models of 

ADPKD exist in zebrafish. 

Neither cAMP nor forskolin had an effect on the pkd2 curly tail, although they are well-

established controls in three-dimensional cyst assays (Hanaoka & Guggino, 2000; Yamaguchi 

et al., 1995; Yamaguchi et al., 2000). This suggested that the cup phenotype is independent of 

the classical forskolin, cAMP, Ca2+ axis and, in that regard, pkd2 mutants are perhaps not an 

ideal ADPKD model.  

An important point to consider when screening drugs on a freshwater species is that 

zebrafish need highly sophisticated excretion mechanisms to maintain homeostasis. To 

counter osmotic pressures, water molecules need to be constantly expelled while other 

chemicals are retained inside the body. Freshwater species therefore have a very effective 

transport machinery and compounds might become expelled much more efficiently than in 

mammals, resulting in reduced drug efficacy.  

2. Screen hit compounds in the wider context 

The Spectrum and PKIS screens yielded a number of positive hits, which were validated in 

both cyst assay cell lines. Amongst the compounds identified were previously reported 

chemicals affecting ADPKD prognosis, such as androgens (Gabow, 1990; Gabow et al., 

1992; Grantham, 1997; Stewart, 1994; Torres et al., 1996) and PGE2 modulators (Y. Liu et 

al., 2012b; Nasrallah et al., 2014) but also a range of new molecules.  

2.1. Steroids and L-type calcium channel inhibitors 

Men suffering from ADPKD tend to have a worse prognosis than females with a faster 

progression towards renal failure and earlier mortality (Gabow et al., 1992; Stewart, 1994). 

This sex dimorphism is also recapitulated in many renal disease rodent models (Aziz et al., 
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2001; Cowley et al., 1997; Fry et al., 1985; Katsuyama et al., 2000; Lager et al., 2001; Nagao et 

al., 2005; Nagao et al., 2003; Ogborn et al., 1987; Smith et al., 2006), but is not well described 

in ADPKD model strains. Publications of various rodent models also showed that oestrogen 

exhibits reno-protective abilities and castration of males improved disease endpoints, 

suggesting that testosterone is renotrophic (Cowley et al., 1997; Nagao et al., 2005; Smith et 

al., 2006). Interestingly, a study of sex hormones in MDCKII cells revealed that testosterone 

increased fluid and solute transport as well as cAMP levels by activating adenylate cyclase, 

whereas no effects on ATPase activity, cell proliferation or cellular protein content were 

found (oestrogens had no effect, (Sandhu et al., 1997)). 

The steroids identified as hit compounds from the Spectrum library were mostly androgens, 

although a progestogen, norethynodrel was also identified. After evaluating the chemical 

structures of the steroids tested during the project, a pattern emerged (depicted in Figure 63): 

The more complex the side-groups at C3 and C17, the less potent the effect on the curvature 

phenotype. Androstandione with its two keto-groups in these places showed the highest 

potency and even adding a hydrogen to these particular side-chains reduced potency (see 

DHT or epiandrosterone). Interestingly, epiandrosterone, another steroid hit compound, as 

well as DHT can be converted into androstandione (Ferraldeschi et al., 2015; Sharifi, 2012). 

 
Figure 63 Steroids tested on pkd2-/- zebrafish in this project with structure and potency correlation. Chemical 
structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). 

 

Androstandione proved to be more effective in zebrafish assays and tested cell lines than the 

most potent human androgen, DHT (Vollmer, 1963), and the most potent zebrafish 

androgen 11-KT (Hossain et al., 2008). The added potency of this compound led to the 

speculation that androstandione might not act solely via the androgen receptor (AR), which 

is expressed at very low levels at these stages (Gorelick et al., 2008), but might also influence 

a secondary signalling pathway. Current experiments in the lab aim to generate a zebrafish 

ar-knockout line to test this hypothesis. If ar/pkd2 double knockouts prove resistant to 

curvature-enhancing effects of androstandione exposure, then signal transduction occurs 

solely via the AR. However, should androstandione affect the curly tail in ar-/-/pkd2-/- fish, 
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then a second pathway would be involved. Once the appropriate zebrafish mutant line has 

been established, these experiments will be carried out. 

Potential candidates for this hypothesised secondary androstandione pathway are L-type 

calcium channels (LCCs). Testosterone has been described as potent LCC inhibitor (Scragg 

et al., 2004) and nifedipine, a specific inhibitor of L-type channels, showed intermediate 

curvature-enhancing properties upon closer evaluation of the Spectrum screen data (it was 

originally dismissed due to stringent scoring criteria).  

There is some evidence that LCC inhibitors like nifedipine worsen ADPKD in patients 

(Astor et al., 2008; Saruta et al., 2009) and several publications have linked treatment with L-

type channel blockers in rats and dogs to higher glomerular filtration rates, therefore 

increasing filtration fractions and renal blood pressures (the filtration fraction is the fraction 

of fluid reaching the kidney passing through renal tubules) (Abe et al., 1983; Dietz et al., 1983; 

Heller et al., 1990; Roy et al., 1983). Increased blood pressure in the kidney (renal 

hypertension) has been associated with faster renal disease progression in various canine and 

rat models (Bidani et al., 1987; S. A. Brown et al., 1993; Griffin et al., 1999).  

L-type calcium channels are the predominant voltage-gated channels expressed in the kidney 

(Hayashi et al., 2007; Homma et al., 2013) and the most abundant renal L-type channel, Cav1.2, 

is localised predominantly to afferent renal arterioles (Hayashi et al., 2007). LCC inhibitors 

have been shown to cause afferent arteriolar dilation while the efferent vasculature remained 

unaffected (Hayashi et al., 2007; Homma et al., 2013). Consequently, drugs of this type 

increase blood inflow into renal glomeruli while the outflow remains the same - raising renal 

blood pressure (for schematic depiction see Figure 64). Treatments with LCC activators, 

such as BayK8644, result in preferential afferent arteriolar constriction (Steinhausen et al., 

1989), underlining the validity of above findings. Interestingly, Cav1.2 expression is increased 

2-fold in Pkd1-/- and Pkd2-/- murine renal epithelial cells and the protein seems to be randomly 

distributed in Pkd-knockout lines while it is localised predominantly in cilia in healthy tissues 

(Jin et al., 2014). Cav1.2 knockdown also caused shortened cilia in PC-null cells whereas WT 

cilia were unaffected (X. Jin et al., 2014). Furthermore, zebrafish cav1.2 morphants exhibit 

“cystic kidneys” and Cav1.2 knockdown in Pkd1+/- (lentiviral with Cav1.2 shRNA) mice 

resulted in severe renal cysts while kidneys in WT animals were unaltered (Jin et al., 2014).   

Nifedipine also enhanced the curvature and enlarged renal size in pkd2 mutant zebrafish, 

further supporting the notion that L-type calcium channel inhibition could have adverse 

effects in ADPKD models. In addition, data from a PKD rat model (Han:SPRD) further 

emphasises the deleterious effects of L-type channel blockers on renal outcomes (Nagao et 
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al., 2010; Nagao et al., 2008). Interestingly, LCC inhibitor treatments in WT rats seemed to 

protect against renal injury (Harris et al., 1987; Yoshioka et al., 1988), suggesting the drugs 

might have differential effects in healthy and renal disease systems. Lastly, several 

publications suggest treating hypertension in patients with T- or N-type calcium channel 

blockers might be more beneficial for renal disease outcomes (Abe et al., 2013; Fujita et al., 

2007; Fujiwara et al., 1998; Homma et al., 2013; Omae et al., 2009).  

 
Figure 64 Schematic depiction of L-type calcium channel (LCC) function in a single nephron (nephron in blue, 
vasculature in red). (A) In normal conditions and (B) with LCC inhibition treatment for hypertension or in the 
presence of androgens. 

In summary, there is a plethora of publications suggesting L-type calcium channel inhibition 

in PKD models and ADPKD patients may have adverse effects, specifically in PKD systems. 

Furthermore, there is some evidence suggesting androstandione, the most potent enhancer 

identified in this project, might act not only via the AR pathway but could also inhibit L-type 

calcium channels.  

2.2. Coumarins 

A second class of compounds enhancing the cup phenotype identified in the Spectrum library 

screen were coumarins. Coumarins are natural compounds found in various plants as 

secondary plant metabolites. Unfortunately, coumarins have not been well-characterised in 

the literature to date: All three coumarin hits in this project have been described to have 

antifungal or antimycobacterial properties (O'Neill et al., 2013; Stein et al., 2006) and  

(oxy-)prenylated coumarin derivatives, such as pimpinellin, may modulate GABAA receptors 

(Singhuber et al., 2011). Of note, sphondin was reported to attenuate COX-2 protein 

expression and PGE2 release in A549 cells (human pulmonary epithelial cells). More 

precisely, sphondin did not alter COX-2 enzyme activity but rather suppressed expression 

of the gene (Yang et al., 2002). COX enzymes and PGE2 release have previously been linked 

to ADPKD, as alluded to below in the discussion. Structurally, within the coumarin class, 
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the three-ring structure with more hydroxyl groups seems more potent, although no clear 

picture emerged (Figure 65). 

 
Figure 65 Coumarin hits with structure and relative potency. Chemical structures obtained from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/). 

 

2.3. Flavonoids 

The third class of enhancers identified during the Spectrum library screen comprised 

flavonoids. Hexamethylquercetagetin and trimethoxyflavone were detected during the 

screening process whereas naringenin had been observed to induce dorsal curvature in WT 

embryos (Robert Wilkinson, unpublished). Hexamethylquercetagetin has, to date, not been 

described in the literature. However, a very similar compound, quercetin, has been linked to 

prevention of prostate cancer by inhibiting the EGFR pathway in a male rat model (Firdous 

et al., 2014). Additionally, quercetin has been implicated in the regulation of Ca2+ levels in rat 

musculature (Sgaragli et al., 1993). Trimethoxyflavone is deemed to have antioxidative 

properties (Bala et al., 2014) and enhanced lipolysis in mature adipocytes, improving insulin 

resistance in cell culture (Okabe et al., 2014).  

The third flavonoid, naringenin, is mainly found in citrus fruit, especially in grapefruit. It has 

been associated with benefits in various diseases such as obesity, diabetes, hypertension, 

metabolic syndrome (reviewed in (Alam et al., 2014)) and deemed cardioprotective in the 

cardiorenal syndrome (Y. Liu et al., 2016). Interestingly, naringenin has been directly linked 

to pkd2 in a Dictyostelium discoideum screen. Naringenin slows Dictyostelium growth by inhibiting 

proliferation (Russ et al., 2006) and in a gene knockout screen, a pkd2 mutant proved to be 

resistant to these effects (Waheed et al., 2014). Additionally, cyst growth in 3D-culture 

MDCKII experiments was described as inhibited and TRPP2 knockdown in MDCKII cells 

alleviated those effects, suggesting naringenin acts in a pkd2-dependent manner (Waheed et 

al., 2014). This stands in stark contrast to my findings: Not only were pkd2-/- fish affected by 

naringenin, suggesting the compounds acts not via PC2 but via an alternative pathway but 
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naringenin in MDCKII assays increased cyst size. Considering that three very similar 

flavonoids showed potent ADPKD-enhancing effects in all three models tested, this project 

provides powerful evidence that naringenin indeed worsens ADPKD model readouts. 

 Regarding the chemical structures of the flavonoids identified as hits during this project, 

unbound electrons in the middle ring and fewer side chains seemed to correlate with potency 

(Figure 66). 

 
Figure 66 Flavonoid hits with structure and relative potency. Chemical structures obtained from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/). 

 

2.4. Xanthoxylin and dihydroxychalcone 

Two further, structurally independent enhancers significantly altered the cup phenotype in 

the Spectrum screen: xanthoxylin and dihydroxychalcone. Xanthoxylin has been portrayed 

to possess antifungal/fungiostatic properties (Cechinel Filho et al., 1996) and 

dihydroxychalcone seems to affect various pathways. It has been described to inhibit cell 

division in cell culture experiments (Xie et al., 2014), induced apoptosis in human prostate 

cancer cells (Sheng et al., 2015), functioned as an antileishmanial drug by inhibiting the 

enzyme glycerol-3-phosphatase dehydrogenase (G3PDH) (Passalacqua et al., 2015) and, as 

component of propolis-extract derived from Argentinian honeybees (Apis mellifera), 

dihydroxychalcone reduced COX-2 activity (Salas et al., 2016).  

2.5. Repressors 

Three compounds from the Spectrum collection and another three drugs from the PKIS 

library were identified to reduce APDKD-related readouts during this project. With the 

exception of two PKIS compounds, the repressors were structurally unrelated, so no 

inference to the active structure of the molecules could be made (Figure 67). 
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Figure 67 Chemical structures of all pkd2 mutant curvature repressors used during this project. Chemical 
structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). 

 

2.5.1. TSA, BFA, triptolide and tolvaptan – known ADPKD model modulators 

Three independent positive controls for curly up reduction were utilised during this project: 

TSA, BFA and triptolide (Figure 67). TSA was first identified in a small scale compound 

screen on pkd2-/- zebrafish (Cao et al., 2009), BFA reduced pkd2 curvature (Le Corre et al., 

2014) and triptolide had not previously been tested in zebrafish. In this project, all three 

compounds reduced the cup phenotype of pkd2 mutants in narrow therapeutic windows.  

Interestingly, tolvaptan, the only currently approved drug for slowing the progression of 

ADPKD, did not affect the pkd2-/- curvature and is presumed to have no effect on MDCKII 
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cyst size, as this cell line lacks VP2R (vasopressin 2 receptor, personal communication Albert 

Ong). In patients, tolvaptan treatment becomes ineffective in late disease stages (Hattanda et 

al., 2016), presumably because renal tissues at these stages lose VP2R expression. 

2.5.2. The Spectrum repressor compounds zinc pyrithione, dihydroxyanisole 
and diclofenac 

Of the newly identified ADPKD modulators zinc pyrithione, an active ingredient in anti-

dandruff shampoo, has clinical implications in the treatments of the skin conditions 

hidradenitis suppurativa and seborrhoeic dermatitis (Danesh et al., 2015; Naldi et al., 2015). 

To date (August 2016) there are no publications regarding the biological function of the 

dihydroxyanisole identified during this project (2,5-di-t-butyl-4-hydroxyanisole). A slightly 

different chemical, 3,5-di-t-butyl-4-hydroxyanisole, however, has been linked in a variety of 

papers to calcium regulation in rat musculature via activation of the sarcoplasmic reticulum 

Ca2+-ATPase and guinea-pig gastric smooth muscle cells (Fusi et al., 2001).  

The only repressor of the Spectrum collection with a known mechanism implicated in 

ADPKD pathogenesis was diclofenac. Diclofenac is a non-steroidal anti-inflammatory drug 

(NSAID) inhibiting cyclooxygenase enzymes 1 and 2 (COX-1 and COX-2) with a higher 

affinity for COX-2. COX enzymes metabolise arachidonic acid to PGH2, a precursor of 

PGE2. Inhibition of COX therefore leads to a decrease in PGE2 synthesis and lower PGE2 

levels have been linked to improvements in ADPKD (Elberg et al., 2007; Liu et al., 2012a). 

Figure 68 contains a more in-depth explanation of the relationships of PGE2 and ADPKD. 

Prostaglandin E2 seems to play direct and indirect roles in a variety of pathways associated 

with renal diseases (reviewed in (Nasrallah et al., 2014)) and in a murine ADPKD model 

(renal epithelial Pkd1-/- cells) elevated PGE2 levels were directly correlated to increases in 

proliferation and chloride secretion (Liu et al., 2012a). Interestingly, there is also evidence 

that PGE2 is required for ciliogenesis in zebrafish by promoting intraflagellar transport (Jin 

et al., 2014).   

Apart from reducing cyst size, MDCKII cell morphology was also affected by diclofenac 

treatment, resulting in a shift from cystic cells to tubular structures. Healthy renal cells in 

culture often form structures reminiscent of renal tubules (Mao et al., 2011; Zeng et al., 2007) 

rather than cysts. MDCKII cells still have the ability to form tubules but will predominantly 

form cysts in a collagen matrix. Diclofenac altered this phenotype significantly and it could 

be debated that this shift corresponds to a “healthier” cell status. Similar observations with 

regard to cell structure were made by a colleague in MDCKII 3D culture exposure to PGE2 

antagonists (Morgane Lannoy, personal communication). 
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The reported reduction of COX-2 function by sphondin and dihydroxychalcone described 

above (both compounds enhanced the curly up phenotype), stand in contrast to current 

hypotheses. Furthermore, diclofenac has also been described to inhibit L-type calcium 

channels in rat cardiomyocytes (Yarishkin et al., 2009), however, a more specific L-type 

calcium channel inhibitor (nifedipine) exaggerated PKD phenotypes in this project.  

 
Figure 68 Schematic depiction of the prostaglandin pathway and its association with chronic renal diseases 
derived from information in current literature (reviewed in (Nasrallah et al., 2014)).  

 

2.5.3. PKIS repressor compounds affect the TGFβ pathway 

The PKIS repressors identified during this project were, according to GSK, originally 

designed for ALK5 (activin receptor like kinase 5) inhibition. ALK5 is also referred to as 

TGFβ receptor 1 and is one of many proteins associated with the TGFβ superfamily. ALK5 

was not represented in the kinase inhibition tests used for heat map generation but the two 

best target candidates suggested by those heat maps were quickly excluded to be the cause 

of the phenotype reduction. As separate publications suggested the PKIS hits were indeed 

ALK5 inhibitors (Gellibert et al., 2006; Gellibert et al., 2004; Singh et al., 2003), structurally 

unrelated, known ALK5 inhibitors were obtained for further studies. Exposure experiment 

with SD208, a compound with high specificity for ALK5 and very low affinity for any other 

TGFβ components, recapitulated the pkd2 zebrafish curvature reduction observed in the 
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PKIS compounds. SB431542, which blocks not only ALK5 but also ALK4 and ALK7 

function (Inman et al., 2002), was also able to repress the curly tail. 

The main effectors of the TGFβ pathway, SMAD2 and 3, are upregulated in a variety of 

mouse models and in human tissues even at early ADPKD disease stages (Hassane et al., 

2010). A recent study in a Pkd1-/-/Alk5-/- double knockout mouse model, however, did not 

show any alterations in downstream target expression (SMAD2/3) or progression of PKD 

compared to Pkd1-/- animals (Leonhard et al., 2016). That study further suggested Alk5 is not 

the TGFβ component affecting SMAD2/3 expression but rather identified activins 

(alternative TGFβ superfamily ligands) and the activin receptor II b/Alk4 complex as driver 

of the phenotype. Figure 69 depicts both branches of the TGFβ family: On the right the 

Alk5 (TGFβR1)/TGFβR2 receptor complex and on the left the Alk4/activin receptor II b 

complex - both of which ultimately lead to SMAD2/3 activation. SMAD2 and 3 are 

transcription factors which translocate to the nucleus upon phosphorylation via the receptor 

complexes and regulate a plethora of downstream effects such as cell proliferation, 

differentiation, apoptosis and survival (reviewed in (Villapol et al., 2013)). Since SD208 is 

described as a potent Alk5 inhibitor but has not been described to inhibit other members of 

the TGFβ-receptor family, it seems likely that Alk5 rather than Alk4 is the driver behind the 

reduced ADPKD-related zebrafish phenotype. There are plans to test a third ALK5 inhibitor 

with regard to the curly tail phenotype, but the supplier is currently unable to deliver. 

To elucidate whether one or both of the two alk5 copies in zebrafish, tgfbr1a and tgfbr1b, are 

truly responsible for the pkd2 curvature reduction, knockdown experiments with 

morpholinos, or preferably, with the newly developed CRISPRi technology (a colleague, 

Aaron Savage, is currently gathering data for a methodology paper) could be performed in 

pkd2 mutant animals. Of note, interesting cross-links between PGE2 and the TGFβ pathway 

have been described (Haidar et al., 2015; Kumai et al., 2014; Ramirez-Yanez et al., 2006; Tian 

et al., 2010) and TGFβ has been shown to regulate calcium homeostasis in the hearts of mice 

(Hsu et al., 2015). Conversely, naringenin and triptolide have been linked to a suppression of 

SMAD3 and SMAD2/3 phosphorylation (activation) respectively (Chen et al., 2014; Liu et 

al., 2006), although they enhanced zebrafish and cell culture phenotypes.  
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Figure 69 TGFβ superfamily ligands and receptors affecting SMAD2/3 activity with modulators of this system 
identified during this project. 

 

2.6. Compound co-exposures in zebrafish and cell culture ADPKD models 

Originally, zebrafish data suggested that co-exposures of coumarins or flavonoids in 

combination with steroids caused an additive effect - increasing pkd2 mutant tail curvature 

in comparison to individual compounds. In cell culture, however, this was not recapitulated. 

Overall, co-exposures decreased cyst size rather than increasing it (in comparison to the more 

potent single compound). No clear explanation can be given for this discrepancy between 

models at this point. 

Flutamide, an anti-androgen intended to negate steroid effects, did not behave as expected 

in any of the models tested. It had no effect on the curly tail phenotype in zebrafish, although 

previous publications had shown that flutamide causes biological alterations in exposure 

experiments (Schiller et al., 2013; Schiller et al., 2014), and in 3D cyst assays flutamide 

increased cyst size rather than decreasing it. The latter effect was more pronounced in 

MDCKII cells, where flutamide exceeded DHT expansion potency. In Ox161c1 assays, 

DHT was the stronger enhancer, but flutamide still caused an increase in cyst area above 

baseline levels. Perhaps neither of these models were particularly suited to test androgen 

effects: Zebrafish have very low levels of androgen receptor expression at the evaluated 

stages (Gorelick et al., 2008; Thisse et al., 2008) and there is some evidence to suggest that, in 

particular androstandione, acts via alternative pathways (details above) – this hypothesis will 

be tested in the near future. Both cell lines utilised during this project were derived from 

females of their respective species and there is the distinct possibility that this causes 

flutamide to act contrary to expectations. Furthermore, immortalised cell lines often lose 

certain proteins and become unsuitable for testing certain hypotheses (e.g. MDCKII cells 

lost VP2R and tolvaptan is thought to have no effect). 
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Interestingly, the repressor compounds in the Spectrum library (diclofenac, zinc pyrithione 

and dihydroxyanisole) were all able to counter low levels of forskolin stimulation in cyst 

assays. Zinc pyrithione and dihydroxyanisole reduced expanding processes in comparison to 

the stimulant and diclofenac was able to completely overcome it, presumably by antagonising 

the effects of forskolin on cAMP.  

3. Summary of library screen findings 

Overall, the pkd2 mutant curly tail phenotype has proven to be a robust read-out for 

screening compounds that are active in mammalian cyst assays. Compounds that enhanced 

the cup phenotype also increased cyst size in cell culture and chemicals repressing the 

ADPKD-related readout in zebrafish decreased cyst size. Since cell culture experiments can 

take up to 20 days whereas the zebrafish exposures last only 3 days, zebrafish offer a rapid 

method for screening chemical libraries using an in vivo model.  

A summary of screen hit compounds with described mechanisms of action can be found in 

Figure 70. The two most promising new avenues of therapy for ADPKD emerging from this 

project are diclofenac and the PKIS repressors, inhibiting COX and TGFβ pathways 

respectively. Both of these pathways have been linked to repression of ADPKD severity 

(Leonhard et al., 2016; Seamon et al., 1981). 

Interestingly, the majority of compounds identified in this study worsened ADPKD-related 

outcomes. Future work will address potential mechanisms by which these may alter the cystic 

phenotype.  
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Figure 70 Compounds with proposed/speculative mechanisms of action utilised in this project. Questionmarks 
suggest interactions were previously described but new evidence suggests they are inaccurate. ALK5: activin A 
type II-like kinase 5, BFA: brefeldin A, cAMP: cyclic adenosine monophosphate, COX: cyclooxygenase, ECM: 
extracellular matrix,  HDAC: histone deacetylases, PGE2: prostaglandin E2, TRPV4: Transient Receptor 
Potential Cation Channel Subfamily V Member 4, TSA: trichostatin A.  
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Results and Discussion Chapter 3: in vivo real-time renal 
tubular calcium signalling 

 

Introduction 

 

PC2 is a member of the transient receptor potential (TRP) superfamily and thought to 

function as a non-selective Ca2+ channel (also known as TRPP2) (Gonzalez-Perrett et al., 

2001; Hanaoka et al., 2000; Luo et al., 2003a). Several studies have shown a decrease in 

intracellular Ca2+ levels in PKD-deficient cells (Ahrabi et al., 2007; Nauli et al., 2003; Q. Qian 

et al., 2003) but changes in intracellular Ca2+ concentrations in vivo, in particular in the kidney, 

had not been previously reported. Zebrafish with their rapid development, easy genetic 

manipulation and translucent bodies provided an ideal tool for this purpose. Although pkd2 

mutant zebrafish did not exhibit an obvious renal phenotype in terms of glomerular dilation 

or proliferation (see Results and Discussion Chapter 1, chapters 1.1. and 1.3. respectively), I 

hypothesised that there might be a detectable change in intracellular Ca2+ in the developing 

kidney. To study this, a new renal calcium-reporter line was created. 

Several zebrafish calcium-reporter lines have been developed in recent years, allowing real-

time Ca2+ visualisation by utilising a fluorescent marker as readout, GCaMP7a (Kyung et al., 

2015; Muto & Kawakami, 2013; Muto et al., 2013; Yokota et al., 2015). A GCaMP protein is 

basically a modified GFP (green fluorescent protein) with an attached calmodulin unit and 

its use in zebrafish was originally described by (Muto et al., 2013). The calmodulin unit of the 

GCaMP fusion protein has a high affinity for Ca2+ (Akerboom et al., 2012) and the binding 

of Ca2+ causes a conformational change (closing the beta-barrel structure of the fluorophore), 

allowing for excitation with appropriate wavelengths (Figure 71). In short, in the presence of 

Ca2+, the GCaMP protein is able to fluoresce and the more calcium, the brighter the 

fluorescence.  

 
Figure 71 Schematic depiction of GCaMP function. 

Several different GCaMP versions exist and the GCaMP7a utilised in study is slightly 

modified and more sensitive than the original GCaMP protein described in cell culture 

experiments (Nakai et al., 2001). A colleague had previously generated a UAS:GCaMP7a line 
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(Robert Wilkinson - an initial attempt to create an endothelial:GCaMP7a line failed as 

fluorescence levels were undetectable). The cloning of direct promoter:GCaMP7a constructs 

during this project was unsuccessful and since amplification through the UAS/Gal4 system 

was deemed beneficial, the strategy of generating renal Gal4 lines, which would then be 

crossed to the UAS:GCaMP7a line, was pursued. 

Once a renal GCaMP7a zebrafish line was established, fluorescence levels were monitored 

to quantify renal Ca2+ levels in wild-type animals and ADPKD models at different 

developmental stages. 

 

Results  

 

1. Generation of renal GCaMP7a lines 

Two different renal promoters were utilised initially: enpep, which has been described as 

driving exclusively renal tubular expression (Seiler et al., 2011) and podocin, described to drive 

expression in the glomerular podocytes (He et al., 2011). After successful cloning of the final 

constructs (with a cmcl2 marker, see Materials and Methods for more details), microinjections 

into an incross of pkd2 carriers commenced and the marker-positive animals were raised. 

Subsequently two founders were identified for each construct and their offspring was 

evaluated. The lines established during the project comprised podocin:Gal4sh490, podocin:Gal4sh491 

and enpep:Gal4sh489. As the podocin lines did not differ, work was only continued on 

podocin:Gal4sh490 (henceforth referred to as podocin:Gal4) and enpep:Gal4sh489 (referred to as 

enpep:Gal4). 

 

1.1. The glomerular podocin-driven calcium-reporter line 

Fluorescence of podocin:Gal4;UAS:GCaMP7a fish was not discernible via conventional 

fluorescent microscopy at any time point during development, suggesting that Ca2+ levels in 

the podocytes or expression of podocin:Gal4 were low. In order to visualise the expression 

pattern podocin:Gal4 animals were crossed to a UAS:kaede line (kaede is a photoconvertible 

fluorescent protein). This revealed the same expression pattern described in the original 

publication (He et al., 2011) with restriction of expression exclusively to renal glomeruli 

(Figure 72). podocin drives expression from 48 hpf to at least 5 dpf in the pronephric 

glomeruli. Later expression patterns were not monitored. However, as pkd2 mutant embryos 

did not display a glomerular phenotype and podocin promotes expression only in the glomeruli 
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(which were also covered by the enpep promoter, see below), this construct was not pursued 

any further. 

 
Figure 72 Expression pattern as driven by the podocin promoter in a podocin:Gal4;UAS:kaede cross. (A and A’) 
at 2 dpf. (B and B’) at 5 dpf. (A and B) Lateral view of whole animal. (A’ and B’) Dorsal view of head and trunk. 
Fluorescence in the heart due to cmlc2.EGFP transgenesis marker indicating transmission of podocin:Gal4. 

 

1.2. A pronephric Ca2+ reporter: enpep:Gal4;UAS:GCaMP7a 

Similar to the podocin driver line, expression patterns in enpep:Gal4;UAS:GCaMP7a were too 

faint to observe by conventional fluorescence microscopy. Renal tubular expression could 

be seen faintly at 1 dpf, but to get a more detailed picture enpep:Gal4 fish were crossed to 

UAS:kaede as with the podocin line and the following expression patterns were observed 

(Figure 73): Similar to what was originally reported (Seiler et al., 2011), expression was 

observed in the pronephric tubules from 24 hpf to 5 dpf (earlier and later expression was 

not monitored). It was, however, not as restricted exclusively to the tubules, but was also 

observed in the glomeruli at all time points monitored (Figure 73 A’, B’ and C’). Additionally, 

a rather strong expression was present in the hindbrain and spinal cord, looking distinctively 

like neurons (Figure 73 A, B and C). Further fluorescence was seen in the ocular region and 

the pectoral fins from 48 hpf (Figure 73 B, B’, C and C’).  

The two original founders were evaluated and both showed the same expression in other 

tissues, suggesting the location of transgene insertion was not responsible for ectopic 

expression. Since expression in offspring of two founders was identical, only one line was 

established permanently: enpep:Gal4sh489. Closer examination of the original paper revealed 

that pronephric restriction only occurred with a 2.3 kb promoter fragment. Shorter 

fragments produced extra-renal expression as described above. The promoter given to us, 

however, was only 2 kb long, suggesting the missing 300 bp probably contains a sequence 

restricting expression to the tubules. 
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Although there was some expression in tissues other than the kidney, this did not influence 

renal calcium analysis and subsequent experiments were conducted on 

enpep:Gal4;UAS:GCaMP7a. enpep:Gal4;UAS:GCaMP7a fish exhibited a faint renal tubular 

fluorescence observable under a powerful fluorescence microscope at 1 dpf, which grew too 

faint for conventional microscopes from 48 hpf. Sorting for renal GCaMP7a expression 

hence always occurred between 24 – 32 hpf. 

 
Figure 73 Expression pattern as driven by the enpep promoter in a enpep:Gal4;UAS:kaede cross. (A and A’) at 1 
dpf. (B and B’) at 2 dpf. (C and C’) at 3 dpf. (A,B and C) Lateral view of whole animal. (A’, B’ and C’) Dorsal view 
of head and trunk. Fluorescence in the heart due to cmlc2:eGFP transgenesis marker indicating transmission of 
podocin:Gal4. 

 

1.2.1. Proof-of-principle: Chemical alteration of calcium with known 
modulators 

To test whether GCaMP7a fluorescence levels could be modulated in the 

enpep:Gal4;UAS:GCaMP7a line using Ca2+ modifying drugs, fish were exposed to 

thapsigargin (5 µM, 25 min) or 2-APB (2-aminoethoxydiphenyl borate - 50 µM, 2-3 h). 

Thapsigargin inhibits reuptake of cytoplasmic Ca2+ into the ER (via non-competitive 

inhibition of SERCA) and simultaneously causes Ca2+ release from the ER via ER stress 

pathways (Foufelle et al., 2016; Rogers et al., 1995) – hence, increasing cytoplasmic Ca2+ levels 

and, in theory, GCaMP7a fluorescence. 2-APB, in contrast, blocks release of Ca2+ ions from 

the ER via IP3R (Missiaen et al., 2001) and lowers intracellular Ca2+ levels - it should therefore 

decrease fluorescence. A schematic depiction of the effects of thapsigargin and 2-APB can 

be found in Figure 74 B. 

Treatments with thapsigargin or 2-APB yielded the expected results respectively (Figure 74 

A) and treated fish were imaged for 30 min to observe whether fluorescence levels changed 
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after drug withdrawal (not the case, data not shown). Generally, these experiments confirmed 

that GCaMP7a fluorescence levels respond to changes in Ca2+ concentrations. 

To my knowledge, this is the first description of renal real-time in vivo calcium imaging in an 

intact organism described in the literature to date. 

 
Figure 74 (A) Calcium levels in enpep:Gal4;UAS:GCaMP7a after exposure of calcium modulators thapsigargin 
(25 min) and 2-APB (2 - 3 h) imaged for 30 min at 20 sec intervals, means with SEM depicted. Significances via 
one-way anova with Dunnet’s multiple comparison test; ****: p ≤ 0.0001. (B) Schematic depiction of calcium 
modulator fuction in a cell. ER: endoplasmic reticulum, IP3R: inositol triphosphate receptor, SERCA: 
sarco/endoplasmic reticulum Ca2+-ATPase.  

 

2. Renal calcium at 24 - 34 hpf (pronephros formed, no filtration) 

After proof-of-principle experiments confirmed GCaMP7a responsiveness to calcium 

fluctuations (described above), further experiments on the enpep:Gal4;UAS:GCaMP7a line 

were conducted during day one of embryonic development, when pronephric kidney 

formation is completed (maturation possibly ongoing) but filtration has yet commenced. 

This ensured Ca2+ baseline level observations were conducted in the absence of potential 

disruption by filtration or cilia-generated tubular flow in the pronephros. Imaging 

commenced on the lightsheet microscope in an area from the cloaca to the beginning of the 

yolk extension, covering the majority of the pronephros and providing an easily identifiable 

area for measurement (Figure 75). 

 
Figure 75 Reference frame (blue) for imaging calcium levels during 1 dpf. Kindey schematically indicated in red.  
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2.1. Calcium oscillations in tubules at 1 dpf 

Tubular Ca2+ was observed on the lightsheet microscope in 2 h-long time lapses, imaging at 

15 - 20 sec intervals. Oscillations of entire tubules were measured (Figure 76 A) and some 

individuals, although not all, showed a slight decrease of fluorescence over time (example in 

Figure 76 B). This could be attributed to bleaching or a slow decrease of GCaMP expression 

or calcium over time. Bleaching describes a process in which prolonged excitation of 

fluorescent molecules results in denaturation and depletion over time. Cells are constantly 

replacing proteins but if destructive processes outweigh fluorescent protein synthesis, 

bleaching becomes apparent and fluorescence levels reduce. Bleaching was deemed to be the 

most likely cause for decreases in fluorescence in this case. 

 
Figure 76 enpep:Gal4;UAS:GCaMP7a tubular oscillations at 1 dpf. (A) Illustration of measurement technique. 
Shape of the pronephric tubule was traced with a tool in the Zen software (example in red) and average 
fluorescence of the entire tubule was measured over time. (B) Example of tubular intensity over 2 h. 

No differences were observed with regard to mean tubular intensity, frequency of 

oscillations, or peaks of less than 20 seconds between siblings and pkd2 mutants (Figure 77 

A, B and C respectively). The oscillations of entire tubules were measured and include 

individual flashing cells, which were characterised separately (see below).  

The only significant change observed by monitoring overall tubular fluorescence was the 

distribution of oscillation durations. pkd2 mutants exhibited a lower percentage of shorter 

durations (less than 60 seconds, Figure 77 D and more detailed in Figure 77 E) than siblings. 

Of note, the average oscillation duration was not significantly different between genotypes 

and the significance with regard to the distribution of durations was low. Although embryos 

from different parents were imaged at different dates, this could be an artefact of multiple 

testing. 
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Figure 77 Tubular calcium oscillations in enpep:Gal4;UAS:GCaMP7a. Siblings: n = 14, pkd2-/-: n = 7. Error bars 
indicate SEM. (A) Mean tubular intensity, (B) frequency of oscillations, (C) peaks longer than 20 seconds, (D) 
oscillation distribution and (E) oscillation distribution normalised over time in 7 pkd2 mutants and 14 siblings. 
Significances in (A, B and C) via unpaired t-test, in (D) via paired t-test; *: p ≤ 0.05 and non-significant (ns): p > 
0.05.  

 

2.2. Cellular calcium flashes in the pronephros 

2.2.1. Populations of flashing cells in enpep:Gal4;UAS:GCaMP7a show pkd2-
dependent decrease in flash frequency 

While analysing the fluctuations in tubular Ca2+ it became apparent that individual cells 

within the pronephros exhibited distinctive behaviours in the time lapses: They showed rapid 

increases and decreases in fluorescence intensity. These cellular flashes contributed to the 

tubular oscillations described above, but were probably not their singular driver. The flashes 

were subsequently analysed by localising flashing cells within the imaged reference frame 

from the cloaca to the beginning of the yolk extension, fitting a circle around the location 

and deriving the intensity changes of as many cells per fish as possible (example in Figure 78 

A). For each cell, many of which showed multiple flashes in the time course of 2 h, intensity 

changes (peak height) and duration of the event (peak duration) were derived for each flash. 

Examples are illustrated in Figure 78 B. 
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Figure 78 enpep:Gal4;UAS:GCaMP7a cellular flashes at 1 dpf. (A) Illustration of measurement technique. 
Individaul flashing cells were identified through frame-by-frame analysis and a measurement area established 
(example in red). (B) Example of cellular intensity over 2 h. 

Cellular flashing events exhibited no disparities between genotypes in peak duration or height 

(Figure 79 A and B respectively). Similar to tubular oscillations however, there was a 

significant shift in the distribution of peak durations; this time with pkd2 showing an increase 

of shorter flashes (up to 70 sec) compared to siblings (Figure 79 D). This was not 

accompanied by a shift of average peak duration. 

Interestingly, the number of flashes over time was reduced significantly in a pkd2 dose-

dependent manner with WT having the highest amount of flashes during the time course of 

the experiment, followed by pkd2 heterozygous animals and pkd2 mutants, which exhibited 

the lowest number (Figure 79 C). 

 
Figure 79 Cellular calcium flashes in enpep:Gal4;UAS:GCaMP7a. Siblings: n = 14, pkd2-/-: n = 7. Error bars 
indicate SEM. (A) Cellular flash duration, (B) cellular flash intensity, (C) cellular flashes over time and (D) 
duration distribution in 7 pkd2 mutants and 14 siblings. Significances in (A and B) via unpaired t-test, in (C) via 
one-way anova with Dunnet’s multiple comparison test and in (D) via paired t-test; ***: p ≤ 0.001, **: p ≤ 0.01, 
*: p ≤ 0.05 and non-significant (n.s.): p > 0.05. 
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2.2.2. Different cell populations in the embryonic zebrafish kidney 

Upon closer observation of the flashing cells, different populations could be discerned. The 

flashing cell type present in all fish regardless of genotype (3 or fewer flashes in the 2 hours 

monitored) was dubbed “low-frequency flashing cells” (LFFCs). Cells flashing 4-12 times in 

the 2 h time lapses were named RCFs (recurrently flashing cells) and cells blinking more 

often FFCs (frequently flashing cells; >12 times in 2h). FFCs were not analysed in detail, as 

it was often difficult to determine baseline fluorescence levels (see Figure 80 A), they were, 

however, included in the count of flashing cells over time (Figure 82 C). Notably RCFs and 

FFCs did not occur in all animals. In the following subchapters, LFFCs and flashing cells 

(FCs) were analysed separately for further characterisation. Interestingly, pkd2 mutants 

exhibited a larger percentage of LFFCs and numbers decreased in a pkd2 dose-dependent 

manner towards WT (not significant). RFC numbers remained constant across all genotypes 

whereas FFC percentages declined from WT to pkd2-/-. 

Of note, FFCs were tightly clustered and restricted to a narrow region close to the cloaca 

(Figure 80 C). A literature search revealed the Corpuscles of Stannius, Ca2+ homeostasis 

organs exclusive to teleosts, reside in the same area (Cheng et al., 2015). The Corpuscles of 

Stannius are spherical in shape and embedded in renal tissue. Although renal filtration has 

not begun at this stage, the close proximity of flashing cells to these structures suggests they 

are active, perhaps undergoing developmental processes. 

 
Figure 80 Diffferent populations of cellular flashes: LFFC (1-3 flashes in 2 h), RFC (recurrently flashing cell – 4-
12 flashes in 2 h) and FFC (frequently flashing cell - >12 flashes in 2 h). (A) Examples of each cell category 
depicting calcium levels over time. (B) Distribution of flashing cell populations per genotype. Not significant via 
paired t-test (p > 0.05). WT: n = 7, pkd2+/-: n = 7, pkd2-/-: n = 7. (C) Schematic depiction of FFC location.  



125 

 

2.2.2.1. LFFCs (low-frequency flashing cells - 3 or fewer flashes in 2 h) 

The LFFC population was by far the largest across all genotypes (more than 50 % of all 

flashing cells), therefore unsurprisingly the patterns observed in this category were similar to 

the overall population analysis: Flash duration and intensity were not significantly different 

between genotypes, but the duration distribution was shifted slightly, with more of short 

flashes (up to 70 seconds) in pkd2 mutants (Figure 81 A, B and D respectively). As before, 

average flash duration was not affected. Furthermore, the number of flashes per time was 

reduced in a pkd2 dose-dependent manner as seen in the overall population which was, 

however, not significant here (Figure 81 C). 

 
Figure 81 LFFCcellular flashes in enpep:Gal4;UAS:GCaMP7a. WT: n = 7, pkd2+/-: n = 7, pkd2-/-: n = 7. Error 
bars indicate SEM. (A) LFFC flash duration, (B) LFFC flash intensity, (C) LFFC flashes over time and (D) LFFC 
flash duration distribution in 7 pkd2 mutants and 14 siblings. Significances in (A and B) via unpaired t-test, in 
(C) via one-way anova with Dunnet’s multiple comparison test and in (D) via paired t-test; *: p ≤ 0.05 and non-
significant (n.s.): p > 0.05. 

2.2.2.2. RFCs (recurrently flashing cells - 3 to 12 flashes in 2 h) and FFCs 
(frequently flashing cells - more than 12 flashes per 2 h) 

As seen in the overall population and the LFFC subpopulation, flash duration or intensity of 

RFCs was not altered between genotypes (Figure 82 A and B respectively). Although there 

was no change in average peak duration, there was again a shift in the distribution of those 

durations. Peaks of less than 70 seconds were more prevalent in pkd2 mutants than in siblings 

(Figure 82 D). As stated above, FFCs were not analysed in this manner as establishing a 

baseline was difficult. 

The number of flashes over time (including FFCs) was reduced in a pkd2 dose-dependent 

manner with WT being having the highest amount of flashes and pkd2 mutants the lowest 
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(Figure 82 C) although this did not reach statistical significance. Of note, the percentage of 

FFC’s decreased in a pkd2 dose-dependent manner from WT to homozygous animals, 

corresponding with the reduced number of flashes over time in pkd2-/-.  

 
Figure 82 RFC cellular flashes in enpep:Gal4;UAS:GCaMP7a. WT: n = 7, pkd2+/-: n = 7, pkd2-/-: n = 7. Error bars 
indicate SEM. (A) RFC flash duration, (B) RFC flash intensity, (C) FC flashes over time – including FFCs and 
(D) RFC duration distribution in 7 pkd2 mutants and 14 siblings. Significances in (A and B) via unpaired t-test, 
in (C) via one-way anova with Dunnet’s multiple comparison test and in (D) via paired t-test; ***: p ≤ 0.001 and 
non-significant (ns): p > 0.05. 

In summary, at day 1 of development two elements in renal Ca2+ signalling differed between 

pkd2 mutants and their siblings: There was a slight shift in the distribution of both overall 

tubular Ca2+ and in the flashing cells - pkd2-/- show less short-term (< 1 min) fluctuations 

along the tubule but more short cellular flashes (< 70 sec). Additionally, cells in pkd2 mutants 

flash less across all cell populations decreasing in a dose-dependent manner from WT. 

 

3. Renal calcium at 48 - 58 hpf (actively filtering kidney) – pkd2-/- exhibit 
lower renal calcium levels 

After failing to observe an overall change of renal Ca2+ levels on day 1 of zebrafish 

development between pkd2 mutants and siblings, which would have been expected based on 

descriptions of cell culture models (more details see Introduction of Chapter 2.), embryos 

on the second day of development were studied next. At this stage, renal filtration has started 

and the kidney is functioning while filtration-specificity matures until 4 dpf. 

Fluorescence levels in the previously imaged reference frame, from the cloaca to the 

beginning of the yolk extension, were markedly reduced in 2 dpf embryos. In particular, the 

area around the cloaca was devoid of detectable GCaMP7a fluorescence (explained in 5.2). 
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Subsequently the observation area was shifted more anteriorly and imaging now commenced 

in an anterior section of the tubules from just behind the glomeruli (new imaging area, see 

Figure 83).   

 
Figure 83 Reference frame (blue) for imaging calcium levels during 2 dpf. Kindey schematically indicated in red. 

Time lapse experiments over 6 h at 2 dpf revealed that there was much less activity at this 

stage of development compared to day 1 – more precisely: no cellular flashes were observed 

for long periods of time (up to 5 h), followed by a brief burst of flashes, which was again 

trailed by inactivity. Cellular flashes were therefore not analysed at 2 days of age. 

Furthermore, tubular oscillations did not show a marked difference at day 1 and did not seem 

to be altered at this stage either, although this was not measured. For time purposes, 

experiments at 2 dpf were restricted to imaging seven time points in 2 min and subsequently 

mean tubular fluorescence intensity was analysed (examples in Figure 84 A and B). 

Remarkably, there was a significant difference in Ca2+ levels at 2 dpf with lower 

concentrations in pkd2 mutants compared to siblings. Of note, this decrease did not seem to 

occur in a pkd2 dose-dependent manner as WT and heterozygous animals were no different.  

 
Figure 84 enpep:Gal4;UAS:GCaMP7a tubular fluorescence at 2 dpf. (A) Typical example of 
enpep:Gal4;UAS:GCaMP7a. (B) Representative example of pkd2-/-;enpep:Gal4;UAS:GCaMP7a. (C) Tubular 
florescence in WT, pkd2+/- and pkd2-/- at 2 dpf. Significances via one-way anova with Dunnet’s multiple 
comparison test; *: p ≤ 0.05. Error bars indicate SEM. 

 

4. GCaMP levels in cystic mutant elipsa and elipsa/pkd2 double mutants 
– loss of cilia causes pronephric calcium level decrease 

Since pkd2 knockout did not cause a renal dilation phenotype, observing Ca2+ levels in an 

actual “cystic kidney” mutant was of interest. As before, elipsa mutants were employed for 

this purpose (for more details see Introduction and Results and Discussion Chapter 1). 
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Analysis of tubular fluorescence at 1 dpf revealed that siblings did not differ in anterior and 

posterior tubular fluorescence; similarly, pkd2 mutants were not different from siblings. elipsa 

mutants, however, showed significantly weaker renal GCaMP7a fluorescence at around the 

time when cilia abolition is confirmed, suggesting much lower intracellular Ca2+ levels (Figure 

85 A). Figure 85 B shows that this trend in elipsa mutants persisted on day 2 of embryonic 

development and pkd2/elipsa double mutants did not differ in comparison to the elipsa single 

mutant. pkd2, elipsa and elipsa/pkd2 double mutants exhibited similar fluorescence levels at 

this stage. Obtaining double mutants carrying all relevant transgenes and mutations was very 

difficult, hence the number of observed animals was low - but no marked change was seen. 

 
Figure 85 enpep:Gal4;UAS:GCaMP7a tubular intensity. Error bars indicate SEM. (A) In siblings, anterior and 
posterior tubule sections, pkd2 mutants and elipsa mutants at 1 dpf. (B) In siblings, elipsa mutants and 
pkd2/elipsa double mutants at 2 dpf. Significances via one-way anova with Dunnet’s multiple comparison test; 
**: p ≤ 0.01. 

 

5. Chemical modulation of kidney calcium levels after exposure to 
chemical screen hit compounds 

In Results and Discussion Chapter 2, chapters 2.1. and 4.1. several classes of compounds 

were identified that altered pkd2 curvature. Since pkd2 is thought to function as a Ca2+ 

channel, the effect of these drugs on renal Ca2+ levels were tested by exposing 

enpep:Gal4;UAS:GCaMP7a fish. Compounds modulating intracellular Ca2+ levels would be 

of particular therapeutic interest since Ca2+ deregulation is one of the hallmarks of ADPKD. 

5.1. Early exposures without distinction of genotypes   

First, 24 h exposures were conducted from late epiboly stages to about 30 hpf by treating 

unsorted embryos overnight in 6-well plates. Sorting at these stages was impossible as the 

enpep:Gal4;UAS:GCaMP7a transgenes were not active yet and the pkd2 genotype only arises 

from ca. 28 hpf. Embryos were not separated into pkd2 genotypes in the analysis - it was 

deemed unnecessary since tubular fluorescence levels were indistinguishable at 1 dpf 
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between alleles. Genotyping was initially conducted to monitor variability but no large 

differences were found. Only thapsigargin and androstandione treatments had a significant 

effect on renal Ca2+ levels in these experiments with both compounds increasing Ca2+ 

concentrations. Interestingly, androstandione seemed just as potent in increasing GCaMP7a 

fluorescence as thapsigargin (Figure 86 A). Although not significant, flutamide, nifedipine, 

tolvaptan and dihydroxyanisole showed a trend towards decreasing tubular Ca2+ at this stage. 

5.1.1. Genotype-dependent calcium modulation after compound exposure 

In a separate experiment embryos were treated with a TRPV4 antagonist, GSK205. TRPV4 

is proposed to form a putative channel complex with PC2 distinct from a PC1/PC2 complex 

in primary cilia (Kottgen et al., 2008). TRPV4 expression has been described in the 

notochord, brain, endocardium, lateral line organs and, from 32 – 48 hpf, in the pronephros 

(Mangos et al., 2007). Treatments from 28 hpf with 1 µM GSK205 significantly increased the 

pkd2 curvature phenotype (Figure 86 B). Of note, treating embryos from 24 hpf for 4 h 

resulted in a difference in renal Ca2+ levels between alleles, although this was not significant 

– perhaps due to low numbers. GSK205 showed a trend towards increasing Ca2+ levels in 

siblings and decreasing GCaMP7a fluorescence in pkd2 mutants after treatments from 24 

hpf (Figure 86 B). The same compound exposed from late epiboly (Figure 86 A) did not 

show a trend, possibly because the genotypes were not separated.  
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Figure 86 (A) enpep:Gal4;UAS:GCaMP7a tubular intensity after compound exposure. Exposures from late 
epiboly for 24 h, imaged at ca. 36 hpf. B) Curvature enhancing effects of GSK205 on pkd2 curvature phenotype. 
(C) enpep:Gal4;UAS:GCaMP7a tubular intensity after compound exposure. Exposures of DMSO and GSK205 
from 24 hpf for 4 h. Significances in (A and C) via one-way anova with Dunnet’s multiple comparison test and in 
(B) via unpaired t-test; ***: p ≤ 0.001, **: p ≤ 0.01. Error bars indicate SEM. 

 

5.2. Exposures of enpep:Gal4;UAS:GCaMP7a from ca. 28 hpf – 
characterisation of compounds in pkd2 mutants and siblings 

Early exposure experiments had revealed that compounds might have genotype-specific 

effects on Ca2+ levels, hence subsequent exposures were carried out at stages when genotypes 

could be distinguished. Embryos were sorted for GCaMP7a fluorescence at 24 hpf and 

exposed after pkd2 curvature onset, ensuring sufficient numbers of both siblings and pkd2 

mutants were treated. In the absence of a noticeable disparity between heterozygous and WT 

animals, siblings were not classified into individual genotypes.   

As there was a detectable difference in pkd2 mutants and sibling GCaMP7a intensities at 2 

dpf (described above), treatments with thapsigargin were conducted initially to establish the 

overall Ca2+ content in the kidney. These experiments served to show that pkd2 mutant Ca2+ 
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concentrations could be increased to sibling levels by Ca2+ release from the ER and that 

calcium was not simply depleted from the system in general. Figure 87 suggests Ca2+ total 

deposits are indeed similar in the different alleles and Ca2+ can be increased to similar 

concentrations in pkd2 mutant fish compared to siblings. Interestingly, the anterior and 

posterior halves of the imaged area responded differently to thapsigargin treatments, 

although this was not statistically significant.  

  
Figure 87 (A) Thapsigargin treatment (5 µM for 25 min) of enpep:Gal4;UAS:GCaMP7a siblings and pkd2 mutants. 
(B) Graph with renal fluorescence intensities in untreated controls and thapsigargin-exposed embryos. Not 
significant via one-way anova with Tukey’s multiple comparison test; p > 0.05. Error bars indicate SEM. 

Visually, there was a disparity in thapsigargin treated animals with siblings appearing to show 

an increase of fluorescence along the majority of the length of the pronephric tubule, whereas 

pkd2 mutants only seemed to display an increase in the anterior part (roughly to the beginning 

of the yolk extension, Figure 87 A). This was also reflected in the measurements of intensity, 

although it did not reach significance (Figure 87 B). Subsequently, in situ hybridisations were 

carried out with a GCaMP7a probe to determine expression along the tubule. There was no 

discernible change in GCaMP7a expression patterns between pkd2 mutants and siblings at 

the time points observed (Figure 88), suggesting that pkd2 mutant animals did not respond 

differently to thapsigargin treatments due to altered gene expression. A marked difference 

became apparent in expression patterns comparing developmental day 1, when expression 

was strong along the entire tubule to the cloaca (Figure 88 A and A’), and day 2, when 

posterior expression was not perceivable (Figure 88 B and B’). This suggests the inability to 

detect posterior GCaMP7a fluorescence at 2 dpf was due to the reduction of expression in 

this region (contrarily to what was observed during the initial characterisation of the 

enpep:Gal4 line, see above).  
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Figure 88 In situ hybridisation with GCaMP7a probe of enpep:Gal4;UAS:GCaMP7a. (A and A’) 1 dpf sibling and 
pkd2 mutant respectively. (B and B’) 2 dpf sibling and pkd2 mutant respectively. Renal tubules indicated with 
white arrowheads. 

The results of enpep:Gal4;UAS:GCaMP7a treatments with Spectrum hit compounds and 

associated drugs from 28 hpf to ca. 52 hpf are depicted in Figure 90. Establishing a baseline 

fluorescence was difficult, possibly owing to the fact that Ca2+ is such a ubiquitous second 

messenger. The preparation of embryos for analysis on a lightsheet microscope involves 

many steps and temperature, oxygen levels, forces exerted on the embryos while loading 

them into imaging capillaries and exposure to anaesthetic are all liable to stress zebrafish 

embryos. Experiments were conducted with the utmost care to keep conditions as stable as 

possible but in spite of these efforts, a high variability in Ca2+ levels was observed. The 

controls had a variation of up to ±100 % compared to the mean over all experiments (see 

Figure 89). It was therefore difficult to obtain statistically significant results. In particular, the 

set of experiments including diclofenac treatment (experiment 1) resulted in much lower 

control fluorescence levels than previously observed and was therefore analysed separately 

(Figure 90 B and D). 

 
Figure 89 Interexperimental variation in fluorescence intensity with enpep:Gal4;UAS:GCaMP7a. Error bars 
indicate SEM. 
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Amongst compound-exposed siblings, only zinc pyrithione had a significant effect and 

decreased intracellular Ca2+ levels, although dihydroxyanisole, flutamide, forskolin and 

diclofenac showed similar trends (Figure 90 A and B). None of the compounds showed a 

strong calcium-increasing effect. 

pkd2-/- embryos exposed to various compounds did not show GCaMP7a fluorescence 

alterations (Figure 90 C and D). Nifedipine, pimpinellin, GSK205 and diclofenac showed 

tendencies towards increasing Ca2+ levels whereas dihydroxyanisole, zinc pyrithione and 

forskolin exhibited Ca2+ -decreasing trends. Of note, dihydroxyanisole, zinc pyrithione and 

forskolin display similar inclinations in both genotypes while triptolide (weakly) and 

diclofenac behaved the opposite in pkd2-/- and siblings. Interestingly, dihydroxyanisole, zinc 

pyrithione and diclofenac all repressed the curvature phenotype of pkd2 mutants but showed 

no consistent pattern in their effects on calcium.  

 
Figure 90 enpep:Gal4;UAS:GCaMP7a treated with various compounds from 28 hpf to ca. 52 hpf. (A and B) pkd2 
siblings and (C and D) pkd2 mutants. Black lines mark means of DMSO controls. Significances in (A and C) via 
one-way anova with Dunnet’s multiple comparison test and in (B and D) via unpaired t-test; *: p ≤ 0.05. Error 
bars indicate SEM. 

Due to the aforementioned baseline variability and low statistical significance (although clear 

differences were observable by eye), a second analysis method was employed. Intensities 
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measured within one experiment were divided by the mean of respective DMSO controls to 

adjust for interexperimental baseline variability: values greater than 1 suggest an increase of 

tubular fluorescence whereas values lower than 1 indicate a decrease. The results with 

corrected for baseline values are depicted in Figure 91. Thapsigargin measurements were 

included in these analyses to serve as a positive control of the new analysis method.   

Thapsigargin significantly increased Ca2+ levels in both siblings and pkd2 mutants as 

expected. In the sibling population, only one other compound altered GCaMP7a 

fluorescence levels significantly: flutamide, which increased Ca2+ concentrations (Figure 91 

A).  

In treated pkd2-/- animals, four compounds other than thapsigargin also increased renal Ca2+ 

levels contrary to expectations: nifedipine, pimpinellin, trimethoxyflavone and GSK205. 

Nifedipine, an L-type calcium channel inhibitor, and GSK205, a TRPV4 channel antagonist, 

were predicted to decrease pkd2 Ca2+ levels even further in pkd2-/- by blocking other Ca2+ 

channels. Pimpinellin and trimethoxyflavone on the other hand, enhanced the curvature 

phenotype of pkd2 mutants but increased the renal Ca2+ phenotype. Androstandione, which 

increased Ca2+ levels in exposures from epiboly, failed to do so in treatments from curvature 

onset. 
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Figure 91 enpep:Gal4;UAS:GCaMP7a treated with various compounds from 28 hpf to ca. 52 hpf after adjustment 
for baseline variability. (A) pkd2 siblings and (B) pkd2 mutants. Black lines mark means of DMSO controls. 
Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; **: p ≤ 0.01,  *: p ≤ 0.05. Error bars 
indicate SEM. 

In addition to the Spectrum compounds and chemicals added to study functionalities, 

enpep:Gal4;UAS:GCaMP7a were also exposed to PKIS repressor hits. As all PKIS 

compounds were measured in one session, no adjustment for variation of baseline was 

necessary. 

None of the treated sibling groups showed a significant difference with regard to tubular 

fluorescence. There was however a significant difference amongst the pkd2 mutants, with 

PKIS_59 decreasing tubular Ca2+ levels just significantly (PKIS_59 was one of the two 

structurally similar compounds). Although these compounds repress the pkd2 curly tail, there 

was no consistent effect on renal calcium. 
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Figure 92 enpep:Gal4;UAS:GCaMP7a treated with PKIS compounds from 28 hpf to ca. 52 hpf. (A) pkd2 siblings 
and (B) pkd2 mutants. Black lines mark means of DMSO controls. Significances via one-way anova with 
Dunnet’s multiple comparison test; *: p ≤ 0.05. Error bars indicate SEM. 

The exposure of enpep:Gal4;UAS:GCaMP7a to a variety of different compounds revealed, 

that some chemicals exhibited genotype-specific behaviour with regards to Ca2+ signalling. 

How these modulations fit in with current knowledge will be discussed below. The 

interexperimental variability in control Ca2+ levels required data transformation to control 

for this. Nevertheless, pkd2 mutant pronephric Ca2+ always remained below sibling Ca2+ 

levels in controls although similar amounts of Ca2+ were present in the system.  

 

Discussion 

 

In order to determine the potential effects of pkd2 loss on in vivo renal Ca2+, a new zebrafish 

reporter line, enpep:Gal4;UAS:GCaMP7a, was established. Initial chemical modulations with 

drugs described to alter global calcium were successful and proved the functionality of this 

line. Although renal Ca2+ had previously been measured in vivo in a mouse GCaMP line, the 

opacity of mammalian skin necessitated anaesthesia of the animal and surgical removal of 

the kidney from the body cavity for imaging purposes (Burford et al., 2014; Szebenyi et al., 

2015). The large variation of pronephric Ca2+ baseline levels that I observed in an intact 

organism underlines the sensitivity of calcium to any disruptions and inferring natural Ca2+ 

behaviour from measurements in an organ outside the body, might prove problematic. This 

is the first in vivo renal calcium reporter line in an intact organism described to date. 

1. Calcium in the pronephric kidney – pkd2-/- display lowered levels 

During day 1 of embryonic zebrafish development, the pronephros has already formed but 

is not yet filtering blood, as angiogenesis in the glomeruli is only completed at 40 – 48 hpf 

(Drummond et al., 2010). Renal Ca2+ changes were observed along the entire length of the 

pronephros and, as well as general Ca2+ fluctuations in the tubules, individual renal cells also 
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exhibited interesting behaviours. Oscillations over the entire tubule and flashes of individual 

cells did not differ in average duration or intensity at 1 dpf. There was however, a shift to 

longer tubular flashes (> 60 sec) and shorter cellular flashes (< 70 sec) in pkd2 mutant animals 

compared to sibling controls. Interestingly, neither of these shifts affected average respective 

durations and their physiological significance remains unclear. Previously published 

observations in a renal GCaMP mouse model describing regular oscillatory patterns lasting 

about 60 seconds in proximal tubules of adult animals (Szebenyi et al., 2015), were not 

observed in the zebrafish line. The most interesting phenotypic disparity in 1 dpf zebrafish 

was a pkd2-dose-dependent decrease of cellular flash frequency from WT to homozygous 

animals, which persisted across the analysed cell types. An additional finding was that the 

most active cell population, the FFCs, seemed to correspond in location to the Corpuscles 

of Stannius. These spherical organs embedded in renal tissues regulate Ca2+ homeostasis in 

teleost fish and although the kidney is not actively filtering at this stage, the quantity of 

cellular flashes in the area suggests activity. 

After renal filtration had commenced at 2 dpf, pkd2 mutants exhibited significantly lower 

renal Ca2+ levels than their sibling controls. This confirmed previous in vitro observations that 

Pkd1-null cells displayed lowered intracellular Ca2+ levels and a lack of responsiveness to 

external flow (Nauli et al., 2003). This is the first report of in vivo evidence showing that pkd2 

alters renal Ca2+ levels in an ADPKD model.  

To find out whether Ca2+ release was lower in pkd2-/- or there were reduced total renal Ca2+ 

stores, exposures to thapsigargin were conducted since this leads to a rapid efflux of Ca2+ 

from ER stores. These experiments confirmed that Ca2+ stores in the tubules were similar 

between pkd2 homozygous animals and siblings in the anterior tubule section. Whether pkd2 

mutants exhibit a decrease of intracellular Ca2+ in the posterior region because of impeded 

ER store release remains to be determined. At 2 dpf, filtrate is moving through the renal 

tubules aided by motile cilia. It is possible that pkd2-/- animals lack the ability to sense fluid 

flow and thus display lower pronephric Ca2+ levels. 
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2. Renal calcium in a classical “cystic kidney” and PKD/ciliary mutant 
zebrafish is diminished in comparison to siblings 

elipsa mutants also displayed lower intracellular Ca2+ levels in the pronephric tubules at 2 dpf, 

similar to pkd2 mutants. Unlike pkd2 mutants, this decrease was already present at 1 dpf. 

Loss of cilia therefore caused an earlier effect on Ca2+. Since pkd2 and elipsa single mutants 

had comparably low pronephric GCaMP7a fluorescence levels at day 2, this could indicate 

that renal epithelial cells in both lines are unable to respond to pronephric filtrate flow 

stimuli. This might be the reason why combined knockout in the double mutants did not 

differ significantly from single knockouts. If this were the case, ciliary pkd2 might function 

as a responding factor to fluid flow or other ciliary signals, as previously proposed (Nauli et 

al., 2003). Alternatively, PC2 could act independently from PC1 as Ca2+ release channel in 

the ER (Giamarchi et al., 2010; Koulen et al., 2002; Mekahli et al., 2012) by receiving a ciliary 

signal. 

 
Figure 93 Relationship of cilia, pkd2 and renal calcium based on observations in pkd2, elipsa and double mutants 
in the renal calcium reporter line enpep:Gal4;UAS:GCaMP7a. 

 

3. Renal calcium response to compound library screen chemicals 

Exposures of enpep:Gal4;UAS:GCaMP7a to a number of hit compounds from the chemical 

library screens did not yield a consistent picture and comparisons were complicated by 

interexperimental variation. 

First and foremost, known Ca2+ modulators such as the L-type calcium channel inhibitor 

nifedipine and the TRPV4 antagonist GSK205 (TRPV4 is another TRP Ca2+ channel like 

pkd2) did not show expected reductions of pronephric Ca2+ but rather increased Ca2+ levels 

in the pkd2 mutants. This increase was, however, not observed in exposed siblings and it is 

possible that the loss of pkd2 in the mutants and additional chemical inhibition of a second 

channel led to compensatory changes in other calcium channels. 

Interestingly, flutamide, which did not affect pkd2 mutant curvature, also caused an increase 

in renal Ca2+ but only in the siblings. This might suggest that pkd2-loss made zebrafish 

embryos insensitive to flutamide, although this is merely speculation. The coumarin 

pimpinellin and the flavonoid trimethoxyflavone triggered increases in GCaMP fluorescence 

exclusively in pkd2 mutants. These compounds had previously enhanced the curvature 

phenotype but now surprisingly alleviated the renal Ca2+ phenotype. PKIS_59, on the other 

hand, repressed the cup phenotype but lowered pkd2 Ca2+ levels even further.  
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In summary, none of the compounds, enhancers or repressors, acted in an expected fashion. 

The compounds had behaved as expected in mammalian cyst culture models and it was 

hypothesised that at least some compounds would show calcium-altering behaviour 

accordingly. Some of the chemicals exhibited calcium-altering properties but there was no 

clear correlation with regard to enhancers or repressors of Ca2+ and the curly up phenotype. 

Overall, these results suggest that the compounds identified during the compound screens 

did not alter the tail curvature in a way that allows for predictions of their calcium-modifying 

properties.  
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Synopsis and outlook 

 

During this project, several zebrafish models of ADPKD were characterised, a compound 

screen on pkd2-/- fish identified new modulators of the disease and, after the creation of an 

in vivo renal calcium reporter line, lower intracellular calcium levels were detected in pkd2 

mutant animals.  

The initial characterisation of Danio rerio ADPKD models served two purposes: reassessing 

findings in the literature with particular regard to differences between models and identifying 

the ideal model/trait to conduct a chemical library screen. pkd2 mutants and morphants 

(animals with chemical knockdown) displayed the same set of traits initially described (Sun 

et al., 2004). Mutants and morphants exhibited a curly tail up and left/right polarity defects 

(assessed by heart looping) but only morphants developed “cystic kidneys”. “Cystic kidneys”, 

in the context of zebrafish embryos, describe dilated glomeruli rather than actual renal cysts 

but this is the closest model of mammalian cysts available in the zebrafish pronephros. 

Besides the renal disparities, morphants also exhibited some knockdown off-target effects 

(hydrocephalus and necrosis in brain and eye areas) and did not develop oedema at the same 

rate as pkd2 mutants. Of note, previous studies had shown only partial rescue of the pkd2 

morphant phenotypes in co-injections with zebrafish pkd2 or human PKD2 RNA (Bisgrove 

et al., 2005; Obara et al., 2006), further implying off-target effects of the morpholino. These 

findings suggested that the renal readout of pkd2 morphant animals was not ideal for a screen 

by lacking robustness and reliability. Therefore, the compound screen was conducted on the 

curly tail phenotype of pkd2 mutants.  

Due to the lack of a pronephric phenotype in pkd2 mutants, a more distant model of 

mammalian renal cysts was analysed, the ciliary mutant elipsa (Omori et al., 2008). Ciliary 

mutants in zebrafish are typically characterised by dilated glomeruli and renal tubules, as well 

as a downward tail curvature (Kramer-Zucker et al., 2005; Sullivan-Brown et al., 2008). 

Although the renal “cysts” in ciliary mutants might develop due to different causes, it was 

hypothesised that the processes underlying cyst expansion were similar in all models. Reports 

of a murine experiment suggested that the renal phenotype in Pkd-null mice could be reduced 

by genetically abolishing cilia, and a similar cross of mutant stains was performed in zebrafish 

to evaluate the double mutants (Ma et al., 2013). Ciliary mutants have an opposite curl in their 

tail relative to pkd2 mutants (Kramer-Zucker et al., 2005; Sullivan-Brown et al., 2008; Sun et 

al., 2004), suggesting pkd2 plays a downstream role in this phenotype. Furthermore, the pkd2 

tail phenotype appeared to be epistatic and cilia contributed an additional function, similar 

in effect to pkd2 itself (the curly up tail in the double mutants was aggravated compared to 
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pkd2 mutants). The “cystic kidney” phenotype, on the other hand, was more severe in the 

double knockout animals than in the ciliary mutant. This latter trait suggested that pkd2 and 

cilia act in parallel and there may be tissue-specific interactions. As pkd2 mutants in zebrafish 

do not exhibit renal dilations, the fish and mouse experiments cannot be directly compared, 

but the murine study also found an increase in cystic behaviour compared to the ciliary single 

mutants (Ma et al., 2013), as was described here in the zebrafish cross. Overall, a complex 

network of interactions between cilia or ciliary signals and pkd2 emerged, suggesting partial 

redundancy of certain functions. Unexpectedly, the current model suggests a repressive 

signal of cilia on PC2 function. Of note, the mechanisms leading to curly up and curly down 

tail curvatures remain unclear; here, similar pathways were assumed between both 

phenotypes, however, this might not prove correct upon closer study. To tease apart the 

exact contributions of each gene would be complex and should probably involve knocking 

out genes that are most likely candidates in providing the function of factor X (similar in 

effect to pkd2) in the cilia – interesting candidates might be the pkd2-like genes or other 

ciliary calcium channels. In addition, tissue-specific knockdown of cilia or pkd2 with the 

novel CRISPRi technology would allow a closer examination of interactions in individual 

tissues. The tissue-specificity of knockdowns via CRISPRi is merely restricted to the 

promoters used, therefore knockdown in all ciliated cells, irrespective of tissues (e.g. with the 

ciliary ccdc114 promoter (Choksi et al., 2014)) would allow a very detailed study of genetic 

interactions. 

A second aim of this project was to conduct zebrafish high-throughput compound screens 

on an ADPKD-related phenotype. For this purpose, the 2000 compound-strong Spectrum 

library with a mix of FDA-approved and natural chemicals, as well as the PKIS set, a kinase 

inhibitor library with 367 molecules, were tested. Screening the chemicals for their ability to 

modify the pkd2 mutant curvature revealed a total of 22 compounds that aggravated the 

phenotype and 7 chemicals alleviating it. The compounds carried forward into two cell lines 

in three-dimensional cyst assays confirmed the fish data, suggesting that the curly tail readout 

is a reliable predictor for the cystic phenotype. The most promising potential therapeutic 

targets identified during the compound screens were the COX inhibitor diclofenac and 

inhibitors of the TGFβ pathway, especially ALK5 blockers. Prostaglandins and the TGFβ 

signalling cascade have been previously linked to ADPKD (Hassane et al., 2010; Liu et al., 

2012a). Diclofenac, as an already FDA-approved drug, which is sold without prescription in 

most countries, would be a very interesting and inexpensive therapeutic approach. The curly 

up phenotype in pkd2-deficient zebrafish has been linked to increased collagen production 

(Mangos et al., 2010) and/or deposition (Le Corre et al., 2014) and interestingly, one study 
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suggested an intricate crosslink between cAMP and collagen expression which is regulated 

via the TGFβ pathway (Perez-Aso et al., 2014): low levels of cAMP stimulation increased 

collagen 1 and 3 synthesis whereas high concentrations of cAMP inhibited collagen 1 but 

increased collagen 3 production. Prostaglandin receptors, in particular EP4, have also been 

shown to inhibit TGFβ signalling, further suggesting that TGFβ might be one of the main 

contributors to the cup phenotype (reviewed in (Nasrallah et al., 2014)). To further understand 

the role of TGFβ and prostaglandins, downstream targets of these pathways (e.g. SMAD2 

or SMAD3 and prostaglandin receptors respectively) could be knocked down in pkd-

deficient models (zebrafish or cell culture).  

The variety of natural compounds, namely coumarins and flavonoids, found to aggravate 

model outcomes, could potentially explain some of the large intrafamilial variability within 

ADPKD progression (Milutinovic et al., 1992). Even within individual families carrying the 

same mutation, there is a large disparity in the onset of renal failure. Some of this variability 

might be due to epigenetics (Li, 2011; Woo et al., 2015) but dietary factors could also play a 

role, especially since flavonoids and coumarins occur at different concentrations in various 

plants; naringenin, for example, is very prevalent in citrus fruit (Alam et al., 2014). Further 

research, perhaps with different dosage levels in rodent models, would be necessary to 

determine whether there is truly is a dietary effect. 

Androgens, in particular testosterone, have been described in a number of studies on rodents 

and patients to be a risk factor for ADPKD disease progression (Aziz et al., 2001; Cowley et 

al., 1997; Fry et al., 1985; Gabow et al., 1992; Katsuyama et al., 2000; Lager et al., 2001; Nagao 

et al., 2005; Nagao et al., 2003; Ogborn et al., 1987; Smith et al., 2006; Stewart, 1994). This 

project identified several androgens (testosterone, 11-ketotestosterone, androstandione and 

epiandrosterone) as enhancers of zebrafish and/or cyst culture outcomes. Surprisingly, the 

strongest enhancer of the tail curvature phenotype, androstandione, was more potent than 

classical male hormones in respective species’ models (testosterone in mammalian models 

and 11-KT in zebrafish, (Hossain et al., 2008; Vollmer, 1963)). In zebrafish, this could have 

been attributed to differing abilities of the steroids to diffuse into the embryos, but cell 

culture experiments confirmed this trend. This led to the hypothesis that a non-canonical 

signalling route might be involved in producing the aggravated effects. To test this 

hypothesis, a zebrafish androgen receptor knockout line is currently being established to 

clarify whether androstandione acts solely via the androgen receptor or whether a secondary 

pathway is involved. A potential mechanism of action for this non-canonical pathway has 

also been identified – L-type calcium channels. These proteins have been linked to worse 

renal outcomes in a number of studies on both animal models and human patients (Abe et 
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al., 1983; Astor et al., 2008; Dietz et al., 1983; Heller et al., 1990; Roy et al., 1983; Saruta et al., 

2009). Early exposures (late epiboly to 24 hpf) with androstandione in 

enpep:Gal4;UAS:GCaMP7a fish showed an increase in renal calcium, supporting this 

hypothesis. Later exposures (27 hpf – 2 dpf), however did not cause a significant change. 

Should experiments confirm the activation of an alternative signalling pathway by 

androstandione, knockdown experiments of L-type calcium channels via morpholinos or, 

preferably via CRISPRi, could determine whether the contributing factors are indeed L-type 

calcium channels. 

Current studies are trying to elucidate the exact mechanisms of action for some of the hit 

compounds. Tests are being carried out to evaluate the effects on proliferation- and 

apoptosis-rates in 3D cyst assays to determine whether cyst growth or shrinkage is linked to 

increased or decreased cell numbers.  

In order to test the validity of the identified chemical targets for therapeutic purposes, more 

in-depth studies into the mechanisms of action are necessary and ultimately experiments on 

rodent models of ADPKD should be carried out.  

Finally, calcium deregulation, one of the main hallmarks of ADPKD in a variety of models 

(reviewed in (Mangolini et al., 2016)), was studied in zebrafish pkd2 mutants by utilising a 

new transgenic reporter line (enpep:Gal4;UAS:GCaMP7a) to measure renal Ca2+ levels via a 

fluorescent readout. Before the onset of renal filtration, overall Ca2+ levels were 

indistinguishable between siblings and pkd2-/- animals although there was a pkd2-dose 

dependent reduction in cellular flashes. After the onset of filtration at 2 dpf, pkd2-null 

zebrafish embryos showed a significant decrease of renal Ca2+ which cannot be explained by 

diminished calcium stores. At 2 dpf, the tubules in pkd2 mutants had similar ER calcium 

store release abilities as their siblings. These descriptions are the first, to date, of an in vivo 

calcium reporter in an ADPKD model.  

Conversely, none of the chemicals identified during the compound screens seemed to have 

a predictable effect on renal calcium levels, but it is possible that the curvature readout used 

during the screen is not particularly sensitive to Ca2+ modulation. However, during this 

project only whole-tubular and whole-cellular calcium were measured. The differentiated 

(but not significant) response to thapsigargin treatment in the anterior and posterior tubular 

sections in pkd2 mutants suggests that renal tubular segments may respond differently to 

chemicals, and should perhaps be analysed separately.  Furthermore, Ca2+ is a widespread 

second messenger and subcellular compartmentalisation of calcium signalling is likely to play 

a more important role in the generation of a phenotype. Detailed insights into subcellular 



144 

 

Ca2+ could be gained by creating GCaMP lines with ciliary or endoplasmic reticulum targeted 

reporters (the two main compartments PC2 is localised to). The experimental procedures 

could also be improved to reduce inter-assay variation. 

A summary of the most important phenotypes described above in the various zebrafish 

ADPKD models employed during this project, elipsa, pkd2 and elipsa/pkd2 mutants, with 

their respective onset can be found in Figure 94. 

 
Figure 94 Overview of the most important developmental steps in zebrafish development with their respective 
timings post fertilisation. General developmental steps are depicted in black, elipsa, pkd2 and pkd2/elipsa 
mutant characteristics are shown in blue, green and violet respectively. 

Table 16 provides a summary of the compounds identified as modulators of the pkd2 

curvature phenotype during library screens and their respective effects on all the ADPKD 

models they were subsequently tested on.   
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Table 16 Summary of compounds tested in this project and their effects on various phenotypes. Upward arrow: 
aggravation of phenotype, downward arrow: alleviation of phenotype, sideways arrows: no change, asterisk: not 
significant but clear trend, n.a. (not available): compound not tested in this model. 
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This project has provided the first evidence of pkd2 affecting in vivo renal Ca2+ levels in an 

ADPKD model and the first indications that pkd2 indeed has a non-redundant function in 

the zebrafish pronephros. Morpholino data had suggested a function of pkd2 in the 

pronephros (Sun et al., 2004), but until now, no genetic evidence had been reported. Here, 

interaction of pkd2 and cilia (enhanced dilation phenotype in the double knockout animals) 

and lower Ca2+ levels in pkd2 mutants suggest that there is a renal function for pkd2 in 

zebrafish. Unfortunately, pkd2 mutant animals are not viable past 5 dpf at which point the 

kidney still consists of the 2-nephron pronephros; therefore true renal cysts could not be 

observed in this model. Whether the teleost mesonephros could actually develop renal cysts 

in response to pkd2 loss-of-function has so far remained undetermined. An improvement of 

zebrafish models, such as the creation of an inducible renal pkd2 knockout line (attempted 

during this project but the lox construct failed to rescue pkd2-/- phenotypes) or the creation 

of mosaic pkd2-/- animals via CRISPR knockout (animals were created but could not be 

analysed due to time constraints) might be able to elucidate whether zebrafish could develop 

renal cysts and serve as more accurate ADPKD models. The mosaic loss of pkd2 would 

mimic the presumed loss-of-heterozygosity in patients more closely than a pan-renal pkd2 

knockout.  

In conclusion, new insights into the interplay between ADPKD and its modifying factors 

were gained during this project and a number of potential new therapeutic compounds for 

this devastating disease have been identified.   
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List of Materials  
 

Chemical/equipment Supplier/company Cat no/name 

1.5 ml Eppendorf tubes Starlab S1615-5500 

10-beta cells New England Biolabs C3019H 

10x MEM Thermofisher scientific 11430030 

11-ketotestosterone Sigma-Aldrich K8250 

15 ml falcon tubes Sarstedt 62.553.542 

2,5-Di-tert-butyl-4-
hydroxyanisole 

Sigma-Aldrich 447323 

2-APB Kindly provided by Deepa Bliss  

5,7,4’-trimethoxyflavone Microsource Discovery Systems, Inc. 00300384 

50 ml falcon tubes SLS 352070 

5alpha-androstan-3,17-
dione 

Microsource Discovery Systems, Inc. 00107108 

Acetone Sigma-Aldrich 179124 

Agarose Bioline BIO-41025 

antibodies pH3 
Alexa Flour 488 

ab5176 
Z25302 

Arabinose Sigma-Aldrich A3256 

Bay K8644 Sigma-Aldrich B112 

BCIP Roche 10760994001 

Blocking reagent Roche 11096176001 

BrdU Sigma-Aldrich N5002 

cAMP Tocris 1140 

Carbenicillin Sigma-Aldrich C1389 

Centrifuges Progen 
Thermo 

GenFuge 24D 
Heraeus Fresco17 

Chloramphenicol Merck 1.02366.0050 

Chloroform VWR International 22711.260 

Citric acid VWR International 100813M 

Confocal microscope Olympus 
Perkin Elmer 

IX81 
Ultraview Vox 

diclofenac Sigma-Aldrich 93484 

DIG RNA labelling mix Roche 11277073910 

Disposable serological 
pipettes 

Corning Incorporated Costar, various sizes 

DMSO AppliChem A3006 

DNA ladder New England Biolabs (100 bp) 
Thermofischer scientific (1 kb) 

N3231S 
SM0311 

DNAseI Roche 04716728001 

dNTPs Roche 11969064001 

EDTA Sigma-Aldrich E5134 

EDTA-Trypsin Gibco 11590626 

Ethanol  Fisher scientific E/0650/17 

Ethidium bromide Sigma-Aldrich E7637 

Exonuclease I New England Biolabs M0293L 

FBS Labtech International s1810-500 

Firepol  Solis Biodyne 04-12-00115 

Flutamide  Sigma-Aldrich F9397 

Formamide  Sigma-Aldrich P9037 

Formamide Sigma-Aldrich F9037 

Forskolin Tocris 1099 

Gel extraction kit QiAgen 28706 

Gel tanks BioRad PowerPack 300 

https://www.thermofisher.com/order/catalog/product/Z25302
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Gibco DMEM/F-12 
medium 

Thermofisher scientific 21221-046 

Glycerol VWR International 24388.295 

Heatblock Techne DriBlock DB-2A 

hEGF Sigma-Aldrich E9644 

Heparin Sigma-Aldrich H3393 

hexamethoxyquercetagetin Microsource Discovery Systems, Inc. 01505383 

hydrocortisone Sigma-Aldrich H0135 

Injection needles World precision instruments TW120-4 

Isopropanol Fisher scientific BP2618-500 

ITS liquid media 
supplement 

Sigma-Aldrich I3146 

Kanamycin Sigma-Aldrich B5264 

KCl Sigma-Aldrich P4504 

LB MP Biochemicals 3001-031 

LBA MP Biochemicals 3001-231 

L-glutamine Lonza 17-605C 

Lightsheet microscope Zeiss Lightsheet Z.1 

Loading dye New England Biolabs B7021S or B7025S 

Low-melt agarose Fisher scientific BP165-25 

Low-melt agarose Fisher Scientific BP165-25 

Maleic acid Sigma-Aldrich M0375 

Matrigel matrix Corning B.V. 354230 

Mega ShortScript T7 kit Ambion AM1354 

MetaPhor agarose Lonza 50180 

Methanol Fisher scientific M/4000/17 

Methyl cellulose Sigma-Aldrich M0387 

MgCl2 VWR International 25108.260 

microscopes Leica 
Leica 
Zeiss 
Olympus 

MZ16 
M165FC 
Axio Zoom.V16 
IX71 

Midi prep kit Macherey-Nagel 740410.100 

Mini prep kit QiAgen 27106 

mMessage mMachine SP6 
kit 

Ambion AM1340 

Morpholino Gene Tools, LLC  

Multi-well plates Corning Incorporated Costar, various sizes 

NaCl VWR International 10241AP 

NaCl Sigma-Aldrich S7653 

NaHCO3  Sigma-Aldrich S5761  

NaOH VWR International 28244.262 

Naringenin Sigma-Aldrich W530098 

NBT Roche 11383213001 

NH4Ac Sigma-Aldrich A1542 

Nifedipine Sigma-Aldrich N7634 

NP40 BDH Laboratory Suppliers 56009 

NU serum Becton Dickinson 734-1318 

Pasteur pipettes SLS PIP4206 

PBS Sigma-Aldrich P4417 

PCR plate lids Starlab E2796-0793 

PCR plates Starlab I1402-9700 

PCR purification kit QiAgen 28106 

PCR tubes Starlab I1402-8100 

Penicillin/Streptomycin Lonza LZDE17-603E 

Petri dishes Thermofisher scientific 100315 
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PFA VWR International 28794.295 

PGE2 Tocris 2296 

Phenol:Chloroform:Isoam
yl Alcohol 25:24:1 

Sigma-Aldrich P2069 

Phenosight system Ash Biotech Custom-made 

Phusion polymerase New England Biolabs M0530S 

pimpinellin Microsource Discovery Systems, Inc. 00300013 

prenyletin Microsource Discovery Systems, Inc. 00100101 

Primers IDT  

pronase Fluka 81748 

proteinaseK   Sigma-Aldrich P6556 

PTU Sigma-Aldrich CDS004712 

PTU (phenolthiourea) Sigma-Aldrich P7629 

QuickLigase New England Biolabs M2200 

Reddymix Thermofisher scientific AB0575DCLDA 

Restriction enzymes New England Biolabs various 

RNAse inhibitor Promega N251B 

SAP (shrimp alkaline 
phosphatase) 

Affimetrix 78390 

SDS BioRad 161-0416 

Shaking rotators Janke&Kunkel VX1 

Sodium citrate VWR International H3261 

Sodium pyrithione Sigma-Aldrich H3261 

Spectrum library  Microsource Discovery Systems, Inc. 27833.260 

sphondin Microsource Discovery Systems, Inc. 00300005 

Sucrose VWR International 102744B 

SYBR Safe Invitrogen S33102 

T7 RNA polymerase Promega P2078 

T75 flasks Greiner 658175 

T7EI New England Biolabs M0302S 

Testosterone Sigma-Aldrich R1881 

Thapsigargin Sigma-Aldrich T9033 

Thermocycler BioRad T100 thermocycler 

Tolvaptan Sigma-Aldrich T7455 

Tricaine Sigma-Aldrich E10521 

TRIreagent Ambion AM9738 

Tris VWR International 0497 

TritonX Sigma-Aldrich T8787 

Tween20 Sigma-Aldrich P7949 

Vortex Hook & Tucker HATI Rotamixer 

Zinc chloride BDH 103794P 

Zinc pyrithione Sigma-Aldrich H6377 
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