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Abstract 

Soils of low phosphorus (P) availability are found globally, and often have high 

plant species richness despite co-existing species competing for the same limited P 

resource. How diverse communities maintain co-existence despite limited access to 

this resource is poorly understood. 

This thesis investigated plant P acquisition in P-limited calcareous grasslands and 

the mechanisms which may sustain species coexistence in these plant communities. 

For this, a range of calcareous grassland species were used which varied in their 

methods of P acquisition. Using radiolabelled P-sources, it was shown that 

interspecific differences in P uptake by plants across a range of chemical P-forms 

were consistent with contrasting methods of P acquisition. Species with specialist 

rooting structures and high rates of root exudation acquired the greatest amounts of 

P from sources which require mobilisation before uptake. This included organic 

diesters (DNA) and inorganic mineral P (calcium phosphate). However, these 

species showed consistent reductions in P uptake in response to competition from 

mycorrhizal species, which maintained or increased P uptake. Comparisons of these 

competitive interactions in controlled systems showed that this competitive effect 

was determined by mycorrhizal status. 

P uptake by soil microbial communities growing under different plant species 

monocultures and mixed plant communities was measured from radiolabelled 

calcium phosphate. While there was some variation in microbial P uptake across 

plant species monocultures, this did not relate to differences in plant uptake. 

Microbial P uptake increased significantly in mixed plant communities compared to 
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monocultures, highlighting the importance of species richness on mobilisation of P 

from calcium phosphate through microbial uptake. 

These findings provide a new perspective on ecological processes which sustain 

species richness in P-limited plant communities. Given the prevalence of P-

limitation throughout terrestrial ecosystems, this could have widespread relevance 

for improving our understanding of the mechanisms which shape community 

structure and function. 
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Introduction: Maintenance of species rich plant 

communities in P-limited systems 

 

1.1 Resource acquisition and species coexistence 

A major question in plant ecology is how coexistence is maintained within plant 

communities despite co-occurring species needing to secure the same resources 

necessary for survival (including light, water and nutrients). A species’ resource 

requirements are a defining characteristic of the conditions necessary to sustain a 

population in the local environment (i.e. their ecological niche). Similarities in 

resource requirements between species within a community subsequently results in 

the overlap of ‘niche spaces’ (May 1974; Pianka 1974). 

Overlapping resource requirements leads to competition when that resource is in 

short supply and it’s availability restricts the growth rate of a species (i.e. a 

‘limiting’ resource) (Tilman 1982). According to classic ecological theories, stable 

coexistence between co-occurring species can only occur below a threshold amount 

of overlap in requirements of limiting resources (May & MacArthur 1972). 

However, given the broad similarities in the resource requirements of plants, co-

occurring species will inevitably be forced to compete for the same limiting 

resources. Therefore differences in resource use between species (i.e. niche 

differentiation) which facilitate coexistence through reduced overlapping resource 

requirements are of fundamental importance  (Silvertown 2004). 

Research on coexistence through niche differentiation (i.e. niche complementarity) 

has focused on resource partitioning, which describes the process where the 
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acquisition of a limiting resource is divided up within a plant community through 

interspecific differences in the space, time, and form of acquisition. In theory, this 

process will promote coexistence among co-occurring species by allowing multiple 

species to share a limiting resource (Schoener 1974). Indeed, previous studies have 

already demonstrated this process in the partitioning of resources such as light and 

water (Kobe 1999; Nippert & Knapp 2007; Kulmatiski & Beard 2013).  

Niche differentiation among co-occurring species could also occur through changes 

in resource acquisition which reduce overlapping niche space (i.e. niche plasticity) 

(Casper & Jackson 1997). This theory makes a distinction between a species’ 

fundamental and realised niche. The former represents its niche in the absence of 

interspecific competition whereas the latter occurs in response to interspecific 

competition (Hutchinson 1957). Accordingly, niche plasticity could facilitate 

coexistence between species which, despite sharing overlapping resource 

requirements in their fundamental niche, differentiate in their realised niche.  

While our understanding of the ecological processes which govern plant community 

structure and function is supported by an abundance of research carried out over 

many years, the majority of this has focused aboveground. Far less progress has 

been made in understanding the importance of belowground processes on resource 

acquisition and their influence on plant community structure and function (Schenk 

2006; Bardgett & van der Putten 2014).  

1.2 Phosphorus availability and species rich plant communities 

Belowground, a key factor that regulates plant community structure and function is 

the availability of nutrients. Many of the world’s biodiversity hotspots are located in 

nutrient-poor habitats - from the highly weathered soils of tropical rainforests to the 
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ancient soils of Western Australia (Myers et al. 2000). The inverse relationship 

between nutrient availability and species richness is well documented in plant 

communities limited by phosphorus (P) (Janssens et al. 1998; McCrea et al. 2001; 

Critchley et al. 2002; Ceulemans et al. 2014). Furthermore, these plant communities 

have also been shown to contain a greater frequency of rare species (Wassen et al. 

2005), which are more vulnerable to global change due to reduced investment in 

sexual reproduction (Fujita et al. 2014). P limitation is widespread throughout 

terrestrial ecosystems and approaches the extent of nitrogen limitation (Elser et al. 

2007). Therefore the understanding of how so many species manage to coexist in P-

limited systems is of great importance.  

1.3 Phosphorus dynamics in the soil 

Phosphorus is essential to all forms of life. It is a vital component of genetic 

material, found in the phospholipids which make up all cell membranes, and a key 

constituent of ATP which fuels the vast majority of processes that require energy 

transfer (Bowler et al. 2010). 

Plants acquire P from the soil in the form of orthophosphate, either as H2PO4
- or 

HPO4
2-. This is taken up by the plant via transporters located in the root epidermis 

(Smith 2002). During P uptake, a diffusion gradient is established which draws 

orthophosphate and a range of other diffusion-mobile nutrients in solute form to the 

root surface (Hinsinger et al. 2009). However, the high reactivity of orthophosphate 

restricts its mobility in the soil which leads to depletion zones developing at the root 

surface relative to the surrounding substrate (Hinsinger 2001). The incorporation of 

P in soil solution to biomass and its adherence to other soil constituents means that 

phosphorus in a plant-available form makes up only a small fraction of the total 
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amount present in the soil, rarely reaching levels of more than 10 µM (Bieleski 

1973). 

Different soil P sources are classed as organic or inorganic depending on which soil 

constituents P is adhered to (Fig 1.1; Hinsinger et al. 2011). Organic forms include 

phytate, phospholipids and nucleic acids, and account for around 30-65% of total 

soil P (Harrison 1987). The most abundant forms of soil organic P are 

phosphomonoesters, which consist largely of phytins such as inositol 

hexaphosphates (Turner et al. 2002). The strong adherence of P within monoesters 

resists degradation, and this stability leads to their accumulation in the soil.  

Phosphodiesters represent a more transient component of the soil P cycle than 

monoesters. Diesters are the most abundant source of P in biological tissue (Bieleski 

1973), and levels of this organic P form in the soil are maintained through 

contributions from the turnover of soil organisms and plant litter. Organically bound 

P in this form (such as nucleic acids and phospholipids) is weakly sorbed and 

rapidly decomposes, preventing the build-up of this P source in the soil (Bowman & 

Cole 1978).  

Figure 1.1: Schematic of P dynamics in the soil (adapted from Shen et al. 2011) 
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Inorganic phosphorus in the soil is found in a range of forms. Primary minerals, such 

as apatites, are derived from the bedrock and are relatively stable compared to 

secondary minerals, which form through the precipitation of P to metals including 

calcium, iron and aluminium (Shen et al. 2011). As well as precipitation reactions, P 

can also be incorporated into inorganic P forms through adsorption to the surface of 

clays and aluminium and iron oxides (Hinsinger 2001). 

Walker and Syers (1976) developed a model which described the process of soil P 

cycling over time. In essence, all soil P originates from inorganic primary mineral-

bound forms such as calcium apatite. This phosphorus is gradually released into soil 

solution, where it is either immobilised by plants and soil organisms or adsorbed to 

other soil constituents. The constant turnover of biota maintains P cycling between 

organic and inorganic pools (Fig 1.1).  

  

1.4 Plant acquisition of phosphorus 

Since plants only acquire P in the form of orthophosphate, a continuous turnover 

into the soil solution is required for plant growth. Plants can influence this process 

through a variety of mechanisms.  

1.4.1 Root exudation 

The root-release of organic acids (e.g. oxalate and citrate) mobilises P from 

inorganic sources such as calcium phosphate (Jones & Darrah 1994). These low 

molecular weight chemical compounds act in a number of ways. P mobilisation can 

occur through the exchange of organic acids with P at the ligand exchange surfaces 

of metal ions in the soil (Jones 1998). Likewise, complexation of organic acids to 



Introduction: Maintenance of species rich plant communities in P-limited systems  

 

 

6 

 

metal ions in the soil’s solid phase (such as aluminium, iron and calcium) restricts 

further immobilisation of P, maintaining a greater amount in solution and available 

for plant uptake (Parfitt 1978). However, the action of organic acids is highly 

dependent on conditions in the soil. It has been suggested that the plant production 

of these compounds is insufficient to reach amounts which have a significant effect 

on the mobilisation of P through mineral weathering (Drever & Stillings 1997; 

Ström et al. 2005). Therefore, further focus on their function in natural and semi-

natural soils is needed in order to understand their involvement in soil P cycling 

(Jones et al. 2003; Shen et al. 2011; Duffner et al. 2012)  

Plants can also access soil P through the root exudation of extracellular enzymes 

specific to a range of organic P sources. Phosphorus is mobilised from 

phosphomonoesters (such as inositol phosphates and phytins) through hydrolysis by 

phosphomonoesterases (Lee 1988), which are produced in plant roots in response to 

low P concentrations (Duff et al. 1994). Likewise, the phosphate within 

phosphodiesters (such as nucleic acids and phospholipids) is released through 

hydrolysis with phosphodiesterases. While the activity of plant phosphatases in 

organic phosphorus mineralisation is well documented (Hui et al. 2013), the 

contribution of various organic P sources to plant P nutrition is poorly understood 

(Steffens et al. 2010). 

1.4.2 Root architecture 

Once P is in a form that is accessible to plants, there are a range of plant adaptations 

which enhance its acquisition. Orthophosphate is taken up via transporters located in 

the root epidermis (Smith 2002). Subcellular extensions of root epidermal cells (root 

hairs), are positively related to the acquisition of phosphorus (Itoh & Barber 1983) 
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and these structures increase P uptake by accessing a larger soil volume and 

increasing the surface area for plant acquisition. The close involvement of these 

structures in plant P nutrition has been demonstrated by studies using Arabidopsis 

which have shown that the length and density of root hairs is regulated by the 

availability of P (Bates & Lynch, 1996; Ma et al. 2001). 

Within the plant kingdom, a range of species produce specialised root structures for 

the acquisition of P consisting of bunched determinate root hairs condensed around 

distinct points along the root axis. These ‘cluster roots’ can be found in a number of 

plant clades - from the proteoid roots found in woody species of Proteaceae (Watt & 

Evans 1999) to the dauciform roots found in the sedges of Cyperaceae (Fig 1.2; 

Shane et al. 2004). The production of these cluster roots is greatest under low levels 

of P supply, and they act to enhance P acquisition by increasing the surface area for 

nutrient uptake as well as releasing high concentrations of organic acids and 

phosphatases (Shane & Lambers 2005; Playsted et al. 2006).  

1.4.3 Soil microbes 

(i) Mycorrhiza 

Almost all plant species are capable of acquiring P through associations with 

mycorrhizal fungi. This important group of soil microbes increases the surface area 

for nutrient acquisition and accesses a larger soil volume through a dense hyphal 

network which extends beyond the zones of depletion surrounding plant roots and 

within soil particles that the broader roots of plants cannot access (Smith & Read, 

2008). Phosphorus acquired by the fungus is transported through their hyphal 

network to the host plant, which provides assimilated carbon in return. While this is 

the characteristic function of the symbiosis between mycorrhizal fungi and plants, 
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these interactions vary widely within the plant kingdom and across a range of 

mycorrhizal types. The most common form of this symbiosis is with arbuscular 

mycorrhizal (AM) fungi, which form associations with the majority of plant species 

(c. 80%). This type of mycorrhizal fungi are characterised by the formation of 

arbuscules within the cortical cells of plant roots and these are the structures through 

which P is transferred to the host plant (Fig 1.3). 

The ways in which associations with AM fungi can benefit the P nutrition of host 

plants are well documented. AM fungi can contribute up to 80% of plant P 

(Marschner & Dell 1994; Van Der Heijden et al. 2006) and mycorrhizal roots show 

greater efficiency for phosphorus acquisition compared to non-mycorrhizal roots 

which have access to equal amounts of soil P (Cui & Caldwell 1996).  

Figure 1.2: Section of root system of the sedge species Carex caryophyllea grown on 

calcareous dune sand. Some lateral roots have developed dauciform roots. Inset: higher 

magnification of a dauciform root showing densely packed root hairs. 
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 (ii) Plant growth promoting rhizobacteria 

Other groups of soil microbes also affect plant P acquisition. Phosphate-solubilising 

bacteria are capable of increasing the availability of P from inorganic and organic 

sources through the secretion of phosphatases and organic acids (Kim et al. 1998). 

These bacteria, and other groups which can increase plant productivity, are 

collectively referred to as plant growth promoting rhizobacteria.  

P-solubilising ability has been demonstrated experimentally in bacterial species 

belonging to a range of genera, including Actinomycetes, Pseudomonas, and 

Bacillus (Richardson & Simpson 2011). However, there remains uncertainty over 

the P-solubilising capacity of groups which have been identified in vitro without 

Figure 1.3: Section of Plantago lanceolata root system stained using Trypan blue to 

show colonisation by mycorrhizal fungi. (a) Magnified root section showing arbuscules 

within the cortical root cells (arrow). (b) Section of root surrounded by external fungal 

hyphae. 
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further testing in field conditions (Gyaneshwar et al. 2002). Likewise, while studies 

carried out in controlled conditions have demonstrated the beneficial effect of 

phosphate-solubilising bacteria on plant P nutrition, evidence of this from field 

studies is not resolved (Pii et al. 2015).  

The impact of soil microbes on ecosystem functioning was considered a ‘black box’ 

for much of the 20th century (Tiedje et al. 1999). Recent progress in the use of 

molecular approaches has helped to unravel the complexity of belowground 

processes involving soil microbes (Bardgett & van der Putten 2014). A focused 

research effort using these novel methods will help to advance our understanding of 

the structure and function of soil microbial communities and their effect on plant P 

nutrition in situ. 

1.4.4 Plant-microbe interactions and P acquisition  

These highlighted mechanisms of plant P acquisition are not isolated from one 

another. In the soil environment, these processes often interact and the distinction 

between one method of P acquisition and another can often be hard to distinguish. 

For example, while plant root exudates can directly increase the availability of P for 

plant uptake, these carbon-containing compounds also serve as a substrate for the 

soil microbial biomass (Baudoin et al., 2003; Lange et al., 2015; Shahzad et al., 

2015). Plants in semi-natural systems translocate between 30 and 50% of assimilated 

carbon below-ground (Kuzyakov & Domanski 2000), and that which is released into 

the soil can further enhance the mobilisation of P through stimulating soil microbial 

activity (Hacker et al. 2015).  

As well as organic acids and phosphatases, plant root exudates contain a range of 

rhizodeposits, including mucilage, sugars and amino acids (Dakora & Phillips 
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2002). The composition of root exudates can vary greatly among species and across 

environmental conditions (Mimmo et al. 2011). Studies have shown that soil 

microbes respond to these variations between different species (Zhang et al. 2014) 

as well as across different components of the rooting system within the same plant 

(Marschner et al., 2002). 

Studies which have investigated how plant stimulation of soil microbial 

communities can affect nutrient acquisition have focused on nitrogen (N). The term 

‘priming’ refers to the plant input of organic carbon, such as root exudates, into the 

soil which accelerates the mineralisation of organic matter by soil microbes and 

subsequently increases the supply of N to the plant (Dijkstra et al., 2013). Root traits 

are shown to be an important driver of changes in the microbial biomass which 

stimulates the cycling of N (Legay et al. 2014), however there has been less progress 

made in our understanding of the effect of plant-microbe interactions on soil P 

cycling. Therefore, further research is required to elucidate whether plants possess a 

similar top-down control over their P supply through soil microbial activity (Dijkstra 

et al. 2013). 

As well as the influence of plant-microbe interactions on plant P acquisition, 

interactions between different groups of soil microbes could also feedback into plant 

P acquisition. The colonisation of roots by mycorrhizal fungi leads to changes in 

bacterial community composition (Vestergård et al. 2008). Likewise, ‘mycorrhiza 

helper’ bacteria have been shown to enhance root colonisation by AM fungi 

(Churchland & Grayston 2014). These findings highlight the complexity of below-

ground interactions, and the uncertainty that remains over how these processes 

impact on soil P cycling and plant uptake. 
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1.5 Mechanisms through which P acquisition influences plant 

communities 

Despite widespread P limitation across terrestrial ecosystems and its connection to 

diverse plant communities, the mechanisms which maintain coexistence among 

species competing for the acquisition of this scarce resource are poorly understood. 

A number of theories have been proposed to explain this relationship. 

1.5.1 Niche differentiation through resource partitioning 

Diversity could be maintained in P-limited plant communities by species reducing 

the negative impact of competitive interactions through accessing different sources 

of P in form, space or time, known as “resource partitioning” or “niche 

differentiation in resource use” (Turner 2008). The diverse plant communities 

sustained in P-limited systems appear to contradict Tilman’s theory (1982) that 

coexistence cannot be maintained among species which compete for the same 

limiting resource. However, resource partitioning could maintain coexistence, 

despite the low levels of plant available P, if interspecific competition for this 

limiting resource is avoided through differences in methods of P acquisition which 

access different sources of P in the soil (Fig 1.4; Turner 2008).  

Different methods of plant P acquisition are well-documented, however few studies 

have investigated whether they access different sources of soil P. In theory, species 

which form mycorrhizal associations will have a superior foraging capacity, and 

therefore acquire a greater amount of freely available P within the soil than non-

mycorrhizal plants (Smith & Read 2008). On the other hand, species which invest in 

the production of specialist root structures and high rates of root exudation are better 
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equipped for the mobilisation of P from poorly accessible sources (Lambers et al. 

2006). 

Studies which have investigated resource partitioning of nutrients have focused 

primarily on nitrogen. For instance, McKane et al. (2002) demonstrated 

differentiation in the timing, depth and chemical form of N uptake among plant 

species from a tussock tundra community. In line with findings from other N 

partitioning studies (Kahmen et al. 2006; Felten et al. 2009), this could facilitate co-

existence in these communities through reduced competition for the limiting N 

supply.  

Figure 1.4: Schematic representation of resource partitioning of phosphorus. Different 

methods of P acquisition are symbolised as ‘keys’ which unlock P from a source of 

corresponding colour. For resource partitioning, it is proposed that coexistence is 

maintained through interspecific differences in resource acquisition. This is illustrated by 

different coloured keys possessed by species X and Y (blue and red keys respectively) 

which unlock P from different sources of soil P. 
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In comparison, there has been little work done to investigate the potential for 

resource partitioning of P. From the studies which have tested this theory, there is 

indirect evidence to show that plant species differ in their uptake of P from a range 

of sources in the soil (Fransson et al. 2003), and P uptake among competing plant 

species is greatest when supplied with a variety of P sources (Ahmad-Ramli et al. 

2013). The first direct evidence of P partitioning came through the use of radioactive 

tracers that demonstrated interspecific differences in P uptake of contrasting 

chemical forms of organic, inorganic and mineral P among commonly co-occurring 

grassland plants (Phoenix et al., unpublished data). An improved understanding of 

different methods of plant P acquisition will aid future consideration of the capacity 

for plant communities to partition P sources in the soil. 

1.5.2 Enhanced niche differentiation through niche plasticity 

Building on the theory of niche differentiation through resource partitioning, niche 

plasticity proposes that species are capable of shifting niche space in response to 

neighbouring species in order to reduce interspecific competition (Fig 1.5). These 

shifts could occur in at least two ways depending on the plasticity of dominant or 

subordinate plant species. That is, subordinate species could shift to a less-used 

resource in response to a superior species (niche pre-emption) or dominant species 

maintain competitive dominance by switching between resources (dominant 

plasticity) (McNaughton & Wolf 1970; May & MacArthur 1972). 
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Figure 1.5: Schematic representation of niche plasticity in plant P acquisition. A 

distinction is made between a species’ resource acquisition in (a) the absence of 

interspecific competition (i.e. fundamental niche) and (b) in response to interspecific 

competition (i.e. realised niche). In the first instance (a), species X acquires P from the 

‘red’ source (fundamental niche). However, species Y also accesses P from this source. 

Therefore, in response to interspecific competition from species Y (b), species X 

switches to P acquisition from the ‘blue’ source (realised niche). Subsequently, niche 

overlap between species X and Y is reduced which reduces competition for P acquisition 

and facilitates coexistence. 
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Complimentary niche shifts have been shown to occur for N, in studies which have 

demonstrated species-specific switches in uptake between N forms in response to 

competition in mixed communities (Ashton et al. 2010). Despite evidence of 

interspecific differences in the acquisition of P from a range of soil sources, it is not 

known whether co-occurring species are capable of reducing overlapping resource 

requirements of P through niche plasticity in response to competition. 

1.5.3 Interactions between contrasting methods of P acquisition 

Competitive interactions between species which differ in their methods of P 

acquisition could offer a potential mechanism that sustains species richness in P-

limited plant communities.  Lambers et al. (2008) divided species into ‘scavengers’ 

or ‘miners’ depending on their method of P acquisition. ‘Scavenger’ species were 

defined by their superior foraging capacity for freely accessible P due to the dense 

and extensive hyphal network of their mycorrhizal fungal partners (see section 

1.4.3). On the other hand, ‘mining’ species were adapted for the mobilisation of P 

from poorly accessible sources in the soil through the production of specialist 

rooting structures and release of root exudates (see sections 1.4.1 and 1.4.2). 

Lambers et al. (2008) proposed that scavenging species which are poorly suited to 

soils where P is predominantly locked up in sources of low bioavailability could 

survive by acquiring P which has been mobilised by their P-mining neighbours (Fig 

1.6). 

There have been a number of studies which have demonstrated how interactions 

between species with these contrasting methods of P uptake can influence P 

acquisition. These have predominantly focused on the beneficial impacts of 

intercropping on P nutrition of crop species in agricultural systems (Li et al. 2014). 
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For example, wheat plants showed increased yield and P uptake from an organic P 

source when intercropped with P-solubilising chickpea plants (Li et al. 2003). 

Similar yield responses have also been demonstrated in field conditions when wheat 

and maize plants were intercropped with P-solubilising faba bean (Li et al. 2016; 

Zhang et al. 2016). 

Muler et al. (2014) investigated scavenger-miner interactions outside of an 

agricultural context and showed that the productivity of scavenging species 

increased when in competition with a mining species. However, it has yet to be 

shown whether scavenging species acquire poorly accessible P in greater amounts 

when in competition with a mining species.  

Observations of plant communities from the P-impoverished soils of Western 

Australia provide indirect evidence for how scavenger-miner interactions sustain 

species richness in P-limited plant communities. Lambers et al. (2011) observed a 

Figure 1.6: Schematic representation of plant P acquisition through scavenger-miner 

interactions. In this scenario, only species X possesses the key to access the ‘red’ soil P 

source (i.e. specialist adaptation for P acquisition) which allows both species X and Y to 

acquire the liberated P.  
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range of plant communities and found that the highest levels of diversity were 

sustained in plant communities which contained a significant proportion of mining 

species. However, further work is required in natural and semi-natural systems 

which can determine whether mining species can actually mobilise P for scavengers, 

and therefore sustain co-existence and biodiversity in P-limited plant communities. 

 

1.6 Calcareous grasslands 

In order to investigate the relationship between high levels of species richness and 

low levels of P availability, the calcareous grasslands of Western Europe were used 

as a model system. These plant communities commonly contain more than 30 plant 

species per 50m2 (Willems 1978), making them among the most diverse in the world 

on such a scale (Fig 1.7). 

The shallow Rendzina-type soils associated with calcareous grasslands 

characteristically contain low levels of extractable inorganic phosphorus (Phoenix et 

al. 2003). This is caused by the binding of freely available P in soil solution to 

calcium ions derived from the limestone bedrock. The lower layers of these soils can 

contain more than 70% calcium carbonate (Putten et al. 2000), and the accumulation 

of calcium phosphates represents a major component of total soil P in calcareous 

soils (Zhang et al. 2014). 

The diverse array of grasses, forbs and sedges found in these plant communities 

have a range of different methods of P acquisition. Grasses and the majority of forbs 

form symbioses with arbuscular mycorrhizal fungi (section 1.4.3), whereas other 

species of forb instead rely on high rates of organic acid exudation for P uptake 

(Tyler & Ström 1995; Fransson et al. 2003) (section 1.4.1). Likewise, sedge species 
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form specialist root structures called dauciform roots (section 1.4.2) rather than 

relying on mycorrhizal associations for P acquisition. 

The value of calcareous grasslands is demonstrated with their widespread 

designation as ‘Sites of Special Scientific Interest’ across the UK (JNCC 2010). As 

well as supporting a diverse range of plant species, these ecosystems provide a range 

of important services, from a forage resource for pollinator species (Carvell 2002) to 

a net sink for carbon (Janssens et al. 2005). However, the area of semi-natural 

grasslands in the UK suffered a steep decline throughout the 20th century (Fuller 

1987), mostly through conversion to arable land (Newton et al. 2012). Therefore, as 

well as providing an ideal study system for the community dynamics of P-limited 

plant communities, further research into the ecology of calcareous grasslands will 

aid their future conservation and restoration. 

Figure 1.7: Photograph of a diverse plant community from a calcareous grassland at 

Wardlow Hay Cop, Derbyshire (53°15'44"N, 1°43'52"W; photographed 03/06/2013). A 

range of grasses, forbs and sedges can be seen, as well as flowering orchids.  
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1.7 Aims 

The link between low phosphorus availability and high species richness is well 

documented. Despite this, the mechanisms which maintain coexistence in diverse 

communities with low P supply are poorly understood. This thesis sets out to 

investigate a range of theories which have been proposed as an explanation for this 

relationship through the following research questions: 

1. How do plant P uptake patterns across a range of soil P sources vary between 

species with contrasting methods of P acquisition? 

2. What are the mechanisms which underlie changes in P uptake in response to 

interspecific competition? 

3. How do plant species with different methods of P acquisition influence 

microbial P uptake in P-limited plant communities? Do changes in microbial 

biomass P influence interspecific differences in plant P uptake? 

This thesis addresses these questions using calcareous grassland communities as a 

model. These investigations included the use of radio-isotope labelled P which made 

it possible to quantify P uptake in natural soils from supplied sources separately 

from pre-existing soil P sources. An overview and objectives for each research area 

are provided below. 

1.7.1 Interspecific differences in P uptake patterns of co-occurring 

plants 

Few studies have investigated the role of P acquisition in structuring plant 

communities, but there is indirect evidence of interspecific differences in P 

acquisition from those studies which have. It has been shown that P uptake among 

competing plant species is greatest when supplied with a variety of P sources 
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(Ahmad-Ramli et al. 2013). Furthermore, interspecific differences in P uptake have 

been correlated to the size of different soil P fractions (Fransson et al. 2003). The 

first direct evidence of interspecific differences in P uptake came through the use of 

radioactive tracers of chemical forms of organic, inorganic and mineral P that 

showed different uptake patterns among commonly co-occurring grassland species 

(Phoenix et al., unpublished data). This study also demonstrated changes in P uptake 

between individuals grown in monocultures and mixed communities. However, it 

has not been shown whether these changes occur in response to the distinct P uptake 

preferences and acquisition adaptations of neighbouring species.  

Species with contrasting methods of P acquisition may also influence the uptake of 

neighbouring species by increasing the availability of P from poorly accessible 

sources (Lambers et al. 2006; Lambers et al. 2008). While this mechanism is 

documented in studies on intercropping in agricultural systems (Li et al. 2014), its 

potential function in natural and semi-natural systems is not known. Positive impacts 

on the biomass of neighbouring species have been demonstrated (Muler et al. 2014) 

but it is not known whether this is the result of increased access to P caused by co-

occurring species. 

The study described in Chapter 3 supplied chemical P sources to a range of 

calcareous grassland species. P was supplied as orthophosphate as well as organic 

diester (DNA) and inorganic mineral (calcium phosphate) forms, representing pre-

existing soil pools of contrasting bioavailability. Likewise, the selected species 

varied in their methods of P uptake, from mycorrhizal associations to the production 

of specialist root structures and root exudation. This allowed the measurement of 

how P uptake patterns varied between species with contrasting methods of P 
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acquisition across a range of chemical P sources, and how P uptake was influenced 

by co-occurring species. 

1.7.2 The mechanisms underlying changes in P uptake in response to 

interspecific competition 

Theories which have been proposed to explain how diverse plant communities are 

maintained in P-limited systems, such as niche differentiation through resource 

partitioning, were based on studies which have investigated these mechanisms 

through N acquisition in N-limited communities. However, there are far fewer 

studies which have investigated the relationship between community structure and P 

acquisition. Likewise, the influence of competitive interactions on the P uptake of 

species with contrasting methods of acquisition has been extensively tested in 

agricultural systems, but not in natural and semi-natural systems. Therefore further 

work is required in order to understand these mechanisms within the context of the 

fundamental ecological processes which govern plant communities. 

The study described in Chapter 3 measured the impact of interspecific competition 

on plant P uptake using a paired design. This made it possible to see whether there 

were changes in patterns of P uptake which corresponded to the method of P 

acquisition of a co-occurring species.  

While the benefits of mycorrhizal associations to plant P nutrition are well 

documented (Smith & Read 2008), how these benefits are influenced by interactions 

with species which possess contrasting methods of P acquisition is poorly 

understood. The study described in Chapter 4 investigated how interactions 

between a mycorrhizal ‘scavenger’ species and a non-mycorrhizal, cluster-root 

producing ‘mining’ species were mediated by mycorrhizal status. Mycorrhizal status 
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was controlled through substrate sterilisation and inoculum. This made it possible to 

measure the influence of mycorrhizal associations in the competitive interactions 

between species with contrasting methods of P acquisition. 

The study described in Chapter 5 moved from measuring P uptake in paired species 

to mixed communities. This made it possible to investigate the impact of 

interspecific competition on plant P uptake within a multi-species assemblage. 

These conditions provided a closer reflection of field conditions, where competitive 

interactions can include numerous species at any one time. 

1.7.3 Plant-microbe interactions and P acquisition in P-limited plant 

communities 

Interactions between plants and soil microbes have significant effects on plant 

community structure and function (Van Der Heijden et al. 2008). Despite this, the 

majority of research on plant community dynamics has focused aboveground, and 

less progress has been made in understanding the importance of belowground 

interactions (Bardgett & van der Putten 2014).  

The influence of soil microbes on P acquisition in plant communities ranges from 

direct associations with mycorrhizal fungi and phosphate-solubilising bacteria, to 

indirect effects of microbial turnover and nutrient cycling in the soil. The study 

described in Chapter 5 investigated the influence of plant species on microbial P 

uptake and whether this reflected interspecific differences in plant P uptake. Plant 

monocultures and mixed communities were supplied with radio-isotope labelled 

calcium phosphate and P uptake was measured in soil microbial communities 

associated with different plant communities.  
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Plants are capable of influencing microbial activity in the soil through the release of 

root exudates (section 1.4.4). Increased microbial P uptake can then feedback into 

plant P uptake, either directly through increased P mobilisation by phosphate-

solubilising bacteria or indirectly through turnover of the microbial biomass 

(Vanveen et al. 1987; Macklon et al. 1997; Richardson et al. 2001; Achat et al. 

2010; Marschner et al. 2011; Turner et al. 2012). Depending on interspecific 

differences in plant-microbe interactions, a positive relationship between plant and 

microbial P uptake could therefore contribute to the partitioning of P sources. 

Different bacterial species have been shown to vary in their capacity to mobilise P 

from a range of soil P sources (Rodríguez & Fraga 1999; Richardson 2001; Pii et al. 

2015). Therefore differences in the P uptake of microbial communities associated 

with different plant species could be related to selective enhancement of microbes 

which are more effective at mobilising soil P (Marschner et al. 2011). This was 

investigated in Chapter 5 through the use of microbial fingerprinting techniques 

which measured changes in microbial community composition and species richness. 

The effect of combining species monocultures into a mixed plant community on 

microbial P uptake was also investigated in Chapter 5. Previous studies have shown 

that plant species richness stimulated the activity and biomass of soil microbes 

(Lange et al. 2015; Thakur et al. 2015). This could increase mobilisation of P from 

organic sources (Hacker et al. 2015), however mineral-bound P sources such as 

calcium phosphate represent a significant source of soil P in calcareous soils which 

have not been investigated (Zhang et al. 2014). Increased microbial P uptake from 

this source, driven by increased species richness, could have important effects on 

soil P cycling and P availability to associated plant communities. Subsequent 

benefits in plant P uptake could cause a positive feedback which maintains co-
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existence within increasingly diverse plant communities through increased access to 

this limiting soil resource. 
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Production of radio-isotope labelled calcium phosphate and 

its use in tracer studies 

  

2.1 Summary  

The use of radio-isotope phosphorus (P) labelled compounds makes it possible to 

measure plant P uptake directly from a supplied source, and distinguish this P uptake 

separately from that derived from pre-existing P-pools in the soil. A range of 33P-

labelled chemical compounds can be purchased directly or produced following a 

standardised protocol from commercial kits, but many important chemical P forms 

found in the soil cannot be obtained in these ways. Given the use of calcareous soils 

in this thesis, mineral-bound P in the form of calcium phosphate (CaP) was of great 

importance. However, this P source is not commercially available in a radio-isotope 

labelled form, so it was necessary to synthesise 33P-labelled CaP for use in tracer 

experiments. Additionally, while a protocol exists for the production of 33P-CaP, its 

solubility at soil relevant pH ranges and optimisation for specific activity has not 

been investigated. Therefore, it is unclear whether this synthesised CaP remains 

relatively insoluble (as therefore can be used to represent soil CaP) or liberates P at 

soil pHs (and so instead would represent a much more immediately available P 

source not representative of soil CaP).  Furthermore, the protocol has not previously 

been manipulated to alter specific activity. This means that use of the original 

protocol to produce CaP with low specific activity involves addition of larger 

amounts of total P in the tracer. This could potentially negate one of the main 

benefits of using 33P tracers, in that very small and realistic amounts of P can be 

added to the system. The amount of P released from CaP was measured in 

suspensions where pH had been manipulated to cover a soil-relevant range. This 
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showed that the original protocol produced a P source which was stable in the pH 

range of test soils. Therefore, P would not be immediately released from CaP upon 

supply to the soil, meaning the synthesised CaP was suitable to represent this P 

source in the soil. Specific activity was manipulated by changing the amounts of 

initial reactants used in the labelling process, which resulted in an order-of-

magnitude increase in specific activity. This meant that the same amount of 33P-CaP 

could be supplied at a higher specific activity allowing a smaller total amount of P to 

be supplied. However, there were no differences in plant 33P uptake in response to 

the CaP sources of differing specific activity. This indicates that the differing total 

amount of P supplied using these different specific activities did not influence the 

ability of plants to acquire 33P. Therefore, this means that experiments using either 

low or high specific activity CaP are comparable. These findings show that the 

synthesised CaP, at both low and high specific activities, is suitable for use in tracer 

studies alongside other commercially available radio-isotope labelled P sources.  
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2.2 Introduction 

The shallow Rendzina-type soils associated with calcareous grasslands 

characteristically contain low levels of extractable inorganic phosphorus (Johnson et 

al. 1998; Phoenix et al. 2003). This is caused by the binding of freely available P in 

soil solution to calcium ions derived from the limestone bedrock (Tunesi et al. 

1999). The lower layers of these soils can contain more than 70% calcium carbonate 

(Putten et al. 2000). Therefore, the accumulation of calcium phosphate represents a 

major P source, which has been estimated to reach over 55% of total P in calcareous 

soils (Zhang et al. 2014). 

Previous studies have measured the effects of supplying calcium phosphate to plants 

established on field-collected soils. For example, Vogelsang et al. (2006) supplied a 

range of P sources, including calcium phosphate, to plant communities established 

in mesocosms with field-collected soil. However, there was no effect of different P 

sources on plant productivity or diversity. In a separate study, Lange Ness & Vlek 

(2000) showed that P uptake of maize plants was increased in soils with added 

calcium phosphate and mycorrhizal inoculum. A drawback of these studies is that, 

when measuring plant P uptake through P additions to a soil substrate, it is not 

possible to distinguish whether the source of P fixed in plant tissue was naturally 

occurring or experimentally added.  

This ambiguity can be overcome by restricting plant access to a single source of P. 

For example, Akhtar et al. (2009) grew Brassica cultivars hydroponically with 

calcium phosphate as a P source and showed increasing amounts of plant P uptake in 

solutions with lower pH. However, an issue with this approach is that experimental 

conditions in these simplified study systems are far-removed from field conditions. 
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This is critical in terms of gaining a realistic understanding of plant P acquisition, 

which is influenced by a complex variety of interrelated soil conditions, from 

microbial associations to mineral weathering (Smith & Read 2008; Shen et al. 2011; 

Pii et al. 2015). 

Measuring P uptake through the use of radio-isotope labelled P sources provides a 

solution to the drawbacks of both of these methods. This technique provides a direct 

measure of plant uptake from a specific P source applied to soil so that P uptake can 

be studied in conditions representative of the field. 

Radio-isotope compounds have been used in ecological studies for many years, and 

are utilised to measure a range of parameters, such as photosynthesis, respiration and 

decomposition, as well as nutrient acquisition (Cameron et al. 2006; Kritzler & 

Johnson 2009; Field et al. 2012). Given the importance of P in the form of calcium 

phosphate (CaP) in calcareous soils, it was necessary to synthesis radio-labelled CaP 

for tracer experiments in this thesis. Calcium phosphate has been used as a radio-

isotope-labelled P source previously (Leake et al. 2009). However, the solubility of 

this synthesised CaP at soil pH, and whether the specific activity of the CaP could be 

improved, have not previously been investigated. 

While P transformations occur naturally through soil P cycling, it was important for 

P to remain fixed in synthesised CaP (as occurs with natural CaP pools in the soil). 

For calcium phosphate, one of the major factors which controls the equilibrium 

between precipitation and dissolution of P in these compounds is pH (Tunesi et al. 

1999). The solubility of P in CaP increases at lower pH levels (Hinsinger 2001). 

However, it is not known whether the synthesised 33P-CaP is soluble within a soil 

relevant pH range, in which case it would not be suitable in tracer studies to 
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represent this relatively recalcitrant mineral-bound soil P source. Therefore, the 

solubility of the synthesised CaP was measured across a soil-relevant pH range in 

order to see how much P would be released upon introduction to conditions in the 

soil. 

In addition, the original protocol for the production of 33P-CaP had not previously 

been manipulated to increase specific activity. Therefore, the original protocol 

produced CaP with a specific activity which was relatively low compared to other 

commercially available 33P-labelled compounds. Specific activity is a measure of the 

activity of a radio-isotope per unit mass of the element present. Supplying a P source 

at a higher specific activity means a smaller amount of total P is supplied, as the 

ratio of radioactive P to non-radioactive P in the compound is higher. The benefit, 

therefore, of high specific activity is that realistic and very small amounts of P can 

be supplied that are less likely to disrupt plant-soil P dynamics (i.e. not saturating 

the system with P, or avoiding inadvertently stimulating P uptake mechanisms). To 

investigate this, the protocol was adjusted to produce higher specific activity CaP. 

These (original) low and (new) high specific activity sources were then tested in a 

plant uptake tracer experiment to see whether they influenced the amount of plant 

33P uptake. 

 

2.3 Methods 

2.3.1 Production of 33P-labelled calcium phosphate 

33P-labelled calcium phosphate was synthesised using the method of Leake et al. 

(2009). 1 MBq aqueous 33P-labelled orthophosphate (Perkin Elmer, UK) was added 
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to a reaction mixture containing 1 mL each of calcium nitrate (0.05 M) and 

ammonium hydrogen orthophosphate (0.05 M). The reaction was sped up by raising 

pH with the addition of 0.5 mL 32% ammonium solution.  

Reaction mixtures were centrifuged and 1 mL of unprecipitated reactants were 

removed. This was followed by resuspension of the reaction mixture in 5 mL 

distilled water and repeated cycles of centrifugation, removal of supernatant, and 

resuspension. The amount of 33P removed was measured through liquid scintillation 

counting (Packard Tri-carb 3100TR, Isotech) and used to calculate the amount of 33P 

incorporated into the newly synthesised calcium phosphate. 

2.3.2 P solubility from synthesised calcium phosphate across a pH range 

Solubility of the newly synthesised calcium phosphate was measured over a pH 

range (2.4-8.35) encompassing that found in field conditions. This was done by 

adding HCl in varying amounts (10-70 uL) to calcium phosphate suspended in 6 mL 

distilled water. The suspension was centrifuged to form a pellet and an aliquot of 

solution above the pellet was removed and measured for soluble phosphorus content. 

This was done using the colorimetric Murphy-Riley method (Murphy & Riley 

1962). 

2.3.3 Increasing specific activity through reduced reactants 

Specific activity of 33P-labelled calcium phosphate was increased by altering the 

amount of initial reactants supplied to the reaction mixtures prior to the 

incorporation of 33P. The volume of the reaction mixture was reduced in proportion 

with these changes, however the amount of 33P supplied to the reaction mixture was 

maintained. Details of alterations to the original protocol, and subsequent 

differences in the production of calcium phosphate are detailed in Table 2.1.   
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Table 2.1: Amount of reactants used per reaction mixture in the original protocol compared 

to the modified protocol for increasing specific activity. The outcome of differences in the 

amount of reactants is then shown for the newly synthesised calcium phosphate. 

 

2.3.4 Growth conditions for plants receiving calcium phosphate 

Mesocosms (7x7x8 cm) containing monocultures of four different calcareous 

grassland species (Agrostis capillaris, Plantago lanceolata, Rumex acetosa and 

Carex caryophyllea) were established on Rendzina soil (pH 6.5) collected from a 

calcareous grassland field site at Wardlow Hay Cop, Derbyshire (53°15'44"N, 

1°43'52"W). Seeds of A. capillaris, P. lanceolata, and R. acetosa (Emorsgate, Kings 

Lynn, UK) were sown directly into the mesocosms while C. caryophyllea 

individuals were collected from Wardlow Hay Cop and transplanted into the pots at 

the same time as when seeds were sown. Eight replicates of each monoculture were 

prepared. 

Mesocosms were established over a period of 20 weeks in a climate controlled 

greenhouse with conditions set at 16 hours daylight (with supplementary light when 

necessary), day/night temperatures of 20°C/15°C, and regular watering. 

After 19 weeks, mesocosms were supplied with 0.8 MBq 33P-labelled calcium 

phosphate either at the original specific activity or at the increased specific activity 

Protocol 

Reactants Product 

Calcium 

Nitrate 

0.05 M 

(µl)  

Ammonium 

Hydrogen 

Orthophosphate 

0.05 M 

(µl)  

Amount of 

CaP 

produced 

(mg) 

Incorporation 

of 33P  

(%) 

Specific 

Activity 

(MBq.g-1) 

Original 1000 1000 4.76±0.16 52.2±0.7 594.6±20.1 

Reduced 

Reactants 
72 72 0.41±0.05 74.3±0.5 9969.3±1092.7 
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from the modified protocol. These equated to 1.35 mg and 0.08 mg of P 

respectively. Compared to total amounts of soil P, this represents a contribution of 

around 2% and 0.1% respectively. 

This was supplied in 10 mL solution of distilled water and dispensed through a 

syringe loaded with a two-sideport needle to a depth of 8 cm at four injection points 

spread evenly across the mesocosm. At each injection point, the needle was fully 

inserted and 2.5 mL of the 33P solution was released as it was withdrawn gradually 

up through the soil profile. 

2.3.5 Measurement of plant 33P uptake  

Acid digestion was used for analysis of 33P content within the samples. Above-

ground biomass was harvested 7 days after 33P application and then freeze-dried, 

ground and homogenized. 20-30 mg of plant material was digested in 1 ml of 

concentrated sulphuric acid. To ensure complete digestion, the samples were heated 

to 350°C for a period of 15 minutes.  

After this step, 200 μl of hydrogen peroxide was supplied to each sample and, 

following 1 minute at 350°C, the samples were completely digested. Any samples 

which were not digested completely by this point received further additions of 

hydrogen peroxide and reheating.  

Digested samples were diluted up to 10 ml with distilled water. Of this amount, a 2 

ml aliquot was added to 10 ml of liquid scintillant (Emulsifier Safe, Perkin-Elmer). 

33P content of the samples was then measured with a scintillation counter (Packard 

Tri-carb 3100TR, Isotech), and subsequently corrected for decay. 
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2.3.6 Statistical Analysis 

Data for P solubilisation from calcium phosphate was transformed reciprocally. A 

quadratic relationship provided the best fit of the data, which was analysed using 

Spearman’s rank correlation. 

To measure the effects on plant tissue 33P concentration from calcium phosphate 

with altered specific activity, a two-way ANOVA was used with species and 

calcium phosphate as factors. Tukey HSD tests were then carried out to show where 

significant differences occurred between each species and specific activity 

treatment. All analyses were carried out using Minitab (Minitab Inc., State College, 

PA, USA). 

 

2.4 Results 

2.4.1 P solubility across a pH range 

There was a significant relationship between pH and the solubilisation of P from 

calcium phosphate (Fig 2.1; rs=0.917, n=9, P=0.001). Ca-bound P remained stable 

between pH 8.4 and 5.6, with less than 2% of P solubilised. Lower pH levels led to 

increased amounts of solubilised P. However, the shape of the relationship shows 

that major increases in solubility did not occur until below pH 3.5, with more than 

25% of Ca-bound P solubilised at pH 2.4. 
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2.4.2 Plant 33P uptake  

There was no significant effect of differing specific activity on plant uptake of P 

from calcium phosphate (Fig 2.2; df=1, 31, F=0.24, P>0.05). There was a 

significant effect of species identity on P uptake (df=3,31, F=253.86, P<0.001), with 

significantly higher tissue concentrations of 33P in R. acetosa (Tukey HSD, P<0.05). 

There was no interaction between species and calcium phosphate specific activity 

(df=3,31, F=2.12, P>0.05). 

 

 

 

 

Figure 2.1: Amount of P solubilised from calcium phosphate suspended in solutions of 

varying pH levels. 
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2.5 Discussion 

Currently, radio-isotope labelled calcium phosphate is not commercially available, 

and there is no standardised protocol for its production. Therefore it was necessary 

to investigate important characteristics that could influence its experimental use. The 

findings from this study show that 33P-labelled calcium phosphate produced 

following the original protocol (Leake et al. 2009) remained stable in pH conditions 

representing those found in calcareous soils and will only show appreciable 

solubility in pH ranges found in very acidic soils. Furthermore, increasing specific 

activity of P within calcium phosphate had no impact on plant uptake of 33P, which 

Figure 2.2: Tissue concentration of 33P for each species (Agrostis capillaris, AC; 

Plantago lanceolata, PL; Carex caryophyllea, CC; Rumex acetosa, RA) supplied with 

calcium phosphate. Grey bars and black bars represent mesocosms supplied with calcium 

phosphate produced following the original protocol and the increased specific activity 

protocol respectively. Means are shown ± 1 s.e.m. Means with the same letter do not 

differ significantly from each other (Tukey HSD). See text for statistics. 
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suggests that changing the total amount of P supplied to the system within the ranges 

used here did not affect the ability of plants to access this P source. 

Soil pH is a major abiotic factor which controls the equilibrium between 

precipitation and dissolution of Ca-bound P (Tunesi et al. 1999). The measured pH 

of the soils used in this study was around 6.5 and precipitated P in calcium 

phosphate was shown to remain stable in a pH range between 8.4 and 5.6. At lower 

pH, increasing amounts of P are released, reflecting reduced sorption in calcium 

phosphate mineral phases (Hinsinger 2001). The stability of synthesised calcium 

phosphate shown here is in line with previous studies which have measured P 

solubilisation from synthesised hydroxyapatite (Bell et al. 1978). 

The low solubility of CaP around the pH range of soils used in this thesis 

demonstrates that experimental systems are not flushed with plant available P when 

supplied with this P source (i.e. the synthesised CaP is appropriately recalcitrant). 

From this it can be considered that 33P uptake from synthesised CaP provides a good 

representation of plant P derived from calcium phosphate in field conditions, 

although it may go through multiple transformations before plant acquisition. 

There was a significant effect of species on 33P uptake from calcium phosphate, 

driven by the higher tissue concentration of 33P in R. acetosa (differences in plant 

33P uptake are investigated in more detail in Chapter 3). Most importantly however, 

there was no significant effect of changing the specific activity of calcium phosphate 

on plant 33P uptake across all species.  Therefore, the amount of calcium phosphate 

supplied to the system in this experiment did not influence the ability of plants to 

acquire 33P from this source. This indicates that the experimental treatment did not 

saturate the system with P or inadvertently stimulate 33P uptake. CaP of either 
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specific activity is therefore suitable for uptake tracer studies and results using either 

can be considered comparable. 

As shown by Putten et al. (2000), calcareous grassland soils contain large amounts 

of calcium carbonate derived from the limestone bedrock. The release of calcium 

ions leads to the build-up of calcium phosphate as it binds to phosphorus in soil 

solution (Tunesi et al. 1999). The accumulation of calcium phosphate represents a 

major P source, which has been estimated to reach over 55% of total soil P in 

calcareous soils (Zhang et al. 2014). The amount of P supplied to mesocosms as 33P-

CaP was equivalent to less than 2% of total soil P. Given that calcium phosphate is a 

major component of calcareous soils this amount may represent a negligible 

contribution to pre-existing soil pools from the plant’s perspective and therefore 

represents a tracer that can be supplied with minimal impact on soil P availability. 
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Niche shifts in phosphorus uptake from different P 

chemical forms in response to competition: increasing 

similarity between species with contrasting methods of 

acquisition. 

  

3.1 Summary 

Low phosphorus (P) availability is linked to high species richness and the abundance 

of rare species. Despite this, the mechanisms which maintain coexistence in diverse 

plant communities with low P supply are poorly understood. Co-existence may be 

maintained through resource partitioning of phosphorus whereby co-occurring 

species avoid interspecific competition by acquiring P from different chemical forms 

in the soil. This could be further enhanced by shifting patterns of P uptake which 

result in reduced overlap in resource use (niche plasticity) between co-occurring 

species. In theory, reducing the negative impact of interspecific competition will 

promote coexistence among species within the plant community. Furthermore, 

interactions between species with contrasting methods of P acquisition may help 

maintain diversity. For instance, species specialised in mobilising P from poorly 

accessible sources may sustain neighbouring species with a superior foraging 

capacity for liberated P. These hypotheses are yet to be tested in P-limited systems. 

In this study, experimental microcosms were supplied with radio-isotope labelled 

organic, inorganic and mineral P sources which varied in their bioavailability. The 

microcosms contained paired species and monocultures of forbs, grass, and sedge 

species, which commonly co-exist in calcareous grasslands. These species varied in 

their methods of P acquisition – from mycorrhizal associations through to specialist 

root structures and root exudation. In the absence of interspecific competition, there 
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were differences in P uptake across species, with non-mycorrhizal species taking up 

greater amounts of P from poorly accessible sources. However in response to 

competition, interspecific differences were diminished by the competitive advantage 

of mycorrhizal species which reduced P acquisition of non-mycorrhizal species 

while their own uptake was maintained. These findings provide evidence to support 

the hypothesis that mycorrhizal species, despite acquiring smaller amounts of poorly 

accessible P, could benefit from and survive alongside non-mycorrhizal species 

which make these sources of P available for uptake. 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                        Chapter 3 

43 

 

3.2 Introduction 

Understanding plant interactions and their effects on biodiversity is an integral part 

of plant ecology. How so many species are capable of coexisting in diverse plant 

communities, despite competing for the same limiting resources has been a long-

standing source of debate (Silvertown 2004).  

Nutrient limitation is a common characteristic of species rich plant communities. 

This is particularly apparent in systems of low P supply, where multiple studies have 

demonstrated the inverse relationship between soil P availability and diversity 

(Janssens et al. 1998; McCrea et al. 2001; Critchley et al. 2002; Ceulemans et al. 

2014). Under P-limited conditions, plant communities have also been shown to 

contain a greater frequency of rare species (Wassen et al. 2005).  

Many of the world’s biodiversity hotspots are located in nutrient-poor habitats - 

from the highly weathered soils of tropical rainforests to the ancient soils of Western 

Australia (Myers et al. 2000). In these nutrient-poor conditions, competition for 

limiting resources leads to co-occurring species having a greater impact on one 

another’s survival than in environments which are resource-rich (Goldberg et al. 

1999). Despite widespread significance, how coexistence is maintained under a 

limited supply of P is poorly understood. 

A number of theories have been proposed to explain how so many species are 

capable of coexisting in resource-poor conditions. Resource acquisition underlies 

each of these theories, but they differ in the emphasis placed on species interactions. 

Diversity could be maintained in resource-poor habitats by co-occurring species 

avoiding the negative impact of competitive interactions by accessing different P 

sources in form, space or time, which is known as “resource partitioning” or “niche 
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differentiation in resource use” (McKane et al. 2002; Turner 2008). Furthermore, 

interactions between species with contrasting methods of P acquisition could 

facilitate coexistence if the action of one species made resource conditions more 

favourable for another (Lambers et al. 2008). 

The majority of studies on resource partitioning have focused on nitrogen (N). These 

have shown differentiation in the timing, depth and chemical form of N uptake 

between species (McKane et al. 2002; Kahmen et al. 2006; Felten et al. 2009), 

reducing competition for the limiting N supply and so facilitating co-existence. 

However, there has been very little research which has investigated the potential for 

resource partitioning of P. This is despite the fact that P approaches N in the extent 

to which it is limiting in terrestrial ecosystems (Elser et al. 2007), and the 

demonstrated importance of P as a limiting resource in species rich communities 

(Janssens et al. 1998; McCrea et al. 2001; Critchley et al. 2002; Ceulemans et al. 

2014). 

Resource partitioning of soil phosphorus has been proposed to occur through various 

methods of plant P acquisition acting on a range of P sources present in the soil 

(Turner 2008). In support of this, there is indirect evidence which shows that plant 

species differ in their uptake of P from a range of sources (Fransson et al. 2003) and 

P uptake among competing plant species is greatest when supplied with a variety of 

P sources (Ahmad-Ramli et al. 2013). Direct evidence of P partitioning came 

through the use of radioactive tracers, which demonstrated interspecific differences 

in P uptake of contrasting chemical forms of organic, inorganic and mineral P 

among co-occurring grassland species (Phoenix et al., unpublished data). However, 

it is not known whether co-occurring species are capable of reducing overlapping 

resource requirements by niche plasticity in response to competition.  
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Niche plasticity describes the reductions in niche overlap which occur in response to 

competition when co-occurring species shift their patterns of resource uptake. For N, 

it has been demonstrated that there are species-specific switches in uptake between 

N forms in response to competition in mixed communities (Ashton et al. 2010). 

However, it has not been investigated whether shifts in P acquisition are a species-

specific response to the uptake patterns of neighbouring species. Investigation of 

these interactions will provide an important insight on the processes which could 

maintain species coexistence through P partitioning. 

Resource partitioning and niche plasticity place emphasis on the reduction of 

interspecific competition through differences in resource use. However, competitive 

interactions between co-occurring species may also allow more species to persist in 

the unfavourable conditions of P-limited soils (Lambers et al. 2006; Lambers et al. 

2008; Li et al. 2014). 

Lambers et al. (2008) divided plant species from the nutrient poor soils of Western 

Australia into two groups depending on their method of P acquisition. ‘Scavenging’ 

species form symbiotic associations with arbuscular mycorrhizal (AM) fungi which 

provide the host plant with P from the soil, in return for carbohydrates. On the other 

hand, ‘mining’ species are more effective at acquiring their own P from poorly 

accessible soil sources through the production of specialist root structures and 

exudation of organic acids and phosphatases.  

Observations of plant communities across a range of soil ages have shown that not 

only are plant communities most diverse on the oldest soils but, also, they contain a 

significant proportion of ‘mining’ species (reflecting the severely depleted amounts 

of freely available P in the soil) (Lambers et al. 2011). The success of mining 
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species was attributed to specialist adaptations for P acquisition, and it was 

suggested that these species were also responsible for sustaining other species in 

these plant communities and therefore maintaining higher levels of diversity. In 

theory, species which scavenge plant-available P are poorly suited to conditions 

where P is predominantly sorbed onto soil particles, but these species could survive 

by acquiring the P which had been mobilised by their P-mining neighbours. Muler et 

al. (2014) provided evidence for the beneficial effect of scavenger-miner 

interactions which showed a greater yield in scavenging species when in 

competition with a mining species (compared to monoculture). However, it has yet 

to be shown whether mining species increase access to recalcitrant P forms in co-

occurring scavenging species. This mechanism is consistent with studies on 

intercropping in agricultural systems, which have shown that crop species can 

increase the P acquisition of neighbouring plants (Li et al. 2007; Li et al. 2012; 

Zhang et al. 2016). 

In this chapter, we used calcareous grasslands as a study system to investigate niche 

plasticity of resource partitioning in a P-limited system. Some of the most diverse 

plant communities in Europe are found in calcareous grasslands,  consisting of a 

diverse array of grasses, forbs and sedges (Roem & Berendse 2000; Critchley et al. 

2002; Ceulemans et al. 2014). Furthermore, calcareous grassland soils are 

characteristically limited by the availability of P. 

A range of different methods of P acquisition can be found within calcareous 

grassland plant communities. Grasses and the majority of forbs form symbioses with 

arbuscular mycorrhizal fungi. The hyphal network of these fungal symbionts 

enhances host plant P acquisition through uptake beyond zones of depletion 

surrounding the roots and within soil particles which the broader roots of plants 
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cannot access (Smith & Read 2008). Alternatively, other species of forb rely on the 

release of large amounts of root exudates for P uptake (Tyler & Ström 1995; 

Fransson et al. 2003). Organic acids are an important component of these root 

exudates, which mobilise P from mineral sources such as calcium phosphate and 

increase the amount of P available for plant uptake (Jones & Darrah 1994; Tyler & 

Ström 1995; Shen et al. 2002). Furthermore, non-mycorrhizal species of sedge form 

specialist root structures called dauciform roots. These dense proliferations of root 

hairs perform a similar function to ‘proteoid’ (or ‘cluster’) roots found in 

Proteaceae, and increase the plant’s capacity for P uptake from poorly accessible 

sources through increased root surface area and exudation of organic acids and 

phosphatases (Playsted et al. 2006; Shane et al. 2006). 

This study investigated the effect of competition on P uptake between species with 

contrasting methods of P acquisition by separating competitive interactions into a 

paired design. To do this, species were used which differ in their methods of P 

acquisition through either root exudation and specialist root structures, or 

mycorrhizal associations – representing both ‘mining’ and ‘scavenging’ methods of 

P acquisition respectively (Lambers et al. 2008). This included Agrostis capillaris 

(mycorrhizal grass), Plantago lanceolata (mycorrhizal forb), Rumex acetosa (non-

mycorrhizal forb) and Carex caryophyllea (non-mycorrhizal sedge with dauciform 

roots). Each species was grown in monoculture as well as in pair-wise competitive 

interactions.  

Phosphorus was supplied in the form of orthophosphate, calcium phosphate or 

DNA. These respectively represent inorganic, mineral and organic sources of P in 

the soil and vary in their bioavailability, from the freely available orthophosphate 
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through to calcium phosphate and DNA, which require solubilisation and hydrolysis 

before their associated P can be acquired.  

It was hypothesised that (a) there would be interspecific differences in P uptake 

from the three supplied P sources among the test species when grown in 

monoculture (i.e. niche complementarity in their fundamental niches). Furthermore, 

these differences would be consistent with the method of P acquisition of each 

species, with the mycorrhizal species taking up more of the supplied 

orthophosphate, and the non-mycorrhizal species acquiring more P from DNA and 

calcium phosphate. 

This study also investigated three potential mechanisms for the maintenance of 

species coexistence in response to interspecific competition. If resource partitioning 

is a mechanism which maintains coexistence in P-limited plant communities, we 

hypothesised that (b) interspecific differences in P uptake would be maintained in 

response to interspecific competition. Furthermore, to investigate whether test 

species showed niche plasticity in P uptake, we hypothesised (c) an increase in 

interspecific differences in response to competition. 

In line with the scavenger-miner hypothesis, differences in P uptake between species 

may be reduced in competition (i.e. a reduction in niche differentiation). In this case, 

we hypothesised that (d) scavenging species would sustain (or increase) P uptake 

mobilised from poorly accessible sources by mining species. In addition, it was 

hypothesised that (e) the negative effect of interspecific competition would lead to a 

reduction in P uptake from the same sources in mining species, providing evidence 

that mining species liberate P for the benefit of scavengers. 
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3.3 Method 

3.3.1 Experimental set-up 

Four plant species were selected to represent the range of P acquisition strategies 

and functional groups which are commonly found in calcareous grasslands. These 

were Agrostis capillaris (mycorrhizal grass), Plantago lanceolata (mycorrhizal 

forb), Rumex acetosa (non-mycorrhizal forb) and Carex caryophyllea (non-

mycorrhizal sedge with dauciform roots). 

The plants were grown in polypropylene tubes (height: 11 cm, diameter: 4 cm) with 

30 µm mesh covering the base. These contained Rendzina soil (pH 6.5) collected 

from a calcareous grassland field site at Wardlow Hay Cop, Derbyshire 

(53°15'44"N, 1°43'52"W). The soils associated with calcareous grasslands are 

commonly P-limited, and this has been previously documented at this site (Phoenix 

et al. 2003).  For collection, soil was removed to bed-rock, air-dried and sieved (2 

mm). 

Seeds of A. capillaris, P. lanceolata, and R. acetosa (Emorsgate, Kings Lynn, UK) 

were sown directly into the microcosms. Because of its low growth rate and 

difficulties in germination from seed, C. caryophyllea individuals were collected 

from Wardlow Hay Cop and transplanted into the pots at the same time as when 

seeds were sown. A previous pilot study determined sowing and planting densities 

which led to a similar biomass for each species at time of harvest. The selected 

species were grown separately in monoculture, as well as being paired with each of 

the other species. All monocultures and species pairs were replicated 15 times. 
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Test species were grown for 12 weeks in a climate controlled greenhouse with 

conditions set at 16 hours daylight (with supplementary lighting when necessary), 

day/night temperatures of 20°C/15°C, and regular watering.  

3.3.2 Production of 33P-labelled P sources 

Microcosms were supplied with one of three radioactively-labelled P sources: 

orthophosphate (inorganic), calcium phosphate (inorganic mineral) and DNA 

(organic diester). 33P-labelled orthophosphate is commercially available (Perkin 

Elmer, UK), however 33P-labelled DNA and calcium phosphate required synthesis in 

the laboratory. 33P-labelled calcium phosphate was synthesised using the approach 

previously outlined in section 2.3.1. 

Production of 33P-labelled DNA was carried out with a random primed DNA 

labelling kit (Roche applied science, West Sussex, UK), as per the supplier’s 

methods developed by Feinberg and Vogelstein (1983). Template DNA (λDNA 12.5 

µg/mL) was denatured by heating to 95 ºC in a water bath for 10 minutes and then 

transferred to an ice bath to chill rapidly. A mixture of nucleotides were then added 

containing dCTP, dGTP, dTTP and dATP, the latter of which was 33P-labelled 

(Perkin Elmer, UK). Following this, a hexanucleotide primer mixture (representing 

the vast majority of all sequence combinations) and Klenow enzyme were supplied. 

The mixture was incubated for 30 minutes at 37 ºC. During this time, complimentary 

strands were synthesised through hybridization of primers to single-stranded DNA 

fragments and incorporation of nucleotides using Klenow enzyme. The reaction was 

stopped by adding EDTA (0.2 M, pH 8.0). Unincorporated nucleotides were 

removed using Sephadex G-50 quick spin columns (Roche Applied Science, West 

Sussex, UK). The incorporation of 33P-labelled dATP into the newly synthesised 
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DNA strand was then confirmed by scintillation counting (Packard Tri-carb 

3100TR, Isotech). 

3.3.3 33P treatments 

After 10 weeks, each microcosm was supplied with one of three radioactively-

labelled P sources (orthophosphate, DNA, or calcium phosphate). The 15 replicates 

of each species combination were divided into three groups of five, each receiving 

0.2 MBq of one 33P source. This represented a negligible contribution to the pre-

existing P-pools in the soil, amounting to less than 1 ng of 33P. 

The P sources were each supplied to plant pots in 10 mL solution of distilled water. 

These were dispensed through a syringe fitted with a two-sideport needle to a depth 

of 8 cm at the injection point located at the centre of the pot. To achieve an even 

distribution, the needle was withdrawn gradually up through the soil profile during 

the release of the 33P solution. 

3.3.4 33P uptake analyses 

Following the supply of radioactively-labelled P sources, the duration of the 

labelling period lasted seven days. This length of time was based on previous work 

which indicated that plant P uptake was accurately reflected over that period 

(Phoenix et al., unpublished data). 

After seven days, the aboveground biomass of the microcosms was harvested, sorted 

by species, freeze-dried and then weighed. Post-harvest, colonisation of mycorrhizal 

plant roots (A. capillaris and P. lanceolata) was confirmed through Trypan blue root 

staining (Phillips & Hayman 1970) and the roots of C. caryophyllea were inspected 
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for the presence of dauciform roots. Acid digestion and liquid scintillation counting 

was used for analysis of 33P content within the samples, as outlined in section 2.3.5. 

3.3.5 Statistical analyses 

A two-way ANOVA was used, with species and competitor identity (including the 

species own identity when in monoculture) as factors, to measure the effects on 

plant tissue 33P concentration for each P source. Tukey HSD tests were then carried 

out to show where significant differences occurred within species treatments. Data 

were log10 transformed in order to achieve normality and homogeneity of variances. 

The same patterns in 33P uptake were seen when expressed either as total tissue 33P 

content or tissue concentration, indicating that any differences in 33P uptake were 

not confounded by differences in plant biomass. 

The competitive response of each species was measured across P sources. This was 

expressed as the percentage difference in tissue 33P concentration between a species 

when grown in monoculture and in interspecific competition. Dunnett’s post hoc test 

was used to determine whether the change in tissue 33P concentration in response to 

each competitor differed significantly from monoculture. All analyses were carried 

out using the statistical packages Minitab (Minitab Inc., State College, PA, USA) 

and R 3.2.2 (R Core Team 2015). 
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3.4 Results 

3.4.1 Plant uptake of radio-isotope labelled P sources  

In monoculture, non-mycorrhizal species (C. caryophyllea and R. acetosa) showed 

the greatest uptake of 33P across the supplied P sources. Specifically, R. acetosa 

showed the greatest 33P uptake when supplied with orthophosphate and calcium 

phosphate, while C. caryophyllea showed the greatest 33P uptake from DNA. Tissue 

concentrations of 33P were lowest in A. capillaris monocultures for each source. 

Across all species, uptake of 33P from the supplied orthophosphate showed 

significant effects of species identity and interspecific competition (Table 3.1, Fig 

3.1). In A. capillaris, tissue 33P concentration was lowest of all species and there 

were no significant differences across competitive interactions. Plantago lanceolata, 

C. caryophyllea and R. acetosa all showed a significant reduction in 33P tissue 

concentration in competition with A. capillaris (Tukey HSD, P<0.05).  

There were significant effects of species identity and interspecific competition in 33P 

uptake from calcium phosphate (Table 3.1, Fig 3.2). Rumex acetosa showed the 

highest tissue concentrations of 33P, followed by C. caryophyllea, then A. capillaris 

and P. lanceolata. Apart from A. capillaris, each species showed shifting patterns of 

tissue 33P concentration in response to interspecific competition. In P. lanceolata, 

tissue 33P concentration remained the same when in competition with R. acetosa and 

showed a slight reduction when in competition with A. capillaris. However, there 

was a significant increase in tissue 33P when in competition with C. caryophyllea. In 

C. caryophyllea and R. acetosa, there were significant reductions in tissue 33P 

concentration when in competition with A. capillaris and P. lanceolata (Tukey 

HSD, P<0.05). 
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Uptake of 33P from DNA showed significant effects of species identity and 

interspecific competition on tissue 33P concentrations (Table 3.1, Fig 3.3). Carex 

caryophyllea showed the highest tissue concentrations of 33P, followed by R. 

acetosa. There was no effect of interspecific competition on A. capillaris or P. 

lanceolata. However, there were significant reductions in tissue 33P concentration of 

C. caryophyllea and R. acetosa when in competition with A. capillaris and P. 

lanceolata (Tukey HSD, P<0.05). 

 

 

Figure 3.1: Tissue 33P concentration for each species across competitive interactions for 

microcosms supplied with radio-isotope labelled orthophosphate. Black bars and grey 

bars represent species monocultures and paired species respectively (AC, A. capillaris; 

PL, P. lanceolata; CC, C. caryophyllea; RA, R. acetosa). Means are shown ± 1 s.e.m. 

Tukey HSD tests were carried out to show where significant differences occurred within 

species treatments. Means with the same letter do not differ significantly from each 

other. See Table 3.1 for statistics. 
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Table 3.1: Two-way ANOVA results for the impact of species identity and interspecific 

competition on plant tissue 33P concentration. 

 

 

 

 

 

 

 

P source 

 

Factor df F P 

Orthophosphate Species 3,76 25.98 <0.001 

 

Competitor 3,76 21.19 <0.001 

  Species*competitor 9,76 2.93 0.006 

Calcium phosphate Species 3,73 130.3 <0.001 

 

Competitor 3,73 55.69 <0.001 

  Species*competitor 9,73 20.06 <0.001 

DNA Species 3,79 67.85 <0.001 

 

Competitor 3,79 51.95 <0.001 

  Species*competitor 9,79 13.51 <0.001 

Figure 3.2: Tissue 33P concentration for each species across competitive interactions for 

microcosms supplied with radio-isotope labelled calcium phosphate. Black bars and grey 

bars represent species monocultures and paired species respectively (AC, A. capillaris; 

PL, P. lanceolata; CC, C. caryophyllea; RA, R. acetosa). Means are shown ± 1 s.e.m. 

Tukey HSD tests were carried out to show where significant differences occurred within 

species treatments. Means with the same letter do not differ significantly from each 

other. See Table 3.1 for statistics. 
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3.4.2 Competitive responses across P sources 

The change in 33P uptake in response to interspecific competition for all species 

across each P source was predominantly negative (Table 3.2). The largest reductions 

in 33P uptake were in response to A. capillaris and P. lanceolata. On the other hand, 

the circumstances where 33P uptake was maintained or increased (relative to 

monocultures) were consistently in response to C. caryophyllea and R. acetosa. 

For A. capillaris, there was no significant effect of competitor identity or changing P 

source on competitive response. The mean change in tissue 33P concentration was 

consistently negative in response to all species when compared to monoculture. 

However, the only significant reduction (43%; Dunnett’s P<0.05) occurred in 

response to competition with P. lanceolata when supplied with DNA.  

Figure 3.3: Tissue 33P concentration for each species across competitive interactions for 

microcosms supplied with radio-isotope labelled DNA. Black bars and grey bars 

represent species monocultures and paired species respectively (AC, A. capillaris; PL, P. 

lanceolata; CC, C. caryophyllea; RA, R. acetosa). Means are shown ± 1 s.e.m. Tukey 

HSD tests were carried out to show where significant differences occurred within species 

treatments. Means with the same letter do not differ significantly from each other. See 

Table 3.1 for statistics. 
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Table 3.2: Competitive response of Agrostis capillaris, Plantago lanceolata, Carex 

caryophyllea and Rumex acetosa across each 33P-labelled P source. See text for statistics. 

Competitive response was expressed as the percentage difference in tissue 33P concentration 

between a species when grown in monoculture and in interspecific competition. Dunnett’s 

post hoc test was used to determine whether the change in tissue 33P concentration in 

response to each competitor differed significantly from monoculture (* = P<0.05; ** = 

P<0.01; *** = P<0.001). 

 

 

In P. lanceolata, there was a significant effect of P source and competitor on 

competitive response (two-way ANOVA, P source: df=2,43, F=50.08, P<0.001; 

competitor: df=2,43, F=57.24, P<0.001). Across all P sources, 33P uptake was 

significantly reduced when in competition with A. capillaris (71-94%; Dunnett’s 

P<0.05). There were no significant reductions in 33P uptake in competition with C. 

caryophyllea and R. acetosa in the orthophosphate and DNA treatments. In the 

calcium phosphate treatment, 33P uptake increased significantly when in competition 

with C. caryophyllea (110%; Dunnett’s P<0.05) and also increased with R. acetosa 

(14%). 

33P source Species 
Competitor 

Agrostis Plantago Carex Rumex 

Orthophosphate 

Agrostis   -33.64% +0.98% -28.53% 

Plantago -94.15%***   -34.18% -38.98% 

Carex -69.80%* -28.77%   -33.42% 

Rumex -83.96%* -44.13% +20.95%   

Calcium 

Phosphate 

Agrostis   -35.51% -24.18% -32.85% 

Plantago -71.24%**   +110.06%*** +14.16% 

Carex -94.67%*** -79.09%***   -44.10%* 

Rumex -92.31%*** -84.74%*** +13.57%   

DNA 

Agrostis   -42.56%* -28.62% -14.25% 

Plantago -84.06%*   -68.70% -47.34% 

Carex -97.06%*** -84.42%***   +21.38% 

Rumex -90.52%*** -76.50%*** -49.68%*   
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The competitive response of C. caryophyllea was significantly affected by P source 

but not competitor identity (two-way ANOVA, P source: df=2,40, F=11.74, 

P<0.001). For the orthophosphate treatment there were reductions in 33P uptake in 

response to all species, but this was only significant in response to A. capillaris 

(70%; Dunnett’s P<0.05). There were significant reductions in 33P uptake in 

response to each competitor in the calcium phosphate treatment (Dunnett’s P<0.05). 

A similar response to A. capillaris and P. lanceolata was seen in the DNA 

treatment. However, 33P uptake increased in response to competition from R. 

acetosa (9%), but this was not significant. 

There was a significant effect of competitor and P source on the competitive 

response of R. acetosa (Table 3.2; two-way ANOVA, competitor: df=2,42, F=5.12, 

P=0.011; P source: df=2,42, F=28.35, P<0.001). In the orthophosphate treatment, 

33P uptake was reduced in response to P. lanceolata (44%), and A. capillaris (84%) 

which was significant (Dunnett’s P<0.05). 33P uptake was maintained in response to 

C. caryophyllea. The same pattern was shown in the calcium phosphate treatment, 

although the reduction in 33P uptake in response to P. lanceolata was also significant 

in this instance (85%; Dunnett’s P<0.05). Rumex acetosa 33P uptake in the DNA 

treatment showed significant reductions in response to each species (Dunnett’s 

P<0.05).  
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3.5 Discussion 

This is the first study to investigate how competition between paired species affects 

P uptake directly and how these competitive responses differ across contrasting P 

sources. The interspecific differences in P uptake shown in monocultures are 

consistent with acquisition adaptations for each species. Importantly, these 

differences are reduced when in competition with species with contrasting methods 

of P acquisition. This leads to a reduction in niche differentiation (i.e. an increased 

overlap of P uptake patterns and less P partitioning) and supports the hypothesis that 

species specialised in mobilising P from poorly accessible sources may sustain 

neighbouring species with a superior foraging capacity for available P. 

3.5.1 Interspecific differences in uptake of 33P across supplied sources 

In the absence of interspecific competition, there were differences in 33P uptake 

between species across P sources. Rumex acetosa and C. caryophyllea acquired the 

most 33P from calcium phosphate. Both of these species belong to families which 

exhibit P-mining acquisition strategies that are adapted for the mobilisation of P 

from mineral sources, such as calcium phosphate, through high rates of organic acid 

exudation (Tyler & Ström 1995; Shane et al. 2006). Organic acids release plant 

available P from calcium phosphate through lowering rhizosphere pH and the 

chelation of calcium (Jones 1998).  

In this study, DNA was the other supplied P source which is not directly available 

for plant uptake, and requires hydrolysis before releasing P. As in the calcium 

phosphate treatments, R. acetosa and C. caryophyllea both showed the greatest 

levels of 33P uptake from this organic P source. This pattern could also be linked to 

the high rates of root exudation which are characteristic of the respective families of 
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R. acetosa and C. caryophyllea (Tyler & Ström 1995; Shane et al. 2006). Root 

exudates (such as organic acids, amino acids and sugars) provide an easily 

degradable source of organic carbon which acts as a substrate for the microbial 

biomass in the soil (Baudoin et al. 2003; Shahzad et al. 2015). A greater input of 

root exudates will therefore sustain larger populations of fungi and bacteria in the 

rhizosphere (Lange et al. 2015). This can increase plant P uptake as soil microbes 

are capable of mobilising P from organic sources through the production of 

phosphatases (Spohn et al. 2013; Hacker et al. 2015), making it directly available for 

plant uptake, or indirectly through the subsequent turnover of soil microbes 

(Vanveen et al. 1987; Macklon et al. 1997; Achat et al. 2010; Turner et al. 2012). 

High levels of P uptake in R. acetosa were also demonstrated by Orwin et al (2010), 

who showed higher leaf P content in this species when compared to a range of other 

grassland species. Likewise, this was linked to increased soil P cycling, as the soils 

associated with R. acetosa showed comparatively high levels of available P. 

It was hypothesised that mycorrhizal species in monoculture would acquire more 

33P-labelled orthophosphate (a directly accessible P source) due to the superior 

foraging capacity of their associated mycorrhizal fungal symbionts. However, the 

findings shown here do not support this, with 33P uptake of orthophosphate in 

monoculture being greatest in the non-mycorrhizal R. acetosa, and lowest in the 

mycorrhizal A. capillaris. This could be caused by the immobilisation of 

orthophosphate when supplied to the microcosms, through microbial uptake and 

adherence to soil particles for example. This could therefore restrict access to 33P in 

mycorrhizal species compared to non-mycorrhizal species, whose superior 

acquisition of 33P from poorly accessible sources is demonstrated in the other 

supplied P forms. 



                                                                                                                        Chapter 3 

61 

 

3.5.2 Changing 33P uptake patterns in response to interspecific 

competition 

The results from this study show consistent changes in 33P uptake across species in 

response to interspecific competition. These shifting patterns of 33P uptake did not 

lead to reductions in niche overlap, as species with contrasting methods of P uptake 

became more similar under conditions of interspecific competition. This reduction in 

niche complementarity is in contrast to similar studies which have shown how niche 

shifts in nitrogen acquisition could be a mechanism which facilitates co-existence 

(Ashton et al. 2010). The observed changes in 33P uptake were associated with 

differences in plant P acquisition strategy, as uptake in non-mycorrhizal species was 

consistently reduced when in competition with mycorrhizal species.  

The competitive advantage of mycorrhizal species shown here could be due to the 

enhanced foraging capacity of their mycorrhizal symbionts, which is consistent with 

the scavenger-miner coexistence hypothesis (Lambers et al. 2006; Lambers et al. 

2008; Li et al. 2014). Likewise it was also proposed that 33P uptake of mycorrhizal 

‘scavenger’ species would be maintained (or increased) in competition with non-

mycorrhizal ‘mining’ species due to scavengers acquiring P which has been 

liberated by mining species.  

For P. lanceolata, in the calcium phosphate treatment there were increases in 33P 

uptake when in competition with non-mycorrhizal species (statistically significant in 

response to C. caryophyllea but not R. acetosa). There were reductions in the 33P 

uptake of P. lanceolata in response to non-mycorrhizal species for the other P 

sources, but these were not significant. Agrostis capillaris showed the smallest 

response to interspecific competition of all species across P sources. The only 
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significant shift in 33P uptake was a reduction in response to P. lanceolata (another 

mycorrhizal species). The most significant reductions in 33P uptake of non-

mycorrhizal species (C. caryophyllea and R. acetosa) were consistently in response 

to mycorrhizal species, across all P sources. This is the first study to provide direct 

evidence of such changes in 33P uptake through the use of radio-isotope labelled P 

sources on semi-natural soils. 

These findings are supported by Muler et al. (2014), who showed reduced P uptake 

in a cluster-root producing species (Banksia attenuata) when in competition with a 

mycorrhizal species (Scholtzia involucrata). This is also in line with studies on P 

acquisition in intercropped species in agricultural systems. Li et al. (2003) measured 

P uptake from phytate, a poorly accessible organic P source, in intercropped wheat 

and chickpea plants. It was shown that, though chickpea was more efficient at 

mobilising P from phytate, it’s P uptake was reduced in response to the 

competitively dominant wheat plants.  

The competitive advantage of mycorrhizal species shown in this study has been 

attributed to the dense hyphal network of their fungal symbionts, which extends 

beyond zones of depletion surrounding the roots and within soil particles which 

broader plant roots cannot access (Smith & Read 2008). Previous studies have 

shown that the presence of mycorrhizal fungi can have profound effects on plant 

communities, where the productivity of individual species varies in response to 

manipulations of mycorrhizal status (Klironomos et al. 2011). Francis and Read 

(1995) established plant communities which varied in their reliance on mycorrhizal 

associations. As expected, P. lanceolata showed a positive response in yield to the 

introduction of mycorrhizal fungi to the system. Whereas R. acetosella (a sister 

species of R. acetosa), and a range of other species from non-host families, were 
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hindered by the presence of mycorrhizal fungi. Van der Heijden et al. (1998) 

established calcareous grassland communities in mesocosms which were inoculated 

with a range of AM species. Carex flacca (closely related to C. caryophyllea) was 

the only non-mycorrhizal species in the experiment, and showed the biggest decline 

in biomass upon the introduction of mycorrhizal fungi to the mesocosms. 

The shifts in productivity in response to mycorrhizal fungi treatments have been 

shown to have mixed effects on plant species diversity. Grime et al. (1987) showed 

that R. acetosa and Arabis hirsuta (both non-mycorrhizal species) succumbed to 

neighbouring mycorrhizal species when communities were inoculated with AM 

fungi. However, the dominant mycorrhizal species, Festuca ovina, also suffered in 

response to mycorrhizal colonisation. This favoured the subordinate mycorrhizal 

species within these communities and resulted in a significant increase in diversity. 

On the other hand, increases in plant species diversity have also been shown to 

occur in response to the suppression of mycorrhizal fungi, favouring subordinate 

species which were less reliant on mycorrhizal associations than the dominant 

species within the community (Hartnett & Wilson 1999). 

For investigation of the drivers of community structure and function, belowground 

interactions with mycorrhizal fungi and other soil microbes have received less 

attention than aboveground ecological factors (Bardgett & van der Putten 2014). 

Therefore, while a number of studies have measured the influence of mycorrhizal 

associations on plant communities, uncertainty remains over their influence 

compared to other ecological factors (Klironomos et al. 2011). 

In theory, the competitive advantage of mycorrhizal species within a calcareous 

grassland community (as shown here) could lead to a reduction in species richness 
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through the exclusion of subordinate non-mycorrhizal species. However, the effects 

of nutrient limitation have been shown to be most severe for dominant species 

within grassland communities (Jumpponen et al. 2005), and the specialist 

adaptations of non-mycorrhizal species means that they are well equipped to persist 

in soils which are nutrient depleted (Shane et al. 2006). Furthermore, the 

competitive environment created in the microcosms used in this experiment may 

have been more intense than the conditions found in the field. The characteristic 

Rendzina soils of calcareous grasslands are rocky and shallow, offering pockets of 

soil which are absent of root competition from neighbouring species. This would 

therefore give non-mycorrhizal species the opportunity to persist in spatially discrete 

conditions in spite of the competitive advantage of mycorrhizal species within the 

community. Other drivers, such as grazing pressure (Maccherini & Santi 2012; 

Smith et al. 2014), have also been shown to influence diversity in these grasslands. 

The findings from this study can be integrated into a theoretical framework which 

will provide a greater understanding of the maintenance of high species richness in 

calcareous grasslands, and also other P-limited systems which often have high 

species richness and a greater frequency of rare species. 

3.5.3 Conclusions 

This study has highlighted interspecific differences in P uptake across a range of 

chemical forms among species with contrasting methods of P acquisition. However, 

these differences were reduced in response to interspecific competition. The greater 

capacity for P uptake from calcium phosphate and DNA sources in non-mycorrhizal 

‘mining’ species (C. caryophyllea and R. acetosa) was consistently reduced in 

response to the competitive advantage of mycorrhizal ‘scavenging’ species (A. 

capillaris and P. lanceolata). On other hand, there were no significant reductions in 
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P uptake of scavenging species when in competition with mining species. In fact, P. 

lanceolata showed increased P uptake in these interactions. This supports the 

hypothesis that mycorrhizal species, despite being poorly suited to P-depleted soils, 

could survive by acquiring P which has been liberated by neighbouring non-

mycorrhizal mining species. Given the prevalence of P limitation across terrestrial 

ecosystems, and its relationship to diversity in plant communities, the role of 

competitive interactions demonstrated here could be globally important in sustaining 

the many species rich plant communities in P-limited ecosystems. 
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Mycorrhizal status alters competition between species with 

contrasting methods of P acquisition 

 

4.1 Summary 

Competition between species with contrasting methods of phosphorus (P) 

acquisition could play an important role in sustaining species rich plant communities 

on P-limited soils. It has been proposed that mycorrhizal ‘scavenger’ species are 

sustained by co-occurring ‘mining’ species with specialist root structures which 

increase the availability of P sources that are otherwise not directly accessible. 

Though earlier findings support this (Chapter 3), a mechanistic understanding of 

how these competitive interactions can sustain diverse plant communities is lacking. 

To investigate this, we manipulated the mycorrhizal status of a scavenger species 

(Plantago lanceolata) and measured the outcome of competition for P uptake from 

calcium phosphate, a mineral-bound P source, with a non-mycorrhizal mining 

species (Carex caryophyllea) which produces dauciform roots as a specialist 

adaptation for the acquisition of P from poorly accessible sources. Plantago 

lanceolata individuals colonised by mycorrhizal fungi had the highest levels of P 

uptake and caused significant reductions in the P uptake of C. caryophyllea. 

Alterations to the mycorrhizal status of P. lanceolata therefore demonstrated their 

reliance on fungal symbionts for a competitive advantage over mining species. 

Furthermore, despite possessing specialist adaptations for P acquisition, C. 

caryophyllea did not show consistently higher levels of P uptake from calcium 

phosphate than P. lanceolata. This could be an artefact resulting from the removal 
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of soil microbes and may therefore indicate their importance in optimising C. 

caryophyllea’s dauciform root adaptation for P acquisition. This study provides an 

important insight into the mechanisms underlying scavenger-miner competitive 

interactions and demonstrates the competitive advantage provided by mycorrhizal 

associations. Furthermore, it highlights the need to further investigate the potential 

importance of associations with an established soil microbial community for P 

acquisition in mining species. 
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4.2 Introduction 

Many of the world’s most diverse plant communities are found in nutrient-poor 

habitats (Myers et al. 2000). In these communities, co-occurring species are capable 

of maintaining coexistence despite intense competition for limiting resources. 

Furthermore, the link between nutrient limitation and high species richness has been 

clearly demonstrated for phosphorus (P) (Janssens et al. 1998; McCrea et al. 2001; 

Critchley et al. 2002; Wassen et al. 2005; Ceulemans et al. 2014). Despite the 

prevalence of P limitation in terrestrial ecosystems, which approaches nitrogen 

limitation in its global extent (Elser et al. 2007), the mechanisms that lead to high 

species diversity under low soil P availability are poorly understood. 

A number of theories have been proposed to explain how so many species are 

capable of coexisting in P-limited conditions. Turner (2008) proposed that co-

existence could be facilitated by P partitioning, whereby co-occurring species, with 

different methods of P acquisition, show preference for different chemical forms of 

P in the soil and hence reduce interspecific competition for P. Based upon 

observations of plant communities on the nutrient-poor soils of Western Australia, 

Lambers et al. (2008) divided plant species into two groups depending on their 

method of P acquisition. The first of those being ‘scavenging’ species, which form 

symbiotic associations with mycorrhizal fungi that enhances their acquisition of 

freely available P from the soil. The second group, ‘mining’ species, are more 

effective at acquiring P which is not directly accessible and requires mobilisation 

through the production of specialist root structures and exudation of organic acids 

and phosphatases. It was hypothesised that diversity was sustained in P-limited plant 

communities because scavengers acquired the otherwise unavailable P which had 
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been mobilised by their P-mining neighbours (Lambers et al. 2006; Lambers et al. 

2008; Li et al. 2014). 

Findings from the previous chapter provide support for this ‘scavenger-miner’ 

hypothesis as it was shown that interactions between mycorrhizal and non-

mycorrhizal species directly affected P uptake patterns in a manner which could 

sustain mycorrhizal species under conditions of P limitation. P uptake from poorly 

accessible sources was highest in non-mycorrhizal mining species, but competition 

with mycorrhizal scavenger species led to changes in P acquisition and reduced 

differences between species (i.e. reduced niche differentiation). The acquisition of P 

by non-mycorrhizal species decreased while mycorrhizal species maintained or 

increased their uptake. This is in line with Muler et al. (2014), who showed that 

there was a greater yield in a mycorrhizal, scavenging species (Scholtzia 

involucrata) when in competition with a cluster-root producing, mining species 

(Banksia attenuata) when compared to monoculture. These findings demonstrate the 

predicted response to competition between scavenger and mining species, however 

the mechanisms behind this outcome are poorly understood. 

The ability of mining species to increase P availability from sources in the soil 

which are not directly accessible to other plants relies on the production of specialist 

root structures and high rates of root exudation. Specialist root structures, known as 

‘cluster roots’, are found in a range of plant families (e.g. Proteaceae, Fabaceae and 

Cyperaceae) and are characterised by dense proliferations of root hairs (Shane & 

Lambers, 2005). These are produced in response to low levels of soil P availability, 

and enhance P uptake through the release of large amounts of root exudates 

(Playsted et al. 2006). Organic acids are an important group of these exudates, which 

chelate calcium and other metal cations (such as iron and aluminium), leading to the 
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release of mineral-bound P. Furthermore, the binding of organic acids to P-sorbing 

sites blocks immobilisation of P, maintaining a greater amount in solution and 

available for plant uptake (Parfitt 1978). 

For scavenger species, Lambers et al. (2008) proposed that their ability to acquire 

the P which has been made available for plant uptake by mining species was due to 

their enhanced foraging capacity gained through mycorrhizal associations. 

Arbuscular mycorrhizal (AM) fungi acquire P through their dense hyphal network, 

which extends beyond zones of depletion surrounding the roots and within soil 

particles which the broader roots of plants cannot access (Smith & Read 2008). 

Despite the prevalence of mycorrhizal associations in the plant kingdom, which are 

found in over 80% of species, few studies have measured the impact of these 

interactions on community structure and function when compared to the attention 

that other ecological factors have received (Klironomos et al. 2011). 

Towards the end of the last century, early evidence of the effect of mycorrhizal 

associations on plant communities came from a small number of studies which 

showed how changes in the productivity of individual species within a community 

differed in response to manipulations of mycorrhizal status. Francis and Read (1995) 

established plant communities which varied in their reliance on mycorrhizal 

associations. Plantago lanceolata, a species dependent on mycorrhizal fungi, 

predictably showed a positive response in yield to the introduction of mycorrhizal 

fungi to the system. However, species which did not rely on mycorrhizal 

associations for nutrient uptake were hindered by the presence of mycorrhizal fungi. 

Likewise, Grime et al. (1987) showed that the productivity of non-mycorrhizal 

species was reduced by neighbouring mycorrhizal species when plant communities 

were inoculated with mycorrhizal fungi. However, this also reduced the biomass of 
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the dominant mycorrhizal species, instead favouring the subordinate mycorrhizal 

species within these communities, which resulted in a significant increase in 

diversity. More recently, an increasing amount of studies have demonstrated how 

mycorrhizal associations can influence the structure and function of plant 

communities, however further work must be done to integrate these findings with 

other ecological factors (Klironomos et al. 2011). 

The scavenger-miner hypothesis proposes that mycorrhizal scavengers acquire the P 

which has been mobilised by their non-mycorrhizal mining neighbours (Lambers et 

al. 2006; Lambers et al. 2008; Li et al. 2014). This provides a potential mechanism 

for how mycorrhizal fungi could mediate interspecific competition in order to 

sustain diverse plant communities on P-limited soils. This study directly investigated 

this by manipulating the mycorrhizal status of a scavenger species and measuring 

how this affected competition for a mineral-bound P source with a non-mycorrhizal 

mining species.  The non-mycorrhizal mining species was Carex caryophyllea, a 

cluster-root producing sedge, and the scavenger species was Plantago lanceolata, 

which relies on mycorrhizal associations for P acquisition. Results from the previous 

chapter showed that in monocultures P uptake from calcium phosphate (a mineral-

bound P source which requires solubilisation before associated P can be acquired by 

plants) was higher in C. caryophyllea than P. lanceolata. In line with the scavenger-

miner hypothesis, when in competition with each other P uptake of the scavenger 

species (P. lanceolata) increased while P uptake of the mining species (C. 

caryophyllea) decreased. In this study, P uptake was measured from radioactively-

labelled calcium phosphate and microcosms were established with species 

monocultures or a combination of P. lanceolata and C. caryophyllea, and with or 

without mycorrhizal inoculum.  
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Given the reliance of scavenger species on mycorrhizal associations for P uptake, it 

was hypothesised that (a) P uptake of P. lanceolata would be higher when colonised 

by mycorrhizal fungi. Furthermore, it was predicted that the competitive advantage 

of scavenger over mining species could be attributed to their mycorrhizal 

associations. Therefore it was hypothesised that (b) the increase in the P uptake of P. 

lanceolata when in competition with C. caryophyllea should only occur in the 

mycorrhizal treatments. It was also hypothesised that (c) the reduction in P uptake 

observed in C. caryophyllea should only occur in response to mycorrhizal P. 

lanceolata and (d) in the absence of mycorrhizal colonisation of P. lanceolata, C. 

caryophyllea would maintain P uptake.  

 

4.3 Method 

4.3.1 Experimental set-up 

Test species were grown in polypropylene tubes (height: 11 cm, diameter: 4 cm) 

with 30 µm mesh covering the base. The substrate within the microcosms consisted 

of sterilised calcareous dune sand (pH 7.8) collected from Aberfraw, Anglesey, 

North Wales (53°11'07"N, 4°27'08"W). As well as being P depleted, the low organic 

matter content of this substrate meant that it could be sterilised through heat 

treatment (1 hour at 120°C) without substantial leaching of nutrients.  

Prior to the experiment, a stock population of C. caryophyllea was established from 

individuals which had been collected from a calcareous grassland field site at 

Wardlow Hay Cop, Derbyshire, UK (53°15'44"N, 1°43'52"W). After collection, 

their roots were thoroughly washed in distilled water to remove remaining soil 
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particles before being transferred to trays containing sterilised calcareous dune sand. 

After a period of 10 weeks, successfully established individuals within the stock 

population were selected and, following another thorough root washing in distilled 

water, transferred to the freshly prepared microcosms. Plantago lanceolata seeds 

(Emorsgate, Kings Lynn, UK) were surface sterilised and germinated in petri dishes 

before individuals were transferred to each microcosm. Mycorrhizal treatments 

received 15 g of inoculum (Root Grow, UK) which was added in a layer 2 cm below 

the surface of the substrate.  

Plantago lanceolata and C. caryophyllea were grown in separate microcosms, each 

containing two individuals, as well as being paired together in the same microcosm 

with one individual of each species. There were ten replicates of each species 

combination, with half of these receiving the mycorrhizal treatment. 

The plants were grown in a controlled environment growth chamber (Conviron 

BDR16, Conviron, Canada) over a period of 12 weeks. Conditions in the growth 

chamber were 18 °C/15 °C day/night temperatures with a day length of 12 hours. 

Irradiance was set at 200 μmol m−2 s–1, and CO2 at 400 ppm. Plants were watered on 

alternate days throughout the growth period. 

4.3.2 33P supply and uptake analyses 

After 11 weeks, each microcosm was supplied with 0.2 MBq of 33P-labelled calcium 

phosphate. This was synthesised and supplied using the methods outlined in section 

2.3.1 and 2.3.4 respectively. In line with previous chapters, the duration of the 

labelling period was seven days. Following this, plants were harvested and separated 

into above- and below-ground biomass, freeze-dried and weighed prior to analysis 

of 33P content.  
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Post-harvest, successful colonisation of P. lanceolata roots receiving the 

mycorrhizal inoculum was confirmed through Trypan blue root staining (Phillips & 

Hayman 1970) and the roots of C. caryophyllea individuals were inspected for the 

presence of dauciform roots. Acid digestion and liquid scintillation counting was 

carried out as outlined in section 2.3.5. 

4.3.3 Statistical analyses 

A two-way ANOVA was used to measure the effect of mycorrhizal inoculation and 

interspecific competition on 33P uptake for P. lanceolata and C. caryophyllea. This 

was expressed as either tissue concentration or content and separated into above- 

and below-ground biomass. Tukey HSD tests were then carried out to show where 

significant differences in the uptake of 33P occurred across competitive interactions. 

All analyses were carried out using the statistical packages Minitab (Minitab Inc., 

State College, PA, USA) and R 3.2.2 (R Core Team 2015). 

 

4.4 Results 

4.4.1 Tissue concentration of 33P 

In P. lanceolata, there was a significant effect of mycorrhizal inoculation on tissue 

concentration of 33P in both above- and below-ground biomass (Table 4.1; Fig 4.1). 

Above-ground 33P tissue concentration of P. lanceolata was significantly higher in 

mycorrhizal than non-mycorrhizal plants by ten- and seven-fold in monocultures and 

mixed microcosms respectively (Tukey HSD, P<0.05; Fig 4.1a). However, the 

response to interspecific competition within both mycorrhizal and non-mycorrhizal 

treatments was not significant.  
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Figure 4.1: Plantago lanceolata tissue 33P concentration separated into (a) above-ground 

biomass and (b) below-ground biomass. Grey bars and black bars represent monocultures 

and mixed species microcosms respectively. ‘AM’ treatments received mycorrhizal 

inoculum, whereas ‘NM’ treatments did not. Means are shown ± 1 s.e.m. Tukey HSD 

tests were carried out to show where significant differences occurred within species 

treatments. Means with the same letter do not differ significantly from each other. See 

Table 4.1 for statistics. 
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Table 4.1: Two-way ANOVA results for the impact of mycorrhizal inoculation and 

interspecific competition on plant tissue 33P concentration. Significant effects (p≤0.05) are 

shown in bold.  

 

Below-ground, there was a significant difference between mycorrhizal and non-

mycorrhizal treatments of P. lanceolata monocultures, with tissue concentration of 

33P in mycorrhizal plants three times higher than non-mycorrhizal plants (Tukey 

HSD, P<0.05; Fig 4.1b). However, tissue concentrations of 33P in P. lanceolata 

individuals exposed to interspecific competition were not significantly different 

between mycorrhizal or non-mycorrhizal treatments, and also did not differ from the 

monocultures of mycorrhizal and non-mycorrhizal plants. 

There was no significant effect of mycorrhizal treatment or interspecific competition 

across above- and below-ground measurements of tissue 33P concentration in C. 

caryophyllea (Table 4.1; Fig 4.2). However, in the above-ground biomass of C. 

caryophyllea there was a significant interaction between mycorrhizal treatment and 

interspecific competition (Fig 4.2a). Above-ground tissue 33P concentration of C. 

caryophyllea exposed to interspecific competition was significantly reduced by 85% 

in the microcosms which received mycorrhizal inoculum compared to those that did 

    Factor df F P 

Plantago lanceolata Above-ground Mycorrhizal inoculation 1,16 67.2 <0.001 

  

Interspecific competition 1,16 1.23 0.288 

  

Myc*Comp 1,16 1.76 0.208 

 

Below-ground Mycorrhizal inoculation 1,16 11.58 0.005 

  

Interspecific competition 1,16 0.45 0.516 

  

Myc*Comp 1,16 2.37 0.148 

Carex caryophyllea Above-ground Mycorrhizal inoculation 1,18 3.45 0.083 

  

Interspecific competition 1,18 0.74 0.402 

  

Myc*Comp 1,18 7.45 0.016 

 

Below-ground Mycorrhizal inoculation 1,18 0.31 0.584 

  

Interspecific competition 1,18 3.67 0.075 

    Myc*Comp 1,18 0.01 0.917 
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not (Tukey HSD, P<0.05). There was no difference between C. caryophyllea 

monocultures under the mycorrhizal and non-mycorrhizal treatments. Below-

ground, there were no significant differences across treatments, although there was a 

trend for higher concentration of 33P in C. caryophyllea monocultures (Fig 4.2b). 

4.4.2 Tissue content of 33P 

The concentration of 33P was an order magnitude greater in below-ground biomass 

compared to above-ground for both P. lanceolata and C. caryophyllea. Therefore, P 

uptake at the whole plant level was expressed as biomass 33P content, rather than 

tissue concentration. 

There was a significant effect of mycorrhizal inoculation on 33P content of P. 

lanceolata at the whole-plant level as well as when separated into above- and below-

ground biomass (Table 4.2). Above-ground, 33P content was significantly higher in 

mycorrhizal treatments, with an almost twenty fold increase between monocultures 

and seven fold increase between mixed microcosms (Tukey HSD, P<0.05; Fig 4.3a). 

There was a similar trend for higher 33P content in mycorrhizal P. lanceolata below-

ground, but there were no significant differences across treatments (Fig 4.3b). At the 

whole-plant level, the significant difference between mycorrhizal treatments was 

maintained in mycorrhizal P. lanceolata monocultures, whose tissue 33P content was 

six times greater than non-mycorrhizal monocultures (Tukey HSD, P<0.05; Fig 

4.3c). However, reductions in the 33P content of mycorrhizal P. lanceolata in 

response to interspecific competition meant that, in these treatments, 33P uptake was 

not significantly different between mycorrhizal and non-mycorrhizal P. lanceolata 

(Fig 4.3c). 
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Figure 4.2: Carex caryophyllea plant tissue 33P concentration separated into (a) above-

ground biomass and (b) below-ground biomass. Grey bars and black bars represent 

monocultures and mixed species microcosms respectively. ‘AM’ treatments received 

mycorrhizal inoculum, whereas ‘NM’ treatments did not. Means are shown ± 1 s.e.m. 

Tukey HSD tests were carried out to show where significant differences occurred within 

species treatments. Means with the same letter do not differ significantly from each 

other. See Table 4.1 for statistics. 
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Table 4.2: Two-way ANOVA results for the impact of mycorrhizal inoculation and 

interspecific competition on plant tissue 33P content. Significant effects (P<0.05) are shown 

in bold. 

 

There were no significant effects of mycorrhizal treatment or interspecific 

competition on the 33P content of C. caryophyllea biomass (Table 4.2). However, 

there was a general trend for reduced 33P content in response to interspecific 

competition (Fig 4.4). Though not significant, whether inoculated or not, this was 

the same at a whole plant level as well as below-ground, with the exception of the 

above-ground biomass of C. caryophyllea in microcosms without added inoculum 

(where 33P content remained the same). 

 

 

 

    Factor df F P 

Plantago lanceolata Above-ground Mycorrhizal inoculation 1,16 31.16 <0.001 

  

Interspecific competition 1,16 0.32 0.58 

  

Myc*Comp 1,16 0.71 0.415 

 

Below-ground Mycorrhizal inoculation 1,16 5.06 0.042 

  

Interspecific competition 1,16 0.30 0.595 

  

Myc*Comp 1,16 2.15 0.167 

 

Total Mycorrhizal inoculation 1,16 17.29 0.001 

  

Interspecific competition 1,16 0.49 0.56 

  

Myc*Comp 1,16 1.56 0.234 

Carex caryophyllea Above-ground Mycorrhizal inoculation 1,18 2.20 0.158 

  

Interspecific competition 1,18 0.02 0.882 

  

Myc*Comp 1,18 2.69 0.122 

 

Below-ground Mycorrhizal inoculation 1,18 0.00 0.945 

  

Interspecific competition 1,18 2.48 0.136 

 

  Myc*Comp 1,18 0.05 0.826 

 

Total Mycorrhizal inoculation 1,18 0.08 0.781 

  

Interspecific competition 1,18 2.04 0.174 

    Myc*Comp 1,18 0.20 0.664 
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Figure 4.3: Plantago lanceolata plant tissue 33P content separated into (a) above-ground 

biomass, (b) below-ground biomass and combined into (c) total biomass. Grey bars and 

black bars represent monocultures and mixed species microcosms respectively. ‘AM’ 

treatments received mycorrhizal inoculum, whereas ‘NM’ treatments did not. Means are 

shown ± 1 s.e.m. Tukey HSD tests were carried out to show where significant 

differences occurred within species treatments. Means with the same letter do not differ 

significantly from each other. See Table 4.2 for statistics. 
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Figure 4.4: Carex caryophyllea plant tissue 33P content separated into (a) above-ground 

biomass, (b) below-ground biomass and combined into (c) total biomass. Grey bars and 

black bars represent monocultures and mixed species microcosms respectively. ‘AM’ 

treatments received mycorrhizal inoculum, whereas ‘NM’ treatments did not. Means are 

shown ± 1 s.e.m. Tukey HSD tests were carried out to show where significant 

differences occurred within species treatments. Means with the same letter do not differ 

significantly from each other. See Table 4.2 for statistics. 
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4.5 Discussion 

This study investigated how mycorrhizal associations directly affect P uptake 

between competing species with contrasting methods of P acquisition. The effect of 

mycorrhizal associations and interspecific competition were measured separately 

and in combination. As expected, mycorrhizal inoculation had a significant effect on 

the P uptake of P. lanceolata but not C. caryophyllea, due to the former’s reliance 

upon mycorrhizal associations for nutrient acquisition and a lack of this reliance in 

the latter. Of greater significance is the absence of a response to interspecific 

competition in both species without mycorrhizal inoculation. This shows the 

importance of mycorrhizal fungi in mediating competition between scavenger and 

mining species, as demonstrated in the reduction in P uptake by the non-mycorrhizal 

C. caryophyllea only when P. lanceolata was mycorrhizal. These findings provide a 

mechanistic explanation for how competition between species with contrasting 

methods of P acquisition can cause changes in P uptake which influence community 

dynamics in P-limited systems. 

4.5.1 Impact of mycorrhizal colonisation on 33P acquisition 

Mycorrhizal treatments resulted in clear differences in the 33P uptake of P. 

lanceolata. Tissue concentration of 33P was consistently higher in mycorrhizal than 

non-mycorrhizal P. lanceolata, in both monocultures and mixed microcosms. The 

difference in the amount of 33P uptake in P. lanceolata between mycorrhizal 

treatments highlights the reliance upon mycorrhizal associations for P acquisition in 

this species. In the absence of mycorrhizal fungi, the simple rooting system of P. 

lanceolata (consisting of coarse roots with few root hairs) was poorly equipped for 

the acquisition of 33P from the supplied mineral-bound P source. In comparison, 
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mycorrhizal P. lanceolata acquired significantly more 33P from calcium phosphate. 

This also suggests that the inoculated AM fungi were capable of mobilising mineral-

bound P, since any other P-solubilising soil microbes within the native microbial 

community would have been removed through sterilisation prior to the experiment. 

This is in line with previous studies which have demonstrated mineral weathering by 

AM fungi in the field (Koele et al. 2014). 

The mycorrhizal treatment had no effect on the 33P uptake of C. caryophyllea, which 

was the expected outcome of a species that relies on dauciform root production as a 

specialist adaptation for P acquisition rather than forming symbiotic mycorrhizal 

associations. 

4.5.2 Impact of interspecific competition on 33P acquisition 

There was no significant effect of interspecific competition on the P acquisition of 

P. lanceolata. In non-mycorrhizal treatments, plants acquired relatively small 

amounts of 33P which showed no discernible response to competition from C. 

caryophyllea.  In mycorrhizal plants, the lack of response to interspecific 

competition may be due to the superior foraging capacity of their fungal partners 

which was capable of maintaining high levels of 33P uptake in the presence of C. 

caryophyllea. Likewise, C. caryophyllea showed no significant effect of 

interspecific competition on P acquisition in both the mycorrhizal and non-

mycorrhizal treatments. 

4.5.3 Interaction of mycorrhizal associations and interspecific 

competition on 33P acquisition 

It was hypothesised that when in competition with C. caryophyllea, 33P uptake 

would increase only in mycorrhizal P. lanceolata. However, there was no significant 
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interaction between mycorrhizal treatment and interspecific competition in P. 

lanceolata. While 33P uptake was higher in mycorrhizal plants, the absence of a 

further increase when in competition with C. caryophyllea could be due to the 

relatively low levels of 33P uptake of the sedge competitor. In the previous chapter, 

C. caryophyllea showed high levels of 33P uptake from calcium phosphate. In 

Chapter 3, increased availability of P from this source due to the liberating action of 

C. caryophyllea roots (i.e. the mining species) could have subsequently increased 

33P uptake of co-occurring P. lanceolata (i.e. the scavenging species). However, in 

contrast to the results from Chapter 3, 33P uptake from calcium phosphate of 

mycorrhizal P. lanceolata in this experiment was greater than C. caryophyllea. 

Therefore, in this chapter, an apparent reduced capacity of C. caryophyllea to 

liberate 33P from calcium phosphate may have caused the absence of a clear effect 

on the 33P uptake of co-occurring P. lanceolata under interspecific competition 

(discussed further in section 4.5.4). 

The interaction between mycorrhizal inoculation and interspecific competition had a 

significant effect on P acquisition of C. caryophyllea. In mixed microcosms, 33P 

uptake by the sedge was significantly reduced by competition from mycorrhizal P. 

lanceolata. This could be because the hyphae of mycorrhizal fungi, when compared 

to the roots of C. caryophyllea, are better equipped for P acquisition due to their 

smaller diameter which increases their surface area to volume ratio and allows them 

to forage within soil particles which the broader roots of plants cannot access (Smith 

& Read, 2008). This supports the hypothesis that P. lanceolata would only possess a 

competitive advantage over C. caryophyllea when they were able to form 

mycorrhizal associations. 
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 Changes in 33P uptake in the current experiment represent short-term competitive 

responses. If these differences in P uptake were maintained over a longer time-scale, 

we would expect to see increased productivity in mycorrhizal P. lanceolata at the 

expense of C. caryophyllea. This is in line with studies which have measured 

changes in the productivity of individual species within a plant community and have 

shown that mycorrhizal species are favoured at the expense of non-mycorrhizal 

species (Francis & Read 1995; van der Heijden et al. 1998).  

Only one of the two species in this study rely on mycorrhizal associations for P 

uptake (P. lanceolata). Previous studies have investigated how AM fungi interact 

with competition between multiple mycorrhizal species which differed in their 

dominance within the plant community. Mariotte et al. (2013) investigated the 

competitive interactions between mycorrhizal species in similar experimental 

conditions. Inoculation with AM fungi was shown to have a detrimental effect on 

the growth of plant species, with a greater impact on dominant species that 

subsequently favoured subordinate species. At the community level, Grime et al. 

(1987) also showed that, as well as non-mycorrhizal species, the dominant 

mycorrhizal species suffered in response to the addition of mycorrhizal fungi. This 

favoured the subordinate mycorrhizal species within these communities and 

subsequently increased plant species diversity. However, in communities where 

subordinates were less reliant on mycorrhizal associations than the dominant 

species, increased plant community diversity was brought about instead by the 

suppression of mycorrhizal fungi (Hartnett & Wilson 1999; Smith et al. 1999). 

These varying impacts of mycorrhizal associations on plant communities highlight 

the complexity of belowground interactions. Despite this, the focus of research on 

plant community dynamics has largely remained aboveground, and less progress has 
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been made in understanding the influence of belowground interactions on 

community structure and function (Bardgett & van der Putten 2014). 

It has been proposed that mycorrhizal associations could help to maintain species 

richness in P-limited plant communities as they would allow scavenger host-plants 

to acquire P which had been mobilised by their P-mining neighbours (Lambers et al. 

2006; Lambers et al. 2008; Li et al. 2014). Furthermore, the dominance of 

mycorrhizal scavengers in this scenario would be limited by their reliance on co-

occurring mining species due to the scavenger’s comparatively low capacity for the 

acquisition of P from poorly accessible sources (demonstrated in Chapter 3). This is 

supported by findings which show that the effects of nutrient limitation are most 

severe for dominant species within grassland communities (Jumpponen et al. 2005). 

4.5.4 Differences between contrasting methods of P acquisition 

This study investigated the influence of mycorrhizal associations and interspecific 

competition on the 33P uptake of plant species with contrasting methods of P 

acquisition. We focused on interspecific differences in the response to these factors, 

rather than differences in 33P uptake per se. None-the-less, the results show that 33P 

uptake was broadly similar between P. lanceolata and C. caryophyllea, while the 

tissue concentration of 33P in the above-ground biomass of mycorrhizal P. 

lanceolata was higher than C. caryophyllea. These findings are in contrast to those 

of Chapter 3 which showed that 33P uptake from calcium phosphate of C. 

caryophyllea was ten times higher than P. lanceolata (when in monoculture). 

Differences in experimental conditions may be a cause of the apparent disparity 

between the results for 33P uptake of C. caryophyllea in the current and previous 

chapter. The substrate in the current experiment was low in organic matter and 
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sterilised to allow manipulation of mycorrhizal status, which would have also 

removed any other microbes. In contrast, the microcosms in Chapter 3 contained soil 

gathered from the field with the microbial biomass still intact.  

In the absence of an established soil microbial community in this study, C. 

caryophyllea would have relied upon the direct effect of root exudation of organic 

acids for the mobilisation of 33P from calcium phosphate. However, it has previously 

been suggested that the plant production of organic acids alone has little impact on P 

mobilisation in calcareous soils (Jones 1998). This is because the concentration of 

supplied organic acids needed to have a noticeable effect on P availability is larger 

than any reported values for rhizosphere and bulk soils (Staunton & Leprince 1996; 

Ström et al. 2005). Therefore, this could partly explain why P acquisition in C. 

caryophyllea was relatively low compared to P. lanceolata.  

It is also possible that the removal of the native microbial community could have 

had a knock-on effect on the ability of C. caryophyllea to acquire P from calcium 

phosphate. The characteristic high rates of root exudation in cluster-root producing 

species could indirectly increase soil P availability through the stimulation of 

microbial activity. Plant root exudates, such as amino acids, organic acids and other 

sugars, provide an easily degradable source of organic carbon which acts as a 

substrate for soil microbes (Shahzad et al. 2015; Baudoin et al. 2003). A high rate of 

root exudation, as seen from the production of dauciform roots (Playsted et al. 

2006), could therefore sustain a larger population of fungi and bacteria in the 

rhizosphere (Lange et al. 2015). This can enhance plant P uptake through direct 

increases in the availability of soil P due to the activity of phosphate-solubilising 

bacteria, as well as indirectly through the release of nutrients due to turnover of the 
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microbial biomass (Vanveen et al. 1987; Macklon et al. 1997; Richardson et al. 

2001; Achat et al. 2010; Marschner et al. 2011; Turner et al. 2012). 

Interactions between plants and soil microbes could be a significant factor in the 

maintenance of diversity in P-limited plant communities which therefore requires 

further consideration (Bardgett et al. 2014). It has been shown that plant 

communities with greater levels of diversity also had significantly increased biomass 

and activity within the soil microbial community (Zak et al. 2003; Lange et al. 2014; 

Hacker et al. 2015). This relationship may be linked to species-specific effects on 

microbial communities which can occur through root exudation (Zhang et al. 2014). 

Grayston et al. (1998) isolated microbial communities from a range of plant species 

and showed clear differences in their utilisation of carbon sources analogous to 

different root exudates. 

The differences in microbial communities between species, and within rooting 

systems, could be intrinsically linked to P acquisition. Plant functional traits have 

been associated with changes in microbial communities (de Vries et al. 2012; Legay 

et al. 2014) that have knock-on effects on rhizosphere processes which influence the 

plant acquisition of P (Wardle et al. 2004). However, further work is required to 

understand how the diversity of plant communities could be mediated by 

interactions with soil microbes. Associations with the microbial community could be 

a key component of C. caryophyllea’s method of P acquisition. The removal of the 

native soil microbial community may therefore explain the altered 33P uptake 

patterns of C. caryophyllea relative to P. lanceolata in this experiment when 

compared to findings of the previous chapter. 
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4.5.5 Conclusion 

This study focused on the impact of mycorrhizal inoculation and competitive 

interactions on P uptake between species with contrasting methods of P acquisition. 

As expected, only the mycorrhizal scavenger species showed a positive response to 

the introduction of AM fungi. Interspecific competition in the absence of 

mycorrhizal inoculation did not affect P acquisition, but with mycorrhizal inoculum, 

the 33P uptake of non-mycorrhizal mining species (C. caryophyllea) was reduced in 

response to the mycorrhizal scavenging species (P. lanceolata). This indicates that 

the competitive advantage of scavenger species requires mycorrhizal associations, 

which provide a superior foraging capacity to host plants through the dense and 

extensive hyphal network in the soil. Mycorrhizal species could therefore be 

sustained in species-rich P-limited plant communities, where they scavenge P 

among other species that may have adaptations better suited to obtaining less 

bioavailable P. These findings demonstrate the importance of interactions between 

plants and soil microbes and highlights the need to include them among the other 

factors which shape species richness in the many diverse plant communities around 

the world that are exposed to P-limitation. 
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Responses of P acquisition by soil microbes to plant species 

with different methods of P acquisition 

 

5.1 Summary 

Belowground interactions with soil microbes influence plant P acquisition in a range 

of ways - from direct associations with mycorrhizal fungi and phosphate-solubilising 

bacteria, to indirect effects of microbial turnover and nutrient cycling in the soil. So, 

the impact of plant-microbe interactions on P acquisition in P-limited soils could 

play an important role in mediating plant competition and co-existence. There is a 

need, therefore, to understand how microbial P uptake is affected by plant species. 

In this study we measured the impact of plants on microbial P in soils with mixtures 

and monocultures of four P-limited calcareous grassland plant species. This included 

species of grass, sedge and forb that have contrasting root adaptations for P 

acquisition, including mycorrhizal associations, specialist root structures and root 

exudation. Each monoculture and four-species mixed community mesocosm was 

supplied with 33P-labelled calcium phosphate, a mineral-bound P source which 

represents a major portion of P in calcareous soils. 33P acquired from this P source 

was subsequently measured in the soil microbial biomass and plants. Changes in 

microbial P uptake could be driven by microbial species which differ in their 

capacity to mobilise P. Therefore the influence of plant monocultures and mixed 

communities on microbial community structure and species richness was measured 

using terminal restriction fragment length polymorphism (TRFLP) analysis. There 

was limited evidence of differences in microbial 33P uptake in response to different 
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plant species, and this was not consistent with differences in plant 33P uptake (i.e. 

plant species with higher 33P uptake were not associated with greater amounts of 

microbial 33P). This implies that microbial 33P uptake and turnover did not 

contribute to demonstrated differences in plant 33P uptake from calcium phosphate. 

Combining all four species into mixed plant communities significantly increased 

microbial 33P uptake compared to microbial uptake under plant monocultures. 

Associated plants did not appear to benefit from this in their tissue concentration of 

33P, which could be due to increased microbial competition for P. However, the 

short time-scale of this study offered little opportunity for plants to access 33P 

through subsequent microbial turnover. Beyond the timescale considered here, 

microbial turnover could provide associated plant communities with indirect access 

to this limiting resource, such that greater microbial 33P may ultimately lead to 

greater plant 33P. These results show that mixed plant communities play an 

important role in stimulating the release of 33P from calcium phosphate through 

microbial uptake, compared to microbes associated with plant monocultures. Given 

the high levels of calcium phosphate in calcareous soils, mobilising P from this 

important soil source could provide a vital long-term supply of P which sustains 

diverse plant communities limited by the availability of this resource. 
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5.2 Introduction 

Interactions between plants and soil microbes can have significant effects on plant 

community structure and function (Van Der Heijden et al. 2008). This can range 

from direct impacts, such as mutualistic associations with mycorrhizal fungi or the 

detrimental impact of soil pathogen infection, to indirect effects through regulation 

of ecosystem processes, such as decomposition, nutrient retention and nutrient 

cycling (Balser & Firestone 2010; Klironomos et al. 2011; Wagg et al. 2014; Pii et 

al. 2015). Despite this, the majority of research on plant community dynamics has 

focused aboveground, and less progress has been made in understanding the 

importance of belowground interactions (Bardgett & van der Putten 2014). 

Nutrient availability is an important regulator of plant communities, which can it 

itself be influenced by interactions with soil microbes. Microbial activity stimulated 

by plants drives the mineralization of soil organic matter and increases N and P 

availability across a range of soil types and plant communities (Dijkstra et al. 2009; 

Dijkstra et al. 2013; Brzostek et al. 2013; Shahzad et al. 2015). However, the 

influence of plant-microbe interactions on nutrient cycling from inorganic sources 

has received less attention. This could play an important role in P-limited calcareous 

grasslands, where large portions of soil P are contained in calcium phosphates 

(Zhang et al. 2014). 

Despite low P availability, high levels of plant species richness are sustained in 

calcareous grassland communities (Janssens et al. 1998; Critchley et al. 2002; 

Ceulemans et al. 2014). Coexistence between species competing for this limited 

resource could be maintained through partitioning of soil P sources through 

contrasting methods of plant P acquisition (Turner 2008). Furthermore, coexistence 
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could also be sustained by species increasing P availability for co-occurring species 

(Lambers et al. 2008).  

Investigation of the mechanisms which sustain plant species richness in P-limited 

communities have focused largely on plant-plant interactions. However, plant-

microbe interactions could also play an important role in providing access to soil P 

for species competing for this limited resource. Plant P uptake is influenced by a 

diverse range of soil microbes - from mycorrhizal fungi, which effectively forage for 

P through their dense and extensive hyphal networks supported by their host plants 

(Smith & Read 2008), to free-living phosphate-solubilising bacteria which mobilise 

P from poorly accessible sources through the release of organic acids and 

phosphatases (Kim et al. 1998; Vessey 2003).  

Studies on the effects of plant diversity which have focused below-ground have 

shown that increased P mobilisation in species rich plant communities is driven by 

soil microbes (Hacker et al. 2015). Higher levels of microbial P uptake could 

feedback into plant P uptake, either directly through increased P mobilisation by 

phosphate-solubilising bacteria or indirectly through turnover of the microbial 

biomass (Vanveen et al. 1987; Macklon et al. 1997; Richardson et al. 2001; 

Marschner et al. 2011). Increasing plant access to P from relatively recalcitrant 

sources could subsequently reduce interspecific competition for plant P acquisition. 

Therefore, a positive feedback between microbial and plant P uptake may play a key 

role in sustaining species richness in calcareous grassland communities. However, 

the influence of plants on microbial P uptake in these systems is poorly understood. 

While the effect of plant-microbe interactions on accessing P from organic sources 

has been demonstrated (Hacker et al. 2015), mineral-bound P sources such as 
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calcium phosphate represent a significant source of soil P in calcareous soils which 

have not been investigated (Zhang et al. 2014). 

The rhizosphere describes the layer of soil surrounding plant roots which provides 

the interface for interactions with soil microbes. Plants influence microbial activity 

through the exudation of compounds such as organic acids, amino acids and sugars 

from their roots. These are an easily degraded source of organic carbon (C) which 

act as a substrate for the soil microbial biomass (Baudoin et al. 2003; Shahzad et al. 

2015). Increased root exudation influences microbial P uptake by stimulating 

microbial activity and sustaining a larger microbial biomass (Hamilton & Frank 

2001). This is seen in studies which have demonstrated increased microbial activity 

in diverse plant communities where carbon inputs to the rhizosphere are increased 

(Lange et al. 2015; Thakur et al. 2015). Interspecific differences between plant 

species in the rate of root exudation may also contribute to differences in P uptake of 

the associated microbial biomass. This could drive interspecific differences in plant 

P uptake, if species which stimulate microbial activity through root exudation 

subsequently gain increased access to P through microbial turnover and P 

mobilisation. 

Previous studies have demonstrated how soil microbes respond to interspecific 

differences in root exudates (Zhang et al. 2014), and species-specific differences in 

associated microbial communities have been shown across a range of different plant 

species (Kuske et al. 2002; Costa et al. 2006; Burns et al. 2015). This sensitivity has 

been demonstrated down to the level of different rooting zones of the same plant 

species (Marschner et al. 2004). These microbial responses could have knock-on 

effects on P uptake, since bacterial species have been shown to differ in their 

capacity to mobilise P from a range of soil P sources (Rodríguez & Fraga 1999; 



Responses of P acquisition by soil microbes to different plant species    

 

98 

 

Richardson et al. 2001; Pii et al. 2015). Interspecific differences in the composition 

of microbial communities driven by plant species could lead to selective 

enhancement of microbes which vary in their ability to acquire soil P (Reynolds et 

al. 2003; Marschner et al. 2011). Plant-driven changes in microbial communities 

have shown reciprocal influences on the cycling of other important soil resources 

such as nitrogen (Zak et al. 2003). However, similar relationships between microbial 

community composition and P cycling have not been investigated.  

In this study we investigated the response of soil microbial communities to mixtures 

and monocultures of plant species with contrasting root adaptations for P acquisition 

– from mycorrhizal associations through to specialist root structures and root 

exudation. For this we measured microbial and plant P derived from a radio-isotope 

labelled mineral-bound P source (calcium phosphate) injected into the soil. Changes 

in microbial community composition and levels of microbial species richness 

between the different plant monocultures and the mixed community were also 

investigated using terminal restriction fragment length polymorphism (TRFLP) 

analysis. This made it possible to see whether changing patterns of microbial P 

uptake across plant communities were matched with changes in microbial 

community composition. 

We used natural soil collected from a P-limited calcareous grassland and established 

the following species: Agrostis capillaris (mycorrhizal grass), Plantago lanceolata 

(mycorrhizal forb), Rumex acetosa (non-mycorrhizal forb) and Carex caryophyllea 

(non-mycorrhizal sedge with dauciform roots). 

We hypothesised that (a) higher levels of microbial P uptake would match higher 

levels of plant P acquired from calcium phosphate. Also (b) microbial P uptake 
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would respond positively to mixed plant community mesocosms. Lastly, we 

hypothesised that (c) differences in soil microbial communities would reflect 

differences in microbial P uptake. 

 

5.3 Method 

5.3.1 Experimental set-up 

The selected plant species consisted of Agrostis capillaris (mycorrhizal grass), 

Plantago lanceolata (mycorrhizal forb), Rumex acetosa (non-mycorrhizal forb) and 

Carex caryophyllea (non-mycorrhizal sedge with dauciform roots). These were 

established in mesocosms (7x7x8 cm) containing Rendzina soil (pH 6.5) collected 

from a calcareous grassland field site at Wardlow Hay Cop, Derbyshire 

(53°15'44"N, 1°43'52"W). The soil associated with calcareous grasslands is 

commonly P-limited, and P-limitation has been previously documented in field 

measurements at this site (Phoenix et al. 2003).  For collection, soil was removed to 

bedrock, air-dried and sieved (2 mm). Each species was grown separately in 

monoculture as well as being combined into a mixed community of all four species. 

Four replicates of each monoculture and mixed community were prepared. In 

addition, mesocosms containing soil but no plant species were set-up to serve as a 

control soil-only treatment for microbial analyses.  

Seeds of A. capillaris, P. lanceolata, and R. acetosa (Emorsgate, Kings Lynn, UK) 

were sown directly into the mesocosms while C. caryophyllea individuals were 

collected from Wardlow Hay Cop and transplanted into the pots at the same time as 

when seeds were sown. Mesocosms were established over a period of 20 weeks in a 
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climate controlled greenhouse with conditions set at 16 hours daylight (with 

supplementary light when necessary), day/night temperatures of 20°C/15°C, and 

regular watering.  

5.3.2 Microbial community analyses 

After 18 weeks, three replicate soil samples were collected from mixed community 

mesocosms, each species monoculture and the control soil treatment. This was done 

by inserting a corer through the soil profile which yielded 1-2 g of soil (fresh 

weight). For each replicate, four subsamples were collected and homogenised to 

create the replicate sample. 

From each sample, 0.25g of soil was taken for DNA extraction using a PowerSoil 

DNA isolation kit (MoBio). In the DNA extracts, 16s rRNA gene sequences were 

targeted from a broad range of bacteria (including Pseudomonas spp) with primers 

799F (AACMGGATTAGATACCCKG) and 1193r (ACGTCATCCCCACCTTCC) 

which avoided amplification of subunit rRNA genes derived from plant chloroplasts. 

A 0.75 uL aliquot of each DNA sample was added to a PCR master mix consisting 

of 35 uL reaction buffer (5mM dNTPs, 15mM MgCl2, stabilizers and enhancers), 1 

uL of each primer in 20 uM solution and 0.5 uL of myTaq DNA polymerase 

(Bioline, London, United Kingdom) diluted to a final volume of 50 uL with nuclease 

free water.  The thermocycler program started with denaturation at 94 ºC for 2 

minutes, followed by 30 cycles of denaturation at 94 ºC for 30 s, annealing at 57 ºC 

for 30 s and elongation at 72 ºC for 30 s, and ended on a final extension of 72 ºC for 

7 min. An aliquot of the amplified PCR product for each sample was stained with 

ethidium bromide and visualized using UV radiation on a 1% agarose gel.  
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PCR products were purified using a QIAquick PCR purification kit (QIAGEN) 

according to the manufacturer’s instructions. Preliminary tests were carried out with 

two different restriction enzymes (aluI and cfoI) to determine which yielded the 

most fragments. Digestion of PCR products was subsequently carried out using 

restriction enzyme cfoI in a reaction mixture consisting of 1.5 uL reaction buffer, 0.2 

uL acetylated bovine serum albumin, 0.5 uL restriction enzyme (Promega) and 1 uL 

PCR product. Samples were diluted to a final volume of 20 uL with sterile, 

deionised water and then incubated at 37 ºC for 3 hours. Afterwards, digest products 

from each sample were desalted by precipitation with 13.125 uL ice cold 95% 

ethanol and 0.525 uL 3M sodium acetate (pH 5.2) with 0.25µl glycogen (20 mg/ml) 

as a carrier. Samples were centrifuged at 14000 x g for 20 minutes at 4 °C to form a 

pellet and washed twice in 70% (v/v) ethanol.  

For TRFLP analysis, the desalted digest products were resuspended in 10 uL 

deionised formamide with 0.5% GeneScan 500 ROX internal size standard (Applied 

Biosystems). Samples were then denatured by heating at 95 ºC for 5 minutes and 

cooled on ice. Fragment size analysis was carried out using capillary electrophoresis 

on an ABI 3730 PRISM capillary DNA analyser (Applied Biosystems). The 

terminal restriction fragments (T-RFs) from each sample produced 

electropherograms which were analysed using Peak Scanner v2.0 (Thermo Fisher 

Scientific).  For each sample, fragment profiles were expressed as peak area and 

aligned with a confidence interval of 0.7 bp using T-REX software (Culman et al. 

2009). Fragments with peak heights less than 50 arbitrary units of fluorescence were 

removed to reduce noise.   

For every sample, the relative abundance of each T-RF was calculated by dividing 

its peak height by the total area of all T-RFs in the electropherogram. Fragments 
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with a relative abundance of 0.5% of the total area were removed which reduced the 

effect of electropherogram variations potentially caused by differences in the 

quantity of DNA analysed. This was combined with binary data recording the 

presence or absence of individual peaks and exported to Excel (Microsoft, 

Redmond, WA) for further analysis. 

5.3.3 Analyses of 33P uptake 

After 19 weeks, each mesocosm was supplied with 0.8 MBq of 33P-labelled calcium 

phosphate, synthesised using the approach previously outlined in section 2.3.1. 

The radio-isotope labelled calcium phosphate was supplied to each mesocosm in 10 

mL solution of distilled water. This was dispensed through a syringe loaded with a 

two-sideport needle to a depth of 8 cm at four injection points spread evenly across 

the mesocosm. At each injection point, the needle was fully inserted and 2.5 mL of 

the 33P solution was released as it was withdrawn gradually up through the soil 

profile.  

After the supply of radioactively-labelled calcium phosphate, the duration of the 

labelling period lasted seven days. Following this, plants were harvested and mixed 

communities were separated by species. These were then freeze-dried and weighed 

prior to analysis of 33P content. Post-harvest, colonisation of mycorrhizal plant roots 

(A. capillaris and P. lanceolata) was confirmed through Trypan blue root staining 

(Phillips & Hayman 1970) and the roots of C. caryophyllea were inspected for the 

presence of dauciform roots. Fresh soils were stored at 5 ºC for immediate analysis 

of microbial 33P.  

33P content in plant samples was measured by acid digestion and liquid scintillation 

counting as outlined in section 2.3.4. Microbial 33P in soil samples was measured 
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using a modified method originally developed by Brookes et al. (1982) and Hedley 

& Stewart (1982). Following chloroform fumigation, phosphorus is released from 

lysed microbial cells within fresh soil samples. Soil samples were mixed with an 

extractant solution (NaHCO3, 0.5 M) and passed through Whatman 42 filter paper. 

33P content in the solutions was measured using a scintillation counter (Packard Tri-

carb 3100TR, Isotech). The amount of extractable 33P present in the soil prior to 

chloroform fumigation is measured by mixing fresh unfumigated soil samples with 

extractant solution in the same manner. Microbial 33P was then measured by 

calculating the difference between the amounts of 33P extracted from fresh soil 

which had been fumigated and fresh soil which had not. 

When using this technique, a proportion of the phosphorus released from lysed cells 

as a result of chloroform fumigation would have sorbed onto soil colloids. To 

account for this, a subset of fresh soil samples were spiked with 0.25 MBq of 

carrier-free 33P. Recovery efficiency was then determined by calculating the amount 

of 33P recovered after extraction as a proportion of that which was initially supplied 

as a spike. This figure was then used to adjust measurements of the amount of 33P 

recovered from fumigated soils. 

Previous studies have made the assumption that fumigation releases 40% of the P 

contained within the microbial biomass, and it is commonplace to adjust microbial P 

measurements accordingly (Brookes et al. 1982). Here we focus on the relative 

amounts of 33P in microbial biomass (measured in KBq) across mesocosms rather 

than absolute amounts in the soil (measured in ug). Therefore applying a correction 

factor across all measurements would not alter any differences between mesocosms. 
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5.3.4 Statistical analyses 

Differences in the microbial communities derived from soil samples were measured 

using a principal component analysis of the relative abundance data. Samples were 

plotted using principal components which allowed visualisation of any clustering 

among replicates and treatments.  

Microbial community diversity measures were made using presence/absence data of 

fragment peaks. Diversity was expressed as species richness, which was calculated 

using the number of fragment peaks within the electropherogram of each sample. 

Differences among soils associated with each plant monoculture and mixed plant 

communities were tested using a one-way ANOVA. 

Microbial 33P was expressed per g of soil dry weight and plant dry weight. Data 

were Log10 transformed to achieve normality and homogeneity of variances and 

differences between plant communities were measured using a one-way ANOVA, 

followed by Tukey HSD. 

To measure the effects of interspecific competition on plant tissue 33P concentration, 

a two-way ANOVA was used with species identity and monoculture/mixed 

community as factors, followed by Tukey HSD tests to show where significant 

differences occurred across species treatments. Data were log10 transformed in order 

to achieve normality and homogeneity of variances. All analyses were carried out 

using the statistical packages Minitab (Minitab Inc., State College, PA, USA) and R 

3.2.2 (R Core Team 2015). 
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5.4 Results 

5.4.1 Differences in microbial communities 

The TRF profiles consisted of 58 fragments within the range of 41 to 420 bp, eight 

of these were present in no more than one treatment while 18 were found across 

them all. A principal components analysis (PCA) of the data from the TRF profiles 

of each sample showed no clear separation among samples from each monoculture 

and the mixed communities (Fig 5.1). The first principal component (PC1) 

explained 62.4% of the variation in the data set, the second (PC2) explained 19.9% 

and the third (PC3) explained 6.5%. 

The number of different-sized fragments measured in each sample ranged from 12 to 

40 (Fig 5.2). Using this as a measure for microbial species richness, there was no 

significant effect of plant monocultures and mixed communities on the number of 

microbial species (Fig 5.2; one-way ANOVA, P>0.05). However, the highest levels 

of species richness were in soils from the monocultures of the two mycorrhizal 

species (A. capillaris and P. lanceolata). 

5.4.2 Microbial biomass phosphorus derived from 33P-labelled calcium 

phosphate 

33P content of soil microbial biomass showed a significant response to differences in 

plant community (Fig 5.3; one-way ANOVA, df = 5, 23, F = 10.83, P<0.001). 

Microbial 33P from the soils of mixed plant community mesocosms was significantly 

higher than the other soil treatments (Tukey HSD, P<0.05). From plant 

monocultures, microbial 33P was in the region of two to four times less than in 

mixed community mesocosms, whereas the soil control was over seven times less.  
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Figure 5.1: Principal component analyses for TRF profiles from microbial communities 

in soils of different plant communities. Samples represented by colours as follows: ● 

Agrostis capillaris, ● Plantago lanceolata, ● Carex caryophyllea, ● Rumex acetosa, ● 

Mixed community, ● Control soil. (a) PC1 vs. PC2,  (b) PC1 vs. PC3, (c) PC2 vs. PC3. 
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Compared to the soil control, there was a three-fold increase in microbial 33P from 

C. caryophyllea monocultures (Tukey HSD, P<0.05), but there was no significant 

difference from other plant monocultures.  

There was a significant effect of plant species on microbial 33P across monocultures 

and mixed communities when microbial 33P was expressed per g of plant biomass 

(Fig 5.4a; one-way ANOVA, df = 4, 19, F = 8.14, P=0.001). These differences were 

driven by plant identity rather than biomass differences as there was no significant 

differences in plant biomass across monocultures and mixed communities (Fig 5.4b; 

one-way ANOVA, P>0.05). Soils from mixed plant community mesocosms showed 

the highest levels of microbial 33P per g plant biomass, which differed significantly 

from monocultures of A. capillaris and P. lanceolata  (Tukey HSD, P<0.05). The 

intermediate amounts of microbial 33P per plant g in C. caryophyllea monocultures 

Figure 5.2: Average species richness (no. of different sized TRFs) of microbial 

communities from each soil treatment: Agrostis capillaris (AC), Plantago lanceolata 

(PL), Carex caryophyllea (CC), Rumex acetosa (RA), four-species mixture, and soil-only 

control. Means are shown ± 1 s.e.m. There were no significant differences between 

treatments (Tukey HSD, P>0.05). 
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were not significantly different from mixed community mesocosms or P. lanceolata 

monocultures (Tukey HSD, P>0.05), but were four-fold greater on average than A. 

capillaris monocultures (Tukey HSD, P<0.05). Microbial 33P in R. acetosa 

monocultures showed no significant differences from other plant communities 

(Tukey HSD, P>0.05), although the difference from mixed communities was only 

marginally non-significant (Tukey HSD, P<0.10). 

 

 

 

 

 

Figure 5.3: Microbial 33P (KBq) measured per gram of soil from each soil treatment 

(Agrostis capillaris, AC; Plantago lanceolata, PL; Carex caryophyllea, CC; Rumex 

acetosa, RA; four-species mixture, and soil-only control). Means are shown ± 1 s.e.m. 

Means with the same letter do not differ significantly from each other (Tukey HSD, 

P>0.05). 
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Figure 5.4: (a) Microbial 33P (KBq) measured in proportion to plant biomass for each 

plant community (Agrostis capillaris, AC; Plantago lanceolata, PL; Carex caryophyllea, 

CC; Rumex acetosa, RA; four-species mixture) supplied with radio-isotope labelled 

calcium phosphate. Means are shown ± 1 s.e.m.. Tukey HSD tests were carried out to 

show where significant differences occurred across treatments. Means with the same 

letter do not differ significantly from each other (Tukey HSD, P>0.05). (b) Plant dry 

weight (g) from mesocosms. Means are shown ± 1 s.e.m. There were no significant 

differences between treatments (Tukey HSD, P>0.05). 
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5.4.3 Plant 33P uptake 

There were significant effects of species identity, competition (whether in 

monoculture or mixed community) and their interaction on plant tissue 

concentration of 33P (Fig 5.5, Table 5.1). In monocultures, the highest tissue 

concentration of 33P was in R. acetosa which was at least five times greater than the 

other species (Tukey HSD, P<0.05). 33P acquisition was lowest in P. lanceolata 

monocultures, which differed significantly from A. capillaris as well as R. acetosa 

(Tukey HSD, P<0.05).  

In mixed communities, tissue concentration of 33P was significantly reduced in all 

species (A. capillaris, 87%; C. caryophyllea, 83%; R. acetosa, 61%; Tukey HSD, 

P<0.05) except P. lanceolata, which maintained a similar concentration to when in 

monoculture (Tukey HSD, P>0.05). While 33P uptake in R. acetosa remained 

significantly higher than other species in mixed communities (Tukey HSD, P<0.05), 

there were no significant differences between A. capillaris, P. lanceolata and C. 

caryophyllea (Tukey HSD, P>0.05). 

 

Table 5.1: Two-way ANOVA results for the impact of species identity and interspecific 

competition on plant tissue concentration of 33P. 

 

 

 

Factor df F P 

Species 3,31 46.41 <0.001 

Competition 3,31 42.17 <0.001 

Species*Competition 3,31 4.18 0.016 
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5.5 Discussion 

This study investigated the impact of plant community composition (contrasting 

plant species, and mixed communities vs monocultures) on microbial P uptake from 

a mineral-bound source, alongside uptake of P by plants. The results show some 

differences in microbial P uptake in response to different plant monocultures, but 

these were relatively small when compared to the large increase in microbial P 

uptake in mixed plant community mesocosms. Therefore, mixed plant communities 

may have important effects on the mobilisation of P from mineral-bound sources 

through stimulating microbial uptake, and this effect may be considerably larger 

than differences driven by individual plant species. There was no evidence of 

changes in the structure and richness of microbial communities in any treatments, 

Figure 5.5: Tissue concentration of 33P for each species (Agrostis capillaris, AC; 

Plantago lanceolata, PL; Carex caryophyllea, CC; Rumex acetosa, RA) supplied with 

calcium phosphate. Grey bars and black bars represent species in monoculture and mixed 

communities respectively. Means are shown ± 1 s.e.m. Means with the same letter do not 

differ significantly from each other (Tukey HSD). See Table 5.1 for statistics. 
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hence these could not be responsible for differences in microbial P uptake. This 

suggests that higher levels of 33P in microbial biomass were driven by quantitative 

increases in their biomass rather than compositional changes in species of 

phosphate-solubilising bacteria. There was also no evidence that increased microbial 

P uptake led to greater plant P uptake from the calcium phosphate source, indicating 

that greater microbial liberation of P from calcium phosphate may not immediately 

benefit plant P uptake. However, the short timespan of this experiment would have 

restricted plant access to 33P through microbial turnover. 

5.5.1 The impact of plant species on microbial 33P uptake 

Mixed plant community mesocosms had significantly greater microbial 33P uptake 

derived from calcium phosphate (compared to monocultures). These findings are 

supported by previous studies which have shown that increasing plant species 

richness has positive effects on microbial activity and can stimulate P cycling from 

soil organic matter (Eisenhauer et al. 2010; Hacker et al. 2015). They do, however, 

contrast with previous studies of calcareous grasslands that have shown that neither 

soil respiration or plant productivity increases with greater plant diversity (Johnson 

et al. 2008; Phoenix et al. 2008). Those studies were conducted on vastly more 

mature plant communities (8 years old, compared to 20 weeks in this chapter), 

which adds an element of caution in extrapolating the short-term nature of the 

findings from this chapter to the longer term. 

The positive relationship between plant species richness and microbial activity has 

been shown to be driven by increased carbon inputs from plants to the surrounding 

rhizosphere (Lange et al. 2015), consistent with the ecological theory that 

biodiversity increases function (Hector et al. 1999; Isbell et al. 2011). The release of 
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root exudates (such as organic acids, amino acids and sugars) provides an easily 

degradable source of organic carbon that stimulates activity in the soil microbial 

biomass (Baudoin et al. 2003; Shahzad et al. 2015). However, in monocultures, this 

contrasts with observations of 33P content in microbial biomass associated with R. 

acetosa. Microbial 33P uptake in these mesocosms showed no significant differences 

from other species monocultures despite this species being part of a family which 

characteristically releases large amounts of root exudates (Tyler & Ström 1995). 

Previous studies which have demonstrated increased microbial activity in diverse 

plant communities showed that this relationship was also driven by increased plant 

productivity (Liu et al. 2008). In this chapter there were no significant differences in 

plant biomass across monocultures and mixed communities. However, microbial 33P 

uptake measured in proportion to plant dry weight showed increased amounts in C. 

caryophyllea monocultures which were more similar to the amount of microbial 33P 

uptake in mixed community mesocosms than the other plant monocultures.  This 

evidence of increased activity in soil microbes associated with C. caryophyllea is in 

line with increased 33P uptake from DNA demonstrated in Chapter 3. P in this form 

requires decomposition before it can be acquired, and soil microbes are important 

drivers of P mineralization in grassland soils (Bünemann et al. 2012). Previous 

studies have also demonstrated increased bacterial activity in soils associated with 

sedges (Johnson et al. 2003). This could be due to specialist adaptations for P 

acquisition in sedges, which produce dauciform roots structures that are 

characterised by dense proliferations of root hairs and the release of large amounts 

of root exudates (Shane & Lambers 2005; Playsted et al. 2006). The function of 

these specialist root structures is similar to that of the cluster roots found in species 

of Fabaceae (Shane et al. 2006). Plant-microbe interactions measured in white lupin 
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(Lupinus albus) showed that spatial variability in bacterial communities were driven 

by the production of cluster roots. These findings suggest that influence of C. 

caryophyllea on microbial 33P uptake is driven by the production of dauciform roots. 

Therefore, as well as the direct effect on P mobilisation from recalcitrant sources of 

these specialist root structures through the exudation of carboxylates and 

phosphatases (Playsted et al. 2006), they may also increase P mobilisation through 

stimulating microbial activity. 

The role of root exudates in plant-microbe interactions and stimulating P cycling 

requires further study.  However, the rapid decomposition of root exudates in the 

field restricts the conditions in which their function can be tested. Nevertheless, the 

development of novel techniques for harvesting root exudates and analysing their 

contents (Vranova et al. 2013; Ernst et al. 2014) promises to improve our 

understanding of how plants can influence microbial activity and chemical 

conditions in the soil. 

5.5.2 The impact of plant species on soil microbial communities 

It was hypothesised that differences in microbial P uptake associated with different 

plant species would be matched with differences in microbial community 

composition. However, microbes which acquired greater amounts of 33P from 

calcium phosphate (mixed community mesocosms and to a lesser extent C. 

caryophyllea monocultures) showed no differences from the microbial communities 

associated with other plant species.  

For soil N cycling, plant-driven changes in the function of soil microbes are matched 

by changes in their composition (Zak et al. 2003). While previous studies have 

shown that plant diversity effects on P mobilisation were driven by soil microbes 
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(Hacker et al. 2015), how this relates to the composition of microbial communities 

has not been investigated. 

Changes in microbial community composition could have important effects on 

microbial P uptake given that different species can vary in their capacity to mobilise 

P from a range of soil P sources (Rodríguez & Fraga 1999; Richardson 2001; Pii et 

al. 2015). Plant-mediated interspecific differences in the composition of microbial 

communities could lead to selective enhancement of microbes which differ in their 

ability to acquire soil P (Reynolds et al. 2003; Marschner et al. 2011). Therefore it 

was hypothesised that differences in microbial P uptake could be related to 

differences in the composition of species in microbial communities. However, this 

was not supported by the findings from this study. There were no clear differences 

in microbial community structure across soil treatments, including the mesocosms 

with higher levels of microbial 33P.  

Diversity in soil microbial communities has been shown to increase nutrient cycling, 

through influences on associated ecological processes including decomposition, 

turnover and leaching (Wagg et al. 2014). Therefore, it was hypothesised that 

microbial species richness would be higher in mesocosms which showed increased 

microbial 33P uptake from calcium phosphate. However, there were no significant 

differences in species richness across the microbial communities from monocultures 

and mixed plant community mesocosms. This therefore shows that changes in 

microbial P uptake can occur without changes in species richness. Assuming 

consistent concentrations of 33P in the microbial biomass across mesocosms 

(Cleveland & Liptzin 2007), this suggests that increases in microbial 33P uptake 

were caused by quantitative changes in the soil microbial biomass rather than 

compositional changes in microbial community. 
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There was, however, a trend towards greater species richness in microbial 

communities associated with mycorrhizal monocultures (A. capillaris and P. 

lanceolata). While this did not affect microbial 33P uptake, the higher levels of 

species richness are consistent with previous findings which have shown increased 

numbers of bacterial species in response to AM root colonisation (Andrade et al. 

1997; Vestergård et al. 2008). AM fungi form species-specific interactions with 

free-living soil microbes (Secilia & Bagyaraj 1987), which could further raise the 

species richness of soil microbial communities associated with mycorrhizal plants. 

However, uncertainty remains over the nature of these belowground interactions, as 

previous studies have also shown that the diversity and activity of free-living soil 

microbes is hindered by mycorrhizal plant species and their associated fungal 

partners (Ravnskov et al. 1999; Johnson et al. 2003).  

While the time period of this study was sufficient for plant-microbe interactions to 

cause differences in 33P uptake in the microbial biomass, a longer period of time 

could be necessary for differences in the composition of soil microbial communities 

to arise. Previous studies which have measured changes in microbial communities 

over time have shown that differences were only established over a period of at least 

one to two years (Smalla et al. 2001; Eisenhauer et al. 2010), compared to the 20 

week period used here.  

In this study, primer pairs were selected which amplified 16s rRNA sequences 

centred on bacterial species including phosphate-solubilising bacteria (Pseudomonas 

spp). Other components of the microbial community (such as Penicillum spp and 

Trichoderma spp) have also been shown to affect P mobilisation and plant uptake 

(Wakelin et al. 2007; Yadav & Tarafdar 2011; Maity et al. 2014; Garcia-Lopez et al. 

2015). When amplifying soil DNA extracts, targeting these fungal groups with 
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different primers could provide further opportunities to explore how plants can 

influence microbial community composition and P cycling in the soil. However, in 

this study it is unlikely that changes in microbial 33P uptake occurred in response to 

shifts in fungal communities (at least for mycorrhizal species) given the broad 

similarities in microbial 33P uptake between the monocultures of plant species which 

sustain mycorrhizal associations (A. capillaris and P. lanceolata) and those that do 

not (C. caryophyllea and R. acetosa). 

5.5.3 Plant P uptake compared to associated soil microbes 

It was hypothesised that increased plant 33P uptake from calcium phosphate would 

be matched by higher levels of microbial 33P uptake. This could arise from positive 

feedback between plant stimulation of microbial activity through root exudation, and 

microbial processes such as increased P mobilisation by phosphate-solubilising 

bacteria or turnover of the microbial biomass (Vanveen et al. 1987; Macklon et al. 

1997; Richardson et al. 2001; Marschner et al. 2011). However, mesocosms with 

greater plant 33P uptake did not show greater microbial 33P. 

Rumex acetosa showed the highest tissue concentrations of 33P across species in 

monoculture and mixed communities. The high levels of 33P uptake in R. acetosa 

(shown here and in Chapter 3) could be due to the release of large amounts of 

organic acids characteristic of Rumex spp (Tyler & Ström 1995). Plant access to P 

from calcium phosphate is enhanced through the production of organic acids which 

release plant available P through lowering rhizosphere pH and the chelation of 

calcium (Jones 1998). It was hypothesised that this method of P acquisition would 

also increase microbial 33P uptake as root exudates provide a substrate for the soil 

microbial biomass (Baudoin et al. 2003; Shahzad et al. 2015), and therefore 
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stimulate microbial activity and sustain a larger microbial biomass (Hamilton & 

Frank 2001). This is supported by studies which have demonstrated increased 

microbial activity in diverse plant communities with increased carbon inputs to the 

rhizosphere (Lange et al. 2015; Thakur et al. 2015) and increased P mobilisation 

capacity (Hacker et al. 2015). However, compared to soil microbes from other 

species monocultures, 33P uptake from calcium phosphate was not increased in soil 

microbes associated R. acetosa monocultures. This suggests that diversity in the 

range of species releasing root exudates (in mixed community mesocosms) is 

important for stimulating microbial as well as total C input to the rhizosphere. 

There was no evidence of a positive relationship between plant and microbial 33P 

uptake arising from mixed communities, which showed increased microbial 33P but 

reductions in plant 33P when compared to monocultures (except for P. lanceolata). 

Previous studies have shown that turnover of the microbial biomass can provide a 

significant source of P for associated plant communities (Achat et al. 2010; Turner 

et al. 2012). Therefore increased P content of the microbial biomass could increase 

soil P inputs and provide greater access to associated plants (Marschner et al. 2011). 

While there was no evidence to support this, turnover of the microbial biomass has 

been shown to range from 3 to 59 days (Vanveen et al. 1987). Extending the 

labelling period of the current study would have provided more time for microbial 

turnover to occur and made it possible to measure whether this process contributed 

to plant 33P uptake. 

Plantago lanceolata was the only species which maintained similar levels of 33P 

uptake between monocultures and mixed community mesocosms, with the other 

species consistently showing lower 33P uptake in mixed communities compared to 

monocultures. The competitive ability of P. lanceolata, considered both in terms of 
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supressing 33P uptake of neighbouring species and resisting suppression themselves, 

has been demonstrated in previous chapters. Mycorrhizal associations play an 

important role, as the results from Chapter 4 showed that the competitive advantage 

of P. lanceolata was not observed in the absence of mycorrhizal fungi.  

Hence, the maintenance of 33P uptake between monoculture and mixed communities 

in P. lanceolata could be due to associations with mycorrhizal fungi and their 

interactions with the free-living soil microbial community. It has been shown that 

mycorrhizal plants can effectively acquire P which has been mobilised by bacteria 

from poorly accessible sources (Toro et al. 1997). The relatively higher levels of 

microbial 33P in mixed community mesocosms (compared to P. lanceolata 

monocultures) could have provided a source of 33P for P. lanceolata, either directly 

through their AM fungal partners or indirectly through interactions with phosphate-

solubilising bacteria in the associated microbial community. This would have 

enabled this species to maintain P uptake levels despite interspecific competition 

from co-occurring species. This could provide a mechanistic explanation for how 

species which rely on mycorrhizal associations for P acquisition such as P. 

lanceolata are sustained in diverse plant communities in these P-limited systems.  

On the other hand, A. capillaris, which also forms mycorrhizal associations, did not 

show the same competitive response as P. lanceolata, instead showing significant 

reductions in 33P uptake in mixed communities compared to monoculture. This is 

hard to explain as results from Chapter 3 showed that P uptake patterns were similar 

between P. lanceolata and A. capillaris across paired competitive interactions. 

However, the nature of interactions with mycorrhizal fungi can differ between plant 

species depending on the reliance of the host plant on their fungal partner. Previous 

studies have shown that AM fungi direct more resources to a host which is a better 
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‘cooperator’ (i.e. provides more carbon) (Kiers et al. 2011). Among grassland 

species, A. capillaris releases relatively low amounts of C into the rhizosphere 

(Cotrufo & Gorissen 1997). Furthermore, the comparatively simple rooting network 

of P. lanceolata illustrates their greater reliance on mycorrhizal fungi (Hetrick et al. 

1988). Therefore, P. lanceolata may have been a better ‘cooperator’ than A. 

capillaris within the common mycelial network of mixed community mesocosms, 

which led to a greater supply of 33P to P. lanceolata. This is in line with previous 

studies which have shown that P transfer to mycorrhizal roots of plants sharing a 

common mycelial network is stimulated in response to increased carbon supply 

(Bucking & Shachar-Hill 2005) and this is preferentially allocated to the hosts which 

are greater carbon sources (Fellbaum et al. 2014). 

The high levels of microbial 33P in mixed plant community mesocosms highlights 

how interactions between above- and below-ground ecosystem components can 

have important influences on ecological processes (Wardle et al. 2004). Large 

amounts of soil P are locked up in calcium phosphates in calcareous grasslands 

(Zhang et al. 2014). Given the limiting amounts of P in soil solution in these 

systems, this represents an important P source for plant communities. While there 

was no clear evidence of plant 33P uptake reflecting higher levels of microbial 33P 

over the period of this current study, it would be interesting to see whether plant 

uptake increased over longer timescales, given the greater opportunity for turnover 

of microbial biomass P (Vanveen et al. 1987). Positive feedback between plant and 

microbial P uptake, driven by plant species richness, could provide a mechanism 

which maintains co-existence within increasingly diverse, P-limited, plant 

communities. A wider range of species would stimulate increased P mobilisation 

from calcium phosphate and uptake in soil microbes. Associated plant communities 
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could then access this fixed P source through subsequent turnover of the microbial 

biomass (Marschner et al. 2011). Competition for this limited resource would 

therefore be reduced among co-existing plant species in more diverse communities 

which sustain a microbial biomass with greater amounts of P. Though speculative, 

this process could explain how high levels of species richness are sustained on soils 

of low P availability (Janssens et al. 1998; McCrea et al. 2001; Critchley et al. 2002; 

Ceulemans et al. 2014). 

5.5.4 Conclusion 

This study investigated the influence of P-limited plant communities on microbial P 

uptake and consequences for plant P uptake. There was some evidence of changes in 

microbial 33P uptake in response to different species in monoculture, but these 

differences did not appear to relate to differences in plant 33P uptake. Combining 

each species into a mixed community had by far the biggest influence on microbial 

33P uptake, which increased significantly in these mesocosms compared to 

monocultures. There was no evidence of changes in microbial communities in 

relation to increased 33P uptake, indicating that higher levels of 33P in the microbial 

biomass were driven by quantitative increases in their biomass rather than 

compositional changes in species of phosphate-solubilising bacteria. The positive 

effect of mixed plant communities on microbial 33P uptake suggests that mixed plant 

communities can have an important impact on the mobilisation of P from calcium 

phosphate in calcareous soils through stimulating microbial uptake. Calcium 

phosphate represents a significant proportion of P in calcareous soils, therefore this 

process could provide an important long-term supply of P which sustains diverse 

plant communities in P-limited calcareous grasslands.
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General Discussion 

 

Despite widespread P limitation across terrestrial ecosystems and its connection to 

high species richness in plant communities, the mechanisms which maintain 

coexistence among species competing for the acquisition of this scarce resource are 

poorly understood. This chapter draws together the findings from this thesis and 

incorporates them into what is currently known about the relationship between plant 

P acquisition and community structure and function in P-limited plant communities. 

This thesis identified gaps in understanding and addressed these through the 

following research questions: 

 

1. How do plant P uptake preferences for a range of soil P sources vary 

between species with contrasting methods of P acquisition? 

 

2. Do those preferences change in response to interspecific competition and, if 

so, what are the mechanisms which underlie those changes? 

 

3. How do plant species with different methods of P acquisition influence 

microbial P uptake in P-limited plant communities? Do changes in microbial 

biomass P influence interspecific differences in plant P uptake? 

 

These research questions were investigated with the use of P-limited calcareous 

grassland as a model, which are recognised for sustaining species rich plant 

communities on low levels of soil P (Janssens et al. 1998; McCrea et al. 2001; 
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Critchley et al. 2002; Ceulemans et al. 2014). Throughout this thesis, P acquisition 

was measured with the use of radio-isotope labelled P-sources (Chapter 2). This 

made it possible to directly measure P uptake across a range of chemical P forms. In 

Chapter 3, the uptake of P in calcareous grassland species with various methods of P 

acquisition was investigated. This also included a measurement of the effects of 

interspecific competition, through comparisons between species pairs and 

monocultures. Differences between species with contrasting methods of P uptake 

were investigated further in controlled conditions, and the effect of mycorrhizal 

status on competition for P uptake was measured (Chapter 4). Plant-microbe 

interactions were investigated in Chapter 5 by measuring the plant influence on 

microbial P uptake, in response to both mixtures and monocultures of calcareous 

grassland species with contrasting methods of P uptake. 

 

6.1 Differences in P uptake across a range of chemical forms 

between species with contrasting methods of P acquisition 

 

The study described in Chapter 3 supplied a range of chemical P sources to 

microcosms containing species pairs and monocultures. This consisted of grassland 

species which varied in their methods of P uptake, from mycorrhizal associations to 

the production of specialist root structures and root exudation. P was supplied in the 

form of orthophosphate, organic diester (DNA) and inorganic mineral (calcium 

phosphate). Each of these represent naturally occurring soil P pools of contrasting 

bioavailability.  
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The results showed interspecific differences in P uptake across monocultures, with P 

uptake from DNA and calcium phosphate greater in C. caryophyllea and R. acetosa, 

than A. capillaris and P. lanceolata. Both of these chemical P forms require 

mobilisation before P can be taken up, and the demonstrated differences in plant 

uptake can be explained through differences in their methods of P acquisition. Carex 

caryophyllea and R. acetosa both belong to families with characteristic high rates of 

root exudation of organic acids (Tyler & Ström 1995; Shane et al. 2006). This can 

directly influence soil phosphorus availability by releasing P from calcium 

phosphate through lowering rhizosphere pH and the chelation of calcium (Jones 

1998; Hinsinger 2001).  

The influence of root exudates on soil P cycling can also occur indirectly through 

stimulation of microbial activity. Root exudates consist of a range of organic 

compounds including mucilage, sugars and amino acids (Dakora & Phillips 2002; 

Bertin et al. 2003). These provide an easily degradable source of organic carbon 

which acts as a substrate for the microbial biomass in the soil (Baudoin et al. 2003; 

Shahzad et al. 2015). A greater input of root exudates sustains a larger population of 

fungi and bacteria in the rhizosphere (Lange et al. 2015). This can feedback into 

plant P uptake through microbial mobilisation of P from organic sources (such as 

DNA) through the production of phosphatases (Spohn et al. 2013; Hacker et al. 

2015), making it directly available for plant uptake, or indirectly through the 

subsequent turnover of soil microbes (Vanveen et al. 1987; Achat et al. 2010; 

Marschner et al. 2011; Turner et al. 2012). 

In plant monocultures, mycorrhizal species (A. capillaris and P. lanceolata) did not 

demonstrate a greater capacity for P uptake from orthophosphate, the directly 

accessible P source, when compared to non-mycorrhizal species. This is despite A. 
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capillaris and P. lanceolata possessing a superior foraging capacity through 

associations with mycorrhizal fungi. Uptake of orthophosphate was greatest in non-

mycorrhizal R. acetosa, and lowest in the mycorrhizal A. capillaris. When supplied 

with this P source, the low levels of P uptake in mycorrhizal species may reflect the 

rapid fixation of orthophosphate in the soil, through microbial uptake or adherence 

to soil particles for example (Tunesi et al. 1999; Jonasson et al. 1999). As shown in 

the uptake of P from DNA and calcium phosphate, the ability of mycorrhizal plants 

to access this P when it is not directly accessible is restricted (compared to non-

mycorrhizal species).  

The demonstrated interspecific differences in P uptake across a range of chemical 

forms shown in Chapter 3 provide supporting evidence for partitioning of P forms in 

P-limited plant communities (Turner 2008). Similar interspecific differences in P 

uptake have been demonstrated previously among species from a P-limited 

calcareous grassland community across a range of P sources (Phoenix et al., 

unpublished data). Ahmad-Ramli et al. (2013) also provided evidence of 

interspecific differences in P uptake among competing plant species which increased 

P uptake when supplied with a variety of P sources, while Fransson et al. (2003) 

showed that interspecific differences in P uptake correlated to the size of different 

soil P fractions. 

 

6.2 Mechanisms underlying competitive interactions between 

species with contrasting methods of P acquisition 

The study presented in Chapter 3 showed that interspecific differences in P uptake 

are influenced by competition between species with contrasting methods of P 
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acquisition. P uptake in non-mycorrhizal species was reduced in response to co-

occurring mycorrhizal species, while uptake of mycorrhizal species was maintained 

(or increased). The changes in plant P uptake subsequently led to a reduction in 

niche differentiation (i.e. an increased similarity in the amount of uptake from the 

various P sources).  

These findings differ from studies on N acquisition which showed that competing 

species may switch uptake between forms of N to reduce niche overlap (Ashton et 

al. 2010). Instead, the contrasting competitive responses between mycorrhizal and 

non-mycorrhizal species supported the scavenger-miner hypothesis (Lambers et al. 

2008; Lambers et al. 2011; Li et al. 2014). Accordingly, mining species (specialised 

in mobilising P from poorly accessible sources) could sustain neighbouring 

scavenger species with a superior foraging capacity for mobilised P gained through 

mycorrhizal associations. 

The study described in Chapter 4 investigated the mechanisms underlying 

contrasting competitive responses between species with different methods of P 

acquisition. Specifically, mycorrhizal status was experimentally manipulated in 

microcosms and species were grown in monoculture or paired with a species which 

differed in their method of P acquisition. The effects of mycorrhizal status and 

interspecific competition were measured on P uptake from a mineral-bound P source 

(calcium phosphate).  

The findings showed that the competitive effect of mycorrhizal species 

demonstrated in Chapter 3 was reliant upon their mycorrhizal status. The P uptake of 

a cluster-root producing sedge species (C. caryophyllea) was significantly lower 

only when competing for P with P. lanceolata in the presence of mycorrhizal fungi 
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(compared to mesocosms without mycorrhizal inoculum). These findings are in line 

with studies which have shown that mycorrhizal species gain a competitive 

advantage over non-mycorrhizal species in response to the introduction of 

mycorrhizal fungi (Grime et al. 1987; Francis & Read 1995; van der Heijden & 

Horton 2009).  

Muler et al. (2014) investigated competitive interactions between a cluster-root 

producing ‘mining’ species (Banksia attenuata) and a mycorrhizal ‘scavenger’ 

species (Scholtzia involucrata). Consistent with this thesis, that work also showed a 

negative effect of a co-occurring scavenger on P uptake of the mining species. Few 

other studies have investigated scavenger-miner competitive interactions and the 

effects on P acquisition in natural and semi-natural plant communities. However, 

these interactions have received far more attention in agricultural systems, through 

investigation of the potential benefits of intercropping on P nutrition and plant 

productivity. Many studies have demonstrated facilitative effects on the P uptake of 

crop plants when grown alongside species which exhibit ‘mining’ traits such as high 

rates of root exudation of organic acids and phosphatases (Li et al. 2014). Reflecting 

results in natural and semi-natural plant communities, these have also shown the 

negative effect on P uptake in co-occurring mining species (Li et al. 2003). 

Outside of an agricultural context, this thesis provides the first investigations of how 

scavenger-miner interactions directly affect P acquisition. This could provide a 

mechanism which sustains species richness in P-limited plant communities through 

mining species increasing access to P sources which are not directly accessible for 

neighbouring scavenger species. Therefore, this may allow a greater range of species 

to persist in soils with an otherwise limited supply of P. 
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6.3 The influence of plants on microbial P uptake in P-limited plant 

communities 

The findings from Chapters 3 and 4 indicated that soil microbes could play an 

important role in P acquisition in the plant communities of calcareous grasslands. 

Mycorrhizal fungi caused a direct increase in the competitive effect of P. lanceolata, 

which could explain why non-mycorrhizal species showed consistent reductions in P 

uptake when in competition with mycorrhizal species.  

The study described in Chapter 5 investigated the influence of plant species on 

microbial P uptake. The potential contribution of soil microbes to plant P 

partitioning was considered by observing whether microbial P uptake matched 

interspecific differences in plant P uptake. This investigates the question of whether 

microbes might influenced plant P partitioning by liberating P for plants (either 

directly or through their uptake and subsequent turnover). Alternatively, plant 

species could be outcompeted through immobilisation of P into the microbial 

biomass. Monocultures and mixed communities were supplied with radio-isotope 

labelled calcium phosphate and P uptake was measured in soil microbial 

communities associated with different plant communities. Microbial fingerprinting 

techniques were used to see whether any effects of plant-microbe interactions on P 

uptake were reflected in differences in microbial community composition. 

The findings showed some evidence of variation in P uptake of microbes associated 

with different plant species in monoculture, but these differences were not consistent 

with differences in plant P uptake. This was most apparent in R. acetosa 

monocultures, where plant P uptake from calcium phosphate was highest but 
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associated microbial communities showed no differences in P uptake compared to 

microbes established under other plant species monocultures.  

Microbial P uptake can benefit plant P uptake, through increased P mobilisation by 

phosphate solubilising bacteria or indirectly through turnover of the microbial 

biomass (Vanveen et al. 1987; Macklon et al. 1997; Richardson et al. 2001; 

Marschner et al. 2011). However, these results suggest that microbial P uptake from 

calcium phosphate did not contribute to demonstrated differences in plant P uptake 

from this P source. 

The biggest plant influence on microbial P uptake was when each species was 

combined into mixed communities. In these conditions, microbial P uptake was 

considerably increased (with a two- to four-fold increase when compared to species 

monocultures). There was no evidence of changes in microbial communities in 

relation to increased P uptake. This suggests that greater amounts of P in the 

microbial biomass from mixed plant communities were driven by quantitative 

increases in microbial biomass rather than compositional changes in communities of 

phosphate-solubilising bacteria. 

Previous studies have also shown that increasing plant species richness has a 

positive effect on microbial activity, and stimulates P cycling from soil organic 

matter (Eisenhauer et al. 2010; Hacker et al. 2015). This could be caused by 

increased carbon inputs from plants to the surrounding rhizosphere (Lange et al. 

2015), providing a substrate which stimulates activity in the soil microbial biomass 

(Baudoin et al. 2003; Shahzad et al. 2015).  

The findings from Chapter 5 suggest that species richness could have an important 

influence on the mobilisation of P from calcium phosphate through microbial 
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uptake. However, previous studies have shown that the composition of plant species, 

rather than diversity per se, regulates microbial activity (Johnson et al. 2008). The 

study in Chapter 5 did not distinguish between these two factors. In order to do so, it 

would be necessary to further increase the number of species present in mixed 

community mesocosms and measure the effect on microbial P uptake. 

It was predicted that increased amounts of microbial P would increase P availability 

in the soil and benefit plant uptake through subsequent turnover of the microbial 

biomass (Macklon et al. 1997; Richardson et al. 2001; Marschner et al. 2011). 

However, there was no evidence of plant P uptake benefiting from increased 

microbial P uptake in mixed communities. None-the-less, the short time in which P 

uptake was measured in Chapter 5 offered only a narrow window for microbial 

activity to influence plant P uptake, and turnover of the microbial biomass has been 

shown to vary over a period of 3 to 59 days (Vanveen et al. 1987). This might also 

explain the absence of relationships between microbial P and plant P uptake between 

the various plant monocultures.  

Measuring P uptake over longer time scales would provide more time for microbial 

turnover to occur and the contribution of this process to plant P uptake could then be 

more accurately measured. This would make it possible to investigate whether 

increasing species richness may drive a positive feedback in P-limited calcareous 

grasslands. Given that a large proportion of phosphorus in calcareous soils is fixed 

in calcium phosphate (Zhang et al. 2014), this could provide an important P supply 

in these plant communities. To speculate, increased microbial P uptake in diverse 

plant communities could provide an indirect P supply to plants which reduces 

interspecific competition and may therefore help to maintain coexistence.  
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6.4 Future Directions 

Despite the prevalence of P limitation in terrestrial ecosystems, there are few studies 

which have investigated the role of P partitioning in shaping plant community 

structure and function. The findings from this thesis have highlighted the importance 

of different methods of P acquisition in competitive interactions and the uptake of P 

from different sources. A greater understanding of the physiological differences 

between species with contrasting methods of P acquisition is an important area of 

future research. For example, the release of root exudates plays a key role in plant P 

acquisition, and the amount and composition of these compounds can vary widely - 

whether comparisons are made between different plant species or along the length of 

a single root (Gahoonia et al. 2007; Marschner et al. 2011; Mimmo et al. 2011). 

However, much of what is known about the function of these compounds comes 

from studies carried out in controlled conditions (i.e. plants grown on sterilised 

substrates or in hydroponic systems). This is largely on account of the rapid 

decomposition of root exudates in the field, which restricts the conditions where 

their function can be tested. Nevertheless, the development of novel techniques for 

harvesting and analysing the contents of root exudates could overcome these 

limitations (Vranova et al. 2013; Ernst et al. 2014).  

In the context of this thesis, these approaches would provide further insight into the 

mechanisms which underlie P partitioning between species with contrasting methods 

of P acquisition. Interspecific differences in the release of root exudates have been 

inferred based on characteristic traits of closely related species. For example, Rumex 

spp. (Tyler & Ström 1995) and Carex spp. (Shane et al. 2006). However, 

measurement of root exudate production in these species would directly answer 

whether differences in plant P uptake were related to this trait. 
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Another key area for future research concerns the influence of soil microbes on plant 

P acquisition and community structure and function. The impact of soil microbes on 

ecosystem functioning was considered a ‘black box’ for much of the 20th century 

(Tiedje et al. 1999). However, recent progress in the use of molecular approaches 

has made it possible to unravel the complexity of belowground processes involving 

soil microbes. From sequencing soil microbial communities to measuring gene 

expression, plant-microbe interactions can now be investigated on a spatial scale 

ranging from centimetres down to nanometres (Marschner et al. 2011; Bardgett & 

van der Putten 2014).  

The ability of soil microbes to solubilise P has been demonstrated for a range of soil 

sources, from various forms of organic monoesters and diesters to inorganic 

mineral-bound P forms (Richardson & Hadobas 1997; Yadav & Tarafdar 2011; 

Garcia-Lopez et al. 2015). Further investigation should consider whether plants form 

species-specific associations with soil microbes which mobilise P from different soil 

sources. This could provide a partitioning mechanism which mediates plant 

competition for P acquisition through associations with soil microbes (Reynolds et 

al. 2003). 

 

6.5 Applications in calcareous grasslands 

The focus of this study was on the ecological processes surrounding the acquisition 

of P in calcareous grasslands. This system was used as a model due to high levels of 

species richness sustained on soils characterised by low P availability (Janssens et 

al. 1998; McCrea et al. 2001; Critchley et al. 2002; Ceulemans et al. 2014).  As well 

as supporting a diverse range of plant species, these ecosystems provide a range of 
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valuable services, including grazing pasture for livestock, a forage resource for 

pollinator species and a net sink for carbon (Carvell 2002; Janssens et al. 2005). 

Despite this, these ecosystems are at risk due to the steep decline in the area of semi-

natural grasslands in the UK (Fuller 1987), mostly through conversion to arable land 

(Newton et al. 2012). 

Efforts have been made to prevent further loss of these valuable ecosystems with 

their widespread designation as Sites of Special Scientific Interest (SSSIs) across the 

UK (JNCC 2010). However, re-establishment requires an in-depth understanding of 

ecological processes which sustain the many species found in these plant 

communities (Janssens et al. 1998). This must involve a consideration of the 

complex interactions which occur among species from these P-limited plant 

communities, as highlighted by this thesis.  

A range of other ecological factors have been shown to have important impacts on 

calcareous grassland communities. For example, disturbance through livestock 

grazing has a beneficial effect on plant species richness by reducing vegetation 

cover and restricting the dominance of a small number of grass species (Jacquemyn 

et al. 2011; Maccherini & Santi 2012). Therefore, the findings from this thesis must 

be integrated into the current knowledge of the ecological processes which influence 

community structure and function in calcareous grasslands. 

Climate change is predicted to have a widespread impact on the structure of plant 

communities (Jägerbrand et al. 2009; Yang et al. 2011; Dieleman et al. 2015). 

However, calcareous grassland plant communities have shown resilience in response 

to the simulated effects of climate change. The long-lived, slow-growing species in 
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these unproductive habitats maintain relative abundance when exposed to drought 

conditions and temperature fluctuations (Grime et al. 2008). 

The resilience shown in these plant communities could be driven by other forms of 

belowground resource partitioning, such as rooting depth and water uptake. This 

process has been demonstrated in tallgrass prairie, where drought conditions induced 

interspecific differences in water uptake from different soil depths (Nippert & 

Knapp 2007). When the availability of water was limited, subordinate species 

shifted water uptake to deeper layers, avoiding competition from dominant species. 

While the Rendzina soils which underlay calcareous grasslands are relatively 

shallow, they none-the-less offer opportunities for partitioning of rooting depth in 

microsites of deeper soil. Previous studies on limestone grassland plant communities 

have shown that these microsites provide a refuge for species which are less tolerant 

of drought, hence maintaining stability in these plant communities at a whole-plot 

level despite microsite variation (Fridley et al. 2011). In a similar way, spatial 

variation in P sources could also help sustain species richness. Partitioning could 

occur with depth (as seen in the arctic tundra work of McKane et al. (2002) or 

horizontally over small distances that could facilitate the relatively fine scale species 

co-existence of calcareous grasslands. 

As well as climate change, N deposition is another anthropogenic effect which could 

influence community structure and function in calcareous grasslands. Simulated soil 

inputs of pollutant N have shown that loading the soil with N exacerbates P 

limitation. The knock-on effects of this on P acquisition have been demonstrated 

through the increased activity of phosphatases in plants and microbes (Johnson et al. 

1999; Phoenix et al. 2003). This suggests that plant and soil microbes will have an 

increased reliance on P uptake from organic sources in response to N deposition. 
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Further investigation of P uptake from other soil sources is necessary in order to 

measure the potential impact of N deposition on plant P partitioning in calcareous 

grassland communities. 

 

6.6 Applications for arable agriculture and wider relevance 

This thesis focused on plant competition and P acquisition in a semi-natural 

ecosystem. However, understanding the ecological processes which influence plant 

communities in these conditions is a pre-requisite for finding relevant applications in 

a wider context, such as agricultural systems.  

The demonstrated impact of competitive interactions between species which possess 

contrasting methods of P acquisition on plant P uptake could be of relevance for 

intercropping techniques. The findings from this thesis are in line with other studies 

which have demonstrated how plant-plant interactions can enhance P nutrition 

through intercropping in agricultural systems (Li et al. 2014). Furthermore, 

enhancing plant P nutrition through associations with phosphate-solubilising 

bacteria has led to investigations of whether these associations can be harnessed in 

an agricultural context (Vessey 2003; Pii et al. 2015).  

As well as in P-limited calcareous grasslands, P nutrition is of great importance in 

arable agriculture. Current conventional farming practices rely on excessive use of 

phosphate fertilisers. In the US for example, each year farmers apply over 4 million 

tons of P fertilisers to the soil (USDA 2013). Only a fraction of this supplied P is 

acquired by crop plants. The rest of this is either incorporated into residual soil P 

pools (Sattari et al. 2012) or washed into water systems which causes damaging 

environmental impacts such as algal blooms and ‘dead zones’ (Tirado & Allsopp 
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2012). The negative effects of these human activities have left the P cycle at the 

limits of a safe operating space for the planet (Rockström et al. 2009). Assessing the 

capacity of plants to acquire P from pre-existing sources in the soil will aid the 

development of sustainable agricultural practices which can increase P-use 

efficiency and reduce the reliance on application of fertilisers. 

The current excessive use of artificial P fertilisers reflects the poor attitude towards 

soil conservation in general. Over the latter half of the 20th century, it was estimated 

that soil erosion led to the loss of almost one-third of the world’s arable land 

(Pimentel et al. 1995). This trend is likely to continue, with current erosion rates in 

arable and intensively grazed lands far exceeding their rate of formation (FAO & 

ITPS 2015). Underlying this issue is a lack of understanding of the complex 

processes in the soil which govern their function. It was Leonardo Da Vinci who 

stated in the 16th century that “we know more about the movement of the celestial 

bodies than about the soils underfoot”. In many ways, this observation still holds 

true today, with overwhelming estimates of soil diversity reporting over 50,000 

bacterial species and tens of metres of fungal hyphae per gram of soil (Leake et al. 

2004; Roesch et al. 2007). It is hoped that the knowledge gained of belowground 

interactions on ecosystem processes from this thesis will contribute to advances in 

soil science research which can be translated into tools and techniques that lead to 

the adoption of sustainable land management practices and reverse the global trend 

of soil erosion (Doran 2002). 
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6.7 Conclusion 

This thesis set out to investigate the ability of plants to access P from a range of 

chemical forms, and how this related to interactions with co-occurring species and 

soil microbes. For this, calcareous grasslands were used as a model system, which 

contain diverse plant communities on soils with low P availability.  

Using a range of radio-isotope labelled P sources, it was possible to directly measure 

differences in plant P uptake between species with contrasting methods of P 

acquisition. Interspecific differences in P uptake across a range of chemical forms 

were consistent with contrasting methods of P acquisition, providing evidence of P 

partitioning between these species.  

Changes in P uptake in response to competition supported the hypothesis that 

species richness could be sustained on P-limited soils through mycorrhizal species 

acquiring P which has been mobilised by co-occurring P-solubilising ‘mining’ 

species. Under controlled conditions, it was shown that mycorrhizal ‘scavenger’ 

species relied on their mycorrhizal associations for their competitive advantage over 

mining species.  

Microbial P uptake in calcareous soils was measured from radio-isotope labelled 

calcium phosphate. While there was some variation in microbial P uptake by 

microbes associated with different plant species monocultures, this did not reflect 

differences in plant uptake. This suggests that microbial P uptake did not influence 

plant acquisition of P from calcium phosphate.  

Microbial P uptake increased significantly in association with mixed communities 

compared to monocultures, highlighting the importance of species richness on the 

mobilisation of P from calcium phosphate through microbial uptake. While this did 
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not benefit plant P uptake, future consideration of the long-term effect of microbial 

turnover on P acquisition is warranted. 

These findings provide a new perspective on the ecological processes which sustain 

high levels of species richness in P-limited plant communities and highlight the 

importance of below-ground interactions on the acquisition of this limiting resource. 

Given the prevalence of P-limitation in terrestrial ecosystems, the findings from this 

study could have widespread significance. 
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