A fully completed copy of this form must be submitted to Research & Innovation Services prior to the award of your degree. If you are submitting a hard copy of the thesis the form should be bound into the front of the thesis.

SECTION 1: STUDENT DETAILS

<table>
<thead>
<tr>
<th>Family Name</th>
<th>CHAMPION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration Number</td>
<td>120109476</td>
</tr>
<tr>
<td>First Name</td>
<td>THOMAS</td>
</tr>
<tr>
<td>Department</td>
<td>IICD</td>
</tr>
<tr>
<td>Thesis Title</td>
<td>DIFFERENTIAL EXPRESSION OF TETRASPANINS IN NON-CUTE SUBSETS MAY REGULATE THE FORMATION OF MESS</td>
</tr>
</tbody>
</table>

SECTION 2: THESIS SUBMISSION DETAILS – PLEASE SELECT ONE OF THE FOLLOWING OPTIONS

- [] I am submitting in print format only for deposit in the University Library (Note: this option only applies to students who initially registered prior to 2008)
- [x] I am submitting an eThesis only to the White Rose eTheses Online server. I confirm that the eThesis is a complete version of my thesis and no content has been removed
- [] I am submitting an eThesis to the White Rose eTheses Online server and also submitting in print format because I have removed some content from my eThesis

SECTION 3: EMBARGO DETAILS – PLEASE SELECT FROM THE FOLLOWING OPTIONS

Each Faculty has agreed to a pre-approved embargo threshold (Arts & Humanities – 1 yr; Engineering – 1 yr; Medicine, Dentistry & Health – 2 yrs; Science – 5 yrs; Social Sciences – 3 yrs. Requests for embargoes that exceed the Faculty threshold will require Faculty approval. If you wish to request a longer embargo, please complete and submit the form available at: www.shef.ac.uk/ris/pgy/code/embargoes

Please note that if no boxes are ticked, you will have consented to your thesis being made available without any restrictions.

<table>
<thead>
<tr>
<th>Should the thesis be embargoed?</th>
<th>Print Thesis</th>
<th>eThesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>If "Yes", please specify the length of embargo requested (in years)</td>
<td>[x] Yes 2 Years</td>
<td>[x] Yes 2 Years</td>
</tr>
</tbody>
</table>

Reason for the embargo (please select from the following options):

- [] Third party copyright
- [] Contains personal data
- [] Could endanger health and safety
- [x] Planned publication
- [] Commercial confidentiality
- [] Could prejudice national security
- [] Exempt under another category listed in the FOI Act 2000
- [] Other

SECTION 4: COPYRIGHT LICENCE OPTIONS – PLEASE SELECT ONE OF THE FOLLOWING

This thesis is protected by the Copyright Design and Patents Act 1988. No reproduction is permitted without consent of the author. It is recommended that you make your thesis available using a Creative Commons Licence http://creativecommons.org/about/license/. This Licence protects you as the author of the work and also clarifies the uses that others may make of your work.

- [x] Creative Commons Attribution-Non-Commercial-No-derivatives (recommended)
- [] Creative Commons Attribution-Non-Commercial
- [] Creative Commons Attribution
- [] Creative Commons Attribution-No-derivative-Works
- [] Creative Commons Attribution-Non-Commercial-Share Alike
- [] Other/Do not apply a Licence
SECTION 5: THESIS DEPOSIT AGREEMENT - STUDENT

1. I, the author, confirm that the Thesis is my own work, and that where materials owned by a third party have been used, copyright clearance has been obtained. I am aware of the University's Guidance on the Use of Unfair Means (www.sheffield.ac.uk/ssid/exams/plagiarism).

2. I confirm that all copies of the Thesis submitted to the University, whether in print or electronic format, are identical in content and correspond with the version of the Thesis upon which the examiners based their recommendation for the award of the degree (unless edited as indicated above).

3. I agree to the named Thesis being made available in accordance with the conditions specified above.

4. I give permission to the University of Sheffield to reproduce the print Thesis (where applicable) in digital format, in whole or part, in order to supply single copies for the purpose of research or private study for a non-commercial purpose. I agree that a copy of the eThesis may be supplied to the British Library for inclusion on EThOS and WREO, if the thesis is not subject to an embargo, or if the embargo has been lifted or expired.

5. I agree that the University of Sheffield's eThesis repository (currently WREO) will make my eThesis (where applicable) available over the internet via an entirely non-exclusive agreement and that, without changing content, WREO and/or the British Library may convert my eThesis to any medium or format for the purpose of future preservation and accessibility.

6. I agree that the metadata relating to the eThesis (where applicable) will normally appear on both the University's eThesis server (WREO) and the British Library's EThOS service, even if the eThesis is subject to an embargo.

Student's name (PLEASE PRINT): THOMAS CHAMPION
Signature: [Signature]
Date: 13/09/2016

SECTION 6: THESIS DEPOSIT AGREEMENT - SUPERVISOR

I, the supervisor, agree to the named Thesis being made available in accordance with the conditions specified above.

Supervisor's name (PLEASE PRINT): Peter Monk
Signature: [Signature]
Date: 13/09/16

SECTION 6: TO BE COMPLETED BY RESEARCH & INNOVATION SERVICES

Does the embargo exceed the agreed Faculty length? □ Yes* if 'yes' please attach embargo extension request form □ No

FCA - 1YR; FCE - 1YR; FCM - 2YRS; FCP - 5 YRS; FCS - 3 YRS

University stamp
Differential Tetranspanin Expression in Monocyte Subsets May Regulate the Formation of Multinucleated Giant Cells

A Thesis Submitted for the Degree of Doctor of Philosophy

Thomas Stephen Christian CHAMPION
Dr Pete Monk*, Dr Lynda Partridge & Dr Siew Cheng Wong

Academic Unit of Infection, Immunity and Cardiovascular Disease
Section of Infection, Inflammation and Immunity
Department of Medicine
University of Sheffield

October 2016
DECLARATION

The work presented in this thesis is the work of the candidate, with the following exceptions:

- Luminex™ ELISAs were performed by Esther Mok at Immunos, SIgN, Singapore.
- SEM was performed by Benoit Malleret, Tan Suat Hoon and Lu Thong Beng at Immunos, SIgN, Singapore.
- The adherence assay macro and acquisition set-up were generated by Dr Robert Wallin.
- The original nuclei counting macro was written by John Lim and later adapted with permission.

This research was funded by the Biomedical Research Council of the Agency for Science (BMRC-A*STAR).
ACKNOWLEDGEMENTS

I could not give enough gratitude to my three supervisors; Dr Pete Monk, Dr Lynda Partridge and Dr Siew Cheng Wong for their unending support, patience and guidance.

To Pete; your intellectual insights were only ever matched by your sarcasm. Thank you for all the 10k and half-marathon races we ran against one another, you kept me checking my heels and even left me in the dust on a few occasions!

To Lynda; your vast understanding of the immune system was only surpassed by the encouragement and support you gave at times when things seemed more apoptotic than proliferative.

To Siew Cheng (lǎobǎn); your determination and drive were only exceeded by your seemingly infinite patience and hospitality to a young Ang Moh so far away from home.

To my two viva voce examiners:
Prof Siamon Gordon; thank you for all your interesting insights and advice on my research and the discussions we held during my exam. Though I was terrified to be facing you as one of my examiners, in hindsight, I would refuse to have it any other way.
Dr Heather Wilson; thank you for your comments, insights and all the time you dedicated to reviewing and correcting my thesis. You have my utmost gratitude.

From University of Sheffield, UK Lab:
Dr Marzieh Fanaei - I must give particular thanks to Dr Fanaei who taught me all the fundamentals of PBMC isolation, MGC culturing and that sometimes, with lab work you need to call it a day and walk away.
Dr Andrew O'Leary – Thank you ‘Gandy’ for all your help with the early flow work, your guidance with lab techniques, political debates and cherished friendship.
Dr John Palmer – Thank John for always reminding me that some people have it worse. Your determination and sense of humour in the face of unending set-backs has inspired me over the years to never give up. P.S. Thank you for effectively getting me this PhD.
I give my gratitude to Dr Dan Cozens, Dr Atiga Elgawidi, Rachel Bell, Ahmed Alabaidy, Dr Fawwaz Ali, Ibrahim Yaseen, Shaymaa Abbas, Muslim Aledami, Katherine Marsay and Lewis Burton who have all given me support and friendship every day in the lab.
Dr Jenny Ventress – Last but not least I thank Jen for her unending support, guidance with my thesis writing and unfathomable patience while I was working away in Singapore for 2 years. Over these past 4 years you have been my biggest source of both comfort and stress; I wouldn’t have it any other way.

From A*STAR, Singapore Lab:
Dr Siew Min Ong – Thank you for all your help and discussions about data and protocols. Your insights into this project during our meetings were invaluable!
Dr Robert Wallin – Thank you for all the time and patience you dedicated to me in
the microscope suite teaching me acquisition and analysis techniques.

Dr Eva Hadadi – Thank you for teaching me how to process blood cones and perform MACs and FACs. I have never met a harder working person in all PhD and you remain a constant inspiration to me.

June Tai – Thank you for teaching me how to use the flow cytometry machines and compensate antibody panels.

Wei Hseun Yeap – Thank you for your help in setting up the ELISA and for the times you helped me get the blood cones I needed! Thank you for all the time you spent maintaining stocks and antibodies for everyday use in the lab, you kept our ship afloat!

Lisa Mauracher – To list all the aspects of my project you helped me with would double the length of this thesis. In particular, thank you for teaching me how to set up acquisition protocols on the microscopes, for teaching me your adherence assay protocols and for all the insights you gave.

I am truly thankful for the support and friendship given to me by **Dr Hwei Xian Leong, Biyan Zhang, Charleen Wong and Jelin Lovelle Siew**. I fail to recall a single memory of you all where you were not smiling and making my day a better one.

Dr Kia Joo Puan – Thank you for all your help in teaching me about the principles of flow cytometry, panel design, ordering antibodies, compensation etc.

Akhila Balachander – Thank you for taking the time to have all those lengthy discussions about microscopy techniques and for giving me stains to trail. Also, thank you for all your kindness and friendship during my stay in Singapore.

John Lim – You have my utmost gratitude for teaching me all about writing macros for ImageJ analysis.

Esther Mok – Thank you for your help setting up and performing the Luminex™ ELISAs and showing me how to handle the data.

Funding & Resources

FACS Operators: A big thank you to **Ivy Low, Nurhidaya Binte Shadan, Seri Munirah Mustafah and Thye Seng Leck** who performed all the FACS sorts of cells.

SEM Operators: Thank you and credit to **Benoit Malleret, Tan Suat Hoon and Lu Thong Beng** who performed the SEM imaging of my giant cell samples.

Blood: Thank you to all the in-house and anonymous blood donors; without you this research would not be possible. Thank you to the Blood Services Group (BSG) of the Health Sciences Authority in Singapore for all the cones they sent me which was essential for all the monocyte subset work.

Funding: My utmost gratitude to the Biomedical Research Council of the Agency for Science (BMRC-A*STAR) for funding this research and for covering my travel grants to conferences.

Facilities: My thanks to the Department of Microbiology and Biotechnology and Medical School of Sheffield University for use of their laboratories and to A*STAR in Singapore for granting access to their technologies and expertise at Biopolis.

Friends & Honourable Mentions

The following people are mentioned here in recognition of all their support and friendship. I have learnt so much through you all and for that I give my thanks to:

Jessica Ebo, Kira Shaw, Mark Hayhurst, Alasdair McComb, Jonathan Cox, Josie Gibson, Adam Pyrah, Dawn Thean and Tim Luxton – Tropical rain or shine
you were always there to give me support and a good drink. You were all terrible distractions from my work and for that I thank you from the bottom of my heart.

Lisa Mauracher – No one in my lab supported me more as a friend than you. Thank you for all your guidance, support, laughter and German lessons. Vielen herzlichen Dank, Frau Mauracher.

Flora Teoh, Ian Prise, Catherine Diamond, Brian Abel, Muhammad Irfan Khalis, Dan McGuire, Günsu Yeşilyaprak, Olya Fromkov, Julia Bolme, Derya Bercin, Peter Brauer, Shikin Yusof, Hanif Javanmard, Anand Kumar Andiappan, Young Cheng and Tuang Yeow Poh – You all deserve a paragraph each but I hope you can all accept this show of gratitude for all the kindness and friendship you gave me every day in the labs and office.

Tobias Dierkes, Tyson Cross, David Mateo, Stephanie Lorraine, Lora Senrob, Anupriya Khemka, Palak Jain, Thomas Braud, Gianni Monaco, Galvin Chung and Wenny Cai – To my flatmates in Singapore; thank you for making my time in Singapore such a joyous one. I have learnt so much form all of you about the world and of different cultures.

Isabella Watson and Banico Nicholas – Thank you for taking the time to travel half the world to see me and bringing me a little bit of home.

Andrew Lockie – Thank you for all your hospitality when I first moved to Singapore. You gave me more wine and welcome than I deserved.

Kevin & Michelle Ventress – Thank you for homing me for the final 6 weeks of write-up! I can’t thank you enough for all the loving support, coffee and snacks!

To the comedic geniuses at **Rooster Teeth** – I could not thank you enough for all the hours of entertainment you brought me during the long hours of image analysis and MGC identification. Your podcasts kept me laughing during all those late nights working in the office alone in Singapore.

To my intellectual hero **Stephen Fry** – Thank you for wishing me well at the start of my PhD! You have always inspired me to have an equal love of learning as we do for laughter.

"Wine can be a better teacher than ink, and banter is often better than books” – **Stephen Fry**

I thank all my family for their love and support. Their patience with faulty skype connections and dealing with 8 hour time differences was infinite. My sincerest gratitude to my grandad **Charles “Nobby” Champion** who wished me well when I left but unfortunately could not welcome me back. To my father **Charles “Charlie” Champion**; thank you for teaching me to never be afraid to dive in and make friends with anyone as life is so often about who you know than what you know.

To my big brother **Charles “Chas” Champion**; thank you for all the times at the weekends when you woke up super early just to play xbox games and talk with me.

To my mother **Theresa Champion**, no amount of words would be sufficient to thank you for all the support you have given me over the years so I hope in this case to show sincerity in simplicity. Thank you for your unending support and understanding, you taught me that persistence and hard work can achieve anything. How right you were.
CONTENTS

Front Cover .. 1
Declaration ... 2
Acknowledgements .. 3
List of Figures .. 10
List of Tables .. 12
Abstract .. 13
Abbreviations .. 14

1 Chapter 1: Introduction ... 17
 1.1 The Human Immune System .. 17
 1.1.1 The Monocyte Lineage .. 18
 1.1.1.1 Tissue Resident Macrophages – A Story of Origins 23
 1.1.1.2 Of Mice and Men – A Tale of Two Models .. 24
 1.1.1.3 Monocyte Subsets ... 25
 1.1.1.4 Monocyte Subset Signalling .. 27
 1.2 Monocyte Mononuclear Descendants: Macrophages and Dendritic Cells 30
 1.3 Multinucleated Giant Cells ... 34
 1.3.1 Osteoclasts: An MGC for Bone Homeostasis .. 34
 1.3.2 Foreign Body Giant Cells: An Inflammatory MGC for Foreign Body Destruction .. 35
 1.3.3 Langhans Giant Cell: An Inflammatory MGC for Bacterial Encasement 37
 1.3.3.1 Mtb and HIV Coinfection ... 37
 1.3.3.2 Mechanisms of Mtb Drug Resistance ... 38
 1.3.3.3 The Molecular Basis of Mtb Entry ... 40
 1.4 Mechanisms of Monocyte Fusion .. 42
 1.4.1 Monocyte Fusion: Competence & Communication ... 42
 1.4.2 Monocyte Fusion: Contact and Contraction ... 46
 1.4.3 Monocyte Fusion: Commitment and Completion ... 47
 1.4.4 Fusion Mechanisms in Alternative Systems .. 49
 1.5 Tetraspanins .. 54
 1.6 Tetraspanin Structural Features .. 54
 1.6.1 EC1 & EC2 ... 54
1.6.2 The Four Transmembrane Helices .. 57
1.6.3 Palmitoylated Cysteines ... 58
1.7 Tetraspanin Enriched Microdomains and the “Tetraspanin Web” 58
1.8 Tetraspanins and Fusion ... 60
1.9 Expression of Tetraspanins in monocyte subsets 64
1.10 Hypotheses, Aims and Objectives .. 65
 1.10.1 Hypotheses ... 65
 1.10.2 Aims & Objectives ... 65
2 Chapter 2: Materials and Methods .. 66
 2.1 Materials ... 66
 2.1.1 Cell Samples .. 68
 2.1.2 Media, Buffers & Solutions ... 68
 2.1.3 Antibodies & Markers .. 71
 2.2 Methods .. 76
 2.2.1 Primary Cell Preparation ... 76
 2.2.1.1 Purification of Monocytes by Adherence 76
 ... 77
 2.2.1.2 Isolation of Monocytes by Magnetic-Activated Cell Sorting Using Negative-Selection ... 78
 2.2.1.3 Sorting Monocyte Subsets Using Fluorescence-Activated Cell Sorting 78
 2.2.2 Flow Cytometric Analysis of Tetraspanins 82
 2.2.2.1 Staining Freshly Isolated Peripheral Blood Monocytes for Flow Cytometry ... 84
 2.2.2.2 Fluorescence Compensation ... 85
 2.2.2.3 Monocytes Cultured for 4 hrs in IMDM vs IMDM+ConA 85
 2.2.3 Fusion Assays .. 88
 2.2.4 Staining Cells for Fluorescence Microscopy 88
 2.2.4.1 Staining Lab-Tek II slides: .. 88
 2.2.4.2 Optimised Staining of 96-Well Plates: 89
 2.2.5 Fluorescence Imaging .. 89
 2.2.6 Image Optimisation .. 90
 2.2.7 Image Analysis ... 90
 2.2.7.1 Macros for Analysing Images ... 94
 2.2.8 Fusion Assay Mathematics & Equations 95
2.2.9 Adhesion Assay ... 98
2.2.10 Tandem Fluorescence-Scanning Electron Microscopy (Flu-SEM) of MGCs 100
2.2.11 Luminex® ELISA of Fusion Assay Supernatants......................... 101
3 Chapter 3: Total Monocyte Fusion... 103
 3.1 Results.. 103
 3.1.1 Optimisation of the Fusion Assay 103
 3.1.2 Fusion Kinetics of Total Monocytes 109
 3.1.3 Adherence of Total Monocytes Cultured In Anti-Tetraspanin Antibodies 113
 3.1.4 Comparison of Fusion from Adherence and MACS Purified Total Monocytes... 113
 3.1.5 Fusion of Adherence Purified Total Monocytes Cultured With Dual Anti-Tetraspanin Antibodies... 121
 3.2 Discussion.. 129
4 Chapter 4: Monocyte Subset Fusion .. 138
 4.1 Introduction ... 138
 4.2 Fusogenic Properties of Monocyte Subsets.............................. 138
 4.3 Subset Contributions to Fusion .. 140
 4.4 Fluorescence-Scanning Electron Microscopy of Monocyte Subsets 144
 4.5 Fusion Kinetics of Monocyte Subsets..................................... 148
 4.6 Analysis of Cytokine Production by Monocyte Subsets Undergoing Fusion 153
 4.7 Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies 158
 4.8 Discussion:... 168
5 Chapter 5: Tetraspanin Expression in Monocyte Subsets 177
 5.1 Introduction ... 177
 5.2 Results.. 178
 5.2.1 Surface Expression of Tetraspanins on Human Monocyte Subsets.... 178
 5.2.2 Comparison of CD9Low and CD9High Classical Monocytes.. 182
 5.2.3 Surface Expression of Tetraspanins on FACS Sorted Monocyte Subsets After 4hrs Culture in +/-ConA Media. .. 188
 5.3 Discussion.. 195
6 Chapter 6: Final Discussion.. 200
 6.1 Introduction ... 200
 6.2 Thesis Summary... 201
6.3 Differential Expression of Tetraspanins in Monocyte Subsets 203
6.4 Different Fusion Potentials of Monocyte Subsets 204
6.5 Assessing The Role of Tetraspanins with Anti-tetraspanin Antibodies 206
6.6 Conclusion and Future Directions... 208
7 Bibliography ... 210
LIST OF FIGURES

Figure 1.1: Differentiation of Human Monocyte Subsets from Haematopoietic Stem Cells... 20
Figure 1.2: Classification of the three monocyte subsets based on relative CD14 and CD16 expression ... 22
Figure 1.3: Simplified Mechanism of TNFα and IL-1 Activation of the NF-κB........... 29
Figure 1.4: Polarised vs Spectral Activation Model for Monocyte Differentiation..... 31
Figure 1.5: The Monocyte Family Tree... 32
Figure 1.6: Structure of a TB Induced Granuloma .. 41
Figure 1.7: Mechanisms of Macrophage Polarisation ... 44
Figure 1.8: Theoretical Model of MFR-CD47 Tethering of Fusing Membranes 48
Figure 1.9: Tetraspanin Primary Structure Distance Tree .. 55
Figure 1.10: 3D Crystal Structure of CD81 with Predicted Transmembrane Regions.. 56
Figure 1.11: Theoretical Model for Formation of a Tetraspanin Enriched Microdomain or ”Tetraspanin Web”... 59
Figure 1.12: Interactions of Tetraspanins, Adherence Proteins and Fusion Receptors. .. 62
Figure 2.1: Components of PBMCs Isolated from Human Blood 77
Figure 2.2: Components of MACs Isolated Cells from Human Blood 79
Figure 2.3: FACS Gating Strategy of Monocyte Subsets from MACs Isolated Cells... 81
Figure 2.4: FACS Gating Strategy of CD9LowCD36Low and CD9HighCD36High Classical Monocytes .. 83
Figure 2.5: Gating of Subset Derived MGCs for Flow Cytometric Analysis.......... 87
Figure 2.6: Effect of Background Reduction on Image Channel Noise 91
Figure 2.7: Morphologies of The Three MGC Types Observed During Fusion Assays. ... 92
Figure 3.1: Optimisation of Fusion Assay .. 104
Figure 3.2: Fusion Kinetics of Total Monocytes .. 110
Figure 3.3: MGC Types Generated from Fusion Kinetics Analysis of MACs Purified Total Monocytes ... 112
Figure 3.4: Total Monocyte Adherence after 2hr Incubation with Anti-Tetraspanin Antibodies ... 114
Figure 3.5a: Sample 10x Images from Fusion Assays (Part 1/2) 115
Figure 3.6a: Comparison of Fusion Results from Adherence and MACs Purified Monocytes (Part 1/2) .. 117
Figure 3.7: MGC Types Generated from Adherence or MACs Purified Total Monocytes ... 119
Figure 3.8a: Median Nuclei per MGC of Adherence Purified Monocytes Cultured with Dual Anti-Tetraspanin Antibodies 122
Figure 3.9: MGC Types Generated from Adherence Purified Monocytes Cultured with Dual Anti-Tetraspanin Antibodies. ... 127
Figure 4.1: Monocyte Subset Contributions During Fusion. 139
Figure 4.2: Fluorescence Microscopy of Monocyte Subset Derived MGCs. 141
Figure 4.3: Fusion Parameters for Monocyte Subset Fusion. 142
Figure 4.4: MGC Types Generated from FACS Purified Monocyte Subsets. 143
Figure 4.5: SEM Monocyte Subset Derived MGCs. .. 145
Figure 4.6: Flu-SEM Images of Nuclear Arrangement Within MGCs. 149
Figure 4.7: Fusion Kinetics of Monocyte Subsets. .. 150
Figure 4.8: Subset Fusion Kinetics - Nuclear State Analysis 151
Figure 4.9: Subset Fusion Kinetics – MGC Type Analysis 152
Figure 4.10: Fusion Cytokines .. 154
Figure 4.11: Fluorescence Microscopy of Monocyte Subset Derived MGCs Cultured with Anti-Tetraspanin Antibodies. ... 159
Figure 4.12: Fusion Parameters for Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies. ... 164
Figure 4.13: Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies - Nuclear State Analysis ... 165
Figure 4.14: Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies – MGC Type .. 167
Figure 5.1: Surface Expression of Tetraspanins on Human Monocyte Subsets. ... 179
Figure 5.2: Histograms for Surface Expression of Tetraspanins on Human Monocyte Subsets. .. 180
Figure 5.3: Tetraspanin Co-Expression on Human Monocyte Subsets. 181
Figure 5.4: Surface Expression of Tetraspanins on CD9Low vs CD9High Classical Monocytes .. 183
Figure 5.5: Histograms for Surface Expression of Tetraspanins on CD9Low and CD9High Classical Monocytes .. 184
Figure 5.6: Comparison of Fusion Results from Total, CD9Low & CD9High Classical Monocytes from Different FACS Isolation Methods. 185
Figure 5.7: MGC Types Formed from CD9Low vs CD9High Classical Monocytes from Different FACS Isolation Methods. 186
Figure 5.8: Surface Expression of Tetraspanins on FACS Sorted Monocyte Subsets After 4hrs Culture in +/-ConA Media. ... 189
Figure 5.9: Comparison of Surface Tetraspanin Expression on FACS Sorted Monocyte Subsets After 4hrs Culturing in ConA Media. 190
Figure 5.10: Histograms for Surface Expression of Tetraspanins on Monocyte Subsets in +/-ConA Media. ... 191
Figure 5.11: Quantification of Bimodal Populations in Fusion Initiated Monocyte Subsets .. 194
Figure 5.12: Theoretical Explanation for the Increased Fusion in Indirectly labelled CD9High Classical Monocytes. .. 199
LIST OF TABLES

Table 1: Lab Consumables... 66
Table 2: Monocyte Negative-Selection: Magnetic Bead-Antibodies.......... 71
Table 3: FACS: Monocyte Sorting Antibodies..................................... 72
Table 4: Flow Cytometry: Anti-Tetraspanin Positive Reporter Antibodies... 72
Table 5: Flow Cytometry: Anti-Tetraspanin Isotype Control Antibodies 73
Table 6: Fluorescence Microscopy .. 73
Table 7: Other Marker Reagents .. 73
Table 8: Fusion Assay: Anti-Tetraspanin Phenotyping Antibodies 74
Table 9: Software ... 75
Table 10: MGC Types ... 93
ABSTRACT

Monocytes are able to undergo homotypic fusion to produce different types of multinucleated giant cells in response to infection (Langhans giant cells in tuberculosis) or rejection of foreign bodies (foreign body giant cells on medical implants). Monocytes exist as a heterogeneous population consisting of three subsets: ~85% classical, ~5% intermediate and ~10% nonclassical at steady state. However, during tuberculosis, the circulating populations of intermediate and nonclassical monocytes increase, suggesting they may play a role in the disease outcome. Monocyte fusion is a highly coordinated and complex process requiring the upregulation and expression of multiple proteins to carry out fusion. Tetraspanins are a family of membrane proteins that associate with partner proteins and other tetraspanins to form a tetraspanin enriched microdomain. Tetraspanins have been shown to associate with fusion proteins and it has been suggested that they play a role in coordinating homotypic monocyte fusion.

In this study, peripheral human monocytes were purified by FACS into classical (CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) monocytes. Monocyte subsets were induced to fuse using concanavalin A (ConA) and we showed the intermediate monocytes were able to fuse faster and form significantly larger giant cell types. Furthermore, when antibodies targeting CD9, CD53, CD63 and CD151 were added, only the intermediate monocytes showed any inhibition of fusion. A flow cytometry panel was used to report on the expression of 7 tetraspanins (CD9, CD37, CD53, CD63, CD81, CD82 & CD151) on the surface of monocytes before and after addition of ConA. We found that freshly isolated intermediate monocytes are particularly tetraspanin abundant. After 4hrs of culture in ConA, the subsets all show a significantly decreased expression of CD37, CD53 and CD82. We also identified a small population of CD9High CI that also expressed higher levels of CD63, CD81 and CD151 compared to CD9Low. However, the CD9High CI did not show any greater potential to fuse and its role in immunity remains unknown.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm/µg</td>
<td>Micrometre/microgram</td>
</tr>
<tr>
<td>Å</td>
<td>Ångström</td>
</tr>
<tr>
<td>Akt</td>
<td>Protein kinase B (or PKB)</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen presenting cell</td>
</tr>
<tr>
<td>β-hCG</td>
<td>β-human chorionic gonadotropin</td>
</tr>
<tr>
<td>B-S</td>
<td>Biotin-Streptavidin</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CCL2</td>
<td>Chemokine receptor type 2 ligand (or MCP-1)</td>
</tr>
<tr>
<td>CCR#</td>
<td>Chemokine receptor type #</td>
</tr>
<tr>
<td>cDC</td>
<td>Classical dendritic cells</td>
</tr>
<tr>
<td>cIMDM</td>
<td>Complete Iscove's Modified Dulbecco's Medium</td>
</tr>
<tr>
<td>Cl</td>
<td>Classical monocyte</td>
</tr>
<tr>
<td>CLP</td>
<td>Common lymphoid progenitor</td>
</tr>
<tr>
<td>cMOP</td>
<td>Common monocyte progenitor</td>
</tr>
<tr>
<td>CMP</td>
<td>Common myeloid progenitor</td>
</tr>
<tr>
<td>ConA</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>CX3CR1</td>
<td>CX3C chemokine receptor 1</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>DAMP</td>
<td>Damage-associated molecular pattern</td>
</tr>
<tr>
<td>DAP12</td>
<td>DNAX activating protein of 12kD</td>
</tr>
<tr>
<td>DC-STAMP</td>
<td>Dendritic cell-specific transmembrane protein</td>
</tr>
<tr>
<td>EC</td>
<td>Extracellular</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ERM</td>
<td>Ezrin-radixin-moesin</td>
</tr>
<tr>
<td>EWI-2</td>
<td>Glu-Trp-Ile motif protein 2 (or immunoglobulin superfamily member 8 or IGSF8 or CD316)</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-Activated Cell Sorting</td>
</tr>
<tr>
<td>FBGC</td>
<td>Foreign Body Giant Cell</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>FcεRI</td>
<td>Fragment crystallisable epsilon receptor 1 (IgE receptor)</td>
</tr>
<tr>
<td>FI</td>
<td>Fusion Index</td>
</tr>
<tr>
<td>Flu-SEM</td>
<td>Tandem fluorescence-scanning electron microscopy</td>
</tr>
<tr>
<td>GAS</td>
<td>Gamma activated sequence</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GMP</td>
<td>Granulocyte-macrophage progenitor</td>
</tr>
<tr>
<td>hASCT1/2</td>
<td>Human sodium-dependent neutral amino acid transporter type 1/2</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>Human leukocyte antigen – antigen D related</td>
</tr>
<tr>
<td>hPL</td>
<td>Human placental lactogen</td>
</tr>
<tr>
<td>HS</td>
<td>Human Serum</td>
</tr>
<tr>
<td>HSC</td>
<td>Hematopoietic stem cell</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HTLV-1</td>
<td>Human T-cell leukaemia virus type 1</td>
</tr>
<tr>
<td>IC</td>
<td>Intracellular</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular adhesion molecule 1 (or CD54)</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IKK</td>
<td>IκB kinase</td>
</tr>
<tr>
<td>IL-#</td>
<td>Interleukin-#</td>
</tr>
<tr>
<td>IL-1RA</td>
<td>IL-1 receptor antagonist</td>
</tr>
<tr>
<td>IMCB</td>
<td>Institute of Molecular and Cell Biology</td>
</tr>
<tr>
<td>Int</td>
<td>Intermediate monocyte</td>
</tr>
<tr>
<td>ITAM</td>
<td>Immunoreceptor tyrosine-based activation motif</td>
</tr>
<tr>
<td>Jak</td>
<td>Janus kinase</td>
</tr>
<tr>
<td>LFA-1</td>
<td>Lymphocyte function-associated antigen 1 (or αLβ2 or CD11a:CD18)</td>
</tr>
<tr>
<td>LGC</td>
<td>Langhans Giant Cell</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>Ly6C+</td>
<td>Lymphocyte antigen 6 complex</td>
</tr>
<tr>
<td>M1/M2</td>
<td>Pro-inflammatory/Alternative Macrophage</td>
</tr>
<tr>
<td>MACS</td>
<td>Magnetic-Activated Cell Sorting</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>MDP</td>
<td>Macrophage-dendritic precursor</td>
</tr>
<tr>
<td>MDR-TB</td>
<td>Multiple drug resistant Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>MFR</td>
<td>Macrophage fusion receptor</td>
</tr>
<tr>
<td>MGC</td>
<td>Multinucleated giant cell</td>
</tr>
<tr>
<td>MHC-II</td>
<td>Major histocompatibility complex 2</td>
</tr>
<tr>
<td>MMP-9</td>
<td>Matrix metalloprotease-9</td>
</tr>
<tr>
<td>moDC</td>
<td>Monocyte derived inflammatory dendritic cells</td>
</tr>
<tr>
<td>Mtbc</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myeloid differentiation primary response gene 88</td>
</tr>
<tr>
<td>Mφ</td>
<td>Macrophage (unpolarised)</td>
</tr>
<tr>
<td>n/a</td>
<td>Not applicable</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NCI</td>
<td>Nonclassical monocyte</td>
</tr>
<tr>
<td>NFATc1</td>
<td>Nuclear factor of activated T-cells, cytoplasmic 1</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NK-cell</td>
<td>Natural killer cell</td>
</tr>
<tr>
<td>p/s</td>
<td>Penicillin + streptomycin</td>
</tr>
<tr>
<td>P2X7</td>
<td>P2X purinoceptor 7</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PBS(w/o)</td>
<td>Phosphate Buffered Saline (without Ca2+ or Mg2+)</td>
</tr>
<tr>
<td>PBSE</td>
<td>Phosphate Buffered Saline + EDTA</td>
</tr>
<tr>
<td>pDC</td>
<td>Plasmacytoid dendritic cells</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>pH</td>
<td>Potential Hydrogen</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol 3-kinase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>psi</td>
<td>Pounds per square inch</td>
</tr>
<tr>
<td>Rab#</td>
<td>Ras-related protein #</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor activator of NF-κB ligand</td>
</tr>
<tr>
<td>RANTES</td>
<td>Regulated on activation, normal T cell expressed and secreted (or CCL5)</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>RGB</td>
<td>Red green blue</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROI</td>
<td>Region Of Interest</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SGC</td>
<td>Syncytial Giant Cell</td>
</tr>
<tr>
<td>SIgN</td>
<td>Singapore Immunology Network</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducer and activator of transcription</td>
</tr>
<tr>
<td>STED</td>
<td>Stimulated emission depletion</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TEM</td>
<td>Tetraspanin enriched microdomain</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>Transforming growth factor-β1</td>
</tr>
<tr>
<td>Th1/Th2</td>
<td>T-cell helper cells type 1/type 2</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TRADD</td>
<td>Tumour necrosis factor receptor type 1-associated DEATH domain protein</td>
</tr>
<tr>
<td>TRAP</td>
<td>Tartrate-resistant acid phosphatase</td>
</tr>
<tr>
<td>TREM-2</td>
<td>Triggering receptor expressed by myeloid cells 2</td>
</tr>
<tr>
<td>Tspan</td>
<td>Tetraspanin</td>
</tr>
<tr>
<td>Tyk#</td>
<td>Tyrosine kinase #</td>
</tr>
<tr>
<td>v/v or w/v</td>
<td>Volume/volume or weight/volume</td>
</tr>
<tr>
<td>WD</td>
<td>Working distance</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>XDR-TB</td>
<td>extensively drug-resistant Mycobacterium tuberculosis</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

1.1 THE HUMAN IMMUNE SYSTEM
The human immune system is a dynamic multicellular network that has evolved to respond to a seemingly limitless array of threats. The cells of the immune system, leukocytes, are able to sense and eliminate foreign threats with a variety of different methods. All leukocytes originate from a single multipotent hematopoietic stem cell (HSC) progenitor in the bone marrow. Leukocytes are formed as a result of multiple differentiations co-ordinated by an ensemble of different signals. Leukocytes are divided into two major types based on their initial differentiation from HSC; myeloid or lymphoid.

The myeloid cells consist of the monocytes, granulocytes and mast cells of the innate immune system. These cells are typically short lived and are able to sense and respond to a broad range pathogens. Myeloid progenitors are also able to differentiate into platelet-producing megakaryocytes and erythrocyte precursors that develop into oxygen-carrying red blood cells. The lymphoid cells consist of the T-cells and B-cells of the adaptive immune system and the natural killer cells (NK-cells) of the innate immune system. T-cells are able to interact, detect and kill virally infected host cells. B-cells confer humoral responses by secreting antibodies to pathogenic antigens that can agglutinate bacteria and enhance phagocytosis. NK-cells are able to sense and attack virally infected host cells (like T-cells) and even identify and eliminate tumour cells. Though NK-cells are derived from lymphoid cell progenitors they have long been classified in the innate immune system, however, recent studies (Arase et al., 2002; Daniels et al., 2001; Peng et al., 2013; Sun et al., 2009) have identified NK-cells with memory features just like T-cells and B-cells.

Leukocytes are not limited to this brief list of processes but are in fact versatile and able to alter their functions further depending on the location and severity of a threat. Throughout the course of human existence there have been viruses and pathogens that test our immune systems each in their own unique way. Human immune systems have evolved in a way to combat a wide-range of both new and old threats. The
attempt to unravel the intricacy of the human immune system has led to the discoveries of various subsets, elaborate cytokine networks and novel mechanisms of host defence. This introduction will focus on the complexities associated with just one cell type, the monocyte.

1.1.1 The Monocyte Lineage
Before describing the biological origins of the monocyte it is important to explore and respect the historical origins of the phagocytic system. The age of leukocytes began in 1843, when, rather miraculously, the French pathologist Gabriel Andral (1797-1876) and British physician William Addison (1802-1881) both reported independently the first ever descriptions of leukocytes. These findings opened up new avenues for future research into the role of these odd new white-blood cells in human pathology. In 1873, Julius Cohnheim (1839-1884) observed and demonstrated the migration and extravasation of leukocytes to a site of inflammation in frog’s tongues that he pinned to a corkboard. Cohnheim’s simple model demonstrated that leukocytes could actively target injured tissues and laid the groundwork for future studies in chemotaxis.

The first description and identification of phagocytes from leukocytes came from a Russian zoologist named Elie Metchnikoff (1845-1916). In 1882 Metchnikoff observed for the first time phagocytes surrounding and digesting foreign bodies in transparent starfish larvae. He also injected bacilli into the subcutaneous tissues of frogs and observed host leukocyte chemoattraction to the site of infection. Metchnikoff has since been credited as the discoverer of cell mediated immunity and in 1908 shared a Nobel Prize in physiology and medicine with Paul Ehrlich who is equally credited as the discoverer of humoral immunity. Controversially, Metchnikoff believed that phagocytosis occurred in both steady-state tissues to clear away host debris as well as in inflamed tissues to target pathogens.

The discovery of phagocytes by Metchnikoff set into motion a tide of further research in the field of immunology. In 1901 Rudolf von Limbeck (1862-1900) demonstrated that phagocytes were recruited from the blood and targeted sites of inflammation through chemoattraction. Von Limbeck did this by injecting *Staphylococcus aureus*...
into the joints of dogs and observed that the number of circulating leukocytes increased before accumulating in the infected tissues. This phenomenon would later be attributed to the differentiation of circulating monocytes into tissue-bound macrophages. Less than a decade later, in 1909, the advances in cinematography allowed Jean Comandon (1877-1970) and colleagues to record and distribute moving images of *Trypanosomes* being phagocytosed for the first time. The monocyte/macrophage family grew by another member in 1973 when Zanvil Cohn (1926-1993) and Ralph Steinman (1943-2011) published their findings on the isolation and identification of dendritic cells from mouse spleen. The discovery of dendritic cells as antigen presenting cells was a pinnacle finding in linking the innate and adaptive immune systems. Over the last few decades, with the use of immunolabeling and flow cytometry, the complexity and diversity of the innate immune system has exploded. It is unlikely that 134 years ago when Metchnikoff was observing phagocytes surrounding splinters within transparent larvae that he grasped the complexity of the system he had discovered. The more recent discoveries in monocyte differentiation and origins from the bone marrow will now be explored in detail.

Monocytes, unlike most other leukocytes, are able to differentiate into distinct cell types that possess their own morphological features and immunological processes. Like other myeloid cells, monocytes originate within the bone marrow. HSCs differentiate into a common lymphoid progenitor (CLP) or a common myeloid progenitor (CMP) that subsequently differentiates into granulocyte-macrophage progenitors (GMP) (Figure 1.1). Further differentiation in the bone marrow transforms GMP into monoblasts – the committed monocyte precursor. Once these mature into monocytes, they enter the bloodstream where they circulate continuously and act as a reservoir ready to migrate and enter into steady-state or inflamed tissues and further differentiate into macrophages (Mφ) or dendritic cells (moDC).

Current research in mice has shown that between the GMP to monocyte stage, the GMP cells differentiate into a macrophage-dendritic precursor (MDP) that after transplantation could no longer form granulocytic cells but could generate new monocytes, macrophages and DC (Fogg *et al*., 2006).
Figure 1.1: Differentiation of Human Monocyte Subsets from Haematopoietic Stem Cells

In the bone marrow HSCs are able to differentiate to produce any of the leukocytes of both the lymphatic and myeloid lineages. Various myeloid precursors have been isolated and ordered based on their potential to differentiate into decedent cells. HSC: Haematopoietic stem cell, CLP: Common lymphocyte progenitor, NKP: Natural killer progenitor, TCP: T-cell progenitor, BCP: B-cell progenitor, CMP: Common myeloid progenitor, GMP: Granulocyte-macrophage progenitor, MDP: Macrophage-dendritic precursor, cDC: Classical Dendritic Cell, pDC: plasmacytoid Dendritic Cell, cMOP: Common monocyte progenitor Cl: Classical, Int: Intermediate, NCI: Nonclassical monocyte.
In 2013, Hettinger et al. identified a common monocyte progenitor (cMOP) in mice that could no longer differentiate into classical dendritic cells (cDC) or plasmacytoid dendritic cells (pDC) but could still form monocytes, Mφ and monocyte-derived dendritic cells. Human equivalents of MDP and cMOP have also been recently reported (Lee et al., 2015).

Human blood monocytes do not exist as one single population. In 1989, Passlick and colleagues used flow cytometric analysis to identify a small monocyte subset that expressed both CD14 and CD16; later termed 'nonclassical' monocytes to distinguish them from the CD14^{High}CD16^{-} 'classical' monocytes. CD14 is a co-receptor for toll-like receptor 4 (TLR4), together they detect extracellular bacterial lipopolysaccharide (LPS). CD16 is a low-affinity FcγRIII receptor that binds the Fc domain of IgG and has been suggest to aid monocytes in the phagocytosis of antibody opsonised pathogens (Clarkson and Ory, 1988). The complexity of monocyte subsets grew when in 2001 a paper by Grage-Griebenow et al. reported the existence of more than one population of CD16{+} monocytes. Like classical monocytes these cells expressed high levels of CD14 but had low CD16 expression, existed as a very small percentage of the blood monocyte population (<10%) and served separate functions. These monocytes were therefore thought to be an "intermediate" state between the classical and the nonclassical monocytes and were largely overlooked as a unique subset (Figure 1.2).

In 2010 the Nomenclature Committee of the International Union of Immunological Societies accepted the classification of human monocytes into classical (Cl), intermediate (Int) and nonclassical (NCl) monocytes (Ziegler-Heitbrock et al., 2010). The very next year two vast gene profiling reports were published detailing many of the unique attributes of each subset and solidifying their individual nature (Wong et al., 2011; Zawada et al., 2011). The origin of the Int and NCl monocytes is largely unknown. Multiple studies have observed an increase in the NCl monocyte population coupled with a decrease in Cl monocytes but with no overall change to total monocyte number (Mukherjee et al., 2015; Semnani et al., 2014; Sunderkotter et al., 2004; Ziegler-Heitbrock et al., 2010). It is therefore widely regarded that Int and NCl monocytes are at least in some part derived from Cl monocytes (Zawada et al., 2012).
Figure 1.2: Classification of the three monocyte subsets based on relative CD14 and CD16 expression.

Human monocyte subsets in blood can be separated into three functionally distinct subsets. Classical monocytes are characterised by high expression of CD14 and lack of CD16 expression, intermediate monocytes are positive for both CD14 and CD16 and nonclassical monocytes express less CD14 and have a relatively high CD16 expression. Subset population sizes are donor dependent and many diseases cause shifts of one subset to another. At steady state the ratio of Classical: Intermediate: Nonclassical ~85:5:10%.

From (Wong et al., 2012) with permissions.
1.1.1.1 **Tissue Resident Macrophages — A Story of Origins**

It was originally thought that Mφ found in the tissues all originated from circulating monocytes in the blood. This concept of a mononuclear phagocytic system from bone marrow to blood to tissue was coined by van Furth and colleagues in 1972 (van Furth et al., 1972). However, the simple inflammatory Mφ concept evolved as tissue specific Mφ were identified and were found to possess proliferative abilities (Gordon and Taylor, 2005; Lichanska and Hume, 2000; Ovchinnikov, 2008). In 2004, Kanitakis and colleagues reported their observations made on a double hand transplant patient who possessed Langerhans macrophages from the donor, but were still self-proliferating four years after amputation. In 2013 two independent studies used fate mapping and murine models to show that tissue resident alveolar macrophages were self-proliferative cells that were not seeded from circulating monocytes (Hashimoto et al., 2013; Yona et al., 2013).

It is now known that tissue resident macrophages exist in a number of different tissues and organs such as brain microglia (Ajami et al., 2007), cardiac macrophages (Epelman et al., 2014), adipose tissue (Amano et al., 2014) and more. Some tissue macrophages such as those found in the intestine (Bain et al., 2014) and dermis (Zigmond and Jung, 2013) are in least some part replenished from monocyte precursors. Studies in murine models has led to the current paradigm that tissue resident macrophages originate during early yolk sac to embryo development and are seeded from erythromyeloid progenitor cells (Lavin et al., 2015; Yona et al., 2013). As the foetus develops organs and defined tissues these tissue resident macrophages are incorporated into the tissues and self-proliferate throughout life.

Compared to the monocyte-derived inflammatory macrophages, tissue resident macrophages tend to play a more M2-like role and maintain the resident tissue by savaging dead cells, promoting wound healing and carrying out tissue specific functions (Davies et al., 2013; Kierdorf et al., 2015). Such examples of tissue specific maintenance include synaptic pruning of neurones by mycroglia (Paolicelli et al., 2012),
regulation of insulin sensitivity by adipose Mφ (Odegaard et al., 2007), clearance of debris in the lung by alveolar Mφ (Maus et al., 2002) and ruptured erythrocyte clearance by Kupffer cells in the liver (Ganz, 2012).

1.1.1.2 OF MICE AND MEN – A TALE OF TWO MODELS

Before exploring further into the literature on monocyte subsets and their possible pathways of differentiation in the tissues it is important to address the differences between human and mouse models. Much, if not most, of the experimental studies conducted on monocyte subsets, mapping their differentiation pathways and formation of multinucleated giant cells (MGC) has been conducted in mice. An increasing number of studies are revealing biologically significant differences between the two species which raises doubts about the applicability of the mouse model to human immunity. Human monocyte subsets are usually described as CI (CD14^{++}CD16^-), Int (CD14^{++}CD16^+) and NCI (CD14^{+}CD16^{++}) monocytes (Ziegler-Heitbrock et al., 2010). At steady state, the distribution of the subsets is 85% CI, 5% Int and 10% NCI in the bloodstream (or 17:1:2) (Wong et al., 2012). Multiple studies have shown an expansion of the Int and NCI subsets during fusion-related inflammatory diseases such as tuberculosis (Castaño et al., 2011), Crohn’s disease (Grip et al., 2007), hepatitis B (Zhang et al., 2011a) and rheumatoid arthritis (Rossol et al., 2012).

Murine monocyte subsets have been categorised in multiple ways over the past decade due to the ever growing list of their markers. A team in 2014 sought to simplify the nomenclature based on cell ontogeny and proposed that mouse subsets can be regarded as classical (Ly6C^{High}) or nonclassical (Ly6C^{Low}) (Guilliams et al., 2014). Though many other labelling systems exist for mouse subsets the predominating feature is the absence of the intermediate subset. Some studies have tried to classify mouse monocyte subsets phenotypically into 3 subsets in harmony with the human subsets (Ziegler-Heitbrock et al., 2010), however, most studies persist in a classical and nonclassical nomenclature. Unlike humans, murine models possess an equal 1:1 ratio of classical (Ly6C^{High}): nonclassical (Ly6C^{Low}) monocytes (Geissmann et al., 2003; Sunderkotter et al., 2004).
The greatest discrepancies between human and mouse models was revealed in 2010 by Ingersoll et al. who utilised microarrays to screen hundreds of expressed genes in both human and mouse subsets. They also used flow cytometry to compare the expression levels of 24 proteins of interest. In relation to this study in monocyte fusion, they found that three monocyte fusion markers CD9, CD81 and CD36 (their roles in fusion are discussed below) were all differently expressed between human and mouse monocytes (Ingersoll et al., 2010). Specifically, CD9 expression was higher in human CD16- monocytes than CD16+, however, in mice this was reversed as Ly6C\text{High} classical monocytes possessed the higher expression of CD9. CD81 was detected by flow cytometry in both human subsets but only detected at very low levels in all mouse monocytes. CD36 was higher in human CD16- than CD16+ monocytes but in mice the Ly6C\text{High} was lower than Ly6C\text{Low} monocytes for CD36. CD9 and CD81 have been reported to play a vital role in monocyte fusion (Parthasarathy et al., 2009; Takeda et al., 2003) and CD36 is a scavenger receptor that has been shown to participate in the formation of multinucleated giant cells (Helming et al., 2009). Because of these differences, any murine-derived fusion studies should be viewed with caution and for the purposes of this investigation only human monocytes will be used.

1.1.1.3 Monocyte Subsets

As previously mentioned there are currently three accepted subsets of human monocytes; Cl, Int and NCI monocytes (Ziegler-Heitbrock et al., 2010). Much research in the past decade has attempted to reveal the specific roles of each of the different subsets and their contribution to disease. It should be noted however, that there remain many mysteries of the pathways of differentiation and there appear to be many overlaps in functions shared between the subsets. On a transcriptomic level, the Int and NCI monocytes share more similarities with one another, differing in only 249 genes. Understandably, the Int monocytes were found to be the most transcriptomically similar of the CD16+ monocytes to the Cl subset – differing by the expression of 942 genes (Wong et al., 2011). Interestingly the Int and NCI subsets showed a greater susceptibility to apoptosis compared to the classical monocytes when exposed to reactive oxygen species (Zhao et al., 2010) and TB (Castaño et al.,
These findings were later confirmed on a genetic level by Wong et al. (2011) and attributed to the concept that Int and NCl are late-stage monocytes.

Cl have been labelled as the primary phagocytosing cells (Cros et al., 2010) and have been shown to be able to detect pathogen-associated molecular patterns (PAMP) via pattern recognition receptors (PRR) such as toll-like receptors and respond by internalising bacterial antigens by phagocytosis (Antonelli et al., 2014; Cros et al., 2010; Yang et al., 2014a). Cl have also been shown to be the most responsive of the three subsets to multicellular nematode antigens (Semnani et al., 2014). However, two different studies have reported that the Int were the most effective at phagocytosing Plasmodium vivax infected red blood cells (Antonelli et al., 2014; Zhou et al., 2015). Wong and colleagues also found that steady state Cl transcribed genes for angiogenesis at far higher levels than the Int or NCl, whose transcription patterns favoured MHC class II production and cell migration proteins respectively (Wong et al., 2011). This is in accordance with the Int subset being labelled the “inflammatory” subset and NCl the “patrolling” subset (Antonelli et al., 2014; Yang et al., 2014a). It seems that the subsets exist in such a way that each one can specialise to specific pathogens and responses.

Though monocytes exist in high numbers in the bloodstream, their major role is to enter the tissues, patrol, respond to steady-state or inflammatory signals and differentiate into effector cells. The Int and NCl have been shown in functional studies to be the most effective at migration and endothelial transmigration (Randolph et al., 2002; Semnani et al., 2014). These properties are conferred by their mutually high expression of migration proteins (Wong et al., 2011) and the Int’s high transcription of cytoskeletal rearrangement genes (Semnani et al., 2014) granting them the ability to rapidly reorganise their morphology during transmigration. NCl also possess the ability to inhibit tumour proliferation, in Ly6C- (NCl-equivalent) deficient mice; introduction of Ly6C- monocytes resulted in NCl migration to the tumour site, activation of NK-cells and prevention of tumour invasion in the lung (Hanna et al., 2015).
1.1.1.4 **MONOCYTE SUBSET SIGNALLING**

The monocyte subsets differentially express two different chemokine receptors that coordinate their migration; C-C chemokine receptor type 2 (CCR2) and CX3C chemokine receptor 1 (CX3CR1). The CCR2 ligand (CCL2 or MCP-1) is associated with an inflammatory state and is a powerful chemoattractant for monocytes. In functional studies the subsets showed a Cl>Int>NCl order of secretion of CCL2 when infected with *P. vivax* (Antonelli *et al.*, 2014) or exposed to LPS (Cros *et al.*, 2010). On the other hand, the CX3CR1 ligand (CX3CL1) is constitutively expressed in the tissues and confers an anti-inflammatory and homeostatic setting (Griffith *et al.*, 2014). In accordance with their previously mentioned roles the Cl are (CCR2HighCX3CR1Low), Int (CCR2LowCX3CR1Med) and NCl (CCR2LowCX3CR1High) (Wong *et al.*, 2011). Compared to the other two subsets, Int expresses much higher levels of the MHC class II complex (or HLA-DR) which presents peptides from phagocytosed pathogens to T-cells and bridges the innate and adaptive immune systems (Abeles *et al.*, 2012; Wong *et al.*, 2011).

The Cl and Int subsets secrete a repertoire of pro-inflammatory cytokines in response to PAMP to generate a local inflammatory state. Upon stimulation with LPS, the Int closely followed by the Cl subset were found to secrete the highest levels of IL-1α, IL-1β, IL-6 and TNFα (Cros *et al.*, 2010; Semnani *et al.*, 2014). In both studies there was no pro-inflammatory cytokine production by the NCI when cultured in LPS. Furthermore, Cros *et al.* (2010) found that after 18hrs of culturing in steady state conditions, the NCI produced significantly higher levels of IL-1 receptor antagonist (IL-1RA) compared to Cl and Int. IL-1RA binds the IL-1 receptor and acts as a competitive inhibitor dampening signalling from the pro-inflammatory IL-1 (Weber *et al.*, 2010). Walter *et al.* (2013) demonstrated that CD14High (Cl and Int) monocytes when cultured in pro-inflammatory cytokines associated with rheumatoid arthritis were able to augment Treg cells into a pro-inflammatory state and secrete more pro-inflammatory cytokines.

The IL-1 family of pro-inflammatory cytokines and TNFα are all able to activate the canonical pathway of NF-κB (Figure 1.3) (Tedgui and Mallat, 2006; Wajant *et al.*, 2006).
IL-1, PAMPs and/or TNFα bind their respective receptors on the membrane (IL-1R, TLR4 and TNFR1 respectively). Once bound the IL-1R or TLR4 recruit a MyD88 adaptor (Weber et al., 2010) and the TNFR1 utilises a TRADD adaptor (Wajant et al., 2003) to facilitate the activation of the IκB kinase (IKK) complex. The IKK complex is made of two kinases (α-unit and β-unit) and one regulatory protein (γ-unit), once activated the IKK complex facilitates the phosphorylation of IκB (Pelzer and Thome, 2011; Tedgui and Mallat, 2006). In steady-state IκB is bound to NF-κB to inactivate it but once IκB is phosphorylated by the IKK complex it becomes further ubiquitylated and is degraded by the proteasome. Free NF-κB is able to enter the nucleus and enhance the expression of a whole host of pro-inflammatory cytokines; IL-1α (Mori and Prager, 1996), IL-1β (Hiscott et al., 1993), IL-6 (Libermann and Baltimore, 1990), IL-17A (Shen et al., 2006), TNFα (Shakhov et al., 1990) and chemoattractants CCL2 (Ueda et al., 1994), CCL3 (Widmer et al., 1993) and RANTES (Moriuchi et al., 1997) to attract more leukocytes to the site of inflammation.

The NF-κB pathway also enhances the secretion of anti-inflammatory cytokines, this has been suggested to act as a dampening reaction to avoid over-inflammation (Williams et al., 2004). NF-κB is able to produce anti-inflammatory IL-10 (Cao et al., 2006) and IL-13 (Hinz et al., 2002). As with the pro-inflammatory cytokines, when cultured in LPS the Cl and Int subsets secreted significantly more IL-10 but the NCl subset secreted significantly less (Cros et al., 2010; Semnani et al., 2014). IL-10 inhibition has been shown to inhibit the NF-κB pathway by blocking the function of the IKK complex (Schottelius et al., 1999) and by blocking the RNA polymerase II loading-site on the promotor (Zhou et al., 2004). Another NF-κB anti-inflammatory cytokine; IL-13, has been observed to be significantly increased in the serum of chronic systolic heart failure patients. Amir et al. (2012) used intracellular flow cytometry to show that NCl were able to produce high levels of IL-13 but the Cl and Int did not produce any detectable IL-13.
Figure 1.3: Simplified Mechanism of TNFα and IL-1 Activation of the NF-κB
Proinflammatory cytokines TNFα and IL-1 bind their respective receptors. Binding of ligand induces TRADD or MyD88 recruitment to the respective receptors. Through a series a steps these adapter proteins lead to the activation of the IκB kinase (IKK) complex. NF-κB is constitutively expressed in the cytoplasm however it exists in an inactive form bound to IκB. The now active IKK complex phosphorylates IκB leading to its ubiquitinylation, detachment from NF-κB and designation for degradation. Free NF-κB enters the nucleus and promotes the transcription of gamma activated sequences (GAS).
From (Pelzer and Thome, 2011) with permissions.
1.2 Monocyte Mononuclear Descendants: Macrophages and Dendritic Cells

As mentioned previously monocytes are not terminally differentiated but can in fact sense local cytokines and react accordingly by forming effector cells that are more specialised to deal with the signal. In steady-state, NCI monocytes will enter the tissues from the bloodstream and patrol the tissues while the classical and intermediate monocytes are recruited from the bloodstream into the tissues by inflammatory signals such as CCL2. Depending on the cytokine signals and tissue location, monocytes are able to differentiate into pro-inflammatory (M1) or anti-inflammatory (M2) macrophages, inflammatory dendritic cells (moDC) or MGC.

There have been multiple studies with conflicting results on the differentiation of monocytes and what cytokines drive which destiny. Initially, macrophages were subcategorised as either “inflammatory” M1 or “repair/alternative” M2 to match their differentiation destinies with T-helper 1 and 2 cells (Th1 & Th2). Th1 cells produce IFNγ as their primary response to activation whereas Th2 cells secrete IL-4 and IL-13. IFNγ induces monocytes to form M1 (Nathan et al., 1983) whereas IL-4 and IL-13 induces them to form M2 (Mills et al., 2000). M1 were found to be highly pro-inflammatory, able to rapidly engulf microbes and secrete IL-1, TNFα and IL-6. M2 respond by augmenting the local environment into a wound-healing state by secreting IL-10 and IL-1RA to inhibit inflammatory cytokine production (Mantovani et al., 2004).

However, the view that monocyte to Mφ differentiation is either inflammatory M1 or repair M2 is primitive and simplified (Figure 1.4). The emerging consensus is that monocytes differentiate into a spectrum of different effector Mφ and moDC, capable of producing different levels of pro-inflammatory and anti-inflammatory responses. Early this year Ohradanova-Repic et al. (2016) isolated CD14+ human monocytes, exposed them to an array of differentiation factors and used a panel of 70 antibodies to culture and classify the resultant Mφ and moDC (Figure 1.5). They characterised seven different Mφ ranging in function from highly M1-like (GM-CSF culture, LPS+IFNγ primed) to the highly M2-like (M-CSF culture, IL-10 primed). Granulocyte macrophage colony-stimulating factor (GM-CSF) induces the upregulation of M1 genes and is
Figure 1.4: Polarised vs Spectral Activation Model for Monocyte Differentiation. Previously it was thought that monocytes differentiate into either M1 or M2 macrophages or monocyte derived dendritic cells. However the increasing number of differentiation pathways and identification of new monocyte derived species has demonstrated the incredible plasticity of monocytes and their descendants. From (Guilliams and van de Laar, 2015) with permissions.
Monocytes show amazing plasticity and ability to differentiate in response to cytokine signals. Monoblasts in the bone marrow release predominantly classical monocytes into the bloodstream which mature into intermediate and nonclassical. The destinies the monocyte subsets take is shown in three separate sectors: Mφ, DC and MGC. Highly pro-inflammatory (M1-like) to mildly inflammatory cells are coloured from dark red to pale red while tissue remodelling (M2-like) cells are shaded in the same way in green.
associated with pro-inflammatory microenvironments while macrophage colony-stimulating factor (M-CSF) induces the expression of M2-like homeostasis and wound repair genes and is constitutively expressed in many tissues (Van Overmeire et al., 2016). However, the generation of both pro-inflammatory and alternative macrophages from both GM-CSF and M-CSF as demonstrated by Ohradanova-Repic et al. (2016) agrees with the findings of earlier studies (Jaguin et al., 2013) and demonstrates that macrophage polarity is a variable process. Ohradanova-Repic et al. (2016) also categorised two moDC subsets (immature and mature) from human CD14+ monocytes, these could be generated by culture in GM-CSF+IL-4 and the mature moDC were primed with LPS.

Little is known about the individual contribution of the monocyte subsets to the formation of different types of Mφ and moDC and most of the work thus far has compared CD16- (Cl) and CD16+ (Int and NCl) monocytes. However, CD16-monocytes have been shown in microarray analyses to express higher levels of the GM-CSF receptor while CD16+ monocytes express higher M-CSF receptor (Martinez et al., 2006). This suggests that as the monocyte subsets mature from Cl to NCI they increase in their tissue patrolling and homeostatic functions.

moDC play an important role as antigen presenting cells (APC) as they are able to phagocytose and digest pathogens and present their peptides on the MHC class II complex. The moDC can then migrate to the lymph nodes and present the peptide to B-cells to elicit a humoral response and T-cells to couple with the T-cell receptor and potentially form an immune synapse for the transfer of mRNAs, endosomes and proteins (Alarcón et al., 2011; Angus and Griffiths, 2013; Martín-Cófreces et al., 2014). moDC therefore represent an important bridge between the innate and adaptive immune systems. Sánchez-Torres et al. (2001) found that CD16-derived moDC that had been cultured in LPS; secreted more IL-12. IL-12 activates NK-cells into a pro-inflammatory state and to secrete TNFα and IFNγ (Zhang et al., 2011b). The CD16+ derived moDC responded differently; by transcribing more transforming growth factor-β1 (TGF-β1; dampens pro-inflammatory reactions in monocytes and Mφ) and were able to stimulate IL-4 secretion in T-cells more than CD16- moDC.
A later study confirmed that CD16+ monocytes form moDC that can transmigrate and reverse-transmigrate the endothelium and stimulate T-cells to a greater extent than CD16- monocytes (Randolph et al., 2002). Conversely, monocyte to moDC differentiation may not be necessary for effective antigen presentation. Jakubzick et al. (2013) showed that mouse classical (Ly6C+) monocytes could patrol tissues and acquire antigen before migrating to the lymph nodes without differentiating into Mφ or moDC.

1.3 MULTINUCLEATED GIANT CELLS
Monocytes are able to undergo homotypic fusion in certain microenvironments to form a variety of different types of MGC (or polykaryons). For example, in bone tissues, monocytes are able to fuse in steady state to form multinucleated osteoclasts which digest bone material as part of bone homeostasis. However, osteoclast production and activity has been shown to be upregulated in chronic inflammatory disorders such as rheumatoid arthritis (Aeberli et al., 2016), Crohn’s disease (Park et al., 2013) and calcified atherosclerotic plaques (Qiao et al., 2015). At sites of placement of surgical implants, foreign body giant cells (FBGC) are reported to be found proximal to osteoclasts (Barbeck et al., 2016; Chappuis et al., 2015; Lorenz et al., 2015; Morishita et al., 2016). As their name suggests, FBGC form in response to foreign matter that pro-inflammatory Mφ cannot phagocytose. When bacterial pathogens such as Mycobacterium tuberculosis are phagocytosed by Mφ they are able to avoid destruction by inhibiting lysosome-phagosome fusion and arrest apoptotic pathways (Behar et al., 2010; Bocchino et al., 2005; Lee et al., 2009) to allow the bacterium to proliferate intracellularly. Newly recruited Mφ react to these infected Mφ by fusing with one another to form Langhans giant cells (LGC) to engulf and encapsulate the infected cells and form a granuloma (Guirado and Schlesinger, 2013).

1.3.1 OSTEOCLASTS: AN MGC FOR BONE HOMEOSTASIS
Osteoclasts are generated in vitro by culturing monocytes in M-CSF and receptor activator of NF-κB ligand (RANKL) (Cody et al., 2011; Long and Humphrey, 2012). RANKL is a member of the TNF superfamily and can activate NF-κB and its
transcription pathway to initiate the transcription of fusion promoting genes (Yu et al., 2011). Komano et al. (2006) showed that in the presence of M-CSF and RANKL, CD16-monocytes differentiated and fused to make osteoclasts more favourably than CD16+ monocytes. Yu et al. (2011) demonstrated that IL-4 and RANKL induced both inflammatory MGC and homeostatic osteoclast formation through the activation of the NF-κB pathway. They then went on to show that in the presence of both cytokines IL-4 directed MGC formation predominated over RANKL mediated fusion. More recently, Rivollier et al. (2013) demonstrated that human monocytes could be differentiated into immature moDC with GM-CSF and IL-4 and were still able to form osteoclasts when cultured in M-CSF and RANKL. It seems the formation of osteoclasts is fairly flexible in regard to the source of the fusing cells but is dependent on the presence of RANKL.

Until recently, osteoclasts were distinguished from FBGC in immunohistological samples by their high production of cathepsin K (Costa et al., 2011) and tartrate-resistant acid phosphatase (TRAP) (Hayman, 2008). However, Park et al. (2013) recently demonstrated that inflammatory MGC in granuloma biopsies produce high levels of TRAP and cathepsin K and argued that the latter was a better marker for inflammatory MGC. As osteoclasts are steady-state MGC and their generation from fusion is initiated through different factors (Yu et al., 2011) the focus henceforth will be on MGC formed in inflammatory microenvironments.

1.3.2 FOREIGN BODY GIANT CELLS: AN INFLAMMATORY MGC FOR FOREIGN BODY DESTRUCTION

FBGC form *in vivo* from the fusion of monocytes attempting to engulf and degrade foreign material extracellularly in the tissues. FBGC are larger than LGC, contain disorganised clusters of nuclei and are regularly observed on the surface of medical implants and stents (Chappuis et al., 2015; Khandwekar et al., 2010). Like osteoclasts, FBGC are able to bind tightly to the synthetic surface and form a suction-plug space between the surface and the cell (called a podosome) where digestive molecules are secreted (DeFife et al., 1999; Zhao et al., 1991).
A degradative environment is established within the podosome by secreting reactive oxygen species from NADPH oxidase (Quinn and Schepetkin, 2009), exocytosis of lysozymes (Harkel et al., 2015), matrix metalloprotease-9 (MMP-9) (Zhu et al., 2007) and cathepsin K (Park et al., 2013). FBGC have also been shown to have very high phagocytic potential. Milde et al., (2015) compared the ability of IL-4 derived FBGC and M2 macrophages to phagocytose antibody and complement-opsonised beads of different sizes. They found that of the bead sizes that both could engulf (10-20µm); FBGC were able to phagocytose significantly more beads than M2. Furthermore, FBGC were confirmed by confocal microscopy to phagocytose 45µm beads which the M2 could not.

FBGC can be generated in vitro by a range of cytokine treatments:, such as IL-4 alone, GM-CSF+IL-4, IL-3+IL-4 (McNally and Anderson, 1995), IL-13 alone (DeFife et al., 1997), M-CSF+IL-4 and M-CSF+IL-13 (Ikeda et al., 1998). Thus, IL-4 appears to be a key cytokine inducing the multinucleation of macrophages into a FBGC destiny. Interestingly, IL-4, IL-13 (Ikeda et al., 1998), GM-CSF and IL-3 (Miyamoto et al., 2001) have been shown to inhibit osteoclast formation if added in the early stages of differentiation.

In vivo FBGC can be generated by surgical implants when new materials are being tested for use as medical implants. Different materials generate different levels of FBGC growth though Brodbeck and colleagues demonstrated in 2002 that IL-4 derived MGC developed less favourably on materials that were pre-treated to be hydrophilic compared to hydrophobic, cationic and anionic surfaces. Many inorganic materials used in medical implants induce a greater FBGC response than xenogeneic equivalents (Lorenz et al., 2015), however, these animal alternatives come with ethical issues and are not appropriate for joint replacements. Between 2005-2030 it is estimated in the USA alone that hip and knee arthroplasties are to grow from 328,000 to 572,000 (174%) and 517,000 to 3.48 million (673%) cases respectfully (Kurtz et al., 2007).
1.3.3 Langhans Giant Cell: An Inflammatory MGC for Bacterial Encasement

In 1886 Theodor Langhans first published his sketches and notes on *M. tuberculosis* infected lung in "Archiv fur Pathologische Anatomie und Physiologie und fur Klinische Medicin" (Langhans, 1868). He drew detailed sketches of large cellular bodies residing in the granuloma that possessed multiple nuclei (3-20 nuclei) arranged in a ring or horse-shoe pattern (Byrd, 1998). LGC are commonly found in granulomas of patients suffering from tuberculosis infections (Lever and Sheer, 2010) or sarcoidosis (Van Maarsseveen *et al.*, 2009).

Rhee *et al.* (1978) demonstrated *in vivo* that LGC form on polyester implants in rats within two days of implantation. However, from between 4-14 days the number of nuclei found within LGC increased until all MGC morphology was that of FBGC. They noted a transition in nuclear arrangement stating that 3-6 nuclei MGC\(^{-1}\) were all LGC, 6-30 nuclei MGC\(^{-1}\) both LGC and FBGC were present and at >30 nuclei MGC\(^{-1}\) all were FBGC. The ability of LGC to form FBGC was also confirmed in human sarcoidosis extracts (Van Maarsseveen *et al.*, 2009) and *in vitro* with Concanavalin A (ConA) derived MGC (Möst *et al.*, 1997). However, some teams have argued that LGC and FBGC are generated in response to different cytokines. As mentioned above FBGC can be generated *in vitro* using IL-4 in combination with other cytokines while IFN\(\gamma\) is argued to be the key determinant for LGC formation (Byrd, 1998; McNally and Anderson, 1995; Sakai *et al.*, 2012; Takashima *et al.*, 1993).

1.3.3.1 MTB and HIV Coinfection

The World Health Organisation (WHO) Global Tuberculosis Report 2015 states: "In 2014, TB killed 1.5 million people (1.1 million HIV-negative and 0.4 million HIV-positive). The toll comprised 890,000 men, 480,000 women and 140,000 children. TB now ranks alongside HIV as a leading cause of death worldwide." (Anderson *et al.*, 2015). With so many deaths occurring worldwide from TB infections it is imperative to further understand the immune system’s mechanisms of combating this infection so that treatments can be augmented to compliment the immune response.
Provided the medical infrastructure and speed of diagnosis is sufficient then *Mycobacterium tuberculosis* (Mtb) infection alone is a relatively treatable condition. However, the increasing incidence of HIV and Mtb coinfection and increasing reports of antibiotic resistant Mtb strains has been flagged by the WHO as a major cause for concern (Anderson et al., 2015). Both HIV and Mtb infections have been shown to exacerbate one another. A patient infected with HIV who is also infected with the latent form of *Mycobacterium tuberculosis* is 20 times more likely to experience reactivation of the pathogen to the active form of the disease (Pawlaowski et al., 2012). Conversely, Mtb has also been implicated in accelerating the manifestation of opportunistic infections in HIV sufferers (Whalen et al., 1995).

The formation of the protective granuloma is largely mediated by CD4+ and CD8+ T-cells and their production of IFN-γ and other fusogenic cytokines (explained in more detail below) (Cooper, 2009; Lewinsohn et al., 2003). The destruction of CD4+ T-cells by HIV and subsequent dampening of the cell-mediated immunity results in a delayed containment of the bacteria which rapidly invade the lungs and tissues via their macrophage vectors (Orme et al., 1993). HIV has also been reported to increase the expression of receptors that Mtb utilises to enter their target Mφ (Rosas-Tarco et al., 2006), dampen the ability of monocytes to produce reactive oxidative species (Spear et al., 1990) and inhibit TNF-α driven apoptosis of Mtb infected Mφ (Patel et al., 2007).

1.3.3.2 MECHANISMS OF Mtb DRUG RESISTANCE

The antibiotic revolution of the last century has been the birthing grounds for a range of antibiotic resistant strains of Mtb. Mtb is a surprisingly resilient pathogen that has gained resistance through mutations of its own genome rather than through horizontal transfer mechanisms such as plasmids and transposons (Kochi et al., 1992). WHO has defined these multiple drug resistant strains (MDR-TB) as strains resilient to the commonly used isoniazid and rifampin. MDR-TB that has also become resistant to fluoroquinolone and any of the intravenously administered anti-Mtb drugs such as amikacin, kanamycin or capreomycin have been deemed extensively drug-resistant Mtb (XDR-TB). XDR-TB pose a growing threat in the future of TB treatment, as of 2015, 105 countries have already reported the presence of XDR-TB strains (Anderson
et al., 2015). WHO also reported that MDR-TB were present in 3.3% of new TB cases and 20% of previously treated cases and that in 2014, ~190,000 people died as a result of MDR-TB (Anderson et al., 2015).

Mtb’s hardiness can be attributed not just to the acquisition of beneficial mutations but also to its residual low permeability to antibiotics as a result of its mycolic acid containing cell wall (Jarlier and Nikaido, 1994). Furthermore, Mtb is immune to β-lactam based antibiotics due to its ability to produce β-lactamase to hydrolyse the β-lactam ring thus rendering the drug inactive (Wang et al., 2006). Isoniazid, one of the most common TB treating drugs, comprises of a pyridine ring and a hydrazide group that is administered in an inactive form. It is the Mtb’s own catalase-peroxidase activity (KatG) that activates isoniazid which then binds with high affinity to enoyl-acyl carrier protein reductase (InhA) blocking its ability to produce the mycolic acid necessary for cell wall integrity (Rawat et al., 2003). Resistance to isoniazid has been confirmed by mutations in the Mtb’s KatG to decrease affinity to the drug (Cade et al., 2010) or in the InhA promotor to increase InhA expression (Niehaus et al., 2015). InhA mutations have the added problem of conferring resistance to other structurally similar drugs such as ethionamide (Banerjee et al., 1994).

Rifampicin is a lipophilic ansamycin that has been used to treat Mtb for over 40 years. Rifampicin targets the Mtb β-subunit of RNA polymerase, once bound rifampicin inhibits the elongation of mRNA resulting in the arrest of protein synthesis (Blanchard, 1996). Rifampicin resistance has been shown to be conferred by mutations in the rpoB gene of Mtb which contains the code for the β-subunit of RNA polymerase. By mutating the rpoB sufficiently to lessen the affinity of Rifampicin but maintain activity of the β-subunit; Mtb is able to gain resistance to the drug (Telenti et al., 1993). The aminocyclitol glycoside antibiotic known as Streptomycin was the first ever antibiotic used to treat TB. As its name suggests, streptomycin was first isolated from Streptomyces griseus in 1943 by Albert Schatz (1920-2005) and Selman Abraham Waksman (1888-1973) (Kingston, 2004). Streptomycin is a potent inhibitor of protein synthesis as it is able to bind to the 16S rRNA of the 30S subunit of the prokaryotic ribosome and block translation initiation (Moazed and Noller, 1987). To circumvent
this inhibition, streptomycin resistant Mtb strains regularly show mutations in their *rrs* and *rpsL* genes at the coding sequences for the streptomycin binding site (Gillespie, 2002).

1.3.3.3 **THE MOLECULAR BASIS OF MTB ENTRY**

Mycobacterium tuberculosis typically enters via the lungs and airways where it is phagocytosed by tissue resident Langerhans macrophages (not to be mistaken with LGC) which recruit new inflammatory Mφ and moDC. However, *M. tuberculosis* has evolved to inhibit the fusion and maturation of the phagosome with lysosomes to avoid acidification and digestion. Early work suggested that the bacterium inhibited phagolysosome maturation utilising sulphatides (Goren *et al.*, 1976) and secreted ammonia (Gordon *et al.*, 1980) to inhibit phagosome maturation. Later, Via *et al.* (1997) demonstrated that early stage phagosomes contained Rab5 and late stage phagosomes contained Rab7, however, *M. tuberculosis* containing phagosomes remained Rab5. The Rab family of GTPases are responsible for coordinating the movements of endosomes and phagosomes to lysosomes for fusion and destruction of the contents (Seto *et al.*, 2011). The mechanism for how *M. tuberculosis* inhibits the shedding of Rab5 and the integration of Rab7 is not fully understood but it is within this phagosome maturation phase that the virulent strains avoid destruction (Seto *et al.*, 2011).

Protected within the Mφ, the bacterium is able to proliferate whereby it causes stress on the host cell or ruptures the Mφ. The resultant damage-associated molecular patterns (DAMP) and PAMP signals released trigger the secretion of CCL2 to attract more pro-inflammatory M1. The accumulating Mφ amass and secrete pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-6, IL-12 (Aranday-Cortes *et al.*, 2013; Flynn and Chan, 2001) and local Th17 cells secrete IL-17A which acts as a potent pro-fusion signal (Coury *et al.*, 2008). A granuloma forms as a result of this cocktail of cytokines with the infected macrophages in the centre, engulfed by a highly organised structure of Mφ, LGC and external T-cells (Figure 1.6) (Guirado and Schlesinger, 2013).
Figure 1.6: Structure of a TB Induced Granuloma
Far from being disorganised clumps of cells amassing around *Mycobacterium tuberculosis* infected macrophages; granuloma are actually highly organised immune structures that act to encapsulate and inhibit the pathogens spread.

A. A histological example of a granuloma formed in a minipig’s lung. Cells stained with hematoxylin-eosin.

B. Model diagram of a granuloma. Infected Mφ release chemoattractants that attract more macrophages, NK-cells and T-cells which in turn create an IFNγ and pro-inflammatory cytokine-rich microenvironment which stimulate incoming monocytes to fuse and for MGCs to encase the infection.

From (Guirado and Schlesinger, 2013) with permissions.
The granuloma functions to encapsulate the bacterium so that it cannot spread but does not actually function to destroy the pathogen. The role of granuloma development and whether it is beneficial to the host is still highly debated; Davis and Ramakrishnan (2009) demonstrated in zebrafish that early granuloma production assisted the bacterium in spreading to newly recruited Mφ. However, they did not analyse the effect that MGC formation and engulfment would have during the later stages of granuloma formation and their zebrafish model lacked adaptive immune cells that are important in cytokine signalling during granuloma development (Bold and Ernst, 2009). An increase in CD16+ monocyte populations in the bloodstream in response to TB infection or granuloma have been reported by multiple investigators (Castaño et al., 2011; Lastrucci et al., 2015; Park et al., 2014). However, the individual contribution of the monocyte subsets towards MGC formation remains largely unknown and under-investigated and could reveal potential strategies for combating advanced-stage granuloma.

1.4 MECHANISMS OF MONOCYTE FUSION
The exact mechanism by which monocytes fuse to become MGC is still largely unknown and is likely to require the participation of multiple receptors and proteins to coordinate the en masse rearrangement of cytoskeletal structures and overcome the repulsive forces of the cell membranes. Homotypic monocyte fusion is a complex multistep process and can be subdivided into three key stages: competence, contact and commitment. In all three stages mentioned below, there is evidence of tetraspanin proteins forming partnerships with many of the membrane bound fusion-mediating proteins. The role and partnerships of tetraspanins will be discussed at length in the next section.

1.4.1 MONOCYTE FUSION: COMPETENCE & COMMUNICATION
In steady state when circulating in the bloodstream or patrolling the non-bone tissues; monocytes and Mφ do not fuse. To initiate a fusion-ready state, the monocytes must first be made fusion-competent by pro-fusion cytokines. These cytokines in turn trigger the transcription and upregulation of certain genes whose products facilitate fusion. Monocyte differentiation into Mφ has been shown to eliminate fusion
competence (Möst et al., 1997). Monocyte cultured in serum containing media for 8 days to form macrophages were unable to fuse when ConA was added. However, Möst and collegues (1997) observed that when freshly isolated monocytes were added to the Mφ with ConA media the two cells types could fuse and form MGC. These findings suggest monocytes are the more fusion-competent of the monocyte lineage.

As previously described, monocytes can be induced to form LGC using IFNγ and FBGC in response to IL-4+IL-13. IFNγ binds to the IFNγR which utilises the Jak1/Jak2 kinases to phosphorylate and activate the signal transducer and activator of transcription 1 (STAT1) (Figure 1.7) (O’Shea et al., 2015). Phosphorylated STAT1 forms a homodimer that is able to enter the nucleus and promote the transcription of a multitude of genes by binding the IFN-gamma activated sequences (GAS) to create a fusion-competent cell (Ramana et al., 2000). IL-4 and IL-13, on the other hand, are both able to bind the same receptor or their own individual receptors and utilise Jak1/Jak2/Jak3/Tyk2 kinases to activate and homodimerise STAT6 which binds a different array of genes that lead to fusion competence (Goenka and Kaplan, 2011; Wurster et al., 2000). It is interesting that these two different pathways are able to facilitate fusion and form MGC with different morphological features.

IL-4/IL-13 but not IFNγ signalling are able to upregulate the expression of triggering receptor expressed by myeloid cells 2 (TREM-2) on Mφ and moDC (Turnbull et al., 2006). TREM-2 is an integral membrane receptor that is able to bind a range of anionic bacterial factors (e.g. LPS) and apoptotic signals on host cells (Hsieh et al., 2009). Upon binding its ligand TREM-2 subsequently recruits DNAX activating protein of 12kD (DAP12) which possesses an immunoreceptor tyrosine-based activation motif (ITAM). Src family kinases phosphorylate the ITAM sites to recruit spleen tyrosine kinases (syk) which is phosphorylated to become activated, detach from DAP12 and activate the phosphatidylinositol 3-kinase (PI3K), NF-κB and Akt pathways (Paradowska-Gorycka and Jurkowska, 2013). The end result is a mass upregulation of hundreds of fusion-competence genes, such as DC-STAMP and E-cadherin (Helming et al., 2008).
Figure 1.7: Mechanisms of Macrophage Polarisation

The myeloid transcriptome reacts to pro-inflammatory and anti-inflammatory cytokines by activating different gene promoters. M1-like stimuli such as LPS and IFNγ trigger the activation of STAT1 homodimers and NF-κB to promote pro-inflammatory genes. M2-like signals such as IL-4, IL-10 and IL-13 result in the dimerization of STAT6 and other promotors leading transcription of anti-inflammatory genes. From (Sica and Mantovani, 2012) with permissions.
Expression of particular proteins has been observed on fusion-competent monocytes and many have proven to be essential for fusion by using blocking antibodies. Dendritic cell-specific transmembrane protein (DC-STAMP) is an integral membrane protein that has been shown using knockout mice to be essential for formation of FBGC and osteoclasts (Yagi et al., 2005, 2007). Interestingly, DC-STAMP expression is controlled by different transcription factors in FBGC and osteoclasts. Yagi et al. (2007) demonstrated with chromatin immunoprecipitation that the transcription factors PU.1 and NF-κB were responsible for the promotion of DC-STAMP in IL-4 derived FBGC formation. In RANKL driven osteoclast formation they demonstrated that the promoters of DC-STAMP were instead NFATc1 and c-Fos by using an NFATc1 inhibitor and c-Fos knockout mice. Despite its vital role in FBGC and osteoclast formation the mechanism by which DC-STAMP contributes to fusion is still unknown.

Matrix metalloprotease-9 (MMP-9) is a zinc dependent endopeptidase that can digest the extracellular matrix and cleave cytokines into active or inactive forms. MacLauchlan et al. (2009) demonstrated *in vitro* that blocking MMP-9 activity with antibodies did not arrest fusion but did act to significantly decrease the size of FBGC and % of fused nuclei. They then showed *in vivo* using MMP-9 null mice that FBGC could still form on implants but were significantly reduced in their capacity to form large FBGC (MacLauchlan et al., 2009). E-cadherin is a calcium dependent transmembrane protein that contributes to cell-cell adhesion by binding adjacent E-
cadherins homotypically (Moreno et al., 2007) and is involved in the formation of tight junctions (Wanat et al., 2015). Upon ligand binding the intracellular domain of E-
cadherin recruits α- and β-catenin which facilitates actin polymerisation to link the cytoskeleton to the bound E-cadherin (Van Den Bossche et al., 2009). Moreno et al. (2007) observed that IL-4 stimulated mouse monocytes expressed E-cadherin in a STAT6 dependent manner, they then found that anti-E-cadherin antibodies inhibited the formation of large MGC but, unlike anti-DC-STAMP antibodies, they did not arrest fusion outright. Wong and colleagues have observed that the surface expression of E-
cadherin was highest in nonclassical and intermediate monocytes and lowest in the classical monocytes (unpublished data). They also observed that the expression of
DC-STAMP was significantly higher in intermediate monocytes (unpublished data), possibly implicating a heightened role of intermediate monocytes in the fusion process.

1.4.2 Monocyte Fusion: Contact and Contraction
Once a monocyte has become fusion-competent and its transcriptome modulated by pro-fusion signals it must attract other monocytes or migrate towards other fusion-competent monocytes to fuse. CCL2 is highly secreted by fusing monocytes (Khan et al., 2015; Kyriakides et al., 2004; Moon et al., 2016). Khan et al. (2015) revealed with mRNA analysis that CCL2 transcription levels were 9- and 16-fold higher in M-CSF+RANKL and GM-CSF+IL-4 cultured monocytes compared to Mφ. They also showed that FBGC and osteoclast formation was significantly reduced in CCL2 knockout mice.

Monocytes responding to CCL2 must migrate using adhesion molecules and get close to one another by utilising surface adhesion molecules such as integrins. Integrins are a family of transmembrane proteins involved in adherence and outside-to-inside cellular signalling. Integrins exists as heterodimers comprising of an α subunit and a β subunit. Different α and β subunits can dimerise to produce different integrins for different ligands. In mammals there are 24 known integrin heterodimers composed of 18 different α subunits and 8 β subunits (Hynes, 2002). Specifically, β1 and β2 have recently been shown to be important in FBGC formation and have been revealed to be highly expressed following IL-4 treatment by multiple studies including confocal microscopy (McNally et al., 2007). The β2 integrin lymphocyte function-associated antigen 1 (LFA-1 or αLβ2 or CD11a:CD18) and its ligand intercellular adhesion molecule 1 (ICAM-1 or CD54) have been shown to play an important role in monocyte fusion. Möst et al. (1990) used antibodies targeting LFA-1 and ICAM-1 to show almost complete arrest of fusion indicating their involvement in cell-cell contacts as a necessary step towards monocyte fusion.

The macrophage fusion receptor (MFR) was first observed in 1995 by Saginario and colleagues when they found that by blocking the MFR with antibodies the rat Mφ would still aggregate and make cell clumps but were unable to fuse their membranes. It was
later reported by Han et al. (2000) that CD47 was the ligand for MFR and that fusion-competent Mφ upregulate their expression of both MFR, CD47 and a partner protein CD44. The current hypothetical model (Figure 1.8) is that upon MFR binding to CD47 on an adjacent monocyte, the MFR undergoes a change in quaternary structure and contracts, thus pulling the two membranes together, the CD44 molecule acts to stabilise this process and is shed upon MFR-CD47 contortion (Vignery, 2005). The formation of such tight gap junctions between monocytes and MGC has recently been confirmed by transmission electron microscopy images (Imaizumi et al., 2016). Signal-regulatory protein alpha (SIRPα) is another ligand to CD47 that has been implicated in the formation of contacts between fusing monocytes (Han et al., 2000; Wang and Pfenninger, 2006). The surface expression of SIRPα in intermediate and nonclassical monocytes have been shown to be twice that of classical monocytes (Wong et al. unpublished data) but its exact role in fusion remains unknown.

1.4.3 MONOCYTE FUSION: COMMITMENT AND COMPLETION

Once two fusion-competent monocytes have made contact and their membranes have committed to fusion there needs to be an array of proteins facilitating cytoskeletal and lipid rearrangements as the two cells merge.

As the membranes are brought into close proximity by MFR-CD47 complexes, the presence of the CD44 partner protein allows the recruitment of cytoplasmic ezrin-radixin-moesin (ERM) proteins. ERMs have been shown to bind the cytoplasmic domain of CD44 directly and are able to polymerise actin and rearrange the local cytoskeleton to stabilise the close cell contacts. Furthermore, EWI-2 and EWI-F (named for their conserved Glu-Trp-Ile motif) are also able to recruit cytoplasmic ERM and are partners to the tetraspanin proteins CD9 and CD81 (Sala-Valdés et al., 2006). CD9 and CD81 have been increasingly implicated as major organisers of fusion proteins (Charrin et al., 2013; Hulme et al., 2014; Parthasarathy et al., 2009; Takeda et al., 2003) and cell motility (Berditchevski and Odintsova, 1999; Takeda et al., 2008).
Figure 1.8: Theoretical Model of MFR-CD47 Tethering of Fusing Membranes

The MFR of a fusion competent monocyte binds to a CD47 of another monocyte. MFR-CD47 complexing favours a contraction of the two proteins to bring the two membranes closer together. CD44 acts as a partner protein and stabilises the complex and is shed once the contracted state has been achieved.

From (Vignery, 2005) with permissions.
The fusing cells not only need to mediate strong cell-cell contacts but must also establish strong contacts with the surface it is adhered to. Kitazawa et al. (1995) used Northern blot analysis on IL-4 treated mouse Mφ to show that αVβ3 is upregulated in a dose-dependent manner to IL-4. αVβ3 binds vitronectin and when activated form clusters of multiple αVβ3 units that are able to activate intercellular actin cytoskeleton polymerisation (Cluzel et al., 2005). αVβ3 expression has been shown to be vital for correct actin ring formation in osteoclasts for podosome formation (Izawa et al., 2012; McHugh et al., 2000) as well as adherence and formation of FBGC (McNally et al., 2008).

P2X7 is an ATP gated cation channel that is also able to act as membrane pore (Rassendren et al., 1996). P2X7 expression has been seen to increase on fusion competent monocytes stimulated with IFNγ while anti-P2X7 blocking antibodies significantly inhibited MGC formation (Falzoni et al., 1995; Pellegatti et al., 2011). The pore function of P2X7 has also been shown to increase the outer membrane content of phosphatidylserine (MacKenzie et al., 2001), a phospholipid that is usually in the inner leaflet of the plasma membrane that, when exposed on the outer leaflet, labels a cell for apoptosis (Fadok et al., 1998; Greenberg et al., 2006) or fusion (Helming et al., 2009). Phosphatidylserine is recognised and bound by the class B scavenger receptor CD36 (Silverstein et al., 1992). Helming et al. (2009) demonstrated that bone marrow derived Mφ from CD36 knockout mice were inhibited in their capacity to form FBGC but not osteoclasts. They also demonstrated that CD36 and phosphatidylserine interact directly by masking phosphatidylserine with annexin V in CD36 competent Mφ, which inhibited fusion. CD36 was later found to be highly co-localised with the tetraspanin CD9 on Mφ and genetic deletion of CD9 significantly reduced CD36-mediated uptake of phosphatidylserine (Huang et al., 2011).

1.4.4 Fusion Mechanisms in Alternative Systems

Though this thesis focuses on the fusion of monocytes to form multinucleated giant cells it does not mean that this is the only form of membrane fusion that occurs within humans. Indeed, membrane fusion is essential for the creation, development and maintenance of all Animalia. At the very creation of life, two haploid gametes must
undergo heterotypic fusion of their membranes to create a new totipotent cell; the earliest form of “life”. In mammals where gestation occurs in utero; the developing blastocyst must gain nutrients from the mother and expel waste products into her bloodstream. To do this without evoking an immune reaction from the mother’s leukocytes the blastocyst’s outer cytotrophoblasts undergo homotypic fusion to form syncytiotrophoblasts (Schumacher et al., 2013). This multinucleated giant cell forms a leukocyte-impenetrable layer for the blastocyst whilst allowing for the diffusion of vital nutrients. As the foetus develops myoblasts undergo homotypic fusion to generate skeletal muscle. Furthermore, within every cell, vesicles are trafficked from the endoplasmic reticulum to the surface to express integral membrane proteins or release cell signalling molecules by exocytosis. Throughout life our immune systems are bombarded by a range of pathogens including viruses. The membrane coated viruses enter host cells via membrane fusion to hijack host machinery and replicate. It is clear that membrane fusion is an important process in many stages of life and are worthy of further explanation before narrowing the focus on homotypic monocyte fusion.

To achieve fusion of two lipid bilayers all the membrane fusion events listed previously all follow a similar pathway to integration; competence, contact and commitment to fusion. The competence state requires that one or both of the fusing membranes contain proteins that can tether the two membranous bodies together. Further contacts are made between the two membranes and in some cases tethered proteins can contract to pull the membranes within the necessary ~4nm distance (Siegel, 1993; Warner and O’Shaughnessy, 2012). Although the exact mechanism of membrane integration is unknown, it is thought that once the membranes have been brought into contact the outer lipid layers mix into a transient state known as hemifusion (Kozlovsky and Kozlov, 2002; Warner and O’Shaughnessy, 2012). Through this the inner lipids flip and open up a fusion pore whereby membrane assimilation is energetically favourable.

In the case of a spermatozoon and an oocyte, the spermatozoon expresses a protein called Izumo1 (named after the Izumo-taisha shrine in Japan which honours the god
of marriage) while the oocyte expresses Izumo1’s ligand; Juno (named after the Roman goddess of love and marriage) (Aguilar et al., 2013; Bianchi et al., 2014; Inoue et al., 2005; Melcher, 2016). Before Izumo1 and Juno have made contact the spermatozoon must bypass the cumulus cells and zona pellucida protecting the oocyte. The spermatozoon releases digestive enzymes to break down the zona pellucida and in doing so releases internalised Izumo1 to the outer membrane thus establishing its fusion competence (Barros et al., 1996; Krauchunas et al., 2016). As the two membranes meet, multiple Izumo1 units on the spermatozoon’s form a tight clamp-like association with Juno in a 1:1 ratio (Ohto et al., 2016). The mechanisms of fusion thereafter are not known but the binding of Juno and Izumo1 has been shown to be essential for gamete fusion using Izumo1-targeting antibodies (Inoue et al., 2005). CD9 has also been shown to play a vital role in mice using CD9 knockout mice (Kaji et al., 2000) but again its exact role in gamete fusion remains elusive.

Within one week of fertilisation the blastocyst must establish a source of nutrients to survive and continue growth. Within the womb the only available source of nutrients is the mother’s bloodstream. However, the mother’s immune system would quickly identify the invading blastocyst and mount an immune attack. To avoid infiltration and rejection by the maternal leukocytes the blastocyst produces a multinucleated giant cell called a syncytiotrophoblast that shields it from the maternal immune system (Guleria and Sayegh, 2007; Koch and Platt, 2012). Patrolling maternal phagocytes can transmigrate between cells but they cannot migrate directly though the syncytiotrophoblast itself. The syncytiotrophoblast is produced and maintained by the fusion of cytotrophoblasts which the blastocyst produces at the uterus-blastocyst border. The syncytiotrophoblast invades the uterus epithelium to both embed the blastocyst and establish a close-contact site with the maternal capillaries for diffusion of waste and nutrients (Huppertz and Gauster, 2011).

Once the blastocyst has been completely surrounded by the uterine endometrium the invasive syncytiotrophoblast takes on a more passive role. Maintained by the fusion of more cytotrophoblasts, the single all-encompassing syncytiotrophoblast releases β-human chorionic gonadotropin (β-hCG) and human placental lactogen (hPL)
(Handschuh et al., 2007). β-hCG acts to both stimulate the ovaries to release progesterone which increases angiogenesis of the uterus lining to sustain the developing foetus and attract and activate regulatory T-cells to confer immune tolerance of the developing foetus (Cole, 2010). hPL acts to increase the glucose content of the mother’s bloodstream (for the developing foetus to utilise) by inhibiting maternal insulin sensitivity (Hill et al., 1986).

The fusion of cytotrophoblasts with the growing syncytiotrophoblast has been shown to be largely mediated by syncytin proteins (Huppertz and Gauster, 2011; Mi et al., 2000). Syncytin proteins are believed to be derived from an ancient retroviral insertion of env genes into the mammalian genome that was subsequently domesticated to facilitate in utero gestation. Syncytins show structural and functional similarities with modern day class I cell fusion proteins found on membrane coated viruses (Podbilewicz, 2014). Syncytin-1 is expressed on trophoblasts and interacts with human sodium-dependent neutral amino acid transporter type 1 and 2 (hASCT1/hASCT2) expressed by the syncytiotrophoblast (Lavillette et al., 1998; Marin et al., 2000).

Syncytin-1 has several key structural features that are vital to the fusion mechanism. The functioning unit consists of a trimer of syncytin-1 peptides; each containing a small cytoplasmic and transmembrane domain, a highly hydrophobic fusion peptide sequence proximal to a furin cleavage site (RNKR), two distal cysteine-rich motifs and a hASCT2 binding sequence (115-SDGGGX2DX2R 125) (Gerbaud and Pidoux, 2015). The two distal cysteine rich motifs form a disulphide bond that is cleaved upon binding of trophoblast syncytin-1 to syncytiotrophoblast hASCT2. This cleavage induces a structural loop to helix change that propels the hydrophobic fusion peptide into the neighbouring membrane \textasciitilde{}10nm away (Gerbaud and Pidoux, 2015). Once embedded the two opposing membranes are irreversibly anchored and retraction of the syncytin-1 trimer leads to membrane contortion and eventually fusion.

Syncytin-1 is an example of a domesticated retroviral membrane fusion protein, however, modern membrane coated viruses such as influenza, HIV and Ebola utilise similar proteins to facilitate membrane fusion and host cell invasion (Podbilewicz,
Influenza hemagglutinin, like syncytin-1, is a class I membrane fusion protein that follows a similar mechanism to membrane fusion but shares almost no sequence similarity. Hemagglutinin forms a trimer on the viral membrane with the hydrophobic fusion peptide internalised within the trimer forming contacts with conserved charged residues (Epand, 2003; Floyd et al., 2008). When the virus is exposed to an acidic environment, such as endocytosis, the conserved charged residues are protonated which releases the fusion peptide from its internalised state (Xu and Wilson, 2011). Upon protonation the helix-loop-helix supporting the fusion peptide forms an extended α-helix that propels the fusion peptide into the nearby host membrane, tethering the viral membrane to the host endosome. It is thought that like syncytin-1, subsequent contraction of the extended hemagglutinin timer results in merging and fusion of the two membranes and the release of viral cargo into the host cytoplasm (Xu and Wilson, 2011).

In humans at least, it is clear that there is a wide variety of fusion-mediating proteins that are utilised by different cell-types to achieve membrane fusion. The coordination of all these proteins to achieve fusion is likely to require other proteins to organise the machinery, one such family, the tetraspanins, have been implicated as the molecular organisers of fusion.
1.5 TETRASPANINS
Tetraspanins are a family of relatively small (20-50kDa; ~250 amino acids) integral membrane proteins (Maeczer et al., 1997; Wright and Tomlinson, 1994). Humans possess 33 tetraspanins and the family has members in other eukaryotes such as Drosophila and Caenorhabditis as well as plants, fungi (excluding yeasts) and protozoa (Henkle et al., 1990; Todres et al., 2000; Tomlinson and Wright, 1996). Tetraspanins have no enzymatic activity yet they are involved in a wide range of processes ranging from cell motility, microdomain organisation, viral entry, adhesion and membrane fusion (Hemler, 2003, 2005). However, in the context of this review the tetraspanins discussed will be the members involved in membrane fusion and formation of multinuclear giant cells.

1.6 TETRASPANIN STRUCTURAL FEATURES
The conservation of tetraspanins across different phyla suggests they originated early in evolution of eukaryotes (Figure 1.9) and are involved in important processes (Boucheix and Rubinstein, 2001). Key features of the tetraspanin structure include four membrane-spanning domains beginning and ending in short N- and C-termini and two extracellular domains; one small (EC1) and one large (EC2). CD37, CD63, CD82 and CD151 possess C-terminal tyrosine based internalisation motifs (Yxxφ) (Berditchevski, 2001) which can be recognised by adaptor coat proteins of the endocytosis pathway (Pandey, 2009). Due to the dependence of tetraspanins on the membrane to maintain structural integrity it has not yet been possible to gain a crystal structure of an entire tetraspanin. Crystal structures of the solubilised EC2 domain exist (Kitadokoro et al., 2001) and the structure of the transmembrane regions have been predicted by molecular modelling (Figure 1.10) (Seigneuret, 2006).

1.6.1 EC1 & EC2
The two extracellular loops show the most sequence divergence of the whole structure, both between different tetraspanins of the same species and orthologues in different species. The EC1 and EC2 loop comprise of 13-30 and 70-140 amino acid
Figure 1.9: Tetraspanin Primary Structure Distance Tree
The primary amino acid sequence of each human tetraspanin above is compared and distributed to show relative divergence. Tetraspanins are grouped into branches based on their similarity and probable divergence after gene duplication. The scale-bar represents 10% amino acid difference. Tetraspanins marked with an "*" possess four cysteines in the EC2 domain, "**" possess eight and all other tetraspanins possess six.
From (Boucheix and Rubinstein, 2001) with permissions.
Figure 1.10: 3D Crystal Structure of CD81 with Predicted Transmembrane Regions.

A: Ribbon structure of CD81 with a rotational view showing the EC2’s rigid A, B and E α-helices (red), C & D fluid α-helices (pink) and short EC1 β-strand. The EC2 domain faces the extracellular (EC) space and the N- and C- termini are intracellular (IC).

B: The surface topography (left) utilises the same colouring system as “A” and shows the spatial arrangement of the different domains with the disulphide bridges more obvious in yellow. The right sided surface topography is recoloured with highly polar residues as red and hydrophobic residues as blue.

From (Seigneuret, 2006) with permissions.
residues respectively. The EC2 domain contains the highly conserved CCG motif which interacts with another conserved Cys that resides near the 4th transmembrane region (Hemler, 2001; Parthasarathy et al., 2009). A PXXC motif contains the fourth and final Cys required to form the two disulphide bonds that are a characteristic motif of tetraspanins (Stipp et al., 2003). The EC2 is the most variable of the two extracellular domains and has been shown to be essential in forming associations with partner proteins to carry out functions. Kazarov et al. (2002) demonstrated that by deleting the QRD194-196 residues in the CD151 EC2 they could abrogate CD151-α3β1 and --α6β1 association, trafficking and inhibit cell migration. Zhu et al. (2002) found that deletions of the SFQ173-175 residues in the EC2 of CD9 of mouse oocytes completely abolished sperm-egg fusion. Furthermore, anti-tetraspanin antibodies targeting the EC2 have been used extensively to bind and interfere with tetraspanin enriched microdomain (TEM) formation and tetraspanin functions (Parthasarathy et al., 2009; Takeda et al., 2003; Yáñez-Mó et al., 2001).

More than half of known tetraspanins possess additional cysteines in their EC2 domains that might form disulphide bridges to add stability to the structure (Hemler, 2001; Parthasarathy et al., 2009). The crystal structure of CD81-EC2 was solved to 1.6Å by Kitadokoro and colleagues in 2001. They discovered the EC2 domain to be composed of five α-helices (A-E); helices A, B and E form a U-shape on one plane and C and D form a more fluid variable region. So far little has been revealed about the functions of the EC1 domain, however, Masciopinto et al. (2001) demonstrated that CD81-EC1 deletion results in a decreased surface expression of CD81 due to a failure to traffic the tetraspanin from the golgi to the surface.

1.6.2 The Four Transmembrane Helices
The four transmembrane helices of the tetraspanins show notable conservation between different species; a necessary feature to allow tetraspanin-tetraspanin associations in the TEMs (Kashef et al., 2012). This was demonstrated by Berditchevski et al. (2001) when they deleted CD151-EC2 and discovered that it could still co-localise with tetraspanins CD9, CD63 and CD81. This style of intramembrane association contrasts with the typical mechanism of transmembrane protein complex formation,
in which membrane bound proteins interact via charged extracellular domains. Helices 1, 3 and 4 contain conserved charged and polar residues e.g. Asn, Gln and Glu (Hemler, 2005) which are thought to become protonated in the membrane allowing them to interact with the lipid alkyl chains via hydrogen bonds and stabilise the structure (Gratkowski et al., 2001; Zhou et al., 2000).

1.6.3 Palmitoylated Cysteines
There are six conserved cysteines which act as sites of palmitoylation: four cysteines in the transmembranal helices, one N- and another C-terminal membrane-proximal cysteines. The membrane-proximal cysteine residues on the tetraspanin become palmitoylated during post-translational modification, these membrane-embedded palmitoyl groups may form hydrophobic interactions with membrane lipids to stabilise the structure (Yang et al., 2002). Palmitoylation of these cysteines has been shown to be important for initial establishment of tetraspanin-tetraspanin interactions and formation of the tetraspanin web (Charrin et al., 2002; Kovalenko et al., 2004). The palmitoylated sites appear to stabilise the tetraspanin structure alongside the transmembrane polar residues and maintain a certain level of membrane rigidity. Deletion of the palmitoylation sites of CD151 resulted in a decrease in lateral associations with CD9 and CD63 but did not inhibit CD151 associating with its α3β1 binding partner (Yang et al., 2002). Furthermore, site-directed mutagenesis of CD9 palmitoylation sites led to a loss in its detergent resistant association to CD81 (Charrin et al., 2002).

1.7 Tetraspanin Enriched Microdomains and the “Tetraspanin Web”
In vivo, tetraspanins are known to co-localise with other membrane proteins and associate molecules into a TEM (Charrin et al., 2003; Hemler, 2008). By generating a TEM, the tetraspanins group together proteins of similar pathways allowing proteins to work together with greater efficiency than if they were scattered throughout the membrane (Figure 1.11). This tetraspanin-facilitated organising of transmembrane proteins and with binding partners is often referred to as the “tetraspanin web” (Levy
Figure 1.11: Theoretical Model for Formation of a Tetraranspanin Enriched Microdomain or “Tetraranspanin Web”

Tetraranspansins are able to form strong primary interactions (tetraspanin-tetraspanin) via their transmembrane domains. They can also form secondary interactions by associating with certain partner proteins. Tetraranspansins bind the partner proteins bound to other tetraranspansins (tertiary interactions) and form stable scaffolding structures comprising of multiple tetraranspansins and partner proteins; referred to as a TEM or tetraranspanin web.

From (Martin et al., 2005) with permissions.
and Shoham, 2005a; Zuidscherwoude et al., 2015). TEMs are not the same as lipid rafts as the two can be fractionated independently on sucrose gradients (Yang et al., 2004). Furthermore, there is evidence that tetraspanins can recruit proteins from lipid rafts. Suzuki et al. (2009) demonstrated that CD14 and TLR4 on naïve Mφ were suspended in lipid rafts but upon LPS stimulation they were recruited by CD9 to the TEM fraction of the sucrose gradient.

The structure of TEM has been a point of growing controversy. Proteomic studies (André et al., 2006) have revealed long lists of tetraspanin binding partners and multistaining fluorescence microscopy (Nydegger et al., 2006) has shown that tetraspanins co-localise with other tetraspanins in regions of the membrane leading many researchers to conclude that active TEMs exist as a vast scaffold of associated proteins (Andreu and Yáñez-Mó, 2014; Levy and Shoham, 2005b; Zöller, 2009). However, the van Spriel group used dual colour stimulated emission depletion (STED) microscopy to show that CD37, CD53, CD81 and CD82 were localised in separate clusters (~120nm in size) on the membrane of moDC. They proposed a new model for TEMs whereby tetraspanins exist in small clusters of no more than 10 tetraspanin molecules and their binding partners and that separate clusters could drift through the membrane and co-localise with other tetraspanin enriched clusters (Zuidscherwoude et al., 2015).

1.8 TETRASPANINS AND FUSION

Due to their ability to organise multiple proteins and form TEMs, tetraspanins have been implicated in orchestrating cell fusion. CD9 and CD81 are among the most widely studied of the tetraspanins since the discovery that CD9 (Kaji et al., 2000; Naour et al., 2000) and CD81 (Rubinstein et al., 2006) knockouts in mice result in sterility as the gametes are unable to fuse. Interestingly this effect seems to be cell specific as CD9 and CD81 knockouts in myoblasts fuse uncontrollably and rapidly form multinucleated syncytia (Charrin et al., 2013). In vitro experiments utilising anti-tetraspanin antibodies to bind and interfere with CD9 and CD81 on fusing human monocytes increased the number of nuclei per MGC suggesting an enhancement in fusion. In the same experiments anti-CD63 treatment significantly decreased the
fusion index of MGC but did not affect cell adhesion or migration (Parthasarathy et al., 2009; Takeda et al., 2003). As the EC2 domains have been shown to be the site of many tetraspanin-partner interactions, soluble EC2 mimics have been used to bind the tetraspanin binding partners and in theory disrupt TEM formation. CD9-EC2 (Hulme et al., 2014) and CD63-EC2 (Parthasarathy et al., 2009) significantly inhibited ConA induced fusion of freshly isolated human monocytes.

CD9 has been shown to form partnerships with multiple fusion related proteins (Figure 1.12) such as the MFR ligand CD47 (Longhurst et al., 1999) and MFR partner protein CD44 (Schmidt et al., 2004; Yashiro-Ohtani et al., 2000), CD36 scavenger receptor (Huang et al., 2011), MMP-9 (Herr et al., 2013) and EWI-2 (Stipp et al., 2001). Wong and colleagues found in flow cytometric studies that CD36 was expressed highest in steady-state human classical and lowest in nonclassical monocytes while CD44 was expressed highest in classical and intermediate and only at traceable levels in the nonclassical subset (unpublished data). On a genetic level, the expression of CD9 has been shown to be linked to the expression of fusion related proteins. Mensah et al. (2010) found that when they cultured mouse moDC in RANKL to generate osteoclasts the moDC split into DC-STAMPLow and DC-STAMPHigh cells. They noted the DC-STAMPLow cells were able to augment fusion and appeared to have internalised DC-STAMP in response to ligand binding and gaining fusion-competence. The DC-STAMPLow cells showed a 1.5-fold upregulation in the transcription of CD9 and CD47. Garner et al. (2016) observed in human kidney cell lines that CD9 knock-down caused an 80% decrease in E-cadherin gene expression. In contrast, Huber et al. (2014) found that CD63 knock-downs expressed increased E-cadherin but decreased β-catenin resulting in arrested motility (Figure 1.12). It is therefore unsurprising that CD9 has been so eminent in fusion studies, however, the association of CD9 with multiple partner proteins makes it difficult to determine which specific interaction is affected by CD9 interference.

CD81 has also been shown to associate with CD36 (Heit et al., 2013) and EWI-2 (Sala-Valdés et al., 2006) (Figure 1.12). CD81 has been shown to associate with MFR (Wang and Pfenninger, 2006) which, when bound to CD47 on another cell, could generate
Figure 1.12: Interactions of Tetraspanins, Adherence Proteins and Fusion Receptors.
Tetraspanins are able to associate with a range of binding partners involved in adhesion (blue segment) or fusion (red segment). Tetraspanin-tetraspanin associations (white segment) allow for the formation of tetraspanin enriched microdomains containing multiple tetraspanins and binding partners to carry out cellular processes en masse. The coloured arrows indicate direct associations reported between a tetraspanin and an adhesion/fusion protein. The dotted coloured arrows indicate a genetic relationship between a tetraspanin and a relevant protein. Arrows for CD9, CD37, CD53, CD63, CD81, CD82 and CD151 are coloured as red, orange, yellow, green, blue, purple, pink, respectively. Filled black bars (white segment) indicate observed tetraspanin-tetraspanin interactions and dashed black arrows (blue/red segments) indicate reported interactions between adherence proteins/fusion receptors.
TEMs on opposing monocytes; however, existence of such a complex has yet to be proven. Of all the fusion proteins discussed, EWI-2 is able to associate with the widest range of tetraspanins, namely; CD9, CD81, CD82 (Zhang et al., 2003) and CD151 (this interaction is thought to be indirect through CD9) (Charrin et al., 2001). It seems therefore that tetraspanins play an active role in coupling adhesion proteins with actin cytoskeleton remodelling. CD82 is the only tetraspanin that has been shown to associate with and regulate αVβ3 (Ruseva et al., 2009); the integrin responsible for podosome integrity (McHugh et al., 2000). Pique et al. (2000) demonstrated with CD82 overexpressed cells that increased CD82 on host cells inhibited fusion, transmission and syncytia formation by human T-cell leukaemia virus type 1 (HTLV-1).

Antibodies targeting CD151 have been shown to inhibit human sperm-egg fusion (Ziyyat et al., 2006) and overexpression of CD151 in human melanoma cells significantly increased MMP-9 production and enhanced cell motility (Hong et al., 2006). CD151 has also been shown to control β1 integrin trafficking, Liu et al. (2007) demonstrated by mutation of the CD151 endocytosis-sorting-motif in mouse embryonic fibroblasts that cellular migration could be arrested by inhibited integrin cycling.

CD37 and CD53 share a common association with LFA-1 (Figure 1.12) and appear to both play a role in transducing apoptotic signals. The LFA-1 integrin associates with CD53 (Todros-Dawda et al., 2014) and CD37 via an interaction with the β2 unit (CD18) (Wee et al., 2015). CD37 has been shown to be a transducer of apoptosis by direct phosphorylation of its N-terminal domain (Lapalombella et al., 2012) whereas CD53 has been shown by a genome-wide linkage scan to be a regulator of TNFα; an important pro-inflammatory cytokine that can activate NF-κB transcription (Bos et al., 2010). CD53 has also been suggested to be a pro-inflammatory marker as its expression was increased when monocytes were differentiated into M1 (Tippett et al., 2013). Furthermore, patients suffering from recurring non-pulmonary tuberculosis were found to have a congenital defect in CD53 (Mollinedo et al., 1997).
1.9 Expression of Tetraspanins in Monocyte Subsets
Since monocytes were not publically classified into three subsets until 2010 there is very little published data on tetraspanin expression on monocyte subsets. Ingersoll et al. (2010) quantified the expression of CD9 and CD81 in CD16- and CD16+ monocytes at steady state. They found that CD9 expression was slightly higher in CD16- monocytes and CD81 was marginally higher in CD16+ monocytes. Furthermore, they found that CD9 was expressed as a bimodal peak in CD16+ monocytes. Peng et al. (2011) separated monocytes by their expression of the high-affinity receptor for IgE (FcεRI) and found that FcεRIHigh cells expressed higher levels of CD9 and CD81.

Tippett et al. (2013) used CD14/CD16 staining to quantify CD9, CD53, CD63 and CD81 expression. CD9 and CD63 were expressed predominantly on CI and at higher intensities, they found these decreased across the subsets with NCI expressing the least. CD53 was expressed on \(>95\%\) of all monocytes but surface levels were significantly different between each subset with NCI expressing the most and CI the least. CD81 was expressed on \(~85\%\) of all the subsets but was expressed significantly higher in NCI monocytes and lowest in CI. While the literature on monocyte subset expression of tetraspanins is limited, currently, there is no publications on the tetraspanin expression of fusing monocytes/Mϕ.

Many questions remain about the role of tetraspanins and the individual contribution of the monocyte subsets to the formation of MGC. A greater understanding of MGC formation could aid in the development of treatments to tuberculosis and medical implant rejection.

"It's the questions we can't answer that teach us the most. They teach us how to think. If you give a man an answer, all he gains is a little fact. But give him a question and he'll look for his own answers." - Patrick Rothfuss, The Wise Man's Fear.
1.10 HYPOTHESES, AIMS AND OBJECTIVES

1.10.1 HYPOTHESES
Hypothesis 1: Monocyte subsets possess different propensities to fuse to form MGC.
Hypothesis 2: Monocyte subsets mediate fusion by expressing certain combinations of tetraspanins.
Hypothesis 3: The binding of anti-tetraspanin antibodies to fusion-mediating tetraspanins will abrogate or enhance fusion by interfering with their normal functions.

1.10.2 AIMS & OBJECTIVES
Aim 1: Optimise the fusion assay protocol to increase sampling sizes and automate the nuclei counting process to gain an accurate assessment of monocyte fusion.
Aim 2: Purify the monocyte subsets and quantify their individual ability to fuse.
Aim 3: Determine the surface expression of tetraspanins at steady state and when cultured in fusogenic conditions.
Aim 4: Establish which anti-tetraspanin antibodies, if any, affect the fusion of ConA treated monocytes.
Chapter 2: Materials and Methods

2.1 Materials

Table 1: Lab Consumables

<table>
<thead>
<tr>
<th>Lab Consumable</th>
<th>Supplier</th>
<th>Cat No</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 ml Individual Flat Cap Tubes</td>
<td>Thermo Scientific Abgene</td>
<td>AB-0620</td>
</tr>
<tr>
<td>0.4% Trypan Blue Stain (20ml)</td>
<td>Sigma-Aldrich</td>
<td>T8154-20ML</td>
</tr>
<tr>
<td>0.5M EDTA, pH 7.3, ultra-Pure Grade, 1L</td>
<td>1st BASE</td>
<td>BUF-1051-1L-pH7.4</td>
</tr>
<tr>
<td>0.5ml Micro Tubes</td>
<td>Greiner, Germany</td>
<td>667201</td>
</tr>
<tr>
<td>1000μL Traditional Shaped Tip, Blue, NP Tip, Bulk, Sterile</td>
<td>Neptune</td>
<td>BITX2110.B</td>
</tr>
<tr>
<td>10X PBS Buffer</td>
<td>Biopolis Shared Facilities Media Preparation Unit</td>
<td>https://www.bsf.a-star.edu.sg/Portal/ Pages/BMG/BMG</td>
</tr>
<tr>
<td>200μL Univ. Tip, S3 Tip,</td>
<td>Neptune</td>
<td>BITX2102</td>
</tr>
<tr>
<td>35mm Glass Bottom Petri Dish, Well Diameter 14mm, Thickness no. 0</td>
<td>MatTek</td>
<td>35-T0-14-U</td>
</tr>
<tr>
<td>96-well Clear V-Bottom, Sterile</td>
<td>Corning</td>
<td>3960</td>
</tr>
<tr>
<td>96-well plate, Tissue Culture Treated, black frame with clear flat bottom, polystyrene (#3904)</td>
<td>Corning™</td>
<td>07-200-588</td>
</tr>
<tr>
<td>Blunt Needle 18gx1.5 inch</td>
<td>BD - Becton Dickinson</td>
<td>305180</td>
</tr>
<tr>
<td>Bottle Top Vacuum Filter, 0.22μm</td>
<td>Corning</td>
<td>430513</td>
</tr>
<tr>
<td>Bovine Serum Albumin (BSA), lyophilized powder.</td>
<td>Sigma-Aldrich</td>
<td>A9418</td>
</tr>
<tr>
<td>Cell Scraper 23cm</td>
<td>Nunc</td>
<td>NNU 179693-PK</td>
</tr>
<tr>
<td>Item Description</td>
<td>Brand/Manufacturer</td>
<td>Stock Number</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Centrifuge Tube 50ml Blue Cap</td>
<td>BD Falcon – Becton Dickinson</td>
<td>35 2070</td>
</tr>
<tr>
<td>Centrifuge Tube 50ml Blue Cap</td>
<td>BD Falcon - Becton Dickinson</td>
<td>35 2070</td>
</tr>
<tr>
<td>Centrifuge tube, 15ml, Racked</td>
<td>Greiner, Germany</td>
<td>188261</td>
</tr>
<tr>
<td>Concanavalin A, Type IV-S, Lyophilized powder</td>
<td>Sigma-Aldrich</td>
<td>C5275</td>
</tr>
<tr>
<td>Disposable Haemacytometer C-Chip Neubauer</td>
<td>NanoEnTek, Korea</td>
<td>DHC-N01</td>
</tr>
<tr>
<td>PBS (10x) without Ca2+ or Mg2+</td>
<td>Lonza</td>
<td>17-515Q</td>
</tr>
<tr>
<td>Fetal Calf/ Bovine Serum (FCS), Heat Inactivated</td>
<td>Gibco™ Thermo Scientific</td>
<td>10082147</td>
</tr>
<tr>
<td>Ficoll-Paque™ PLUS</td>
<td>GE Healthcare Life Sciences</td>
<td>17-1440-02</td>
</tr>
<tr>
<td>Human AB Serum (HS)</td>
<td>Innovative Research Inc</td>
<td>IPLA-SERAB</td>
</tr>
<tr>
<td>IMDM with L-glutamine, Phenol Red & HEPES</td>
<td>Lonza</td>
<td>12-722F</td>
</tr>
<tr>
<td>8-Chamber Lab-Tek II Slide System</td>
<td>Nunc</td>
<td>NNU 154534-PK</td>
</tr>
<tr>
<td>Latex 12" Powder Free Gloves, Large</td>
<td>Faith Touch</td>
<td>GL-LT-12PFDT-L</td>
</tr>
<tr>
<td>MACS Separation LD Columns</td>
<td>Miltenyi Biotec</td>
<td>130-042-901</td>
</tr>
<tr>
<td>Micro Tubes 1.5ml Snaplock</td>
<td>Axygen Scientific</td>
<td>MCT-150-C</td>
</tr>
<tr>
<td>Microscope Round Cover Glass Ø13mm</td>
<td>Paul Marienfeld, Germany</td>
<td>01 115 30</td>
</tr>
<tr>
<td>Paraflim 2in X 250ft Roll</td>
<td>VWR</td>
<td>52858-076</td>
</tr>
<tr>
<td>Paraformaldehyde powder, 95%</td>
<td>Sigma-Aldrich</td>
<td>158127-500G</td>
</tr>
<tr>
<td>Penicillin-Streptomycin (10,000 units ml-1 & 10mg ml-1)</td>
<td>Biological Industries</td>
<td>03-031-1B</td>
</tr>
<tr>
<td>Pipet 10ml Single Wrapped</td>
<td>BD Falcon - Becton Dickinson</td>
<td>35 7551</td>
</tr>
<tr>
<td>Item</td>
<td>Vendor</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Pipet 25ml Single Wrapped</td>
<td>BD Falcon - Becton Dickinson</td>
<td>35 7525</td>
</tr>
<tr>
<td>Pipet 5ml Single Wrapped</td>
<td>BD Falcon - Becton Dickinson</td>
<td>35 7543</td>
</tr>
<tr>
<td>Pipette Tip Reload System, 0.1-10ul</td>
<td>QSP</td>
<td>QSP T104RL-Q-PK</td>
</tr>
<tr>
<td>Sodium Azide (NaN3), ≥99.5%</td>
<td>Sigma-Aldrich</td>
<td>S2002</td>
</tr>
<tr>
<td>Syringe 20cc Luer-Lok</td>
<td>BD - Becton Dickinson</td>
<td>300141</td>
</tr>
<tr>
<td>Tally Counter</td>
<td>Heinz, Germany</td>
<td>2131 803</td>
</tr>
<tr>
<td>Tissue Cell culture plate 24-well sterile with lid</td>
<td>Greiner, Germany</td>
<td>662160</td>
</tr>
</tbody>
</table>

2.1.1 Cell Samples
All experiments were carried out on monocytes derived from human blood collected in ethylenediaminetetraacetic acid (EDTA) anticoagulant at a final concentration of 1.5mg/ml. For experiments with unpurified monocytes and for peripheral monocyte tetraspanin expression, Human mononuclear phagocytes were obtained from peripheral blood taken from healthy volunteers with ethics approval from the South Sheffield Research Ethics Committee [07/Q2305/7]. For all experiments using purified monocyte subsets, cells were obtained from apheresis ‘cones’ donated by the Singapore Health Sciences Authority from anonymous platelet donors in Singapore. Apheresis cones contain 400-1200x10^6 PBMCs cone⁻¹, of which; 67.78±8.63% lymphocytes, 24.62±8.94 monocytes, 4.99±2.59% neutrophils, 2.22±0.72% basophils and 0.39±0.49% eosinophils (Néron et al., 2007; Pfeiffer et al., 2013). Singapore samples were handled with the guidelines directed by the National University of Singapore Institutional Review Board [NUS-IRB 09-256].

2.1.2 Media, Buffers & Solutions
Iscove's Modified Dulbecco's Medium (IMDM) & cIMDM
All IMDM variants contained 3.996μM L-glutamine, 40.755μM phenol red pH indicator and 25.001mM HEPES. For tissue culture complete IMDM (cIMDM) was made by combining 470ml IMDM + 25ml pooled human blood group AB Serum + 5ml Penicillin-
Streptomycin (p/s) solution to make a solution containing 5%(v/v) HS and 1% (v/v) p/s.

1xPhosphate Buffered Saline (1xPBS) pH7.3

1xPBS was used for washing cells that had not been fixed yet and for general washing of fixed cells. 10xPBS pH7.3 was purchased from the in-house Biopolis Shared Facilities Media Preparation Unit and diluted to 1xPBS by combining 100ml 10xPBS to 900ml MilliQ water in tissue culture conditions.

1xPhosphate Buffered Saline pH7.3 without Ca\(^{2+}\) or Mg\(^{2+}\) (1xPBSw/o)

PBSw/o was used for making PBSE, MACS & FACS buffers and for washing detached cells. 10xDPBS pH7.3 without Ca\(^{2+}\) or Mg\(^{2+}\) was diluted by adding 100ml to 900ml MilliQ water in tissue culture conditions.

1x Phosphate Buffered Saline + 2mM EDTA (PBSE) pH7.3

PBSE was used for detaching cells non-enzymatically, for washing detached cells and for making MACS & FACS buffers. 3.2ml of 0.5M EDTA was added to 796.8ml of 1xPBSw/o pH7.3 in tissue culture conditions.

4% Paraformaldehyde (PFA)

For 1L of 4% (v/v) PFA, 800ml of 1xPBS pH7.3 was added to a glass beaker on a magnetic stirrer plate in a fume hood. The liquid was slowly heated to ~60°C whilst stirring with a magnetic flea. 40g of 95% (w/v) paraformaldehyde powder was added to the warmed 1xPBS. To completely dissolve the powder; 1M NaOH was added drop by drop until the solution went clear. The magnetic flea was removed and the solution was allowed to cool in the fume hood before it was topped up to 1000ml with 1xPBS. The solution was vacuum filtered using a 0.22μm bottle top vacuum filter. The pH was adjusted to 7.3 before aliquoting the solution into 15ml tubes. The 4% (v/v) PFA was refrigerated at 4°C and discarded after a month, spare tubes were frozen and stored at -20°C.
Nuclei/Actin Staining Solution

For every 1ml of staining solution required: 1μl of a 3mg ml⁻¹ DAPI stock and 5μl of 0.2mg ml⁻¹ phalloidin-TRITC was added to 994μl 1xPBS to give a final concentration of 3μg ml⁻¹ DAPI and 1μg ml⁻¹ phalloidin-TRITC.

10x Red Blood Cell Lysis Solution (10x RBC Lysis Solution)

10x RBC lysis solution was made by combining 16.6g of NH₄Cl, 2g KHCO₃, 400μl of 0.5M EDTA pH7.3 and MilliQ water added to 200ml. 25ml of the 10x RBC lysis solution was then combined with 225ml MilliQ water in sterile conditions to make a working 1x RBC lysis solution and stored at 4°C for up to 3 months.

Magnetic-Activated Cell Sorting (MACS) Buffer

MACS buffer contained 0.5% (w/v) of BSA powder in 1xPBSE. The solution was vacuum filtered (0.22μm) and stored at 4°C and opened only in sterile conditions.

Fluorescence-Activated Cell Sorting (FACS) Buffer

FACS buffer was made by combining 450ml PBSE, 25ml foetal calf serum (FCS), 25ml human serum (HS) and 0.5g sodium azide (NaN₃) to make a solution containing 1xPBS, 2mM EDTA, 5% (w/v) FCS, 5% (v/v) HS and 0.1% (w/v) NaN₃. The solution was vacuum filtered (0.22μm) and stored at 4°C.

Concanavalin A (ConA)

5mg of lyophilised ConA from *Canavalia ensiformis* (Jack bean) was reconstituted in 1ml of 1xPBS, according to the manufacturer’s instructions. The 5mg ml⁻¹ solution was aliquoted into 20μl stocks and frozen at -20°C and once thawed, the aliquots were never refrozen but were refrigerated at 4°C for up to 1 month. Fusion media contained 10μg ml⁻¹ ConA in cIMDM.

ConA has been used in multiple studies to induce reproducible homotypic fusion of monocytes (Hulme et al., 2014; Kasugai et al., 2009; Maltesen et al., 2010; Möst et al., 1990; Parthasarathy et al., 2009; Takashima et al., 1993; Takeda et al., 2003; Zhu et al., 2007). The exact mechanism of ConA facilitated fusion is currently unknown,
however, it has been shown that ConA triggers a release of fusion initiating cytokines from mouse Mφ e.g. IFNγ, TNF-α, IL-1β and IL-4 (Sodhi et al., 2007; Wang et al., 2012). In 2000, Suen and colleagues showed that ConA induced mitochondrial clustering, release of cytochrome c and apoptosis in murine PU5-1.8 macrophages. Apoptosis has already been established as a vitally important defence in Mtb infections and is thought to play a role in killing infected Mφ whilst priming nearby Mφ against the pathogen (Bocchino et al., 2005; Kelly et al., 2008; Lee et al., 2009; Mustafa et al., 2008; Patel et al., 2007). Though the exact mechanism of ConA in the proceeding experiments cannot be confirmed, it is arguably a sufficiently reproducible and obtainable means of inducing monocyte fusion.

MilliQ Water

MilliQ water was produced in-house using a Direct-Q® water purification system. To ensure sterility, bottled MilliQ water was autoclaved at 121°C for 15mins at 15 psi where after it was only opened in tissue culture conditions.

2.1.3 Antibodies & Markers

Antibodies used are all anti-human antibodies.

<table>
<thead>
<tr>
<th>Target</th>
<th>Conjugate</th>
<th>Isotype</th>
<th>Clone</th>
<th>Retailer</th>
<th>Cat No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocyte Isolation Kit II</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Miltenyi Biotec</td>
<td>130-091-153</td>
</tr>
<tr>
<td>FcyR-blocking reagent</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Miltenyi Biotec</td>
<td>130-091-765</td>
</tr>
<tr>
<td>Non-monocyte depletion cocktail</td>
<td>Magnetic Bead</td>
<td>n/a</td>
<td>n/a</td>
<td>Miltenyi Biotec</td>
<td>130-091-765</td>
</tr>
<tr>
<td>CD3</td>
<td>Magnetic Bead</td>
<td>n/a</td>
<td>n/a</td>
<td>Miltenyi Biotec</td>
<td>130-097-43</td>
</tr>
<tr>
<td>CD19</td>
<td>Magnetic Bead</td>
<td>n/a</td>
<td>n/a</td>
<td>Miltenyi Biotec</td>
<td>130-097-055</td>
</tr>
</tbody>
</table>
Table 3: FACS: Monocyte Sorting Antibodies

<table>
<thead>
<tr>
<th>Target</th>
<th>Conjugate</th>
<th>Isotype</th>
<th>Clone</th>
<th>Retailer</th>
<th>Cat No</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14</td>
<td>eFluor450</td>
<td>IgG1,κ</td>
<td>61D3</td>
<td>eBioscience</td>
<td>48-0149-42</td>
</tr>
<tr>
<td>CD16</td>
<td>PE-Cy7</td>
<td>IgG1,κ</td>
<td>3G8</td>
<td>BD Biosciences</td>
<td>560918</td>
</tr>
<tr>
<td>CD14</td>
<td>PE-CF594</td>
<td>IgG2b,κ</td>
<td>MφP9</td>
<td>BD Biosciences</td>
<td>562334</td>
</tr>
<tr>
<td>CD16</td>
<td>PE-Vio770</td>
<td>IgM</td>
<td>VEP13</td>
<td>Miltenyi Biotec</td>
<td>130-100-432</td>
</tr>
<tr>
<td>CD56</td>
<td>APC</td>
<td>IgG2b,κ</td>
<td>NCAM16.2</td>
<td>BD Biosciences</td>
<td>341027</td>
</tr>
<tr>
<td>CD9</td>
<td>Biotin</td>
<td>IgG1</td>
<td>MEM-61</td>
<td>Abcam</td>
<td>ab28094</td>
</tr>
<tr>
<td>Streptavidin</td>
<td>APC-Cy7</td>
<td>n/a</td>
<td>n/a</td>
<td>Biolegend</td>
<td>405208</td>
</tr>
<tr>
<td>CD9</td>
<td>FITC</td>
<td>IgG1,κ</td>
<td>HI9a</td>
<td>Biolegend</td>
<td>312104</td>
</tr>
<tr>
<td>CD36</td>
<td>FITC</td>
<td>IgG2a,κ</td>
<td>AC106</td>
<td>Miltenyi Biotec</td>
<td>130-095-470</td>
</tr>
</tbody>
</table>

Table 4: Flow Cytometry: Anti-Tetraspanin Positive Reporter Antibodies

<table>
<thead>
<tr>
<th>Target</th>
<th>Conjugate</th>
<th>Isotype</th>
<th>Clone</th>
<th>Retailer</th>
<th>Cat No</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVE/DEAD Blue</td>
<td>DAPI</td>
<td>n/a</td>
<td>n/a</td>
<td>ThermoFisher</td>
<td>L23105</td>
</tr>
<tr>
<td>CD9</td>
<td>Biotin</td>
<td>IgG1</td>
<td>MEM-61</td>
<td>Abcam</td>
<td>ab28094</td>
</tr>
<tr>
<td>Streptavidin</td>
<td>APC-Cy7</td>
<td>n/a</td>
<td>n/a</td>
<td>Biolegend</td>
<td>405208</td>
</tr>
<tr>
<td>CD37</td>
<td>APC</td>
<td>IgG1,κ</td>
<td>MB-1</td>
<td>eBioscience</td>
<td>17-0379-41</td>
</tr>
<tr>
<td>CD53</td>
<td>CF405M (Pacific Blue)</td>
<td>IgG1</td>
<td>HI29</td>
<td>Abcam</td>
<td>ab115895</td>
</tr>
<tr>
<td>CD63</td>
<td>PerCP</td>
<td>IgG1</td>
<td>MEM259</td>
<td>Abcam</td>
<td>ab77227</td>
</tr>
<tr>
<td>CD81</td>
<td>AF700</td>
<td>IgG1,κ</td>
<td>1D6</td>
<td>Novus</td>
<td>NB100-65805AF700</td>
</tr>
<tr>
<td>CD82</td>
<td>PE</td>
<td>IgG1</td>
<td>B-L2</td>
<td>Abcam</td>
<td>ab27338</td>
</tr>
<tr>
<td>CD151</td>
<td>FITC</td>
<td>IgG1</td>
<td>11G5a</td>
<td>Abcam</td>
<td>ab33316</td>
</tr>
</tbody>
</table>
Table 5: Flow Cytometry: Anti-Tetraspanin Isotype Control Antibodies

<table>
<thead>
<tr>
<th>Target</th>
<th>Conjugate</th>
<th>Isotype</th>
<th>Clone</th>
<th>Retailer</th>
<th>Cat No</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD9 (Iso)</td>
<td>IgG1-Biotin</td>
<td>IgG1,κ</td>
<td>P3.6.2.8.1</td>
<td>eBioscience</td>
<td>13-4714-85</td>
</tr>
<tr>
<td>CD37 (Iso)</td>
<td>APC</td>
<td>IgG1,κ</td>
<td>MOPC-21</td>
<td>Biolegend</td>
<td>400122</td>
</tr>
<tr>
<td>CD53 (Iso)</td>
<td>CF405M</td>
<td>IgG1,κ</td>
<td>ICIG1</td>
<td>Abcam</td>
<td>ab126026</td>
</tr>
<tr>
<td>CD63 (Iso)</td>
<td>PerCP</td>
<td>IgG1,κ</td>
<td>ICIG1</td>
<td>Abcam</td>
<td>ab118658</td>
</tr>
<tr>
<td>CD81 (Iso)</td>
<td>AF700</td>
<td>IgG1,κ</td>
<td>MOPC-21</td>
<td>BD Biosciences</td>
<td>557882</td>
</tr>
<tr>
<td>CD82 (Iso)</td>
<td>PE</td>
<td>IgG1,κ</td>
<td>P3.6.2.8.1</td>
<td>eBioscience</td>
<td>12-4714-42</td>
</tr>
<tr>
<td>CD151 (Iso)</td>
<td>FITC</td>
<td>IgG1,κ</td>
<td>P3.6.2.8.1</td>
<td>eBioscience</td>
<td>11-4714-42</td>
</tr>
</tbody>
</table>

Table 6: Fluorescence Microscopy

<table>
<thead>
<tr>
<th>Target</th>
<th>Stain</th>
<th>Retailer</th>
<th>Cat No</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>DAPI</td>
<td>ThermoFisher</td>
<td>D1306</td>
</tr>
<tr>
<td>DNA</td>
<td>Hoechst (H33342)</td>
<td>ThermoFisher</td>
<td>H3570</td>
</tr>
<tr>
<td>DNA</td>
<td>Propidium Iodide</td>
<td>ThermoFisher</td>
<td>P3566</td>
</tr>
<tr>
<td>F-Actin</td>
<td>NH3 (IgM)</td>
<td>ThermoFisher</td>
<td>MA1-80729</td>
</tr>
<tr>
<td>F-Actin</td>
<td>TRITC</td>
<td>ThermoFisher</td>
<td>R415</td>
</tr>
<tr>
<td>Anti-Mouse</td>
<td>Anti-Mouse Polyclonal</td>
<td>Sigma-Aldrich</td>
<td>F1010</td>
</tr>
<tr>
<td>Polyvalent</td>
<td>Immunoglobulins (G,A,M)-FITC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibodies</td>
<td>antibody produced in goat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Other Marker Reagents

<table>
<thead>
<tr>
<th>Name</th>
<th>Used in</th>
<th>Retailer</th>
<th>Cat No</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbC™ Anti-Mouse Bead Kit</td>
<td>Flow Cytometry, Compensation</td>
<td>ThermoFisher</td>
<td>A10344</td>
</tr>
<tr>
<td>ArC™ Amine Reactive</td>
<td>Flow Cytometry, Compensation</td>
<td>ThermoFisher</td>
<td>A10346</td>
</tr>
<tr>
<td>Target</td>
<td>Stock Conc</td>
<td>Isotype</td>
<td>Clone</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>IgG1 LEAF™ (Isotype)</td>
<td>1mg ml⁻¹</td>
<td>IgG1,κ</td>
<td>MOPC-21</td>
</tr>
<tr>
<td>CD9</td>
<td>1.4mg ml⁻¹</td>
<td>IgG1</td>
<td>602.29</td>
</tr>
<tr>
<td>CD37</td>
<td>1.17mg ml⁻¹</td>
<td>IgG2A,κ</td>
<td>WR17</td>
</tr>
<tr>
<td>CD53</td>
<td>1mg ml⁻¹</td>
<td>IgG1</td>
<td>MEM-53</td>
</tr>
<tr>
<td>CD63</td>
<td>2.3mg ml⁻¹</td>
<td>IgG1</td>
<td>H5C6</td>
</tr>
<tr>
<td>CD81</td>
<td>1mg ml⁻¹</td>
<td>IgG1</td>
<td>1D6</td>
</tr>
<tr>
<td>CD82</td>
<td>1mg ml⁻¹</td>
<td>IgG1</td>
<td>B-L2</td>
</tr>
<tr>
<td>CD151</td>
<td>1.6mg ml⁻¹</td>
<td>IgG1</td>
<td>14A2.H1</td>
</tr>
</tbody>
</table>

Table 8: Fusion Assay: Anti-Tetraspanin Phenotyping Antibodies
<table>
<thead>
<tr>
<th>Software (Version)</th>
<th>Used For</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIJI ImageJ (1.50e)</td>
<td>Viewing, optimisation and analysis of images taken by the Olympus microscopes.</td>
<td>http://fiji.sc/#download</td>
</tr>
<tr>
<td>FACSDiva™</td>
<td>Recording of all flow cytometry data to produce .fcs files.</td>
<td>https://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview</td>
</tr>
<tr>
<td>FlowJo (10)</td>
<td>Analysis of all .fcs files generated by FACSDiva™ during flow cytometry</td>
<td>http://www.flowjo.com/download-newest-version/</td>
</tr>
<tr>
<td>GraphPad Prism (6.04)</td>
<td>Displaying data as graphs and all statistical analysis</td>
<td>http://www.graphpad.com/scientific-software/prism/</td>
</tr>
<tr>
<td>MetaMorph (7.8.3.0)</td>
<td>Image acquisition on Olympus microscopes</td>
<td>https://www.moleculardevices.com/systems/metamorph-research-imaging/metamorph-microscopy-automation-and-image-analysis-software</td>
</tr>
</tbody>
</table>
2.2 METHODS
2.2.1 PRIMARY CELL PREPARATION
PBMC Extraction from Blood

Human blood from apheresis cones or obtained in-house by venepuncture was diluted 1:1 in PBSE. 30ml of diluted blood was gently layered on top of 15ml Ficoll-Paque PLUS in a 50ml Falcon tube. The blood was then fractionated by density centrifugation at 2000xg for 20min at room temperature with no braking so as not to disturb the layers. The top plasma layer was removed by aspiration before the white PBMC layer was transferred into a fresh 50ml falcon tube and washed of platelets by filling completely with PBSE and centrifuging at 480g, 5min at room temperature. The supernatant was aspirated and the cell pellet resuspended in 5mL 1xRBC-lysis solution and incubated at room temperature for 5min before being topped up to 50ml with PBSE and centrifuged at 480g, 5min at room temperature. From this point, every effort was made to keep the cells and solutions on ice until cells were seeded (as described below), to minimise marker internalisation. Cell density was determined using a disposable haemocytometer (NanoEntek C-Chip) using exclusion of 0.04% Trypan Blue solution to assess cell viability.

2.2.1.1 PURIFICATION OF MONOCYTES BY ADHERENCE
PBMCs were resuspended in cIMDM to 1x10^7 PBMCs ml⁻¹ and seeded on 8-chamber Lab-Tek II slides or black framed 96-well plates at 2.2x10^5 and 1x10^6 PBMCs well⁻¹ respectively. The slides or plates were incubated for 2hrs at 37°C, 5% CO₂ to allow the monocytes to adhere. The liquid phase was then removed and cells washed three times with 1xPBS that had been warmed to 37°C, to remove non-adherent cells. Fusion assays were performed immediately after this step (see “2.2.3 Fusion Assay”). As the Lab-Tek II chambers are 70mm² and the plate wells are all 31.65mm² and assuming that, on average, 15% of the PBMCs will be monocytes, this would result in ~3.3x10^5 and ~1.5x10^5 monocytes well⁻¹ (4714 and 4739 monocytes mm⁻² respectively). Within PBMCs, 21.6±8.83% of cells were monocytes (Figure 2.1), of these 87.13±4.38% were classical (Cl), 6.41±1.43% intermediate (Int) and 5.18±2.25% nonclassical monocytes (NCl) (N=9).
Figure 2.1: Components of PBMCs Isolated from Human Blood
Flow cytometric analysis of the cellular components within PBMCs before adhesion purification; both pseudocolour and contour graphs are shown above for the same data.

Left: Granulocytes show a low forward scatter due to their small size and high side scatter due to their internal granule complexity. Monocytes and NK-cells are similar in size and granularity and the lymphocytes are the smallest living population with low forward and side scatter.

Middle: NK-cells and any remaining non-monocyte components can be gated out from monocytes by their low CD14 expression.

Right: The remaining cells are all monocytes and can be split up into Classical (CD14++CD16-), Intermediate (CD14++CD16+) and Nonclassical (CD14+CD16++). In 9 donors 21.60±8.83% of cells were monocytes, of these 87.13±4.38% were Classical, 6.41±1.43% Intermediate and 5.18±2.25% were Nonclassical monocytes.
2.2.1.2 Isolation of Monocytes by Magnetic-Activated Cell Sorting Using Negative-Selection

For every 1×10^8 PBMCs, 200μl MACS-buffer and 80μl FcγR-blocking reagent was added and the cells were incubated for 5min at 4°C. Then a cocktail containing 100μl MACS-buffer, 50μl non-monocyte depletion cocktail, 45μl anti-CD3-beads (B-cell targeting) and 45μl anti-CD19-beads (T-cell targeting) were added and the cell suspension. *N.B.*

For non-monocyte cell depletion, the antibody cocktail contained anti-CD7, anti-CD56, anti-CD123 and glycophorin-A to target CD8+ T-cells, NK-cells, stem cells and erythrocyte precursors, respectively. The cells were refrigerated for 15min at 4°C with gentle resuspension at 5min intervals. The suspension was topped up to 10ml with MACS-buffer before centrifuging for 5min at 480g and resuspended in 1ml MACS-buffer. An LD column was placed in the MACS magnetic separator and equilibrated with 2ml MACS-buffer. The cells were then added to the column when depleted the column was washed at least twice with 1ml MACS-buffer. Total monocytes were collected from the flow-through and counted using a haemocytometer as previously described. MACs-enriched cells contained 68.74±9.73% monocytes (Figure 2.2); of these 79.71±6.70% were CI, 8.77±2.80% Int and 10.57±4.49% NCI monocytes (N=21).

2.2.1.3 Sorting Monocyte Subsets Using Fluorescence-Activated Cell Sorting

After counting, the desired number of total monocytes was placed in a new tube and pelleted by centrifugation for 5min at 480g before being labelled depending on the experiment they were used in.

FACS 1: Monocyte Subsets for Phenotyping Experiments

For every 1×10^7 monocytes; a cocktail containing 8μl anti-CD14-efluor450, 12μl anti-CD16-FITC, 6μl anti-CD56-APC (NK-cell targeting) and 10μl MACS-buffer was made before rapidly resuspending the pellet in the cocktail. The cell suspension was refrigerated for 15min at 4°C and at 5min intervals the cells were gently resuspended. The suspension was topped up to 10ml with MACS-buffer before centrifuging for 5min at 480g and resuspended in MACS-buffer to a cell density of 12×10^6 monocytes ml$^{-1}$.
Figure 2.2: Components of MACs Isolated Cells from Human Blood
Flow cytometric analysis of the cellular components within MACs isolated cells; both pseudocolour and contour graphs are shown above for the same data. The same gating strategy as Figure 2.1 has been used. After MACs purification the granulocyte and lymphocyte population were depleted dramatically and the monocyte population became the major cell type of the suspension. In 21 donors MACs enriched cells comprised of 68.74±9.73% monocytes, of these 79.71±6.70% were Classical, 8.77±2.80% Intermediate and 10.57±4.49% Nonclassical monocytes.
This cell suspension was stored and transported in the dark on ice to the SIgN Flow Cytometry Facility.

FACS 1 Gating Strategy

Cells were gated using their forward and side (FSC-A/SSC-A) scatter characteristics (Figure 2.3. Singlet monocytes were selected by consecutive FSC-A/FSC-W and SSC-A/SSC-W gating and CD56\text{Low}CD14\text{Low-High} monocytes were gated to ignore contaminating NK-cells and gated again by their CD14-eflour450/CD16-FITC binding into monocyte subsets: Cl (CD14++CD16⁻), Int (CD14++CD16⁺) and NCl (CD14⁺CD16++). To maintain reproducibility, subsets were always gated with equal sized square gates with perpendicular borders. Subsets were collected into 5ml polypropylene tubes containing 0.5ml cIMDM. A post-sort check was conducted on 100 cells in every subset to ensure that the purity was ≥99%. Cells were stored on ice until collection was complete. Subsets were then counted as described above (see “2.2.1 PBMC Extraction from Blood”) and diluted accordingly in cIMDM. A post-sort check was conducted on every sorted sample by the operator to ensure ≥98% purity was maintained.

FACS 2: Monocyte Subsets for MGC Flow Cytometric Analysis

A different set of antibodies and conjugates was used to sort monocytes for flow cytometry experiments to avoid fluorescence emission overlaps in the panel. For 1x10⁶ monocytes, cells were rapidly resuspended in a cocktail containing 1μl anti-CD14-PE-C594, 2.3μl anti-CD16-PE-Vio770 and 47μl MACS. The cells were then treated in the same way as described above.

FACS 2 Gating Strategy

The same gating strategy as FACS 1 was applied but with the alternative CD14 and CD16 fluorophore channels in place.
Figure 2.3: FACS Gating Strategy of Monocyte Subsets from MACs Isolated Cells

Pseudocolour and contour graphs showing the FACS gating strategy used to purify monocyte subsets. First, monocytes were broadly selected by their FSC-A/SSC-A scatter, from this population singlets were selected by sequential FSC-A/FSC-W and SSC-A/SSC-W selection. Note: Forward scatter (FSC) is a direct measure of cell size, side-scatter (SSC) is a measure in the internal cellular complexity/granularity. The cells were then presented in a CD14/CD56 dot plot and NK-cells (CD14lowCD56high) were gated out using the section shown. Finally Classical (CD14++CD16-), Intermediate (CD14++CD16+) and Nonclassical (CD14+CD16++) monocytes were gated using 3 equally sized gates that had their borders strictly aligned with each other in an inverted 'L'-shape. After sorting an aliquot from each tube of collected subset cells was quality checked to ensure ≥99% purity was maintained.
FACS 3: Monocyte Subsets for Classical CD9 Low vs High Fusion Assay

For every 1×10^6 monocytes, cells were first resuspended in a mixture of 0.18μl anti-CD14-efluor450, 0.7μl anti-CD16-PE-Cy7 and 49μl MACS buffer then split accordingly. Cells were labelled for CD9 either directly or indirectly.

Direct Labelling of CD9: 2.5μl anti-CD9-FITC per 1×10^6 monocytes was added to the cell suspension, then incubated for 30min at 4°C in the dark before being washed by topping up the wells with MACS buffer and spinning for 5min at 480g. Cells were resuspended in MACS-buffer to a cell density of 12×10^6 monocytes ml$^{-1}$ for sorting.

Direct labelling of CD36: CD36 was also used as a substitute marker for CD9 as the markers appeared to co-express in Cl monocytes (Figure 2.4). 3μl anti-CD36-FITC was added to the cell suspension for every 1×10^6 monocytes and incubated and washed as previously described.

Indirect Labelling of CD9: 0.4μl anti-CD9-Biotin was added, incubated and washed as described in direct labelling then the cell pellet was resuspended in 0.4μl Strepavidin-APC-Cy7 for every 1×10^6 monocytes and made up to 50μl with MACS buffer. After incubation and washing cells were resuspended for FACS as previously described.

FACS 3 Gating Strategy

A CD9-APC-Cy7 CD36-FITC double stained sample was used to set up the gating. Cells were gated into singlets, NK-cells removed and monocyte subsets allocated as outlined in “FACS 1 Gating Strategy” and Figure 2.3. The Cl (CD14$^{++}$CD16$^-$) subset was displayed into a dot plot. The CD9Lo/CD36Lo and CD9Hi/CD36Hi populations were gated as the lowest 25% and the highest 25% of the MFI readings respectively (see Figure 2.4). Once the gates had been set the single stained cells were loaded and sorted. Cells were collected and stored as previously described.

2.2.2 Flow Cytometric Analysis of Tetraspanins

A 10-marker panel was developed that could identify the three monocyte subsets, quantify the expression of all seven tetraspanins of interest and detect cell viability all in one sample. The panel consisted of a LIVE/DEAD Blue dye, two monocyte subset markers (anti-CD14- PE-CF594 & anti-CD16- PE-Vio770) and seven tetraspanin markers.
Figure 2.4: FACS Gating Strategy of CD9LowCD36Low and CD9HighCD36High Classical Monocytes

After undergoing the same FACS gating strategy as described in Figure 2.3 the Classical (CD14++CD16-) subset was drilled down and using a small sample of double stained cells (both CD9-APC-Cy7 and CD36-FITC) the upper and lower 25% limits of CD9/CD36 expression were set. The cells to be sorted were single stained but due to the correlation between CD9 and CD36 expression CD9High cells were CD36High and \textit{vice versa} thus allowing single staining to sort for either population.
(anti-CD9-Biotin, anti-CD37-APC, anti-CD53-CF405M, anti-CD63-PerCP, anti-CD81-Alexa Fluor 700, anti-CD82-PE, anti-CD151-FITC). Streptavidin-APC-Cy7 was used as the secondary reporter for CD9-Biotin and all anti-tetraspanin antibodies had an IgG1 isotype equivalent in a separate sample. Each antibody was individually titrated to ascertain the concentration for optimum binding and reporting (data not shown).

2.2.2.1 Staining Freshly Isolated Peripheral Blood Monocytes for Flow Cytometry

PBMCs from in-house volunteer donors were pelleted and washed with PBS in a 15ml Falcon tube (480g, 5min at room temperature) and resuspended in 1ml PBS + 1μl LIVE/DEAD Blue dye and incubated for 30min in the dark at room temperature. Excess dye was removed by adding 2mls of FACS buffer before cells were pelleted (480g, 5min at room temperature) and washed again in 1ml FACs buffer. The PBMC pellet was resuspended in 200μl FACS buffer containing 1μl anti-CD14-PE-C594 and 2.3μl anti-CD16-PE-Vio770 per million cells. PBMCs were refrigerated at 4°C for 30min in the dark, topped up to 3ml with FACS Buffer and centrifuged (480g, 5min at room temperature). The pellet was washed in 1ml FACS buffer, spun again and resuspended to a suitable density to allow the PBMCs to be seeded in v-bottomed wells on a 96-well plate at 1x10^6 PBMCs well^-1^. Hereafter PBMCs were split into positive and isotype. The following master mixtures were made up and the PBMCs were rapidly resuspended in them before incubation for 30min, 4°C, in the dark.

Positive Panel (for 1x10^6 PBMCs): 0.4μl anti-CD9-Biotin, 5μl anti-CD37-APC, 1.5μl anti-CD53-CF405M, 10μl anti-CD63-PerCP, 5μl anti-CD81-Alexa Fluor 700, 5μl anti-CD82-PE, 10μl anti-CD151-FITC and 13.1μl FACS buffer.

Isotype Panel (for 1x10^6 PBMCs): 0.4μl IgG1-Biotin, 5μl IgG1-APC, 2.4μl IgG1-CF405M, 2.4μl IgG1-PerCP, 6μl IgG1-Alexa Fluor 700, 1.2μl IgG1-PE, 2μl IgG1-FITC and 30.6μl FACS buffer.

The PBMCs were washed with FACS buffer and pelleted (480g, 5min at room temperature). A mixed secondary antibodies solution was made by adding 0.8μl streptavidin-APC-Cy7 to 60μl FACS buffer and 30μl of this solution was added to both the positive and isotype pellets. PBMCs were incubated for 20min, 4°C, in the dark before a final wash and resuspended in 150μl FACS buffer and transferred into 1.1ml
FACS tubes and stored on ice to be taken to the SIgN Flow Cytometry Facility and analysed on a BD LSRII 5-Laser analyser.

2.2.2.2 *Fluorescence Compensation*
A compensation matrix was generated on FACSDiva before any flow cytometric analysis was conducted (excluding any observations where only one fluorophore was used). Antibody compensation beads were prepared by combining 1 drop each of negative and capture anti-mouse Fc compensation beads into a 1.1ml FACS tube that was labelled with a specific antibody (one tube for every antibody-fluorophore used). Each tube then had its own 1μl of antibody added and rapidly mixed by pipette, these tubes were incubated in the dark on ice for 5min before adding 200μl of FACS buffer.

ArC beads were used for the LIVE/DEAD Blue stain as the dye targets amines and is unreactive to Fc targeting mechanisms. ArC beads were prepared by adding 1 drop of capture ArC compensation beads into a 1.5ml Eppendorf tube and allowed to warm to room temperature for 5min. 1μl of LIVE/DEAD Blue dye was added to the ArC beads and mixed rapidly by pipette before being incubated at room temperature in the dark for 30min. 1ml of PBS was added to the tube before it was spun at 300g for 5min. The liquid phase was carefully removed and 200μl FACS buffer was used to resuspend the bead pellet. 1 drop of negative ArC beads was added before briefly vortexing the tube and running the beads through flow. Rainbow beads were run as a separate sample alongside any quantitative flow cytometric analysis to verify instrument performance and allow readings to be standardised between long periods of use.

2.2.2.3 *Monocytes Cultured for 4 hrs in IMDM vs IMDM+ConA*
Monocyte subsets obtained from FACS 2 sorting strategy were seeded at 0.25x10⁶ monocytes well⁻¹ (positive, isotype & unstained) in a u-shaped 96-well plate in either 200μl cIMDM or 200μl cIMDM + 10μg ml⁻¹ ConA. The plate was incubated for 4hrs at 37°C, 5% CO₂. The plate was centrifuged at 500g for 5min before the liquid phase was removed from the wells. 200μl of cold cell dissociation solution was added to each
well and the plate placed on ice for 30min. By repeatedly pipetting up and down in each well the highly adherent cells were removed from the plate walls before being spun (500g, 5min), resuspended in 200μl ice-cold PBSE and transferred into new wells and pelleted again. A stock LIVE/DEAD Blue solution was made by adding 2μl of LIVE/DEAD Blue dye to 1500μl 1xPBS and 200μl was added to each of the isotype and positive pellets and 1xPBS alone was added to the unstained wells. After 20min incubation at room temperature in the dark, the cells were pelleted and washed once in 200μl FACS buffer to remove excess dye and pelleted once more before adding the positive or isotype antibodies. Antibody master mixes were made as outlined below on ice:

Positive Panel (for 1.5x10⁶ monocytes): 1.2μl anti-CD9-Biotin, 15μl anti-CD37-APC, 4.5μl anti-CD53-CF405M, 30μl anti-CD63-PerCP, 15μl anti-CD81-Alexa Fluor 700, 15μl anti-CD82-PE, 4.5μl anti-CD49-PE, 4.5μl anti-CD81-Alexa Fluor 700, 15μl anti-CD82-PE, 30μl anti-CD151-FITC and 189.3μl FACS buffer.

Isotype Panel (for 1.5x10⁶ monocytes): 1.2μl IgG1-Biotin, 15μl IgG1-APC, 7.2μl IgG1-CF405M, 7.2μl IgG1-PerCP, 18μl IgG1-Alexa Fluor 700, 3.6μl IgG1-PE, 6μl IgG1-FITC and 241.8μl FACS buffer.

50μl of the corresponding master mix was added to the six positive or six isotype wells and refrigerated for 30min at 4°C in the dark. Wells were topped up with 150μl of FACS buffer and spun at 500g for 5min to pellet the cells, washed with 200μl FACS buffer and pelleted again. A master mix containing 2.8μl streptavidin-APC-Cy7 + 597.2μl FACS buffer was made and 50μl was added to each of the positive and isotype wells (unstained cells were resuspended in FACS buffer alone). The cells were refrigerated for 20min at 4°C in the dark before being topped up with 150μl of FACS buffer and spun at 500g for 5min to pellet the cells. After a final wash with 200μl FACS buffer the cells were pelleted, resuspended in 150μl FACS buffer and transferred into 1.1ml FACS tubes and stored on ice to be taken to the SIgN Flow Cytometry Facility and analysed on a BD LSRII 5-Laser analyser (Figure 2.5).
Figure 2.5: Gating of Subset Derived MGCs for Flow Cytometric Analysis.

The gating strategy for FACS sorted monocyte subsets that were cultured in cIMDM or ConA for 4hrs and then analysed with flow cytometry. Only one positive subset is shown here as forward and side scatter was indistinguishable between subsets. In all donors; CD14 expression dropped to near zero for all subsets in both in cIMDM and ConA after 4hrs.
2.2.3 Fusion Assays
Fusion assays were carried out on total monocytes and FACS 1 sorted subsets. Monocytes were resuspended in cIMDM to 1.5×10^6 monocytes ml$^{-1}$ and 100μl of this cell suspension was seeded per well in a 96-well plate to give 1.5×10^5 monocytes well$^{-1}$. Where relevant, 100μl of cIMDM containing 2xConA (20μg ml$^{-1}$) and 2xanti-tetraspanin antibodies (20μg ml$^{-1}$) was added to the each well. This way, monocytes were always cultured at a density of 4740 monocytes mm$^{-2}$ unless specified otherwise. Monocytes were incubated at 37°C in 5% CO$_2$ for 72hrs in all total, subset and anti-tetraspanin antibody assays. For the fusion kinetics analysis and Luminex™ ELISA samples individual time-points were taken at 24hrs, 48hrs and 72hrs.

Fixing Lab-Tek II slides: The media was discarded before the cells were washed with pre-warmed (37°C) 1xPBS, aspirated, fixed and permeabilised by adding ~200μl of 100% (v/v) acetone. Cells were left to fix and permeabilise for 5min in 100% (v/v) acetone before being bathed in a glass tank containing 500ml of 1xPBS which was refrigerated at 4°C until staining could be performed.

For the fusion kinetics samples & Luminex™ ELISA: At the specific time-points the media in the well was collected and put into separate 1ml tubes for ELISA analysis. The tubes were spun at 3000g for 5min to pellet any cells/debris and two 75μl aliquots were taken from the resultant liquid phase and placed into PCR tubes and stored at -20°C. The cells in the wells were fixed as outlined below.

For all other assays: The media was discarded before the cells were washed with pre-warmed (37°C) 1xPBS, aspirated, fixed by adding 100μl of pre-warmed 4% (v/v) PFA and incubated at 37°C, 20 min, 5% CO$_2$. The wells were aspirated and washed with 200μl PBS and stored at 4°C in the dark until the day before imaging, cells were always stained and imaged within one week of fixing.

2.2.4 Staining Cells for Fluorescence Microscopy
2.2.4.1 Staining Lab-Tek II slides:
This staining protocol was only used on total monocytes in Chapter 3. Unless specified otherwise, all staining for fluorescence microscopy was performed using the “Optimised Staining of 96-Well Plates” protocol below.
Lab-Tek II slides were removed from the 1xPBS tank and excess liquid was aspirated. Each chamber was stained with 100μl of a nuclei/actin staining solution (containing 1μg ml\(^{-1}\) propidium iodide and 20μg ml\(^{-1}\) NH3 anti-F-actin primary antibody. For 1ml of stain 14.3μl of 1.4mg ml\(^{-1}\) NH3 antibody + 1μl of 1mg ml\(^{-1}\) propidium iodide was added to 984.7μl 1xPBS. Slides were refrigerated for 30min at 4°C in the dark, then the chambers were washed with 1xPBS. A secondary staining solution was made containing 4μg ml\(^{-1}\) goat anti-mouse polyvalent immunoglobulins with a FITC label. 100μl of the secondary stain was added to each chamber and refrigerated for 30min at 4°C in the dark. Chambers were then aspirated, washed with 1xPBS and the Lab-Tek II frame was removed as per the manufacturer’s instructions and mounted with a few drops of 1xPBS and a glass coverslip fixed in place with nail varnish. Slides were imaged immediately after staining.

2.2.4.2 Optimised Staining of 96-Well Plates:
PBS was aspirated from the wells and fixed cells (see “2.2.3 Fusion Assays”) were stained with 50μl of nuclei/actin staining solution (containing 3μg ml\(^{-1}\) DAPI and 1μg ml\(^{-1}\) Phalloidin-TRITC). Cells were left to stain overnight at 4°C in the dark. Prior to imaging, the staining solution was aspirated and wells were washed with PBS, aspirated and resuspended in 200μl PBS and taken to the Institute of Molecular and Cell Biology (IMCB) microscope facility.

2.2.5 Fluorescence Imaging
An Olympus IX83 inverted microscope running MetaMorph was used for image acquisition. Each well was imaged at 4x magnification in a 4x4 grid, 0μm spacing between images with DAPI and TRITC channels then imaged again at 10x magnification in a 4x4 grid, 200μm spacing with DAPI, TRITC and brightfield channels. All images were taken at 16-Bit scale with Binning at 2, Gain 2 (1x) and the autofocus set to ±60μm. The exposure of each fluorophore was set by finding a particularly MGC dense region in one of the wells and adjusting the exposure so that the 16-bit scale slider on the left never saturated to more than ~95-98%. The stringency of these parameters was maintained so that the downstream macros and calculations based on pixel size/value were accurate and reproducible.
2.2.6 IMAGE OPTIMISATION
Raw image files were arranged into a Stack on FIJI ImageJ and a Hyperstack was generated. The channels were then split apart (Image>Color>Split Channels) from the Hyperstack and each was individually background reduced (Process>Subtract Background...), inadequate background removal from the DAPI channel led to poor macro sensitivity during counting (see Figure 2.6). The Stacks were then combined again (Image>Color>Merge Channels...) and converted to an RGB format (Type>RGB Color) so that each view could be saved as a Tiff file for future analysis.

The 4x images were collaged on FIJI ImageJ by creating a stack of all the images in a chosen well then aligned and combined (Plugins>Stitching>Grid/Collection Stitching). The 4x well collages were used to give an overall view of the fusion in the well. Four representative 10x images were selected for each well (covering a total area of 2.6mm²) and arranged into a separate stack with the other conditions for image analysis. The ordering of the sample images in the stack was noted on a spreadsheet so that each image in a stack did not have an obvious label that would detail the condition; this way double-blind analysis could be carried out.

2.2.7 IMAGE ANALYSIS
MGCs were identified from the image Stack on FIJI ImageJ and freehand outlines were drawn around each MGC with >3 nuclei or more to make “Region Of Interest” (ROI) coordinates that could be saved alongside the Stack files. The stack and ROI list file were mounted onto ImageJ, the Stack was split up into its three colour channels (Image>Color>Split Channels) and all but the DAPI channel were closed. The DAPI stack and ROI lists were used in conjunction with the corresponding macro below to count the nuclei per MGC, measure MGC area and count the total number of nuclei per view. Despite efforts to automate the designation of MGC type there was no reliable method other than manually scoring the MGCs for morphological features (see Figure 2.7).
Figure 2.6: Effect of Background Reduction on Image Channel Noise

Each image taken was composed of three ‘channels’ – Red, Green and Blue. As DAPI was the nuclear label it was necessary to reduce background signal in the blue channel so that the counting macro could identify signal peaks with the highest accuracy. Above are two nuclear images and signal plots before and after background reduction. On the left signal plot the background noise in the dark “negative” regions are high (~180 on the Gray Scale). The positive signal for each nuclei bisected along the yellow line is represented as a peak (green box) with stacked/overlaid nuclei (red box) producing a cumulative signal. After background reduction the signal plot on the right has almost no noise but there is no loss of positive signal from the nuclei. The image on the right would now be optimised for the counting macros.
Figure 2.7: Morphologies of The Three MGC Types Observed During Fusion Assays.
An example 10x image with red nuclei channel, blue actin channel and 100µm scale bar. Langhans giant cells (LGCs) can be identified by their horse-shoe or ring-shaped nuclei arrangement and are typically the smallest in size. Foreign body giant cells (FBGCs) are larger and contain more nuclei in a stacked central cluster in the centre. Syncytial giant cells (SGCs) are by far the largest, have heterogeneous spreading of the membrane and the nuclei within are unevenly distributed.
The three MGCs observed were:

Table 10: MGC Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Key Morphological Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langhans Giant Cell (LGC)</td>
<td>Ring or horse-shoe arrangement of the nuclei, typically containing 3-18 nuclei, small surface area and roundish shape. Actin staining typically consistent.</td>
</tr>
<tr>
<td>Type 1</td>
<td></td>
</tr>
<tr>
<td>Foreign Body Giant Cell (FBGC)</td>
<td>Stacked ball of nuclei at the centre, typically containing 20-80 nuclei, medium surface area and roundish shape. Actin staining typically consistent.</td>
</tr>
<tr>
<td>Type 2</td>
<td></td>
</tr>
<tr>
<td>Syncytial Giant Cell (SGC)</td>
<td>Disorganised spread of nuclei, occasional circular clumps evident where large MGCs have potentially fused, 80-600 nuclei, very large surface area and no apparent shape. Actin staining shows patches of high and low staining.</td>
</tr>
<tr>
<td>Type 3</td>
<td></td>
</tr>
</tbody>
</table>

In the course of this study three morphologically distinct MGC types (see Table 10: MGC Types) were observed when human monocytes were cultured in ConA for 1-3 days. Currently there are no known surface markers to differentiate LGC, FBGC and SGC. Soluble markers such as cathepsin K and tartrate-resistant acid phosphatase were once thought to be produced solely by osteoclasts but even these have been scrutinised and shown to be a feature common to other types of MGC (Park et al., 2013). It has been suggested previously that in vivo FBGC could form from further enlargement and fusion events of LGC (Rhee et al., 1978). Studies of implants in animal models (Barbeck et al., 2016; Chappuis et al., 2015) and human granuloma biopsies (Okamoto et al., 2003) has shown that LGC typically accumulate at the early stages of investigation with increasing incidence of FBGC over time.

While LGC and FBGC are reported to show some organisation of their nuclei and membrane perimeter, the SGC are classified as such due to their disorganised nuclei and asymmetrically spread shape. This vast cellular structure is structurally similar with the syncytiotrophoblast found encasing mammalian blastocysts (Huppertz and Gauster, 2011). The SGC represents the largest and most aggressively fused of the three MGC types. Through using these morphological classifications we hope to identify if any of the monocyte subsets show any predisposition to forming any of these MGC types.
2.2.7.1 Macros for Analysing Images

For each DAPI stack to be analysed the Noise Tolerance was set, a handful of MGC ROIs were selected within the stack and the individual noise tolerance (Process>Find Maxima…) for each was ascertained. This usually ranged between 3-10 and once a ‘best-fit’ value had been found it was recorded and used henceforth for any macro on that stack to maintain consistency.

Nuclei per MGC

```python
n = roiManager("count");

for(i=0; i<n; i++){
    roiManager("select", i);
    //wait(200);
    run("Find Maxima…", "noise=NUMBER output=Count exclude");
    run("Find Maxima…", "noise=NUMBER output=[Point Selection]";)
}
```

N.B. “NUMBER” was replaced with the appropriate Noise Tolerance number ascertained by the maxima testing described above. The results window produced will have a list of all the MGCs in their order in the ROI list and the number of nuclei detected in each.

Number of Pixels per MGC

```python
n = roiManager("count");

for(i=0; i<n; i++){
    roiManager("select", i);
    {run("Measure");
    run("Add Selection...");}
```

The raw output for this macro was a list of the number of Pixels within each MGC in the ROI list, this was later converted into MGC Area using the calculations below.
Total Number of Nuclei per View

```
s= nSlices;

for(i=1; i<=s; i++){
    setSlice(i);
    //wait(200);
    run("Find Maxima...", "noise= NUMBER output=Count exclude");
    run("Find Maxima...", "noise= NUMBER output=[Point Selection]");
}
```

N.B. “NUMBER” was replaced with the appropriate Noise Tolerance number ascertained by the maxima testing described above. The counts generated from this show the total number of nuclei per image i.e. both fused or single cell.

The results from all the macros was entered into a spreadsheet template that would convert all the raw macro data into useful values using the formulas below.

2.2.8 Fusion Assay Mathematics & Equations

Median Nuclei per MGC

The number of Nuclei per MGC in any given condition typically possessed a positive skew whereby smaller 3-8 nuclei MGCs were far more common than larger ≥20 nuclei MGCs. The median was therefore used to describe the average size of a giant cell in any given condition.

Single Cells & Fused Nuclei

By having both the Total Number of Nuclei per View and a list of all the Nuclei per MGC; the number of single cells per condition could be deduced:

\[\text{Single cells} = \text{Total No of Nuclei per View} - \sum (\text{Nuclei per MGC}) \]

Fusion Index (FI)
The FI expresses the fusibility of cells in a given condition, the higher the FI the more cells have committed to fusion. FI was generated by dividing the number of fused nuclei by the total number of nuclei and expressed as a percentage.

\[
FI = \left(\frac{\text{Fused Nuclei}}{\text{Total Nuclei}} \right) \times 100
\]

Converting Pixels per MGC to MGC Area

Each 10x image taken on the microscope was 696 (width) by 520 (height) pixels. The width and height of each pixel was 1.35189\(\mu m\) and so the area of each pixel and the area of each MGC could be calculated:

\[
\text{Pixel Area} = (\text{Pixel Width} \times \text{Height}) = (1.35189\mu m \times 1.35189\mu m) = 1.827606572\mu m^2
\]

Therefore:

\[
\text{MGC Area (\mu m}^2\) = \text{Pixel Area (1.827606572\mu m}^2\) \times \text{No of Pixels in MGC}
\]

% of Well Covered by MGCs

% of well covered by MGCs was generated by taking the sum of all the MGC area (\(\mu m^2\)) values recorded for a given condition and dividing it by the total number of the views analysed multiplied by the area of one view (\(\mu m^2\)) and expressing it as a percentage.

\[
\% \text{ Of Well Engulfed} = \left(\frac{\sum \text{MGC Area per Condition}}{\text{(No of Views Counted} \times \text{Area per View})} \right) \times 100
\]

Calculating the Percentage of Single, Fused, and Detached Cells

The number of fused and single cells were calculated as shown in "Single Cells & Fused Nuclei", to convert the values into a percentage and ascertain the amount of detached cells:

A. **Total Nuclei per Well** = \(\frac{\sum \text{All Nuclei in a Condition}}{\text{Number of Views Analysed}}\times\left(\frac{\text{Total Well Area (31.65mm}^2\)}{\text{Area of a View (0.661mm}^2\})}\)

B. **Fused Nuclei per Well** = \(\frac{\sum \text{Fused Nuclei in a Condition}}{\text{Number of Views Analysed}}\times\left(\frac{\text{Total Well Area (31.65mm}^2\)}{\text{Area of a View (0.661mm}^2\})}\)

C. **Single Cells per Well** = (Total Nuclei per Well − Fused Nuclei per Well)

D. **Detached Cells per Well** = Cells Seeded per well − Total Nuclei per Well
As nuclei could only exist in 3 states (single cell, fused nuclei or detached cell) B, C and D could all be expressed as a percentage of the Cells Seeded per well.

\[
\% \text{Fused Cells} = \left(\frac{\text{Fused Nuclei per Well}}{\text{Cells Seeded per well}} \right) \times 100
\]

\[
\% \text{Single Cells} = \left(\frac{\text{Single Cells per Well}}{\text{Cells Seeded per well}} \right) \times 100
\]

\[
\% \text{Detached Cells} = \left(\frac{\text{Detached Cells per Well}}{\text{Cells Seeded per well}} \right) \times 100
\]

Whereby:

\[
(\% \text{Fused Cells} + \% \text{Single Cells} + \% \text{Detached Cells}) = 100\%
\]

Calculating the Percentage of LGC, FBGC and SGC

The sum of the nuclei in each of the three types of MGCs was totalled for each condition tested in a spreadsheet. The Total LGC/FBGC/SGC Nuclei per Well was calculated in the same way as Fused Nuclei per well (B) by instead substituting “Fused Nuclei in a Condition” with “Total LGC/FBGC/SGC in a Condition”. The Total LGC/FBGC/SGC Nuclei per Well could then be expressed as a percentage of the Fused Nuclei per Well.

E.g.

\[
\text{LGC Nuclei per Well} = \left(\frac{\sum \text{LGC Nuclei in a Condition}}{\text{Number of Views Analysed}} \right) \times \left(\frac{\text{Total Well Area (31.65mm}^2\text{)}}{\text{Area of a View (0.661mm}^2\text{)}} \right)
\]

\[
\% \text{ of Fused Nuclei in LGCs} = \left(\frac{\text{LGC Nuclei per Well}}{\text{Fused Nuclei per Well}} \right) \times 100
\]

Statistics

All statistical analysis were conducted in GraphPad Prism (6.04) and the appropriate tests are noted in the legend of each figure. In all graphs the “N=x” value represents the number of different donor repeats in the experiment and the standard error of the mean (SEM) is reported in all graphs where N≥3. After performing the calculations described previously, the results for each parameter was tested with an analysis of variance (ANOVA) or a Kruskal-Wallis test for results that were integers or percentages respectively. Afterwards an appropriate post-hoc test (described below) was selected to compare the values of interest. An ANOVA assumes a parametric distribution of
integer values (e.g. MFI or MGC area in \(\mu m^2 \)) and detects if there is a dominant member of three or more samples. The Kruskal-Wallis test is designed for non-parametric and pure numbers such as percentages (e.g. fusion index or % surface covered by MGCs) and reports if one or more conditions is dominating over the others.

As the primary statistics tests only measure the variance between the conditions post-hoc tests were conducted to make direct paired comparisons (e.g. control vs condition 1). A Dunnett’s post-hoc test was run after an ANOVA to compare the average of the control samples to that of the other samples. A Dunn’s post hoc test was used in conjunction with a Kruskal-Wallis test to conduct pairwise comparisons based on rank sum between individual samples to a control sample. A Tukey post hoc test was used after an ANOVA to compare the mean values of different time-points whereby all possible combinations are compared and reported. A Fishers LSD post hoc test was conducted after an ANOVA to compare the expression of tetraxspanins between the monocyte subsets. Because the fluoresce index is different for each anti-tetraspanin antibody reporter, it is only accurate to compare the significant differences between the same antibody reporter itself on different subsets or in different conditions. Therefore, in the Fishers LSD each comparison stands alone, the means are pooled and square rooted and this value becomes an assumed SD. A comparison is then run to see if group differences exceed this pooled SD. All stars (*) mentioned hereafter refer to the following scale of significance:

\[
\text{ns: } p \geq 0.05 \quad * \ p \leq 0.05 \quad ** \ p \leq 0.01 \quad *** \ p \leq 0.001 \quad **** \ p \leq 0.0001
\]

2.2.9 Adhesion Assay

The adhesion assay protocol was adapted and optimised from an experiment conducted by Lisa Mauracher. Monocyte seeding densities (0.5x10^5, 1.0x10^5 & 1.5x10^5 monocytes well\(^{-1}\)) and incubations times (1, 2, 4, 6hrs) were all tested and the following protocol generated from the optimal results (data not shown).

Total Monocytes from in-house venepuncture donors were resuspended to a density of 5x10^5 monocytes ml\(^{-1}\) in cIMDM. 100\(\mu\)l of cell suspension was added to each well in a clear bottomed black framed 96-well plate to give 0.5x10^5 monocytes well\(^{-1}\). 3ml
of 2xConA media (20μg ml⁻¹ ConA) was made by adding 12μl of 5mg ml⁻¹ ConA solution to 2988μl cIMDM, this was then subdivided into 9 tubes containing 300μl each. Anti-tetraspanin antibodies were added at double concentration (20μg ml⁻¹) to the corresponding tube of 300μl 2xConA media. 100μl of the 2xConA 2xtetraspanin antibody cIMDM was added to each of the corresponding wells (containing 100μl of seeded monocytes) to bring ConA and antibodies to 1x concentration (10μg ml⁻¹) and induce fusion conditions. Control wells containing cIMDM without ConA and ConA+IgG1 were also prepared with each assay. Once placed in the incubator at 37°C, 5% CO₂ the cells were left to adhere for 2 hours. Media was aspirated and 200μl of 1xPBS (pre-warmed to 37°C) was added to the wells, then drawn up and down at a steady speed at the North, South, West & East of the well to ensure non-adherent cells were removed before fixing. The PBS was aspirated and 100μl of 4% (v/v) PFA (pre-warmed to 37°C) was added to each well and the plate was returned to the incubator for 20min. The 4% (v/v) PFA was removed and wells were washed with 1xPBS, the plates were stored at 4°C until they could be stained and imaged.

The liquid phase was aspirated prior to staining. A 10μg ml⁻¹ Hoechst 33342 staining solution was made, for every 1ml of staining solution; 1μl of 10mg ml⁻¹ Hoechst 33342 was added to 999μl 1xPBS. 50μl of the solution was added to each well and the plate was left in the dark at room temperature for 15min. The staining solution was aspirated and cells resuspended in 200μl 1xPBS and taken to the Institute of Molecular and Cell Biology (IMCB) microscope facility. An Olympus IX83 inverted microscope running MetaMorph was used to take the images. Automated microscope acquisition was performed as outlined in “Fluorescence Imaging” above but only 4x images in the DAPI channel were collected. Images obtained were analysed with the following macro in ImageJ FIJI to count cell numbers:

```java
setAutoThreshold("Otsu dark");
run("Analyze Particles...", "size=4-400 circularity=0.00-1.00 show=Nothing display summarize");
close();
```
2.2.10 **Tandem Fluorescence-Scanning Electron Microscopy (Flu-SEM) of MGCs**

Subset monocytes from FACS 1 were resuspended in cIMDM to 3.65x10^6 monocytes ml\(^{-1}\) and 200μl of cell suspension was seeded onto a 35mm glass bottom petri dish (well diameter 14mm, glass thickness no. 0) to give a cell density of ~4740 monocytes mm\(^{-2}\). After 1hr incubation at 37°C at 5% CO\(_2\) to allow the monocytes to adhere the dish was filled with 2ml cIMDM + 1xConA (10μg ml\(^{-1}\)) and returned to the incubator for 72 hrs. 3μl of 10mg ml\(^{-1}\) Hoechst 33342 was added to 2997μl cIMDM to make 3ml of Hoechst stain media (10μg ml\(^{-1}\)) which was warmed to 37°C. 1ml of the warm Hoechst stain media was added directly into the already present 2ml of culture media in the three dishes thus diluting the final concentration of Hoechst 33342 to 3.3μg ml\(^{-1}\). At the same time the glass well was marked with a small downwards facing triangle using the pipette tip to create an arbitrary 12 o’clock marking. The dish was incubated for 1hr to allow the Hoechst to permeate the cells. The dishes were then taken to the IMCB microscope facility and mounted on the IX83 equipped with an environment chamber. The cells were maintained at 37°C and 5% CO\(_2\) throughout the imaging. The triangular mark made on the dish was aligned at the 12 o’clock of the camera and the wells were raster scanned in a 5x5 grid below the mark at 20x magnification (DAPI and brightfield channels). After imaging, the plates were handed over to Mr Benoît Malleret for fixation and preparation for SEM.

The subsequent stages were all performed by Mr Benoît Malleret, Miss Tan Suat Hoon and Mr Lu Thong Beng of the Electron Microscopy Unit, National University of Singapore:

The media was aspirated and the cells were then fixed in a suspension with 2.5% (w/v) glutaraldehyde in a 0.1M phosphate buffer for 1hr (pH 7.4) at room temperature. Then the cells are washed twice in 1xPBS. The glass well at the centre of the dish was carefully removed using a diamond-tipped glass cutter to be handled as a glass coverslip. After post-fixation with 1% (w/v) osmium tetroxide (Ted Pella Inc., USA) at room temperature for 1 hour, cells were washed in deionised water and dehydrated with a graded series of ethanol starting at 25% (v/v) to 100% (v/v) and critical point dried (CPD 030, Bal-Tec, Liechtenstein). The glass coverslip with the dry
cells on it was laid on an adhesive film on an SEM sample holder. This was firmly
touched with another adhesive sample holder and pulled away. The surface on which
the cells were grown and the adhesive surface were coated with 5nm of gold by
sputter coating in a high-vacuum sputtering device (SCD005 sputter coater, Bal-Tec,
Liechtenstein). The coated samples were examined with a field emission scanning
electron microscope (JSM-6701F, JEOL, Japan) at an acceleration voltage of 8kV using
the in-lens secondary electron detector.

Combining Tandem Flu-SEM Images
The fluorescence images taken at 20x magnification were collaged into a larger “map”
image using ImageJ FIJI (Plugins>Stitching>Grid/Collection Stitching). The brightfield
map was compared with the low magnification SEM images to identify the location of
the high magnification images. The appropriate high magnification SEM images and
20x magnification DAPI images were then matched, cropped (Image>Crop) and
merged (Image>Color>Merge Channels...).

2.2.11 LUMINEX® ELISA OF FUSION ASSAY SUPERNATANTS
Frozen Sample Preparation: The 24, 48 & 72hr supernatants from the fusion
kinetics study stored at -80°C were thawed and 10μl aliquots were taken to be diluted
before analysis. 24hr samples remained undiluted, 48hr samples were 2x diluted (10μl
sample + 10μl cIMDM) and 72hr samples were 3x diluted (10μl sample + 20μl cIMDM).
Samples and media were handled and stored on ice.

ELISA was carried out on the Luminex® platform by Miss Esther Mok and an in-house
team following the protocol below:
Diluted samples were quantified for: CCL2 (MCP-1), CCL3 (MIP-1α), RANTES, IL-1α,
IL-1β, TNFα, IL-6, IL-17A, IL-4, IL-10, IL-13, GM-CSF, IL-3, IFNγ & VEGF. Luminex®
bead-based multiplex assays are based on Luminex® xMAP® technology and they
are designed to simultaneously measure multiple specific protein targets in a single
sample. Customized human 9- and 15-plex kits (Merck Millipore, cat# HCYTOMAG-
60K) were measured with DropArray™-bead plates (Curiox).
9-plex: Human GM-CSF, IFNγ, IL-10, IL-6, IL-13, IL-1α, IL-1β, IL-4, and TNFα.
15-plex: Human GM-CSF, IFNγ, IL-10, IL-6, IL-13, IL-17A, IL-1α, IL-1β, IL-3, IL-4, CCL2, CCL3, RANTES, TNFα and VEGF

Using DropArray-bead plates, samples or standards were incubated with fluorescent-coded magnetic beads, which had been pre-coated with respective capture antibodies. After an overnight incubation at 4°C with shaking, plates were washed twice with wash buffer. Biotinylated detection antibodies were incubated with the complex for 1 hour and subsequently streptavidin-PE was added and incubated for another 30 min. Plates were washed twice again, and beads were re-suspended with sheath fluid in PCR plates before reading on the Luminex analyzer FLEXMAP® 3D (Merck Millipore). Data acquisition was done using xPONENT® 4.0 (Luminex) acquisition software and data analysis was done using Bio-Plex Manager® 6.1.1 (Bio-Rad). Standard curves were generated with a 5-parameter logistic algorithm which provided a better fit than a 4-parameter logistic when the response curve was asymmetrical/non-sigmoidal. Lastly, a report was generated with values for both MFI and concentration data.
CHAPTER 3: TOTAL MONOCYTE FUSION

3.1 RESULTS

3.1.1 OPTIMISATION OF THE FUSION ASSAY
At the beginning of the study the protocols and techniques used were developed by previous PhD students, Dr Marzieh Fanaei and Dr Varadarajan Parthasarathy. These techniques relied on a monocyte purification method that did not separate subsets and was too slow for the testing of multiple tetraspanins in the subsets.

Monocyte Purification
Initially, monocyte purification relied on the adhesive properties of monocytes (see “2.2.1.1 Materials and Methods” for details). While MGCs could be generated reproducibly with this method, it is flawed in three ways. Firstly, the adherence technique assumes that all monocytes are equally adherent, but later studies with isolated subsets showed that this is not the case. Intermediate monocytes were the least adherent yet were the most aggressive fusers of the subsets. Secondly, the adherence method meant that PBMCs were seeded directly into the well at a predetermined density but after washing the exact number of monocytes present in each well was not known and prone to donor variation. Thirdly, the adherence method is subject to contamination with platelets and lymphocytes which are also able to adhere within the 2hr incubation time. The presence of lymphocytes and platelets could alter the fusion behaviour of the monocytes.

The monocyte purification protocol was improved by utilising a negative selection method (see Figure 3.1) which was able to remove non-monocytic cells directly using antibodies bound to magnetic beads (MACS purification). The resultant monocyte suspension could be counted and seeded accurately, possessed a high purity and all three monocyte subsets were enriched equally. It is also worthy of note that for later subset work; apheresis cones were used as the source of monocytes as they contained 400-1500x10^6 PMBCs of which 40-50% were typically monocytes. In-house venepuncture donors in the UK and Singapore were limited to ~550ml and 40ml.
Once the magnetic enrichment method was adapted it was possible to count and seed the monocytes to a very high degree of accuracy. A range of seeding densities and culture times were compared for 96-well plates to find the optimum culture conditions. 150,000 cells fixed at 72hrs was chosen as the optimum test conditions as the FI was at the ideal 50% mark and between 48-72hrs the variation between recordings seemed to lessen. N=4, Mean±SEM. All conditions in cIMDM+10ug ml⁻¹ ConA.

Original Technique (Left): Monocyte were purified using adherence purification. PBMCs were seeded in media and incubated for 2hrs then washed with warm media to remove non-adherent cells. Issues: Final cell number of monocytes is unknown, contamination levels are relatively high, non-adherent monocytes are washed away.

Optimised Technique (Right): Negative selection using an antibody-magnetic bead cocktail that targets all leukocytes except monocytes. The resultant suspension of monocytes are high purity, can be counted and seeded to a high accuracy and there is no loss of non-adherent monocytes.

Original Technique (Left): Monocytes were seeded onto glass 8-chamber Lab-Tek II slides. Issues: High cell number required per condition, only 8 chambers per slide, (see “Fixing & Staining” and “Imaging” below).

Optimised Technique (Right): Black-frame 96-well plate. Advantages: Fewer cells required per condition as plate well area (31.65mm²) is 2.2x smaller than the Lab-Tek II chamber (70mm²), up to 96 conditions per plate available, (see “Fixing & Staining” and “Imaging” below).
D) Fixing & Staining

Original Technique (Left): Lab-Tek II slides were fixed and permeabilized with acetone and stained with DAPI+NH3 (anti-F-actin) and after washing counterstained with an anti-IgM-GFP secondary. This robust protocol meant that MGCs would often rupture giving poor resolution of the membrane borders and lots of background artefacts.

Optimised Technique (Right): In the 96-well plates a gentler protocol was developed to maximise preservation and resolution. Warmed 4% PFA was used to fix before adding a high affinity Phallloidin-TRITC and DAPI overnight stain.

E) Imaging

Original Technique (Left): Each “Site” had to be manually chosen and imaged in a Lab-Tek II chamber. Disadvantages: user bias, slow (30-40 images hour⁻¹), only a few sample images per condition.

Optimised Technique (Right): The plate dimensions were calibrated to the microscope so that the computer could raster scan the whole well at 4x to generate a “well map” then subsequently take 16 sample images equally spaced at 10x for analysis. The automated protocol possessed an autofocus option allowing high resolution images to be taken much faster than before (~720 images hour⁻¹).

F) Analysis

Original Technique (Left): Images were counted individually by manually selecting each nuclei using the ImageJ FIJI “Cell Counter”. Disadvantages: Slow, user bias, no way to measure MGC area.

Optimised Technique (Right): By creating a stack on ImageJ FIJI and drawing ROI boundaries on each MGC a macro could be used to instantaneously count all the nuclei in each MGC and measure the area of each. Advantages: Rapid, higher throughput, more parameters recorded, ROIs and macros can be saved and reused/reanalysed.
respectively and averaged at 1.2x10^6 PBMCs ml^-1 of blood of which 20-30% were monocytes.

Cell Culture Conditions

The 8-chamber Lab-Tek II slide had a culture surface area of 70mm^2 and early experiments utilising adherence purification required 2.2x10^6 PBMCs to be seeded in each well. 96-well plates could accommodate many more conditions than the 8-chambered Lab-Tek II slides and due to the lower surface area (31.65mm^2), each well required 2.2x fewer cells and lower reagent quantities per condition. The black wall 96-well plates also had the added advantages of low background fluorescence and were compatible with automated imaging protocols on the microscope (see “Imaging” below).

Once it was established that the MACS beads significantly enriched the monocyte population (Figure 2.1 & 2.1) and could be seeded to an accurate density, it was essential to compare the effects that seeding density and total culture time in ConA media had on fusion (see Figure 3.1). By 48hrs total monocytes reached a peak for both Fusion Index (FI) and % coverage, with increasing seeding densities resulting in higher values for each parameter. Interestingly, by 72hrs the values decreased slightly but the variability of each parameter also decreased (FI: 38±90% → 61±15% → 53±13%; % covered: 21±70% → 41±10% → 29±40%). It was decided that 150,000 monocytes well^-1 for 72hrs yielded the most reproducible results in most parameters and provided a sub-maximal (~50%) FI. Thus allowing subsequent treatments (e.g. with antibodies) to either increase or decrease the FI.

Fixing and staining

The initial protocol utilised acetone to both fix and permeabilise the cells to the glass coverslip before washing and staining with DAPI and an anti-actin antibody (NH3) and an anti-mouse GFP secondary antibody. The resultant images showed poor resolution between grouped nuclei, low resolution of the MGC membrane borders and multiple membranous artefacts and evidence of ruptured MGCs (see Figure 3.1). The use of 96-well plates made acetone a poor fixative/permeabilisation reagent as it would
dissolve the plastic and so pre-warmed 4% (w/v) PFA was substituted. Initially 0.1% (v/v) Triton-X100 was used to permeabilise the cells but again membrane fragments were evident and overnight staining without any permeabilisation proved effective, so the permeabilisation stage was removed. DAPI was maintained as the nuclear stain but the NH3 antibody which required secondary staining was replaced with phalloidin-TRITC. With this method, fixed cells could be stained in one batch without an additional wash and secondary stain that could cause cells to rupture.

Imaging

Initially, after focusing and exposure settings were adjusted, four 10x images were taken randomly for each chamber of the Lab-Tek II slides using a fluorescence microscope. Thus there were not many images per condition and any “site” choice could be subject to bias. As the slide was moved manually by hand and the focusing would often need readjusting this method also did not have a sufficient output. At an average speed of 30-40 images hour$^{-1}$ it was not feasible to take more sample images without somehow increasing the image output. The 96-well plate was compatible with an automated plate-holder on an Olympus IX83 inverted microscope and MetaMorph software allowed automated imaging to be conducted. The autofocus function meant that image resolution was always maximised in every image and could be performed far faster than manual adjustment. A personalised acquisition set-up was made so that settings could be reused and make imaging reproducible. The set-up included an initial well mapping phase where 16 images per well were taken for every well in 4x magnification. These images were later combined into a montage to give an overall impression of the fusion in each well and to observe if MGCs were distributed uniformly on the well surface. A subsequent scan at 10x magnification was conducted; 16 equally spaced sample images per well were taken throughout the well. These higher magnification images would be the images for analysis and counting. The new automated plate method removed all human bias in choosing sites and was able to acquire 18-24x more images per hour; averaging at \sim720 images hour$^{-1}$.
Analysis

Previously, images were analysed individually by counting the number of nuclei in each MGC and then counting the single cells that had not fused. With these values it was possible to calculate the “Median Number of Nuclei per MGC” and “Fusion Index” (see “2.2.8 Fusion Assay Mathematics & Equations”). The original protocol was similar to that developed by Annette Gasser and Johannes Móst (Gasser and Möst, 1999); where 300-400 nuclei from each condition were analysed and every MGC had to contain ≥3 nuclei. The problem with such a technique is that not all images obtained were of a uniform number of nuclei so some conditions called for more images to be analysed than others leading to disproportionate sampling. Furthermore, the analysis only took into account the number of the nuclei in each MGC and whether it was in a fused or unfused state. By measuring a fixed number of images on a calibrated microscope it was possible to ascertain the area analysed. In this way each analysis consisted of four images covering 0.66mm² totalling an area of 2.65mm² (8.4% of the 31.65mm² well). The total number of nuclei analysed across the four images averaged at 2400 nuclei; a 6-fold increase in the number of nuclei analysed as suggested by Gasser and Möst.

Region of Interest (ROI) borders were drawn around each MGC and these coordinate files could be saved and recalled at any time – a function essential for the analysis macros developed later. The ROIs also allowed the number of pixels within each border to be counted which could then be easily converted into an area thus allowing direct measurement of MGC area and % surface covered by MGCs. The biggest challenge by far was in the automation of the counting. With the images arranged into stacks combined with the ROI files and the specific acquisition settings it was then possible to develop a macro that would systematically count the peaks in fluorescence generated by each nuclei (see “2.2.7.1 Macros for Analysing Images”). Manually counting the nuclei, it was possible to count ~5,000 nuclei per hour, the counting macro was able to count ~65,000 nuclei per hour; a ~13 fold increase in output. The other two macros generated counted all the nuclei in each image and listed the number of pixels in each MGC ROI so that further calculations could be conducted.
(Figure 3.1 “Analysis”). The final addition to the analysis was a manual allocation of MGC type based on the morphology of the MGCs observed.

Conclusion of Optimisation:
Quantitatively, the optimised protocol produced monocytes of a greater purity (3.18-fold higher purity), required 2.2x fewer cells per condition, could acquire images ~18-24x faster, analyse ~6x more nuclei per condition and count nuclei ~13x faster than before. The greater output and larger sampling sizes ensured that results were representative and the ROI files to facilitate post hoc reanalysis of images.

3.1.2 Fusion Kinetics of Total Monocytes
Fusion of monocytes relies on the ability of the cells to adhere to a surface, migrate to one another, make contact and merge membranes (Aguilar et al., 2013). The adherence purification method meant that exact monocyte seeding numbers were always estimated as a percentage of the total PBMCs and there was always the possibility that low-adherence monocytes were washed away. With the new optimised protocol it was possible to count and seed monocytes at an exact density to generate a reproducible film of fusible monocytes. It was therefore essential to find out how the monocyte density affected the rate and outcomes of fusion over time.

Figure 3.2 shows the changes in fusion parameters of 4 donors at 24hrs, 48hrs and 72hrs through a range of seeding densities (0.25x10^5, 0.50 x10^5, 1.00 x10^5 and 1.50 x10^5 total monocytes well^-1). It is evident in all four parameters that an increase in monocyte seeding density increases the number of nuclei per MGC, the size (area) of the MGCs and the percentage of fused nuclei and area of the well covered by MGCs.

Within 24hrs fusion was evident at all monocyte densities cultured in ConA. Controls cultured without ConA (not shown) showed no evidence of fusion. With the exception of 0.25x10^5 total monocytes well^-1 (which only produced a small increase), all other seeding densities increased notably in FI, MGC area and % coverage between 24hrs and 48hrs. Curiously, the same conditions that showed a sharp increase in these values between 24hrs to 48hrs subsequently showed a decrease from 48hrs to 72hrs.
Figure 3.2: Fusion Kinetics of Total Monocytes.
Total monocytes from the same donors were purified using the optimised protocols, seeded at different densities and fixed at 24hrs, 48hrs and 72hrs. Overall, an increasing seeding density produced an increase in all parameters observed. There was no fusion evident in the cIMDM only time points. N=4, Mean±SEM for all points.
It may be worth noting that the standard errors for readings taken at 48hrs were markedly larger than those recorded at 72hrs. When 0.25x10^5 monocytes were seeded per well a more consistent increase from 24hrs to 72hrs was observed.

The median nuclei per MGC measure showed the least dramatic changes and only the 1.50x10^5 total monocytes well^{-1} samples showed any distinct increase (7.6 to 9.5 nuclei per MGC) from 24hrs 48hrs. At 24hrs the median area of MGCs cultured in all seeding densities was approximately the same (~4550μm^2) but by 48hrs they showed an increasing size with an increasing seeding density, therefore the MGC size is positively correlated with the seeding density.

Figure 3.3 shows the types of MGCs produced as a percentage of the fused nuclei at each of the time points. When seeded at the lowest density (0.25x10^5 monocytes well^{-1}) there is exclusive formation of LGCs up to 48hrs and FBGCs are only generated by 72hrs. Thereafter there is a positive correlation between seeding density and the formation of larger FBGCs and LGCs. Between 0.50x10^5 and 1.00x10^5 monocytes well^{-1}, there is a dramatic increase in the formation of FBGCs and SGCs formed within 24hrs. At 0.50x10^5 monocytes well^{-1} a population containing all three MGCs (LGC: 70.45%, FBGC: 7.38%, SGC: 22.18%) did not occur until 48hrs. A similar distribution of all three MGCs (LGC: 71.65%, FBGC: 15.40%, SGC: 12.95%) was achieved in only 24hrs when monocytes were seeded at double the density.

When comparing time points between Figure 3.2 and Figure 3.3 it is evident that an increase in the formation of larger FBGCs and SGCs results in an increase in the FI, MGC median area and % coverage. The formation of SGCs seemed to have a threshold for the seeding density across all the time points observed. No SGCs were evident in any well seeded with 0.25x10^5 monocytes well^{-1}. Between 48-72hrs the percentage of SGCs in all higher monocyte densities in Figure 3.3 show a decrease; similar to that of the parameters in Figure 3.2. Like the FI, MGC median area and % surface covered the formation of SGCs in all cell densities seemed to be maximal at 48hrs. There was no evidence of fusion in all control wells cultures in cIMDM alone.
Figure 3.3: MGC Types Generated from Fusion Kinetics Analysis of MACS Purified Total Monocytes.
The types of MGC generated in the fusion kinetics study on total monocytes were allocated into either Langerhans, Foreign Body or Syncytial Giant cells. The nuclei counted in each type is expressed above as a percentage of all the fused nuclei analysed. N=4, Mean±SEM for all points.
3.1.3 Adherence of Total Monocytes Cultured In Anti-Tetraspanin Antibodies

As tetraspanins have been shown to partner with integrins and mediate cellular adhesion (Kazarov et al., 2002; Liu et al., 2007) it was essential to test if the antibodies could inhibit adhesion to the well surface. If anti-tetraspanin antibodies inhibit initial adherence this would inhibit fusion and give false-positive fusion inhibition results.

There was no significant difference in the initial adherence of total monocytes in all wells containing either IgG1 control or anti-tetraspanin antibodies when ConA was present (Figure 3.4). Monocytes grown in the absence of ConA showed a 40.73% decrease in adherence (compared to ConA+IgG1 control). There was no significant difference between ConA+IgG1 and ConA only wells. From these results it is clear that the anti-tetraspanin antibodies do not interfere with the initial adherence of monocytes in the first 2hrs after seeding.

3.1.4 Comparison of Fusion from Adherence and MACS Purified Total Monocytes.

Anti-tetraspanin antibodies were used on both adherence purified total monocytes and MACS isolated total monocytes. Previous studies have predominantly been conducted on adherence purified monocytes and have not been analysed with high throughput automated techniques or have MGC types assessed.

Figure 3.5a and Figure 3.5b show a selection of sample images of MGCs generated from either adherence or MACS purified total monocytes from a single donor and cultured in ConA and IgG1 or an anti-tetraspanin antibody. Figure 3.6a and Figure 3.6b show the fusion parameters from all the donors analysed and Figure 3.7 shows the MGC types generated. It is clear that there are differences in MGC formation between the two purification techniques. All parameters in MACS purified cells were higher than the adherence purified monocyte equivalents. Furthermore, the distribution of the types of MGCs found in the ConA+IgG1 controls is different between the two purification methods. The LGC population decreases by -50.15%, the FBGC remains almost the same with a -0.65% difference and the SGC type increases by
Figure 3.4: Total Monocyte Adherence after 2hr Incubation with Anti-Tetraspanin Antibodies.
The number of total cells counted in a 96-well plate well after being seeded with 50,000 total monocytes in media containing cIMDM, cIMDM+ConA or cIMDM+Antibody (IgG1 or tetraspanin) and incubated for 2hrs to allow cells to adhere. Bars represent the mean±SEM. Each donor performed in triplicate, N=4, tested with a Dunnett’s 1-Way ANOVA.
Figure 3.5a: Sample 10x Images from Fusion Assays (Part 1/2)
The left column contains images from adherence purified monocytes, the right column are image from the MACS purified monocytes. All conditions contain cIMDM containing 10µg ml⁻¹ ConA and 10µg ml⁻¹ of an IgG1 control or an anti-tetraspanin antibody. Scale bars are all 100µm.
Figure 3.5b: Sample 10x Images from Fusion Assays (Part 2/2)

The left column contains images from adherence purified monocytes, the right column are image from the MACS purified monocytes. All conditions contain cIMDM containing 10µg ml⁻¹ ConA and 10µg ml⁻¹ of an IgG1 control or an anti-tetraspanin antibody. Scale bars are all 100µm.
Figure 3.6a: Comparison of Fusion Results from Adherence and MACs Purified Monocytes (Part 1/2)
The Median Nuclei per MGC and Fusion Index results from total monocytes purified by adhesion (left) and MACS (right) cultured for 72hrs in ConA media and corresponding anti-tetraspanin antibody. Bars represent the mean±SEM. N=4 for Adherence graphs and N=5 for MACS graphs, tested with a Dunn’s multiple comparison test with all column means compared to IgG1+ConA control.
Figure 3.6b: Comparison of Fusion Results from Adherence and MACs Purified Monocytes (Part 2/2)

The MGC Median Area and % of Well Covered results from total monocytes purified by adhesion (left) and MACS (right) cultured for 72hrs in ConA media and corresponding anti-tetraspanin antibody. Bars represent the mean±SEM. N=4 for Adherence graphs and N=5 for MACS graphs, tested with a Dunn’s multiple comparison test with all column means compared to IgG1+ConA control.
Figure 3.7: MGC Types Generated from Adherence or MACs Purified Total Monocytes.

The MGC types generated from total monocytes purified by adhesion (top) or MACS (bottom) cultured for 72hrs in ConA media and corresponding anti-tetraspanin antibody. Fused nuclei were tallied into either LGC, FBGC or SGC depending on what MGC type they were found in and expressed as a percentage of all fused nuclei. Bars represent the mean±SEM. N=4 for adherence graphs and N=5 for MACS graphs. Tested with a Dunn’s multiple comparison test; comparing the mean ranks of each MGC type to the IgG1+ConA control.
+50.75%. From this it is clear that the MACS purification method produces monocytes with a greater potential for forming larger MGCs.

For median nuclei per MGC, the Kruskal-Wallis test showed there was no significant differences between the IgG1 control and the anti-tetraspanin antibodies in either purification method. Both methods produced similar values for the control samples with 9.13 and 11.20 nuclei per MGC for adherence and MACS purification respectively. In the MACS monocytes anti-CD81 antibody showed an increase to 19.00 nuclei per MGC, however; this was not significant.

The FI for the IgG1 controls was lower in the adherence purified monocytes (63.63%) than for the MACS monocytes (85.32%). However, the adherence purified monocytes showed a significant reduction in FI when cultured in anti-CD151 (P=0.037) but a similar effect was not observed in MACS monocytes. For MACS monocytes only anti-CD63 antibody caused a reduction in the FI (67.04%; P=0.4891), however, it was not found to be significant.

MGC derived from adherence purified monocytes were notably smaller than the MACS derived MGCs (2,824μm² vs 11,783μm²). The median area of the MGCs for the adherence purified monocytes remains relatively unchanged in the presence of any anti-tetraspanin antibody and show no significant difference to the control.

The % surface covered by MGCs was 2.9x greater when MACS purified monocytes (58.52%) were used compared to adherence purified monocytes (20.18%) for IgG1 controls. The only statistically significant decrease was from anti-CD151 (2.68% at P=0.0292) for adherence purified monocytes. Anti-CD82 also showed a decrease (3.98%) but was not significant.

Comparing the MGC types (Figure 3.7) formed from adherence and MACS purified monocytes it is apparent that the MACS purified monocytes are able to form far more of the larger SGCs. Of the fused nuclei analysed within the IgG1 controls; the adherence purified monocytes produced a LGC:FBGC:SGC ratio of
93.75%:4.50%:1.75% compared to the 43.60%:3.80%:52.60% of the MACS purified monocytes. The most obvious change in the MGC distribution for adherence purified monocytes came from the addition of anti-CD9 (71.25%:11.00%:17.75%) but the Dunn’s test returned all comparisons as insignificant (P>0.9999). Though not statistically significant; the addition of antibodies targeting CD37, CD53, CD81, CD82 & CD151 were sufficient to eliminate the presence of any SGCs from the adherence purified cells. Anti-CD82 in particular produced MGCs that were only LGC type.

With the addition of anti-CD63 to the fusion media the MACS purified monocytes committed 3.9x fewer nuclei to the SGC population (52.60%→13.40% for IgG1→anti-CD63) to an almost significant difference (P=0.0798). Anti-CD63 also caused nearly double the number of nuclei in the LGC population (43.60%→83.80%; P=0.0559). Addition of anti-CD81 produced the lowest number of nuclei located in LGCs (32.40%, P>0.9999) and the highest amount of SGCs (64.80%, P>0.9999). The addition of any of the other tetraspanin antibodies to the fusion media did not produce any statistically observable changes in fusion, nor was it sufficient to completely eliminate the presence of any of the MGC types.

3.1.5 Fusion of Adherence Purified Total Monocytes Cultured With Dual Anti-Tetraspanin Antibodies
Tetraspanins have been reported to possess a high degree of redundancy with one another. It is therefore possible that the removal of one tetraspanin can be compensated by another. Furthermore, many studies report tetraspanin interact in heterotypic groups (Mazurov et al., 2013) in which correct couplings could lead to the formation of a fusion-mediating TEM. By binding pairs of tetraspanins at the same time it could elucidate some of the interactions between tetraspanins in a fusion setting; be they additive, compensatory, inhibitory or null.

There was no significant increases or decreases in the median number of nuclei per MGC (Figure 3.8a) for any combination of antibodies when compared to the IgG1 control (red stars) or the single antibody equivalents (black stars). However, the FI, MGC Area and % coverage (Figures 3.8b-c) were more sensitive to double anti-
Figure 3.8a: Median Nuclei per MGC of Adherence Purified Monocytes Cultured with Dual Anti-Tetraspanin Antibodies. Monocytes were cultured for 72hrs in ConA media with either single or dual anti-tetraspanin antibodies. Bars represent mean±SEM, N=4. Tested with a Dunn’s multiple comparison test comparing the means of each dual-antibody treatment to the single antibody treatment (black stars) or to the IgG1 control (red stars; 8.75nu MGC⁻¹).
Figure 3.8b: Median Nuclei per MGC from Adherence Purified Monocytes Cultured with Dual Anti-Tetraspanin Antibodies. Monocytes were cultured for 72hrs in ConA media with either single or dual anti-tetraspanin antibodies. Bars represent mean±SEM, N=4. Tested with a Dunn’s multiple comparison test comparing the mean rank of each dual-antibody treatment to the single antibody treatment (black stars) or to the IgG1 control (red stars; 61.75%).
Figure 3.8c: Median MGC Area from Adherence Purified Monocytes Cultured with Dual Anti-Tetraspanin Antibodies. Monocytes were cultured for 72hrs in ConA media with either single or dual anti-tetraspanin antibodies. Bars represent mean±SEM, N=4. Tested with a Dunn’s multiple comparison test comparing the means of each dual-antibody treatment to the single antibody treatment (black stars) or to the IgG1 control (red stars; 2511um²).
Figure 3.8d: % of Well Covered with MGCs from Adherence Purified Monocytes Cultured with Dual Anti-Tetraspanin Antibodies.

Monocytes were cultured for 72hrs in ConA media with either single or dual anti-tetraspanin antibodies. Bars represent mean±SEM, N=4. Tested with a Dunn’s multiple comparison test comparing the mean rank of each dual-antibody treatment to the single antibody treatment (black stars) or to the IgG1 control (red stars; 19.13%).
tetraspanin antibody treatment than median nuclei per MGC. Overall, anti-CD82 alone had the lowest median nuclei per MGC at 4.5 nuclei per MGC (P=0.2252). The population distributions for anti-CD82 in Figure 3.9 shows that the presence of anti-CD82 in any combination other than with anti-CD9 was sufficient to completely impede the formation of FBGCs and SGCs.

Anti-CD9+anti-CD37 was the only combinational treatment that was similar to the IgG1 control (IgG1: 8.75nu MGC⁻¹, 61.75% FI, 2511μm², 19.13% covered vs anti-CD9+anti-CD37: 11.25nu MGC⁻¹, 63.00%, 3127μm², 16.25% covered). All other anti-tetraspanin antibody combinations produced considerable decreases in fusion parameters compared to the single antibodies alone. Anti-CD9+anti-CD37 treatment also produced similar results to anti-CD9 alone treatment in all parameters except the number of nuclei per MGC. In Figure 3.9 addition of anti-CD9+anti-CD37 is sufficient to cause a significant decrease in the % nuclei in LGCs (87.75%) compared to anti-CD36 alone (96.75%) as a result of more FBGCs and SGCs are forming.

The lowest FI, MGC area and % coverage for a single antibody treatment was anti-CD151 at 25.25%, 1402μm² and 2.50% respectively. Only 6 of the 21 double anti-tetraspanin treatments possessed FI above anti-CD151 (four of which contained anti-CD9), the remaining 15 combinations were all less than any of the single anti-tetraspanin antibody treatments. Anti-CD81+anti-CD151 was ranked the most inhibitory; possessing the lowest FI (9.5%), third smallest MGC area (1103μm²) and second lowest % covered (1.25%). Anti-CD82 had the second lowest rank amongst the single antibody treatments with a FI of 29.25% and when combined with anti-CD151 resulted in a FI that was lower than both (14.25%).

Anti-CD151 double antibody treatments had the lowest collective FI with anti-CD9+anti-CD151 being the only combination above 20% FI. With the exception of anti-CD9+anti-CD151 all other anti-CD151 containing combinations were ranked in the bottom 8 of the FI and bottom 7 of the % surface covered. These showed significant reductions compared to the IgG1 control (red stars, Figure 3.8b & 3.8d,
Figure 3.9: MGC Types Generated from Adherence Purified Monocytes Cultured with Dual Anti-Tetraspanin Antibodies.
Monocytes were cultured for 72hrs in ConA containing cIMDM with either single or dual anti-tetraspanin antibodies. Bars represent mean±SEM, N=4. Tested with a two-way ANOVA with a Dunnett’s multiple comparison test comparing the mean rank of each MGC type of the dual-antibody treatment to the same MGC type of the equivalent single antibody treatment or IgG1. Red stars: LGCs, Green: FBGCs & Blue: SGCs.
anti-CD151 graph). Antibody combinations containing anti-CD82 showed an inhibiting effect similar to anti-CD151, but to a lesser extent.

Curiously, anti-CD81 produced the second highest FI (48.25%) of the single antibody treatments yet anti-CD81 was also present in the two lowest FI treatments: anti-CD81+anti-CD151 (9.50%) and anti-CD37+anti-CD81 (10.00%). Compared to anti-CD81 alone, the Dunn’s test reported significant reductions in anti-CD81+anti-CD151 (P=0.0431) and anti-CD37+anti-CD81 (P=0.0459) treatments. Compared to the original IgG1 control (red stars) these reductions were even more significant (P=0.0039 and P=0.0053 respectively). The % coverage reflects the same trend as the FI with anti-CD81+anti-CD151 and anti-CD37+anti-CD81 both producing only 1.25% coverage (both P=0.0392) compared anti-CD81 alone (11.25%). Thus the combining of anti-CD37 or anti-CD151 produced a % coverage that was lesser than any of the single antibody equivalents (anti-CD37: 10.25%, anti-CD151: 2.50% and IgG1: 19.13%).

As a group, anti-CD9 and its combinations collectively produced the largest MGCs by area. Anti-CD9+anti-CD37 were the biggest of all single and double antibody conditions (3127μm²) with anti-CD9+anti-CD151 (1373μm²) being the smallest of the group. The smallest MGCs out of all the conditions tested were in anti-CD63+anti-CD151 (970μm²). In Figure 3.9 anti-CD9 was the only condition (single or double) to produce a significant decrease in the % of LGC nuclei (P=0.0037) and an increase in the SGC nuclei (P=0.0495) compared to IgG1. Whereas anti-CD63+anti-CD151 was the only condition to cause significant decrease in the MGC area compared to both anti-CD63 alone (P=0.0284) or IgG1 (P=0.0113).
3.2 DISCUSSION

The Optimised Protocol Produces Purer Monocytes and Larger Sample Sizes

Previous studies on the fusion of monocytes have used an adhesion purification method but this runs the risk of variable contamination with cytokine-producing lymphocytes. T-cells and NK-cells have been shown to be responsive to ConA which causes differentiation, activation and cytokine release (Lei and Chang, 2009; Takashima et al., 1993; Wang et al., 2012). T-cells and NK-cells are selectively removed in the MACS method. Figure 2.1 and Figure 2.2 show that the MACS purification effectively removed the granulocyte and lymphocyte populations. However, in the “CD14- removal” plots it is clear that MACS treatment was not sufficient to remove the NK-cell population. Studies have shown that ConA is able to activate NK-cells to produce IFNγ which is known to initiate fusion.

The use of FACs or positive selection MACS to purify monocytes may produce greater purities but the goal of the optimisation reported here was to increase purity with minimal interference to the monocytes themselves. Binding of large beads or antibody-fluorophore conjugates could alter the fusion behaviour of the monocytes and give false results.

Different strategies were attempted to automate the selection of MGC borders and type but none were sufficient to match manual selection. When performing a threshold adjustment and subsequent watershed on the actin images it was still not possible to separate MGCs effectively. There were many images that contained overlapping, touching or partly-stained MGCs or even non-fused cell aggregates. The uniformity of actin staining was less consistent for SGC (such as those seen in Figure 2.6) which have regions of low actin. It is possible that because of the sheer size of the SGCs that at the single z-slice is unable to capture enough actin fluorescence signal for parts of the MGC structure that are particularly raised above the surface of the well. In 2014 Pegoraro and colleagues published a paper describing an automated MGC analysis method using confocal microscopy and the PerkinElmer program ‘Acapella 2.7’ to select *Burkholderia* infected giant cells. Unfortunately, such an advanced image
analysis program was unavailable to us and an equivalent plugin on ImageJ was not found. Though time consuming, manual ROI selection of MGCs was the only way to ensure accurate selection of MGCs and identification of MGC type.

The automation of the imaging removed any user bias and allowed low-magnification maps to be made by collaging the 4x images. For the first time it was possible to see the distribution of giant cells in the well and showed that, on some occasions, the distribution was uneven. If the wells contained an even distribution of MGCs and single cells then the sample images selected for counting were #5-8 to bisect the well from one side to the other. In cases of extremely uneven distribution an alternative row/column of sample images was selected that best represented the total population. Though this approach does confer some sample bias it was deemed to be the best method for generating a representative sample population for unevenly distributed wells.

The stacking of nuclei particularly in FBGCs posed an issue for the automated counting macro. As the nuclei get closer or overlap the fluorescence signal stacks (see red box in Figure 2.5) and the resolution of individual peaks is lessened. Using background reduction and ensuring that the pixels were not saturated prior to imaging; ensured that the resolution between the signal peaks was maximised. The automated technique for counting nuclei gave a 6-fold increase in nuclei counted per condition and further removed user bias.

The More the Merrier; Fusion Parameters Increase with Increasing Monocyte Seeding Numbers

The apparent increase in all fusion parameters in Figure 3.2 when monocyte seeding density was increased can be explained by two features of fusion. Firstly, the number of monocyte-monocyte contacts will increase with increasing cell density. This increases the chance that direct contact between monocytes will occur as they randomly patrol the well surface. Secondly, with more monocytes present in the well the concentration of fusion-triggering cytokines may go up faster. Though the exact mechanism of ConA directed fusion is still unknown, it has been shown that ConA
triggers a release of fusion initiating cytokines e.g. IFNγ, TNF-α, IL-1β and IL-4 (Sodhi et al., 2007; Wang et al., 2012). With more monocytes present the concentration of these cytokines will accumulate faster in the media and therefore trigger fusion at a faster rate.

The median nuclei per MGC is a commonly used parameter in MGC experiments (Coury et al., 2008; Harkel et al., 2015; Kondo et al., 2009). In the kinetics experiments (Figure 3.2), there was no significant change in the median nuclei per MGC throughout all the time points observed. The lack of change in this particular parameter could be a consequence of the large sampling size. MGC populations were almost exclusively positively skewed, with smaller (3-8 nuclei) MGCs being the most prevalent and larger MGCs being less common. As the seeding density is increased there is an increase in the MGC size across all three time points but little change between time points. It is possible that though there are larger MGCs present in the sample population at later time points, they are not affecting the median because the smaller MGCs are far more numerous. The median area of MGCs for example is another median measurement but because the differences in MGC area are often in hundreds to thousands of square micrometres; changes in the median are far more apparent.

For the other parameters there are initial increases between 24-48hrs but then a plateau or decline in measurements between 48-72hrs. There is no evidence in the literature or in the images obtained that fusion is a reversible process. It is more likely that at 48hrs the smaller MGCs are reaching peak activity and are then moving and fusing with one another, thus appear similar to SGCs. This would account for the higher number of SCGs at 48hrs in all densities in Figure 3.3. At 72hrs when the media has been depleted it is possible that the MGCs are less motile and stop moving over and across one another which would give fewer false counts of SGCs. Another possibility is that after 48hrs, the larger MGCs become unstable and rupture either prior or during the washing and fixing stage and so they are not present in the 72hrs images. The parameters for the lowest seeded density (0.25x10^5 monocytes well^-1) in Figure 3.2 do not show the post-48hrs decline in values. This could mean that there
is some sort of negative feedback occurring in the higher densities which is why the parameters decrease in the higher seeding densities.

Based on the results from the kinetics experiments it was decided that 1.50×10^5 monocytes well$^{-1}$ was the preferable seeding density for future assays because it produced higher values in all the measured parameters. This would mean that when fusion was inhibited or enhanced by anti-tetraspanin antibodies the change from the control would be apparent.

Anti-Tetraspanin Antibodies Do Not Affect Initial Adherence

The adhesion assay (Figure 3.4) showed that anti-tetraspanin antibodies did not affect the early monocyte behaviour in any observable way. However, even if adherence machinery is not affected this is not to say that other processes such as migration (which also utilises integrins and other proteins that complex with tetraspanins) are not affected. If for example the monocytes could adhere but an anti-tetraspanin antibody inhibits the ability for the monocyte to migrate then fusion would also be inhibited, leading to a false negative result.

Despite the seeding density for the adhesion assay being 50,000 monocytes per well, only approximately 20,000 monocytes were recorded per well (a ~40% return). It could be that when the wells were washed and fixed at 2hrs many weakly adhered monocytes were washed off thus reducing the final count. It is unlikely to be a point of concern as all the controls and anti-tetraspanin antibody wells all produced consistent results in all triplicates and produced consistent cell counts across all ConA-containing conditions.

The results of the adherence assay highlights a serious pitfall of the adherence purification method. In the absence of ConA, significantly fewer monocytes remained adhered to the well after 2hrs. The adherence purification method requires that wells be washed after 2hrs to remove adherent leukocytes but in Figure 3.4 we see that washing and fixing at this time results in substantial monocyte loss. The loss of these lesser-adherent monocytes could potentially have a big influence on the results of
fusion as the monocyte density will be lowered and there is no way to know if these monocytes have low adherence properties but are highly influential to the fusion process.

MACS Purification Enhanced the Fusion Potential of Monocytes

The MACS purified cells produced for more fusion, bigger MGCs, higher % coverage, greater SGC populations and less significant changes in response to anti-tetraspanin antibodies. It could be that the monocyte density is so high compared to the adherence purified cells (as what is seeded remains in the well) that the fusion has reached a saturated state. If the monocyte density was so high that monocytes and MGCs were in constant contact then fusion would occur to a greater extent than for the adherence purified cells and vast SGCs would form more often. Not only is the density of the seeded monocytes potentially higher in the MACS method but the presence of NK-Cells is higher (Figure 2.2). As potent producers of GM-CSF and TNFα it is possible that the NK-cells are becoming activated by ConA or ConA-induced monocyte cytokines to greatly enhance the fusion of the monocytes and produce more SGCs. It is likely that there is a lower number of monocytes in the adherence purified well due to the washing of non-adherent monocytes and this is why the fusion parameters are lesser than that of the ~3x purer MACS monocytes. The greater degree of fusion caused by either the higher density of monocytes or the presence of NK-cells could be saturating and thus masking the effects of the anti-tetraspanin antibodies on the fusion parameters.

In both purification methods the addition of any of the anti-tetraspanins antibodies was not sufficient to completely arrest fusion and in most cases had subtle or little effect. Although the antibodies were added in saturated amounts it is possible that the monocytes endocytose and degrade any bound tetraspanins and express new functioning tetraspanins to replace them, though this would still show reduced fusion potential to the control. It is possible that the lack of any effect is because there are varying degrees of redundancy amongst the tetraspanins and that the effect of binding one tetraspanin using an antibody is being masked by the contributions of other tetraspanins involved in organising the fusion machinery.
CD63 and CD81 Altered the MGC Types Formed From MACS Cells

Though the number of nuclei per MGC (Figure 3.6a) for the IgG1 controls did not differ very much between purification methods the median area of the MGCs showed a 4-fold difference. This could be attributed to the more varied distribution of MGC types, particularly in the MACS derived MGCs (Figure 3.7). The increased presence of larger SGCs could increase the average area of the MGCs while the presence of multiple smaller LGCs would keep the median number of nuclei down. Furthermore, the unit measurement of MGC area had a much larger range in measurement (typically $800\mu m^2$-$60,000\mu m^2$) compared to the number of nuclei per MGC (typically 3-150 nu per MGC) and therefore it is more sensitive to change/shifts in the median value. The presence of the much larger SGCs in the MACS purified cells is possibly the cause of this overall increase.

For the MACS purified monocytes, the apparent decrease in MGC area for anti-CD63 and increase for anti-CD81 in Figure 3.6b seems linked to the equivalent decrease/increase in the SGC population in Figure 3.7. It seems that the anti-CD63 and anti-CD151 antibodies are inhibiting the formation of the larger SGCs to an extent that causes the median area and FI to decrease. CD81 had the opposite effect whereby the increase in the larger SGC population seemingly triggered an increase in the median nuclei per MGC and median area. These results are in accordance with previous studies which observed inhibition of fusion with the addition of anti-CD63 or anti-CD151 and enhancement with anti-CD81 (Parthasarathy et al., 2009; Takeda et al., 2003).

Antibodies Targeting CD9 Had No Significant Effect on Fusion

Anti-CD9 antibodies are well documented as causing significant enhancement of fusion in other assays, however, for the adherence purified monocytes only small increases in the SGC population were observed and there were no significant changes in the fusion parameters. The MACS purified monocytes produced no apparent changes to the distribution of MGCs or the fusion parameters in the presence of anti-CD9. Takeda and colleagues (2003) demonstrated that anti-CD9 antibodies enhanced fusion of
monocytes in their experiments, however, they used Bu16 [IgG2a] and MM2/57 [IgG2bκ] antibodies whereas our antibody was a 602.29 [IgG1]. It is likely that the different antibodies bind the EC2 at different sites and therefore some may block associations with partner proteins while others may lock them into active conformations.

CD9 is expressed by other leukocytes of the immune system and as the adherence method relies on washing off non-adherent cells so it is possible that anti-CD9 may also target and influence contaminating leukocytes. The contamination of the adherence wells with T-cells could be of particular concern. Both ConA (Wands et al., 1976) and anti-CD9 (Tai et al., 1996) have been shown to have an effect on T-cells so it is not fully clear if these results are due to anti-tetraspanin and ConA affecting the fusion of monocytes or responses from contaminating T-cells.

Combinational Anti-Tetraspanin Antibody Treatment Greatly Inhibited Fusion

The combining of two anti-tetraspanins antibodies together generally resulted in a greater reduction in fusion parameters. However, anti-CD9 was present in the antibody combination treatments that scored highest in the fusion parameters. CD9 has been reported as a fusion inhibitor (Takeda et al., 2003) so antibody interference should enhance fusion. Anti-CD9 single antibody treatment did not show an increase in the FI or % coverage above that of the IgG1 control but the presence of an anti-CD9 antibody in the treatment did predominantly act to lessen the inhibitory effect of some of the other antibodies to a degree. While the presence of some of the anti-tetraspanin antibodies e.g. anti-CD151 may act to inhibit fusion by binding the respective tetraspanin’s EC2 domain and blocking binding partners and TEM formation, anti-CD9 binding is somehow enhancing fusion enough to overcome the negative effect to an extent. It could be that when CD9 is removed from the TEM its binding partners are freed up to participate in fusion. Alternatively, CD9 could be sequestering other tetraspanins and their binding partners thus making fusion initiation unfavourable and when CD9 is bound by anti-CD9 it frees up these tetraspanins and allows them to form a fusion TEM.
CD81 is also reported as a restrictor of fusion and other reports show increased fusion with anti-CD81 antibodies (Takeda et al., 2003) but our results do not reflect such an effect. Furthermore, anti-CD81 was present in the antibody combination that produced the greatest inhibitory effect (anti-CD81+anti-CD151). As CD81 and CD151 have both been shown to associate with EWI-2 (Charrin et al., 2001; Sala-Valdés et al., 2006) to facilitate actin polymerisation at the site of adhesion complexes the extreme loss in fusion when these tetraspanins as targeted together could be a result of EWI-2 interference. Anti-CD151 and anti-CD82 were both potent inhibitors of fusion and when used in combination with other tetraspanins had the biggest negative effect on fusion. The presence of anti-CD82 or anti-CD151 were sufficient to reduce even the higher-fusing anti-CD9 conditions down to their lower limits. Just like CD81 and CD151; CD82 has been shown to associate with EWI-2 (Zhang et al., 2003). Furthermore, CD151 and CD82 are well documented as a facilitators of migration via associations with integrins (Berditchevski and Odintsova, 1999; Yáñez-Mó et al., 2001) so it is uncertain whether their interaction with the cells acts to slow/arrest migration or inhibit the formation of a fusion TEM.

Anti-CD37, anti-CD53 and anti-CD63 produced very similar effects in the fusion parameters as single antibodies but when used in combination with each other they produced an additive negative effect together. This could imply that they share a degree of redundancy with each other or that they form homotypic tetraspanin partnerships with each other during fusion. As CD37 and CD53 have both been shown to associate with LFA-1 and CD63 with E-cadherin it is possible that the negative additive effect is a result of the anti-tetraspanin antibodies removing available adhesion proteins from the TEM. Furthermore, CD37, CD53, CD81 and CD82 have previously been shown on leukocytes to form associations via MHC class II proteins (Angelisova et al., 1994) so it is possible they form a similar TEM during fusion.

Conclusion

To what level of involvement do tetraspanins have in the fusion process of monocytes is still an elusive question. These experiments in total monocytes purified with two
common methods has shown that monocyte purity plays a big part in the outcome of fusion and can mask inhibitory effects of the anti-tetraspanin antibodies. While anti-CD82 and anti-CD151 in adherence purified monocytes and anti-CD63 in MACS purified monocytes seem to be the most potent inhibitors of fusion; the results are still unclear. Furthermore, the contribution of the different monocyte subsets to the fusion process is still unknown and whether they would react equally to the anti-tetraspanin antibodies is still to be seen. To further understand the role of tetraspanins in monocyte fusion the monocyte subsets need to be separated to high purity, quantify their tetraspanin surface expression and analyse their potential to form MGCs.
CHAPTER 4: MONOCYTE SUBSET FUSION

4.1 INTRODUCTION
Previous studies in MGC formation have either been conducted in vivo on mice (Skokos et al., 2011; Yang et al., 2014b), or in vitro in mouse cell lines (Levaot et al., 2015; Verma et al., 2014) and total human monocytes (McNally and Anderson, 1995; McNally et al., 1996; Möst et al., 1997). However, mice are lacking in the Int monocyte subsets and so do not possess the three subsets seen in humans. Total human monocyte studies do not provide any insight into the individual contribution of the subsets toward fusion. Furthermore, the percentage of each subset population is variable between donors and so changes in subset distributions may affect the results of fusion experiments. In Chapter 3 it was evident that other contaminating leukocytes were often present in the fusion assays when purified by adherence or MACS and so an accurate assessment of monocyte behaviour could not be made. The monocytes used in the current chapter were FACS sorted to a high purity (≥99%) by depleting non-monocyte leukocytes with MACS, anti-CD56 to FACS-deplete NK-cells (Figure 2.3) and stringent gating of subsets using CD14 and CD16 expression.

4.2 FUSOGENIC PROPERTIES OF MONOCYTE SUBSETS
In the experiments described in Chapter 3, the total monocyte purity was unlikely to be constant because the adherence and MACS purification methods had varying levels of leukocyte contamination. With FACS sorted subsets the purity is ≈100% so it is possible to calculate the contributions of the seeded monocytes to the final result. Figure 4.1 shows what percentage of the monocytes (from the original 1.5x10^5 monocytes seeded well⁻¹) committed to fusion or was not found in the final images and so classified as detached/dead. Of the initially seeded cells, a surprisingly large percentage (67-77%) were classified as detached/dead after 72hrs ConA treatment. This is equivalent to a loss of 105000, 115500 and 100500 cells well⁻¹ for Cl, Int and NCl monocytes respectively.

The numbers of cells that remained as adherent single cells were almost equal in Cl (24.73%) and NCl (23.45%) monocytes which were ~1.9-fold higher than Int
Figure 4.1: Monocyte Subset Contributions During Fusion.
As FACS purified monocytes were ~100% pure it is possible to calculate from the sample population data what the relative contribution of each subset during MGC formation. After 72hrs culture in ConA media the nuclei of the 1.5x10^5 monocytes seeded in every well were recorded as: within a single cell, within an MGC as a fused cell, or as not present (i.e. a dead or detached cell). Bars represent mean±SEM, N=25, tested by a Kruskal-Wallis test with Dunn’s multiple comparisons tests comparing the means of percentage of each subset to the different nuclear locations.
(12.86%) monocytes. The Dunn’s test reported significant differences comparing the single cell population of the Int monocytes to the Cl (P=0.0019) and NCl (P=0.0358) monocytes. Of the fused cells the Int (9.92%; P=0.0021) and NCl (9.13%; P=0.0348) subsets committed ~2-times more cells to fusion compared to the Cl monocytes (4.72%). This is equivalent to every 1 in 21 Cl monocytes, 1 in 10 Int and 1 in 11 NCI monocytes committing to fusion.

4.3 Subset Contributions to Fusion
Monocyte subsets when isolated and cultured in ConA for 72hrs at the same density show very different propensities to fusion (Figure 4.2 and Figure 4.3). Surprisingly, the most abundant subset – the Cl monocytes (79.71±6.70% of monocytes) - had the lowest values in all 4 fusion parameters: median nuclei per MGC (4.78 nuclei MGC\(^{-1}\)), fusion index (19.50%), MGC Area (2372µm\(^2\)) and % coverage (11.28%). The fusion index for Int monocytes was significantly higher than the Cl (P< 0.0001) and notably higher than the NCI (P=0.0929). The MGC area for Int monocytes was on average 2.4-fold larger than Cl (P<0.0001) and 1.9-fold larger than NCI monocytes (P=0.0175). The only significant difference between the Cl and NCI subsets in Figure 4.2 was in the % coverage. Cl derived MGC showed significantly reduced coverage compared to both NCI (P=0.0357) and Int (P=0.0002) derived MGC.

Fused nuclei were counted as being in LGC, FBGC or SGC (see Figure 2.7) and populations of each MGC type is shown in Figure 4.4. Cl monocytes were significantly more likely to contribute to the formation of LGC (79.51%) compared to NCI (55.33%; P=0.0122) and Int monocytes (43.44%; P<0.0001). Compared to the Cl monocytes, the Int had a significantly greater propensity to form FBGC (P=0.0018), with Int committing 2.14-fold more cells to FBGC than Cl. Int (15.49%; P=0.0005) and NCI monocytes (15.98%; P=0.0185) were ~12-fold more likely to commit to SGC formation compared to Cl monocytes (1.34%). Overall it is clear that despite being smaller components of the total monocyte population, the NCI and Int monocytes are able to fuse to a greater extent than Cl monocytes. They are also able to form more of the larger FBGC and SGC than the Cl monocytes. Whether these differences are due to differential tetraspanin expression or other factors is yet to be revealed.
Figure 4.2: Fluorescence Microscopy of Monocyte Subset Derived MGCs.

Three representative montages containing four images taken at 4x magnification of each of the monocyte subsets from one donor after 72hrs ConA treatment. Red = Nuclei, Blue = F-Actin.
Figure 4.3: Fusion Parameters for Monocyte Subset Fusion.
Monocytes were sorted into subsets by FACS and seeded at an exact density of 1.5x10^5 monocytes well^-1 and incubated for 72hrs in 10µgml^-1 ConA to induce fusion. After fluorescence imaging the four parameters above were generated from the resultant data. Bars represent mean±SEM, N=25, tested by a Kruskal-Wallis test with Dunn’s multiple comparisons tests comparing the mean of each subset against one another.
Figure 4.4: MGC Types Generated from FACS Purified Monocyte Subsets.

Nuclei inside each type of MGC is shown as a percentage of the total nuclei within fused cells. Bars represent mean±SEM, N=25, all parameters were tested with a Kruskal-Wallis test with Dunn’s multiple comparisons tests comparing the means of the same MGC type with that of the other subsets.
4.4 Fluorescence-Scanning Electron Microscopy of Monocyte Subsets

It is clear from the fluorescence microscopy images that the three monocyte subsets have different propensities to produce the different MGC types. While fluorescent microscopy is sufficient for designation of MGC type, it does not reveal the high-detail 3-dimensional features of the membrane. Therefore, scanning electron microscopy (SEM) was used to visualise the surface features of the MGC, sometimes in tandem with fluorescence microscopy to show the location of the multiple nuclei.

SEM revealed that larger more developed MGC produce large filamentous networks and possess ruffled membranes (Figure 4.5a-c). Surrounding the central dome that holds the multiple nuclei is a wide, flat bed of filaments which look to be tightly anchoring the MGC to the surface. Figure 4.5c.1-2 shows a section of an MGC where the fixing and dehydration process has caused these fibres to break and lift off that allows us to see how thick these fibres are. The MGC surface is not a smooth structure but appears flaky and ruffled. Two monocytes in Figures 4.5a1-2 and 4.5a5-6 can be seen to be tightly bound by the MGC membrane and perhaps are being pulled into the structure. Figure 4.5c3 shows two NCI monocytes moving towards the MGC, possibly to fuse.

In all subsets, MGC seemed to exist as either flattened dome structures (Figures 4.5a.1, 4.5b.1 & 4.5c.1) or had the appearance of fried-eggs where they would be predominantly flat with a yolk-like bulge in the centre (Figures 4.5b.3, 4.5b.5 & 4.5c.4). These bulbous structures were more regularly observed in the SEM images of Int and NCI derived MGC but previous fluorescent images did not reveal similar structures. Particularly in the Int and NCI derived MGC, there were examples of very large distorted bulges but such structures were not observed in the CI-derived MGC. The CI MGC typically consisted of smaller MGC (Figure 4.5a.3-4) clustered together with fewer large MGC. The Int MGC were dominated by vast MGC which required very low magnifications for SEM. The NCI MGC were the most varied in MGC size but many of the images showed damage from the fixing and dehydrating steps.
Figure 4.5a: SEM of Classical Monocyte Derived MGCs.
Figure 4.5b: SEM of Intermediate Monocyte Derived MGCs.
Figure 4.5c: SEM of NonClassical Monocyte Derived MGCs.

Figure 4.5a-c show a collection of scanning Electron Microscopy images of subset derived MGCs. Low magnification Images are shown on the left and the coloured box inside show the high-magnification image on the right. The cells of these images were purified with FACS and allowed to fuse for 72hrs before being sent to the SEM unit for fixing and imaging. Electron voltages, magnification, working distance (WD) and scale bars shown at the foot of each image.
Figure 4.6.a-c show three example images from tandem fluorescence-scanning electron microscopy (Flu-SEM). They were each conducted on MGC derived from each of the subsets with the nuclear images overlaid. Figure 4.6.a&c possess ring-like nuclear arrangements typical of LGC while the Int MGC shows a tight nuclear dome in the centre and a cluster of nuclei in the centre typical of FBGC.

4.5 Fusion Kinetics of Monocyte Subsets
The subsets were investigated at different time points to analyse the progression of fusion over time and to provide samples for ELISA analysis of the cytokine signals (see Chapter 5).

In less than 24hrs of culture in ConA media, all subsets were able to produce MGC containing ≥3 nuclei (Figure 4.7). By 24hrs the Int subset had covered 3.2-fold more of the well surface (30.52%) in MGC than the Cl (9.54%) and 7.7-fold more than the NCl subsets (3.96%). At 24hrs the NCl subset produces slightly lower values than the Cl subset in all fusion parameters shown in Figure 4.7 but by 72hrs the NCl increase in fusion beyond the Cl.

MGC from Int and Cl subsets appear to reach a steady-state in the fusion parameters from 48hrs onwards whereas the NCl continue to increase in all parameters. Between 24-48hrs the Int had a significant increase in MGC area (P=0.0005, Figure 4.7) which coincided with a 12.64% increase in the FBGC population (Figure 4.9). Between the same two time points; NCl had a significant increase in fusion index (P=0.0450, Figure 4.7) which matched with the +3.62% increase in fused cells and -6.80% decrease in single cells (Figure 4.8). As with the total monocytes, the median nuclei per MGC did not change significantly over the 72hr period for any of the subsets.

By 24hrs there was a significant difference between the number of fused nuclei between Int (14.32%) and NCl (3.21%; P=0.0194) but not with the Cl (5.74%; P=0.1555).

By 48hrs the Int have the lowest number of unfused single cells (8.60%) compared to Cl (26.18%, P=0.0126) and NCl (21.50%, P=0.0175) and in turn the highest FI (52.87%). By 72hrs the difference in remaining single cells became even greater (Int vs Cl P=0.0021; vs NCl P=0.0030). At 24hrs the number of detached cells appears
Figure 4.6: Flu-SEM Images of Nuclear Arrangement Within MGCs.
Utilising the same protocol as Figure 4.5, subsets MGCs were generated and prior to SEM fixing and imaging the cells were stained with Hoechst and the well raster scanned so that the MGCs imaged in SEM could be located and the nuclear channel overlaid onto the image. Above: Classical, Right: Intermediate, Below: Nonclassical derived MGCs with scale bars and nuclei shown in blue.
Figure 4.7: Fusion Kinetics of Monocyte Subsets.
FACS purified monocytes were seeded at 1.5x10^5 monocytes well^{-1} and incubated for 24hrs, 48hrs and 72hrs in 10ugml^{-1} ConA to induce fusion. **Red lines with circles:** classical, **orange lines with squares:** intermediate and **yellow lines with triangles:** nonclassical monocyte derived MGCs. Each point represents mean±SEM, N=8, all parameters were tested with a two-way ANOVA with a Tukey’s multiple comparisons tests comparing each subset time-point to the previous one (e.g. MGC Median Area: intermediate 48hrs vs intermediate 24hrs shows “***” (P<0.0005) significance). Comparison of monocyte subsets to each other is covered at the end-point, in Figure 4.3.
Figure 4.8: Subset Fusion Kinetics - Nuclear State Analysis.
At each of the time-points in the subset fusion kinetics experiment the ‘state’ of each nuclei was calculated and analysed above. Bars represent mean±SEM, N=8, all time-points were tested with a Kruskal-Wallis test with Dunn’s multiple comparisons tests comparing the means of the same nuclei ‘state’ within the same time-point against the other subset means. e.g. 24hrs intermediate fused nuclei vs 24hrs nonclassical fused nuclei. Red stars: detached cells, green stars: single cells and blue stars: fused cells.
Figure 4.9: Subset Fusion Kinetics – MGC Type Analysis.
At each of the time-points in the subset fusion kinetics experiment the nuclei counted inside each MGC was tallied into one of three observed MGC types and presented as a percentage of the fused nuclei counted. Bars represent mean±SEM, N=8, all time-points were tested with a Kruskal-Wallis test with Dunn’s multiple comparisons tests comparing the means of the same MGC type within the same time-point against the other subset means. e.g. 24hrs classical LGC vs 24hrs intermediate LGC. Red stars: LGC nuclei, green stars: FBGC nuclei and blue stars: SGC nuclei.
almost the same between the three subsets. However, at 48hrs the difference between the detached populations of Cl and Int monocytes is almost significant (P=0.0777). After 72hrs the Int has a significantly higher number of detached cells (85.27%) compared to Cl (73.52%, P=0.0486) and Int (72.70%, P=0.0296) groups.

Confusingly, the fused population of the Int subset decreases from 24-72hrs but increases in both the Cl and NCl subsets (Figure 4.7: Cl: +1.01%, Int: -6.15% & NCl: +1.01%). In Figure 4.9 the distributions of the different MGC types are significantly different within 24hrs. Only the Int subset was able to produce significantly more SGC than Cl (P=0.0034) and NCl (P=0.0145) subsets. Not until 48hrs did all three subsets possess all three MGC types to some degree. At 48hrs the Int monocytes had significantly less LGC (46.50%; P=0.0262) than the Cl monocytes (82.61%). By 72hrs the population distributions in Figures 4.8 and 4.9 were comparable with Figures 4.3 and 4.4 respectively.

4.6 Analysis of Cytokine Production by Monocyte Subsets Undergoing Fusion

Fusion competent monocytes secrete chemoattractants and cytokines to augment fusion and differentiation (see 1.3.1-1.3.3). As the subsets showed different propensities to fusion it is possible that they secrete a different array of cytokines in response to gaining fusion-competence. The supernatants from the fusion kinetics samples were collected at 24, 48 and 72hrs for analysis of the cytokines produced by the monocyte subsets during fusion.

Figure 4.10a shows the unstimulated vs ConA stimulated comparison at each time point to ascertain which cytokines were upregulated in fusogenic conditions. Figure 4.10b compares the ConA-stimulated conditions between different time points within the same subset to show how cytokine secretion changed over time. Figure 4.10c compares the levels of each cytokine between the three subsets at the same time points to ascertain if the differences in fusion parameters shown in Figures 4.7, 4.8 and 4.9 were directly correlated with the cytokine signals.

CCL2, IL-6, TNFα, CCL3, IL-1β, GM-CSF and IL-1α were the most highly secreted cytokines (>1000pg ml⁻¹). IFNγ, IL-10, IL-13, IL-4, IL-17A, IL-3 and VEGF were all
Figure 4.10a: Fusion Cytokines - Comparison of Subsets Cultured in ~ConA vs +ConA.

Supernatants from the subset kinetics cultures were collected and analysed by ELISA for 15 targets of interest. Clear bars: ~ConA, striped bars: +ConA; with each time point (24, 48, 72hrs) presented in adjacent pairs. Bars represent mean±SEM, N=8, all tested with a two-way ANOVA with a Sidak's multiple comparison test comparing the means of ~ConA vs +ConA of the same time point within each subset.
Figure 4.10b: Fusion Cytokines - Comparison of Different Time Points for Subsets Cultured in ConA.

Only the +ConA samples from Figure 4.10a are shown above; arranged in 24, 48 and 72hrs for each subset. Bars represent mean±SEM, N=8, all tested with a two-way ANOVA with a Tukey’s multiple comparison test comparing the means of the different time points within each subset. Red bars/stars are for samples that did not show any significant differences between –ConA and +ConA in Figure 4.10a.
Figure 4.10c: Fusion Cytokines – Comparison of Subsets Cultured in ConA at Different Time Points.

Only the +ConA samples from Figure 4.10a are shown above; arranged into subsets at the same time point. Bars represent mean±SEM, N=8, all tested with a two-way ANOVA and Tukey’s multiple comparison test comparing the means of each subset against one another at the same time point. Red bars/stars are for samples that did not show any significant differences between –ConA and +ConA in Figure 4.10a.
<1000 pg ml⁻¹ and RANTES was undetectable. There was no significant difference between the ConA and unstimulated time points for IL-17A, IL-10, RANTES, IFNγ and VEGF. The NCI subset was particularly low in both conditions for IL-1α, IL-1β, IL-6, TNFα, IL-4, IL-13 and GM-CSF at all time points.

The pro-inflammatory cytokines IL-1α and IL-1β were significantly higher in the ConA Int time points (Figure 4.10a) and peaked in secretion at 48hrs (Figure 10b). Within 24hrs IL-6 was ~27-times higher in Cl+ConA cells than the no ConA equivalent (P<0.0001) and ~6-times higher in Int+ConA (P<0.0001). The Int+ConA increased significantly (P=0.0402) between 24-72hrs and by the last time point both Cl+ConA (14,269 pg ml⁻¹; P=0.0001) and Int+ConA (13,586 pg ml⁻¹; P=0.0003) were significantly higher than NCI+ConA (1,888 pg ml⁻¹). TNFα was another fast responding pro-inflammatory cytokine; at 24hrs the Cl+ConA and Int+ConA were 85 and 11-times higher (Cl: 3105 pg ml⁻¹; P=0.0044. Int: 4620 pg ml⁻¹; P=0.0001) than the no ConA equivalent (Cl: 36 pg ml⁻¹. Int: 438 pg ml⁻¹). TNFα decreased over each time point in the Cl+ConA and Int+ConA samples but remained stable from 24-72hrs in NCI+ConA. IL-17A is relatively low compared to the other pro-inflammatory cytokines (no sample exceeded 6.04 pg ml⁻¹).

The concentrations of the anti-inflammatory cytokines (IL-4, IL-10 and IL-13) were all relatively low compared to the pro-inflammatory cytokines. IL-10 was the highest to be secreted but showed no significant difference between the ConA and no ConA conditions at any time point. IL-4 and IL-13 was significantly higher in ConA containing Cl samples by 24hrs (P=0.0019 & P=0.0025 respectively). Both cytokines generally increased over the time points but a significant difference between the subsets was not observed.

CCL2 was highly secreted in both no ConA and ConA conditions for Cl and Int monocytes. NCI+ConA samples were significantly higher in CCL2 at all three time points compared to the no ConA equivalents (24hrs: P=0.0201; 48hrs: P=0.0066; 72hrs: P=0.0416). CCL2 seemingly increased over time from 24-72hrs for all ConA treated subsets, however, the samples were saturated beyond the detection limit of the ELISA beads (0.632-1000 pg ml⁻¹) from 48hrs onwards. CCL3 is rapidly secreted by all three subsets containing ConA and remain significantly higher than the no ConA
samples at every time point. Only the Int+ConA increased significantly across all the time points (24-72hrs: P=0.0007; Figure 4.10b). By 72hrs the Int+ConA (3744pg ml⁻¹) supernatant contained a far greater concentration of CCL3 than NCI+ConA (1305pg ml⁻¹; P=0.0291) and Cl+ConA (1831pg ml⁻¹; P=0.0645). RANTES was not detected in any condition for any donor within the 366-9961pg ml⁻¹ range.

Within 24hrs the Cl and Int monocytes cultured with ConA contained significantly higher GM-CSF than the no ConA equivalents (Cl: 534pg ml⁻¹; P=0.0085; Int: 500pg ml⁻¹; P=0.0158). The Cl+ConA GM-CSF concentration does not change significantly after the 24hrs time point. However, the Int+ConA increase GM-CSF concentration 3.5-fold between 24-48hrs where it plateaus until 72hrs at 1731-1770pg ml⁻¹ (P=0.0038). In contrast, IFNγ was a more delayed cytokine response and increased across the time points peaking at 72hrs. The concentration of IFNγ increased rapidly between 48-72hrs in the ConA containing Int and NCl samples and by 72hrs were 3.3- and 3.9-fold higher than the Cl+ConA respectfully. IL-3 was secreted in very low concentrations compared to other cytokines (Figure 4.10a) but significant increases were observed across all the time points (Figure 4.10b) for ConA cultured Cl (24-72hrs: P=0.0028) and Int (24-72hrs: P=0.0004) samples. VEGF was only detected in 50% of the ConA containing samples at 24hrs and subsequent time points did not test positive for any VEGF presence. The VEGF detection range (393-9999pg ml⁻¹) suggests that the assay is relatively insensitive to low concentrations compared to other cytokines.

4.7 Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies

It is possible that the high-fusing Int and NCI monocytes express a particular pattern of tetraspanins compared to Cl monocytes. In Chapter 3 the presence of other leukocytes in the isolated cells makes it difficult to ascertain whether the anti-tetraspanin antibodies were directly targeting the monocytes or the contaminating cells to affect fusion behaviour. Anti-tetraspanin antibodies have been tested on total monocytes but here we observe their effect on purified individual subsets. From Figure 4.11a-c alone it is clear that the purified monocyte subsets not only fuse differently to total monocytes but also react to anti-tetraspanin antibodies differently. The Cl and NCI subsets remain largely unaffected by most of the antibody treatments and the
Figure 4.11a: Fluorescence Microscopy of Classical Monocyte Derived MGCs Cultured with Anti-Tetraspanin Antibodies.
Figure 4.11b: Fluorescence Microscopy of Intermediate Monocyte Derived MGCs Cultured with Anti- Tetraspanin Antibodies.
Figure 4.11c: Fluorescence Microscopy of NonClassical Monocyte Derived MGCs Cultured with Anti-Tetraspanins Antibodies.
Figure 4.11a-c: Fluorescence Microscopy of Monocyte Subset Derived MGCs Cultured with Anti-Tetraspanin Antibodies.

Figures 4.11a-c each show a representative image taken at 4x magnification of each of the monocyte subsets from the same donor after 72hrs ConA + IgG1 or an anti-tetraspanin antibody treatment. Red = Nuclei, Blue = F-Actin.
majority of the MGC produced are LGC. The Int monocytes produce larger and more regular MGC than the Cl but anti-CD9, anti-CD53, anti-CD63 and anti-CD151 seem to inhibit the fusion down to a Cl-like level.

Figure 4.12 summarises the data collected from 3-8 donors (8 donors tested with IgG1, anti-CD9 & anti-CD151, 4 donors with anti-CD37 & anti-CD63, 3 donors with anti-CD53, anti-CD81 & anti-CD82). While the Cl monocytes remain largely unchanged in their fusion parameters by the addition of anti-tetraspanin antibodies, the Int monocytes reacted significantly to the addition of certain anti-tetraspanin antibodies. Anti-CD63 was sufficient to significantly reduce the median nuclei MGC\(^{-1}\) (P=0.0347), fusion index (P=0.0444), MGC area (P=0.0136) and % coverage (P=0.0406) of Int monocytes compared to the IgG1 control. Anti-CD53 produced similar reductions in the fusion parameters but with only three donor repeats, however, this was not sufficient to obtain statistical significance in all parameters. Anti-CD151 produced significant decreases in the MGC area (P=0.0149) and % coverage (P=0.0406) and notable decreases in the fusion index and median number of nuclei MGC\(^{-1}\). The addition of anti-CD9 caused a decrease in the fusion index (P= 0.1528) and a significant decrease in the Int % coverage (P=0.0331).

The decrease in Int FI for the Int monocytes with the addition of anti-CD9 seems to be due to the decrease in the number of fused cells and the increase in the number of adherent single cells in Figure 4.13. Similarly, anti-CD53, anti-CD63 and anti-CD151 also seem to decrease the number of cells committing to fusion while increasing the number of adherent single cells compared to the Int IgG1 control. For the Cl and NCl subsets anti-CD9, anti-CD53, anti-CD63 and anti-CD151 did not greatly affect the number of fused cells as it did for the Int. There were however, notable reductions in the number of adherent cells for NCl monocytes cultured with anti-CD9, anti-CD53, anti-CD63 and anti-CD151 (Figure 4.13). The reductions in the fusion parameters in Figure 4.12 are proportional to the increase in the formation of the smaller LGC and decrease in the larger FBGC and SGC of Int monocytes cultured in anti-CD9, anti-CD53, anti-CD63 and anti-CD151. Anti-CD63 in particular showed significant reductions in the formation of FBGC (5.70%; P=0.0494) and a significant increase in
Figure 4.12: Fusion Parameters for Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies.

FACS purified monocyte subsets were cultured in media containing ConA and either an anti-tetraspanin antibody or IgG1 control for 72hrs. Bars represent mean±SEM, N=3-8, all parameters were tested with a Kruskal-Wallis test (data was non-Gaussian) and a Dunn’s multiple comparisons tests comparing the anti-tetraspanin antibody means against the IgG1 control within each subset. As the intermediate subset showed the most response to antibody treatment the columns have been arranged into ascending order for each parameter for intermediates.
Figure 4.13: Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies - Nuclear State Analysis.

The ‘state’ of each nuclei is summarised for each subset cultured for 72hrs in ConA media containing either IgG1 control or an anti-tetraspanin antibody. Bars represent mean±SEM, N=3-8, all time-points were tested with a Kruskal-Wallis test with Dunn’s multiple comparisons tests comparing the means of the same nuclei ‘state’ within the same subset’s IgG1 control.
the LGC (94.30%; P=0.0340) population compared to the IgG1 control (LGC: 26.94% & FBGC: 55.09%).

The Cl and NCl subsets when cultured with anti-CD37 did not change from their respective controls (Figure 4.13), however, the Int fused cell population increased 1.51-fold from the control with the addition of anti-CD37. The increase in the SGC population for Int cultured with anti-CD37 in Figure 4.14 could be the cause of the increased fused cell counts in Figure 4.13. In Int the addition of anti-CD81 resulted in a 3.34-fold increase in the SGC population, the highest recorded in all conditions but did not affect the fusion parameters significantly. Unlike the total monocytes experiments anti-CD82 had little effect on any of the individual monocyte subsets in the fusion parameters, fused/single cell analysis or MGC type.
Figure 4.14: Monocyte Subsets Cultured with Anti-Tetraspanin Antibodies – MGC Type.
All the nuclei counted inside each MGC from the anti-tetraspanin experiments were tallied into one of three observed MGC types and presented as a percentage of the fused nuclei counted. Bars represent mean±SEM, N=3-8, all time-points were tested with a Kruskal-Wallis test with Dunn’s multiple comparisons tests comparing ‘like’ MGC types between the anti-tetraspanin conditions and the IgG1 control. Red stars: LGC nuclei, green stars: FBGC nuclei and blue stars: SGC nuclei.
4.8 Discussion: Monocyte Subsets Possess Different Predispositions to Fusion.

Previous studies have always tested monocytes as a total population and not sorted the subsets prior to the induction of fusion. Unlike the experiments performed in Chapter 3, there are no blood-derived leukocyte contaminants present in these experiments because FACS produces tightly selected subsets devoid of NK-cells or T-cells.

Cl monocytes are typically ~17-fold and ~8.5-fold more numerous in the bloodstream than Int and NCI monocytes in healthy donors. Multiple studies have shown an expansion of the Int and NCI subsets during fusion-related inflammatory diseases such as tuberculosis (Castaño et al., 2011), Crohn’s disease (Grip et al., 2007), hepatitis B (Zhang et al., 2011a) and rheumatoid arthritis (Rossol et al., 2012). The increase in these subsets could be an immune response to increase the number of fusion-ready monocytes in the blood to facilitate the formation of MGC in the tissues.

Figure 4.1 revealed that the subsets each commit different proportions to fusion. Furthermore, the subsets produced different ratios of LGC, FBGC and SGC compared to one another. This could indicate that the three subsets have distinct roles in regards to fusion which would have important implications on the development of treatments for the rejection of prosthesis and treating granulomatous masses. These findings are also a cautionary note for the study of fusion in mice because murine models only possess Cl and NCI monocytes but not the highest fusing Int monocytes. Fusion is an irreversible commitment of monocytes and there has been no evidence in the literature or in these experiments that MGC can revert to single cells. MGC are relatively short lived cells and so any monocytes committed to fusion are lost from circulation. It is possible that the high-fusing Int and NCI monocytes are less prevalent in the bloodstream to avoid over-reactions to fusion-promoting signals which could otherwise be more detrimental than beneficial to the host.
Fusion Index Is Not an Accurate Measurement of Subset Fusibility

Fusion index (Figure 4.3) has long been a standard measurement of fusion; it is the ratio of nuclei in fused cells to total nuclei counted in a sample. For total monocyte work, this has always been adequate but by analysing the relative contributions of the subsets to fusion (Figure 4.1) it is clear that the fusion index can be misleading. For example, all three subsets produced a different fusion index but in Figure 4.1 it is clear that the subsets retain different numbers of adherent single cells (green segment). The higher the number of these single cells compared to the fused nuclei - the lower the FI. Int and NCl appear to have almost identical numbers of fused nuclei (blue segment) but because the Int monocytes retain less adherent single cells the fusion index increases and gives a somewhat misinformed view on the fusion behaviour. Fusion index is still a useful method of quantifying fusion between monocytes of a similar origin (e.g. Cl vs CI) but due to the differing adherence properties of the subsets the fusion index must be considered with caution. It is therefore important to consider other measurements such as the ratio of nuclei in detached/single/fused cells, the MGC types formed and the % coverage. The % well covered in MGC was far more representative than FI for analysing the propensity of a subset to undergo fusion. The % coverage just analysed the total area of the well covered by MGC independent of what type of MGC it was or how many nuclei it contained or how many single cells remained unfused.

The Majority of Seeded Cells Detached or Died – Are Monocytes Committing Suicide To Attract More To Their Funeral?

Of the initially seeded 1.5×10^5 monocytes well$^{-1}$, a surprisingly high number of cells did not fuse or remain adhered as single cells. It is possible that a large number of single cells detach prior to the fixing stage. The larger MGC are tightly adhered but could instead rupture prior to fixing resulting in their loss from the analysed images. It is possible that only a small number of cells within each subset is fusion-competent and that Int and NCI subsets possess more of these cells. The remaining single cells appeared to detach slowly over time which could indicate that if a monocyte for whatever reason does not commit to fusion then it either detaches to patrol elsewhere or dies.
ConA has been shown to be internalised by monocytes and its internalisation in hepatomas triggers apoptosis via mitochondrial autophagy and release of cytochrome c (Li et al., 2011; Liu et al., 2009; Sodhi et al., 2007). Many studies have supported a pro-inflammatory role of apoptosis via the release of internal IL-1α and IL-1β (Hogquist et al., 1991; Sarih et al., 1993). The massive loss of monocyte cell numbers over time (Figure 4.8) and the increase in pro-apoptotic cytokines such as IFNγ, IL1β and TNFα (Figure 4.10a) could indicate that some monocytes undergo apoptosis to generate a cytokine signature that promotes fusion. In accordance with this, Sodhi et al. (2007) observed that ConA enhanced the expression of TLR and adaptor protein MyD88 in murine Mφ which are both components of the NF-κB pathway (Figure 1.3 and Figure 1.7). Furthermore, Kelly et al. (2008) observed that after TB infected Mφ undergo apoptotic cytokine release they trigger apoptosis of bystander Mφ that are not infected with TB. Wong and colleagues have shown that the CD16+ monocyte subsets are more susceptible to apoptosis than the Cl monocytes (Zhao et al., 2010). In persistent TB infections, the phagocytosed pathogen arrests lysosome-phagosome fusion and generates anti-apoptotic mediators to allow it to proliferate within the host cell. Successful apoptosis in TB infections is thought to confer an anti-proliferative outcome (Bocchino et al., 2005; Lee et al., 2009). Though it is just speculation, apoptosis could play an important part in generating fusion-promoting microenvironments.

In vivo fresh monocytes would be constantly recruited from the bloodstream to the source of fusion (be it a foreign body or TB infection), however, in this in vitro model there is only one initial input of monocytes. It is important to keep this in mind as this model is limited to a finite number of monocytes in the well, of which the majority seemed to detach. Thus the level of fusion in vivo could potentially be much greater than that seen here. For our experiments, subset monocytes had to be sourced from apheresis cones to gain sufficient numbers of Int and NCl monocytes through FACS. It therefore not possible to arrange subsequent monocyte ‘seeding’ time-points from the same donor such as the technique demonstrated by Möst et al. (1997).
Subset Derived MGC All Possess Ruffled Membranes and a Network of Securing Filaments

SEM was able to show in high resolution that many MGC are tethered down by networks of long filaments. Using confocal microscopy, DeFife et al. (1999) also observed these microfilaments in FBGC but not Mφ and found them to be composed predominantly of F-actin. These filamentous structures could be a trait of particularly late-stage MGC that have low motility and high adherence to allow them to form a secure podosome on the surface to secrete digestive molecules. Smaller early-stage MGC may not have these large filamentous networks to allow a greater degree of mobility. In vivo these long filaments may also act not only as a strong tethering system but as ‘tracks’ to reel in wandering monocytes for fusion. It is unclear whether these filaments are a particular feature of glass-adhered MGC or if they are also present on plastic or in tissues.

The bulbous structures commonly observed in the Int and NCl MGC were not observed in any detail in the fluorescence images. Furthermore, in larger MGC the central ‘nuclear compartment’ of the MGC stained notably weaker with the phalloidin stain indicating a lower abundance of F-actin. DeFife et al. (1999) found that late stage FBGC (10 days culture with IL-13) had FBGC with weak central F-actin staining as the clusters of nuclei were instead supported with networks of microtubules and Int filaments. If these bulbous structures found in the SEM images are indeed composed of tubulin and Int filaments then they would not be apparent in the phalloidin stained fluorescence images. Alternatively they arrear to be elevated off of the MGC structure and so they could be out of focus of the fluoresce microscope. The fixing and dehydrating treatments seemed to be very damaging to the MGC especially the larger ones (Figure 4.5c.4). It is unclear whether some of the structures are representative of the MGC morphology or if they are just distortions produced by the sample preparation techniques.

Ruffled membranes is a morphological feature typically found on osteoclasts (Quinn and Schepetkin, 2009; Xia and Triffitt, 2006; Yagi et al., 2005) though some have reported this morphology on FBGC (Athanasou and Quinn, 1990; Milde et al., 2015; Saginario et al., 1995). Milde et al. (2015) suggested that these ruffled membranes
grant MGC a greater phagocytic ability, particularly with complement-opsonised targets. In Figure 4.5a2 we see the ruffled membrane of an MGC interacting with two Cl monocytes. It is possible that this image shows the beginnings of endocytosis/fusion of these two monocytes prior to their incorporation into the MGC structure.

Though Flu-SEM allows the nuclei arrangements to be overlaid over the SEM images it is still subject to user bias and error as the techniques are conducted independently of one another. Furthermore, Flu-SEM was only carried out in one z-frame so it only produced a 2D image of the nuclei which is inadequate for analysing nuclear stacking. Transmission electron microscopy would be far more effective at capturing all the layers of MGC from the external surfaces to the internal arrangement of the nuclei and even digestive vesicles being secreted at the well surface.

ConA Treatment Produces MGC Formed From Monocytes Not Mφ:

In the fusion kinetics study all three subsets were able to fuse and form MGC within 24hrs. Multiple studies state that MGC form from “the fusion of macrophages”, however, freshly isolated monocytes typically take 5-8 days of differentiation in GM-CSF/M-CSF (Ohradanova-Repic et al., 2016) and other factors to form Mφ. The freshly isolated monocytes were able to fuse in less than 24hrs, indicating that fusion was initiated and facilitated by monocytes not macrophages. This is in accordance with the findings of Möst et al. (1997) who found that freshly isolated monocytes were able to form MGC but cultured Mφ could not.

NCI monocytes were slow to start in fusion and possessed the lowest fusion parameters of all the subsets at 24hrs. However, by the final 72hr time point they overtook the low-fusing Cl. The plateauing of the fusion parameters in the high-fusing Int after 48hrs also suggests that they have reached their maximal fusion potential. 72hrs is therefore an ideal end point for all the fusion assays though it is not clear if by 72hrs the lack of further fusion is due to a lack of monocytes, lack of nutrients in the media, excess waste in the media or negative feedback from the MGC.
LGC Are Precursors to FBGC and SGC

There was a relationship between the median MGC area and the abundance of larger FBGC and SGC within the same time points. The smaller LGC typically range from 3-15 nuclei per MGC with an area of $1044-8599\mu m^2$, when the larger FBGC and SGC become more abundant there is a big increase in the median MGC area. At the earliest time points the majority of MGC were LGC and the appearance of larger FBGC and SGC increases as time increases. As the FBGC and SGC increase the LGC population decreases; this supports the notion that the three MGC types are not distinct and that the larger MGC are later stages of the smaller LGC. The ability for LGC to develop into FBGC has been observed *in vivo* on rat implants (Rhee *et al.*, 1978) in humans suffering from sarcoidosis (Van Maarsseveen *et al.*, 2009) and *in vitro* with ConA (Möst *et al.*, 1997). Presently MGC classification is based predominantly on morphology so until markers of the different MGC are found, such conclusions can only be speculative.

ConA Produced A Strong Pro-Inflammatory and Pro-Apoptotic Response in CI and Int Monocytes.

Within the first 24hrs of culture in ConA the CI and Int monocytes reacted by secreting high levels of IL-6 and TNFα. TNFα is able to both induce the transcription of GAS genes via the NF-κB pathway and is also an inducer of apoptosis (Wajant *et al.*, 2003). Thereafter, by 48hrs the detectable levels IL-1α and IL-1β were at their highest in the CI and Int subsets but were virtually undetectable in the NCI subset. Monocytes and Mφ have been shown to release internal stores of IL-1 derivatives during apoptosis (Hogquist *et al.*, 1991; Sarih *et al.*, 1993). Following this, Figure 4.8 shows that between 24-48hrs there is a large increase in the number of dead cells for the CI and Int subsets but less so for the NCI. These cytokine patterns suggest that the CI and Int subsets could be generating a pro-apoptotic microenvironment in the first 24-48hrs following which the Int subset responds by forming larger FBGC and SGC whereas the CI forms smaller LGC. The NCI subset does not secrete pro-apoptotic cytokines but does secrete the highest levels of IFNγ by 72hrs suggesting that activation of NCI fusion is mediated by a different pathway to the other two subsets.
ConA Induced Rapid Secretion of Pro-Fusion Cytokines IFNγ, IL4, IL-17A, IL-13 and IL-3.

FBGC have been shown to form in response to combinations of IL-4, GM-CSF, IL-3 and IL-13 (DeFife et al., 1997; McNally and Anderson, 1995) while LGC form more favourably in response to IFNγ and IL-17A (Byrd, 1998; Coury et al., 2008; McNally and Anderson, 1995; Sakai et al., 2012; Takashima et al., 1993). Compared to the concentrations of pro-inflammatory cytokines the secreted levels of IL-4, IL-3, IL-13 and IL-17A were minute. However, pro-fusion cytokines have been shown to be effective at very low concentrations. MGC have been generated *in vitro* with IL-4 at concentrations of 15ng ml⁻¹ (McNally and Anderson, 2014) to 10ng ml⁻¹ (Moreno et al., 2007). DeFife et al. (1997) titrated IL-4 and IL-13 and found MGC to develop at concentrations as low as 1ng ml⁻¹. IL-17A is a potent stimulator of fusion and has shown to be effective at 1ng ml⁻¹ (Kotake et al., 1999). IL-3 was shown by McNally and Anderson (1995) to develop small MGC at 10ng ml⁻¹ and the addition of IL-4 had an additive effect on the size of the MGC produced. Therefore, despite the apparently low concentrations of IL-3, IL-4, IL-13 and IL-17A, they are all detected at biologically effective concentrations and perhaps are initiating fusion at the earlier time points (24-48hrs).

GM-CSF is routinely used to differentiate monocytes into M1-like Mφ and was secreted at quite high levels in Cl and Int subsets cultured in ConA. It’s likely that the presence of pro-inflammatory cytokines such as IL-6 and TNFα at 24hrs were triggering the transcription and secretion of other cytokines such as GM-CSF at 48hrs. From Cl to NCl the expression of the GM-CSF receptor decreases and the M-CSF receptor increases (Figure 1.1) (Martinez et al., 2006). Though M-CSF was not tested in these samples it is possible that the NCl monocytes were utilising M-CSF over GM-CSF signalling in accordance with their respective receptor expression. Sakai et al. (2012) measured IFNγ and found concentrations of 10ng ml⁻¹ to be sufficient to induce fusion. However, their cultures also contained cytokine producing T-cells. Möst et al. (1990) used anti-IFNγ antibodies to demonstrate that IFNγ is essential in MGC formation. Our results show that within 24hrs IFNγ was secreted at concentrations exceeding 10ng ml⁻¹ and increased through each time point peaking at 72hrs. At 72hrs time point the
concentration of IFNγ was highest in the Int and NCI subsets. At the same 72hr time-point the Int and NCI possessed the highest % coverage of MGC (Figure 4.7) suggesting that IFNγ is a later stage pro-fusion cytokine.

ConA Stimulated CCL2 & CCL3 Cytokine Secretion

CCL2, CCL3 and RANTES are secreted by monocytes and Mφ to attract leukocytes to sites of inflammation (Moriuchi *et al.*, 1997; Ueda *et al.*, 1994; Widmer *et al.*, 1993). RANTES is produced in sites of viral infection and is secreted to attract cytotoxic T-cells, NK-cells and DC (Crawford *et al.*, 2011). There was no detectable level of RANTES in both ConA and untreated wells for any of the subsets at any time-point. Therefore it seems that none of the monocyte subsets utilise RANTES signalling during fusion. The secreted levels of CCL2 on the other hand were so high in both ConA and unstimulated conditions that by 48hrs it exceeded the ELISA detection limit for some samples. CCL2 is secreted not just by leukocytes but also endothelial cells, smooth muscle cells and fibroblasts and is a potent chemoattractant for monocytes towards sites of inflammation (Deshmane *et al.*, 2009).

Like CCL2, CCL3 is secreted by multiple cells types to attract monocytes and other leukocytes and is particularly upregulated in monocytes and Mφ in response to LPS detection (Menten *et al.*, 2002). Compared to untreated wells CCL3 was detected at significantly higher concentrations in ConA cultured cells as early as 24hrs. Unlike CCL2; CCL3 was not produced secreted in large quantities in the untreated wells suggesting its secretion was ConA specific.

Only Int Monocytes Were Responsive to Anti-Tetraspanin Antibodies

Previous studies utilising anti-tetraspanin antibodies have always been conducted on total monocytes. The total monocyte work in Chapter 3 did not replicate the results published by other research groups, however, to date no study has used FACS to isolate monocyte subsets to absolute purity. In the anti-tetraspanin antibody assays conducted on subset monocytes it is clear that the subsets not only fuse differently but react to the anti-tetraspanin antibodies differently. This has important implications for the previous work that has reported on the effects of these antibodies in total
monocytes as it appears that the significant effects are primarily a result of the Int monocytes.

Anti-CD9, anti-CD53, anti-CD63 and anti-CD151 abrogated fusion in Int monocytes but their effects were almost negligible on Cl and NCl monocytes. Firstly, addition of any one of these antibodies to the fusion media of Int was sufficient to reduce the FI, MGC area and % coverage to half their respective readings in the IgG1 control (Figure 4.12). Secondly, these four anti-tetraspanin antibodies greatly reduced the population of fused nuclei (Figure 4.13) while increasing the number of single cells. Finally, anti-CD9, anti-CD53, anti-CD63 and anti-CD151 caused drastic reductions in the FBGC and SGC populations, instead favouring the formation of smaller LGC (Figure 4.14), however, this effect was not observed in the Cl and NCl subset.

Conclusion:
Int monocytes, despite being up only 5-8% of the monocyte population, have the greatest potential to fuse and form large MGC. In the kinetics study, we have shown that Int monocytes are the first to form MGC of the three subsets. The ELISA data revealed that compared to the other subsets the Int secrete high levels of pro-apoptotic and pro-inflammatory cytokines and release high levels of chemokines to recruit more monocytes for fusion. The Int monocytes showed a greater potential to form larger FBGC and SGC. However, addition of anti-tetraspanin antibodies targeting CD9, CD53, CD63 and CD151 was sufficient to reduce measured fusion parameters and MGC populations of Int to that of Cl monocytes. A greater understanding of the expression of tetraspanins on monocyte subsets may reveal why Int monocytes are so fusogenic and why these select anti-tetraspanin antibodies are able to limit their fusion potential.
CHAPTER 5: TETRASPANIN EXPRESSION IN MONOCYTE SUBSETS

5.1 INTRODUCTION
Monocyte subsets are able to fuse to form MGC but the rates of fusion and the types of MGC produced are different in each subset (see Chapter 4). Furthermore certain anti-tetraspanin antibodies are able to affect the fusion outcomes of the high-fusing Int subset more than the NCl and Cl subsets. It has been suggested that tetraspanins play a vital role in establishing fusion-facilitating TEMs (Hemler, 2003). This model has been supported by multiple studies utilising mouse knock outs, antibody-interference and soluble EC2 proteins that all act to disrupt the formation of a functioning TEM.

Knock outs in mouse gametes have shown that CD9 (Kaji et al., 2000; Naour et al., 2000) and CD81 (Rubinstein et al., 2006) play a vital role in gamete cell fusion in mice. Whereas human sperm-egg fusion can be blocked using CD151 targeting antibodies (Ziyyat et al., 2006). Anti-CD63 has been shown to greatly inhibit the fusion of human monocytes (Parthasarathy et al., 2009; Takeda et al., 2003). CD53 is a regulator of TNFα (Bos et al., 2010), in Chapter 4 TNFα was highly secreted in high-fusing Int and anti-CD53 antibodies subdued their ability to fuse. CD37 is able to transduce apoptotic signals (Lapalombella et al., 2012) which from the cytokine patterns in Chapter 4 appeared to be an important step in fusion initiation. CD82 has been shown to play an important role in virus induced syncytium formation (Daenke et al., 1999; Hildreth, 1998; Hildreth et al., 1997). An understanding of the surface expression of these tetraspanins on monocyte subsets may reveal differences in the tetraspanin stoichiometry that could be responsible for their differing fusion potentials.
5.2 RESULTS

5.2.1 SURFACE EXPRESSION OF TETRASPANINS ON HUMAN MONOCYTE SUBSETS.

Figure 5.1 shows the relative intensity of the surface expression of tetraspanins on the different monocyte subsets and the percentage of cells positive for each tetraspanin. CD53 was expressed on 100% of cells in all subsets but was significantly different in the level of expression between all subsets (MFI Cl: 3185, Int: 4734 & NCl: 4147). High percentage expression was also observed in CD81 (78-90%) and CD82 (92-99%). CD81 expression levels were very similar on all subsets but for CD82, the Cl monocytes (MFI: 1671) expressed higher levels than the Int and NCl subsets (MFI: 954; P=0.0037 and 827; P=0.0007). Compared to the expression of the other tetraspanins, CD63 and CD151 were expressed on a minority of monocytes (CD63: 5-8% & CD151: 41-51%). The MFI readings were also very low and no significant difference between the subsets was found. The percentage of monocytes expressing CD37 was significantly lower in the Cl (47%) subset than the Int (78%; P<0.0001) and NCl (65%; P=0.0193) monocytes. However, there was no significant difference between the MFIs of the CD37 positive subsets. CD9 was expressed significantly higher in Cl monocytes, however, as the histograms in Figure 5.2 show, CD9 was expressed as a bimodal population in Cl monocytes. The CD9low population consisted of 76.77% of the Cl monocytes and the remaining 23.23% were termed the CD9high population. Expression of CD9 in the Int subset was positively skewed (59% positive for CD9) and the NCI showed a Gaussian distribution but with only 28% positive for CD9. The MFI for the CD9-positive cells was significantly lower in the NCI (MFI: 349) compared to the Int (MFI: 1174; P=0.0009) but not compared to the Cl (MFI: 804; P=0.0635).

Figure 5.3 shows the co-expression of the 7 tetraspanins compared to each other. The degree of correlation of expression of two tetraspanins is shown by a shift of the dots to the upper-right region of the panel. As the Cl (red) monocytes are the most abundant in the PBMCs they are the most prominent population on the graphs. The CD9 row shows small shifts indicative of correlated expression of CD9/CD81 and
Figure 5.1: Surface Expression of Tetraspanins on Human Monocyte Subsets.
Freshly isolated human PBMCs were stained with a 10-antibody panel and their surface tetraspanin expression was analysed on a flow cytometer. MFI and percentage positive graphs are shown above for each tetraspanin detected on the monocytes subsets. Bars represent the mean±SEM, N=10. Tested with a two-way ANOVA with an Uncorrected Fisher’s LSD post-hoc test to compare column means.
Figure 5.2: Histograms for Surface Expression of Tetraspanins on Human Monocyte Subsets. Histograms showing the distribution of fluorescence signal from freshly isolated human monocyte subsets. PBMCs were stained with a 10-antibody panel prior to analysis and recording on a flow cytometer. Positive signals for Classical, Intermediate and Nonclassical shown in Red, Orange and Yellow respectively. Their equivalent isotypes are shown in black to grey and represent the background/nil signal.
Figure 5.3: Tetraspanin Co-Expression on Human Monocyte Subsets. Dot plots showing the co-expression of CD9, CD37, CD53, CD63, CD81, CD82 and CD151 on freshly isolated monocyte subsets. Classical, Intermediate and NonClassical shown as dots in Red, Orange and Yellow respectively. An isotype control is shown in black. Note that CD9 was the only tetraspanin in the histograms to show a bimodal peak of expression and that co-expression of two tetraspanins results in a shift of dots to the top right of the respective plot (e.g. CD9/CD151).
CD9/CD82 in the Cl subset, and a strong positive correlation between CD9/CD151. CD82/CD151 also appear to have correlated expression in Cl monocytes.

5.2.2 Comparison of CD9_{Low} and CD9_{High} Classical Monocytes

Multiple studies have reported that CD9 is an important component in the fusion machinery. The bimodal distribution of CD9 expression in Cl monocytes in Figure 5.2 and the co-expression of CD9/CD151 (Figure 5.3) led us to believe there may be a subset of tetraspanin-high Cl monocytes that could have a unique role in the fusion process.

The Cl monocytes from Figure 5.1 were gated into CD9_{Low} (76.77% of Cl) or CD9_{High} (23.23% of Cl) (Figure 2.4) and the MFI values of the other tetraspanins were compared (Figure 5.4). In Figure 5.4 it is clear that even though the CD9_{High} population comprises only 1/4th of the Cl monocytes, it is significantly higher in CD9 (MFI: 5545) than CD9_{Low} (MFI: 560; P<0.0001). CD63 and CD81 had MFI values 1.52-fold higher (P=0.6643) and 1.40-fold higher (P=0.1210) in CD9_{High} compared to CD9_{Low} Cl. CD151 was 6.56-fold higher expressed in CD9_{High} (MFI: 479) than CD9_{Low} (MFI: 73; P=0.2434), in Figure 5.5 it is clear that the CD9_{High} Cl monocytes are positively skewed for CD151 expression.

Though not statistically significant, the CD9_{High} Cl monocytes appeared to consist of a small population of tetraspanin-rich monocytes. To see if there was a difference in their fusion behaviour the two populations were sorted by FACs into either total Cl (Cl monocytes that had not been separated further), CD9_{Low} or CD9_{High} Cl monocytes (Figure 5.6 and 5.7). Initially, CD9_{Low} and CD9_{High} Cl were sorted using the indirect anti-CD9 label that was used in flow cytometry (anti-CD9-biotin + streptavidin-APC-Cy7). Later a direct anti-CD9-FITC was used as a control to see if indirect labelling was having an effect. Compared to the CD9_{Low} cells, the CD9_{High} Cl monocytes purified with the biotin-streptavidin conjugate (B-S); produced MGC with 1.5-fold more nuclei per MGC (P=0.0692), 2.3-fold MGC area (P=0.0718), had a 5.2-fold higher fusion index (P=0.0219) and 6.1-fold higher % coverage (P=0.0219). The MGC types produced from each population (Figure 5.7) show that the CD9_{Low} (B-S) produced
Classical monocytes possess a CD9^{Low} and CD9^{High} population in freshly isolated monocytes. To see if there was a correlation between CD9 expression and expression of other tetraspanin markers the CD9^{Low} and CD9^{High} classicals were gated and the MFIs of other tetraspanins displayed. Bars represent the mean±SEM, N=10. Tested with a two-way ANOVA with an Uncorrected Fisher’s LSD post-hoc test to compare column means.
Figure 5.5: Histograms for Surface Expression of Tetraspanins on CD9_{Low} and CD9_{High} Classical Monocytes.

Histograms showing the distribution of fluorescence signal from freshly isolated human CD9_{Low} and CD9_{High} Classical Monocytes. Positive signals for CD9_{Low} and CD9_{High} shown in pale red and dark red respectively. Total Classical isotype is shown in black to represent the background/nil signal. No equivalent bimodal peak in CD9 expression was observed in Intermediate or NonClassical monocytes.
Figure 5.6: Comparison of Fusion Results from Total, CD9^{Low} & CD9^{High} Classical Monocytes from Different FACS Isolation Methods.

The first triad in each graph are Total, CD9^{Low} and CD9^{High} Classical monocytes that had been FACS sorted via an indirect CD9 staining method (Anti-CD9-Biotin+Steptravidin-APC-Cy7). The second triad were sorted using a direct anti-CD9-FITC label. The third triad were sorted into Total, CD36^{Low} and CD36^{High} classical monocytes due to the high CD9/CD36 co-expression in Classical monocytes. This was to see if binding of CD9 in the other methods was affecting fusion. Bars represent the mean±SEM. N=25 for Total Cl (FACS), N=3 for B-S samples & N=2 for all others. A) and C): the means of the B-S triad were tested with a one-way ANOVA with a Tukey multiple comparisons test. For B) and D): the B-S triad was tested with a Kruskal-Wallis test with a Dunn’s multiple comparisons test. A subsequent test was conducted comparing the B-S CD9^{Low} and CD9^{High} with Total Cl (FACS), same statistics models as before; shown in blue. Lastly a T-test (Mann-Whitney; orange) was conducted comparing the means of Total Cl (B-S) and Total Cl (FACS).
Figure 5.7: MGC Types Formed from CD9Low vs CD9High Classical Monocytes from Different FACS Isolation Methods.

Total, CD9Low and CD9High classical monocytes were FACS purified using an indirect aCD9-biotin-streptavidin-APC-Cy7 reporter (1st triad), a direct aCD9-FITC antibody (2nd triad) and direct CD36-FITC antibody (3rd triad). The bars show the distribution of fused nuclei into different MGC types; LGC, FBGC and SGC. Bars represent the mean±SEM. N=25 for Total Cl (FACS), N=3 for B-S samples & N=2 for all others. A Kruskal-Wallis Test with a post hoc Dunn’s multiple comparisons test was used to compare the percentages of fused nuclei in ‘like’ MGC types in the Biotin-Streptavidin (B-S) triad. A subsequent Kruskal-Wallis & Dunn’s test was performed comparing the Total Cl (FACS) with the B-S CD9Low and CD9High results (blue).
more of the smaller LGC and fewer of the larger FBGC and SGC (85.79%:14.21%: 0%) than the CD9_{High} (B-S) (29.56%:52.48%:17.96%). However, directly labelled CD9_{Low} and CD9_{High} did not produce a large discrepancy in the FBGC and SGC populations nor did they show any differences in the fusion parameters.

To see if the different labels were the cause of this discrepancy the indirectly labelled “Total Cl (B-S)” were compared with the direct “Total Cl (FACS)”. The “Total Cl (FACS)” were the values from the FACS purified Cl monocytes that have been used in Chapter 4 to characterise the subset fusion (Figure 4.3). There was a significant increase in the % coverage of total Cl (B-S) (24.79%) compared to the total Cl (FACS) (11.19%; P=0.0405. Figure 5.6D: Orange star). The only difference between “Total Cl (B-S)” and “Total Cl (FACS)” was that the former was purified with an indirect biotin-streptavidin label and the latter was directly labelled. Thus, it appears as though the indirect B-S purification method was somehow causing cells to fuse at a greater rate (see Figure 5.12 and “5.3. Discussion” section).

As anti-CD9 antibodies have been shown in other studies to influence monocyte fusion behaviour (Parthasarathy et al., 2009; Takeda et al., 2003) we sought to target an alternative marker to separate CD9_{Low} and CD9_{High} Cl monocytes. As the scavenger receptor CD36 has been shown to be highly co-expressed with CD9 (Huang et al., 2011); it was selected as an alternative target for FACS sorting (Figure 2.4). The cells were all seeded at 1.5x10^5 cells well^{-1} in ConA and allowed to fuse for 72hrs. Figure 5.6 and 5.7 show that the CD36_{Low} showed no significant differences in fusion behaviour to CD36_{High}. Furthermore, the CD36 sorted cells were no different to the directly labelled CD9 confirming that the B-S indirect tag was the source of the increased fusion in the B-S labelled cells and not because of the level of CD9 expression.
5.2.3 Surface Expression of Tetraspanins on FACS Sorted Monocyte Subsets After 4hrs Culture in +/-ConA Media.

To see if tetraspanin expression changed in response to fusion initiation the monocyte subsets were cultured for 4hrs with and without ConA then subjected to flow cytometry. Compared to the freshly isolated monocytes in Figure 5.1 there was a reduction in the overall MFI signal of every tetraspanin (Figure 5.8). After ConA stimulation, only CD53, CD37 and CD82 showed any significant variation with the untreated samples; the MFI values of CD53 and CD82 were both higher in the unstimulated samples. Though the MFIs of CD37 did not show any significant difference in the subsets there was very different reaction to ConA in the % positive cell parameter for CD37. The % positive of Cl cells was notably lower in ConA treated Cl (P=0.1095) and significantly lower in Int (P=0.0134) and NCl (P=0.0013).

Figure 5.9 shows all the subsets cultured in ConA compared to one another (Figure 5.8 compares ConA treated vs untreated subsets). The percentage of cells expressing CD37 was significantly higher in the Int than the Cl (P=0.0134) but not to the NCl (P=0.3193). CD53 expression was significantly lower in NCl monocytes (MFI: 601) compared to Cl (MFI: 1042; P<0.0001) and Int (MFI: 941; P=0.0004) monocytes. Both the percentage of cells expressing CD82 and the resultant MFIs were significantly higher in the Cl cells compared to the Int and NCI cells. The histograms for ConA treated monocytes (Figure 5.10a-c) reveal that the expression of most of the tetraspanins is Gaussian. However, the expression of CD53 is bimodal in Cl, negatively skewed in Int and positively skewed for NCl monocytes when treated with ConA (Figure 5.11). CD82 in ConA treated Cl also possesses a bimodal distribution but the Int and NCI monocytes show a Gaussian distribution of expression.
Figure 5.8: Surface Expression of Tetraspanins on FACS Sorted Monocyte Subsets After 4hrs Culture in +/-ConA Media.

Monocytes were first sorted by FACS into subsets, then cultured in normal cIMDM media (empty bars) or ConA media (banded bars) for 4hrs. Cells were then detached, stained and analysed for surface Tspan expression by flow cytometry. MFI and percentage positive graphs are shown above for each tetraspanin detected on the subset derived cells. Bars represent the mean±SEM, N=4. Tested with a two-way ANOVA with an Uncorrected Fisher’s LSD post-hoc test to compare column means between cIMDM or cIMDM+ConA cultured subsets.
Figure 5.9: Comparison of Surface Tetraspanin Expression on FACS Sorted Monocyte Subsets After 4hrs Culturing in ConA Media. Only the ConA samples and data from Figure 5.8 are shown above to allow comparison between the fusion-primed cells. MFI and percentage positive graphs are shown above for each tetraspanin detected on the subset derived cells. Bars represent the mean±SEM, N=4. Tested with a two-way ANOVA with an Uncorrected Fisher’s LSD post-hoc test to compare column means in MFI or % positive between ConA exposed subset derived cells.
Figure 5.10a: Histograms for Surface Expression of Tetraspanins on Human Classical Monocyte in +/-ConA Media.

Histograms showing the distribution of fluorescence signal from FACS sorted classical monocytes cultured for 4hrs in cIMDM (pale red) or ConA+cIMDM (dark red). Their equivalent isotypes are shown in black and grey and represent the background/nil signal.
Figure 5.10b: Histograms for Surface Expression of Tetraspanins on Human Intermediate Monocyte in +/-ConA Media.

Histograms showing the distribution of fluorescence signal from FACS sorted intermediate monocytes cultured for 4hrs in cIMDM (pale orange) or ConA+cIMDM (dark orange). Their equivalent isotypes are shown in black and grey and represent the background/nil signal.
Figure 5.10c: Histograms for Surface Expression of Tetraspanins on Human NonClassical Monocyte in +/-ConA Media.

Histograms showing the distribution of fluorescence signal from FACS sorted nonclassical monocytes cultured for 4hrs in cIMDM (pale yellow) or ConA+cIMDM (dark yellow). Their equivalent isotypes are shown in black and grey and represent the background/nil signal.
Figure 5.11: Quantification of Bimodal Populations in Fusion Initiated Monocyte Subsets.
The MFI signal repeatedly produced a bimodal peak for CD53 and CD82 for ConA cultured classical monocytes but not when cultured in cIMDM alone. A more negative skew for CD53 was observed in ConA cultured intermediate monocytes while nonclassical monocytes showed a positive skew. The positive signal for cIMDM or ConA+cIMDM is shown for each with limit bars included to show the percentage positive and negative as compared to the black/grey isotypes. CD82 was weakly bimodal in ConA cultured classical subsets but the same phenomenon was not observed in intermediate or nonclassical monocytes so they are not shown.
5.3 DISCUSSION
Intermediate Monocytes Are Tetrascapanin Abundant

Depending on the species, cell type and proteome of a cell, a tetrascapanin will have a wide range of different binding partners it can associate with and therefore facilitate many possible functions. For this reason it is particularly challenging to deduce the effect that changes in tetrascapanin expression might have on cellular functions.

Freshly isolated Int monocytes expressed the highest levels of all tetrascapanins except CD82 (highest in the Cl monocytes) and CD63 (equal expression in Cl and Int monocytes). The NCI monocytes had the lowest MFI and percentage of cells positive for CD9 and CD81. CD9 and CD81 have been already been described as fusion regulators (Takeda et al., 2003) with decreased expression in mice resulting in greater degrees of fusion. CD9 forms partnerships with many proteins implicated in fusion: CD47 (Longhurst et al., 1999), CD44 (Schmidt et al., 2004; Yashiro-Ohtani et al., 2000), CD36 (Huang et al., 2011), MMP-9 (Herr et al., 2013) and EWI-2 (Stipp et al., 2001). The higher % of cells positive for CD37 and significantly higher MFI for CD53 in the Int could suggest the Int have a higher baseline of LFA-1 which has been observed in partnership with these tetrascapanins (Todros-Dawda et al., 2014; Wee et al., 2015). The higher expression of LFA-1 could confer stronger cell-cell interactions through LFA-1:ICAM-1 binding and enhance fusion. It is unsurprising therefore that when separated and stimulated at equal densities the Int are able to produce larger giant cells at a much faster rate.

The Cl possessed the highest % positive cells and MFI signal for CD82, which has been shown to be important in associating with αVβ3 (Ruseva et al., 2009) and EWI-2 (Zhang et al., 2003), thus, CD82 has the potential to facilitate surface adhesion and cytoskeletal rearrangements. Though we can only speculate on the binding partners of each tetrascapanin in each subset what is clear is that they each have their own tetrascapanin fingerprint.
ConA Treatment Induces an Overall Decrease in Tetraspanin Expression

The ConA treated cells showed a general reduction in expression levels and % positive cells (Figure 5.8). ConA induces a significant reduction in both the intensity and % of cells expressing CD53 and a reduction in the % of cells expressing CD37. CD37 and CD53 have both been shown to associate with LFA-1 which mediates cell-cell adhesion and cell crawling by binding and being internalised (Kinashi, 2005). Therefore the decrease in % positive cells for CD37 and CD53 may be a result of the cell becoming polarised upon binding the surface and facilitating increased internalisation of LFA-1 as part of the crawling mechanism. In accordance with this, the decrease in CD81 % positive cells could be a response to internalisation of EWI-2 which facilitates actin polymerisation around LFA-1. It is also possible that ConA enhances the formation of tight tetraspanin clusters (as observed by Zuidscherwoude et al. (2015) with MHC class II complexes) which may sterically hinder the binding of antibodies to all of the tightly packed tetraspanins.

CD37 was expressed on a significantly higher % population of ConA treated Int compared to ConA treated Cl and NCl (Figure 5.9). This could suggest that the high fusion potential of the Int is largely mediated by its ability to produce more LFA-1 expressing cells compared to the other subsets. In accordance with this, the Cl possessed the lowest % positive population of CD37 cells. Multiple studies have reported the effectiveness of anti-LFA-1 antibodies at inhibiting fusion (Gasser and Möst, 1999; Kazazi et al., 1994; Möst et al., 1990), therefore it is possible that co-expression of CD37 and LFA-1 are responsible for the Int high fusion potential.

Due to the increased clumping of ConA treated monocytes we were only able to analyse tetraspanin expression by flow cytometry up to 4hrs without risking blocking the cytometer. However, the significant differences in ConA treated and untreated cells suggests that within 4hrs the monocytes are responding to the ConA and are potentially fusion competent. Flow cytometric analysis into which fusion-related proteins are being trafficked by the tetraspanins is required to make more accurate conclusions. Furthermore, fluorescence microscopy could be used to investigate co-
expression of tetraspanins and fusion-related proteins at the surface at later time-points.

CD9\(^{\text{High}}\) Cl Monocytes Express More CD63, CD81 and CD151

Initially we observed that the Cl expression of CD9 was bimodal (Figure 5.2) and that there was a positive correlation between CD9 and CD151 (Figure 5.3). After gating the Cl into CD9\(^{\text{Low}}\) and CD9\(^{\text{High}}\) we observed that the CD9\(^{\text{High}}\) cells also had increased (though not significant) expression of CD9, CD63, CD81 and CD151 (9.9-fold, 1.5-fold, 1.4-fold and 6.6-fold increase, respectively) (Figure 5.4). CD9 and CD151 both form associations with MMP-9 which has been shown to enhance migration and EWI-2 which enhances adhesion by linking adhesion proteins to the cytoskeleton. Furthermore, the increased CD63 could result in the CD9\(^{\text{High}}\) Cl having higher expression of E-cadherin. Therefore, the CD9\(^{\text{High}}\) Cl may be able to switch between highly motile or highly adherent behaviours by simply changing their expression of EWI-2 or MMP-9. Alternatively, the CD9\(^{\text{High}}\) Cl could represent a small subset of Cl maturing into Int, as Int express higher levels of these tetraspanins.

Suzuki et al (2009) observed that CD9 associates with CD14 to sequester it in a TEM to prevent the formation of the functional CD14:TLR4 LPS receptor. Therefore, it is possible that the CD9\(^{\text{High}}\) Cl represent an LPS-insensitive population of the Cl and have no differing fusion potential to CD9\(^{\text{Low}}\) Cl.

Indirect Labelling Caused High Fusion Rates in CD9\(^{\text{High}}\) Cl Monocytes

We hypothesised that these tetraspanin-high Cl cells may show different fusion tendencies to the larger CD9\(^{\text{Low}}\) population. Initially, we sorted the CD9\(^{\text{Low}}\) and CD9\(^{\text{High}}\) Cl using an anti-CD9-biotin primary antibody with a streptavidin-APC-Cy7 secondary reporter. The initial results indicated that CD9\(^{\text{High}}\) Cl had a significantly higher fusion potential (Figure 5.6), however, when we compared with a directly labelled CD9-FITC or CD36-FITC antibody the increased fusion in CD9\(^{\text{High}}\) was lost.

We postulated that because the streptavidin conjugate on the secondary reporter was multivalent (able to bind up to 4 biotin molecules) it was able to tether monocytes
together (Figure 5.12). This would explain why the fusion parameters for the CD9High cells were so much greater than the CD9Low Cl. The function of the CD9High Cl remains unclear but it does not appear to represent a high-fusing subset of cells. We have also shown that an increase in cell-cell adhesion can significantly enhance the fusion potential of even the relatively low-fusing Cl subset. Indeed, perhaps the Int and NCl subsets are able to fuse at a faster rate because they express a higher degree of cell-cell adherence proteins. It would be interesting to see if tethering other tetraspanins in the same way would produce similar increases in fusion or if this effect is specific to CD9 TEMs.

Conclusion:

It seems as though at steady state Int are particularly tetraspanin rich but upon treatment with ConA there is a significant reduction in the expression of tetraspanins involved in adhesion and cytoskeletal polymerisation (CD37, CD53 & CD82); possibly granting them higher motility. ConA also induced the Int to increase the % positive cells expressing CD9 while the opposite was true for CD81. This could indicate that the Int favour the expression of the CD47/CD44 components of the MFR complex as so far only CD9 has been shown to associate with CD47 (Longhurst et al., 1999) and CD44 (Schmidt et al., 2004; Yashiro-Ohtani et al., 2000) and CD81 with MFR (Wang and Pfenninger, 2006). Though a CD9High Cl population was identified it did not show any differences in fusion potential compared to CD9Low Cl. Furthermore, we found that tethering monocytes by their CD9 molecules enhances fusion indicating that increased cell-cell contacts can enhance the fusibility of monocytes.
Figure 5.12: Theoretical Explanation for the Increased Fusion in Indirectly labelled CD9High Classical Monocytes.

CD9High Classical monocytes that were FACS purified with an indirect label had fusion parameters far higher than directly labelled equivalents, but the directly labelled cells did not. In the first stage of indirect labelling the monocytes are bound by the anti-CD9-biotin antibody, after washing a streptavidin-APC-Cy7 is added to bind the biotin with high affinity and produce a fluorescence signal. However streptavidin in a multivalent protein; up to four biotins are able to bind every one streptavidin. Once the classical monocytes are seeded after seeding it is possible that the CD9High cells will clump and fuse faster because of the increased number of strong biotin-streptavidin links formed. Directly labelled CD9High or CD36High classical monocytes or did not show similar fusion behaviour.
6.1 Introduction

Human monocytes are able to migrate from the bloodstream into the tissues and differentiate into Mϕ, moDC and MGC to respond to different pathogens and threats. Monocytes are themselves a heterogeneous population consisting of \(~85\%\) Cl, \(~5\%\) Int and \(~10\%\) NCI at steady state and genetic analysis suggests that they mature from Cl→Int→NCI (Martinez et al., 2006). Each of the subsets show specialisation towards certain functions, thus they are also been regarded as Cl: “phagocytic”, Int: “inflammatory” and NCI: “patrolling”. The blood populations of the Int and NCI have been observed to increase during certain diseases such as tuberculosis (Castaño et al., 2011), Crohn’s disease (Grip et al., 2007), hepatitis B (Zhang et al., 2011a) and rheumatoid arthritis (Rossol et al., 2012).

Monocytes form MGC (osteoclasts) in steady-state at the bone tissues to digest the bone and maintain bone homeostasis (Kotake et al., 1999). However, monocytes also form inflammatory MGC such as Langhans giant cells in response to Mycobacterium tuberculosis infections and encase infected Mϕ with LGC to form a granuloma (Byrd, 1998). Alternatively, monocytes can fuse in response to medical implants to from FBGC (Anderson et al., 2008). After fusing the FBGC forms a podosome, secretes acidic H\(^+\) containing vacuoles and digestive enzymes such as cathepsin K to break down the foreign body (Harkel et al., 2015; Park et al., 2013). The mechanics and mechanism of monocyte fusion is still largely unknown and only a handful of essential proteins have been identified. Furthermore, LGC and FBGC appear to be initiated by different cytokines which could suggest that they coordinate fusion utilising different signal transduction pathways (McNally and Anderson, 1995).

FBGC form in response to IL-4 which results in the activation of the STAT6 and the NF-κB pathway (Goenka and Kaplan, 2011; Wurster et al., 2000) while LGC form in response to IFNy and STAT1 promotion (O’Shea et al., 2015). The proteins that are transcribed from these gene upregulations grants the monocytes a fusion-competent
state. Fusion-competent monocytes secrete chemokines to attract more monocytes (CCL2 & CCL3), upregulate cell-cell adhesion proteins (LFA-1, ICAM-1 & E-cadherin) and fusion facilitating proteins such as (MFR, CD47, CD44, DC-STAMP & TREM-2). Once cell-cell contact has been established between two monocytes, they are pulled together and the actin cytoskeleton undergoes rearrangements and a common pathway of fusion mediated by pore-forming P2X7 is performed (Falzoni et al., 1995; Pellegatti et al., 2011).

Such a complex assembly of fusion-mediating proteins at the site of cell-cell contacts requires careful organisation of proteins. Tetraspanins are relatively small proteins that are able to associate homotypically with other tetraspanins and heterotypically with membrane proteins. CD9, CD37, CD53, CD63, CD81, CD82 and CD151 have all been shown to interact with monocyte fusion proteins and anti-tetraspanin antibodies have been shown to inhibit or enhance the formation of MGC (Parthasarathy et al., 2009; Takeda et al., 2003). Recently, CD9, CD53, CD63 and CD81 were shown to be expressed differently on the three monocyte subsets (Tippett et al., 2013) indicating that monocyte subsets may respond differently in fusogenic conditions.

The aims of this study were to assess the effects of anti-tetraspanin antibodies on fusing monocytes, to determine if the monocyte subsets show different propensities to fusion and to determine if the monocyte subsets express different levels of tetraspanins. Further understanding of the contribution of monocyte subsets to fusion and the role tetraspanins play in the fusion process may help develop treatments for granulomatous diseases such as TB and inhibit foreign body reactions during medical implant rejection.

6.2 Thesis Summary
In Chapter 3, we analysed the steps taken to optimise the fusion assay to allow increased sample sizes, higher monocyte purity, more accurate seeding densities and automated nuclei counting. We observed that MACS-purified monocytes fused more aggressively than monocytes purified by adherence. We demonstrated that treatment
of monocytes with anti-tetraspanin antibodies did not affect the adherence of monocytes. Treatment with anti-CD9 antibodies did not produce a significant fusion-enhancement effect as observed previously (Parthasarathy et al., 2009; Takeda et al., 2003). However, certain combinations of anti-tetraspanin antibodies reduced the fusion parameters far more than single antibody treatment. Most notably, combinations containing anti-CD82 and anti-CD151 produced the most significant decreases in fusion.

In Chapter 4, we demonstrated for the first time that monocyte subsets show very different propensities to form MGC in response to ConA stimulation. The Int fused faster and formed more of the larger FBGC and SGC types while the Cl fused to form mostly the smaller LGC. We found that ConA induces the secretion of pro-inflammatory and pro-apoptotic cytokines in Int and Cl but not NCI. Furthermore, all the subsets secreted chemokines CCL2 and CCL3 but not RANTES in response to ConA. Of the fusion-mediating cytokines, the Cl and Int secreted more IL-4, IL-13, IL-17A and GM-CSF while NCI secreted more IL-3 by 48hrs and by the final time-point secreted the most IFNγ. Surprisingly, the monocyte subsets reacted differently to anti-tetraspanin antibodies. Only Int showed significant inhibition to fusion parameters in response to antibodies targeting CD9, CD53, CD63 and CD151.

In Chapter 5, we quantified the surface expression of CD9, CD37, CD53, CD63, CD81, CD82 and CD151 on the surface of the monocyte subsets and found that at steady-state the Int are particularly “tetraspanin rich”. We then compared the expression of tetraspanins on ConA treated and untreated monocytes. In ConA the subsets all decrease in % population of CD37 and the intensity of CD53 and CD82 expression decreases. However, the high-fusing Int possess the highest % of cells expressing CD37, which can associate with LFA-1 to establish cell-cell contacts. Therefore the high fusion potential of the Int may be a result of CD37 and LFA-1 co-expression. Finally we identified a small population of CD9High Cl that also expressed higher levels of CD63, CD81 and CD151 compared to CD9Low. However, the CD9High Cl did not show a greater ability to fuse.
6.3 Differential Expression of Tetraspanins in Monocyte Subsets

At steady-state, CD53 was expressed by 100% of monocytes in all subsets and was by far the most highly expressed tetraspanin observed. Our results for the % of cells expressing CD9, CD53, CD63 and CD81 and their respective expression levels (MFI) do not match those measured by Tippett et al. (2013), who observed overall higher % of cells expressing CD9 and CD63 in each subset. Furthermore, they found that the intensity of surface expression of CD9 was ranked Cl>Int>NCl, CD53 was NCL>Int>Cl and CD81 was NCL>Int>Cl whereas in our results all three tetraspanins were highest in Int. However, their CD14/CD16 gating strategy for classifying the subsets was far less restrictive as their subset gates all flowed into one another so there is less clear distinction between the subsets. Furthermore, in their report they do not mention any techniques to remove CD16-positive NK-cells which overlap with NCl in CD14/CD16 plots and could generate erroneous results.

Overall we found the Int to express the highest amounts of all tetraspanins at steady-state with the exception of CD82 which was expressed significantly higher in the Cl. The Cl showed an intriguing bimodal population for CD9 expression (Figure 5.2) and when all the tetraspanins were analysed for co-expression (Figure 5.3) it was clear that there was a positive correlation between CD9 and CD151 expression on Cl. When we gated the Cl into CD9Low and CD9High we observed notable but not significant increases in the surface expression of CD63, CD81 and CD151 but in fusion assays there was no difference in fusion potential. It is possible that these CD9High cells represent an LPS-insensitive population of the Cl monocytes, however, further analysis will be required to confirm this hypothesis.

Though we demonstrated a new flow cytometry panel capable of quantifying seven of the most common tetraspanins in monocytes; there are still other members of the tetraspanin family that were not analysed. Other tetraspanins have been implicated in fusion; such as NET-6 and Tspan-5 which have been shown to decrease and increase in expression respectively in response to RANKL stimulation (Iwai et al., 2007). Tarrant et al. (2002) knocked out Tssc6 in mice which produced T-cells that became hyper-stimulated by ConA. The quantification of surface tetraspanins with mass cytometry,
a flow cytometry technique that utilises antibodies tagged with heavy metal isotopes coupled with time-of-flight mass spectrometry allows for over 30 markers to be quantified at once (Bodenmiller et al., 2012; Cheung and Utz, 2011). Using such a technique, it would be possible to measure all the tetraspanins and monocyte surface markers without compensation issues.

6.4 DIFFERENT FUSION POTENTIALS OF MONOCYTE SUBSETS
First it was observed that MACS-purified monocytes had a greater fusion potential than the adherence-purified monocytes. The MACS technique depleted all non-monocyte cells using microscopic magnetic beads coated with antibodies to non-monocytic cells. The adherence method relied on the ability of the monocytes to rapidly adhere to plastic surfaces. However, such a crude technique is vulnerable to contamination by T-cells and NK-cell which could enhance or subdue the cytokine signalling between fusing monocytes. The MACS technique did not rely on a washing step after seeding which also meant that more accurate seeding densities were possible whereas the adherence purified monocytes were seeded assuming ~15% of PBMCs would be monocytes.

We later found from the subset fusion kinetics (Figure 4.8) that not all subsets adhere equally; the Int and NCI were less adherent within the first 24hrs. This could mean that previous fusion studies that used the adherence method purified more of the initially adherent CI and fewer of the high-fusing Int and NCI. Furthermore, the differences in adherence and fusion in Figure 4.8 demonstrates that for subset observations; the fusion index (FI) is not a representative quantification of fusion. This is because FI reports on the ratio of fused to total cells but in the kinetics studies with the subsets it was clear that at some time-points the number of fused cells were the same between Int and NCI but the number of adherent unfused cells was different. This meant that despite initially seeding the same number of cells, the higher number of remaining single cells in the NCI was resulting in a lower FI. The “% of surface covered” measurement was introduced to provide a more accurate quantification of total fusion.
The Int subset was significantly more fusogenic than the other subsets and produced the highest measurements in all fusion parameters (Figure 4.3). For the first time, the MGC type formed from each subset was quantified (Figure 4.4) and showed that the Int and NCI showed a decidedly higher ability to form the larger FBGC and SGC types. Such an observation could have implications for the treatment of medical implant rejection as in our model it is clearly the Int and NCI forming the larger MGC associated with implant rejection. The increased ability of the Cl subset to form LGC could mean that they are dedicated to responding to TB infections, as LGC are commonly found in granulomatous infections in vivo. Further studies with alternative fusion-inducing molecules needs to be conducted to confirm such a hypothesis. Screening FACS-purified subsets with BCG antigens or IL-4 and analysing their ability to form LGC and FBGC would reveal if the Cl are indeed LGC precursors and Int/NCI FBGC precursors.

The subsets show remarkably different cytokine profiles during fusion (Figure 4.10a-c). The Int and Cl rapidity secreted pro-apoptotic cytokines (TNFα) within the first 24hrs followed by an increase in pro-inflammatory cytokines (IL-1α, IL-1β and IL-6) by 48hrs. IL-1α and IL-1β has been shown to be released from cells undergoing apoptosis (Hogquist et al., 1991) and we also observed at these same time-points that a large number of monocytes (57-65%) were dead or detached (Figure 4.8). This could mean that many ConA stimulated monocytes undergo apoptosis, which results in the release of internalised IL-1 and is a necessary step to generate the cytokines to promote fusion. ConA has been shown in human melanoma cell lines (Liu et al., 2009) and mouse Mφ (Suen et al., 2000) to induce apoptosis by releasing cytochrome c from mitochondria and activating caspase 3 and 9. As the cytokines that we selected were predominantly fusion related molecules it is still too early to draw conclusions. By conducting an assay on the same cryopreserved samples targeting apoptosis markers, it may be possible to confirm if ConA does indeed create fusion-competent monocytes by first inducing some monocytes to commit apoptosis. Apoptosis already appears to be an important process in TB infections as uninfected bystander Mφ have been observed to undergo apoptosis in close proximity to infected Mφ (Kelly et al., 2008). However, the NCI were able to achieve fusion rates greater than the Cl but did not
release high levels of IL-1α, IL-1β or TNFα; suggesting that they may not undergo apoptosis as a pre-requisite of fusion.

Though Int were observed to be the most fusogenic of the subsets (Figure 4.3 & Figure 4.4), the ConA-stimulated MACS-purified monocytes (Figure 3.6a-b and Figure 3.7) produced even higher fusion parameters and far more FBGC and SGC. This could indicate that even though the Int on their own are high-fusers, their potency is increased with the addition of the other two subsets. Considering that the Cl consist of ~85% of blood monocytes at steady state it is possible that Int act as the “fusion initiators” and the Cl are the “fusion acceptors”. To confirm this the subsets would need to be FACS purified first to ensure absolute purity then recombined with each other at different ratios and seeded at equal densities in ConA. If certain subset combinations produce greater fusion rates than the single subset only equivalents then it would confirm that the subsets have an additive effect on one another.

6.5 ASSESSING THE ROLE OF TETRASPANINS WITH ANTI-TETRASPANIN ANTIBODIES

Anti-tetraspanin antibodies have been used in multiple studies to interfere with tetraspanin functions. In the initial total monocyte studies we observed that only anti-CD151 showed any significant inhibition to fusion in adherence purified monocytes, whereas in MACS purified monocytes, the formation of FBGC and SGC was inhibited by anti-CD63, and anti-CD81 appeared to enhance fusion. Unlike FACS purification, the adherence and MACs purification methods were never sufficient to produce ~100% pure monocyte cultures. Therefore, it is possible that these differences in anti-tetraspanin responses are due to their interaction with contaminating T-cells and NK-cells which are able to secrete cytokines in response to activation and may affect fusion. To ensure absolute purity, freshly isolated monocytes should first be FACS sorted with an anti-CD56 antibody to remove NK cells and seeded as a total population in the presence of ConA and anti-tetraspanin antibodies. This would ensure absolute purity and maintain the monocytes at a steady-state ratio of Cl, Int and NCl.
The combination anti-tetraspanin antibody treatment yielded far more significant reductions in fusion parameters than single antibody treatment (Figure 3.8a-d). Combinations containing anti-CD82 or anti-CD151 showed the greatest inhibition to fusion while combinations containing anti-CD9 showed the lowest inhibition. As CD151 and CD82 share a common association with EWI-2 (Charrin et al., 2001; Zhang et al., 2003), we hypothesised that the decreases in fusion potential could be a result of antibody-bound CD82/CD151 interfering with the functions of EWI-2. As the monocytes in these experiments were all purified using adherence purification it is unclear whether the effects seen here are a result of antibody binding monocytes or contaminating lymphocytes. The combination antibody assay requires a large number of cells (at least 3.6 million) so it is not feasible to perform all 24 combinations on subsets in one donor. Therefore, many repeats with multiple donors will be required to account for the donor variability observed in monocyte fusion.

Interestingly, the anti-tetraspanin antibodies had a different effect on the subsets. The Int showed clear significant decreases in fusion parameters and MGC types produced when cultured in anti-CD9, anti-CD53, anti-CD63 and anti-CD151 (Figure 4.12, 4.13 and 4.14) whereas the Cl and NCl did not. This suggests that the Cl and NCl could be orchestrating fusion differently to the Int and that they possess different partner proteins interacting with these tetraspanins. Alternatively the lower baseline fusion rates of the Cl and the NCl could be masking any notable reductions by these antibodies. Using siRNA targeting tetraspanin mRNA could be a potential improvement as it is still not clear whether antibodies binding tetraspanins block the binding of partner proteins or lock them in an active state etc. By knocking down the tetraspanins with siRNA we could ensure that the effects observed would be a direct result of specific tetraspanin downregulation.

Binding of CD9, CD53, CD63 and CD151 with antibodies may interfere with adherence and migration of monocytes resulting in decreased fusion. CD9 and CD151 have both been shown to interact with EWI-2 (Charrin et al., 2001; Stipp et al., 2001) which facilitates actin polymerisation at the sites of adhesion proteins. CD53 associates with LFA-1 (Todros-Dawda et al., 2014) and CD63 knock-downs show arrested motility due
to insufficient β-catenin which facilitates actin polymerisation for E-cadherin (Huber et al., 2014). Therefore, it is possible that the decrease in fusion is a result of arrested mobility and not interference of the fusion mechanics. Further quantification of the subsets’ migratory abilities in the presence of anti-tetraspanin antibodies is necessary to determine if these antibodies are inhibiting fusion or migration.

The addition of ConA in the culture media induced significant decreases in the MFI of CD53 and CD82 and a decrease in the % population of cells expressing CD37, CD53 and CD82 (Figure 5.8). It appears as though ConA induces rapid loss of these tetraspanins, though it is still not known if the loss is a result of internalisation, shedding or decreased synthesis. The Int remain significantly high in CD37 expression (Figure 5.9) which could confer the Int a greater ability to form cell-cell interactions via LFA-1. By designing a flow panel targeting fusion proteins commonly associated with tetraspanins we would be able to ascertain what proteins are being internalised with the tetraspanins. Chiu et al. (2012) observed that the internalisation of DC-STAMP in RANKL stimulated DC resulted in enhanced fusion and the generation of a fusion leader population. Therefore the internalisation of these tetraspanins and their binding partners may be following a similar mechanism. Rather than forming fusion mediated TEMs the subsets may be playing an essential role as traffickers of other fusion proteins. By running a few repeated analysis on permeabilised cells it would be possible to ascertain if these tetraspanins have indeed been internalised.

6.6 CONCLUSION AND FUTURE DIRECTIONS
In this study we have shown that monocyte subsets possess different propensities to fuse with the smallest blood population, the Int, possessing the greatest ability to fuse and form larger FBGC and SGC. The Cl subset though being the most abundant subset in the blood is conversely the least fusogenic of the subsets. The Cl and Int secrete high levels of pro-inflammatory cytokines in our fusion assays suggesting they favour a more pro-inflammatory MGC types while the NCl appear to be far less inflammatory. The Int subset also expressed the highest levels of most of the tetraspanins we
observed. Within 4hrs of stimulation with ConA it appears as though all the monocyte subsets rapidly internalise or shed CD53 and CD82.

Further investigation is required on the effect of other cytokine treatments (such as IL-4 and IFNγ) on the subsets, investigating the possibility that the Int are “fusion leaders” and the analysis of tetraspanin associating fusion proteins during fusion. There is still much to be learned about the individual monocyte subset involvement in fusion and indeed the involvement of tetraspanins in this complex process. For every answer we get it seems a hundred new questions appear.

We have shown that monocyte subsets do indeed possess differing propensities to fusion which could have big implications for the future design of treatments against advanced granulomatous diseases and medical implant rejection. With the ever increasing life expectancies of the developed world the demand for medical implants and joint replacements is an ever growing concern. Our research can contribute to the understanding of foreign body rejection and aid in the development of treatments that could target Int monocytes that could be the primary source of FBGC.

Daniels, K. a, Devora, G., Lai, W.C., O’Donnell, C.L., Bennett, M., and Welsh, R.M.

Pfeiffer, I.A., Zinser, E., Strasser, E., Stein, M.F., Dörrie, J., Schaft, N., Steinkasserer, A., and Knippertz, I. (2013). Leukoreduction system chambers are an efficient,

Rivollier, A., Mazzorana, M., Tebib, J., Piperno, M., Aitsiselmi, T., Jurdic, P., Servet-

Tarrant, J.M., Groom, J., Metcalf, D., Li, R., Borobokas, B., Wright, M.D., Tarlinton, D., and Robb, L. (2002). The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell

Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272, 13326–13331.

Yashiro-Ohtani, Y., Zhou, X.-Y., Toyo-oka, K., Tai, X.-G., Park, C.-S., Hamaoka, T.,

from the rule. Trends Immunol. 34, 162–168.

