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Abstract

Classical dendrochronology involves using standard statistical methods, such

as correlation coefficients and t-values to crossmatch undated tree-ring width se-

quences to dated ‘master’ chronologies. This crossmatching process aims to identify

the ‘best’ offset between the dated and undated sequences with a view to providing

a calendar date estimate for the undated trees.

Motivated by the successful and routine use of Bayesian statistical methods to

provide a fully probabilistic approach to radiocarbon dating, this thesis investi-

gates the practicality of using a process-based forward model known as ‘VSLite’

at the core of Bayesian dendrochronology. The mechanistic VSLite model has the

potential to capture key characteristics of the complex system that links climate to

tree-ring formation. It allows simulated, dated tree-ring chronologies to be gener-

ated at any geographical location where historical climate records exist. Embedding

VSLite within a Bayesian approach to tree-ring dating allows combination of both

ring-width data and any available prior information. Additionally, instead of iden-

tifying the ‘best’ calendar date estimate, the Bayesian approach allows provision

of probabilistic statements about a collection of possible dates, each with a specific

(posterior) probability.

The impact of uncertainty in the VSLite input parameters on the model output

has been systematically investigated in this thesis, and the VSLite-based approach

to Bayesian tree-ring dating has been explored using both simulated and real data.

Results of implementing the new VSLite-based approach are compared with those

using current classical and Bayesian approaches. An option for reducing the need

for preprocessing data is also investigated via a data-adaptive rescaling approach.

Having established the effectiveness of using the mechanistic forward model as the

core for Bayesian dendrochronology, the practicality of adopting it to aid in dating

in the absence of suitable local master chronologies is also explored.
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Chapter 1

Introduction and Motivation

1.1 Background

Dendrochronology is a science that studies patterns of tree-ring widths of the same

species in order to date processes and events over time and space. Each year a tree

grows a new extra ring, and the width of that ring relies largely on the weather

conditions prevalent during the growing season, and other factors, including the

type of soil, and the tree’s strife for light and nutrients. It is assumed that trees

within the same geographical region receive the same climatic signal throughout

a given year because they are exposed to similar climatic growth conditions, but

this signal varies from year to year (Litton and Zainodin, 1991). Consequently, the

width of these rings also appears to be variable in sequence, reflecting the effect

of climate variation in different seasons. Good growing seasons usually provide

wide rings, whereas the poor ones produce narrow rings. This pattern is the key

to both dendrochronology (using the pattern of tree-ring growth to date timbers)

and dendroclimatology (using the pattern of tree-ring growth as an indicator to

monitor ecological processes and reconstruct past climate). For more information

about dendrochronology and dendroclimatology, the reader is referred to Cook

et al. (1990); Fritts (1976); Vaganov et al. (2006).

Dendrochronologists use patterns of annual ring-widths to date timbers by

matching a group of trees from the same geographical location one with another
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to ensure that every single ring is matched to its exact date of formation. This

process is called “cross-matching” or “cross-dating” and is now usually based on

statistical techniques (detailed in Chapter 2) which are used to measure the simi-

larity between the cross-matched sequences. Before the patterns of tree-ring widths

are used to date undated timbers, it is necessary to build a master chronology, an

extremely long ring-width sequence that is created by averaging ring-widths from

a large number of continuously overlapping older timbers. A cross-dating process

is then applied to date undated timbers by cross-matching them with the master

chronology.

Over the past decades, many efforts have been made to evolve statistical mod-

els of ring-width growth to be used for dendrochronology. The earlier statistical

models were typically based on extending linear, empirically-determined relation-

ship between tree-ring “indices” (preprocessed data, described in Section 2.1) and

climate. Fritts (1976) suggested that such a model of tree-ring growth (described

in Section 3.1) relies on the assumption that a climatic signal is common to all

the trees grown in the nearby area plus some noise (error) which accounts for non-

climatic factors. This simple statistical model was then investigated by several

other researchers including Zainodin (1988) and Litton and Zainodin (1987, 1991)

who proposed a fully model-based method for tree-ring dating and cross-matching

sequences. A successful use of the model for dating trees, using classical methods

such as t-values, was introduced by Litton and Zainodin (1991).

Following the adoption of Markov Chain Monte Carlo (MCMC) methods by

the Bayesian research community, the simplicity and linearity of this statistical

model made it a promising candidate to be used in a fully Bayesian framework.

A Bayesian approach to tree-ring dating, using the statistical model, was first

investigated by Buck et al. (1996). Tree-ring data and prior knowledge about

the unknown dates were combined in a Bayesian framework to match a group of

undated trees to a larger and longer group of dated trees (master chronology) from
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the same geographical region.

1.2 Motivation for Thesis

The Bayesian approach proposed by Buck et al. (1996) has been explored most re-

cently by Jones (2013) with a view to making it a routine practice in dendrochronol-

ogy. She developed a series of methods for formalising the matching of undated

timbers to a dated master chronology, thus allowing the user community to obtain

full posterior date densities. The Bayesian approach proposed by Jones (2013) is

fully probabilistic and provides a basis for the implementation of a Bayesian ap-

proach to tree-ring dating. However, this approach was not well-received by some

in the dendrochronology community as it relies on a very simple descriptive statis-

tical model of tree-ring growth (described in Section 3.1) which does not capture

the mechanism of the ring-width growth during the growing season and formation

of ring-widths. Additionally, it requires the tree-ring data to be fully processed

(detailed in Section 2.1) in order to obtain stationary sequences prior to any rep-

resentation of the data in the model and the matching process.

Recently, a mechanistic process-based model called VSLite (Tolwinski-Ward

et al., 2013) (described in Section 3.2.2) has become available which links ring-

width growth to climate variables (temperature and precipitation), and provides

dated tree-ring sequences. The VSLite model is a simplified version of the Vaganov-

Shaskin model (Vaganov et al., 2006) (detailed in Section 3.2.1) which captures the

mechanism of key characteristics of the complex system that links tree-ring growth

to climate. We are interested in exploring the use of the VSLite forward model

to tree-ring dating within the Bayesian framework. The motivation behind this

Bayesian investigation is to provide a routine method for dating similar to the

one that successfully and routinely used in Bayesian radiocarbon dating, through

modern radiocarbon calibration software such as OxCal (Bronk Ramsey, 1995) and

BCal (Buck et al., 1999).
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The current project aims to use a stochastic version of the VSLite model at

the core of Bayesian tree-ring dating by adding the matching process to the model

and implementing it in the Bayesian framework. The new VSLite-based matching

approach is implemented alongside the statistical-based approach of Jones (2013)

as a building block for developing a fully Bayesian framework for tree-ring dating.

Initially, we explore the strengths and weaknesses of the two approaches, but our

ultimate goal is to develop a single coherent framework that can be recommended

to professional dendrochronologists.

1.3 Thesis Objectives

This thesis focusses on the study of Bayesian tree-ring dating using both statistical

and mechanistic models. In particular, we aim to investigate the possibility of using

a mechanistic forward model (described in Section 3.2.2) at the core of Bayesian

dendrochronology. The following are the main objectives of the thesis.

1. Search the literature for classical methodologies used by dendrochronologists

for tree-ring dating, and the latest statistical and mechanistic, process-based,

models used for describing the relationship between ring-width growth and

climate.

2. Evaluate the process-based VSLite model and explore the uncertainty in its

output using variance-based sensitivity analysis under Gaussian process em-

ulation.

3. Investigate a Bayesian implementation of the VSLite model to tree-ring dat-

ing, which allows the formal use of prior information about the unknown date

of timbers, thereby providing posterior date estimates at each possible off-

set rather than using the traditional t-value approach that is currently being

used.
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4. Examine several prior distributions for the VSLite model parameters, and

adopt the most appropriate one.

5. Evaluate the efficiency and efficacy of the Bayesian approach to dendrochronol-

ogy using VSLite model by comparing its implementation and results with

those proposed by Jones (2013) (using a descriptive statistical model). Hence

use the results obtained to recommend adoption of Bayesian models to pro-

fessional dendrochronologists in their day-to-day work.

6. Investigate the use of less-processed data (detrended but not prewhitened or

normalised) for tree-ring dating by considering data-adaptive rescaling for

the cross-matched sequences.

7. Investigate a new VSLite-based approach for tree-ring dating in the presence

of missing master chronologies by matching undated tree-ring sequences to a

pseudo-master chronology generated from the VSLite model.

1.4 Thesis Structure

The remainder of this thesis is outlined as follows. In Chapter 2, we review ex-

isting classical statistical techniques used by dendrochronologists. The reader is

introduced to several filtering methods used to remove the growth trend (detrend-

ing) and autocorrelation (prewhitening) from the raw ring-widths to prepare data

for cross-matching. We then discuss the advantages and limitations of these filter-

ing methods. The matching process and available dating methods (both classical

and Bayesian) are then briefly reviewed before moving to describe the process of

constructing tree-ring chronologies.

Chapter 3 describes two different models for ring-width growth, a descriptive

statistical model and a mechanistic forward model, both of which are used within

this thesis for implementation of Bayesian dendrochronology. Then the descriptive

statistical approach for crossmatching trees and its Bayesian implementation are
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described before moving on to explain the mechanistic VSLite model and its struc-

ture and components.

In Chapter 4, we implement the VSLite model at different locations around

the world with a view to examining the efficiency of the model. We then investigate

the uncertainty in the VSLite model output by exploring different sources of error

in the model. Such uncertainties include those relating to: the model parameters,

the model inputs climate data and error in the model structure. We then system-

atically explore the impact of uncertainty in the VSLite parameters on the model

redoutput variability by conducting a Bayesian sensitivity analysis using Gaussian

process emulation. A variance-based sensitivity analysis is then used to quantify

the impact of each parameter on the model output variability.

Chapter 5 provides a Bayesian approach to estimate VSLite growth threshold

parameters, considering three different prior distributions. The Bayesian approach

and MCMC techniques are then used to estimate the main site-specific growth

threshold parameters of the VSLite model for several UK chronologies (both Quer-

cus and Pinus trees). The sensitivity of posterior estimates to the prior choices and

to the tree species is also examined before moving on to use the VSLite model for

the Bayesian tree-ring dating.

In Chapter 6, we extend the Bayesian approach to tree-ring dating by using

the VSLite model at the core of the matching process; replacing the descriptive

statistical model used by Jones (2013). We implement the new VSLite-based ap-

proach within the Bayesian framework, and investigate its efficiency using several

simulation experiments. We then make a comparison between the results obtained

from the descriptive statistical and VSLite-based models for tree-ring dating.

In Chapter 7, we address the issues associated with the need for filtering and

normalising tree-ring data when dating timbers. We consider a method to improve

cross-matching in dendrochronology by adding a scale parameter to the model
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which accounts for the rescaling between the two crossmatched sequences. This al-

lows us to use less-processed data (detrended but not prewhitened or normalised)

for tree-ring dating. The method is evaluated using both simulated and real data.

Chapter 8 builds on the work introduced in Chapter 7 by addressing the

problem of matching undated timbers when no appropriate master chronology ex-

ists. We consider a VSLite-based approach by first replacing a missing master-

chronology for a site of interest by a pseudo-master chronology generated from the

VSLite model using available climatic records. Hence, we match undated timbers to

the pseudo-master chronologies and make inferences about the matching process in

the Bayesian framework using a two-stage MCMC method. To test the efficiency

of the approach, we match individual (and also groups of) trees to pseudo-local

master chronologies.

Chapter 9 summarises the research work and draws conclusions from it. Rec-

ommendations are then offered about the routine use and application of Bayesian

dendrochronology and plans for future work are outlined.
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Chapter 2

Existing Statistical Methodologies

in Dendrochronology

Statistical methods and techniques play a significant role and are widely used in

tree-ring science, both in dendrochronology and dendroclimatology. Without the

use of statistics and statistical methods, this field of science may not work very

well. This is because analysing patterns of tree-ring widths relies on a statistical

understanding of such data. For example, annual ring-width data is a time-series

sequence, and for dendrochronologists to be able to work effectively with these

types of data, they usually use time-series techniques which is a significant branch

of statistics. Dendrochronological studies and analysis depend on a series of statis-

tical procedures. It starts from preprocessing data to remove any age-trend from

data via fitting a curve to the raw tree-ring sequences, then statistical measures

such as correlation coefficient and Student’s t−value are used in crossmatching ring-

width sequences and hence providing a calendar date for an undated timber. More

recently, Bayesian statistical approaches have also been used in dendrochronol-

ogy to match undated trees to the dated sequences in the Bayesian framework.

Therefore, statistical methods and techniques have been widely used in the core of

tree-ring science to analyse patterns of ring-widths for both dendrochronological

and palaeoclimatological studies. This chapter reviews existing statistical methods

used for analysing patterns of tree-ring width data.
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2.1 Preprocessing Tree-ring Data

Tree-ring width sequences store several information including the age of the tree,

short-term climatic signal and long-term growth trends (Fritts, 1976). Before using

tree-ring data for crossmatching, the data should be preprocessed in order to re-

move any age growth effect and non-climatic factors from raw data. The following

sections describe how the dendrochronologist preprocesses the data to remove the

trends, before crossmatching a pair of sequences. The ring-width indices that are

preprocessed are used to match two single sequences. Preprocessing tree-ring data

includes three main steps: detrending (remove age trend from data), prewhiten-

ing (remove autocorrelation), and standardizing (obtain a stationary time-series).

These three main steps along with their methods and procedures are detailed below.

2.1.1 Detrending

Detrending is a statistical process of removing trend from tree-ring width sequences.

One of the main non-climate factors that exists in ring-width data is age growth

trend, such as negative exponential or negative slope. When the tree is younger it

usually grows faster, and a wider ring is formed. As the tree ages, the growth of

ring-width slows down. Thus, before dating timbers in dendrochronology or recon-

structing past climate from tree-ring width, this age-related trend must be iden-

tified and removed from raw ring-width measurements for physical and statistical

reasons. Physically to remove the geometry impacts of the tree by removing age-

growth trend; and statistically to obtain stationary time-series sequences which are

comparable. This can be done by one of the detrending methods described below.

Therefore, detrending is an important preparation step for any dendrochronology

or dendroclimatology study in order to remove tree-specific signal and reveal the

stationary part of the climate signal. Detrended ring-width series is a dimension-

less sequence with a particular mean and homoscedastic variance (Cook et al.,

1990). There are many detrending methods suggested in the literature, and here

we summarise the most familiar ones used by the user communities.
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2.1.1.1 Differencing Method

This is the simplest way for detrending ring-width data. A tree-ring width sequence

that has a trend in mean can be transformed to a stationary sequence by evaluating

the first differences (Fritts, 1976),

yt = xt − xt−1

where xt is a raw ring-width in year t; t = 1, 2, ..., n, n is the length of annual ring-

width sequence, and yt is the detrended ring-width index which takes the difference

between the raw measurement in year t and t− 1. The first-differencing method is

most usable with a linear trend in mean; however, higher differencing orders, such

as yt − yt−1, can also be used if the trend is not only in mean, but also in the rate

of change of the mean.

Differencing methods are very simple to use for removing trends from data and

decreasing the variance of the sequences. Despite their simplicity they can some

times be problematic because they tend to increase the variance of data and pro-

duce spurious high-frequency variation if the trend is not in mean (Fritts, 1976).

In that case the ring-width sequences are over-detrended.

2.1.1.2 Logarithmic Differencing

If the first and second order differencing methods fail to remove the trend from

data, then logarithmic differencing method can be used. It is very similar to the

first-differencing method. Given a non-stationary raw ring-width data, xt, the

detrended ring-width index yt can be obtained by taking the difference between

the logarithm of the raw ring-width in year t and t− 1,

yt = ln(xt)− ln(xt−1).

This method of detrending has been investigated and tested by several dendrochro-

nologists including Steward (1983) and Okasha (1987). The main disadvantage of

this technique is that it cannot be used if the sequence is already stationary for it

may introduce an extra autocorrelation into the ring-width data (Okasha, 1987).
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Thus, under this method, the stationarity of raw data must be first inspected to

avoid over-detrending.

2.1.1.3 5-Point Moving Average

This method was first developed and used by Baillie and Pilcher (1973) to remove

the trend from raw ring-width data, and is also know as “Baillie and Pilcher’s

Filter”. It removes the low frequency influences from data by taking the arithmetic

logarithm of a percentage of five-point moving average. Mathematically, the tth

ring-width index from this method can be defined as

yt = ln(
5xt

xt−2 + xt−1 + xt + xt+1 + xt+2

),

where xt is the raw measurement at year t and yt is its detrended ring-width index.

In order to examine how good this method is, Zainodin (1988) proposed match-

ing a pair of contemporary ring-width sequences, after detrending, to test whether

they crossmatch at the true offset or not. With a particular dataset of tree-rings

used in his thesis, he found that the method by Baillie and Pilcher (1973) was

better than other available methods to remove age trend from raw data. He es-

tablished that this simple, yet reliable, method provided relatively useful results.

Jones (2013) also followed Zainodin (1988) in using this filtering method in her

thesis as it is simple and produces good results.

2.1.1.4 Negative Exponential Curves

The raw ring-widths, in most cases, vary from the pith (the innermost layer of

stems of trees) to bark (the outermost layer of stems of trees), as shown in Figure

2.1. This was discovered and noted by Matalas (1962). He suggested that the age

growth trend in raw ring-width data can be represented by a negative exponential

function and fits this to the raw data. This is one of the most common methods

used by the dendrochronologists to justify the raw ring-width and removing any age
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trend from the data. In this detrending technique, a negative exponential curve,

gt, is fitted to the raw sequences to model the age trend in the data, and then a

value of each raw measurement, xt, is divided by expected value from estimated

curve to provide a detrended index, yt. The negative exponential curve is defined

as

ĝt = âe−b̂t

where ĝt is the growth curve estimated from data, t = 1, 2, . . . , n is the length

of the sequence, and a and b are constant coefficients (intercept and slope) to be

estimated. Fritts (1963) found that the measured ring-widths are a non-stationary

time-series sequences, because the absolute variation in measured tree-ring data

decreases monotonically from the pith.

Figure 2.1: A diagram to show a cross section of the trunk of a tree with annual growth

rings.

Having estimating an appropriate curve for the growth rates that are associ-

ated with the change of tree-geometry over time, a non-stationary sequence can be

transformed into a stationary one (Fritts et al., 1969) as follows. The raw measure-

ment (xt) at year t transforms into its ring-width index (yt) by dividing the raw
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rings by the estimated growth curve (ĝt),

yt =
xt
ĝt
.

Any age related growth is removed from the data, and the variance is scaled so

that it is almost the same over the whole length of the ring-width sequence.

2.1.1.5 Modified Negative Exponential Curves

This is a new updated version of the previous method suggested by Fritts et al.

(1969). They realised that the method of fitting negative exponential curve was

only working for trees with 100-200 rings, and provided an unreliable curve for

older trees. This is because, as the number of rings increases the expected curve

tends to zero. Thus, a modified negative exponential curve was suggested by Fritts

et al. (1969) to estimate the age growth trend and then remove it from the raw

ring-width data (Fritts, 1976). The estimated growth curve using this method is:

ĝt = âe−b̂t + ĉ,

where â, b̂, ĉ are constant coefficients to be estimated in such a way that the sum of

square of differences of the estimated curve, ĝ, and the actual ring-width sequence,

x, is minimised.

In his investigation to check the adequacy of fitting exponential curves to the

growth trend of North American trees, Fritts (1976) argued that the modified

method is efficient for most of the data they used as the produced ring-width in-

dices have a lower variance and the mean index value is closer to 1.0. This method

was then investigated and recommended by many other dendrochronologists in-

cluding Cairns (2005); Cook et al. (1990); Jones (2013); Warren (1980); Warren

and MacWilliam (1981).

Throughout this thesis, experiments using raw data will be detrended to remove

the age trend effects using the method of modified negative exponential alongside

other methods.
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2.1.1.6 Linear Regression Line

Some times raw ring-width sequences gradually change in level over time or have

unusual growth pattern that cannot be accommodated by the negative exponential

curves. In such cases, a simple linear function can be used for fitting the growth

trend in the raw data. The easiest detrending method is to fit the least square

regression line to raw ring-width sequences that are relatively short. Under this

method of detrending, the growth trend can be represented by a simple linear

regression

ĝt = â+ b̂t,

where ĝt is the estimated growth trend, â and b̂ are estimated regression coefficients.

Then the detrended ring-width index, yt, is produced by dividing actual raw ring-

width, xt, by the estimated growth trend, ĝt,

yt =
xt
ĝt
.

2.1.1.7 Cubic Smoothing Spline

Instead of fitting a curve to the whole ring-width sequences (previous three meth-

ods), a smoothing spline can be used to fit a curve made up of cubic polynomial

pieces in between data points. A cubic spline to remove age growth from raw

ring-width sequences was first suggested by Cook (1981) after looking at the work

of Reinsch (1967), who fitted a smoothing spline to data which were subject to

unwanted experimental error.

Cook (1981) applied a smoothing spline consisting of different cubic polyno-

mials joined together between the data points, known as knots. The polynomials

between these knots join together smoothly as the first and second derivatives are

continuous. Because the curve is built of piecewise cubic polynomials, one area of

the tree-ring sequence with a particular behaviour can be modelled differently to

another area of the sequence that behaves differently. For more details about this

method the reader is referred to Reinsch (1967) and Cook (1981). The detrended

indices are obtained by dividing raw ring widths by the estimated curve from the
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cubic spline.

Cook (1981) thought that his suggested method removes all the trend from

data and takes into account the impact of the former year’s growth on the present

year’s (autocorrelation). However Okasha (1987) showed that the ring-width in-

dices obtained from this method are still correlated. Okasha (1987) and Cairns

(2005) found that Cook’s method does not remove enough growth effect from raw

ring-width data, hence causing autocorrelation. Thus, instead of fitting to the raw

ring-width, Okasha (1987) fitted a cubic spline to logarithms of the raw ring-width

data. He claims that his method of fitting a cubic spline worked better for detrend-

ing and removing the age growth trend from data in the datasets he used.

2.1.1.8 Digital Filtering

Another detrending method was suggested by Munro (1984) for removing the age

trend effect from the raw ring-width data. This method describes the growth curve

as a linearly filtered version of the actual sequence. A smoothed growth estimate

of the original sequence can be obtained by weighting the individual observations

from the digital filter, and then subtracting the estimated smooth growth curve

from the actual ring-width data to obtain the ring-width indices:

yt = log(xt)−
f∑

k=−f

ζk log(xt+k),

where xt are the actual ring-width data, {ζk} is a set of filter weights, f is the

length of the filter, yt are the detrended indices, and t = f + 1, f + 2, . . . , t− f .

Munro (1984) and Wigley et al. (1987) suggested this digital filtering for de-

trending raw ring-width data as it removes the long-term growth trend from data.

The authors concluded that the filter should be able to enhance the high frequency

variance present but still keep a reasonable amount of autocorrelation.

Several detrending methods have been described in this section. At this point

the dendrochronologists can use the ring-width indices of two overlapping sequences

for crossmatching with a view to dating them, as detailed in Section 2.2. However,

some researchers including Laxton and Litton (1983); Steward (1983); Yamaguchi
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(1986); Zainodin (1988), have noted that the ring-width indices are still autocor-

related which is detrimental to crossmatching. Therefore, they suggest further

processing of ring-width indices to remove the autocorrelation remaining in the

data after detrending. In what follows we describe the method of removing this

autocorrelation in a process known as ‘prewhitening’.

2.1.2 Prewhitening

Prewhitening is a statistical process of removing autocorrelation from time-series

data. Such autocorrelation usually occurs in tree-ring sequences when the growth

of a ring in one year is related to the growth of the ring in the next and/or previ-

ous years (Laxton and Litton, 1983). Therefore, although the process of detrending

successfully removes the growth trend from data, it does not necessarily remove the

autocorrelation. Cross-matching autocorrelated ring-width sequences might cause

an increase in spurious matches. This was first noted by Yamaguchi (1986) in his

investigation where he demonstrated by examples that spurious matches can arise

between autocorrelated sequences. Thus, he suggested using a method, known as

prewhitening, to remove the autocorrelation in the ring-width sequences before any

crossmatching can be done.

Laxton and Litton (1983) suggest that after detrending tree-ring width mea-

surements and producing ring-width indices, it is worth checking if the data is clear

of any autocorrelation before using them in the matching process. If the detrended

ring-width indices are still autocorrelated, the data should be processed more in

order to remove any autocorrelation. In the following sections, we describe the

existing methods proposed by dendrochronologists to remove the autocorrelation

from ring-width indices.
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2.1.2.1 Fitting AR(p) Model

The autoregressive model, AR(p), was first suggested by Laxton and Litton (1983)

to prewhiten autocorrelated tree-ring sequences. Following Box et al. (1994), the

autoregressive process of order p is defined as,

yt = a1yt−1 + · · ·+ apyt−p + εt,

and y1, . . . , yt are detrended ring-width indices, a1, . . . , ap are autoregressive pa-

rameters of order p to be estimated, and ε’s are the white noise with a normal

distribution N(0, σ2).

Laxton and Litton (1983) used this model to remove the autocorrelation from

ring-width indices. They first removed the growth effect from the raw tree-ring se-

quence using the detrending method suggested by Baillie and Pilcher (1973) which

is described in Section 2.1.1.3, and then prewhitened the sequence using AR(p)

model. Laxton and Litton (1983) concluded that there is an overall improvement

in cross-matching when using the prewhitened sequences for matching sequences.

They also suggested using their method in all sequences before cross-dating.

Wigley et al. (1987) made a comparison among variety of methods for detrend-

ing and prewhitening. They commented that no single method appeared to be

better than another as one method might appear preferable on one test, whereas in

others it might be reversed and be the least preferable. However for prewhitening

their data, Wigley et al. (1987) suggested fitting an autoregressive model AR(p) as

it is simple and takes into consideration the growth effects in the previous years.

2.1.2.2 Fitting ARMA(p, k) Model

One of the most familiar methods for removing autocorrelation from time-series

data is the autoregressive-moving average model, ARMA, for the autocorrelated

data. Box et al. (1994) defined the ARMA(p, k) process with p autoregressive and

k moving average orders, as follows

Yt = a1Yt−1 + · · ·+ apYt−p + εt + b1εt−1 + · · ·+ bkεt−k,

17



where Y1, . . . , Yt are random variables and the tree-ring indices y1, . . . , yt are reali-

sations of their values at time t. a1, . . . , ap and b1, . . . , bk are model parameters for

p autoregressive and k moving average orders respectively, and ε’s are the white

noise with a normal distribution N(0, σ2).

Fitting ARMA(p, k) model includes three steps. First, identifying the order

of the model; i.e. finding the value of p and k. This is usually obtained from

the plot of autocorrelation function, ACF, and partial autocorrelation function,

PACF. Second, the model is fitted to estimate unknown parameters, a1, . . . , ap and

b1, . . . , bk, using methods such as, maximum likelihood and least squares. Finally,

checking the efficiency of the fitted model to ensure that it is reliable. The reader is

referred to Box et al. (1994, p.184) for more details about these three steps (using

ACF and PACF plots in model selection, estimating parameters of ARMA(p, k)

model, and diagnostic checks for the fitted model).

The model is fitted to the detrended indices, and the residuals from the model

are then used as the prewhitened indices required for crossmatching process. This

method has been used by several dendrochronologists in the literature, including

Monserud (1986); Okasha (1987); Steward (1983); Yamaguchi (1986).

Steward (1983) examined the use of ARMA(p, k) models for the prewhitening

of tree-ring sequences in a number of Quercus trees in the UK. In her investigation,

she tested fitting several ARMA(p, k) models with different orders, and found that

an ARMA(1, 2) was the most appropriate model for the vast majority of her data.

Steward (1983) stated that her selected model seems very reasonable as the climate

in one year would affect the ring-width growth in the following years due to the

fact that tree stores energy and food supplies from the previous year.

Okasha (1987) also investigated the use of ARMA models in his thesis. He

stated that the most appropriate filtering method is the one which not only re-

moves the age trends from the data but also removes the autocorrelation. He fitted

some ARMA(p, k) models to his data, with different p and k orders, and defined

k as the number of previous years that the weather conditions have affected the
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growth of ring-width index. Okasha (1987) found that fitting an ARMA(p, k) model

to ring-width indices and hence crossmatching sequences increased the chances of

obtaining correct dates since they decrease the autocorrelation in the sequences.

Independently, Yamaguchi (1986) and Monserud (1986) also advocated the use

of ARMA(p, k) models for removing the autocorrelation present in the ring-width

indices. They concluded that ARMA(1, 1) was the best model for prewhitening

the ring-width sequences.

A comparison also made by Cairns (2005) on some filtering methods to pro-

duce ring-width indices. Among ten filters he tested, Cairns (2005) found that the

ARMA(p, k) model was the ‘best’ filter as it removes both low frequency variance

(cycles with wavelengths greater than eight years) and high frequency variance (cy-

cles with wavelengths less than eight years) from raw data. Whereas, other filters

he examined tend to only remove the low frequency variance. Cairns (2005) justi-

fied the use of the ARMA model by the evidence made by Steward (1983) which

states that it is sensible to consider that the growth in the current year is affected

by weather conditions in previous years.

2.1.2.3 Method of Zainodin (1988)

Zainodin (1988) also examined the use of ARMA model for prewhitening tree-ring

data in his investigation. He suggested that fitting these types of models might not

be suitable for dendrochronology as it adds more complicated procedures which

require some knowledge of time series analysis that should not be assumed for den-

drochronologists. He also pointed out that, quite often, dendrochronologists deal

with large numbers of samples, and so a non-subjective approach would be more

suitable. For this purpose, he suggested using a simpler method which does not

require estimating parameters p and k. In order to choose an ARMA model from

several competing models, Zainodin (1988) used an Akaike Information Criterion

(AIC) which is the most well-known model selection criterion, suggested by Akaike
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(1973). AIC takes into consideration the number of model parameters (a1, . . . , ap

and b1, . . . , bk) and how well it fits the data (errors in the model predictions).

For fitted ARMA sequences of length t, the AIC is defined to be:

AIC = −2 ln(maximised likelihood of the fitted ARMA(p, k)) + 2(p+ k + 1).

A number of models are fitted to the data and the one with the smallest AIC value

is chosen as the ‘best’ model.

2.1.2.4 Fitting ARMA-GARCH Models

After his investigation on comparing trend removal filters, Cairns (2005) settled on

using ARMA(p, k) models to detrend and prewhiten a logged tree-ring sequence

for beech trees. However, he noted that when fitting ARMA(p, k) models to tree

sequences, there were areas of particularly large residuals that were observed from

examining index plots of the residuals. He declared that “these patches do not indi-

cate significant positive autocorrelation, but the occurrence of autoregressive con-

ditional heteroscedasticity, ARCH” (Cairns, 2005, p.94). The family of time series

models known as ARCH and generalized autoregressive conditional heteroscedastic

(GARCH) models attempt to model its occurrence in time-series data.

Under the ARMA-GARCH(p, k, r, s) model, the conditional mean of the de-

trended ring-width sequence is modelled by ARMA(p, k) model of p and k orders,

and its error variance, σ2
t , (which is a non-constant variance in tree-ring sequences)

is modelled by a GARCH(r, s) process with r and s orders. The model is defined

as follows,

yt =

p∑
i=1

aiyt−i + εt +
k∑
i=1

biεt−i, εt ∼ N(0, σ2
t ),

σ2
t = φ0 +

r∑
i=1

φiε
2
t−i +

s∑
i=1

θiσ
2
t−i

where y1, . . . , yt are detrended ring-width indices, a1, . . . , ap and b1, . . . , bk are

ARMA(p, k) model parameters, and ε’s are the white noise with a normal dis-
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tribution N(0, σ2
t ), φs and θs are GARCH(r, s) model parameters.

Cairns (2005) used Markov chain Monte Carlo methods under the Bayesian

paradigm to estimate unknown parameters of the model for preprocessing tree-

ring data before crossmatching. He then used residual sequences from his model

as ring-width indices ready for use in the matching process. Cairns (2005) also

showed by examples that the ARMA-GARCH model was able to remove both

low and high frequency variance from the data he used. He concluded that the

use of the ARMA-GARCH model as a filter provided a robust methodology for

cross-matching tree-ring sequences. He also claimed that his new method of pre-

processing data appeared to reduce the number of spurious matches when used for

crossmatching timbers. Although Cairns (2005) used Bayesian methods to develop

a technique for preprocessing and removing age trend from raw data, he did not

use such Bayesian methods at the core of dating process. However, in this thesis

we aim to use such Bayesian methods at the core of tree-ring dating.

In this section several methods have been described that are used by dendrochro-

nologists to remove autocorrelation from tree-ring sequences and provide normally

distributed ring-width indices appropriate for the use in the crossmatching process.

The next section describes the normality of the produced ring-width indices.

2.1.3 Standardizing Indices

Dendrochronologists usually seek for fully standardized ring-width sequences to be

used in the crossmatching process. The stationarity of these sequences is required

so that they should be statistically identical and comparable to each other before

crossmatching them. It is often assumed that after detrending (removing age trend)

and prewhitening (removing autocorrelation) the produced ring-width indices are

stationary and approximately normally distributed. If this is the case then the

ring-width indices can be crossmatched to each other; otherwise, the indices must
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be standardized.

Many researchers, who have suggested methods for filtering tree-ring data, as-

sumed that their methodologies provide normally distributed indices. However,

when investigating the normality of produced indices, Munro (1984) and Zainodin

(1988) found that this is not always true. For example, Munro (1984) showed that

the ring-width indices obtained from applying the detrending method by Baillie and

Pilcher (1973) were not normally distributed but close to a normal distribution. In

his assessment for normality of the produced indices, Zainodin (1988) detrended

his data using the method by Baillie and Pilcher (1973) (Section 2.1.1.3), and then

prewhitened them using the method by Box et al. (1994) (Section 2.1.2.2). He

then assessed the normality of the indices produced by examining normal probabil-

ity plots. Despite detrending and prewhitening his tree-ring width data, Zainodin

(1988) found that the distribution of the indices was symmetric but probably heav-

ier in tails than a normal distribution.

Thus, it is not guaranteed that the ring-width indices produced from filter-

ing methods are necessarily fully normally distributed. If the normality of the

sequences is essential for the analysis, it can be further processed by some transfor-

mation methods, such as standard z-scores of indices, which is the most commonly

used method. Formally, the standardisation of the ring-width indices y1, . . . , yt of

length t is

zt =
yt − ȳ
σy

,

where ȳ is the mean of ring-width sequence, and σy is its standard deviation. The

standardised sequence z has a zero mean and a standard deviation of one.

2.1.4 Limitations of Preprocessing Data

Preprocessing raw ring-width data includes three main steps: detrending, prewhiten-

ing and normalising. The detrending process seems reasonable and logical due to

the geometry and biological aspects of the trees. It is an important process which
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removes the age growth trend from raw ring-width data and reveals the stationary

part of the climate signal. However, the prewhitening step is rather more compli-

cated and not a necessary process for filtering tree-ring data. It is a complicated

procedure which requires some knowledge of time series analysis that should not

be assumed for dendrochronologists. Furthermore, there might be an impact of

this additional filtering process. The main structure and characteristics of the

ring-width data, and a part of its climatic signal will be lost if the data are over-

processed.

Thus, it is essential to double check the behaviour and the structure of the

tree-ring width data before using them in the matching process in order to as-

certain that the data are not over-processed and there is enough climatic signal

information remaining in the data that makes the matching process both doable

and useful. The problem of over-processing tree-ring width data is tackled in more

detail in Chapter 7. Rather than extra filtering and removing more characteristics

from the data, we will consider a very simple statistical model for matching process

which will take into account the impact of rescaling between the two crossmatched

sequences using less-processed data.

2.2 Tree-ring Dating: Concepts and Methods

2.2.1 Matching Process

Having successfully prepared tree-ring width data by preprocessing them to remove

age trend and autocorrelation, the patterns of the obtained ring-width indices from

the same geographical location can then be compared with one another in order

to date them. This comparison is known as “cross-matching”, and it is impor-

tant in dendrochronology for it allows dendrochronologists to, ultimately, build

chronologies for a region of interest as shown in Fig. 2.2.

Crossmatching is considered to be the base principle of dendrochronology. Match-

ing patterns of two ring-widths sequences allows dendrochronologists to identify the
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Figure 2.2: A graphical explanation of dendrochronological process from Stokes and

Smiley (1968) with permission.

correct date in which each ring-width was composed. This enables estimating the

construction date of an ancient building, by matching patterns of timbers taken

from the building and crossmatching them with the patterns from nearby living

trees. The crossmatching process requires tools and techniques for matching ring-

width patterns. There are several methods used by dendrochronologists for dating

tree-ring width sequences. Preference for crossmatching techniques varies by coun-

tries and institutions. This section reviews existing methods for crossmatching two

tree-ring sequences.

2.2.2 Classical Crossmatching

Following are some classical statistical methods used by dendrochronologists to

crossmatch patterns of two ring-widths sequences.
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2.2.2.1 Time-series Plots

Two ring-width sequences can be matched visually by systematically shifting the

two time-series plots against one another in order to locate areas of similarity in

the patterns of the ring-widths (Fritts, 1976). If the pattern identified is consistent

in both samples, the two sequences can be assumed to be matched at a correct

offset. This method tends to be used initially by the dendrochronologists alongside

formal statistical methods. Figure 2.3 shows crossmatching of two trees aligned

together.
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Figure 2.3: Plot of comparing time-series graph of two actual ring-width samples. Sample

1 (dashed line) is matched to sample 2 (solid line) at wrong offset (left panel) and

correct offset (right panel). The tree-ring widths are measured in millimetres.

The main advantages of this method are: it is very simple to use either by

hand or using computers, it can be used without the need for preprocessing data

as it uses raw ring-width data, and no expertise is required to understand the

results. However, the main disadvantage is that it is an informal way for detecting

the similarity between the two sequences, and cannot provide dendrochronologists

with quantitative results for dating. Thus, under the use of this method, different

researchers might have different decisions for choosing the correct offset. This is

because it does not provide a magnitude measure for quantifying the degree of

similarity between the two sequences at each possible offset.

25



2.2.2.2 Skeleton Plots

Skeleton plotting method involves visually inspecting tree-ring width by marking

the pattern of narrow and wide ring-widths for each sequence on a graph, and

crossmatching each series to one another in order to identify any similar patterns

between the two samples (Maxwell et al., 2011), see an example of a skeleton plot

for a tree-ring sequence in Figure 2.4.

Figure 2.4: An example of a skeleton plot for a tree-ring sequence of 80 years.

The plot has a horizontal scale of years, in which the width of the youngest

ring is marked at the left and subsequent rings are recorded to the right of this.

Skeleton plots visually show the pattern of wide and narrow rings within a tree-ring

sequence. Narrow rings are shown by a vertical line and rings which do not show

much variability to adjacent rings in the sequence, known as complacent rings, are

omitted. The height of the lines indicates how narrow the ring is. The skeleton

plots are systematically shifted against each other in order to locate areas of similar

patterns.

The skeleton plot is created for each sample, and these plots are then compared

with one another in order to build a master chronology (detailed in Section 2.3)

and date individual samples by matching them to a dated chronology. Skeleton

plotting is a useful technique but it might be time-consuming, and dendrochronol-

ogists might prefer to only use marker rings for each tree sequence to speed the

crossmatching process.
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2.2.2.3 Trending Method

Trending, or “coefficient of parallel variation” method, is another technique used

for crossmatching tree-ring sequences. The raw ring-width is either going up (+)

or down (–) from one ring to the next. When two ring-width sequences are aligned,

the number of agreement pairs in which the direction of trend is the same for both

sequences is counted. The percentage of years with the same trend is computed.

For example, a 70% trend indicates that for 70% of the pairs, both sequences went

upward in the same years or downward in the same years. When two samples are

crossmatched, the percentage score of the trend (tr) with agreeing pairs is defined

as:

tr =
qa
q
× 100,

where qa is the number of pairs with agreeing trends, and q is the number of

overlapped rings between the two samples. The percentage of disagreeing pairs

is simply 1 − tr. The trend score is evaluated at all possible offsets between the

two sequences, and the offset with the highest tr value is assumed to be the ‘best’

offset of the match. Trends greater than 60-70% are assumed to be acceptable for

matching.

The benefit of this method is that it does not require any preprocessing of data

as it uses raw ring-width data. However, as highlighted by Baillie and Pilcher

(1973), this dating method can not take into consideration magnitude of the year-

to-year variation, and thus it is a “non-parametric” algorithm. Furthermore, a

significant matching is found by this method only when the two sequences have

a long overlap with high trend scores. Thus, Baillie and Pilcher (1973) suggested

using a parametric method which considers the size of the yearly width variations.

2.2.2.4 Cross-Correlation Coefficient Method

This method was first suggested by Baillie and Pilcher (1973). Let there be two

stationary samples of ring-width indices, y1 and y2, of length l1 and l2 respectively.

Let also there be at least q rings in common between the two sequences resulting in
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l1 + l2−2q+ 1 possible offsets (∆). Now, let r(y1, y2,∆) be the Pearson correlation

coefficient between the two standardised sequences, y1 and y2, at offset ∆. The

match with the highest r value is considered as the ‘best’ match between the two

sequences.

The cross-correlation coefficient r(y1, y2,∆) at offset ∆, with q overlapping rings

can be calculated as:

r(y1, y2,∆) =


∑q
i=1(y1i+∆−ȳ1)(y2i−ȳ2)√∑q
i=1(y1i+∆−ȳ1)2(y2i−ȳ2)2

, if ∆ ≥ 0

∑q
i=1(y1i−ȳ1)(y2i−∆−ȳ2)√∑q
i=1(y1i−ȳ1)2(y2i−∆−ȳ2)2

, if ∆ < 0

(2.1)

where y1i and y1i+∆ are the ith and (i+ ∆)th indices from the sequence y1, and y2i

and y2i+∆ are the ith and (i+ ∆)th indices from the sequence y2, and

ȳ1 =


∑q

i=1
y1i+∆

q
; q = min(l1−∆, l2), if ∆ ≥ 0∑q

i=1
y1i−∆

q
; q = min(l1, l2+∆), if ∆ < 0

ȳ2 =


∑q

i=1
y2i+∆

q
; q = min(l2−∆, l1), if ∆ ≥ 0∑q

i=1
y2i−∆

q
; q = min(l2, l1+∆), if ∆ < 0.

This method was investigated by several dendrochronologists including Cook et al.

(1990); Steward (1983); Wigley et al. (1987); Yamaguchi (1986). Unlike the three

previous methods of dating tree-rings, this one requires the raw ring-width mea-

surements to be fully preprocessed, since it depends on the fact that the sequences

to be matched are stationary (detrended, prewhitened and normalised).

2.2.2.5 t-value Method

As the value of r in the previous method does not take into consideration the length

of overlap between the two matched sequences, a Student’s t-value is suggested

which does take that into account. Baillie and Pilcher (1973) proposed calculating

t-values from given r values obtained from cross-correlation coefficients (Section

28



2.2.2.4). The t-value method is a significant measurement in terms of the overlap

length, q. “It provides a measure of the probability of the observed value of r

having arisen by chance” (Baillie and Pilcher, 1973, p.11). This method is now

routinely used by dendrochronologists to decide how good the match is between

the two ring-width sequences when crossmatching.

For the t-value calculation to be a valid measure of significance, it must be

assumed that the sequences of tree-ring indices are independent observations that

follow a normal distribution with mean zero and constant variance. Baillie and

Pilcher (1973) tested this distributional assumption on sample sets of data and

found them to follow a normal distribution.

Student’s t-value for each possible offset, ∆, between the two sequences, y1 and

y2, is calculated as follows,

t(y1, y2,∆) =
r
√
q − 2√

(1− r2)
,

where q is the number of overlapping rings between the two sequences, ∆ =

1, 2, . . . , l1 + l2 − 2q + 1 is the all possible offsets, r is a correlation coefficient

at each possible offset calculated from Equation 2.1. As the value of r increases,

the t-value increases, and this indicates that the two samples are matching well at

offset ∆.

Baillie and Pilcher (1973) used a threshold t-value of 3.5 to indicate a good

acceptable match for tree-ring dating, which gives a 0.1% significance level for

overlaps greater than 100 rings. The higher the t-value, the better the match is

between the two sequences. Since then this arbitrary threshold value has become a

routine practice in dendrochronology. However, it does not suggest that any offset

with higher than this threshold t-value is correct, and there might be a cases where

the match with a t-value of ≤ 3.5 gives a correct date or a t-values ≥ 3.5 gives an

incorrect date (Wigley et al., 1987).

When two contemporary ring-width sequences are matched to each other, a t-

value is calculated for each offset between the two sequences, and there must be at

least one t-value that emerges as higher than the rest. This method of dating tim-
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bers has been used by many dendrochronologists, including Baillie (1977, 1995);

Bridge (1988); Brown et al. (1986); Hillam (1998); Mills (1988); Orton (1983);

Pilcher (1990); Pilcher et al. (1995); Sander and Levanic (1996); Walker (2005).

Throughout this thesis we will use this method as a classical approach to be com-

pared with our developed Bayesian approaches.

Although the t-value measurement is now routinely used by many dendrochronol-

ogy labs for dating undated trees, it cannot formally include prior information

about the unknown date for the undated sequences. Hence we aim, in this the-

sis, to provide an alternative probabilistic measurement which allows providing a

distribution of all possible offsets between crossmatched sequences and also allows

formal combination of data and prior information about the unknown date of the

undated timbers.

2.2.2.6 Fisher’s z-value Method

Having calculated the correlation coefficient r(y1, y2,∆) for each possible offset

between two standardised (stationary) ring-width sequences, dendrochronologists

usually transform the obtained r value into either a t-value or z-value, in which

the latter is used by Litton and Zainodin (1991); Munro (1984); Okasha (1987)

for dating sequences. They used z-value as a similarity measure between the two

crossmatched sequences. The higher the z-value, the better the match is between

the two sequences. The offset with the highest z-value is considered to be a ‘best’

match between the two crossmatched sequences. Fisher’s z-value is calculated as

follows

z(y1, y2,∆) = 0.5 ln
(1 + r

1− r

)
,

and it is normally distributed with mean µ(z∆) = 1
2

ln(1+ρ
1−ρ), and variance V (z∆) =

1
q−3

; where q is the number of overlapping years between the two sequences. It is

assumed that the two crossmatched sequences, with q pairs of independent obser-

vations from a bivariate normal distribution, has underlying correlation r. If the
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two sequences are not contemporary, then ρ = 0 and z ∼ N(0, (q − 3)−1) (Buck

et al., 1996; Jones, 2013).

Both Okasha (1987) and Steward (1983) recommended the use of Fisher’s z-

value method as a ‘best’ measure for crossmatching ring-width indices. However,

in his comparison between z-value and t-value statistics, Zainodin (1988) found

that the efficiency of both measures are similar and he described them as equally

good methods.

Closing remark

Several classical methods have been described in this section which are routinely us-

ing by dendrochronologists for crossmatching tree-ring width sequences and dating

them. Despite the fact that classical dendrochronology is a successful technique,

many tree-ring width sequences remain undated. Jones (2013) highlighted that

with the current existing classical methods and approaches, the average success

for dating trees in the UK is between 60-70%. This varies from one geographical

location to another, for instance the success rate of dating trees in South West

England is only approximately 30-40%.

2.2.3 Bayesian Crossmatching

Motivated by the successful use of Bayesian statistical approaches to radiocarbon

dating (Buck et al., 1996), the practicality of a similar Bayesian framework to tree-

ring dating has been studied by Jones (2013). The data and prior information

about the unknown date of the undated trees are combined together to provide a

posterior probability of a date match at a particular offset rather than providing

classical measures described in Section 2.2.2. Under the Bayesian paradigm, the

matching process involves evaluating the likelihood of the model parameters at

every possible date offset which allows the posterior distribution of the unknown

date to be estimated.
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In her attempt to develop such a Bayesian approach to crossmatching ring-

width sequences, Jones (2013) used a very simple statistical model suggested by

Litton and Zainodin (1991), which is described in Section 3.1. This linear model

represents the relationship between the tree-ring index and the underlying climate

signal which is common to all trees grown within that geographical location.

Jones (2013) highlighted two main advantages of using Bayesian approach to

tree-ring dating over the traditional statistical methods. Firstly, instead of identify-

ing the ‘best’ calendar date estimate for the undated sequences, it allows provision

of probabilistic statements about a collection of possible date estimates each with

a specific posterior probability. Furthermore, the Bayesian approach allows formal

inclusion of prior information, both about the calendar age of undated timbers

and about parameters of the underlying statistical model. Thus, the key difference

between the Bayesian and classical dating is the use of prior information in cross-

matching process. In Bayesian dating, when informative prior knowledge about the

undated timbers is available, it should be used in the dating process; otherwise, one

can use noninformative priors. The Bayesian approach for tree-ring dating and its

implementation by Jones (2013) are detailed in Sections 3.1.3 and 3.1.4 respectively.

2.3 Constructing Chronologies

Having successfully matched single samples with one another (using one of the

methods described in Section 2.2), the next step is to build chronologies which

is the ultimate target of almost all dendrochronological studies. Once pairwise

matching has been successful, groups of samples are said to be matched if and only

if, for example, for samples A, B and C, the following three conditions hold:

• A and B match at offset ∆(A,B),

• B and C match at offset ∆(B,C),

• thus implies that A and C match at offset ∆(A,C).
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If the dendrochronologist is satisfied (via such pairwise matching) that the groups

of samples have a strong enough match to be considered to have ring-widths that

have grown in the same year, then a site chronology can be established by averaging

the ring-widths that are aligned at the same offset ∆. See Section 2.3.3 for details

on how this is done.

A master chronology is an average (arithmetic mean) ring-width sequence for

a specific species in a particular region, which is built from matching a group of

successively long tree-ring width sequences (Buck and Millard, 2004; Cook et al.,

1990). In order to build the master chronology, the absolute date of at least one

tree ring should be known. The master chronology forms the reference against

which new ring sequences might be matched and dated. It is assumed that the

trees of same species at the same geographical locations share the same climatic

signal, and one of the main purposes of building master chronologies is to enhance

this climatic signal. The master chronology is either “local” or “regional”, both

are described as follows.

2.3.1 Local Master Chronology

A ‘local’ or ‘site’ master chronology is a sequence created from crossmatching a

group of trees from a particular location. A site can be defined as a group of timbers

from an ancient building, such as a church, or a specific geographical location where

several trees have grown, such as a forest. A reliable site chronology can be created

from 8–10 trees with the same species (Jones, 2013).

To create a site chronology, tree-ring samples with an overlap of at least 40

rings are crossmatched in pairs (using one of the classical or Bayesian methods

given respectively in Sections 2.2.2 and 2.2.3), and the ‘best’ matches are deter-

mined (Laxton and Litton, 1988). Then a site chronology is created by grouping

pairwise matching samples and averaging the ring-widths sequences that are aligned

at the same offset. A length of the site chronologies varies from 100 to 500 years

depending on the length of single trees. For example, a local site chronology of
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Sheffield has covered 249 years which is built from 20 individual Quercus trees

(using a method described in Section 2.3.3), and it goes back to 1759 AD.

2.3.2 Regional Master Chronology

A “regional” master chronology is a long sequence created from crossmatching a

group of site chronologies from a particular region. Regional master chronologies

tend to represent a larger geographical area than site chronologies. A region can

be defined as a county or country which covers several site chronologies. This

regional master chronology serves as a “reference” for crossmatching tree-ring width

sequences.

When local chronologies have been established (by the method in Section 2.3.3),

the average ring-width produced at an offset ∆ represents the climatic signal at

that site for that offset. The signal will be enhanced after taking the average ring-

width from a group of samples in a site, thus eliminating some of the noise that is

present. The local site chronologies can be treated as single ring-width sequences

and crossmatched as described in Section 2.2. The local site chronologies may show

similarities in ring pattern over wider regional areas, for example single samples

from separate woodlands within a close geographical proximity may not crossmatch

with confidence, yet the local site chronologies of each woodland may do so.

The regional chronology often covers a larger number of years than a local

chronology, and its length varies from 200 years to more than 1000 years. For

example, the East Midlands chronology established by Laxton and Litton (1988)

covered 1100 years (882–1981 AD) which was built from 59 local master chronolo-

gies. In her simulation study to test the Bayesian implementation for tree-ring

dating, Jones (2013) generated 50, 100, and 200 year long sequences as local mas-

ter chronologies, and 200, 500, and 1000 year long sequences as regional master

chronologies. Litton and Zainodin (1991) suggest that a regional master chronol-

ogy should at least include 5 to 10 site chronologies.

Master chronologies can also be created from relatively long lived trees from
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the same species, and must be a continuous chronology without any missing ring.

Building good and reliable master chronologies is an essential process for successful

dating. Without well established master chronologies, many timber samples will

remain undated, and the matching process is impossible.

2.3.3 Method of Construction

After successfully obtaining pairwise crossmatching from one of the matching meth-

ods described in Section 2.2, and being satisfied that the sequences are cross-

matched at the correct offset, master chronologies can be created by combining

these pairwise matches. Several methods have been used by dendrochronologists

to combine ring-width sequences into a master chronology (Baillie, 1982). The sim-

plest and most widely used way is by averaging a group of standardized ring-widths

indices present in a particular year, which requires a large enough number of rings

replicated each year (Cook et al., 1990; Fritts, 1976). Let yti be the ring-width

index value for a particular year t from tree i, where i = 1, . . . , I and I is the

number of trees observed in a specific geographical location, then the value of the

master chronology at year t is:

Ct =
I∑
i=1

yti
I

where Ct is an estimate of the climatic signal in year t, t = 1, 2, . . . , n, and n is the

length of the master chronology C.

Master chronologies can be constructed from either raw ring-widths or prepro-

cessed indices. However, Okasha (1987) recommended that a master chronology is a

better estimate of the climatic signal when I trees which are detrended, prewhitened

and standardized are used. He stated that when raw ring-widths are used (which

are non-stationary and autocorrelated), it can hide changes in the climate between

years. Throughout this thesis, this simple averaging (arithmetic mean) method

will be used for building chronologies.
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2.3.4 Matching Trees to a Dated Master Chronology

When the process of constructing a master chronology is complete, new undated se-

quences (individual or site chronology) can be matched to the master chronologies

in order to date them. This can be done by using the same methods of cross-

matching tree-ring patterns of two individual trees (described in Section 2.2). The

undated sequence is compared to the dated master chronology at every possible

offset ∆, and the match with the highest t-value (classical matching) or the highest

posterior probability (Bayesian matching, discussed in Chapter 6) is determined as

the ‘best’ match. The date of the undated sequence can then be obtained for the

correct offset from the master chronology.

2.4 Summary of Chapter

This chapter has reviewed the existing statistical methods in both dendrochronol-

ogy and dendroclimatology. Preprocessing and filtering tree-ring data has been

introduced which consists of three main steps: detrending (remove age growth

trend), prewhitening (eliminate autocorrelations), and normalising (obtain sta-

tionary sequences). This preprocessing usually prepares the tree-ring data prior

to dating them. Crossmatching processes, and methods for detecting the similarity

between tree-ring width sequences were then reviewed, along with the process of

constructing master chronologies and dating undated timbers. The following chap-

ter introduces modelling the relationship between ring-width growth and climate

using statistical and mechanistic models.
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Chapter 3

Modelling Ring-Width Growth:

Statistical & Mechanistic Models

Introduction

One of the most scientific ways to understand the nature of any phenomenon is

by creating a model for the process or event. A model is a simplification of re-

ality, and mathematical equations are quantitative models of the corresponding

processes. In tree-ring science such models are usually built to understand the na-

ture of the growth of trees and their relationship with the environment in general,

and climate in particular. Two types of models, mechanistic (often deterministic)

and descriptive (usually statistical), have been developed for such relationships.

Existing mechanistic models for tree-ring growth are more complex than the de-

scriptive statistical ones because they encompass many processes and interrela-

tionships, and some of them also have a hierarchical structure. On the other hand,

descriptive statistical models are simpler which enables managing and handling

uncertainty in the model, but can only evaluate the potential relationship between

the data and the corresponding process without studying the mechanism of the

phenomenon under study. Thus, both types of models have their own advantages

and limitations, and the preference of the model type varies between user commu-

nities. The dendrochronology community focuses on using statistical models that
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are easy to use for cross-matching sequences and dating undated timbers. How-

ever, dendroclimatologists have concentrated on using mechanistic forward models

for climate-tree-ring relationships in order to invert them and reconstruct climate

from trees. Both communities have addressed the behaviour of ring-widths during

the growth season.

In this chapter, two well-known statistical and mechanistic models for tree-rings

are reviewed in order to be used later in the cross-matching process in the Bayesian

framework. A descriptive statistical model by Litton and Zainodin (1991) is given

in the next section, and implementing the model for Bayesian dendrochronol-

ogy by Jones (2013) is also discussed. In the subsequent section, a mechanis-

tic forward model, VS (Vaganov et al., 2006), and its simplified version, VSLite

(Tolwinski-Ward et al., 2011), are introduced. Thereafter, statistical methods for

evaluating the models and exploring the uncertainty in their outputs are briefly

reviewed. These include both standard “sensitivity analysis” (Saltelli et al., 2000)

and “Bayesian sensitivity-analysis” (Oakley and O’Hagan, 2004).

3.1 Simple Statistical Model

A simple statistical model for preprocessed tree-ring data was first suggested by

Fritts (1976) which represents the relationship between climatic signal and observed

ring-width indices. This model assumes that the tree-ring index in year t is equal

to the underlying climatic signal which is common to all trees within a particular

geographical area plus some noise due to non-climatic effects. The model was then

used by Litton and Zainodin (1991) in seeking to find a more formal way of using

statistical models for tree-ring dating and cross-matching sequences. The model is

defined as follows,

yti = ut + εti (3.1)

where yti is the fully-processed (detrended, prewhitened and normalised) ring-width

index at year t for tree i, ut indicates the underlying climatic signal in year t, and

εti denotes the noise of tree i in year t.

38



3.1.1 Model Assumptions

Following are the assumptions about the model:

• the width of (raw) tree-rings is influenced by several factors including: the age

of the tree (referred to as growth trend), climate variables such as tempera-

ture and precipitation (referred to as climatic signal), and other non-climatic

factors (referred to as noise).

• the age-related growth trend must be removed from the data by using one of

the detrending methods described in Section 2.1.1.

• the climatic signal, ut, is common to all trees within a particular geographic

region which experiences similar climatic conditions, but this signal differs

from year-to-year.

• the noise component εti includes all other non-climatic factors, such as soil

condition, site location, presence of pest and disease, and competition among

trees for sunlight.

• the signal ut and the noise εti are assumed to be independent for mathemati-

cal convenience. They both follow independent and identically normally dis-

tributed each with mean 0 and variance σ2
u and σ2

e respectively; ut ∼ N(0, σ2
u)

and εti ∼ N(0, σ2
e).

• the ring-width index yti follows independent and identically normally dis-

tributed with mean 0 and variance σ2
u + σ2

e .

• the signal-to-noise ratio (S), which identifies the strength of similarities among

groups of tree-ring samples, is defined as

S =
σ2
u

σ2
e

; σ2
u, σ

2
e > 0 =⇒ S > 0, (3.2)

where σ2
u and σ2

e are respectively the variance of the climatic signal ut and

the variance of the noise εti. The value of S indicates the nature of the area

where the trees come from. The larger the value of S, the more similar the

trees are.
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3.1.2 Using the Statistical Model for Dating

The model described in Equation (3.1) has successfully been used by Litton and

Zainodin (1991) for dating ring-width sequences using classical methods. The fol-

lowing are the three possible ways for matching tree-ring sequences using the de-

scriptive statistical model.

Crossmatching Two Samples

Let two trees i and i′ (i 6= i′) from the same geographical region be compared

for the purpose of dating. The correlation coefficient r between the two matched

samples for the same year t can be calculated as follows:

r(yti, yti′) =
σ2
u

σ2
u + σ2

e

=
S

S + 1
,

and the correlation between these two indices from different years is equal to zero

(Litton and Zainodin, 1991). Therefore, the similarity between the two samples

can be evaluated via the signal-to-noise ratio, S. As the value of S increases, the

correlation r between the two crossmatched ring-width sequences increases and the

similarity between them increases too.

The correlation coefficient between any pair of contemporary tree-ring sequences

from the same geographic location can be calculated, hence the matrix of pairwise

correlations takes the form: 

1 r r . . . r

r 1 r . . . r

r r 1 . . . r
...

...
...

. . .
...

r r r . . . 1


To investigate the model, Litton and Zainodin (1991) used two different datasets

from locations that are 55km apart. They found that the correlation coefficients

between trees in the same geographical region are greater than the correlation

coefficients between trees in different regions.
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Crossmatching a Sample to a Chronology

Under the same assumptions of the model in equation 3.1, a single tree-ring sample

yti can be matched to a well replicated average sequence ȳt. at the same year t, and

the correlation between the two sequences would be:

r(yti, ȳt.) =
σ2
u√

(σ2
u + σ2

e

I
)(σ2

u + σ2
e)

=
S√

(S + I−1)(S + 1)
,

where ȳt. is the average sequence created from I samples of ring-width indices from

the same region, with E(ȳt.) = 0 and V ar(ȳt.) = (σ2
u + σ2

e

I
).

Zainodin (1988) concluded that the correlation between a sample and an aver-

age sequence at the same geographical region is always greater than that between

the two individual sequences; r(yti, ȳt.) > r(yti, yti′).

Crossmatching Two Chronologies

Similarly, the statistical model can also be used for crossmatching two averaged

sequences. Let ȳt. and ȳt.′ be two chronologies created from I1 and I2 trees respec-

tively, with zero means and variances, V ar(ȳt.) = σ2
u + σ2

e

I1
and V ar(ȳt.′) = σ2

u + σ2
e

I2
,

respectively. The correlation coefficient between the two crossmatched chronologies

is:

r(ȳt., ȳt.′) =
σ2
u√

(σ2
u + σ2

e

I1
)(σ2

u + σ2
e

I2
)

=
S√

(S + 1
I1

)(S + 1
I2

)
.

Zainodin (1988) also noted that a higher correlation coefficient is obtained be-

tween the two averaged chronologies than between an average and a sample or two

individual samples; i.e.

r(ȳt., ȳt.′) > r(yti, ȳt.) > r(yti, yti′),

thus, grouping trees from the same climatic region is preferable for tree-ring dating

when using the statistical model.
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3.1.3 A Bayesian Approach to the Statistical Model

A Bayesian approach to statistical tree-ring dating was first investigated by Buck

et al. (1996). Ring-width data and prior information about the unknown dates were

combined in the Bayesian framework when matching a group of undated trees (site

chronology) to a larger and longer group of dated trees (master chronology) from

the same region. The Bayesian approach to tree-ring dating can be summarised as

follows.

Let the dated master chronology be of length l, and let the undated site sequence

be of length l∗ and consist of I trees. Then the sample correlation coefficient r∆

is calculated at each possible offset ∆ when the site chronology is crossmatched to

the master chronology:

r∆ =

√
S

S + S ′ + I−1
,

where ∆ = 1, 2, . . . , (l− l∗+1) is the number of all possible date offsets between the

two sequences, S is a regional and S ′ is a subregional signal-to-noise ratio, in which

the latter indicates that trees from different sides of a region respond slightly dif-

ferently to the climate. These correlation coefficients r∆ are then transformed into

Fisher’s z∆-values (as described in Section 2.2.2.6) with mean µ(z∆) = 1
2

ln(1+r
1−r ),

and variance V (z∆) = 1
l∗−3

.

Now let ∆∗ be the true unknown date of the first ring-width index for the

undated sequence, and let y represent both the data of the master chronology and

the averaged site chronology, the likelihood is then defined as

p(∆∗ = ∆,y) = exp
{ −1

2V (z∆)
(z∆ − µ(z∆))2

}
.

Assuming no informative prior knowledge about the true date, the prior prob-

ability that ∆∗ takes the true offset position ∆ is defined as:

p(∆∗ = ∆) =
1

l − l∗ + 1
,

so that each date within the interval of all possible dates (l − l∗ + 1) between the

two sequences is equally likely.
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Therefore, using Bayes’ theorem we usually combine the likelihood, p(y|∆∗ =

∆), and the prior, p(∆∗ = ∆), to obtain the posterior distribution as follows

p(∆∗ = ∆|y) = p(y|∆∗ = ∆) p(∆∗ = ∆).

Since the prior distribution is noninformative (and in this case is constant), the

posterior distribution for the unknown start date stays normal as follows

p(∆∗ = ∆|y) = exp
{ −1

2V (z∆)
(z∆ − µ(z∆))2

}
.

As the posterior distribution is continuous and the estimated dates should be dis-

crete, the posterior estimates are discretized to years in the possible interval. For

further information about this Bayesian approach, the reader is referred to Buck

et al. (1996, p. 342–348).

Most recently, this approach has been implemented by Jones (2013) with a view

to making it routine practice in dendrochronology. She used simulated data and

trees of known age to evaluate the efficiency of the Bayesian implementation of the

model using both informative and non-informative priors for the unknown dates.

3.1.4 Bayesian Implementation by Jones (2013)

Jones (2013) added a new parameter β to the statistical model in Equation 3.1

and then implemented it in the Bayesian framework to match the undated site

chronologies to the dated master chronologies. The β parameter represents the

population mean of the standardised ring-width indices which is assumed to have

zero mean to ensure the stationarity of the model. The new model becomes

yti = β + ut + εti, (3.3)

where β is the mean of the ring-width indices and it is expected to be close to zero,

and all other components are the same as those for the original model in Equation

3.1.

The Bayesian implementation involves simultaneously fitting the model and se-

quentially matching the undated site chronology to the dated master chronology
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with a view to identifying the offset with the highest probability of a match and

thus the most likely date for the undated chronology. Following is a brief summary

of Jones’ Bayesian implementation of tree-ring dating.

3.1.4.1 Model Notation

Jones (2013) defined the notation of her model implementation as follows. Let

the dated master chronology be of length l years, and comprise I trees. Let the

start and end dates of the dated master chronology be ∆s and ∆e, respectively,

so that l =∆e − ∆s + 1. For tree i, i = 1, 2, . . . , I, let δi be the start date of the

tree i, li be its age (length of the sequence) in years, and δi + li − 1 be its felling

date. Similarly, let the undated site chronology be of length l∗ years, and have I∗

trees. Let ∆∗ be the unknown start date of the undated site chronology. For tree

i, i = n + 1, . . . , I + I∗, let δi = ∆∗ + hi be its unknown start date (where hi ≥ 0,

is the offset of tree i relative to ∆∗), l∗i be the length of the tree, and δi + l∗i − 1 be

the end date of the tree.

Now, the dating process starts by consecutively matching the undated site

chronology to the dated master chronology at all possible offsets from t = ∆s−l∗+q

to t = ∆e + l∗− q, where q is the minimum overlap of rings between the dated and

undated sequences. Therefore, the total number of all possible offsets between the

two sequences is equal to l + l∗ − 2q + 1.

3.1.4.2 The Likelihood

The tree-ring width indices follow a normal distribution with mean β + ut and

variance σ2
e . Let yD = (y1, . . . , yI) and yUD = (yI+1, . . . , yI+I∗) represent the

indices for all dated and undated trees, respectively, so that the indices for all trees

together are y = (yD,yUD) = (y1, . . . , yn, yI+1, . . . , yI+I∗). The likelihood of the

dated and undated master chronologies can be given respectively as,

p(yD|β,u, σ2
u, σ

2
e) ∝

n∏
i=1

[
δi+li−1∏
t=δi

(
1

σ2
e

)
1
2 exp(− 1

2σ2
e

(yti − β − ut)2)

]
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p(yUD|β,u, σ2
u, σ

2
e ,∆

∗) ∝
n+n∗∏
i=n+1

[
∆∗+ri+li−1∏
t=∆∗+ri

(
1

σ2
e

)
1
2 exp(− 1

2σ2
e

(yti − β − ut)2)

]
,

and the likelihood of all data can be obtained by combining both the likelihood of

the undated site and dated master chronologies as follows

p(y|β,u, σ2
u, σ

2
e ,∆

∗) ∝ p(yD|β,u, σ2
u, σ

2
e) p(y

UD|β,u, σ2
u, σ

2
e ,∆

∗).

3.1.4.3 The Priors

In order to make inference about the unknown parameters (β, σ2
u, σ

2
e ,∆

∗), Jones

(2013) defined prior distributions for each parameters; p(β), p(σ2
u), p(σ

2
e), and

p(∆∗). The choice of a suitable prior distribution for each of these parameters is

discussed in Chapters 5 and 6.

3.1.4.4 The Posterior

Using Bayes’ theorem, which allows us to combine the likelihood of data and the

prior information about the unknown parameters, the joint posterior distribution

of the model parameters is given by

p(β,u, σ2
u, σ

2
e ,∆

∗|y) ∝ p(y|β,u, σ2
u, σ

2
e ,∆

∗) p(β) p(σ2
u) p(σ

2
e) p(∆

∗).

Jones (2013) applied Markov chain Monte Carlo methods under the Bayesian

paradigm to estimate the unknown model parameters. Throughout this thesis we

will be using the term “Jones’ approach” to indicate to this Bayesian implementa-

tion of the statistical model for tree-ring dating.

3.1.5 Pros and Cons of the Statistical Model

The descriptive statistical model by Litton and Zainodin (1991) assumes that tree-

ring width is a combination of a climatic signal which is common to all trees grown

in a specific area plus some noise which accounts for the non-climatic factors. This

simple model is easy to use since it assumes a linear relationship between ring-width

indices and climatic signal. However, this model has the following limitations:
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• it does not capture the mechanism of the growth process during the growing

season and formation of tree-ring widths.

• it is not able to simulate dated ring-width indices (trees with known age) for

a specific geographical location.

• it requires the ring-width data to be fully processed (detrended, prewhitened

and normalised) in order to obtain stationary sequences prior to any repre-

sentation of the data in the model.

• as with all other classical methods of dating, the Bayesian approach by Jones

(2013), which uses this descriptive model, still requires the data to be fully

preprocessed prior to the matching process.

These four limitations will be addressed in the remainder of this thesis by in-

vestigating the use of mechanistic forward models (described below) which provide

an alternative and more realistic way to model the growth process and tree-ring

formation. Such forward models aim to capture the mechanisms of main character-

istics of the complex system of growth which directly relates climate to the tree-ring

width. Under the mechanistic models, the environmental variables, such as tem-

perature, rainfall and sunlight link to the biological processes occurring within raw

ring-widths during the growing season. By directly modelling the way in which

raw ring-widths arise, the need for fully preprocessing data will be removed.

An extension to the Jones’ approach to Bayesian tree-ring dating is investigated

in Chapter 6. The extension includes replacing the descriptive statistical model

by a more realistic, mechanistic forward model (known as VSLite and described

in Section 3.2.2) to be used at the core of the dating process. The use of both

statistical and mechanistic models in the Bayesian tree-ring dating are studied, and

the comparisons between them are also described in that chapter. In Chapter 7 a

new Bayesian approach is investigated which allows less preprocessing of data prior

to the matching process. This will be implemented via adding an extra parameter

to the model to account for a rescaling between the two sequences before dating.

46



3.2 Mechanistic Forward Models

Most of the previous approaches to dendrochronology depend on extending simple

linear statistical models which relate tree-ring width indices to a univariate climatic

signal. These models require the raw ring-width data to be preprocessed (detrend-

ing: removing the trend of age-related growth, and prewhitening: removing the

autocorrelation from tree-ring width indices) (Fritts, 1976; Jones, 2013; Litton and

Zainodin, 1991). Such models provide crucial understanding of the climate-tree-

ring relationship, yet are restricted by several methodological presumptions, such as

linearity and stationarity (Tolwinski-Ward et al., 2011). To investigate the possibil-

ity of using non-stationary and non-linear models for ring-width growth, members

of the dendroclimatology research community, including Evans et al. (2006); Guiot

et al. (2014); Tolwinski-Ward et al. (2011); Vaganov et al. (2006); Zhang et al.

(2011), have recently examined the use of mechanistic models which study the

physical and biological processes by which the tree-ring widths are formed. Such

mechanistic models usually link climate variables to the growth of the ring-widths

through a physical process, and remove the need for the data to be fully pro-

cessed, hence providing potential for dendrochronologists to deal directly with less

processed data. This section describes a mechanistic process-based model, called

“VS” and its simplified version “VSLite”.

3.2.1 VS Model

The Vaganov-Shaskin model, known as “VS”, is a simple mechanistic model in-

troduced by Vaganov et al. (2006) which aims to capture the main response of

tree-ring growth to the climate. The VS is one of the most recent, popular and

widespread process-based models which enables simulating seasonal growth and

tree-ring formation, by modelling the effects of daily meteorological data (temper-

ature, soil moisture and sunlight) on ring-width growth. The VS model depends

on the following assumptions (Vaganov et al., 2006).

1. It is a deterministic model which studies the complex system of the biological
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structure of ring-width growth.

2. Ring-width growth is mainly determined by external climate variables such

as temperature, soil moisture and sunlight.

3. The principle of limiting factors, growth is limited by the most critical factor

in demand (Fritts, 1976), is used for restricting the main factors of growth

rate.

4. The VS model runs on daily time-step which requires as inputs daily me-

teorological data (temperature and precipitation) which enables simulating

tree-ring sequences at any geographical area around the world where such

data exist.

Despite some limitations (described in Section 3.3.1.3), the VS model remains

one of the most accepted physiological models which used for modelling coniferous

trees in a variety of regions and under different climatic conditions.

3.2.1.1 Model Description

Under the VS model, the daily growth response of tree-ring width, G(t), is deter-

mined by three partial growth functions as follows:

G(t) = GE(t)×min{GT (t), GM(t)} (3.4)

where t = 1, 2, . . . , 365 days in a calendar year, GE(t), GT (t), and GM(t) are re-

spectively the partial growth response to daily solar radiation, daily temperature

and daily soil moisture. These three partial functions are independent, and the

calculation of each of them is briefly described below.

Partial Growth Response to Sunlight GE(t)

The growth of a tree is affected by the supply of sunlight (solar irradiation) during

the vegetation period. If a tree receives poor light, the photosynthesis will be

48



decreased and thereby cambial activity, so that narrow ring-widths will be formed

(Schweingruber, 1988). Consequently, solar radiation indirectly affects the growth

rate and tree-ring formation through the photosynthetic tissues. The partial growth

response to sunlight GE(t) is a function of site latitude, solar angle, and hour angles

(day-length) (Touchan et al., 2012), and it can be calculated as follows:

GE(t) = E/E0 (3.5)

and

E =
{

cos(hs) sinφ sin(d) + cosφ cos(d) sin(hs)
}

where:

• E is incoming irradiation.

• E0 is direct solar irradiation for the earth, which is constant and approxi-

mately equal to 1360 W m−2 (Touchan et al., 2012).

• φ is geographic latitude (in radians).

• d is declination angle for the geographic latitude, and hs is hour angle for

the geographic latitude. For more information about the importance of these

two parameters in the model, the reader is referred to Vaganov et al. (2006).

Partial Growth Response to Temperature GT (t)

Tree-ring width is directly influenced by temperature during the growing season.

Fritts (1976) showed that high temperature usually leads to reduced net photosyn-

thesis which thereby leads to less production of food and therefore narrow rings

are formed. By the same token, cool temperature during the growing season leads

to decreased physiological activities of the tree and shortening the growing season,

therefore it results in reduced rates of cell division, thereby fewer xylem cells are

produced and narrow rings are formed. The partial growth rate to temperature is

represented by a piece-wise linear function (see Figure 3.1).
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Figure 3.1: An illustrative graph of piece-wise ramp function of partial growth response

to temperature GT .

Seasonal tree growth begins at the minimum temperature for growth T1 and

it increases linearly from T1 to the first optimum growth (Topt1) then the growth

curve remains steady and optimal growth rate is maintained from Topt1 to Topt2,

before the growth starts to decline linearly between Topt2 and T2. It is assumed in

the model that there is no growth when the temperature is less than T1 or greater

than T2 (i.e. growth does not occur outside the range T1 ≤ T ≤ T2).

Partial Growth Response to Soil-Moisture GM(t)

The availability of water in the soil is the most influential factor affecting the growth

rate of ring-width and formation of wood. Without sufficient water, most trees do

not grow well. Similar to the GT (t), growth response to soil moisture GM(t) is

defined as a piece-wise linear function, see Fig. 3.2. GM is the most complex com-

ponent of the overall growth response function G(t) in the VS model (Equation 3.4).

The daily soil moisture contents Mt are not available, but can be calculated

given daily climate variables using a ‘Leaky Bucket’ water balance model (Haung

et al., 1996; Vaganov et al., 2006), as follows.

dMt

dt
= Pt − Et −Rt −Qt (3.6)
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Figure 3.2: An illustrative graph of piece-wise ramp function of partial growth curve to

soil-moisture GM .

where Pt is a mean precipitation, Et is a mean evapotranspiration, Rt is a net

streamflow divergence, and Qt is a net groundwater loss at time t. These four

components are defined as follows.

• The streamflow divergence (Rt) is a sum of a surface runoff (Ft) and a sub-

surface base flow runoff (Ot),

Rt = Ft +Ot

= Pt

[Mt−1

Mx

]αc
+

αa
1 + αb

Mt−1,

where Mx is a maximum capacity of soils to hold water, Mt−1 is the previous

day’s soil moisture content, αa, αb and αc are the model parameters to be

estimated, and their estimated values by Haung et al. (1996) are given in

Table 3.1.

• The net ground water loss, Qt, is calculated as

Qt =
αaαb

1 + αb
Mt−1.

• The evapotranspiration, Et, is calculated as

Et =
Mt−1

Mmax

Ep,
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where Ep is the evapotranspiration rate per month and calculated given mean

monthly temperature, sunlight, and number of days in the month. The reader

is referred to Haung et al. (1996, p. 1352) for more details about the calcu-

lation of Ep.

• The daily precipitation function Pt is defined as:

Pt = min(a1P, Px) =

 a1P if a1P < Px

Px if a1P ≥ Px

where (a1P ) is a total daily precipitation, Px is the maximum daily precip-

itation for saturated soil, and a1 is the part of precipitation which captured

by the crown of trees, which depends on the geographical area, slope, climate

and soil type (Vaganov et al., 2006).

3.2.1.2 VS Model Parameterisation

VS model is multi-parametric, and the main parameters used in the VS model

can be seen in (Vaganov et al., 2006, Chapter 7). Most of the parameters in the

model have a biological meaning; however, the large number of the parameters

(40) is a challenging issue, since it affects the simplicity and efficiency of its im-

plementation. Additionally, making inferences about these parameters requires a

considerable effort. Thus, Vaganov et al. (2006) used two methods for evaluating

the model parameters. The first one assumes that if there is enough experimental

information about tree species, growth threshold parameters, climate conditions

and region, then the VS model parameters can be defined prior to making any

calculation. If no information is available, then the second approach is to approx-

imate starting values for the model parameters, as a first-step calculation, and

then slightly change one parameter at time and observe the agreement between

generated and observed ring-width chronologies. If the correlation between the

two chronologies shows sufficient agreement, then the model with those particular

parameters will be considered a good fit.
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3.2.1.3 Advantages and Limitation of the VS model

The main strength point of VS model is the potential of applying it to different

tree species, such as Quercus and Pinus, although it was first designed and applied

particularly for conifer trees. Moreover, the investigation of this model by several

researchers including Anchukaitis et al. (2006); Evans et al. (2006); Shi et al. (2008);

Touchan et al. (2012); Vaganov et al. (2006) show the efficiency of the model. They

implemented the model for different species in various regimes, and showed that

the model works well under a range of environmental conditions, such as dry, wet,

arid, semi-arid and monsoon climates.

Vaganov et al. (2006) suggested that their simulation model can be used as a

complement to the empirical-statistical models of dendrochronology and dendrocli-

matology in order to assess more accurately the climate-tree growth relationship.

This is because the growth rate of trees to climate is usually non-linear (Fritts,

1976), and it might differ in different climate regimes, leading to insufficiency of

using classical statistical methods that only assume linear growth response to cli-

mate. Therefore, evaluation of such models is necessary to evaluate the statistical

modelling of past climate, and make them reliable and more adequate. Further-

more, linear empirical-statistical analyses alone cannot reveal a biological mech-

anism for variability of tree-ring width growth (Shi et al., 2008; Touchan et al.,

2012). Hence, underlying physiological processes which relate tree-rings growth to

climate are essential, particularly for palaeoclimatological investigations, both in

order to reconstruct accurately the past climate and also to help better interpret the

process of growth. The VS model can also be used for dendrochronological studies

(Vaganov et al., 2006) by considerably reducing the number of model parameters to

become simpler and hence to be used in the matching process for dating sequences.

This will give a new opportunity for dendrochronologists to reveal the influence

of climate variables to dendrochronological data via studying the mechanism of

ring-width growth and also to reveal the effect of non-climatic factors which they

usually represent only as noise.

However, there are some limitations of the VS model. Firstly, implementation
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relies on access to daily meteorological data of temperature, precipitation, soil mois-

ture and sunlight from local weather stations. These types of data are not available

for places where the meteorological stations are absent, and even where they are

found, they are limited to a short period of time, typically not more than 200 years.

Thus, applications of this model to archaeological dating and chronological studies

are rather limited. Secondly, all the processes and parameters are usually fixed.

Thus, uncertainty of the parameters and of the model itself are ignored. However,

when modelling any physical or biological process it is important to evaluate the

models and study their uncertainties before using them. It is desirable, for exam-

ple, to make a statistical inference about the unknown parameters, which will be

helpful to understand the accuracy of the model itself. Under the current version

of the VS, this would not be easy to achieve or maybe impossible due to the large

numbers of the model parameters.

3.2.1.4 VS Model Applications

In order to investigate whether tree-ring width sequences can be modelled as a

function of climatic variables, Anchukaitis et al. (2006) utilised the deterministic

VS to model the seasonal growth and tree-ring formation of Pinus trees in the USA.

Ring-width chronologies were simulated in their investigation using daily climate

records from south-east USA for the period (AD 1920-2000). Then a comparison

was made between modelled and observed sequences to explore the efficacy of the

model. They implied that the model is reliable for simulating tree-ring chronologies,

which also used to assess and explicate the climate-tree-ring growth relationships.

Evans et al. (2006) also used the VS model to investigate and interpret tree-

ring data in different climates. Daily station records data were used to generate

tree-ring chronologies in two large areas of north USA and Russia. Then, simple

statistical measurements, such as mean and correlations were applied to make a

comparison between modelled and observed sequences. The study concluded that
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the model was relatively insensitive to the model parameters, and the VS model

was able to simulate accurately intra-seasonal to inter-decadal climate variability

for relatively large regional areas.

In order to investigate the growth response of trees in (semi-arid north central

China) to climate variations, Shi et al. (2008) applied the VS model and success-

fully simulated local tree-ring width chronologies from daily meteorological records.

They concluded that the VS model was able to simulate ring-width sequences,

evaluate the climate-tree growth relationship, and produce physically interpretable

results. Their results emphasized that moisture availability directly affects the

tree-ring formation only during May to August. Their study also suggested that

ring-width is sensitive to the end of the growth season, and not very sensitive to

beginning (Shi et al., 2008). Hence, late end of the growth season results in form-

ing wide rings, whereas narrow rings are produced in years with an earlier end of

growth season.

3.2.2 VSLite Model

VSLite, developed by Tolwinski-Ward et al. (2011), is a significantly simpler ver-

sion of the VS model of tree-ring growth, which requires site latitude, monthly

temperature and precipitation data as inputs (see Figure 3.3). The motivation

behind providing VSLite was to develop the efficiency and simplicity of the full VS

simulation model, in order (eventually) to be able to estimate the model param-

eters, with a view to providing information about the uncertainty in parameters

and hence in the model itself.

The VSLite model differs from the full VS in the following aspects:

• VSLite uses monthly, rather than daily, average climate data as inputs, since

the monthly meteorological records are more widely available than daily data.

• VSLite has fewer (11) parameters than the VS (40). This is not just because

55



Climate data (T, P)

and site latitude (φ)

Site latitude

φ

Soil moisture balance:

Mt = Pt−Et−Rt−Qt

Growth response to

Solar radiation

GE

Growth response

to Temperature

GT

Growth response

to Soil moisture

GM

Monthly overall

growth rate G(m, t)

Annual growth

rate Gt

Tree-ring indices

Ŵt
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Figure 3.3: Schematic representation of the VSLite model which shows the relationship

between climate variables and simulated ring-width indices.

only key parameters of the growth rate process are present, but also because

modelling of cell growth in the cambial zone (a cell generator that is between

the wood and inner bark), which is significant component of the full VS

model, is entirely absent in VSLite.

• This reduction in input data and decrease in the number of model parameters

results in an enhancement of computer run-time. VSLite is approximately 30

times faster than the full VS model (Tolwinski-Ward et al., 2011).

• VSLite model links the climate variables directly to tree-ring width growth.
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3.2.2.1 VSLite Model Components

For each modelled month (m) in each modelled year (t) in the VSLite model, a

monthly growth response to temperature GT (m, t) is evaluated by:

GT (m, t) =


0 if T (m, t) ≤ T1;

T (m,t)−T1

(T2−T1)
if T1 ≤ T (m, t) ≤ T2;

1 if T2 ≤ T (m, t)

(3.7)

where T (m, t) is the monthly average temperature for month m and year t, T1 is

a temperature threshold parameter below which the growth of ring-width cannot

occur, and T2 is a threshold above which the growth process is insensitive to the

climate variability.

The monthly soil moisture contents M(m, t) can be calculated given monthly

temperature and precipitation, using the “Leaky Bucket” water balance model,

detailed in Section 3.2.1.1. Then, similar to the calculation of GT (m, t), a monthly

growth response to soil moisture GM(m, t) is calculated as:

GM(m, t) =


0 if M(m, t) ≤M1;

M(m,t)−M1

(M2−M1)
if M1 ≤M(m, t) ≤M2;

1 if M2 ≤M(m, t)

(3.8)

where M(m, t) is the monthly average soil moisture for month m and year t, M1 is

a soil moisture threshold parameter below which growth process is not occurring,

and M2 is a threshold parameter which the growth is insensitive to soil moisture

variability.

Therefore, the overall monthly growth response of tree-ring widths to climate

is:

G(m,t) = GE(m, t)×min
{
GT (m, t), GM(m, t)

}
(3.9)

where GE(m, t) is a monthly growth response to solar irradiation derived from

trigonometric functions of a geographic latitude φ as detailed in Section 3.2.1.1.
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3.2.2.2 Tree-ring Formation

A time-series of annual tree-ring width growth is produced by summing the overall

monthly growth responses G(m, t) over the 12 months,

Gt =
12∑
m=1

G(m,t), (3.10)

and the simulated ring-width index Ŵt at year t is obtained by standardising the

annual growth response, and is given by:

Ŵt =
Gt − Ḡ√

σ2
G

, (3.11)

where Ḡ and σ2
G are the mean and standard deviation of the annual growth sequence

respectively. Thus, Ŵ ∼ N(0, 1) is the sequence of annual ring-width indices sim-

ulated from the VSLite model.

3.2.2.3 VSLite Model Parameterisation

The VSLite model has 11 parameters, listed in Table 3.1. The first four parameters

T1, T2,M1, and M2, are the growth threshold parameters which control the simu-

lated non-linear temperature GT (m, t) and soil moisture GM(m, t) growth curves.

Tolwinski-Ward et al. (2011) assumed that the value of T1 should be larger than

zero (freezing) and less than or equal to 9oC, whereas the value of T2 should be

greater than T1 and less than or equal to 24oC. Similarly, wide reasonable intervals

have been given to the two soil moisture growth threshold parameters (M1 and

M2) (Tolwinski-Ward et al., 2011), and their optimal intervals are given in Table

3.1.

The last seven parameters in the Table are related to the calculation of the soil-

moisture contents using Leaky Bucket water balance model (Haung et al., 1996).

Given temperature and precipitation data, and globally fixed water balance param-

eters, the monthly soil moisture contents can be obtained via the Leaky Bucket

hydrology model. These seven parameters are assumed to be constant in space and

time, because they are indirectly affecting the growth of ring-width. These param-

eters were estimated by Haung et al. (1996), and their values are given in Table
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Parameter Description Value

T1 Threshold temperature for gT > 0 [0◦C, 9◦C]

T2 Threshold temperature for gT = 1 [10◦C, 24◦C]

M1 Threshold soil moisture for gM > 0 [0, 0.1] v/v

M2 Threshold soil moisture for gM = 1 [0.1, 0.5] v/v

Mx Maximum moisture held by soil 0.76 v/v

Mm Minimum moisture held by soil 0.01 v/v

αa Runoff parameter 1 0.093 month−1

αb Runoff parameter 2 5.8

αc Runoff parameter 3 4.886

dr Depth of root system 1000 mm

M0 Initial value for previous month’s moisture 0.20 v/v

Table 3.1: VSLite model parameters as defined by Tolwinski-Ward et al. (2011).

3.1. These parameters were measured in millimetres, but Tolwinski-Ward et al.

(2011) transformed them to volumetric measures via dividing them by a rooting

depth (dr) parameter. The value of dr is taken from the full VS model. M0 which

is the initial value for the previous month’s soil moisture content indicates that the

model has lags, and therefore it cannot be simulated for a single month, but rather

for a whole sequence.

3.2.2.4 VSLite Model Applications

The VSLite model was applied by Tolwinski-Ward et al. (2011) to simulate 277

local Pinus chronologies in North America, and by Breitenmoser et al. (2014) to

simulate 2271 different tree-species sequences in around the world. To examine the

efficiency and efficacy of the VSLite to simulate tree-ring width series, a comparison

was made between simulations derived from the model and the real observed ring-

width chronologies. Tolwinski-Ward et al. (2011) used simple statistical methods

such as correlation coefficients and graphical comparisons to assess the adequacy of
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their model. They showed that simulations by the VSLite has skilfully represented

climate-driven variability of real ring-width sequences. Thus, they conclude that

VSLite is able to produce more realistic and physically interpretable results than

the statistical models.

In addition to using simple statistical methods utilised by the model develop-

ers, we will use more formal techniques and a more systematic analytical method

for checking the model adequacy and exploring the uncertainty in model outputs.

This method is detailed in the next Chapter.

Closing Remark

In this section two well-known mechanistic models for simulating tree-ring width

growth, VS and VSLite, have been reviewed. Since the main target of this thesis is

to investigate the potential of using the VSLite model for Bayesian dendrochronol-

ogy, we will evaluate the model and investigate the uncertainty of its outputs before

progressing to implementation of the model for dating purposes. This is in order

to evaluate the model and ensure that its uncertainty is controllable. In the next

sections, we review two statistical approaches which have been developed for ex-

ploring and managing uncertainty in computer models.

3.3 Sensitivity Analysis

Before applying a computer model, such as the VSLite model, to practical problem

solving, the adequacy of the model should be evaluated in order to investigate

its capability to reproduce the mechanism of the process under study. Different

statistical methods and approaches are developed to examine the efficiency of such

models. Sensitivity Analysis (SA) is one of these methods used to determine the

most influential parameters of the model by examining the impact of changing input

parameters, and observing their effect on the model output. SA offers a systematic

investigation of a model’s response to perturbations of input parameters. It is a very
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useful way to understand the model’s response behaviour, examine the accuracy of

the model, identify the most influential input parameters and rank them in terms

of their impact on the output. In addition to this, SA helps model developers to

identify which input parameters are not influential and can be ignored in order

to simplify the model, and to make decisions about where the model needs to be

improved in order to reduce its variability.

Probabilistic sensitivity analysis approaches are categorized as either local or

global (Saltelli et al., 2000). A Local Sensitivity Analysis (LSA) is performed when

input parameters are varied one-at-a-time around some fixed point with a view to

observing their impacts on the model output. However, a Global Sensitivity Anal-

ysis (GSA), also called “variance-based sensitivity analysis”, is performed when

all input parameters are varied simultaneously over their entire uncertainty space,

typically using probability distributions for each parameter, and the impact on

the variability of the model output is observed. For more information about LSA

and GSA and their application, the reader is referred to Saltelli et al. (2000, 2008,

2004).

The sensitivity analysis can be conducted for any computer model, such as the

VSLite, by obtaining multiple runs of that model using random input configurations

based on Monte Carlo sampling, which is computationally expensive. However, an

alternative approach called Bayesian Sensitivity Analysis (BSA), is now more com-

monly used, which builds an emulator (approximation of the model) for the model

under investigation, and then the sensitivity analysis is performed on the emulator.

3.4 Bayesian Sensitivity Analysis

Bayesian Sensitivity Analysis (BSA) aims to understand the sensitivity of the model

output variations to change in the input parameters using a Gaussian process

(GP) model. Widely used methods to conduct SA, developed by Saltelli et al.

(2000, 2008), depend on Monte Carlo sampling techniques (Bowman, 1990) to

estimate sensitivity measures (described in Section 3.4.2 below). Unfortunately, the
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classical approaches of SA by Saltelli et al. (2000) are computationally expensive

and require a large number of model runs. OHagan (2004, p. 1291) states that

“Even for a model that takes just one second to run, a comprehensive variance-

based sensitivity analysis may require millions of model runs”. To overcome this

difficulty, Gaussian Process regression models, known as GP emulators, have been

proposed to implement SA. Thus, if the model to be evaluated is computationally

expensive, the Bayesian SA can be used instead to explore the uncertainty of the

model output without having to run the model many times. In the BSA approach,

we learn about model uncertainty from only one run of the computer model by

creating an emulator for the model.

The statistical theory and mathematical principles of using BSA to perform

global sensitivity analysis (GSA) were first suggested by Oakley and O’Hagan

(2004). Under BSA, each model parameter is defined by a probability distribu-

tion, and hence the Gaussian emulator can be built (as described in Section 3.5.1

below) using training data which are obtained from running the model at carefully

chosen design points. McKay et al. (1979) suggested Latin hypercube sampling for

choosing such design points which guarantees that each input parameter is well

represented in the design. The BSA approach consists of two main stages. First,

building a statistical emulator for the computer model from a set of training points.

Second, using the created emulator to calculate sensitivity measures of interest.

The main advantage of using the Bayesian sensitivity approach and Gaussian

process emulators to conduct SA is that no additional runs of the original model are

needed to compute sensitivity measures. This is a good improvement, especially

for complex computer models.

3.4.1 Building a Gaussian Processes Emulator

A Gaussian processes emulator is an approximation of the model (simulator), and

it was first suggested by Sacks et al. (1989) as a method for emulating computer

models. The GP emulator usually considers the simulator as an unknown func-
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tion f(x), which is used to estimate model output, and hence quantify the model

uncertainty.

The reason for considering the computer model f(x) as an unknown function is

because model output is unknown till we run the model. Therefore, our prior infor-

mation about f(x) can be modelled by a GP with a particular mean and covariance

function (Haylock and OHagan, 1996). Then the prior knowledge will be updated

as new data are received. Building an emulator for complex and computationally

expensive models is a very useful technique for performing sensitivity analysis of

the model under study.

In short, building a Gaussian process emulator for any computer model (such

as the VSLite) requires the following main four procedures respectively.

1. Formulating the prior mean and covariance function for the emulator.

2. Defining prior distributions for hyper-parameters of the emulator.

3. Generating design points for the model parameters using a sampling tech-

nique, for example, a Latin Hyper-cubic method (McKay et al., 1979).

4. Running the model at the input parameter configurations specified in the

design.

Oakley and O’Hagan (2004) describe the process of building GP emulators as

follows. Given input parameters, {x1, . . . ,xn}, the prior uncertainties about the

corresponding outputs {f(x1), . . . , f(xn)} are considered via a multivariate normal

distribution with mean function defined by

E{f(x)| β∗} = h(x)T β∗,

and covariance function between output points defined as

cov{f(x), f(x′)|σ2} = σ2c(x,x′),

where h(x) indicates a vector of regression, β∗ is the corresponding regression

coefficients, σ2 is the variance of the GP emulator which determines the overall
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scale of the model, and c(x,x′) denotes the correlation matrix whose elements are

defined as

c(x, x′) = exp{−(x− x′)Tω (x− x′)},

and ω = diag(ω1, . . . , ωn) is the diagonal matrix of roughness parameters, which

indicate how strongly the emulator responds to each particular parameter.

The design points are then used for estimating unknown hyper-parameters (σ2,

β∗) of the GP emulator. Conjugate priors, the normal inverse gamma distribution,

are chosen for σ2 and β∗ so that

p(β∗, σ2) ∝ σ−
1
2

(d+p+2) exp
(
− [(β∗ − z)TV −1(β∗ − z) + a]/(2σ2)

)
.

The choice of the prior specification for these two hyper-parameters is problem-

specific, but Oakley and O’Hagan (2002, 2004) used a weak (conjugate) form for

the prior:

p(β∗, σ2) ∝ σ−2.

Latin hypercube sampling is then utilised to generate n design points for each

input parameter, and the model is run at such design points to obtain a set of

training data (y). Then, the posterior distribution of the GP emulator is obtained

by conditioning on the prior distributions of hyper-parameters and the obtained

data y. Conditional on roughness parameters ω and the data, the corresponding

outputs have a multivariate t-distribution,

[f(x)|ω,y] ∼ tn+p{m∗(x), σ̂2c∗(x,x′)}, (3.12)

where m∗(x) and c∗(x,x′) are respectively a posterior mean and covariance func-

tions, and p indicates the number of coefficients (number of input parameters plus

one) in the mean function.

The quality of the obtained GP emulator importantly relies on the number of

design points, distribution of design points in the input sample space, and their

hyper-parameter values. For more information about the Gaussian process emu-

lations and building emulators, the reader is referred to (Kennedy and O’Hagan,
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2001; Oakley and O’Hagan, 2002, 2004; OHagan, 2004).

3.4.2 Estimating the Sensitivity Measures

Once the emulator is built, its posterior distribution, Equation 3.12, can be used

to infer several measures relevant to the sensitivity analysis, which are described

in the following subsections.

3.4.2.1 Main Effects and Interactions

The main effects of any input parameter is the impact of changing the value of that

input over its random space, and the interactions are the impact of changing two

or more inputs together. The Sobol sensitivity decomposition, defined by Saltelli

et al. (2000), states that any f(x) is decomposed as follows,

y = f(x) = E(Y ) +
d∑
i=1

zi(xi) +
∑
i<j

zij(xij) +
∑
i<j<k

zijk(xijk) + · · ·+ z1,2,...,d(x),

where

zi(xi) = E(Y |xi)− E(Y ),

is the main effect of xi, and

zi,j(xi,j) = E(Y |xi,j)− zi(xi)− zj(xj)− E(Y ),

is the first-order interaction between inputs i and j which gives information about

the combined influence of the two inputs. Further terms indicate higher order

interactions, and their impacts are typically small and are eliminated.

The main effects and interactions measures are evaluated from the posterior of

the GP emulator.

3.4.2.2 Variance-based Sensitivity Factors

Variance-based sensitivity factors are the most popular measures to quantify the

proportion of the output variance attributable to each individual input parameter.
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The full variance decompositions are only meaningful when the input parameters

are independent from one another (Saltelli et al., 2000), and this has been assumed

by the model developers (Tolwinski-Ward et al., 2011). Assuming the independence

of input parameters, the variance decomposition, defined by Saltelli et al. (2000),

is

V ar(Y ) =
d∑
i

Vi +
∑
i<j

Vij +
∑
i<j<k

Vijk + · · ·+ V1,2,...,d,

where V ar(Y ) indicates total variance of the output, d denotes number of input

parameters to the model, Vi is the partial variance or “main effect variance” of

input xi on Y , and is given by

Vi = V ar{E(Y |xi)},

and Vij is the joint effect (interaction) of the two input parameters xi and xj on

Y , and is given by

Vij = V ar{zi,j(xi,xj)}.

Another useful sensitivity measure is a “total effects variance” VTi which quan-

tifies the amount of variation caused by the input xi and any interaction involving

xi (i.e. for each input xi, the total effect is equal to the main effect for xi plus all

interactions including xi)

VT i = V ar(Y )− V ar{E(Y |x−i)},

where x−i indicates all input parameters except xi. All measures are usually con-

verted to proportions via dividing by the total variance, as follows

Si =
Vi

V ar(Y )
,

ST i =
VTi

V ar(Y )
,

where Si is called the main effects factor, and ST i is called the total effects

factor of the individual parameter xi. A high value of the main effect factors for

a particular parameter indicates that the uncertainty of the model output can be

decreased frequently by learning a true values of that parameter. For each given
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input parameter of the model xi, the difference between the total effects factor

(Si) and main effects factor (ST i) is a measure of the amount of interaction effect

derived from xi.

Variance-based sensitivity approach is a simple and useful method which can

be used to identify significant and insignificant parameters of the VSLite model,

and quantifies the effect of each parameter on the model outputs. The Bayesian

sensitivity analysis and all the sensitivity measures can be computed using a freely

available software package (GEM-SA; Gaussian Emulation Machine for Sensitivity

Analysis, http://www.tonyohagan.co.uk/academic/GEM/index.html). The pack-

age was first developed by Kennedy and O’Hagan (2001) for the Centre for Terres-

trial Carbon Dynamics (CTCD).

3.5 Summary of Chapter

In this chapter two different types of model, statistical and mechanistic, were de-

scribed for simulating tree-ring width growth. A well-known descriptive statistical

model by Litton and Zainodin (1991) was reviewed first, and its implementation

for the Bayesian dendrochronology by Jones (2013) was then described. This was

followed by consideration of the advantages and limitations of the statistical model

in the tree-ring dating. Next, two mechanistic models, VS and VSLite, were re-

viewed; of which the latter model will be the main focus of the remainder of this

thesis. Sensitivity analysis for computer models was then reviewed followed by

Bayesian Sensitivity Analysis which uses Gaussian process to build an emulator

for the model under investigation. Thereafter, the variance-based sensitivity mea-

sures were also reviewed which can be estimated from posterior of the emulator.

In the next chapter, VSLite model will be implemented to simulate tree-ring width

sequences at different geographical locations around the world, and the model’s ef-

ficiency will be checked. Bayesian Sensitivity Analysis will be used systematically

to investigate uncertainty in the VSLite model output. This will include examining

the impact of each model parameter on the model output variablity.
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Chapter 4

Exploring Uncertainty in the

VSLite Model

The mechanistic VSLite model was described in the previous chapter, and a stochas-

tic version of the model will be used at the core of Bayesian tree-ring dating in the

next chapters. Before accomplishing that, it is essential to evaluate the model and

to check its adequacy to ensure that the model is reliable. Furthermore, it is useful

to identify which of model parameters are more influential on the model’s output

variability. This is typically done in order to pay more attention to the significant

parameters and to make inferences about them when fitting the model for cross-

matching tree-ring width sequences. In this chapter, we implement and evaluate

the VSLite model by exploring the uncertainty in the model output. We apply the

Bayesian Sensitivity Analysis for the model in order to quantify the contribution

of each model parameter to the model output variation.

4.1 VSLite Model Implementation

In order to investigate the uncertainty in the VSLite model, we have implemented

the model at different geographical areas around the globe. For this purpose,

the VSLite model has been implemented in R programming environment (R Core

Team, 2015). Although the VSLite code was originally written by Tolwinski-Ward
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et al. (2011) in MATLAB, we have written new code for two reasons. First, the

code will be changed, eventually, to include the tree-ring matching process in the

Bayesian framework and to make inference about the model parameters. We pre-

fer not to do this in MATLAB, as it is proprietary (rather than free open source

software) and this has costs implications for the users. Second, R was built and

designed for substantial statistical modelling and inference. Before using the new

code for the model implementation, the accuracy of the R-code was tested to en-

sure that exactly the same results as the original Matlab code are obtained. For

this purpose, the model has been ran using the two codes, and the results were

compared which were similar to four decimal places; therefore, the new R-code

written was as accurate as the original code.

In this model evaluation, the new R implementation of the model (henceforward

known simply as VSLite) was run at many different places in the USA, the UK

and Europe, to simulate tree-ring width sequences. The VSLite model outputs

(simulated) were compared to actual (observed) ring-width indices at the same

location to check the model adequacy. Four geographical locations (sites ) each

with different climate conditions are presented here as examples of this model

evaluation. Information of the data for these four sites are given in Table 4.1.

Site Taxon ITRDB code Latitude Longitude Time span

Site 1 Pinus ca530 36.45 -118.22 1901-1984

Site 2 Pinus ca544 34.17 -117.12 1901-1984

Site 3 Pinus ca615 39.02 -122.82 1901-1984

Site 4 Pinus co523 39.32 -106.08 1901-1984

Table 4.1: Information of tree-ring data for four sites in the USA.

The following sections describe observed and simulated ring-width sequences

for the four sites, along with exploration of the model efficiency via investigation

of the uncertainty in the model outputs.
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4.1.1 Observed Tree–Ring Data

Tree-ring data were chosen to overlap with the meteorological data, for the period

1901 to 1984 AD. The reason for this choice of period (84 years) is the availability

of climate data and tree-ring observations. All the observed tree-ring data were

taken from the International Tree-Ring Data Bank (http://www.ncdc.noaa.gov/

paleo/treering.html). For each tree, the data include raw ring widths, the cal-

endar date of the first ring, longitude and latitude at which the tree grew, and tree

species. To remove any growth trends, the observed raw ring-widths data (xti) are

detrended (using the method described in Section 2.1.1.5) to give tree-ring indices

(yti). A local site chronology Ct, for each of the four locations, is also constructed by

grouping and averaging the obtained ring-width indices (using the method detailed

in Section 2.3). Then, the site chronologies are standardised to give

Wt =
Ct − C̄
σC

, (4.1)

where Ct indicates site chronology’s ring-width index at year t, C̄ and σC are

mean and standard deviation of the observed site chronology respectively. Thus,

Wt ∼ N(0, 1) is the annual observed site chronology.

4.1.2 Simulating Ring-Width Sequences from VSLite

The VSLite model allows simulation of tree-ring width sequences at any geograph-

ical location around the world where climate data records exist, requiring, in par-

ticular, input of the form monthly temperature and precipitation averages along

with site latitude.

Climate Data Records

The monthly meteorological data, used in this investigation, are not observational

data but gridded model outputs. Time-series of monthly temperature and precip-

itation were estimated by Harris et al. (2014), and can be freely obtained from

the Climate Research Unit, CRU-3.21 dataset (http://badc.nerc.ac.uk/data/

cru/).
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The CRU time-series data cover the global surface at 0.5o latitude ×0.5o lon-

gitude spatial resolution from 1901 to 2013, and are based on the climate records

from meteorological stations. Therefore, these monthly temperature and precipi-

tation estimates are available as gridded output in an appropriate format for use

as input to VSLite. The uncertainty in CRU data varies from one area to another

depending on the number of meteorological stations used in the interpolation of

model output. For example, the uncertainty in such data estimates for African

regions is higher than that for Europe and North America, due to the number of

meteorological stations recording real observational data. Nevertheless, these his-

torical CRU time-series are currently the most accurate and reliable climate data

outputs available in monthly time-steps (Harris et al., 2014).

Partial Growth Functions

Selecting the CRU time series from the grid-point with the nearest half-degree

latitude distance for the four sites of interest, VSLite was used to simulate ring-

width sequences for each site (as detailed in Section 3.2.2). Partial growth responses

to temperature GT (m, t) and soil moisture GM(m, t) were calculated by applying

the Equations 3.7 and 3.8 respectively. The results for the four chosen sites are

given in Figure 4.1.

Figure 4.1 shows the partial growth responses to temperature GT (m, t) and soil

moisture GM(m, t) calculated from the VSLite model. It is clear that the growth

at sites 1 and 4 are temperature-limited as the overall monthly growth response is

determined by the lower value of these two partial growth functions (GT and GM).

At these two sites the mean partial growth response to temperature is almost 0 in

the coldest months, and peaks only in the summer time. The mean growth curve

response to soil moisture is constant over the whole growing season reflecting ade-

quate access to water throughout the year. On the other hand, the mean modelled

partial growth responses for sites 2 and 3 show clearly how the overall monthly

growth response is affected by an interaction between soil moisture and tempera-
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Figure 4.1: Monthly partial growth response to temperature, GT (solid line) and soil

moisture, GM (dashed line) at four different sites in the USA, modelled from the VSLite

model.

ture. Growth is moisture-limited during spring, summer and autumn as the GM

curves fall below the GT curves, and it is temperature-limited only in the winter

months. Thus, the VSLite model has captured the climate driven variable(s) at

each site, and it is easy to interpret the model outputs in terms of the climate

controls on simulated partial growth functions. This suggests that, at least at

these four sites, the VSLite model can determine whether growth is dominated by

temperature or soil moisture, or a combination of the two.

Tree-ring Formation

The partial growth response functions were then used to obtain monthly overall

growth responses, G(m, t), using Equation 3.9. The VSLite-based simulated annual

ring-width sequence Ŵt, for each site, was then obtained by summing the overall

growth response function over the 12 months, as detailed in Equation 3.10. These

simulated ring-width sequences are given in Figure 4.2.
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Figure 4.2: Plot of simulated ring-width indices from the VSLite model at four different

sites in the USA. The x-axes are calendar dates and y-axes are ring-width indices.

Figure 4.2 shows time-series of simulated ring-width sequences from the VSLite

model at the four chosen sites in the USA. Each ring-width sequence is generated

from the model as a function of site-specific partial growth response to temperature

GT , soil moisture GM and solar irradiation GE.

4.1.3 Model Evaluation

For each site in this model evaluation, an actual ring-width chronology was ob-

tained. A simulated site chronology was also generated from the VSLite model.

These two sets of data enable us to make an initial valuation of the capability and

behaviour of VSLite model to simulating ring-width sequences.
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Graphical Comparison

Both the observed and simulated time-series were plotted together to check the

similarity between the pattern of the two sequences (Figure 4.3). This quick visual

comparison was made for the four sites to identify any relationships between the

two data sets. The similarity in patterns between the two chronologies indicates

the capability of VSLite model to capture the climatic variability within tree-ring

sequences at each site. The more similar the two chronologies, the better the VS-

Lite model output.
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Figure 4.3: Plot comparing observed (black) and simulated (red) ring-width sequences

generated from the VSLite model at four different sites in the USA. The x-axes are

calendar dates and y-axes are ring-width indices.

Figure 4.3 shows the results of comparing observed and simulated chronolo-

gies. It shows that the VSLite model has performed better in sites 2 and 3 than

in sites 1 and 4. This is because there are better agreement and similarities in

the patterns between simulated and observed chronologies in sites 2 and 3. This

indicates that the uncertainty in the model outputs for sites 1 and 4 is higher, and

the performance of the VSLite model is not very good compared to the other two

sites. This visual comparison, as means by which to explore the uncertainty in

the model outputs, but not sufficient to quantify or describe the differences. More

formal statistical methods are needed to quantify the model uncertainty.
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Although the VSLite model was generally able to simulate ring-width sequences

under different environmental conditions at various locations, the efficiency of the

model varies from one site to another. This uncertainty in model output occurs be-

cause of either uncertain site-specific climate data (temperature and precipitation),

uncertain model parameters, or error in model structure. Thus, before moving on

to examine the use of the VSLite model to the Bayesian dendrochronology, which

is the main aim of this thesis, it is worth studying the sources of any uncertainty

within the model with a view to controlling them, and hence decreasing the model

output variability.

4.2 Sources of Uncertainty in the VSLite Model

There are multiple sources of error in any process-based model. Here we adopt

the classification offered by Kennedy and O’Hagan (2001) who identify three main

sources as described below.

• Uncertainty in model input parameters: the uncertainty in the VSLite

model input parameters emerges because they relate to either observed or

estimated physical phenomena most (or all) of which are uncertain. Such

uncertain input parameters can be represented as a probability distribution

and then controlled by making statistical inferences and learning about the

true values of the model parameters from data.

• Uncertainty in data inputs: this type of uncertainty in the VSLite model

arises when climate model gridded outputs (instead of observational records)

are used as input into VSLite model to simulate tree-ring-width sequences.

Observational historical monthly climate data do not exist for all geographi-

cal locations around the globe, and these data records are therefore modelled

from nearby meteorological stations. Even if such data exist, we might im-

precisely record them. The uncertainty in the input data for climate models
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is usually assumed small enough to be ignored (Harris et al., 2014) and we

follow this convention here for mathematical convenience.

• Uncertainty in model structure: this refers to the case where we are not

certain about the true structural relationships within a model. As the models

are approximations of the real process, we are not certain about the most

appropriate way to represent them in our model. This type of uncertainty

in the tree-ring width models can be controlled by the model developers

(biologists and botanists) by further studying the mechanism and the nature

of ring-width growth and improving their knowledge about the climate-tree-

ring relationships.

Exploring in detail this source of VSLite model uncertainty is beyond the

scope of this research project, because that is largely done better by those

with knowledge of the biology, and indeed some of those with that knowledge

have already began to do that work, including Evans et al. (2014); Tolwinski-

Ward (2015). This type of model uncertainty has also been explored by

performing external discrepancy analysis (Bayarri et al., 2007; Strong and

Oakley, 2014).

Three different possible sources causing uncertainties in the VSLite model out-

put have been defined. The first of these uncertainty sources is statistically control-

lable, and can be explored by performing the Bayesian sensitivity analysis described

in Section 3.4. Therefore, in this thesis, we concentrate on exploring uncertainties

in the model output due to the uncertain input parameters.

In what follows in this chapter we investigate the uncertainty in VSLite model

parameters via applying the Bayesian sensitivity analysis (BSA). The contribution

of each parameter to the model’s output variability is quantified using variance-

based sensitivity measures (detailed in Section 3.4.2), and the parameters are there-

fore ranked in terms of their influences on the model output variation.
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4.3 Bayesian Sensitivity Analysis of VSLite

Model

Bayesian sensitivity analysis (BSA), discussed in Section 3.4, is conducted for the

VSLite model in order to quantify and assess how change in the model outputs can

be attributed by changing each input parameter xi; where i = 1, . . . , p, and p is

the number of the VSLite model parameters of interest. Model input parameters

that have a significant impact on the output were identified by evaluating variance-

based sensitivity measurements, main effects and total effects described in Section

3.4.2. These measures are then used to rank model parameters in terms of their

contribution to the model output variability.

The following steps are used to carry out the BSA for the VSLite model:

• Identification of the input parameter uncertainty

We first represent the uncertainty space and configuration of a probability

density for each of the input parameters. The information on the uncertainty

of the parameter ranges is commonly estimated either based on physical rea-

soning or only from experts, whilst the mathematical representation of the

probability distributions might be either theoretically known or to be consid-

ered.

All the eleven VSLite model parameters (given in Table 4.2) were allowed

to vary in the Bayesian Sensitivity Analysis. The first four parameters are

the main growth threshold parameters which control the simulated non-linear

growth response to temperature and soil moisture. The minimum and max-

imum values for these four parameters were taken from experts’ opinion in

the literature (Haung et al., 1996; Tolwinski-Ward et al., 2013, 2011; Vaganov

et al., 2006). The next seven parameters are related to the monthly soil mois-

ture computation M(m, t), which are estimated from monthly temperature

T (m, t) and precipitation P (m, t) data, via a “Leaky Bucket” sub-model, in-

troduced in Section 3.2.1. The “optimal” values of these seven parameters

77



were estimated by Haung et al. (1996), and then were widely used as globally

optimal values in the literature. To perform the BSA, we varied these 7 pa-

rameters by ±25% around their original (optimal) values, and this variation

allowed remaining parameters in their well-defined sample spaces.

A summary of the resulting ranges (lower and upper values) for all VSLite

parameters are presented in Table 4.2. As no information is available on the

prior probability densities for each model input parameter, uniform distribu-

tions were assigned for the input parameters. We defined the uniform prior

for each model parameter through the lower and upper values given in Table

4.2.

Parameter Description Min Max

T1 threshold temperature for gT > 0 1 9

T2 threshold temperature for gT = 1 10 24

M1 threshold soil moisture for gM > 0, 0 0.1

M2 threshold soil moisture for gM = 1, 0.10 0.5

Mx maximum soil moisture held by soil 0.67 0.96

Mm minimum soil moisture held by soil 0.008 0.013

αa runoff parameter 1 0.07 0.116

αb runoff parameter 2 4.35 7.25

αc runoff parameter 3 3.666 6.106

dr root (bucket) depth 750 1250

M0 initial value for previous month’s soil 0.15 0.25

Table 4.2: Summary of the VSLite model parameters to be used for the implementation

of the Bayesian Sensitivity Analysis of the model.

• Selecting design points

To fill the design space for the sensitivity analyses, a Latin Hypercube De-

sign (LHD) was used. LHD is a popular approach for space-filling designs for

computer experiments proposed by McKay et al. (1979). It assures that all
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parts of the range of each parameter are well covered in the sample space.

This space-filling approach divides the input space into regions of equal prob-

ability and randomly assigns points that are distributed evenly across the

probability-space.

We used the GEM-SA (http://www.tonyohagan.co.uk/academic/GEM/index.

html) software to create the Latin Hypercube design points for the VSLite

model parameters. The software only requires the number of input param-

eters (p), the number of design points (d), and each parameter space range

(upper and lower values). The VSLite model has 11 parameters (p = 11).

The size of the finite set of design points required for building emulators is

supposed to be equal to number of parameters d times ten (d = p × 10)

(Oakley and O’Hagan, 2004; OHagan, 2004), ensuring full coverage of the

parameter space. In the VSLite model case, d = 11×10 = 110 design points.

• Constructing the GP emulator

Having successfully selected the design points for the input parameter space,

the simulator (VSLite model) was evaluated at d selected design points to

produce the “training set” yi, i = 1, . . . , d. Then, the Gaussian process

regression, detailed in Section 3.4, was fitted to the training data y to build

an emulator for the VSLite model. The created emulator was then used as a

surrogate for VSLite to conduct the sensitivity analysis.

• Estimating the sensitivity measures

Finally, all the sensitivity measures, the main and total effects factors (de-

scribed in Section 3.4.2), for all model parameters were computed using the

posterior distribution of the constructed GP emulator. Consequently, the

impact of each of the VSLite model parameter was quantified, and the most

influential parameters of the model were determined.
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4.4 Results

This section contains plots of results for the experiments suggested in the previous

section. The Bayesian sensitivity analysis was performed for the VSLite model at

26 different geographical locations around the world for which climate data records

(temperature and precipitation) and real tree-ring width data (Quercus or Pinus)

are available. These site were chosen randomly, and the reason for choosing these

two species is that they are the two most reliable tree-species for dendrochronolog-

ical and palaeoclimatological studies. The locations were also selected to cover a

wide range of climates. Figure 4.4 shows the distribution of these locations on the

map. The geographical information and tree species of each of the selected sites

are given in Table 4.3.
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Figure 4.4: Locations of the 26 sites chosen to perform the Bayesian sensitivity anal-

ysis for the VSLite model. Horizontal lines represent latitudes and vertical lines are

longitudes.

To perform Bayesian sensitivity analysis for the VSLite model parameters at

each of the 26 geographical sites shown in Figure 4.4, monthly climate records

(temperature and precipitation) were used to run the model at each site. These

climate records were obtained from the Climate Research Unit CRU (CRU-TS3.21

dataset), described in Section 4.1.2. A simple function was written in R to se-
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Site Site code in ITRDB Taxon Country Latitude Longitude Chronology length

1 morc018 Quercus Morocco 32.97 -5.07 1450-1980

2 ca544 Pinus USA /CA 34.17 -117.12 1707-1988

3 chin056 Pinus China 34.47 110.08 1458-2005

4 alge003 Pinus Algeria 34.6 3.12 1854-2006

5 az564 Pinus USA/AZ 35.23 -111.57 1931-2003

6 syri003 Pinus Syria 35.78 36.02 1882-2001

7 tuni003 Pinus Tunisia 35.85 9.3 1874-2003

8 ca530 Pinus USA/CA 36.45 -118.22 917-1987

9 ca615 Quercus USA/CA 39.02 -122.82 1642-1996

10 turk039 Pinus Turkey 39.23 28.78 1792-2004

11 co523 Pinus USA/CO 39.32 -106.08 1050-1985

12 spai020 Quercus Spain 40.67 -0.33 1763-1991

13 mt125 Quercus USA/MT 46.27 -110.53 1602-2009

14 swit179 Quercus Switzerland 46.77 9.82 1733-2005

15 aust111 Pinus Austria 48.12 16.25 1766-1995

16 ukr001 Quercus Ukraine 48.15 24.52 1676-2003

17 germ059 Quercus Germany 48.92 12.62 1917-2001

18 brit064 Quercus UK 51.07 -1.38 1629-2009

19 brit012 Quercus UK 51.8 -1.12 1781-1978

20 brit053 Quercus UK 53.37 -1.5 1759-2003

21 swed313 Pinus Sweden 56.77 16.55 1858-2006

22 cana301 Quercus Canada 61.43 -121.27 1689-1998

23 russ155 Pinus Russia 62.93 76.38 1726-1994

24 russ205 Quercus Russia 66.28 123.92 1551-2007

25 finl072 Pinus Finland 68.22 24.05 1724-2006

26 norw007 Pinus Norway 69.42 25.63 1698-2001

Table 4.3: Summary of geographical information for 26 sites chosen to perform the

Bayesian sensitivity analysis for the VSLite model. They are sorted by site latitudes.

lect the nearest half-degree of gridded climate output for each site. These time

series of monthly climate can be obtained from the Climate Research Unit website

(http://badc.nerc.ac.uk/data/cru/).

The Bayesian sensitivity analysis was performed at each of these 26 sites sep-

arately, and then the results of the analysis were compared to understand the

behaviour of the model at different locations with various climate conditions. By

way of illustration, the following section shows the results of performing the BSA

for the VSLite model parameters at a single site (Sheffield, UK).
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4.4.1 Applying BSA for the VSLite Parameters at

Sheffield

Using several steps for the Bayesian sensitivity analysis (discussed in detail in Sec-

tion 4.3), we performed a sensitivity study for the VSLite model at our illustration

site (Sheffield). The target was to examine how sensitive the simulated ring-width

indices from the model to each individual VSLite parameter, so that one can learn

about the true values of the most influential parameters with a view to reducing

the uncertainty in the model output. To evaluate variance-based sensitivity factors,

the following steps were undertaken.

First, we specified a minimum and maximum value for each of the eleven in-

put parameters of the model, and then a probability distribution (uniform), based

on the available information about the parameter, was defined for each model pa-

rameter. Second, a combination of 110 design points of the input parameters were

generated using a Latin-Hypercube design method (described and discussed in Sec-

tion 4.3), to obtain a good representation of the sample space of each parameter.

We then ran the VSLite model at those generated design points to provide the

training data, y, of the model output. The Gaussian process regression (described

in Section 3.4) was then fitted to the training data and an emulator for the VS-

Lite model was built. Finally, we calculated the sensitivity analysis measures from

the posterior distribution of the VSLite emulator. The following are the results of

conducting the BSA for the VSLite model at our illustration site (Sheffield).

4.4.1.1 Emulator Performance

The accuracy of the constructed emulator should be checked before using it to

perform the sensitivity analysis for model parameters. The performance of the

GP emulator can be examined by the quantitative values of both the variance of

the emulator (σ2) and the value of the “roughness parameter” (ω) for the model

parameters. The values of these hyperparameters show the quality of the emulator.

σ2 determines the overall performance of the model and it is scaled from zero to
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one, which measures the quality of the fit of the emulator to the original model

code. The lower the value of σ2, the better the created emulator is; where zero

indicates perfect emulator. Roughness hyperparameters ω provide estimates of the

smoothness for each parameter, which determine how strongly the created emulator

responded to each particular parameter. At our chosen site, Sheffield, the variance

of the constructed emulator was (σ2 = 0.4861) which indicates that the model

parameters show only moderate divergence from linearity, hence suggesting that

our constructed emulator is good and well approximated the original VSLite model.

Furthermore, the values of the roughness parameters are as follows,

ω =
[
ω1, ω2, . . . , ω11

]
=
[
0.55, 1.32, 0.23, 0.63, 0.28, 0.11, 0.10, 0.29, 0.14, 0.23, 0.80

]
.

These values are relatively low (less than one) for most of the VSLite model pa-

rameters which implying that the emulator responds smoothly to most of the input

parameter variations, and hence the created emulator is a useful representation of

the VSLite model.

Having constructed a good emulator for the VSLite model, the sensitivity analy-

sis measures can be inferred from the resulting emulator. The following subsections

show the SA results for the VSLite model in Sheffield.

4.4.1.2 Main Effects and Total Effects

The main and total effects factors (detailed in Section 3.4.2) for each of the model

parameters were calculated in order to examine the impact of each of them, and

identify the most influential parameter(s) affecting the variability in the simulated

tree-ring width indices by the VSLite model. The main effect of any input param-

eter measures (in percentage) the impact of changing the value of that parameter

over its input space; while the total effects of any parameter measures the main ef-

fects of that parameter plus all the pair-wise interactions with all other parameters

simultaneously.
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Table 4.4 shows results of performing SA of the VSLite model at our illustra-

tion site, Sheffield. The parameters, with considerable main effects on the model

output variability, are highlighted in grey. The total effects factors were also calcu-

lated, which indicates how each VSLite parameter contributed to the model output

variation when all its interaction with the other model parameters are considered.

Input parameters Main effects (%) Total effects (%)

T1 18.07 21.85

T2 68.67 74.53

M1 0.39 1.29

M2 0.83 3.12

Mx 0.06 1.77

Mm 0.05 1.02

αa 0.14 1.14

αb 0.10 1.75

αc 0.09 1.14

dr 0.07 1.65

M0 0.18 2.27

Total 88.65

Table 4.4: Main effects and total effects factors for VSLite model parameters at Sheffield

site. Highlighted is the most influential parameters.

As shown in Table 4.4, the percentage variance contribution of input param-

eters varies from 0.05% to 68.67%. The main effects sum to 88.65% of the total

variation in model output, indicating that the impact of all possible interactions

between model parameters sum to 11.35%. It is clear that the most influential

input parameters, with the largest contribution on the model output uncertainty,

are T2 with 68.67% and T1 with 18.07%. Under the climatic conditions at this

geographical location, these two parameters together are responsible for almost

86.74% of the variation in tree-ring width indices simulated from the model. This

indicates that any changes in these two parameters will affect the model outputs

significantly. Thus, the uncertainty in the model output, at this location, would

be decreased noticeably by learning true values of these two parameters.

The results in Table 4.4 also demonstrate that some interactions between the

VSLite parameters exist. These can be seen by observing the total effects (col-

umn 3) of each parameter, which assess the magnitude of pair-wise interactions of
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each individual parameter with all other model parameters. For instance, the total

effect of the M2 shows that although the main effect of this parameter was very

low (0.83%), the total effects of this parameter with the others is (3.12%) which

suggest that the interaction of parameter with others is relatively influential. In

other words, due to its interaction with T1 and T2, M2 is also an important parame-

ter in the model, but its influence is not substantial compared to effects of T1 and T2.

Figure 4.5 shows the main effects and the total effects plots for the VSLite model

parameters at our illustration site, Sheffield. It provides a visual representation of

the sensitivity analysis results represented in Table 4.4.
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Figure 4.5: Sensitivity of each parameter on variability of the simulated ring-width indices

from the VSLite model at Sheffield. Main effects (left panel) and total effects (right panel)

show the contribution of each parameter to the variability of the model output.

This section demonstrates the results of performing the Bayesian sensitivity

analysis for the VSLite model at a single geographical location in the UK. As

the simulated ring-width indices from the VSLite is a function of monthly climate

variables and a combination of model parameters, the model’s behaviour might

vary from one location to another. Consequently, the sensitivity analysis might

also vary for different areas. Therefore, the BSA of the model parameters should

be assessed in a variety of locations with different climate conditions. This will

help us to understand the contribution of each parameter to the uncertainty in the
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model output under different climate conditions.

4.4.2 BSA of VSLite Model at Different Climatic Regions

Bayesian sensitivity analysis of the VSLite model was performed at 26 different

locations around the world to study the behaviour of this model globally. Table

4.5 shows a summary of the results obtained.

Site
Site

code
Taxon T1 T2 M1 M2 Mx Mm αa αb αc dr M0

Var

(%)

5 morc018 Quercus 18.86 48.41 0.33 9.86 0.12 0.99 0.09 0.09 0.2 0.65 0.31 79.91

6 ca544 Pinus 16.40 34.90 0.85 31.14 0.54 0.09 0.35 0.22 0.16 0.33 0.20 85.18

7 chin056 Pinus 12.62 36.33 0.22 34.03 0.27 0.41 1.23 0.08 0.06 0.44 0.54 86.23

8 alge003 Pinus 19.94 13.69 0.24 36.01 0.11 0.29 0.74 0.08 0.43 0.17 0.33 72.03

9 az564 Pinus 13.8 53.35 0.1 6.17 0.19 0.37 0.41 0.24 0.29 0.32 0.31 75.55

10 syri003 Pinus 19.09 39.16 0.07 7.38 0.23 0.8 0.36 0.25 0.3 1.07 0.7 69.41

11 tuni003 Pinus 19.57 30.23 0.28 14 0.48 0.22 0.16 0.5 0.45 1.46 0.33 67.68

12 ca530 Pinus 21.02 61.12 0.49 5.13 0.51 0.24 0.38 0.18 0.11 0.24 0.28 89.07

13 ca615 Quercus 10.70 30.50 0.64 36.20 0.77 0.15 0.43 0.57 0.49 0.97 0.31 81.73

14 turk039 Pinus 16.91 55.5 0.11 5.89 0.24 0.12 0.19 0.28 0.06 0.19 0.1 79.59

15 co523 Pinus 17.30 37.70 0.37 28.40 0.43 0.37 0.25 0.61 0.19 0.81 0.42 86.85

16 spai020 Quercus 23.67 38.87 0.19 9.78 0.28 0.58 0.12 0.56 1.06 0.17 0.25 75.53

17 mt125 Quercus 12.64 51.66 0.37 11.13 0.66 0.07 0.95 0.09 0.09 0.18 0.43 78.27

18 swit179 Quercus 41.55 25.43 0.11 1.29 0.08 0.07 0.23 0.16 0.31 1.42 0.57 71.22

19 aust111 Pinus 14.62 52.88 0.32 7.58 0.23 0.36 0.33 0.26 0.14 0.09 0.5 77.31

20 ukr001 Quercus 16.97 68.12 0.33 0.15 0.19 0.05 0.31 0.51 0.36 0.33 0.27 87.59

21 germ059 Quercus 10.57 67.24 0.32 1.36 0.2 0.08 0.09 0.07 0.08 0.18 0.37 80.56

22 brit064 Quercus 14.07 41.12 1.23 21.72 0.84 0.13 0.17 0.38 0.29 0.51 0.64 84.10

23 brit012 Quercus 15.03 48.71 0.75 13.35 0.28 0.34 0.22 0.19 0.27 0.43 0.79 80.36

24 brit053 Quercus 18.07 68.67 0.06 0.83 0.39 0.05 0.14 0.1 0.09 0.07 0.18 88.65

25 swed313 Pinus 16.89 50.81 0.52 10.55 0.27 0.1 0.31 0.31 0.13 0.07 0.12 80.08

26 cana301 Quercus 15.25 35.11 0.81 21.95 0.14 0.16 0.84 0.07 0.88 1.06 0.11 76.38

27 russ155 Pinus 8.6 49.87 0.13 5.32 0.32 0.57 0.18 0.52 0.66 0.89 0.33 67.39

28 russ205 Quercus 8.01 29.83 0.12 31.69 0.1 0.13 0.16 0.3 0.1 0.32 0.59 71.34

29 finl027 Pinus 21.2 49.39 0.95 2.07 0.81 0.28 0.42 0.35 0.94 0.11 0.16 76.68

30 norw007 Pinus 23.43 44.4 1.44 0.71 0.97 0.15 0.29 0.67 0.92 0.18 0.2 73.36

Table 4.5: Summarised results from the Bayesian sensitivity analysis of the VSLite model

at 26 chosen sites. The percentage variance attributed to the variation in each individual

input parameter in the model (columns 3-13), and the total output variance of the model

explained by the main effects at each site (column 14). Highlighted in grey is the input

parameter at each site which contributes most to the model output variability.
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It is worth noticing from the results in Table 4.5 that three parameters (T1,

T2 and M2) contribute most to the model output variability at all locations. The

whole uncertainty of the model output (tree-ring width indices) is almost totally

controlled by these three parameters, which reveals that the simulation of ring-

width indices from the VSLite model are strongly sensitive to these parameters.

However, the degree of effect among these three parameters varies from one site

to another. For example, the parameters T1 and T2 are influential at almost all of

the 26 geographic sites with different degree of influence. The only exception are

sites “indo005” and “keny002” where M2 is dominant. M2 also is very influential

at some other sites, such as “arg113”, “russ205”, and “ca615”, and is not at all

influential in some others, such as sites “norw007” and “uk001”. This suggests that

any changes in these three influential input parameters will affect the variability

of the model output substantially. Hence, if we want to reduce the model output

uncertainty in any particular location we should learn about the true value of the

most influential parameters at that location.

To conclude, the VSLite model parameters which have the greatest impact on

the simulation of tree-ring width indices at these 26 sites are T1, T2 and M2. How-

ever, the growth threshold parameter M1 appears to have little effect on the model

output variability which suggests that the tree-ring growth is insensitive to the

lower soil moisture threshold. Similarly, the contribution for each of the other seven

VSLite parameters is less than 1%, which indicates that they are not influential

on the variability of the model output. This is because the threshold parameters

(T1, T2, and M2) directly affect the growth of ring-widths. However, the other 7

model parameters relate to the sub-model used to generate monthly soil moisture

content, and so only indirectly affect the formation of tree-rings. Therefore, the

most reasonable way is not to investigate the sensitivity of these seven parameters

on the tree-ring width simulation, but instead to investigate their impact on the

soil moisture simulation (Leaky Bucket model), because they are directly related

to this latter model. In other words, if the interest were on understanding the
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impact of each of these seven parameters on the soil moisture contents, one can

easily perform the BSA for the Leaky Bucket model parameters to investigate that.

Our results are in agreement with those reported by the model developers

(Tolwinski-Ward et al., 2011), who suggested that only the four threshold param-

eters directly control the tree-ring formation through the partial growth response

functions to temperature and soil moisture. Thus, it is logical that these parameters

have a direct impact on the simulation of tree-rings from the model. Furthermore,

they suggested that the impact of these four parameters is likely equal on the for-

mation of tree-rings. However, we show that they are not equally likely effectual,

and their contribution to the model output variability varies from one site to an-

other. It is true that these four parameters are driving the uncertainty in the model

output, but their ranking in terms of their influences is also site-specific, and varies

from one site to another depending on the climatic conditions.

4.4.3 Sensitivity of VSLite Parameters to Climate Data

In the previous section we estimated the main effect factors for each of the VSLite

model parameters at 26 different geographical locations. In this section we will

summarise the effect of each individual parameter on the model output variability

at different climate regions (with different climatic conditions: temperature and

precipitation). In order to achieve that, we used an R package called “akima”

which implements bivariate interpolation onto a grid for irregularly spaced input

data. We utilized “akima” package to draw 3D figures for exploring the effect of

the VSLite parameter on the model output variability to understand the influence

of each individual parameter under different climates. This would help us to under-

stand under every climatic scenario which model parameter is the most influential.

Figure 4.6 demonstrates the main effects of each of the key VSLite model param-

eters separately under different climate conditions. The plots in Figure 4.6 confirm
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Figure 4.6: The sensitivity of VSLite parameters to the model input variation under dif-

ferent climate variables (mean monthly temperature and precipitation). Various colours

represent the percentage of contribution (main effect) of each parameter to the model

output variability, where blue is low and red is high.

that three parameters of the VSLite model (T1, T2 and M2) contribute most to the

variability of tree-ring widths simulated by the VSLite model. However, the impact

of each is clearly not uniform across the climate range. For example, the parameter

T1 (Figure 4.6; top left panel) is influential to the model output variation in regions

where temperature is relatively low and precipitation is high, while the parameter

T2 (Figure 4.6; top right panel) plays a significant contribution to the model output

variation across a much wider range, but particularly in regions where the temper-
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ature is between about 0 ◦C to 10 ◦C and the precipitation is between about 50 to

120 mm. The parameter M1 (Figure 4.6; bottom left panel) has little contribution

to the variation in model output in almost all different regions, and the tree-ring

simulation from the VSLite model is insensitive to this parameter no matter what

the climatic condition is in that region. However, the parameter M2 (Figure 4.6;

bottom right panel) is very influential on the model output variation in regions

where the temperature is extremely high and the precipitation is very high too.

Similar to the parameter M1, the percentage contribution of each of the last

seven model parameters to the variability in tree-ring simulation was very small

(less than 1%). Since their plots were very similar to that of the parameter M1,

we do not report them here, and the reader is referred to the BSA results for these

parameters in Table 4.5.

Figure 4.6 helps us to understand under each climatic condition which input

parameter is most important to the variation of the tree-ring width simulation from

the VSLite model. The result can be classified and interpreted as follows:

• Cold and wet regions: in the regions when temperature is low and precipita-

tion is high, T1 and T2 are influential, M1 and M2 are not influential.

• Cold and dry regions: in the regions when temperature is low and precipita-

tion is low, parameters T2 and M2 are influential to the model output with

T2 dominant.

• Hot and wet regions: in the regions when temperature is high and precipi-

tation is high, only T2 and M2 are influential to the model output with M2

dominant.

• Hot and dry regions: in the regions when temperature is low and precipitation

is high, parameters T2 and M2 are influential to the model output.

• Moderate climate: in the regions with moderate temperature and precipi-

tation, parameters T2 and M2 are influential to the model output with T2

dominant.
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Therefore, the results of performing the Bayesian sensitivity analysis for the

VSLite model enables identifying the most influential input parameters at each

climate region, and also ranking/ordering the model parameters in terms of their

importance. This is an essential step, especially when we want to make inference

about the model parameters and learn about their true values.

The results of performing the BSA for varying all the VSLite model parameters

together show that the main growth threshold (T1, T2, M1, M2) contribute most

to the variance in the tree-ring width simulation, with lesser contribution of the

parameter M1. The next step is to investigate the sensitivity of varying just these

four parameters with their interactions to the model output variation. In the next

section we will ignore the impact of the last 7 parameters, and just explore the sensi-

tivity of the main four growth threshold parameters to the model output variability.

4.4.4 SA of Main Growth-threshold Parameters with

their Interactions

The results of performing probabilistic sensitivity analysis, varying all 11 VSLite

model parameters together, showed that the contribution of the last 7 parame-

ters to the total variance of tree-ring simulation were very small, and the main

growth threshold parameters (T1, T2,M1,M2) contributed the most to the variance

in the tree-ring widths simulation. Consequently, in this section we investigate the

sensitivity of these four parameters with their pair-wise interactions to the model

output variability, and ignore the effect of the last 7 parameters. This is to ex-

amine whether there is any significant effects of any pair-wise interactions between

the most influential parameters. We followed the same methodology performed in

the previous sections to carry out the BSA; however, instead of varying all the 11

VSLite parameters, we varied just growth response parameters with a view to un-

derstanding how changes in these four parameters and their interactions will affect

the model output variability. The last 7 parameters of the model were fixed to
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their optimal values (given in Table 3.1) which we found in the literature and were

used by the model developers (Haung et al., 1996; Tolwinski-Ward et al., 2011;

Vaganov et al., 2006). Table 4.6 illustrates the results of performing BSA for the

VSLite model at Sheffield site when varying only the main four growth response

parameters.

Parameters Main effects (%) Total effect (%)

T1 31.02 34.69

T2 59.36 64.01

M1 0.78 4.11

M2 1.05 4.40

T1T2 1.75

T1M1 1.15

T1M2 0.77

T2M1 1.25

T2M2 1.65

M1M2 0.93

Total 99.71

Table 4.6: Main effect and pair-wise interactions, and total effects of the main four VSLite

model parameters at Sheffield site.

Results in Table 4.6 shows that T1 and T2 are the most influential parameters

for the variance of the simulated tree-ring widths, with T2 dominant. The main

effects of these two parameters alone sum to 90.38% of the total variance, while

that of all four parameters and their interactions sums to 99.71% of the total vari-

ance; note that the main effects sum to approximately 100% due to including all

the possible interactions. Table 4.6 also provides the effect of pair-wise interactions

between model parameters which measure the amount of impact that these pair-

wise interactions have on the model output variability. It is worth noticing that

although the main effects of the parameter M1 alone is very low (less than 1%),

the interaction of this parameter with the others is rather larger. The main effect

of pair-wise interactions T1T2, T1M1, T2M1, and T2M2 are relatively high (bigger

than 1%), and therefore if taken together they might be influential to the model

output variation, a feature of VSLite not explicitly noted by previous authors.
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Results in this section show that the variability in the tree-ring widths simulated

from the VSLite model, at Sheffield site, are almost totally controlled by the main

four growth threshold parameters, which in total with their pair-wise interactions

sum to 99.71% of the whole output variance. Similar results were also obtained,

but not reported here, for the remaining 29 sites used in our investigations. This

means that special attention should be paid to these four input parameters when us-

ing the VSLite model for any dendrochronological and palaeoclimatological studies.

4.5 Summary and Conclusions

In this chapter we implemented the VSLite model at different geographical locations

around the world. We also applied a Bayesian sensitivity analysis (BSA) for the

model which uses a Gaussian process emulator to explore the uncertainty in the

model output. An emulator was successfully built for the model and then used to

compute a range of variance-based sensitivity measures. To our knowledge, this is

a first attempt made to apply this method to the VSLite. It is useful because it

enables us to systematically identify the most influential input parameters in the

model, and rank them in terms of their influence on the model output (tree-ring

widths) variability.

Our results showed that, in general, parameters T1, T2 and M2 appeared to

have the biggest contribution to the model output variation. This suggests that

the simulation of ring-widths from the VSLite model is strongly sensitive to at least

one of these three parameters. The degree of impact among these three parameters

however varies from one site to another. For example, T2 had greatest impact on

the model output variation in almost all of the 26 studied sites, whilst the param-

eter M2 was very influential at some sites, but less influential in others depending

on the climate data used to run the model.

In the next chapter we will utilize the results obtained in this chapter to fit
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the VSLite forward model to tree-ring width data of known ages. We will use

a Bayesian approach for estimating the most influential parameters in the model

with a view to reducing the variability in the simulated ring-width indices before

using the model for the dating purposes in the following chapter. The Bayesian

approach enables us to combine the tree-ring data and our prior knowledge about

the unknown parameters in each site of interest to make inference and learn about

the true values of uncertain parameters.
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Chapter 5

Bayesian Estimation for VSLite

Model Parameters

5.1 Overview

The VSLite model has 11 uncertain parameters which drive the uncertainty in the

model output. In the previous chapter we implemented the deterministic version

of the model at different geographical locations around the world, and also used

sensitivity analysis to explore model output uncertainty then quantitatively iden-

tified the most influential parameters in the model. This investigation allowed us

to identify the most influential input parameters in the model, and rank them in

terms of their influence on the model output variability. We concluded that three

of the 11 VSLite parameters were most influential to the model output variability.

In this chapter, we use a hierarchical Bayesian modelling approach (offered in

Section 5.3) to fit the VSLite forward model to tree-ring chronologies. This will

help us to make inferences about the model error and the most influential uncer-

tain parameters in the model with a view to learning about their true site-specific

values. Taking only the most influential parameters into consideration helps to

speed up the parametrization process and make inference about the model uncer-

tainty. The main difference between Bayesian and classical inference is that the

former allows us to quantify our beliefs about the unknown parameters via prior
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distributions. However, the estimation of the VSLite model parameters at any par-

ticular region requires the availability of an annual ring-width chronology as well as

monthly climate data (temperature and precipitation) for the site of interest. For

this purpose, we investigated the Bayesian implementation of the VSLite model at

a range of geographic locations in the UK, which has many ring-width chronolo-

gies and also has the longest climate data in the world. The available tree-ring

chronologies in the UK are described in Section 5.2, and the Bayesian approach

is outlined in Section 5.3. Results of applying the Bayesian approach to estimate

VSLite growth threshold parameters for Quercus and Pinus trees in the UK are

presented in Section 5.4.

5.2 Tree-ring Chronologies in the UK

Tree-ring data of two tree-species, Quercus and Pinus (the two most popular species

used by dendrochronologists and dendroclimatologists) were chosen to fit the VS-

Lite model and make Bayesian inferences about model parameters. The tree-ring

data of known age for a range of geographical locations in the UK were obtained

from the International Tree-ring Data Bank (ITRDB). The locations vary in the

number of trees and the time period they cover. Figure 5.1 illustrates the geo-

graphic distribution of the selected locations that are chosen due to the availability

of tree-ring width data of known age and their overlapped climatic records. The

locations are well spread around the UK.

To avoid double use of the same dataset in the inference problem, the individual

tree-ring data, at each site, were split into two equal groups, training (50%) and

testing (50%) data. The training data were used in this chapter for estimating the

VSLite growth threshold parameters. The testing data will be used in the following

chapters for Bayesian implementation of the VSLite model and matching process

(cross-matching undated sequences to a dated master chronology).

For each of the UK locations, a time-series of monthly temperature, T, and

precipitation, P, data were also obtained from the Climate Research Unit (CRU-
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Figure 5.1: Distribution of the UK tree-ring chronologies of known age. Circles indicate

Pinus and triangles indicate Quercus trees.

TS3.21), described in Section 4.1.2. These are not observational data but gridded

model outputs estimated by Harris et al. (2014) using climate observations from

meteorological stations. For each site, the nearest half-degree of these data were

chosen and used as inputs to the VSLite model to generate ring-width sequences.

5.3 Bayesian Approach to Estimating VSLite

Parameters

The VSLite model (introduced in Section 3.2.2) provides a useful tool for represent-

ing the relation between climate and ring-width growth. In the previous chapter,

we showed that a simulated chronology’s response to local climate variables was

driven mostly by three growth threshold parameters (T1, T2, and M2) which link

the climate to the modelled ring-width indices. Therefore, if we need to control

the uncertainty in the VSLite model output, and then eventually use the model
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for cross-matching sequences, it is likely to be important to learn about the true

values of these key parameters for any specific site under study.

With this motivation in mind, we used a Bayesian parameter estimation ap-

proach (Tolwinski-Ward et al., 2013) to estimate the growth threshold parameters

of the VSLite forward model. Tolwinski-Ward et al. (2013) originally applied their

approach to Pinus trees in the USA alone. Additionally, they used noninformative,

flat priors for the unknown parameters. In this chapter, we develop the Bayesian

approach to use more realistic and informative priors and to estimate the growth

threshold parameters, not only for Pinus but for Quercus trees as well, in the UK.

The reason for choosing the UK for this investigation is the availability of relatively

long observational climate records, which allows us, eventually, to investigate the

use of the VSLite model for cross-matching ring-width sequences for dendrochronol-

ogy (not just dendroclimatology as the original authors did). The four site-specific

growth threshold parameters T1, T2, M1 and M2 can be estimated given actual

ring-width chronologies under the Bayesian framework as follows. Although M1 is

not an influential parameter (as investigated in the previous chapter), we include it

here in our Bayesian inference in order to compare our results with those obtained

by model developers.

5.3.1 The Model

The ring-width indices yt in year t (at the site of interest) is modelled as a VSLite

model output Ŵt plus stochastic noise εt,

yt = (
√

1− σ2
ε )Ŵt + εt, (5.1)

where ;

• yt = (y1, y2, . . . , yn) is the observed site chronology of ring-width indices of

length n years, obtained from using the method described in Section 2.3.

• Ŵt = (W1,W2, . . . ,Wn) is the deterministic VSLite estimate (as detailed

in Equations 3.7 to 3.11) of a tree-ring width sequence of length n years

98



given monthly temperature T and precipitation P inputs, the model growth

response parameters θ = (T1, T2, M1, M2), and site latitude φ,

Ŵt = f(T,P, φ, T1, T2,M1,M2).

For more information about calculating Ŵt, the reader is referred to the

description of the VSLite model in Section 3.2.2.

• εt = (ε1, ε2, . . . , εn) is the stochastic noise (error) vector accounting for both

non-climatic factors (soil conditions, competition for light and nutrients, the

presence of pests and diseases, and attack by humans or animals) and for

influences of time series of processes that VSLite was not able to capture. εt

follows an independent and identically distributed (i.i.d.) normal distribution

with mean 0 and variance σ2
ε , i.e. εt ∼ N(0, σ2

ε ).

• σ2
ε = Var(εt), is the variance of the model errors, and σ2

ε ≤ 1.

• Since both the time series of data and of VSLite output are standardized to

have zero mean and unit variance, the sum of the climatic signal variance and

the model noise variance is 1. “The coefficient
√

1− σ2
ε on the estimate from

VSLite gives the proportion of the observed data’s standard deviation that

can be explained by VSLite as signal” (Tolwinski-Ward et al., 2013, p.1483),

and therefore the signal-to-noise ratio is R =
1−σ2

W

σ2
W

.

5.3.2 The Likelihood

Given the data vector yt = (y1, y2, . . . , yn) of observed ring-width indices, the time-

series of monthly climatic variables, and the VSLite growth threshold parameters,

the likelihood for the model is defined as

p(y|T,P,θ, σ2
ε ) ∝ exp

{
− 1

2σ2
ε

(yt −
√

1− σ2
ε Ŵt)

2
}
. (5.2)

Note that the dependence on the VSLite growth threshold parameters θ = (T1,

T2, M1, and M2) is implicit in the deterministic estimate of the VSLite model out-
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put Ŵt, and σ2
ε indicates the error variance associated with the model uncertainty.

5.3.3 Specifying Priors

Under the Bayesian paradigm prior distributions are needed in order to make in-

ference about the unknown parameters T1, T2,M1,M2, and σ2
ε . For the mathemat-

ical convenience, all model parameters are assumed to be mutually independent

(Tolwinski-Ward et al., 2013), and this allows definition of the joint prior distribu-

tion as the product of individual prior models for each,

p(T1, T2,M1,M2, σ
2
ε ) = p(T1) p(T2) p(M1) p(M2) p(σ2

ε ).

5.3.3.1 Prior for growth threshold parameters

Site-specific growth threshold parameters (T1, T2,M1, and M2) are necessary due

to different climatic conditions and tree species. The selection of the prior dis-

tributions for these four parameters are based on a survey of current literature

pertaining to biological growth thresholds in trees. Unlike the VSLite model devel-

opers (Tolwinski-Ward et al., 2013) who used broad uniform and beta priors, we

suggest using gamma distributions to represent our beliefs about the four VSLite

growth threshold parameters.

We used gamma distribution priors for these parameters for two reasons. First,

the gamma distribution has a non-negative range and a density function with slowly

decaying tails, which makes it widely used for describing skewed data; and this is

a feature of the VSLite partial growth response curves to temperature and soil

moisture, which are functions of the growth threshold parameters. Second, the

gamma distribution allows us to explore values for the VSLite growth threshold

parameters outside the “optimal” ranges given in Table 3.1, which were defined

by Tolwinski-Ward et al. (2011) for Pinus trees. This flexibility would allow us to

apply the model not just to Pinus trees, but also to other species, such as Quercus

trees.
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We chose the mean of our gamma prior for each of the four growth response

parameters to be equal to those used by the model developers (Vaganov et al.,

2006). In addition, we modelled our gamma priors with shape (α) and scale (β)

parameters consistent with general scientific interpretation (determined by experts

and given in Table 3.1) about the tree growth responses to both temperature and

soil moisture variables. The Gamma distribution is defined by

f(x) =

 1
Γ(α) βα

xα−1e−x/β, for x ≥ 0

0 otherwise

with α, β ≥ 0 and

Γ(α) =

∫ ∞
0

xα−1 exp(−x) dx.

The expected value and variance of the Gamma distribution are E(x) = αβ

and V (x) = αβ2, respectively. Figure 5.2 shows probability density functions for

the Gamma with a selection of shape and scale parameters.

We use gamma distributions to represent our prior beliefs about the unknown

growth parameters of the VSLite model as follows. For the parameter T1, the min-

imum threshold temperature for ring-width growth to occur, we defined a gamma

prior distribution T1 ∼ Γ(αT1 , βT1) with shape αT1 = 10 and scale βT1 = 0.5 sup-

ported on the range [0,∞] which covers the optimal range of the T1 parameter.

This prior gives a mean of 5 ◦C which is consistent with the widely accepted values

suggested by Korner (2012).

There is little information available about T2, the maximum threshold param-

eter which ring-width growth is no longer sensitive to temperature variabilities, in

the literature. Vaganov et al. (2006) used a default value of 17 ◦C in their case stud-

ies to simulate tree-ring sequences at different geographical locations. We define a
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Figure 5.2: Probability density function of Gamma with different shape and scale pa-

rameters.

gamma prior distribution for this parameter as,

T2 ∼ Γ(αT2 = 34, βT2 = 0.5).

The above prior gives a mean of 17 ◦C which is very close to that used by Evans

et al. (2006); Shi et al. (2008); Tolwinski-Ward et al. (2013); Touchan et al. (2012).

Similarly, we chose Gamma prior distributions for the two soil moisture growth

threshold parameters M1 and M2 as follows,

M1 ∼ Γ(αM1 = 3.5, βM1 = 0.01),

M2 ∼ Γ(αM2 = 2.5, βM2 = 0.1),

where these two priors gives a mean of 0.035 and 0.25 for M1 and M2 respectively.

102



These two means are very close to those used by Tolwinski-Ward et al. (2013) as

default values.

Prior for σ2
ε

The prior for the model error variance σ2
ε was chosen to be conjugate. In the

Bayesian hierarchical model, the inverse-gamma distribution is often used for the

model variance parameter due to the conjugacy properties between the normal

and inverse-gamma distributions which simplifies the sampling procedure (Gelman,

2006; Gilks et al., 1996). Accordingly, the prior distribution for σ2
ε was chosen to

be inverse-gamma with parameters αε = 0.01 and βε = 0.01,

σ2
ε ∼ Inv-Gamma(αε = 0.01, βε = 0.01).

Due to the use of a conjugate prior for this parameter the resulting posterior dis-

tribution is also inverse-gamma.

In summary we have the prior distributions for the VSLite model parameters

listed in Table 5.1.

Parameters Prior

T1 Gamma(αT1 = 10, βT1 = 0.5)

T2 Gamma(αT2 = 34, βT2 = 0.5)

M1 Gamma(αM1 = 3.5, βM1 = 0.01)

M2 Gamma(αM2 = 2.5, βM2 = 0.1)

ε Normal(0, σ2
ε )

σ2
ε Inv-Gamma(αε = 0.01, βε = 0.01)

Table 5.1: Table of prior distributions for VSLite parameters.
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5.3.4 Obtaining Posterior Distributions

Given prior distributions for the unknown parameters, listed in Table 5.1, and an

expression for the ring-width data, through the likelihood, given in Equation 5.2,

we can obtain the joint posterior distribution of the VSLite parameters using Bayes’

theorem,

p(θ, σ2
ε |y,T,P) ∝p(y|T,P,θ, σ2

ε ) p(θ, σ
2
ε )

∝p(y|T,P, T1, T2,M1,M2, σ
2
ε ) p(T1) p(T2) p(M1) p(M2) p(σ2

ε )

∝
n∏
t=1

(
1

σ2
ε

)
1
2 exp

{
− 1

2σ2
ε

(yt −
√

1− σ2
ε Ŵt)

2
}
× T1

(αT1
−1) e−T1/βT1×

T2
(αT2

−1) e−T2/βT2 ×M1
(αM1

−1) e−M1/βM1 ×M2
(αM2

−1) e−M2/βM2×(
σ2
ε

)−(αε+1)

exp
(
− βε
σ2
ε

)
.

Unfortunately, we are unable to analytically evaluate the posterior distribution

above. However, we can use a Markov Chain Monte Carlo (MCMC) method which

allows sampling from the full conditional distribution for each model parameter.

In what follows we briefly describe the MCMC sampling procedures for the VSLite

model parameters. For more information about general MCMC sampling algo-

rithms, the reader is referred to Gilks et al. (1996).

5.3.5 Sampling Procedure

A Metropolis-Hastings algorithm within a Gibbs sampler, which is a standard

MCMC sampling approach, is utilised in order to draw samples from the posterior

distributions of the model parameters. These procedures can be outlined as follows.

1. Choose starting values T
(0)
1 , T

(0)
2 ,M

(0)
1 ,M

(0)
2 , and σ

2(0)
ε

2. for j = 1 to Nmcmc (MCMC sample size)

a) Draw a proposed value T
′
1 from the prior distribution of T1.

b) Calculate the likelihood of the proposed value,

p(y|T,P, T ′1, T
(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2 , σ

2(j−1)
ε ).
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c) Calculate the likelihood of the current value,

p(y|T,P, T (j−1)
1 , T

(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2 , σ2

ε
(j−1)

).

d) With probability min
{

1,
p(y|T,P,T ′1 ,T

(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2 ,σ2

ε
(j−1)

p(y|T,P,T (j−1)
1 ,T

(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2 ,σ2

ε
(j−1)

}
set T

(j)
1 = T

′
1;

otherwise, set T
(j)
1 = T j−1

1 .

e) Repeat steps (a to d) to update T2, using parameters (T
(j)
1 ,M

(j−1)
1 ,M

(j−1)
2 , σ2

ε
(j−1)

).

f) Repeat steps (a to d) to updateM1, using parameters (T
(j)
1 , T

(j)
2 ,M

(j−1)
2 , σ2

ε
(j−1)

).

g) Repeat steps (a to d) to updateM2, using parameters (T
(j)
1 , T

(j)
2 ,M

(j)
1 , σ2

ε
(j−1)

).

h) Sample a value for σ2
ε

(j)
from its full conditional distribution,

p(σ2
ε |y,T,M, T

(j)
1 , T

(j)
2 ,M

(j)
1 ,M

(j)
2 ).

3. Repeat step (2) until the Markov Chain reaches equilibrium.

4. After the burn-in period and thinning the subsequent iterations of step (2) using

a suitable thin interval (discussed in Section 5.3.8), the resulted iterations are

used as samples from the posterior.

5.3.6 Full Conditional Distributions

The full conditional distribution for each model parameter can be obtained from

the joint posterior distribution above given all other parameters. Occasionally the

conditional posterior distribution obtained has a standard distribution form, and

hence a Gibbs update, which is a standard MCMC sampling method (Geman and

Geman, 1984), can be used to sample draws from the obtained distribution. Alter-

natively, if the derived conditional distribution is not a standard distribution, then

a Metropolis-Hastings update (Hastings, 1970), which is a more general MCMC

sampling method can be performed. The full conditional posterior distributions

for each VSLite parameters are defined below.
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Conditional Posterior Distribution for Growth threshold Parameters

The calculation of the full conditional posterior distribution is similar for each of

the four VSLite growth threshold parameters θ = (T1, T2,M1,M2) = (θ1, θ2, θ3, θ4).

With prior θi ∼ Γ(αi, βi), and the likelihood p(y|T,P,θ, σ2
ε ), the full conditional

distribution for each of the four VSLite parameter θi is

p(θi|y,T,P,θ−i, σ2
ε ) ∝ p(θi) p(y|T,P,θ, σ2

ε )

∝ θi
(αi−1) exp

(−θi
βi

)
exp

{
− 1

2σ2
ε

(yt −
√

1− σ2
ε Ŵt)

2
}

∝ θi
(αi−1) exp

{
−
( θi
βi

+
1

2σ2
ε

(yt −
√

1− σ2
ε Ŵt)

2
)}
.

where i = 1, 2, 3, 4, and θ−i denotes the vector of the four growth threshold param-

eters except θi. The conditional distributions for the parameters θ are not standard

distributions, thus we use the Metropolis-Hastings instead of a Gibbs update.

The Conditional Posterior Distribution of σ2
ε

With prior p(σ2
ε ) ∼ Γ−1(αε, βε), and likelihood p(y|T,P,θ, σ2

ε ), the full conditional

distribution of σ2
ε is

p
(
σ2
ε |y,T,P,θ

)
∝ p(σ2

ε ) p(y|T,P,θ, σ2
ε )

∝
(
σ2
ε

)−(αε+1)

exp
(−βε
σ2
ε

)
× exp

{
− 1

2σ2
ε

(yt −
√

1− σ2
ε Ŵt)

2
}

∝
(
σ2
ε

)−(n
2

+αε+1)

exp

{
− 1

2σ2
ε

( n∑
t=1

(yt −
√

1− σ2
ε Ŵt)

2 + βε

)}
.

This has the form of inverse-gamma density. Thus the posterior distribution of

σ2
ε ∼ Γ−1(aε, bε) where aε = (n

2
+ αε), and bε = 1

2

∑n
t=1(yt −

√
1− σ2

ε Ŵt)
2 + βε.

5.3.7 Further Exploring Hierarchy in Model Parameters

Given the hierarchical nature of the Bayesian modelling structure discussed in this

thesis, we could further extend the inference problem for the model parameters
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by adding another hierarchy layer to the priors of the VSLite growth threshold

parameters, and hence allow for the unknown hyperparameters to be updated from

data. This is statistically defined as follows.

y|T,P, T1, T2,M1,M2, σ
2
ε ∼ N(

√
1− σ2

ε Ŵt, σ
2
ε )

σ2
ε ∼ Inv-Gamma(αε, βε)

T1|αT1 , βT1 ∼ Gamma(αT1 , βT1)

αT1 ∼ U(a1, b1)

βT1 ∼ U(a2, b2)

T2|αT2 , βT2 ∼ Gamma(αT2 , βT2)

αT2 ∼ U(a3, b3)

βT2 ∼ U(a4, b4)

M1|αM1 , βM1 ∼ Gamma(αM1 , βM1)

αM1 ∼ U(a5, b5)

βM1 ∼ U(a6, b6)

M2|αM2 , βM2 ∼ Gamma(αM2 , βM2)

αM2 ∼ U(a7, b7)

βM2 ∼ U(a8, b8),

although other options for modelling the hyper-priors would clearly be available.

The values of the all 18 hyperparameters (αε, βε, a1, . . . , a8, b1, . . . , b8) would be

determined in a way that makes the prior broad and vague to allow for the hyper-

parameters to be updated from data; hence the suggestion of uniform flat priors.

However, we do not implement this model in this thesis for two reasons. First,

it would add considerably to the computational time as we would need to update

nine parameters (αT1 , αT2 , αM1 , αM2 , βT1 , βT2 , βM1 , βM2 , σ
2
ε ), instead of five. We pre-

fer to avoid this extension, because eventually (in the following chapters) we need

to use the model for a matching process as part of the dendrochronological dating

which adds its computational expensive. Second, there is substantial information

available about the optimal values of growth threshold parameters provided in the
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literature, which we use to help define priors for the model parameters without

necessarily needing to add another hierarchy layer.

5.3.8 MCMC Convergence

When performing an analysis using MCMC method, it is essential to check the

convergence (i.e. stationarity) of the chain for each parameter to ensure that it

has converged to the target distribution so that we can make inferences. Reaching

convergence is thus a key implementation issue associated with any MCMC-based

method. There are several types of convergence diagnostics that can be used to

achieve this goal. In Bayesian statistics, we do not only depend on one diagnostic

method, but rather more than one, to check the convergence of parameters. Con-

sequently, we used several diagnostics listed below for assessing the stationarity of

MCMC chains, in this and following chapters.

• Visual inspection

Visually inspecting a time series (trace plot) of the chain for each parameter

to see whether the sequences are moving around the parameter space or get

“stuck” in certain areas. If the MCMC iterations are mixing well (moving

around the parameter space), and the chain does not take a long time to move

around the parameter space, then it is assumed that the chain has converged

to its stationary distribution.

• Different starting values

Different starting values were used to generate several different MCMC chains

for each parameter. When the trace plots of such chains overlap one another

after a suitable burn-in and all lead to the same estimates for the true pos-

terior distributions, then we assume the chain has converged.

• Raftery and Lewis diagnostic

The Raftery and Lewis diagnostic technique (Raftery and Lewis, 1992) was

also utilized for each parameter in order to estimate the total run length of
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MCMC needed, to be discarded as a burn-in period (number of iterations

throwing away at the beginning of Markov chain), and the appropriate thin-

ning interval (discard all but every nth observation) required to produce an

independence between the stored output values. In almost all cases in our

experiments, the MCMC reached its stationary distribution after a short pe-

riod of burn-in. Thus, a period of 1000 iterations were chosen to be used as

burn-in.

• Gelman and Rubin

A more formal and reliable diagnostic technique by Gelman and Rubin (1992)

was also applied for checking the MCMC stationarity. The idea behind this

diagnostic technique is to run two or more MCMC chains from very different

starting values to see if they converge to an identical distribution.

This technique can be summarised as follows. Suppose we generate k MCMC

chains each of length 2k, and we discard the first k iterations as burn-in.

Then, we calculate the within chain (V ) and between-chain (V ′) variances,

V =
1

k

k∑
j=1

1

n− 1

n∑
i=1

(Yij − Ȳj)2,

V ′ =
n

k − 1

k∑
j=1

(Ȳj − ¯̄Y )2

where n is the number of iterations (sample size) in each chain, Yij is the i-th

generated value of chain j, Ȳj = 1
n

∑n
i=1 Yij, and ¯̄Y = 1

k

∑k
j=1 Ȳj.

The variance of the stationary distribution can then be estimated as a weighted

average of within-chain and between-chain variances.

ˆVar(Y ) =
n− 1

n
V +

1

n
V ′.

Now the Gelman and Rubin R̂ factor can be calculated as Q̂ =

√
ˆVar(Y )
V

.
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Gelman and Rubbin (1992) suggest that a value of Q̂ below 1.1 should be

acceptable indication of a converged MCMC. If Q̂ is greater than 1.1, then the

chain is not converged yet and the sampler should rerun for a larger number

of iterations until it has converged and stationarity has been achieved.

This diagnostic test is used for all experiments in the next sections to check

the MCMC convergence for all parameters. We ran three MCMC chains with

10000 iterations each after a burn-in period of 1000 iterations. Whenever it

suggests that the sampler has not converged, then the MCMC was run for a

greater number of samples until it had converged.

Since it is common practice in Bayesian statistics to use more than one diagnostic

method to check the convergence of MCMC chains, we did not depend on only

one method, but different diagnostics (listed above) were implemented, in this and

following chapters, for checking the convergence of MCMC chains. The posterior

estimate plots and diagnostic checking, in this thesis, were calculated using two R

packages, “boa” (Smith, 2007) and “coda” (Plummer et al., 2006).

A Bayesian approach has been defined for estimating the uncertain VSLite

model parameters with all necessary notation and prior distributions required. The

full conditional distribution for all parameters have been detailed leading to the

Metropolis-Hastings within Gibbs sampling procedure required for the Bayesian

MCMC implementation. Experiments are now needed to investigate the Bayesian

implementation before moving on to use the model for the matching process and

tree-ring dating.
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5.4 Estimating VSLite Model Parameters for

the UK Chronologies

This section contains results of the experiments to estimate the VSLite model pa-

rameters at a range of UK locations discussed in Section 5.2. We applied the

Bayesian approach, described in Section 5.3, to estimate the VSLite growth re-

sponse parameters independently at each of the 40 sites in the UK. The parameter

estimation at each site was conditioned on the associated actual ring-width index

chronology, y, and observed monthly climate data series, T and P.

The results presented in this section are the Bayesian approach estimates of

the four VSLite growth threshold parameters (T1, T2, M1, and M2) and the model

error parameter, σ2
ε . The posterior estimates of the model parameters vary from

one site to another, and for the two tree types, Quercus and Pinus. The full

posterior distributions of the model parameters, at each site, provided information

about the relationship between climate and ring-width and the uncertainty in the

model parameters that links them. Two examples of experiments, one of Quercus

and one of Pinus, are presented here. Collective results from the other 38 sites are

summarised and plotted in Section 5.4.3.

At each site, we implemented the Bayesian approach and provide a table and

histogram plot for the posterior estimates of the main VSLite parameters. Each

table contains summary statistics including mean, 1st quartile, 2nd-quartile (me-

dian), 3rd-quartile, and 95% highest probability density (HPD) interval of the pos-

terior distribution for each parameter. Tables also contain the number of iterations

that the MCMC chains were thinned by and how many iterations were required

to ensure that the chains had converged and thus the results were reproducible.

All posterior estimates of the model parameters are reproducible to two decimal

places. Posterior histogram and MCMC convergence checking for each experiment

are not reported but have been undertaken, using the diagnostic methods described

in Section 5.3.8. The following are results of the Bayesian parameter estimation

for two representative sites in the UK, one with Quercus trees (Sheffield, 53.37oN
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and −1.50oE) and one with Pinus trees (Porter Brook, 53.50oN and −1.95oE).

5.4.1 Results for “Sheffield” Site with Quercus Trees

This section provides detailed results from implementing the Bayesian methodology

and the MCMC algorithm for one representative Quercus tree site. The tree-ring

data and monthly climate records for this geographical location were both obtained

from the ITRDB and the CRU, respectively.

With extreme starting values set for the model parameters (T1, T2,M1,M2, σ
2
ε ),

we have a MCMC chain of length 10,000, after 1000 iterations burn-in (on the

advice of the convergence diagnostic methods described in Section 5.3.8) and af-

ter the MCMC chain had been thinned every 10 iterations. After being satisfied

that the MCMC chain for each parameter had converged, the associated summary

statistics in Table 5.2 and marginal posterior distributions shown in Figure 5.3 were

obtained.

95% HPD

Parameter Mean 1st Qu 2nd Qu 3rd Qu Lower Upper

T1 6.08 6.09 4.89 7.17 2.81 8.97

T2 15.48 15.04 13.73 16.87 11.63 20.08

M1 0.036 0.034 0.028 0.047 0.032 0.073

M2 0.537 0.531 0.437 0.639 0.09 0.85

σ2
ε 0.69 0.68 0.63 0.74 0.55 0.82

Table 5.2: Posterior estimates for VSLite parameters at Sheffield, from the converged

MCMC chains of length 10,000 iterations.

The mean, first, second and third quartiles reported in Table 5.2 denote the

central location tendency estimates of the VSLite growth threshold parameters

(T̂1, T̂2, M̂1, and M̂2) at this particular location. These point estimates allow us

to interpret the behaviour of the climate response to tree-ring growth at this ge-

ographical location. We can see for instance that the mean posterior estimate of

T1, which is the minimum threshold temperature for ring-width growth to occur, is
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Figure 5.3: Prior density (dashed line) and histogram plots of the marginal posterior

distributions estimated by applying the MCMC sampling approach to estimating the

VSLite model parameters at Sheffield site.

equal to 6.08 at this geographical location. Similarly, the mean posterior estimate

of T2, which is the temperature above which tree-ring growth is no longer sensitive

to temperature, is equal to 15.48. Our estimates of the model parameters are in

agreement with the currently debated temperature and soil moisture thresholds

(discussed in Section 5.3.3). The HPD indicates the highest probability density

interval for each parameter which covers a region of (1−α)×100% of the posterior

density including the mode assuming uni-modal marginal distribution. We can

use HPD intervals to check where the most of the posterior probability lies. For

instance, a 95% HPD of the lower temperature threshold parameter, T1, indicates

that we are 95% sure that the value of T1 lies in the interval [2.81, 8.97]. It is

worth noticing that the HPD of the upper temperature threshold parameter, T2
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has exceeded its optimal range, which suggests that different prior distributions

might give different optimal range for each parameters. The spread of the pos-

terior estimates for the model parameters in Figure 5.3 reveals the variability in

their estimated values and the degree to which both the tree-ring and climate data

informed the estimated parameter values. In other words, the sensitivity of the

posterior estimates to the choice of prior distributions demonstrate the extent to

which whether the data or the prior informed the estimated posteriors most. Ac-

cordingly, the degree of Bayesian learning, at this particular site, varies between

parameters as we can see that there is enough information in the data to learn

about model parameters except for the parameter M1 which tends to be entirely

dominated by the prior distribution used.

5.4.2 Results for “Porter Brook” Site with Pinus Trees

Similarly, we show results of implementing the Bayesian approach for a represen-

tative Pinus tree site in the UK, called “Porter Brook”.

Table 5.3 and Figure 5.4 show respectively summary statistics and histogram

plots of the estimated posterior distributions for VSLite model parameters (T1, T2,

M1, M2, and σ2
ε ) at the Porter Brook site.

95% HPD

Parameter Mean 1st Qu 2nd Qu 3rd Qu Lower Upper

T1 3.56 3.55 2.86 4.23 3.55 5.62

T2 12.19 11.65 10.85 14.88 11.65 20.28

M1 0.041 0.038 0.025 0.053 0.038 0.094

M2 0.56 0.45 0.44 0.72 0.45 0.93

σ2
ε 0.64 0.63 0.58 0.69 0.63 0.79

Table 5.3: Posterior estimates for VSLite parameters at Porter Brook, from the converged

MCMC chains of length 10,000 iterations.

It is clear from the results of these two representative sites that despite using

the same prior for the unknown growth threshold parameters, some evidence for
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Figure 5.4: Histogram plots of the marginal posterior distributions estimated by applying

the MCMC sampling approach to estimating the VSLite model parameters at Porter

Brook site.

species-dependent distributions exists. For Pinus trees, our estimates of tempera-

ture threshold parameters, T1 and T2, are lower than for Quercus trees, while M2

is higher for Pinus trees. These indicates that the Pinus trees are more sensitive to

lower temperature and higher soil moisture conditions. However, there is no such

evidence for species-dependence for parameter M1 at these two representative sites

since the results showed that the VSLite does not model this parameter very well

and thus we learn little about M1 from the data.

Although these two geographical locations, Sheffield and Porter Brook, are very

close and thus exposed to similar climates, the VSLite model behaves slightly dif-

ferently to different tree-species. Figure 5.5 shows the distribution of differences

between posterior estimates for the VSLite parameters from two different tree-
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species (Quercus and Pinus).
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Figure 5.5: Histogram plots of the pairwise differences between our posterior estimates

for the VSLite growth threshold parameters from two different tree-species (Quercus and

Pinus) at two geographically close sites (Sheffield and Porter Brook).

As we can see that the distribution of differences are skewed to the right for

parameter T2, while it is skewed to left for the parameter M2, which indicates that

there is some differences between tree-species. Furthermore, the scale of differences

for these two parameters (T2 and M2) seems very large compared with their opti-

mal ranges. These variations in the estimates of the growth threshold parameters

between Quercus and Pinus trees are noticeable, which might reflect the adapta-

tion of Pinus trees to lower temperature and higher soil moisture growth threshold

values.

116



5.4.3 Sensitivity of Posterior Estimates to Prior Choices

In this section we used three different prior distributions to implement the Bayesian

approach and make inference about the VSLite model parameters at 40 sites in the

UK. The posterior estimates resulted from using our proposed gamma priors, de-

tailed in Section 5.2, compared to the uniform and beta priors suggested by the

model developers (Tolwinski-Ward et al., 2013). This enables us to check the sen-

sitivity of the posterior estimates to the prior used. We examined the performance

of each of the three proposed prior distributions for the VSLite model parameters

by comparing the posterior density estimates (Figure 5.6) and summary statistics

(Table 5.4) from the resulting posterior distributions using each of the three pro-

posed priors. Based on the experiments for all the UK chronologies, the posterior

estimates for the unknown model parameters at each site were obtained from the

MCMC and the performance of the prior distributions were evaluated.

Figure 5.6 and Table 5.4 show respectively the marginal posterior density es-

timates and summary statistics (posterior median) for the VSLite parameters ob-

tained from the MCMC chains using the three prior distributions under considera-

tion (Uniform, Beta and Gamma). We are interested in calculating and reporting

a summary statistic and choose the posterior median, because it is probably the

best compromise in being robust for heavy tailed densities.

The results of our experiments show that there is some difference between the

estimated posteriors using different prior distributions except for the M1 parame-

ter, about which we appear to learn little from the data. The degree of Bayesian

learning for the other three parameters varies from one site to another. Specif-

ically, posterior densities of the upper growth thresholds, T2 and M2, show that

there is reliably enough information in the data to make inference about these two

parameters. By contrast, the posterior density estimates for the parameter T1 at

most sites, especially for Quercus trees, are close to the prior distribution used.
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Figure 5.6: Prior (dashed line) and estimated posterior (solid line) densities for the four

VSLite growth threshold parameters T̂1, T̂2, M̂1, and M̂2 at 40 different sites in the UK

for two tree types, Quercus (green) and Pinus (red).
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Site Code Lat. Long. Taxon Uniform Beta Gamma

T1 T2 M1 M2 T1 T2 M1 M2 T1 T2 M1 M2

1 brit64 51.07 -1.38 Quercus 5.68 13.07 0.051 0.43 5.94 14.07 0.034 0.4 5.23 15.4 0.032 0.49

2 brit002 51.37 -2.32 Quercus 6.35 15.71 0.050 0.38 6.13 15.12 0.033 0.34 5.48 15.8 0.032 0.39

3 brit063 51.4 -1.7 Quercus 5.19 18.58 0.047 0.32 5.88 16.64 0.031 0.28 4.87 16.57 0.031 0.25

4 brit061 51.7 -1.22 Quercus 5.91 16.73 0.050 0.35 6 16.55 0.032 0.29 5.35 16.55 0.031 0.3

5 brit4 51.8 -1.12 Quercus 4.49 18.47 0.064 0.42 5.83 16.86 0.041 0.37 4.9 17.26 0.036 0.4

6 brit059 51.87 -1.5 Quercus 6.14 13.41 0.052 0.43 5.97 14.45 0.034 0.39 5.31 15.46 0.032 0.48

7 brit031 52.25 -1.25 Quercus 5.55 19.6 0.049 0.32 5.94 17.85 0.032 0.27 5.2 17.84 0.031 0.25

8 brit010 52.35 -2.73 Quercus 6.6 13.76 0.052 0.44 5.99 14.82 0.034 0.38 5.39 15.52 0.032 0.48

9 brit011 52.82 -1.22 Quercus 6.26 13.85 0.052 0.37 6.06 15.25 0.033 0.3 5.51 15.27 0.032 0.34

10 brit2 52.93 -3.92 Quercus 6.35 15.16 0.043 0.34 6.05 15.69 0.033 0.32 5.53 15.74 0.032 0.36

11 brit040 53.13 -3.87 Quercus 2.83 12.87 0.066 0.48 5.64 13.96 0.044 0.48 4.26 15.4 0.036 0.57

12 brit12 53.32 -1.62 Quercus 6.96 16.51 0.041 0.27 6.24 16.98 0.033 0.25 5.9 16.53 0.031 0.22

13 brit053 53.37 -1.5 Quercus 7.51 12.84 0.053 0.45 6.38 13.61 0.033 0.4 6.09 15.04 0.032 0.53

14 rit033 53.5 -1.5 Quercus 6.11 16.56 0.033 0.25 6.11 16.56 0.033 0.25 5.68 15.97 0.031 0.24

15 brit035 53.75 -2 Quercus 4.28 19.76 0.057 0.36 5.5 17.56 0.037 0.33 4.47 18.03 0.034 0.34

16 brit013 53.93 -2.75 Quercus 7.92 13.44 0.052 0.43 6.46 14.57 0.033 0.33 6.65 15.31 0.032 0.45

17 brit6 54.4 -7 Quercus 4.92 19.68 0.053 0.34 5.72 17.71 0.034 0.3 4.83 17.93 0.032 0.3

18 brit11 54.12 -0.92 Quercus 4.66 15.74 0.051 0.37 4.98 16.23 0.033 0.25 5.78 16.29 0.032 0.29

19 brit057 54.22 -5.93 Quercus 8.33 14.04 0.050 0.41 6.54 15.53 0.032 0.26 7.21 15.59 0.032 0.36

20 brit044 54.33 -7.6 Quercus 4.98 16.41 0.054 0.39 5.72 15.81 0.036 0.37 4.85 16.72 0.033 0.41

21 brit058 54.35 -6.65 Quercus 6.29 15.59 0.049 0.26 6.03 16.03 0.032 0.24 5.56 16.05 0.032 0.21

22 brit028 54.47 -5.83 Quercus 6.27 14.72 0.050 0.32 6.04 15.64 0.033 0.27 5.54 15.66 0.031 0.28

23 brit001 54.75 -7.38 Quercus 7.32 17.05 0.049 0.3 6.35 17.14 0.033 0.24 6.03 16.93 0.031 0.22

24 brit 55.1 -6.2 Quercus 6.8 16.32 0.049 0.28 6.19 16.59 0.032 0.24 5.79 16.49 0.031 0.21

25 brit7 55.33 -3.5 Quercus 6.5 17.52 0.048 0.3 6.13 17.02 0.032 0.26 5.49 16.83 0.032 0.23

26 brit021 56.63 -3.35 Quercus 7.82 16.46 0.049 0.28 6.38 17.4 0.032 0.24 6.12 17.08 0.032 0.21

27 brit017 56.95 -3.32 Pinus 2.64 13.72 0.058 0.34 4.75 14.6 0.036 0.32 4.39 13.69 0.034 0.28

28 brit049 56.97 -5.75 Pinus 4.33 15.72 0.049 0.31 5.04 15.63 0.032 0.24 5.2 15.5 0.031 0.23

29 brit022 56.98 -3.5 Pinus 5.25 16.38 0.052 0.33 5.92 13.96 0.025 0.31 4.97 15.46 0.032 0.26

30 brit015 57 -3.58 Pinus 6.88 17.59 0.040 0.29 5.38 15.92 0.029 0.19 5.92 15.57 0.030 0.14

31 brit020 57.02 -3.57 Pinus 4.72 13.04 0.049 0.31 5.06 15.82 0.032 0.24 5.26 15.66 0.031 0.23

32 brit024 57.28 -4.92 Pinus 2.09 16.43 0.051 0.32 4.42 14.92 0.033 0.25 4.36 14.99 0.031 0.22

33 brit048 57.33 -5.67 Pinus 2.56 16.1 0.050 0.28 4.75 13.92 0.033 0.24 4.91 15.87 0.031 0.22

34 brit016 57.5 -5.62 Pinus 4.29 15.05 0.050 0.32 5.48 14.29 0.028 0.27 5.09 14.48 0.031 0.25

35 brit018 57.52 -5.33 Pinus 6.11 16.36 0.049 0.3 5.08 16.01 0.032 0.24 5.31 14.82 0.031 0.22

36 brit026 57.53 -5.35 Pinus 4.51 16.48 0.051 0.32 5.53 14.5 0.028 0.28 5.12 15.68 0.031 0.24

37 brit019 50.95 -1.68 Pinus 4.77 16.58 0.051 0.3 5.14 15.05 0.031 0.24 5.26 14.89 0.032 0.22

38 brit10 51.62 -3.57 Pinus 3.2 14.65 0.053 0.34 4.95 15.33 0.034 0.31 4.83 15.29 0.033 0.32

39 brit032 53.5 -1.95 Pinus 5.14 14.76 0.050 0.3 5.08 15.91 0.032 0.24 5.47 15.76 0.032 0.22

40 brit038 54.22 -2.3 Pinus 3.39 14.24 0.053 0.32 4.91 15.26 0.034 0.3 4.93 14.23 0.032 0.31

Table 5.4: Medians of the posterior distribution for the VSLite parameters at 40 sites in

the UK (given in Figure 5.1), using three different priors. Calculated from the converged

MCMC chains of length 10,000. Lat indicates latitude and Long indicates longitude.

In regards the effect of the prior choices on the Bayesian estimates, the beta

and gamma priors tend to produce posterior estimates with smaller variances than
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using the uniform priors. As expected, when using uniform priors for the unknown

parameters, the posterior probability estimates tend to be widely spread over the

“optimal” range of the growth threshold parameters (as shown in Figure 5.6, first

column), hence the posterior distributions have larger variances. On the other

hand, using beta and gamma priors tend to provide posterior estimates that are

more concentrated, hence the posterior variances are smaller. This suggests that

uniform priors should only be used for representing beliefs about the VSLite growth

threshold parameters when there is insufficient knowledge available in the literature

about the “optimal” values for these uncertain parameters. Hence, this flat priors

can be useful when using the VSLite model for other tree-species which we have

no (or limited) information about their growth threshold parameters. However, for

our chosen tree-species (Quercus and Pinus) in this thesis, there is a substantial

amount of information provided by biologists and botanists in the literature about

the optimal values of the growth threshold parameters for Quercus and Pinus trees.

Thus, it is logical and statistically reasonable (from a Bayesian perspective) to use

this information in the statistical inference via considering appropriate priors for

these unknown parameters. Consequently, we will be using gamma priors for the

VSLite growth threshold parameters in our investigation of the model for Bayesian

tree-ring dating in the next chapters.

Results in Table 5.4 show the posterior medians of VSLite parameters at each of

the 40 sites in the UK. The posterior medians of the lower threshold temperature,

T1, for all the UK sites fall within 2–9 ◦C (using uniform prior), 4–7 ◦C (using beta

prior) and 4–7.5 ◦C (using gamma prior); whereas the posterior medians of the

upper threshold temperature T2 fall within 12–20 ◦C (using uniform prior) and 14–

18 ◦C (using beta or gamma priors). Similarly, the posterior medians of the lower

threshold soil moisture M1 fall within 0.03–0.07 (using uniform prior), 0.03–0.045

(using beta prior) and 0.03–0.037 (using gamma prior); while the posterior medians

of the upper threshold soil moisture M2 fall within 0.25–0.50 (using uniform prior),

0.15–0.50 (using beta prior) and fall within 0.1–0.6 (using gamma prior).
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5.5 Summary of Chapter

The number of different potential prior distributions for the unknown parameters

in the Bayesian inference can cause difficulties in choosing the best one, especially

when these priors do not produce similar results. Thus, in this chapter, we inves-

tigated a Bayesian analysis using various prior distributions for estimating VSLite

parameters at a range of the locations across the UK. Alongside the two priors

used by Tolwinski-Ward et al. (2013), we also investigated using a gamma prior for

the unknown growth threshold parameters with the target means similar to those

of the beta priors. We found that the gamma distribution was more appropriate

for representing our beliefs about the VSLite parameters.

The sensitivity of the posterior estimates to different priors used was also ex-

amined. From this analysis we found that it is essential to select priors for the

VSLite parameters carefully, especially when there is not enough biological infor-

mation available about the growth threshold parameters for the tree-species under

study. In such cases, the posterior estimates become more sensitive to the prior

used, and hence the choice of the appropriate priors become more relevant. Thus,

in remainder of this thesis we will be using gamma priors, which are more suitable

for the VSLite growth threshold parameters.

In the next chapter the Bayesian approach for the VSLite model implemented

in this chapter will be extended to include a matching step to be used for Bayesian

tree-ring dating. The inference problem will remain similar, but an extra parameter

will be added to the model to account for cross-matching ring-width sequences and

hence providing a posterior probability of a match at each possible offset.
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Chapter 6

Bayesian Dendrochronology Using

VSLite Model

Cross-matching (or cross-dating) is a process of matching a group of trees from

the same (or neighbouring) geographical location one with another and thus, if

one or more is of known age, dating each ring in all trees to their exact year of

formation. Traditionally, statistical methods (detailed in Chapter 2) such as cross-

correlation coefficients and t-values are used to match undated ring-width sequences

to a dated master chronology (a group of dated trees). However, in this chapter a

Bayesian approach for tree-ring dating using the VSLite model is introduced. This

new, probabilistic approach involves simultaneously fitting the VSLite model and

matching the undated trees to a dated site chronology, and hence identifying the

posterior probability of a match at all possible offsets between the two sequences.

The Bayesian approach enables us to combine the tree-ring data and the prior

information about the unknown date of the sequences, and hence make Bayesian

inferences about the matching process and the true values of the uncertain model

parameters. Before implementing the VSLite model for cross-matching ring-width

sequences, it is worth briefly summarising the matching process.
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6.1 Matching Process

Suppose we wish to match an undated Quercus ring-width sequence to a dated

master chronology (an average of a group of Quercus tree-ring sequences for a par-

ticular region). Both the undated sequence and the master chronology must be

from the same tree species, grown in the same geographic area, and have received

the same climatic conditions. In classical dendrochronology, the two sequences are

compared both visually and statistically in order to detect any similarity between

them. The comparison is made year-by-year at all possible offsets, and typically

the one with the highest t-value or z-score is considered to provide a calendar date

for the undated sample. However, in Bayesian dendrochronology, the aim is to

provide a posterior probability of the match at all possible offsets between the two

sequences; and hence provide the calendar date for the undated sequence which

has the highest probability.

6.1.1 Matching Notation

Following the methodology of Jones (2013), we define the notation of the matching

process as follows. Let the dated master chronology be of length l years, and

comprise I trees. Let the start and end dates of the master chronology be ∆s and

∆e, respectively, so that l =∆e − ∆s + 1. For tree i, i = 1, 2, . . . , I, let δi be its

start date of the tree i, li be its age (or length of growth) in years, and δi+ li−1 be

its felling date. Similarly, let the undated site chronology be of length l∗ years, and

have I∗ trees. Let ∆∗ be the unknown start date of the undated site chronology.

For tree i, i = I + 1, . . . , I + I∗, let δi = ∆∗ + ri be its unknown start date (where

ri ≥ 0, is the offset of tree i relative to ∆∗), l∗i be the length of the tree, and

δi + l∗i − 1 be the end date of the tree.

Now, the dating process starts by consecutively matching the undated site

chronology to the dated master chronology at all possible offsets from t = ∆s−l∗+q

to t = ∆e + l∗ − q, where q is the minimum overlap of rings between the dated

and undated sequences (discussed in Chapter 3). Therefore, the total number of
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all possible offsets between the sequences is equal to l + l∗ − 2q + 1.

q is crucial when matching ring-width sequences, because considering a small

number of overlapping rings between the two sequences will increase the chances of

matching the undated sequence at the wrong offset. Dendrochronologists tend to

use 40-50 rings of overlap between dated and undated sequences, and Laxton and

Litton (1988) suggest that q of less than 40 rings are assumed to be unreliable for

matching process.

6.2 Bayesian Approach to Tree-ring Dating

Here we extend the VSLite model to include the cross-matching process of tree-ring

width sequences, and implement it via a Bayesian paradigm which combines both

the likelihood of data and the prior information about the unknown age of the

undated tree. We add an extra parameter ∆∗ (the unknown date of the undated

sequence) to the Bayesian approach of the VSLite model (outlined in Section 5.3),

and then implement it for dating purposes (making inferences about the matching

process). The following sections describe the Bayesian implementation of the VS-

Lite model for matching process.

6.2.1 Model Implementation

6.2.1.1 The Likelihood

The VSLite forward model, given in Equation 5.1, provides tree-ring width indices

which follow a normal distribution with mean (1− σ2
ε )

1
2 Ŵt and variance σ2

ε .

Now, let W = (W1,W2, . . . ,Wt) be the vector of climatic signals (tree-ring

width growth) for years 1, 2, . . . , t, and let yi = (yδi , . . . , yδi+li−1) be the vector of

ring-width indices for tree i. Let yD = (y1, . . . , yI) and yUD = (yI+1, . . . , yI+I∗)

represent the indices for all dated and undated trees, respectively. Then the indices

for all trees (dated and undated) are y = (yD,yUD) = (y1, . . . , yI , yI+1, . . . , yI+I∗).
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- Likelihood of the dated chronology

Under the VSLite forward model, the likelihood of the dated site master chronology

for i = 1, 2, . . . , I trees with each tree i being dated is:

p(yD|T,P,θ, σ2
ε ) ∝

I∏
i=1

[
δi+li−1∏
t=δi

(
1

σ2
ε

)
1
2 exp(− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2)

]
.

Note that the dependence on the four VSLite growth threshold parameters

θ = (T1, T2,M1,M2) is implicit in the deterministic estimate of the growth signal

Ŵt.

- Likelihood of the undated chronology

Now, let the likelihood of the undated site master chronology for i = (I + 1), (I +

2), . . . , (I + I∗) trees be:

p(yUD|T,P,θ, σ2
ε ,∆

∗) ∝
I+I∗∏
i=I+1

[
∆∗+ri+li−1∏
t=∆∗+ri

( 1

σ2
ε

) 1
2

exp(− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2)

]
.

Where;

• ∆∗: is the unknown start date of the undated site chronology.

• l∗ + l − 2q + 1: is the number of all possible offsets between the dated and

undated sequences.

• ∆ = (∆s − l∗ + q, ∆s − l∗ + q − 1, . . . , ∆s − 1,∆s, ∆s + 1, . . . , ∆e − q + 1)

are all possible start dates for the undated site chronology.

- The likelihood of all data

The likelihood of all data can be obtained by combining both the likelihood of the

dated and undated site master chronologies as follows,

p(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗) ∝ p(yD|T,P, T1, T2,M1,M2, σ
2
ε )×

p(yUD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗).
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6.2.1.2 The Priors

In order to implement the matching process and make inferences about the un-

known parameters (T1, T2, M1, M2, σ
2
ε , ∆∗), prior distributions are needed for all

six uncertain parameters. We use gamma priors for the four growth threshold pa-

rameters and inverse-gamma for the model error parameter, σ2
ε . These priors have

been described in detail in the previous chapter. The reader is referred to Section

5.3.3 for more details about the prior distributions for these five parameters. The

prior for the sixth parameter ∆∗ is defined as follows.

Prior for ∆∗

As no information is available about the unknown date of the undated ring-width

sequences, we assume that each date within the interval of all possible dates is

equally likely. Therefore, we simply assume that ∆∗ lies somewhere within the range

of the dated chronology to which we are matching and thus used a noninformative

uniform prior distribution for the unknown date as follows,

p(∆∗) ∼ U{a∆, . . . , b∆},

where, a∆ = ∆s − l∗ + q, and b∆ = ∆e + l∗ − q are the minimum and maximum

possible offsets for the unknown date, respectively.

6.2.1.3 The Posterior

By combining the prior distributions for all unknown parameters and expression

for the ring-width data through the likelihood, the joint posterior distribution of

the VSLite parameters and matching process is given by
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p(θ, σ2
ε ,∆

∗|y,T,P) ∝ p(y|T,P,θ, σ2
ε ,∆

∗) p(θ, σ2
ε ,∆

∗)

∝ p(yD|T,P,θ, σ2
ε ) p(y

UD|T,P,θ, σ2
ε ,∆

∗) p(θ) p(σ2
ε ) p(∆

∗)

∝ p(yD|T,P, T1, T2,M1,M2, σ
2
ε ) p(y

UD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)×

p(T1) p(T2) π(M1) p(M2) p(σ2
ε ) p(∆

∗)

∝
I∏
i=1

[
δi+li−1∏
t=δi

(
1

σ2
ε

)
1
2 exp(− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2)

]
×

I+I∗∏
i=I+1

[
∆∗+ri+li−1∏
t=∆∗+ri

(
1

σ2
ε

)
1
2 exp(− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2)

]
×[

T1
(αT1

−1) e−T1/βT1

][
T2

(αT2
−1) e−T2/βT2

][
M1

(αM1
−1) e−M1/βM1

]
×[

M2
(αM2

−1) e−M2/βM2

][
(σ2

ε )
−(αε+1) e

−( βε
σ2
ε

)
][ 1

l + l∗ − 2q + 1

]
.

Again, the joint posterior distribution above cannot be evaluated analytically,

thus we use MCMC sampling method to update model parameters. The full condi-

tional distributions for all parameters are obtained and can be found in Appendix I.

6.2.2 Sampling Algorithm: Metropolis-Hastings

A Metropolis-Hastings algorithm within a Gibbs sampler was used to estimate the

posterior distributions of the unknown parameters. The procedure used for this

MCMC sampling can be outlined as follows.

1. Choose starting values T
(0)
1 , T

(0)
2 ,M

(0)
1 ,M

(0)
2 , σ

2(0)
ε , and ∆∗(0).

2. for j = 1 to Nmcmc (MCMC sample size)

a) Draw a proposed value T
′
1 from the prior distribution of T1.

b) Calculate the likelihood of the proposal,

p(y|T,P, T ′1, T
(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2 , σ

2(j−1)
ε ,∆∗(j−1))

c) Calculate the likelihood of the current value,

p(y|T,P, T (j−1)
1 , T

(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2 , σ2

ε
(j−1)

,∆∗(j−1))
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d) With probability min
{

1,
p
(

y|T,P, T ′1 , T
(j−1)
2 , M

(j−1)
1 , M

(j−1)
2 , σ2

ε
(j−1)

, ∆∗(j−1)
)

p
(

y|T,P, T (j−1)
1 , T

(j−1)
2 , M

(j−1)
1 , M

(j−1)
2 , σ2

ε
(j−1), ∆∗(j−1)

)} set

T
(j)
1 = T

′
1; otherwise, set T

(j)
1 = T j−1

1 .

e) Repeat steps (a to d) to update T2, using parameters (T
(j)
1 ,M

(j−1)
1 ,M

(j−1)
2 , σ2

ε
(j−1)

).

f) Repeat steps (a to d) to updateM1, using parameters (T
(j)
1 , T

(j)
2 ,M

(j−1)
2 , σ2

ε
(j−1)

).

g) Repeat steps (a to d) to updateM2, using parameters (T
(j)
1 , T

(j)
2 ,M

(j)
1 , σ2

ε
(j−1)

).

h) Sample a value for σ2
ε

(j)
from its full conditional distribution,

p(σ2
ε |y,T,P, T

(j)
1 , T

(j)
2 ,M

(j)
1 ,M

(j)
2 ,∆∗(j−1))

i) Sample a value for ∆∗(j) from its full conditional distribution,

p(∆∗|y,T,P, T (j)
1 , T

(j)
2 ,M

(j)
1 ,M

(j)
2 , σ2

ε
(j)

)

3. Repeat step (2) until the Markov Chain reaches equilibrium.

4. After the burn-in period and thinning the subsequent iterations of step (2), the

resulted iterations are used as samples from the posterior.

5. End.

The MCMC convergence for the model parameters (T1, T2,M1,M2, σ
2
ε ) were

checked, using the diagnostic methods summarised in Section 5.3.8, to make sure

that the MCMC chains had reached their stationarity. However, since the parame-

ter ∆∗ is a discrete variable, it was difficult to ascertain a diagnostic test to ensure

that the chain had converged. Instead, a check on the reproducibility of the re-

sults was conducted via running each test using three different random seeds. The

posterior probabilities for ∆∗ for each seed after a specified number of iterations

were compared. This determined how many iterations are needed to produce re-

producible results for ∆∗.

6.3 Simulating Data for Model Implementation

In order to examine the MCMC implementation and the behaviour of the VSLite-

based matching process, we simulated ring-width indices using the VSLite forward
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model (given in Equation 5.1). The following parameters, based closely on those

of (Jones, 2013), need to be considered for the data simulation.

(1) Signal-to-noise ratio

The signal-to-noise ratio (SNR) is a measurement that describes how similar

a group of tree-ring width samples are within a chronology. As the variance

of the model noise σ2
ε decreases, the signal-to-noise ratio increases and the

similarity among the trees increases, and vice-versa. For simulating data to

test the Bayesian implementation of the VSLite model, we used a range of

SNR values (given in Table 6.1) to mimic different types of data. Since the

tree-ring data are normally distributed with mean 0 and variance 1, the sum of

the climatic signal variance and the model noise variance is 1. Thus, different

SNR can be obtained by adopting different values for the model noise variance

σ2
ε .

SNR σ2
ε SNR σ2

ε

0.1 0.8999 1.1 0.4762

0.2 0.8333 1.2 0.4545

0.3 0.7692 1.3 0.4348

0.4 0.7143 1.4 0.4167

0.5 0.6667 1.5 0.4000

0.6 0.6250 1.6 0.3846

0.7 0.5882 1.7 0.3704

0.8 0.5556 1.8 0.3571

0.9 0.5263 1.9 0.3448

1.0 0.5000 2.0 0.3226

Table 6.1: Different signal-to-noise ratios (SNR) with corresponding model noise variance

σ2
ε , used for simulating data for exploring the Bayesian implementation of the VSLite

model.

(2) Deterministic growth signal Ŵt

The deterministic estimate of the climatic signal Ŵt, detailed in Section 3.2.2,
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is the main component of VSLite via which Wt is modelled as a function of

monthly climatic data, site latitude, and growth threshold parameters.

(3) The dated master chronology

Dated master chronologies are required for the cross-matching process. Dated

samples were simulated by adding normally-distributed noise, N(0, σ2
ε ), to the

simulated climatic signals Ŵt. A dated master chronology was then obtained

by grouping of simulated trees, with the following parameters.

• The length of the dated master chronology (l)

The length of dated site master chronologies in the UK varies from one

site to another. For simulating data for our model implementation and

matching process, we mimicked reality by simulating local site master

chronologies of length 150, 200, and 250 years.

• Number of samples (I) in the dated master chronology.

The number of trees in the dated master chronologies also varies from one

site to another in the UK. For the experiments that follow, we simulated

chronologies with 10 samples.

• The length of individual trees (li) in the dated master chronology.

We randomly simulated trees of length (75 ≤ li ≤ 150) to mimic real trees

in the UK database of the dated site chronologies.

(4) Minimum overlap between dated and undated site chronologies.

For simulating data for the Bayesian model implementation and matching pro-

cess, we followed Jones (2013) to use q = 50 as a minimum overlap between

dated and undated site master chronologies.

(5) The undated site chronology.

An undated site chronology was obtained by grouping simulated trees, with

the following parameters:
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• The length of the undated site chronology (l∗).

The length of the undated site chronology should be shorter than the

length of the dated master chronology, l∗ ≤ l, to ensure the matching

process. Thus, we considered undated site chronologies of length 100 and

50 years.

• Number of samples (I∗) in the undated site chronology.

The number of individual trees in the undated site chronologies should

also be less than or equal to the number of individual trees in the dated

site chronologies, I∗ ≤ I. Therefore, chronologies with 10, 5, 2, and 1

samples were simulated.

• The length of the individual trees (l∗i ) in the undated site chronology.

Randomly selected simulation trees of length (50 ≤ li ≤ 100) were con-

sidered to mimic real undated trees in the UK database.

(6) The true offset of the undated site master chronology.

We followed Jones (2013) to fix the true offset of the undated site chronology

to the dated master chronology at t = 100. This helped us to compare the

results for different experiments, as well as comparing results of the Bayesian

approach to the classical ones.

6.3.1 Pseudo-code for Data Simulation

In order to simulate tree-ring width indices for use in testing our approach for

matching an undated site chronology to a dated master chronology, the following

algorithm was used,

1. Specify l, I, ∆s and ∆e for the dated site master chronology.

2. Identify l∗ and I∗ for the undated site master chronology.

3. Determine a SNR and hence σ2
ε for data.
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4. Identify q, the minimum overlap between the two sequences.

5. Calculate l + l∗ − 2q, the length of the climatic signal vector required.

6. Generate a deterministic Ŵt from climatic data:

• Specify the site of interest, and find its latitude φ.

• Obtain monthly climatic data T and P.

• Calculate the monthly soil moisture content M.

• Calculate GT , GM , GE, and overall growth Gt.

• Obtain Ŵt.

7. Simulate a dated master chronology:

• Create an (l × I) matrix, by taking a subset of length (l) from the

climatic signal Ŵt and replicate it (I) times.

• Simulate an (l × I) noise matrix from N(0, σ2
ε )

• Sum the two matrices to give a matrix of ring-width indices yD.

8. Simulate an undated site chronology:

• Calculate all possible offsets, l + l∗ − 2q + 1.

• Choose an offset ∆∗ from t = ∆s − l∗ + q to ∆e − l∗ − q.

• Create an (l∗ × I∗) matrix, by taking a subset of length (l∗) from t =

∆∗, . . . ,∆∗ + l∗ − 1, and replicate it (I∗) times.

• Simulate an (l∗ × I∗) noise matrix from N(0, σ2
ε ).

• Sum the two matrices to give a matrix of undated ring-width indices

yUD.

9. Use dated and undated data for the model implementation in matching pro-

cess.

The algorithm above was used to simulate data for each experiment in the next

section.
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6.4 VSLite-based Crossmatching Experiments

This section outlines experiments of matching undated ring-width sequences to a

dated master chronology using the VSLite model and the data simulation algorithm

outlined in Section 6.3.1. A selection of experiments are reported in this section,

and several complementary ones are given in Appendix II.

For each experiment in this section, a Bayesian implementation of the VSLite

model and the matching process was applied, along with the traditional method

(t-value) to make a comparison between our approach and the classical one.

For each experiment, the model parameters (T1, T2,M1,M2, σ
2
e , and ∆∗) were

estimated and the posterior plots and their MCMC convergence were checked. A

range of diagnostic checks, detailed in Section 5.3.8, were used for checking the

MCMC convergence. As the interest here was in estimating the posterior prob-

ability of the date match at each possible offset, in this section we only report

results related to this parameter. Results for other parameters were close to those

reported in the previous chapter. Each table contains the model noise (σ2
ε ) and

signal-to-noise ratio (SNR) used to simulate the tree-ring data used in the Bayesian

parameter estimation and matching process along with the posterior probability

of the date match at each possible offset, the posterior mean for σ̂2
ε and results of

matching the same sequences using the classical tree-ring dating approach (t-value).

6.4.1 Matching short (50-year) undated site chronology

This section illustrates results from the experiment to match an undated site

chronology with 1 sample covering 50 years, to a dated master chronology with

10 samples covering 200 years (at Sheffield site, φ = 53.37). The true offset is

100, and the minimum overlap between the dated and undated chronologies is 50.

We ran a MCMC sample of length 100,000 iterations and discarded the first 10000

iterations as burn-in period. The MCMC were then thinned every 10 iterations

and the results were reproducible after 9000 iterations.

133



Table 6.2 shows results of the experiment of matching the dated and undated

chronologies summarised above, from a subregion with a signal-to-noise ratios vary

from 0.9 to 0.1.

SNR σ2
ε Posterior Probability σ̂2

ε t-value

Offset Probability

0.9 0.5263 100 1.00 0.538 5.703

98 0.00 2.823

0.8 0.5556 100 1.00 0.5692 4.261

98 0.00 2.827

0.7 0.5882 100 1.00 0.6039 3.912

98 0.00 2.826

0.6 0.625 100 0.97 0.6334 3.542

98 0.01 2.693

14 0.00 2.431

0.5 0.6667 100 0.86 0.6802 3.123

98 0.07 2.743

14 0.04 2.414

109 0.01 2.121

0.4 0.7143 100 0.63 0.742 2.793

98 0.24 2.654

14 0.06 2.374

75 0.02 2.013

0.3 0.7692 100 0.34 0.7844 2.891

98 0.28 2.744

14 0.19 2.190

109 0.11 2.064

0.2 0.8333 98 0.41 0.8517 2.61

100 0.32 2.601

14 0.12 2.366

109 0.08 2.237

0.1 0.8999 98 0.13 0.9228 2.423

149 0.06 2.296

104 0.05 1.968

100 0.03 1.862

Table 6.2: Results of matching undated trees to a dated master chronology using our

extension of the VSLite model. A Bayesian probabilistic estimate of a match at the true

offset is compared with the classical results (t-value). The signal-to-noise ratio (SNR)

for the simulate ring-widths used in the experiments varies from 0.9 to 0.1.
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We can see from the table that when the signal-to-noise ratio (SNR) is grater

than or equal to 0.7, the posterior probability of a match at the correct offset is

1. When SNR is 0.6, the posterior probability estimate of the match at the true

offset is 0.97, and the classical t-value is 3.542. The posterior probability estimates

at other offsets were almost zero, and their t-values were less than 3.5. This is

the minimum threshold value used by dendrochronologists when using the classical

method for matching ring-width sequences (Baillie and Pilcher, 1973; Cook et al.,

1990). However as the SNR decreased to 0.5, the posterior probability estimate of

the match at the true offset decreased to 0.86, and so on.

Therefore, we can see that the posterior estimate of the match depends on the

signal-to-noise ratio; as SNR decreases, the climatic signal variance decreases, the

similarity among individual trees within the chronology decreases and hence the

posterior probability estimate of a match at the true offset also decreases, and vice

versa.

Figure 6.1 shows, the histograms of the posterior distributions for the model

parameters for the experiment outlined above, when the signal-to-noise ratio is

SNR = 0.5. The first four histograms illustrate the estimated temperature and

soil moisture growth threshold parameters (T̂1, T̂2, M̂1, M̂2) which were discussed

in detail in the previous chapter. The last two histogram plots in Figure 6.1

illustrate respectively the posterior estimate of the model noise parameter σ̂2
e and

the posterior probability of the match at all possible offsets. The highest posterior

probability of a match was equal to 0.86 at the true offset.

Our approach has successfully provided posterior probabilities of a match at all

possible offsets, and has provided a date with the highest posterior probability.
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Figure 6.1: Plot of the posterior distribution of the VSLite model parameters T̂1, T̂2,

M̂1, M̂2, σ̂2
ε and ∆̂∗ for the experiment of matching an undated tree-ring width sequence

covering 50 years to a dated site master chronology containing 10 samples, covering 200

years, when the signal-to-noise ratio of the simulated tree-ring data was 0.5.

6.4.2 Matching long (100-year) undated site chronology

This section includes results of the experiment of matching an undated site chronol-

ogy covering 100 years, to a dated master chronology with 10 samples covering

200 years (at Sheffield site, φ = 53.37). The true offset is 100, and the minimum

overlap between dated and undated sequences is 50. The MCMC of length 200,000

iterations were sampled after discarding the first 20000 iterations as burn-in period.

The MCMC were then thinned every 10 iterations and the results were reproducible

after 10000 iterations.

Table 6.2 illustrates results of the experiment of matching an undated site

chronology of length 100 years to a dated master chronology of length 200 years.
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SNR σ2
ε Posterior Probability σ̂2

ε t-value

Offset Probability

0.6 0.625 100 1.00 0.6207 8.211

48 0.00 2.629

0.5 0.6667 100 1.00 0.6623 7.859

48 0.00 2.713

0.4 0.7143 100 1.00 0.7098 6.289

48 0.00 2.803

0.3 0.7692 100 1.00 0.7648 5.679

48 0.00 2.891

0.2 0.8333 100 0.99 0.830 5.362

48 0.00 2.95

0.1 0.8999 100 0.82 0.9018 3.997

48 0.06 2.882

95 0.03 2.671

135 0.02 2.487

Table 6.3: Results of matching undated site chronologies of length 100 years to a dated

master chronology of length 200 years using our extension of the VSLite model. A

Bayesian probabilistic estimate of a match at the true offset is compared with the classical

results (t-value). The signal-to-noise ratio (SNR) used to generate the simulated tree-

ring data for these experiments vary from 0.6 to 0.1.

Table 6.2 shows the Bayesian matching results compared with the classical one.

Results of both methods were consistent, as the highest t-value and the posterior

probability of 1 were provided for the match at the true offset for SNR greater

than or equal to 0.3. When the SNR is 0.1, the results of both methods were

still consistent, but with the lower posterior probability (0.82), and lower t-value

(3.997) at the true offset. Again, the posterior probability estimate of the match

at the true offset depends on the signal-to-noise ratio. As the SNR decreases, the

posterior probability estimate decreases, and vice-versa.

Results obtained from these two experiments, along with those reported in Ap-
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pendix II, show how the Bayesian implementation of the VSLite model and the

matching process can provide the dendrochronologist with probabilistic evidence

of a match at a date (in terms of a posterior probability). The Bayesian match-

ing results were consistent with the classical ones (t-value) in all the experiments

undertaken here. Furthermore, even when the classical method fails to match the

undated sequences to its true offset with an acceptable t-value (greater than or

equal to 3.5), the Bayesian matching process provides evidence for dating by offer-

ing posterior probabilities for all possible offsets of the match.

6.5 Comparison between Results from VSLite

and Jones’ Models for Dating

In order to assess the ability of our extension to the VSLite model in the matching

process, a comparison was made between the results obtained from the Bayesian

implementation of this model and those obtained from the Bayesian implementation

of Jones (described in Section 3.1.4). For the two models to be comparable, we

considered experiments with the same signal-to-noise ratio, and with the same

random seeds used to simulate ring-width indices from the two models. Then

posterior probability of a match at the true offset were compared.

We undertook several such experiments but only one of these is reported here.

All the remaining results can be found in Appendix III.

Table 6.4 shows results of using three different approaches (VSLite-based ap-

proach, Jones’ approach and t-value based approach) to match an undated sample

covering 50 years to a dated site master chronology with 10 samples covering 200

years. For the high signal-to-noise ratios, both VSLite approach and Jones’ ap-

proach successfully provide a posterior probability of 1.00 for the match at the true

offset. In other words, when considering high SNR for data, the performance of the

two models was indistinguishable. However, as the signal-to-noise ratio decreased
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SNR σ2
ε VSLite Model Jones’ Model t-value

Offset Prob. σ̂2
ε Offset Prob. σ̂2

ε

0.9 0.526 100 1.00 0.54 100 1.00 0.55 5.70

98 0.00 5 0.00 2.82

0.8 0.556 100 1.00 0.57 100 1.00 0.57 4.26

98 0.00 5 0.00 2.57

0.7 0.588 100 1.00 0.604 100 0.98 0.60 3.91

98 0.00 5 0.2 2.63

0.6 0.625 100 0.97 0.633 100 0.87 0.64 3.54

98 0.01 5 0.10 2.69

14 0.00 7 0.02 2.43

0.5 0.667 100 0.86 0.680 100 0.55 0.68 3.12

98 0.07 5 0.33 2.74

14 0.04 7 0.05 2.41

0.4 0.714 100 0.63 0.74 5 0.51 0.73 2.79

98 0.24 100 0.21 2.65

14 0.05 7 0.07 2.37

0.3 0.769 100 0.34 0.784 5 0.44 0.79 2.89

98 0.29 7 0.14 2.74

14 0.21 45 0.08 2.19

109 0.13 84 0.07 2.06

0.2 0.833 98 0.41 0.851 84 0.31 0.86 2.61

100 0.32 5 0.20 2.60

14 0.12 7 0.08 2.37

109 0.08 45 0.07 2.24

Table 6.4: Results of matching 1 undated tree of length 50 years to a dated master

chronology, with 10 samples, covering 200 years, when using three methods (based on

the VSLite model, Jones’ model and traditional t-value approach). The signal-to-noise

ratio (SNR) for the simulated tree-ring width data used in these experiments varies

from 0.9 to 0.2. The posterior estimate of the match at the true offset depends on the

signal-to-noise ratio. As the SNR decreases, the posterior probability decreases, and

vice-versa.

the performance of the two models changed, and the VSLite approach tends to

provide higher posterior probabilities of a match at the true offset. For example,

when SNR = 0.5 the VSLite model provided a posterior probability for the match

at the true offset of 0.86 while Jones’ model provided a posterior probability of just

0.55.
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Furthermore, results in Table 6.4 also illustrate that when the Jones’ approach

failed in matching an undated sample to a dated master chronology, the VSLite

model successfully matched the sample at the true offset. For example, when the

signal-to-noise ratio is SNR = 0.4, the VSLite model has successfully matched the

undated sample to the dated master chronology at the true offset with a poste-

rior probability equal to 0.63. However, Jones’ model led to the highest posterior

probability (0.51) being associated with an incorrect offset, and it provided a lower

posterior probability (0.21) of a match at the true offset. Table 6.4 also shows that

the mean posterior estimate of the model noise parameter σ̂2
e were very similar from

both approaches and were close to the true values used to generate the tree-ring

width data.

6.6 Summary and Conclusion

In this chapter, a new Bayesian approach was introduced for matching undated

trees to dated master chronologies. The approach uses the VSLite model at the

core of the dating process and is otherwise based closely on the approach of Jones’

(described in Section 3.1.4). Results from the VSLite-based matching approach

were compared to those using the approach of Jones for several simulated data

experiments. Experiments in this chapter showed that:

• there is a strong relationship between the signal-to-noise ratio used to sim-

ulate data and the posterior probability of a match at the true offset. As

signal-to-noise ratio increases, the model noise variance decreases and the

similarity among individual samples within the chronology increases; thus

the posterior probability of a match at the true offset increases.

• as the number of samples (I∗) in the undated site chronology increases, the

posterior probability of a match at the true offset also increases.

• when considering low signal-to-noise ratio for data, the approach based on

the VSLite model outperforms that using Jones’ model by providing larger
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posterior probabilities of a match at the true offset. However, when consid-

ering high signal-to-noise ratio for data, both models perform similarly.

The aim here was not primarily to compare a probabilistic Bayesian approach

with the traditional method when cross-dating trees, but rather to investigate the

relative behaviour of the Bayesian method using different models (one purely sta-

tistical and the other process-based). Results provided in this chapter suggest that

the process-based modelling approach using the VSLite model performed better,

especially when the signal-to-noise ratio is low, and this might be for the following

reasons.

(1) In the simple statistical model, Jones’ approach (described in Section 3.1), tree-

ring width simulations are simply generated by summing a simulated climatic

signal (Wt ∼ N(0, σ2
w)) and model noise (εti ∼ N(0, σ2

ε )) for a specified σ2
w and

σ2
ε . However, tree-ring width simulations from the VSLite forward model are

generated in a more realistic way by capturing the mechanisms of key features

of the biological processes within trees during the growing season, which links

climate variables to ring-width growth and tree-ring formation.

(2) The statistical model can only capture the variation of ring-width indices an-

nually (year-to-year). However, the VSLite model captures the variation of

ring-width growth in a monthly time-step (month-to-month).

(3) Unlike the statistical model, VSLite is able to simulate dated ring-width indices

(trees with known age) at any specific geographical location. This is due to

the use of dated climate variables (temperature and precipitation) as inputs to

the model.

(4) The statistical model requires the ring-width data to be fully processed (de-

trended, prewhitened and normalised) in order to obtain stationary sequences

prior to any representation of the data in the model. However, the VSLite

does not require the data to be fully processed, and it has the potential of
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using less-processed data. This will be addressed in the next chapter.

In this chapter we have demonstrated that the VSLite model can successfully

be used in the matching process when using simulated data. The next chapter will

investigate the Bayesian implementation of the model and matching process for

less-processed data. This will be more interesting statistically, as it will remove the

preprocessing step from data and allow the dendrochronology community to work

directly with the real tree-ring width data instead of ring-width indices.
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Chapter 7

Bayesian Tree-ring Dating Using

Data-adaptive Rescaling

A Bayesian framework for tree-ring dating was introduced in the previous chapter

using either our extension to the VSLite (mechanistic forward model), or using

the simple statistical model by Jones (2013). The two models were implemented

along with the traditional dendrochronology methods. All the current approaches,

classical and Bayesian, in dendrochronology usually use fully preprocessed data,

which is intended to remove tree-specific signal and reveal the stationary part of

the climate signal. Preprocessing raw ring-width data includes three main steps:

detrending, prewhitening and normalising (all detailed in Section 2.1). However,

the disadvantage of fully preprocessing data is that some of the essential struc-

ture and characteristics of raw ring-width data are lost, and more climate signal

is removed than is necessary. Additionally, current available methods apply the

preprocessing procedures on the dated and undated sequences separately, and do

not take into account any effect of the rescaling between the two sequences before

matching (this is explained by an illustrative example in the next section). To our

knowledge this problem has not been addressed before by dendrochronologists.

In order to tackle this issue in this chapter, we introduce a new simple and more

general Bayesian approach for tree-ring dating, which aims to use less-processed

data (only detrended, not prewhitened or normalised) for matching undated ring-
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width sequences directly to the dated master chronology. The model also involves

two new scaling and translating parameters (α and β) which both ensure that the

two sequences are on the same scale before matching them. Thus, our approach

keeps the first preprocessing step (detrending) which is inevitable, because trees

grow faster when they are younger, and removing this age-related growth trend

seems sensible and essential. Furthermore, the new approach also allows for single

trees to be matched to the dated master chronologies, as well as matching pairs of

individual trees which is used for constructing chronologies.

This chapter is structured as follows. Section 7.1 gives the motivation behind

introducing this new model by an illustrative example. Section 7.2 outlines the new

model with the rescaling parameter and its Bayesian implementation for the match-

ing process. Section 7.3 includes results of implementing the model for Bayesian

matching using both real and simulated data. The main conclusions and a sum-

mary of the chapter are exist in Section 7.4.

7.1 Motivation

The motivation behind introducing a new model (detailed in Section 7.2) was to

use less-processed data in the matching process and allow for the rescaling be-

tween dated and undated sequences, which are not considered in the current den-

drochronology methods. When crossmatching an undated tree (short) to a master

chronology (long), the undated sequence might match to any short interval in the

long master chronology which has different climate fluctuations as shown in Fig-

ure 7.1, top panel. These intervals could have quite different climate variation,

therefore it is not appropriate to put the undated sequence on the same scale as

the master chronology, without taking into consideration the effect of rescaling be-

tween the two sequences. Furthermore, different trees might respond in different

ways to climate; some of them might have bigger fluctuations than the others.

Thus, of course, we need to rescale the dated and undated sequences when cross-

matching, but without fixing the scale (as currently used by dendrochronologists).
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This is because the scale factor used for rescaling one of them is based on the

whole long period (master chronology) while the one used for the another sequence

is based on a short period (undated tree). Instead, we need a method to allow the

data to tell us what kind of scale the dated and undated sequences should have,

which therefore allows rescaling them together inside the model likelihood when

matching them. The limitation with the current dating methods, and hence the

need for a new suggested approach, is illustrated by the following example.

Figure 7.1: A plot to show the effect of separately rescaled two subsections of undated

ring-width sequences taken out from a dated master chronology. Simulated site chronol-

ogy (top panel), two different undated sequences (middle panel), the two undated se-

quences and their rescaled version (bottom panel).
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7.1.1 Illustrative Example

Suppose there is a fully-processed tree-ring site master chronology (yD) of length

l = 200 years, with zero mean and variance one, which has some flat and some

wiggly sections, as shown in Figure 7.1. Let A and B be two subsections of the

dated master chronology of length lA and lB respectively. With the current dating

methods, if we take out a subsection (either flat or wiggly) of this chronology to be

considered as undated sequence and try to re-date it, then there are two potential

ways that the matching process might go wrong, due to the following issues:

• Scaling: the dated and undated sequences are not on the same scale.

• Translating: the dated and undated sequences are shifted from one another.

These two issues are illustrated clearly in Figure 7.1. If we take out, for example,

a subsection A (Figure 7.1, middle panel) from the master chronology and assume

it to be undated and hence match it again to the master chronology, then we

will obtain a perfect match (i.e. the undated sequence will be matched to its

correct offset). However, in the traditional dating approach we do not do this, but

instead we rescale (reprocessing) the undated sequence again to have zero mean and

variance one (Figure 7.1, bottom panel) in order to put it on the same scale with the

master chronology. Despite the fact that the rescaled sequences still have the same

shape/pattern, the scale changes significantly, and the sum of squared differences

between the rescaled and the original sequences ( as mentioned in Equation 7.2) is

quite large. Hence, it will not match to its correct offset because the two sequences

are no longer on the same scale.

This indicates that the undated tree has grown less/more fast by the factor α,

because some trees might have more extreme responses to climate conditions than

others. The effect of this rescaling factor is totally ignored in the current dating

methodologies. Therefore, we should allow for this rescaling factor to be consid-

ered in the model itself (inside the matching process) by adding an extra parameter

(α) to account for the rescaling between dated and undated sequences rather than

reprocessing the undated sample to be put on the same scale as the dated master.
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Another example where the matching process might not work is when there is

a translation (shift) in the mean of the undated sequence; when dating a small

time-period which is unrepresentative of longer master chronology. If we take, for

example, a short subsection from a wiggly part of the master chronology (Figure

7.1, middle right panel) and assume it to be undated and match it to the master

chronology, we will have a perfect match to its correct offset. However, if we

rescale it to have a zero mean and match it again to the master chronology (with

the current dendrochronology methods), we do not obtain a good match because it

might match to any short interval in the long master chronology which has different

climate fluctuations of such short-periods.

Again, the effect of this shifting factor is entirely ignored in the current dating

methodologies. Therefore, we should also allow for this translation effect to be

considered in the model used for the matching process.

Thus, within our new approach (described in the next section) we consider the

impact of the two issues mentioned above by adding two extra parameters (α and

β) to the model to allow for the rescaling and translation effects between the cross-

matched sequences prior to matching them.

7.2 A Modified Model with Rescaling Factor

The relationship between the undated tree-ring width sequences (yU) and the dated

master chronology (yD) is described as,

α yUi = β + yDi+∆ + εi, (7.1)

where

yUi : is the detrended undated ring-width sequence of length l∗.

yDi : is the detrended dated master chronology of length l.

α: is the rescaling parameter between the dated and undated sequences.

β: is the population mean of the undated ring-width indices.
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∆: is the possible offset (unknown start date) of the undated sequence.

εi: is the model noise (error), which follows an independent and identically dis-

tributed (i.i.d.) normal distribution with mean 0 and variance σ2
e .

7.2.1 Bayesian Implementation of the Modified Model

The model described above was used for the matching process (detailed in Section

6.1) in a Bayesian framework to match undated trees to dated master chronologies

with a view to providing posterior probability of a match at all possible offsets.

The Bayesian paradigm allows combining both the likelihood of data and prior

information about the unknown date of the undated tree, as follows.

7.2.1.1 The Likelihood

Let the likelihood of the undated sequence yU given the dated master chronology

yD and the unknown parameters α, β, σ2
e ,∆ be:

p(yU |α, β, σ2
e ,∆,y

D) ∝
l∗∏
i=1

( 1

σ2
e

) 1
2

exp
{
− 1

2σ2
e

(α yUi − β − yDi+∆)2
}
, (7.2)

where;

• l + l∗ − 2q + 1: is the total number of all possible offsets between the dated

and undated sequences; and q is the minimum overlap of rings between them.

• ∆ = (∆s− l∗+q,∆s− l∗+q−1, . . . ,∆s−1,∆s,∆s+1, . . . ,∆e−q+1) are all

possible offset (start date) for the undated tree-ring sample; where ∆s and

∆e are the start and end dates of the dated master chronology.

7.2.1.2 The Priors

To make inferences about the model parameters in the matching process under

the Bayesian paradigm, prior distributions are needed for the unknown parameters

α, β, σ2
e , and ∆.
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Prior for α

The parameter α, is the rescaling parameter between the dated and undated trees.

To choose a suitable prior for this parameter, it should satisfy these two conditions.

(i) It should be positive (α > 0) as it is a scaling factor which indicates that one

of the two sequences might grown faster than the other.

(ii) It should be symmetric so that for any numbers a and b with 1 < a < b;

P (a < α < b) = P (1/b < α < 1/a). This will allow us to consider a rescaling

on either tree (i.e. dated or undated) in a symmetric fashion. However, the

prior on β parameter (described below) might not allow for this, but as close

as possible.

Therefore, we chose our prior distribution for α to be log-normal, with parameters

(µα, σ
2
α), which satisfies the two conditions above. We chose µα to be equal to zero

in order to satisfy the symmetry property. For the experiments in this chapter we

used a log-normal prior distribution for α, with µα = 0, and σα = 0.25, which gives

a density mode of 1 (see Figure 7.2).

The log-normal density as a prior for α can be parametrised with µα and σα as

follows,

f(α) =
1

α
√

2πσα
exp

{ −1

2σ2
α

(log α− µα)2
}
.

The expected value and the variance of α are:

E(α) = e(µα+1/2σ2
α)

Var(α) = e2µα+σ2
α(eσ

2
α − 1).

Figure 7.2 shows log-normal distribution priors with different values for hyper-

parameters µα and σα.
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Figure 7.2: Probability density function of log-normal with different parameters.

Prior for β

The parameter β is the population mean of the undated ring-width sequence.

Again, for the similar reason to (α) mentioned above, this parameter should have

a symmetric distribution with a mean close to zero, because we have no prior in-

formation that one tree is having an offset from the other one. Accordingly, an

appropriate prior distribution for this parameter would be normally distributed

with zero mean and variance k, where k is a constant to be determined. For the

experiments in this chapter we used a noninformative prior for β, with a large value

of k of 100.

Prior for σ2
e and ∆

The prior distribution for the model noise (σ2
e) and the unknown date of the un-

dated sequence (∆) will be the same as those used in the previous chapters. The

reader is referred to Section 5.3.3 and 6.2.1 for more details about the prior distri-

butions for these two parameters.
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7.2.2 The Posterior

Using Bayes’ theorem, by combining the prior for all unknown parameters and the

likelihood, the joint posterior distribution of the unknown parameters is given by

p(α, β, σ2
e ,∆|yD,yU) ∝ p(yU |α, β, σ2

e ,∆,y
D) p(α) p(β) p(σ2

e) p(∆)

∝
l∗∏
i=1

( 1

σ2
e

) 1
2

exp
{
− 1

2σ2
e

(α yUi − β − yDi+∆)2
}
×

1

α σα
√

2π
exp

{
− 1

2

( lnα− µα
σα

)2}
×
(1

k

) 1
2

exp
(−β

2k

)
×(

σ2
e

)−(ae+1)

exp
(−be
σ2
e

)
×
( 1

l + l∗ − 2q + 1

)
.

7.2.3 Full Conditional Distributions for Parameters

To apply the MCMC we should find the conditional distribution for each model

parameter given all the other parameters. The full conditional distribution for each

parameter were obtained from the joint posterior distribution above, as follows.

The Conditional Distribution of (α|β, σ2
e ,∆,y

D,yU)

With the prior distribution of α ∼ log-normal(µα, σα), and the likelihood of data

p(yU |α, β, σ2
e , ∆, yD), the full conditional posterior distribution of α is:

p(α|β, σ2
e ,∆,y

D,yU) ∝ p(yU |α, β, σ2
e ,∆,y

D) p(α)

∝
l∗∏
i=1

( 1

σ2
e

) 1
2

exp
{
− 1

2σ2
e

(α yUi − β − yDi+∆)2
}
×

1

α σα
√

2π
exp

{
− 1

2

( lnα− µα
σα

)2}
.

The full conditional distribution for the α is not a standard distribution, thus we

will use the Metropolis-Hastings update instead of the Gibbs sampler for this pa-

rameter.
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The Conditional Distribution of (β|α, σ2
e ,∆,y

D,yU)

A normal distribution is a conjugate prior for the parameter (β) since it results

in a posterior distribution that is also normal, and thus it makes the sampling

procedures simpler. With the prior distribution of β ∼ N(0, k), and the likeli-

hood of data p(yU |α, β, σ2
e , ∆, yD), and with N∗ indicating the total number of

observations, the full conditional posterior distribution of β is:

p(β|α, σ2
e ,∆,y

D,yU) ∝ p(yU |α, β, σ2
e ,∆,y

D) p(β)

∝
l∗∏
i=1

( 1

σ2
e

) 1
2

exp
{
− 1

2σ2
e

(α yUi − β − yDi+∆)2
}
×
(1

k

) 1
2

exp
{
− β2

2k

}
.

∝ exp

{
− 1

2

(N∗
σ2
e

+
1

k

)
β2 +

[ 1

σ2
e

l∗∑
i=1

(
α yUi − yDi+∆

)]
β

}
.

The full conditional distribution for the parameter β is a standard normal dis-

tribution. Thus,

p
(
β|α, σ2

e ,∆,y
D,yU

)
∝ N

(
µ̂β, V̂β

)
,

where

V̂β =
(N∗
σ2
e

+
1

k

)−1

and µ̂β = V̂β

{
1

σ2
e

l∗∑
i=1+∆

(
α yUi − yDi+∆

)}
.

The Conditional Distribution of (σ2
e |α, σ2

e ,∆,y
D,yU)

The calculation of the full conditional distribution of (σ2
e |α, β,∆,yD,yU) is similar

to that seen in chapter 5. Therefore, the distribution of the model noise parameter

is inverse-gamma

p
(
σ2
e |α, β,∆,yD,yU

)
∼ Γ−1

(
N∗

2
+ ae,

l∗∑
i=1

(α yUi − β − yDi+∆)2 + be

)
.

152



The Conditional Distribution of ∆

The calculation of the full conditional distribution of (∆|α, β, σ2
e ,y

D,yU) is very

similar to that seen in chapter 6. Therefore, the posterior distribution of ∆ is

log
[
p(∆|α, β, σ2

e ,y
D,yU)

]
=− 1

2σ2
e

l∗∑
i=1

(α yUi − β − yDi+∆)2.

The Bayesian implementation of the new model and the matching process have

been described in this section with the essential notation. The new approach aims

to work with less-processed data, detrended ring-widths, when matching undated

sample to a dated master chronology. Experiments are now required to examine

the ability of the model in the matching process.

7.2.4 MCMC Sampling Algorithm

A Metropolis-Hastings algorithm within a Gibbs sampler were implemented to draw

samples from the posterior distributions of the model parameters. The sampling

procedures are outlined as follows.

i) Choose starting values α(0), β(0), σ
2(0)
e , and ∆(0).

ii) for j = 1 to Nmcmc

1. Update the parameter α by:

a) Draw a proposed value α
′
from a suitable proposal distribution Ψ(α

′ |α(j−1)).

b) Calculate the likelihood of the proposal,

p(yU |yD, α′ , β(j−1), σ
2(j−1)
e ,∆(j−1))

c) Calculate the likelihood of the current value,

p(yU |yD, α(j−1), β(j−1), σ
2(j−1)
e ,∆(j−1)).

d) With probability min
(

1, p(yU |yD, α′ , β(j−1), σ
2(j−1)
e , ∆(j−1))

p(yU |yD, α(j−1), β(j−1), σ
2(j−1)
e , ∆(j−1))

Ψ(α(j−1)|α′ )
Ψ(α′ |α(j−1))

)
set α(j) = α

′
; otherwise, set α(j) = α(j−1).
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2. Update β by sampling a value for β(j) from its full conditional distribution,

p(β|yU ,yD, α(j), σ
2(j−1)
e ,∆(j−1)).

3. Update σ2
e by sampling a value for σ2

e
(j)

from its full conditional distribu-

tion, p(σ2
e |yU ,yD, α(j), β(j), ∆(j−1)).

4. Update ∆ by sampling a value for ∆(j) from its full conditional distribution,

p(∆|yU ,yD, α(j), β(j), σ
2(j)
e ).

iii) Repeat step (ii) until the Markov Chain reaches equilibrium.

iv) All subsequent converged iterations of step (ii) are used as samples from the

posterior.

We typically choose a symmetric proposal (i.e. Ψ(α
′|α) = Ψ(α|α′)) in our Metropolis-

Hastings update, hence the acceptance probability simplifies.

7.3 Bayesian Matching Process Experiments

This section outlines experiments of matching undated ring-width sequences to a

dated site master chronology using the approach outlined in Section 7.2.1.

For each experiment in this Section, a Bayesian implementation of the model

and the matching process is applied, along with the traditional method (t-value) to

make a comparison between our approach (using less-processed data with rescal-

ing parameter) and the classical methodology (using fully-processed data without

rescaling). The approach has successfully provided posterior probabilities of a

match at all possible offsets, and has provided a highest posterior probability for a

match at the true offset.

For each experiment, the model parameters (α, β, σ2
e , and ∆) were esti-

mated in the Bayesian framework via the MCMC sampling. The posterior plots

and their MCMC convergence were checked but not reported. Different diagnostic

techniques, detailed in Section 5.3.8, were used for checking the MCMC conver-

gence. Following are results of three experiments conducted for matching undated

sequences to a dated site master chronology, using both simulated and real data.
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7.3.1 Experiment 1: Simulated Data

In order to examine the adequacy of the new modified approach for matching pro-

cess which takes into account a scaling parameter between the dated and undated

sequences, an experiment with simulated data is implemented here. To create an

example where the climate variation might alter over different periods of time, we

generated a site master chronology of length 300 years as follows (see Figure 7.3).

We generated the first and last 100 years of that chronology from N(0, 2) and

the second 100 years from N(0, 0.5), and then we combined the three sequences

together and normalised to have zero mean and variance one to mimic a fully-

processed data-set. As you can see in the Figure 7.3, a subsection of length 100

years was then taken out from a flat part (ring-widths 101 to 200) of the master

chronology and assumed to be undated. This undated sequence was then rescaled

(so that it has a variance of 1) and matched to the dated master chronology using

the new Bayesian approach, Jones’ approach and a classical (t-value). The results

from the three approaches were then compared and are summarised in Table 7.1.
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Figure 7.3: Simulated site chronology (top) from a normal distribution with zero mean

and variance one to mimic the fully-processed data. A subsection of length 100 years

(bottom left) is taken out and assumed to be undated. The undated sequence is rescaled

(bottom right) to put on the same scale as the dated chronology.
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It is worth noticing that when matching the undated subsection without rescal-

ing (Figure 7.3, bottom left panel) to the master chronology, we will obtain a

perfect match (i.e. it will be matched to its correct offset with a scaling of 1 and

a shift of 0). However, in the traditional dendrochronology they do not do this,

but instead they rescale the undated sequence again so that it has zero mean and

variance one (Figure 7.3, bottom right panel) in order to put it on the same scale as

the master chronology, but without taking into account the effect of that rescaling.

Results in Table 7.1 show that the new Bayesian approach with the rescaling

parameters has provided a high posterior probability estimate of 0.91 for a match at

the true offset. In this simulation experiment, the new approach tends to perform

better than the current available methods. This is clear in the table, as the classical

method and Jones’ approach both failed to provide high t-value and high posterior

probability of the match at the true offset. Specifically, the classical method has

provided a t-value of 3.18 which is under the acceptable threshold value used by

dendrochronologists. Similarly, a relatively low posterior probability of only 0.57

was provided by Jones’ approach. Unlike the results of our modified approach, the

results of the two current methods tend to be unacceptable by the dendrochronol-

ogists who are looking for a relatively high posterior probability (≥ 0.70) and high

t-value (≥ 3.5) of the match.

New approach Jones’ approach t-value

Offset Posterior Prob. Offset Posterior Prob. Offset Posterior Prob.

100 0.914 100 0.574 100 3.18

140 0.063 175 0.251 175 2.47

153 0.021 140 0.073 112 2.04

87 0.005 124 0.026 103 1.96

Table 7.1: Results of matching an undated sequences covering 100 years to a dated

site master chronology covering 300 years, using our new Bayesian approach, Jones’

approach, and the traditional method (t-value). The true offset is 100.
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Figure 7.4 shows the histograms of the posterior distributions for the model

parameters α̂, β̂, σ̂2
e and ∆̂ when using our new approach which takes into account

the impact of data-adaptive rescaling.
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Figure 7.4: Posterior histograms of the model parameters for the experiment of matching

undated sequence covering 100 years to a dated site chronology covering 300 years, using

our modified approach with simulated data.

This simulation experiment shows the impact of the data-adaptive rescaling

between dated and undated sequences prior to matching process. It showed that

better dating results with higher posterior probability of a match can be obtained

when taking into account a rescaling effect in the model, which ensures that the

two sequences are on the same scale before matching them. The effect of the scaling

might be influential as results in this experiment showed that a low t-value and a

low posterior probability are provided when such data-adaptive rescaling effects are

ignored (i.e. the two sequences, one is short and another one is long, are rescaled

independently). Therefore, our new method has successfully evaluated the impact

of the rescaling via the posterior estimates of the model parameters α̂ and β̂ which

both measure the scale and the shift between the dated and undated data.
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7.3.2 Experiment 2: Real Data (Less-Processed)

The Bayesian approach introduced in Section 7.2.1 allows us to work with less-

processed (detrended) data in the matching process. This is due to the rescaling

parameter (α) which enables putting the crossmatched sequences on the same scale

prior to dating them. Within our new approach, the need for the fully-processed

data (which is not desirable) might be removed when matching undated ring-width

sequences to a dated master chronology. By using less-processed (only detrended,

not prewhitened or normalised) data in the matching process we retain more struc-

tures and characteristics of the underlying climatic signal in the data. Furthermore,

it would allow the dendrochronology and dendroclimatology communities to work

directly with the raw ring-width data when dating timbers and reconstructing past

climate.

In order to explore the behaviour of the matching process with less-processed

data, we conducted an experiment with real data here. Raw tree-ring width data

of 20 Quercus tree samples were obtained from ITRDB for a site in the UK called

“Sheffield”, http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/

datasets/tree-ring. The length of tree-ring samples at this site varies from 84

years to 245 year as shown in Table 7.2 and Figure 7.5.

Table 7.2 shows descriptive statistics for measured Quercus ring-width data at

Sheffield site, and Figure 7.5 shows the time-series plot of both raw ring-width data

and detrended sequences for each individual trees at Sheffield site. All the tree-ring

series were aligned together with a view to building a site master chronology.

All the tree-ring samples were detrended, using methods detailed in Section

2.1.1, to remove any growth related effect (age-trend) from measured ring-widths.

Figure 7.5 (bottom panel) shows the detrended ring-width sequences. One of the

detrended samples was then randomly selected (sample EPW19) to be assumed

as undated sequence of length 135 years, and the remaining 19 samples were then

used to build a dated site master chronology, using methods detailed in Section
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Seq Series Time Span No. Years Corr with Master Mean Std dev

1 BPW01 1784 - 2003 220 0.645 1.34 0.651

2 BPW02 1780 - 2003 224 0.480 0.95 0.717

3 BPW03 1812 - 2003 192 0.634 1.67 0.598

4 BPW04 1821 - 2003 183 0.540 1.38 0.786

5 BPW05 1799 - 2003 205 0.583 0.86 0.532

6 BPW06 1777 - 2003 227 0.555 1.50 0.584

7 BPW07 1841 - 2003 163 0.614 0.84 0.417

8 BPW08 1833 - 2003 171 0.596 1.73 0.832

9 BPW09 1808 - 2003 196 0.705 1.72 0.914

10 BPW10 1804 - 2003 200 0.592 0.94 0.917

11 EPW11 1759 - 2003 245 0.601 1.09 0.475

12 EPW12 1864 - 2003 140 0.540 1.51 0.701

13 EPW13 1836 - 2003 168 0.689 1.63 1.016

14 EPW14 1824 - 2003 180 0.554 1.39 1.059

15 EPW15 1831 - 2003 173 0.528 1.37 0.675

16 EPW16 1843 - 2003 161 0.409 1.46 0.795

17 EPW17 1866 - 2003 138 0.617 1.77 0.596

18 EPW18 1917 - 2003 87 0.469 2.68 0.727

19 EPW19 1869 - 2003 135 0.450 1.50 0.622

20 EPW20 1920 - 2003 84 0.349 2.37 0.697

Table 7.2: Summary statistics for raw ring-width data of 20 samples from “Sheffield,

Bingham Park Wood and Endcliffe Wood”. Columns 3 to 6 show respectively the time

span for each sequence, number of years covered by the samples, the correlation between

the sequence and the site master chronology, mean and standard deviation of each ring-

width sequences.

2.3.3. A site master chronology of length 245 years for this geographical location

was successfully built.
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Figure 7.5: A plot of raw ring-width data (top) and detrended ring-width indices (bottom)

at “Sheffield, Bingham Park Wood and Endcliffe Wood”.
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Figure 7.6 shows the time-series plots of the dated site master chronology built

from 19 detrended individual trees, and the undated sample.
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Figure 7.6: Time-series plots of ring-width indices at “Sheffield, Bingham Park Wood

and Endcliffe Wood”; top panel shows a dated master chronology (red) created from 19

individual trees (green), and bottom panel shows an undated ring-width sequence. All

the sequences are only detrended, not prewhitened or normalised.

The undated sample is then matched to the dated site master chronology us-

ing our new model which takes into consideration the rescaling between the two

sequences. Table 7.3 shows the posterior probability of the match at the main four

highest probability offsets, and the mean posterior estimates of the model param-

eters (α̂, β̂, and σ̂2
e). The true date of the undated sequence is AD 1869. The

Bayesian implementation of the model has successfully located the undated sample

at the correct date offset with a high posterior probability of 0.89. However, the

classical method which does not take into account the effect of rescaling between

the two sequences, has failed to provide a high t-value for the match at the cor-

rect offset. It has provided a t-value of just (3.29) which is under the acceptable

threshold value (3.5). This emphasizes the importance of the new approach which
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provides more reliable and dependable results for matching ring-width sequences.

Posterior Probability α̂ β̂ σ̂2
e t-value

Offset Probability

1869 0.89 0.248 0.074 0.481 3.29

1863 0.05 3.41

1797 0.02 3.13

1856 0.01 2.61

Table 7.3: Results of the experiment of matching a detrended undated sequence covering

135 years to a dated site master chronology covering 245 years, using our new Bayesian

approach and the traditional dendrochronology method (t-value). The true offset of the

undated sequence is 1869 AD. The MCMC ran for 10000 iterations with 1000 iterations

as burn-in period, and the parameter results have been thinned to every 10 iterations.

This experiment shows the potential of using less-processed data for dating

purposes under our new Bayesian approach. In this experiment, although the data

were only detrended, the model has successfully matched the undated sample at

the true offset with the highest posterior probability. Due to the use of the rescal-

ing parameters (α and β) in the model, the new approach removes the need of the

fully processed data in the matching process. In other words, the model only keeps

the detrending procedure which is inevitable to remove the age-trends from raw

data. This is beneficial for the dendrochronologists which will allow them to keep

more structures of climatic signals in their data, and will also allow removing the

need for prewhitening and normalising data which are undesirable.

7.3.3 Experiment 3: Matching Individual Trees

The classical tree-ring dating process relies on finding two samples which match

properly together. A master chronology is then constructed by matching these

two sequences together and then finding more samples which match the first two,

and so on. However, sometimes trees may have come from different places and
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fail to match with each other, thus building a site chronology will become more

difficult, and the timbers therefore remain undated. This is because under classical

methodologies, a match with a t-value of less than 3.5 cannot be accepted and the

timber remains undated in this case.

In order to examine the ability of our new Bayesian approach for matching

individual trees in terms of their posterior probabilities, we used our data in the

previous experiment (Section 7.3.2) for this purpose, as follows. Sample 11, which

is the longest tree-ring sequence in this geographical location is assumed to be a

dated sequence known as “reference”. Ten individual samples were also selected

randomly and assumed to be undated sequences. Hence the 10 samples were cross-

matched against the dated reference to obtain an absolute calendar date for each

undated sample.

Table 7.4 shows the results of crossmatching pairs of ten single trees. Every

single tree is crossmatched with the “reference” sequence (sample 11) using our

new Bayesian approach and the classical method (t-values). Results in Table 7.4

illustrate that the new Bayesian approach has successfully matched each individual

tree with the highest posterior probability at its true offset, and there is no match

with high posterior probability at the wrong offsets. Specifically, it provided a very

high posterior probability (≥ 0.90) for samples (1, 2, 4, 5, and 9), a moderate

posterior probability (≥ 0.70) for samples (3, 6 and 8), and a low, but the highest

posterior probability for samples 7 and 10.

More interestingly, while the classical method (t-value) failed to match some of

the undated sequences at their true offsets, the new Bayesian approach was able

to match them with relatively high posterior probabilities. This can be noticed,

for example, in samples 3 and 6 when the classical method provided t-values of

less than the acceptable threshold value 3.5, but the posterior probabilities were

relatively high. This is because the dated and undated samples were not on the

same scales before matching, and the classical method does not account for the

effect of rescaling them.

This experiment demonstrated that the new Bayesian approach can also be
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Sample Offset Posterior Probability t-value

Sample 1 1784 0.93 5.01

1759 0.06 3.15

1802 0.01 2.61

Sample 2 1780 0.90 4.45

1779 0.08 2.15

1753 0.01 1.76

Sample 3 1812 0.70 3.28

1810 0.16 2.73

1794 0.09 2.13

Sample 4 1821 0.99 5.48

1782 0.00 3.32

1819 0.00 1.97

Sample 5 1799 1.00 5.62

1760 0.00 2.89

1805 0.00 1.81

Sample 6 1777 0.79 3.24

1800 0.11 2.94

1793 0.06 2.65

Sample 7 1841 0.54 2.85

1784 0.22 2.98

1782 0.19 1.45

Sample 8 1833 0.78 3.71

1855 0.15 2.92

1792 0.02 1.75

Sample 9 1808 0.92 3.62

1866 0.06 3.04

1807 0.01 1.26

Sample 10 1804 0.47 2.97

1818 0.35 2.71

1817 0.11 2.62

Table 7.4: Results of crossmatching ten undated individual trees to a single dated se-

quence using our new Bayesian approach and the classical method (t-values). The first

(highlighted) offset for each sample is the true offset.

used to match individual trees one with another. The new approach was able to

always provide a highest posterior probability at the true offset. Therefore, if (for

example) a threshold posterior probability of 0.70 is to be considered for making a

decision about good or bad matches, then the majority of the individuals trees in

this experiment have been successfully matched at their true offsets, and there is

no matches with a highest posterior probability on the wrong offsets.
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7.4 Summary of Chapter

In this chapter a Bayesian approach for tree-ring dating has been introduced and

examined by different experiments on simulated and real data. The approach

takes account of scaling and translating between the dated and undated sequences

to ensure that they are on the same scale before cross-matching them. It has taken

into consideration the data-adaptive rescaling between the undated tree (which

is relatively short and might come from a place with a short period of climate

variation) and the dated master chronology (which is relatively long and might

come from a place with a long period of climate variation). The new approach

involves simultaneously fitting a simple linear model, matching undated trees to a

dated master chronology, and hence identifying a posterior probability of a match

at each possible offset between the two sequences. The Bayesian matching process

includes evaluating the likelihood of the model parameters at every possible date

offset which allows the posterior distribution of the unknown date to be estimated.

Bayesian implementation experiments in this chapter show the potential of

matching less-processed data with data-adaptive rescaling. The new approach has

successfully matched the undated sequence with the highest posterior probability

of a match at the true offset. Within this approach, the matching process were ap-

plied for less-processed data. This has enabled us of rescaling sequences of different

lengths using data-adaptive rescaling, and therefore matching trees that kept more

structure of climatic signals in their data. In addition, the new approach has suc-

cessfully used for matching individual trees with each other, and this is beneficial

for building master chronologies.

In the next chapter, the new model introduced here with the rescaling parame-

ter will be linked with the VSLite model to tackle the problem of matching undated

trees in the presence of missing master chronologies. The VSLite model will be used

to estimate a pseudo-master chronology from dated climate variables, and the miss-

ing master will be replaced by the pseudo-chronology generated from VSLite. This

will be implemented in a Bayesian framework using a two-stage MCMC method.
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Chapter 8

Tree-Ring Dating in the Absence

of Master Chronologies

8.1 Introduction and Motivation

In the previous chapter we introduced a linear model for matching undated trees to

a dated site master chronology. The model was successfully used to match undated

sequences to dated master chronologies under the Bayesian framework. Within

that approach, as in all current dendrochronology methods, in order to date any

undated ring-width sequences, there must be an existing relatively long dated site

or master chronology. This dated sequence is the key to the matching process,

without it undated sequences cannot be dated. However, master chronologies are

not available for most locations around the world, and are at best only available

for limited areas, thus many tree timbers remain undated. For instance, Jones

(2013) states that “although dendrochronology is a successful and well practised

technique, many timbers sampled do remain undated. The overall success rate

for dating timbers in the UK is approximately 60-70%, and this rate varies within

sites and within wider geographical locations, for example the success rate of dating

timbers in South West England is approximately 30-40%”. One of the main reasons

for this failure is the lack of master chronology. Therefore, without having such

dated chronologies, many actual undated timbers remain undated.
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In this chapter we consider the problem of matching undated tree-ring width

sequences when the master chronology is missing. We aim to tackle this problem

by first replacing a missing master chronology for a site of interest by a pseudo-

master generated from the VSLite model using available climatic records. The

reason for not directly matching undated sequence to the climate information is

because the two types of data (climate and tree-ring) are not comparable, and we

aim to transform the climate information into a pseudo chronology to make them

comparable. Hence, we match undated timbers to the generated (pseudo) master

chronology and make inference about the matching process in a Bayesian frame-

work. Our focus is therefore on areas like South West England where historical

climate records exist, but no master chronologies have been established. Although,

this method would only work when we have climate data, it would be of great

interest to know whether a mechanistic forward model as simple as VSLite has the

potential to create tree-ring width chronologies from climate data in areas where

we have undated tree-ring data but do not have master chronologies.

This chapter is structured as follows. Modelling the matching undated trees

in the presence of missing master chronologies is introduced in Section 8.2. A

Bayesian implementation of the model, using a two-stage MCMC method, is de-

tailed in Section 8.3. Methods for measuring uncertainty in the estimated dates for

the undated sequences are introduced in Section 8.4. The model implementation

algorithm is summarised in Section 8.5. Results from implementing the model for

three case studies are reported in Section 8.6, and this is followed by the conclu-

sions and summary in Section 8.7.

8.2 Matching under Missing Chronologies

To model the process of matching undated timbers when master chronologies are

missing, we replace the real dated chronology (yD) given in the model in chapter

7, with a pseudo-master chronology (Ŵ ) generated from the VSLite model using
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historical climatic records. The model becomes,

α yUi = β + Ŵi + εi

= β + f(T,P, T1, T2,M1,M2, φ) + εi

where;

yUi : is the undated ring-width sequences of length l∗.

Ŵi: is the dated pseudo-chronology of length l, generated from the VSLite model

given monthly temperature (T) and Precipitation (P), VSLite growth response

threshold parameters (T1, T2,M1,M2), and site latitude (φ).

α: is the rescaling parameter between the dated and undated sequences.

β: is the population mean of the undated sequences.

εi: is the error term or noise, which also includes the uncertainty associated with

the estimated VSLite output Ŵ . εi follows a normal distribution with mean 0 and

variance σ2
e .

A Bayesian implementation of this model is offered in the next section. The

modified approach involves simultaneously generating a dated pseudo-master chronol-

ogy from VSLite, fitting the model and match the undated trees to the pseudo-

master chronology, and identifying the posterior probability of a match at all pos-

sible offsets between the two sequences.

8.3 Bayesian Model Implementation

In the Bayesian framework, we study the posterior probability of the match ∆ at

all possible offsets, and also seek the posterior estimates for all other parameters in

the model π(T1, T2,M1,M2, Ŵ, α, β, σ2
e ,∆|y,T,P), which we refer to as π(Θ|data).

We thus wish to study

π(Θ|data) =

∫
Θ

π(Θ|data) π(Θ) dΘ, (8.1)

where π(Θ) is the prior distribution of the unknown parameters. The joint poste-

rior distribution π(Θ|data) is integrated using MCMC techniques.
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However, implementing this model and estimating the posterior distribution as

mentioned above is potentially a challenging problem because of a large number of

model parameters. Having explored the convergence properties of Markov chains

used to implement the model in the previous chapter, we established that fitting the

model itself is not challenging, but the matching process and convergence checking

for the model parameters is time consuming. In some circumstances when the

highest posterior probability of the match is low, it requires running the MCMC

chains for more than 100, 000 iterations to obtain the converged and reproducible

results. When implemented in R (R Core Team, 2015), the implementations take

more than 3 hours on the currently available MacBook computer with a processing

speed of 2.7 GHz and 8 GB RAM.

Adding parameters of the VSLite model to the process and updating these

within the MCMC will make the problem even more computationally expensive.

Therefore, a more efficient method needs to be added to the existing code. Fol-

lowing the example of others with similar problems (Bhattacharya and Haslett,

2007; Christen and Fox, 2005; Ginting et al., 2011; Haslett et al., 2006) we use a

two-stage MCMC sampling which allows us to split our inference problem into two

separate tasks, as shown in Figure 8.1.

8.3.1 Two-stage MCMC method

In the two-stage MCMC algorithm, estimation of our posterior distribution π(Θ|data),

given in Equation 8.1, can be decomposed into two components representing two

discrete tasks:

π(Θ|data) = π(Ŵ|T,P, T1, T2,M1,M2)︸ ︷︷ ︸
stage 1

π(α, β, σ2
e ,∆|y,Ŵ)︸ ︷︷ ︸

stage 2

. (8.2)

In the first stage, dated pseudo-chronologies are generated from the VSLite

model with given climate data for the site (or region) of interest and estimated

growth threshold parameters. The output from this stage is the posterior distri-
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Figure 8.1: Schematic representation of the model for matching undated sequences when

no master chronology is available. Stage 1: (left) estimating VSLite parameters and

generating the dated pseudo-master chronology Ŵ. Stage 2: (right) matching undated

sequence to the pseudo-master chronology and estimating the parameters of the den-

drochronology model.

bution of dated chronologies π(Ŵ|T,P, T1, T2,M1,M2), and this is referred to as

“stage 1” in Figure 8.1 and Equation 8.2. This posterior output is then stored

in a large file to be used in the next stage when we match sequences and make

inferences about the unknown date for the undated sequences. In the second

stage, inferences are made about the model parameters and the matching pro-

cess π(α, β, σ2
e ,∆|y,Ŵ). In this stage, the model is fitted using a large number

of MCMC iterations, each conditioned on the converged pseudo dated chronology

Ŵ, which is obtained from averaging the posterior samples generated in stage-1.

By separating these two processes, we are making the assumption that the

matching process (stage 2) is conditionally independent of the climate data given

the generated dated pseudo-master chronologies (stage 1). This is crucial, because
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we might need to run the second stage for a very large number of iterations due

to the convergence demands, but we do not need such large number of iterations

to reach convergence in the first stage. Thus, the two-stage MCMC method con-

tributes to speed up the mixing and convergence overall. As we focus on the

posterior probability estimate of the match at all possible offsets (stage 2), the

two-stage MCMC method allows us to dedicate most of our computing resources

and convergence checking to the second stage, and therefore does not substantially

add to the three hour run-time outlined above.

8.3.2 Two-stage MCMC Sampling Procedures

A Metropolis-Hastings algorithm within a Gibbs sampler is used to estimate the

posterior distributions of the model parameters π(Θ|data), as follows.

First-stage:

1. Choose starting values for T
(0)
1 , T

(0)
2 ,M

(0)
1 , and M

(0)
2 .

2. for j = 1 to N (MCMC sample size)

a) Draw a proposed value T
′
1 from the prior distribution of T1.

b) Calculate the likelihood of the proposed value,

p(yD|T,M, T
′
1, T

(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2 )

c) Calculate the likelihood of the current value,

p(yD|T,M, T
(j−1)
1 , T

(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2 )

d) With probability min
{

1,
p
(

yD|T,M,T
′
1 ,T

(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2

)
p
(

yD|T,M,T
(j−1)
1 ,T

(j−1)
2 ,M

(j−1)
1 ,M

(j−1)
2

)} set T
(j)
1 = T

′
1;

otherwise, set T
(j)
1 = T

(j−1)
1 .

e) Repeat steps (a to d) to update T2, using parameters (T
(j)
1 ,M

(j−1)
1 ,M

(j−1)
2 , σ2

ε
(j−1)

).

f) Repeat steps (a to d) to updateM1, using parameters (T
(j)
1 , T

(j)
2 ,M

(j−1)
2 , σ2

ε
(j−1)

).

g) Repeat steps (a to d) to updateM2, using parameters (T
(j)
1 , T

(j)
2 ,M

(j)
1 , σ2

ε
(j−1)

).

h) Generate a pseudo-site-chronology vector Ŵ
(j)

, based on T
(j)
1 , T

(j)
2 , M

(j)
1 ,M

(j)
2 .
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3. Repeat step (2) until the Markov Chain reaches equilibrium.

4. Save Ŵ
(j)

to a text file with one chronology per row.

5. Obtain a converged pseudo-chronology, Ŵ, by averaging (taking a simple arith-

metic mean) from all pseudo chronologies Ŵ
(j)

generated in step 4.

6. End of stage 1.

Second-stage:

7. Choose starting values for α(0), β(0), σ
2(0)
e , and ∆(0).

8. for j = 1 to N (MCMC sample size)

a) Update α by:

i. Drawing a proposed value α
′

from the prior distribution of α.

ii. Calculate the likelihood of the proposal, p(yU |Ŵ, α
′
, β(j−1), σ

2(j−1)
e ,∆(j−1))

iii. Calculate the likelihood of current value, p(yU |Ŵ, α(j−1), β(j−1), σ
2(j−1)
e ,∆(j−1)).

iv. With probability min
(

1, p(yU |Ŵ,α
′
,β(j−1),σ

2(j−1)
e ,∆(j−1))

p(yU |Ŵ,α(j−1),β(j−1),σ
2(j−1)
e ,∆(j−1)

)
set α(j) = α

′
;

otherwise, set α(j) = α(j−1).

b) Update β by sampling a new value of β(j) from its full conditional distribu-

tion, p(β|yU ,Ŵ(j−1), α(j), σ
2(j−1)
e ,∆(j−1)).

c) Update σ2
e by sampling a new value of σ2

e
(j)

from its full conditional distri-

bution, p(σ2
e |yU ,Ŵ(j−1), α(j), β(j), ∆(j−1)).

d) Update ∆ by sampling a new value of ∆(j) from its full conditional distribu-

tion, p(∆|yU ,Ŵ(j−1), α(j), β(j), σ
2(j)
e ).

9. Repeat step (7) until the Markov Chain reaches equilibrium.

10. After the burn-in period and thinning the subsequent iterations of step (7), the

resulting iterations are used as samples from the posterior.

11. End.
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8.4 Measuring Uncertainty in Estimated Dates

In order to check the efficiency of the approach suggested in this chapter, we will

conduct some experiments at locations where both dated tree-ring data and histor-

ical climatic records are available. We will thus compare matching undated trees

to both real and pseudo master chronologies, and hence make inferences about the

distribution of the unknown dates for the undated timbers. Unlike Jones (2013)

who assumed that the match with the highest posterior probability is the only

single “best match” for the undated sequence, we will be interested in the whole

distribution of all possible offsets with their posterior probabilities. This is be-

cause under some circumstances we might have the highest posterior probability

at a poor or wrong offset, and for that reason we will study the whole posterior

distribution rather than a single match with the highest posterior probability esti-

mate. Therefore, to measure the uncertainty in the estimated dates, we evaluate

the following measures which are simple to compute and easy to interpret, espe-

cially by non-statisticians.

8.4.1 Loss Function for Matching

The quality of the estimate given the known true date can be described by a loss

function and its associated risk. In the current context, a loss (or cost) function is

a method of calculating how bad a decision would be if a wrong offset were chosen.

A matching process requires that we specify our matching target, i.e., what

we want to achieve. A loss function L for each possible offset from a matching

process can be defined as a cost of the difference between possible offset ∆̂i and the

true offset ∆∗. In this chapter, we use L(∆i) as the cost, or loss, of choosing the

offset ∆̂i as the possible match for the undated tree. The smaller the value of L,

the better the offset is for the undated sequences. There are two commonly used

versions of loss functions, the squared loss and the absolute loss. We tend to use

the absolute loss function for matching, because it measures the distance between

each possible offset and the true offset of the match, and it is easier to understand,
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especially for non-statisticians. The loss absolute function for each possible offset

can be mathematically defined as

L(∆i) = |∆̂i −∆∗|

where ∆∗ is the true offset for the undated sequences, and ∆̂i is the possible off-

set from the matching process. Successful dating occurs when both the number

of possible offsets and the cost of each offset are small. To obtain a probability

distribution for the loss we simply compute the loss function for each possible offset.

8.4.2 Risk Function

Having evaluated the loss function for each possible offset of the undated sequence,

the risk function (or expected loss function) can be defined by taking the expected

value of each possible offset with respect to the posterior probability of that offset.

The expected loss function for a range of possible offsets to obtain a particular

posterior probability (P ) can be defined as

E(Li ≥ P ) =L1p1 + L2p2 + · · ·+ Lkpk

=
k∑
i=1

Lipi

where Li and pi are respectively the loss function and the posterior probability of

the match for offset i, and k is the number of possible offsets to obtain a posterior

probability, P . The expected loss function for the true offset is always equal to

zero as the loss of the true offset is zero. We aim to minimise the expected value

for the posterior density estimates for all possible offsets between the dated and

undated sequences.

8.4.3 Cumulative Posterior Probability

Instead of only providing a single offset with the highest posterior probability

of a match, we also estimate the cumulative frequency distribution for posterior
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probabilities of all possible offsets. This will allow us to evaluate the quality of the

matching process in the number of calendar years covered to obtain any particular

posterior probability of a match. In other words, the posterior probability of the

undated sequences being matched within n calendar years can be evaluated.

Successful dating occurs when the cumulative posterior probability is high, the

value of expected losses is low, and the number of possible calendar date offsets

included in the matching process is small.

8.4.4 Threshold Probability Value for Bayesian Matching

Classical dendrochronologists usually use a threshold t-value of 3.5 to indicate a

good match for tree-ring dating. Baillie and Pilcher (1973) suggested using this

value as an arbitrary threshold for the match to be acceptable. Since then, it has

become a routinely adopted practice. That said, of course, the higher the t-value,

the better the match.

In Bayesian dendrochronology, when matching the dated and undated sequences,

the sum of the posterior probabilities of all possible offsets is 1. When there is only

one offset with a very high posterior probability between the two sequences, it is

easy to indicate it as a best match. However, unfortunately, this is not always

the case, and there might be a number of possible offsets each with a rather lower

posterior probability. In such cases, to mirror current practice, it seems desirable

to have both, the distribution of all possible offsets and a probabilistic threshold

value above which a match might reasonably be used in inference.

As mentioned in Chapter 6 several experiments were conducted to match un-

dated sequences to the dated master chronologies using Jones’ approach (Jones,

2013). For each experiment, a t-value and a posterior probability of the match

were evaluated and compared. Empirical exploration of the results in Chapter 6

suggest that the classical t-value of 3.5 is approximately equivalent to a posterior

probability of 0.75, as shown in Figure 8.2. However, we prefer not to use an ar-
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bitrary probabilistic threshold value, because we will be providing full probability

densities of the match. Nevertheless, if a probabilistic threshold value is demanded

by practitioners in the user community, then we (depending on the results of our

empirical experiments) suggest a posterior probability of 0.75 as a probabilistic

threshold value to be used for the Bayesian dendrochronology. The reason for do-

ing this empirical experiment is to show how the t-values linked to the posterior

probabilities might be chosen, by the user community, as an arbitrary probabilistic

threshold value for Bayesian dendrochronology. Successful dating occurs when the

posterior probability of a match is high; the larger the posterior probability, the

better the match is between dated and undated sequences.
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Figure 8.2: Posterior probabilities versus classical t-values obtained from several

experiments (conducted in Chapter 6) of matching undated tree-ring sequences to dated

master chronologies using Jones’ model. Vertical line is 3.5 t-value threshold used by

classical dendrochronology.
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8.5 Model Implementation Algorithm

To explore the efficiency of the suggested method for dating undated data when

site and master chronologies are missing, several experiments were carried out as

mentioned in the next section. For each experiment, the following steps were used.

1. Select a geographical site where there exist (I) tree-ring width sequences (x)

with known age, then:

• Divide x trees into training (xt) and testing (xs) data.

• Detrend xt and xs data to remove age-trend.

• Assume xs data as undated sequences yU.

• Build a site chronology yD from training data xt.

2. Generate a pseudo site chronology Ŵ from VSLite model:

• Specify the site of interest, and find its latitude φ.

• Obtain historical monthly climatic data T and P.

• Calculate the monthly soil moisture content M.

• Make inference about growth response parameters T1, T2,M1,M2.

• Calculate partial growths GT , GM , GE, and hence overall growth Gt.

• Simulate Ŵ.

3. Match the undated sequences yUi to the pseudo site chronology (Ŵ).

4. Match the undated sequences yUi to the real site chronology (yD).

5. Compare the results obtained from 3 and 4 by evaluating:

• inferences made about model parameters (α, β, σ2
e , ∆).

• the posterior probability of a match at all possible offsets.

• the loss function and cumulative posterior probability of each offset.

For each experiment in the next section, the algorithm above was used to explore

the efficiency of the suggested method when master chronologies are missing.
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8.6 Case Study Experiments: Dating under

Missing Chronologies

This section provides results of several experiments that examine the accuracy of

the new method for matching undated ring-width sequences when master chronolo-

gies are missing. As the new method is entirely dependent on the climate data

records for generating a pseudo-master chronology, we conduct the methodology at

several UK sites where long climate data and many tree-ring width sequences are

available. In order to check the efficacy of the new approach, results from matching

sequences of known ages are compared, when both real-master and pseudo-master

chronologies are used.

8.6.1 Study Specification

Three geographical locations, in the UK, were chosen for the model implementa-

tion. The chosen sites are Oxford, Sheffield and Southampton, and following is a

summary of the climate and tree-ring data for these sites.

Climate Data

Monthly temperature T and precipitation P data for central England and the three

selected sites (Oxford, Sheffield and Southampton) were obtained from the Mete-

orological Office (the United Kingdom’s national weather service; http://www.

metoffice.gov.uk). For central England, the mean monthly data series for tem-

perature began in AD 1659, while precipitation records began in AD 1766 (Manley,

1974; Parker and Horton, 2005; Parker et al., 1992). These are the longest available

instrumental records of monthly climate data in the world. Table 8.1 shows the

key information for the climate data for the three geographical locations.

Figures 8.3 shows the time-series of mean annual temperature and precipitation

for central England and the three chosen sites (Oxford, Sheffield and Southampton).
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Site Name Latitude Longitude Time Span

Temperature Precipitation

Site 1 Oxford 51.76 -1.26 1853-2014 1853-2014

Site 2 Sheffield 53.38 -1.49 1883-2014 1883-2014

Site 3 Southampton 50.91 -1.41 1855-1014 1855-2014

Central England 1659-2014 1766-2014

Table 8.1: Climate data information for three geographical locations in the UK (Oxford,

Sheffield and Southampton), as well as the regional climate data of central England, all

obtained from http://www.metoffice.gov.uk/public/weather/climate-historic.
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Figure 8.3: Time-series of mean annual temperature (top) and precipitation (bottom)

for central England (black) and three geographical locations in the UK, Oxford (red),

Sheffield (green), Southampton (blue). Vertical lines indicate starting date in each

observation-based time-series.

Tree-ring Data

Tree-ring data were chosen to overlap with the available meteorological data. All

the observed tree-ring data were obtained from the International Tree-Ring Data

Bank (http://www.ncdc.noaa.gov/paleo/treering.html), which is the world’s
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largest archive of tree ring data. Table 8.2 shows the key information of tree-ring

data in our three chosen sites in the UK.

Site Name Latitude Longitude No. Trees Time Span Taxon

Site 1 Oxford 51.8 -1.12 16 1781-1978 Quercus

Site 2 Sheffield 53.37 -1.50 20 1759-2003 Quercus

Site 3 Southampton 51.07 -1.38 26 1800-2009 Quercus

Table 8.2: Tree-ring data information in three geographical locations in the UK (Oxford,

Sheffield and Southampton).

It is worth noticing that the difference of distances between the source of cli-

mate information (Table 8.1) and tree-ring data (Table 8.2) are not substantial.

They are all in the same half-degree of latitude and longitude.

For each site, we divided the individual tree-ring data into two groups of train-

ing and testing data. The former was used to build a local site chronology to be

utilised in the first MCMC stage when estimating the VSLite growth response pa-

rameters, and hence generate a pseudo site chronology derived from the climate

data. The testing data were used in the second MCMC stage when matching un-

dated sequences to both real and pseudo site master chronologies.

In what follows, the undated tree-ring width sequences from Sheffield are matched

to both real-master and pseudo-master chronologies and the results compared. Re-

sults for the other two sites (Oxford and Southampton) can be seen in Appendix IV.

8.6.2 Generating Pseudo Local Site Chronology

Half of the tree-ring width sequences at Sheffield were used to estimate growth

response parameters for the VSLite model, and hence a pseudo site chronology

was generated from the VSLite model conditioned on monthly climate data, the

estimated growth response parameters, and the site latitude. Figure 8.4 shows the

simulated pseudo site chronology from the VSLite model at Sheffield.
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Figure 8.4: Pseudo-site chronologies,Ŵ, simulated from the VSLite model at “Sheffield”

site, given dated climate data records. Grey lines represent n pseudo-chronologies gen-

erated, and the red line represents the mean of those n series.

8.6.3 Building Real Site Chronology

Given individual tree-ring width sequences (training data) at Sheffield, a local site

chronology which spans the period AD 1759-2003 has been created for this geo-

graphical location, using methods detailed in Chapter 2.

8.6.4 Matching Trees to Real and Pseudo Site

Chronologies

Table 8.3 shows results of the experiment of matching eight undated sequences from

Sheffield to a dated pseudo site chronology of length 132 years generated from the

VSLite model, using the Bayesian approach suggested in Section 8.3. Each se-

quence covered 100 years (from 1904 to 2003 AD) which is the overlapping period

with the climate data. Inferences were made about the model parameters and the

matching process, and all results reported here are after convergence of the MCMC

simulation for the model parameters.
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Undated Date Posterior Cumulative Loss L Expected Loss E(L)

Tree Probability Posterior Probability (Years) (Years)

1904 0.41 0.41 0 0

1910 0.27 0.68 6 1.62

Sample 1 1894 0.10 0.79 10 2.62

1887 0.09 0.88 17 4.15

1905 0.04 0.91 1 4.19

1904 0.33 0.33 0 0

1898 0.29 0.62 6 1.74

Sample 2 1903 0.20 0.82 1 1.94

1889 0.07 0.89 15 2.99

1906 0.03 0.92 2 3.05

1896 0.51 0.51 8 4.08

1904 0.30 0.81 0 4.08

Sample 3 1893 0.12 0.93 11 5.40

1895 0.05 0.98 9 5.85

1910 0.01 0.99 6 5.91

1904 0.34 0.34 0 0

1887 0.22 0.56 17 3.74

Sample 4 1888 0.19 0.75 16 6.78

1905 0.11 0.86 1 6.89

1906 0.04 0.90 2 6.97

1904 0.28 0.28 0 0

1903 0.27 0.55 1 0.27

Sample 5 1906 0.27 0.82 2 0.81

1890 0.11 0.93 14 2.35

1895 0.02 0.95 9 2.53

1904 0.31 0.31 0 0

1889 0.30 0.61 15 4.50

Sample 6 1912 0.21 0.82 8 6.18

1887 0.10 0.92 17 7.88

1906 0.04 0.96 2 7.96

1906 0.30 0.3 2 0.60

1895 0.23 0.53 9 2.67

Sample 7 1904 0.16 0.69 0 2.67

1896 0.15 0.84 8 3.87

1903 0.07 0.91 1 3.94

1904 0.79 0.79 0 0

1905 0.12 0.91 1 0.12

Sample 8 1889 0.05 0.96 15 0.87

1912 0.01 0.97 8 0.95

1914 0.01 0.98 10 1.05

Table 8.3: Results of matching eight individual trees of length 100 years from “Sheffield”

site. Each tree was matched to the pseudo site chronology of length 132 years, using the

Bayesian approach suggested. The true date is 1904, and only 5 possible offsets with the

highest posterior probabilities are reported.

182



Results in Table 8.3 show that the suggested approach has successfully matched

the eight undated sequences to the dated pseudo-site chronology. The true date

offset always appears among the highest five possible offsets of the match. The cu-

mulative posterior probability and the loss of each possible offset vary among the 8

undated sequences. The expected loss, E(L), of obtaining a cumulative posterior

probability ≥ 0.90 is 4.19 years for sample 1, 3.05 years for sample 2, and 5.4 years

for sample 3, and so on. Heuristically, the smaller the value of E(L), the better

the matching process. Accordingly, sample 8 has the best match among all the

undated samples in this geographical location, with a very low expected loss value

of 0.12 years.

It is also worth noticing from results in Table 8.3 that although sample 6 has pro-

vided the highest posterior probability of the match at the true offset, the matching

process for this sample is not as successful as others since the expected loss value

is relatively high with 7.88 years. This confirms the importance of investigating

the distribution of all possible offsets rather than concentrating on the single offset

with the highest posterior probability. Results from two other sites (Oxford and

Southampton) are provided in the Appendix IV and are very similar to those re-

ported here.

In order to investigate the adequacy of the suggested approach (when no mas-

ter chronologies exist), the undated tree-ring width sequences from Sheffield were

also matched to real site chronology yD, and the results were compared to those

matched to the pseudo site chronology Ŵ, generated from the VSLite model. Ta-

ble 8.4 shows the results of this comparison.

Results in Table 8.4 show that both approaches provide the highest posterior

probability of the match at the true offset. However, the probability at that offset

is 0.93 when matching to the real site chronology, and 0.41 when matching to the

simulated (pseudo) site chronology. Unsurprisingly, the results using the real-site

chronology are more satisfactory. However, when such a real site chronology is not
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Real Site Chronology Pseudo Site Chronology

Offset PP CPP L E(L) Offset PP CPP L E(L)

1904 0.93 0.93 0 0 1904 0.41 0.41 0 0

1895 0.02 0.95 9 0.18 1910 0.27 0.68 6 1.62

1902 0.01 0.96 2 0.20 1894 0.10 0.78 10 2.62

1922 0.01 0.97 18 0.38 1887 0.09 0.87 17 4.15

1910 0.01 0.98 6 0.44 1905 0.04 0.91 1 4.19

1933 0.00 0.98 29 0.44 1892 0.03 0.94 12 4.55

1927 0.00 0.98 23 0.44 1931 0.02 0.96 27 5.09

1889 0.00 0.98 15 0.44 1933 0.01 0.97 29 5.38

1917 0.00 0.99 13 0.44 1907 0.01 0.98 3 5.42

1935 0.00 0.99 31 0.44 1921 0.00 0.98 17 5.42

Table 8.4: Results of matching an undated sequence (Sample 1) covering 100 years to a

real-site chronology and to a pseudo-site-chronology (generated from the VSLite model).

The ten highest possible offsets are reported with their posterior probabilities (PP),

cumulative posterior probabilities (CPP), loss of offset (L), and the expected loss E(L).

The true date of the undated sequences is 1904.

available, the results obtained using the pseudo-chronology are promising. We can

demonstrate just how promising they are by considering the loss, L, of each possible

offset and their expected loss, E(L), to obtain a cumulative posterior probability

of ≥ 0.90.

Table 8.4 shows that when matching to the pseudo site chronology only 5 possi-

ble dates with considerable posterior probabilities occur in this experiment, which

in order from most to least likely are 1904, 1910, 1894, 1887, 1905. Considering

the situation when the real site chronology is missing, the cumulative posterior

probability of these five possible offsets taken together accounts for 0.91 posterior

probability of the match. We can see that the probability of the undated sequence

being dated in the set {1904} is 0.41 with zero expected loss, the probability of

it being dated in the set {1904, 1910} is 0.68 with only 1.62 expected loss, and

the probability of it being dated in the set {1904, 1910, 1894} is 0.78 with 2.62

expected loss, and so on. Therefore, assuming no real site chronology exist for

this site, the undated sequences have been matched to the pseudo site chronology
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generated from the VSLite model. This is a useful result for the dendrochronology

community as it allows them to date undated timbers even when the site and mas-

ter chronologies are missing.

8.6.5 Matching Real Site Chronology to Pseudo-Local

and Pseudo-Regional Master Chronologies

In the previous experiments we investigated matching individual trees to local

pseudo-master chronologies generated from the VSLite model. As it is common

practice in dendrochronology to match a group of undated trees to a dated master

chronology, here we mimic the same practice by matching an undated site chronol-

ogy created from a group of individual trees to both pseudo-local and pseudo-

regional master chronologies both generated from the VSLite model. The motiva-

tion behind this experiment was to examine further the capability of the suggested

method to date undated site chronologies, as well as to check whether matching to

a local or regional pseudo-master gave better results.

We assume that a group of undated tree-ring data are collected from Sheffield,

but that no master chronology exists in this geographical location. Therefore, we

use our VSLite-based approach to generate a local pseudo-master chronology from

the model given local climate records at Sheffield. Similarly, we generate a re-

gional pseudo-master chronology from the VSLite model given the regional climate

records at central England, as detailed in Section 8.6.1. Both simulated pseudo

master chronologies (local and regional) are then used in the matching process to

provide a calendar date for the undated site chronology, and results from matching

to the two master chronologies are compared.

A subset of 100 years from an undated site chronology, which covered the period

of 1904-2003 AD, is matched to the simulated local and regional pseudo-master

chronologies. The Bayesian model and matching process are implemented, and the

results of this experiment are summarised in Table 8.5. All results are after MCMC
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convergence.

Pseudo Local Chronology Pseudo Regional Chronology

Offset PP CPP L E(L) Offset PP CPP L E(L)

1904 0.44 0.44 0 0 1917 0.24 0.24 13 3.12

1906 0.32 0.76 2 0.64 1898 0.21 0.45 6 4.38

1898 0.09 0.85 6 1.18 1911 0.19 0.64 7 5.71

1905 0.07 0.92 1 1.25 1904 0.18 0.82 0 5.71

1887 0.03 0.95 17 1.76 1885 0.06 0.88 19 6.85

1910 0.02 0.97 6 1.88 1922 0.03 0.91 18 7.39

1889 0.01 0.98 15 2.03 1931 0.01 0.92 27 7.66

1895 0.01 0.99 9 2.12 1903 0.01 0.93 1 7.67

1890 0.00 0.99 14 2.12 1889 0.01 0.94 15 7.82

1896 0.00 0.99 10 2.12 1920 0.00 0.94 16 7.82

Table 8.5: Results of matching an undated site chronology covering 100 years to both

local and regional pseudo-master chronologies generated from the VSLite model. The ten

highest possible offsets are reported with their posterior probabilities (PP), cumulative

posterior probabilities (CPP), loss (L) and expected loss E(L) of each offset. The true

offset of the undated sequences is 1904.

Results in Table 8.5 show that the undated site chronology has matched to its

true offset with a posterior probability of 0.44 when matching to the local master

chronology, and with a posterior probability of 0.18 when matching to the regional

master chronology. The expected cost (loss) of obtaining a cumulative posterior

probability ≥ 0.90 is only 1.25 years when matching to the local master chronology,

whereas it is 7.39 years when matching to the regional master chronology. This

indicates that when matching to the local pseudo chronology, the possible offsets

of the match are very focused around the true offset with a low expected loss, and

the highest posterior probability was provided with the true offset. On the other

hand, when matching to the regional pseudo chronology, the possible offsets of the

match are very dispersed from the true offset with a high expected loss, and the

highest posterior probability was not always provided with the true offset.
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Figure 8.5: Histogram plot of the highest ten possible offsets for the experiment of

matching undated site chronology of length 100 years from Sheffield to a pseudo local

master chronology (left) and a pseudo regional master chronology (right), both generated

from the VSLite model given local and regional climate data records respectively. x-axis

represents possible offsets of the matches and y-axis represents posterior probability of

the match. The true offset of the undated sequences is 1904.

Figure 8.5, left panel, shows that the possible offsets of the match are focused

around the true offset with a short period, while the right panel shows that the

possible offsets of the match are dispersed from the true offset with a long period.

In other words, we are 92% sure that the start date of the undated sequence is one

of the four calendar dates (1904, 1906, 1898, 1905) with only 1.25 years expected

loss, when matching to the local chronology (left panel). However, we are 91% per-

cent sure that the starting date for the undated sequences is one of the six calendar

dates (1917, 1898, 1911, 1904, 1885, 1922) with a high expected loss of 7.39 years,

when matching to the regional chronology.

In the situation where no dated master chronologies exist, matching to pseudo-

master chronologies generated from the VSLite model has provided an alternative

way for dating. This is clearly useful if there is no dated ring-width data available;

since, instead of knowing nothing about the true date of the undated sequences at

this location, we can date it, albeit with greater uncertainty.
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Our VSLite-based approach has provided more reliable results when match-

ing to the pseudo-local chronologies rather than the pseudo-regional ones. This is

unsurprising since the VSLite model was originally developed for modelling local

tree-ring sequences as the function of local climates (Tolwinski-Ward et al., 2013).

Hence, the model has the potential to capture the mechanism of tree-ring width

formation in locally spatial scales, but it might not be able to capture additional re-

gional mechanisms. To capture the extra smoothing induced by averaging climate

regionally, would require amendment of the model, which is not explored here, but

is discussed in the future work section of the next chapter.

8.7 Summary of Chapter

Many tree-ring sequences from historic timbers have remained undated due to

the lack of master chronologies (Jones, 2013). In this chapter we consider the

problem of matching undated sequences when the master chronologies are missing.

A pseudo-master chronology is generated from a process-based model, and then

used in the matching process. Such a cross-matching process in the Bayesian

framework promises to provide an alternative and reliable way of matching undated

timbers when real dated master chronologies are missing.

A hierarchical Bayes modelling approach for matching tree-ring width sequences

is introduced and demonstrated in a relatively small but computationally challeng-

ing exercise. The Bayesian inference and matching process via MCMC includes

evaluating the likelihood of the model parameters at every possible date offset

which allows the posterior distribution of the unknown date for the undated se-

quences to be estimated. Implementation involves two main tasks: generating

dated pseudo-chronologies from a mechanistic model given dated climatic vari-

ables, and matching undated sequences to the generated pseudo-chronologies thus

providing a posterior estimate of the match. These tasks have been implemented

via a two-stage Markov chain Monte Carlo method, which enabled us to speed up
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our model implementation.

Experiments of applying the method at the UK chronologies, showed the effi-

ciency of the suggested approach. Considering situations where no master chronolo-

gies exist, the approach has successfully matched the undated sequences to the

pseudo-master chronology and hence provided useful information about the most

likely offsets. Although this method is beneficial to the dendrochronology commu-

nity, as it allows them to date undated timbers in terms of their climate variables

where no master chronology is available, it is limited by the availability of historical

temperature and precipitation records in a monthly time-step. Such climate data

are, unfortunately, not available for all geographical locations around the world,

hence our suggested method will be beneficial for limited regions such as the UK

and USA where a relatively long historical climate records are available from nearby

or have been constructed by previous researchers as part of the work to interpolate

past global climates.

To conclude, based on our suggested method it is possible to date any undated

tree-ring width sequences even if no dated master chronologies exist, providing

that long historical temperature and precipitation are available. This is achieved

by matching undated trees to a pseudo master chronology generated from the VS-

Lite model given the climate data.
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Chapter 9

Conclusions and Future Research

This final chapter presents a brief summary of the main conclusions from the thesis

alongside some suggestions for further research work that are needed for current

and future modelling of ring-width growth to enable a fully Bayesian framework

for dendrochronology.

9.1 Conclusions

Two different type of models have been discussed in Chapter 3 for simulating tree-

ring width growth: a well-known descriptive statistical model by Litton and Zain-

odin (1991) and the mechanistic forward model by Tolwinski-Ward et al. (2013).

As the main focus of this thesis was to investigate the potential of using the VSLite

model for Bayesian dendrochronology, we first evaluated this model and explored

its uncertainty in Chapter 4. The model has successfully been implemented to

simulate tree-ring width sequences at different geographical locations around the

world, and the model’s efficiency has been checked. We conclude that the VSLite

model does efficiently and reliably generate tree-ring width sequences at any loca-

tion where local historical climate data exist. The Bayesian Sensitivity Analysis

(which uses a Gaussian process to build an emulator for the model) has also been

used systematically to investigate uncertainty in the VSLite model output by ex-

amining the influence of each uncertain parameter on the model output variability.
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We concluded that just three of the 11 VSLite model parameters (T1, T2 and M2)

appeared to have the biggest contribution to the model output variation. The de-

gree of impact among these three parameters varies from one site to another. The

conclusion is that if the site under study is temperature-limited then T1 and T2 are

the most influential parameters, and if it is soil moisture-limited then M2 is the

most influential parameter.

In Chapter 5 we used a hierarchical Bayesian modelling approach to estimate

the VSLite model growth threshold parameters at a range of geographical locations

in the UK where both tree-ring chronologies (with Pinus and Quercus species) and

historical climate data are available. We concluded that there is some evidence

for species-dependent distributions for the UK tree-ring chronologies. For Pinus

trees, our estimates of temperature threshold parameters, T1 and T2, were lower

than for Quercus trees, while M2 was higher for Pinus trees. These indicate that

the Pinus trees are more sensitive to lower temperature and upper soil moisture

growth threshold values. However, there is no such evidence for species-dependent

values observed for parameter M1 in the UK chronologies since the results showed

that the VSLite does not model this parameter very well.

In Chapter 6 the Bayesian implementation of the VSLite model has been

extended to include a matching process to allow its use in tree-ring dating. Ex-

periments showed that the VSLite model could successfully be used at the core of

Bayesian tree-ring dating. We showed that there is a strong relationship between

the signal-to-noise ratio and the posterior probability of a match at the true off-

set. As signal-to-noise ratio increases, the model noise variance decreases and the

similarity among individual samples within the chronology increases; thus the pos-

terior probability of a match at the true offset increases. Results also showed that

as the number of samples in the undated site chronology increases, the posterior

probability of a match at the true offset increases.

In order to investigate the behaviour of the Bayesian approach to dendrochronol-

ogy using the two models (one process-based and the other purely statistical),
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results from the two approaches were compared using several experiments of sim-

ulated data. The conclusion is that when considering high signal-to-noise ratio for

data, the performance of both models was indistinguishable. However, when con-

sidering low signal-to-noise ratio for data, the VSLite-based approach outperforms

Jones’ approach by providing larger posterior probabilities of a match at the true

offset.

In Chapter 7 we investigated the potential for reducing the amount of prepro-

cessing which currently used prior to tree-ring dating. We extended the Bayesian

model to include a rescaling term to ensure that the dated and undated tree-ring se-

quences are on the same scale before cross-matching them. The new data-adaptive

rescaling approach has been explored using a series of experiments of simulated and

real data and results showed that the matching process with the rescaling effect

performs better in dating tree-ring sequences. This increase in performance is to

be expected since by reducing the preprocessing we retain more of the structure

in the data. The proposed approach has also been used for matching individual

trees with each other, which could be beneficial for building master chronologies.

Instead of constructing such chronologies from auto-rescaled tree-ring sequences

(using current methods which apply fully processed data), the new Bayesian ap-

proach can be used for this purpose.

In Chapter 8 we tackled the problem of matching undated trees in the pres-

ence of missing master chronologies. Pseudo-master tree-ring chronologies were

generated from historical climate data using VSLite model, and then used in the

dendrochronological matching process. This approach has been successfully im-

plemented by extending our Bayesian framework using a two-stage Markov chain

Monte Carlo method. Experiments of applying the model at the UK chronologies,

showed the efficiency of the suggested approach. In situations where no master

chronologies exist, the approach can successfully be used to match undated se-

quences to the pseudo-master chronology generated from the VSLite model. This
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approach could be beneficial to the dendrochronology community, allowing them

to date undated timbers where no master chronology is available. However, it is

limited by the availability of historical temperature and precipitation records which

are not available for all geographical locations.

9.2 Future Research

Tree-ring analysis remains as one of the most accurate dating methods available

for historians and archaeologists. Due to a continuously growing database of tree-

ring chronologies alongside developing models for tree-ring-climate relationship,

dendrochronology has the possibility to become even more successful. This the-

sis has concentrated on developing Bayesian methodologies for dendrochronology

using both statistical and mechanistic models, but there is considerable scope for

further research. This section highlights the main limitations of the methodolo-

gies suggested, and discusses further work, based on implementations within this

thesis and some aspects of dendrochronology which might usefully be investigated

further, in order to move further towards a fully probabilistic framework.

9.2.1 Developing Software for Practical Use

If the proposed approaches investigated in this thesis are successful, they could in

future become routine practise in dendrochronology, thus providing probabilistic

estimates of the date of undated timbers instead of using classical methods, such as

t-values. However, before such approaches can be routinely applied, the following

issues should be considered.

• The need to improve the speed and efficiency of the current code. Although

we have provided code written in R (R Core Team, 2015) for implementing the

approaches suggested within this thesis, the current code is not quick enough

to be used for daily practice in dendrochronology labs. Therefore a more effi-
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cient program, based on the current code, needs to be developed. This can be

done, for example, by recoding some functions in a lower level programming

language (such as C or C++) in order to speed up the program and make

it of greater practical use. Fortunately, the R package “Rcpp” developed by

Eddelbuettel and François (2011) can be used for this purpose which allows

writing of R functions in the C++ programming language without the need

to learn much about compiling issues.

• Develop a software package in the R statistical programming environment for

Bayesian dendrochronology. A similar package to that introduced by Bunn

(2008) for classical dendrochronology can be developed, using our current

code written in R, to implement the Bayesian approaches suggested in this

thesis. Developing such a software package might open new potentials for

researchers (Bayesian statisticians and dendrochronologists) to investigate

further the value and utility of a fully probabilistic framework for tree-ring

dating.

9.2.2 Developing Methods for Building Chronologies

The Bayesian approaches proposed within this thesis assume that a group of trees,

either dated or undated, exist in a particular geographical location which have

already been crossmatched to each other with a view to constructing a master

chronology. The classical methods for averaging individual tree-ring width se-

quences and building site master chronologies are detailed in Section 2.3, which

pairwise crossmatch tree-ring sequences using statistical measures given in Section

2.2.2. Specifically, pairs of sequences are aligned at the ‘best’ match to produce

a single average sequence and the process begins again matching one more sam-

ple at a time. In order for dendrochronology to be fully Bayesian, a probabilistic

framework is required for building a master chronology from single samples. Our

developed Bayesian approach for matching an undated sample to a dated sam-

ple is described in Chapter 7, which uses data-adaptive rescaling between the two

samples. The work in Chapter 7 does not require the data to be fully processed
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and may provide a useful starting point for the construction of an algorithm using

Bayesian techniques for grouping samples. This would then allow the construc-

tion of robust site and regional master chronologies, which do not only rely on

sequential pairwise matching but also allow constructing such chronologies from

crossmatching a group of trees simultaneously.

9.2.3 Further Use of Forward models in Palaeoclimatology

More recently, dendroclimatologists have started using process-based forward mod-

els to investigate the relationship between climate proxy (tree-ring) observations

and the climate. These forward models aim to capture the mechanisms of key fea-

tures of the complex system which links climate to tree-ring growth. Such forward

models, VS and VSLite, have been investigated by different dendroclimatologists

including Anchukaitis et al. (2006); Evans et al. (2006); Shi et al. (2008); Tolwinski-

Ward et al. (2011); Vaganov et al. (2006). They have found that the forward models

produce simulations of tree-ring data which are significantly correlated with actual

raw data (Tolwinski-Ward et al., 2011, p.2426). Therefore, such forward models

can be inverted with a view to reconstructing past climate.

Although it is not an area investigated in this thesis, there are many other

types of climate proxy data, such as ice and sediment cores, used for paleocli-

mate reconstruction. However, the way in which past climates are reconstructed

from these proxies is not always using mechanistic models. In this thesis we have

explored the value of using mechanistic forward models for modelling ring-width

growth and investigating the use of such models in a fully probabilistic framework

for tree-ring dating. Therefore, more investigations of using forward models are

needed in the future dendrochronology and palaeoclimatology studies. Using such

forward models for paleoclimate reconstruction will be of great benefit to the den-

drochronologists. The reconstructed climates, such as those reconstructed from

pollen data by Haslett et al. (2006), would make useful inputs to VSLite if we have

managed to account for the uncertainty in such reconstructed data in the model.
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9.2.4 Further Simplification of VSLite Model

Besides efforts continuously to improve applied methodologies for practical den-

drochronology and dendroclimatology, advances in the development of mechanistic

forward models are essential. Such dynamical process-based models should be as

straightforward as possible, while still capturing all relevant features between cli-

mate and tree-ring growth to appropriately represent all related climatic processes.

One of the potential modifications to the current version of the VSLite model

would be by taking out the Leaky Bucket (a sub-model to calculate soil moisture

M content, described in Section 3.6) outside the VSLite model. This will further

simplify the model hence contribute to the speed of the model implementation, as

well as increasing the interpretation of the input-output relationship in which the

climate variables and tree ring-widths are linked in the model. Calculation of soil

moisture is totally independent of modelling tree-ring width formation, hence it

can be calculated separately by first running the Leaky Bucket model, saving the

obtained soil moisture estimates to a file, and then using them as inputs to the

model. In such a case, the new simplified VSLite model would become as shown

in Figure 9.1.

Inputs (T, M, φ)

Growth response to

Solar radiation

GE

Growth response

to Temperature

GT

Growth response

to Soil moisture

GM

Overall growth

rate Gt

Tree-ring indices

Ŵt

φ

T M

Figure 9.1: Schematic representation of a simplified VSLite model which shows the rela-

tionship between climate variables and simulated ring-width indices.

196



9.2.5 Adding Regional Hierarchy Layer to VSLite Model

The VSLite model describes the relationship between the ring-width index of a

tree and the local climate in that year. The model has the potential to capture the

mechanism of tree-ring width growth at a local (subregional) scale, which assumes

that all the trees located within the subregion have experienced the same climatic

conditions. When implementing the VSLite model for matching undated trees to

the regional master chronologies, the model does not perform very well. This is

because the current version of the model is developed for modelling local chronolo-

gies, and it does not contain a mechanism to generate the smoothness in regional

master chronologies.

Given the hierarchical nature of the Bayesian modelling structure discussed in this

thesis, however, the VSLite model could be extended to include an additional pa-

rameter which represents the local climate within the subregion in which the trees

are located. The extended model exploits the hierarchical structure that is present

in the data which has not been exploited in VSLite model (when implemented at

a regional level). The first level of hierarchy would describe a group of tree-ring

sequences from several trees grown in the same geographical locality, a subregion;

while the second level of hierarchy would represents a region within which several

subregions are grouped into a larger geographical area.

To allow for this extension, we assume γj to be the effect of subregion j, the tree-

ring index in year t (t = 1, 2, . . . , n) for sample i (i = 1, 2, . . . , I) and subregion j

(j = 1, 2, . . . , J) is given by

ytij = β + Ŵt + γj + εtij,

where Ŵt is the climatic signal for the whole region, γj is the subregional signal,

and εtij is the noise. For simplicity we could assume that the climatic signal Ŵt,

γj and εtij are independent which might not be appropriate and therefore would

need exploring. It seems likely that implementation of the suggested extension

would be more successful for matching trees to the regional chronologies than the

implementation of the original version of the model for that purpose.
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9.3 Priorities for Near Future

The future work listed above is all interrelated and there is not an obvious single

way forward. However, our priority for the coming year would be to work on de-

veloping software to make the Bayesian approach proposed in this thesis accessible

to dendrochronologists. Clearly, the ability to construct master chronologies will

be a key part of such software and therefore further development of the ideas in

Section 9.2.2 will be a priority.
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I Full Conditional Distributions for VSLite

Parameters in Bayesian Matching Process

The VSLite-based model for Bayesian tree-ring dating, the likelihood of the dated

and undated site chronologies, the priors of and the joint posterior distribution

of the unknown model parameters are described in Section 6.2 in the main text.

The full conditional distribution for each parameter can be obtained from the joint

posterior distribution as follows.

i The Conditional Posterior Distribution of T1

With the prior distribution of T1 ∼ Γ(αT1 , βT1), and the likelihood of data

π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗) ∼ N(
√

1− σ2
ε Ŵt, σ

2
ε ), the full conditional distri-

bution of T1 is:

π(T1|y,T,P,θ−T1 , σ
2
ε ,∆

∗) ∝ π(T1)× π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ π(T1)× π(yD|T,P, T1, T2,M1,M2, σ
2
ε )×

π(yUD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ T1
(αT1

−1) e−T1/βT1×
I∏
i=1

[
δi+li−1∏
t=δi

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
×

I+I∗∏
i=1+I

[
∆∗+ri+li−1∏
t=∆∗+ri

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
.

Where θ−T1 denotes the vector of the four growth threshold parameters except T1.

The full conditional distribution for the parameter T1 is not a standard distribution,

thus we used the Metropolis-Hastings update instead of a Gibbs update.
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ii The Conditional Posterior Distribution of T2

With the prior distribution of T2 ∼ Γ(αT2 , βT2), and the likelihood of data

π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗) ∼ N(
√

1− σ2
ε Ŵt, σ

2
ε ), the full conditional distri-

bution of T2 is:

π(T2|y,T,P,θ−T2 , σ
2
ε ,∆

∗) ∝ π(T2)× π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ π(T2)× π(yD|T,P, T1, T2,M1,M2, σ
2
ε )×

π(yUD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ T2
(αT2

−1) e−T2/βT2×
I∏
i=1

[
δi+li−1∏
t=δi

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
×

I+I∗∏
i=1+I

[
∆∗+ri+li−1∏
t=∆∗+ri

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
.

Where θ−T2 denotes the vector of the four growth threshold parameters except T2.

The full conditional distribution for the parameter T2 is not a standard distribution,

thus we used the Metropolis-Hastings update instead of a Gibbs update.

iii The Conditional Posterior Distribution of M1

With the prior distribution of M1 ∼ Γ(αM1 , βM1), and the likelihood of data

π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗) ∼ N(
√

1− σ2
ε Ŵt, σ

2
ε ), the full conditional distri-

bution of M1 is:

π(M1|y,T,P,θ−M1 , σ
2
ε ,∆

∗) ∝ π(M1)× π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ π(M1)× π(yD|T,P, T1, T2,M1,M2, σ
2
ε )×

π(yUD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ M1
(αM1

−1) e−M1/βM1×
I∏
i=1

[
δi+li−1∏
t=δi

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
×

I+I∗∏
i=1+I

[
∆∗+ri+li−1∏
t=∆∗+ri

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
.
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Where θ−M1 denotes the vector of the four growth threshold parameters except

M1. The full conditional distribution for the parameter M1 is not a standard dis-

tribution, thus we used the Metropolis-Hastings update instead of a Gibbs update.

iv The Conditional Posterior Distribution of M2

With the prior distribution of M2 ∼ Γ(αM2 , βM2), and the likelihood of data

π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗) ∼ N(
√

1− σ2
ε Ŵt, σ

2
ε ), the full conditional distri-

bution of M2 is:

π(M2|y,T,P,θ−M2 , σ
2
ε ,∆

∗) ∝ π(M2)× π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ π(M2)× π(yD|T,P, T1, T2,M1,M2, σ
2
ε )×

π(yUD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ M2
(αM2

−1) e−M2/βM2×
I∏
i=1

[
δi+li−1∏
t=δi

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
×

I+I∗∏
i=1+I

[
∆∗+ri+li−1∏
t=∆∗+ri

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
.

Where θ−M2 denotes the vector of the four growth threshold parameters except

M2. The full conditional distribution for the parameter M2 is not a standard dis-

tribution, thus we used the Metropolis-Hastings update instead of a Gibbs update.

v The Conditional Posterior Distribution of σ2
ε

The inverse-gamma distribution is a conjugate prior for the variance parameter (σ2
ε )

since it results in a posterior distribution that is also inverse-gamma and thus it is

simple to sample. With the prior distribution σ2
ε ∼ Γ−1(αε, βε) and the likelihood of

data π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗) ∼ N(
√

1− σ2
ε Ŵt, σ

2
ε ), and when the overall

number of observations is equal to (N +N∗), the full conditional distribution of σ2
ε
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is:

π(σ2
ε |y,T,P,θ,∆∗) ∝ π(σ2

ε )× π(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ π(σ2
ε )× p(yD|T,P, T1, T2,M1,M2, σ

2
ε )×

π(yUD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝
(
σ2
ε

)−(αε+1)

exp
(βε
σ2
ε

)
×

I∏
i=1

[
δi+li−1∏
t=δi

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]
×

I+I∗∏
i=1+I

[
∆∗+ri+li−1∏
t=∆∗+ri

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]

∝
(
σ2
ε

)−(N+N∗
2

+αe+1)

exp

(
− 1

σ2
ε

{ I∑
i=1

( δi+li−1∑
t=δi

(yti −
√

1− σ2
ε Ŵt)

2

2

)
+

I+I∗∑
i=I+1

(∆∗+ri+li−1∑
t=∆∗+ri

(yti −
√

1− σ2
ε Ŵt)

2

2

)
+ βε

})
.

The final expression is the kernel of a inverse-gamma distribution. There-

fore, the distribution of the variance parameter is also inverse-gamma π(σ2
ε ) ∼

Γ−1(άε, β́ε) with άε = N+N∗

2
+ αε, and

β́ε =
∑I

i=1

(∑δi+li−1
t=δi

(yti−
√

1−σ2
εWt)2

2

)
+
∑I+I∗

i=I+1

(∑∆∗+ri+li−1
t=∆∗+ri

(yti−
√

1−σ2
ε Ŵt)2

2

)
+ βε.

vi The Conditional Posterior Distribution of ∆∗

Having estimated all the model parameters, the conditional distribution of the

match at the true offset can be obtained. With the discrete uniform prior distri-

bution π(∆∗) ∼ U [∆min = ∆s − l∗ + q,∆max = ∆e − q + 1] and the likelihood

of dated and undated data p(y|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗) ∼ N(
√

1− σ2
ε Ŵt, σ

2
ε ),

and when the overall number of observations in the undated site master chronology

is equal to (N∗), the full conditional distribution of ∆∗ for ∆∗ = ∆min, . . . , ∆max
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is:

π(∆∗|y,T,P,θ, σ2
ε ) ∝ π(∆∗)× π(y|T,P, T1, T2,M1,M2, σ

2
ε ,∆

∗)

∝ π(∆∗)× π(yD|T,P, T1, T2,M1,M2, σ
2
ε )×

π(yUD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝ π(yUD|T,P, T1, T2,M1,M2, σ
2
ε ,∆

∗)

∝
I+I∗∏
i=1+I

[
∆∗+ri+li−1∏
t=∆∗+ri

(
1

σ2
ε

)
1
2 exp

(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]

∝
( 1

σ2
ε

)N∗
2

I+I∗∏
i=1+I

[
∆∗+ri+li−1∏
t=∆∗+ri

exp
(
− 1

2σ2
ε

(yti −
√

1− σ2
ε Ŵt)

2
)]

Now, taking the logarithm of both sides,

log
[
π(∆∗|y,T,P,θ, σ2

ε )
]

=
N∗

2
log(

1

2σ2
ε

)− 1

2σ2
ε

I+I∗∑
i=I+1

[
∆∗+ri+li−1∑
t=∆∗+ri

(
yti −

√
1− σ2

ε Ŵt

)2
]

= − 1

2σ2
ε

I+I∗∑
i=1+I

[
∆∗+ri+li−1∑
t=∆∗+ri

(
yti −

√
1− σ2

ε Ŵt

)2
]

+ constant

Hence calculate the posterior probability of the match at each possible date off-

set p(∆∗ = ∆s − l∗ + q), . . . , p(∆∗ = ∆s), . . . , p(∆
∗ = ∆e), . . . , p(∆

∗ = ∆e − q + 1).

We then followed (Jones, 2013, p.72) to normalise the posterior estimates, and

sample ∆∗(1) by inverting the distribution function of ∆∗.
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II VSLite Model and Matching Process Results

This Appendix comprises results of different experiments of matching undated

sequences to a dated master chronology using our extension of the VSLite model

and the matching process. The matching process using the VSLite model is detailed

in Chapter 6.

Experiment (A)

Matching an undated site chronology with 2 samples covering 50 years, to a dated

site master chronology with 10 samples covering 200 years. The MCMC were

thinned every 10 iterations and results were reproducible after 100,000 iterations.

SNR σ2
ε Posterior Probability σ̂2

ε t-value

Offset Probability

0.5 0.667 100 1.00 0.65 5.66

22 0.00 2.72

0.4 0.714 100 0.98 0.696 3.97

22 0.01 2.846

0.3 0.769 100 0.83 0.758 3.64

22 0.13 2.89

91 0.13 2.62

0.2 0.833 100 0.53 0.817 2.91

91 0.21 2.38

22 0.17 2.04

103 0.05 1.81

0.1 0.899 22 0.36 0.876 2.36

100 0.29 2.27

91 0.20 2.11

103 0.11 2.08

Table 1: Results of matching undated sequences of length 50 years created from 2 samples

to a dated master chronology of length 200 years. The true offset of the undated site

chronology is 100. The signal-to-noise ratio (SNR) varies from 0.5 to 0.1.

• While SNR is bigger than or equal to 0.5, the posterior probability of a match

at the correct offset is 1. As signal-to-noise ratio decreases, the similarity

between individual trees within the chronology decreases, and the posterior

probability of a match at the correct offset decreases.
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Experiment (B)

Matching an undated site chronology with 5 samples covering 50 years, to a dated

master chronology with 10 samples covering 200 years. The MCMC were thinned

every 10 iterations and results were reproducible after 50,000 iterations.

SNR σ2
ε Posterior Probability σ̂2

ε t-value

Offset Probability

0.3 0.769 100 1.00 0.764 6.16

48 0.00 3.39

0.2 0.833 100 0.98 0.829 4.91

48 0.01 3.75

95 0.00 2.77

0.1 0.899 100 0.54 0.902 3.82

95 0.23 3.55

40 0.12 2.83

18 0.07 2.69

Table 2: Results of matching undated sequences of length 50 years created from 5 samples

to a dated master chronology of length 200 years. The true offset of the undated site

chronology is 100. The signal-to-noise ratio (SNR) varies from 0.3 to 0.1.

• When SNR is bigger than or equal to 0.3, the posterior probability of a match

at the correct offset is 1. As signal-to-noise ratio decreases, the similarity be-

tween individual trees within the chronology decreases, and the posterior

probability of a match at the correct offset decreases. For SNR equal to 0.1,

posterior probability was relatively low (0.54).
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Experiment (C)

Matching an undated site chronology with 2 samples covering 100 years, to a

dated site master chronology with 10 samples covering 200 years. The MCMC

were thinned every 10 iterations and results were reproducible after 90,000 itera-

tions.

SNR σ2
ε Posterior Probability σ̂2

ε t-value

Offset Probability

0.4 0.714 100 1.00 0.708 5.71

82 0.00 3.42

0.3 0.769 100 0.99 0.781 5.04

82 0.00 3.19

0.2 0.833 100 0.88 0.822 3.91

82 0.09 2.85

79 0.02 2.14

0.1 0.899 100 0.63 0.888 3.36

82 0.24 2.13

101 0.06 2.01

79 0.03 1.78

Table 3: Results of matching undated sequences of length 100 years created from 2

samples to a dated master chronology of length 200 years. The true offset of the undated

site chronology is 100. The signal-to-noise ratio (SNR) varies from 0.4 to 0.1.

• When SNR is bigger than or equal to 0.4, the posterior probability of a match

at the correct offset is 1. As signal-to-noise ratio decreases, the similarity

between individual trees within the chronology decreases, and the posterior

probability of a match at the correct offset decreases.
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Experiment (D)

Matching an undated site chronology with 5 samples covering 100 years, to a dated

master chronology with 10 samples covering 200 years. The MCMC were thinned

every 10 iterations and results were reproducible after 50,000 iterations.

SNR σ2
ε Posterior Probability σ̂2

ε t-value

Offset Probability

0.3 0.769 100 1.00 0.748 6.73

112 0.00 2.89

0.2 0.833 100 1.00 0.826 6.15

112 0.01 2.61

0.1 0.899 100 0.96 0.886 4.39

112 0.02 2.76

33 0.01 2.03

21 0.00 1.98

Table 4: Results of matching undated sequences of length 100 years created from 5

samples to a dated master chronology of length 200 years. The true offset of the undated

site chronology is 100. The signal-to-noise ratio (SNR) varies from 0.3 to 0.1. When

SNR is bigger than or equal to 0.2, the posterior probability of a match at the correct

offset is 1.
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III Comparison between results from VSLite

and Jones’ models

This Appendix comprises different experiments of comparing the results obtained

from using our extension to the VSLite model with those from Jones’ model, and

the traditional t-value based method when matching undated sequences to a dated

master chronology. The matching process using the VSLite model is detailed in

Chapter 6.

Experiment 1: Comparing the results of using VSLite-based model with those

of using Jones’ model, and the traditional t-value for the experiment of matching

an undated site chronology with 5 samples covering 50 years, to a dated master

chronology with 10 samples covering 200 years.

SNR σ2
ε VSLite Model Jones’ Model Trad. Results

Offset Prob. σ̂2
ε Offset Prob. σ̂2

ε t-value

100 1.00 100 1.00 5.16

0.3 0.769 48 0.00 0.764 141 0.00 0.761 3.39

95 0.00 84 0.00 2.65

100 0.98 100 0.94 3.91

0.2 0.833 48 0.01 0.829 141 0.06 0.843 3.75

95 0.00 84 0.00 2.77

100 0.54 141 0.48 3.12

0.1 0.899 95 0.23 0.902 100 0.25 0.905 3.55

40 0.12 84 0.10 2.83

18 0.07 45 0.05 2.69

Table 5: Results of matching 5 undated trees of length 50 years to a dated master

chronology, with 10 samples, covering 200 years, when using our extension of the VSLite

model, Jones’ model, and the traditional method (t-value). The true offset of the undated

site chronology is 100. The signal-to-noise ratio (SNR) varies from 0.3 to 0.1.

• The posterior estimate of the match at the true offset depends on the signal-

to-noise ratio. As SNR decreases, the posterior probability of a match de-

creases.
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• When signal-to-noise ratio is bigger than or equal to 0.3, the performance of

both VSLite and Jones’ models were indistinguishable and both provided the

posterior probability of a match at the true offset equals to 1. However, for

lower signal-to-noise ratio values (≤ 0.2), the VSLite model provided slightly

higher posterior probabilities of a match at the correct offset.

• When SNR is 0.1, the VSLite model provided a posterior probability of a

match at the true offset equal to 0.54; however, Jones’ model led to the

highest posterior probability of 0.48 being associated with an incorrect offset.

• The mean posterior estimate of the model noise parameter σ̂2
e were almost

similar from both models.

Experiment 2: Comparing the results of using VSLite-based model with those

of using Jones’ model, and the traditional t-value method for the experiment of

matching an undated site chronology with 1 sample covering 100 years, to a dated

master chronology with 10 samples covering 200 years.

SNR σ2
ε VSLite Model Jones’ Model Trad. Results

Offset Prob. σ̂2
ε Offset Prob. σ̂2

ε t-value

0.4 0.714 100 1.00 0.702 100 1.00 0.644 5.10

-31 0.00 40 0.00 3.89

0.3 0.769 100 0.98 0.748 100 0.98 0.692 4.19

-31 0.00 40 0.01 3.68

100 0.74 100 0.50 3.33

0.2 0.833 126 0.01 0.829 40 0.16 0.753 3.11

-13 0.01 -17 0.13 2.82

126 0.44 40 0.39 2.92

0.1 0.899 100 0.36 0.91 -17 0.27 0.931 2.81

28 0.15 100 0.11 1.22

Table 6: Results of matching 1 undated tree of length 100 years to a dated master

chronology, with 10 samples, covering 200 years, when using our extension of the VSLite

model, Jones’ model, and the traditional method (t-value). The true offset of the undated

site chronology is 100. The signal-to-noise ratio (SNR) varies from 0.4 to 0.1.
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• When signal-to-noise ratio is bigger than or equal to 0.4, the performance of

both VSLite and Jones’ models were indistinguishable and both provided the

posterior probability of a match at the true offset equals to 1. However, for

lower signal-to-noise ratio values (≤ 0.3), the VSLite model provided slightly

higher posterior probabilities of a match at the correct offset.

• When signal-to-noise ratio is 0.1, both models provided the highest posterior

probability associated with an incorrect offset.

• The mean posterior estimate of the model noise parameter σ̂2
e were almost

similar from both models.

Experiment 3: Comparing the results of our extension of the VSLite model

with those from Jones’ model, and the traditional t-value method for the exper-

iment of matching 5 undated sample covering 100 years, to a dated site master

chronology with 10 samples covering 200 years.

SNR σ2
ε VSLite Model Jones’ Model Trad. Results

Offset Prob. σ̂2
ε Offset Prob. σ̂2

ε t-value

0.2 0.833 100 1.00 0.83 100 1.00 0.83 5.15

112 0.00 80 0.00 2.61

0.1 0.899 100 0.99 0.886 100 0.96 0.89 3.89

112 0.02 80 0.00 2.76

33 0.01 80 0.00 2.03

21 0.00 80 0.00 1.98

Table 7: Results of matching 5 undated tree of length 100 years to a dated master

chronology, with 10 samples, covering 200 years, when using our extension of the VSLite

model, Jones’ model, and the traditional method (t-value). The true offset of the undated

site chronology is 100.

• The performance of both VSLite and Jones’ models were almost similar.

However, when signal-to-noise ratio is 0.1, VSLite model provided a slightly

higher posterior probability of a match at the true offset.

• The mean posterior estimate of σ̂2
e were almost similar from both models.
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IV Matching Trees to Pseudo Local

Chronologies

i Matching individual trees from Oxford to the pseudo

local site chronology generated from VSLite model

Undated Possible Posterior Cumulative Loss Expected

Tree Offset Probability Posterior Probability (L) Loss E(L)

1879 0.77 0.77 0 0.00

1899 0.06 0.83 20 1.20

Sample 1 1862 0.05 0.88 17 2.05

1858 0.04 0.92 21 2.89

1911 0.02 0.94 32 3.53

1879 0.75 0.75 0 0.00

1878 0.08 0.83 1 0.08

Sample 2 1893 0.03 0.86 14 0.50

1898 0.02 0.88 19 0.68

1883 0.01 0.89 4 0.72

1879 0.76 0.76 0 0.00

1892 0.13 0.89 13 1.69

Sample 3 1889 0.05 0.94 10 2.19

1899 0.03 0.97 20 2.79

1880 0.01 0.98 1 2.80

1879 0.89 0.89 0 0.00

1881 0.05 0.94 2 0.10

Sample 4 1892 0.04 0.98 13 0.62

1891 0.01 0.99 12 0.74

1893 0.00 0.99 14 0.74

1879 0.39 0.39 0 0.00

1892 0.23 0.62 13 2.99

Sample 5 1881 0.17 0.79 2 3.33

1878 0.10 0.89 1 3.43

1887 0.03 0.92 8 3.67

1879 0.79 0.79 0 0.00

1856 0.09 0.88 23 2.07

Sample 6 1894 0.04 0.92 15 2.67

1892 0.01 0.93 13 2.80

1857 0.01 0.94 22 3.02

1879 0.96 0.96 0 0.00

1878 0.01 0.97 1 0.01

Sample 7 1914 0.01 0.98 35 0.36

1865 0.00 0.98 14 0.36

1882 0.00 0.98 3 0.36

1879 0.80 0.8 0 0.00

1882 0.08 0.88 3 0.24

Sample 8 1856 0.04 0.92 23 1.16

1892 0.01 0.93 13 1.29

1883 0.01 0.94 4 1.33

Table 8: Results of matching 8 individual trees of length 100 years at “Oxford” site.

Each tree is crossmatched to the pseudo site chronology of length 162 years, using our

new Bayesian approach. The true offset is 1879, and only 5 possible offsets are reported.
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ii Matching individual trees from Southampton to pseudo

local site chronology generated from VSLite model

Undated Possible Posterior Cumulative Loss Expected

Tree Offset Probability Posterior Probability (L) Loss E(L)

1910 0.49 0.49 0 0.00

1898 0.18 0.67 12 2.16

Sample 1 1891 0.17 0.84 19 5.39

1896 0.08 0.92 14 6.51

1888 0.01 0.93 22 6.73

1910 0.75 0.75 0 0.00

1889 0.21 0.96 21 4.41

Sample 2 1911 0.01 0.97 1 4.42

1913 0.00 0.97 3 4.42

1870 0.00 0.97 40 4.42

1910 0.62 0.62 0 0.00

1897 0.27 0.89 13 3.51

Sample 3 1889 0.04 0.93 21 4.35

1894 0.02 0.95 16 4.67

1891 0.01 0.96 19 4.86

1897 0.36 0.36 13 4.68

1910 0.28 0.64 0 4.68

Sample 4 1911 0.19 0.83 1 4.87

1882 0.07 0.90 28 6.83

1896 0.05 0.95 14 7.53

1910 0.45 0.45 0 0.00

1898 0.25 0.70 12 3.00

Sample 5 1906 0.14 0.84 4 3.56

1882 0.12 0.96 28 6.92

1896 0.03 0.99 14 7.34

1910 0.56 0.56 0 0.00

1883 0.25 0.81 27 6.75

Sample 6 1886 0.10 0.91 24 9.15

1901 0.03 0.94 9 9.42

1909 0.01 0.95 1 9.43

1910 0.59 0.59 0 0.00

1883 0.18 0.77 27 4.86

Sample 7 1898 0.06 0.83 12 5.58

1862 0.03 0.86 48 7.02

1884 0.02 0.88 26 7.54

1910 0.74 0.74 0 0.00

1887 0.12 0.86 23 2.76

Sample 8 1893 0.05 0.91 17 3.61

1877 0.01 0.92 33 3.94

1911 0.01 0.93 1 3.95

Table 9: Results of matching 8 individual trees of length 100 years at “Southampton”

site. Each tree is crossmatched to the pseudo site chronology of length 160 years, using

our new Bayesian approach. The true offset is 1910, and only 5 possible offsets with the

highest posterior probabilities are reported.
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