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NOMENCLATURE 
 
 

a [m] Particle longest dimension 
aP [m/s2] Particle acceleration 
aN [m/s2] Normal acceleration 
aT [m/s2] Tangential acceleration 

A [m2] 
Arithmetic average of the particle surface area 
visible to the camera 

Ammm [-] Particle max-med-min area 
AP [m2] Particle projected area 
b [m] Particle intermediate dimension 
B [-] Binormal unit vector of the Frenet frame 
c [m] Particle smallest dimension 
CD [-] Drag coefficient 
CL [-] Lift coefficient 
D [m] Diameter 
�∗ [-] Dimensionless diameter 
dc [m] Diameter of the equal projected circular area 
dn [m] Nominal diameter 
doff [m] Distance between the centre of mass and the 

centre of pressure 
f [m] Focal distance 
FD [N] Drag force 
FL [N] Lift force 
� [m/s2] Acceleration due to gravity 
�L [m/s2] Gravity acceleration in the direction of lift 
I [kg∙m2] Moment of inertia 
K1 [-] Stokes’ shape factor 
K2 [-] Newton’s shape factor 
l [m] Distance 
L [m] Length 
m [kg] Mass of the particle 
�� [kg] Mass of the fluid displaced by the particle 
M [N∙m] Torque 
N [-] Number of measurements 
N [-] Normal unit vector of the Frenet frame 
P [-] Any measured variable for error analysis 
r [m] Radius 
ReP [-] Particle Reynolds number 
S [m2] Particle surface area 
SV [m2] Surface area of the same volume sphere 
SF [-] Corey shape factor 
t [s] Time 
T [C] Temperature 
T [-] Tangential unit vector of the Frenet frame 
u [pixel] Pixel horizontal axis 
u [m/s] Flow field velocity vector 
�∗ [-] Dimensionless velocity 
UT [m/s] Particle terminal velocity 
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v [pixel] Pixel vertical axis 
VP [m/s] Particle velocity 
x, X [m] Horizontal coordinate axis 

�′ [m] 
Coordinate axis along the direction of the 
particle longest dimension 

y, Y [m] Vertical coordinate axis 
�′ [m] Coordinate axis normal to �′ 
z, Z [m] Depth coordinate axis 
�′ [m] Coordinate axis normal to �′ and �′ 

 

SPECIAL CHARACTERS 

 

α [°] Angle of incidence 

Δ [-] Difference 
� [°] Angular deflection 
�� [kg/m3] Fluid density 

�� [kg/m3] Particle density 
� [Pa∙s] Fluid dynamic viscosity 
σ [-] Aspect ratio, standard deviation 
� [-] Uncertainty 
� [s] Time constant 
� [-] Particle circularity 
� [-] Enhanced shape factor 
� [rad/s] Angular velocity 
∅ [-] Degree of sphericity 
∅∥ [-] Lengthwise sphericity 
∅� [-] Crosswise sphericity 
∀  [m3] Particle volume 

 

SUBSCRIPTS 

 

C  Centroid 
f  Fluid 
L  Lift 
P  Particle 
W  World reference frame 
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ABSTRACT 
 
 

A new methodology to study the free-settling motion of single particles in a fluid at 

ReP < 5000 within a three-dimensional reference frame is presented. After certain 

value of ReP the descend of any non-spherical solid is characterised by secondary 

motions which alter the particle orientation, therefore, their influence on quantities 

such as the velocity and drag coefficient have to be investigated within a context that 

ensures the interaction between the solid and the fluid is preserved undisturbed. To 

meet this requirement, this work is entirely based on high-speed imaging techniques, 

such as stereo vision and Schlieren photography, combined with digital image 

processing, vector algebra, and differential geometry operations. For spherical 

particles, the evolution of the structures in the surrounding fluid and their impact on 

the settling trajectories was observed. Additionally, a strong similarity between the 

calculated values of the coefficient of drag and those from literature correlations was 

achieved, which validates the proposed methodology. For non-spherical solids, it was 

found that after ReP > 200, secondary motions such as oscillation, gliding, and 

tumbling occurred and caused the formation of a turbulent wake structure in the fluid 

surrounding the particle. Their effect on the solids velocity and drag coefficient was 

also quantified, being more significant on disks than on cylinders, however a direct 

relation between the angular orientation changes and the drag coefficient could not be 

suggested. It was noticed too that for irregular particles the secondary motions were 

not evenly defined, and that the settling may be accompanied by continuous rotations, 

even at low ReP, which further alter the trajectory, orientation, and surrounding fluid 

structure, thus complicating the quantification of the motion parameters and imposing 

restrictions on the visualisation systems employed here. 
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Chapter 1 
 

INTRODUCTION 
 
 

1.1 MOTIVATION 

 

Due to the global trend of reducing the emissions of greenhouse gases, the utilisation 

of solid biomass as an alternative fuel for direct-firing power plants has been 

encouraged during the last decades. The main advantage of employing this type of fuel 

relies on the fact that it is carbon dioxide (CO2) neutral, since the same amount of CO2 

consumed during its growing stage is released to the atmosphere when it is burned [1]. 

Moreover, it contributes to the overall reduction of the atmospheric levels of CO2 and 

other gases generated as a product of disposing already existing solid waste biomass 

through different methods [2]. 

 

Any organic material derived from photosynthesis reactions in a relatively short period 

of time can technically be considered as biomass [3], however only woody products 

and agriculture residues can accomplish the large-scale energy requirements of power 

plants [4]. Furthermore, already built installations can still be used by firing these 

substances in the form of particles, and the necessity to construct new infrastructure is 

greatly diminished. In fact, the best cost-effective approach to solid biomass 

exploitation consists on burning it mixed with pulverised coal in a process known as 

cofiring [5, 6]. 

 

Because solid biomass is friable and fibrous, and its content of volatile matter is 

significantly high, it is neither economical nor necessary to mill it to a size similar to 

that of pulverised coal, which typically varies from 70 μm to 90 μm according to 

Osborne [7]. Actually, biomass particles usually found in cofiring applications have 

lengths which vary from 1 mm to 10 mm, or even larger as reported by Rosendahl et 

al. [8]. Besides the size discrepancy, a second issue posed by the biomass solids is that, 

contrary to coal, their shape does not resemble a sphere, and possess aspect ratios 3 to 

7 times higher [9, 10]. 
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Provided that most of the existing installations have been designed to handle coal 

particles, the differences in size, shape, and chemical composition of the biomass 

solids encompass a series of technical challenges that arise during their pneumatic 

transportation to the burners and their subsequent combustion. Their distinct 

aerodynamic, heating, and combustion characteristics alter the flow patterns in the 

pipes and furnaces, and cause non-isothermal particle heating which leads to the 

coexistence of different combustion stages at the same time, enlarging the burnout 

times in consequence [9, 11-13]. 

 

It is under these complex circumstances where the motivation for the present work 

origins because the detailed knowledge of the motion of one single particle immersed 

in a flow constitutes the basis for the correct design of the transportation and firing 

systems which handle solid biomass. As in these systems the particles are free to move, 

the straightest approach to investigate the aerodynamics of a single one is through free 

settling studies. Moreover, quantities determined in this type of analyses, such as the 

terminal velocity UT and coefficient of drag CD are essential for the design equations 

of such biomass-exploitation systems [14]. 

 

Most of the experimental work done on free-falling particles have been focused on the 

development of correlations to predict average values of CD and UT [15-24], 

nevertheless it has been reported that when a non-spherical solid settles in a fluid, it 

exhibits some kind of secondary motion which continually alters its angular 

orientation and the structure of the surrounding fluid [25-27]. The influence of these 

changes on the motion parameters has normally been skipped [28]. 

 

On the other hand, considerable numerical work in this field has been done [11, 12, 

28-33]. Even drag correlations which include the influence of the angular change have 

been proposed [11, 28, 30, 33, 34]. Nonetheless, for most of the simulations, the 

motion equations were solved subjected to the condition of a fixed particle at different 

inclination angles with respect to the flow [28, 29, 32-34]. Therefore, the application 

of the obtained results in situations where the particle motion is not restrained must be 

taken with care, since the interaction between the particle and the fluid is different. 

For instance, a CD variance of 15 % – 30 % between a free-moving sphere and a fixed 
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one has been reported in the literature [35]. Another disadvantage of the numerical 

models is the fact that they are still not able to deal with a solid of irregular geometry. 

 

Within this context, the aim of this research is to examine the settling behaviour of 

free-moving single particles, of regular and irregular shape, in a way which preserves 

the solid-fluid interaction undisturbed whilst still revealing the influence that 

secondary motions and continuous angular orientation changes have on the quantities 

relevant for the design and optimisation of transportation and combustion systems 

which deal with non-spherical, solid biomass particles. In order to so, this 

experimental study is entirely based on high-speed imaging techniques coupled with 

digital image processing operations. 

 

1.2 OBJECTIVES 

 

Because the motion of single particles in a fluid is fully described within a three-

dimensional (3D) frame, the principle of stereo vision is employed in this thesis to 

generate 3D metric data on which the analysis can be further developed. In addition, 

the method of Schlieren photography is used to visualise the fluid surrounding the 

particles in some of the cases. More specifically, this work pursues the following 

objectives: 

 

i. The development of a non-intrusive technique based on high-speed 

photography suitable to resolve quantitatively the instantaneous 3D 

displacement and orientation of spherical and non-spherical particles falling 

freely in a fluid. 

ii. The application of high-speed Schlieren imaging to reveal the structure of the 

fluid surrounding the particles in as many cases as possible. 

iii. The derivation of a mathematical procedure appropriate to estimate the 

instantaneous kinematics and dynamics of the solids out of their 3D trajectory-

coordinates only. 

iv. The investigation of the effect that the angular orientation of a regular, non-

spherical particle has on CD and other motion parameters. 

v. The exploration of the behaviour of irregular, chip-like, particles immersed in 

fluids at rest and in motion. 
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1.3 THESIS STRUCTURE 

 

The present thesis is divided in eight chapters, being Chapter 1 the Introduction and 

Chapter 8 the Conclusions and Future Work Recommendations. In Chapter 2 the 

literature regarding the motion experienced by a single spherical and non-spherical 

particle immersed in a fluid is reviewed. The first part of the chapter deals with some 

of the most popular methods to characterise the geometry of the solid. The second part 

provides a detailed description of the motion characteristics and the relevant equations. 

In the third part of the chapter the quantitative and qualitative image-based techniques 

which have been used previously to analyse the motion of particles are discussed. 

 

Since the experimental technique applied in this work to obtain quantitative data is 

entirely based on stereo visualisation and 3D metric reconstruction, which also 

involves the process of camera calibration, the theory and methods to perform such 

tasks are covered in Chapter 3. The digital image processing operations required by 

the process of camera calibration are also reviewed. The chapter ends with a study of 

the accuracy of the 3D generated data. 

 

In Chapter 4 the digital image processing calculations and the methodology followed 

to extract particle data from the stereo pictures to be the input of the stereo 

reconstruction algorithms are exposed in the first section of the chapter. Then, the 

procedure developed to track the kinematics, dynamics, and orientation of the moving 

solids from the 3D output data of the algorithms is portrayed. 

 

Chapters 5 and 6 comprehend the experimental study of settling spheres, cylinders, 

and disks, employing both stereo vision and Schlieren photography. In Chapter 5, the 

geometrical characterisation of the particles, description of the installations, and 

results of the calibration of the stereo system are exposed first. Then, the experimental 

data obtained for the spheres is discussed, along with comparisons with correlations 

from the literature to compute UT and CD. 

 

The results generated for the free-falling cylinders and disks are given in the first two 

sections of Chapter 6. Comparisons between the experimental average results of UT 

and CD and those predicted by published correlations are also provided. Because these 
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solids do experience changes in their orientation, an analysis about the influence of 

the angle of incidence on the coefficient of resistance is done in the last part of the 

chapter. 

 

Chapter 7 is formed by an exploratory study of the behaviour of irregular particles, 

which resemble a wood chip, as they move in stagnant liquids and inside a pipe-

enclosed airflow. The challenges posed by the irregularity of the geometry on the 

motion are highlighted, and the advantages and limitations of the employed stereo 

technique to address them are discussed. 

 

As mentioned before, Chapter 8 contains the conclusions and future work 

recommendations of this experimental thesis. First the conclusions corresponding to 

the applied image-based techniques are given, followed by those regarding the 

procedure used to measure the particle kinematics, dynamics, and orientation. 

Afterwards, the conclusions about the experimental works on spheres, disks, cylinders, 

and irregular particles are provided. 

 

This thesis also includes seven appendices. The first five of them contain an 

explanation of the mathematical analyses and formulas required by the processes of 

camera calibration and 3D metric stereo reconstruction. In the sixth appendix, the 

calculation of the time derivatives, needed by the particle motion tracking 

methodology, through finite difference schemes is exemplified. Finally, in the seventh 

appendix the list of computer programs written in Matlab to execute all the 

mathematical operations posed by this investigation is given. 
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Chapter 2 
 

LITERATURE REVIEW 
 
 

Since the geometry of the particles is of paramount importance for the study of their 

motion, it has to be characterised in such a way that its effect on the motion can be 

preserved. Moreover, the characterising technique has to be able to deal with different 

shapes and produce parameters that allow the comparison between one shape and 

another. Therefore, this chapter begins with the revision of the most common methods 

of non-spherical particle characterisation for motion studies. 

 

The chapter then continues with the revision of the already existing knowledge about 

the motion of single particles in a fluid. Detailed descriptions of the translational and 

rotational motions of spherical and non-spherical solids are given. Equations 

developed by both experimental and numerical approaches are illustrated, and 

empirical correlations to predict the coefficient of resistance and other parameters are 

also provided. In addition, the characteristics of the surrounding flow as well as the 

evolution of the secondary motions which have been reported in the literature are 

discussed. 

 

Finally, the chapter ends with a review of the experimental techniques that have been 

employed by other researchers to study the motion of particles, both qualitatively and 

quantitatively. The application of stereo vision for 3D analyses, and the use of 

Schlieren photography to visualise the structures of the neighbouring fluid are also 

explicated. Additionally, a brief introduction to digital image processing is given as a 

basis for the more advanced topics of this field covered in Chapters 3 and 4. 

 

2.1 GEOMETRICAL CHARACTERISATION OF A NON-SPHERICAL 

PARTICLE 

 

From a geometrical point of view and according to their shape all particles can be 

broadly classified in two types: spherical and non-spherical, and in agreement with the 

ability of their geometry to be perfectly represented in mathematical form, non-

spherical particles are further differentiated into regular and irregular. Thus, an 
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irregular particle is defined as that solid whose exact geometry cannot be determined 

mathematically [36], [37]. 

 

The geometry of any particle, whether regular or irregular, is normally stated in terms 

of its size and shape; nevertheless, there is not a unique way to calculate both 

parameters since they can take different values depending on the characterising 

method employed. The size is usually expressed in function of certain diameter which 

can correspond to the one of an sphere or a circle that meets some physical or statistical 

requirements [38]. 

 

When measurements of the particle length on each of the three dimensions are 

available, then it is better to express its size in terms of an equivalent sphere, as shown 

in Figure 2.1. Care must be taken in selecting that sphere whose diameter definition is 

the most suitable one for the case under study. In contrast, when only two-dimensional 

representations (i.e. photographs) of the particle are available, the diameter of an 

equivalent circle or any other statistically predefined linear dimension can be chosen 

as the size descriptor, like the ones depicted in Figure 2.2. 

 

 
Figure 2.1 Different equivalent sphere definitions for a biomass irregular wood chip. 

 

In Figure 2.2 the equivalent circle diameter refers to that circle whose area matches 

the area of the particle projected onto a planar surface. On the other hand, the Feret 

and Martin diameters do not result from a circle definition, but from a specific linear 

distance which is statistically measured. The first one corresponds to the distance 

between two parallel lines tangent to the particle on its extremes, and the second is the 
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length of the bisecting line which splits the projected area into two other equal-area 

parts. These type of diameters are normally detected by optical microscopy. 

 

 
Figure 2.2 Equivalent circle definition and the statistical Feret and Martin diameters. 

 

Wadell [39] was the first to use the same volume sphere concept to characterise 

irregularly shaped particles in aerodynamic studies. In his investigation about the 

coefficient of resistance and settling velocity of rock particles he suggested to 

approximate the volume ∀ of the solid as the product of its largest (a), intermediate 

(b), and smallest dimensions (c), all of them measured in mutually perpendicular 

directions (Figure 2.3). Thus, the equation he proposed to obtain the diameter of the 

equivalent same volume sphere is  

 

�� = �
6∀

�

�

 (2.1) 

 
The quantity �� is commonly known as the nominal diameter of the particle. Because 

the measurements to approximate the particle volume are relatively easy to do and if 

greater precision is required alternative ways to provide an accurate value of the 

particle volume, such as the Archimedes principle, are available, this diameter 

definition is the most used one in aerodynamics. Correspondingly, it is also chosen 

here to characterise the non-spherical particles employed in the work.  

 

Whilst size provides the means to express dimension in one single number, shape 

constitutes the way to quantitatively describe the degree to which a non-spherical 

particle resembles a sphere. Its value can change from 0, for null similarity, to 1 for 

perfect matching. Based on the belief that any solid can be modelled as a sphere of the 

same volume but with deformed dimensions, Wadell [39] was again the first to provide 
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a shape descriptor, the degree of sphericity ∅, defined as the ratio of the surface area 

SV of a sphere having the same volume as the particle to the actual surface area S 

 

∅ =
��
�

 (2.2) 

 

 
Figure 2.3 Largest, intermediate, and smallest particle dimensions. 

 

The process of computing S accurately for an irregular particle constitutes a 

formidably complicated task, only achievable using three-dimensional imaging 

systems and extensive computing time. Lu et al. [40] developed a method to create a 

3D model of an irregular sawdust particle by photographing it with three cameras to 

record the top, front, and side views of the solid. Once the model is finished, S and ∀ 

can be calculated. Bagheri et al. [41] also proposed the use of 3D laser scanning to 

generate a 3D representation of irregular particles larger than 5 mm, or scanning 

electron microscope micro-computed tomography (SEM micro-CT) for smaller sizes. 

 

Despite its inherent limitations, however, two-dimensional analyses can still generate 

useful representations of the shape as long as the particle possess relatively small size 

[42]. For larger particles, a simple and faster estimation of ∅, according to Mandø et. 

al. [36], can be obtained from 

 

∅ = �
��

��

�

 (2.3) 

 
Another shape descriptor commonly found in the literature although less utilised in 

equations is the Corey shape factor [43], which is defined as the ratio of the smallest 

particle dimension to the square root of the medium and largest perpendicular 

dimensions 
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�� =
�

√��
 (2.4) 

 
By means of free-fall experiments it was later acknowledged that this parameter poorly 

correlates the fall velocity of the particle to that of a sphere for all sizes and shapes, 

therefore an improved form of the Corey shape factor which relates better with drag 

correlations was suggested by Loth [21]. It is known as the max-med-min area, ����, 

and defined as 

���� =
��

��
 (2.5) 

 

Despite the disadvantages that the shape factor presents, it is still a considerably more 

convenient way to characterise an irregular particle because it does not involve 

complicated calculations or sophisticated three-dimensional visualisation 

arrangements. Furthermore, if the particles are relatively large to be observed by the 

human eye, the three dimensions a, b and c can be easily measured with a hand 

calibrator. 

 

In order to extend the use of the shape factor,  Dellino [44], and Dioguardi and Mele 

[23] proposed to improve it by recalculating it in a different way. They argued that an 

enhanced shape factor �, suitable to describe irregular geometries, can be obtained 

through the division of the particle sphericity by its circularity χ, defined as the ratio 

between the true particle perimeter and the equivalent circle perimeter, thus 

 

� =
Ø

�
 (2.6) 

 

In spite of the fact that � seems to provide improved accuracy for calculations, the 

determination of χ can only be done through image processing methods. This further 

complicates the measurement process because a set of pictures of the particles, taken 

at different orientations, has to be digitally analysed in order to compute both 

perimeters. 

 

A third particle geometry-describing parameter is the so-called aspect ratio σ. Even 

though it is the least employed one in the equations, it is extensively used as a 



17 
 

classification tool given the simplicity of its calculation, which consists in dividing the 

major particle dimension by the minor one, as follows 

 

� =
�

�
 (2.7) 

 

The shape descriptors explicated in this section are employed by most of the 

correlations to calculate the drag coefficient available in the literature, however, some 

equations require the definition of more complicated descriptors. The non-spherical 

particles used in this investigation were characterised through the nominal diameter, 

sphericity, and aspect ratio. 

 

2.2 THEORY OF THE MOTION OF A SINGLE PARTICLE 

 

2.2.1 TRANSLATION 

 

Because the motion of a single particle in a fluid is dominated by the properties of 

both the solid and the fluid, then if the densities of both materials are different or if the 

particle size is larger than the smallest velocity gradient length scale of the fluid, the 

particle will alter the dynamics of the flow and become subject to different forces, 

such as drag, lift, inertia, and buoyancy [45]. In the situations where these 

characteristics are present, it is said that the particles are inertial [46]. 

 

The drag is simply defined as the resistance posed by the fluid to the movement of the 

particle. It results as consequence of the tangential force caused by the shear stress 

exerted over the whole particle surface and by the pressure difference between the 

front and rear sides of the particle. The drag force FD is normally expressed by means 

of the drag coefficient through the next equation 

 

�� =
��

0.5������
� (2.8) 

 
where AP is the area of the particle projected perpendicularly to the direction of FD, �� 

is the fluid density, and VP is the velocity of the particle relative to the flow. 

Traditionally, it has been assumed that as the particle descends, there is a time when a 
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balance between the forces of weight, buoyancy, and drag is attained, and the object 

no longer accelerates, but falls at constant terminal velocity. In such conditions, CD 

can be determined from the force balance as follows 

 

�� = 2�� �1 −
��

��
� ����

����  (2.9) 

 
where m and ��  are the mass and density of the particle, respectively, and � is the 

acceleration due to gravity. Haider and Levenspiel [16] have published the following 

empirical correlation to predict the terminal velocity of a regular, symmetric, object in 

free-fall conditions 

�� = �∗ �
��

�

����� − ���
�

�/�

 (2.10) 

 
with μ being the fluid dynamic viscosity. The quantity �∗ corresponds to a 

dimensionless velocity which, for spheres, is defined as 

 

�∗ = ��
18

�∗
��

�.���

+ �
0.321

�∗
�
�.���

�

��.���

 (2.11) 

 
and for other geometries as 

 

�∗ = �
18

�∗
� + �

2.3348 − 1.7439∅

�∗
�.� ��

��

   , 0.5 ≤ ∅ ≤ 1 (2.12) 

 

The parameter  �∗ which appears in Equations (2.11) and (2.12) is a non-dimensional 

diameter, defined for both spherical and non-spherical objects as shown in the equation 

below 

�∗ = �� �
������ − ���

��
�

�/�

 (2.13) 

 
So long as different terminal velocity conditions give rise to different particle 

Reynolds numbers ReP, it is common practice to correlate the values of the drag 

coefficient with ReP for the geometry under study, so that the so-called drag curve can 

be generated. Figure 2.4 shows the drag curve corresponding to a free-falling sphere, 

for which the particle Reynolds number is defined by the formula 
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��� =
������

μ
 (2.14) 

 
As it can be observed from Figure 2.4, different flow regimes may exist for the same 

geometry depending on what value the particle Reynolds number takes. In the figure, 

the narrow region to the left of the plot is known as the creeping flow regime and is 

governed by the law of Stokes, which for a sphere is written as 

 
�� = 3�����  (2.15) 

 

The creeping flow criteria is valid for considerably low Reynolds numbers (ReP << 1) 

and in this zone CD and ReP exhibit the inverse relation CD = 24/ReP, which is also 

true for non-spherical geometries [34]. From the same figure it can also be seen that 

the Stokes’ law flow regime is correct until ReP ≈ 0.3 for spherical bodies. Similar 

drag curves can be found in the literature for cylinders, disks, cubes, spheroids, and 

other geometries, but not for entirely irregular particles. 

 

 
Figure 2.4 Standard drag curve for a sphere immersed in a moving fluid [47, 48]. 

 
Equation (2.9) was developed under steady-state conditions, where the most relevant 

forces are weight, buoyancy, and drag. Nonetheless, if different circumstances exist, 

another motion equation valid under any flow conditions has to be found. For the case 

of a relatively small and heavy sphere moving with velocity vector VP in an arbitrary, 

incompressible flow field u, at time t such general motion equation is 
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(2.16) 

 

where �� is the mass of fluid displaced by the particle, and � is a time constant [49]. 

The left hand side of Equation (2.16) denotes the particle inertia, and the right hand 

side accounts for buoyancy, Stokes drag, pressure gradient, virtual mass acceleration, 

and the augmented viscous drag from the Basset history term. The derivative d/dt 

denotes the time derivative following the moving sphere whilst D/Dt expresses the 

time derivative following a fluid element, therefore the fluid acceleration for each 

notation system is 

 
���
��

=
���
��

+ ��
���
���

 

 (2.17) 
���
��
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���
��

+ ��
���
���

 

 

In Equation (2.16) it is assumed that neither chemical reactions nor electric or 

magnetic effects are present. In addition, not all of the terms involved have the same 

relevance since some might play a more important role than others. For the only 

purpose of aerodynamic studies, Lazaro and Lasheras [50] made a comparison of the 

orders of magnitude of each term by analysing the dispersion of water droplets in a 

turbulent free shear air flow and concluded that as long as the spherical particles 

remain small, it can be considered that the motion is mostly governed by drag. 

 

Even though Equation (2.16) was developed for spheres, non-spherical particles with 

aspect ratios smaller than 1.70 can still be modelled using this equation, however for 

higher aspect ratios the particles must be analysed preserving their original shape or, 

at least according to the regular geometry they resemble the most [36]. Using Equation 

(2.16) as basis Yin et al. [12], and Mandø and Rosendahl [30] proposed the following 

equation to simulate the translational motion of large and regularly-shaped, non-

spherical biomass particles in a Lagrangian framework 
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where the left-hand side again expresses the particle inertia whilst the right-hand side 

contains, in order, the buoyancy, drag, pressure gradient, and virtual mass acceleration 

forces, respectively, plus an extra term, the aerodynamic lift FL. The drag force term 

was rewritten by the authors to account for the entire Reynolds number 

 

�� = 0.5������|� − ��|(� − ��) (2.19) 

 

The lift arises as a result of the changes in the orientation of the particle during its 

trajectory and due to flow separation caused by both the non-sphericity and the 

velocity. Similar to the drag, the lift force is also defined in terms of another variable, 

the lift coefficient CL, through the following expression 

 

�� =
��

0.5��,�����
 

 
(2.20) 

where ��,� is the particle projected area in the direction perpendicular to the lift force. 

From a close analysis to Equations (2.8) and (2.20) it can be observed that the values 

of the drag and lift coefficients can be modified by changes in the forces, orientation, 

and velocity, which in turn are entirely dependent on the geometry, the flow 

conditions, and the solid-fluid interaction. Therefore, it is recommended to study the 

motion keeping the original particle geometry, so its entire influence on the flow can 

be conserved. In fact, for values of σ larger than 1.70 the equivalent sphere assumption 

is not valid for non-spherical geometries [51]. 

 

2.2.2 DRAG AND LIFT CORRELATIONS 

 

Because spheres can be geometrically described using only one dimension and since 

they always have a constant projected area, the coefficient of resistance can be solely 

expressed in terms of the particle Reynolds number 

 

�� = �(���) (2.21) 
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Nonetheless, for all the other shapes at least two parameters are needed for their 

geometrical description. Moreover, since those objects do not always project the same 

area in the direction of motion, therefore the dependence of the drag coefficient is 

normally written as 

 

�� = �(���,�ℎ��� ���������� ) (2.22) 

 
Different researchers have published empirical correlations obtained from both 

experimental and numerical analyses to calculate the drag coefficient as dictated by 

Equations (2.21) and (2.22) for spherical and non-spherical geometries, respectively. 

The most common equations are listed in Tables 2.1 and 2.2, correspondingly. 

 

Table 2.1 Correlations to calculate the drag coefficient for spheres. 
Year Author Equation 

1970 
Clift and 
Gauvin 

[15] 

 

�� =
24

���
�1 + 0.15���

�.���� +
0.42

1 + 4.25× 10����
��.�� 

 
��� < 10� 

(2.23a) 

1989 
Haider and 
Levenspiel 

[16] 

 

�� =
24

���
�1 + 0.1806���

�.����� +
0.4251

1 +
6880.95
���

 

��� < 2.6 × 10� 

(2.23b) 

2005 
Yow et al. 

[52] 

 

�� = 0.3 +
23.5

���
+

4.6

����
 

 
��� < 2× 10� 

(2.23c) 

2013 
Terfous et 

al. [35] 

 

�� = 2.689 +
21.683

���
+
0.131

���
� −

10.616

���
�.� +

12.216

���
�.�  

 
0.1 < ��� < 5× 10� 

(2.23d) 

 

From the inspection of the correlations of Table 2.2 it can be noticed that traditionally 

any non-spherical body is virtually converted into an equivalent sphere to compute its 

drag coefficient, and in some cases that transformation involves the calculation of 

complex parameters such as those required in Equation (2.24e). The utilisation of all 

those geometry-dependent factors also constitutes an effort to include the effect that 

the orientation of the body has on the drag force. 
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Table 2.2 Correlations to calculate the drag coefficient for non-spherical geometries. 
Year Author Equation 

1989 
Haider and 
Levenspiel 

[16] 

�� =
24

���
�1 + �8.1716���.����∅����

�.������.����∅�

+
73.69�����

��.����∅�

��� + 5.378��.����∅
 

 
Isometric particles, ��� < 2.5× 10�, ∅ ≥ 0.67 

(2.24a) 

1991 
Swamee 
and Ojha 

[17] 

 
��

= �
48.5

[1 + 4.5(��)�.��]�.����
�.��

+ �
���

��� + 100+ 1000(��)
�
�.�� 1

(��)�� + 1.05(��)�.�
�

�.��

 

 
Irregular particles, ��� < 1× 10�, 0.3 ≤ �� ≤ 1 

(2.24b) 

1993 
Ganser    
[18, 20] 

 

�� = �
24

�������
[1 + 0.1118(�������)

�.����]

+
0.4305

1 +
3305

�������

��� 

 
������� < 10� 

 

(2.24c) 

K1 is known as the Stokes’ shape factor and K2 as the Newton’s 
shape factor. For isometric shapes K1 is calculated as 

 

�� = �
1

3
+

2

3 √∅
�
��

 

 
and for non-isometrics like 
 

�� = �
��
3 ��

+
2

3√∅
�
��

 

 
where dc is the diameter of the corresponding equal projected 
circular area. On the other hand, K2 has the same equation for 
both isometric and non-isometric bodies 
 

�� = 10�.����� 
 
where � = (− ���∅)�.���� 

 

1994 Chien [53] 

 

�� =
30

���
+ 67.289���.��∅ 

 
��� < 5000, 0.2 ≤ ∅ ≤ 1 

(2.24d) 
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Table 2.2 cont. Correlations to calculate the drag coefficient for non-spherical geometries. 
Year Author Equation 

2008 
Hölzer and 
Sommer-
feld [34] 

 

�� =
8

����∅∥
+

16

���√∅
+

3

����∅
�/�

+
0.4210�.�(����∅)

�.�

∅�
 

 
��� < 10� 

 

(2.24e) 

where ∅�, called the crosswise sphericity, is obtained by 
diving the projected area of the same volume sphere by the true 
projected area. Likewise, ∅∥, named the lengthwise sphericity, 
is equivalent to the division of the projected area of the same 
volume sphere by the difference between half the true surface 
area and the mean longitudinally projected true projected area. 

 

2011 
Chow and 

Adams 
[27] 

 

�� =
1

2
�1 + ����

��
���

�
� �

��
���

�
< 1.5 

 

�� =
�

2
 �

��
���

�
> 1.5 

 
Cylinder, 200< ��� < 6000, � is the aspect ratio 

(2.24f) 

 

In his modelling of the motion of particles by means of a master shape, called the 

super-ellipsoid, from which all other regular shapes can be derived, Rosendahl [11] 

incorporated the angular orientation of the solid in the estimation of CD and suggested 

that it would vary according to the following relation. 

 

�� = ��,���(����)
� (2.25) 

 
where � is the angle of incidence of the particle, defined as the angle between the 

particle major axis and the undisturbed fluid velocity vector, which for free-falling 

cases can be approximated as the particle velocity vector (Figure 2.5), and ��,��� is the 

value of the drag coefficient when � = 90°. 

 

Although it is a direct approach to integrate the angular variation of non-spherical 

solids into the analysis, Equation (2.25) has not been validated experimentally. Aiming 

for an improved result, later, Mandø and Rosendahl [30] recommended the 

substitution of (����)� in Equation (2.25) for just ����, thus 

 

�� = ��,������� (2.26) 
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Figure 2.5 Angle of incidence of a non-spherical particle. The red line denotes the particle 

longest axis. �� is the free-stream velocity vector. 
 
Through a different approach to combine the already published empirical drag 

correlations (Table 2.2) with the effects of angular variation, in their simulation of 

cylindrical particle motion Yin et al. [12] assumed a constant value of CD, computed 

with Equation (2.24c), and introduced the influence of � into the calculation of the 

projected area as shown 

 

�� = ����(����)� + (4� �⁄ )�(����)� (2.27) 

 
where r is the radius of the cylinder and � is the aspect ratio. Making use of an 

alternative framework, Zastawny et al. [28] simulated the motion of ellipsoids, disks, 

and cylindrical fibres held at different orientations with respect to the free-stream 

velocity, and obtained another trigonometric variation for the drag coefficient of the 

form 

 

�� = ��,��� + ���,���� − ��,�������
�.��� 

 
(2.28) 

where 

��,��� =
��

���
��
+

��
���

��
 

 
(2.29) 

��,���� =
��

���
��
+

��
���

��
 

 

The values of the constants a0 to a8 can be found in the corresponding reference. 

Equation (2.28) is valid for ReP < 300. Equations (2.25), (2.26) and (2.28) are the most 

obvious attempts to introduce the influence of � on CD that can be found in the 

literature, nevertheless, they have the disadvantage of keeping the particles fixed, 

restricting therefore the free interaction between the solid and the fluid. 
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As for the drag, the lift force also needs to be determined. Yet, because it often is 

smaller than the drag by one or more orders of magnitude, its calculation is commonly 

omitted, hence few works with correlations to compute the lift coefficient are available 

in the literature. By neglecting any lift contributor other than the aerodynamic lift 

product of the particle orientation changes, Rosendahl [11] and Yin et al. [12] made 

use of the crossflow principle of Hoerner [54], valid in the interval 0 < ReP < 1000, to 

suggest the following relation to estimate the lift force in their numerical models 

 

�� = (����)������� (2.30) 

 
In an effort to enhance the simulation results Mandø and Rosendahl [30] proposed a 

similar expression including as well some dependence of the lift coefficient on the 

particle Reynolds number in the interval 30 < ReP < 1500 

 

�� =
(����)�����

0.65 + 40���
�.�� ��  (2.31) 

 
The crossflow principle of Hoerner was originally developed for cylinders positioned 

at some oblique angle to the direction of a uniform and steady flow [55]. Therefore, 

the application of Equations (2.30) and (2.31) to non-cylindrical geometries or 

unsteady flow conditions has to be done with care. Zastawny et al. [28] also published 

an alternative equation to determine the lift coefficient, written as follows 

 

�� = �
��

���
��
+

��

���
��
� (����)��������

��(����)��������
���

 (2.32) 

 

where the terms enclosed within the first parenthesis provide the magnitude of CL 

whilst the trigonometric functions only describe its dependence on the angle of attack. 

The values of the constants b0,…,b8 can be found in the cited reference for each of the 

geometries they studied. It is claimed that Equation (2.32) provides good results for 

all the investigated particle shapes at any value of ReP and �, respectively, though it 

has not been contrasted with experimental investigations. Similar to Equation (2.28), 

the validity of Equation (2.32) extends to ReP < 300. 
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A radically different method which avoids the use of � in the prediction of the lift 

coefficient was proposed by Krueger et al. [56]. In their experimental study of the 

motion of free falling regular and irregular solids with the assistance of stereo vision, 

they treated the vector difference of the velocity at two successive positions as the 

outcome of the lifting effect and advised the use of the next formula to compute the 

lift coefficient 

�� =
2� �

∆��
∆�

+ ���

����
 (2.33) 

 

where ∆�� is the magnitude of such vector difference, �� is the gravity acceleration 

component in the direction of the lift,  ∆� is the period of time taken by the particle to 

move from position 1 to position 2, and A is the arithmetic average of the particle 

surface areas visible to the cameras. Since the visible surface area varies due to the 

changes in orientation, it could be said that the effect of � is already included in A.  

 

Although Equation (2.33) constitutes one of the few recent experimental approaches 

to lift calculation, its output was not compared against the results from other works. 

Furthermore, the particle velocity change between two consecutive points may be due 

to other reasons rather than lift, thus the employment of ∆�� is not be properly 

justified. 

 

2.2.3 ROTATION 

 

Up till now the discussion has been centred on the aerodynamic forces of drag and lift, 

however any rotation of the particle will also induce torques which cannot be included 

in Equation (2.18) since it applies exclusively for translational motion. Based on the 

free-body diagram of Figure 2.6, a set of equations to describe the particle rotational 

motion around the three axes �′�′�′ can be formed. Notice that �′ is always along the 

direction of the largest particle dimension. Then, if ���, ���, ��� are the angular 

velocities, and ���, ���, ��� denote the torques with respect to each axis, it can be 

written 

 

��� = ���
����

��
− ������(��� − ���) (2.34) 
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��� = ���
����

��
− ������(��� − ���) (2.35) 

 

��� = ���
����

��
− ������(��� − ���) (2.36) 

 

where ���, ���, and ��� are the moments of inertia of the solid [12]. Thus, Equation 

(2.18) define the translational motion in the fixed world reference frame ������ 

whilst Equations (2.34 – 2.36) describe the rotational motion, expressed in the particle 

frame �′�′�′. Since this latter frame changes every time there is a change in the 

angular orientation, a mathematical relation between both frames is required. 

  

 
Figure 2.6 Forces and moments acting on a non-spherical particle. CG = centre of mass. 

 

The moment of inertia of a solid represents its resistance to angular acceleration 

around the axis of rotation, and is defined as the sum of the moments of inertia of each 

differential mass component of the solid, where in turn, each of them is calculated as 

the product of the mass component times the distance from the respective axis squared. 

For every particle geometry and every axis of rotation there exists a moment of inertia, 

which can be accurately calculated as long as the shape of the body is regular. The 

calculation formulas can be found in any dynamics textbook. For instance, the 

moments of inertial of the ellipsoid of Figure 2.6 are 
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��� =
�

5
(�� + ��) ; ��� =

�

5
(�� + ��) ; ��� =

�

5
(�� + ��)  

 

where a, b, and c denote the lengths of the semi-axes along the ��,��,and �′directions, 

respectively. The computation of the moment of inertia of an irregular geometry is 

more complicated and can only be approximated through integral calculus 

expressions. 

 

2.2.4 SECONDARY MOTION 

 

The relevant parameters characterising the motion of a single particle within a fluid 

have already been described, nonetheless the patterns of the flow around the solid have 

not been addressed yet. In general, they cannot be expressed in terms of quantitative 

data, thus they have to be analysed qualitatively through visualisation methods. 

 

In the case of spheres, the flow around them show different behaviours depending on 

the value of the Reynolds number. According to Magarvey and Bishop [57], and 

Magarvey and MacLatchy [58], for a free falling sphere, the streamlines remain 

symmetrical and attached to the body up to ReP = 10, to form then a stable, 

symmetrical circulation zone at the rear part of the sphere which lasts up to ReP = 210, 

as illustrated in Figure 2.7. It should be remarked that for the case of a rigidly held 

sphere exposed to crossflow the starting point of flow separation occurs approximately 

at ReP = 24 [32, 59, 60]. 

 

 
Figure 2.7 Symmetrical wake behind a liquid droplet at ReP = 170 [57]. 
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The stability and symmetry of the circulation zone decreases as ReP augments, causing 

the sphere deviate from a vertical settling path. The asymmetry causes a sidewise force 

which can be understand as lift. In addition, at ReP = 210 the single thread disappears 

and two parallel threads appear, as shown in Figure. 2.8. Furthermore, at ReP = 270 

and up to ReP = 290, regularly spaced wavy patterns form in the trail left by the sphere 

(Figure 2.9). 

 

 
Figure 2.8 Wake behind a liquid droplet at ReP = 220 [57]. 

 
At ReP > 290 there is no more symmetry in the circulation zone and the process of 

vortex shedding appears. It has been reported that for a rigidly held sphere the vortex 

shedding appears at ReP = 270. The vorticity is transferred to the fluid stream in the 

form of two periodic, parallel vortex trails (Figure 2.10), also known as hairpins. The 

regularity of the hairpin vortex shedding remains up to ReP = 700, and approximately 

at ReP = 1000 the wake behind the sphere becomes totally turbulent, as shown in 

Figure 2.11. 

 

 
Figure 2.9 Wavy trail left by a free-falling liquid sphere at 270 < ReP < 290 [57]. 
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Figure 2.10 Dye visualisation of the structure of a hairpin vortex shedding from a fixed 

sphere at ReP = 300 [59]. 
 

 
Figure 2.11 Turbulent wake behind a fixed sphere at ReP = 1000 [61]. 

 

Experimental visualisations of the neighbouring flow around free falling objects of 

non-spherical shape are scarce in the literature, however it is assumed that, likewise 

for spheres, at considerably small values of ReP there is no flow separation. Then, as 

ReP increases, the phenomena of flow separation, recirculation, and vortex shedding 

appear, with regular characteristics in the beginning, to gradually evolve into turbulent 

irregular configurations. In all the cases, there is a strong relation between the vortex 

shedding pattern and the pressure distribution in the wake, and it is believed that this 

radically affects the orientation of the particle and the form of its trajectory [26, 27]. 

 

Marchildon et al. [25] reported that a free-settling cylinder falls with fixed orientation, 

projecting its maximum area perpendicularly to the main motion direction, so long as 

ReP < 80. Once this value is exceeded, some regular oscillation may accompany the 

fall-path; nonetheless, they said that oscillation was always present for ReP > 300, and 

undoubtedly proposed that the vortex shedding configuration was responsible for this 

secondary motion. Figure 2.12 displays the observed oscillation pattern. They also 

affirmed that any free-moving particle will always achieve the same corresponding 

type of terminal flow, suggesting that any effect derived from the particle dropping 

method can be neglected. 
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Figure 2.12 Regular oscillation in a free-falling cylinder at ReP > 300 [25].  
 
Chow and Adams [27] also found the same oscillation type described in the previous 

paragraph, and attributed the causes to the bending provoked on the cylinder 

orientation every time a vortex is released. They suggested that such an orientation 

change modifies the pressure distribution along the body, which in consequence gives 

rise to a resultant torque that tends to return the particle to its horizontal position, as 

depicted in Figure 2.13. They also reported that when ���� ���⁄ > 1.5, besides 

oscillation the secondary motion will also include some tumble, and for 

���� ���⁄  ~ 2 tumbling dominates the secondary motion. The equations they 

recommended to calculate the torque and projected area are 

 

� = 0.35��� − �����
�� × ���� (2.37) 

 

�� = ������ (2.38) 

 
where doff is the distance between the centroid and the centre of pressure, and is 

calculated within 10% of precision in the range 0° <  � < 90° through the following 

equation 

 

���� = 0.75����(4 + �����)� ≈ 0.12�� (2.39) 
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Figure 2.13 Schematic of the effect of angular deflection on a falling cylinder  [27]. 

 

Stringham et al. [26] investigated the behaviour of the drag coefficient for relatively 

large aluminium and lead disks into quiescent mixtures of water and glycerine, and 

noticed that for ReP > 300 the influence of shape on the pressure distribution gave 

origin to different patterns of fall (Figure 2.14 and Table 2.3), which they classified as 

follows: 

 
i. Steady regime, described by a steady-flat fall of the disk with the maximum 

projected area perpendicular to the motion direction (Figure 2.14a), 

 
ii. Transition regime, in which the disk can fall with regular oscillation 

(Figure 2.14b) or with a combination of oscillation, gliding, and tumbling 

(Figures 2.14c and 2.14d), 

 
iii. Tumble regime, characterised by a uniform tumble and nearly constant 

angular rotation (Figure 2.14e). 

 

a) b) c) d) e) 
 

Figure 2.14 The four fall patterns for free falling disks: a) Steady-flat; b) Regular oscillation 
perpendicular to the fall direction; c) Just entering the oscillation, gliding, and tumbling; d) 
Just leaving the oscillation, gliding, and tumbling; e) Tumble, almost 360° rotation at nearly 

constant angular velocity [26]. 
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Table 2.3 Path parameters of each of the disk-fall patterns shown in Figure 2.14 [26]. 
 

Fall pattern Material dP (cm) V (m/s) ReP CD 
Steady-flat (a) Lead 2.54 0.420 38 2.0 

Regular oscillation (b) Aluminium 3.81 0.471 1092 0.46 
Just entering oscillation, gliding and 

tumbling (c) 
Aluminium 2.54 0.585 17900 0.26 

Just leaving oscillation, gliding and 
tumbling (d) 

Lead 3.81 0.951 300 0.60 

Tumble (e) Lead 2.54 0.668 16800 1.02 

 
The results of the coefficient of resistance they calculated were reported graphically 

and are shown in the CD – ReP diagram of Figure 2.15, where it can be distinguished 

that after certain value of ReP, the density ratio �� ��⁄  between the solid and the fluid 

exerts an important influence on CD, causing a subdivision in the CD – ReP curve. They 

said that the upper branch corresponds to disks with high density ratios, whilst the 

lower branch is for low ones [26]. Nonetheless, they did not provide a quantity of 

reference on which a disk can be classified as with high or low density ratio. 

 

 
Figure 2.15 CD – ReP relationship for a free falling disk. Stokes equation and drag curves for 

a fixed sphere and disk are also included for comparison [26]. 

 
Chow and Adams [27], and Bagheri and Bonadonna [24] have also emphasised that 

the secondary motions have a direct effect on the magnitude of the drag coefficient of 

a settling particle of regular shape. Moreover, based on this fact, it is believed that 

irregular particles will exhibit a similar behaviour as long as secondary motions are 

present, however, it cannot be affirmed that such motions will be as well-defined as 

for a regular solid because of the nature of their shapes. 
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2.3 EXPERIMENTAL TECHNIQUES FOR SINGLE PARTICLE MOTION 

RESEARCH 

  

2.3.1 2D AND 3D QUANTITATIVE TECHNIQUES 

 

As it was previously stated, in the study of the motion of particles immersed in a fluid 

it is vital to give them the chance to move freely so that the interaction between the 

solid and the fluid is not obstructed. The only possible way to meet this requirement 

is by using non-intrusive measuring techniques. Experimental alternatives to this 

method comprise keeping the solid fixed to some structure which in turn can either 

move through the fluid at certain velocity or remain static whilst the fluid travels at 

the desired speed. However, these alternatives may lead to an invalid estimation of the 

motion parameters since they disturb the free particle-fluid interaction [35].  

 

So long as in this thesis, the interest is placed exclusively on the motion of single 

particles, techniques such as Particle Image Velocimetry (PIV), and cross correlation 

using electrostatic, capacitive, or optical sensors, were discarded because they are 

designed to operate with multi-particle environments, despite the ability to track the 

velocity of the solids they have shown in previous studies [62-66]. The algorithms and 

methods of analysis of these techniques work only if there is a relatively large number 

of particles involved in the motion. They cannot track the velocity if there is only one. 

On the other hand, Laser Doppler Velocimetry (LDV) has been successfully applied 

by Lu et al. [67] to determine the velocity of individual glass beads in a pneumatic 

conveying installation operating at dilute phase, nonetheless due to its high cost it was 

not considered here.  

 

Because of its versatility and lower price, the direct imaging with a high-speed camera 

constitutes the simplest and most used approach for particle motion research. In the 

last decade, Yin et al. [12] and Chow and Adams [27], with the assistance of only one 

camera, analysed the oscillatory motion of a cylinder in free fall within a 2D context. 

In addition, following a similar route, Terfous et al. [35], and Dioguardi and Mele [23] 

investigated the drag exerted on smooth and rough, spherical and non-spherical 

particles as they settled in a liquid column. The installation they used is depicted in 

Figure 2.16. 
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Figure 2.16 Experimental installation used by Terfous et al. [35]. 
 
In an effort to study the phenomenon in three dimensions, other researchers have 

employed a second camera positioned at right angle with respect to the first one in 

order to record as well the motion in a perpendicular plane. Stringham et al. [26] 

applied this configuration in their study of the settling of relatively large particles. The 

experimental rig they employed is depicted in Figure 2.17. Although this approach 

offers a straightforward and comparatively easy way to meet the 3D condition, it 

requires a remarkably precise alignment of the cameras so that the precise tracking of 

the particle coordinates can be achieved. 

 

 
Figure 2.17 Experimental rig used by Stringham et al. [26]. 
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The 3D configuration mentioned in the previous paragraph can still be accomplished 

with only one camera, if, instead of photographing the particle directly, the camera 

records the images of both the front and normal motion planes collected by a group of 

mirrors carefully situated, such as the one illustrated in Figure 2.18, which was 

employed by Veldhuis et al. [68-70] to study the motion of freely rising and falling 

spheres. Marchildon et al. [25] also used the same principle to analyse the secondary 

motion of a settling cylinder. 

 

An alternate route for three-dimensional analysis is offered by applying the principle 

of two-camera stereo vision, which consists on obtaining the 3D information of a scene 

given two views of it taken from slightly different points of view. This principle has 

been recently used by Krueger et al. [56] to measure the drag coefficient of irregular 

shape, waste-derived fuel solid particles, as displayed in Figure 2.19. A disadvantage 

of stereo vision is that every camera employed in the study has to be calibrated with 

respect to a frame of reference. 

 

 
Figure 2.18 Experimental setup employed by Veldhuis et al. [68-70]. 

 

Stereo vision is the process by which human beings are able to see objects in three-

dimensions, as depicted in Figure 2.20, where it can be perceived that due to their 

proximity to each other, every eye gets an image of the same object from at slightly 

different angle of view. The then brain processes those two pictures to produce a view 
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in 3D, adding the perception of depth. Computer stereo vision can be understood in a 

similar way by replacing each eye with a digital camera and the brain with a computer 

program. 

 

 
Figure 2.19 Experimental installation used by Krueger et al. [56]. 

 

 
Figure 2.20 Human stereo vision. 

 

The creation of stereo vision can be greatly simplified by employing only one camera 

coupled to a stereo adapter, which is a compact arrangement of four mirrors that can 

easily be attached to the camera lens, as shown in Figure 2.21. Through this 

configuration, the problems of misalignment are minimized, though at the expense of 
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a reduced field of view [71]. Nevertheless, due to simplicity reasons and because of 

its great versatility, this is the approach chosen for the 3D particle motion studies of 

this thesis, and is revised in-deep in Chapter 3. 

 

 
Figure 2.21 Camera attached to a stereo adapter. 

 

Binocular stereo vision has been actively used since the last decade as a 3D measuring 

tool for different physical magnitudes such as linear distances, size of objects, 

instantaneous velocities, as well as for computing 3D particle and bubble trajectories 

[56, 68-70, 72-75]. It has also been successfully applied to the investigation of the 

structure of combustion flames [76-78] and the dynamics of a bursting bubble [79]. 

For the present work, it is employed to track the instantaneous 3D position and angular 

orientation of the particles as they travel through the fluid. 

 

Up to this point all of the experimental installations have consisted on columns or 

tanks where the solid settles freely, however, according to Bagheri et al. [24, 80] the 

aerodynamic behaviour of single particles can also be investigated in vertical wind 

tunnels, such as the one they proposed in Figure 2.22. Moreover, this type of setup 

allows the study of the motion at significantly high particle-fluid density ratios without 

the necessity of employing considerably tall dropping columns. Nonetheless, since the 

secondary motions determine the orientation changes of a settling non-spherical 

object, and given the fact that the authors did not report the existence of any secondary 

motion in the wind tunnel experiments, it is not clear whether the angular variation 

exhibited by a non-spherical solid falling freely in a tank is the same as if it were 

suspended in the wind tunnel. 
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Figure 2.22 Wind tunnel for single particle motion studies [80]. 

 

2.3.2 DIGITAL IMAGE PROCESSING 

 

Independently of the measuring technique employed, as long as the data is in the form 

of digital images, they need to be enhanced before any further analysis is attempted. 

Enhancement is done to improve the quality of the images by removing noise and any 

other undesired effect they may contain. The most common method to accomplish this 

task is through digital image processing, which treats each picture as a matrix of real 

numbers where the rows and columns represent the spatial coordinates, and the value 

of each element denotes the level of light intensity at each location [81], as illustrated 

in Figure 2.23. 

 

�(�,�)= 
 

�

�(0,0) �(0,1) ⋯ �(0,� − 1)

�(1,0) �(1,1) ⋯ �(1,� − 1)
⋮

�(� − 1,0)
⋮

�(� − 1,1)
⋯ ⋮

⋯ �(� − 1,� − 1)

� 

Figure 2.23 Digital image and its matrix representation. M and N denote the size. 
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In the field of particle motion, digital image processing has already been extensively 

used to determine the size and shape of both static and moving particles, as well as to 

calculate parameters such as the velocity or mass flow rate [74, 82-87]. Therefore, in 

the present research not only it was applied to improve the quality of the recorded 

stereo pictures but also to get quantitative information about the position and 

orientation of the solids at every instant. 

 

The main advantage of using digital image analysis relies on the fact that it offers the 

possibility to highly automate the work when a large number of particle pictures have 

to be processed. Moreover, thanks to the enhancement operations, the instantaneous 

locations of the particles can be obtained with improved resolution and precision. The 

image processing tasks employed here for the purpose of particle motion are 

explicated in Chapter 4. Additionally, in this thesis, digital image processing was also 

used to assist on the calibration of the cameras, and the operations involved in such a 

task are described in Chapter 3. 

 

2.3.3 SCHLIEREN VISUALISATION 

 

Whenever there are variations in the density of a compressible fluid due to temperature 

changes, the value of the refractive index suffers alterations too, therefore any light 

ray that passes through the fluid is deflected. Furthermore, if the deflected rays are 

captured on a recording plane, as indicated in Figure 2.24, and contrasted with an 

undisturbed ray, some information about the flow can be obtained from the 

geometrical differences between both rays. 

 
In Figure 2.24, ΔX and ΔY are the horizontal and vertical components, respectively, of 

the linear displacement Δ from point P to P’. Likewise, �� and �� are the components 

of the angular deflection �. Because of Δ the light intensity at P is null whilst that at 

P’ is double, thus P is a dark point and P’ a bright point. Moreover, the collection of 

all the dark points form an image of the fluid regions with density gradients, and 

through the dark and bright patterns the flow motion can be illustrated. This flow 

visualisation technique is named shadowgraph. 
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Figure 2.24 Deflection of a light ray due to changes in the fluid density [88]. 

 

In the field of particle motion, Shahi and Kuru [89, 90] have employed shadowgraphs 

to determine the size, shape, and velocity of irregular grains of sand as they settle in a 

fluid. However, because density gradients did not exist in their work, visualisations of 

the motion were not captured. In Figure 2.25, the shadowgraph of one of the sand 

particles they used is illustrated. It can be noticed, that no revelation of the surrounding 

fluid structure was achieved. 

 

 
Figure 2.25 Shadowgraph of an irregular grain of sand in free fall [89]. 

 

The typical installation employed to take shadowgraph pictures is schematized in 

Figure 2.26, where the first spherical lens collimates the rays coming from the light 

source and the second one collects them for the camera imaging lens. It is 

recommended that the light source should be as small as possible and of high intensity. 
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Figure 2.26 Setup for shadowgraph photography. 

 

Now, if an obstruction, traditionally called knife edge, is set at the focal point of the 

second spherical lens, as depicted in Figure 2.27, to stop the deflected light rays from 

reaching the recording plane, a uniform reduction in the brightness of the whole 

picture is generated. This is the known as the Schlieren effect. Hence, it can be said 

that whilst shadowgraph is sensitive to Δ, Schlieren is sensitive to �. 

 

 
Figure 2.27 Conventional setup for Schlieren photography. 

 
An alternative configuration to capture Schlieren images is by means of the so-called 

Z-type Schlieren setup, illustrated in Figure 2.28. This configuration was employed in 

this thesis to visualise the structures of the flow surrounding the falling particles. 

However, some modifications, explained in Section 5.2, were done to improve the 

magnification of the system. 

 
In spite of the fact that Schlieren photography as diagnostic technique has been 

commonly used for compressible flows only, its application can be extended to studies 

in water provided that a regular small temperature gradient exists in the test section 

[68, 91, 92]. In fact, according to Fiedler and Nottmeyer [91] a temperature difference 

as low as ΔT ~ 0.6 C° can be enough. In Figure 2.29, it is shown the Schlieren image 

they reported for a hemisphere falling in pre-heated water with that ΔT. The 
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temperature gradient was accomplished by heating the surface of the water contained 

in the dropping tank. Veldhuis et al. [68] have also employed a similar approach to 

visualise the flow around rising and falling spherical objects in water. 

 

 
 

Figure 2.28 Conventional Z-type Schlieren setup. 
 

 
Figure 2.29 Falling of a hemispherical object in pre-heated water [91]. 

 

Fiedler and Nottmeyer [91] suggested that Schlieren visualisation in water at rest and 

heated from the top is possible because the broadly spaced isothermal surfaces are 

dragged together by the falling object, giving rise to the formation of relatively large 
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local temperature gradients which permit to see the motion patterns of the 

neighbouring flow. 

 

With the assistance of binocular, high-speed stereo vision to obtain 3D quantitative 

information about the position and orientation of the particles, and with the application 

of the Schlieren visualisation technique explained above to visualise the structures of 

the surrounding fluid, also at high speed, detailed knowledge about the behaviour of a 

single solid settling in a fluid can be acquired, as it will be shown later in this thesis. 
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Chapter 3 
 

STEREO VISION AND CAMERA CALIBRATION 
 
 

In the previous chapter it was explicated that the most suitable experimental methods 

to study the motion of freely moving particles are image-based because they do not 

constraint the solid/fluid interaction. In addition, it was mentioned that due to the 

inherent simplicity of its setup and relatively good cost-effectiveness, stereo vision 

achieved with only one camera and a stereo adapter was chosen in this research as the 

experimental technique to get 3D metric information from the moving particles. The 

full description of such single-camera technique constitutes the topic of the first 

section of this chapter. 

 

In order to generate the quantitative information, the camera had to be calibrated 

before the motion of the solids started. Therefore, the mathematical procedures as well 

as the background theory required for camera calibration was reviewed too, and it is 

presented in the second section of the chapter. In the third one, the methodology 

employed to make such quantitative data in the form of Cartesian X, Y, and Z 

coordinates is discussed. The chapter then ends with an evaluation of the accuracy of 

the single-camera stereo vision technique used here. 

 

Because this chapter is entirely focused on camera and stereo concepts, and since no 

mention of any particle motion parameter or concept is made, the nomenclature of this 

chapter is exclusive. Nevertheless, there may be a re-use of terms and symbols in other 

parts of the thesis, though with a different meaning. Therefore, with the aim of 

avoiding confusion, all of the variables of this chapter were omitted from the 

Nomenclature list of the thesis, however, they are clearly defined as early as they 

appear in the chapter. 

 

3.1 SINGLE-CAMERA STEREO VISION SYSTEM 
 
Stereo vision can be defined as the process of obtaining the three-dimensional 

structure of a real world scene given two or more two-dimensional (2D) images of it 

taken simultaneously from slightly different points of view. The simplest approach to 

this process is depicted in Figure 3.1. Named as conventional or binocular stereo 
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vision, it requires the use of only two cameras whose image planes are relatively closed 

to each other [93]. 

 
Figure 3.1 Conventional stereo system. 

 

From Figure 3.1 it can be seen that any 3D point MW whose coordinates are determined 

with respect to the world reference frame OWXWYWZW has two corresponding image 

points m1 and m2 with pixel coordinates (u1, v1) and (u2, v2), respectively, on each 

image plane. With no more information than the images themselves, the task of 

computational stereo vision, is to find the corresponding point m2 on the right side for 

each point m1 on the left. 

 

The solution of the correspondence problem mentioned in the previous paragraph has 

been characterised as the most difficult job of computational stereo vision [93], [94], 

because technically any point on the right can be a candidate for m1, therefore, certain 

constraints must be applied. The most widely used one is based on the epipolar 

geometry imposed by the stereo system configuration. 

 

Once the two corresponding points m1 and m2 have been located, the scene depth 

information is obtained from the geometric difference, or disparity, between their 

respective positions. The disparity can be increased by the position, orientation, and 

physical characteristics of the cameras and lenses [93], therefore the use of a stereo 

system which keeps it as low as possible is always preferred. This is the main 

advantage of the stereo systems which employ only one camera, even though they 

possess a reduced field of view and lower spatial resolution. 
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As mentioned in Section 2.3.1, a single-camera stereo vision system can be created by 

attaching a stereo adapter to the lens. The adapter used in this investigation can be 

seen in Figure 3.2. It was manufactured by Ashai Pentax, and consists mainly on an 

arrangement of four mirrors. The detailed geometry is shown in Figure 3.3.  Its main 

advantages are its simplicity, versatility, cost-effectiveness, and that it does not 

accentuate the disparity.  
 

 
(a) 

 

 
(b) 

 

Figure 3.2 Four-mirror stereo adapter (a), high-speed camera with the stereo adapter 
attached to the lens (b). 

 

 
Figure 3.3 Geometry of the stereo adapter used in this investigation. Not to scale, units are 

expressed in mm [71]. 
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The effect of the stereo adapter can be explicated as a virtual splitting of the physical 

high-speed camera into two other imaginary ones, as illustrated in Figure 3.4, where 

the optical centres Cl and Cr of the virtual cameras are separated by the baseline 

distance h. The coloured region among the lines l1,0, l2,0, l1,i and l2,i is the common field 

of view whilst the region enclosed by the inner mirrors and lines l1,i and l2,i is a blind 

area. The distance m between the outer mirrors corners is fixed and equal to 42 mm 

(Figure 3.3). 

 
Figure 3.4 Conventional single-camera stereo vision system [95]. 

 

The difference in the inclination angles of the external and internal mirrors is known 

as the angular discrepancy δ. For the Asahi stereo adapter δ = 3.5˚. In addition, the 

variation angle � is equal to 2δ, or 7˚. The angle α is equal to 45˚ whilst angle β and 

distance d depend on the focal distance and location of the camera centre, respectively. 

If needed, they both can be determined after the calibration of the camera. The 

equations to calculate the rest of the parameters are [71, 73, 95] 

 

� =
�

2
+ � (3.1) 

 

ℎ = 2(����� + �) (3.2) 
 

� = ����� +
�

2
���2(� − �) (3.3) 

 

� =

�
2 ���(� − �)���(� + �)

��������
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� =
����(� + �)

�������(45 − �)
 (3.5) 
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3.2 CAMERA CALIBRATION 

 

3.2.1 EXTRINSIC AND INTRINSIC PARAMETERS 

 

In order to obtain the three-dimensional coordinates of point MW given the points m1 

and m2 (Figure 3.1) it is essential to find the position and orientation of each virtual 

camera relative to the world reference frame plus their relations with the 

corresponding pixel image planes. Such information is provided by the extrinsic and 

intrinsic parameters obtained from the calibration of the cameras. 

 

Due to convenience in Figure 3.5, point MW of Figure 3.1 is denoted as M and vector 

MW is used to express its coordinates in the world frame whilst vector MC 

accomplishes the same task but in the camera frame. The relation between both vectors 

involves a rigid transformation from the world to the camera frames, which in 

Euclidean coordinates is represented as 

 

�� = ��� − � (3.6) 
 

where R is a 3 × 3  rotation matrix whose elements constitute the orientation among 

the axes of both frames and vector C is a translation vector representing the 

displacement between OW and OC. Using homogeneous coordinates, Equation (3.6) 

can be rewritten as follows 

 

�� = �
� −��
0 1

��� (3.7) 

 

where vectors MW = [XW YW ZW 1]T and MC = [XC YC ZC 1]T are expressed in 

homogeneous coordinates [96]. It is common practice to keep the camera centre 

implicit by means of a second translation vector, defined as � ≡ −��. The rotation 

matrix and the translation vector comprise the extrinsic parameters because they are 

external to the camera construction and describe the position and orientation of the 

camera frame with respect to the world reference frame. 

 

The relation between the 3D camera frame coordinates (XC, YC, ZC) and the 2D 

coordinates (x, y) of the camera sensor or physical image plane are interpreted as a 
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perspective projection effectuated by the so-called pin-hole camera model. Assuming 

that both planes XCYC and xy are parallel to each other, and being f the focal distance 

of the camera lens, the perspective equations of the model then are 

 

� = �
��
��

 

 (3.8) 

� = �
��
��

 

 

 
Figure 3.5 Camera projection. 

 
With the assistance of homogeneous coordinates and Equation (3.7), after the 

perspective projection the next matrix can be written 

 

� =
1

��
�
� 0 0 0
0 � 0 0
0 0 1 0

� [� �]�� (3.9) 

 

where m = [x y 1]T. Point c  in Figure 3.5 corresponds to the intersection of the camera 

principal axis (ZC in the figure) with the physical image plane and is known as the 

principal point. In Equation (3.9) the image coordinates are still Euclidean. The 

conversion from these coordinates into pixel image coordinates is done through an 

affine transformation, hence the pixel coordinates (u, v) of point m are 

 

� = ��
��
��

+ �� 

 (3.10) 

� = ��
��
��

+ �� 
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where the ratios �� �� ≡ ��⁄  and �� ��⁄ ≡ �� define normalized dimensionless 

coordinates and the products kf ≡ α and lf ≡ β signify the pixel focal lengths on the 

horizontal and vertical directions, respectively [96], [97]. In addition, the pair (u0, v0) 

represents the location of the principal point in the pixel image plane. As each term of 

the right hand side of Equation (3.10) is expressed in pixel coordinates, so are u and v 

accordingly. 

 

Up till now it has been considered that the axes x and y are perpendicular to each other, 

nonetheless in real camera sensors there is some skewedness (denoted by angle ϴ in 

Figure 3.6) whose effect is included by rewriting Equations (3.10) as follows 

 
� = ��� + ������� + �� 

 

(3.11) 
� =

�

����
�� + �� 

 

By doing m = [u v 1]T, �� = [�� �� 1]�, αu = α, αv = β/sinϴ, and γ = αcotϴ [97], the 

matrix form of the affine transformation in homogeneous coordinates becomes 

 

� = �

�� � ��
0 �� ��
0 0 1

��
��
��
1

� = ���  (3.12) 

 
where the intrinsic matrix A contains the five internal parameters of the camera: α, β, 

ϴ, u0 and v0. The combination of Equations (3.10) and (3.12) establishes the camera 

projection in mathematical form as 

 
�� = ��� (3.13) 

 

 
Figure 3.6 Skewedness angle ϴ. 
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where � = �[� �] is called the projective matrix. Equation (3.13) can be understood 

as the projective transformation, up to a scale factor s, from a real world 3D scene in 

the Euclidean space ℝ� into the 2D projective space ℙ�. Such a transformation 

corresponds to a planar homography defined by a 3 × 3  matrix H in which eight of its 

nine elements are independent [98], [96]. Thus, if H is also defined up to a scale factor, 

Equation (3.13) becomes 

 
� = ��� (3.14) 

 
A series of known point correspondences is required for the estimation of H in 

Equation (3.14). Moreover, from its solution the intrinsic and extrinsic parameters can 

be determined, concluding therefore the calibration of the camera. One homography 

has to be obtained for each of the virtual cameras of the stereo system. 

 

For the calculation of any homography a total of four point correspondences are 

enough in theory, provided that each point in the projective space ℙ� has two degrees 

of freedom; nonetheless, the effect of noise makes the extraction of the pixel image 

point coordinates inexact creating the necessity of having more than four 

correspondences. As consequence, the solution comes to be over-determined and 

incompatible with any real homography, and the task turns into the search of the best 

transformation H which diminishes some cost function based on the minimization of 

an algebraic, geometric or statistical error [77]. 

 

3.2.2 CAMERA CALIBRATION METHODOLOGY 

 

The technique employed in this thesis to calibrate the virtual cameras was developed 

by Zhengyou [99]. It was chosen due to its ease of implementation. It uses the 

calibration model shown in Figure 3.7, which is formed by a set of black squares 

arranged in a known pattern where the corner points of each black square constitute 

the 3D world coordinates. For this technique to work, the model has to be positioned 

at different orientations with respect to the camera, therefore the same number of 

homographies such as the one of Equation (3.14) have to be computed. 
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In order to estimate the calibration homographies the pixel coordinates of the same 

corner points needed to be determined (Figure 3.8), so that there could be a full 3D to 

2D point-correspondence set for each homography computation. The extraction of 

those pixel coordinates can be done either manually or automatically. In this work the 

second approach was followed through the application of digital image processing 

techniques, mainly for edge detection. 

 

 
Figure 3.7 Camera calibration model and origin of the world reference frame. 

 

 
Figure 3.8 Pixel corner points of the squares of the calibration model found by digital image 

processing. 
 

Given the fact that an edge in an image is that border of a region where there exists a 

sudden change in intensity, all of the candidates to be edge points must exhibit some 

local maximum intensity, therefore the ideal mathematical tool for searching such 

points is the vector gradient ��, which for a two-dimensional function f(x,y) is defined 

as follows 
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�� ≡
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and its magnitude and directional angle are 
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��
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 (3.16) 
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��

��

��

��
� � (3.17) 

 
The procedure employed in this work to detect the square edges is the one proposed 

by Canny [100]. It starts with the computation of the gradient magnitude and angle for 

each image point after some proper noise reduction. Then the points with local 

maximums are compared against two user-given values T1 and T2, and the edge is 

formed by all of those strong points whose intensity is larger than T2 or at least larger 

than T1 provided that their eight neighbouring pixels are classified as strong. 

 

Afterwards, the edge selections were further refined through the use of Hough 

transform [101], which starts by writing a straight line equation of the form ������ +

������ = � for each candidate point (��,��). Then by plotting all of the sinusoidal 

lines in the ��-plane, known as Hough space, some intersections are formed (Figure 

3.9), where each of them denotes the pair of parameters (�′,�′) of the line in the xy-

plane linking as many points as sinusoids intersect at that pair. Finally, only those line-

segments representing the four edges of each black calibration square are preserved, 

and the corner coordinates can be obtained. 

 
Figure 3.9 (a) Straight line linking two points (��,��) and ���,��� in the xy-plane. (b) 

Sinusoidal curves for each point in the Hough space [79]. 
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As mentioned in the beginning of the section, in order to generate the three or more 

groups of 3D-2D point correspondences needed by the calibration technique, the 

model was placed at the same number of different orientations relative to the camera, 

as illustrated in Figure 3.10 where five orientations are represented. The motion 

between one position and the next one does not have to be known. 

 

 
 

Figure 3.10 Five stereo pictures of the calibration model at different orientations with 
respect to the camera. 
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Although the parameters of the camera employed in the stereo-vision system used in 

this research are given in Section 3.4, it is convenient to highlight that each single 

picture captured by the system included both left and right images, as seen in Figure 

3.10. The size of each stereo picture was M × N = 1024 × 1024 pixels, where M 

denotes the number of rows, or the size in the vertical pixel axis v, whilst N represents 

the number of columns, or the size in the horizontal pixel axis u, provided that a digital 

image is understood as a matrix of real numbers. 

 

If it is assumed that the origin of the world frame is rigidly attached to the calibration 

model, it can be stated that the black squares plane is always located at ZW = 0 despite 

the variations in orientation, and Equation (3.13) can be reduced to 

 

�� = �[�� �� �]�� (3.18) 
 

where r1, r2 are the first two column vectors of matrix R. The column vectors of the 

rotation matrix represent the basis vectors of the camera frame axes in the world frame 

and are orthonormal. In addition, by expressing matrix H in the form of column 

vectors, Equation (3.14) can be rewritten as follows 

 

[�� �� ��] = ��[�� �� �]�� (3.19) 
 

where � is an arbitrary scalar accounting for the scale factor s and hj=1,2,3 are the 

column vectors of H. The solution of Equation (3.19) for each of the virtual cameras 

of the stereo vision system provides the way to compute their intrinsic and extrinsic 

parameters. The steps recommended by Zhang [99] for the solution of Equation (3.19) 

are shown in Figure 3.11 in the form of a flow chart. 

 

The execution of every step of the methodology of Figure 3.11 involves different 

mathematical procedures, which were not included in this chapter but are carefully 

explained in Appendices A, B, C, and E. To execute all of the operations, a large 

number of computer programs, which are listed by name in Appendix G, were written 

and run in Matlab. 
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Figure 3.11 Flow chart of the camera calibration methodology of Zhengyou [99]. 
 

3.3 THREE-DIMENSIONAL STEREO RECONSTRUCTION 

 

3.3.1 EPIPOLAR GEOMETRY OF THE TWO-CAMERA STEREO SYSTEM 

 

As said in Section 3.1, the epipolar geometry restriction imposed by the stereo system 

was the criteria followed in this work to find the matching points between the left and 

right images. The mathematical derivation of the epipolar constraint starts with the 

application of Equation (3.13) to image points m1 and m2 (Figure 3.1), respectively, 

assuming that both cameras have already been calibrated. Thus, after placing the 

intrinsic matrix on the left-hand side of the equation the next expressions are formed 

 

����
���� = [� �]��� 

 
(3.20) 
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����
���� = [� �]��� 

 
where it can be easily acknowledged that the right hand side of both equations 

correspond to the representations of MW on the left and right camera reference frames: 

MC,l and MC,r, respectively. Furthermore, if the coordinate frame of the right camera 

is related to its homologous one on the left by a rigid transformation with rotation 

matrix R and translation vector t, Equation (3.20) becomes 

 
���� � = [� �]��,� 

 (3.21) 
���� � = [� �]��,� 

 

where ��� = ��
���� and ��� = ��

����. After the elimination of MC,l, s1 and s2, and 

some rearrangement, from Equation (3.21) the next fundamental relation is obtained 

 

���
�
ℰ��� = 0 (3.22) 

where  
 

ℰ ≡ [�×]� (3.23) 
 
is called the essential matrix  [102]. [�×] is a skew-symmetric matrix defined by t in 

such a way that [�×]� = � × �  for any 3D vector � [103]. Matrix ℰ is singular (i.e. 

��� ℰ = 0) and has two equal non-zero singular values [97]. Equation (3.22) can also 

be written as 

 

��
����

���
�
ℰ��

���� = 0 (3.24) 

 
from which the so-called fundamental matrix is defined as 

 

ℱ ≡ ���
���

�
ℰ��

�� (3.25) 

 
ℱ constitutes the algebraic representation of the epipolar geometry. It is a rank-2 

matrix, also singular (i.e. ���ℱ = 0), and defined in such a way that if ℱ corresponds 

to the arrangement where the left camera is the leading one, ℱ� is the fundamental 

matrix corresponding to the opposite arrangement [96]. 

 

Figure 3.12 shows the physical illustration of the epipolar geometry, where MW 

represents a real world point with image points m1 and m2. In addition, the image 
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planes of both cameras are �� and ��, and the camera centres C1 and C2. The epipolar 

plane is the one defined by the rays C1M and C2M and contains the baseline h.  

 

 
Figure 3.12 The epipolar geometry between two images captured with a stereo system [97]. 
 
Continuing with Figure 3.12, the point e1 where the baseline pierces plane �� is called 

the epipole of the first camera and indicates the projection of C2 in this image plane. 

Similarly, e2, being the epipole of the second camera, denotes the projection of C1 in 

��. The epipolar lines are formed by the intersections of the epipolar plane with the 

image planes �� and ��. The epipolar line L2, defined by points e2 and m2, is related 

to m1 because it depicts the projection of the semi-line C1m1 on the second image. 

Likewise, specified by points e1 and m1, L1 is the epipolar line associated to m2 

representing the projection of the semi-line C2m2 on the first image. 

 

The physical explanation of the epipolar geometry restriction consists on the fact that 

being m1 and m2 images of the same point M, then m2 must lie on the epipolar line L2 

associated with m1. This means that, if both cameras are calibrated and their centers 

are known, the coordinates of m1 fully determine line C1m1, the epipolar plane C1C2M, 

and epipolar line L2 in consequence. Then, the possible matches of m1 in �� are only 

searched along this line instead of in the whole image. Indeed, for any point mi lying 

on L2, Equation (3.24) can be generalized as 

 
��

�ℱ�� = 0 (3.26) 
from which 

 
�� = ℱ�� 

 (3.27) 
�� = ℱ��� 



61 
 

where L1 and L2 are the coordinate-vectors of both epipolar lines L1 and L2. The 

coordinates of the epipoles are determined using the following relations 

 
ℱ�� = � 

 (3.28) 
ℱ��� = � 

 
where e2 is the is the left null-vector and e1 is its right null-vector of ℱ [96]. Although 

there are alternative ways for the analysis, in this research it was preferred to estimate 

first the fundamental matrix with Equation (3.26), then to compute the essential matrix 

using Equation (3.25), and to calculate the motion parameters R and t from it through 

Equation (3.23), as suggested by Zhang [102]. The mathematical procedure involved 

is explicated in Appendix D. 

 

3.3.2 THE LINEAR TRIANGULATION METHOD 

 

Once the motion parameters between both cameras are determined, the unknown 3D 

coordinates of every stereo corresponding pair (m1, m2) can be computed through a 

reconstruction method called linear triangulation. The procedure applied here to derive 

the equations of this method was taken from Hartley, Gupta and Chang [104] and 

Hartley and Sturm [105]. First if the homogeneous coordinates of both image points 

are �� = [��,��,1]
� and �� = [��,��,1]

� and the 3D homogeneous coordinates of 

M are � = [�,�,�,1]�, then, in the left camera frame Equation (3.13) gives 

 

�� �
��
��
1
�= �

��� ��� ���
��� ��� ���
��� ��� ���

    

���
���
���

� �

�
�
�
1

� (3.29) 

 

from which the following system of three equations arise 

 

���� = [��� ��� ��� ���] �

�
�
�
1

� = ��,�
�� (3.30a) 

 

���� = ��,�
�� (3.30b) 

  

�� = ��,�
�� (3.30c) 
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As long as P is determined up to a scale factor and through the substitution of Equation 

(3.30c) into the other two it is obtained 

 

�����,�
� − ��,�

��� = 0 
 (3.31) 

�����,�
� − ��,�

��� = 0 
 
The same procedure applied to the right camera produces 

 

�����,�
� − ��,�

��� = 0 
 (3.32) 

�����,�
� − ��,�

��� = 0 
 
Finally, by stacking Equations (3.31) and (3.32), the next system of linear equations 

is generated 

 

⎣
⎢
⎢
⎢
⎡
����,�

� − ��,�
�

����,�
� − ��,�

�

����,�
� − ��,�

�

����,�
� − ��,�

�
⎦
⎥
⎥
⎥
⎤

� = � (3.33) 

or  
 

�� = � (3.34) 
 
The solution of Equation (3.34) can be accomplished through the singular value 

decomposition of matrix W, thus it is obtained 

 
� = ���� (3.35) 

 
where U is a unitary, square matrix whose columns are the orthonormal singular values 

of matrix ���, S is a diagonal matrix of the same size as W whose non-zero elements 

correspond to the singular values of W, and V is also a unitary, square matrix whose 

columns are the orthonormal singular values of matrix ���. The solution vector M 

corresponds to the last (4th) column of matrix V. It is common practice to further 

optimise the results obtained with Equation (3.35) by some appropriate criteria. Here, 

the method of maximum likelihood criterion was employed.  

 

The methodology recommended by Zhang [102] for the estimation of the epipolar 

geometry of the stereo vision system, and the three-dimensional reconstruction of the 

matching pairs of points was applied in this investigation. It is summarised in the flow 
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chart of Figure 3.13, and likewise for the camera calibration operations (Section 3.2.2), 

a series of Matlab programs were written to do all the required calculations. They are 

listed in Appendix G. 

 

 
Figure 3.13 Stereo geometry estimation and 3D reconstruction flow-chart according to 

Zhang [102, 106]. 
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3.4 ACCURACY 

 

In order to test the accuracy of the of the methods used in this thesis, a series of three-

dimensional point-sets generated by moving the calibration board forwards and 

backwards along the axis ZW were reconstructed. The motion was executed by means 

of a high-precision traverse system on which the board was kept fixed. Pictures were 

taken at 34 different positions within the interval [-100 mm, 100 mm], being ZW = 0 

the plane of calibration. The relation between each position number and its 

corresponding ZW-coordinate is given in Table 3.1. 

 
Table 3.1 Corresponding ZW-coordinates for the positions along ZW. 

 

Position ZW (mm) Position ZW (mm) 
0 

(Calib. plane) 
0.0 

17 100.0 
18 -2.5 

1 2.5 19 -5.0 
2 5.0 20 -7.5 
3 7.5 21 -10.0 
4 10.0 22 -15.0 
5 15.0 23 -20.0 
6 20.0 24 -25.0 
7 25.0 25 -30.0 
8 30.0 26 -35.0 
9 35.0 27 -40.0 

10 40.0 28 -45.0 
11 45.0 29 -50.0 
12 50.0 30 -60.0 
13 60.0 31 -70.0 
14 70.0 32 -80.0 
15 80.0 33 -90.0 
16 90.0 34 -100.0 

 

The camera and lens employed to do this study were the same ones used for all of the 

experiments done in this thesis. The FASTCAM SA4 high-speed, colour camera, 

developed by Photron, was utilized. Its picture is shown in Figure 3.14. The camera is 

equipped with a CMOS sensor of dimensions 20.48 × 20.48 mm, giving a maximum 

resolution of 1024 × 1024 pixels (50 mm per pixel). At this resolution, the system is 

capable of taking up to 3600 frames per second, however for the present accuracy 

study the pictures were taken at 500 frames per second, because this the rate used to 

track the motion of the particles investigated in Chapters 5 and 6. 
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Figure 3.14 Photron FASTCAM SA4 high-speed camera. 

 
The lens attached to the camera was the SIGMA 24-70 mm 1:2.8 EX DG MACRO 

lens illustrated in Figure 3.15. It is suitable for manual control of the aperture, zoom, 

and focus. Because its filter diameter is 82 mm, the stereo adapter was fitted to the 

camera by a series of rings going from 52 to 82 mm. For the given camera sensor 

dimensions, the angle of view of the lens ranges from 23.4 to 62.2 degrees at the 

minimum and maximum focal distances, respectively. 

 

 
Figure 3.15 SIGMA 24-70 mm 1:2.8 EX DG MACRO lens. 

 
The minimum focusing distance of the lens corresponds to 0.40 m over the complete 

zoom range. The effect of stereo vision was achieved through the attachment of the 

Ashai Pentax stereo adapter described in Section 3.1. For the illumination of the scene, 

the LED-light source displayed in Figure 3.16 was employed. It produces a continuous 

flux of 12700 lm, with a white light colour temperature of 6200 K. This means that 

the appearance of the light is similar to that of normal daylight. This light appearance 

is recommended for research purposes. In Figure 3.17, a schematic of the experimental 

installation is portrayed. Once the setup was ready, five stereo pictures (similar to the 

ones shown in Figure 3.10) were taken to calibrate both the left and right virtual 

cameras. 
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Figure 3.16 LED illumination source. 
 

 
Figure 3.17 Position and orientation of the stereo system relative to the calibration plane. 

 

The calibration of each of the virtual cameras was done as dictated by the methodology 

explained in Figure 3.11. The results are summarised in Table 3.2. Because the left 

camera frame was taken as the leading coordinate system, only the information 

obtained for this camera is discussed. There is not a particular reason to elect the left 

camera as the leading one, it was done by simply convention. 

 

From the examination of the intrinsic matrix of the left camera together with the sensor 

resolution and dimensions, a skewedness angle and a pixel aspect ratio of 89.79° and 

1.0, respectively, were obtained. This means that the sensor horizontal and vertical 

axes are practically perpendicular to each other, and the pixels are square. In addition, 

from the same data, the horizontal and vertical focal lengths attained were 39.89 mm 
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and 39.73 mm, respectively. These values are considerably well located within the 

zoom interval of the lens. Moreover, the coordinates of the principal point offset were 

(u0, v0) = (9.44, 10.49) mm, remarkably near the geometrical centre of the camera 

sensor. 

 

From the extrinsic parameters, the world coordinates of the left camera centre, vector 

C in Equation (3.6), were computed: C = (27.67, 110.03, 888.54) mm, which was in 

excellent agreement with the setup shown in Fig. 3.17 considering the longitude of the 

stereo adapter and the lens. Likewise, from the calibration results, the estimated radial 

distortion coefficients were c1 = 0.0045 and c2 = 0.1169. 

 

After the calibration was completed, the three-dimensional coordinates of all of the 

corners of the black squares were determined in the left camera coordinate system 

according to the procedure described in Figure 3.13, and then projected back to the 

world reference frame by using the next equation 

 
 

��.� = ��
� ���
� 1

���,� (3.32) 

 

where ��.� represents each reconstructed, back-projected 3D point. So long as there 

were 256 corner points per plane, the arithmetic mean was taken as the representative 

value. The maximum standard deviations of the mean registered for XW, YW, and ZW 

were 0.02 mm, 0.03 mm, and 0.1 mm, respectively. 

 
Table 3.2 Both virtual cameras intrinsic and extrinsic parameters. 

 

Left Camera 

Intrinsic matrix A Rotation matrix R 
Translation 

vector t 
 

�
1994.55 −7.41 472.24

0 1986.35 524.43
0 0 1

� 

 

 

�
−0.9855 0.0017 −0.1695
−0.0073 − 0.9994 0.0324
−0.1693 0.0332 0.9850

� 

 

�
6.9950
3.2030
34.4165

� 

 

Right Camera 

Intrinsic matrix A Rotation matrix R 
Translation 

vector t 
 

�
1992.66 −5.00 538.48

0 1987.08 526.86
0 0 1

� 

 

 

�
−0.9875 0.0051 0.1576
−0.0016 −0.9997 0.0225
0.1577 0.0219 0.9872

� 

 

�
−1.5880
3.5117
35.3455

� 
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In Figure 3.18 the ZW-coordinates of both the true (ZW,true) and the estimated (ZW,rec) 

points are shown graphically for the 34 positions, where a relatively strong agreement 

between each pair of points can be noticed. Additionally, in Figure 3.19 the plot of the 

absolute error of the reconstructed coordinates XW,rec, YW,rec, and ZW,rec within the 

interval -100 mm < ZW  < 100 mm is portrayed. 

 

 
Figure 3.18 True and reconstructed, back-projected points on the ZW-axis. 

 
From the plot in Figure 3.19 it can be observed that the absolute error in the XW and 

YW directions was nearly constant for the whole interval, with the error in XW being 

slightly higher than that in YW, nonetheless neither of them ever surpassed 0.2 mm. On 

the other hand, the absolute error in ZW behaved in a different way. Although it took 

random values within the interval studied, it was always noticeably smaller when the 

analysed plane became closer to the camera compared to that when it became further. 

However, its highest value was below 1.0 mm. 

 

 
Figure 3.19 Absolute error of the reconstructed coordinates in the XW, YW, ZW axes. 
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A three-dimensional comparison between the true and the reconstructed 34 positions 

of the calibration model is represented in Figure 3.20, where a relatively good 

agreement can be perceived, even though some minor variations can also be 

appreciated, mainly in the negative side of the ZW axis, thus confirming the results 

shown in the plot of Figure 3.19. 

 
 

(a) 

 
 

(b) 

Figure 3.20 3D comparison between the original (a) and the reconstructed (b) 34 positions 
of the calibration model along the ZW-axis. 
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In general, from this study it was observed that the error is mostly dominated by the 

uncertainties in ZW, at least in the interval -100 mm < ZW  < 100 mm. This was expected 

given the fact that in stereo vision ZW is obtained from the knowledge of XW and YW, 

then it contains the uncertainties of both. Moreover, the error is further augmented by 

the numerical operations performed by the stereo algorithms. Nevertheless, the error 

can be kept low provided that the calibration of the stereo system is done carefully. 

Therefore, it can be concluded that the single-camera technique chosen for this thesis 

experimental work is suitable to track the three-dimensional required positions of 

moving particles as long as their size exceeds 1.0 mm. In this way, the size will always 

be larger than the interval of absolute error in ZW. 
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Chapter 4 
 

APPLICATION OF STEREO VISION AND DIGITAL IMAGE 
PROCESSING TO THE MOTION OF SINGLE PARTICLES 

 
 

In Chapter 3 it was explained the way to obtain 3D metric information of any 

photographed scene out of a set of 2D corresponding features by means of stereo 

vision, provided that the cameras were previously calibrated. Therefore, the process 

of stereo vision can be used to obtain quantitative 3D information of the motion of 

single particles without disturbing the physical phenomena. However, in order to 

obtain the 2D matching features, which are normally expressed in terms of pixel 

coordinates, certain digital image processing operations needed to be applied to the 

stereo images. The description of such operations are the topic of the first section of 

this chapter. 

 

Through image processing procedures the quality of the stereo pictures was first 

improved, then the pixel coordinates of representative particle points, whose 

knowledge is vital for the motion analysis, were extracted. The selection of the image 

processing operations employed in this research was entirely based on trial and error. 

Different operations were applied to the stereo pictures, but only those whose result 

was considered superior were kept in the analysis exposed in Section 4.1. Also, since 

a large number of the terms used in the section may be re-used in other parts of the 

thesis though with different meaning, and provided that they belong exclusively to this 

section, they were not included in the Nomenclature list of the thesis to avoid 

confusion. However, each term is clearly explicated as soon as it appears in the text. 

 

Once the digital image processing operations were concluded and the three-

dimensional particle-feature metric coordinates were found using the algorithms 

exposed in Section 3.3, the displacement, velocity, and angle of attack in the world 

reference frame were computed. Furthermore, through the introduction of a Frenet 

reference frame moving along the particle trajectory, the forces exerted on the solid 

were also estimated, from which the drag force was subsequently computed. The 

methods to determine such kinematic and dynamic quantities are explicated in 

Sections 4.2 and 4.3. 
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4.1 DIGITAL IMAGE PROCESSING OPERATIONS FOR THE MOTION OF 

A SINGLE PARTICLE 

 

4.1.1 IMAGE ENHANCEMENT 

 
So long as the stereo images acquired in the experiments were not suitable for the 

direct extraction of the corresponding particle features which were going to be 

reconstructed in three-dimensions, they needed to be properly enhanced before, by 

means of digital image processing operations. Figure 4.1 shows the stereo picture of a 

woody cylindrical particle falling freely in quiescent air as taken by the camera, 

without any modification. It is clear that in order to obtain useful quantitative 

information from the picture, digital image processing was a mandatory step. 

 

 
Figure 4.1 Stereo image of a cylindrical particle in free fall in quiescent air. 

 
The first operation towards the improvement of the stereo pictures, consisted on the 

isolation of all of the pixels representing the image of the cylinder from the rest of the 

pixels in the frame. This task is known as background removal, and the most 

straightforward way to do it is by applying the following equation 

 
ℎ = �(� − �) (4.1) 

 
where � corresponds to the stereo picture with both particle and background (Figure 

4.1), � is the stereo picture of the background only (Figure 4.2a), and h is a new stereo 

image containing only those pixels that represent the cylinder (Figure 4.2b). 

Multiplication by scalar c is optional, its only purpose is to produce an increase in 

brightness. For Equation (4.1) to work, � and � must be both images of the same size 

and type. 
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a) 

 
b) 

Figure 4.2 Stereo images of the background (a), and of the isolated particle pixels (b) of 
Figure 4.1. 

 

In many cases, removing the background was not sufficient to extract the necessary 

pixel coordinates correctly, therefore subsequent enhancement was required. In their 

work about calculating the size distribution of coal particles using image segmentation 

techniques,  Z. Zhang et al. [83] started their analysis by converting the given colour 

coal pictures into grey-scale intensity images employing the next equation 

 
ℎ� = 0.2989� + 0.5870� + 0.1140� (4.2) 

 
where R, G, and B are the amounts of red, green, and blue colours as obtained from 

the imaging device, and ℎ� is an 8-bit, monochrome image whose brightness ranges 

from 0 (black) to 255 (white). The coefficients multiplying R, G, and B are the standard 

values used by Matlab, according to the recommendations given by the National 

Television System Committee (NTSC) for luminance. Since the pictures collected 

from the experiments in this research were also expressed in the RGB colour system, 

the same conversion equation was applied. 

 

Assuming that the brightness of the particle pixels is higher than that of the 

background, a common separation method relies on the application of a suitable 

threshold to the image. This means that all of those pixels whose grey-intensity values 

are equal or smaller than certain cutting parameter T, will be eliminated. However, in 

order to ensure a successful thresholding, Gonzalez et al. [81] recommended to smooth 

the image first by reducing noise effects through spatial filtering. 
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The concept of filtering refers to the implementation of a set of linear or non-linear 

operations directly on the image space for the purpose of enhancement. Because any 

pixel in the image can be treated as a point, both terms pixel and point are used here 

to mean the same. The filter, also called mask, is normally an odd size m×n matrix 

whose centre is consecutively placed onto each point P(u,v) of the picture in such a 

way that the matrix coefficients can multiply the mn-1 neighbouring pixels. The sum 

of the multiplication results is considered the response of the filter at that point. When 

the filter mask is placed on a pixel, only two mathematical operations are possible: a 

correlation, expressed as 

 

ℳ(�,�) ☆ ℎ�(�,�)= ∑ ∑ ℳ(�,�)ℎ�(� + �,� + �)�
����

�
����  (4.3) 

 
or a convolution, written in the form 
 

ℳ(�,�) ★ ℎ�(�,�)= ∑ ∑ ℳ(�,�)ℎ�(� − �,� − �)�
����

�
����  (4.4) 

 

where ℳ is the m×n filter mask, and a and b are two non-negative integers which 

relate to m and n as follows: m = 2a+1 and n = 2b+1. The process of convolution 

means to rotate the mask 180° before placing it over the pixel. The filtering operation 

utilized in this experimental work to smooth the particle stereo images was a 

correlation with a circular averaging mask of radius r = 5, defined within a square of 

size 2r+1. 

 

Once the spatial filtering step has been completed, the thresholding operations can be 

executed to separate the particle pixels from the background. A thresholded image hT 

is a black and white binary image defined as follows 

 

ℎ�(�,�)≡ �
1  �� ℎ�(�,�)> �

0  �� ℎ�(�,�)≤ �
  (4.5) 

 

Thus, for every pixel if the condition is met, it becomes white, otherwise it turns black. 

The value of T can be chosen manually by trial and error from the plot of the image 

grey-level intensity values in the form of a histogram (Figure 4.3), nevertheless, since 

in this work multiple particle motion pictures required to be processed, it was preferred 

to employ an automatic thresholding algorithm capable to select the best value for T 

only from data of the image itself. 
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Figure 4.3 Sample of a grey-intensity level histogram with a clear valley between two 

maximums. 
 
So long as any possible thresholding value k separates the image pixels into two 

classes, C0 for those with grey-levels [1,2,…,k], and C1 for the other ones with levels 

[k+1,…,L], the histogram of Figure 4.3 can be normalized and treated like a probability 

distribution, as recommended by Otsu [107]. The normalizing equation is 

 

�� =
��
�
, � = 1,2,…,�, �� ≥ 0, ��� = 1

�

���

 (4.6) 

 
where N is the total number of pixels, ni is the number of pixels with intensity level i, 

and L is the total number of possible levels. The equations for the probability of each 

class to occur and for the mean of each class intensity levels are 

 

�� = ��(��)=��� = �(�)

�

���

 (4.7) 

 

�� = ��(��)= � �� = 1 − �(�)

�

�����

 (4.8) 

and 

�� =����(�|��)

�

���

=����/��

�

���

= �(�) �(�)⁄  (4.9) 

�� = � ���(�|��)

�

�����

= � ���/��

�

�����

=
�� − �(�)

1 − �(�)
 (4.10) 
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where  

�(�)=����

�

���

 (4.11) 

 

�� = �(�)=����

�

���

 (4.12) 

 

The variables �(�) and �� are the mean intensity up to level k, and the mean intensity 

of the whole image. Otsu [107] suggested that the best value of k to be T should be the 

one which maximizes the between-class variance ��
�(�), defined as 

 

��
�(�)= ����(�� − ��)

� (4.13) 

 

Figure 4.4a shows the stereo image of an irregular PTFE particle in free fall in 

quiescent water where some background pixels were not successfully removed with 

Equation (4.1), and Figure 4.4b shows the same stereo image after being spatially 

filtered and thresholded using the method proposed by Otsu [107]. 

 

 
a) 

 
b) 

Figure 4.4 a) Unsuccessful background removal with Equation (4.1), b) background fully 
removed through spatial filtering and thresholding. 

 

After a successful thresholding, the stereo pictures were enhanced even further by 

means of morphological image processing. Moreover, if the image still contained 

background pixels which survived the thresholding, or if there were pixels within the 

particle perimeter which were turned black by the threshold, then morphological 

processing was a mandatory stage. Not only mathematical morphology does improve 
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the images visual quality, but also it can be regarded as a tool to extract particle 

characteristics such as boundaries and other shape descriptors. 

 

By definition mathematical morphology works only on binary images, since it 

considers each image as a set of 1-valued pixels whose intensity equals one. The two 

most common morphological applications are dilation and erosion which through the 

assistance of matrices formed by 0’s and 1’s, denominated structuring elements, and 

set theory operations can make components in the image thicker or thinner. The 

morphological tasks employed in this research were close, clean, and fill. 

 

The close operation encompasses a dilation followed by an erosion which results in 

the smoothing of the particle contour, the fusion of narrow breaks, and the filling of 

any hole smaller than the structuring element. The clean operation has the effect of 

removing any single foreground pixel which endured the thresholding, whilst the last 

operation fills any single zero-value pixel surrounded by one-pixels. After the 

morphological processing, the only bright pixels remaining were those which 

corresponded to the particle image, as illustrated in Figure 4.5. 

 

 
a) 

 
b) 

Figure 4.5 Stereo image of a PTFE spherical particle before (a) and after (b) full 
enhancement. 

 

Once the enhancement step was finished, every improved stereo picture was visually 

examined, and if approved, it was then selected for the next stage of digital image 

processing operations, which were focused on detecting the centroid, boundaries, and 

longest axis of the particle, which in turn were used for later analyses. The boundaries 
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were not identified for size measurements because the representation of the longest 

axis can be done as a vector, therefore independently from the size of the particle. All 

the particle dimensions essential for the investigation were determined manually with 

a Vernier calliper. 

 

4.1.2 PARTICLE CENTROID, PERIMETER, AND LONGEST AXIS 

RECOGNITION 

 
The computation of the centroid was necessary because the particle kinematics and 

dynamics are linked to it. Provided that the particles are of uniform density, the method 

employed in this work to calculate the centroid pixel coordinates is based on weighting 

the grey-scale intensity values of each pixel, as follows 

 

�� =
∑� ∗ ℎ�,�(�,�)

∑ℎ�,�(�,�)
 

 (4.14) 

�� =
∑� ∗ ℎ�,�(�,�)

∑ℎ�,�(�,�)
 

 
where u and v represent the horizontal and vertical coordinates of each pixel, ℎ�,�(�,�) 

is the stereo image after full enhancement and converted back from binary class to 

grey-scale intensity, and XC and YC are the centroid pixel coordinates. In Figure 4.6 

the detected centroids of three solids with different shape are displayed. 

 

a) b) c) 

Figure 4.6 Detected centroids for a cylinder, a sphere, and an irregular particle. 
 
For the cases when the solid was not spherical, the orientation it had with respect to 

the motion direction needed to be tracked too. The procedure followed here to estimate 
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the orientation required the knowledge of the particle perimeter and longest axis. To 

identify the perimeter the algorithm recommended by Nishino et al. [74], which is 

based on the maximum-gradient point principle, was implemented. The algorithm 

requires first to complete a rough recognition of all the tentative peripheral points (Pt 

in Figure 4.7), which can be obtained by finding the coordinates of all those image 

pixels which have background pixels in their neighbourhood [81]. This task was 

accomplished employing the binary image of the particle after full enhancement. 

 

Then, every point Pt is joined with the centroid by a radial line which extends some 

random distance further out of the boundary up to point Pa (Figure 4.7). Finally, in 

agreement with Nishino et al. [74], if the intensity values along this line are determined 

and plotted (Figure 4.8), the true perimeter point corresponds to the one where the 

gradient is the highest. Therefore, by approximating the intensity curve as a 3rd order 

polynomial between its maximum and minimum values, the true boundary point can 

be taken as the inflection point Pi (Figure 4.9). To avoid any intrusion from the image 

enhancement operations, the maximum-gradient point quest was executed on the 

original picture just after background removal and grey-scale conversion. 

 

 
Figure 4.7 Image of a nylon sphere in free fall with one tentative perimeter point Pt 

determined. 
 
Figures 4.10a and 4.10b shows the tentative and true perimeters of the nylon sphere 

of Figure 4.7, respectively, whilst Figures 4.10c and 4.10d depicts the same perimeters 

for the cylindrical biomass particle of Figure 4.1. Both particles were descending in 

quiescent air. The refinement, characterised by a smoothing of the boundary, gained 
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through application of the maximum-gradient point principle is clearly evident for 

both solids. 

 
Figure 4.8 Intensity profile between the random points Pa and Pb. 

 

 
Figure 4.9 Approximation of the intensity curve as a 3rd order polynomial and inflection 

point. 
 
After the set of perimeter pixels was successfully detected, the next step became the 

identification of the particle longest axis, which was done by finding the two 

peripheral points P1 (u1, v1) and P2 (u2, v2) whose distance between each other was the 

largest, compared to the rest of the boundary points. 

 

In Figure 4.11 the three key points C, P1, and P2, relevant to determine the particle 

motion and orientation, are marked on both the left and right sides of the stereo image 

of a falling cylinder. The set of pixel coordinates formed by these corresponding points 
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in every stereo picture constituted the input data for the reconstruction methodology 

described in Figure 3.13. The output was then the 3D metric coordinates of such points 

at each time increment. 

 

  
a) b) 

 

  
c) d) 

Figure 4.10 Tentative and true perimeters of the nylon sphere of Figure 4.7 (a, b), and of a 
cylindrical biomass particle (c, d). Both solids are moving in free fall conditions. 

 

 
Figure 4.11 Centroid C and points P1 and P2 on both left and right sides of the stereo image 

corresponding to a cylindrical particle. 
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The complete list of digital image processing operations exposed in this section is 

summarised in the flowchart of Figure 4.12. For the execution of every operation in 

an automated way, various computer programs were written and run in Matlab. They 

are listed in Appendix G, at the end of the thesis. 

 

 
Figure 4.12 Flowchart of the digital image processing operations used in this research. 

 

4.2 3D PARTICLE MOTION IN THE WORLD REFERENCE FRAME 

 

Once the three-dimensional coordinates of points C, P1, and P2 were reconstructed, 

they were projected from the left camera frame to the world reference frame using 

Equation (3.32), so that all the analysis can be effectuated within this frame. Assuming 

that at time t1 the position of the particle centroid was C1 (x1, y1, z1), and at time t2 it 
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was C2 (x2, y2, z2), respectively, then the displacement vector D between the two 

consecutive times was obtained as follows 

 

� = (�� − ��)� + (�� − ��)� + (�� − ��)� (4.15) 

 
The magnitude of vector D is defined as the travelled distance between those two 

positions. Provided that the time increment ∆� = �� − �� is equal to the inverse of the 

frame rate at which the stereo pictures were taken, the corresponding particle velocity 

vector VP was computed with the next equation 

 

�� =
�

∆�
 (4.16) 

 
The magnitude of vector VP is called the particle speed �� . Analogous accelerations 

of the body could also be computed in a similar way by working with the velocity 

vector, nevertheless, the analysis can acquire a more significant meaning if the 

accelerations are derived within a Frenet reference frame moving with the particle, as 

exposed Section 4.3.  

 

In Figure 4.13a the motion of a 6.4-mm nylon sphere falling freely in quiescent air is 

displayed through some selected stereo images after full enhancement and centroid 

detection. The fall 3D trajectory within the world reference frame is exhibited in 

Figure 4.13b, and the respective velocity plot is shown in Figure 4.13c, where it can 

be observed that the speed kept increasing continuously, proving that terminal velocity 

conditions were not achieved. When the sphere left the field of view, it had a velocity 

equal to 3.45 m/s, equivalent to ReP = 1465. 

 

In the case of non-spherical particles, the 3D reconstructed points P1 (x11, y11, z11) and 

P2 (x22, y22, z22) were utilized to determine the longest axis in the world reference frame 

as indicated with the next equation 

 

���� = (��� − ���)� + (��� − ���)� + (��� − ���)� (4.17) 

 

where P1P2 represent the longest axis vector. Provided that the free-stream fluid 

velocity vector �� marked in Figure 2.5 (Section 2.2.2) could be approximated by the 
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particle velocity vector �� for free-fall conditions, the angle of incidence � was 

calculated as follows 

 

� = ���� �
���� ∙ ��
|����||��|

� (4.18) 

 

 

(a) (b) 

 
(c) 

Figure 4.13 Selected stereo images of a 6.35-mm nylon sphere falling freely in quiescent air 
after enhancement and centroid detection (a), corresponding fall path reconstructed in 3D in 

the world reference frame (b), and time-velocity plot (c). ReP = 1465. 
The dimensions in the 3D plot are expressed in mm. 
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Figure 4.14a portrays a stereo visualisation of the free-fall of a wood cylinder, with 

dimensions 1.9 mm × 10.5 mm, in quiescent air. The cylinder was originally dropped 

in vertical position, however it can be appreciated that it did not keep that orientation 

throughout the fall. The 3D path described by the cylinder centroid is plotted in Figure 

4.14b, where the longest axis at some randomly chosen positions was highlighted with 

blue lines. From the plot of velocity in Figure 4.14c, it can be seen that a steady, 

terminal velocity value was not reached. Its velocity at the exit of the field of view 

was 3.32 m/s, equivalent to ReP = 861. The nominal diameter was 3.9 mm. 

  

(a) (b) 

 
(c) 

Figure 4.14 Selected stereo pictures of a 1.9 mm x 10.5 mm wood cylinder during its fall in 
quiescent air (a), 3D trajectory in the world frame (b), and velocity plot (c). The blue lines 

denote the cylinder longest axis orientation. Dimensions in mm. ReP = 861. 
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Through the application of Equation (4.18) the magnitude of the cylinder angular 

orientation was computed at each time instant. The corresponding plot is shown in 

Figure 4.15, where it can be noticed that a change of 25° occurred within the field of 

view. If the values of the angle of incidence and the dimensions of the particle are both 

known, the true projected area can be obtained straightforward. 
 

 
Figure 4.15 Variation of the angle of incidence in the fall of cylinder of Figure 4.14. 

 

4.3 3D PARTICLE MOTION IN A FRENET REFERENCE FRAME 

 

In order to determine the drag force exerted on the moving solid, a Frenet reference 

frame with origin on the centroid and orientation dependent on the path curve was 

employed, as displayed in Figure 4.16, following an approach similar to that of 

Veldhuis et al. [70]. So long as the time is the parameter in common for the three world 

coordinate frame axes XW, YW, and ZW, the curve can be parameterized as follows 

 

�(�)≡ 〈��(�),��(�),��(�)〉 (4.19) 

 

 
Figure 4.16 World reference frame (black), and moving Frenet reference frame (red) on a 

3D curve �(�). 
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Assuming that �(�) is smooth in ℝ� for all � ∈ (�,�), then �̇(�)≡ �� ��⁄ ≠ 0, and 

the curve can be re-parameterized in terms of the arc-length s, resulting in � = �(�). 

The arc-length can be understood as the distance the particle travels from an initial 

time �� ∈ (�,�) to a final time � also included in the same interval. Consequently, it 

can be defined as 

 

�(�)≡ � ‖�̇(�)‖
�

��

�� (4.20) 

 
where ‖�̇(�)‖ is the speed � of the particle. Once �(�) is known, the triplet formed by 

the tangent T, normal N, and binormal B unit vectors which constitute the Frenet frame 

(Figure 4.16) can be determined using the next equations 

 

�(�)≡
��

��
 (4.21) 

 

�(�)≡
��

��
�(�)�  (4.22) 

 

�(�)≡ � × � (4.23) 

where 

�(�)≡ �
��

��
� (4.24) 

 

is a positive scalar known as the curvature, and represents the extent to which the path 

deviates from a straight line. The inverse of the curvature is called the radius of 

curvature � = 1/�. Another important parameter is the torsion �, which measures the 

amount by which the curve is twisted. It is computed from 

 

�(�)≡ − �
��

��
�
1

�
 (4.25) 

 

Contrary to �,  � can be either positive or negative. Some propositions derived from 

the Frenet theory are: 1) any curve with � = 0 is planar, 2) the curvature of a straight 

line is 0, and 3) only planar circles can have a non-zero constant value of �. Most of 

the times the arc-length re-parameterization of the path is either too complicated or 

impossible, in consequence, provided that �(�)≠ 0 for all � ∈ (�,�), re-

parameterizing can be skipped and {�,�,�,�,�} are directly computed with the 

following equations 
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�(�)=
�̇

‖�̇‖
 (4.26) 

 

�(�)=
�̇ × �̈

‖�̇ × �̈‖
 (4.27) 

  

�(�)= � × � (4.28) 

 

�(�)=
‖�̇ × �̈‖

‖�̇‖�
 (4.29) 

 

�(�)=
(�̇ × �̈)∙ �⃛

‖�̇ × �̈‖�
 (4.30) 

 
In the context of the Frenet reference frame, the kinematics of the particle can be fully 

determined, provided that the vectors corresponding to the tangential velocity �� and 

acceleration �� can be expressed as follows 

 

�� = �̇ = �� (4.31) 

 

�� =
��

��
� +

��

�
� (4.32) 

 
where the first term in the right-hand side of Equation (4.34) denotes the tangential 

acceleration ��, which is the rate of change of the magnitude of the velocity vector in 

the tangential direction, whilst the second term connotes the normal acceleration ��, 

which indicates the rate of change of the direction of the velocity vector in an 

orthogonal direction.  

 

The mathematical development from Equation (4.19) to Equation (4.32) assumes that 

��, ��, and �� are expressed as smooth and regular functions of time, which was not 

the case for this investigation, nevertheless, since ��, ��, and �� were equally spaced 

in time, it was possible to approximate their derivatives using finite difference 

equations. For such a task, the forward, backward, and centred finite difference 

schemes were used, depending on which points were known. The equations involved 

in the three schemes are listed in Appendix F. 

 

For the computation of the forces involved in the motion of the single particle, the 

form of the linear momentum equation, Equation (2.18), proposed by Mandø and 
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Rosendahl [30] to simulate the motion of a cylindrical biomass particle in a given flow 

field u was applied in this research. At free-fall conditions, and considering that the 

fluid is at rest (u = 0), this equation can be rewritten as 

 

�
���
��

= �� − ���� −
1

2
��

���
��

+ � (4.33) 

 

where any non-inertial or buoyancy force is comprised into one single force term F, 

which is the outcome of the presence of vorticity in the flow according to Mougin and 

Magnaudet [108]. Acknowledging that ��� ��⁄  corresponds to the particle 

acceleration vector �� and that the mass of the fluid displaced due to translation and 

rotation of the solid is �� = ��∀, Equation (4.35) can be further re-stated as follows 

 

�1 +
��

2��
���� − �1 −

��

��
��� = � (4.34) 

 
From Equation (4.34) it is explicit that the particle accelerates as if its total mass were 

that of its own plus half of that which the fluid displaces. Since the motion kinematics 

are fully resolved in the Frenet reference frame, it seems natural to continue the 

analysis within it. Consequently, the decomposition of Equation (4.34) into its 

tangential, normal, and binormal components results in 

 

�1 +
��

2��
���� − �1 −

��

��
���� = �� (4.35) 

  

�1 +
��

2��
���� − �1 −

��

��
���� = �� (4.36) 

  

− �1 −
��

��
���� = �� 

(4.37) 

 

which are the same equations employed by Veldhuis et al. [70] to approximate the 

variation of the virtual momentum of freely rising spheres in a fluid at rest. The 

quantities FT, FN, and FB are the instantaneous tangential, normal, and binormal Frenet 

forces, respectively. Once the Frenet forces are determined, the authors suggested that 

the drag force vector could then be predicted with the next equation 

 

�� = ��� (4.38) 
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In Equations (4.35) to (4.37), ��, �� ,and �� are the tangential and normal components 

of the gravity acceleration vector. In the world reference frame, this vector is expressed 

as � = −9.81�  (� ��⁄ ). In this work, such components were calculated by projecting 

� onto the directions of T, N, and B. In summary, the procedure applied in the current 

investigation for the computation of the drag force is portrayed in the flow chart of 

Figure 4.17. 

 

 
Figure 4.17 Flowchart of the methodology used for the computation of the drag force. 

 

For the completion of each step of the methodology of Figure 4.17 different computer 

programs were written and executed in Matlab. They are listed in Appendix G, at the 

end of the thesis. With this last figure, the review of the procedure followed to 

determine the particle orientation, velocity, and drag force in a non-intrusive way is 

completed. Also, by using these data, the calculation of the drag coefficient can be 

achieved easily, as demonstrated in the next chapters. 



91 
 

Chapter 5 
 

INVESTIGATION OF THE MOTION OF REGULAR PARTICLES IN 
FREE FALL USING STEREO VISION AND SCHLIEREN – PART 1 

 
 

In the previous chapters the necessity of doing a comprehensive study on the influence 

of angular orientation on the main parameters of the free motion of a single particle in 

a fluid was highlighted. Moreover, it was also revised how such study can be 

accomplished in three dimensions through the use of single-camera stereo vision and 

digital image processing. Furthermore, the generation of additional qualitative 

information by photographing the flow with a Z-type Schlieren arrangement was 

explained too. Hence, the goal of this chapter as well as of the next one is the 

application of such techniques and methods to the case of regular particles (spheres, 

cylinders, and disks) settling in quiescent viscous fluids, as an effort to meet the 

necessity previously mentioned. 

 

The study is divided in two parts, each of them making one chapter. The first part is 

reviewed in this chapter and includes the geometrical characterisation of all of the 

particles studied, the description of the experimental installation and methodology, the 

discussion of the camera calibration results, and the examination of the data obtained 

for the case of spherical particles only. The second part of the study corresponds to the 

analysis of the other two shapes (cylinders and disks) and constitutes Chapter 6. Along 

both chapters, visualizations of the flow around the objects from both Schlieren and 

direct photography are illustrated for some cases.  

 

Given the fact that a sphere does not have an angular orientation, only the kinematics 

and dynamics of its centroid are considered relevant for the purpose of this 

investigation. Therefore, only the velocity, drag force, and coefficient of resistance are 

computed. At the end of the chapter, the experimental results of the drag coefficient 

are compared in a log(ReP) – log(CD) plot against those predicted with the literature 

correlations listed in Section 2.2 for spherical shapes. In this way, the generated graph 

can be used as a validation tool for the techniques and methodologies described in this 

investigation to determine the motion parameters of particles settling freely in liquids 

at rest. 
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5.1 CHARACTERISATION OF THE PARTICLES 

 

The regular particles used to do this study on free-motion are made of three 

geometrical shapes: sphere, cylinder, and disk. Images of them are provided in Figure 

5.1. All of the particles were made of one of the next materials: nylon, 

polytetrafluoroethylene (PTFE), aluminium, and brass. The density of each material 

is listed in Table 5.1. Because all the geometric quantities relevant for this study can 

be expressed in terms of the diameter only, the characterisation of the spherical 

particles was relatively easy and straightforward. The results are shown in Table 5.2. 

 

Table 5.1 Density of the materials employed to make the particles. 
Material �� (kg/m3) 

Nylon 1136 
PTFE 2160 

Aluminium 2690 
Brass 8400 

 

 
Figure 1 Spherical particles. 

 
Table 5.2 Geometrical characterisation of the spheres. 

d (mm) Material S (mm2) ∀ (mm3) Name 
3.0 Nylon 28.3 14.1 S1 
4.8 PTFE 71.2 56.5 S2 
5.0 Brass 78.5 65.4 S3 
6.0 Brass 113.1 113.1 S4 
6.4 Nylon 126.7 134.1 S5 
6.4 PTFE 126.7 134.1 S6 
6.4 Brass 126.7 134.1 S7 
7.0 Aluminium 153.9 179.6 S8 
7.9 PTFE 198.1 262.1 S9 
9.0 Brass 254.5 381.7 S10 
9.5 PTFE 285.3 453.2 S11 

 

Contrary to the spheres, the geometrical description of the cylinders and disks depends 

on two variables: the diameter, and the length or thickness. Additionally, besides the 

calculation of the area and volume, it requires too the computation of the nominal 

diameter, sphericity, and aspect ratio, which was effectuated through Equations (2.1), 
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(2.2), and (2.7), respectively. The results are summarised in Tables 5.3 and 5.4, and 

images of the particles are displayed in Figures 5.2 and 5.3, respectively. 

 

 
Figure 5.2 Cylindrical particles. 

 

 
Table 5.3 Geometrical characterisation of the cylinders. 

d (mm) L (mm) Material S (mm2) ∀ (mm3) dn (mm) Ø σ Name 
5.0 10.2 Brass 199.6 200.5 7.3 0.8 2.0 C1 
4.0 8.3 PTFE 129.9 104.8 5.8 0.8 2.1 C2 
4.0 9.2 PTFE 140.1 115.0 6.0 0.8 2.3 C3 
4.0 10.4 PTFE 156.3 131.2 6.3 0.8 2.6 C4 
4.0 20.2 PTFE 279.5 254.3 7.9 0.7 5.1 C5 
5.0 10.4 PTFE 203.3 205.0 7.3 0.8 2.1 C6 
5.0 20.3 PTFE 357.8 398.2 9.1 0.7 4.1 C7 

 

 
Figure 5.3 Disk-shaped particles. 

 

 
Table 5.4 Geometrical characterisation of the disks. 

d (mm) L (mm) Material S (mm2) ∀ (mm3) dn (mm) Ø σ Name 
6.0 1.6 Brass 86.0 44.1 4.4 0.7 0.3 D1 
6.4 2.5 Aluminium 113.6 79.8 5.3 0.8 0.4 D2 
10.0 2.9 PTFE 248.2 227.8 7.6 0.7 0.3 D3 
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From Tables 5.3 and 5.4 it can be seen that the nominal diameter ranged from 4.4 mm 

to 9.1 mm, and the sphericity fluctuated considerably less between 0.7 and 0.8. In 

addition, whilst the aspect ratio for the cylinders varied from 2.0 to 5.1, for the disks 

it stayed below 1.0. Only these three shape descriptors were determined since they are 

the most used ones in the drag correlations, however other parameters could also be 

calculated. 

 

5.2 EXPERIMENTAL INSTALLATION AND METHODOLOGY 

 

In Figure 5.4 the schematic of the installation employed for the stereo vision studies 

is illustrated. The camera, lens, stereo adapter, and illumination source shown are the 

same ones used during the accuracy test of the stereo system. Their specifications are 

detailed in Section 3.4. The tank was made of 6-mm thick glass, and had the following 

dimensions: 0.2 m × 0.2 m × 0.4 m. It was placed 1.1 m away from the stereo adapter. 

The ordinary, plastic funnel was big enough for the particles to pass through freely. 

 

 
Figure 5.4 Schematic of the experimental installation for the stereo vision studies. 

 

The Schlieren pictures of the surrounding flow structures were recorded with the setup 

portrayed in Figure 5.5. In order to generate the required density gradients, the 

recommendations given by Fiedler and Nottmeyer [91] were applied, therefore the 

fluid was heated from the top with the assistance of an incandescent lamp. Before each 

particle was dropped, the temperature of the liquid was measured at the top, centre, 

and bottom levels of the tank, and the average was used in the calculations. The 
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measuring instrument was the Testo 905-T1 digital, immersion thermometer shown in 

Figure 5.6. Its equipped with a type–K thermocouple sensor, able to measure the 

temperature in the range: -50 °C to 350 °C, with a resolution of 0.1 °C and accuracy 

of +1 °C. The camera used for the Schlieren recordings was the same one employed 

for the stereo vision studies. 

 

 
Figure 5.5 Diagram of the Schlieren setup used in the investigation. 

 

 
Figure 5.6 Testo 905-T1 digital, immersion thermometer. 

 

As mentioned in Section 2.2.2, Marchildon et al. [25] argued that any object in free 

fall will always exhibit the same pattern of terminal flow. In consequence the method 

of release is practically irrelevant, thus in this investigation the particles were dropped 

manually in all the cases. The pictures for both stereo and Schlieren were recorded at 

500 frames per second with a resolution of 1024 × 1024 pixels. To reduce the risk of 

bubble formation and splash, the lower end of the funnel was carefully located just 

underneath the fluid level. 



96 
 

Besides using different materials and sizes for the particles, pure water, pure glycerine, 

and three mixtures of water and glycerine were also employed as working fluids to 

ensure that a wide range of particle Reynolds numbers could be achieved. In Table 5.5 

the properties of the fluids at the average temperature are provided. The percentages 

were expressed by weight. The glycerine and water-glycerine mixtures were not 

suitable fluids for Schlieren visualisation because they did not allow an appropriate 

transmission of the light, consequently Schlieren visualisation was done only for the 

cases where pure water was utilized. 

 
Table 5.5 Working fluids and their properties at the average temperature registered in the 

tank. The properties were taken from the Glycerine Producers Association [109]. 

Mixture Name % wt. Glycerine % wt. Water Tf,avg (°C) �� (kg/m3) μ (Pa∙s) 
100/0 100 0 20 1261.1 1.400 
80/20 80 20 25 1205.5 0.047 
65/35 65 35 30 1162.0 0.010 
50/50 50 50 30 1121.1 0.004 
0/100 0 100 20 998.2 0.001 

 
Not all of the particles were dropped in each fluid mixture, instead, every experiment 

was done according to a number of previously targeted Reynolds numbers within the 

interval 0.1 < ReP < 5000. The corresponding list is presented in Table 5.6. Each drop 

was repeated 3 times to ensure consistency in the analysis; however, in a later 

experiment, the fall of sphere S1 in mixture 100/0 was repeated 9 times in order to 

estimate the uncertainty of the results. Before every particle was released, the 

temperature of the mixture was measured. In addition, between two consecutive 

droppings some time was allowed to pass in order to let the fluid stabilise. 

 
Table 5.6 Matrix of experiments. 

Mixture Name Particles Dropped 
100/0 S3, S4, C1 
80/20 S2, S3, S8, S9, S11, C2, C4, C6, D1 – D3 
65/35 S3, S4, S6 – S8, C4 – C7, D1 – D3 
50/50 S6, C2, C3, C6, D3 
0/100 S1, S5, S11, C4, D3 

 

5.3 CALIBRATION OF THE STEREO VISION SYSTEM 

 

Before pouring any liquid into the tank, the pair of virtual cameras of the stereo vision 

system were calibrated using the methodology explained in Figure 3.11 of Section 

3.2.2. The results of the calibration are summarised in Table 5.7.  Recalling that the 
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dimensions of the CMOS sensor are 20.48 mm × 20.48 mm, and considering the 

intrinsic matrix of the left camera, the values of the skewedness angle and the pixel 

aspect ratio were 1.0 and 89.8°, respectively, demonstrating that the horizontal and 

vertical edges of the sensor are practically perpendicular to each other and that the 

pixels are square. Moreover, the determined horizontal and vertical focal lengths were 

equal to 46.1 mm and 45.6 mm, respectively, and the principal point offset (u0, v0) was 

(10.1, 10.5) mm, nearly located at the centre of the sensor. The coordinates of the left 

camera centre vector C were (0.06, 0.15, 1.10) m, denoting a noticeably agreement 

with the setup shown in Figure 5.4. Also, the estimated radial distortion coefficients 

were c1 = -0.093 and c2 = 0.450. 

 
Table 5.7 Calibration results of both virtual cameras. 

 

Left Camera 
Intrinsic matrix A Rotation matrix R Translation vector t 

 

�
2305.85 −9.86 505.32

0 2278.39 527.16
0 0 1

� 

 

 

�
−0.99 0.01 −0.15
−0.02 −1.00 0.08
−0.15 0.08 0.99

� 

 

�
8.70
2.88
42.23

� 

 
Right Camera 

Intrinsic matrix A Rotation matrix R Translation vector t 
 

�
2272.84 −4.29 523.33

0 2245.97 549.14
0 0 1

� 

 

 

�
0.98 −0.03 0.21
0.02 1.00 0.06
−0.21 −0.05 0.98

� 

 

�
3.38
− 3.52
− 43.12

� 

 

 
Once all of the experiments were finished and all of the particle stereo pictures were 

digitally processed to extract the 2D pixel coordinates of points C, P1, and P2 of both 

the left and right images, in agreement with the procedure discussed in Figure 4.12 of 

Section 4.1, the methodology explained in Figure 3.13 of Section 3.3.2 and Equation 

(3.32) were applied to find the 3D coordinates of such points in the world reference 

frame, so that the subsequence kinematic and dynamic analysis described in Sections 

4.2 and 4.3 could be executed. 

 

5.4 KINEMATICS AND DYNAMICS OF SPHERICAL PARTICLES AT 

DIFFERENT REYNOLDS NUMBERS 

 

The smallest value of the particle Reynolds number found in the study for the spheres 

only was ReP = 0.3, whilst the largest one was ReP = 4939, therefore covering the 
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targeted interval. The results equivalent to ReP = 0.3, which also is the upper limit of 

Stokes’ law, were those of the brass sphere S3 falling in pure glycerine. In this case, 

the travel path was practically vertical throughout the whole field of view, as portrayed 

in Figure 5.7 in three dimensions. It is believed that this behaviour was produced by 

the dominance of the viscous forces at such low values of ReP, which kept the flow 

streamlines symmetrically attached to the object causing no appreciable disturbances, 

as suggested by Magarvey and Bishop [57], and Moradian et al. [60]. 

 

 
Figure 5.7 3D fall path of sphere S3 in pure glycerine (ReP = 0.3). Scale in mm. 

 

In Figure 5.8 the variation of the velocity of the particle, computed with Equation 

(4.18), is plotted as a function of time. The theoretical value of UT, estimated with 

Equation (2.10), is also drawn with a red, dotted line. At t = 0.7 s, approximately, 

terminal conditions were reached. Moreover, both the experimental and predicted 

magnitudes of UT agreed at 0.06 m/s after the marked time limit. The particle Reynolds 

number at this velocity, calculated with Equation (2.14), was ReP = 0.3. 

 

By following the methodology of Figure 4.17 in Section 4.3 the motion of the sphere 

was analysed within the moving Frenet frame of reference in order to estimate the drag 

force experienced by the particle. In Figure 5.9 the values of FD are plotted with 
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respect to time. It can be observed that a relatively constant magnitude of 4.5 mN 

remained at terminal velocity conditions. The slight drop after t = 2.0 s could be a 

consequence of the proximity to the bottom of the tank. The drag force predicted by 

the law of Stokes (Equation 2.15) was 4.0 mN, 11 % below the experimental result. 

 

 
Figure 5.8 Velocity plot of sphere S3 falling in pure glycerine at ReP = 0.3. 

 

 
Figure 5.9 Graph of the drag force exerted on sphere S3 whilst settling in pure glycerine at 

ReP = 0.3. 
 

Since the projected area of a sphere is always that of a circle with the same radius, it 

was possible to compute the drag coefficient at each instant with Equation (2.8) and 

to plot it against time, as depicted in Figure 5.10. For comparison, the coefficient 

predicted by Equation (2.23b) of Haider and Levenspiel [16] was also included in the 

graph. At final velocity conditions an average value of CD equal to 101.0 was found, 

given the fact that fluctuations were registered. Nevertheless, the difference with 

respect to the correlation results was just 5 %. 
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Figure 5.10 Plot of the coefficient of resistance obtained for the fall of sphere S3 in pure 

glycerine at ReP = 0.3. 
 

Still inside the interval ReP < 1.0, the settling of 6-mm sphere S4 in pure glycerine 

exhibited a similar behaviour to S3 at terminal velocity conditions. The results 

achieved are listed in Table 5.8, where the theoretical values are also contained for the 

purpose of comparison. The proximity between both was evident for UT and ReP, but 

not for FD, suggesting that the motion did not obey the law of Stokes anymore. 

Additionally, the values of CD were also marginally different. 

  

Table 5.8 Experimental and theoretical results at terminal velocity conditions for the 6-mm, 
brass sphere S4 falling in pure glycerine. 

 

Parameter Experimental Result Theoretical Value % Difference 

UT 0.09 m/s 0.08 m/s (Eq. 2.10) 13.0 

ReP 0.5 0.5 0.0 

FD 7.9 mN 6.3 mN (Eq. 2.15) 20.0 

CD 56.9 58.9 (Eq. 2.23b) 3.0 

 

As explicated in Section 2.2.4, further increments of ReP make the streamlines separate 

from the object creating a zone of fluid recirculation at the rear, highly symmetrical 

and balanced in the beginning, but unstable at larger values of the Reynolds number, 

thus deviating the particles from a vertical trajectory [57, 68]. These characteristics 

can be observed in Figure 5.11, which corresponds to PTFE sphere S9 sinking freely 

in mixture 80/20 at ReP = 43.4. Additionally, the path deviation can be seen clearly by 

comparing the 3D trajectories of spheres S2 and S3 falling in the same mixture, which 

are plotted in Figure 5.12. 
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Figure 5.11 Visualisation of the trail and fluid recirculation zone found for PTFE sphere S9 

falling in mixture 80/20 at ReP = 43.4. 
 

  
(a) (b) 

 

Figure 5.12 3D fall paths of spheres S2 (a) and S3 (b) in mixture 80/20 at ReP = 15.1 and 
73.7, respectively. Scale in mm. 

 
The change of the centroid velocity with time is plotted in Figure 5.13 for both spheres 

S2 and S3. The theoretical values of UT calculated with Equation (2.10) are also 

marked with red-dotted lines. As it can be noticed, when S2 entered the field of view 

it already was in the final velocity regime with UT = 0.12 m/s, thus disagreeing with 

Equation (2.10) for 8 %. Contrary to S2, sphere S3 achieved steady velocity conditions 

at t = 0.05 s, approximately, in remarkable accordance with Equation (2.10). The 

discrepancy was only 2 %, however after t = 0.15 s it presented a fluctuation between 
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0.57 m/s and 0.59 m/s. Nonetheless, ReP was calculated with the average magnitude 

UT = 0.58 m/s. 

 

 
Figure 5.13 Velocity plots of spheres S2 and S3 settling in a mixture with 80% (by wt.) of 

glycerine at ReP = 15.1 and 73.7, respectively. 
 

From the drag force graphs of particles S2 and S3 showed in Figure 5.14, it can be 

seen that S2 exhibited the mostly constant value FD = 0.5 mN, whilst S3 was subject 

to drag fluctuations once terminal velocity conditions were achieved. Nevertheless, 

the average FD = 4.6 mN could be assumed given the fact that the greatest difference 

among the registered data was 0.1 mN. 

 

 
Figure 5.14 Drag force graphs determined for spheres S2 and S3 settling in mixture 80/20 at 

ReP = 15.1 and 73.7, respectively. 
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The plots of the coefficient of resistance portrayed in Figure 5.15, for both solids, 

showed a marked agreement with Equation (2.23b) for sphere S2 despite the 

fluctuations. Nevertheless, for S3 the discrepancies were higher. A relatively smaller 

value of CD = 1.2, away from the correlation prediction by 8 % was obtained. 

Moreover, due to the smaller order of magnitude of FD, the oscillation of V caused CD 

to fluctuate slightly after t = 0.16 s, however with an almost negligible amplitude. 

 

 
Figure 5.15 Variation of the coefficient of resistance of spheres S2 and S3 falling in mixture 

80/20 at ReP = 15.1 and 73.7, respectively. 
 

According to the literature reviewed in Section 2.2.4, it has been reported that when 

the sphere Reynolds number exceeds 210, the downstream single trail becomes 

double, and may exhibit some waviness in the interval 270 < ReP < 290 [57, 68, 69]. 

Such behaviour was also found in this research during the fall of particles S6 in 

mixture 65/35 (ReP = 235.5) and S1 in pure water (ReP = 277.1), respectively. The 

wavy, double-trail exhibited by the latter one was visualized with Schlieren 

photography and is depicted in Figure 5.16. 

 

Because the double trail is not entirely symmetrical, the particle does not follow a 

straight line during its falling motion. Additionally, the deviation can be accentuated 

by the effects producing the wavy pattern in the trail. This further increment can be 

easily verified by comparing the 3D generated trajectories of the centroids of both 

spheres, S6 and S1, displayed in Figure 5.17.  
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                          (a)                      (b) 

 

 Figure 5.16 Schlieren visualisation of the wavy pattern (a) and the double trail (b) left 
downstream by sphere S1 falling in pure water at ReP = 277.1. 

 

  
(a) (b) 

 

Figure 5.17 3D paths of sphere S6 falling in mixture 65/35 at ReP = 235.5 (a), and of sphere 
S1 settling in pure water at ReP = 277.1 (b). Scale in mm. 

 

In Figure 5.18 it is plotted the speed time variation of spheres S6 and S1 during their 

fall. It can be noticed that both reached the state of terminal velocity. Whilst it 

happened at t = 0.3 s for S6, it occurred at t = 0.75 s for S1. Furthermore, the agreement 

with the theoretical values predicted by Equation (2.10) was noticeably close. The 

discrepancies did not exceed 6 %, even considering the slight oscillation exhibited by 

particle S6 at t = 0.51 s. 
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Figure 5.18 Variation of the velocity of sphere S6 falling in mixture 65/35 at ReP = 235.5, 

and of sphere S1 settling in pure water at ReP = 277.1. 
 

The drag forces acting on particles S6 and S1 are plotted in Figure 5.19, where it was 

observed that within the terminal velocity conditions interval sphere S6 was under the 

action of a nearly constant drag equal to 1.3 mN. On the other hand, the force exerted 

over particle S1 registered an abrupt increment up to the onset of final conditions, to 

then continue to augment gradually from 18 μN to 19 μN. Nonetheless, it is believed 

that such a change can be considered negligible. 

 

 
Figure 5.19 Graphs of the drag force magnitude experienced by spheres S6 falling in 

mixture 65/35 at ReP = 235.5, and S1 settling in pure water at ReP = 277.1. 
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In the plots of the coefficient of resistance of spheres S6 and S1 given in Figure 5.20 

it can be appreciated that both of them showed a nearly constant coefficient once the 

conditions of final velocity were met. In addition, the similitude with the values 

estimated by Equation (2.23b) was remarkable. Whilst the difference in the first case 

was practically null, in the second one did not surpass 10 %.  

 

 
Figure 5.20 Drag coefficient plots of spheres S6 falling in mixture 65/35 at ReP = 235.5, and 

of S1 settling in pure water ReP = 277.1. 
 

Once the value of the particle Reynolds number is larger than 290, the settling motion 

of the sphere is accompanied by the alternating process of vortex separation and 

shedding in the form of the so-called hairpin structures, represented in Figure 5.21, 

obtained using Schlieren photography to visualize the fall of sphere S5 in pure water. 

Initial time t = 0 s was placed on the first picture that showed the entire sphere within 

the camera field of view. Opposite to the findings of Magarvey and Bishop [57] who 

informed that the hairpin vortex patterns end at ReP = 700, in this study it was 

established that they can still be present up to ReP ~ 900. 

 

From Figure 5.21 it can be inferred that the separation and shedding of the vortices 

alter the direction of the particle trajectory, deviating it even farther from resembling 

a straight path. This was observed too in the three-dimensional plot of the 

reconstructed centroid trajectory of sphere S4 sinking in mixture 65/35 at ReP = 656.3, 

which is illustrated in Figure 5.22. 
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Figure 5.21 Schlieren pictures of the formation and evolution of a hairpin structure 

described by sphere S5 falling in pure water (ReP = 901.9). 
 

 
Figure 5.22 3D reconstructed path of sphere S4 falling in mixture 65/35 at ReP = 656.3. 

Scale in mm. 
 

In Figures 5.23 and 5.24, respectively, the time change of the fall-velocity and drag 

force exhibited by sphere S4 are portrayed. Final velocity conditions were reached at 

t = 0.16 s, approximately, with negligible disagreement with respect to the correlation 

result. In addition, from Figure 5.24, it was found that the force of drag incremented 
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continuously before and during the interval of terminal conditions, achieving a 

maximum of FD = 8.2 mN by the time it left the field of view. 

 

 
Figure 5.23 Plot of the velocity change of sphere S4 falling in mixture 65/35 at ReP = 656.3. 
 

 
Figure 5.24 Variation of the drag force experienced by sphere S4 falling in mixture 65/35 at 

ReP = 656.3. 
 

The plot of the drag coefficient of sphere S4 is displayed in Figure 5.25, where it can 

be observed that between t = 0.08 s and t = 0.14 s, a nearly constant coefficient equal 

to 0.5 was registered, close to the magnitude predicted by Equation (2.23b). 

Nevertheless, in the following times the coefficient increased almost linearly up to a 

maximum of CD = 0.6 when it left the camera field of view. This increment was due 

to the continuous augment of the force in the period when the terminal velocity did 

not change anymore. However, if an average is taken, the difference with respect to 

the theoretical magnitude of CD was not greater than 10 %. 
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Figure 5.25 Plot of the coefficient of resistance determined for sphere S4 falling in mixture 

65/35 at ReP = 656.3. 
 

As the particle Reynolds number becomes larger than 1000, the wake at the rear of a 

spherical object is completely turbulent, causing the extinction of the hairpin 

structures, as illustrated in the Schlieren visualization portrayed in Figure 5.26, which 

belongs to sphere S11 falling in pure water at ReP = 4939. Furthermore, because of the 

irregular behaviour of the turbulence, the settling trajectory at this regime is 

significantly deviated from a straight line, as it can be noticed from the 3D plot of the 

fall path of the same sphere shown in Figure 5.27. 

 

 
Figure 5.26 Schlieren visualisation of the wake behind sphere S11 falling in pure water at 

ReP = 4939. 
 

The time change of the fall-velocity of sphere S11 is plotted in Figure 5.28 and the 

drag force in Figure 5.29. It can be noticed that at t = 0.35 s, approximately, the 

measured velocity was 0.52 m/s and it did not change noticeably afterwards, 

suggesting that terminal conditions were reached. In this case, Equation (2.10) over 

predicted UT for 9 %, approximately. Additionally, from Figure 5.29, it was observed 

that the drag force did not show a steady value at the same time period, on the other 
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hand, it displayed an uninterrupted increment followed by a fluctuation at the end, 

with an amplitude of 0.5 mN. 

 
Figure 5.27 3D fall-path of sphere S11 falling in pure water at ReP = 4939. Scale in mm. 

 

 
Figure 5.28 Time variation of the velocity of sphere S11 falling in pure water at ReP = 4939. 
 

The variation of the drag coefficient with time for sphere S11 is plotted in Figure 5.30, 

where a minimum of CD = 0.5 was seen at t = 0.15 s, approximately, to then increase 

gradually up to CD = 0.6 at t = 0.36 s, which was coincident with the greatest value of 

the drag force. If the average magnitude of CD is considered, the discrepancy with 

Equation (2.23b) was equal to 38 %. 
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Figure 5.29 Graph of the drag force experienced by sphere S11 whilst sinking in pure water 

at ReP = 4939. 
 

 
Figure 5.30 Variation of the coefficient of resistance determined for sphere S11 settling in 

pure water at ReP = 4939. 
 
A summary of the measured terminal velocities is provided in Figure 5.31. The 

theoretical values computed using the correlation published by Haider and Levenspiel 

(Equation 2.10) are also included in the graph. Instead of plotting directly as a function 

of ReP, it is plotted in terms of N, the number of ReP analysed, because this delivered 

greater clarity, however a relation between N and ReP is provided in Table 5.8. Because 

for each value of N there is more than one test, the UT magnitudes plotted correspond 

to the arithmetic mean. 

 

As it can be seen in Figure 5.31, the agreement between the averaged experimental 

results of terminal velocity and their theoretical counterparts estimated with Equation 

(2.10) was noteworthy throughout the whole Reynolds number interval. The largest 

difference that it was found corresponded to 13 %.  
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Figure 5.31 Comparison of the terminal velocity achieved by the spherical particles. 

 
Table 5.8 Relation between N and ReP of Figure 5.31. 

N ReP N ReP 

1 0.3 9 277.1 

2 0.5 10 350.8 

3 15.1 11 484.4 

4 44.7 12 656.7 

5 49.5 13 662.7 

6 66.2 14 715.9 

7 74.1 15 901.9 

8 234.8 16 5014.0 

 

In the same way, the summary of all of the values of the coefficient of resistance 

obtained experimentally for each N is displayed in Table 5.9 and in Figure 5.32, now 

as a function of the particle Reynolds number. The values of CD predicted by 

Equations (2.23a – 2.23d) are also incorporated for the purpose of comparison. ReP 

was calculated using the values of UT illustrated in Figure 5.31. 

 
Table 5.9 Relation between ReP and CD. 

N ReP CD N ReP CD 

1 0.3 99.9 9 277.1 0.6 

2 0.5 58.2 10 350.8 0.7 

3 15.1 3.2 11 484.4 0.6 

4 44.7 1.7 12 656.7 0.5 

5 49.5 1.5 13 662.7 0.5 

6 66.2 1.3 14 715.9 0.5 

7 74.1 1.2 15 901.9 0.4 

8 234.8 0.7 16 5014.0 0.5 
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Figure 5.32 Comparison of the experimental and theoretical values of the drag coefficient of 

the spheres. 
 
As observed in Figure 5.32, the agreement between the experimental results and those 

from the literature correlations was remarkable so long as ReP < 1000. In fact, the 

discrepancies never surpassed 12 % in this range. On the other hand, for the unique 

case investigated at ReP > 1000 the difference was 38 %, with the experimental 

magnitude of CD being superior to all of the correlation-predicted values. 

 

In order to estimate the uncertainty in the calculations of the UT and CD, the free-fall 

of sphere S1 in pure water at Tf = 15 °C (�� = 999.1 kg/m3, μ = 1.2×10-3 Pa∙s) was 

repeated and analysed 9 times. The obtained results are listed in Table 5.10. For this 

error analysis, the procedure suggested by Taylor [110] was applied. He said that the 

best estimation of the measured variable, �����, corresponds to the arithmetic mean of 

all of the individual readings ��, and that the uncertainty � associated to the 

measurement can be approximated as the standard deviation of the mean, therefore 

 

����� =
∑��
�

 (5.1) 

 

� = �
∑(�� − �����)�

� − 1
 (5.2) 
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� =
�

√�
 (5.3) 

 

where � is the standard deviation of the sample of readings. Then, for the present study 

the best results were: UT = 0.08 m/s + 1 % and CD = 0.8 + 1 %, respectively. In regard 

to Equations (2.10) and (2.23b), they had discrepancies of 2 % and 3 %, respectively. 

 

Table 5.10 UT and CD values obtained in the repeatability study of sphere S1 falling freely in 
pure water at ReP = 220. 

N UT (m/s) CD N UT (m/s) CD N UT (m/s) CD 
1 0.084 0.78 4 0.084 0.77 7 0.084 0.77 
2 0.081 0.80 5 0.081 0.81 8 0.082 0.81 
3 0.084 0.77 6 0.083 0.79 9 0.083 0.79 

 

Based on the strong agreements illustrated through the plots of Figures 5.31 and 5.32, 

and on the significantly low uncertainty obtained from the repeatability test done for 

sphere S1, it can be affirmed that the methodology proposed in this thesis to estimate 

the kinematics and dynamics of a moving particle using only the 3D stereo-

reconstructed coordinates of the trajectory of its centroid can be considered valid. 
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Chapter 6 
 

INVESTIGATION OF THE MOTION OF REGULAR PARTICLES IN 
FREE FALL USING STEREO VISION AND SCHLIEREN – PART 2 

 
 

This chapter constitutes the second part of the study of settling particles in viscous 

fluids started in chapter 5. The results analysed here are those corresponding to the 

cylindrical and disk shapes, tested as shown in Table 5.6 of Section 5.2. Additionally, 

the physical and dimensional characterisation of each of these solids was also shown 

in Section 5.1, being the results listed in Tables 5.3 and 5.4, respectively. The chapter 

is structured in such a way that the data obtained for the cylinders is analysed first, 

then the analysis of the disks goes second. Finally, because these two shapes possess 

certain orientation as they move, the chapter ends with a section dealing with the 

influence of such angular orientation onto the coefficient of resistance. 

 

As it was done for the spheres in Chapter 5, the motion of each of the particles 

employed here was analysed following the same procedure, with the exception that 

the orientation was investigated too, according to the methodologies exposed in 

Sections 4.1 and 4.2 of Chapter 4. This is the first time that the motion of non-spherical 

particles is studied within the context of a moving Frenet reference frame to estimate 

the magnitudes of the drag force given the 3D path coordinates only. As for the 

spheres, for each geometry studied in this chapter, the experimental values of terminal 

velocity and coefficient of drag are also compared against those predicted by equations 

from the literature. In addition, for some selected cases, either direct or Schlieren 

visualisations of the flow structures around the moving particles are displayed. 

 

6.1 KINEMATICS AND DYNAMICS OF CYLINDRICAL PARTICLES AT 

DIFFERENT REYNOLDS NUMBERS 

 

The experimental results obtained for the cylindrical solids covered the following 

particle Reynolds number: 0.7 < ReP < 1975, calculated using the nominal diameter as 

the characteristic length. The data corresponding to ReP = 0.7 was extracted from the 

settling of brass cylinder C1 in pure glycerine (mixture 100/0 according to Table 5.5). 

The 3D path described by its centroid is portrayed in Figure 6.1, where the blue lines 
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represent the longest axis. The red points denote the centroid, and the green ones the 

extreme points P1 and P2, respectively. 

 

From Figure 6.1 it can be seen that the cylinder trajectory exhibited some curvature 

whilst its orientation apparently remained unchanged. However, from the plot of the 

time-variation of the angle of incidence showed in Figure 6.2, it was found that before 

t = 0.6 s there was some angular change. This was a consequence of the dropping 

method since the solid had to be released in vertical position in order to go through the 

funnel. Nevertheless, at this time final velocity conditions were also reached (Figure 

6.3) and the particle orientation remained unaltered, as said by Marchildon et al. [25]. 

 

 
Figure 6.1 3D path of cylinder C1 settling in pure glycerine (ReP = 0.7). Dimensions in mm. 
 

In the graph of Figure 6.2 the particle projected area, calculated as �� = ������, was 

also included. As it can be noted AP exhibited the same behaviour as �. Its value at 

steady conditions was AP = 0.5 μm2. This behaviour occurred too for all the other 

cylinders analysed, regardless of the magnitude of their particle Reynolds number. In 

addition, from the velocity plot of Figure 6.3, the obtained terminal velocity for the 

currently discussed case was UT = 0.10 m/s, approximately. 
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Figure 6.2 Time change of the angle of incidence and projected area of cylinder C1 settling 

in pure glycerine (ReP = 0.7). 
 

In Figure 6.3 the magnitude of the terminal velocity foretold by Equation (2.10) was 

also represented with a red, dotted line, showing a clear disagreement with the 

experimental data. Indeed, the UT obtained from the experiment was 17 % lower than 

that of the correlation. It should be highlighted that in this research the value of ReP 

shown in every plot or table has been computed using the value of UT determined 

experimentally. 

 

 
Figure 6.3 Velocity plot of cylinder C1 settling in pure glycerine (ReP = 0.7). 

 
The drag force acting on the cylinder as it settled in the glycerine was estimated with 

the methodology described in Section 4.3, and it is plotted in Figure 6.4, where a 

notorious decrement was detected during the same period of time when the angular 

change happened, nonetheless, from t = 0.4 s and onwards the force remained constant 

at FD = 14.0 mN, approximately. 
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Figure 6.4 Plot of the drag force exerted over cylinder C1 while settling in pure glycerine 

(ReP = 0.7). 
 

Figure 6.5 shows the graph of the coefficient of resistance computed at each time step 

together with the theoretical value predicted by Equation (2.24a), calculated using the 

magnitude of UT given by Equation (2.10), marked again with a red, dotted line. At 

terminal velocity conditions (t > 0.6 s) an average value of CD = 43.6 was found, 

however it was accompanied by fluctuations between CD = 42.0 and CD = 45.0. The 

difference between the averaged CD and that of the correlation was 14 %. 

 

 
Figure 6.5 Time variation of the drag coefficient of cylinder C1 falling in pure glycerine 

(ReP = 0.7). 
 

In Figure 6.6 the settling of PTFE cylinder C4 in mixtures 80/20 (Figure 6.6a) and 

65/35 (Figure 6.6b) as seen by the camera is displayed. The particle Reynolds numbers 

corresponding for each case were ReP = 21.3 and 169.3, respectively. As it can be 

observed from the images, in both situations the solid left the camera field of view at 
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a horizontal, fixed position regardless the initial orientation fluctuations caused by the 

dropping technique. The three-dimensional reconstructed paths for both cases are 

shown in Figure 6.7. 

 

  
(a) (b) 

Figure 6.6 2D visualization of the fall of cylinder C4 in mixtures 80/20 (a) and 65/35 (b). 
The corresponding particle Reynolds numbers were ReP = 21.3 and 169.3. 

 

  
(a) (b) 

Figure 6.7 3D fall paths of cylinder C4 in mixtures 80/20 (a), and 65/35 (b) at ReP = 21.3 
and 169.3, respectively. Dimensions in mm. 
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Figures 6.6a and 6.6b are the result of adding the images of the cylinder every 10 ms 

so that the pattern could be seen clearly. On the other hand, the number of blue lines 

representing the solid longest axis in Figures 6.7a and 6.7b was chosen randomly but 

with the same purpose. Therefore, a disagreement between the number of 2D cylinder 

images in Figure 6.6 and that of blue lines in Figure 6.7 may exist. 

 

In both plots of Figure 6.7 it can be seen that once the dropping instabilities were 

surpassed the cylinder described a relatively smooth trajectory with minimum 

deviations from a straight path. Moreover, given the fact that the angular orientation 

remained unchanged, the projected area was practically constant and equal to 0.4 μm2 

for both cases. The reason for such behaviour was that at low values of the Reynolds 

number the secondary flow around the body and the trail are stable and symmetrical, 

as illustrated in Figure 6.8, which provides a direct visualization of such secondary 

flow for the settling in mixture 80/20. 

 

 
Figure 6.8 Direct visualization of the stable and symmetrical secondary flow and trail 

around cylinder C4 falling in mixture 80/20 at ReP = 21.3. 
 

The velocity of the centroid of the cylinder for both cases is illustrated in the plots of 

Figure 6.9, where, for mixture 80/20 it was observed that when the body entered the 

camera field of view it already was in the terminal flow conditions regime, however 

for mixture 65/35 such conditions were not reached until t = 0.2 s, approximately. The 

magnitudes of UT for both cases were 0.13 m/s and 0.23 m/s, respectively. From the 

comparison with the theoretical values given by Equation (2.10) it can be noticed that 

whilst an over estimation of 15 % was found for the first case, the difference for the 
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second one was only 5 %. This suggests that the predictions of Equation (2.10) 

improve as ReP augments. 

 

 
Figure 6.9 Time variation of the velocity of cylinder C4 falling in mixtures 80/20 and 65/35 

at ReP = 21.3 and 169.3, respectively. 
 

In Figure 6.10 the force of drag exerted over the cylinder when falling in both liquid 

mixtures is plotted versus time, showing that a nearly constant magnitude was 

achieved for each case. For the first one, FD was equal to 1.2 mN in average, whilst 

for the second it was 1.3 mN approximately. The values of the coefficient of resistance 

created by these force magnitudes are graphed in Figure 6.11, where a strong 

agreement with the theoretical results of Equation (2.24a) at steady state conditions 

can be noticed. The differences were 1 % and 9 %, respectively. 

 

As it was mentioned in Section 2.2.4, Marchildon et al. [25] reported that the 

orientation of a cylindrical solid falling freely in a liquid will be characterised by 

regular oscillations once the particle Reynolds number exceeds 300. However, in this 

research such oscillations initiated at a lower value of ReP, as it can be seen in Figure 

6.12 which portrays a qualitative visualization in two-dimensions of the settling of 

PTFE cylinder C6 in the liquid mixtures 65/35 and 50/50 at ReP = 240.2 and 614.6, 

respectively. 

 



122 
 

 
Figure 6.10 Graphs of the drag force acting on cylinder C4 as it settled in mixtures 80/20 

and 65/35 at ReP = 21.3 and 169.3, respectively. 
 

 
Figure 6.11 Plots of the coefficient of resistance found for cylinder C4 falling in mixtures 

80/20 and 65/35 at ReP = 21.3 and 169.3, respectively. 
 

From Figure 6.12 it can be observed that the path exhibited a regular sinusoidal 

pattern, as suggested by Marchildon [25], and Chow and Adams [27], and that the 

starting and ending positions of the particle centroid were different. In addition, the 

orientation of the cylinder along the trajectory changed consistently. The three-
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dimensional reconstructed path of both cases is provided in Figure 6.13, where the 

trajectory deviations were more evident. 

 

  
(a) (b) 

Figure 6.12 Qualitative visualization of cylinder C6 settling in mixtures 65/35 (a) and 50/50 
(b) at ReP = 240.2 and 614.6, respectively. 

 

  
(a) (b) 

Figure 6.13 3D paths depicted by cylinder C6 as it fell freely in mixtures 65/35 (a), and 
50/50 (b) with ReP = 240.2 and 614.6, respectively. Dimensions in mm. 
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The variations of the angle of incidence of the cylinder along the trajectories are 

exposed quantitatively in the plots of Figure 6.14, where it can be seen that for mixture 

65/35 a full oscillation between α = 69° – 90° occurred before t = 0.25 s; after this 

value the pattern was only marked by a gradual decrease from 90°. On the other hand, 

for mixture 50/50 the angular behaviour was nearly symmetrical once t > 0.05 s, with 

peaks and valleys within the interval α = 66° – 89°. 

 

 
Figure 6.14 Variation of the orientation angle of cylinder C6 along the settling trajectories 

drawn in mixtures 65/35 and 50/50 at ReP = 240.2 and 614.6, respectively. 
 

In Figures 6.15 and 6.16 the plots of the fall velocity and drag force as function of time 

are portrayed for both cases. As it can be observed from the first figure, UT achieved 

a magnitude equal to 0.28 m/s at t = 0.25 s for mixture 65/35 whilst for the second 

mixture the value of UT reached was 0.32 m/s at t = 0.37 s. In both situations, Equation 

(2.10) failed on the prediction of the terminal velocity too, nonetheless this time with 

an under estimation of 12 % and 14 %, respectively. From Figure 6.16 it can also be 

said that contrary to the previous cases, the drag force did not achieve any fixed value 

but kept increasing throughout the whole time interval, with magnitudes up to 2.0 mN 

and 2.1 mN, respectively. 

 

In Figure 6.17 the plots of the estimated coefficient of resistance versus time for 

cylinder C6 in both liquid combinations are displayed, revealing that a nearly stable 
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value of CD was accomplished for each situation at UT conditions. For mixture 65/35, 

CD was equal to 0.8 with a slight increment to 0.9 at the end of the interval, whilst for 

mixture 50/50 it remained at 0.7. Here too, the estimation of CD done by Equation 

(2.24a) disagreed with the experimental data, but this time for 20 % and 22 %, 

respectively. 

 

 
Figure 6.15 Plots of the fall velocities of cylinder C6 in mixtures 65/35 and 50/50. The 

corresponding particle Reynolds numbers were ReP = 240.2 and 614.6, respectively. 
 

 
Figure 6.16 Graphs of the drag force exerted on cylinder C6 as it settled in mixtures 65/35 

and 50/50 at ReP = 240.2 and 614.6, respectively. 
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Figure 6.17 Variation of the coefficient of resistance estimated for cylinder C6 during its 

motion in mixtures 65/35 and 50/50 at ReP = 240.2 and 614.6, respectively. 
 
The sinusoid-like 2D trajectory as well as the changes in orientation of PTFE cylinder 

C2 as it fell in pure water (ReP = 1661) can be observed in Figure 6.18a as recorded 

by the stereo camera, whilst in Figure 6.18b an augmented visualization through 

Schlieren photography of the flow around the cylinder as well as its trail downstream 

is provided. As it can be seen, the fluid downstream the particle is characterised by 

high turbulence and asymmetry. 

 

In Figure 6.19 a series of Schlieren images of the cylinder C2 is portrayed in such a 

way that a whole angular oscillation cycle can be appreciated. It is believed that the 

manner in which the vorticity is released into the neighbouring liquid is responsible 

for the modifications of the pressure on the surface of the solid which in turn generate 

the torques that originate and sustain the oscillating motion, as proposed by Chow and 

Adams [27]. 

 

The largest particle Reynolds number investigated for the cylindrical solids of this 

work was ReP = 1975, registered for the motion of PTFE cylinder C4 in pure water. A 

qualitative view of the fall path as seen by the camera is depicted in Figure 6.20a whilst 

in Figure 6.20b it is shown quantitatively in three dimensions. As with the previous 

cases, the trajectory continued to exhibit a regular sinusoidal pattern though with a 
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larger period. Moreover, the orientation of the particle also kept the zig-zag, unceasing 

changes. 

 

  
(a) (b) 

Figure 6.18 Direct (a) and Schlieren (b) visualization of the secondary motion around 
cylinder C2 as it fell in pure water (ReP = 1661). 

 

 
 Figure 6.19 Time-series of the Schlieren visualization of Figure 6.18b illustrating a whole 

angular orientation cycle of cylinder C2 falling in pure water (ReP = 1661). 
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(a) (b) 

Figure 6.20 2D visualization (a) and 3D plot (b) of the trajectory of cylinder C4 settling in 
pure water at ReP = 1975. Dimensions in mm. 

 
The plot of the different values of the angle of incidence is given in Figure 6.21, where 

it was observed that starting at t = 0.2 s, approximately, the behaviour was alike to that 

obtained for particle C6 at ReP = 614.6 after 0.1 s. In fact, the magnitude of the angle 

also stayed within a similar interval: α = 70° – 88°. Furthermore, considering that UT 

conditions also were nearly achieved at t = 0.2 s, as illustrated in Figure 6.22, it can 

be said that the sinusoid-like pattern plus regular oscillations of α still dominate the 

settling motion of cylinders at ReP > 103.  

 

 
Figure 6.21 Variation of the angle of incidence of cylinder C4 along its fall-trajectory in 

pure water (ReP = 1975). 
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The time variation of the velocity determined for cylinder C4 falling in pure water is 

exposed in Figure 6.22 along with the predicted value from Equation (2.10). As noted 

from the graph, at t = 0.25 s, the magnitude of UT was 0.30 m/s, then it increased up 

to 0.33 m/s at t = 0.34 s, to later decrease again to 0.30 m/s. In consequence, 0.30 m/s 

was taken as the representative value of UT, which also was approximately 7 % 

differed higher that the predicted magnitude. 

 
Figure 6.22 Velocity variation of cylinder C4 falling in pure water (ReP = 1975). 

 
The plots of the drag force exerted on particle C4 and the corresponding coefficients 

of resistance are given in Figures 6.23 and 6.24, respectively. In the same way as for 

the previous cylinders with oscillatory motion, FD did not achieve a fixed value but 

kept increasing gradually from 1.3 mN to 1.5 mN.  Additionally, at UT conditions the 

magnitudes of the coefficient varied between CD = 0.7 to CD = 0.8, numbers which are 

42 % and 33 % lower than the estimations given by Equation (2.24a). It is suggested 

that such variation was due to the presence of the secondary oscillating-motion. 

 
Figure 6.23 Plot of the drag force acting on cylinder C4 as it freely descended in pure water 

at ReP = 1975. 
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Figure 6.24 Drag coefficient estimated for cylinder C4 moving in pure water (ReP = 1975). 

 

In Figure 6.25 there is a graphical summary of the terminal velocities obtained for all 

the experiments with cylindrical particles. The corresponding values given by the 

correlation of Haider and Levenspiel (Equation 2.10) are also indicated for the purpose 

of comparison. As it was done for the spheres, ReP was omitted from the horizontal 

axis and replaced by N, the number of different ReP studied. The relation between ReP 

and N is provided in Table 6.1. Since more than one test was done for every N, the 

magnitudes of UT plotted correspond to the arithmetic mean for each case. 

 

 
Figure 6.25 Comparison between the experimental and the predicted the terminal velocities 

obtained for the cylindrical particles. 
 
As it is depicted in Figure 6.25, before ReP ~ 30 the magnitude of the particle terminal 

velocity obtained experimentally was smaller than that predicted by Equation (2.10). 



131 
 

Then, in the interval 30 < ReP < 240 the agreement between both results was 

remarkable. Finally, for ReP > 240 the correlation under-estimated the true value of 

UT. In summary, throughout the whole Reynolds number range, the differences varied 

between 2 % to 17 %. 

 

Table 6.1 Relation between ReP and N of Figure 6.25. 

N ReP N ReP 

1 0.7 7 212.2 

2 19.5 8 310.8 

3 22.6 9 406.0 

4 33.7 10 434.6 

5 169.3 11 614.6 

6 240.2 12 1975.0 

 

The corresponding values of the coefficient of resistance for all the experiments done 

are also summarised and presented in Table 6.2 and Figure 6.26 in function of ReP. 

The magnitudes of CD predicted by Equations (2.24a, 2.24c, 2.24d, 2.24f) for all the 

cases are included in the graph too. The values of ReP employed in the correlations 

were calculated using the magnitudes of UT determined experimentally, and not the 

theoretical results given by Equation (2.10). Also, like in Figure 6.25, the values of CD 

plotted correspond to the averages of all the tests done for every N. 

 
Table 6.2 Relation between ReP and CD. 

N ReP CD ∅ N ReP CD ∅ 

1 0.7 43.6 0.8 7 212.2 1.0 0.7 

2 19.5 3.1 0.8 8 310.8 0.8 0.7 

3 22.6 2.7 0.8 9 406.0 0.9 0.8 

4 33.7 1.9 0.8 10 434.6 0.8 0.8 

5 169.3 1.0 0.8 11 614.6 0.7 0.8 

6 240.2 0.8 0.8 12 1975.0 0.8 0.8 

 

As observed in Figure 6.26, for cylinders with ∅ = 0.8 (L < 10.5 mm), at ReP < 1.0, 

the difference between the experimental result and those from the correlations was 

practically negligible, indeed the maximum discrepancy found was 3 %. However, in 

the interval 1.0 < ReP < 169, the disagreement fluctuated between 2 % and 28 %, and 

for 200 < ReP < 1000, the presence of secondary motions elevated it up to the range 

14 % – 32 %, with respect to the correlations proposed by Haider and Levenspiel [16], 

Ganser [18], and Chien [53]. Finally, at ReP > 1000, the discrepancy, still relative to 
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the same three correlations, increased even further, to 36 % – 39 %. For cylinders with 

∅ = 0.7 (L > 20.0 mm), only evaluated in the interval 200 < ReP < 350, the obtained 

differences were higher, fluctuating between 40 % – 55 % with respect to the same 

three authors. 

 

 
Figure 6.26 Comparison between the experimental and the correlation-predicted values of 

CD found for the cylindrical particles. 
 

From the three equations discussed in the previous paragraph, the one published by 

Haider and Levenspiel [16] had, in general, the lowest differences with respect to the 

experimental data obtained here, throughout the whole ReP interval, nevertheless the 

correlation suggested by Chow and Adams [27] was not discussed yet because its 

validity begins at ReP = 200. It was found that for all the particle Reynolds numbers 

larger than 200, the difference between their equation and the experimental data shown 

here did not surpass 11 %, regardless the magnitude of ∅. It is believed that this 

happened because in their correlation, they considered the influence of the secondary 

motions. 

 

Chow and Adams [27] used the aspect ratio instead of the sphericity and nominal 

diameter to characterise the cylinders, and based on the experimental results given 

here, it seemed that such approach tends to be more accurate for ReP > 200. Moreover, 
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they also said that as long as �
�� ��⁄

�
> 0.5, the oscillatory motion will always appear, 

nevertheless, in this work it was found that such condition applies only if ReP > 240. 

 

6.2 KINEMATICS AND DYNAMICS OF DISK-SHAPED PARTICLES AT 

DIFFERENT REYNOLDS NUMBERS 

 

In Section 2.2.4 of Chapter 2 it was mentioned that for the case of a disk settling in a 

liquid at rest Stringham et al. [26] reported three different patterns of motion: steady, 

transition, and tumble. Whilst the first one normally appears at relatively small values 

of ReP, the border between the other two is not clear. In this research, however, the 

lowest Reynolds number studied is ReP = 19.7 and it was obtained for the settling of 

disk D2 in mixture 80/20. As illustrated in Figure 6.27a, the motion was totally steady 

with the maximum projected area perpendicular to the direction of fall. The 

corresponding 3D reconstructed trajectory is plotted in Figure 6.27b, where the disk 

centroid is coloured in red, the extreme points P1 and P2 in green, and the longest axis 

in blue. 

 

  
(a) (b) 

Figure 6.27 2D (a) and 3D (b) visualizations of the free fall of disk D2 in mixture 80/20 at 
ReP =19.7. Dimensions in mm. 
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From Figure 6.27 it can be noticed that despite describing a steady fall, the disk 

exhibited a slight horizontal deviation. Nevertheless, the orientation remained 

unchanged because, as represented in Figure 6.28, the secondary flow around the 

particle and the trail left downstream were highly symmetrical. In the plots of Figure 

6.29, it can also be appreciated that the angle of incidence stayed fixed at α = 84.3° 

and the particle projected area, calculated as �� = 0.25�������, at AP = 31.5 μm2 

during the whole time interval. 

 
Figure 6.28 Augmented view of the secondary flow and trail left by disk D2 settling in 

mixture 80/20 at ReP =19.7. 
 

 
Figure 6.29 Angle and projected area variation of disk D2 sinking freely in mixture 80/20 at 

ReP =19.7. 
 

In Figure 6.30 the graph of the time variation of the velocity experienced by disk D2 

is displayed, where it can be seen that after t = 0.15 s the particle achieved a terminal 

velocity which started at UT = 0.15 m/s and progressively decreased to UT = 0.14 m/s. 

The magnitude of UT predicted by Equation (2.10) was 0.17 m/s, equivalent to 15 % 

of discrepancy with the experimental data. 
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Figure 6.30 Velocity variation obtained for the fall of disk D2 in mixture 80/20 (ReP =19.7). 
 
The drag force acting on disk D2 as well as the corresponding coefficient of resistance 

are plotted in Figures 6.31 and 6.32, respectively, where it can be seen observed that 

FD remained unchanged at 1.2 mN throughout the whole time interval, whilst the 

coefficient augmented steadily to reach CD = 2.9, the same value estimated by 

Equation (2.24a), at t = 0.55 s, approximately. 

 

 
Figure 6.31 Plot of the drag force acting on disk D2 during its settling in mixture 80/20 at 

ReP =19.7. 

 
Figure 6.32 Drag coefficient estimated for disk D2 moving in mixture 80/20 (ReP = 19.7). 
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The motion of disks at higher Reynolds numbers is represented in two dimensions in 

Figure 6.33, where the settling of disks D2 and D3 in mixture 65/35 at ReP = 163.0 

and 186.8, respectively, is imaged. As shown, the fall continued to be flat and steady 

for the first case, whilst few disk oscillations appeared in the second one, although by 

the time the solid left the camera field of view, its orientation was horizontally flat. 

The analogous three-dimensionally regenerated paths for both cases are portrayed in 

Figure 6.34. Here too, some slight fluctuations in the trajectory can be appreciated, 

mainly for the second disk. 

 

  
(a) (b) 

Figure 6.33 2D visualizations of the paths of disks D2 (a) and D3 (b) falling in mixture 
65/35 at ReP = 163.0 and 186.8, respectively. 

 

The change of the angle of incidence for both disks is graphed in Figure 6.35, where 

it can be said that after t = 0.37 s, approximately, both particles reached stable values, 

which in average were α = 83.7° for D2 and α = 87.7° for D3. In addition, this time 

also corresponded to the onset of terminal velocity conditions, as it can be proved from 

the velocity plots of Figure 6.36. 

 

In Figure 6.35 the plots of the disk projected area where not included because it 

described exactly the same distribution as the angle of incidence. This situation 

occurred for all the disks, therefore in the coming graphs AP was also omitted. As it is 

shown in Figure 6.36 the variation of UT between the disks was different. Whilst D2 

assumed a steady value equal to 0.26 m/s at t = 0.37 s, for D3 an oscillating behaviour 
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in the range UT = 0.19 m/s – 0.22 m/s was discovered. Nevertheless, for the purpose 

of comparison an averaged valued equal to 0.21 m/s was also calculated. In both cases, 

the discrepancies between the experimental results and the predictions of Equation 

(2.10) did not exceed 4 %. 

  
(a) (b) 

Figure 6.34 3D reconstructed trajectories of disks D2 (a) and D3 (b) settling in mixture 
65/35 with ReP = 163.0 and 186.8, respectively. 

 

 
Figure 6.35 Orientation angle detected for disks D2 and D3 whilst descending in mixture 

65/35 at ReP = 163.0 and 186.8, respectively.  
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Figure 6.36 Velocity variation for disks D2 and D3 falling in mixture 65/35 at ReP = 163.0 

and 186.8, respectively.  

 

Figures 6.37 and 6.38 display the time change of the drag force and the corresponding 

coefficient of resistance for both particles moving in mixture 65/35. As it can be 

observed in the first figure, for the solid D2 the magnitude of FD was practically 

constant at 1.2 mN throughout the whole field of view. On the other hand, relatively 

large fluctuations were calculated for disk D3 before t = 0.20 s, however, since these 

were well before UT was reached they were discarded. At UT conditions, the force 

varied between FD = 2.1 mN and 2.5 mN with fluctuations considerably reduced. 

 

From Figure 6.38 it can be seen that at conditions of terminal velocity the coefficient 

of resistance determined for D2 was located in the interval CD = 0.9 – 1.0, in average 

21 % below from the value estimated using Equation (2.24a). In contrast, the range of 

variation of CD found for disk D3 was considerably larger: CD = 1.0 – 1.4. It is believed 

that this was the consequence of the oscillating behaviour of UT because the plot of 

CD followed a similar trend. Additionally, in this case the theoretical outcome of 

Equation (2.24a) was situated at the top of the interval, corresponding to an over-

estimation of 14 % with respect to the mean of the experimental data. 

 

Although patterns of oscillation, gliding, and tumbling normally arise at considerably 

large numbers of ReP, it was illustrated in Figure 2.14 and Table 2.3 of Chapter 2 that 
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according to Stringham et al. [26] such behaviours can also be found for disks settling 

at values of ReP as low as 300. This agreed with the results obtained in this research 

for the free-fall of particle D1 in mixture 65/35 where pure tumbling was visualized at 

ReP = 226.2, as portrayed in Figure 6.39 in both two and three dimensions. The change 

in the corresponding values of the angle of incidence is also graphically displayed in 

Figure 6.40. 

 
Figure 6.37 Drag force plots for disks D2 and D3 falling in mixture 65/35 at ReP = 163.0 

and 186.8, respectively.  
 

 
Figure 6.38 Time-change of the coefficient of drag found for disks D2 and D3 moving in 

mixture 65/35 at ReP = 163.0 and 186.8, respectively.  
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(a) (b) 

 

Figure 6.39 2D path (a) and 3D path (b) of disk D1 falling in mixture 65/35 at ReP = 226.2. 
Dimensions in mm.  

 

 
Figure 6.40 Angular variation shown by disk D1 falling in mixture 65/35 at ReP = 226.2. 

 

As observed in Figure 6.40, α described a regular sinusoidal pattern with 71.2° of 

amplitude and 0.07 s of period during the whole visualization. The minimum value of 

α was 10.5°, and the maximum was 81.7°. It was assumed that when the disk entered 

the field of view of the stereo camera it was already at final velocity conditions, since 

the plot of the velocity provided in Figure 6.41 also exhibited a similar tendency, with 
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UT = 0.30 m/s and UT = 0.58 m/s as the largest and lowest determined magnitudes. 

The average UT = 0.44 m/s corresponded exactly to the prediction of Equation (2.10). 

 

 
Figure 6.41 Plot of the velocity experienced by disk D1 during its free fall in mixture 65/35 

at ReP = 226.2.  

 
In the plot of the drag force displayed in Figure 6.42 a similar sinusoidal configuration 

was obtained in the time-range t = 0.03 s – 0.26 s. The magnitude of the force 

fluctuated between FD = 0.7 mN and FD = 4.9 mN. The corresponding behaviour of 

the coefficient of resistance is illustrated in Figure 6.43 where regularities were also 

observed in the same interval of time. The range of CD was 0.8 – 2.6, being the mean 

value equal to 1.7. In this case, the difference obtained with respect to Equation (2.24a) 

was 13 %. However, most of the experimental values of CD were above the correlation 

result. 

 
Figure 6.42 Drag force graph of disk D1 falling in mixture 65/35 at ReP = 226.2. 

 
As it can be noticed from the previous figures which belonged to the case of a tumbling 

disk, in this type of fall all the motion parameters are characterised for exhibiting a 



142 
 

highly regular, alternating pattern. Furthermore, the settling path follows a straight but 

not vertical line. Tumbling did not appear again for the rest of ReP studied here, but an 

oscillating mode of fall with increasing regularity was established, as illustrated in 

Figure 6.44 for disk D3 falling in liquids 50/50 and 0/100 with ReP = 384.4 and 1362, 

respectively. 

 
Figure 6.43 Plot of the coefficient of resistance determined for disk D1 when settling in 

mixture 65/35 at ReP = 226.2.  

 

  
(a) (b) 

Figure 6.44 2D visualization of the fall of disk D3 in mixtures 50/50 and 0/100 (ReP = 384.4 
and 1362, respectively). 

 

Figure 6.44a shows that at ReP = 384.4 the disk secondary motion was mainly 

composed by oscillation and gliding whilst Figure 6.44b depicts that at ReP = 1362 it 

was formed by largely regular oscillations. In both cases, these secondary motions 
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greatly deviated the 3D regenerated paths from straight trajectories, as displayed in 

Figure 6.45a, where the particle longest axis was not represented for clarity purposes. 

Only the disk centroids are still coloured with red points. 

 

  
(a) (b) 

Figure 6.45 3D reconstructed paths for the fall of disk D3 in mixtures 50/50 and 0/100 at 
ReP = 384.4 and 1362, respectively. Dimensions in mm. 

 

The characteristics of the flow downstream the disk at ReP = 1362 can be appreciated 

from the Schlieren visualization portrayed in Figure 6.46. At this value of Reynolds 

number, the flow exhibited a high turbulence, which was increased even farther by 

every change in the orientation of the solid. In addition, the also turbulent trail left by 

the particle preserved the zig-zag shape until it was dissipated in the surrounding fluid. 

No symmetry was found in the visualized fluid. 

 

In Figure 6.47 the behaviour of the angle of incidence is plotted in function of time for 

both settlings. As it can be seen, in the first case the combinations of gliding and 

oscillation avoid the formation of a uniform curve, like the one attained for the second 

case with approximately 55.8° of amplitude and 0.4 s of period. From both plots it can 

also be noticed that the alternations observed in the second fall were considerably 
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larger in magnitude than those of the first one. This directly impacted on the values of 

the velocity, as illustrated in Figure 6.48. 

 

 
Figure 6.46 Schlieren visualization of disk D3 settling in mixture 0/100 at ReP = 1362. 

 

 
Figure 6.47 Variation of the angle of incidence for disk D3 settling in mixtures 50/50 and 

0/100 at ReP = 384.4 and 1362, respectively. 
 
From the graphs of Figure 6.48 it was noticed that the values of the UT computed with 

Equation (2.10) coincided in both cases with the maximum velocities registered for 

the settling of the disks, however they were 21 % and 33 % away from the averages 

UT = 0.19 m/s and 0.18 m/s, respectively. It should also be noted that despite the fact 

that viscosity of the second liquid was lower, in it the disk fell with a smaller averaged-
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final velocity due to the larger alternations mentioned in the previous paragraph. 

Similar to the tumbling, the oscillatory and gliding motions did not have an explicit 

fixed value of the terminal velocity, thus averages needed to be calculated so that the 

comparison with the correlation could be done. Also, the corresponding Reynolds 

numbers were computed using these averages. 

 

 
Figure 6.48 Plot of the velocity obtained for the settling of disk D3 in mixtures 50/50 and 

0/100 at ReP = 384.4 and 1362, respectively. 
 
The plots of the drag force exerted on disk D3 while settling in these two mixtures are 

provided in Figure 6.49, where it can be perceived that alternated patterns were also 

acquired for both cases. The minimum and maximum magnitudes registered were 

FD,min = 0.3 mN and FD,max = 4.5 mN for the first mixture, and FD,min = 0.5 mN and 

FD,max = 4.2 mN for the other one. Here again, the influence of the larger oscillations 

can be perceived. The corresponding plots of the coefficient of drag are presented in 

Figure 6.50. 

 

As displayed in Figure 6.50, during the whole time interval the coefficient of resistance 

does not exhibit a steady value in any of the cases, on the contrary, despite being most 

of the data relatively close to the values predicted by Equation (2.24a), CD still presents 

considerably large fluctuations. Nevertheless, in order to perform a contrast with the 

correlation, the averaged values CD = 1.8 and 2.5, respectively, were computed, 
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showing that both were 29 % and 47 % bigger than the results of the equation. In the 

oscillation, gliding, and tumbling types of fall, the averaged-magnitudes were only 

simple representations for the purpose of comparison, because it is believed here that 

the large fluctuations which appeared in the plots cannot be fully summarised in just 

one number.  

 

 
Figure 6.49 Drag force exerted on disk D3 during its fall in liquids 50/50 and 0/100 with 

ReP = 384.4 and 1362, respectively. 
 

 

 
Figure 6.50 Variation of the coefficient of resistance for disk D3 settling in mixtures 50/50 

and 0/100 at ReP 384.4 and 1362, respectively. 
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By following the same procedure applied to the spheres and cylinders, in Figure 6.51 

it is plotted the collection of all of the experimental values of UT as a function of N, 

the number of ReP investigated. The results given by Equation (2.10) are also included 

for comparison. The relation between N and ReP is provided in Table 5.3. Each 

experimental UT point corresponds to the arithmetic mean of all the tests done for 

every N. Moreover, it also has to be highlighted that because the situations where 

secondary motions were present lacked of a steady value of UT, the average between 

UT,max and UT,min was taken for each individual case. From the figure, it was deduced 

that the largest discrepancies with respect to the correlation occurred at ReP < 20 and 

ReP > 384, with percentage equivalents situated in the range 16 % – 34 %. For the rest 

of Reynolds numbers, the differences fluctuated between 2 % and 6 %.  

 

 
Figure 6.51 Comparison between the experimental and the predicted the terminal velocities 

obtained for the disks. 
 

Table 5.3 Relation between N and ReP of Figure 6.51. 

N ReP N ReP 

1 19.7 5 186.8 

2 30.5 6 231.4 

3 38.8 7 384.4 

4 163.0 8 1362.0 

 

The summary of the drag coefficients obtained for the settling disks is also shown 

graphically in Figures 6.52. As it was done for UT in the previous figure, every 

magnitude of CD plotted corresponds to the average of all the tests done for that ReP. 
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In addition, the theoretical results predicted by Equations (2.24a, 2.24c, 2.24d) are 

included in the plot for comparison. Furthermore, the theoretical magnitudes of the 

terminal velocity were not used here to estimate the particle Reynolds numbers used 

in the correlations, rather those obtained experimentally were employed. 

 
Table 5.4 Relation between ReP and CD. 

N ReP CD ∅ N ReP CD ∅ 

1 19.7 2.9 0.8 5 186.8 1.2 0.7 

2 30.5 1.9 0.7 6 231.4 1.7 0.7 

3 38.8 1.6 0.7 7 384.4 1.8 0.7 

4 163.0 1.0 0.8 8 1362.0 2.5 0.7 
 

 
(a) 

 
(b) 

 

Figure 6.52 Comparison between the experimental and the correlation-predicted values of 
CD found for the disks: (a) 10 < ReP < 170, (b) 180 < ReP < 1500. 

 

For the cases plotted in Figure 6.52a there was an absence of secondary motions, thus 

a decreasing trend of CD as ReP augmented can be noticed. Moreover, for  
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∅ = 0.8 the disagreement between the experimental data and the literature correlations 

fluctuated between 4 % – 31 %, and for ∅ = 0.7 the it was considerably larger, between 

32 % – 45 %. This demonstrated the extent of the impact caused by a decrease in 

sphericity. 

 

In Figure 6.52b, because of the presence of secondary motions, the trend of CD was to 

increase with ReP. This behaviour agreed with the tendency reported by Stringham et 

al. [26] in Figure 2.15 as ReP > 100 roughly. The results from the three literature 

correlations included in Figure 6.52b failed to reflect such behaviour. Moreover, the 

differences between them and the experimental data fluctuated significantly, from 

about 1 % up to 60 %. 

 

6.3 INFLUENCE OF THE ANGLE OF INCIDENCE ON THE COEFFICIENT 

OF DRAG FOR CYLINDERS AND DISKS 

 

As it was seen in the previous sections, the magnitudes of CD were considerably 

influenced by the presence of fully developed secondary motions because they modify 

the orientation of the particle with respect to the motion direction and alter the 

structure of the surrounding fluid. Provided that different researches have suggested 

that such an influence can be considered through mathematical correlations which 

express the dependency of CD on α, in this section such dependency is investigated. 

 

In Chapter 2 it was stated that particles behave different when they are allowed to 

travel freely than when they are held static and exposed to a moving fluid. Hence, 

correlations developed from fixed-particle works, such as the one published by 

Zastawny et al. [28], were discarded for the current study. Moreover, their correlation 

is valid for ReP < 300. This contradicts the findings of Marchildon [25] and Chow and 

Adams [27], as well as the ones explicated in this thesis so far, where it has been 

remarked that the secondary motions, and subsequent angular orientation changes, 

begin when ReP > 300, though they sometimes may appear before. 

 

In spite of the fact that for most of the cases of oscillating cylinders exposed in Section 

6.1, the angle of incidence did not vary in magnitudes large enough to produce 

outstanding fluctuations in the drag coefficient, plots of CD in terms of α could still be 
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generated, as illustrated in Figures 6.53, 6.55, and 6.56, where the results given by 

Equations (2.25) and (2.26), recommended by Rosendahl [11] and Mandø and 

Rosendahl [30], respectively, are added for comparison. 

 

● Experimental   Δ Rosendahl   × Mandø and Rosendahl 
 

(a) 

● Experimental   Δ Rosendahl   × Mandø and Rosendahl 
 

(b) 
 

Figure 6.53 CD – α plots for cylinder C2 falling in mixture 50/50 at ReP = 413.0 (a) and 
400.0 (b), respectively. The terms down and up refer to whether α was decreasing or 

increasing (see Figure 6.54). 
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The plots of Fig 6.53a were generated from the graphs shown in Figure 6.54, where 

the values of CD were re-classified in agreement with the variations of α at conditions 

of terminal velocity only. In this way, the terms down and up refer to either a 

decreasing or increasing α, whilst the numbers 1, 2, 3, 4 just express the order of the 

events. The plots of Figures 6.53b, 6.55, and 6.55 were created following the same 

procedure. 

 

 
Figure 6.54 α and CD time-variations at UT conditions for cylinder C2 falling in mixture 

50/50 at ReP = 413.0. The terms down and up refer to a decreasing or increasing α. 
 

 

 
● Experimental   Δ Rosendahl   × Mandø and Rosendahl 

 

Figure 6.55 CD – α plots for cylinder C6 falling in mixture 50/50 at ReP = 614.6. 
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● Experimental   Δ Rosendahl   × Mandø and Rosendahl 
 

Figure 6.56 α – CD plots for cylinder C4 settling in pure water at ReP = 1975. 
 

In Figures 6.53, 6.55, and 6.56 it can be observed that the approach recommended by 

Mandø and Rosendahl [30] performed better with respect to the experimental data than 

the one suggested by Rosendahl [11], nevertheless in some of the cases both 

approaches failed to reproduce the trend of the curve. This because in their models 

they assumed that any increment of α will always augment the magnitude of CD, and 

sometimes this may not be true, as illustrated in Figures 6.53b and 6.56. Such an 

assumption is typical of configurations where the particle motion is restricted. 

 

Hölzer and Sommerfeld [34] published a drag correlation which considers the 

influence of changes in orientation, nonetheless, as exemplified in Figure 6.57 for the 

fall of cylinder C4 in pure water at ReP = 1975, it disagreed with the experimental 

results (by 35 % to 46 %) and the models of Rosendahl [11], and Mandø and 

Rosendahl [30]. Moreover, their correlation showed great similitude with those of 

Haider and Levenspier [16], Ganser [18], and Chien [53], which also over-estimated 

the magnitude of CD by a similar amount. 

 

In Figures 6.58 and 6.59, the variations of CD with α for the case of two fully tumbling 

disks, of same dimensions and material, sinking in mixture 65/35 at ReP = 226.2 and 

ReP = 236.5, respectively, are displayed. The colours in Figures 6.58a and 6.59a 
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represent the time intervals where the magnitude of α increased or decreased, whilst 

Figures 6.58b,c and 6.59b,c exhibit the behaviour of CD as a function of α that was 

observed at those intervals. 

 

 
Figure 6.57 Comparison between the experimental and theoretical values of CD obtained for 

the oscillating fall of cylinder C4 in pure water at ReP = 1975. 
 

 
           (a) 

          (b)          (c) 
 

Figure 6.58 Time variation of CD for disk D1 falling in mixture 65/35 at ReP = 226.2 (a). 
Each colour represents the interval where α increased (up) or decreased (down). Variation of 

CD with α decreasing (b), and increasing (c). 
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           (a) 

          (b)          (c) 
 

Figure 6.59 Time variation of CD for disk D1 falling in mixture 65/35 at ReP = 236.5 (a). 
Each colour represents the interval where α increased (up) or decreased (down). Variation of 

CD with α increasing (b), and decreasing (c). 
 

 In each of the CD – α plots of Figures 6.58b,c and 6.59b,c it was distinguished that the 

curves followed a trend reasonably similar for every either augmenting or decreasing 

α, however no obvious resemblance was observed between the up and down curves. 

Furthermore, though some agreement can be noticed between Figures 6.58a and 6.59a, 

no similarity was detected between Figures 6.58b and 6.59b, and 6.58c and 6.59c, 

respectively. 

 

It is believed that the reason for such behaviour lied on the fact that the development 

of the secondary motion and angular change did not follow the same history, even for 

the same particle tested at equal conditions. An identical deduction can also be 

achieved by analysing the CD – α plots of Figures 6.60, which correspond to three 

different drops of disk D3 in mixture 50/50 at ReP = 390.5 (a,b), 384.4 (c,d), and 380.2 

(e,f), respectively. The secondary motions registered in these cases were random 

combinations of oscillation and gliding. 
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(a) (b) 

(c) (d) 

(e) (f) 
 

Figure 6.60 CD – α variation for three drops of disk D3 in mixture 50/50 at ReP = 390.5 
(a,b), 384.4 (c,d), and 380.2 (e,f), respectively. The terms up and down refer to an increasing 

or decreasing α. 
 

By following the same colour-plotting principle, the behaviour of CD with α for the 

case of a fully oscillating disk D3 settling in water at ReP = 1362 is presented in Figure 

6.61. It can be highlighted that in this case CD changed to some extent in the same 

direction as α. Moreover, during the angular increase or decrease, the plots of CD 

versus α exhibited a close resemblance, though the changes were considerably more 

abrupt for the situations when the angle of incidence augmented than when it 

diminished. 

 
From the comparison of the values of the drag coefficient in Figures 6.58 to 6.61, it 

can be affirmed that a disk which settles under fully developed oscillatory motion 

conditions experience more resistance than a tumbling or oscillating/gliding disk. This 
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because at pure oscillation the area projected by the solid is larger than at the other 

two secondary motions. Moreover, the structures of the surrounding fluid may play a 

role too. 

 

 
           (a) 

        (b)         (c) 
 

Figure 6.61 Time variation of CD for disk D3 falling in pure water at ReP = 1362 (a). Each 
colour represents the interval where α increased (up) or decreased (down). Variation of CD 

with α increasing (b), and decreasing (c). 
 

Based on the experimental results presented in Figures 6.53 to 6.61 it can be said that 

it was clearly demonstrated that at terminal velocity conditions, the presence of 

secondary motions continuously change the angular position of a non-spherical 

particle and that this has a direct effect on the magnitude of the coefficient of 

resistance, which may or may not be in the same direction as α. Additionally, it was 

also observed that since the evolution of the secondary motions may not be identical, 

even for the same particle and fluid, the trend of the CD - α curves cannot be constant, 

however they should exhibit some resemblance. 
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Chapter 7 
 

EXPLORATORY STUDY OF THE BEHAVIOUR OF IRREGULAR 
PARTICLES IMMERSED IN FLUIDS AT REST AND IN MOTION 

 
 

Irregular particles do not exhibit clear patterns of fall such as the ones shown by the 

regular solids studied in the previous chapters due to their geometrical uneven 

characteristics. In fact, their behaviour can be remarkably different, thus making the 

prediction of any motion parameter more complicated. In this chapter, the behaviour 

of such irregular bodies both in free-fall and in an airflow is explored. 

 

In Section 7.1, some PTFE particles resembling the shape of irregular wood chips were 

let to settle freely in pure water and in two mixtures of glycerine with water. Then, 

like in Chapters 5 and 6, the trajectories and other motion quantities were analytically 

investigated. The experimentally obtained values of CD were also compared with the 

empirical Equation (2.24b) developed for irregular solids. 

 

In Section 7.2 the case of wood chips immersed in a pipe-enclosed airflow is 

qualitatively examined. Alterations in the motion of the particles due to their 

geometrical irregularity and its interaction with the air current, as well as those caused 

by impacts against the pipe wall or by the proximity of another particle were identified 

and described. 

 

This chapter does not aim for an in-depth study of the motion of irregular solids, but 

to highlight some of the complexities that can be found and the challenges they pose, 

and to show the advantages and limitations of the experimental image-based 

techniques applied in this thesis to address such phenomena. Other possible methods 

of analysis were also suggested. 

 

7.1 IRREGULAR PARTICLES SETTLING IN LIQUIDS AT REST 

 

The PTFE irregular particles used for the free settling experiments are displayed in 

Figure 7.1. All of them were made manually with the assistance in such a way that 

they could resemble the form of wood chips. In average the largest, intermediate, and 
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shortest dimensions were 17.8 mm × 3.0 mm × 1.3 mm, respectively. A total of five 

particles were tested in each of the following glycerine-water mixtures: 80/20, 65/35, 

and 0/100 (pure water), according to Table 5.5. 

 

 
Figure 7.1 Irregular PTFE particles. 

 
In Figure 7.2 the two-dimensional visualisation of the free settling of two PTFE 

irregular particles in mixtures 80/20 and 65/35, respectively is illustrated. Their 

dimensions are 19.0 mm × 2.4 mm × 1.0 mm, and 18.8 mm × 2.0 mm × 1.6 mm, which 

corresponded to ReP = 8.3 and 74.2, respectively. The three-dimensional paths can 

also be seen in Figure 7.3, where the longest axis has been marked with blue colour 

for some randomly chosen positions. 

 

  
(a) (b) 

Figure 7.2 2D visualisation of two PTFE chips falling freely in mixtures 80/20 and 65/35 at 
ReP = 8.3 and 74.2, respectively. 
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From Figures 7.2a and 7.3a it can be observed that at this value of ReP the irregular 

particle took a stable position with the heaviest part pointing downwards and 

exhibiting the maximum projected area to the direction of motion. The fall at the next 

higher Reynolds number also seemed to be considerably stable, with the largest area 

projected perpendicularly to the motion too. However, slight angular variations were 

also perceived. 

 

  
(a) (b) 

Figure 7.3 3D paths of the two PTFE chips of Figure 7.1 settling in mixtures 80/20 and 
65/35 at ReP = 8.3 and 74.2, respectively. 

 
The rest of irregular PTFE solids dropped in mixture 80/20 exhibited a similar 

behaviour to the one depicted in Figures 7.2a and 7.3a, nevertheless for mixture 65/35 

it was found that although the particles normally kept their largest projected area 

perpendicular to the motion direction, some rotation around an axis normal to the 

camera axis also appeared for some cases, as shown in Figure 7.4. It is believed that 

the rotation happened as a result of the disturbances in the surrounding fluid imposed 

by the uneven geometry of the particles. 

 

It can be argued from Figure 7.4 that the detection of the centroid in the zone enclosed 

by the red circle could still be achieved reasonably well, however the rotation makes 

it impossible to determine the correct particle longest axis, and the angular orientation 



160 
 

in consequence. During the spin the particle hides most of its surface from the field of 

view. This phenomenon is named occlusion, and is a major disadvantage of the 

conventional two-camera stereo vision systems.  

 

 
Figure 7.4 2D visualisation of a settling PTFE irregular particle with rotation. 

 
Because occlusion cannot be overcome, it can be said that the technique used in this 

research is not suitable to track the full motion of a solid which experiences rotation 

around axes normal to the camera axis. An arrangement of two cameras at 90° from 

each could be a more suitable alternative since it provides two perpendicular views of 

the particle, which in turn could be used to quantify the angular velocities and torques 

expressed in Equations (2.34 – 2.36) provided that the moments of inertia can be 

determined. 

 

In Figure 7.5 the angular change of the PTFE irregular chips of Figure 7.2 is displayed. 

It can be noticed that after t = 1.3 s, the first particle achieved a stable magnitude of α 

equal to 60.1° approximately, whilst the second one exhibited some variation between 

α = 76.7° and α = 87.0° once t exceeded 0.25 s. The corresponding values of the 

projected area, calculated as AP = absinα, for the same times were AP = 30.0 μm2, and 

AP = 35.0 – 37.0 μm2, respectively. 

 

From the velocity plots portrayed in Figure 7.6, it can be seen that conditions of 

terminal velocity were reached at t = 0.40 s and t = 0.15 s, approximately. The 

corresponding magnitudes were UT = 0.07 m/s and UT = 0.13 m/s.  In this case, these 
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results were not compared with Equation (2.10) because this one was developed for 

isometric particles only. The plots of the drag force experienced by the chips are 

illustrated in Figure 7.7, where practically the same steady value, FD = 0.6mN, was 

determined for both solids. It is believed that the reason for such coincidence was the 

significant difference in shape between both irregular particles, as it can be seen in 

Figure 7.2. Whilst the first one resembles more a needle-like the second one is more 

similar to rectangular bar. 
 

 
Figure 7.5 Variation of the orientation angle of the two PTFE chips of Figure 7.2 settling in 

mixtures 80/20 and 65/35 at ReP = 8.3 and 74.2, respectively. 

 
Figure 7.6 Velocity plots obtained for the two PTFE chips of Figure 7.2 falling in mixtures 

80/20 and 65/35 at ReP = 8.3 and 74.2, respectively. 
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Figure 7.7 Plots of the drag force experienced by the two PTFE chips of Figure 7.2 whilst 

descending in mixtures 80/20 and 65/35 at ReP = 8.3 and 74.2, respectively. 
 
Considering the variation of the coefficient of resistance shown in Figure 7.8, it can 

be noticed that once the angle of incidence attained a fixed number, the first PTFE 

solid registered a CD equal to 5.6, which was 33 % below the theoretical result 

predicted by Equation (2.24b), developed for crushed irregular particles. For the 

second chip, the experimental magnitude of CD fluctuated between 1.6 and 1.7, which 

is nearly half of the estimation given by Equation (2.24b). 

 
Figure 7.8 Variation of the coefficient of resistance for the two PTFE chips of Figure 7.2 

falling in mixtures 80/20 and 65/35 at ReP = 8.3 and 74.2, respectively. 
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At larger values of ReP the fall of an irregular particle was no longer as steady as those 

shown in Figure 7.2, but more uneven as illustrated in Figure 7.9 for ReP = 689.2, 

where the settling in pure water of a 19.5 mm × 2.3 mm × 1.4 mm PTFE chip is 

displayed. Moreover, at this ReP regime, simultaneous rotations around 2 or 3 different 

axes was also found for other particles, such as the one portrayed in the series of 

pictures of Figure 7.10. Since the marked red point always corresponded to the same 

part of the solid, it was clear that the only possible way for that to happen was due to 

concurrent spins. 

  
(a) (b) 

 
Figure 7.9 2D (a) and 3D (b) visualisation of an irregular PTFE chip falling freely in pure 

water at ReP = 689.2. 
 

 

Figure 7.10 Settling of a 16.0 mm × 2.4 mm × 1.0 mm PTFE irregular chip in pure water, 
with simultaneous rotations around two or three different axes. 
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The turbulent structures of the flow adjacent to the PTFE irregular particles could also 

be revealed through Schlieren visualisation, such as the one portrayed in Figure 7.11, 

where for each particle orientation a different pattern can be observed. Furthermore, it 

was also noticed that because of the irregular geometry of the solid, with every rotation 

it did, the turbulence was enhanced. 

 

 
Figure 7.11 Schlieren visualisation of a PTFE irregular particle sinking in water. 

 

The angular change of the PTFE irregular chip of Figure 7.9 is plotted in Figure 7.12, 

where two large fluctuations can be appreciated for t < 0.45 s. After that, the angle 

oscillated within the interval 83.9° < α < 87.3°. However, the fluctuation of the 

projected area for t > 0.45 s was practically negligible. The computed average value 

was AP = 37.8 μm2. The plots of velocity, drag force, and coefficient of resistance for 

the same particle are exposed in Figures 7.13 to 7.15. 

 

 
Figure 7.12 Angular variation of the irregular PTFE chip of Figure 7.9 settling in pure water 

at ReP = 689.2. 
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From Figure 7.13 it can be inferred that a fixed terminal velocity magnitude was not 

obtained. Instead, after t = 0.45 s a moderately regular sinusoidal variation between 

0.09 m/s and 0.18 m/s, with period of 0.8 s, was established. Nonetheless, to calculate 

the particle Reynolds number, the average was used: UT, avg = 0.14 m/s. From the drag 

plot of Figure 7.14, it can be seen that after the initial large fluctuations, the force 

stabilised around 0.6 mN for 0.2 s < t < 0.8 s. 

 

 
Figure 7.13 Plot of the velocity experience by the irregular PTFE chip of Figure 7.9 falling 

in pure water at ReP = 689.2. 
 

 
Figure 7.14 Drag force of the irregular PTFE chip of Figure 7.9 descending in pure water at 

ReP = 689.2. 
 

The coefficient of resistance plot of Figure 7.15 shows that after the instabilities found 

before t = 0.45 s, CD exhibited a relatively even pattern until t = 0.8 s. In the interval 

0.45 s < t < 0.8 s CD varied between 1.2 to 2.0. In averaged, the discrepancy with 

respect Equation (2.24b) was approximately 60%. This occurred because Equation 
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(2.24b) was developed for irregular crushed particles, which are considerably different 

in shape to the irregular PTFE particles studied here. 

 

 
Figure 7.15 Coefficient of drag experimented by the irregular PTFE chip of Figure 7.9 

settling in pure water at ReP = 689.2. 
 

Based on the plots of irregular chips falling into a liquid at rest shown in this Section, 

it was observed that at relatively low Reynolds numbers, all of the motion parameters 

analysed here still tend to a stable value despite the changes in the object orientation, 

nonetheless, for higher Reynolds numbers, relatively large fluctuations characterise 

their behaviour, even after terminal velocity conditions are achieved. This was 

confirmed too by the other irregular particles tested at 100 < ReP < 1000, whose results 

were not included in this section. 

 

7.2 IRREGULAR PARTICLES MOVING IN A FLOW OF AIR 

 

As part of this exploratory study, the motion of some of the irregular wood chips 

shown in Figure 7.16 was also investigated, though in a qualitative way. Each chip 

was manually inserted into a transparent acrylic pipe which was coupled to an axial 

fan through a connector on its lower end. The sketch of the experimental installation 

is displayed in Figure 7.17. A honeycomb-like flow straightener and a wire mesh to 

avoid the particles touch the fan were also employed. The system was mounted on a 

hollow plate which was fixed to another equipment and elevated from the ground. 
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Figure 7.16 Irregular wood chips. 

 
The chips were fabricated from pine wood, with density ρP = 338 kg/m3. In average, 

the largest, intermediate, and shortest dimensions were 17.3 mm × 2.5 mm × 1.5 mm, 

which were in agreement with the mean lengths published by Rosendahl et al. [8] in 

their physical characterisation of a 1.2 kg-sample of straw already prepared for 

pulverised fuel burning in a boiler. The chips were lying on top of the wire mesh before 

the fan was set on. After the flow was initiated, the motion of the chips was upwards, 

to the pipe top entrance. The pictures were taken at 2000 frames per second with the 

same stereo vision system used for the experiments of Chapters 5 and 6. 

 

 
Figure 7.17 Experimental installation. 
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The axial fan, manufactured by EBM-PAPST and illustrated in Figure (7.18a), has a 

maximum flow rate of 380 m3/h at 2700 rpm. The velocity of the air flow was 

measured at different points at the exit of pipe with the thermo-anemometer shown in 

Figure 7.18b, with resolution and accuracy of 0.01 m/s and + 0.03 m/s, respectively. 

By using the punctual velocity measurements, the flow rate was estimated in order to 

find the mean velocity, which resulted in a pipe Reynolds number approximately equal 

to 3.5 × 104. 

 

  
 

(a) (b) 
 

Figure 7.18 (a) axial fan, (b) thermo-anemometer. 
 

Because the air velocity was not excessively high, the particles were slowly dragged 

upwards. The ascension of a wood chip which moved from one place near the wall of 

the pipe to the opposite side is portrayed in Figures 7.19 and 7.20. From the first figure, 

the changes in the solid orientation become evident; nonetheless, from the second 

figure, it can be seen that the displacement was accompanied by constant rotation of 

the particle around its largest axis. 

 

 
Figure 7.19 An irregular wood chip moving from one side of the pipe to the opposite while 

being dragged upwards by the air current. 
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Figure 7.20 Series of pictures of the ascending irregular wood chip of Figure 7.19 exposing 

the constant rotation around its largest axis. 
 

In Figure 7.21 the effects caused by the wall on the motion of the wood particle of 

Figure 7.19 are displayed. The wall is located at the right edge of the images. As the 

chip interacted with the wall, it experienced consecutive changes in its angular 

orientation as well as successive rotations. From the figure, it can be observed that at 

t = 72 ms the particle approached the wall with a highly horizontal position, whilst at 

t = 121 ms, it left the wall with a significantly vertical position. 

 

 
Figure 7.21 Series of pictures depicting the interaction between the irregular wood chip of 

Figure 7.19 and the pipe wall, situated at the right edge of the images. 
 

In this study it was also found that the presence of another particle in the 

neighbourhood of the first one may produce alterations in the angular position and 

rotations on both solids, as illustrated in Figure 7.22, where the motion of two irregular 

wood chips is portrayed. It can be appreciated that as the lower particle moved slightly 
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to the right, the orientation of the other one changed noticeably, however as both of 

them reached the pipe wall at t = 75 ms, the angular variation was reversed. 

 

 
Figure 7.22 Series of pictures showing the interaction between two irregular wood chips as 

they moved up and to the right inside the pipe. 
 

As observed from Figures 7.19 to 7.22 the motion of an irregular solid in a moving 

fluid is characterised by constant rotations and changes in its angular orientation as it 

displaces within the space. It is believed that such behaviour is caused by the irregular 

geometry of the particle as well as by external factors such as flow instabilities, the 

presence of another particle, or the closeness to a static wall. Therefore, it cannot be 

assumed that the particle will travel with a fixed position. This pose the necessity of 

tracking the rotation and angular orientation at each time instant in order to fully 

resolve the motion and obtain the true drag force exerted on the solid. Furthermore, to 

estimate the instantaneous coefficient of resistance, the projected area must also be 

approximated at each time step from the images. 

 

The stereo technique employed in this research is able to determine the angular 

orientation provided that this one occurs in a plane normal to the camera axis, 

nonetheless since the rotation can also happen in other planes and given that either the 

particle itself or another neighbouring particle can produce occlusion, this technique 

cannot track all the rotations, thus obstructing the complete 3D motion resolution. To 

accomplish such a task through image-based methods, it is recommended to use three 

cameras to record the front, side, and top views of the particle, so that occlusion can 

be overcome and enough pixel data about the true particle location can be gathered. 
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Chapter 8 
 

CONCLUSIONS AND FUTURE WORK RECOMMENDATIONS 
 
 

8.1 CONCLUSIONS ON THE IMAGE-BASED TECHNIQUES 

 

An original, non-intrusive methodology based on high-speed stereo vision, Schlieren 

photography, and digital image processing was developed in order to study 

quantitatively and qualitatively the settling motion of spherical and non-spherical 

particles in a fluid at different Reynolds numbers. The instantaneous 3D kinematics, 

angular orientation, and dynamics were determined, correspondingly, through particle 

tracking velocimetry, the computation of the angle between the particle longest axis 

3D vector and the velocity vector, and the assistance of a Frenet reference frame which 

moves along the 3D centroid trajectory. 

 

Within the context of image-based experiments, this is the first time that for a non-

spherical particle, the angular orientation and drag force are calculated in these ways, 

that 3D centroid-displacement plots with the longest axis location highlighted are 

generated, and that Schlieren visualisations of the surrounding fluid at conditions of 

existing secondary flows are recorded. In addition, the drag coefficient calculations 

were based on the instantaneous, true projected area, and not on averaging approaches. 

 

The techniques published by Zhang [99, 102] for camera calibration and 3D stereo 

reconstruction were applied. Nevertheless, instead of following the tradition of 

working in the left camera frame, the obtained 3D coordinates were projected back to 

the world reference frame OWXWYWZW through an innovative approach where the 

analysis was then carried out. The accuracy of the procedure was tested by 

reconstructing the 256 corner coordinates of the squared calibration model at 34 

positions within the interval -100 mm < ZW < 100 mm. It was found that the absolute 

error was dominated by the uncertainty in ZW, nonetheless it was proved that a careful 

camera calibration can keep error under 1.0 mm. 

 

In order to obtain the particle motion data needed by the 3D reconstruction algorithms 

from both the left and the right sides of each stereo picture, a novel procedure entirely 
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based on digital image processing operations was designed and executed in Matlab 

2014. It accomplished the main tasks of image enhancement and extraction of the pixel 

coordinates of the particle features to be 3D calculated: centroid and longest axis 

location. A large number of other programs were also written in the same software to 

accomplish the tasks of camera calibration, 3D stereo reconstruction and back 

projection, and for the computation of different particle motion parameters. Special 

emphasis was placed on performing the work in an as automated way as possible. 

 

8.2 CONCLUSIONS ON THE PARTICLE MOTION 

 

SPHERICAL PARTICLES 

 

The settling motion of spheres in the range 0.3 < ReP < 4939 was investigated. All of 

the characteristics of the flow surrounding the spheres reported by Magarvey and 

Bishop [57] were corroborated: a highly symmetrical fluid recirculation zone at the 

rear of the sphere and a stable single trail for small ReP; the change to a double and 

wavy trail in the interval 270 < ReP < 290; the formation and evolution of the hairpin 

structures of vortex shedding at larger ReP; and a full turbulent wake for ReP > 1000. 

Nevertheless, contrary to their affirmation that the hairpin structures end at ReP ~ 700, 

it was observed that they can endure up to ReP ~ 900. 

 

It was observed that as the mentioned surrounding flow structures evolved with ReP, 

the symmetry of the wake decreased until being null, deviating in consequence the 3D 

fall paths of the spheres from vertical straight lines. Nonetheless, in all of the cases 

steady values of UT and CD were achieved, though relatively small fluctuations were 

also registered. Moreover, it was noticed that at UT conditions and for ReP > 270 the 

magnitude of FD can still vary considerably. 

 

The obtained experimental values of UT and CD were contrasted with those predicted 

by the correlations of Haider and Levenspiel [16], Clift and Gauvin [15], Yow et al. 

[52], and Terfous et al. [35], resulting in a remarkable agreement throughout the whole 

ReP interval. The maximum discrepancies registered were 13 % for UT and 12 % for 

CD. The only exception was that at ReP = 4939 the experimental CD was, in average, 

38 % superior to all of the correlation-predicted values. By investigating nine 
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droppings of one of the spheres under the same conditions, an approximate uncertainty 

of 1 % in the estimations of UT and CD was found. 

 

The noteworthy similarity between the experimental results achieved here and those 

from the published correlations for spherical particles combined with the considerably 

low uncertainty achieved in the predictions of UT and CD suggested that the 

methodology developed in this research to study the 3D motion kinematics and 

dynamics of single particles can be considered valid. 

 

CYLINDRICAL PARTICLES 

 

The free fall of cylinders in the interval 0.7 < ReP < 1975 was studied. It was noticed 

that so long as ReP < 240, the fall was steady and the cylinder maximum projected area 

was perpendicular to the direction of motion. Nevertheless, this behaviour did not 

guarantee a vertical, straight fall path. For ReP > 240, the regular oscillating pattern 

described by Marchildon et al. [25] characterised the fall and further altered the 

trajectory. The structure of the flow surrounding the oscillating cylinders was 

visualised for the first time using Schlieren photography, and a complete turbulent, 

non-symmetric wake was found. 

 

The angular variation caused by the secondary motions remained limited to the 

interval 70° < α < 90° approximately. In consequence, only minor fluctuations in the 

velocity and drag coefficient plots were noticed at terminal conditions, and for most 

of the cases it could be said that despite the presence of such motions, consistent values 

of UT and CD were observed. 

 

The achieved values of UT and CD were compared against those estimated with the 

correlations of Haider and Levenspiel [16], Ganser [18], Chien [53], and Chow and 

Adams [27]. With respect to the correlation of Haider and Levenspiel [16] it was noted 

that before ReP = 30 UT was over-predicted, then in the interval 30 < ReP < 240 a 

remarkable agreement occurred, and at ReP > 240 it was under-estimated. 

Nevertheless, in the whole investigated range 0.7 < ReP < 1975 the differences 

between varied from 2 % to 17 %. 
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In the case of CD, the discrepancies in the interval 0.7 < ReP < 100 fluctuated between 

3 % to 20 %, however as ReP increased and the secondary motions appeared, the 

difference between the experimental values of CD and those from the correlations of 

Haider and Levenspiel [16], Ganser [18], Chien [53] increased up to 32 % for cylinders 

with L < 10.5 mm, and 55 % for those with L > 20.0 mm. On the other hand, with 

regard to the equation of Chow and Adams [27], which considers the effects of the 

oscillatory motion, the disagreement did not exceed 11 %, demonstrating then the 

importance of maintaining the particle-fluid interaction undisturbed, so that the 

influence of the secondary motions on the drag coefficient can be included. 

Nevertheless, it was evidenced here that their assumption that the oscillatory motion 

will always appear as long as �
�� ��⁄

�
> 0.5 is correct only if ReP > 240. 

 

DISK-SHAPED PARTICLES 

 

The free settling of disks in the interval 19.7 < ReP < 1362 was examined. It was seen 

that for ReP < 163 the fall was totally flat with the largest area projected in the direction 

of motion. Moreover, consistent values of UT, FD, and CD were noticed. However, as 

ReP increased, the secondary motions reported by Stringham et al. [26] were 

witnessed, though at different values of ReP. A fully tumbling pattern was detected at 

ReP = 226. A highly regular oscillating disk was perceived at ReP = 1362. The 

combinations of oscillation and gliding were found for the other cases. The structure 

of the neighbouring fluid during one of these motions, pure oscillation, was captured 

through Schlieren photography for the first time, revealing a complete turbulent 

behaviour. 

 

From the 3D reconstructed centroid trajectories, it was discovered that the occurrence 

of secondary motions greatly deviated the paths from being vertical lines. In addition, 

their presence was also reflected in the velocity and drag force plots in the form of 

significantly regular sinusoid-like variations, mainly for pure tumbling and oscillation. 

For the combinations of oscillation and gliding, the regularity decreased, yet a similar 

trend was followed in some of the cases. In the plots of CD, fluctuations were also 

found, nonetheless a clear pattern of change was not detected. 
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Unlike the cylinders, during the existence of the secondary phenomena, none of the 

calculated motion parameters reached fixed values at conditions of terminal velocity 

because the fluctuations were characterised by the relatively large amplitudes. 

Nevertheless, average magnitudes of the particle velocity and coefficient of resistance 

were computed in order to compare with the correlations given by Haider and 

Levenspiel [16], Ganser [18], Chien. 

 

In the interval 30 < ReP < 384 the discrepancies in UT were considerably low, 

fluctuating between 2 % and 6 %. However, for the other ReP numbers, they were 

significantly higher with the experimental values being smaller than the predicted 

ones. For the averages of CD, a remarkably different outcome was obtained. In the 

range 150 < ReP < 230 the disagreements did not surpass 20 %, yet for ReP < 100 and 

ReP > 100 huge dissimilarities of 40 % and 60 % were noticed. This suggests that in 

the presence of secondary particle motions, the approach of averaging VP and CD of 

disks for future analyses may lead to false results. 

 

INFLUENCE OF α ON CD 

 

The influence that the angular variation has on CD was analysed for the first time using 

experimental data in the form of CD – α plots, as it has been proposed in some 

numerical works. For cylinders, Rosendahl [11], Hölzer and Sommerfeld [34], Mandø 

and Rosendahl [30], and Zastawny et al. [28] have suggested that for every increment 

of α a corresponding increment of CD exists, yet in this study it was found that CD can 

either increase or decrease with the augmentation of α. It is believed that the cause of 

this dissimilarity is the fact that in their models they set a fixed value of α and then 

solved the equations subjected to this assumption, thus interrupting the free interaction 

between the solid and the fluid which happens in reality. 

 

The plots of CD – α obtained for the tumbling, gliding, and oscillating disks further 

confirmed the fact that the angular orientation has an impact on the drag, since in these 

cases considerably larger fluctuations of CD occurred due to changes in α. 

Furthermore, it was also seen that even for particles of the same material and 

dimensions settling at equal conditions, the shape of the curve CD – α may not be the 

same, suggesting therefore that the evolutions of the secondary motions and the 
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subsequent angular change are not constant. Moreover, it was noticed that for every 

increment of α, CD can also either decrease or increase. A direct relation between both 

was not perceived. 

 

IRREGULAR PARTICLES 

 

The motion of irregular PTFE chip-like particles descending freely in a stagnant fluid 

and of woodchips immersed in an enclosed flow of air was explored. For the first case, 

it was found that despite the irregularity of their geometry, as long as ReP < 74 the 

settling was steady, and in general with an unfluctuating angular orientation. 

Additionally, fixed values of UT, FD, and CD were achieved. 

 

As ReP increased, the solids experienced oscillation, gliding, and rotation around 

different axes of reference. Provided that the rotation did not occur on an axis 

perpendicular to the line of vision of the camera, quantitative information could be 

acquired, just to reveal that none of the variables reached stable magnitudes even at 

conditions of terminal velocity. 

 

Within the investigated interval, 8 < ReP < 689, all of the 3D reconstructed fall paths 

were neither vertical nor straight. In addition, from the comparison of the values of CD 

obtained experimentally and those determined with the correlation of Swamee and 

Ojha [17], developed for crushed irregular particles, an evident disagreement was 

noticed, with the correlation estimations being significantly higher (30 % or more) 

than the experimental results. 

 

For the first time high-speed Schlieren pictures of sinking irregular particles were 

taken. It was seen that the behaviour of the surrounding fluid was highly turbulent, 

and that the geometrical unevenness and the rotations of the solids further magnified 

the turbulence, which in consequence gave rise to irregular motion trajectories.  

 

From the observation of the motion of woodchips inside a pipe-enclosed flow of air at 

ReP = 3.5 × 104, it was realised that their translational motion was always accompanied 

by continuous rotations around their longest axis, and sometimes around other 
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perpendicular axes too. Thus giving chance to consecutive changes in orientation, 

which were further accentuated by interactions with the wall or with other 

neighbouring particles. 

 

Because of the constantly rotating nature of the irregular particles as they travel in the 

fluid, occlusion effects may arise continuously, thus incapacitating the conventional 

two-camera stereo technique employed in this thesis to fully resolve their motion. To 

accomplish such a task through image-based methods, it is recommended to use at 

least three cameras so that the front, side, and top views of the particle can be tracked 

simultaneously and occlusion overcome. 

 

8.3 RECOMMENDATIONS FOR FUTURE WORK 

 

Considering the advantages and limitations of the methodology and techniques 

employed in this thesis, as well as the as the areas of particle motion that were not 

investigated here but are significantly relevant, the following recommendations for 

future works in this field can be announced: 

 

i. With the current two-camera stereo technique the free settling motion of 

cylinders, disks, and other regular non-spherical solids with a wide range 

of dimensions should be investigated, especially at ReP > 150, so that the 

secondary motions can be further analysed, and the influence of L and α on 

CD can be more evident. Perhaps, empirical correlations to predict CD in 

terms of α could be written. 

 

ii. To develop the new methodology required to solve the particle rotational 

motion at free settling conditions only, and to implement it through an 

imaging system composed of two or three cameras, perpendicular to each 

other, so that the effects of occlusion can be overcome and the influence 

that the rotational motion has on CD can be investigated for both regular 

and irregular solids. 
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iii. To extend the methodology suggested in the previous step to study the 

motion of regular and irregular solids that are dragged by a moving fluid, 

as it occurs in pneumatic transportation installations. The case of a single 

particle should be analysed first, then the move to multi-particle 

environments can be attempted. 

 

iv. By means of improving the Schlieren configuration used here or by 

developing an alternative fluid visualisation technique, the structures of the 

wake and trail of non-spherical particles at low, medium, and high ReP 

must be further investigated, since not only are they important for fluid 

mechanics but also for heat and mass transfer. Moreover, they can also be 

significantly relevant for areas related to the combustion of solid particles. 
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APPENDICES 
 
 

A. HOMOGRAPHY CALCULATION 

 
As mentioned in Section 3.2 the task of homography calculation becomes the 

minimization of some algebraic, geometric or statistical error due to the negative 

effects caused by image noise during the corner coordinates extraction. Assuming 

independent Gaussian noise on the image coordinates with mean zero and uniform 

standard deviation the maximum likelihood criterion (Appendix E) reduces the 

homography estimation problem to the minimization of the Mahalanobis distance 
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being i=1,2,..,n the number of corner points and hj=1,2,3 the row vectors of H. The 
nonlinear minimization of Equation (A1) was solved through the Levenberg-
Marquardt method, where the initial guess was obtained from the solution of the next 
system of 2n equations 
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The solution is the right eigenvector of L associated with its smallest eigenvalue [99]. 
Notice that MW,i is expressed in homogeneous coordinates with ZW,i = 0, therefore 
��,� = [�� �� 1]�. 
 
 
B. CAMERA CALIBRATION OPERATIONS [99] 

 

After the homographies required by the calibration technique have been estimated the 

next step is to calculate the intrinsic and extrinsic parameters of the camera. For one 

orientation of the calibration model, from Equation (3.19) in Section 3.2.2 the 

following two equations can be derived provided that vectors r1 and r2 are orthonormal 
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where hj=1,2,3 are the column vectors of H. The development of the matrix 

multiplication ������ defines a 3 × 3  symmetric matrix B 
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which can be substituted in Equation (B1) to give 
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or  

���
�� = 0 (B4) 

 
where � = [��� ��� ��� ��� ��� ���]�. Similarly, the substitution of B in 

Equation (B2) produces 
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or 
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Equations (B4) and (B5) can be stacked to form 
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Equation (B6) represents a system of 2 equations for one single homography. For n 

homographies, a system of 2n equations results 

 
�� = 0 (B7) 

 
where matrix V has size � × 6. The solution of Equation (B7) corresponds to the right 

eigenvector of matrix V associated with its smallest eigenvalue. Once vector b is 

known, the camera intrinsic parameters can be computed using the next equations 
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Once the intrinsic parameters are known, for each of the n homographies the extrinsic 

parameters are obtained with the following relations 

 
�� = ������ (B9a) 

 
�� = ������ (B9b) 

 
� = ������ (B9c) 

 
�� = �� × �� (B9d) 

 
where � = ‖�����‖

��. The computed matrix � = [�� �� ��] is still an 

approximate matrix which does not meet all the requirements of a rotation matrix. In 

order to find the best rotation matrix R, singular value decomposition is first applied 

� = ����, then R is calculated as follows 

 
� = ��� (B10) 

 

C. RADIAL DISTORTION COEFFICIENTS ESTIMATION 

 

Up to now the analysis has not considered the influence of lens aberration, which 

causes straight lines of the real world scenes to appear slightly curved in the image 

plane. In Figure B1 its effect on both tangential and radial directions, respectively, is 

illustrated. Tangential distortion arises from incorrect lens centring whilst the radial 



182 
 

one is a consequence of improper lens shape and constitutes the most common 

distortion type, therefore it is the one included in this work. 

 

Radial distortion is symmetric about the optical axis and can be classified as positive 

(pincushion visual effect, Figure B2a) or negative (barrel visual effect, Figure B2b) in 

agreement with the direction of the radial displacement of a given point in the image 

from its ideal position. Although being rare, a combination of both types may occur. 

It is known as moustache distortion. 

 

 
Figure B1 Tangential (dt) and radial (dr) distortions on one image point [111]. 

 

 
Figure B2 a) Pincushion radial distortion, b) barrel radial distortion. 

 
The process of radial distortion correction relies on the application of a polynomial 

distortion model before completing the calibration of the camera. For a perfectly 
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centered lens with the principal point at the center of distortion, the distorted radial 

distance (Figure B1)  rd = r + dr can be modeled as follows 

 
�� = ��(�)= �(1 + ���

� + ���
� + ���

� + ⋯) (C1) 
 
where c1, c2, c3,… are the distortion coefficients [112]. Since the first term of the 

polynomial is the most dominant one and to avoid numerical instability during the 

calculations, only the first two coefficients are preserved [111-114]. Consequently, 

Equation (C1) takes the form  
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�) (C2) 

 
The relation between the ideal, distortion-free pixel coordinates (u, v) and the real, 

distorted coordinates (ud, vd), respectively, of one image point is given by the 

following system of equations 
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where �� = ��� + ���, being ��, ��  the ideal normalized image coordinates, computed 

after the calculation of the intrinsic and extrinsic parameters of the camera. In matrix 

form and for n points Equation (C3) can be rewritten as 
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or 

�� = � (C5) 
 
where D is a 2� × 2 matrix. According to Zhang  [99], the solution of Equation (C5) 
is 
 

� = (���)����� (C6) 
 
The radial distortion coefficients which have just been estimated are used during the 

task of stereo reconstruction to correct the distorted 2D coordinates of the matching 

points before the geometry of the stereo system is computed and the reconstruction 

executed. 
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D. EPIPOLAR GEOMETRY COMPUTATION  
 

The epipolar geometry can be entirely described by any of the essential or fundamental 

matrices, yet in the present work the procedure recommended by Zhang [102] which 

starts with the computation of the fundamental matrix was preferred since it allows an 

intermediate optimization process (which will be discussed later) during the 

calculations. Once ℱ is obtained, then � and the Euclidean motion parameters R and t 

can be estimated. 

 

The methodology selected for the calculation of ℱ is provided by the so-called eight-

point algorithm [103], [96] which starts replacing ℱ with an approximate 3 × 3  matrix 

F and expressing Equation (3.23) as a linear function in its elements Fij=1,2,3 
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where m1(u1, v1) and m2(u2, v2). For n matching pairs (m1, m2) becomes 
 

�� = 0 (D2) 
 
where � = [��

� … ��
�]�. The solution of Equation (C2), named as F1, is the right 

eigenvector of Q associated with its smallest eigenvalue. Since F1 does not meet the 

singularity condition of the fundamental matrix, the straightest forward way to apply 

it is by forcing its smallest eigenvalue to be equal to zero. This can be accomplished 

by making zero the third element of the diagonal matrix S product of the singular value 

decomposition of �� = ����. The result is 

 

�� = ����� (D3) 
 
where �� corresponds to the modified S. In agreement with Hartley [115], to avoid 

numerical instabilities and decrease the computational time, the coordinates of the n 

matching pairs (m1, m2) which constitute matrix Q in Equation (C2) should be 

normalized. The normalization process for each coordinate point m (u, v) is 
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or  
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where TX and TY represent the translation required for the centroid of the normalized 

coordinates to coincide with the origin of coordinates, and sC is the scale which makes 

the RMS distance of the points from the origin equal to √2. The relations to compute 

them are 
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Consequently, for the points corresponding to the left image the normalization process 

is expressed as ��,��� = ���� whilst for those of the right it is ��,��� = ����. If 

normalization is done, the matrix computed with Equation (C3) has to be de-

normalized through the following relation 
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Instead of considering F3 as the first guess of the fundamental matrix and moving into 

the essential matrix computation, the already mentioned intermediate optimization 

process can be introduced. It involves decomposing F3 into seven independent 

parameters (provided that a fundamental matrix has rank-2 and is defined up to a scale 

factor), hence 
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where (x1, y1) and (x2, y2) correspond to the coordinates of the epipoles e1 and e2, 

respectively, and a, b, c, d dictate the relation between the orientation of the two 

pencils of the epipolar lines [102]. Among the last four parameters one is not 
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independent. Because the epipolar geometry constraint (Figure 3.11, Section 3.3) 

requests point m2 to lie on line L2, and m1 on L1 the optimization task consists on the 

minimization of the sum of the squared gap distances existing between those points 

and lines 
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 (D9) 

 
The minimization can be done using the Levenberg-Marquardt algorithm with F3 as 

initial guess [116]. Once completed a refined matrix F4 is obtained from the optimized 

seven parameters. Then, after imposing the singularity constraint again the final 

estimated fundamental matrix is obtained, which in turn can be used to compute the � 

using Equation (3.22) followed by singular value decomposition to impose the 

condition of having two non-zero singular values. 

 

The Euclidean motion parameters can now be computed from the essential matrix. 

Following Zhang’s methodology [102], provided that ��� = 0, the translation vector 

is the solution of 

 
����‖�

��‖� subject to ‖�‖ = 1 (D10) 
 
which turns to be the left eigenvector of � associated to its smallest eigenvalue. If the 

condition ([�×]��� )∙ (���� )< 0 is not accomplished, then the sign of t has to be 

inverted to agree with the sign of �. The rotation matrix is found by solving 
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where �� and �� are the kth row vectors of � and [�×]. On the assumption that R can 

be represented by the unit quaternion q [117], then 

 
��� = �����  

 
where qC is the conjugate quaternion of q. Therefore, Equation (C11) can be re-stated 

as follows 
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which in turn can be simplified to 
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where the elements of the 4 × 4 matrix � = ��
��� are calculated with the following 

set of equations [116] 
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The solution of this problem is the unit quaternion corresponding to the smallest 

eigenvalue of 
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(D15) 

Before attempting the 3D reconstruction through linear triangulation, a second 

optimization based also on Equation (C9) has to be done to refine the motion 

parameters. First, the backwards calculation of � and ℱ to be used as input is 



188 
 

completed. Then, the minimization employing the Levenberg-Marquardt algorithm 

and the forward calculation of ℱ, �, R and t take place. 

 

E. MAXIMUM LIKELIHOOD ESTIMATION 

 

Either for homography estimation, camera calibration, or three-dimensional stereo 

reconstruction, the maximum likelihood estimation (MLE) criterion is used to seek the 

optimum results providing the real image points are subject to noise (i.e. measurement 

error). If such error is modelled statistically, the MLE comprises the search of the 

probability distribution that makes the given real data most likely [118]. 

 

For the already mentioned tasks it is commonly assumed that the noise obeys a 

Gaussian error model as long as the images are free of outliers and the image 

coordinates are extracted independently with the same technique. Thus, the MLE 

probability distribution, with mean zero and uniform standard deviation �, is  
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where � corresponds to the real data point, �� to the equivalent non-distorted point, and 

�(�,��) to the distance between both [96]. The application of the MLE criterion 

(Equation 1) for camera calibration is equivalent to the nonlinear minimization of  
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where m is the number of calibration pictures and n the number of corner points. 

����,��,��,��,��,��,�� is the projection of MW,i in image j followed by distortion 

with Equations (C3). The rotation matrix is parameterized into a 3-element vector r, 

whose magnitude equals the value of the rotation angle, and with the same direction 

as the rotation axis [99]. The first estimation of the intrinsic and extrinsic parameters 

as well as the radial distortion coefficients are used as input data. For 3D stereo 

reconstruction, the MLE criterion reduces to find the solution of 
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where �� = ���,��
�,…,��

�,…,��
��

�
 is the refined motion and structure (5+3n)-

element vector, and ����,��,�� and ����,��,�� are the projection of MW on the left 

and right image planes, respectively. � = [��,∅�]� is the 5-element vector conformed 

by the rotation vector r and the 2-element parameterized translation vector ∅ [102]. In 

this case both r and ∅ correspond to the motion between cameras. 

 

F. FINITE DIFFERENCE EQUATIONS 
 

In Section 4.3 finite difference equations were employed to estimate the 1st, 2nd, and 

3rd time derivatives of ��, ��, and ��, respectively, needed to find the parameters 

which describe the Frenet reference frame. The operations were done in a Matlab 

program written for this purpose only, and the forward, backward, and centred 

schemes were used. For the forward approach, the finite difference equations to 

calculate the derivatives are: 
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whilst for the backward scheme they are: 
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and for the centred approach the equations are: 
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G. PROGRAMS WRITTEN IN MATLAB 

 

The programs written to execute the task of calibrating each virtual camera are: 

 

calibration.m 

It starts the calibration of the camera. It calls the next user-defined functions (UDF): 

 LoadBoardImage.m 

It executes the first step of Figure 3.11 by loading the five recorded stereo 

pictures of the calibration model, converting them from RGB to grey-scale, 

and splitting them into left and right images through the UDF 

separateimage.m. 

 CornersFCalibrationBoard.m 

It extracts the pixel coordinates of the black squares of the calibration model 

through Canny edge detection and Hough transform (step 2 of Figure 3.11). It 

calls the UDF’s hough.m, houghpeaks.m, CornersFSquares.m, 

cornerfinder.m. Other UDF’s called by some of these functions are: getlines.m, 

orderrc.m, houghline.m, houghpixels.m, linesNumCorrect.m. 

 Calibrationfortviews.m 

It performs steps 3 to 6 of Figure 3.11 through the following UDF’s: 

o InputImageCoordinates.m 

o InputModelCoordinates.m 

o ModelHomoImage.m: it solves step 3 of Figure 3.11 as explained in 

Appendix A. It calls the UDF InitializeHomography.m to find an initial 

homography guess by solving Equation (A3), and computes the 

homography through the nonlinear minimization of the Mahalanobis 
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distance (Equations A1 and A2) with the assistance of the UDF’s 

DistfProjPnts2ImgCoor.m, TDHomoTrans.m, CoorHomo.m. 

o Closed_Form_Solution.m: it finds the intrinsic parameters (step 4 of 

Figure 3.11) by solving Equations (B7) and (B8) using the UDF’s 

VfromHomo.m, IntMatfV.m, IntriMatfIntPara.m. It then computes the 

extrinsic parameters (step 5 of Figure 3.11) with Equations (B9) and 

(B10) and the UDF’s RTfIntMat.m, Rotation2Quaternion.m, 

TRtoFiveDVect.m. 

o RadDistortEstimate.m: it determines the radial distortion coefficients 

(step 6 of Figure 3.11) as illustrated in Appendix C, using the UDF’s: 

IntriMatfIntPara.m, Homofa.m, FiveDVectoTR.m, quaternion2R.m, 

TDHomoTrans.m, CoorHomo.m. 

It then completes the calibration by doing step 7 of Figure 3.11 through the 

UDF’s: IntparaAss.m, DistfProjPnts2ImgCoor_Com.m, IntriMatfIntPara.m, 

Homofa.m, TDHomoTrans.m, CoorHomo.m. 

 

The programs done to calculate the geometry of the stereo systems and do the 3D 

reconstruction of the corner points of the calibration model are: 

 

MotionParameterEstimation2.m 

It does steps 1 and 2 of Figure 3.13 using the UDF’s InputImageCoordinatesL.m, 

InputImageCoordinatesR.m, CorrectRadialDist.m, TDHomoTrans.m, CoorHomo.m. 

It then calls the following UDF’s to continue the next steps of the methodology: 

 ThreeDReconstructMain2.m 

Starting at step 3, it completes the methodology of Figure 3.13. It calls the next 

UDF’s: 

o normalization.m: it normalizes the distortion-corrected pixel 

coordinates with Equations (C4) – (C6) to be used by the eight-point 

algorithm.  It calls the UDF’s TDHomoTrans.m, CoorHomo.m. 

o Eightpoint.m: it computes the first estimation of the fundamental 

matrix by solving Equation (C2). 

o Rank2Mat.m: it improves the estimation of the fundamental matrix by 

imposing the required singularity condition (Equation C3), thus 

completing step 3 of Figure 3.13. 
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o Mat27Para.m: it re-expresses the fundamental matrix into seven 

independent parameters (step 4 of Figure 3.13) as seen in Equation (C8) 

through the UDF’s EpifromFund.m, FindScaleFac.m. 

o SevenParaRefine.m: it optimizes the seven parameters (step 5 of Figure 

3.13) applying the criteria of Equation (C9). It calls the UDF’s 

Dist2EpiFuncofSeven.m, SevenParatoMatrix.m, restore_abcd.m. 

o SevenParatoMatrix.m: it begins step 6 of Figure 3.13 by re-computing 

the fundamental matrix from the optimized seven parameters and 

denormalizing it with Equation (C7). It also uses the UDF 

restore_abcd.m. 

o EssentialtoTR.m: it calculates the essential matrix given the 

fundamental matrix and the motion parameters R and t with Equations 

(C10) and (C15), thus finishing step 6 of Figure 3.13. It calls the UDF’s 

Fmat2Emat.m, vec2matrix.m, quaternion.m, quaternion2R.m. 

o MotionParaRefine.m: it optimizes R and t (step 7 of Figure 3.13) with 

the same criteria of Equation (C9). It calls the UDF’s 

Dist2EpiFuncofMotion.m, FiveDVectoTR.m, TRtoEssential.m, 

Emat2Fmat.m. 

o PointsReconstructLinear.m: it obtains the 3D coordinates of the stereo 

matching points using the method of linear triangulation (step 8 of 

Figure 3.13). It calls the UDF’s FiveDVectoTR.m, 

ReconstructLinear.m. 

o PointsReconstructNonLinear2.m: it optimizes R, t, and the obtained 3D 

points (step 8 of Figure 3.13) using the maximum likelihood criterion 

explicated in Appendix E. It calls the UDF’s MotNStruRefineOuter2.m, 

MotNStruRefineInner2.m, FiveDVectoTR.m. 

 

BackProj.m 

It projects the 3D reconstructed coordinates of the corner points of the black squares 

of the calibration model from the left camera frame to the world reference frame and 

exports to an Excel spreadsheet, so that subsequent analysis on the accuracy of the 

reconstruction can be done. 
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The programs written for the analyses of particle motion are: 

 

ParticleImgProcess4.m 

It performs all the digital image processing operations listed in Figure 4.12 to the 

stereo pictures of the moving particles. It calls the UDF functions: CtoGS.m, 

ImgEnhance2.m, Centroid.m, SeparateImage.m, Orientation4.m. Then they export the 

results to an Excel spreadsheet. 

 

ParticleCent3D.m, ParticleP1P23D.m 

They compute the 3D coordinates of the centroid and points P1 and P2 in the left 

camera frame. The UDF’s called are: CorrectRadialDist.m, ReconstructLinear.m. 

Then they export the results to an Excel spreadsheet. 

 

ParticleCentBackProj.m, ParticleP1BackProj.m, ParticleP2BackProj.m 

They project the 3D coordinates of the centroid and points P1 and P2 from the left 

camera frame to the world reference frame as indicated in Equation (3.32). 

 

Particle3DMotion.m 

It solves the kinematics of the moving particle in the context of the Frenet reference 

frame and exports the results to an Excel spreadsheet. The derivatives are found 

through the finite difference equations listed in Appendix F using the UDF FinDiff.m. 

 

Particle3D_Dynamics2.m 

It calculates the tangential, normal, and binormal forces within the Frenet reference 

frame, and computes the drag force experience by the particle. Then it exports the 

results to an Excel spreadsheet. 

 

Plot3DPath.m 

It reads the data from the corresponding Excel spreadsheet and generates 3D plots of 

the particle trajectories. 
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