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Abstract 
Nonlinear models are useful tools in current engineering practice for benefits such as cost savings and 

improved safety features, especially for testing, designing and maintenance of engineering services. 

Such models have been widely used for understanding the physics of systems and structures, 

predictions of abnormalities, predictions of specific scenarios to enable control and for planning of 

production. Having the correct fit-for-purpose model is very important for the model to be utilised in 

any of the functions as required, which enables accurate understanding and predictions of the real 

system to be modelled. 

The work presented in this thesis is concerned with proposing a framework for building a fit-for-

purpose nonlinear model using the Bouc-Wen model of hysteresis as an example nonlinear model to 

be identified. 

The proposed framework is presented with steps suggested for the understanding of the requirements 

and purpose of building a nonlinear model. This is the main idea of the thesis where sufficient initial 

understanding of a problem will lead to experimental design to be able to provide the right sets of data 

to fit the purpose of the model to be built. 

Using a variant of the Differential Evolution algorithm, the inputs of data sets for identification or 

parameter estimation were investigated. The investigation compared the input magnitudes, input types 

and noise levels to show that the result of identification can be misleading without a real 

understanding of the model requirements. This shows the importance of the specification of model 

requirements suggested in the framework. A measure of Improvement Ratio is also suggested to 

improve confidence of nonlinear parameter estimation by way of evaluation against linear parameter 

estimates. 

Finally, a Volterra series approximation method for nonlinear polynomial models is used to estimate 

the parameters of the Bouc-Wen hysteretic model. It is shown that only linear parameters can be 

identified accurately in the presence of noise. Another key finding relates the nonlinear parameters to 

parameters of a nonlinear polynomial model to show some physical resemblance to the nonlinear 

polynomial damping and stiffness term, further work is required to truly understand this. 
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Chapter 1 

1 Proposed Framework for Building Nonlinear Models 

 Introduction 1.1

Nonlinear models are useful tools in the current engineering practice for benefits such as cost savings 

and improved safety features, especially for testing, designing and maintenance of engineering 

services. Such models have been widely used for understanding the physics of systems and structures, 

predictions of abnormalities, predictions of specific scenarios to enable control and for planning of 

production. Having the correct fit-for-purpose model is very important for the model to be utilized in 

any of the functions as required, which enables accurate understanding and predictions of the real 

system to be modelled. 

A proposed framework for building a nonlinear model is presented here to show the steps involved in 

nonlinear model building. This thesis is concerned with the fitness for purpose of model building with 

a focus on the parameter estimation stage. The fitness for purpose presented here emphasises having 

the right level and types of input corresponding to the intended use of the model. This stems from 
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acknowledgement of the linearisation effect in a nonlinear system due to lack of forcing that may 

contribute to misleading nonlinear parameter estimates which would desensitise on the nonlinear 

parameter accuracy. 

In this chapter, firstly a brief introduction to the purpose of nonlinear model building is presented. 

Then a proposed framework of building a nonlinear model is given followed by a brief explanation of 

each stage. Next the objectives of the thesis are given. Finally a summary of the following chapters is 

presented. 

 Why is a computational model built? 1.2

In July 1945, the first nuclear weapon atmospheric testing was conducted by the United States. 

Following that first event, more nuclear weapons testing was conducted via atmospheric testing, 

underwater testing, exoatmospheric testing and underground testing. The last known field testing was 

undertaken in 2006 by North Korea who has not signed the treaty calling for cessation of testing of 

nuclear weapons [1]. Figure 1.1 shows the number of nuclear weapon that are known by country [2]. 

The first three types of test were known to emit radioactive fallout causing harm to humans and 

nearby living things. Although these tests were usually done in isolated areas away from populations, 

atmospheric testing produces irradiated dust and debris which can be carried away to populated areas. 

Similarly, underwater testing causes damage to the underwater ecosystem and can irradiate ships and 

structures above water although not on a huge scale. Exoatmospheric testing causes a nuclear 

electromagnetic pulse which can penetrate back into the hemisphere. These tests were first banned in 

a treaty in 1963 signed by the United States, the United Kingdom and the Soviet Union, although 

some countries still continue to conduct such tests. China and France joined in to sign the treaty in 

1996 to cease nuclear weapon testing. Underground testing was deemed to be the safest method and 

was not banned. However, when conducted near the surface, radiation still leaks above ground and 

still results in radiation harm. 

Non-full scale testing and computational modelling of nuclear weapons now has taken over most of 

the testing conducted on nuclear weapons. For example, France who only indefinitely halted real 
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nuclear weapon testing in 1996 relies on simulation to maintain the reliability, safety and performance 

of the country‟s nuclear weapons [3]. The computational modelling still achieves the purpose of 

ensuring the performance of nuclear weapons whilst avoiding harmful live nuclear testing. Numerical 

models and simulation can be compared to data from past test for result validation. 

 

Figure 1.1: Nuclear warhead inventories by country [2] 

In the aircraft industries, from initial design to being in service, a jet engine can cost almost a billion 

pounds. In engineering, to test a material and its design behaviour and efficiency can cost a huge 

amount of money. For example, it would be very costly to build an engine, test and rebuild it over and 

over. This is where computational modelling is useful to predict the behaviour and to analyse the 

designs of these expensive materials. With a model, various simulations can be performed to 

investigate its reliability, performance and any issues. It can also be used to simulate failures without 

having to destroy the actual product. For example, the Airbus A380 uses computational models to 

understand the dynamics and simulation of its wings, operational cost and efficiency of the whole 

aircraft and the design of the fuel management systems [4]. 

The two examples above show that computational models are a useful tool. With models, a significant 

cost reduction can be achieved and hazardous testing can be made safe. With the use of models, the 
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prediction of a system can be done without having to disturb the process or to stop the work of the 

actual real system or plant.  

By having accurate models to represent these experiments and tests, stake holders can avoid having to 

face problems with cost, damage and safety issues. Data can be collected during the actual operation 

of a system. Models representing the whole system can be built using the collected data of the system. 

Simulations using the computational models representing the system can then be used to predict the 

behaviour and to monitor the condition of the system as required. 

Generally the objectives of building models are:  

 to understand the physics of a system or structure 

 to identify nonlinearity 

 to predict specific scenarios 

 to predict damage, abnormalities or failure of systems 

 to plan for future productions 

 to simulate extreme events on a system 

Models that have been properly established can be used for the tasks below as illustrated in Figure 1.2 

[5]. In the figure, it can be seen that models can either be used to predict, simulate or optimise 

responses with input-output introduced to the model. This is done without comparison to any true 

system response. Models can also be used by comparing with a control true system to analyse the 

model performance, to be used as a control for a process or to detect fault when the model response 

shows an output response other than the expected nominal response. 

Current advances in computer technologies have given engineers the ability to model very complex 

systems. Other than engineering applications, computational biologists have created many models of 

the human anatomy to study disease control and to understand the biomechanical functions of the 

human body. Although the computational cost and time is very high, the results obtained are still 

worth the time and effort. Other biological models have looked at animal motion and behavioural 

patterns, and also insect anatomy including the brain functions [6]. 
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When first introduced, a weather model required six-weeks of calculation to produce a six-hour 

weather pattern in 1920 [7]. Current practice had been able to include much more input information 

such as physical processes, statistical relations between prediction and real weather patterns, and can 

predict much farther into the future [8]. 

 

Figure 1.2: Objectives of building models [5] 

 where u is the system input 

  y is the system output 

   ̂ is the predicted system output 

  k is the current state 

  e is the error between y and  ̂ 

 Is the model fit-for-purpose? 1.3

In the previous section, the potential economic and safety benefits of using computational models 

over experimental testing were discussed. Whilst the benefits of computational models are easy to 
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comprehend, this potential is only truly realised if the computational model is capable of replicating 

the behaviour of the real structure, system or process. 

In this thesis the focus is on parameter estimation. The fit-for-purpose nonlinear model term used here 

is a model that will fulfil its intended role in simulation or prediction of a system as good as or as 

close as possible to the real system it is representing with emphasises on the input of the data used for 

prediction. In general the model is expected to perform well under certain conditions that should have 

been specified at the initial stage of building the model. Since a nonlinear system can behave 

differently under different environments, the region of acceptable condition should be determined to 

avoid the model from failing to work. 

The model can be used in day-to-day behaviour monitoring to diagnose deviations from normal 

operational behaviour or to predict response to extreme conditions or other purposes. The first will set 

up the model working under normal input excitation whilst the second will put the model in a very 

different input excitation mode from the normal working condition. This should also be taken into 

considerations when building the model to obtain a fit-for-purpose model. If a model is intended to 

perform under different conditions, the model should be built using data collected under those 

conditions under which it is required to perform. That is why a model should be built with the full 

knowledge of its purpose. 

When the exact purpose of building a model is clear, only then can the assessment of the fitness-for-

purpose of a model be done. 

 How computational models are built 1.4

The previous section considered the issue of the fitness-for-purpose of models whilst this section will 

briefly discuss the procedure of building a model, namely System Identification. This will first be 

considered for building of linear models before studying the procedure for nonlinear models. 

The action of building a computational model relies on simplification, as almost all real world 

systems are known to be nonlinear. Simplification can be taken as far as necessary with the resulting 
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model still being a good representation of the real world system and which can perform as expected 

under a range of predetermined conditions. The simplest form for a model which is relatively easy to 

understand and widely used in engineering teaching is the linear model. Linear models have been 

largely used in dynamical systems. However with the growing importance of precision and the 

availability of superior machines, nonlinear modelling is a growing field of interest. 

A nonlinear effect can be introduced to a test rig or experimental set up in many ways such as 

presented in Section 2.4 of reference [9]. A selection is listed below: 

 Misalignment 

 Exciter problem 

 Looseness 

 Pre-loads 

 Cable rattle 

 Overloads/offset loads 

 Temperature effect 

 Impedance mismatching 

 Poor transducer mounting 

There are many model testing and parameter estimation algorithms currently available for model 

building due to continuous advances in technology. Nonlinear modelling grows from the 

understanding of linear modelling. Hence it still has some characteristics influenced by linear 

modelling.  

This affiliation between nonlinear modelling and linear modelling sometimes can be blurry and 

linearisation can be introduced unintentionally. When this happens, it can lead to having a model that 

may not perform as expected when the model is being used in a real world system environment. An 

example is when doing nonlinear detection with the use of random input. Often the frequency 

response function (FRF) of a nonlinear structure would appear undistorted due to randomness of the 
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amplitude and phase of the input excitation. In Section 2.6.4 of reference [9], this is expected even 

with a band-limited random signal. 

1.4.1 Building Linear Models (Linear System Identification) 

System identification in its simplest form is an action of matching a predicted response to an actual 

response from experimental data which have both been excited by the same input. The predicted 

response can be calculated analytically and most current practice uses a computer programming 

language for simulating the system as complicated and costly calculation can be done rather 

efficiently using a computer.  Figure 1.3 below shows a standard system identification workflow. The 

error between the predicted response and the real or experimental response is used to tune parameters 

of the predicted system until the error is minimised, thus matching the predicted system to the real 

system. 

 

 

 

 

 

Figure 1.3: System identification workflow 

A linear system is largely used to model physical characteristics, material behaviour or phenomena 

found naturally in the world. A linear system is simple to understand as it exhibits a linear behaviour 

that can be accurately predicted. The four properties that shows a system is linear are [9]: 

1. Superposition 

2. Homogeneity 

3. Reciprocity 

4. Harmonic distortion 
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A linear system follows the principle of superposition, which means that the response of a linear 

system can be formed by the summation of responses of its subsystems. The individual response when 

each input is applied separately can be summed to give a total response and total input. So the system 

S, in Figure 1.4 below is a linear system as it follows the principle of superposition. 

    x1      y1 

x2     y2 

x1 + x2     y1 + y2 

Figure 1.4: Principle of superposition 

One of the other behaviours of a linear system is that it shows homogeneity, which is a form of 

superposition. Homogeneity holds when x(t)  y(t) implies αx(t)  αy(t) for all values of α.  From 

this homogeneity effect, linear system identification is not affected by the magnitude level of the 

input. Given any input level, the identification should always give the correct system. 

Reciprocity requires superposition to be conditional of a linear system as some symmetrical 

nonlinearity also can show reciprocity. A system which results in the response y(t), at some point B to 

an input, x(t), applied at some point A is said to show reciprocity if the same input, x(t), applied at 

point B results in the same response, y(t), at point A. 

Harmonic distortion is easiest to identify as it can be seen in the waveform of the output usually 

observed by oscilloscope during experiments or on the plot when doing simulation. Harmonic 

distortion is observed when a sine or cosine waves pass through a system, resulting in distortion in the 

output. The output or response will be the same monoharmonic wave at the same frequency.   

Since a linear system has the four properties as above, once a linear system had been identified 

through any type of input of any level, the identified system should respond as expected to any other 

type of input of any level. That is why random input (of any level) tends to be used in linear system 

S 

S 

S 
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identification. A random signal is the most efficient way to excite across all frequencies in a short 

amount of time. 

The most famous method for linear system identification is modal parameter estimation or modal 

analysis [10]. Modal analysis can identify a system with any type of input and level of inputs. It uses 

modal parameters such as natural frequencies, mode shapes and damping ratios. This great generality 

is the reason why it is so famous. A full description of modal analysis can be found in [11]. The 

Ibrahim time domain method [12], eigensystem realisation algorithm [13], stochastic subspace 

identification method [14], polyreference least-square complex frequency domain method [15] are 

some of the examples of approaches of modal analysis. 

1.4.2 Building Nonlinear Models (Nonlinear System Identification) 

Nonlinearity is a common natural occurrence. In engineering and mathematically it had been 

addressed by the linearisation method since 1963 [16]. In the past few decades many other theories 

have come up as the importance of addressing nonlinearity has grown. In structural dynamic areas, 

new materials that introduce nonlinear behaviour due to being lighter and more flexible have become 

increasingly important. Dry friction is an example of a system that causes a nonlinearity behaviour 

that cannot be avoided. Even at a very low level of excitation, the nonlinearity will still be present and 

must be addressed. In [17] it has been shown that with even minor free-play in the bearing of a 

rotordynamic system, this can lead to major nonlinear instabilities in the form of a chaotic explosion 

that could potentially be catastrophic. This is presented by large-amplitude chaotic motions with 

frequencies close to linearised critical.  

A nonlinear system does not fulfil the four behaviours that hold for a linear system. In terms of 

response, a nonlinear system exhibits a response that is usually nonharmonic. Any disturbance in the 

harmonic excitation can be seen quite clearly which can be the simplest method of identifying the 

presence of nonlinearity in a system and structures.  
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Homogeneity too does not hold for nonlinearity. For example, a small amplitude oscillation which can 

be understood by linear dynamics breaks down at higher amplitude levels. Increasing input type and 

levels would change the output observed for a nonlinear system. 

Since a nonlinear system does not follow the principle of superposition, it  leads to complexities of 

nonlinear system identification. Those challenges include identifying which nonlinear behaviour is 

predominant, then to have the predicted model correctly regenerate the same nonlinear dynamics as 

identified. Another challenge is to have the nonlinear system identification techniques work on a 

wide-class of dynamic nonlinearity. However attempts have been made in the development of 

principles of superposition for nonlinear systems such as suggested in Section 2.1 of reference [18] 

and in reference [19] for example. 

The powerful theory of modal analysis for linear systems is sometimes used in nonlinear systems 

without modification. This could be useful for a restricted system. However, as nonlinear Frequency 

Response Functions (FRF) are subjected to shape changes when the excitation type or levels are 

altered, this would not be useful to classify a wider nonlinear system with accuracy. These are clear 

limitations of the linear method for a nonlinear class of system. The random input that is notably 

useful in linear system identification may not be the best solution for nonlinear system identification. 

This also leads to an investigation into the beneficial use of harmonic excitation due to its ability to 

excite nonlinearity in a system. 

 Proposed framework for model building 1.5

Given the discussion presented in the previous three sections, it is clear that in order to build a fit-for-

purpose nonlinear model or, at least to understand the limitations of the nonlinear model that was 

built, it is necessary to have a proper framework. 

The author would like to propose to initiate a guide, where relevant, for new users, clients and 

stakeholders of model building for nonlinear systems, to assist input readiness for modelling a fit-for-

purpose predicted system models. Figure 1.5 shows the proposed steps in nonlinear system 

identification. Most academic papers when looking at nonlinear system identification have only 
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focused on model selection and parameter estimation part in the proposed framework. Although these 

could be taken as the core of system identification, the author has the impression that the other steps, 

which are still important, are being neglected. This would result in predicting a model that may not be 

fit for the purpose intended by the stakeholder. 

 

Stage 1: 

 

 

Stage 2: 

 

 

 

Stage 3: 

 

 

 

Stage 4: 

 

 

 

Stage 5: 

 

Figure 1.5: Proposed framework of building a nonlinear model 

1.5.1 Specification of Model Performance Requirements 

A model performance specification is a set of objectives that a stakeholder should set for a nonlinear 

predicted model. This is the first part of model quality where the input choice relations to data 

collection can affect the model to be identified [20]. The author wishes to stress that a predicted 

model should always be able to perform the best it can for the true purpose of the system it is 

representing. The main point to be brought up here is the true purpose of the predicted model which 

means that the predicted model can perform as expected in its working environment, rather than only 

in an experimental or simulated environment. The model performance specification should be set 

before attempting to perform other stages in nonlinear system identification. There should be clear 
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objectives to be determined by the stakeholders for the predicted model. The objectives would 

include: 

1. Range of inputs for the real system 

2. Type of inputs for the real system 

3. Whether the real system would be susceptible to extremes cases 

4. Other requirements by the stakeholder 

Meeting the set objectives requires stakeholders to provide appropriate data sets for the parameter 

estimation stage. The data should cover all necessary input ranges and types. For example, if the 

predicted model is going to work in an environment with high input magnitude, the data should be 

based on a high input magnitude as well. This is since a higher magnitude of input will have a more 

pronounced effect of nonlinearity and could even potentially introduce different types of nonlinearity 

than at low magnitudes. If this is not the case, and data with low input magnitude is used instead, 

some or all the nonlinear parameters will not be predicted correctly. This will lead to the predicted 

system failing to match the true system performance in the required environment. Thus knowing the 

expected true system environment is essential in the next stages of nonlinear system identification. 

This will lead to decisions in the design of the experiment and will be good criteria for evaluation in 

the end, at the model performance evaluation stage. 

1.5.2 Design of experiments 

Design of experiments should take into account the model performance specification that had been 

established. In an ideal situation, it should consider all ranges and types of inputs that the true system 

the model is representing is going to experience. Experiments should be setup to include all scenarios 

according to the true working environment for the predicted model. The data available should give the 

system identification enough incentive to predict accurately all associated parameters of the predicted 

model. Thus, this will lead to a robust predicted model that will perform well for the system 

identified. 
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However, most times there will be limitations in a real situation when designing experiments. Such 

limitations are in general based on resources availability, time limits and cost restrictions. Where there 

are limitations, not all the scenarios for the required data for building a predicted model can be 

produced. In essence it is crucial to keep a balance between having enough experimental data to keep 

the cost minimal while at the same time obtaining a robust enough prediction out of it. 

Most research papers make use of random inputs since it covers various frequencies and control is 

simpler with only the magnitude to adjust. For a nonlinear system, a higher input magnitude will have 

a higher effect of system nonlinearity. For a nonlinear predicted model which is expected to work in a 

high amplitude environment, experiments for system identification should also use high input 

magnitude whenever possible. By using high amplitude random signals, the data produced for 

parameter optimisation would result in a more a robust predicted model. This comes from the fact that 

nonlinear properties have been amplified in the data, and a parameter optimisation algorithm would 

have a better incentive at finding the nonlinear parameters. 

Using sinusoidal input on the other hand requires a choice of frequency, magnitude and a combination 

of signals. It requires more control and knowledge such as determining the undamped natural 

frequency to obtain a better output signal. However, such input gives more information that can be 

related between the input and output of a data. Information such as system harmonics and restoring 

forces can be extracted and may be used to further understand the system to be identified.  

1.5.3 Model selection and parameter estimation 

 

x(t)     y(t) 

Figure 1.6: Single output single input system 

For the single input single output (SISO) model shown in Figure 1.6, determination of a function, S 

which maps an input, x(t) to an output, y(t) is model selection. Given information on the system, an 

experienced expert can determine the structure of the system, S. For example, if the system is known 

S 



22 

 

to be a single degree-of-freedom nonlinear system with cubic stiffness, a structural form of equation 

1.1 is expected. 

  ̈    ̇        
   ( )     (1.1) 

where u is the input, F(t) is the response and overdot denotes derivatives 

In this case, after knowing the model structure, it will only leave the expert the parameter estimation 

problem of m, c, k and k3 to identify the system. At present there are a huge number of parameter 

estimation methods available. Some examples of parameter estimation are the least square method, 

recursive least squares method, Masri-Caughey method [21], Hilbert transform [22], and differential 

evolutions. A review of the parameter estimation method can be found in the survey paper in 

reference [10]. 

In this thesis, the author will discuss further and show examples of parameter estimation methods of 

Self-adaptive Differential Evolutions and the Volterra series in later chapters. 

1.5.4 Model performance evaluation 

Based upon the model performance specification, the performance requirements of a predicted model 

can be measured. This will assist in evaluating the success of the whole model building process. A 

predicted model which was built under all relevant conditions of its true system would be a good 

prediction and hence be a robust model fit for its purpose, whilst a predicted model that does not have 

relevant data for estimation can be considered as unsatisfactory. Such a model is input-dependent and 

would only perform in a limited suitable environment. This is similar to the model validation stated in  

[23], where it assures quality before the predicted model is put in use. Model validation is about 

finding the fault in the model and proving the model is wrong by working the model with various 

other data sets [24] including data from different input types. The model is only considered as 

validated when there are no faults with the tests. This was briefly demonstrated for the harmonic 

inputs parameter estimation in section 4.5 of this thesis, though it was done to compare the robustness 

of the inputs rather than validation of the model. 
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1.5.5 Improvement Ratio 

Current practice at Stage 3 of the proposed framework introduced earlier usually relies only on the 

error between a real system and an estimated system. The error is the main measure of success of 

most parameter estimation algorithms. Minimisation of error should lead to having two similar 

systems - that is the estimated system will improve by trying to mimic the real system continuously 

with each algorithm generation.  

In real problems with unknown system parameters, it would be necessary to rely only on the error 

given by the parameter estimation algorithm to tell if the estimated system is representative of the real 

system or otherwise. This may sometimes be misleading as revealed in later chapters. 

The author would like to propose the Improvement Ratio, which is a dimensionless measure to show 

improvement of a predicted nonlinear model over a predicted linear model. This would be mostly 

applicable to a system that may be susceptible to linearisation. Where no good linear model can be 

predicted due to the highly nonlinear behaviour of a system, the Improvement Ratio would not be 

required. The Improvement Ratio value will be calculated in later chapters and shows the 

improvement value seen for a predicted nonlinear model over a predicted linear model. 

The Improvement Ratio is used to increase confidence in the nonlinear model that was chosen. Both 

the nonlinear model and the linear model are identified using the same parameter estimation algorithm 

with the same data set. By using the linear model as a basis in the parameter estimation algorithm, the 

Improvement Ratio allows comparison between the error of the predicted linear model and the error 

of the predicted nonlinear model. The Improvement Ratio suggested here is only valid for data that 

could be fitted with the linear model. This can be due to linerisation due to signal types or low 

excitation data. The procedure is given in Figure 1.7 and the Improvement Ratio is given by: 
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Figure 1.7: Steps of comparison of Improvement Ratio between nonlinear and linear predicted models 

The Improvement Ratio should be positive. A negative value would mean that the predicted linear 

model would be more suited to the data. This would mean that the nonlinear model of choice might be 

wrong. With a low Improvement Ratio, the question could be asked whether the nonlinear model is 

necessary or is a linear model sufficient. In this case, the designer would also be alerted to check if the 

data is representative of the real system environment. Improvement Ratio will be demonstrated for the 

system identification problems presented in this thesis. 

1.5.6 Current practise in model building 

Most papers referred to and encountered by the author usually only look at optimising the 

experimental data against the predicted model data. This is done via a certain chosen criteria value or 

objective function to come to a conclusion whether an optimisation or parameter estimation method 

has been successful or has failed. The conclusion would usually be based on the premise of 

commenting that the method has been successful with a value of precision based on the value of the 

Data 

Parameter estimation 

using linear model 

Is the nonlinear 

model 

acceptable? 

Parameter estimation 

using nonlinear model 

 

Improvement Ratio 
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error obtained from the objective functions. A value of less than 5 would be acceptable with less than 

1 viewed as excellent [25]. Then the predicted model would be accepted as representing the whole 

true system.  

Rarely has it been seen that previous papers have looked at other criteria such as the availability and 

completeness of input data and the actual objectives of the predicted model. What is the purpose of 

building the model? Where will the models be used? What is the actual working environment of the 

system that the model is representing? The results from these models will work well to some degree. 

However the estimated model may not be suited for the actual real purpose of the system it is 

representing and may fail to work completely when in actual use.  

The focus has usually been on Stage 3 and Stage 4. Rarely, some studies talk about Stage 2 regarding 

the design of the experiments. Whilst it is true that these stages are the core of model building, 

however this still lacks the main objectives of model building which is to build a model to accurately 

represent a system. The problem with this approach is that unless the purpose for building a model has 

been set clearly set, the designer will not be able to know when that purpose has been achieved. To 

truly realise this, the model built must be set with a model performance specification. Referring to the 

proposed framework, without Stage 1, there will be no assessment to be done at Stage 5. The 

predicted model could possibly perform exceptionally well in the region associated with the available 

data with which the system identification was implemented. However if the true system actually sees 

different input than the data used in terms of type, magnitude or frequency range, the predicted model 

will still fail to model certain part of the system due to the limitation of information. This then will 

result in failure in use. 

The author does not seek to say that such identification is incorrect but is concerned about the 

completeness of the results obtained. Even in the early part of the author‟s research, comments were 

made on some parameters from the Bouc-Wen equation regarding their insensitivity [26]. Further 

investigation on the matter shed some light and new perspective on the availability of input data rather 

than just on the system parameter themselves. 
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A high Improvement Ratio gives confidence of the predicted nonlinear model that has been identified. 

It shows that the nonlinearity behaviour of the real system is present and has been picked up by the 

parameter estimation algorithm. The Improvement Ratio will be used in later chapters concerning 

parameter identification. 

1.5.7 Real world limitations 

Building a model in a real world situation differs significantly from simulated work where parameters 

are known specifically and the point of having less information would grant confidence to the model 

built. With simulated work, the parameters are known where result of parameter estimation can be 

referred to the true chosen parameter, for example with percentage error of an estimated model 

against a true model. 

While in reality, when estimating parameters for a model the results cannot be compared to a „true 

model‟. Under the false confidence of obtaining a model from identifying a system with inadequate 

information this could lead to a disastrous result if modelled wrongly. A real world system is 

modelled based on the dynamics that can be picked up from the system and this can differ 

significantly under different conditions. Thus it would be of utmost importance to have as much 

information as possible of the system in its working environment in order to build a representative 

model of the system that would promote confidence. 

Ideally for building a model, the best way to capture all the required information needed is by running 

many experiments and tests. However, realistically, cost and time will be the limiting factors. Thus 

planning is essential in maximising the amount of information that can be obtained from the limited 

amount of testing available. This is the balance between having enough experiments and tests to keep 

the cost minimal while at the same time obtaining a robust enough predicted model out of the 

exercise. It is similar to the operational evaluation in structural health monitoring (SHM) term [27]. 

There are also circumstances where data is directly given for model building, without being able to 

design the experiments. This data may come from the stakeholders directly and no further testing is 

allowed. In such cases, if the data captures all forces and environmental effects that the real system is 
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being subjected to in daily operations, then the model building process can proceed. The model 

performance requirements should have been met, and the outcome will be a good predicted model. 

However if in such cases, the data has not captured all forces and environmental effects that the real 

system is being subjected to in daily operations, the model performance evaluation will fail to meet 

the requirements. The predicted model, may perform well in an environment similar to the data used, 

but might not be a good prediction for the whole system it is representing. 

1.5.8 Domain of applicability of a Model 

Figure 1.8 shows a chart of scenarios of communication between a stakeholder and expert that are 

being proposed. This scenario looks at the situation where experts are given a set or sets of data for 

model prediction. In such circumstances, data may have been acquired via experimental work, 

collected during the lifetime of the real system in real time, or after the failure of a system. 

The typical process for model building starts with the acquisition of data. Then a model is predicted 

based on the system behaviour. This can be done via physical modelling, where experienced experts 

will determine the type of system behaviour and find its association with the known model. This can 

also be done with mathematical modelling, where in this case some parameters may not have a 

physical meaning. With a form of model selected, experts will use a parameter estimation algorithm to 

predict the parameter values and compare the objective functions or cost value i.e. root mean square 

error of the displacement of the predicted model against the real system. When the root mean square 

error is less than 5, the predicted model is accepted as a good prediction. 

At the starting point of interaction where data is handed over, the model performance specification 

should be discussed. At this point the expert should learn of the objectives of the predicted model. If 

the data given is not comprehensive enough to meet the model performance specification, additional 

data should be requested. 
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Figure 1.8: Communication between stakeholder and expert, where data is provided without control of 

design of experiments. 
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Experts should have the right to decline the model building request should the data available be 

incomplete. If no additional data is available and the stakeholder still wants to proceed with the model 

building, the expert should provide a model performance evaluation note or rules regarding the 

suitable operational conditions of the predicted model based on the available data for model building. 

This will be a user manual for the use the predicted model and should note on the input type and range 

and also the environmental conditions under which the predicted model will be valid. Outside of this 

condition, the predicted model may not be fit, up to the point of total failure. 

 Objectives 1.6

The aim of this work is to investigate how the choice of input excitation, system identification 

strategy and measure of system identification success affects the fitness-for-purpose of nonlinear 

models within the framework discussed in the previous section. 

To achieve the above aims, the thesis uses the Bouc-Wen hysteresis models as an example of a 

nonlinear system of interest. The Bouc-Wen hysteresis models have been used in much of the 

literature and are a familiar model within author‟s research group. This model has been shown to be 

capable of representing behaviour often observed in real-life applications. The optimisation methods 

of choice in the thesis are the population-based optimisation approach, specifically the Differential 

Evolution and the functional series approximation approach, namely the Volterra series. A variation 

of the Differential Evolution, the Self-adaptive Differential Evolution is used in the thesis as the 

parameter estimation algorithm of choice to achieve the objective of input choice and measuring the 

system identification success. 

The Bouc-Wen hysteresis model is investigated by using varying levels of random excitations and 

some types of harmonic excitation. The effects of the various input excitations and the resulting 

predicted models are observed to see the behaviour of the fit-for-purpose models. The thesis also 

investigates the substance of additional confidence to assist the mean-square error as a measure of 

system identification success for nonlinear systems. This is where the Improvement Ratio is 

calculated and observed.  



30 

 

The final objective of the thesis is to find the relationship between parameters of the Bouc-Wen 

hysteretic model to the parameters of the nonlinear polynomial model via use of Volterra series 

approximation. 

 Summary by chapter 1.7

Chapter 2 

Chapter two presents and discusses the Bouc-Wen model equations as the model of interest in this 

thesis. In this chapter a Simulink model for the Bouc-Wen model that is used in the optimisation 

algorithm throughout the thesis is also shown. Then the general behaviour of the Bouc-Wen model is 

observed by comparing responses to low and high amplitude levels. Finally, the specific behaviour of 

each parameter is observed. 

Chapter 3 

Chapter three firstly describes the use of the Self-adaptive Differential Evolution for parameter 

estimation of the Bouc-Wen model using data with random input. The chapter looks at parameter 

estimation with data from varying amplitude random excitation with and without noise. 

Finally, this chapter discusses how the Self-adaptive Differential Evolution works in improving the 

parameter estimation exercise with the adaptation variant compared to the original Differential 

Evolution. 

Chapter 4 

Chapter four describes the use of Self-adaptive Differential Evolution for parameter estimation of the 

Bouc-Wen model using data with single sinusoidal, multiple sinusoidal and chirp input. Similar to the 

previous chapter, parameter estimation results from data with low and high excitation levels are 

compared with and without the addition of noise. A region of stability of the parameters for the 

sinusoidal input is also described. 
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A conclusion is drawn comparing the results from random, multi sinusoidal and chirp excitation data. 

A sensitivity analysis between the results using Self-adaptive Differential Evolution is also discussed. 

Finally the sensitivity analysis is also shown for each parameter of the Bouc-Wen model. 

Chapter 5 

Chapter five introduces the Volterra series approximation using Higher-order Frequency Response 

Functions for derivations of nonlinear polynomial model parameters using the harmonic probing 

method. This chapter looks at the linear and nonlinear polynomial model separately. The effect of 

noise on the derivations is also discussed.  

Chapter 6 

Chapter six compares the Bouc-Wen model directly with the nonlinear polynomial model with 

Volterra series approximation using Higher-order Frequency Response Functions and harmonic 

probing equations for the nonlinear polynomial model instead of Bouc-Wen model itself. The 

derivations for the linear parameters and the nonlinear parameters are undertaken separately. This 

chapter also discusses the Bouc-Wen model nonlinear parameter behaviour. From the results, this 

chapter attempts to find the relation of the parameters of the Bouc-Wen model to the parameters of the 

nonlinear polynomial model. 

Chapter 7 

Chapter seven draws together the key conclusions from the chapters in the thesis and states if the set 

objectives have been met. This chapter also presents suggestions for future work. 
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Chapter 2 

2 The Bouc-Wen model of hysteretic systems 

 Introduction 2.1

In the previous chapter, a framework for building nonlinear models was proposed. For the purpose of 

illustrating the problems and findings in this thesis, the nonlinear model of interest used throughout 

this thesis is the Bouc-Wen model of hysteretic system. The model is described in this chapter. 

In this chapter the general behaviour of the classic Bouc-Wen model is investigated in response to 

harmonic and random excitations. The specific responses to these input types with low and high 

excitation levels on the Bouc-Wen system is also investigated here. This will be necessary in order to 

explain the role and effect of the excitation type and level in the nonlinear system identification 

process as applied in the subsequent chapters to address the problems in the section of the proposed 

framework for building nonlinear models. 
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Firstly, the behaviour of the classic Bouc-Wen model is investigated by looking at the model response 

information at a single frequency of harmonic excitation at low and high levels of amplitude. Then the 

system is investigated over a range of frequencies, again comparing the low and high levels of 

excitation. This is to understand the excitation levels and harmonic frequencies necessary to really 

excite the nonlinearity of the system. Finally, the parameters of the Bouc-Wen model are investigated 

while specifically looking at the behaviour of two hysteretic parameters γ and β. This will look at how 

changes in the parameters affect the nonlinearity of the system at different amplitudes under 

sinusoidal and random input. 

 Hysteresis in general 2.2

In the most general sense, hysteresis is the behaviour of a system that shows the effect of memory. 

The memory effect can be caused by energy stored, a transition lag or magnetisation, depending on 

the system. Then it can be said that hysteretic system behaviour is affected both by its current state 

and its past state or history. There are many different fields of study that involve hysteretic systems. 

Some of the fields where hysteresis is observed are economics, mechanics, magnetism, structural 

engineering and biology. In economics for example, hysteresis can relate to the unemployment effect 

on its own progression [28] and have an effect on the inflation of currency as discussed in [29]. In 

mechanics, the effect of hysteresis is observed in the basic stress-strain relationship of material. In 

1887, reports of the British Association on the Advancement of Science, described hysteresis as the 

lag in the change of a quality [30], where the material qualities do not have the same value during 

loading and unloading. In the field of magnetism, the magnetisation and demagnetisation of most 

ferrous materials will show a hysteresis effect [31]. In [32], some examples of mathematical models 

for hysteresis in magnetisation and relays such as the Preisach type model and the Prandtl-Ishlinkii 

operator are discussed. 

In structural engineering, recent hysteresis work has been done on a mild steel damper due to the 

property of a mild steel damper to exhibit substantial energy dissipation when subjected to earthquake 

vibrations [33]. Hysteresis is also of interest in modelling wooden material under vibrations, for 

example modelling of wood joints due to their dependence on the preceding input and response 
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(memory effect) [34]. The aerodynamic force and moments of two models of rectangular wings in a 

subsonic wind tunnel has also been shown to exhibit hysteretic property in [35]. When subjected to 

vibration, the elasto-plasticity properties of the material of the vibrating components can introduce 

hysteretic nonlinearity behaviour [36]. One of the more popular models of hysteresis in structural 

engineering is the Bouc-Wen model. The Bouc-Wen model of hysteretic system is widely considered 

because it represents a wide class of hysteresis in structural engineering.  

 The Bouc-Wen hysteresis model 2.3

One of the most popular hysteresis models was proposed by R. Bouc in 1967. The initial model was 

then further generalized by Yi-Kwei Wen about nine years later. The Bouc-Wen model is a versatile 

model that can accurately describe a hysteretic system in structural engineering. 

The Bouc-Wen model is a hysteretic nonlinear model for a dynamical system that is used in this thesis 

as an example of a nonlinear system to be modelled. It is a well-accepted model for hysteretic 

systems. In 1967, Bouc introduced his first model for a hysteretic system [37]. In 1971, he submitted a 

report to Centre de Recherches Physiques on the same proposed model [38]. In 1976, the model by 

Bouc was generalised by Wen [39]. With the generalisation, the differential equation model can be 

used analytically to model a range of hysteretic systems. This is possible due to the model ability of 

the model to produce a hysteretic loop shape that captures the behaviour of various ranges of systems. 

It had been shown that the Bouc-Wen model shows softening, hardening and is quasi-linear with 

different parameter combinations. In 1981 and 1985, the initial model with six hysteretic parameters 

was extended to 13 hysteretic parameters to include pinching and degradation in the hysteretic loop by 

Wen with Baber and Noori [40], [41]. 

The Bouc-Wen model and its variant can be found in many literatures since the generalisation by 

Wen, and appeared to gain increasing popularity after 2004 with an increasing number of literatures 

using the model for a wide variety of hysteretic systems. Some of the literature on the application of 

the Bouc-Wen model are concerned with a magnetorheological fluid damper in [42], in [43] on the 

identification of the Bouc-Wen model and in [44] on experimental modelling of a magnetorheological 
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damper. The study of the model on mild steel damper in [33] also worked on the parametric 

identification of the Bouc-Wen model. 

Some other applications of the Bouc-Wen model considered piezoelectric actuators. They included 

[45], a study of control of the hysteretic Bouc-Wen model, Bouc-Wen modelling in a piezoelectric 

actuator in [46] and for actuator dynamics and control in [47]. Finally concerning the research of 

earthquakes, [48] showed a study of the identification of the Bouc-Wen model for inelastic structures 

and [49] presented an extended Bouc-Wen model identification for seismic protection using hysteretic 

devices. 

2.3.1 Bouc-Wen hysteresis equation 

The general classical Bouc-Wen model, given in equations (2.1), (2.2) and (2.3), consists of five 

hysteresis parameters - A, α, β, γ, and   - which give the basic hysteresis loop. Some academic works 

would also consider not including α as it is only a ratio between the hysteretic part and the linear 

stiffness part. By doing this, the stiffness, k can be accommodated by the term   ̇ in Equation 2.3. 

   ̈    ̇      ( )      (2.1) 

         (   )       (2.2) 

  ̇    ̇    | ̇|| |        ̇| |     (2.3) 

where    is the restoring force 

 z is a hysteresis term sometimes called hysteretic displacement 

Further extensions by Baber, Wen and Noori [40], [41] to the Bouc-Wen model introduced 

degradation and pinching shapes in the hysteresis loop which resulted in a total of 13 hysteretic 

parameters. The 13 parameters are given by Equations (2.4) to Equation (2.11) which modifies the  ̇ 

term in Equation (2.3) to Equation (2.4). The 13 parameter for hysteresis are A,  , β,  , and   from 

the classical model.    and    in Equation (2.5) and Equation (2.6) which give the strength and 

stiffness degradation respectively. q, p,   ,  ,    and   from Equation (2.8) to Equation (2.11) 
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contributes to the pinching of the hysteresis loop. The hysteresis term z is not measurable, thus 

presenting a challenge in system identification. 
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Other types of Bouc-Wen model alternatives have also been published such as that proposed by 

Sivaselvan and Reinhorn [50] for seismic analysis and design and by Charalampakis and Koumousis 

[51] that adhere to plasticity postulates. However this will not be discussed further in this thesis. 

Figure 2.1 shows examples of the classical and extended Bouc-Wen hysteresis models under 

sinusoidal force input. The difference due to pinching and degradation can be seen. Again, this 

pinching and degradation is captured by the additional parameters in the extended Bouc-Wen 

equation. 
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(a) (b)  

Figure 2.1: (a) Classical Bouc-Wen hysteresis model; (b) Extended Bouc-Wen hysteresis model. 

 Behaviour of the Bouc-Wen model 2.4

This section is intended to aid the understanding of the Bouc-Wen model behaviour by using sine and 

random input excitation at low and high amplitudes. Parameters of the model are also investigated 

separately in order to further understand the system behaviour. 

2.4.1 Bouc-Wen classic model system information 

The model parameters used in the investigation of the behaviour of Bouc-Wen model in this section 

are shown in Table 2.1. 

The parameter values were obtained from identification of the El Centro 1940 Earthquake data 

available online [52] that was used in the book by Anil Chopra [53] and other journal papers such as 

[48] and [54] with some modification to suit the purpose of this research. El Centro earthquake was 

the first earthquake where useful data for engineering purposes had been recorded. The data was 

collected by a strong motion seismograph attached to the concrete floor of the El Centro Terminal 

Substation building which acts as the modern shaker table experiment data collection. The data used 

was the processed and reviewed data by California Geological Survey (CGS) operated California 

Strong Motion Instrumentation Program (CSMIP) available online in reference [55]. 

For the above nonlinear system, the underlying linear system natural frequency, ωn was 17.6 rad/s 

corresponding to 2.8 Hz. The underlying linear system was under damped with damping ratio of 0.02.  
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Parameter Value Units 

m 1 kg 

c 0.7037 Ns/m 

k 309.51 N/m 

α 0.01 - 

β 150 1/m 

γ 20 1/m 

A 1 - 

n 2 - 

Table 2.1: Parameter values of Bouc-Wen classical model 

These system properties obtained from the underlying linear system can be used only as a reference as 

no such data exists for a nonlinear system. The investigation reported in this section was conducted 

using a sinusoidal force input i.e. u(t) = X sin(ωt).  

The system is simulated using 4th order Runge-Kutta numerical integration via Simulink for a single 

degree-of-freedom circuit of the classic hysteretic system. The simulation step size is 0.01s for a total 

time of 500 s per generation giving 50000 points of data. The plot for displacement and velocity is 

shown for 2000 points of data from initiation until 20s. For the restoring force and frequency 

spectrum plot, the plot uses points at steady state. 

 System response in a single frequency excitation 2.4.1.1

Although excitation of nonlinear systems at a single frequency returns limited response information, it 

is a worthwhile exercise to demonstrate the different effects of low and high amplitude forcing upon 

the system response. It is widely known that, for most nonlinear systems, excitation at low amplitude 

usually results in the response of the system appearing mostly linear. It is reasonable to expect that a 

nonlinear system identification approach conducted using low amplitude data is not capable of 

returning a good estimate of the system. By correctly identifying the linear parameters of a system 

could result in a low error between actual and predicted data without having a good estimate of the 

nonlinear parameters. 
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In this work the forcing frequency, ω that was used was at 0.933 Hz corresponding to 1/3 of the 

undamped natural frequency of the underlying linear system. This was chosen due to the excitation 

frequency being able to excite the best response to give clear comparisons of the system. Figure 2.2 to 

Figure 2.6 show the comparison of the system response when excited at a low amplitude of 0.1 N and 

a high amplitude of 10 N. Figure 2.2 and Figure 2.3 shows displacement and velocity versus time 

respectively. Due to the relatively low damping ratio of the underlying linear system, the transient 

response has decayed by around 10 cycles leaving the steady state response. Nonlinear behaviour can 

be seen in Figure 2.3(b) with distortion appearing in the steady state velocity plot. This is seen again 

in Figure 2.4(b) with the distortion of the phase plane. Harmonic distortion is the simplest way to 

detect nonlinearity arising from the principle of superposition. Since the input to the system is a 

simple sine wave, the distortion presented here is clearly a sign of nonlinearity. The cause of the 

distortion could be higher harmonics appearing in the response. Looking at Figure 2.5, hysteretic 

nonlinearity can already be identified at the 10 N amplitude, compared to a mostly linear behaviour 

for the 0.1 N amplitude. This is shown by the hysteretic loop that appears in the higher amplitude plot. 

In Figure 2.6, it can be seen that the harmonics for the low amplitude shows a huge drop between the 

1st and 3rd harmonics compared to the high amplitude which is only around a factor of 1.  

(a) (b)  

Figure 2.2: Plot of displacement versus time (a) low amplitude (b) high amplitude 
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(a) (b)  

Figure 2.3: Plot of velocity versus time (a) low amplitude (b) high amplitude 

(a) (b)  

Figure 2.4: Phase plane plot of velocity versus displacement (a) low amplitude (b) high amplitude 

(a) (b)  

Figure 2.5: Plot of restoring force versus displacement (a) low amplitude (b) high amplitude 

(a) (b)  

Figure 2.6: Frequency spectrum plot (a) low amplitude (b) high amplitude 
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 System response at other single frequency excitation 2.4.1.2

In the previous subsection the excitation frequency was done only at 0.933 Hz, due to showing a good 

nonlinear excitation at that particular frequency and close to its proximity. The low excitation 

amplitude did not show any changes as near linear behaviour was observed throughout. At an 

amplitude of 10 N, most single excitation frequencies are expected to show the behaviour of 

hysteretic nonlinearity as in the above observations. Here some other frequencies, relative to the 

undamped natural frequency of the underlying linear system are observed at high amplitude 

excitation. Only some plots are shown and discussed here so as not to digress. 

The frequencies shown here are 2.8Hz, 2.5Hz and 1.4Hz corresponding to one, 1.25 times and half of 

the undamped natural frequency of the underlying linear system. Figure 2.7 shows the plot for 2.8Hz 

excitation frequency. The transient response decayed very quickly compared to previously after only 

2 cycles compared to previously. However, nonlinearity cannot be detected as no distortion to the 

steady state response is observed. Figure 2.8 shows the plots at 3.5Hz excitation frequency. Nonlinear 

behaviour is observed for both the velocity versus time plot and the frequency spectrum plot. 

Figure 2.9 shows the plots at 1.4Hz excitation frequency. The velocity plot does not show any sign of 

distortion while the frequency spectrum drops for more than a factor while both show very little sign 

of nonlinearity. In all the frequency spectrum plots, it can be seen that the peaks skip the even 

harmonics of the system with a very small peak visible, while at the odd harmonics, peaks are seen 

clearly. This behaviour is seen throughout at other single frequencies. The particular hysteretic system 

sets of parameters appear to confirm that the system investigated in this work shows mostly only odd 

harmonics behaviour. 
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Figure 2.7: Plots of velocity versus time at 2.8Hz excitation frequency 

(a)  (b)  

Figure 2.8: Plots at 3.5 Hz excitation frequency (a) velocity versus time (b) frequency spectrum 

(a) (b)  

Figure 2.9: Plots at 1.4 Hz excitation frequency (a) velocity versus time (b) frequency spectrum 
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 System response over frequency range 2.4.1.3

The previous subsections only examined the response of the classic Bouc-Wen model at a single 

frequency. The work in this subsection will examine the behaviour of the system across a range of 

frequencies between 0.1 Hz to 5 Hz, thereby passing through the undamped natural frequency of the 

underlying linear system. This was conducted by running a series of simulations with increasing 

frequencies and recording the response over the frequency range. Only the steady state response was 

used here while the transient response was discarded. This was done to allow visualization over the 

whole frequency range. The same low and high excitation amplitudes of 0.1 N and 10 N used in the 

single frequency investigation were again used here. 

An elementary approach of using a Bode plot and a Nyquist plot in the Argand plane, as seen in 

Figure 2.10 to Figure 2.14, was used here to visualise the effect of the nonlinearity. The figures also 

separately show the real and imaginary plot for the sake of visualisation. 

Figure 2.10 shows the response of Λ(Ω) and Figure 2.11 shows the phase of Λ(Ω) at low and high 

amplitude in the same plot. Λ(Ω) is known as the composite FRF - since this is a nonlinear problem; 

obtained from simulation in Matlab. It is given by, 

 ( )  
 ( )

 ( )
     

This is obtained from simulation in Matlab by recording time histories of the steady state response, 

Y(Ω) and input X(Ω)  over a range of frequencies with a fixed frequency increment. The ratio Y(Ω) 

/X(Ω)  is then Fourier transformed to give the value of the composite FRF. Figure 2.12 to Figure 2.14 

show the other system information of Λ(Ω)  at low and high amplitude side by side. 

In Figure 2.10, a comparison between linear and nonlinear can be seen quite clearly. At low 

amplitude, a distinct high peak can be seen in the plot but when the system is subjected to the 10 N 

excitation amplitude, a nonlinear behaviour similar to stiffness softening is seen with the peak shifting 

towards the lower frequency region. The clear damping effect is seen with the resonance peak 
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broadening and this is also evident in Figure 2.11 with the phase passing the -90
o
 gradually starting at 

2 Hz to 3.5 Hz for the higher excitation amplitude system. 

In Figure 2.12, the almost circular locus of the low amplitude Nyquist plot shows the typical 

behaviour of a near linear system compared to the non-circular locus effect of nonlinearity at high 

amplitude. Figure 2.13 and Figure 2.14 show the same linear versus nonlinear behaviour as well. Here 

the broader peak and trough show the effects of nonlinearity at higher amplitude. The more observant 

reader may also notice in Figure 2.11 and Figure 2.14(b), the effects of odd harmonics which can be 

seen as small peaks at 1/3 of the undamped natural frequency of the underlying linear system. 

 

Figure 2.10: Λ(Ω) vs frequency plot for low and high amplitude 

 

Figure 2.11: Plot of phase of Λ(Ω) versus frequency 
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(a) (b)  

Figure 2.12: Nyquist plot of Λ(Ω) (a) low amplitude (b) high amplitude 

(a) (b)  

Figure 2.13: Plot of real part of Λ(Ω) versus time (a) low amplitude (b) high amplitude 

(a) (b)  

Figure 2.14: Plot of imaginary part of Λ(Ω) versus time (a) low amplitude (b) high amplitude 

2.4.2 Parameters of Bouc-Wen model 

The last subsection reviewed single frequency excitation and excitation over frequencies to gain an 

understanding of the particular set of Bouc-Wen parameters used in this work. It was shown that a   

10 N amplitude of sinusoidal excitation at the right frequencies would trigger the nonlinearity of the 

system while at an amplitude of 0.1 N the behaviour tends to be mostly linear. 

In this subsection, the behaviour of the system was investigated by varying each parameter separately 

to gain an understanding of the role of the hysteretic parameters. The investigation of the Bouc-Wen 
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model parameters behaviour was conducted via Matlab simulation using the same Simulink model as 

used previously with the same sets of parameters. 

Since the Bouc-Wen model was derived from a linear model, the effect of the linear parameters m, c, 

and k behave exactly as expected from a single degree-of-freedom linear system of mass, damping 

and stiffness.  

The effect of parameters A and α on the system response can be understood by looking at the model 

equation. Both parameters are independent of the value of the hysteretic displacement, z and so are 

less complicated in nature. The parameter A is a multiplier value to the linear stiffness and it affects 

the system response similarly to the linear stiffness, k, while α is the ratio that can act as a switch 

between a purely linear system and a nonlinear system. Both of these values are dimensionless. 

From the equation it can be seen that for a true system that has parameter α at a value of 0, the system 

will not be affected by the value of linear stiffness, k. With α value set to 0 in a parameter estimation 

exercise, any linear stiffness value will be incorporated into the value of parameter A instead. This 

was done in the work in [56] for the purpose of simplifying the parameter estimation process by 

removing the parameters k and α from the equation. With α equals to 1, the system is a purely linear 

system without the hysteretic nonlinearity presence. 

Figure 2.15 to Figure 2.17 shows the Λ(Ω) plot,  restoring force plot and phase plane plot with 

increasing value of n. For the particular set of parameters in this work, a value of n of 1 is not possible 

as it results in calculation error. So the investigation only looked at values of n between 2 and 6. With 

increasing n, the system behaviour tends to approach the behaviour of a mostly linear system and this 

can be seen very clearly in Figure 2.16 and Figure 2.17 where only when the value of n is at 2 does 

the system response show a nonlinear behaviour. The cause of this can be referred to from Equation 

(2.3) of the Bouc-Wen model equation. For the current set of parameters of the system presented in 

this thesis, the value of z in the system is always a positive number less than one. By increasing the 

power for the term z will lead to the 2nd and 3rd term with the nonlinear hysteretic parameter, γ and β 

to tend to zero. Hence the system tends to behave more linearly with increasing values of n. 
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Throughout the remaining work in this thesis, the value of n is set to a value of 2. This is done to 

simplify the parameter estimation process as a non-integer value of n could introduce problems for the 

optimisation algorithm. In [25], n was similarly set to the value of 2. The work in [25] considers the 

situation where n is in a small range of integers between 1 and 4. This stems from the work in [57] 

using a cross-validation method of selection. 

The investigation of the effects of altering γ and β will be presented in the next part. The investigation 

will look at different levels of forcing with sinusoidal and random input and how the changes in γ and 

β affect the system. This relates back to the main idea of the thesis, where it is necessary to determine 

the required range of forcing experienced by a system to match the data used in model building. 

Without doing so, some parameters maybe ignored by the parameter estimation algorithm and it will 

render the model building process inadequate and a waste of valuable time and resources. 

 

Figure 2.15: Λ(Ω) vs frequency plot with increasing value of n at 10 N amplitude 
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Figure 2.16: Restoring force vs displacement plot with increasing value of n at 10 N amplitude 

 

Figure 2.17: Phase plane plot with increasing value of n at 10 N amplitude 

 Effect of varying gamma, γ 2.4.2.1

In the simulation, all parameters were set to the values as in Table 2.1 except for γ which was 

increased from 0 to 200 in increments of 50. In Figure 2.18, in order to show a clear view of how γ 

affects the restoring force vs displacement plot, the simulation was conducted at a forcing amplitude 

of 10 N and a forcing frequency equal to the undamped natural frequency, ωn of the underlying linear 

system. Here the low amplitude plot at 01N for restoring force versus displacement is not shown since 

no changes were observed in the plot with increasing value of γ.  
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Increasing γ, reduces both the minimum and maximum restoring force and displacement of the 

system. The entire restoring force loop can be seen to shrink as well as γ increases. The loop also 

appears to tilt clockwise with increasing γ showing the increasing effect of softening. 

Figure 2.19 and Figure 2.20 show the difference between low amplitude and high amplitude of the 

phase plane plot respectively. Comparison of these two plots shows clear evidence of the need to have 

sufficiently high amplitude in order to differentiate between different nonlinear parameter values. As 

shown here, at low amplitude, regardless of the value of γ, very little difference can be observed in the 

phase plane plot. If conducting parameter optimisation using data from low amplitude such as this, the 

data itself would not give a sufficiently good incentive for finding the correct nonlinear parameter. If 

the true system is usually subjected to higher amplitude forcing than that used in acquiring the data for 

parameter identification, this would then lead to identifying the wrong parameters for the true system. 

In many cases, nonlinear system identification has been done by using data obtained from random 

input excitation. This was due to the fact that nonlinear system identification stems directly from 

linear system identification in which random excitation works very well. The work here will 

investigate the system response under random excitation with changing the nonlinear parameter, γ to 

observe the nonlinear behaviour. 

Figure 2.21 to Figure 2.32 show the behaviour under random forcing. The random input was 

generated with a zero mean and a variance of 0.1 N, 10 N and 100 N. In Matlab, the seed for all 

simulation was maintained to keep the same value for each of the inputs. The simulation was 

conducted using the same Simulink model as used previously, with input block changed from 

sinusoidal to random excitation.  

Figure 2.21 to Figure 2.23 show the displacement versus time plot and Figure 2.24 to Figure 2.26 

show the velocity versus time plot. For random input, changing variance from 0.1 N to 10 N did not 

translate to much difference in both displacement and velocity response. Only at variance of 100 N 

can a clear difference, in both displacement and velocity, be identified in relation to the changes in the 

nonlinear parameter. 
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In the phase plane plot of Figure 2.27 to Figure 2.29, although variations in response are seen in the 

10 N excitation plot with increasing γ, the value is small with the shape mostly remaining the same. 

When looking at the 100 N random excitation, the variations are seen in both magnitude and shape of 

the phase plane plot. 

The results here show that when using random excitation, a much higher amplitude would be required 

to obtain a nonlinear behaviour in the response. There is a tendency for random excitation even at 

larger amplitude to linearise the response of a system. This should be noted when performing system 

identification to avoid neglecting the nonlinearity of a system in any system to be identified. 

 

Figure 2.18: Restoring force vs displacement plot under sinusoidal input of 10 N amplitude with 

increasing γ 

 

Figure 2.19: Phase plane plot under sinusoidal input of 0.1 N amplitude with increasing γ 
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Figure 2.20: Phase plane plot under sinusoidal input of 10 N amplitude with increasing γ 

 

Figure 2.21: Displacement vs time plot under random input of 0.1 N variance with increasing γ 
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Figure 2.22: Displacement vs time plot under random input of 10 N variance with increasing γ 

 

Figure 2.23: Displacement vs time plot under random input of 100 N variance with increasing γ 
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Figure 2.24: Velocity vs time plot under random input of 0.1 N variance with increasing γ 

 

Figure 2.25: Velocity vs time plot under random input of 10 N variance with increasing γ 
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Figure 2.26: Velocity vs time plot under random input of 100 N variance with increasing γ 

 

Figure 2.27: Phase plane plot under random input of 0.1 N variance with increasing γ 
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Figure 2.28: Phase plane plot under random input of 10 N variance with increasing γ 

 

Figure 2.29: Phase plane plot under random input of 100 N variance with increasing γ 

 Effect of Varying Beta, β 2.4.2.2

The Bouc-Wen hysteretic model can demonstrate both hardening and softening behaviour with 

different combinations of β and γ. Figure 2.30 shows the different behaviour. Hardening usually 

occurs with negative values of γ. 

Similarly to the previous investigation of γ, the parameters values for investigation of β were set as 

per Table 2.1 except for β. The value of β was increased from 0 to 200 in increments of 50.  
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(a) (b)  

Figure 2.30: (a) Hardening behaviour (b) Softening behaviour 

In Figure 2.31, it can be seen that increasing β reduces the maximum restoring force and displacement 

within the hysteresis loop. However, compared to the γ changes, here the loop width does not shrink 

with increasing β. With β = 0 however, the shape of the loop is totally different with a thinner width, 

both maximum and minimum stretched and a skewed tip of the loop can be seen. When γ dominates 

β, the skewed shape of the loop tips tends to occur. 

Similarly, comparing sinusoidal input at amplitude 0.1 N and 10 N in Figure 2.32 and Figure 2.33, the 

effect due to the increase in β can be seen much clearer at the higher amplitude. The higher amplitude 

will again lead to data which will provide a greater incentive for the parameter optimisation algorithm 

when building models, thereby resulting in a more accurate model prediction. 

 

Figure 2.31: Restoring force vs displacement plot under sinusoidal input of 10 N amplitude with 

increasing β 
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Figure 2.32: Phase plot under sinusoidal input of 0.1 N amplitude with increasing β 

 

Figure 2.33: Phase plane plot under sinusoidal input of 10 N amplitude with increasing β 

Under random input, changes from 0.1 N variance to 10 N variance does not show much difference 

with increasing β. However the difference is slightly better when compared to the effect of increasing 

γ with small differences starting to show in the 10 N variance plot. Clear changes can be easily spotted 

in the 100 N variance plot. Similarly to the previous subsection observation, the random excitation 

requires even larger amplitude for pushing the nonlinearity of a system.  
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Figure 2.34: Displacement vs time plot under random input of 0.1 N variance with increasing β 

 

Figure 2.35: Displacement vs time plot under random input of 10 N variance with increasing β 
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Figure 2.36: Displacement vs time plot under random input of 100 N variance with increasing β 

 

Figure 2.37: Velocity vs time plot under random input of 0.1 N variance with increasing β  
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Figure 2.38: Velocity vs time plot under random input of 10 N variance with increasing β 

 

Figure 2.39: Velocity vs time plot under random input of 100 N variance with increasing β 
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Figure 2.40: Phase plane plot under random input of 0.1 N variance with increasing β 

 

Figure 2.41: Phase plane plot under random input of 10 N variance with increasing β 
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Figure 2.42: Phase plane plot under random input of 100 N variance with increasing β 

 Discussion 2.5

In this chapter, the Bouc-Wen model of a hysteretic system has been introduced and investigated with 

sinusoidal and random input excitations at low and high input excitation levels. The behaviour of the 

Bouc-Wen model was shown to be mostly linear when subjected to low amplitude input and at some 

single frequency harmonic inputs. The nonlinear behaviour was suppressed under these conditions 

due to the system not being sufficiently excited. It was also shown in this chapter that the Bouc-Wen 

model with the specific parameters used in the thesis showed odd order harmonics. This odd 

harmonics behaviour will be further investigated in Chapter 5 and Chapter 6. 

Experimental data obtained using sinusoidal input requires more information to control, for example 

in the case of the model in this thesis. Better response was only seen at the odd harmonics i.e. one 

third and one fifth of the underlying linear model undamped natural frequency as shown here. At 

other frequencies, especially at even harmonics, less nonlinear information was shown by the system. 

Hence in using sinusoidal input, it is important to have an understanding of the system. However, with 

sinusoidal input, more information on the output of a system could be understood by direct relations 

to its input from the data. It is possible to relate the output behaviour to the exact frequency that 

caused that behaviour. This would allow better understanding of the model to be built.  



63 

 

On the other hand, using random input was simpler with only the variance of the input to be 

determined. Most academic papers on parameter optimisation use random input for data generation 

due to its simplicity. Model building for a nonlinear system also stems from linear system 

optimization which uses random input for the data generation. This extension was mainly the reason 

random input was still preferred other than having a single input that was expected to cover wide 

range of frequencies. Random input also introduced a linearisation effect, so a much higher excitation 

amplitude (variance) on the random input signal was required. This was shown in this chapter where 

the increase from 0.1 N to 10 N did not show much difference with the varying nonlinear parameter γ 

and β in the investigations. Nonlinear behaviour only started to show at the 100 N excitation 

amplitude. 

Here some examples of the importance of properly setting the specification of model performance 

requirements (Stage 1) from the proposed framework for building model in Chapter 1 were shown. If 

a system to be modelled needs to perform under a high excitation environment, data for the model 

building should truly represent this. Only by doing this will the predicted model be able to properly 

represent the actual system under the same condition. Even with a true system that works under a low 

forcing environment, by providing the right data, parameter optimisation cost could be saved. No 

unnecessary time should be spent to identify parameters that the system would not be sensitive to. 

Predicted models should truly represent the real system in order to improve safety and reduce cost. 

That is why it is very important to set the specification of model performance requirement right and 

then designing experiments that would provide data with ample information for the optimization. 

The same Bouc-Wen model will be used in parameter optimisation investigation in the following 

chapters to further investigate optimisation results under the different input excitation types and 

excitation levels. 
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Chapter 3  

3 Nonlinear Parameter Estimation using Random 

Excitation 

 Introduction 3.1

In the previous chapter, the Bouc-Wen model of hysteretic systems was introduced and the behaviour 

of the system was investigated for both sinusoidal and random input excitation. The same model with 

the same parameters as investigated in the previous chapter will be used here as an example model for 

investigation of nonlinear parameter estimation. 

In this chapter, parameter estimation is conducted on data from a random input of low and high levels 

of excitation to represent mostly linear and nonlinear systems. This is done to show that using 

estimated data without having the proper input can lead to inaccurate estimation of the parameters. 

Extended data is used to investigate whether it could provide more information for the system 

identification algorithm in order to improve its estimation. The Improvement Ratio is also calculated 
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to improve confidence in the parameter estimation by showing the percentage of cost function 

improvement of an estimated nonlinear system over an estimated linear system. 

Firstly, Self-adaptive Differential Evolution (SADE) is implemented to identify the parameters of the 

Bouc-Wen model using data from random input of low and high excitation levels. The results of the 

parameter estimation are compared to show the effect of the different inputs on the parameter 

estimation result. For each of the parameter estimation results, the Improvement Ratio is calculated. 

Then an additional investigation using extended random input data is also conducted to investigate 

whether it would contribute to improve the parameter estimation. Finally, the chapter will also discuss 

how SADE adapts to improve the estimation of the parameters compared to DE. 

 Bouc-Wen parameter estimation 3.2

The parameter estimation exercise in this chapter was conducted using Self-Adaptive Differential 

Evolution (SADE) algorithm written in Matlab with Simulink. A population size of 35, that is 5*D 

(where D is the number of parameters to be identified), was used to create the initial population 

matrix. The four strategies that were used were Rand/1, Rand/2, Current to Best/2 and Current to 

Rand/1. The strategies were initially set with 25% probability of use each. After the initial 20 

generations, this probability was updated according to number of successful trial. With each updates, 

the strategy with the higher success rate would be more favoured in the next generations. The details 

on the strategies are further explained in Appendix A. The crossover ratio and mutation factor 

hyperparameters were set at initial values of Cr= 0.5 and Fr= 0.9. Both hyperparameters value was 

allowed to update every 10 generations to give fair evaluation of trials before updating. 

The parameter estimation exercise was conducted for a low variance level (= 0.1), medium level (= 

10) and high variance level (= 100) with 1000 generations as a maximum limit. The parameter 

estimation usually will have reached optimum estimation value within 400-500 generations. These 

exercises were repeated for 100 runs for each variance level. The Simulink circuit was similar to the 

one used in previous chapter with the investigation of Bouc-Wen model of a hysteretic system as 

shown in Figure 3.1. In this chapter only random input excitation data had been investigated as shown 
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by the random block in the Simulink circuit. The signal used was generated with a sampling time of 

0.0025s taking 2000 points of simulated data for identification purposes. The random input block was 

fixed to start with seed of 0. The same parameters as in Chapter 2 were used for the Bouc-Wen model 

as shown in Table 3.1. 

Parameter Value Units 

m 1 kg 

c 0.7037 Ns/m 

k 309.51 N/m 

α 0.01 - 

β 150 1/m 

γ 20 1/m 

A 1 - 

n 2 - 

Table 3.1: Parameters of the Bouc-Wen model 

 

Figure 3.1: Simulink circuit for the Bouc-Wen model 

The results below only consider runs which gave MSE values of less than 5% to remove outliers. 

Only 12 out of the total of 300 runs did not converge as expected. This would be due to the challenges 

faced by the use of inverse identification method where the parameter estimation can get trapped at 
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around the false minima. This would happen when the parameter optimisation would not be able to 

make the next generation estimation that could jump out of the false minima area. 

Figure 3.2 shows the plot of output signals obtained from the Bouc-Wen system at three levels of 

excitation with input variance 0.1, 10 and 100 with a set-up as shown in the Simulink model above. 

Figure 3.3 shows a zoomed in plot of the output signals. It may be observed that with the variance 

level at 100, the output signal started to show distinct nonlinearity behaviour that could be picked up 

by a parameter estimation algorithm. It is expected that these would result in a more precise parameter 

estimation compared to a parameter estimation undertaken at the low variance level of 0.1. The results 

for the parameter estimations are shown in Table 3.2, Table 3.3 and Table 3.4 below: 

 

Figure 3.2: Output displacement responses from a random input with three variance levels 
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Figure 3.3: Zoomed in plot of output displacement responses from a random input with three variance 

levels 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 2.44E-06 1.0001 0.0010 

c 0.7037 0.7037 4.50E-05 0.7038 0.0005 

k 309.51 309.51 1.47E-06 313.7903 13.6628 

α 0.01 0.1744 1.64E+03 0.4775 0.2610 

A 1 1 0.00E+00 0.9442 0.1586 

β 150 179.9427 19.9618 242.5512 55.0132 

γ 20 23.9349 19.6743 21.3328 11.1762 

Table 3.2: Parameter estimation result with variance = 0.1 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 1.62E-06 0.9997 5.30E-04 

c 0.7037 0.7037 3.74E-05 0.7014 0.01 

k 309.51 309.515 1.60E-03 317.0893 20.207 

α 0.01 0.0101 1.0599 0.1485 0.1523 

A 1 1 1.60E-03 0.9679 0.0849 

β 150 150.0193 1.29E-02 197.3601 61.5648 

γ 20 20.0052 2.58E-02 17.2099 7.8486 

Table 3.3: Parameter estimation result with variance = 10 
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Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 4.16E-10 0.9999 0.0011 

c 0.7037 0.7037 5.54E-09 0.7027 0.0053 

k 309.51 309.51 1.82E-08 319.1399 16.5742 

α 0.01 0.01 9.80E-07 0.0126 0.0109 

A 1 1 1.83E-08 0.9715 0.0452 

β 150 150 3.56E-08 155.5928 9.0546 

γ 20 20 9.40E-08 19.5301 4.0461 

Table 3.4: Parameter estimation result with variance = 100 

From the results in the tables above, the best estimated parameter correspond to MSEs of 1.78e-13, 

2.26e-21 and 4.20e-21 for the variance levels 0.1, 10 and 100 respectively. Moving forward, only the 

low level and high level variance random excitations will continue to be investigated as the medium 

level variance of 10 did not provide any additional insights for comparisons. 

It can be observed in the best estimated parameter column that the parameter estimations at the low 

and high variance levels were giving exact predictions (very small insignificant error) for the linear 

parameters m, c, k and A. Parameter estimation for α, β and γ on the other hand was significantly 

worse for the low variance estimation with 20% error for both β and γ, whilst the α error was very 

large at over 16 times the real value. Although the errors on these parameters were very high for this 

simulation, the objective function (mean square error) was still impressively low giving the 

impression of an excellent estimation. Comparatively, for the high variance estimation, the best 

estimated parameters returned very low errors for the nonlinear parameters, α, β and γ.  

However, since in a real model building problem, the true parameter value is unknown and no best 

estimated parameter can be expected, the data of a mean parameter value is often taken as the 

predicted parameter of the model identified. This presents another concern of using random excitation 

data where the standard deviations for the high variance level for k, β and γ are still quite high even 

without any presence of noise. 

Further investigations that looked into the mean estimated parameters from Table 3.2 for the low 

variance estimation can be seen in Figure 3.4 to Figure 3.8.  This is conducted to demonstrate the 
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effect when the model parameters identified from low excitation are used to try to predict the system 

behaviour under high excitation. Figure 3.4 shows that using the mean estimated parameters identified 

at 0.1 variance, the system output behaves similarly to a linear system of   ̈    ̇      ( ) with 

m = 1, c = 0.7037 and k = 309.51. As at low variance, the Bouc-Wen system does not show any 

nonlinear behaviour, the estimation algorithm manages to get the linear parameter right and could not 

determine any relevance for finding the real nonlinear parameter, hence the total neglect of α which is 

the ratio of linear and nonlinear. With low variance input such as this, α, β and γ could easily be any 

value as they do not dictate or contribute to the system behaviour at all. 

Figure 3.5 shows the system using mean estimated parameters identified at 0.1 variance plotted at a 

variance of 100. Here however it looks like the estimation matches the true system response up until 

around 3.5s where it starts to show a slight variation. This is still is a very good prediction and the 

calculated mean square error (MSE) is under 5%. Looking at the higher amplitude (variance of 300) 

in Figure 3.6, the variation between the estimated system and the true system response still looks to be 

a good fit with an MSE of 3.45%. 

The results here seem to show that, using grossly inaccurate nonlinear parameters does not have a 

significant effect upon the overall system response. If working on a real system without having known 

the real parameters, as in this exercise, it would seem that the predicted parameters were truly the real 

parameters of the system. It could almost be said here that the model behaviour is insensitive to the 

nonlinear parameters. 

Figure 3.7 shows the plot of MSE against increasing variance level with estimated parameters 

identified from a low variance (= 0.1) and a high variance (= 100). The MSE at each variance level 

are calculated for both the identified estimated parameters to investigate how the MSE for random 

excitation is dependent upon variance levels. Looking at the plot for the mean estimated parameters 

identified from the low variance level estimation, it can be seen that the MSE does in fact stay below 

5 up to variance level of 500.  
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The same investigation using mean estimated parameters identified from low and high level variances 

have been used to fit to an extended data set. This is to see if the same behaviour would hold for any 

random input excitation and not just limited to the previous set of data only. The MSEs were 

calculated from 30 different sets of random excitation data with the variance kept at the same levels. 

The average MSE was calculated and plotted against variance level. In Figure 3.8, it can be seen that 

the previous behaviour does not hold for the model using mean estimated parameters identified from 

low variance level when using the extended data sets. The MSE now is over 5% for almost all 

variance levels slightly above 100.  

Meanwhile, the MSE for the mean estimated parameters identified from the 100 variance level shows 

the same pattern as in the previous investigation with MSEs less than 5% starting at a variance level 

of 100 and higher. 

Since it is difficult to determine the frequency effect of random input on the resulting output, the next 

subsection investigates whether parameter estimation using an extended data set would improve the 

parameter estimation accuracy and fitting of identified parameters of the estimated system to the real 

system. 

 

Figure 3.4: Response plot of linear system and estimated system from var. = 0.1 
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Figure 3.5: Response plot at var =100 of Bouc-Wen system and estimated system from var. = 0.1  

 

Figure 3.6: Response plot at var. = 300 of Bouc-Wen system and estimated system from var. = 0.1 

 

Figure 3.7: MSE for fitting estimated parameters to one data set against variance level 
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Figure 3.8: MSE for fitting estimated parameters to extended data set against variance level 

3.2.1 Extended data set 

Using an extended data set, a similar exercise as above was conducted. Five sets of random excitation 

data were used here with each data set sets to run for 20 runs with a maximum of 1000 generations 

per run. Similar parameters for the SADE were used for the population size, strategy choice and 

crossover ratio and mutation factor hyperparameters in order to have a direct comparison with the 

previous investigation. The purpose of using extended data sets was to see if any improvement in 

accuracy can be gained for parameter estimation using random excitation data to minimise the 

linearisation effect. 

Table 3.4 and Table 3.5 show the results for low and high levels of variance respectively. The mean 

estimated parameter and standard deviation in the table come from the average of all the total of 100 

runs. The MSEs for the best estimated parameters associated with the tables are 2.67E-15 and 4.90E-

25 respectively. 

Fitting the mean estimated parameter identified from the low and high variance levels from the tables, 

the MSE against variance level was plotted as in Figure 3.9. Both were fitted using 30 different sets of 

random excitation data similar to Figure 3.8. No improvement was seen for the low variance level 

estimates due to the signal being mostly linear and still neglecting the nonlinear parameters. However, 

for the estimated parameters from the high variance level, the MSE stayed below 0.1% even at a low 
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variance level thus showing an improved fitting compared to the estimation using single data sets. 

This result shows that by having extended data sets an improvement in parameter estimation can be 

obtained. The improved estimation at a high variance level of 100 allows the estimated parameters to 

be fitted to all levels of variance compared to the previous result. 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 0 1.0002 0.0017 

c 0.7037 0.7037 0 0.7039 0.0006 

k 309.51 309.6897 0 322.491 24.7400 

α 0.01 0.015 50 0.4494 0.2589 

A 1 0.9994 0 0.8823 0.2041 

β 150 150.849 1 230.6049 60.7499 

γ 20 20.1124 1 21.9828 10.5786 

Table 3.4: Parameter estimation result with variance = 0.1 using extended data set 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 0 1.0001 0.0010 

c 0.7037 0.7037 0 0.7025 0.0046 

k 309.51 309.51 0 319.7865 17.3175 

α 0.01 0.01 0 0.0140 0.0151 

A 1 1 0 0.9699 0.0470 

β 150 150 0 156.2187 10.2873 

γ 20 20 0 20.1435 1.9815 

Table 3.5: Parameter estimation result with variance = 100 using extended data set 

 
Figure 3.9: MSE for fitting estimated parameters identified using extended data set against variance 

levels 
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The Improvement Ratio as suggested in Chapter 2 was also compared here as shown again in 

Equation 3.1 to remind the reader. Linear parameter estimation was conducted for both low and high 

variance level data with the extended data set. Linear parameter estimation means that only the m, c 

and k value were fitted to the data during the parameter optimisation process. In both cases, the linear 

fitting estimation gives a MSE value of lower than 5%. The linear fitting MSE value was 1.02E-06 

and 0.5754 for low and high variance data respectively with an Improvement Ratio of 3.83E+08 and 

1.17E+24 respectively. For the high variance data, the Improvement Ratio was significantly greater 

compared to the Improvement Ratio of the low variance data. This would provide more confidence in 

the nonlinear model estimation. 

                  
                                        

                     
   (3.1) 

 Bouc-Wen parameter estimation with noise 3.3

In this section, the investigation as above was carried out in the presence of output noise added to the 

data. The noise was added at a level of 5% root mean-square value of the output signal. For the model 

that corresponds to the parameters in this thesis, 10% noise was not feasible as it would cause the 

parameter estimation to not be able to converge to a MSE of 5%, hence the resulting estimated 

parameters did not represent the model as expected. 

The result for parameter estimation for one data set for the low and high input excitation is given in 

Table 3.6 and Table 3.7 respectively. The best estimated parameter corresponds to 0.2516 for the low 

input excitation estimation and 0.2476 for the high input excitation estimation. Although the MSE are 

quite similar, the percentage errors of the nonlinear parameter against the true parameter values are 

quite different with high error on the low input excitation estimates. Similarly as in the data without 

noise estimation, only under the high input excitation estimation was the nonlinear parameters 

identified appropriately. 

The results identified using the extended data set for low and high input excitation is given in Table 

3.8 and Table 3.9 respectively. The best parameter estimates corresponds to a MSE of 0.2495 and 
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0.2586 respectively. Similar to the above findings, only the parameter estimation using high input 

excitation data returned all the estimated parameters as expected with low errors for both linear and 

nonlinear parameter estimates. 

To calculate the Improvement Ratio, a linear model of m, c and k was used in the parameter 

estimation exercise. This was only calculated for the extended set since the MSE were quite similar 

for both methods. The cost function MSE of 0.2494 was obtained for low input excitation for the 

linear fitting with an Improvement Ratio of 0.0004, while for the high input excitation the MSE was 

2.0606 with Improvement Ratio of 6.9683. This shows that, although using low input excitation for 

the parameter estimation may give a good MSE, but looking at the Improvement Ratio, it clearly 

shows that there is almost no benefit of using the Bouc-Wen model as the selected model over a basic 

linear model in this particular parameter estimation exercise. With the use of the Improvement Ratio 

here, a concern could be raised about such a low Improvement Ratio, prompting the user to revisit 

either the model selection step or redesign the experiments to provide a more suitable data for 

estimation. 

With the identified mean estimated parameters from both single data set and the extended data set, the 

MSE against increasing variance level was plotted in Figure 3.10 and Figure 3.11 respectively.  It was 

observed that no improvement was obtained using the extended data set here in the presence of noise, 

contrary to the previous observation with data without noise. The same observation on the importance 

of the having suitable input data was sustained here with the model using the mean estimated 

parameters from the low input excitation data giving an MSE over 5% for all variance levels. 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 0.9984 1.64E-01 0.9983 0.0004 

c 0.7037 0.6992 6.33E-01 0.7004 0.0008 

k 309.51 309.096 1.34E-01 313.6494 5.9907 

α 0.01 0.1054 9.54E+02 0.673 0.3906 

A 1 0.9997 3.12E-02 0.7765 0.2683 

β 150 300 1.00E+02 250 100.0000 

γ 20 30 5.00E+01 15.05 17.2628 

Table 3.6: Parameter estimation result with variance = 0.1 with presence of noise 
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Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 0.9981 1.95E-01 0.9981 0.0001 

c 0.7037 0.7253 3.06E+00 0.7258 0.0011 

k 309.51 309.0981 1.33E-01 312.8921 8.2612 

α 0.01 0.01 4.45E-11 0.01 0.0000 

A 1 1 0.00E+00 0.9881 0.0258 

β 150 145.4897 3.01E+00 147.1609 3.6318 

γ 20 25.2159 2.61E+01 24.3383 1.9778 

Table 3.7: Parameter estimation result with variance = 100 with presence of noise 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1.0012 1.22E-01 0.9998 0.0019 

c 0.7037 0.7015 3.07E-01 0.7043 0.0029 

k 309.51 309.8752 1.18E-01 314.914 11.5723 

α 0.01 1 9.90E+03 0.7339 0.3793 

A 1 0.5039 4.96E+01 0.7712 0.3021 

β 150 101.2924 3.25E+01 173.6901 78.3907 

γ 20 11.148 4.43E+01 16.8155 12.4712 

Table 3.8: Parameter estimation result with variance = 0.1 using extended data set with presence of 

noise 

 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 0.9985 1.49E-01 0.9995 0.0016 

c 0.7037 0.7055 2.54E-01 0.7007 0.0053 

k 309.51 311.6322 6.86E-01 321.6677 21.5586 

α 0.01 0.0127 2.73E+01 0.0148 0.0065 

A 1 0.9923 7.71E-01 0.9644 0.0578 

β 150 152.7135 1.81E+00 158.2198 10.3329 

γ 20 27.1196 3.56E+01 17.1469 5.8069 

Table 3.9: Parameter estimation result with variance = 100 using extended data set with presence of 

noise 
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Figure 3.10: MSE for fitting estimated parameters identified using single data set with noise against 

variance levels 

 

Figure 3.11: MSE for fitting estimated parameters identified using extended data set with noise 

against variance levels  

 SADE strategies and hyperparameters 3.4

In this section the behaviour of SADE itself is observed. The SADE ability to adapt its optimisation 

parameter is interesting and has been observed to show similar patterns during the optimisation 

exercises conducted in this chapter. These adaptations of strategy choices, crossover ratio and 

mutation factor hyperparameters resulted in improved efficiency for the optimisation process in which 

new generation populations were driven towards finding the optimum value more effectively with 

every adjustment to the SADE parameters. 
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3.4.1 Mutation strategy behaviour 

Throughout the optimisation exercises in this chapter, a consistent adaption of the mutation strategy 

behaviour was observed with a typical plot being shown in Figure 3.12. The convergence points are 

usually different depending on the selected model and variance level. It was seen that initially, the 

preferred strategies were Rand/1 and Rand/2. At later generations the preference switched to Current 

to Best/2 and Current to Rand/1. It appeared that the SADE preference of strategy Rand/1 and Rand/2 

initially was to allow a wider search area for the early investigation of the parameter values. When a 

more restricted search space of parameter values had been identified, the strategy switched to Current 

to Best/2 and Current to Rand/1 to allow the investigation to focus the search in the preferred space 

around the best parameter values and the current parent values which by that time would already be 

good estimates. This gives SADE its advantage of using multiple strategies without requiring the user 

to determine when to switch between these strategies. 

 

Figure 3.12: Behaviour of Mutation strategies on the classic Bouc-Wen model. 

3.4.2 Crossover ratio, Cr and mutation factor, Fr behaviour 

Cr and Fr were initially set to 0.5 and 0.9 respectively. This was suggested in [10] and [12] as values 

in a good range of Cr and Fr. For the classical Bouc-Wen model the Cr and Fr value shifts as shown 

in Figure 3.13 It can be seen that the Cr value steadily increases to 0.8-0.9. A high crossover ratio, Cr, 
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means that the trial vector will have higher chances of selecting parameters from the mutation vector 

rather than the parent vector. This gives more exploration possibility for the SADE.  

On the other hand, the value of Fr quickly declines and remains steady between 0.15 - 0.3. A low 

mutation factor, Fr, means that the mutation vectors will not differ significantly from the original 

parent vectors. The explanation for this behaviour is similar to that in Section 3.4.1, where once a 

suitable region of parameter values had been found, the low Fr value gives focus to explore in the 

preferred search space local to the current parent value. This behaviour has been consistently observed 

for almost all optimisation conducted in this chapter, for both Cr and Fr values. 

 

Figure 3.13: Behaviour of Cr and Fr in classic Bouc-Wen model. 

 Discussion 3.5

In this chapter, a parameter estimation algorithm of Self-adaptive Differential Evolution (SADE) had 

been introduced and implemented in the parameter estimation of the Bouc-Wen model of a hysteretic 

system under random inputs at low and high excitation levels with a variance of 0.1 and 100 

respectively.  

The results showed that whilst obtaining an impressively low cost function value associated with 

excellent fit, the nonlinear parameters do not match the true system parameters when using random 

input with low variance. This is due to the mostly linear system that does not give incentive to the 
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SADE algorithm to identify the nonlinear parameters after identifying the linear parameters. This 

again stressed the importance of having to set a proper specification for the model performance 

requirements when building a model for a nonlinear system or structure. If the real system was 

required to perform in a high amplitude input environment, experiments should be designed to meet 

this criterion. If this is not done so, and the experiments are instead designed with low input 

amplitude, the parameter estimation may falsely give an excellent estimate for that particular data set. 

When the model is built it will then fail to perform as expected when used in the actual required 

condition. 

With the use of extended data, although significant improvement was shown for the data without 

noise investigation, the same was not observed for data in the presence of noise. It was concluded that 

it is unnecessary to use an extended data set for SADE compared to using a smaller amount of 

sampling data for the purpose of parameter estimation in the real environment where noise is always 

expected. 

Observation of the Improvement Ratio trends showed that ranges of the Improvement Ratio value 

when optimisation was performed on data without noise was rather high with the value of up to 3E8 

when the parameter estimation did not have a nonlinear incentive with a low input excitation data. 

Then when the optimisation was given incentive to find the nonlinear parameters with a high 

excitation level, the Improvement Ratio significantly went up to around 1E24. In the presence of 

noise, the Improvement Ratio provided clear information by showing almost no improvement of the 

estimation using a low input excitation of 0.0004 compared to 6.9683 for the estimation using a high 

input excitation. Around a 700% improvement was obtained by performing parameter estimation 

using the high excitation level data compared to only 0.4% improvement with low excitation level 

data over a simple linear system. This again showed the importance of having the right data for 

nonlinear system identification. 

Observation of the SADE behaviour showed that the algorithm worked well with strategy choices and 

crossover ratio and mutation factor hyperparameters values adapted during the parameter estimation 
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process. It allows for faster and more efficient parameter estimation. At the initial stage of the 

parameter estimation, a wider search space was preferred. Then the preference shifted to focus on the 

best elements both when creating the mutation matrix and when choosing the elements in the 

crossover procedure as the estimation became better. 

In the next chapter, an investigation using SADE will be undertaken with sinusoidal input signals and 

chirp input signals on the same Bouc-Wen model of a hysteretic system. The next chapter will also 

look at comparisons of nonlinear parameter estimation with data generated from different input types. 
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Chapter 4  

4 Nonlinear Parameter Estimation using Harmonic 

Excitation 

 Introduction 4.1

In the previous chapter, SADE was implemented using a simulated signal using data from random 

input. With random input, an output signal was expected to contain a lot of information that would be 

picked up by a parameter estimation algorithm. However, amongst the information it contains, most 

of it would be not be as useful as expected for nonlinear parameter identification purposes. The main 

reason for this was due to the lack of sufficiently strong excitation of the nonlinearity coming from 

data with random excitation. This was shown in the previous chapter where estimation with random 

data sets returned estimated parameters that could not be fitted to other data sets and to the same 

random excitation at a different excitation amplitude level.  

 Here, in this chapter, parameter estimation investigation is done to further understand any effect on 

the choice of input for the simulated signal on parameter estimation. The parameter estimation 
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algorithm, SADE is used on data with harmonic excitation which is sinusoidal input and chirp input 

here in the thesis. A sensitivity study is also conducted to determine the region of suitability (in terms 

of frequencies and amplitude level) for the multi sinusoidal investigation. It is expected that harmonic 

excitation would return a better parameter estimates due to the fact that it will concentrate more 

energy at specific frequencies and produce a stronger nonlinear behaviour for identification purposes. 

This in turn will result in better accuracy for nonlinear parameter estimation. 

Firstly, a single sinusoidal input is considered. Here parameter estimation is investigated for the single 

sinusoidal input to understand its effect and limitations. Then the parameter sensitivity (in terms of 

parameter estimation) is investigated. This is done by varying one parameter and studying the effect 

on parameter estimation MSE for a single sinusoidal input across the frequency and amplitude range. 

Next, a simulated signal with multi sinusoidal input is investigated. This is to investigate the effect of 

additional information coming from the interaction frequencies of multiple sinusoidal signals. Here 

various frequency combinations of two sinusoidal signals are compared. Finally the effect of using 

chirp input is investigated. Chirp then takes this to its logical conclusion in that there is a complete 

range of frequencies excited but in a concentrated manner, in terms of total energy of the input. With 

chirp, the energy will be concentrated at a single frequency at any moment in time. Finally a 

comparison between the parameter estimation results using data from random, sinusoidal and chirp 

input is tabled. All of these are investigated on the Bouc-Wen system with the same parameters as in 

Chapter 2 and Chapter 3 for cases without noise and with noise.  

 Single sinusoidal input 4.2

Using the same setup with Matlab and Simulink, as discussed in Chapter 3 but with the substitution of 

the random input with sinusoidal input, the parameter estimation algorithm for Self-adaptive 

Differential Evolution (SADE) was used to estimate the parameters of the Bouc-Wen system with 

known parameters in the same manner as in the previous chapter. 

In this section, a single sinusoidal input was used for generating data for the investigation. Two 

different frequencies were chosen. The first frequency was at the undamped natural frequency of the 
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underlying linear system at 17.6 rad/s and the other frequency was at 3 rad/s. The latter was a „trial 

and error‟ frequency to investigate the effect of using a randomly chosen frequency value. The 

amplitude was set at low and high amplitudes of 0.1 N and 10 N respectively, similarly to the 

amplitudes applied in the previous chapter. 

4.2.1 Signal without noise 

Table 4.1 and Table 4.2 show the results for parameter estimation for low and high forcing amplitude 

respectively, when the forcing frequency was equal to the undamped natural frequency, ωn of the 

underlying linear system. The mean square error (MSE) from the low and high amplitude excitation 

was 2.46E-11 and 1.76E-24 respectively. Clearly, both are exceptionally good predictions in terms of 

the MSE. However, it can be seen in the table that the nonlinear parameters for the first estimation 

exercise had very significant errors whilst the latter provided better estimates. This is as expected due 

to the mostly linear output data when the system was subjected to a low amplitude input.  

Figure 4.1 shows the output comparison plot for the real system, estimated Bouc-Wen system and 

estimated linear system for sinusoidal inputs with a frequency of 17.6 rad/s and amplitude 10 N. The 

figure shows that a linear system could still fit well to the data here. The linear fit estimation for this 

data gives a good estimation with a MSE of 2.84E-04 for the low amplitude and 0.2915 for the high 

amplitude data. Looking at the Improvement Ratio for both cases here, the Improvement Ratios are 

1.16E+07 for the low amplitude and 1.66E+23 for the high amplitude data. 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 4.31E-05 0.9924 9.40E-03 

c 0.7037 0.7037 2.31E-04 0.7215 1.16E-02 

k 309.51 309.5102 7.14E-05 327.4456 2.51E+01 

α 0.01 0.0363 2.63E+02 0.6211 2.77E-01 

A 1 3 200 2.4 1.10E+00 

β 150 154.1064 2.7376 188.2449 7.56E+01 

γ 20 20.538 2.6899 20.3857 1.14E+01 

Table 4.1: Estimation with sinusoidal inputs with frequency 17.6rad/s and amplitude 0.1 N 
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Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 5.54E-11 1 6.92E-04 

c 0.7037 0.7037 2.00E-09 0.7028 1.04E-02 

k 309.51 309.51 1.17E-10 310.5855 3.21E+00 

α 0.01 0.01 1.21E-09 0.01 1.18E-06 

A 1 1 6.69E-11 0.9966 1.02E-02 

β 150 150 4.82E-10 150.613 1.97E+00 

γ 20 20 3.88E-09 20.0185 7.53E-01 

Table 4.2: Estimation with sinusoidal inputs with frequency 17.6rad/s and amplitude 10 N 

 

Figure 4.1: Output response plot of real and estimated systems for sinusoidal inputs with frequency 

17.6rad/s and amplitude 10 N 

Table 4.3 and Table 4.4 show the result for parameter estimation at a frequency of 3 rad/s at 

amplitude of 0.1 N and 10 N respectively. The parameter estimation gives a mean square error (MSE) 

of 3.23E-18 and 4.30E-23 respectively. Similar to the previous results, the estimated nonlinear 

parameter significantly improve in accuracy as the excitation amplitude increases due to the system 

nonlinear behaviour having greater influence at higher forcing.  

Linear fitting still gives good estimates for both low and high amplitude with an MSE of 1.71E-08 

and 1.2205 respectively. The Improvement Ratios show a similarity in trend to that shown with the 

17.6 rad/s data with value of 5.28E+09 for the low amplitude and 2.84E+22 for the high amplitude. 
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Although the Improvement Ratio could potentially improve confidence in the nonlinear parameter 

model with a high Improvement Ratio value for the model here, it can still be argued based on the 

MSE that with the data from a single sinusoidal input, a linear model would be sufficient. The use of 

single sinusoidal input here seems to offer output data that is not exclusive to the Bouc-Wen system as 

it could be fitted to other models such as the linear model that has already been demonstrated. This 

generality of data arises from the lack of information from the single sinusoidal input due to limited 

information at a single excitation frequency. 

  
Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 4.05E-09 1 3.06E-07 

c 0.7037 0.7037 1.10E-07 0.7037 1.64E-06 

k 309.51 309.5102 7.72E-05 309.5101 3.50E-04 

α 0.01 0.1697 1.60E+03 0.3578 8.77E-02 

A 1 3.078 207.8 2.625 1.20E+00 

β 150 178.8626 19.2417 235.8231 3.43E+01 

γ 20 23.8491 19.2457 26.6079 7.56E+00 

Table 4.3: Estimation with sinusoidal inputs with frequency 3 rad/s and amplitude 0.1 N 

  

Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 1.24E-10 1.0002 6.15E-04 

c 0.7037 0.7037 6.39E-10 0.7044 2.30E-03 

k 309.51 309.51 3.58E-09 319.4238 1.53E+01 

α 0.01 0.01 8.39E-08 0.0105 1.90E-03 

A 1 1 3.69E-09 0.9703 4.21E-02 

β 150 150 5.07E-09 155.1421 8.36E+00 

γ 20 20 1.25E-08 19.9761 1.18E+00 

Table 4.4: Estimation with sinusoidal inputs with frequency 3 rad/s and amplitude 10 N 

4.2.2 Signal with noise 

The investigation looked at single sinusoidal excitation data with output noise of 5% to 20% of the 

output signal root mean-square (RMS) value. This was to observe the effect on parameter estimation 

of single sinusoidal input under the effect of noise and how it affected the estimated parameters, the 

MSE of the parameter estimation and the Improvement Ratio. Table 4.5 and Table 4.6 show the 

results for a sinusoidal excitation of frequency of 17.6 rad/s with 0.1 N and 10 N excitation amplitude 
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respectively and Table 4.7 and Table 4.8 show the results for a sinusoidal excitation of frequency of 3 

rad/s with 0.1 N and 10 N excitation amplitudes respectively. 

The MSE was as expected, where an increasing MSE trend showed with increasing output noise. This 

was observed for all four scenarios in the tables. Looking at the standard deviation of the parameters, 

it can be seen clearly seen that for the low amplitude excitation data, the standard deviation for the 

nonlinear parameters is always high. This is again due to the data showing a linear behaviour under 

low amplitude excitation. The standard deviation for the high amplitude excitation always remains 

low even when the noise causes the mean estimated nonlinear parameters to deviate from the actual 

value of the nonlinear parameters as seen especially for γ values in the tables. This may be cause by 

the generality introduced by the single sinusoidal input where only a single frequency and harmonic 

are the only source of information for the system. 

As previously observed in last chapter, the Improvement Ratio gives a clearer comparison under the 

effect of noise. Here it can be seen that the Improvement Ratio for the low amplitude excitation data is 

very low for both excitation frequencies with zero Improvement Ratio for the 3 rad/s frequency 

excitation. For the 17.6 rad/s frequency, the linear fitting MSE are even better than the Bouc-Wen 

model MSE, although very marginal. This again pointed to having almost no benefits in the selection 

of the Bouc-Wen model as the predicted model compared to a simple linear model of m, c and k for 

the low amplitude excitation data. 

The Improvement Ratio for the high amplitude excitation data decreased with the increase of noise. 

This may be due to the higher noise level making it difficult to fit the Bouc-Wen model to the single 

sinusoidal data which has been dominated by noise. The Improvement Ratios for the 3 rad/s excitation 

frequency were better compared to the 17.6 rad/s excitation frequency estimation. This could be 

caused by the stronger harmonics of the 3 rad/s frequency which also caused the linear fitting to fail to 

get an estimation of good fit for the 20% RMS noise. 
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The Improvement Ratio here showed that at higher amplitude excitation, a more nonlinear signal 

would result in significant Improvement Ratio value which could be useful in improving confidence 

in the parameter estimation exercise. 

 Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

 MEP SD MEP SD MEP SD MEP SD 

m 0.990 1.83E-02 0.971 7.10E-03 1.010 1.55E-02 0.980 1.20E-02 

c 0.721 1.78E-02 0.731 1.70E-02 0.709 3.36E-02 0.731 9.80E-03 

k 315.713 2.04E+01 314.064 2.21E+01 315.387 2.75E+00 323.215 3.73E+01 

α 0.583 5.03E-01 0.706 2.92E-01 0.650 5.55E-01 0.905 1.50E-01 

A 0.856 2.27E-01 0.654 3.20E-01 0.644 3.15E-01 0.652 3.58E-01 

β 169.061 1.13E+02 230.283 1.13E+02 184.659 1.03E+02 223.652 6.62E+01 

γ 20.033 1.73E+01 20.033 1.73E+01 18.545 1.61E+01 12.480 1.10E+01 

MSE 0.2499 0.9673 2.108 3.7559 

Linfit 
MSE 0.2501 0.9672 2.1101 3.7557 

I.Ratio 0.0008 0.0001 0.0010 0.0001 

Table 4.5: Estimation with single sinusoidal excitation with amplitude = 0.1 N and frequency = 

17.6rad/s with noise 

 Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

 MEP SD MEP SD MEP SD MEP SD 

m 1.013 6.90E-03 1.006 4.92E-05 1.040 8.11E-05 0.998 4.22E-04 

c 0.425 1.21E-01 0.516 5.87E-04 0.254 6.47E-04 0.553 1.43E-02 

k 354.501 1.44E+01 315.382 7.90E-03 322.202 2.63E-02 305.733 3.39E-01 

α 0.0103 4.53E-04 0.010 3.85E-10 0.010 5.51E-08 0.010 5.16E-07 

A 0.879 4.04E-02 1.000 1.61E-07 1.000 4.33E-05 1.000 1.14E-04 

β 183.224 7.20E+00 157.741 2.16E-02 162.934 3.63E-02 161.490 7.16E-01 

γ 18.636 4.39E+00 19.346 4.50E-02 21.144 6.50E-04 23.106 9.60E-03 

MSE 0.2471 0.989 2.0363 3.8881 

Linfit 
MSE 0.5413 1.3085 2.3317 4.1856 

I.Ratio 1.1906 0.3231 0.1451 0.0765 

Table 4.6: Estimation with single sinusoidal excitation with amplitude = 10 N and frequency = 

17.6rad/s with noise 

 

 

 



90 

 

 

Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

MEP SD MEP SD MEP SD MEP SD 

m 1.000 1.48E-07 0.998 3.27E-10 0.999 1.39E-09 0.997 1.54E-09 

c 0.709 2.45E-09 0.701 8.85E-09 0.671 4.75E-09 0.689 2.14E-08 

k 309.429 3.84E-05 309.322 2.79E-07 309.525 1.33E-06 308.847 5.25E-06 

α 1.000 5.98E-11 1.000 9.79E-12 1.000 5.06E-09 1.000 2.05E-08 

A 0.521 1.36E-01 0.701 2.27E-01 0.599 2.50E-02 0.584 4.91E-01 

β 131.179 2.77E+01 108.139 8.63E+00 115.002 1.92E+01 236.052 5.61E+01 

γ 11.784 9.61E+00 11.139 9.49E+00 15.523 9.48E+00 16.660 7.67E+00 

MSE 0.2705 1.0317 2.3041 4.0332 

Linfit 
MSE 0.2705 1.0317 2.3041 4.0332 

I.Ratio 0 0 0 0 

Table 4.7: Estimation with single sinusoidal excitation with amplitude = 0.1 N and frequency  = 

3rad/s with noise 

 Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

 MEP SD MEP SD MEP SD MEP SD 

m 1.000 1.28E-07 1.002 3.25E-06 1.005 3.14E-04 0.998 3.13E-08 

c 0.696 3.47E-06 0.699 2.57E-05 0.497 2.41E-04 0.676 9.92E-08 

k 317.223 7.22E+00 317.161 3.56E+00 327.477 1.16E+01 310.251 7.42E-06 

α 0.015 3.35E-04 0.019 2.29E-04 0.048 1.10E-03 0.021 1.95E-07 

A 0.977 2.24E-02 0.968 1.10E-02 0.947 3.56E-02 1.000 9.21E-13 

β 155.165 3.58E+00 148.550 1.69E+00 174.683 6.72E+00 154.892 8.54E-05 

γ 20.848 4.81E-01 21.873 1.45E-06 24.255 6.24E-01 28.978 2.97E-12 

MSE 0.2483 1.0261 2.2522 4.143 

Linfit 
MSE 1.4607 2.1471 3.8598 - 

I.Ratio 4.8828 1.0925 0.7138 - 

Table 4.8: Estimation with single sinusoidal excitation with amplitude = 10 N and frequency = 3rad/s 

with noise 

4.2.3 Sensitivity of Bouc-Wen parameters under sinusoidal input 

The investigation of a good estimation region using sinusoidal input for the particular Bouc-Wen 

system used here is shown in Figure 4.2 to Figure 4.8. The figures show the value of the mean 

parameters across 10 runs at each frequency and amplitude with frequency ranges 1 rad/s to 25 rad/s 

with a step size of 0.5 rad/s and amplitude ranges 0.1 N to 20N. These figures are aimed at showing 

which value of amplitude and frequency are a good choice for doing parameter estimation using 

sinusoidal excitation where a flat region is a good region of choice of amplitude and frequency value. 
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The results will be used to determine the choice of amplitude and frequency for the multi sinusoidal 

section later. 

In Figure 4.2 and Figure 4.3, it is shown that parameters m and c are easily identified with mostly flat 

regions and a good prediction close to the real parameter values with some small errors at lower 

amplitude regions. Parameter k in Figure 4.4 shows that at a low amplitude and low frequency region, 

there is a significant fluctuation of value. This is due to the stiffness parameter, k adapting to counter 

balance the effect of the nonlinear parameter at that region to keep the MSE low. Flat regions of 

parameter k can be seen at higher amplitudes and higher frequencies where nonlinearity behaviour can 

be recognised by the estimation algorithm and nonlinear parameters are settling close to their 

respective real values. Parameter A, α, β and γ in Figure 4.5 to Figure 4.8 shows mostly flat regions 

above an amplitude region of 5 N. At the low amplitude region it is expected for the parameters to be 

inaccurate as the nonlinearity behaviour of the Bouc-Wen system is undetected. Parameter β and γ 

also shows slight variability at around the low frequency region as seen in Figure 4.7 and Figure 4.8. 

From these results, it can be observed that an amplitude of above 10 N results in good prediction for 

all parameters of the specific Bouc-Wen model used here. Since a multi sinusoidal signal will provide 

combinations of frequencies anyway, the frequency choice of the next section will have multiple sets 

to investigate the different combinations.   

 

Figure 4.2: Estimation of parameter m, under sinusoidal input across amplitude and frequency values 
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Figure 4.3: Estimation of parameter c, under sinusoidal input across amplitude and frequency values 

 

Figure 4.4: Estimation of parameter k, under sinusoidal input across amplitude and frequency values 
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Figure 4.5: Estimation of parameter A, under sinusoidal input across amplitude and frequency values 

 

Figure 4.6: Estimation of parameter α, under sinusoidal input across amplitude and frequency values 
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Figure 4.7: Estimation of parameter β, under sinusoidal input across amplitude and frequency values 

 

Figure 4.8: Estimation of parameter γ, under sinusoidal input across amplitude and frequency values 

 Multiple sinusoidal input 4.3

To further investigate the sinusoidal input, multiple sinusoidal inputs were used following on from the 

previous section. A single sinusoidal will mainly only return information at the forcing frequency and 

harmonics which is limited and may cause the nonlinearity of a system to be ignored. With two 

sinusoids, information at two forcing frequencies, two sets of harmonics and the sum and difference 

of the frequencies are obtained. From a nonlinear parameter estimation point of view, this should give 
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greater discrepancy (wrong values would result in poor MSEs) between different estimates of the 

nonlinear parameters. Using the same setup with Matlab and Simulink, SADE was used in the 

parameter estimation of the known Bouc-Wen system with parameters similar to the previous chapter.  

In the previous chapter, using extended random excitation data yielded better parameter estimates (at 

least for the data without noise). Following on from that, five sets of multi sinusoidal signals were 

used for each of the parameter estimation exercises. For each signal set, 20 runs of SADE were 

performed and assessed to obtain the parameter estimation values. That means the mean estimated 

parameters come from the average of all five sets, meaning a total of 100 runs for each scenario. 

The input signals used two sine inputs, both with amplitude of 10 N. This arose from the sensitivity 

observation from the previous subsection, where at 10 N amplitude the data had a good presence of 

nonlinearity. The frequency was set whereby one sine source was fixed, while the other was increased 

gradually to obtain the five sets of input. The first frequency would allow for control if necessary 

whilst the second would act as a mixing frequency to create a diverse input. Figure 4.9 shows the 

sinusoidal combination example that was presented in the plot of Figure 4.10 (a).  

 

Figure 4.9: Example of multi sinusoidal combination to create input signal 

The input and output of the signals that were used are shown in Figure 4.10 for frequency 1 = 17.6 

rad/s, Figure 4.11 for frequency 1 = 8 rad/s and Figure 4.12 for frequency 1 = 3 rad/s where (a) to (e) 

amplitude 1 = 10 

frequency 1 = 17.6rad/s 

amplitude 1 = 10 

frequency 1 = 6.52/s 
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represent set 1 to set 5 respectively. The selection of frequency 1 of 8 rad/s and 3 rad/s was done to 

investigate the effect of using input with frequencies that do not excite at the natural frequency of the 

underlying linear system for exploratory investigation. The result could give insights into the design 

of experiments for frequency choices of the input signal. The value of frequency 2 used are listed 

below in Table 4.9. As can be seen in the table, the signals vary from one another and were expected 

to produce different results in the parameter estimation. 

Set 1 2 3 4 5 

Frequency 2 ωn/0.3 ωn/0.9 ωn/1.5 ωn/2.1 ωn/2.7 

Frequency 2 

in rad/s 
58.67 19.56 11.73 8.38 6.52 

Table 4.9: Values of frequency 2 for the 5 sets of input signals. 

(a)  (b)  

(c) (d)  

(e)   

Figure 4.10: Input output plot of multi sinusoidal with amplitude = 10 N, frequency 1 = 17.6 rad/s and 

frequency 2 (a) 58.67 rad/s (b) 19.56 rad/s (c) 11.73 rad/s (d) 8.38 rad/s and (e) 6.52 rad/s 
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(a) (b)  

(c) (d)  

(e)  

Figure 4.11: Input output plot of multi sinusoidal with amplitude = 10 N, frequency 1 = 8 rad/s and 

frequency 2 (a) 58.67 rad/s (b) 19.56 rad/s (c) 11.73 rad/s (d) 8.38 rad/s and (e) 6.52 rad/s 

(a) (b)  

(c) (d)  

(e)  

Figure 4.12: Input output plot of multi sinusoidal with amplitude = 10 N, frequency 1 = 3 rad/s and 

frequency 2 (a) 58.67 rad/s (b) 19.56 rad/s (c) 11.73 rad/s (d) 8.38 rad/s and (e) 6.52 rad/s 
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4.3.1 Signal without noise 

Table 4.10 and Table 4.11 below show the results of the SADE parameter estimation for the first two 

scenarios with an input signal frequency 1 of 17.6 rad/s and 8 rad/s respectively. As mentioned above, 

the mean estimated parameter is the average from the total of 100 runs (5 sets of 20 runs each). Both 

showed an excellent estimation with all of the runs giving very low MSE in 1000 generations. The 

best estimated parameter for frequency 1 of 17.6 rad/s corresponded to an MSE of 1.46E-29 from set 

5 and the best estimated parameter for frequency 1 of 8 rad/s corresponded to an MSE of 3.06E-29 

from set 2. As seen in the tables, both had mean estimated parameters (MEP) exactly similar to the 

real parameter values. 

The results of the SADE estimation with frequency 1 = 3 rad/s are shown in Table 4.12. Although the 

mean estimated parameters are not exactly the same as the real parameter values, the estimation is still 

an excellent estimation. Even when using signals with frequencies not at the natural frequency of the 

underlying linear system, with a multi sinusoidal input signal, the results still manage to give a good 

estimation values comparable to the random input data and single sinusoidal input data estimation. 

Additionally, over a total of 100 runs, the MSE was brought to a very low level as well. The best 

estimated parameter corresponds to MSE value of 1.49E-29 coming from set 3. 

With multi sinusoidal input, only the data from multi sinusoidal of frequency 1 = 17.6 rad/s and 

frequency 2 = 58.67 rad/s (set 1) could be fitted with a linear model with an MSE below 5, the other 

sets could not fit a linear model with good estimates. With frequency 1 = 8 rad/s and frequency 1 = 3 

rad/s, the linear model was unable to be estimated with a good fit for all sets here. This shows that 

multi sinusoidal input data resulted in a unique data that could only be identified with the correct 

model selection. This counters the disadvantage of using reverse parameter estimation method which 

suffers from local minima/maxima when using general data. 

The linear fitting for frequency 1 = 17.6 rad/s and frequency 2 = 58.67 rad/s (set 1) had an MSE of 

1.10 with an Improvement Ratio of 7.51E+28. The high Improvement Ratio indicates that it is worth 

selecting the Bouc-Wen model over the linear model as the predicted model for the parameter 
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estimation exercises. Figure 4.13 below shows the output plot comparison for the true system, the 

estimated Bouc-Wen system and the estimated linear system for the above multi sinusoidal input. It 

can be seen that the Bouc-Wen and true system are an exact match whilst the linear system has a 

slight discrepancy. This is the only Improvement Ratio calculated and comparison plot shown, as the 

other sets did not produce an acceptable estimate for linear fitting. This observation is a good point 

compared to the random excitation and single sinusoidal excitation investigation previously where 

linear fitting is always possible. It can be said that the model output data due to the multi sinusoidal 

inputs is almost exclusive for Bouc-Wen model, meaning that the nonlinearity of the system plays an 

important role and nonlinear parameters are significant to the parameter estimation algorithm. 

 

Figure 4.13: Output response plot of real and estimated systems for multi sinusoidal inputs with 

frequency 1= 17.6 rad/s frequency 2 = 58.67 rad/s both with amplitude of 10 N 

  

Real 

Parameter 

Best Estimated 

Parameter 

% 

Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 0 1 2.31E-08 

c 0.7037 0.7037 0 0.7037 8.54E-07 

k 309.51 309.51 0 309.51 4.44E-05 

α 0.01 0.01 0 0.01 8.60E-09 

A 1 1 0 1 1.07E-07 

β 150 150 0 150 2.93E-05 

γ 20 20 0 20 8.42E-05 

Table 4.10: Estimation with sinusoidal inputs with amplitude = 10 N and freq1 = 17.6 rad/s 
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Real 

Parameter 

Best Estimated 

Parameter 

% 

Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 0 1 1.84E-08 

c 0.7037 0.7037 0 0.7037 1.56E-07 

k 309.51 309.51 0 309.51 7.90E-05 

α 0.01 0.01 0 0.01 1.62E-09 

A 1 1 0 1 2.56E-07 

β 150 150 0 150 4.25E-05 

γ 20 20 0 20 9.48E-06 

Table 4.11: Estimation with sinusoidal inputs with amplitude = 10 N and freq1 = 8 rad/s  

  

Real 

Parameter 

Best Estimated 

Parameter 

% 

Error 

Mean Estimated 

Parameter 

Standard 

Deviation 

m 1 1 0 0.9999 7.82E-04 

c 0.7037 0.7037 0 0.7039 4.40E-03 

k 309.51 309.51 0 311.0477 7.68E+00 

α 0.01 0.01 0 0.01 3.16E-06 

A 1 1 0 0.9955 2.19E-02 

β 150 150 0 150.7682 3.80E+00 

γ 20 20 0 20.0767 5.71E-01 

Table 4.12: Estimation with sinusoidal inputs with amplitude = 10 N and freq1 = 3 rad/s 

4.3.2 Signal with noise 

Noise was added to the output signals via simulated white noise using a random signal with amplitude 

equal to a percentage of the output signal root mean square value (RMS). The simulated white noise 

was added at levels of 5% RMS, 10% RMS, 15% RMS and 20% RMS for frequency 1 = 3 rad/s and 

subsequently for frequency 1 = 17.6 rad/s, similar to the previous section with a single sinusoidal 

excitation. Here, the frequency 1 of 8 rad/s excitation frequency signal sets were not investigated as in 

the previous subsection since its results were very similar to the 17.6 rad/s excitation frequency 

parameter estimation and would not provide additional value to the investigation. Figure 4.14 and 

Figure 4.15 show the output signal with noise levels of 5% and 20% of the output‟s RMS output for 

all five sets of signal with frequency 1 = 3 rad/s where (a) to (e) represents set 1 to set 5 respectively. 
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(a) (b)  

(c) (d)  

(e)  

Figure 4.14: Output response plot of sinusoidal input with amplitude = 10 N and frequency 1 = 3 rad/s 

and frequency 2 (a) 58.67 rad/s (b) 19.56 rad/s (c) 11.73 rad/s (d) 8.38 rad/s and (e) 6.52 rad/s with 

5% RMS noise 
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(a) (b)  

(c) (d)  

(e)  

Figure 4.15: Output response plot of sinusoidal input with amplitude = 10 N and frequency 1 = 3 rad/s 

and frequency 2 (a) 58.67 rad/s (b) 19.56 rad/s (c) 11.73 rad/s (d) 8.38 rad/s and (e) 6.52 rad/s with 

20% RMS noise 

The results of parameter estimation with the addition of noise can be seen in Table 4.13. As the noise 

level increases, the estimated values of k, α, β and γ increase, while the other parameters do not show 

any discernible pattern. As the noise level increases, the standard deviation for parameters m, α, and A 

decrease, showing a more precise estimation whilst the standard deviation for parameters k, β and γ 
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increase, showing a more flexible estimation. In this case, the former group of estimated parameters 

can be said to play a more important role in defining the model with an increasing noise level. By 

getting these parameters right, the main body of the predicted model would have been satisfied, giving 

more flexibility to the other parameters to fit to the added noise, although the estimated parameter 

values are still close to their respective actual values. 

Table 4.14 shows the MSE value for the noise levels. It also shows the sets success and failure status 

of the sets, where success means that at least one run managed to obtain an MSE of less than 5. As 

can be expected, the MSE value increases as the noise level increases. Up until a 15% RMS noise 

level, all five sets were successful, while at 20% RMS, only the first set was successful. This was due 

to the particular combination with frequency 2 value of 58.67 rad/s which still gave good excitation 

above the noise level. This gives sufficient incentive for the estimation algorithm SADE to identify 

the nonlinear parameters. At 25% RMS level, all sets failed to give estimates with an MSE less than 5. 

  

Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

MEP SD MEP SD MEP SD MEP SD 

m 0.9993 3.40E-03 0.9985 3.00E-03 0.9928 6.80E-03 0.9985 4.39E-04 

c 0.7088 2.45E-02 0.6895 4.39E-02 0.7837 1.28E-01 0.6988 1.70E-03 

k 310.2929 2.08E+00 316.2839 1.13E+01 316.1786 1.14E+01 319.7268 1.94E+01 

α 0.0100 1.07E-05 0.0100 2.88E-05 0.0101 2.57E-04 0.0280 1.60E-03 

A 0.9967 6.30E-03 0.9800 3.55E-02 0.9695 3.42E-02 0.9747 5.65E-02 

β 150.7626 2.60E+00 152.8707 6.50E+00 152.3013 6.49E+00 159.8336 1.02E+01 

γ 19.0069 1.85E+00 20.3522 3.76E+00 21.1089 5.38E+00 30.0000 1.08E-10 

Table 4.13: Estimation with sinusoidal inputs with amplitude = 10 N and frequency 1 = 3 rad/s with 

noise 
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  Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

mean MSE 0.3758 1.4508 3.2479 4.5854 

min MSE 0.2666 1.0146 2.5097 4.5854 

max MSE 0.4670 1.7937 3.8780 4.5854 

Set 

1 Yes Yes Yes Yes 

2 Yes Yes Yes No 

3 Yes Yes Yes No 

4 Yes Yes Yes No 

5 Yes Yes Yes No 

Table 4.14: MSE value from estimation and status of set success or failure in estimation with noise at 

amplitude = 10 N and frequency 1 = 3 rad/s 

Figure 4.16 shows the plot of the real parameter system output with noise against the predicted system 

output at the 20% RMS level for the five sets of signal. Since the parameter estimation was only 

successful with set 1, Figure 4.16 (b) to Figure 4.16(e) do not show a good prediction. The MSE 

between the real system with noise and the predicted system for set 2, set 3, set 4 and set 5 are 

12.5506, 18.6420, 7.8194 and 5.9472 respectively. The complexity introduced to the signal due to 

choice of frequencies for the sets may have led to the signal being overwhelmed by the 20% RMS 

level of noise where the signal noise ratio is unsuitable for parameter estimation compared to the 

simpler output signal of set 1. 

 

(a) Set 1 
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(b) Set 2 

 

(c) Set 3 
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(d) Set 4 

 

(e) Set 5 

Figure 4.16: Output response plot of real system with noise against estimated system at 20% RMS 

For frequency 1 = 17.6 rad/s, the estimated parameters are given in Table 4.15 for a noise level of 5% 

RMS to 20% RMS. There are no clear patterns for all estimated parameter value except that the 

estimated nonlinear parameters tend to stay close to the real system parameter values with slightly 

wider standard deviations when compared with the results from frequency 1 = 3 rad/s. This, again, 

may be due to the super harmonics being introduced by the 3 rad/s excitation frequency which forces 

the parameter estimation algorithm SADE to obtain parameter estimates to be as accurate as possible 

for the 3 rad/s excitation frequency sets. 
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The standard deviation trends are similar to the previous results where parameters m, c, α, and A show 

small standard deviations while the parameters k, β and γ have higher standard deviations throughout. 

The increasing or decreasing trends relative to the increasing noise level are however not seen here. 

In Table 4.16, the MSE values for the estimation are shown. The values here are all lower than the 

previous estimation MSE with only one set having failed to obtain an MSE below 5 for the parameter 

estimation with a 20% RMS noise level. However this does not necessarily say that the estimated 

parameters are better than the previous estimated parameters.  

Although the MSE with excitation frequency 1 of 17.6 rad/s is better than that of excitation frequency 

of 3 rad/s, the standard deviation trends show that the prediction of the latter is more precise. This can 

be caused by the sets of the 3 rad/s excitation frequency having a more complex output signal with 

nonlinear features which are easily identified by the parameter estimation algorithm. These nonlinear 

features penalised the parameter estimation MSE but reward the parameter estimation algorithm with 

a more precise estimate, hence the narrow standard deviation. In terms of nonlinear parameter 

estimation, having a complex signal (given there is still nonlinearity present) is a good way forward. 

However, there needs to be a balance between complexity and information availability from the signal 

in order to avoid a massively complex signal which can introduce linearisation as does a random 

signal. 

 

Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

MEP SD MEP SD MEP SD MEP SD 

m 0.9950 3.70E-03 1.0027 9.10E-03 0.9974 1.14E-02 0.9911 6.50E-03 

c 0.7213 2.59E-02 0.6995 1.18E-01 0.6914 1.37E-01 0.8888 6.96E-02 

k 312.2068 3.96E+00 317.4403 1.32E+01 317.9186 1.47E+01 305.1580 3.86E+00 

α 0.0102 3.38E-04 0.0101 2.23E-04 0.0104 7.10E-04 0.0100 1.20E-14 

A 0.9894 1.43E-02 0.9747 3.08E-02 0.9718 4.28E-02 0.9998 3.60E-04 

β 151.3120 2.89E+00 155.0094 8.58E+00 155.2393 8.28E+00 144.3081 3.87E+00 

γ 21.9564 4.22E+00 17.3786 1.04E+01 20.8000 7.30E+00 24.3336 5.18E+00 

Table 4.15: Estimation with sinusoidal inputs with amplitude = 10 N and frequency 1 = ωn with noise 
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  Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

mean MSE 0.2868 1.1490 2.5609 3.8671 

min MSE 0.2429 0.9676 2.1523 4.1441 

max MSE 0.3649 1.5151 3.4072 4.7523 

Set 

1  Yes Yes Yes Yes 

2 Yes Yes Yes Yes 

3 Yes Yes Yes Yes 

4 Yes Yes Yes No 

5 Yes Yes Yes Yes 

Table 4.16: MSE value from estimation and status of set success or failure in estimation with noise at 

amplitude = 10 N and frequency 1 = ωn 

 Chirp input 4.4

With Matlab and Simulink, chirp input was used to generate simulated data for parameter estimation 

using SADE. The reason in moving to chirp input was mainly the issue with the selection of 

frequency combination for the multi sinusoidal input. A chirp input was relatively easy to specify 

when compared with the multi sinusoidal input. In the case of the chirp input, only the amplitude and 

range of frequency needs to be specified. Chirp input will provide a complete range of frequencies 

excited but in a concentrated manner, in terms of total energy of the input, the energy will be 

concentrated at a single frequency at any moment in time. 

In this case, the amplitude was set at 10 N in line with the previous investigations using sinusoidal 

input where 10 N was an acceptable level of forcing. The signal frequency sweep was set across 1 to 

25 rad/s to include the undamped natural frequency of the underlying linear model of 17.6 rad/s. The 

input and output signal can be seen in Figure 4.17 below. SADE was allowed to run for 1000 

generations for each of the 100 runs. 

The data from the chirp input could not be fitted with the linear model with a good MSE. The best 

linear fitting returned an MSE of 13.9950. Figure 4.18 shows the output response plot of the real 

system against the estimated linear system. It can be seen that the linear fitting struggled more 

towards the higher forcing frequency level. With this result, the Improvement Ratio does not need to 
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be calculated. In the context of this thesis, this is a good outcome, whereby using chirp input resulted 

in nonlinearity in the output that could not be estimated using the linear model which shows 

uniqueness of the data produced. This gives higher confidence in the estimated parameter outcome. 

 

Figure 4.17: Plot of input excitation and output response for chirp input with amplitude = 10 N across 

1 to 25 rad/s 

 

Figure 4.18: Output response plot for real system against estimated linear system 

4.4.1 Signal without noise 

Table 4.17 shows the nonlinear parameter estimation results. The parameter estimation was very good 

with all 100 runs successfully returning very low MSE values. The best estimated parameter here 
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corresponds to an MSE of 1.45E-22. The mean estimated parameter was a very good estimate for both 

linear and nonlinear parameters. 

  

Real 

Parameter 

Best Estimated 

Parameter 
% Error 

Mean Estimated 

Parameter 
Standard Deviation 

m 1 1 0 0.9999 4.64E-04 

c 0.7037 0.7037 0 0.7021 4.80E-03 

k 309.51 309.51 0 327.7547 1.83E+01 

α 0.01 0.01 0 0.0108 3.10E-03 

A 1 1 0 0.9463 5.09E-02 

β 150 150 0 159.5608 9.77E+00 

γ 20 20 0 20.7099 1.43E+00 

Table 4.17: Estimation with chirp input with amplitude = 10 N across 1 to 25 rad/s 

4.4.2 Signal with noise 

Noise was added to the output signal via simulated white noise using a random signal with amplitude 

equal to a percentage of the output signal root mean-square value (RMS). Simulated white noise was 

added at levels of 5% RMS, 10% RMS, 15% RMS and 20% RMS. Figure 4.19 and Figure 4.20 shows 

the signal output at 5% RMS and 20% RMS respectively. 

 

Figure 4.19: Output plot of chirp input with amplitude = 10 N across 1 to 25 rad/s with noise at 5% 

RMS 
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Figure 4.20: Output plot of chirp input with amplitude = 10 N across 1 to 25 rad/s with noise at 20% 

RMS 

With chirp input, noise up to the level of 20% RMS still allowed the parameter estimation algorithm 

SADE to return an estimation with an MSE of less than 5 as can be seen in Table 4.18. This is 

compared to the result with sinusoidal input, where only the signal having a frequency at a factor of 3 

to the undamped natural frequency of the underlying linear system (set 1), was successful. This 

indicates that the parameter estimation using the chirp input may be more robust in the presence of 

noise. 

The standard deviation trends were similar for all parameters except γ which showed a low standard 

deviation compared to results from multi sinusoidal input which was always higher. This may be 

caused by the chirp input providing additional information in the data that can be picked up by the 

parameter estimation algorithm specifically for γ compared to when using the multi sinusoidal input 

data. The other standard deviation for parameters m, c, α and A were always low whilst the standard 

deviation for parameters k and β remained higher, similar to previous observations. 

Figure 4.21 shows the plot of the real parameter output with noise against predicted parameters at the 

20% RMS level. As shown by the MSE, the estimated system is a good prediction of the real system. 
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Noise = 5% RMS Noise = 10% RMS Noise = 15% RMS Noise = 20% RMS 

MEP SD MEP SD MEP SD MEP SD 

m 1.0005 7.31E-04 1.0009 2.57E-08 0.9979 3.67E-09 0.9999 6.47E-09 

c 0.7079 1.50E-03 0.6994 1.49E-07 0.6791 1.22E-08 0.6572 2.40E-08 

k 317.4950 8.53E+00 309.7121 8.10E-06 340.2437 1.60E+01 353.4057 2.12E+01 

α 0.0102 4.95E-04 0.0100 1.26E-15 0.0217 1.00E-03 0.0242 1.50E-03 

A 0.9754 2.59E-02 1.0000 2.66E-11 0.9069 4.35E-02 0.8743 5.38E-02 

β 154.3039 4.52E+00 150.0441 3.24E-05 173.7392 8.34E+00 185.8453 1.14E+01 

γ 19.9781 3.00E-01 19.7610 2.27E-06 16.6563 8.00E-01 14.9064 9.18E-01 

MSE 0.242 0.9284 2.2292 3.9196 

Table 4.18: Estimation with chirp input with amplitude = 10 N across 1 to 25 rad/s with noise 

 
Figure 4.21: Output response of real system with noise against estimated system at 20% RMS 

 Comparing sinusoidal and chirp signal parameter estimation 4.5

In this section, the estimated systems that were identified in the previous sections were used to fit the 

estimated systems to the data from other input types. This was conducted to investigate the robustness 

of the estimated system when the real system was subjected to other types of input. 

The estimated parameters from the multi sinusoidal input estimation (given in Table 4.13 and Table 

4.15) and chirp estimation (given in Table 4.18) at a noise level of 10% RMS and 20% RMS were 

taken and the estimated system was evaluated against the data from other signal types at the same 
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noise level. The comparison MSE are presented in Table 4.19 and Table 4.20 for 10% RMS noise 

system and 20% RMS noise system respectively.  

These comparison tables show that the estimated system using multi sinusoidal and chirp input both 

are robust enough for parameter estimation even when subjected to other types of input. The table also 

shows that using the estimated system from chirp input with 10% RMS noise results in the best MSE 

for data from multi sinusoidal, chirp and random input. For the 20% RMS noise chirp estimated 

system, it still gave the best estimate for chirp and random input types although it was not the best 

compared to the other two estimated systems for multi sinusoidal input estimation. 

Estimated system 

MSE 

Sinusoidal Chirp Random 

Frequency 1 = 3 rad/s Frequency 1 = 17.6 rad/s     

Sine frequency 1 = 3 rad/s 2.6783 2.2819 0.3794 1.2872 

Sine frequency 1 = 17.6 rad/s 1.5459 1.2118 1.0336 2.8528 

Chirp 1.4984 1.1482 0.0004 1.0050 

Table 4.19: MSE value against other input types at 10% RMS noise by fitting estimated system from 

10% RMS level 

Estimated system 

MSE 

Sinusoidal Chirp Random 

Frequency 1 = 3 rad/s Frequency 1 = 17.6 rad/s     

Sine frequency 1 = 3 rad/s 4.2190 3.9955 3.8642 4.5362 

Sine frequency 1 = wn 4.1269 4.3604 4.3439 4.4126 

Chirp 4.3975 4.1371 3.7983 3.8011 

Table 4.20: MSE value against other input types at 20% RMS noise by fitting estimated system from 

20% RMS level  

4.5.1 MSE sensitivity for different input 

A study was conducted to investigate the variation of the MSE value when only one parameter of the 

Bouc-Wen model was varied for the different input signal types to determine the sensitivity of the 

parameter estimation algorithm MSE with the different input types of data. The MSE for the three 

types of input were plotted on the same figure. This was conducted to further investigate the different 

types of input, random, multi sinusoidal and chirp input sensitivity to each of the parameters of the 

model. Observations were made on how the MSE was affected by changes of each parameter 
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separately. A rapid change in MSE would show better parameter estimation accuracy for the type of 

inputs used showing high sensitivity of the parameter estimation algorithm towards any change in the 

parameter value. 

Initially, the parameter α was investigated at both low input amplitude and high input amplitude. The 

low amplitude was 0.1 N for all input types, while the high amplitude was 10 N for chirp and multi 

sinusoidal input and 100 N for the random input. This was in line with previous work where random 

input was shown to have less nonlinearity present at amplitude of 10 N. 

Figure 4.22 and Figure 4.23 shows the MSE against the parameter α at low and high amplitude 

respectively. In both figures, multi sinusoidal input is seen as most sensitive to the variation of 

parameter α, where α is the switch between linear and nonlinear for the Bouc-Wen model. At low 

amplitude, random and chirp input show almost no MSE changes. Both signals neglected sensitivity 

towards the change in α, while with multi sinusoidal signal, changes in α affected the MSE value very 

slightly, thus rewarding the parameter estimation algorithm for accuracy. However the effect was very 

small and is almost negligible. This was due to the low amplitude excitation data providing data with 

a mostly linear behaviour. In the high amplitude data in Figure 4.23, a more significant effect on the 

MSE is seen with changes in parameter α for both multi sinusoidal and chirp input. Random input still 

showed less sensitivity towards changes in the α parameter.  

The following figures only show the response at high amplitude to avoid repetition as similar 

behaviour was seen at the low amplitude i.e. little sensitivity for all parameters. 

Figure 4.24 to Figure 4.27 show the MSE against the linear parameters m, c, k and A. With these 

parameters, a more sensitive MSE reaction to parameter change was seen with random input, 

followed by chirp input and finally multi sinusoidal input. In Figure 4.25, the value of the MSE of the 

multi sinusoidal input with respect to changes in parameter c was still under 5 up to the value of about 

1.94. 

Figure 4.28 and Figure 4.29 show the MSE against nonlinear parameters β and γ. Here, it can be seen 

that the random input was the less sensitive to the variation in the nonlinear parameter while it was 
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very rewarding for finding the linear parameters. Chirp was the most rewarding to the optimization 

algorithm with a sharper increase in MSE with changing nonlinear parameters. 

The MSE sensitivity investigations showed that for linear parameter estimation, random input was the 

best choice of input signal for data collection. Random input gave a variety of forcing frequencies that 

would result in good data for linear parameter estimation. However the linearisation effect due to the 

use of a random signal was a disadvantage for nonlinear parameter estimation. As shown here, multi 

sinusoidal and chirp input provide more satisfactory data for nonlinear parameter estimation with 

higher sensitivity to the nonlinear parameters. 

 

Figure 4.22: MSE against parameter α with low amplitude input 

 

Figure 4.23: MSE against parameter α with high amplitude input 
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Figure 4.24: MSE against parameter m with high amplitude input 

 

Figure 4.25: MSE against parameter c with high amplitude input 
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Figure 4.26: MSE against parameter k with high amplitude input 

 

Figure 4.27: MSE against parameter A with high amplitude input 
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Figure 4.28: MSE against parameter β with high amplitude input 

 

Figure 4.29: MSE against parameter γ with high amplitude input 

 Discussion 4.6

In this chapter, SADE was again used as the parameter estimation algorithm for the investigations. 

Parameter estimation exercises were conducted using single and multi sinusoidal input signals and 

using a chirp input signal. A variety of combinations of sinusoidal signal were used in the 

investigation to understand the effects of frequency choices on parameter estimation. The sinusoidal 
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input frequency choice in this thesis had been done such that the first part of the combine signal was 

the control signal which is pre-selected. The other part of the signal frequency was chosen randomly 

with criteria that it is not multiple or fraction of the first frequency to create a diverse input. From the 

results in this chapter, it was shown that using first frequency at the undamped natural frequency of 

the underlying linear system yields almost similar estimates compared to the „trial and error‟ 

frequencies of 3 rad/s and 8 rad/s.  

It was found that a sinusoidal signal combination with one of the frequencies at the undamped natural 

frequency of the underlying linear system (17.6 rad/s) and 8 rad/s gave almost perfect mean estimated 

parameters without the presence of noise. It is expected that other frequency combinations would 

allow good parameter estimation as well, as long as it provides sufficient information of the system. A 

combination of multiples of the frequency, for example ω and 2ω, may not be as useful since the 

addition or difference of the frequency and the harmonics could clash, reducing the amount of 

significant information in the signal. Thought should be given into making the choice of frequencies 

to be used so as to maximise the useful information for parameter estimation purposes. 

The investigation was extended to include the presence of noise using frequency 1 = 17.6 rad/s and 

frequency 1 = 3 rad/s. For a noise level of up to 15% of the output RMS, good estimation was 

obtained for all sinusoidal combinations. At 20% RMS, for frequency 1 = 3 rad/s, only the first set of 

combinations manage to bring the MSE value down to less than 5, while others failed. However, with 

frequency 1 = 17.6 rad/s, only one set failed to give good MSE. 

Using a chirp signal, excellent estimation was obtained without the presence of noise. With the 

introduction of noise, the estimation was still good for a noise level of up to 20% of the output RMS. 

This was a very positive outcome since the setup of chirp was relatively easy with only the amplitude 

parameter to be set and it produced good parameter estimation results. 

The estimated parameters with noise for multi sinusoidal and chirp input were used to compare with 

other known real parameter system of sinusoidal, chirp and random type signals. They produced a 

good MSE estimation against the sinusoidal, chirp and random signal even at 20% RMS noise. This 



120 

 

means that the system estimated using data from the multi sinusoidal and chirp, would work well even 

when subjected to other types of input showing robustness of the estimated system. 

Multi sinusoidal input and chirp input both were shown to be good input for providing data for 

nonlinear parameter estimation. They both resulted in a reliable estimation that could be used to 

predict system even with other type of input. The requirements for multi sinusoidal input however 

required a more particular choice in the design of frequency combinations. A bad frequency 

combination could result in information loss for the signal from the sum and difference of the 

frequencies themselves or the harmonic sets which may lead to multi sinusoidal input becoming the 

worst choice of input signal. A simpler chirp signal may be the best type of input signal for designing 

data collection experiments for nonlinear parameter estimation for the particular system investigated 

here and this is expected to be so for other nonlinear systems as well. 

For the Improvement Ratio, for investigations without noise for single sinusoidal input, similar to the 

random input, the range of values of the Improvement Ratio for low amplitude was around 1.16E7 to 

5.28E9, while Improvement Ratio for high amplitude data was around 1.66E23 to 2.84E22. For the 

multi sinusoidal data, the Improvement Ratio was at a higher value of around 7.51E28. The 

Improvement Ratio for multi sinusoidal was much higher since it gave a more complicated signal that 

gave a higher incentive to identify the right nonlinear model. This in turn gave higher accuracy for the 

right model selection compared to a simple linear system.  

In the presence of noise, the Improvement Ratio for single sinusoidal data estimation gave a higher 

confidence with 0 to 0.0008 Improvement Ratios shown for the low amplitude level of 0.1 N data and 

0.3 to 4.88 Improvement Ratios shown for the 10 N amplitude data. For the multi sinusoidal and chirp 

input, no Improvement Ratio was calculated as the linear model could not be fitted with good 

estimates to both sets of data at 10 N forcing amplitude. This showed that the use of multi sinusoidal 

and chirp input results in data that was highly nonlinear that could not be estimated with a linear 

model of m, c and k. This would give a very high confidence that the predicted model was fittingly 

nonlinear. 
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In chapter 3 and 4, the Self-adaptive Differential Evolution (SADE) optimisation algorithm has been 

used to compare the different signal types in a parameter estimation sense. In the next chapter an 

alternative approach to parameter estimation will be investigated. The Volterra representation will be 

investigated for use of nonlinear parameter estimation and to further investigate the behaviour of the 

Bouc-Wen hysteretic model. 
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Chapter 5 

5 Volterra series representation on polynomial model 

 Introduction 5.1

The previous two chapters have shown the benefits of using harmonic excitation in nonlinear 

parameter identification through the use of optimisation using Self-Adaptive Differential Evolution 

(SADE). An alternative approach to parameter identification is investigated in this chapter and in the 

following chapter, with the use of the Volterra Series. 

In this chapter, the concept will be demonstrated on a number of nonlinear systems with polynomial 

nonlinearities. This chapter serves to introduce and show the concept of the Volterra series 

approximation to guide the reader into the following chapter. The use of the Volterra series 

approximation on polynomial systems as shown here will be directly applied to the Bouc-Wen 

hysteretic model in the next chapter to demonstrate new findings in the Bouc-Wen behaviour. The 

basics of the Volterra representation are not discussed in full detail here. However the equations used 

will be introduced briefly before being applied to the identification of the parameters. 
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Firstly, the linear parameters for the polynomial model are identified without the addition of noise. 

This is then repeated in the presence of noise. Next, the nonlinear parameters are identified using the 

Volterra series representation, again without noise and then in the presence of noise. Finally, the 

effect of noise is investigated further relative to the nonlinear parameters. 

 Background study 5.2

The Volterra series representation is currently accepted as an established method for the analysis of 

nonlinear systems. The application in terms of nonlinearity identification and system response 

prediction has generated a lot of interest in the series. This is done by measuring the Volterra kernels 

and kernel transforms.  

In 1880, Vito Volterra came out with a functional form of the Taylor series that is now known as the 

Volterra series. His work can be found in his book [58] which shows the general theory of the 

continuous series. The early work was a very extensive mathematical description of the series and 

only showed the first potential in nonlinear system characterization with the work of Norbert Wiener 

in 1942 in his report [59]. He showed that the summation of Volterra kernels or individual terms in 

the series represented the output of a nonlinear system. A summary of the development period of the 

theory on the Volterra series can be found in a survey paper in [60].  

Soon, work on the Volterra series mostly revolved around identifying the kernels and its Fourier 

transform. There were many attempt in this area, resulting in many publications. One of the proposed 

methods realized in 1971 was described in [61], which used multi sinusoidal testing to obtain the 

Volterra kernels, known as harmonic probing, resulting in exact terms for the kernels. Only after 12 

years, was a publication on the successful application of the method was published for a loudspeaker 

application [62]. Although the result was poor, it managed to obtain the second frequency response 

function (FRF) of the loudspeaker. Up to the third order kernel transform, termed as the higher order 

FRF (HFRF) was found using the harmonic probing technique in 1991 [63]. 

The limitation of the functional series was also well documented in [64] regarding the convergence 

problem of the series and in [65] regarding the range of validity of the series. Further to the 



124 

 

convergence problem a look at harmonics excitation limits of the method was presented in [66] and 

further investigated in [67] with a new criterion proposed. Again in 2011, an extension to the 

convergence criterion was proposed in [68] by the Billings research group that would give the upper 

convergence region limit with more accuracy than the previously proposed criteria. 

Some early applications of the Volterra series in physiological studies were documented in the book 

[69]. In the harmonic probing method, a lot of literature has been published on the application of 

parametric studies, modelling and system identification. In [70], harmonic probing was used in 

bilinear oscillator identification for structural elements. A modified Volterra harmonic probing 

technique was used successfully in the simulation of nonlinear bridge aerodynamics in [71] where two 

cases were looked at the first being a numerical simulation of the bridge and the second was an 

experimental study in a wind tunnel environment. Some more recent work includes [72] which used 

Volterra representation in bluff-body aerodynamics nonlinear system analysis and [73] in the dynamic 

response prediction of  a slender marine structure under random white noise (ocean waves). 

 Volterra series 5.3

5.3.1 Time domain and frequency domain representation 

The Volterra series is an infinite functional series which can be generally written in the time domain 

as Equation 5.1 for a nonlinear system given a single input x(t) which produces an output y(t). The 

term h1(τ1), h2(τ1, τ2), h3(τ1, τ2, τ3),…, hn(τ1, τ2, τ3,…, τn) are known as the first, second, third,…, n
th
 order 

Volterra kernels.  

 ( )    ( )    ( )    ( )      ( )     (5.1) 

where 
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In general, the n
th
 order term of the response is given by 
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  (5.3) 

For a linear system, y(t) = y1(t) is also called a convolution integral or Duhamel‟s integral. Taking the 

Fourier transform of the convolution integral will give the expression in the frequency domain for the 

linear system response given by Equation 5.4 which will be used for linear parameter estimation. 
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The frequency domain representation of the whole Volterra series as in Equation 5.1 will be of the 

form 

 ( )    ( )    ( )    ( )      ( )     (5.5) 

The Y1(ω) component will be the same as the response for the linear system which is expressed in 

Equation 5.4. The derivation for the higher-order components is more complicated. This requires the 

use of Higher-order Frequency Response Function (HFRF) of the Volterra kernels Hn(1,…,ω), 

n=1,…,   as a multidimensional Fourier transform of the kernels. The Fourier transform of y2(t) 

expression yields 
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Now, the complete expression for the Volterra series representation in frequency domain for a 

response is 
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where the nth order term of the response in the frequency domain can be written as 
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5.3.2 Harmonic probing 

Harmonic probing is a method used to determine the analytical form of HFRFs. The method relies on 

the use of harmonic input to the Volterra series. To find the analytical form of HFRF, a probing 

equation is substituted into the equation of motion. For H1, the probing equation is as Equation 5.7 

and Equation 5.8. The probing equation for H2 is given by Equation 5.9 and Equation 5.10, whilst 

Equation 5.11 and Equation 5.12 show the general probing expressions. For further information of 

harmonic probing, the reader can refer to Bedrosian and Rice [61] and Billings two part paper [74], 

[75]. 

   ( )   
          (5.7) 

   ( )    ( ) 
         (5.8) 

   ( )   
                (5.9) 
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       (     ) 
 (     )   (5.10) 
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        (5.12) 

5.3.3 Volterra series response to sinusoidal input 

The exponential form of a sinusoidal wave is  ( )      (  )  
 

  
{          } which may be 

considered as the difference of two ideal harmonics. Due to the interaction between the two harmonic 

terms, the response at a any harmonic is attributable to an infinite number of HFRFs. The Fourier 

transform of the input gives: 

 ( )  
  

  
* (   )   (   )+    (5.13) 

Substituting the input to the general Volterra response in the frequency domain of Equation 5.6 yields 
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By using the property of symmetry of the HFRF, the equation can be generalised as 
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where    
 

  
 ,       and       for sinusoidal input 
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 Polynomial Nonlinear System 5.4

The nonlinear system to be discussed is the polynomial model represented by a Duffing oscillator 

with linear, quadratic and cubic damping and stiffness as shown in Figure 5.1 with the equation of 

motion given by Equation 5.16. The polynomial model in this chapter will use the parameters given in 

Table 5.1 for single nonlinearity systems throughout. This corresponds to the undamped natural 

frequency of the underlying linear system of 100 rad/s and damping ratio of the underlying linear 

system, given by,    
  

    
  of 0.1. 

  ̈    ̇        ̇
     ̇

     
     

   ( )   (5.16) 

 

Figure 5.1: SDOF Duffing oscillator: used to introduce HFRF use for parameter estimation with 

harmonic excitation for polynomial model 

Parameter Value Units 

m  1 kg 

c  20 Ns/m 

k  1E4 N/m 

c2  150 Ns
2
/m

2
 

c3  1000 Ns
3
/m

3
 

k2  1E6 N/m
2
 

k3  5E9 N/m
3
 

Table 5.1: Parameters for polynomial model for single nonlinearity system 

c, c2, c3 

m 

k, k2, k3 
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In order to find the first order FRF, H1, probing Equation 5.7 and Equation 5.8 and the first and 

second derivatives of Equation 5.7 were substituted into the equation of motion Equation 5.16 for an 

example polynomial system. The coefficients of      were then equated to yield 

  ( )    
 

         
     (5.17) 

With simplification of the general Volterra expression in Equation 5.6, taking only the first-order 

term, the response is given by Y(ω) = X(ω)H1(ω). Substituting this response into Equation 5.17 above, 

yields Equation 5.18, which can then be used to the estimate linear parameters of a polynomial 

system. 

  ( )  
 ( )

 ( )
 

 

         
    (5.18) 

As the order increases, the derivation becomes more complicated with more terms to handle. However 

the basis of the method is similar in which substitution of the probing equation will yield the required 

expressions. For the second order FRF, H2, probing Equation 5.9 and Equation 5.10 with first and 

second derivatives of Equation 5.9 are substituted and the coefficients of   (     )  were extracted, 

leading to  

  (     )    ,   (  )
   -

  (  )  (  )

 (     )
    (     )    

 

or 

  (     )    ,   (  )
   -  (     )  (  )  (  )   (5.19) 

The third order FRF, H3, requires probing Equation 5.20 and Equation 5.21. Solving in the same 

manner as previously yields Equation 5.22. 
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 Estimation of linear parameters 5.5

Using the Volterra series, estimation of linear parameters and nonlinear parameters can be done 

separately as the linear parameter can be estimated independent of the nonlinear parameters based on 

the separate equations derived from H1, H2 and H3 as shown in the last section. So this section will 

conduct estimation of the linear parameters before conducting nonlinear parameter estimation in the 

following section.  

In order to estimate the linear parameters of the equation (m, c, and k), the Volterra relationship of the 

first order FRF, H1( ) of the system can be used in the form of Equation 5.17. As the Volterra series 

is an infinite functional series that contains an infinite number of terms, Equation 5.17 was obtained 

after simplification by removing the repetitive harmonics term in the exponential power up to the 

relevant harmonics. This was applied for the linear parameter case up to the first harmonic (i.e. 

response at the forcing frequency) and again for the nonlinear polynomial parameter case later up to 

the third superharmonic (i.e. response at three times the forcing frequency). 

With Equation 5.17, the value of m and k can be obtained from the plot of Re(  ( )
  ) against    

and value of c can be obtained from the plot of Im(  ( )
  ) against  . The term   ( ) is the 

composite FRF which comes from the estimation of H1( ) using sinusoidal forcing and it is given by 

Y( )/X( ) from analytical calculation of the response signal and input signal to the system. This was 

obtained from simplification of the general Equation 5.6 with limits of only the first-order term. 

5.5.1 System with quadratic damping (  ) only 

 In this section, only the quadratic damping system was investigated with the other nonlinear 

parameters set to zero. This was conducted only for the investigation of the linear parameters and to 
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investigate the effect of each type of nonlinearity on its own. Hence the system became a single 

degree of freedom system with the equation of motion,  

   ̈    ̇        ̇
      (  )    (5.23) 

An investigation was conducted at input amplitudes ranging from 1 to 10 as shown in Figure 5.2 and 

Figure 5.3 below for both the real and imaginary part plot of Λ1(ω)
-1

 respectively. Straight lines 

derived from true linear parameter values were also plotted as a reference on the same figure. 

It can be seen that there is only a small frequency range around the undamped natural frequency of the 

underlying linear system for the real part plot that should be avoided when selecting the frequency to 

be used for linear parameter estimation. In the imaginary part plot there are two areas (around the 

undamped natural frequency of the underlying linear system and at around half of that) that should be 

avoided for linear parameter estimation. As the amplitude increases, the disturbance area grows larger 

as well. This is due to the increase in the effect of nonlinearity that will also increase the distortion of 

the Λ1(ω)
-1

  estimates due to the increasing effect of the higher harmonics terms. Values of m and c 

can be identified from the gradient of the line in Figure 5.2 and Figure 5.3 respectively whilst k is the 

intersection at y-axis for the former. This can also be done by taking two (or maybe three) points on 

the line (away from the problem frequencies) that will result in a good straight line and therefore 

provide a good estimate of m, c and k. 

 

Figure 5.2: Plot of real part of Λ1(ω)
-1

 against ω
2
 for system with quadratic damping (c2) only 
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Figure 5.3: Plot of imaginary part of Λ1(ω)
-1

 against ω for system with quadratic damping (c2) only 

5.5.2 System with cubic damping (  ) only 

In this section, only the cubic damping system was investigated with the other nonlinear parameter set 

to zero. Hence the system became a single degree of freedom system with the equation of motion: 

   ̈    ̇        ̇
      (  )    (5.24) 

Similar to the previous section, Figure 5.4 and Figure 5.5 show the real and imaginary part plot of 

Λ1(ω)
-1

 with increasing amplitude. 

For the cubic damping only case, m and k are easily obtained from the real part plot of Λ1(ω)
-1

 as a 

clear straight line can be seen. However for the imaginary plot, the distortion caused by cubic 

nonlinearity at the undamped natural frequency of the underlying linear system is quite large due to 

the cubic nature of the nonlinearity. This could affect the value of the linear damping, c extracted 

from the figure when using frequencies above and around the undamped natural frequency of the 

underlying linear system 
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Figure 5.4: Plot of real part of Λ1(ω)
-1

 against ω
2
 for system with cubic damping (c3) only 

 

Figure 5.5: Plot of imaginary part of Λ1(ω)
-1

 against ω for system with cubic damping (c3) only 

5.5.3 System with quadratic stiffness (  ) only 

In this section, only the quadratic stiffness system was investigated with the other nonlinear 

parameters set to zero. Quadratic stiffness only systems, such as this, may face stability issue due to 

the quadratic nature of the system at a higher forcing level. Quadratic stiffness would normally not be 

used independently of cubic stiffness in a real dynamic problem to avoid this stability issue. However, 

here it is being used only to observe the effect on the estimation of linear parameters. The system 

became a single degree of freedom system with an equation of motion: 
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   ̈    ̇        
      (  )    (5.25) 

Figure 5.6 and Figure 5.7 show the real and imaginary part plot of Λ1(ω)
-1

. It is fairly straightforward 

here to obtain the linear parameter values similar to Section 5.5.1 since the lines are fairly straight on 

their own. This would be due to the k2 value which is small relative to the value of k to avoid the 

stability issue that would occur if using k2 = 1E7.  

 

Figure 5.6: Plot of real part of Λ1(ω)
-1

 against ω
2
 for system with quadratic stiffness (k2) only 

 

Figure 5.7: Plot of imaginary part of Λ1(ω)
-1

 against ω for system with quadratic stiffness (k2) only 
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5.5.4 System with cubic stiffness (  ) only 

 In this section, only the quadratic stiffness system was investigated with the other nonlinear 

parameters set to zero. Hence the system became a single degree of freedom system with an equation 

of motion as follows: 

   ̈    ̇        
      (  )    (5.26) 

For the cubic stiffness case, in Figure 5.8 the low frequency regions introduce inaccuracies in the 

estimation of m and k. Nonlinear distortion appears as the amplitude increases in the affected areas 

around the undamped natural frequency of the underlying linear system and below. Although on a 

different scale, the effect can be related to cubic damping in Section 5.5.2, where a similar increase in 

amplitude causes large distortions due to the cubic nature of both systems compared to the effects of 

the quadratic components. 

 

Figure 5.8: Plot of real part of Λ1(ω)
-1

 against ω
2
 for system with cubic stiffness (k3) only 
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Figure 5.9: Plot of imaginary part of Λ1(ω)
-1

 against ω
 
for system with cubic stiffness (k3) only 

5.5.5 System with damping and stiffness nonlinearities (c2, c3, k2 and k3) 

Here all four nonlinearities in the above subsections were set to values as shown in Table 5.2 below. 

The value of k2 was now set to the appropriate value of 1E7 to have an appropriate response ratio of k2 

to k and k3. 

Parameter Value Units 

m  1 kg 

c  20 Ns/m 

k  1E4 N/m 

c2  150 Ns
2
/m

2
 

c3  1000 Ns
3
/m

3
 

k2  1E7 N/m
2
 

k3  5E9 N/m
3
 

Table 5.2: Parameters for polynomial model for system with multiple nonlinearities 

Figure 5.10 and Figure 5.11 show the real part and the imaginary part plot of system with nonlinear 

damping, c2 and c3, and nonlinear stiffness, k2 and k3. The figure shows the combined effect of 

distortion mainly on the imaginary part plot of Figure 5.11 where the distortion became significantly 

higher through the presence of all four nonlinear parameters. However, this still allowed estimation 
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through a similar approach as in the previous subsections with a single nonlinearity using points on 

the plot in the high frequency region. 

 

Figure 5.10: Plot of real part of Λ1(ω)
-1

 against ω
2 
for system with all four nonlinearities (c2, c3, k2 and 

k3) 

 

Figure 5.11: Plot of imaginary part of Λ1(ω)
-1

 against    for system with all four nonlinearities (c2, c3, 

k2 and k3) 

 Estimation of linear parameters in the presence of noise 5.6

To investigate the effect of noise on the Volterra harmonic probing exercise, the same investigations 

were repeated on the above systems in the presence of simulated noise. Noise was added at two levels 
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both at a sufficient level to show the effect of noise on parameter estimation. The two levels of noise 

are given in Table 5.3 below. 

Noise level Low level High level 

Input  1E-3 times amplitude of the input 1E-1 times amplitude of the input 

Output 1E-7 times no noise RMS 1E-5 times no noise RMS 

Table 5.3: Simulated noise level 

The results are shown in Figure 5.12 to Figure 5.31. The effect of noise is generally seen on the 

imaginary plot more clearly. The reason why the effect of noise on the imaginary part plot is seen as 

more significant is due to the imaginary part of the response being smaller in magnitude compared to 

the real part response. The noise generally appears as distortion of the plotted line in the high 

frequency region of the plot and starts appearing even at a low noise level. 

For the real part plot, the noise effect was not seen when subjected to a low noise level, and only very 

slightly started to show when the noise level was high. This can be seen in Figure 5.14 and Figure 

5.18. 

The effect of noise here affects the calculations of parameter m and k only slightly compared to when 

there was no noise present. However, the value of c would be severely altered if using signals with a 

high frequency. Although that is the case, the value of c could still be obtained from the low level 

frequency region as a gradient can be measured with point on the line at low frequencies (away from 

the problem region) to the origin instead. 

The effect of noise on the estimation lines is more significant on the system with all four 

nonlinearities as in Figure 5.28 to Figure5.31. Even at the low noise level the high frequency region 

does not give any good estimation points. This shows that with a full nonlinear system such as this, 

the noise level must be kept very minimal to obtain an accurate estimation. 
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Figure 5.12: Plot of real part of Λ1(ω)
-1

 against    for system with quadratic damping (c2) only with 

low noise level 

 

Figure 5.13: Plot of imaginary part of Λ1(ω)
-1 

against    for system with quadratic damping (c2) only 

with low noise level 
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Figure 5.14: Plot of real part of Λ1(ω)
-1

 against    for system with quadratic damping (c2) only with 

high noise level 

 

Figure 5.15: Plot of imaginary part of Λ1(ω)
-1 

against    for system with quadratic damping (c2) only 

with high noise level 
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Figure 5.16: Plot of real part of Λ1(ω)
-1

 against    for system with cubic damping (c3) only with low 

noise level 

 

Figure 5.17: Plot of imaginary part of Λ1(ω)
-1 

against    for system with cubic damping (c3) only with 

low noise level 
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Figure 5.18: Plot of real part of Λ1(ω)
-1

 against    for system with cubic damping (c3) only with high 

noise level 

 

Figure 5.19: Plot of imaginary part of Λ1(ω)
-1 

against    for system with cubic damping (c3) only with 

high noise level 
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Figure 5.20: Plot of real part of Λ1(ω)
-1

 against    for system with quadratic stiffness (k2) only with 

low noise level 

 

Figure 5.21: Plot of imaginary part of Λ1(ω)
-1 

against    for system with quadratic stiffness (k2) only 

with low noise level 
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Figure 5.22: Plot of real part of Λ1(ω)
-1

 against    for system with quadratic stiffness (k2) only with 

high noise level 

 

Figure 5.23: Plot of imaginary part of Λ1(ω)
-1 

against    for system with quadratic stiffness (k2) only 

with high noise level 
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Figure 5.24: Plot of real part of Λ1(ω)
-1

 against    for system with cubic stiffness (k3) only with low 

noise level 

 

Figure 5.25: Plot of imaginary part of Λ1(ω)
-1 

against    for system with cubic stiffness (k3) only with 

low noise level 
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Figure 5.26: Plot of real part of Λ1(ω)
-1

 against    for system with cubic stiffness (k3) only with high 

noise level 

 

Figure 5.27: Plot of imaginary part of Λ1(ω)
-1 

against    for system with cubic stiffness (k3) only with 

high noise level 
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Figure 5.28: Plot of real part of Λ1(ω)
-1 

against    for system with all four nonlinearities (c2, c3, k2 and 

k3) with low noise level 

 

Figure 5.29: Plot of imaginary part of Λ1(ω)
-1 

against    for system with all four nonlinearities (c2, c3, 

k2 and k3) with low noise level 
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Figure 5.30: Plot of real part of Λ1(ω)
-1 

against    for system with all four nonlinearities (c2, c3, k2 and 

k3) with high noise level 

 

Figure 5.31: Plot of imaginary part of Λ1(ω)
-1 

against    for system with all four nonlinearities (c2, c3, 

k2 and k3) with high noise level 

 Estimation of nonlinear parameters 5.7

After obtaining the values of m, c and k from the above steps, the nonlinear parameter can be 

examined. In the nonlinear sense, k2 and c2 can be estimated from the H2 relationship while c3 and k3 

can be estimated from the H3 relationship given by Equations 5.19 and Equation 5.22. 

Using the sinusoidal response as in Equation 5.15 with the HFRF reflection property and applying de 

Moivre‟s theorem of the form: 
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Equation 5.27 gives the harmonic response for sinusoidal input. To solve for nonlinear parameter 

estimation, an assumption is made that the first terms in the general Volterra expression given by 

Equation 5.6 will always dominate at each respective harmonic. So the response at the forcing 

frequency, ω is Y(ω) = X(ω)H1(ω). Similarly the first component at 2ω is  (   )  
 ( ) 

 
  (   ) 

and at 3ω the first component is  (     )  
 ( ) 

 
  (     ). Substituting these with the Equation 

5.19 and Equation 5.22 for H2(ω, ω) and H3(ω, ω, ω) respectively will yield the estimation for the 

nonlinear parameters. This is given as Λ2(ω) for the H2(ω, ω) in Equation 5.28 which can be solved for 

k2 and c2 with a real part and imaginary part plot respectively. 

  (  )

 ( ) 
   ,   (  )

   -  (   )  ( )  ( ) 

  ( )  
  (  )

 ( )   (  )  ( )
    ,   (  )

   -    (5.28) 

Solving for the cubic nonlinear parameters is slightly more complicated as there exists the H2(ω, ω) 

kernel component as well in Λ3(ω). For an independent cubic system, the equation solves to be much 

simpler as shown in Equation 5.30 as the absent quadratic terms multiply all of the H2 terms, 

removing the term completely. 
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5.7.1 System with quadratic damping (  ) only 

With a system with quadratic damping only, the plot of the real part of Λ2(ω)  against    is shown in 

Figure 5.32. Since the system is quadratic, the component of c2 comes from the real part instead of the 

imaginary part due to the i
2
 term. For a system with combination of both c2 and k2, this would mean 

that the y-axis intersect will move from the origin to value of –k2 instead.  

The value of c2 can be extracted from the gradient of the plot. Both low frequency and high frequency 

signals would yield good estimation of the gradient for all the amplitude shown from 1 to 10. 

Frequencies around the undamped natural frequency of the underlying linear system should again be 

avoided due to the presence of distortion. This distortion is due to the limitations in the assumption 

that the response at the second harmonic is only due to the H2(ω,ω) term. The distortion in the plotted 

line is expected to fully vanish only if the whole term in the Volterra series is used for the estimation 

(which would require infinite terms). 
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Figure 5.32: Plot of real part of Λ2(ω)  against     for the estimation of quadratic damping, c2 only 

system 

5.7.2 System with cubic damping (  ) only 

With the cubic damping only system, Equation 5.30 can be used to estimate the value of c3. Figure 

5.33 shows the plot of the imaginary part of Λ3(ω) against   . The use of the imaginary part plot is 

due to the i
3
 term in c3. The value of c3 can be determined by the gradient of the plot here. Similar to 

the previous section, value of c3 can be obtained from the gradient of the line to the origin.  

High frequencies will yield good a estimation of the nonlinear parameter across larger regions. 

However low frequency region have a very limited range that gives a good estimation due to the 

distortion area spreading quickly as the amplitude increases. Again the distortion is due to the 

assumption made in only using the first component of H3(ω,ω,ω) for the estimation. The rapid effect 

is due to the cubic nature of the system which gets more profoundly affected by the increasing 

amplitude. 
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Figure 5.33: Plot of imaginary part of Λ3(ω) against     for the estimation of cubic damping, c3 only 

system 

5.7.3 System with quadratic stiffness (  ) only 

With the quadratic stiffness system, the plot of the real part of Λ2(ω)  against   is shown in Figure 

5.34. This again is an approximation using Equation 5.28. Notice that this is plotted against   and not 

  . This allows simpler observations of the frequency value and does not affect the results as it only 

requires the y-axis intersect for the estimation of the nonlinear parameter k2. The y-axis intersect from 

the plot gives the value of -k2. As seen in the plot, a reliable estimation can be obtained only from the 

high frequency region. 

 

Figure 5.34: Plot of real part of Λ2(ω) against    for the estimation of quadratic stiffness, k2 only 

system 
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5.7.4 System with cubic stiffness (  ) only 

For the cubic stiffness system, the plot of the real part of Λ3(ω) against   is shown in Figure 5.35. The 

value of -k3 is the y-intersect of the plot from Equation 5.30. Similar to the k2 only system, the only 

reliable estimate is found in the high frequency region where the line converge. The low frequency 

region suffers from large distortion due to the effects of the assumptions made in using only the first 

component of the Volterra kernel H3(ω,ω,ω). 

 

Figure 5.35: Plot of real part of Λ3(ω) against    for the estimation of cubic stiffness, k3 only system 

5.7.5 System with damping and stiffness nonlinearities (c2, c3, k2 and k3) 

For the cubic nonlinearities, Equation 5.29 involved H2(ω, ω) which is slightly more complicated but 

solvable arithmetically with Matlab. The estimation of the nonlinear parameters can be estimated 

using the plot in Figure 5.36, Figure 5.37 and Figure 5.38 for the quadratic nonlinearities, cubic 

damping and cubic stiffness respectively. For the quadratic nonlinearities, although both rely on the 

real part of the Λ2(ω) plot, the estimation can still be done since the quadratic damping parameter, c2 

relies on the gradient while the quadratic stiffness parameter, k2 relies on the y-axis intersect of the 

estimation line. 

The estimation for the cubic damping parameter, c3 works as expected by taking the gradient using 

point on the plotted line in the high frequency region to the origin. However, the estimation of cubic 

stiffness parameter, k3 faces a problem due to the presence of the H2(ω, ω) term in the Equation 5.29. 
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The presence of H2(ω, ω) term, causes a divergence in the high frequency region where the value for 

k3 was obtained for system with single nonlinearity previously. 

Figure 5.39 to Figure 5.41 show the real and imaginary plot for system with nonlinear damping only 

and Figure 5.42 to Figure 5.44 show the real and imaginary plot for system with nonlinear stiffness 

only. This is to investigate the divergence that occurred for the identification of the cubic stiffness 

above. The point here in these plots is mainly based on Figure 5.41, where the effect due to the 

quadratic damping, c2 causes divergence in the high frequency region for the real part plot of Λ3(ω) 

against ω
3
. This is the disturbance that causes the problem in estimating the nonlinear parameter k3 for 

the system with all four nonlinearities previously. In Figure 5.43, it can be seen that contrary to the 

effect of H2(ω, ω) on the estimation of cubic stiffness parameter, k3, the quadratic stiffness parameter, 

c3 do not affect the imaginary part plot of Λ3(ω) against ω
3
 which is for the estimation of the cubic 

damping parameter, c3 with no divergence shown or any introduction of disturbance in the gradient of 

the estimation line. 

 

Figure 5.36: Plot of real part of Λ2(ω) against ω
2
 for the estimation of quadratic damping, c2 and 

quadratic stiffness, k2
 
for system with all four nonlinearities (c2, c3, k2 and k3) 



156 

 

 

Figure 5.37: Plot of imaginary part of Λ3(ω) against ω
3
 for the estimation of cubic damping, c3

 
for 

system with all four nonlinearities (c2, c3, k2 and k3) 

 

Figure 5.38: Plot of real part of Λ3(ω) against ω for the estimation of cubic stiffness, k3 for system 

with all four nonlinearities (c2, c3, k2 and k3) 
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Figure 5.39: Plot of real part of Λ2(ω) against ω
2
 for the estimation of quadratic damping, c2 for 

system with both damping nonlinearities (c2 and c3) 

 

Figure 5.40: Plot of imaginary part of Λ3(ω) against ω
3
 for the estimation of cubic damping, c3 for 

system with both damping nonlinearities (c2 and c3) 
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Figure 5.41: Plot of real part of Λ3(ω) against ω
3
 for system with both damping nonlinearities (c2 and 

c3) 

 

Figure 5.42: Plot of real part of Λ2(ω) against ω
2
 for the estimation of quadratic stiffness, k2 for system 

with both stiffness nonlinearities (k2 and k3) 
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Figure 5.43: Plot of imaginary part of Λ3(ω) against ω
3
 for system with both stiffness nonlinearities (k2 

and k3) 

 

 

Figure 5.44: Plot of real part of Λ3(ω) against ω for the estimation of cubic stiffness, k3 for system 

with both stiffness nonlinearities (k2 and k3) 

 Estimation of nonlinear parameters in the presence of noise 5.8

Noise was added at two levels on the output signal with the first level of noise being low at 1E-7 of 

the signal RMS value and the other at 1E-5 of the signal RMS value. These are the same output noise 

levels as used for the linear parameter investigation. 
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Figures 5.45 to Figure 5.58 show the low level and high level noise plots respectively for the 

nonlinear parameter comparable to Section 5.6. The noise affected the system similarly to the single 

nonlinear systems and the system with all four nonlinearities. The attention of the reader is drawn to 

the fact that the plot for all four nonlinearities in Figure 5.53 to Figure 5.58 show a higher frequency 

range hence this amplified the noise effect. With the same limited frequency range, a similar effect 

should be seen. 

The low level noise figures show no visible differences. However, when zoomed in closer, it is 

possible to see a slight deviation mostly around the high frequency region, although this is expected in 

the presence of noise. 

With a higher level of noise, larger deviations could be observed for all the nonlinear polynomial 

system, again in the high frequency region. The effect of noise is clearly visible in the low amplitude 

input and improved as the amplitude increases. This results from the fact that at lower amplitude the 

harmonics of a system would be below the noise level. At higher amplitudes, the amplitude of the 

higher harmonic peak will be above the noise band.  

In the second harmonic plot for c2 and k2, the distortion caused by presence of noise is of lesser 

magnitude compared to the third harmonic. The effect of noise is more prominent in the third 

harmonic related plot, which is for c3 and k3 only systems. In Figure 5.48, significant distortion can be 

clearly observed for the first three values of low amplitude. In Figure 5.52, the effect is very similar. 

An increase in amplitude would help to reduce the disturbance of noise in all frequency regions. 
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Figure 5.45: Plot of real part of Λ2(ω) against ω
2
 with low level noise for the estimation of quadratic 

damping, c2 only system 

 

Figure 5.46: Plot of real part of Λ2(ω) against ω
2
 with high level noise for the estimation of quadratic 

damping, c2 only system 
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Figure 5.47: Plot of imaginary part of Λ3(ω) against ω
3 
with low level noise for the estimation of cubic 

damping, c3 only system 

 

Figure 5.48: Plot of imaginary part of Λ3(ω) against ω
3
 at high level noise for the estimation of cubic 

damping, c3 only system 
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Figure 5.49: Plot of real part of Λ2(ω) against ω with low level noise for the estimation of quadratic 

stiffness, k2 only system 

 

Figure 5.50: Plot of real part of Λ2(ω) against ω with high level noise for the estimation of quadratic 

stiffness, k2 only system 
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Figure 5.51: Plot of imaginary part of Λ3(ω) against ω at low level noise for the estimation of cubic 

stiffness, k3 only system 

 

Figure 5.52: Plot of imaginary part of Λ3(ω) against ω at high level noise for the estimation of cubic 

stiffness, k3 only system 
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Figure 5.53: Plot of real part of Λ2(ω) against ω
2
 at low level noise for the estimation of quadratic 

damping, c2 and quadratic stiffness, k2 for system with all four nonlinearities (c2, c3, k2 and k3) 

 

Figure 5.54: Plot of real part of Λ2(ω) against ω
2
 at high level noise for the estimation of quadratic 

damping, c2 and quadratic stiffness, k2 for system with all four nonlinearities (c2, c3, k2 and k3) 
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Figure 5.55: Plot of imaginary part of Λ3(ω) against ω
3
 at low level noise for the estimation of cubic 

damping, c3 for system with all four nonlinearities (c2, c3, k2 and k3) 

 

Figure 5.56: Plot of imaginary part of Λ3(ω) against ω
3
 at high level noise for the estimation of cubic 

damping, c3 for system with all four nonlinearities (c2, c3, k2 and k3) 
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Figure 5.57: Plot of imaginary part of Λ3(ω) against ω at low level noise for the estimation of cubic 

stiffness, k3 for system with all four nonlinearities (c2, c3, k2 and k3) 

 

Figure 5.58: Plot of imaginary part of Λ3(ω) against ω at high level noise for the estimation of cubic 

stiffness, k3 for system with all four nonlinearities (c2, c3, k2 and k3) 

5.8.1 Further investigation of the effect of noise on the Volterra series representation 

The problems observed in the high frequency region present an issue for obtaining accurate prediction 

measurements of the nonlinear parameter values from harmonic probing. Looking at Figure 5.59, the 

frequency spectrum at higher frequency levels showed that, at high frequency, other than the first 

peak, all the other harmonics were below the noise level. In this case, the higher order harmonic 
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probing equation would not be reliable as it relies on second and third harmonics for the respective 

polynomial cases. For example, for the nonlinear parameter estimation of k3, it depends on the third 

harmonic as per Equation 5.22 which is not distinguishable from the noise level at high frequencies.  

At low frequency and at the undamped natural frequency of the underlying linear system, the effect of 

noise is slightly less as can be seen from Figure 5.60 and Figure 5.61 respectively. However, in the 

region of low frequencies and around the undamped natural frequency of the underlying linear system 

the distortions due to the assumption made of using only the first components of the Volterra kernels 

do not allow for good estimation even in the absence of noise. In the context of the framework of 

building nonlinear models, this should guide the choice of input for using Volterra series 

representation estimation in the design of the experiments stage.  

 

Figure 5.59: Frequency spectrum with probing frequency of 250 rad/s 
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Figure 5.60: Frequency spectrum with probing frequency of 10 rad/s 

 

Figure 5.61: Frequency spectrum with probing frequency of 100 rad/s 

 Discussion 5.9

In this chapter, an investigation was conducted into the identification of polynomial model parameters 

using an approach based on the Volterra series representation. The linear parameters were shown to 

be independent of the nonlinear parameters when identified this way. For the linear parameters, only 

the first harmonic (i.e. the response at the forcing frequency) was used whilst the nonlinear parameter 

required the superharmonics (i.e. response at two times or three times the forcing frequency) for 

estimation. Observation from the results showed that there are some frequencies which could work 

well and some that could not due to distortion caused by the assumptions in the estimation steps. Most 

low frequencies would give less accurate estimation compared to points at frequencies higher than the 

undamped natural frequency of the underlying linear system. The results also show the distortion of 

the prediction lines increases as the amplitude increases. However, it can also be observed that higher 

amplitude gives more tolerance to noise. This should be put into consideration when planning and 

designing experiments for parameter estimation. 

Linear parameter prediction was mostly unaffected in the presence of noise. Noise appears to mostly 

affect the imaginary part of Λ1 which is for the calculation of the linear damping parameter, c value. 

The noise however mostly causes distortion at the high frequency region. The value of the damping 
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parameter, c can still be obtained by a line drawn from the low level region to the origin to calculate 

the gradient. For a system with all four nonlinearities, noise significantly affects the estimation. For a 

system such as this, the noise level should be kept minimal in order to obtain an accurate estimation of 

the parameters. 

The investigation of the nonlinear polynomial parameters shows that the nonlinear parameters can be 

identified independently from each other. The nonlinear stiffness parameters are estimated from the y- 

axis intersect and the nonlinear damping parameters are estimated from the gradients of their 

respective prediction lines of their respective plots. For a system with all four nonlinearities, the 

estimation of cubic stiffness, k3 is not possible due to the effect from H2(ω,ω) in the presence of 

quadratic terms that introduces divergence to the estimation line of the parameter k3. 

For the nonlinear parameters noise also affects mostly the high frequency region similar to the linear 

cases. This was also shown in the FFT plot where the signal with the high frequency was more 

affected by noise and lost the harmonics peaks under noise level more easily compared to the low 

frequency signal. This could introduce inaccuracy in the prediction of the nonlinear parameters. 

The combination of the multiple sinusoidal signals such as that used in the previous chapter can also 

be recommended from the results here with the signal combination having low and high frequency 

components both with high amplitude. The combination of frequencies, however, should be carefully 

selected to avoid combinations that could reduce system information such as multiples as discuss in 

the last chapter. 

In the next chapter, the same method that was used here will be applied to the Bouc-Wen model to 

investigate whether it is possible to use such an approach to predict the parameters of the hysteretic 

model. 
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Chapter 6 

6 Volterra representation for Bouc-Wen model 

 Introduction 6.1

In the previous chapter, the feasibility of nonlinear system identification of polynomial nonlinear 

systems using the Volterra Series approximation was investigated. The Volterra series approximation 

is intended for nonlinear systems without memory and with smooth nonlinearities. 

The Bouc-Wen model however has memory and the nonlinearity is not smooth. That said, the work of 

the previous chapter will be extended to investigate whether the Volterra approach may be applied to 

the Bouc-Wen model. The main reason for the work in this chapter is to investigate the odd harmonic 

behaviour shown by the Bouc-Wen system observed in the Chapter 2. By directly using the Volterra 

series for the polynomial model on the Bouc-Wen model, the relationship between the two models 

could be established to find the physical properties of the Bouc-Wen nonlinear parameters β and γ. 
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Firstly, the estimation of the linear parameters in the Bouc-Wen model is investigated to see if it is 

comparable to the estimation of the linear parameters of the polynomial model of the previous 

chapter. Subsequently, the nonlinear parameters of the Bouc-Wen model are investigated. Both will 

look at the approximation without noise and with noise. Finally, the similarities and differences 

between the model and the polynomial model behaviour are discussed. 

The classic Bouc-Wen model as introduced in chapter 2 is used here. To remind the reader, the 

relevant equations are shown below. In order to be consistent, the parameters of the Bouc-Wen model 

are the same as in the previous chapters and are shown below in Table 6.1. Again, these parameters 

have been obtained from identification of the El Centro 1940 earthquake data with some modification 

to suit the purpose of the research in this thesis. 

   ̈    ̇      ( )      (6.1) 

         (   )       (6.2) 

  ̇    ̇    | ̇|| |        ̇| |     (6.3) 

Parameter Value Units 

m  1 kg 

c  0.7037 Ns/m 

k  309.51 N/m 

A 1 - 

α  0.01 1/m 

 β 150 1/m 

γ 20 - 

n 2 - 

Table 6.1: Parameters for the Bouc-Wen model 

 Estimation of the linear parameters 6.2

With the Volterra relationship of the first order frequency response functions as per Equation 5.18, the 

linear parameters of the Bouc-Wen model were identified. The input used is also similar to the 
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previous chapter using sinusoidal input with amplitudes of 1 to 10. Figures 6.1 and Figure 6.2 show 

the plot of the real part of Λ1(ω) against ω
2
 and the imaginary part of Λ1(ω) against ω respectively. 

With reference to the figures, the value of m, c and k can be determined. 

Based upon Equation 5.18 of the Volterra relationship for the first order FRF, the mass, m and the 

linear stiffness, k may be estimated from the gradient and y-axis intersect respectively of the plot in 

Figure 6.1. From the figure, a good estimation line of the m and k value can be obtained both from 

above or below the underlying linear system undamped natural frequency. 

For the linear damping parameter, c, the value can be estimated from the gradient of Figure 6.2. Based 

upon the reference line, the value c of can be estimated only at the region of high frequency. The 

gradient can be drawn from any single point to the origin to obtain an estimation of the parameter c. 

It has been shown here that the linear parameters of the Bouc-Wen model could be estimated by using 

the Volterra series representation similar to the polynomial model in the previous chapter. The 

estimation of the linear parameters is independent of the nonlinear parameters of the model. The 

method could be used to estimate the linear parameters of the model to understand the basic properties 

of the system. 

 

Figure 6.1: Plot of real part of Λ1(ω) against ω
2
 for Bouc-Wen model 
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Figure 6.2: Plot of imaginary part of Λ1(ω) against ω for Bouc-Wen model 

 Estimation of the linear parameters in the presence of noise 6.3

The behaviour of the estimation is investigated in the presence of noise. Noise was added at two 

levels as per Table 6.2 below. The levels of noise were selected to sufficiently show the effect of 

noise on the estimation using the Volterra series approximation for the Bouc-Wen model. Figure 6.3 

and Figure 6.4 show the low noise level plot while Figure 6.5 and Figure 6.6 show the high noise 

level plot. 

Similarly to the observations made in the previous chapter, the noise affects the imaginary part plot 

more than the real part plot. The effect of noise also shows mostly at the higher frequency regions. 

This has been noted in the investigations detailed in the previous chapter with regards to the 

frequency spectrum, where noise tends to disrupt the harmonic peaks at the higher frequencies, thus 

appearing to a greater extent in the plots here. 

Noise level Low level High level 

Output 1E-5 times output RMS 1E-2 times output RMS 

Table 6.2: Simulated noise levels 
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Figure 6.3: Plot of real part of Λ1(ω) against ω
2
 for Bouc-Wen model with low noise level 

 

Figure 6.4: Plot of imaginary part of Λ1(ω) against ω for Bouc-Wen model with low noise level 
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Figure 6.5: Plot of real part of Λ1(ω) against ω
2
 for Bouc-Wen model with low noise level 

 

 

Figure 6.6: Plot of imaginary part of Λ1(ω) against ω for Bouc-Wen model with low noise level 

 Estimation of the nonlinear parameters 6.4

The investigation here was done without substituting the probing equation into the Bouc-Wen model 

equation of motion itself which is the reason for not showing any new equations at this point. The 

complication of the Bouc-Wen equation of motion would make it challenging mathematically. 

Another reason is the objective to see if the Bouc-Wen model does indeed show any nonlinear 



177 

 

polynomial model behaviour. This could give insights into the behaviour of the Bouc-Wen model 

comparable to a well-known nonlinear polynomial model. 

The Volterra series approximation is not intended for non-smooth systems with memory, such as the 

Bouc-Wen hysteresis model. That said, there may be some relationship between the Bouc-Wen 

parameters of the simulated system and the polynomial parameters that can be estimated from the 

Volterra series parameter estimation. 

Using Equation 5.28 and Equation 5.29 for the HFRF of the 2nd and 3rd order harmonics 

respectively, the relationships between the Bouc-Wen model parameters and the polynomial quadratic 

and cubic damping and stiffness were investigated. This was conducted by plotting Λ2(ω) for the 

quadratic damping and stiffness and plotting Λ3(ω) for the cubic damping and stiffness similar to that 

shown in the previous chapter for the polynomial parameters c2, c3, k2 and k3. 

To compare the two models, Figure 6.7 to Figure 6.9 were plotted. Figure 6.7 shows similarities to c2 

and k2 which would thus show any behaviour of quadratic damping and stiffnes. Figure 6.8 shows 

similarities to c3 which would thus show any behaviour of cubic damping and lastly Figure 6.9 shows 

similarities to k3 which would thus show any behaviour of cubic stiffness. 

The similar behaviour exhibited by the quadratic parameters c2 and k2 were practically non-existent as 

seen in the Figure 6.7. For a non-zero value of c2, a non-zero gradient would be expected in the plot 

but this was not observed, whilst a non-zero value of k2 would result in a non-zero y-axis intersect but 

again in the figure, the y-axis intersect value was close to zero. This has been shown in Chapter 3 in 

the frequency spectrum plot where the specific system of parameters for the Bouc-Wen model used 

here only showed odd harmonics and the 2nd harmonics and other even harmonics were not present. 

In Figure 6.8, a non-zero gradient is expected for a non-zero c3 but this was not observed, showing the 

lack of cubic damping behaviour for the Bouc-Wen system. However, the value of the y-axis intersect 

was not zero, as seen in the similar plot for the polynomial model.  
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Figure 6.9, shows a similar result to that exhibited by the polynomial k3 model in the previous chapter. 

A y-axis intersect exists showing that nonlinear stiffness behaviour was present in the Bouc-Wen 

model. The y-axis intersect can be taken from the higher frequency region where the line is constant 

as observed in the plot for cubic stiffness where the higher frequency shows the right value for k3 in 

the previous chapter. However the value cannot be related to a single Bouc-Wen parameter and 

warrants further investigation. 

For the cubic case, due to the presence of the y-axis intersect observed in the imaginary part plot in 

Figure 6.8 that was not previously seen in the similar polynomial plot in the previous chapter, an 

extension to the expressions is proposed. This is in order to fit the Bouc-Wen model to the polynomial 

model expression. The y-axis intersect relationship can be described as general Equation 6.4 extended 

from Equation 5.29 in the previous chapter or extended from Equation 5.30 to yield Equation 6.5 for 

an independent cubic system. 

  ( )  
  (  )

 ( )   (  )  ( )
  

   ( )  (   )[   (  )
   ]

   ( )   ( )
    ,        (  )

   -  (6.4) 

  ( )  
  (  )

 ( )   (  )  ( )
    ,        (  )

   -   (6.5) 

where     is a parameter or combination of parameters of the Bouc-Wen model 

 

Figure 6.7: Plot of real part of Λ2(ω) against ω
2
 as reference to polynomial c2 and k2 
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Figure 6.8: Plot of imaginary part of Λ3(ω) against ω
3
 as reference to polynomial c3 

 

Figure 6.9: Plot of real part of Λ3(ω) against ω as reference to polynomial k3 

6.4.1 Further investigation on nonlinear parameters 

In order to better understand the relationship between the Volterra expressions plotted in the previous 

section and the Bouc-Wen model parameters, further investigations was conducted. Here for the plot 

of the imaginary part, only the ω was used instead of the ω
3
 to make it easier to view the frequency 

range. This did not affect the plot as per Equation 6.4 due to the value being independent of the 

frequency. Observations were mainly made at the high frequency region since it was the best point for 
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estimation of the nonlinear parameters using the Volterra approximation for the Bouc-Wen system 

and polynomial system in the previous chapter. 

Figure 6.10 and Figure 6.11 show the imaginary and real part plot of Λ3(ω) against ω with varying 

parameter α value. At the higher frequency region it can be seen that α affected the Λ3(ω) almost 

linearly for both the imaginary and real part. The relationship is inversely proportional, as α increases 

then Λ3(ω) decreases until a value of zero at α=1.00, where the equation is linear and only a straight 

line is observed. This can be related directly to the equation since α is a ratio of the nonlinearity in the 

Bouc-Wen equation of motion.  

Figure 6.12 and Figure 6.13 show the imaginary and real part plot of Λ3(ω) against ω with varying 

parameter β value. In the imaginary part plot, an increase in β increases the y-axis intersect taken from 

the higher frequency region in the figure. With every 50 increase in parameter β, the Im(Λ3(ω)) value 

increases by around 2170 and this is very much linear up to a β value of 250 corresponding to a 

Im(Λ3(ω)) of 10880. However, the physical meaning of these values requires further investigation. 

Meanwhile in the real part plot, the change due to changing β is very small with an almost negligible 

increase. This appears to show that β does not contribute much to the nonlinear stiffness properties of 

the model. 

For γ, the effect is the reverse from β. Figure 6.14 and Figure 6.15 show the imaginary and real part 

plot of Λ3(ω) against ω with varying γ parameter value. Here the imaginary part plot shows that 

changes in parameter γ do not contribute to changes in the Im(Λ3(ω)) value. Parameter γ inhibits the 

nonlinear stiffness properties as seen in Figure 6.15 where an increase in parameter γ leads 

proportionately to an increase in the value of Re(Λ3(ω)). Every increasing parameter γ value of 20 

increases the Re(Λ3(ω)) value by around 2040. This is almost the value of γ/α. 

Figure 6.16 and Figure 6.17 sum up the varying value of β and γ with the imaginary and real part of 

Λ3(ω) respectively. Parameter β only affects the imaginary part while parameter γ affects the real part 

for the y-axis intersect of the 3D plots. 
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Figure 6.10: Plot of imaginary part of Λ3(ω) against ω with varying α 

 

Figure 6.11: Plot of real part of Λ3(ω) against ω with varying α 
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Figure 6.12: Plot of imaginary part of Λ3(ω) against ω with varying β 

 

Figure 6.13: Plot of real part of Λ3(ω) against ω with varying β 
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Figure 6.14: Plot of imaginary part of Λ3(ω) against ω with varying γ 

 

Figure 6.15: Plot of real part of Λ3(ω) against ω with varying γ 
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Figure 6.16: Plot of imaginary part of Λ3(ω) against ω with varying β and γ 

 

Figure 6.17: Plot of real part of Λ3(ω) against ω with varying β and γ 
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 Estimation of nonlinear parameters in the presence of noise 6.5

In the presence of noise, the estimation of the nonlinear parameter for the Bouc-Wen hysteresis model 

using the Volterra series approximation of the polynomial model would not give a good estimation. 

The effect of noise is very high especially at the higher frequency regions which are used as the 

parameter estimation points. Figure 6.18 to Figure 6.20 show the estimation plot with a noise level of 

1E-7 times output RMS. Even at a very low noise level, the line deviations caused by noise effect is 

clearly seen. 

 

Figure 6.18: Plot of real part of Λ2(ω) against ω
2
 as reference to polynomial c2 and k2 

 

Figure 6.19: Plot of imaginary part of Λ3(ω) against ω
3
 as reference to polynomial c3 
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Figure 6.20: Plot of real part of Λ3(ω) against ω as reference to polynomial c2 and k2 

 Discussion 6.6

In this chapter, the Volterra series approximation equation that was used for the polynomial model 

was applied to the Bouc-Wen model. Both the linear and nonlinear parameters of the Bouc-Wen 

model were investigated. This is a novel method of parameter estimation introduced in this thesis by 

using the Volterra series approximation to a nonlinear model with memory such as the Bouc-Wen 

model. 

In the linear parameter investigation, it was shown that the linear parameters could be obtained 

without knowing the nonlinear parameter. This was similar to the polynomial model, where the linear 

parameters were independent of the nonlinear parameters and could be identified using the 1st 

harmonic Volterra series approximation. The linear parameters estimation for the Bouc-Wen model 

works well considering that the equation used was derived from harmonic probing of a polynomial 

model. 

For the nonlinear parameters, using the equations from the polynomial Volterra series approximation 

showed that the specific system of the Bouc-Wen model used here was absent of the even harmonics, 

which agrees with the FFT observations of Chapter 2. Only the odd harmonics were seen, and only 

the nonlinear cubic stiffness behaviour could be observed directly. Nonlinear cubic damping related to 
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the polynomial c3 was not observed although there were values in the imaginary part plot of the 3rd 

harmonics observed as a y-axis intersect to the plot. 

Noise affected the linear parameter estimation in a similar manner to the polynomial model linear 

parameter estimation in the previous chapter. However, for the nonlinear parameter estimation, even 

in the presence of a very low level of noise, the estimation would yield inaccurate values. The effect 

of noise was too large and appeared mostly at the higher frequency regions where the estimation 

points were generally taken. 

The relationship between the nonlinearity expression and the Bouc-Wen model parameters was 

investigated separately by varying the Bouc-Wen parameters and analysing the imaginary and real 

part plot. The parameter α that was the ratio in the equation of motion played a role in both the 

imaginary and the real part plot. The nonlinear stiffness property was shown to be associated with the 

parameter γ only, while parameter β was linked to the imaginary part plot that contributed to the y-

axis intersect value found previously in the c3 relationship proposed by Equation 6.4 and Equation 6.5 

but of unknown physical properties. These equations are also a novel finding in this thesis which tries 

to relate the Bouc-Wen model to a well understood reference that is the nonlinear polynomial model. 

The Volterra series approximation method has been used here to observe polynomial behaviour in the 

Bouc-Wen model of hysteresis. The assumption made that allows the linear parameters to be 

estimated independently from the nonlinear parameters may prove useful in model building. It would 

allow the Volterra series approximation to be used as an initial estimation method to only identify the 

linear parameters and reduce the number of parameters to be identified by another parameter 

identification algorithm. It could also be used to counter-check or as proofing of estimated linear 

parameters using the advantage of independent linear parameter estimation from the nonlinear 

parameters of a system. 
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Chapter 7 

7 Conclusions and Future Work 

 Conclusions 7.1

The fitness-for-purpose of nonlinear system identification has been shown to be affected by the choice 

of input data. The first novelty in this thesis is the comparison of different levels and different types of 

input signal for generating simulated data with respect to the accuracy of nonlinear system 

identification.  

Using an unsuitable amplitude level for the input signal in nonlinear system identification should be 

avoided. For the Bouc-Wen hysteretic system, a low amplitude level was repeatedly shown to produce 

a system that has a very low presence of nonlinear behaviour. The nonlinear behaviour was 

suppressed under these conditions due to the system not being sufficiently excited. This situation 

could easily lead to systems that are not exclusive, which means that the wrong predicted systems 

could be identified as having a good fit. In this thesis, almost all low amplitude systems investigated 

could be fitted with by a predicted linear system with a good MSE.  
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It was widely believed that random input covered a wide range of frequencies, hence this was the 

main reason the method was widely used in linear system identification. However it has been shown 

here that random input produces simulated training data which provides information which is not 

focused on bringing out the nonlinearity behaviour of a system. This linearisation effect originating 

from the use of random input has also been previously revealed in Section 2.6.5 of the book listed in 

reference [9]. Sinusoidal input on the other hand, results in higher nonlinear behaviour in a system 

due to the total energy distribution compared to the random input. It would be possible to relate 

between input and output by observing the system harmonics to further understand the system as well. 

However, this requires an operational frequency at the undamped natural frequency of the underlying 

linear system to trigger this useful feature - easily obtained in most cases but maybe a hindering 

obstacle for some purposes. Another observed input signal was the chirp input which resulted in 

higher nonlinear behaviour and with a relatively simple setup. With the requirement to specify only a 

sweeping range of frequencies, – which should cross the undamped natural frequency of the 

underlying linear system– chirp training data resulted in the best estimated parameter for the Bouc-

Wen model using SADE. 

The findings here can be related to the proposed framework for building a nonlinear model, where the 

importance of properly setting the correct specification of model performance requirements is 

stressed. By performing identification of the nonlinear system in the expected working environment, 

the system safety can be guaranteed which will enable the system to work as required in a similar 

environment. Cost is saved by not having to repeat experiments since the working environment is 

already known. Hence all scenarios would have been considered when planning the experiments for 

the system identification data. Cost can also be saved when the system needs to only work in a low 

excitation environment. With that knowledge there is no need to employ experiments for higher 

excitation or extreme conditions which may lead to increase the investigation cost. 

The other conclusion that was made in this thesis was that by only relying on the MSE, a false 

confidence could be generated without identifying the correct system. The MSE could potentially be 

misleading when identifying a system based on immature training data. A proposed novel 
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Improvement Ratio, based on comparison with a linear fit MSE was used in this thesis to improve 

confidence against the linearisation effect. It helps to improve confidence by giving a comparative 

ratio of improvement for a predicted nonlinear system against a fitted linear system.  

In this thesis an Improvement Ratio with a factor of 7 to 10 is considered low, whilst a factor of over 

20 is considered as good for a clean signal without noise. The Improvement Ratio has been 

successfully shown for all input types without noise. In the presence of noise, the Improvement Ratio 

shows a clearer result. For a low level of amplitude estimation, the Improvement Ratio was small at 

around 0.001 to no improvement shown. This showed that whilst the MSE may indicate a good 

estimation has been obtained, the Improvement Ratio reveals that the training data had very little, if 

any, presence of nonlinearity. When using a higher amplitude excitation for the input, a better 

Improvement Ratio can be obtained, giving a higher confidence of the presence of nonlinearity in the 

training data which would allow for accurate estimation of the nonlinear parameters.  

Another key observation concerning the identification of a system with noise is that only the systems 

that show linearisation would yield an Improvement Ratio as the other systems were not able to 

identify a linear system with a good fit. The fact that an Improvement Ratio is not obtained already 

gives high confidence that the system identified is exclusive and is the correct predicted nonlinear 

system. The Improvement Ratio used in this thesis has proved useful in increasing confidence in the 

parameter estimation. It could be useful especially in cases where the training data was not obtained 

by the researcher conducting their own experiments or the data is from an unknown input. 

A Volterra series approximation was used on the polynomial model to identify system parameters. It 

has been shown that the linear and nonlinear parameters could be identified separately as both were 

independent of one another due to the assumptions made as part of the Volterra series approximation 

which separates the harmonic terms in the series. It was also shown that the presence of noise really 

affected the Higher-order FRF (HFRF) plot especially around the high frequency ranges. This caused 

a problem with the identification of the nonlinear parameters of the model. 
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The Volterra representation was then used for identifying the parameters of the Bouc-Wen model 

based on harmonic probing of the polynomial model. This is a novel method of nonlinear system 

identification whereby the Volterra series approximation is normally used for systems without 

memory. However, in this thesis the method was successfully used on a hysteretic system successfully 

to determine the physical properties of the nonlinear parameters. Some future work needs to be 

carried out to determine the exact values of the nonlinear parameters. 

It has been shown for the Bouc-Wen hysteretic system that the linear parameters were all similarly 

independent from the nonlinear parameters. The specific Bouc-Wen model with the parameters used 

here was determined as showing only odd harmonics. The nonlinear parameter γ contributed to 

changes in the HFRF in the real plane and showed behaviour similar to that identified for cubic 

stiffness of a polynomial model. On the other hand, parameter β contributed only in the imaginary 

part of the Volterra HFRF, but without an associated physical attribute of the polynomial model. The 

assumption made that allows the linear parameter to be estimated independently from the nonlinear 

parameter may prove useful in the general practice of model building. It could allow the Volterra 

series approximation to be used as an initial estimation tool to only identify the linear parameters and 

reduce the number of parameters to be identified by another parameter identification algorithm. It 

could also be used to counter-check or as proofing of the estimated linear parameters using the 

advantage of independent linear parameter estimation from the nonlinear parameters of a system. 

Other observations in the thesis include the use of extended data for nonlinear system identification 

using SADE. The use of extended data was determined to not contribute to any improvement in 

nonlinear system identification when working with data with noise. It was concluded that it is 

unnecessary to use a larger amount of sampling data for SADE compared to using a smaller amount 

of sampling data in the real environment where noise is always expected. 

On the self-adaptive aspect of SADE, a pattern was observed which showed that SADE did improve 

the efficiency of the parameter estimation. The ability of SADE to change the preference of the 

mutation strategies and the values of the hyperparameters crossover ratio and mutation factor allowed 
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SADE to provide a faster and more efficient parameter estimation value. SADE initially adapts to 

search in a wider search space until it determines the best value. Then it starts to restrict the search to 

a more limited search space in order to allow higher accuracy estimation. Although the search space is 

restricted, the algorithm always allows some search in the full search space and forces this to be 

evaluated to avoid falling into false minima. This was done seamlessly when the algorithm was run 

and a similar behaviour observed every time the algorithm was used. 

 Future Works 7.2

The findings in this thesis are something that the author feels is important for the model building and 

system identification community. However some further work is warranted in order to produce a 

comprehensive guide to system identification. 

Some immediate future works that could contribute to the findings here include investigating training 

data behaviour on other nonlinear models. The same method that was used here could be directly 

applied to compare the different training data with different nonlinear models. The results would be 

expected to either agree with the input choices given in this work, or give way to a guide on input 

selection for different types of nonlinearity.  

Similarly it should be possible to work with different optimization algorithm choices and multi 

degrees-of-freedom (MDOF) system. The different optimisation algorithm could contribute to 

refining the Improvement Ratio value. A hybrid input type could also be incorporated, for example 

sinusoidal, chirp and random combinations with ascending amplitude. This would hopefully capture 

all the necessary system behaviour and this could result in a better predicted model. 

A longer scale research could be dedicated to exploring an additional suitable reference or baseline 

model for the Improvement Ratio. This could result in extending the confidence level of system 

identification significantly rather than only relying on one measure of success. 

The work on the Volterra series approximation could include generating equation for specific Bouc-

Wen equations of motion to allow estimation of nonlinear parameters of the model. The use of other 
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Volterra kernels could also be explored since currently only the first term is used for estimation which 

results in much distortion in the estimation lines. With the use of more kernel terms, the distortion 

would be expected to reduce, which would result in more accurate predictions. 

 Final remarks 7.3

The larger idea behind this thesis was to lay out a best practice framework for nonlinear system 

identification as a guide for new users coming to the field, and to promote further discussion on the 

matter. Only some parts of the framework were discussed in this thesis which focussed on looking at 

the initial stages. The work here has shown that the selection of input for producing data for system 

identification is important for cost saving and to gain confidence in the predicted model. These were 

in terms of initial planning in setting up a proper aim of system identification or model building, 

obtaining proper training data for parameter estimation and finishing off with questioning the obtained 

predicted model obtained to determine its real meaning and whether it is representative of the real 

system that was identified. The main objective of system identification should be to have a reliable 

and fit-for-purpose predicted model that would be useful in the real environment. 

With the predicted nonlinear model that results from identification using demanding data that really 

punishes optimisation mistakes and rewards the correct identification, it should be possible to have a 

higher confidence in the predicted model to be used in the real working environment and would have 

the confidence to determine the suitable range of operational conditions for the predicted model. 

With the findings given here, the author hopes that this can promote further discussion on the matter. 

It is also a hope to see that this method can be further improved to be comprehensive, similar to the 

axioms used in structural health monitoring [76] and the acknowledged guide in neural network [77]. 
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Parameter estimation for nonlinear models can be conducted via many methods that have been 

discussed in much of the literature. Some examples in the literature are [21], [22], [78], [79] and [80]; 

a more general description concerning some of the methods can be found in [10]. The best approach 

for one type of nonlinearity may often be inapplicable to many other types of nonlinearity. For simple 

problems which have only one local minimum or maximum, a gradient-based method may be the 

most applicable. This method will iteratively find the minimum, depending on the set conditions. 

However, when faced with a more complex problem with multiple local minima or maxima with 

many flat surfaces in the search space, a simple gradient based method may be insufficient. Here, the 

use of population-based algorithms is usually more successful. Some examples of established methods 

of population based optimization are differential evolution [81], [82], particle swarm optimization 

[83], [84] and ant colony optimisation [85], [86]. 

In this thesis, the differential evolution (DE) method is used as the optimisation algorithm. DE is an 

algorithm which is based on the Darwinian evolution principle with the fundamentals of natural 

selection, namely, mutation, crossover and survival of the fittest. It is a population based method with 

multiple starting points that can cater for the optimisation of a multi modal problem. Since the Bouc-

Wen model used in this thesis is a nonlinear model, a simple linear estimation algorithm would not 

suffice. The DE algorithm had been used successfully in many academic papers with a wide range of 

applications and is relatively simple to use and relatively easy to code using Matlab. The author and 

the Dynamic Research Group at University of Sheffield have also had previous experience in using 

the differential evolution algorithm [26], [25], [87]. 

The Differential Evolution algorithm was originally proposed by Storn and Price [88] and it is well 

explained in their book [89] with example application of DE on 12 subjects. Since the introduction in 

1995[88][88][88][88][87][87][86][85][85][85], DE is very well accepted and has been proven in 

competitions such as IEEE‟s International Contest on Evolutionary Optimization (ICEO) over the two 

following years. 
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DE works by having multiple trial vectors all over the search space termed as parent vectors in this 

thesis. Then another set of random population of vector is selected from the current population. The 

random vectors are then mutated or recombined. Unlike Controlled Random Search [90] and Nelder-

Mead [91], [92] which uses reflections and Evolution Strategies [93], which uses a predefined 

probability density function, DE uses a scaled difference of two randomly generated trial vectors. 

These random vectors are then further crossed with the initial parent vector. The random vectors and 

parent vectors are then compared via objective functions and the winners move on to be the next 

generation parent vectors. This is illustrated more clearly in figure A.1. 

DE can be found in much of the literature since its introduction. This includes the performance 

evaluation of DE, comparative studies of DE against other optimisation algorithms and the application 

of DE in many fields of research. One example of a performance assessment study is in Lampinen and 

Zelinka [94] in 1999, who compared DE with ten other optimisation algorithms. Three test problems 

were set up for a gear train, pressure vessel and coil spring. DE performed very well posting new 

alternative solutions for the gear train problem. DE also posted the best result for three cases of the 

pressure vessel variations and beating the previous best objective function value for the coil spring 

problem.  

Some comparative studies of DE have compared DE with other optimization techniques such as 

particle swarm optimisation (PSO) and the Genetic Algorithm (GA). Such literature includes [95] 

where DE was quoted as outstanding, reliable, robust and easy to manipulate while in [96], DE was 

found to be superior on the harder test problems. 

DE has also been applied in many fields of research with new publications being published every 

year. There are too many to be listed here in this thesis. Some examples are selected from 1999 to 

2015. In [97], DE was used successfully for analysing information on visual and tactile sensors for 

sensing object shape and orientation. In [98], an earthquake epicentre was found using DE from the 

seismographic data reported by multiple stations. DE was also used in parametric identification of two 

induction motor models in [99]. In [100], the ability of DE in multi-objective interdependence 
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problems was utilised in a reservoir system optimization problem. An agreeable solution between a 

simulated and a real system was found using DE in applications for a servo-hydraulic system with a 

flexible load as shown in [101]. DE was also shown to be able to find multiple solutions in the 

prediction of critical thermodynamic mixtures of different petroleum fluids in [102]. 

Some new DE variants and hybrids have also been introduced. In [103], for the optimisation of 

topological active nets (TAN), a type of deformable model was introduced which can be solved by 

minimisation of objective functions. DE was incorporated with other well established optimisation 

algorithms as a hybrid optimisation algorithm that resulted in faster search with minimised initial 

decisions. In [104], a more recent paper published in 2015 DE was combined with the Eagle Strategy 

as ES-DE, in the minimisation of steel frame weight. A variant used in this thesis was the Self-

Adaptive Differential Evolution introduced in [105] which allows multiple strategy and adaptation of 

hyperparameters of the original DE. 

The procedure with the evolution strategy that was proposed initially is illustrated in Figure A.1. DE 

was based on the fundamentals of biologically inspired natural selection i.e. mutation, crossover and 

survival of the fittest. DE works by evolving a parent matrix of potential solutions using a mutation 

strategy and mutation factor, Fr (where 0 < Fr < 1). The parameters from both the parent matrix and 

mutant matrix are combined by using a crossover ratio, Cr, thus creating a more diverse trial matrix. 

Vectors from the parent matrix or the trial matrix are then selected on lowest objective function value 

calculated by a normalised mean-square error between the actual response and the response using the 

predicted parameters. This is repeated every generation until a suitably low objective function value is 

achieved or until a maximum number of generations have been reached. 
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Figure A.1: Schematic of Differential Evolution with Rand/1 Strategy. 

In [81], DE was initially introduced with only one strategy which was Rand/1 that can also be seen 

illustrated in Figure A.1. In the paper, for DE, some starting values or hyperparameters have to be 

determined before running the algorithm. These are the population size, mutation factor (Fr) and 

crossover ratio (Cr). A suggested optimum value for population size is 5 times the dimensions. The 

maximum value for Fr was empirically determined to be 1.2. However the optimum value was 

suggested to be between 0.4 to 1.0. Since Fr and Cr must be determined beforehand, it was suggested 

that the user tries different value of Fr and Cr to determine the suitable value to be used for any 

function. 
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DE works by evolving a parent matrix of potential solutions using a mutation strategy and mutation 

factor to create a mutant matrix. The parameters from both the parent matrix and mutant matrix are 

then pooled by a crossover ratio to generate a more diverse trial matrix. Vectors from the parent 

matrix or the trial matrix are then evaluated through the model to be identified to obtain the model 

response. Selection is then made based on an objective function value calculated by a normalised 

mean-square error between the system‟s real response of the system and the predicted system 

response (parent and trial response). The objective function could be something that is to be 

minimised or maximised depending on the system. This thesis uses the minimisation objective 

function. This is repeated every generation until a suitably low objective function value is achieved or 

until a maximum number of generations have been reached, whichever comes first. 

The process flow for DE is given in Figure A.2 and explained in the following sections. 

 

Figure A.2: Differential Evolution process flow 

A.1 Initiation 

Initially a parent matrix of a population of N D-dimensional vectors is generated randomly within a 

lower and upper limit for each of the parameters to be identified. The value of D depends on the 

number of parameters to be identified and the value will vary depending on the model itself. The 

upper and lower limit is usually set for a known system by physical limitations. For an unknown 

system where parameters cannot be related to a physical attributes or physical limitations, this can be 

estimated to capture the system optimum. The algorithm will still work even when the lower and 
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upper limit are not set, however the process will be expected to take a longer time to find the optimum 

value. This range of lower and upper limits can be set to restrict the search space if desired. This will 

contain the algorithm to search only within the lower and upper limit and will return the border value 

whenever the limit is breached. For the classic Bouc-Wen model the parent matrix will have D = 7, 

which is the number of parameters in the classic Bouc-Wen model. In this thesis the population size is 

set to be 5 times the dimensions (N = 5*D). This is to keep the balance between large 

populations/fewer generations versus smaller populations/many generations. There will be an optimal 

setting to give fewest overall functions evaluation, on average. This will depend upon application but 

population sizes between 3*D and 10*D are generally recommended [88], [106]. 

A.2 Evaluation 

The vectors that were created in the population matrix are evaluated to give a fitness vector or cost 

vector (maximisation or minimisation). This will evaluate the chosen model with parameters from the 

vectors to give a predicted response from the model. This process is the real application dependant 

part of the algorithm and may be very time-consuming. 

The objective functions will then be evaluated via a normalised mean-square error function from the 

real response against the predicted response. The objective function in this thesis is the cost function 

as it is a minimisation problem as shown in Equation A.1. A cost value of less than 5 shows that the 

parameter estimation is good and a value of less than 1 is considered as excellent [25]. 

     
   

   
 
∑ (         )

  
     (A.1) 

 

Where   is the total number of population 

    is the variance of real response 

    is the predicted response 

         is the real response 
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A.3 Mutation 

A mutation matrix is then created from the parent matrix using mutation strategies. Mutation is the 

creation of different variations of the solution with values close to the parent vector by mixing 

multiple random parent vectors, best parent vectors or current parent vectors with each other and 

including a multiplier of the mutation factor, Fr. The mutation matrix will then be used in the 

crossover procedure to give diversity to the trial vectors. 

In [81], DE was initially introduced with only one mutation strategy which is Rand/1 as illustrated in 

Figure A.1. Five of the earlier mutation strategies for DE are given below [105], [107].  

Rand/1   :              (           ) 

Rand/2   :              (           )    (           ) 

Best/1   :                (           ) 

Best/2   :                (           )    (           ) 

Current to Best/1 :             (             )    (           ) 

Where       is the current trial vector (ith row) at generation G 

       to       are randomly chosen vectors from the parent matrix at generation G 

        is the best vector from parent matrix that gives the lowest objective function value 

at generation G 

      is the current vector from the parent matrix (ith row) at generation G 

A.3 Crossover 

To create diversity in the trial matrix, a population of trial vectors is created from combinations of two 

vectors which are the parent vectors and the mutation vectors, and is obtained via a crossover process. 

This process is imitating nature where a child inherits both DNA from the mother and father. In this 
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work uniform crossover {0,1} is used. Uniform crossover decides which of the two vectors, 

contributes to each chromosome of the trial vector by a series of D – 1 binomial experiments. Each 

experiment is mediated by a crossover ratio, Cr (where 0 < Cr < 1). If a randomly generated number 

from the uniform distribution is less than Cr, the trial vector takes its parameters from the mutation 

vector. Otherwise the parameter comes from the parent vector. So if Cr = 1, the trial vector will 

always come from the mutation vector, whilst when Cr = 0, the trial vector will always come from the 

parent. To avoid non-mixing or stagnant generation, even with Cr = 0, at least one value in the trial 

vector will always be drawn from the mutation vector pool. 

A.4 Selection 

Selection is when a new population matrix for the next generation is created. The winner between the 

parent vectors and trial vectors dependent on the objective function score will move forward to be part 

of the parent vectors in the next generation population matrix. 

A.5 Self-Adaptive Differential Evolution 

Self-Adaptive Differential Evolution (SADE) is an extension of DE. It was introduced in 2005 in a 

special session on real parameter optimisation of the IEEE Congress on Evolutionary Computation 

[82]. The rationale behind SADE is that it has the ability to alter its behaviour mid-operation, in order 

to improve its efficiency and overall chances of successfully finding the global optimum for a 

particular problem. It achieves this by using multiple mutation strategies and automatically selects the 

best strategies during different periods of the optimisation. The mutation factor, Fr and crossover 

ratio, Cr are also allowed to change for improved efficiency. The mutation strategies, Fr and Cr 

behaviours are recorded during the reporting process to be assessed and then altered to adapt for this 

purpose. 

As discussed above, optimisation with DE requires the specification of two hyperparameters, Cr and 

Fr and the selection of one of the strategies of mutations. The success of the technique will be 

dependent upon the choice of values. In the case of Self-Adaptive Differential Evolution (SADE), the 

expectations using this method is that the hyperparameters will gradually adapt themselves from the 
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initial values to a value which gives a better survival rate of the trial matrix. In the code, Cr and Fr are 

started at the suggested value of 0.5 and 0.9. These are then updated every 10 generations to allow fair 

amount of successful values and does not burden the algorithm with rapid changes in the 

hyperparameters. The updating is done by selecting all successful values of Cr and Fr, which are the 

values of Cr and Fr that results in an improved solution - where the trial vector wins over the parent 

vector. The mean of all the successful values is taken as the value of Cr and Fr for the next 10 

generations. 

As for the strategies, SADE allows several strategies to be employed. This thesis uses the same four 

mutation strategies that were used in [25]: 

Rand/1  :              (           ) 

Rand/2  :              (           )    (           ) 

Current to Best/2 :             (             )    (           )    (           ) 

Current to Rand/1 :             (           )    (           ) 

The mutation strategies will initially be selected using a “roulette-wheel” approach with each strategy 

having equal probability of selection. After a set amount of generations, (this thesis uses 20 initial 

generations), the probability of each of the strategies will be recalculated according to the number of 

successful trials for that strategy divided by the number of times that strategy was selected, thereby 

giving a bias towards the most successful strategies. After the first initial update, the strategy 

probabilities are updated at every generation according to Equation (A.2). 

     
         

                
     (A.2) 

For illustration on how DE suffers from poor choice of hyperparameter and a limited mutation 

strategy compared to SADE which is able to adapt, 20 runs of DE and SADE was used to estimate the 

parameter values of a Bouc-Wen model. The hyperparameter settings for DE are as suggested in 
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Reference [25], with Cr = 0.5 and Fr = 0.9. For the SADE Cr and Fr are started with the same values. 

The maximum generations are limited to 1000 to give ample time for both algorithms to work. 

Both DE and SADE yielded good estimates with low objective functions, as expected. Figure A.3(a) 

and Figure A.3(b) show how the DE and SADE perform to reduce the mean population cost and best 

population cost against the number of generations respectively. The plots are limited to a cost value 

below 5 MSE, which demonstrates good parameter estimation. The plots show that for this particular 

model, both DE and SADE would quickly drop to below a cost value of 5 MSE within 50 generations. 

DE then starts to take hundreds of generations to find another solution that improves the cost value. 

For DE, although the mean cost decreases gradually, the best cost starts to plateau. SADE on the other 

hand, does not show this „lag‟ in finding the next solution and keeps improving rapidly. This is where 

the Cr, Fr and strategy choices are adapting to help the algorithm to expedite the estimation process. 

(a)  

(b)  

Figure A.3: (a) Differential evolution cost plot (b) Self-adaptive differential evolution cost plot 


