CLOTHWORKERS' LIBRARY
UNIVERSITY OF LEEDS

THE APPLICATION OF ROBOTICS TO THE ASSEMBLY OF

Submitted
the

Being an

supervision

FLEXIBLE PARTS BY SEWING

BY

DAVID gERSHON

in fulfilment of the requirements for

degree of Doctor of Philosophy.

account of work carried out under the

of Professor 1. Porat and Mr. C.A. Pinches.

Department of Textile Industries

University of Leeds

March, 1987

CLASS MARK
T, 30N o

BATNIANUAN



ABSTRACT

This thesis concerns the development of a robotic cell to
perform assembly and handling operations on cloth.. A
flexible automation approach was adopted;,; in which the
robot was required to control the cloth panel during both
handling and sewing operations, without the aid of hard
automation attachments which might limit the flexibility of
the system. The cell consisted of an adaptively controlled
robot, a hierarchy of controllers, a conventional sewing
machine, a two-fingered fabric steering end-effector, and

several sensor systems.

A technique was developed for producing a seam parallel to
an edge of arbitrary contour, in which two cameras; a
cloth tension sensor and the sewing machine’s shaft encoder
provided the sensory input. Two sensory servo control
systems were required, one control system generated the
robot’s +trajectory ¢to maintain a small constant cloth
tension,; and the other directed the robot to manipulate the

cloth panel to maintain a constant seam width.

The design of the cloth tension control was based on the
measured frequency response oflthe open loop system. The
seam width control was designed using simulation studies,
which accounted for the control transfer function, and non-
linearities such as camera pixél resolution, time delays

and robot motion limitations.

Several robotic handling techniques were developed, so that
a cloth panel placed arbitrarily on the sewing table could
be set up for an edge seahing operation, and the cloth
could be rotated about the needle. The system’s flexibility
was demonstrated in the assembly of an irregularly shaped

cloth panel, in which three adjacent sides were sewn up.



To Yvette



ACKNOWLEDGEMENTS

I would like to express my deep gratitude to :-

* my supervisors, Prof. 1I. Porat and Mr. C.A. Pinches

for their valuable help and guidance

¥ Mr. A, Whitehead and the workshop staff for their

assistance in designing and building the rig

¥ Mr. M. N. Moghaddassi for his help and advice with the

electronic circuits

* the Textile and Other Manufactures Requirements Board

of the Department of Trade and Industry for their

financial assistance

% my parents and parents—in-law whose continued support

helped make this Ph.D possible.



iv

TABLE OF CONTENTS

ABSTRACT t e v nennnnns .

ACKNOWLEDGEMENTS .. v eeeveensnas

ABBREVIATIONSI.Il'll'l..".‘l.'ll'.l""'..lll.l.'l.

1l INTRODUCTIDNI'lll..l.!l'.-.‘-.-..'I‘l.-.-.....lIl
1.1. The Clothing Industry.cesececescnscesenncacass

1.2. Traditional Clothing Manufacturing Processes.

1.2.1. Cloth Preparation.escesceceesesessens

1-8.3- Assembly.l.'-nllnclvil.ll-IlIolnc

1.2.3. Finishing and Packaging.......

1.3. Clothing Automation — State of the Art.

1.3.1. Cloth Preparation..ceceeccecenss
1.3.2. Assembly by Sewing..........;...

1.3.2.1. AttachmentS.eernsanonss

1.3.2.2., Semi~AutomationN.seisecanancs
1.3.2.3. Full Operational Automation.

1.3.2.4. Full Sequential Automation..
1.3.3. Other Uses of Automation in Clothing

Manufécture...... ..... .

1.3.4. Summary

1.4. Flexible Clothing Automation Developments...

1-"-1- Japan..-......-...---....'............

iii

e XX1

1.4.1.1, Automated Sewing System Project.

1.4.1.2. Other Research Projects
1'4‘2. UISUAI'I.Il.'...."l.!.'.l"'.lll
1.4.2.1. The (TC)? Project..eee..

1.4.2.2. The Singer Sewing Corp..

1.4.2.3. Clemson University......



1-4.3. Europe..----.-----.....---.-.

1.4.3.1. The BRITE Project .

1.4.3.2. Non-BRITE Researcheesesse.

1.4.3.3. UK Research....

Comparison of Flexible Clothing Automation

APProache S, csesosssssrsossesavscosnnsencss

1.5.1.
1.5.2.

Introduction.eceeescvssocesss

1.5.3. The Clemson Approach..cc....

1.5.4. The Adaptive Robot Approach..

(TC)2 Approachecsevsvessovess

1.5.5. The Intelligent Robot Approach.sscesese

16
.16
.17
.18
.19
.20

1.6. Clothing Automation Research at Leeds University.20

FIGARO - A ROBOTIC SEWING DEVELOPMENT SYSTEM........22
2.1, OVerviewWw.sesisesssossecsssssssssssssssscssssanvessll
2.2. Hierarchical Control Structur@....eeesssssesesss 25
2.3. Station Controller..iecescassesssnsssncsrsanasssels
2.3.1. Hardware.,.coveeeeseerssscassanscanssasssases?
B.3.2. SoOTtWArBesessoscrnssrssonsssersssssssssnss?
E;B.E.l. Requiremen? for Multi-Tasking....27

2.3.2.2. AMX-86 Multi-Tasking Executive...28

2.3.2.3. TaSKS.:eesesnrarosersnsanssneanss B8

2.3.2.4, Scheduling and Prioritiesisee....30

2.3.2.5. ISP’s and TimersS..cesecsscesaneea 31

2.3.2.6. Resource Management......ccccve.. 32

2.3.2.7. AMX Configuration Module.........32

2.3.2.8. LanguageS.secacoasre ceececnavus .32

2.4, PUMA S60 RODOE..sueeseaeerasessrossonsenssnnasss 33
2.4.1. Mechanical Specification..cieisreveeaneesa34
2.4.2. Calibration..sveeesncencesvees G b
2.4.3. Electrical Specification..eae.. esssessee3b
2.4.4, Robot Control Design.iceeececesceoccoscaese37

2.5. VAL Il Robot Control and Programming System......38

2.5.1. Robot Motion Control Modes.eee.iveeeeen

.38



2.7.
2.98.

vi

2.3.2. Motion Control Parameters..cecessssorscsss 39

2.5.3. Location Transformations..

General Purpose Communication (GPC) Chamrnel......42
2.6.1. VAL Il Supervisory Communications
Facility.veoooeunn ctstecassassrsacennn ees et

2.6.2. FIGARDO GPC Designisscsccesassss
£2.6.3. FIGARDO GPC Protocol..ceevieeranrsnesseense el
Sewing Machine...eceevsecrocoses cteesne reeuwe P
Workstation Designecececcececanceoncssnsnsosscnncses@td

2.8'1- Sewing Table.l...'III'...I"..'....l...".qb

2.8.2. End-Effector.cceecsssssccrscscscssscroessssitd
2.8.2.1. Number of FingersS.sssssesesenssssd?
2.8.2.2. Hand Designeiccecscevsosenranense 48
2.8.2.3. Finger PadsS.sssveseesrennscnssses 4B

2.8.2.4. Spring Loading of Fingers..ses«..49
2.8.3., Robot Sitingeseseeescsocsevsrencranccanse
2.8.3.1. Singularities...ieeseessssenseee &
2.8.3.2. Robot Heightieeivevevevesesneesesal
2.8.3.3. Limitations Due to End-effector..S5S!
2.8.4. Coordinate Systems....

.I..III'.I..".I"I'SE

3. THE DEVELOPMENT OF A REAL TIME PATH CONTROL

CAPABILITY!lII!..I.l"Il-'.-l.I-.l.'lll-lt..ll.-...

3.1.

3.2,
3'3.

-t
VAL II ALTER Facility.eesseesoresssscsccessseso
3.1.1. Partial and Total Real Time Path Control
MOdBSeeereeeanscossnncccsssnsssssessaneseedld
3.1.2. ALTER MOdEScensvsersessrscesscacssasrssttnaress sl
The ALTER Communication Channel..cecsreecrrsesssesadb
Implementation of the ALTER Protocol on the
IBM AT et everorevssenosssncnsosonncssnnsncsss
3.3.1. Hardware ConsideraticonsS.tiesiceersecsseseseed?
3.3.2. Software Designeeecrrsecrroscncenscconcnesesd?

3.3.3. Communication Overhead.

Dynamic Performance Tests on ALTER Control.......61



vii

3.4.1. ALTER Performance Specification..scessee...6l
3.4.2. Test Setup.ececserasnenaas seeesvenenne Y Y=
3.4.3. Results..ereeeoens X
3.4.4, ConClUSiONSeacreeecacresssscssnsensnsnssssbd
3.5. Generation of ALTER Data.eceeccerernrneceansnes Y4
3.5.1. Velocity and Acceleration Limitations.....67
3.5.2. The Non-Cumulative Approach..esecesossses b
3.5.2.1. The Need for Smoothing.cceceeesssab?
3.9.2.2. The Interpolator Algorithm..ses..70
3.3.3. The Cumulative ApPProach.cseseccrerensenaa.70
3.5.3.1. Implicit Interpolation.eesesesee.70
3.9.4. Comparison of Cumulative and Non-Cumulative
MOdES . eueereosnssnsrnoencsssnoansnsssssnss?l
4, CLOTH TENSION CONTROL SYSTEM..veesnreoccorvarsccseanaasll
G.l, INtroduction.seeeeisesecesneccnsonesncsnsssnnnsedll
4.1.1. Robotic Sewing of a Straight Seam.......,..72
4.1.2. Requirements of Cloth Feed Tracking
Servo Control......... ceev o cerseesee e 73
4.2. Open Loop Control..........;..;..................74
.2.1. Shaft Encoder..eerericceresrvccrenceneness?lt
4.2.2. Shaft Encoder Interface with IBM AT....e..74
4.2.3. Software Implementation..iceerceenecaceansas?d
4.2.3.1, SEW TasSK.esessesssesesssncsnnnees?d
4.2.3.2. Implementing Open Loop Control...76
4.2.4. Open Loop Control PerformanCB.essessenseea??
4.,2.5. Limitations of Open Loop Control.c.veev...78
4.3. Cloth Tension Sensor..cesscrrecsectccnccsoncnnnees??
4.3,1. Measuring Cloth TensSioN.eeeeeeeersoocseees79
4.3.2. Sensor Specification.....eeererncenes eee..80
4.3.3. Choice of TransduCer.icerssecssressenscseessBC
4.3.4. Mechanical Design.eieeceserececonsasonseesesaB2
4,3.4.1, Mechanically Decoupled Force
S ENEOr S cesssnresscesacasassasnsssBl



G.4,

4.3.5.

4.3.7.

Closed
G.4,.1.,

4.4.2.

viii

4.3.4.2. Force Measurement Considerations.83

4.3.4.3. Choice of Material.......ccceeeen 85
4.3.4.4. General Design ..... ceenaensasse B8O
4.3.4.3, Design Calculations.ieeecoseeess .87
4.3.4.6. Detailed Design...c.vreeevevas «e 90
4.3.4.7. Mechanical Overload Protection...91
Electrical Design.iccscrsssncersscisossonnsed2
4.3.5.1. Noise Prevention.iceseicseesansee 92
4.3.5.2. Electrical Overload Protection...93
Sensor PerformanCe.sssscccssccssscscseess P4
4.3.6.1. Sensitivity.ceeersesncenscransees Tl
4.3.6.2. Cross-sensitivity.veierrveerneere T4
4.3.6.3. Natural Frequency....c.eecevece..96
Signal Conditioning.versrveaccssnorssascees b

4,3.7.1. Signal Conditioning Requirements.9%

4,3.7.2. Peak Detector...iecreinenanree e
4.3.7.3. Analog to Digital Converter......98
4.3.7.4., Detailed Designiciscevessserosese 38
4.3.7.5. Sensitivity civiieenncns cesessss100
Loop Control System Designe..... ceesasssalO2
Control System Approach..seesccesseseeessl102
4.4.1.1. Block DiagramMiseessssesacssassssl02
4.4.1.2. Software Implementation.........103
Preliminary Investigation into Closed
Loop Control..esescececscscenssssnssosssseslOl
4,4,2.1. Start-up Accelerationicececeasesa 104
4.4.2.2, Effect of Table Friction........ 10S
4.4,2.3. System Instability.. .0 106
4.,4.2,4. System Compensation....vieeece...107
4.4.2.5. Implementation of Integral

ControlesieeeseeennsescncansessnaslO?
4.4.2,6, Effect of Speed on Closed

Loop Control.eeseeeneniereeanes108
4.4,2,.7. Final Block Diagram....eeeeas...108



S. SEAM
5.1.

ix

4.4.3. Bode Design of Control Systemeesccceaaess109
4.4.3.1. Bode Design Procedure@..ccseeasse 110

4.4,4, Measurement of Open Loop Frequency
REeSpPONSEeesseccsososssossessnssassnsseensaill
4.4.4,1, Experimental Technique....ccc...111
4.4.4.2., Test FabriCeseseeessessnnseasceeall?
4,4,46,3, ResUltS.iceeeeeasrcssersarsansscesall?
4.4,5, Compensator Characteristics.cecceceeesees115
4.4,6, Determination of Compensator Parameters..118
4,4,6.1, Calculation Method.c:oeoeeeece....118
4.4,6.2. Compensator Calculation.e.ee.ee...118
Control System PErfOrmManCe. e sesreovereeseneesssl?@l
4.5.1. Performance Criterion..iseesrccecercesss.121
4.5.2. Experimental Fine-Tuning..ceeesscasesesss122
4.95.3. Performance'Versus Speediceecscsssssnesss il
4.5.4. Performance Versus Fabric Properties.....126
4.5.4.1. Sewing a Two-Ply Panel..........126
4.5.4.2. Sewing along the BiaSiseceeoeeessl27
4.,5.4.3. Different FabriCsS.sseevsesarsesall?
4.5.84.4. SPring LOAdIiNGesceescocnssnsssssl28
DiSCUSSiON. e v esvssvervsssssssssascsncsssceanssssllB
4.6.1. System Non-LinearitiesS.ieesecsscesosorveanesll?
4.6.2., System Time Delay..cceeveosrssreseseesssssal30
4.,6.3. Mechanical Properties of Cloth....¢:.¢,...130

4.6.3.1. Tensile Loading along Warp
or Weft Directions..ececeeneee..130

4.5.3.2. Tensile Loading Along Bias
Direction..cicerseececassnennaeaeal32
4.,6.3.3. Knitted Fabrics...veeeineennnes.133
4.6.4. Conclusions......... S R X
WIDTH CONTROL SYSTEM.eseeveostcacsccanarsanssscessl3D
Introduction. e eesecerurssesesrsvenssoasscansssseslld

5.1.1. Description of the Problem....

.135



D.1.2. Block Diagram.ecsescevessacsscessscsassss

S5.1.3. Design OptionS..eccrecescsacscasnscense

S5.2. Simulation Program..eeecsers- ceecaseccancenans

5.2.1.

5-2'2.

5.2.3.
Vision
5.3.1.
5.3.2.
5.3.3.
5.3.4.
5.3.5.
5.3.6.

Development of the Algorithm..........

S5.2.1.1. Basic Algorithm.....

5.2.1.2. Calculation of Seam Width

Errory Es veceeceresonse
S5.2.1.3. Calculation of Cloth Rotation
5.2.1.4. Calculation of Cloth

Translation.e.eceeceeesscsscas

S5.2.1.5. Control Transfer Function, G,

5.2.1.6. Robot Motion Limitations.....

5.2.1.7. Simulation of Vision System .

5-8.1-8. Graphic Output.-.--.---..-...

Simulation Experiments, cscecesecssssss

5.2.2.1. Performance Index

..136

..138

..138

. 138
.139

-.-1‘*‘2

.o 144

.. 145

I.UIQS

J146

.o 147

.. 148

. 150

(P.I.).II.I.I'ISO
S.2.2.2. Photocell and One Camera Systemsi151

9.2.2.3. Performance of the Ideal System.151

5.2.2.4. Vision System Limitations

S5.2.2.5. Robot Motion Limitations..

COnClUSIiONS. e enensennns
System..eveeseseseransaes
Cameras..ceeerescrasscas
Interface to IBM AT.....
Lighting Arrangement....
Projection Lampeesescees

Socftware Implementation.

Calibration Technigue.....

5.3.7. Vision System Performance....

Implementation of Seam Width Control

5'4.1.

5.4.2.
S5.4.3.

Calculation of Robot Motion to Rotate

Cloth.----...-.---..--.--...---...-.--

Robot Reach Limitations....eevveneenens

Software Implementation....ceivvenrvee

. 169
171
174



6. THE DEVELOPMENT OF FABRIC HANDLING TECHNIGQUES..

6.1.

S.4.4.

5.4.5.

Control System Performance..escescesss

5.5.1.

5.5.2.
5.5.3.

DisCUSSiONeessesvesceessssesossssnosnsss

3.6.1.

5.6.2.
5.6.3.
S5.6.4.
5.6.5.
S.6.6.
5.6.7.
5.6.8.

Software Organization.eeccececsess

6.1.1.
6.1.2.
Second
6.2.1.
s.2.2.
6.2.3.

xi

Prevention of Buckling.ceeeeseeaas
S.4.4.1. Cloth Takeup.eceeeeeenseses
5.4.4.2. Table Friction.....
5.4.4.3. Finger LoadinG.ceevaceacesse
S.4.4.4, Damped Motion.eiesinceeannas .

Close Sewing Technique.icaesseses

Performance TestS.ccereercacecs
5.9.1.1. Perfo;mance Indexeesvesnncann
5.5.1.2. Sample Printout....ccceveesns
Performance Results..cceseersoccasnvns

Summar\/.--..-.--.---.......---..------

Comparison of Performance with

Simulation Results.........;....
Signal NoisPiieessorenrsnsnsnnne
System Time DelayS.ceeesvsans
ARctuation ErrorS.ccecrsssonscassessnens
FAR and CLOSE Sewing Techniques.
Damped Robot Motions.,.veerenonn.

Adaptive Control..cecsveencneses

Conclusionsl.lllllIlIlll.l"Il.l

IBM AT Implementation.eceeccscscacassan
VAL II Implementation....cceveccececses
Prototype of FIGARO End-Effector......
Programmable Finéer DistancBeciesess
Low Profile Photocells...ieoniencnen.

Design of Second Prototype.......

. 185
.187
.188
. 189
.190
192
.192
. 193

.195
.195
196
. 198
.198
.199
. 200
.200

6.2.3.1. The Leeds Ply Separation Device.200

6.2.3.2. Modifications to Ply Separation

DeViCE..--.--o-.o-.----..-..----EOl



xii

4.3. Setting Up for the Edge Seaming Operation....

6.3.1. Sequence for Setting Up Operation

6.3.2. Placing Cloth Corner Under Needle.....

6.3.2.1. Finding Cloth Panel....coeeen.

6.3.2.2. Fihdinq Top Right Hand Corner

6.3.2.3. Moving Cloth up to Needle....

6.3.2.4, Fine Adjustment of Seam Width.

6.3.3. Deciding on Sewing Strategy.ceeesoees

6.3.4. Placing Fingers on Cloth Panel.

6.3.5. Fine Angular Adjustment....ce.

6.4, Completing the Edge Seaming Operation.

6.4.1. Segmented Seam Production......

6.4.2. Sewing Up to the End of the Cloth...

b.4.2.1. Detection of the Cloth End.

6.4.2.2. The inch Function....

6.5. Rotating Cloth Panel about Needle...
6.9.1. VAL II Implementation..cece.s
6.3.2. Effect of Rohot Inaccuracy...

6.5.3. Accommodating Robot Inaccuracy.

6.5.4. The straighten ROULINE. e os.s.

6.6, Demonstration Assembly.ceeseese

6.7. DisCUSSiON.esessssnsvoossersonssonce

6.7.1. Overhead Camera.seesecesses

6.7.2. Buckling Prevention .....

DISCUSSIDNIllI.llll..llI..l.l..l.l.ll
7.1. Review .ccceevesnssncscssanns .

7.1.1. Objective..cieveseoooeoosns

7.1.2. The FIGARDO Robotic Sewing System.

7.1.3. Adaptive Control of the Robot..

7.1.4. Cloth Tension Control System....

7.1.5. Seam Width Control System...v...

7.1.6. Handling TechniquesS.cseeesscass.

7.2. Capabilities and Limitations of FIGARO system.

.220
.220
.220
. 220
.223
. 224
226
.ca7
.28



xiii

7-8-1. IntrOdUCtiOﬂ...--.o-c....---....-----..--eaa

7.2.2. Multi-Function Capabilities..

7.2.2.1. Present Capabilities...cceanes

7.2.2.2. Potential Capabilities..sss.s

7.2.3. Flexibility.o.voeeveneen..

7.2.3.1. Present System’s Flexibility.

7.2.3.2. Flexibility to Shape....sssse

7.2.3.3. Flexibility to Edge Contour..

7.2.3.4. Flexibility to Fabric
Characteristics..........
7.2.4. A Sewing Strategy Generator (SS50).
7.3. Commercialization Considerations..ceesess

703'1- SDEEd-----.--.--..----.--.-

7-3.8- COSt.----.---..---------co-

7.3.2.1. General Comments..eesaces
7.3.2.2. Comments Relating to the

Clothing Industry.eeeessse
7.3.3. Other Considerations..ceese.

7.4. Recommendations .esesee

7-qlli Robotl.'..ﬂl....l..

® 2 8 9 e s 0w e R T 0w

7.4.2. Cell Controller..coieesssnsscnnsance
7.4.3., Sewing Machine.eeevevocoasnnes
7.4.4. Workstation .......
7.4.5. Future Work.....

7.5, ConclusioNeieeeecacesess

REFERENCES. . s v ceceocancoassacoccnscsens

APPENDICES

]
A. MISCELLANEOUS SOFTWARE MODULES........

A.1. Software VersionS.eceecrscoeceneass

A.2. AMX C Interface Prefix File.coveease

v .e233

v e s34
v« 2235
... 236
s 236
v o .236

...237
...239
e e 239
...239
...240
.. .281
-
el
TR

... 204

. s 0 Esa
.. .202
LK BN ] ese



A.7.
A.B.

SOF TWARE

B.1.
B.2.
B.3.
B.4.
B.S.
B.é6.

THE GPC LINK

C.1. Software Support for gP Communications..

C‘al
C.3.

xiv

AMX Configuration Module....ccievevennoocnn

A.3.1.
A.3.2.
Header

Global Variables...

Configuration Module.

Initialisations.esevevsences

A.6.1.

Restart Procedures...

A.6.2. AMX Start Upeseeeesss
PRNT Task..'l-“.-.--l.‘.lli

Miscellaneous Functions.....

The
The
The

COMM Task.eesess
RXMG Taskeeeoes
The TXMG Taske.oss.

Assembly Module....

High Level Interface..

cC.t1.1.
Cll'l'l.
C.1.1.2.

Restart Procedure..

FOR ALTER COMMUNICATION

CHANNEL

I/0 Routines,

VAL IT Implementation of GPC.

Calling VAL II Functions.,....

c.3.1.

IBM AT Implementation.

C.3.2. vAL 11 Implementation.

Uplink Facility.o.vvevveenenn

THE SEW TASK..eeeevvessssrsasonsense

D.1.

Restart Procedur@ecececesoase

D.2. Main Routine of SEW Task,....

IBM AT Implementation..

Summary of Configuration Details...

File for C Language Modules..

D.3. Cloth Tension Control Routines...

..270
..270
..271
..283
..285
..286
. .2%0

..292
..292
e 292

Interrupt Service Procedures..292

.. 292
.. 294
..295
. .295
296
279

..293
..293
. 303
..303



XV

D.4. Seam Width Control Rouines...eevrecesvessenesa306
THE CONT, MAKE AND POST TASKS .+ v eeeenrrancnsnsansns 303
E.l. The CONT TaSKeseecaesseasaesanasnasnanaensss «e.»303
E.2. The MAKE TaSK.seeseeorseseocencsecosnancsanncans 306
E.3. The POST TasK:esceseesesesesossosssssansssssssa30F
E.4. VAL Il FunctionS..ceeeeeescesacsnoncsssnssssssnss3ll
CAMERA ROUTINES AND CALIBRATION PROGRAM...ccceaees.325
F.1. Camera Routines under AMX....cceeeiovscesaeasseasaldlS
F.l.1. Restart Procedure.csccesccecsssscnsvssrse3
F.l.2. Routines to Capture a Frame ...ceceeess 329

F.2. Camera Setup and Calibration Program...cc.....326
SIMULATION PROGRAM. eesencencssssosncssssossssssessss33b
INTERFACE CIRCUITS s.vcerurensrsnsonncennenssneeses3bd
H.1. IBM AT Interface Cardeeeesssssesansssvsesecess3td
. H.1.1. General Purpose PortsS...cceeceeees csesnea3bb
H.1.2. Sewing Machine Interface.ccerecescceses3bd
H.1.3. Counter for Encoder Signal......ceee...346
H.ol.4. GPC Interface.eesesvsssessscnsnssessssa34B

H.2. Tension SenSOr.c.icesssasessssensssssneaccssssss34B
PAPER PRESENTED AT THE 16th ISIR, BRUSSELS, 1986...351
I.1, ABSTRACT s s e vt vanerassscerssorssoscssonssosssansoaldol
I.2. INTRODUCTION. v s eevensaossesoncsassscscscsscnssss3n
1.3. SYSTEM OVERVIEW. sevevessctsossosssscsvsrsenasens333
I1.3.1. Concept (fig. 1)...crrieriivenenrencenses3Sb
1.3.2. Development System (fig. 2)...v.0n.n.. 361

I.4, SEAM TRACKING SERVO SYSTEM. it e eveeeesorsconeseld?l
1.4.1, Simulation Program (fig. 3)...e.ce....342
I.4.2. Vision System .ot nreessnercnvcnneeees393
1.4,3. End-Effector Rotation.....ccvvvveeeessa333



I.5.

I1.7.
I.B.

xvi

CLOTH FEED TRACKING SERVO. .t eeveesesnsnsesns
I.5.1. Sewing Machine Encoder Signal........
1.5.2. Cloth Tension Sensor (fig. 6)..vesee
1.5.3. Cloth Feed Tracking Control.ceeecescss
SYSTEM PERFORMANCE . . .t v e e evnreerecnanasonsns
I.6.1, Seam Trackingueseeesesssocecocnssosas
I.6.2. Tension control....vcuvvieicecnnrennns
1.6.3. Seam quality.cceecrvcecnnsanscesncnsnsens
CONCLUSTION.: s sesssssosssosssasnsencssnsacans
ACKNOWLEDGEMENT S s s v e veceorsocnnrscnrosassnes



xvii

LIST OF FIGURES

General View of FIGARO System.cesversen,
Edge Seaming Operation......... .
FIGARO Hierarchical Control Structure....esseess

AMX-86 Multi-Tasking Executive.iieeoereverennsnoss
The PUMA S460 Robot...... eoeso nas

WORLD and TOOL Coordinate SystemsS....eveeesescnns
FIGARO End-Effector - First Prototype..e.c...
FIGARDO Coordinate SystemS.cecaesserssnensnsosa

Hierarchical Implementation of ALTER Protocol on

the IBM AT.'II.I.I.’.I'-...II'.'l..l'll."'l.'
ALTER Dynamic Test Results - Ramp Test.....
ALTER Dynamic Test Results - Stepped Ramp Test

Single Cantilever Sensor DesignNeiceeccessess

Double Cantilever Sensor Design..eeeceeececeessvans
Cloth Tension Sensor - besign Conceptesececnsassns
Cloth Tension Sensor - Realization....... e eseee

Measured Sensitivity of Tension Sensor ..

Peak Detector/ADC CircuUit.ceccosnssscsnss

Closed Loop Tension Control System.iseeeseesoranse
Effect of Table Friction on Tension Measurement.
Modified Block Diagram of Tension Control System
Cloth Tension Variations Due to Sinusoidal
FOrcinQeseessesessonseosesssssansncenncscesncsses
Bode Plot Diagram for Cloth Tension Control
SYSteM. s tveasonsesressesennvcnnnsanse
Bode Plot Diagram of Compensator, P(jw).....
Modified Bode Plot Diagram...scceeecreeesocacas
Tension Control System Performance..........

Typical Load Extension Curve for Woven Fabrics

L) lql
-
L) .53

« .08

..65

. .87

+ 95
..99
.101
. 105
. 109

.113



4-16:

S5-1:
S5-2:
5-3:
Shal
5-5:
S-6:
S5-7:
5-8:
o-2:

5-10:
S5-11:
5-12:
5-13:
S-14:
S-15:
S-1é6:
5-17:

U
|

18:

S-19:
o9-20:
S-21:
S5-ee2:
5-23:

5-25:

xviii

Deformation of Woven Fabric, Loaded in the

Bias Direction.icieceesscecrerssecoconoonssonssnsssess133
Initial Finger Position for FAR Sewing Technique...136
Seam Width Servo Control System.iesecereacceeees ceee.137
Seam Width Control Problem.essccecrcecnvsesnassaeseesl3?
Flowchart of Simulation Algorithm..ecececeveevceoransltrl
Apparent and Actual Seam Width.icceceeeeeessecrsssesealtt3
Simulation Plot for Two Camera SysteMuicecssceccossaslt?
Simulation Plot for One Camera System.eeeeeeceeen . e+ 150

Effect of Speed on Simulated Seam Width Control....152

Effect of Pixel Resolution on Simulated Seam

Width COﬂtT’Ol .---tun..n'colc.'lnn-.-n-.n-.l-l--l.clsa

EffECt Of X;an Seam width COﬂtl"Ql ...-.---------..154

Effect of x, on Simulated Seam Width Control .....156

The I-SIGHT Cameras Mounted on the Sewing Machine.159

Lighting Arrangement.iieeesceeescnvsnsocossssvessslbl
Vision Processing Time vs Camera Exposure Value...163
Overlays used in Vision System Calibration........165
Calibration Program Displey - Large Overlay....... 166
Calibration Program Display - Small Overlay

inCamera l..ceoverensosnocsvconcssseesasnnsenasnssselb?
Robot Motion Required to Rotate Cloth

About Needle.eeeeiessosserrensnessssaacssscsnseval?l
Safe Envelope for Robot Motion.isieeesvecesrossacesal?2

Initial Position of End Effector for Close Sewing.178

Edge Contour of Test Pamnel ... cicerncrccnsocany

Sample Printout of Edge Seaming Program.cececeeses
Effect of Cloth Speed on Seam Width Control
PerformanCe tereecrvecnsesrosasosssassronssvcesa
Effect of No. of Plies on Seam Width Control
PerfOrmanCe sessssssssasosessosesnsnossnsoncncans
Effect of Velocity Limitation on Seam

Width COﬂtrOl ® & 2 P 08B P P OV ST L PO ST O NSNS e

.179
.182

..183

.184

. 184



Xxix

Hierarchical Organization of IBM AT Software.......197
Optimum Location of Fingers c.eeiecerscasssosnsccesns 199
Starting Conditions for the Setting Up Operation...203
Demonstration of Automatic Production of a

SUb‘BSSEfﬂbl?..-------.----.--------;....-..-.--.---216

Block Diagram of FIGARO Robotic Sewing System......221

Counter Circuit for Shaft Encoder Signal......ev...347
Power Supply Unitl...'..'l'...'.l..ll.lIII..IC..I..3‘+9
Strain Guage Bridge and Amplifier Circuit...ccec...349

Overload Protection Circuit.csisssercsascoessassonealdl0



LIST OF TABLES

2-1: GPC Handshaking Protocol...cvererereenannrsenes

4-1: Tension Control System Terminology.eeoeaereees

4-2: Experimental Results for Open Loop Frequency

RESDO“SE..-....---------.-------.---.------

4-3: Sample of Fine-Tuning Experimental Results.

‘f_q': Ke\/ tO Fiq- Lf—lq'---onnnnunult-..co-..-o-to-

S5-1: Tension Control System Terminology.sveseoasseas

5-2: Definitions of Simulation Parameters......

5-3: Parameter Values for Simulation Tests.....

S-4; Parameter Settings for Performance Tests..

6-1: Sequence for Setting Up Operation.....

A-1: Software Version NOS.eeseenscesossnnsas

H—1: Interface to Sewing Machine Functions.

H-2: IBM AT Implementation of the GPC Link.

..I‘*Q

..102

.'115

..123

..126

.-137

» 140

.. 152

..183

..202

. .252

e 347
.« 348



XxX1i

ABBREVIATIONS

Abbrev. Meaning Section

CAD/CAM Computer Aided Design and Manufacture 1.3.4

CCD Charged Coupled Devices 2.8.1
CIM Computer Integrated Manufacture 2.2
CMRR Common Mode Rejection Ratio . 4,.3.5.1
DNC Direct Numerical Control 2.2

FIGARO Flexible Intelligent Garment Assembly

Robot 2.1
FMS Flexible Manufacturing System 1.3.2.4
GPC General Purpose Communication 2.2
IRG3 Interrupt Request No. 3 2.6.2
150 International Standards Organisation 3.3.2
1SP Interrupt Service Procedure ' 2.3.2.3
0S1 Open System’s Interconnection 3.3.28
MITI Ministry of International Trade and

Industry 1.4.1.1
PID Proportional-Integral-Derivative - 2.4.4
PIO Programmable Input/COutput controller 2.6.2
R & D Research and Development 1.4.1.2
SSG Sewing Strategy Generator ' 7.2.4
(TC)H 2 Textile and Clothing Technology

Corporation l1.4.2.1
UART Universal Asynchronous Receiver 3.3.2

Transmitter

w.r.t. with respect to S5.2.1.1



CHAPTER 1

INTRODUCTION

1.1. The Clothing Industry

The Clothing Industry is a major UK industry and makes a
significant contribution to the economy. In 1985, it was
the fourth largest manufacturing industry in the UK in
terms of sales (£4.1335 billion)y, and the second largest in

terms of employment (193,300); exports amounted to £7463

million C11.

However, the industry 1is confronted with increasingly
difficult ?rading conditions. Clothing manufacture is
labour intensive and consequently the industry has suffered
import penetration from "low-cost labour" economies - from
1979 +to 1985 clothing imports nearly doubled to £1.53
billion [1]. Increased competition from cheap imports has
resulted in lower price levels and reduced profitability.
Additional difficulties are caused by changes in the market
place; retailers are now demanding a quicker response in

manufacture and a greater flexibility in design [21.

Clothing industries throughout the industrialized world are
facing similar problems, and there is worldwide concern
for their future [3,4,51]. The development and
implementation of flexible clothing automation has been
identified as a vital measure if clothing industries are to

meet present day demands [(46,7,B81.



1.2. Traditional Clothing Manufacturing Processes

There are three main phases in c¢lothing production -

preparation of fabric pieces, assemblys, and finishing and

packaging.

1.2.1. Cloth Preparation

The two-dimensional shapes of the cloth panels are derived
from the garment design for the various garment sizes
(grading). A drawing is made of the optimized layoﬁt of the
required cloth panels for the cutting from the cloth roll
(lay planning), the cloth is spread out into a multi-ply
stack (spreading), and the cloth panel shapes are marked
out on the top ply (marking), the cloth panels are cut out
in stacks (cutting)s; and the stacks are tied together in

bundles.

1.2.2. Assembly 4

The <cloth panels are assembled using sewing and/or fusion
techniques. After each workstation the sub—assemblies are
bundled together again before transfer to the next station.
During the assembly process; the garment sub-assemblies
progress from simple @2-dimensional panels to finish as

complex 3-dimensional structures.

An analysis of the sewing operator’s productivity showed
that on average 20% of the time was spent on sewing, and
66% was spent on work handling (bundle handle, present work

to machine, realign, remove and aside etc.) [101].



1.2.3. Finishing and Packaging

The garment is pressed, inspected, labelled and packaged.

1.3. Clothing Automation -~ State of the Art

1.3.1. Cloth Preparation

When the first automatic cutting system was developed in
1968, there was considerable scepticism as to whether the
industry would be prepared to buy such expensive machinery
which would require a radical change within clothing firms
in order to operate and maintain them [8]. Today, however,
computer-control led cutting systems  are ‘commonplace
throughout the industry, and many firms have successfully
accommodated the needs of complex computerized automation
equipment. Computerized systems are nmow available that
fully automate and link the grading, lay-planning, marking

and cutting operations [29].

Although multi-ply cutting is still the dominant cutting
method, advanced high speed single-ply cutting systems have
been developed and they are used in a few specialized

applications.

1.3.2. Assembly by Sewing

Four levels of automation can be differentiated as applied

to sewing operations [14].



1.3.2.1. Attachments

Labour saving and deskilling attachments can be split into
two categories, corresponding to the traditional ‘"sewing

versus handling" breakdown of an operator’s activities.

Sewing attachments replace or simplify sewing functions.
" Examples include needle positioning, thread cutting,
backtacking, edge quides, photo «cells for detecting
start/end of cloth, pullers, edge trimmers etc. These

devices are usually closely integrated with the sewing

machine.

Examples of bhandling attachments include stackers, ply
separation devices, feeders, parts mating devices, parts
manipulation or folding devices, etc. These "add-on"
handling attachments tend to be more complex, less flexible
and less reliable than integrated sewing attachments. This
is of course related to the difficulties 1inherent in

handling limp fabric.

1.3.2.2. Semi-Automation

The majority of "automatic sewing units" available today
fit into this. category, in which conventional sewing
machines are combined with selected sewing and peripheral
attachments to produce an "engineered work-station". Most
sewing functions and some simple handling functions are
performed automatically, but most handling activity,
including ply separation, parts mating, parts loading etc.,

are still performed by the operator.

These units are specialized to perform specific sewing



operations only and most have 1limited flexibility to
accommodate style changes. They require frequent manual
ad justments to accommodate different garment sizes and
fabric types. Examples include contour seamers, profile
stitchers, pocket setters, dart sewers, button sewers,

button-holers, trouser sergers, etc.

Some recent models are computer controlled and therefore do
offer a certain degree of programmability. Examples of
functions that can be under programmable control are seam
length,; sewing sequence with time delays, backtacking,
stitch condensation, fullness, X-Y pattern sewing, etc.
Many semi-automatic sewing machines have been developed
based on jig systems, i.e. the cloth panels are clamped in
a spécial—purpose jig and the sewing machine’s X-Y table is

driven by a contoured groove on the jig.

The Shirley Institute - measured the productivity
improvements from the use of attachments and semi-automatic

sewing units (101,

1.3.2.3. Full Operational Automation

This refers to a cell that performs all cyclic work
functions automatically,; including ply separation, parts
mating, parts feeding, parts manipulation and guidance
during the sewing and stacking of completed parts. The
operator 1is required to load the machine with a stack of
cut parts, remove completed bundles and transfer bundles

between operations.

Several ply separation devices are commercially available,
and ply separation devices have been combined with semi-

automatic sewing units to produce fully automatic sewing



units. of course these machines still have the
disadvantages of limited programmability, frequent manual

ad justments and high specialization.

1.3.2.4. Full Sequential Automation

This refers to a completely automatic sequential assembly
process in which a series of machines perform both cyclic
and non—cyclic work functions, and automatically transfer
parts from one automated operation to the next. When a mass
production system is required, the assembly line can be

based on linking "hard automation" machines and loading and

unloading devices,

In a Flexible Manufacturing System (FMS), multi-function
programmable production machines are flexibly linked and
integrated into a system, optimized for small batch
production. Robots and other programmable devices are
usually required in an FMS to obtain the desired

flexibility.

The automatic sequential assembly of cuffs and collars has
been demonstrated by several manufacturers on equipment
which 1is flexible enough to accommodate different styles
and sizes. However, flexible automation systems for larger
sub-assemblies, which are much more difficult to handle
than small stiff cuffs and collars, are not available
commercially. There are several research projects to
develop.flexible clothing auﬁomation, which are discussed

in section 1.4.



1.3.3. Other Uses of Automation in Clothing Manufacture

The traditional bundle transfer system has been replaced by
many garment manufacturers with "Unit Production GSystems”.
In these systems, all the cloth pieces that are required
for &a sub-assembly (e.g. the two panels for a trouser leg
and the waistband) are suspended on a hanger, which |is
suspended from an overhead conveyor. The hanger is directed
to the operator’s workstation, under the control of a
central computer, and the operator removes the cloth pieces
for sewing and then replaces the finished sub-assembly onto

the hanger.

The control system permits buffering of hangers and can
select different paths as the production circumstances
change. The system can track different sub-assemblies using
bar codes on the hangers and the conveyor control system

can be interfaced to an overall production control system.

In addition to reducing operator handling time, the
adoption of conveyor systems provides the facility to link
up isolated units of production, both manual and automatic,
and it is an essential feature of any FMS concept for the

sewing room.

Labour—-saving devices and attachments have been developed
for fusing and finishing operations, and some fully

automatic systems are available for packaging.

1.3.4. Summary

Integrated CAD/CAM (Computer Aided Design and
Manufacturing) systems have been introduced into the

cutting room and the design office which are comparable in



sophistication to the CAD/CAM systems in use in other
industries. The sewing room, however, has not yet benefited
from flexible automation technology and it is a generation

behind the current FMS systems in other industries.

One of the major problems that has held up the development
of flexible automation for the sewing room is the

fundamental difficulty in handling limp cloth.

1.4. Flexible Clothing Automation Developments

There are several Government and industry sponsored
programmes for research and development of flexible

clothing automation, throughout the industrialized world.

1.4.1. Japan
1.4.1.1. Automated Sewing System Project

In 1982, the Ministry of International Trade and Industry
(MITI) announced an B8-year Large-Scale Project under the
title "Automated Sewing System". The objectives of the
project, which was funded at ¥13 billion (about £40
million), were to "develop the necessary technologies for
an efficient, diversified, small quantity production
‘system“ and to produce a working pilot plant by 1989
(11,121, '

The Automated Sewing System philosophy is based on flexible
assembly of simple 2-dimensional sub-assemblies such as
collars and cuffs on a flexible production line, followed

by 3-dimensional assembly of all the cloth pieces on a



dummy. This approach minimizes the amount of 3-D fabric
handling but it relies on some form of temporary fabric

stiffening and pre-assembly adhesion.

The project was divided into 4 sections;

a) Sewing preparation — covers all operations from design
through to cutting. Research 1is being undertaken +to
investigate fabric characteristics, temporary stiffening of

the fabric, temporary adhesion of parts before sewing.

b) Sewing and Assembly - covers the development of sewing
" technology such as 3-dimensicnal sewing using a small
sewing machine on the end of a robot arm, and a multi-
functional sewing unit which has different sewing heads on

a rotating turret, and attachments stored on a magazine. "

c) Material Handling - covers the development of
techniques for picking ups, mating and transferring fabric

pieces. Devices are to be developed for dressing and

undressing the dummies.

d) Production control - covers the production control

system, related integration systems and automatic

recognition of cut pieces.

Although the outline and scope of the project has been
reported as described above, no detailed descriptions or
technical progress reports have been released, so far,.

1.4.1.2. Other Research Projects

In addition to the officially sponsored R & D programme,

several Japanese companies are carrying out in-house



10

projects aimed at. near—term commercial exploitation.
Mitsubishi have demonstrated an automated production line
for manufacturing two sides of a travel bag based on jigs
{31, and Brother have developed a robotic cell for the

assembly of shirt cuffs,.

Innovative non—automation production methods have been
developed by Toyota. The Toyota Sewing System comprises a
line of sewing machines which can be operated in a standing
position; each operator controls four to six machines. The
system provides flexibility using a combination of group-

working practices, manual skills and careful line-planning
c121.

1.4.2. U.S.A.
1.4.2.1. The (TC)?2 Project

The (TC)2 corporation was set up in 1979 by a consortium
of American firms in conjunction with the US government to
develop automation for the apparel industry [17,19]1. Their
first step was to sponsor a study to determine the R & D
‘requirements of the industry. Fabric handling was
jdentified as the category of'operations that most urgently
required automating. Instead of sponsoring generic research
on clothing automation, they decided to take the
manufacture of a specific sub-assembly (the sleeve of a

man’s coat) and automate it.

In 1981, the Draper Laboratories was selected for carrying
out the initial R & D; Funding, which was gradually
increased, stood at $7.7 million per year in 1986. A
prototype machine was completed in 1985 which consisted of

the following modular units :



11

* an automatic loader

* a viewing table and vision system for recognizing
parts

*# a robot and end-effector which can fold and align the
edges

* a transfer door that transfers the parts to the sewing
station

¥ a sewing unit.

An end-effector was developed for a SCARA type robot, which
can pick up a single ply, fold and unfold it and orientate
it. The end-effector, which comprises three jointed
sections, has a degree of programmable configurability. The
robot in conjunction with an overhead camera constitutes a

fabriec handling module.

Two distinct approaches were considered for transporting
the fabric during sewing, either a foam backed presser foot
or a series of foam backed belts. The presser foot idea was
rejected because a different presser foot would be required
for each garment size. In the belt system the fabric is
held over most of its surface transforming the fabric piece

into a rigid object.

In the sewing unit, the fabric is controlled by two upper
belt systems, one before and one after the sewing head. The
two belt systems are arranged in an interlocking manner
which permits the sewing head to move perpendicular to the
direction of sewing. Contoured sewing 1is achieved by"
generating sewing head position data from a video scan of

the fabric piece taken before it enters the sewing unit,.

The sewing head’s conventional intermittent feed mechanism

was replaced with a continuously moving belt top feed



12

system. Fabric fullness was achieved by placing an
additional series of belts below the fabric just before the

sewing head, so that the two plies could be moved at

different speeds.

In 1985 the Draper technology was transferred to the Singer
Sewing Company{i’commercial explaoitation. After a
preliminary evaluation, they decided to develop a transfer
line production system with multiple handling and sewing
modules permitting sequential flow down the 1line. The
Draper prototype machine, which had only one sewing and one

handling module, had a much lower throughput due to the
back and forth flow pattern.

1.4.2.2. The Singer Sewing Corp.

Independent of the (TC)2 project, Singer have developed
three ranges of robotic systems for sewing applications.
The 100 and 200 MARS robotic systems comprise a four-axis
electrically driven gantry robot which can perform fabric
pick~up, parts mating and fabric transport during sewing.
The 400 MARS robot series are two to five-axis articulated
pick and place robots. Singer have provided robotic sewing

systems for the manufacture of car seat coverings.

An insight into the Singer approach to the development of
flexible clothing automation was given by Lower [(B]. Some
of the teéhnological breakthroughs that He listed as
necessary for flexible garment assembly systems were :-
% Four-axis robots with ability to sew intricately
curved seams and ability to pivot smoothly in needle-
down position.

# Reliable pick-up and transport end-effectors.



13

* Accurate stacking systems.

* Prepositioning and orientation systems.
* Preshaping devices for parts mating.

* Sensors for positioning and pick up.

* Vision systems for locating features on cloth panels.

1.4.2.3. Clemson University

Torgerson and Paul reported the development of a vision
guidance system for a robot manipulating a fabric panel
under a simulated sewing needle, that produced a simulated
edge seam [465]. In their experiment, a static overhead
camera viewed the panel, which was stationary on a table,
and the shape of the panel was extracted from the image
using a vision processing algorithm. There was no vision

feedback during the simulated sewing operation.

The geometry of a seam around the edge of the panel and
12 mm parallel to the edge, 'was calculated and a robot
trajectory was generated in which the robot, a PUMA 5&0,
moved the panel under a simulated sewing needle. The
computed robot motion sequence also rotated the panel about
the simulated needle at the end of each seam segment, so
that the seam followed the circumference of the panel. The
sewing machine was sileated by a pointer which traced out
a simulated seam on the panel. The test fabric was heavy
denim, which 1is one of the stiffest fabrics wused in

garments.

The experiment was performed to determine the accuracy of
the vision gquided trajectory of +the robot, but the
interactions between limp cloth, the sewing machine and the
raobot during sewing were not investigated. Average

deviations of 3 to S mm were measured between actual and



14

intended seam traces,; and Torgerson and Paul attributed
these large errors to insufficient resolution in the vision
system. However, our experience gained during the research
project described 1in this thesis suggests that the poor
accuracy of the PUMA S60 robot is more likely to be the

main reason for the large deviations (section 2.4.2.).

An end-effector with four extendable fingers was developed,
and the finger configuration could bé varied under program
control. An algorithm was developed to locate the four
fingers and orientate the end-effector optimally over the

fabric panel, for any panel shape.

At the end of their paper, Torgerson and Paul recommended
further work to investigate the interactions of actual
sewing on limp fabric, and to inéegrate additional vision

and force sensors into the system.

1.4.3. Europe

1.4.3.1. The BRITE Project

The European Commission launched the BRITE project in 1985
to promote "pre-competitive technological R & D, including
pilot and demonstration projects in new production
technologies suitable for products made from flexible
materials". In the first three-year phase, 13 projects have
been approved which cover the whole spectrum of clothing

production.

1.4.3.2. Non-BRITE Research

No details have been published of German clothing



15

automation research although several projects are underway.
Semi-automated machinery has been developed by CETIH in

collaboration with French shirt manufacturers.

Nilsson, in Sweden, has described in detail a concept for a
fully integrated system for manufacturing garments, however
no experimental results have been reported, as yet [1&6].
Nilsson acknowledges that manual assembly of complex three
dimensional sub-assemblies will be essential for the
foreseeable future, and therefore his production concept
incorporates both automated and manual stations linked

together within a single CIM environment.

1.4.3.3. UK Research

Hull University have developed a ply separation device and
vision systems for parts recognition and for alignment, and
they have demonstrated a robot-based transfer 1line for

partial assembly of men’s underwear,

Durham University have developed dedicated devices for ply

separation and alignment, and they have developed a

transfer line for partial assembly of underwear.

Courtaulds Clothing Ltd. have developed a system in which a
robot feeding fabric to a sewing machine with
synchronization of robot and feed speed, although it has

not been demonstrated publicly.



16

1.5. Comparison of Flexible Clothing Automation Approaches

1.5.1. Introduction

Almost all flexible automation systems include a robot, but
the role of the robot in the cell can vary considerably
between systems. The robot might have a simple supporting
role, e.g. 1loading a machine tool, or the robot may have
the central role in the performance of the manufacturing
operations e.g. a robotic sheep shearing cell [131. When
the robot is required to perform the central function of
the cell, the performance of the manufacturing process is
limited by the control capabilify of the robot. Robot
control systems are usually categorized into five groups

(281, as follows :-

Sequence Control - a sequence of robot motions is
determined by mechanical or electrical hardware. The

sequence can be reprogrammed by manual adjustments.

Playback Control - an operator guides the robot to a
location and the coordinate information is recorded (i.e.

on—-line programming). When required, the robot can move to

the taught location.

Numerical Control - locations can be computed in terms of a
coordinate system relative to a frame of reference and the
robot can be directed to those 1locations (off—li%e
programming). Straight line motions and other motions with
a definmed continuous path can be performed by computing
intermediate locations between the start and end points

using interpolation schemes,



17

Adaptive Control - an adaptive robot uses sensory feedback
to perform a task in which the desired robot trajectory is
not known accurately in advance. For example, some robotic
welding systems incorporate a vision system to measure the
workpiece geometry ahead of the welding tool, so that the
robot’s trajectory can be calculated in real time. Thus,
different workpieces can be welded without requiring
accurate programming of the workpiece’s profile or accurate
jigging to hold the workpieces and the welding system can
accommodate deformation of the workpiece duriﬁg the weld.
This sensor-based real time robot path control is often

referred to as “"sensory servoing".

Intelligent Control - an intelligent robot can decide how
it 1is going to perform a task, using a world model (which
represents the environment, the robot and the task), a

knowledge base and an expert system for reasoning and

decision making.

1.5.2. (TC)Y? Approach

Ip the (TC)? project the robot had a numerical control
capability. The overhead camera and associated vision

processing hardware and software 1located the initial
position of the cloth panel, but during the subsequent

handling operation, the robot trajectory was predetermined

and there was no real time sensory feedback [&43.

The role of the robot was restricted to performing handling

operations only, and the sewing operations were performed

by the sewing unit. The sewing unit was a programmable

device with two degrees of freedom, belt motion and sewing

head motion. However, this modular concept, in which the

handling and sewing functions were performed by separate



18

devices, limits the flexibility of the system. Some
handling operations require intimate co-operation between
the handling robot and the sewing machine, e.g. rotating

the cloth about the needle between seams.

The sewing unit had only a numerical control capability.
The motion of the belts and of ¢the sewing head was
predetermined by the visual measurements of the panel’s
initial orientation and position prior to the sewing
operation. Consequently, the accuracy of the sewing process
is dependent on the ability of the belt system to hold the
cloth rigid; " throughout the operation. In practise,
however, many fabric materials will buckle or slip during
the process in an unpredictable manner, and the sewing unit
has no means to detect or correct this. Our experience
suggests that the buckling tendency would be worse when
sewing along intricately curved contours, due to the shear
forces on the cloth created by the perpendicular motions of

the belts and the sewing head (section S5.4.4).

1.5.3. The Clemson Approach

In the Clemson project, the robot had a numerical control
capability and the robot manipulated the cloth during both
sewing and handling operations., The vision system provided
the 1initial position and orientation of the cloth panel
only, and no real time sensory feedback was provided. The
(TC)2 attempts to solve the problem of slipping and
buckling of the cloth by rigidly holding the cloth with a
system of belts. The Clemson approach relies on the
stiffness of the heavy denim fabric and the multi-fingered
support. Torgerson and Paul acknowledged that sensory
feedback would be required if flexible fabrics were to be

sewn by a real sewing machine.



19

1.5.4. The Adaptive Robot Approach

A more ambitious approach to the flexible automation of
garment assembly operations, 1is to develop a robot with an
adaptive control capability, which can perform the
operations based on real time sensory feedback. If the
adaptive robot can detect slipping and buckling of the
cloth during sewing operations and correct its trajectory
accordingly, .tHen neither belts nar any other restraining
devices would be necessary to control the unstable cloth.
Consequently, the same robot could perforé both sewing and

handling operations,; and the flexibility of the system

could be maximized.

In the adaptive robot approach adopted in this project, the
robot was given the central role of performing all sewing
and handling operations in conjunction with a conventional
sewing machine. The limp nature of fabric was accommodated
bY the real time control of the robot trajectory, derived
from sensory measurements taken during the sewing or

handling operation.

No hard automation attachments or devices were fitted to
the sewing machine which might limit the flexibility of the

system, e.g9. a cheap edge guide can de-skill production of
edge seams,; but the attachment would have to be removed

before the same machine could be used to sew on a pocket.

The adaptive robot approach is analogous to employing a
skilled operator on a basic sewing machine, in place of a
semi-skilled operator on a semi-automatic machine. The
former is more expensive but can perform a greater range of
operations on a greater range of materials. By developing

the robot’s skills and by keeping the sewing machine



20

simple, a single flexible automation cell should be able to
»perform the same functions that are currently performed by

a wide range of different types of semi-automatic sewing

stations.

1.5.5. The Intelligent Robot Approach

The robot sewing and haﬁdling skills were provided by its

adaptive control capability. An intelligent control
capability is also required, if the flexible sewing cell is
to adapt itself automatically between batches. Without this
reasoning ability, the cell would require extensive
reprogramming and testing for each product, which may
differ from previous products in its material, shape, size

or sequence of operations.

The requirement for an intelligent capability 1is further

discussed in section 7.2.4.

1.6. Clothing Automation Research at Leeds University

The Depértment of Textile Industries at the University of
Leeds has been researching into clothing automation since
1982. In addition to the development of actual devices and
techniques for «clothing automation, research has been
aimed at wunderstanding and analysing the fundamental

problems involved in handling limp fabric.

A ply separation device was developed which can pick up a
single ply of fabric from a stack, with wvery high

reliability. The device is flexible in terms of shape, size



21

and fabric. A vision system was developed which, when used
wiltl

in conjunction either a robot or a dedicated device, can

align a cloth panel of any shape or size. A technique for

accurately placing one ply on top of another 1is under

development.

The development of a flexible sewing station, based on the
adaptive approach described in section 1.5.4, 1is described
in the subsequent chapters. Although several <clothing
automation projects based on adaptive robotics maybe
underway elsewhere, this project appears to be the first to

be reported in a refereed publication (661 (see

Appendix I).



ee

o v/ | E ‘\_E.EDS
\ L \ ‘_:-}n“’m___,mr
CHAPTER @
FIGARO - A ROBOTIC SEWING DEVELOPMENT SYSTEM
2.1. Overview
A robotic sewing system, referred to by the acronym -

FIGARO (Flexible Intelligent Garment Assembly RObot), was
developed which comprised a hierarchy of controllers, a
robot and a sewing machine. The system was used to
investigate robotic sewing and handling techniques in

accordance with the flexible automation approach outlined

in section 1.5.4,.

Fig. 2-1: General View of FIGARO System



23

Fig. 2-2: Edge Seaming Operation

A robotic sewing technique was developed, which could

produce either a straight seam or a seam parallel to the
edge of a cloth panel of arbitrary contour. The sewing

technique was based on real time multi-sensory servo

control of the robot during the sewing operation. The edge

seaming technique involved the following stages :-

a) The robot sets up the cloth panel by sliding it into
position, with the sewing machine’s needle at the

beginning of the seam.

b) The robot repositions its fingers, so that they hold

the far end of the cloth panel against the sewing

table.



24

c) The sewing machine is started, and the robot controls
the cloth panel throughout the sewing operation. The
robot motion 1is determined in real time by two
superimposed servo control systems, a tension contraol

system and a seam width control system :-

(1) The tension control system ensures that the robot
moves forward with the cloth and maintains a
small cloth tension throughout the sewing

operation.

(11) The seam width control system ensures that the
robot rotates the cloth panel about the sewing
needle in order to track the edge contour and

produce a seam parallel to the edge.

) When the end of the seam is detected, the sewing

machine is stopped.

The straight seaming technique was identical to the edge

seaming method but without the seam width control system.

This chapter describes the primary functional units of the
FIGARO system, their interfaces and the hierarchical
control concept which was implemented. The development of a
real time path control capability, on which the cloth
tension and seam width control systems were based, is
described in Chapter 3. The development of the cloth

tension and seam width control systems are described

in
Chapters 4 and S respectively. The techniques that were
developed to set up the cloth panel for the sewing

operation, and the development of additional cloth handling

techniques are described in Chapter 6.



23

2.2. Hierarchical Control Structure

A hierarchical control structure (fig. 2-3) was chosen to
provide an adaptive robot control <capability (section
1.5.4). Many development and commercial adaptive robot
systems have been based on similar hierarchical control
structures [29,30,31,32] rather thanm on a control structure

in which the robot controller controls the entire station.

Station Controller

Sensory Robot Sewing
Systems Controller Machine
Binary Sensors Robot End-Effector

Fig. 2-3: FIGARO Hierarchical Control Structure



26

In the hierarchical concept, the station controller has
equal access to all the major sensors and actuators, and

the robot sub-system is regarded as one of the station’s

actuators. This approach encourages modularity during
development of the sub-systems, and facilitates the
integration of several complex sub-systems, e.g. more than
one robot, vision systems, DNC machines etc. The

hierarchy can be readily extended upwards by putting
several station controllers under a cell controller (i.e.
an FMS cell),; which in turn could be controlled by a
process controller within a CIM (Computer Integrated

Manufacturing) scheme [33,34].

In the FIGARO system, the station controller accepts
sensory data in real time, computes a robot trajectory and
transmits the robot coordinates to the robot controller.
The station controller also coordinates robot motions in
conjunction with the sewing machine. The robot controller
converts the robot coordinates into joint angles and

directs the robot along the required path.

For convenience, some of the simple binary sensors (e.qg.
photo cells, microswitches) and actuators (e.g. pneumatic
cylinders) which were integrated into the end effector,
were interfaced to the robot controller. All other

actuators and sensors were directly interfaced to the

station controller.

Two communication channels were developed between the
station controller and the robot controller, the GPC
channel for General Purpose Communications and the ALTER
channel, which was dedicated to the high speed transfer of

real time robot trajectory data.



27

2.3. Station Controller

2.3.1. Hardware

The IBM AT microcomputer, which was selected for the
station controller, is a general purpose microcomputer
with a 1large variety of software development tools and
hardware options available. Furthermore, IBM have published
coﬁprehensive technical manuals for the AT and for 1its
operating system, which facilitate the development and

integration of non-proprietary software and hardware.
FIGARO’s IBM AT had the following features :-—

* Intel B80286 16-bit microprocessor operating at 6MHz

* Intel B0287 math coprocessor

* S512KB of RAM

* &b spare expansion slots for customized adapters

¥ 20MB fixed disk drive

* 16 levels of system interrupt

¥ 7 channels for direct memory access (DMA)

¥ 3 programmable timers

¥ real time clock

2.3.2. Software
2.3.2.1. Requirement for Multi-Tasking

The IBM AT was required to perform the following

processes :-—

¥ ALTER communications management (section 3.3)

* GPC management (section 2.6.2)



28

* Read sensors and calculate robot trajectory (section
4.4.1)

¥ Control sequence of sewing and handling operations

* User/supervisor interface (section 6.1.1)

* Decision making processes (section 6.3.3)

¥ Display runtime messages on the screen

* Print out performance and debugging data

These processes were executed in real time and required
concurrent execution, therefore a multi—-tasking environment

was necessary.

2.3.2.2. AMX—-86 Multi-Tasking Executive

The AMX-86 multitasking executive [37], on which the FIGARO
software was based, provides software facilities which are
required in complex real time applications. The AMX-86 is a
program which can schedule the pseudo-concurrent execution
of application Tasks on a single microprocessor. Additional
considerations in selecting the AMX-86 system were that its
compatibility with the IBM AT, and C language interface,
permit the development of real time software with a high
level language. The operation of an AMX-based system |is

described in fig. 2-4.

2.3.2.3. Tasks

In a multi-tasking system, the software is split up into
independent application modules called Tasks. Each Task is
treated as a separate program, executing independently of
other Tasks. A major distinction between multi-tasking and
single—tasking systems 1is the way in which a Task is

called. MWhen a Task is called, a request is passed to the



29

scheduler which will eventually execute the Task in
conjunction with other real time demands on the processor,
according to a priority scheme. The caller is not suspended
after making a call, but may continue irrespective of the
status of the called Task. Pending calls to a Task can be

queued and given different priorities.

( START )

USER'S RESTART
PROCEDURES

Suspend Task AX-86 TASK Suspend Task
SCHEDULER

USER'S TASK D

USER'S TASK B I

USER'S TASK A

ANX-86 SERVICE
PROCEDURES

NO DEVICE 3

[ oeace 2
AMX-86 INTERRUPT DEVICE 1
\es SUPERVISOR USER'S ISP

Fig. 2-4: AMX-B& Multi-Tasking Executive




30

Each Task should perform a clearly defined function, and
the 1logical breakdown of a complex real time problem into

independent Tasks is a crucial step in the development of

real time software.

A Task can be initiated in one of several ways :-
¥ It can be started immediately after AMX has completed
its initialisation phase by a Restart Procedure.
¥ It can be started after a time interval has elapsed,
by a Timer.
* It can be started by a software or hardware interrupt,
by an Interrupt Service Procedure, or ISP.

¥ It can be started by another Task.

Parameters can be passed to a Task from the caller, e.g.
the PRNT Task, which displays or prints out messages, is

passed a pointer to a message string when it is called.

Concurrent execution of Tasks can be controlled and
synchronized through various wake/wait facilities. A Task
can suspend itself unconditionally until a Task, Timer or

an ISP awakes it, or the "wait" can be conditional on the
execution of a called Task, or a timeout limitation can be

specified.

Definitions of and relationships between Tasks concerned
with FIGARO’s adaptive capability are described in section
3.3. The software organisation for the overall system 1is

described in section 6.1.1.

2.3.2.4. Scheduling and Priorities

The main function performed by the AMX system is the

scheduling of the processor resources between Tasks, ISP’s,



31

Timers, etc. At any given time a number of Tasks may be
"active", i.e. waiting for access to the processor, but

only one can have access at a time.

Each Task 1s agiven a Task number which determines its
priority, and the scheduler selects the active Task with
the highest priority. Only when that Task has become
inactive (i.e. either it has terminated or entered a

"wait" state), can the next highest active Task be given

access to the processor.

Since a Task which receives parameters can be called
several times with different parameters, AMX provides a
queueing facility to take care of pending calls to a Task,
(e.g. several different messages can be queued to the PRNT
Task for printing). Calls to a Task can be given different
priority so that, for example, an error message can be

given priority over a status message.

2.3.2.5. ISP’s and Timers

Immediate response to an external event can be generated
through an Interrupt Service Procedure (ISP). When the
processor 1is interrupted by a hardware interrupt, further
interrupts are temporarily disabled and then the AMX
Interrupt Supervisor directs control to the appropriate
user—-defined ISP. An ISP should be a short routine that
services the 1interrupt quickly, so that the disabled

interrupts may be re-enabled as soon as possible.

For example, the communication ISP, COMISP (section 3.3.2),
is invoked when the serial port receives a byte. This
interrupt is serviced by reading the byte from the port and

putting it onto a circular list. If necessary, it awakes



32

the Task that is waiting for the byte, before returning

control to the AMX Interrupt Supervisor.

Timers are user—-written procedures which are executed at

specified time intervals after they were called.

2.3.2.6. Resource Management

The AMX Resource Manager provides circular lists, buffer
pools and other facilities for the orderly wuse of the
computer’s resources by concurrent Tasks. Data can be added
to or removed from circular lists without any possible
collision between Tasks (i.e. the ’mutual exclusion
problem’ is circumvented by restricting access to «critical

processes [701).

2.3.2.7. AMX Configuration Module

To use AMX, a configuration module has to be written, which
specifies the names of the Tasks, Restart Procedures and
Timers in order of priority; the queue lengths required for
each Task; and the storage requirements for stacks, heaps

and buffers, etc. A Configuration Builder facility assists

in the construction of this module.

2.3.2.8. Languages

The majority of the modules were written in the c
programming language, except for some of the communication
procedures and the configuration module, which were written
in 80846 Assembler. Full listings of all the software

modules are given in Appendices A,B,C,D and E.



2.4. PUMA 5560 Robot

The PUMA 560 industrial robot was selected because of 1its
advanced VAL II control and programming system; the ALTER
function facilitates the development of an adaptive robot
capability. In addition, the PUMA 5460 has been used
extensively in research and development and its performance

and characteristics have been widely reported [35,36].

WAIST INNER LINK
(JOINT 1) (UPPER ARM)
@ SHOULDER
! l (JOINT 2)
ELBOW
/@ (JOINT 3)

SHOULDER

OUTER [Nk
WRIST
(JOINT 5)
~
.
> WRIST FLANGE
@ (JOINT g)
WRIST

(JOINT 4)

Fig. 2-5: The PUMA 5460 Robot




34

2.4.1. Mechanical Specification

The PUMA 560 is a six—-degree-of-freedom, general-purpose,

assembly robot with six revolute axes. The configuration,

size and proportion of the robot’s limbs are imitative of
the human arm and torso. The robot has a spherical working
volume with a 0.92 m radius, and can carry a maximum load
of 2.3 kg including the end-effector. The limbs and joints
of the PUMA 560 are named in fig. 2-95.

An anthropomorphic six—axis robot, 1like the PUMA 540, can
reach most points in its workspace by assuming one of eight

possible spatial configurations, as follows :

- either RIGHTY or LEFTY, i.e. the first three joints

resemble a human’s right or left arm

- either ABOVE or BELOW, i.e. the robot’s elbow

points up or down

— either FLIP or NOFLIP, i.e. the wrist (joint 95)

works in negative or positive angles.

With the maximum load, the maximum acceleration of the end-

effector is 1 g, the maximum velocity is 1 m/s and the

maximum straight—line velocity is 0.5 m/s.

The robot has good repeatability (*0.1 mm) which is
dependent on potentiometer resolution, arm stiffness,

backlash and servo deadband. This is the relevant precision
specification when the robot is programmed using taught
locations only ("on—line programming"). However, when the
robot is programmed using computed locations ("off-line
programming"), then the robot’s absolute accuracy 1is

significant. In the FIGARO application, the majority of



35

robot motions 1involved computed locations rather than

taught locations, therefore good absolute accuracy was

necessary.

However, the PUMA 560 does not have good absolute accuracy,
in common with many other industrial robots, since they
were originally intended for on-line programming only.
Absolute accuracy is dependent on the accuracy of a matrix
transformation which converts a location’s coordinates into
joint angles. Furthermore, this transformation calculation
is sensitive to accumulated round-off errors and to
differences between the mathematical model of the robot’s
geometry and the robot’s actual geometry (due to
manufacturing tolerances and distortion of the robot’s

structure).

2.4.2. Calibration

The robot was calibrated 1in accordance with the
manufacturer’s instructions wusing the VE2POTS5X0.1 program
supplied with the robot (section 8.6 of reference (201).
The manual defines two reference positions for the robot
arms the "READY" and "POTCAL" positions, which are used in

the calibration procedure. A careful check showed that the

manufacturer’s alignment marks had been placed inaccurately

on the robot arm.

However even after redrawing the READY and POTCAL
alignment marks, and after a further calibration, the
absolute accuracy was +4 mm in the X, VY and 2 directions
(i.e. 7 mm RMS), and +0.2° for rotations about the Z axis.
This was measured by programming the robot to move to a

location at a specific linear or angular offset to the

original location. The robot’s accuracy deteriorates even



36

further towards the inner and outer limits of its working

envelope.

The absolute accuracy of the PUMA 560 is investigated more
fully in reference [22], which describes a different method
for measuring robot accuracy, where the robot is positioned
at an arbitrary location with a RIGHTY configuration. The
robot’s configuration 1is then changed to LEFTY and the
robot 1s commanded to move to the same location. This
is a particularly stringent test which exaggerates any
inaccuracies in the robot system. El-Zorkany [22] reported
an RMS error of 16 mm and 1.6° with this test method and
the FIGARO robot showed an RMS error of 25 mm.

2.4.3. Electrical Specification

The PUMA 560 robot was supplied together with a system
cabinet which provided all the necessary power and control
facilities, a VDU terminal with an integral floppy-disk

drive, and a manual control unit.

The system cabinet comprises :

* A power tray which provides filtered power supplies.

¥ A control module which comprises a DEC LSI-11/73
computer, 128 KB non—-volatile memory , serial
interfaces for peripherals and communications, a

digital servo system for each axis, and all the

necessary signal interfaces between processors and

motors.

* A switch panel which houses the main operator

switches.



37

* An I/0 module which contains 40 solid-state relays for

binary input/output control signals.

* A power amp module which contain a servo amplifier

with monitoring circuitry for each motor.

2.4.4. Robot Control Design

Each axis 1is driven by a permanent-magnet dc servomotor,
and a potentiometer and an incremental encoder are mounted
onto each servomotor. The potentiometer provides an
absolute position signal and the encoder provides both
relative position and velocity signals. Each servomotor is
controlled by a digital servo system, based on the 6502
microprocessor,; and an analog servo amplifier, using.a PID

(proportional integral and derivative) control scheme with

current feedback [211].

In the PUMA control system, each axis 1is controlled
independently of the other axes, so that coupling effects
between joints and the gravity and 1load effects are
ignored. Although some wobble and other dynamic errors are
noticeable, the PUMA has satisfactory control, but at the
expense of relatively slow speed due to an overdamped
system. More sophisticated control methods have been
suggested that would account for coupling inertia,
friction, gravity and loading effects, and would result in
reduced structural stiffness requirements, smaller motors,
lower energy inputs and faster speed, as well as improved

dynamic control [23,24,25,26,271].



38

2.5. VAL II Robot Control and Programming System

VAL II is one of the most advanced robot programming
langquages commercially available today (39]. The 1language
has PASCAL-style control structures, manipulation of
location transformations, editing and debugging facilities,
interrupt handling with priority scheduling, several robot
motion control modes, communications support on different
levels and &a wide range of functions and operators, in
addition to the ALTER facility which permits real time

trajectory control by an external computer (381.

2.9.1. Robot Motion Control Modes

When the VAL Il system processes a robot motion command, an
interpolation function is used to automatically generate a
series of intermediate locations between specified initial
and final locations (4351. This method ensures that the
joints move in a coordinated, predictable fashion between
the two locations. The programmer may select between two

interpolation schemes, as follows :-

- joint interpolated motions are generated by interpolating
the joint positions from their initial values to their
desired final values so that all the joints complete their

motions simultaneously.

~ straight-line interpolated motions are generated by
interpolating the cartesian tip location and computing the
joint positions necessary to move the robot tool tip along
a straight 1line. The maximum speed for straight line
motions is only half that of joint interpolated motions.

VAL Il includes a continuous path feature, which can



39

control the tranmsition between successive motion segments
in a sequence to produce a smoothy, continuous motion.
VAL II ensures that there 1is smooth acceleration and

deceleration for each motion sequence.

vaL I1 also permits the user to program the robot to move
along a mathematically defined trajectory. In these
procedural motions, the robot motion is executed in
parallel with a VAL II program loop in which the robot
tfajectory is computed in small increments. The transitions
between computed motion segments are automatically smoothed

by the continuous path feature.

In addition to the programmed rvobot motions described
above, VAL Il permits real time path control with the ALTER
facility. The ALTER facility is described in the next

chapter.

2.5.2. Motion Control Parameters

Robot motion along a programmed trajectory can be further

specified by the following parameters:

SPEED ~ tool speeds can be specified either in mm/sec or in

terms of a percentage of a maximum speed.

COARSE/FINE - this parameter specifies a low or high
tolerance position requirement for the hardware position

sServos.

NONULL/NULL - final position checking of all the joints can
be avoided between consecutive motion segments, if high

speed and low accuracy are required.



40

INTOFF/INTON - the position-error integration feature of
the PID control of the servomotors can be switched off, if
a steady-state position error is expected, (e.g. if the

robot is exerting a force on an object).

2.5.3., Location Transformations

The position and orientation of the robot tool is
internally represented in VAL I1I by homogeneous
transformations. Paul [23] gives a complete description of
the theory . of homogeneous transformations and their
application to robotic control. In VAL 11, location
transformations can be translated, rotated or compounded.
Using compound transformations, locations can be related to

different frames of reference.

In VAL II, TOOL and BASE transformations can be specified
which rotate and offset the TOOL and WORLD coordinate
reference frames. The TOOL transformation, which relates
the tiﬁ of the tool to the end of the robot, 1is used to
accommodate different end-effectors. The WORLD
transformation can compensate for the movement of the robot

base relative to other fixed objects.

Thusy if the location transformation of an object is known
relative to the robot tool, then its transformation with

respect to the reference coordinate frame is given by :-

OBJECT = BASE : Té : TOOL : OFFSET

where OBJECT is the object location w.r.t. WORLD frame
OFFSET is the object location w.r.t. TOOL frame
T6 is the compound transformation,

Al:A2:A3:A4:AS: A6,



41

for the robot’s six links, which relates the

tool to the base.

The WORLD and TOOL coordinate systems for the PUMA robot
are shown in fig. 2-6 for the default values of BASE and
TOOL.

MOUNTING FLANGE
End View (Tool Mode)

Fig. 2-6: WORLD and TOOL Coordinate Systems




42

2.6. General Purpose Communication (GPC) Channel

A general purpose communications channel was required
between the station controller and the robot controller, in
order to permit initialization, control, synchronization,

parameter transfers, monitoring and error recovery.

2.6.1. VAL 11 Supervisory Communications Facility

vAaL I1 provides extensive facilities for communications
with a supervisory computer. The supervisory computer can
monitor the VAL II system status, and perform all the 1/0
(input/output) that 1is normally performed by the VAL II
terminal and disk drive. By implementing the supervisory
communication channel, the terminal and disk drive can be
discarded, and the robot controller remotely operated via a
LAN (Local Area Network) by other controllers in the
factory.

2.6.2. FIGARO GPC Design

Although, the VAL Il supervisory communications facility
provides all the functions that would be required by a
commercial pfoduction system, it was unsuitable for
research purposes. The protocol was complex and rigorous,
the majority of its features were not necessary in the
laboratory set-up and, furthermore the protocol used up

considerable processor time and memory storage.

Therefore a communication channel was developed which



43

provided the specific facilities required by the FIGARO
system, with minimum processor overheads. In the FIGARO
arrangement, the VAL II terminal was not replaced by the
communication 1link, so that VAL II programs could be

developed independently of the rest of the system.

The GPC channel consisted of 20 parallel uni-directional
lines between the VAL II binary 1/0 signals and a 8253 PIO
(programmable 1/0 controller) chip on a prototype card in
the IBM AT bus. In each direction, 8 lines were used as a
data bus (or buffer) and 2 lines were used as handshaking
signals. One signal was a "Buffer Full" signal from the
Sender to the Receiver, and the second was an "Acknowledge

Strobe" signal from the Receiver back to the Sender.

2.6.3. FIGARO GPC Protocol

The handshaking protocol implemented in the GPC 1link |is
shown 1in .table 2-1. The protocol was based on the timing
diagram for the 8255 PIO (programmable 1/0) device (461,
which was configured for Mode 2 Operation (viz. Strobed Bi-
directional Bus 1/0). Thus, the operation of the
handshaking signals was performed automatically by the 82353
PIO chip at the IBM AT end.

The 8255 PI0O chip was connected to the IRQ3 and IRQS
interrupt lines respectively and the IBM AT software
implementation of the protocol was interrupt-drfven so that

low priority tasks were not "locked out" during GPC delays.

The software rvoutines and the circuit diagrams developed
for the GPC channel are given in Appendix C. The use of the

GPC facility is further discussed in Chapter 6.



44

Seq SENDER RECEIVER

1 Put data byte on bus

2 Set Buffer Full Signal

3 Detect Buffer Full Signal
4 Read data byte

S Toggle Acknowledge Strobe
6 Buffer Full Signal off

Table 2-1: GPC Handshaking Protocol

2.7. Sewing Machine

" The Mitsubishi LS2-190 lockstitch sewing machine was

selected for the FIGARO development system. The machine
has a conventional drop feed mechanism in which a presser
foot holds the cloth against a pair of toothed dogs. The
dogs pull the cloth forward intermittently in
synchronization with the needle motion, so that the cloth

js stationary while the needle is in the cloth.

The machine was fitted with the LIMI-STOP 2 variable speed,
needle-positioning clutch motors; which was controlled by
the LE-MF microprocessor-based control unit. The LE-MF unit
has %wo optional connector sockets, that facilitate
interfacing the unit to an external computer, and it
measures needle position and sewing speed with an optical

shaft encoder mounted on the sewing head shaft.



435

The machine was fitted with an automatic presser foot
lifter and an underbed thread trimmer which can be remotely
operated to cut the sewing thread after a seam has been
sewn. The machine’s maximum sewing speed was 5000 rpm, and

the maximum stitch length was 4 mm.

The IBM AT was interfaced to the sewing machine so that the

following functions could be coﬁ?rolled from the station

controller :-—

* start and stop sewing
* vary sewing speed

* backtacking (i.e. sewing backwards)

* lift presser foot

* trim sewing thread

* stop machine with needle‘up or down
»* bring needle up

The IBM AT/sewing machine interface is described in detail

in Appendix H.

2.8. Work Station Design

At the start of the FIGARD development, the work station

consisted of the robot, an end-effector, the sewing machine

and a sewing table. Additional features, ' that were

incorporated when the need arose, are described in later

chapters.



46

2.8.1. Sewing Table

The sewing machine was mounted on a large table, 180 mm by
800 mm, with the needle located 330 mm from the end. The.
table’s dimensions were seleéted so that there would be
sufficient room to manipulate large «cloth panels (e.qg.

trouser legs) for the sewing and handling, operations.

The sewing table required both a smooth surfacey; so that
cloth panels could be slid into position without buckling,
and a reflective surface, so that the edge of the <cloth
panel could be easily detected by photocells and CCD
cameras. Cénsequently, the sewing table was covered with a
thin sheet of highly polished stainless steel, which
provided an excellent reflective surface and a relatively

low table—to-cloth friction.

However, the table friction proved sensitive to dust, and
to combat this, the table surface required periodic
cleaning. The table friction would be further reduced by
incorporating a flotation system in the sewing table, which
would also reduce its sensitivity to dust. Flotation, in
which compressed air is expelled via small nozzles drilled
in the table surface, is often employed in automatic sewing

stations.

The end-effectof was designed to perform sewing and
handling operations on cloth panels with the simplest
possible configuration and minimum interference with the
sewing operation, in order to retain maximum system
flexibility (section 1.5.4). The first prototype of the

end-effector is shown in fig. 2-=7. The second prototype is

described in section 6.2.



47

Fig. 2-7: FIGARO End-Effector - First Prototype

2.8.2.1. Number of Fingers

If one end of a cloth panel is held by the sewing machine
needle, then a minimum of two fingers is required to rotate
the cloth about the needle, when fingers are positioned at
the far end of the cloth panel. Similarly, a minimum of two
fingers 1is required to slide a cloth panel across the
table, when fingers are positioned at the front edge.
Although additional fingers reduce the cloth panel’s
tendency to buckle, they also restrict the working envelope

of the end-effector in the vicinity of the sewing machine.



48

2.8.2.2. Hand Design

The fifst prototype end-effector had two spring-loaded
fingers supported on the end of cantileverea beams. This
low profile design permitted the fingers to operate in
close proximity to the sewing needle and move under the arm
of the sewing machine without the end-effector hitting the

sewing machine.

The distance between the two fingers could be adjusted
manually. Several micro-switches were installed on the end-
effector to detect collisions between the robot and objects
in the workspace (section 4.3.4.5). A photocell was mounted
on each finger beam to detect the edge of the cloth panel

{section 6.2.2).

2.8.2.3. Finger Pads

To prevent the cloth panel slipping wunder the fingers
during handling and sewing operations, the finger-to-cloth
friction had to be greater than the table-to-cloth friction
and also greater than the cloth tension during sewing.
Consequently, the finger pad material had to exhibit high
friction with fabrics at low contact pressure. Card wire
pads or needles were rejected since they would scratch the
table surface. Pads with nylon needles were found to be
unsatisfactory since they fequired relatively high spring
.

loading before they gripped the cloth.

Rubber pads,; with a diameter of 20 mm, were found to give
satisfactory performance; the best performance was achieved
using thin rubber discs with a contoured surface to

increase surface friction.



49

2.8.2.4. Spring Loading of Fingers

Each finger was spring-loaded, and the finger’s vertical
travel had to be sufficient to accommodate static and
dynamic errors in the height of the end-effector above the
table. Static errors up to 10 mm were measured by
programming the robot to slide slowly across the table
surface; these were due to distortions in the table surface
and due to the robot’s poor static accuracy. When the robot
was programmed to slide across the table at high
acceleration and velocity, significant dynamic and inertia

effects caused height variations of up to 20 mm.

The finger, its support and spring arrangement were
designed to maintain a low profile while still providing
20 mm vertical travel. Various springs, with different

spring constants, were tested in the end-effector (see

section 4.5.4.4).

2.8.3. Robot Siting

The optimum siting of the robot in a work station is often
a major difficulty, especially when the workpieces are
large relative to the robot’s workspace. In addition to ;he
obvious problem of placing all necessary items within reach
of the robot, there is also the need to avoid the robot’s

singularity regions.
2.8.3.1. Singularities
Six-degree-of-freedom robot arms have a number of

singularities in their kinematics, which in practice means

that a small change in Cartesian coordinates corresponds to



S0

a large change in joint angles. Singularity regions should
be avoided since they result in unpredictable and erratic

behaviour of the robot arm.

Each singularity is associated with one of the spatial
configuration pairs, that is, the arm is at the boundary
between either the RIGHTY or LEFTY, the ABOVE or BELOW, or
the FLIP or NOFLIP configurations. In physical terms, a
singularity occurs when an axis of one joint becomes

aligned with an axis of an adjacent link.

Not all robot types suffer from this problem. If the number
of joints is less than six there are no singularities, but
then there are "holes" or regions within the workspace that

the robot cannot reach.

For the FIGARO applicationy in which the robot’s wrist
flange was always held parallel to the table’s surface, two
singularity regions limited the robot’s stable workspace.
When the wrist flange was too far from the WORLD 2z axis,
the upper arm and forearm approached alignment, i.e. the
elbow singularity. When the wrist flange was too close to
the WORLD z axis, one of the wrist singularities might be
encountered. The FIGARO robot’s working envelope is defined

in section S5.4.2.

2.8.3.2. Robot Height

The robot was fitted to a pedestal that was 170 mm 1lower
than the table surface. With the end-effector installed,
the robot exhibited wrist singularities even when the wrist
flange was quite distant from the WORLD z axis. The wrist
singularities were minimized by lowering the robot base so

that the arm was closer to the table surface.



S1

The problem and its solution can be readily understood by
considering the anthropomorphic analogy. If a man tried to
slide the palm of his hand over a low table surface while
standing up, he would strain his wrist | However, he would
be much more comfortable if he sat down at the table
because he would use his elbow and shoulder more and bhis

wrist would not be strained.

The optimum height range for the robot tool f{flange, that
would give maximum reach and also minimize wrist
singularities, was found to be between O and 200 mm below
the centre of the base coordinate origin (assuming ABOVE
configuration). Since, the table surface was 490 mm below
the base origin and the end-effector was 150 mm high, the
robot origin had to be lowered by 150 to 350 mm. Rather
than manufacture a new pedestal, a 200 mm long aluminium
spacer was made to fit between the end-effector and the

tool flange (see fig. 2-7).

2.8.3.3. Limitations Due to End-effector

The second prototype end-effector (section 6.2) was 540 mm
wide, and the width of the end-effector significantly

limited both the robot’s minimum and maximum reach.

a) Minimum Reach

When the end-effector was close to the body, the inner end
of the end-effector was liable to hit the robot’s trunk.
This minimum reach limitation could be removed by
suspending the robot from an overhead gantry, so that the
robot’s trunk would not intrude into the useful workspace.

Although, this arrangement was not implemented, overhead



Se2

mounting is a recommendation for future improvement of the

FIGARO system (section 7.4.4).

b) Maximum Reach

When the arm was outstretched, it could not achieve its
full mechanical potential, due to a software limitation.
Location coordinates are stored internally in VAL Il as 16-
bit signed integers, scaled by a factor of 32. Hence the
maximum distance that can be legal is only :

218 = 1024 mm ' ‘ (2.1)
2 x 32

This corresponds approximately to the maximum reach of the
PUMA. Howevers when locations were defined relative to the
far finger on the wide end-effector, wusing the TOOL
fransformation facility, then the maximum distance was
still 1024 mm, even though the arm could physically reach
another 270 mm., This software }imitation is not present in
a more advanced version of VAL 1I, supplied with the Adept
robot, which represents distances internally as real

variables (section 7.4.1).

2.8.4. Coordinate Systems

The sewing needle was selected as the origin of the work
‘station coordinate system and the direction of sewing was
chosen as the x direction. The robot TOOL transformation
was carefully defined so that its origin was at F, the
centre of the right hand‘finger pad, and its x axis was
aligned with the workstation x axis. The xy planes of both
coordinate systems were defined parallel to the sewing

table’s surface,



23

The two coordinate systems are shown in fig. 2-8; the work
station’s axes are marked x,y»z and the TOOL’s axes are

marked x’;y’syz’.

SEWING TABLE z

2 SEWING NEEDLE

END—-EFFECTOR

Fig. 2-8: FIGARO Coordinate Systems




= 1)

CHAPTER 3

THE DEVELOPMENT OF A REAL TIME PATH CONTROL CAPABILITY

A real time path control capability was developed based on
the vAL II ALTER fa&ility, which permits an external
computer to supply path modification data to the robot
controller while the robot arm is in motion. A high speed
serial communications 1link was implemented between the
IBM AT and the robot controller, and interrupt-driven
multi~tasking software was written to service the link at

the I1BM AT end.

3.1. VAL 11 ALTER Facility

The' VAL II ALTER facility can be used to modify a pre-
programmed motion or it can have total control over the
robot’s path. The ALTER modification data can be
interpreted in TOOL or WORLD coordinates, and the robot
motion can be generated by cumulative or non-cumulative

application of the modification data.

3,1.1. Partial and Total Real Time Path Control Modes

Robot motion data from the external computer is ignored by
the robot controller, unless VAL 11 is performing a
programmed straight-line motion, or if the robot |is

stationary during a programmed DELAY,.



S5

If the robot trajéctory is approximately known in advance
and sensory feedback is only required to modify the tool
paths, then the robot should be programmed to follow the
rnominal path and the ALTER facility would then supply real
time sensory corrections, In the case of robotic sewing,
the required tool path is entirely unpredictable, and
therefore it was simpler to leave the robot nominally
stationary during an infinite DELAY and give the external

computer exclusive control over the robot’s trajectory.

3.1.2. ALTER modes

ALTER data can specify any combination of offsets along and
rotations about the x, vy, and z axes. When ALTER is
initiated, the user must specify either the WORLD or TOOL
coordinate systems for the subsequent ALTER data. He must
also specify whether the effects of the ALTER data are to

be cumulative or non-cumulative.

In cumulative mode; the effect of any data received |is
accumulated and the robot location is modified by the sum
of all past ALTER data. Thus, if the IBM AT sends an ALTER
value of 0.1 mm in the x direction, then the robot will
move away from its nominal location at the rate of 0.1 mm
per 28 ms, i.e. a speed of 3.5 mm/s (see section 3.2). The
robot stops when the external computer changes the x value

to zero.

In non-cumulative mode, the robot location is modified only
by the most recent data. Thus, when the IBM AT sends an x
value of 0.1 mm, the robot moves by 0.1 mm and then stops.
When the x value is set to zero, the robot returns to the

nominal location.



56

In the FIGARO system, ALTER was always used in the WORLD
coordinate mode (section 2.5.3) for convenience. Both
cumulative and non-cumulative modes were tested, and their

different attributes are discussed further later.

3.2. The ALTER Communication Channel

The ALTER communication channel |is dedicated to the
transfer of real time path control data from the IBM AT to
VAL II. The link is an RS232 serial line operating at 19200
baud, which means that a byte is transmitted every 0.5 ms.
The protocol is optimized for high speed with minimal error
checking and no automatic retransmission of corrupted data,
since any time delay is detrimental to the performance of

the path control system.

The ALTER protocol is based on a handshake cycle which is
repeated every 28 ms. VAL Il initiates the cycle with a
short message which requests path control information and
contains status information. The IBM AT 'must complete
transmitting its reply within 16 ms of the start of the
cycle, otherwise VAL Il will abort ALTER with a timeout
error message. Simple start and end message codes, a one
byte checksum and a byte-stuffing protocol are used in the

message packet.

For convenience and clarity,; robot motion parameters are

often quoted below in handshake units (or hs). For example,

an % ALTER data value of 8y 1in cumulative mode, would

result in a robot velocity of 2 mm/hs in the x direction

(equivalent to 71 mm/s).



37

3.3. Implementation of the ALTER Protocol on the IBM AT.

The ALTER protocol was implemented on the IBM AT using the
interrupt handling and multi-tasking facilities provided by

the AMX-846 executive, in conjunction with the IBM AT

serial/parallel adapter.

3,3.1. Hardware Considerations

Although the IBM technical reference manual [40]1 only
recommends operation of their serial port at 96400 baud,
when the IBM serial adapter card was installed in FIGARO’s
IBM AT it ran successfully at 19200 baud. However, the
same card with the same software failed when used with an
older IBM AT system unit. This suggests that the IBM AT may
be operating close to a timing limitation when supporting

interrupt-based communications at 19200 baud.

3.3.2. Software Design

The software was organized along the lines of the 150°’s 0S!
(Opén Systems Interconnection) Reference Model, which
defines a hierarchy of functional 1levels for computer
network communications (41]. The 0SI model encourages a
modular approach to the design of software and hardware
elements. A self-contained AMX-B& task was written for each
communication function within the 0SI levels, in order to
permit parallel execution of the functions. The
hierarchical arrangement of the ALTER communication Tasks

js shown in fig. 3-1.



Application
Level -

Session
Level

Transport

Level

Communications

Subnet

S8

Task -

Robotic Sewing

SEW

Supervisor
CoMM

Communications

Task

I

Receive Message

Transmit Message

Task = RXMG Task - TXMG
| |
Interrupt Service
Procedure - COMISP

L e

Communications
Controller
NS16450 UART

RS-232C

Serial Line

Fig. 3-1: Hierarchical Implementation of ALTER Protocol
on the IBM AT.

D0 ErsHhon

L 3 I TR S o Mihs B T ¢



S9

The SEW Tasks in which the desired robot trajectory is
calculated from sensory servo control functions,
corresponds to the Applications Level, the highest 0SI
level. The SEW Task is described in later Chapters 4 and 5.

The COMM Task, which corresponds to the 0SI’s Session
Level, performs the following functions :
®* Interpreting the ALTER status message.
*+ Maintaining the ALTER handshake requirement by
immediately acknowledging every VAL Il message.
¥ Passing the ALTER data from the Application level
on to the Transport level for transmission to VAL II.

¥ Terminating the ALTER communication channel.

The RXMG Task performs the following functions :
* Assembles the message packets received by the serial
port.
% Removes the header and checksum and any byte stuffing.
% Checks for data corruption.
* Transfers the message to the COMM Task for

interpretation.

The TXMG Task performs the following functions :
% Takes the ALTER data for transmission to VAL 1I.

% Constructs the message packet by adding the header and

cHecksum and by performing the byte-stuffing protocol.

» Loads the message packet onto a circular list.

The communications ISP (Interrupt Service Procedure),
COMISP, is executed whenever the UART communications
cohtroller generates an IRQG4 interrupt. The COM1ISP
procedure determines whether the interrupt was a byte-
received or byte-transmitted interrupt; in the first

case it adds the received byte to a circular list, in the



*° CLOTHWORKERS LIBRARY

UNIVERSITY OF LEEDS

second case it loads the port with a byte 8™ transmission
from a second circular list. If either RXMG or TXMG |is

waiting for an interrupt, then COMISP awakes ‘the

appropriate Task.

All the software modules associated with the ALTER
communication channel are listed and explained in
Appendix B, The efficiency of the COMISP procedure has a°’
critical effect on system performance, since it is executed
every 0.5 ms. Consequently, COMISP and part of TXMG wefé
written in B086 assembler; the remainder was written in the

C programding language.

3.3.3. Communication Overhead

The . support of the ALTER communication channel causes a
significant processing overhead for the 1IBM AT. This
overhead was measured by comparing the execution time of a
dummy program' operating in a narmal MS-DOS environment,
with the execution time of the same program operating under
AMX-86 with the ALTER communication protocol running in the

background. The following results were obtained :-

* Execution time under MS-DOS = 19.2 secs

#+ Execution time under AMX-86 = 27.8 secs

# During the @27.B secs, 945 ALTER handshakés were
completed. Each handshake consisted of 12 bytes

received and 8 bytes sent.

Thuss, the ALTER communications overheads plus the AMX-86

scheduling overheads, were :-

(27.8 - 19,8) / 9435 = 9 ms per handshake



61

Since the ALTER handshakes occur every €8 ms, the overheads

account for a third of the cycle time, which is not very

satisfactory.

A more suitable arrangement might be to implement the COMM,
TXMG, RXMG and COMISP functions on a microcontroller, such
as the Intel 8731, which could be installed together with
a block of dual-ported RAM on a card on the IBM AT bus.
puring real time path control of the robot under sensory
feedbacks the IBM AT B0286 processor could be dedicated to
calculating the robot’s trajectory coordinates, while the
microcontroller would take care of the ALTER

communications. The received and transmitted messages would

be transferred between processors via the dual-ported RAM.

Nevertheless,; it was decided that the software-oriented
single—-processor multi-tasking arrangement was more
suitable for a development system on which exploratory
research was to be carried out. - The hardware-oriented
multiprocessor arrangement would have improved the
performance of the system, but at the expense of reduced

flexibility and increased complexity.

3.4, Dynamic Performance Tests on ALTER Control

3.4.1. ALTER Performance Specification

The VAL Il manual [38]1 states that the total time taken
between receiving the ALTER data from the IBM AT until the
robot reaches the required location is 49 ms. This is made
up of 22 ms for the matrix transformation calculations

which converts coordinate data into joint angles, and 27 ms



&2

for the joint servo controllers to reach the target

location.

The VAL 11 manual does not provide any additional
information on the response performance of the ALTER motion
control, or on smoothing or interpolation requirements.
Initial experiments with the ALTER facility indicated that
careful interpolation and limitation should be applied to
the ALTER data sequence to prevent erratic or jerky motion.
Series of tests were performed to confirm the timings given
in the manual, and to investigate the dynamic
characteristics and interpoiation requirements of ALTER

control.

3.4.2. Test Setup

In the test setup the PUMA was attached to the end of a
vertical LVDT, with a travel of 150 mm. A timing output
signal was produced by the IBM AT, which showed the
beginning of the handshake cycle and the end of the IBM AT
message transmission. The LVDT’s output was filtered at 1
kHz, stored in a data logger and then recorded on an X-Y

plotter.

Three test series were performed :-—

a) single step change in position
b) ramp demand - i.e. a constant position increment per
handshake
]
c) stepped ramp demand - i.e. every second or third

handshake a position increment was transmitted, and a
zero increment was transmitted on the other

bhandshakes.



63
The tests were repeated for a range of increment rates up
to 10 mm per handshake. In addition, many of the tests were
repeated for both cumulative and non-cumulative ALTER

modes, and for the COARSE, NONULL and INTOFF motion control
parameter settings.

3.4.3. Results
The following test results were obtained :-

* The robot started to move approximately 20 ms after
the IBM AT message had been sent. This confirmed the

manual’s timing specification for the matrix

transformation calculation.

* When the robot performed a step change, over 83% of
the total distance was covered within the specified
27 ms. The remainder of the distance was gradually
achieved over a further 10 to 35 ms. This
characteristic appears to be due to a conservative
control strategy applied to the joint servomotors,

involving coarse and fine motion segments.

* The rvrobot moved very smoothly when given a ramp
demand. The robot tool passed through the requested
location 65 ms after the IBM transmitted the data.
This figure is not quite as good as the one quoted in
the manual (49.5 ms), probably due to the intentional

position offset applied to the coarse motion segment.

* A stepped ramp demand resulted in an intermittent,
staggered robot motion. For ALTER 1increments above

S mmy, the jerky motion was severe.



b4

PO SO §

A~H_.

2:'30NY1S1q - <

Yivd H317Y  @31vINkN3J

Y —

Ramp Test

Test Results

1C

ALTER Dynam

i

Fig.



13AwyL

e R EI R T

.ll. 5371947 e e
=% IAYHSONYH

P B | -

Stepped Ramp Test

ALTER Dynamic Test Results

ig. 3-3

F



&b

Cumulative and non-cumulative modes produced identical
results for equivalent tests, confirming that the two
modes are provided merely for the user’s convenience

but they do not imply any difference in the control of
the robot.

The settings of the COARSE/FINE, NULL/NONULL and
INTON/INTOFF motion control parameters have no effect
on ALTER real time path control (section 2.5.1).

Two examples of ALTER motion traces are shown in figs. . 3-2

and 3-3.

3.4.4. Conclusions

a)

b)

c)

When VAL 11 performs a normal programmed raobot motion,
the LSI 11 processor applies an interpolation and
semoothing function in order to achieve a specified
tool velocity and smooth acceleration and
deceleration. Then, the LSI 11 sends the computed

setpoints to each joint controller every 28 ms.

When an external computer specifies the intermediate
locations every 28 ms, the LSI 11 processor does not
apply any smoothing interpolation; it merely converts
the ALTER data into joint setpoints and sends the

setpoints onto the 6502 joint controllers.

Consequently, the external computer is responsible for
smoothing out the ALTER data to produce smooth
acceleration and deceleration, and for limiting the

position increments to achieve a particular speed.



67

d) The 6502 joint controllers perform a digital PID
(proportional-integral-derivative) control algorithm
which consists of a coarse and a fine motion phase. A
large proportion of the demand is input into the
coarse control and is achieved at high speed. The
remainder of the demand is achieved more slowly and
accurately wusing integral control. This conservative
control strategy was probably adopted to prevent
instability due to coupling effects between joints and

load and gravity effects (section 2.4.4).

3.5. Generation of ALTER Data

As indicated by the ALTER dynamic performance experiment,
care was required in the generation of ALTER data to ensure
that the subsequent robot motion was smooth and

approximated to the intended motion.

3.5.1. Velocity and Acceleration Limitations

Since the handshake rate is fixed at 35.7 Hz (1 every

28 ms), the magnitude of position increments that the
IBM AT demands,; determines the speed of the robot motion.
Similarly, the rate of change of the position increments
determines the robot acceleration. The ALTER data must be
limited to sensible values by the external computer, since
when a very large position increment was transmitted
(i.e. greater than 25 mm/s) the robot arm was flung

violently in an uncontrolled motion.



&8

VAL II interprets successive ALTER position demands as
point-to-point motions. Therefore, if a straight-line
motion was desired, the ALTER data should be limited to

small position increments, so that the gross motion would

effectively be linear.

In an investigation into ALTER motion control, the robot
was programmed to move in a straight line, parallel to and
100 mm above the table surface with an acceleration of only
4 mm/hs/hs (0.52 g) and a velocity of 15 mm/hs
(0.42 m/sec). Instead of a linear trajectory, the robot was
observed to move in a vertical circular arc such that it
would have hit the table top if the intended trajectory had
been within 30 mm. Further experimentation showed that the
ALTER data had to be limited to within 3 mm/hs/hs and

8 mm/hs in order to maintain satisfactory linear motion.

The maximum velocity and acceleration depended on the
distance of the end-effector from the robot’s base. When
the arm was outstretched, the dynamic errors were more
severe due to the arm’s reduced stiffness. Consequently,
the ALTER data was limited to 1.5 mm/hs/hs and 4 mm/hs when
the mounting flange on the robot’s wrist was more than
680 mm from the origin of the robot’s WORLD coordinates
(section 5.4.2).

Additional limitations were applied to the ALTER data
before transmission to VAL II, which prevented the end-
effector from colliding witH either the sewing machine or
the base of the robot, or from approaching a singularity
region. The implementation of these 1limitations is

discussed in section S5.4.2.



69

3.5.2. The Non—-Cumulative Approach

3.5.2.1. The Need for Smoothing

The ALTER data computed in the SEW Task was derived from
the sensory servo control transfer functions. However, due
to the processing limitations of the IBM AT and due to
speed limitations of the vision system, the SEW Task was
not able to compute new ALTER data in time for each
handshake. Usually, the ALTER message would be updated only

once every two handshakes, and occasionally once in three

handshakes.

Initially, the ALTER channel was operated in the non-
cumulative mode. When the calculation overhead reduced the
ALTER update rate to less than that of the ALTER handshake
rate, the robot motion was intermittent and jerky. This
undesirable behaviour was due to the stepped ramp form of
the ALTER data, which had been invgstigated in the Dynamic

Response Experiment (section 3.4.3).

For example, in non-cumulative form ALTER data for a smooth
robot motion between, say, locations 2 and 10 mm away from

nominal origin, might be computed as :-
2 4 &6 8 10

However due to the slower update rate, VAL Il would receive

ALTER data in the form of a stepped ramp, as:-
2 2 4 4 & &6 8 8 10 10

Consequently, the resultant robot motion would be jerky.

Clearly, some form of interpolation was required to smooth



70

out the infrequently calculated robot path increments among

the more frequent ALTER handshakes.

3.5.2.2. The Interpolator Algorithm

A smoothing interpolation algorithm was written for non-
cumulative ALTER data, and was executed on the COMM Task
level. The algorithm modified ALTER messages that had not
yet been updated, based on a prediction of the next ALTER

message.

If the COMM Task received from the SEW Task a position
demand of, say, & mm, and the previous‘update had been
2 mmy, then the interpolater assumed that the next update
wouid be & mm, by extrapolation. If an ALTER handshake
requested data before a new update had been calculated,
then an intermediate position demand would be transmitted,
ij.e. .@a value between 4 mm and 6 mm. For the first non-
updated handshake 40 %4 of the increment was transmitted,
and if there was a second ﬁon—updated handshake then 70 %

of the increment was transmitted, and so on.

Although somewhat inelegant in concept, this algorithm was
effective in smoothing out robot motions,

3.5.3. The Cumulative Approach

3.5.3.1. Implicit Interpolation

When the ALTER channel is operated in the cumulative mode,
there 1is no need for an explicit smoothing routine, since

the position increment is maintained during a non-updated

handshake.



71

For example, in the cumulative mode, if the robot was to
move smoothly between 1locations 2 and 10 mm from the

nominal origin, then the ALTER data could be:-
g e e &2

Even if the update rate was slower than the handshake rate,

the robot would move smoothly without requiring

interpolation.

3.9.4. Comparison of Cumulative and Non-Cumulative Modes

Fundamentally, there is very little difference between the
two approaches at representing ALTER data, and both were

implemented successfully.

However; the software was more straightforward and more
elegant when the data was expressed in the cumulative mode,
and the code was marginally more efficient. The
communication overhead was greater in the non-cumulative
approach, since it required the smoothing routine to be
called during a time-critical part of the handshake cycle,

i.e. between receiving and transmitting messages.



72

CHAPTER 4

CLOTH TENSION CONTROL SYSTEM

4,1. Introduction

The previous two chapters described the main components of
the FIGARO development system, and its real time path
control capability. FIGARO was given an adaptive capability

by integrating sensory-based servo control into the path

control system.

4.1.1. Robotic Sewing of a Straight Seam

.The first FIGARD sewing function developed was to sew a
‘straight seam. The technique that was implemented was
imitative of one of the common techniques used by human
operators. Once the end of the cloth had been correctly
placed under the sewing head, the robot was required to
hold the far end of the cloth against a smooth table and to

guide the cloth while it was being sewn up.

The sensory servo control system had to ensure that the
robot tracked the forward motion of the cloth, caused by
the feed mechanism of the sewing machine, and maintained a
small tension on the cloth during the sewing operation. The
development of this control system is described in this

chapter.



73

4.1.2. Requirements of Cloth Feed Tracking Servo Control

The major problem in applying a robot to control cloth
during a sewing operation, is the limp nature of the cloth.
Cloth can buckle under small shear forces, in a manner
which is usually impossible to predict. Consequently, it is
essential to ensure that buckling of the cloth is kept to a
minimum, and that it does not occur at all in critical
areas of the cloth panel during the operation. Once
buckling of the cloth has been eliminated, the cloth panel

can be assumed to behave like a rigid lamina.

As described in section 2.8.1 the table had a smooth
polished stainless steel surface, in order to minimize
buckling. However, between the robot’s fingers and the
sewing head, buckling' could easily occur due to forces
applied to the cloth via the feed mechanism or via the
fingers. This buckling could be prevented by maintaining a
small cloth tension between the fingers and the sewing head

during sewing, to ensure that the cloth panel stays rigid.

I1f there was no cloth tension, then the robot would

buckle the cloth when it moved forward or when it rotated
the cloth about the needle (in the edge seaming operation).
If the tension was too high then the asymmetry of the
tension loading on the fabric would cause the cloth end to
bend upwards near the presser foot, and this would affect
the accuracy of the seam width measurement. In addition,

high cloth tension would lead to seam puckering.



74

4,.2. Open Loop Control

Initially, an open loop control system was developed in
which robot motion data was calculated from sewing machine
speed measurements, so that the robot could track the speed
variations of the sewing machine. This arrangement
provided open loop control only, since the system had no
feedback on the cloth tension, which was the ‘“desired

output"” of the control system.

The sewing machine speed was measured from the shaft
encoder signaly and the desired robot motion was calculated
assuming a fixed stitch length, (i.e. the cloth moved a

fixed distance per sewing machine revolution).

4.2.1. Shaft Encoder

The sewing machine control unit monitored the sewing speed
and the position of the needle using an optical shaft
encoder. The incremental encoder, with had an output signal
of 346 CMOS square waves per revolution, had a resolution
of #*5°. The enéoder did not provide any directional
information (the shaft is only rotated in one direction
even when backtacking); but two additional signals are
provided which indicate the "needle up" and "needle down"

positions.
4.2.2. Shaft Encoder Interface with IBM AT
Although the Mitsubishi LE-MF control box (section 2.7) did

‘not provide a direct interface with the <ehaft encoder

signal, the signal was accessed by tapping it at entry



75

into the LE-MF control box. The signal was transmitted to
the IBM AT and fed into a 16-bit wuni-directional counter

installed on a prototype card.

A false triggering problem was traced to noise picked up by
the cable, due to capacitive signal coupling [47]. The
problem was solved by improving the cable shielding and by
buffering the signal before transmission down the cable.

Wiring and circuit diagrams are given in Appendix H.

This interface permitted the 1IBM AT to obtain an
instantaneous reading of the number of sewing machine
revolutions since the counter was reset. The shaft encoder
resolution was 36 counts per revolution, and the maximum
number of revolutions that could be counted before the
counter overflowed was 2! / 36 = 1820, The distance
that the cloth is fed past the needle is related to the
sewing revolutions by the stitch length setting, e.g. for a
stitch length of 1 mm, the counter would overflow after a
seam of 1820 mm. Since no continuous seam could be so long,
a 16-bit counter was éufficient for this application. For
debugging purposes, én error message was generated if the

software detected counter overflow.

4.2.3. Software Implementation
4.2.3.1. SEW Task

As described in section 2.3.3.2s the sensory servo control
calculations were implemented in the SEW task. This task
generated ALTER data in real time on the basis of sensory
inputs, to perform a contoured seam. The SEW task assumed
that the front end of the cloth had been accurately placed

under the needle and that the robot fingers were in place



76

at the far end of the cloth. The basic SEW algorithm was as

follows :-—-

1. Perform initializations

2. Start sewing

3. Calculate ALTER data for correcting in X direction

S. Install ALTER data in new message for COMM to
transmit

6. Check if end of seam length has been reached

7. If not yet, then repeat steps 3 to 7

8. Stop sewing machine

4,2.3.2. Implementing Open Loop Control

The 16-bit counter, which counted the square wave signal of
the shaft encoder, was reset to zero during SEW’S
jnitialization phase. Consequently, the value of the
counter during sewing always indicated the number of sewing
machine revolutions since the start of that sewing
operation. The length of cloth fed into the sewing machine
since the start of the sewing operation could be estimated

using the following relationship :-

L = CS (4.1)

where @ is the length of cloth fed sa far
"is the count so far

is the average stitch length

“» n 0O r

is the frequency of counts per rev (viz. 35&)

The ALTER facility was used in the cumulative mode (section
3.5.4); in this mode the ALTER data is required in terms of

position increments (i.e. a velocity demand). The shaft



77

encoder counter was sampled at the update rate, which was
usually slower than the handshake rate (section 5.4.3).
Consequently, the ALTER data value;,; Xasem s was set equal
to the cloth feed speed in mm/hs, as follows :-
Xaten = dL u = SC S u (4.2)
f

where : déL 1is the increase in L since last update
dC 1is the increase in C since last update
u is the average update rate

(i.e. no. of updates/no. of handshakes)

4,2.4. Open Loop Control Performance

The stitch length can be manually adjusted on the sewing
machine by rotating a knob which alters the stroke of the
feed dogs. When the stitch length was set to a nominal
value in the software, the robot speed and the cloth feed
speed could be synchronized manually using the knob. If the
stitch length was too large, the robot lagged behind the
cloth feed and the cloth tension was too high. Conversely,
when the stitch length was too small, the robot preceded

the cloth feed and the cloth went slack and buckled.

When sewing a straight seam, an optimum knob position could
be found for that particular fabric type at a particular
speed, which gave a stable cloth tension. The obtimum knob
position varied for different fabric types and for
different speeds. Consequently, the open 1loop control
required manual adjustment when changing the fabric

material.



78

When sewing an edge seam, the robot was required to rotate
the cloth about the needle (under the seam tracking servo
control), and the behaviour of the cloth panel within the
feed mechanism was unpredictable. The open 1loop control

system failed to maintain a constant cloth tension during

an edge seam operation.

4,2.9., Limitations of Open Loop Control

The unpredictable behaviour of cloth tension during sewing
was caused by slipping between the feed dogs and the cloth.
During the feed part of the sewing cycle, the cloth |is
clamped between the presser foot and the dogs. The dogs
grip the cloth with their serrated faces, but some slipping
still occurs at the beginning and end of the feeding phase,
and when there is a rotating moment on the cloth about the

dogs.

Different fabrics required different stitch length
settings, sincé some were more prone to sliﬁping thaﬁ
others. By adjusting the stitch 1length manually, it
compensated for the average rate of slipping during the

sewing operation.

A suggestion for improving the open loop control was
consideredy; that would involve inserting a constant force
spring between the finger and the robot hand; this would
accommodate small errors between the robot speed and the
cloth feed speed, However, this modification was rejected
on the basis that even a small tracking error would require
the spring to absorb tension errors cumulatively, and the
spring would then soon wuse up 1its total displacement

length.



79

The open loop control of the cloth tension during sewing
was unsatisfactory, since the cloth tension variations were
unpredictable and they could not be compensated for
adequately. Evidently, it was necessary to measure the
cloth tension during sewing, and to close the 1loop by

feeding back this measurement into the control system.

4.3, Cloth Tension Sensor

4.3.1. Measuring Cloth Tension

In order to measure the cloth tension, a sensor was
required which measured the force acting on the robot
finger pad from the cloth tension. If the finger held the
cloth against 'a table, the actual tension in the cloth
would not be the same as the tension sensed by the finger
pad,' due to the friction between the table and the cloth.
The ‘friction problem could be avoided by holding the cloth

end in the air between clamped finger pads.

Human operators sometimes hold the cloth end in the air
during long seam sewing operations, but they use this
technique because it ensures that both plies will be the
same length after sewing. However, since the operator must
hold the cloth at its end, this technique is limited to
sewing gently curved seams only. For the majority of
operations, the human operator holds the cloth down on the

table, since this permits greater manipulative flexibility.

Both techniques are useful in different circumstances, but
the cloth-held-against-table technique has wider

applicability and does not require the end of the cloth to



80

be picked up first. It was decided to attempt the
development of a cloth tension servo with the cloth held
against the table. If the table friction problem could be
solved then the control could be readily adapted for use
with the cloth-in-the-air technique, which avoids the

friction problem, altogether.

4.3.2. Sensor Specification

The cloth tension sensor and its signal processing

circuitry was designed to meet the following

specifications :-

High Sensitivity - the optimum cloth tension during sewing
is between 0.25 to 1.0 N/cm. For a 2 cm wide finger
pad with a spring loading of 4 N, the friction acting
between the table surface and the cloth is
approximately 0.5 N. Therefore, a sensor, based on a

2 cm finger pad, should have good resolution in the 0O

to 1.5 N range.

y

Measurement Range — a full scale deflection of 4 N would be

sufficient.

lLow Hysteresis - although the table friction had already
introduced significant hysteresis, the finger/sensor

arrangement should not add to the problem.

Accuracy — the linearity and repeatability requirements are
not very stringent in this application, since there is

a range in which the cloth tension is permitted to

vary.



81

Cross-Sensitivity - the sensor should be mechanically
decoupled, i.e. it should be sensitive to force in the
desired direction and insensitive to any other forces
or moments. If the sensor was not mechanically
decoupled then the output signal would be dependent on
factors other than the cloth tension, such as the

finger spring loading.

Bandwidth - As described later, the cloth tension was found
to fluctuate smoothly in synchronization with the
sewing speed, and the maximum sewing speed is 5500 rpm
(92 Hz). Therefore the sensor’s bandwidth should be at
least 1 kHz. ’

Drift - since the tension control is only active during
short sewing operations, drift and other offset
effects can be nulled in the software before each
operation, and therefore long-term drift is not a

significant proplem.

Natural Frequency - the sensor’s natural frequency of
vibration should be considerably higher than the servo
bandwidth (which has a maximum of 35 Hz), to prevent
instability. A high natural frequency and stiffness
are desirable in order to minimize noise

from
sympathetic oscillations.

Dimensions and Robustness - since the sensor is to be
fitted on the end of a robot finger, it should be
emall, light and sturdy with a high overload capacity.



82

4.3.3. Choice of Transducer

Usually, a force sensor consists of an elastic body which
deforms under the applied force. Measurement of the elastic
deformation, in one or more directions, by an appropriate
transducer vYields electrical signals from which the force
vector can be derived. Several measuring principles are
suitable such as, displacement transducers (LVDT,
inductive, capacitive), piezo-electric crystals, magneto-

elastic devices, conductive rubber, strain gauges, etc.

A wide variety of transducers have been developed for
robotic tactile sensing; 1i.e. the measurement of the
variation of contact forces over an area (464471, However,
strain gauges are by far the most popular transducer for
robot force and torque sensors, since they are small, easy

to use, cheap and reliable [481].

4.3.4. Mechanical Design
4.3.4.,1. Mechanically Decoupled Force Sensors

Several instrumented wrists and fingers have been developed
for robots, that measure the three forces and three torques
that describe the interaction of the robot gripper with the
environment (48,49,50,51,521. All of these sensor designs
were intended to be mechanically decoupled, so that each

force or torque could be obtained directly from one or two

strain gauge signals.

Feldmann [51]] found that his design had poor decoupling,
and he had to apply a decoupling matrix to the strain gauge
signal measurements in order to extract the required force

and torque components. A comparison of Feldmann’s design



83

with other wrist sensor designs [48,49,50,52], which
exhibited good mechanical decoupling, indicated the
probable reason for Hhis sensor’s poor decoupling
performance. In his design one cantilevered beam was used
to measure each force component, whereas the other designs

all used two beams per force component.

4,3.4.2. Force Measurement Considerations

When a cantilevered beam is loaded at its free end, the top
surface of the beam will be under tension and the bottom
surface will be under compression. The bending moment and
surface stress acting on the beam at a particular distance

from the free end, is given by the following equations :-

M = F x (4.3)

where M - bending moment at x
- load on beam’s free end
x — distance from the free end
¢ — surface stress
c — distance of surface from neutral axis

I - moment of inertia

For a simple beam, the neutral axis is in the centre of the
beams, and therefore the surface stress due to pure bending
will be equal and opposite on the top and bottom surfaces.
The maximum bending moment (and therefore the maximum

surface stress) is at the fixed end.



84

Consequently, maximum sensor sensitivity is obtained by
bonding a strain gauge (SG) on both sides of the beanm,
close to the fixed end. When the two gauges are installed
in the Wheatstone bridge arrangement shown in fig. 4-1, fhe

output signal, V., is proportional to the applied load, F.

OF
SG1 l

SG2

NANNREY
]

Fig. 4-1: Single Cantilever Sensor Design

If a pure compressive or tensile load is applied to the
beam longitudinally, then both gauges will sense equal
strains of the same sign, and the bridge arrangement will
cancel out these strains. Thus, the sensor in fig. 4-1 is

sensitive to lateral loads which produce pure bending, and




85

is insensitive to longitudinal loads which produce pure

tension or compression. This arrangement also provides

automatic temperature compensation.

However, a compressive longitudinal load on the beam’s free
end may cause the beam to buckle and then the sensor would
measure an apparent bending load. The double cantilever
design (fig. 4-2), increases the stiffrness of the sensor in
the. longitudinal direction, effectively decoupling the
sensor. The sensitivity of the output signal is unaffected
since a full bridge of strain gauges has been used in this
sensor. The double cantilever design also exhibits a much

higher natural frequency than the single beam design.

SG1

SG2
SG3

SG4

ANAAVAVAVAVANA

Fig. 4-2: Double Cantilever Sensor Design




86

4.3.4.3. Choice of Material

In order to make a sturdy sensor with high sensitivity, the
sensor’s material had to exhibit high tensile and vyield
strengths, and a low modulus of elasticity (i.e. Hhigh

strains for small stresses).

High strength aluminium alloys, such as Al 2014 which was
developed for aerospace applications, are usually chosen
for robotic instrumented fingers and wrists [48,49,50,521].
They exhibit low modulus of elasticity and high tensile and
vield strengths. High carbon spring steel exhibits greater
strength, however it is more difficult to machine and also
requires heat treatment after machining. Furthermore, since
steel has a larger modulus, the beams would have to be

thinner to provide the same ocutput signal.

The FIGAROD tension sensor was made from a square bar of

Al 2014 (BS L168.T6511).

4,3.4.4. General Design

The design concept is shown in fig. 4-3 and a photograph of

the actual sensor is shown in fig. 4-4,

The sensor consisted of two slender parallel beams which
were machined out of a monolithic block of high strength
aluminium alloy. One end of each beam was notched, so that

the beam was effectively pivoted at that end.



o/

SPRING LOADING

BRASS
SLEEVE

CLOTH TENSION

RUBBER FINGERTIP

Fig. 4-3: Cloth Tension Sensor - Design Concept

Fig. 4-4: Cloth Tension Sensor - Realization




88

413.4.5. Design Célculations

Using equation &.4, the strain on the top surface of a

beam, is given by the following relationship:-

€ = ¢ = Fex = Fdx (4.5)
E I E 21 E
where E - modulus of elasticity

d - beam thickness

€ — surface strain at x

The total elongation of the top surface is the integral of

the strain over the total length :-

e = Iedx=dex dx (4.4)
‘ 2 1E '

For a beam with rectangular cross—-section,

1 = b d° (4.7)
12

where b - beam Qidth

Substituting into (4.6),

e = & F ‘[ x dx (4.8)
E b d2



89

The strain gauge measures the strain over its effective
length only, and therefore the measured strain 1is the

integral over the 1length of beam covered by the strain

gauge.
Thus,
(=2 = 3 F ( %22 = x,2 ) (4.9)
E b d2
where x; = distance of near edge of gauge to free end
xe — distance of far edge of gauge to free end
es - extension of gauge (strain measured by gauge)

The output signal of the strain gauge is dependent on a

strain gauge factor, k, which is defined as,

K = SR = &R 1, (4.10)
R € R (=Y

where R -~ gauge resistance
§R - change in resistance
1, - gauge effective length

The output voltage signal, v, due to each strain gauge is,

v = RV = k V e, (4.11)

where V - voltage applied to each strain gauge



0

The full-bridge arrangement of four strain gauges in the
sensor produces an output signal four times that of an

individual gauge. Thus, the output signal, v,, is given by,

Vo = 4 k V e,
ls
= 12k VF ( x22 - x,2 ) (4.12)
le E b d?

4.,3.4.6. Detailed Design .

Althouéh, MacCarthy (561 presents an optimization design
procedure for strain gauge transducers, a simpler direct
calculation was sufficient in this case. The design of the
tension sensor was based on equation (4.12), and on the

dimensions of a suitable foil strain gauge.

A single element, constantan on polyimide, foil strain
gauge (BLH SR-4 FAE-25-35 S13) was selected, which had the
following specifications :

<

* gauge length ls 6.35 mm
+ resistance R 350 * 0.5 Q
* ~gauge factor k 2.04 = 1%

# overall length 13.92 mm
*# overall width 6.35 mm

The gauge was bonded wusing BLH EPY-130 strain gauge
adhesive, and a 12-hour curing cycle at 35 °C. The gauge
dimensions permit measurement of the surface strain over

6.35 mm of the total length, starting 3 mm from the fixed



91

end. Thus, in equation 4.12, the following substitutions

can be made,

Xe = L - 3-00 (mm)
X = L - 9.35 (mm)

where L - beam length

A voltage of 10 VDC was applied to a strain gauge pair,
which provided a large output signal without causing any

local heating effects, (the current in each strain gauge is
14 mA).

The choice of the length, width and thickness of the beams
was made on the basis of equation (4.12), in order to

ensure an adequate output signal level within the expected

load range.

The cloth tension sensor was manufactured to the following

dimensions,

L = 25 mm

]
N

mm

d = 1 mm

When the above figures were substituted into equation

(4.12), the nominal signal output for a 1 N load was

calculated to be 19 mV. This is a typical output level for

sensors based on foil strain gauges [543,

4.,3.4.7. Mechanical Overload Protection

Although the sensors performed satisfactorily throughout

the FIGARO development project, the mechanical design was



72

lacking in one respect; the sensor was very fragile, and
even a slight knock could break it. When programming a
robot to move in a crowded environment, it is very easy to
mistakenly direct the end-effector into objects. By nature,
sensitive force sensors are delicate, but industrial
designs should include mechanical end-stops to prevent

mechanical overload.

Although hard end-stops were not incorporated into the
FIGARO sensor, two other precautionary measures were taken;
micro-switches were installed which switched off the power
to the robot arm when it approached tooc close too close to
an object, and an electrical overload circuit was installed
which switched off the robot when the sensor output rose

beyond a certain level (see section 4.3.5.2).

4.3.5. Electrical Design

A Wheatstone bridge of strain gauges provides a low output
signal with a low source impedance. The signal requires
high amplification and is highly susceptible to noise and

interference.

The circuit diagrams of the amplifier unit and power

supplies are given in Appendix H.

4.3.9.1. Noise Prevention
In accordance with recommended practice [55], the following
measures were implemented to ensure minimal noise in the

amplified signal :-

a) The bridge was supplied with a regulated split-supply



93

(xS VDC)5 with a high CMRR (common mode rejection

ratio).

b) The "ADS24 instrumentation IC amplifier was selected,

which provides a gain of 1000 with high CMRR, low
drift and high accuracy.

c) The amplifier and associated components were installed
on a card in a grounded metal case, mounted on the
base of the robot. This location was the closest
possible to the sensor, without being mounted on the
robot itself. The amplifier unit was not mounted on
the robot, since the robot vibrations might have

affected the potentiometer settings.

d) High frequency pickup was reduced by connecting
decoupling capacitors to the supply lines close to the

sensor. All cables shields were grounded at one end.

e) The sense and reference terminals provided by the
AD324 were used to prevent signal losses in the

wiring.

f) The regulated power supplies were situated in a

separate box adjacent to the amplifier unit.

4.3.5.2. Electrical Overload Protection

A safety measure was inciuded that sent an "Emergency Stop"
signal to the robot whenever the tension sensor was
overloaded. This measure reduced the possibility of the
robot damaging the sensor when programmed incorrectly. The
tension sensor signal was passed through a window

comparator, which raised the "Emergency Stop" line when the



94

signal moved out of the window.

This overload protection circuit was originally located in
the amplifier wunit. However, the proximity of the
comparators to a pre—amplifier bridge-balancing
potentiometer gave rise to noise and oscillation problems.
These problems were solved by relocating the overload

circuitry on a prototype board in the IBM AT. The circuit

diagram is included in Appendix H.

4.3.6. Sensor Performance

4,3.6.1. Sensitivity

The instrumented finger was calibrated in all directions by
placing small weights on the free end of the sensor, and
the results are shown in fig. 4-5. 1In the major direction
{X)y the sensor was TfTound to have a sensitivity of
1.27 mV/N and a repeatability of * 0.7 4 or % 0.003 mV;

hysteresis was negligible.

4.3.6.2. Cross—-sensitivity

The y and z cross-sensitivities were 0.027 mV/N, or 2 % of
the normal sensitivity (fig. &-5). Van Brussel reported a
3 % cross~sensitivity error for his &-component force-

torque wrist sensor [48].

When the finger pressed against the table, it had a maximum
spring 1loading of 500 gf (i.e. in the z direction), and
this gave rise to an error of 0.10 mV (or 8 gf). Since this
was a small and fairly constant error Quring sewing, it was

not considered a significant error.



However, if the finger was not accurately orientated
perpendicular to the table, then as the robot pushed the
finger against the table, it exerted a load on the finger
in the x direétion, and the sensor registered an apparent
tension. Consequently, care was taken to assure that the
finger was orientated perpendicular to the table during

sewing to minimize this error.

i
: A ! !
. e
U IR IR
e . ! H
: i
S| ’
i - [ .-:- he
C :
P o P
OUTPUT { |0 : R R B
VOLTAGE N ;
x K
Vo : : A
. 0.9 : . S I
(mV) i ' '
1 P el
- 0-6] b b Pt
R BIVARE
04 ! Do
: ' . R
P :
0-1] !
! | ; S
? l L
é o | ol |-.g'i
% { [ 4
oo | 200 L 4o )
: : . T R :
Py i RN
, i : ! | - m—— e
' | ! ! i I '

Fig. 4-5: Measured Sensitivity of Tension Sensor




96

4.3.6.3. Natural Frequency

The sensor’s mnatural frequency, whith was measured by
“"flicking”" the finger and recording the signal trace, was
found to be approximately 200 Hz. This fairly low value is
inevitable in designs in which a lumped mass is attached to
the main body by slender elastic beams. Van Brussel

reported a natural frequency of 296 Hz for his sensor [48].

When the end-effector was not in contact with the table,
oscillations of up to 0.2 mV were observed in the tension
sensor signal, which were due to the sympathetic
vibration of the sensor with the robot motidn. When the
finger was stationary and pressed against the table, it
would pick up the table vibrations due to the sewing
machine, and at high speed the amplitude of tHis noise
signal was considerable (up to 1.2 mV). This high noise
level was caused by vibration of the polished stainless

steel cover which was lposely placed on the table top.

However, when the finger moved with the cloth as it was
being sewn, the sensor signal was smooth and noise-free,

since the cloth tension damped out the influence of the

table vibrations.

4.3.7. Signal Conditioning
4,3.7.1. Signal Conditioning Requirements
The sensor’s raw signal was viewed on an oscilloscope,

whilst the robot was holding the cloth, and tracking the

feed speed using open loop control. The signal had a smooth



97

sinusoidal form and its frequency was proportional to the
sewing speed. It was obvious that the intermittent nature

of the dog feed mechanism was giving rise to this periodic

variation in the cloth tension.

Since the signal had a smooth wave form, no filtering of
the signal was required. However, the tension control could
not use the raw tension signal directly, since digital
control systems operate only on intermittent samples of the
inputs, and the sampling rate 1is independent of the

oscillation of the tension signal.

Consequently, a peak detector and an Analog to Digital
Converter (ADC) were required to interface between the IBM
AT and the tension signal, so that the 1BM AT could read

the maximum tension signal that had occurred since the

previous sample.

4.3.7.2. Peak Detector

A purely analog peak detector circuit could be designed for
the sensor signal, based on 2 op-amps, a FET switch and a
diode. These analog circuits require a compromise between
accuracy and bandwidth (551, and they are therefore
optimized for a specific frequency range. However, since
the sewing machine could be operated for a wide range of
speeds, a digital peak detector was implemented because
there would be no drift of the peak reading even for

very
slow sampling rates.

The digital peak detector was incorporated within the ADC
circuit, and the detailed design is described in section

"03.7-‘1’.



98
4.3.7.3. Anafog to Digital Converter

An B-bit resolution was considered sufficient for the ADC,
because the ADC’s sensitivity could be easily adjusted, and
the measurement range could be centred on the desired
tension. If the control system is well behaved then it
should suffice with a fairly narrow measurement range about

the reference level.

The ADC was sensitive only to positive signals, so that any
negative sensor signal would read as =zero. Any signal
above the full scale setting would read as @255 tension

units. Thus the cloth tension could only be measured within

a range of 0 to 255 tension units.

For convenience, tension units are abbreviated to tu

throughout the remainder of this thesis.

4.3.7.4. Detailed Design

The circuit diagram of the ADC and peak detector is shown

in figo 4_6.

. The tension sensor’s signal is fed into a comparator, I1C1,
which compares it with the output of an 8-bit DAC (digital
to analog converter), IC2. The DAC’s output is determined
by a binary ripple counter, IC3, which 1is clocked at
0.89 MHz. The counter counts clock pulses until the
comparator detects that the DAC’s output is greater than
the tension signal; the comparator then switches off the
clock via a NAND gate, 1IC4. This arrangement of a counter,
a DAC, a clock and a comparator is based on the ‘"single-
slope integration” technique of analog to digital

conversion [55]).



*btd

94

31ND410 1Qy/4032333q dead

4 10| | 13

114
1031 10
N

ol

1=

DMDE BY 18 RIPPLE COUNTER (2 X 74LS74)

TENSION SENSOR SICNAL

(AFTER APURICATION)

1/0 READ

_<
8
1 I:;q-hl‘un-

v
(1%
2
LA 3 ic4
i 311
COLIPARATOR
47
SENSITMTY
) -
»,
ADJUSTMENT

10k
vol

RESET
" ofTr
COUNTER 13 2 '; 3
ey B 1Sty
2 3 [y
-¢1 2 > X 1BU AT
4 L AT DATA BUS
ir 23 IA K4
1040 2 4 493
Te Do

Ve

66



100

Conversion begins when the latch ICS is read. The I/0 READ
line, "after a small propagation delay, resets the counter
to zero, the DAC’s output reverts to zero and the
comparator releases the clock signal to the' counter. The
counting is stopped either by the comparator, when the
tension signal has been equalled, or by IC6 which detects
counter overflow. The counter’s output is frozen wuntil

either the tension signal goes higher, or the counter is

reset.

The latch ICS tracks the output of the counter, so that it
will contain a digital value proportional to the maximum
tension since the 1last time it was read. The small
propagation delay ensures that the conversion cycle begins
only after the previous peak tension measurement has been
read into the IBM AT. The 0.89 MHz clock signal is obtained
from the IBM AT 14.31 MHz system clock, via a "divide by
16" circuit constructed from four flip flops arranged in a

ripple counter configuration.

With a 0.89 MHz clock and an 8-bit counter, the maximum
conversion cycle time for the peak detector/ADC described
above is ess /7 0.89 = £286.5 Hs. Since the tension
signal was observed to be a smooth signal which oscillated
at the sewing machine’s frequencys, this conversion rate was
satisfactory for tracking the peak tension, (the maximum

sewing frequency was about 80 Hz).

4.3.7.5. Sensitivity

The wvoltage divider VD1 provided a sensitivity control so
that the full scale of the ADC could be set. When the

voltage divider restricted the DAC’s output to a range of O



101

to S V, the ADC would register a full scale reading
(255 tu) for any tension signal above 5 V. Consequently,
the B8-bit resdlution would be spread over a smaller voltage
rangey, and the ADC’s resolution would be #20.01 V. If the
maximum DAC .output was increased to 10 V then the ADC’s

resolution would be only 20.02 V.

The sensitivity was adjusted so that the mid-point of the
measurement range (i.e. 127 tu), corresponded approximately
with the desired cloth tension. The sensitivity was set
with the robot finger lying horizontal. A 100 g weight was
placed on the free end of the sensor, and thé sensitivity
was adjusted until a reading.of 156 tu was obtained. Thus

1 tu was equivalent to 0.64 gf.

Fig. 4-7: Closed Loop Tension Control System




102

4.4. Closed Loop Control System Design

4.4.1. Control System Approach

4.4.1.1. Block Diagram

The block diagram for the closed loop control system

is
shown in fig. 4-7, and the symbols are defined in
table 4-1.
ANSI Std Nomenclature| Description
Vv Tracking Signal shaft encoder count
R Reference Input desired cloth tension (tu)
E ActuatingASignal ] cloth tension error (tu)
U Unmodified Variable cloth feed speed (mm/hs)
c Controllea Variable actual cloth tension
B Feedback Signal measured cloth tension (tu)
M Manipulated Variable ALTER data for X direction
A Input Element relationship between V
and U (equation (4.2))
G, Control Elements transfer function
Ge System Elements . controlled system (Plant)
H Feedback Elements tension sensor and signal
conditioning circuitry

Table 4-1: Tension Control System Terminology



103

The "Plant”, G. , refers to the combination of the following

elements :

* ALTER communications
* VAL II control system
* PUMA 560 robot

* cloth

* sewing machine

In the closed 1loop systems the open loop system

tracking the sewing machine speed (section 4.2.3.2),

for

was

retained, but the open loop robot speed demand was modified

by negative feedback of the cloth tensions; in the following

manner ;

-~ If the robot is lagging behind the cloth feed,

the

cloth tension will rise and produce a negative tension

errory which will 1lead to an increase in the robot

speed demand.

- If the robot is moving too fast, the cloth will

go

|
slacky and the positive tension error will lead to a

reduction in the robot speed demand.

4.4.1.2, Software Implementation

The closed loop control system was implemented in the

Tasksy using the following algorithm :-

SEW



104

while not end_of_seam do

begin
read V ( shaft encoder count)
calculate U ( sewing speed )
read B ( cloth tension )
calculate E ( tension error )

calculate M = (G, E) + U
send M to VAL II wvia ALTER

end

4.4.2. Preliminary Investigation into Closed Loop Control

A series of experiments were carried out to explore the
control problem and to investigate the effect of different
transfer functions. Although satisfactory control was not
achieved by these trial-and-error attempts, various control

problems were highlighted.

4.4.2.1, Start-up Acceleration

When the sewing machine started sewing, the cloth
experienced a large initial tension due to the time delay
between start-up of the sewing machine and the robot. Such

a large tension peak caused havoc in the closed loop

tension control system.

The problem was effectively solved by slowly accelerating
the sewing machine at start-up. The start-up acceleration

was controlled by a function called speed_control (see

Appendix D).



105

measured tehsion
-

robot hand

finger
pressure

actual cloth tension
-

-
table friction

Fig. 4-B: Effect of Table Friction on Tension Measurement

4.4.2.2. Effect of Table Friction

When a large proportional gain was applied to the tension
errors the robot "vibrated" about a stationary point. This
behaviour was traced to the effect of the table friction on

the tension measurement.

When the robot moves forward (fig. 4-7), towards the sewing

machine, the force sensor measurement is :-

measured tension = cloth_tension - table_friction




106
However, when the robot moves away from the sewing machine,

the table friction changes direction (since friction always

opposes motion), and the force sensor measures the

following :-

measured tension = cloth_tension + table_friction

Consequently, when the robot attempted to move backwards in
order to tension the slack cloth, it immediately sensed an
apparent cloth tension, even though the cloth was still
slack. The solution to this problem was to limit the robot

motion, in the x direction, to forwards only.

4.4,2.3. System Instability

Whens under closed lcocop control, a small proportional gain
was applied +to the tension error, the system became
unstable and the cloth tension oscillated between very high
and zero tension. When the gain was reduced to a value
close to zero, the system was effectively under open loop
control, and the cloth tension tended to drift off towards

either very high or zero tension.

The difficulty in obtaining stable closed loop control was
due to the characteristics of the "Plant". Since a small
extension of the cloth results in a large increase in cloth
tension, the Plant has a high inherent proportional gain. A
system with a high proportional gain has a greater tendency
to go unstable, due to a reduced stability margin [(57]. The
stability margin can be increased by introducing

compensation into the transfer function.



107

4.4.2.4. System Compensation’

In classical control systems, there are two main forms of
compensation that can be introduced into the controller
transfer function G, , viz. derivative and integral control.
Derivative control can increase system damping and improve
system stability, but it has no affect on steady-state
errors and it accentuates any noise or disturbances in the
system. Integral control reduces steady-state errors to
zeros but they increase the order and type of the system,

and therefore it may make the system even more unstable.

Although the raw tension signal had a smooth waveform when
viewed on an oscilloscope, the variation in the values of
peak tension, which are used in the control algorithm, was
noisy. Furthermore, the slow sampling rate of the peak
tension would lead to large errors when calculating its
time derivative. Consequently, derivative control was

unsuitable for this system.

However, integral control could be beneficial to long-term
steady-state tension control, provided that the combination
of proportional and integral gain values give sufficient

system stability [57,681].

4.4,2.5., Implementation of Integral Control

The tension integral was calculated by maintaining a
variable which contained the sum of all previous peak

tension readings.

A consequence of a slow start-up (section 4.4,.,2.1.) was a
significant build-up in the tension integral of the start-

up tension errors. This problem caused a distorting effect



108

on the integral control, and it was effectively solved by
resetting the integral to zero on the first occasion that

the tension passed the desired tension.

4.4.2.6. Effect of Speed on Closed Loop Control

As explained in section 4.4.1.2. and in fig. 4-7, the ALTER

data in the X direction was calculated as follows :—
™M = Uu + E G, (4.13)

When the closed loop control was attempted for different
sewing speeds, it was obvious that this control equation
was inadequate. Although U is proportional to sewing
speed, EG, is not and therefore the modifying action of EG,
on M will be effectively reduced with increased sewing
speed. The control equation was modified to make the
controller, G:.» independent of the sewing speed, as

follows :-
M = U1+ EG ) (4.14)

In other words, the ALTER data, M, is modified

proportionately by the tension feedback.

4.4,.,2.7. Final Block Diagram

The final block diagram for the closed loop control system
is shown in fig. 4-9, The modified control equation is
represented by the multiplication junction, and the
controller transfer function, G, , has been expanded to show
the proportional and integral components, K, and K

respectively.



109

Fig. 4—9: Modified Block Diagram of Tension Control System

4.4.3. Bode Design of Control System

Although the preliminary experiments had provided much
valuable information concerning the control problem, the
Plant’s characteristics were still largely unknown,; and the
trial~-and-error attempts at selecting suitable integral and

proportional gain values had been unsuccessful. Clearly, a

‘formal control system design procedure, based on more

precise knowledge of the Plant, was necessary,




110

The system has several significant nonQIinearities, which
are listed and discussed below section 4.6.1. A design
procedure which accounted for these non—-linearities would
require a  complete analysis of each one and of their
interactionsy which would be very difficult to achieve
satisfactorily. "Linearization" techniques, in which the
system is approximated to a linear system in the region of
interest, are applied to non—linear systems, whenever
applicable, so that classical 1linear control design

procedures can be used [571].

Since a mathematical description of the <cloth tension'
system would have been difficult to derive, an
experimentally based design procedure was more suitable.
The Bode design method requires the open 1loop frequency
responses which can be measured experimentally. The Bode
technique is based on the assumption of a 1linear system,
and although a linearization approximation was not strictly
applicable to this system, the Bode design procedure was
carried out in 'order to obtain an approximation of the
Plant’s dynamic behaviour, and to assist in identifying the

"ball park"” in which the correct gain values lie.

4.4.3.1. Bode Design Procedure

The theory on which the Bode analysis and design procedures
are based, is explained in many textbooks [57,68,46%]. The

Bode design procedure has the following stages :-

a) The open loop frequency response of the system (i.e
GeH(jw)), is obtained either by measuring the steady-
state response in amplitude and phase to a sinusoidal

input function, or by analysis.



111

b) The frequency response function is plotted on a Bode

diagram.

c) Control system stability performance is selected in

terms of gain margin and phase margin.

d) A compensation function is chosen so that it will
"reshape” the G.H(jw) plots and provide the required

stability performance. This stage may be iterative.

4.4.4., Measurement of Open Loop Frequency Response

4.4.4.1. Experimental Technique

The open loop frequency response was measured as follows :-

a) The sewing speed was fixed to 2000 stitches per
minute. The stitch length knob was adjusted so that

the cloth tension was constant, under open loop

control.

b) The test fabric that was selected is described in

section 4.4.4.2. The dimensions of the test panel was
710 mm by 280 mm.

c) The first 170 mm of the test panel were sewn up under

pure open loop control, to ensure steady state

conditions.
d) For the remainder of the length, a sinusoidal function
was superimposed on the ALTER data, and the resultant

tension variations were recorded every handshake.

e) The amplitude of the forcing function was fixed at



112

either 1 mm or 2 mm and the period of the forcing

function was varied between 4 and 24 handshakes.

) The amplitude and phase angle of the. tension

variations were extracted using the auto-correlation

statistical technique.

g) The maximum tension amplitude that could be measured
with an 8-bit ADC and a sensitivity of 0.64 gf/tu was
* 80 gf. The tension sensor sensitivity was halved to
1.28 gf/tu, so that a greater range of tensions could
be measured. The tension measurements taken during
these tests were then doubled so that the sensor’s

effective sensitivity was still 0.64 gf/tu.

4.4,.4.2. Test Fabric

A light, tightly woven cotton plain weave fabric was
selected for the experimental measurement of the open loop
frequency response. This fabric, which was also used in the
majority of the final performance tests (sections 4.5.1.
and 5.5.1.), was chosen because it was relatively sensitive
to to pucker, compared with suiting fabrics. Excessive
tension variations during sewing produced puckered seams in
the test fabric. The test fabric weighed 0.0143 g/m?2, with

54 ends per inch and 46 picks per inch.

4.4.4.3. Results

Fig. 4-10 shows examples of the tension variations
obtained, after reduction by auto-correlation. The full set
of experimental results is given in table 4-2; the Bode

plot diagram for these results is shown in fig. 4-11.



113

AMPLITUDE

OF

FORCING

FUNCTION

(mm)

AMPLITUDE

OF

TENSION'

VARIATIONS

-
3
+
~

Cloth Tension Variations Due to Sinusoidal Forcing

Fig. 4-10



114

! (rads/s)

GAIN

(db)

PHASE |

ANGLEi_

Bode Plot Diagram for Cloth Tension Control System

4-11

Fig.



115

Forcing Function Tension Variation
Test
No Amplitude| Period |Frequency|Amplitude|Phase Shift
mm hs rad/s tu degrees
1 1.0 4 S6 12 260
e 2.0 B r=42] 48 215
3 2.0 12 19 100 186
4 2.0 16 14 138 160
3 2.0 20 11 166 148
6 2.0 24 9 212 142

Table 4-2: Experimental Results for Open Loop Frequency

Response

4.4,5. Compensator Characteristics

The controller transfer function is given by :-

G,E = M-U = U1+ K E+ K J E ) (4.15)

For simplification; a constant sewing speed, U, can be
assumed, and then the second summing junction can be

included in the controller transfer function, as follows;

GGE = M = U(K.E+KgJE) (4.16)



116

Taking the Laplace Transform yields,

M(s) = U (K, E(s) + K E(s) ) (4.17)

=1
The transfer function of the controller is then given by,

P(s) = M(s) = s UK, + UKe ' (4.18)
E(s) s

The transfer function can be reduced to Bode form by

replacing s with jw, as follows,

Pljw) = M{jw) = jw UK, + U Ka (4.19)

E(jw) jw

Rewriting (4.19) gives,

P(jw) U Ke . 1 e (1 + jw Ky ) (4.20)

jw Ke

constant . integrator . single zero

The magnitude and phase angle of the compensator are given

bYa

mag(P(jw)) = U J( K& + (K 7/ w®) )

(4.21)
ang(P{jw)) = tan? ( K. )

WK|

Figure 4-12 shows the Bode plot of the compensator
function, P(jw)y, which can be sketched directly from

equations (4.20) and (4.21).



117

UK, _
Qore = =10 a(L/v{ccw[f_
GAIN '
'(db)
UK, 4

) w (rads/s)
. K .
w = 2 (on log scale)

Fig. 4-12: Bode Plot Diagram of Compensator, P(jw)



118

4.4,6, Determination of Compensator Parameters

4,4.6.1., Calculation Method

The control system was designed to meet the following

stability criteria,

i

gain margin 8 db (4.22)

300 L]

phase margin

The K, and Ke factors were calculated +to give maximum
system performance within the above stability criteria,

using an iterative graphical procedure, as follows :-

a) Find the maximum K; that meets both the phase and gain

margin requirements,; assuming K. is zero.

b) Calculate K., so that we, the centre of the
compensator frequency range, 1is positioned 2n rads/s
below the -180° crossover frequency.

c) Recheck that the stability criteria are still
satisfied for this value of K..

4.4.6.2. Compensator Calculation

a) Apply phase margin criterion, assuming K. is zero.

The phase margin criterion states that at a phase

change of 1350°, the system gain should be less than 1
(or O qb).



b)

c)

119

From fig. 4-11, 150° corresponds to a gain of 75 (or
37.5 db) for the uncompensated system, and therefore

the maximum value for UK, is -37.9 db (or 0.0133).
Apply gain margin criterion, assuming K. is zero.

The gain margin criterion states that the gain should
be 1less than -8 db at the 180° crossover frequency.
From fig. 4-11, the uncompensated system has a gain of
42 (or 32.5 db) at the crossover frequency. Therefore

the largest value for UK, is -40.5 db (or 0.0094),.

All the frequency response tests were carried out at
2264 stitches per minute, with a stitch length of
3 mm, which resulted in an ALTER demand of 3.17 mm per

handshake. Therefore, the maximum value for K, is
Ky, = 00,0094 / 3.17 = 0.003 tu~ (4.23)

Calculate Ke by graphically positioning ws 2w rads/s

below the crossover frequency, on the Bode diagram.

From fig. 4-11, the crossover frequency for the

uncompensated system is 17.7 rads/s. From fig. 4-12,

Wa = Ke = 17.7 = 2.82 rads/s (4.24)
K; ETT

Hence,

Ke = g2.82 K, = 0.0085 tu-t g (4.23)

However, Kg is required in terms of handshakes, not

seconds.

Ke = 0.0085 728 = 0.0003 ¢tu!hg- (4.26)



—
7l
!

fﬁ(radslé)t

PN fem . 3SYHd .

a -
w -
| A
- o
T I O — Y P— - - =
= B e A SR e e s e o . T -~
o
=
T I i \ i J | T T T - T T T T T T
2 ﬂ o ° o o o Q o o
~+ ~ ~ - ) - ~ - ~ Q o o T o
. e - ' ) vt e A N ———— >

GAIN
(db)

PHASE

Modified Bode Plot Diagram

4-13

Fig.



121

d) The modified open loop Bode plot 1is plotted 1in
fig. 4-13. The crossover frequency is now 15 rad/s,
the gain margin is &4 db, and the phase margin is only

20°., Consequently, K, and K. have to be reduced

further until adequate stability margins are obtained.

Additional calculation iterations were not attempted since
the calculation procedure 1is only approximate for this
system. The Bode design procedure assumes a linear system,
and the cloth tension system is particularly non—-linear.
Therefore, the controller transfer function was "fine-

tuned" experimentally.

4.5. Control System Performance

4.5.1. Performance Criterion

When considering the performance of the tension control
systems, two different criteria could be used; the standard
deviation or the average of the temsion error. The standard
deviation gives a measure of the tension fluctuations, and
the average error indicates the tension offset during the

sewing operation.

Although tension fluctuations are detrimental to seam
quality, a small constant offset to the demand tension will
not cause puckering. Since the ultimate objective of the
tension control system was to produce pucker free seams,
the standard deviation was used as the performance
criterion for comparing the system’s performance under

different conditions.



122

Initial performance tests were performed using the same
test fabric used in the Frequency Response Measurement
Experiment (section 4.4.4.), and the cloth panel had
approximately the same dimensions. The reference tension,

R, was set at 70 tu (or 45 g) for all performance tests.

Although, the seam quality is inversely proportional to the
standard deviation of the tension error, the sensitivity of
seam quality to tension variations varies enormously for
different fabrics [(71]. The test fabric was particularly
sensitive +to pucker due to its light weight and tight
weaving, such that a standard deviation of tension error of
30 tu or more resulted in an unsatisfactory puckered seam.
When the tension variation was controlled to 20 tu or less,

the resultant seam was of excellent quality.

When two plies of the test fabric were sewn up, the extra
weight reduced the pucker sensitivity to tension
variations, such that a standard deviation of 80 tu
resulted in an acceptable seam. When a heavier suit fabric
was tested, a similar reduction in pucker sensitivity was

observed.

4.,5.2. Experimental Fine-Tuning

The Bode design procedure indicated that the integral and
proportional gain parameters should be less than 0.0003 and
0.003, ;espectively. During the preliminary experiments,
such low values had been considered insignificant, and
therefore satisfactory control had been elusive. Once the
correct range of values was known, the optimum gain values

were easily determined experimentally.



123

The performance results for a sample of the fine tuning
experiments are given in table 4-3. The following gain
values were finally selected as the optimum values for
providing stable and adequate tension control for a single

ply of the test fabric over a range of speeds :-

K, = 0.0015, K. = 0.00003 (4.27)
The results in table 4-3 demonstrate that system
performance was particularly sensitive to excessive

proportional gain, K,. A sample printout of the robotic
sewing program, showing details of the performance of the

cloth tension control, is shown in fig. 5-21.

K, Ke Update Sewing Std. Dev of }
Rate Speed tensn error
tu-? tu-t hs™t hs-t rpm tu
0.0015 0.00003 1 2270 24.4 '
0.0015 0.00010 1 2270 31.1
0.0015 0.00001 1 2270 27.1
0.0045 0.00003 1 2270 61.4
0.0005 0.00003 1 2270 27.1

Table 4-3: Sample of Fine-Tuning Experimental Results



124
4.5.3. Performance Versus Speed

Once the optimum gain values had been determined, the
control system’s performance was measured for a range of
sewing speeds. The results are shown in fig. 4-14 and the
performance curves are identified 1in accordance with

table 4-4,

For an wupdate rate of { hst, the tension control was
satisfactory up to about 2000 rpm. A transition was
observed at approximately 27530 rpm, such that higher speeds
produced much poorer seams. N
The processing overhead for the tension control
calculations was not significant, so that the maximum
update rate was easily achieved. However, the seam width
control system overheads were significant, so that when
both systems were running simultaneously in the edge
seaming operation, the update rate was reduced to at least
0.5 hs™t . The performance of the tenmsion control system
was measured for a reduced update rate of 0.5 hs-? (see

fig. 4-14).

The tension control was unaffected by the slower sampling
rate at slow speeds, since at slow speeds a digital
control system is effectively continuous. The sampling
interval was 2 hs (or 56 ms) and at 1000 rpmsy each stitch
takes 60 ms. Since the control is based on peak tension
measurements, the cloth tenéion cannot be sampled more than
once per stitch. Consequently, the control system’s
effective sampling rate is limited by the sewing speed for
speeds below 1070 rpm, and at higher speeds, it is limited
by the ALTER update rate, viz. 0.5 hs™,



125

For speeds above 2000 rpm, the tensioh.control was markedly
worse for the slower update rate, as the sampling interval
started to influence the control system performance. The
transition in the performance curve occurred at a lower

speed, 22350 rpm, for the slower update rate.

T T L T ' : C ST
b ! o | ; O DU g IR . : : :
STANDARD DEVIATION Olei’_,f;.E N T
CLOTH TENSION VARIATIONS‘*-JE I EE R T
i . i 3 | '
Ctu ) b I T S |
o :
.
L
o

: - ) 14 , . T . ) [ T
;,§  - q ; ! %.hoo; L '.logo : Jo000 : 4aqo So00
SRR ’\i@”:’ SEWING MACHINE ..

-§'"'g S RPM)

Fig. 4-14: Tension Control System Performance




126

CLOTH‘V"v’O?‘\KERS' LIBRARY

UNIVERSITY OF LEEDS

M Curve Update No of Sewing K, Kz

Frequncy Plies Directn ”

juI]
(WY

normal 0.00150 0.000030

b . 1 normal 0.00150 0.000030
c . 1 bias 0.00150 0.000030
. =] normal 0.000735 0.0000195

Table 4-4: Key to Fig. 4-14

4.5.4. Performance Versus Fabric Properties

4,5.4.1. Sewing a Two-Ply Panel

Two plies are approximately twice as stiff as one ply,
therefore the gain of the open loop transfer function of
the Plant, Ge, will be doubled by adding a second ply.
Consequentlys, the values of the compensator parameters, K,
and Ke , must be halved,; in order to maintain the equivalent
closed loop performance that was developed for a single

ply.

Fig. 4-14 shows the tension control system performance for
sewing two-ply panels of the test fabric, when K; and K.
were reduced to 0.00075 and 0.000015 respectively. Tension
control was slightly worse for two-ply sewing; the
performance curve closely follows the curve for single-ply

sewing.



127
4.5.4.2. Sewing along the Bias

All the tests so far had been performed with the sewing
direction approximately aligned with the warp or weft of
the cloth panel. A test panel was prepared which was
equivalent to the previous test panels, except that it was
cut across the "bias", i.e. the direction of sewing was now

at 45° to the warp and weft directions.

When the control system performance was measured using this
test panel, good tension control was obtained at all
speeds, (fig. 4-14)., This was due to the much lower
stiffness of the fabric in the bias direction, which
effectively reduced the gain of the system and improved the
stability margin. However, the fabric buckled badly during

sewing, because of the high deformation of the structure of

the fabric.

The buckling could have been reduced by either placing many
finger pads all over the cloth surface, to minimize the
fabric deformation; or by reducing the demand cloth tension
to the level of a few grams force. However, the demand
cloth tension could not be reduced to the low level
required, because of the table friction and the hysteresis

in the sensor design.

4.5.4.3. Different Fabrics

When other woven fabrics were tested, each fabric was found
to require different values for K, and K.. For example,
the gain values had to be reduced by at least 60 % before
equivalent tension control was obtained on a heavy trouser
material. However, the heavier fabric was much less

censitive to tension variations.



128

When a single jersey knitted fabric was tested, the tension
variations were small, but the panel buckled badly. The
fabric behaved 1in a similar fashion to the origimnal test

fabric when it was sewn along the bias direction.

4.5.4.4. Spring Loading

Initially, all single-ply tests were performed with lightly
sprung fingers (spring rate of 7 g/mm). When two-ply
panels were tested, it was observed that when the top ply
was pushed forward by the finger, it separated from the
bottom ply which was held taut by the table friction. This
problem was corrected by installing stronger springs with a

spring rate of 70 g/mm.

The single-ply tests were repeated with the stronger
springs, and no significant difference in the tension

control or in the seam quality was observed.

4.6, Discussion

Maintaining a small tension on a cloth panel during sewing

using an adaptively controlled robot was found to be a

complex problem. The system’s complexity is due to the

combination of mnon-linear elements, which must be
L)

ijdentified and understood individually. The mast serious

and troublesome nan—-linearities are those associated with

the mechanical properties of the fabric.



129

4.,6.1. System Non-Linearities

The major potential sources of non—-linear behaviour in the

tension control system are as follows :-

a) Time delay between measuring tension and the robot’s

corrective action.
b) The mechanical properties of the fabric panel.

c) The cloth tension can only be zero or positive since

cloth buckles under compressive loading.

d) The table friction causes a dead zone, 1i.e. small

tensions are measured as 0 tu.

e) The robot motion was limited to forward motion only,

due to the effect of the table friction.

Other non—linearities, such as . the velocity and
acceleration limitations on the robot motion and the 8-bit

resolution of the tension sensor, were not significant.

When the cloth tension control was satisfactory, the
robot motion was smooth and continuous and the tension
reading seldom dropped to O tu, i.e. items c), d) and e)
did not affect the control system since the saturation
levels were avoided. However, if the tension control was
attempted at higher speeds or if a lower reference cloth

tension, R, was specified, then these non-linearities would

soon affect the control directly.

The first two items are discussed further below.



130
4.,6.2., System Time Delay

Time delays have a destabilizing effect on control systems,
and in particular, the stability of digital control systems
is dependent on the sampling time delay [57,68]. At slow
sewing speeds, the system time delay is insignificant and
the control is effectively continuous. However, as
demonstrated in section 4.5.3., system performance can be

improved at high speeds by reducing the time delay.

In the tension control system developed above, the affect
of the time delay on the system dynamics has been ignored.
In fact, different gain values are optimum for different
sewingf  speeds. The system overall performance could
possibly be improved by adjusting the values of K, and K.

for different sewing speeds.

4.6.3. Mechanical Properties of Cloth

Fabr&cs have highly non-linear mechanical properties. Under
tensile loading, they exhibit anisotrophy, a strain-
dependent modulus and hysteresis. Under compressive loads
they buckle and their behaviour under shear loading is also

complex [&601.
4.56.3.1. Tensile Loading along Warp or Weft Directions
Woven fabrics have non-linear load-extension curves, and a

typical curve for the warp or weft directions is shown in

fig. 4-15 [59,601,



131

YARN EXTENSION REGION

LOAD

DECRIMPING
_REGION

INTER-FIBRE
FRICTION EFFECT

EXTENSION

Fig. 4-15: Typical lLoad Extension Curve for Woven Fabrics

Three regions or phases can be identified on the curve

below the yield point :-

a) The 1initial high modulus of the fabric is usually due

to frictional resistance to bending of the thread.

b) Once the frictional restraint is overcome, a low
~ modulus region is entered during which the threads in
the direction of the force become taut (i.e.

"decrimping”).



132

c) Once the slack in the fibres has been taken up, a high
modulus region 1is reached in which the fibres

themselves are stretched.

In addition to the non-linear load-extension curve, there

is considerable hysteresis between the extension curve and

the recovery curve.

These non-~linear characteristics were clearly responsible
for much of the difficulty encountered in developing the

cloth tension control.

4,6.3.2. Tensile Loading Along Bias Direction

The modulus of elasticity is slightly different in the warp
and weft directions. However, in the bias direction (at 45°
to the warp and weft)s, the modulus is very much lower than
in either of the other two directions, since the cloth has
a totally different deformation mechaniesm. When loaded
along the biass the cloth structure deforms by shear, i.e.
the lattice framework 1is sheared as the fibres align
themselves along the bias direction.’ This mode of

deformation is shown diagrammatically in fig. 4-16.

Although the lower modulus of elasticity improved the
performance of the tension control along the bias, the

shear deformation of the fabric structure resulted in
unacceptable buckling on either side of the high tension

zone, which 1lay between the fingers and the presser foot.
Although reducing the cloth tension to a few grams force
may prove beneficial, this form of buckling can only be
prevented satisfactorily by clamping the cloth against the

table over as much of the panel as possible, during sewing.



133

Vo il

LSS S S
(LSS
(/S S S )
[ L LS

BEFORE LOADING AFTER LOADING

Fig. 4—-16: Deformation of Woven Fabric, Loaded in the

Bias Direction

4.6.3.3. Knitted Fabrics

Under tensile loading, knitted fabrics exhibit very Hhigh
extensibility relative to woven fabrics, due to elongation
of their looped structure. This high extension was limited
to the high tension zone between the fingers and the
presser foot, and the shear forces between the high
and low tension zones generated sevefe buckling.
Consequently, knitted fabrics are even more difficult to

handle than woven fabrics cut along the bias.




134

4., 6.4. Conclusions

a)

b)

c)

d)

e)

)

A tension control system was successfully developed in
which an adaptive robot holds the end of a cloth panel

against a table during sewing.

The system is unsuitable for sewing along the bias
direction of a woven fabric, or for knitted fabrics.
Under such conditions, the fabric must be supported
over a much greater proportion of 1its surface to
prevent buckling, e.g. using a jig system or using a
belt arrangement (section 1.3.2.2.). Alternatively, the
tension measurement system could be redesigned to be

more sensitive, to measure cloth tensions of only a

few grams force.

Pucker free seams can only be produced at relatively
slow sewing speeds in fabrics which are pucker-
sensitive. Good quality seams can be produced in less

sensitive fabrics at any sewing speed up to S000 rpm.

The system’s gain parameters require modification for
different fabrics. However, values for K, and Ks can
be selected that will give good performance for a

range of fabric types, especially if the fabrics have

low pucker sensitivity.

The system can accommodate single or multi-ply cloth
panels, as long as the number of plies is known in

advance.

The system high speed performance can be improved by
reducing the system time delay, e.g. increasing the

update rate or reducing the handshake cycle time.



135

CHAPTER O

SEAM WIDTH CONTROL SYSTEM

S.1. Introduction

S5.1.1. Description of the Problem

In order to adaptively sew a seam parallel to the «cloth
edges, the robotic system must include a sensor that
measures the position of the cloth elige relative to the
rneedle in real time. This seam width measurement must then
be wused to computé a robot motion that will correct the
orientation of the cioth panel about the sewing needle and

elimiﬁate the seam width error.

The first edge seaming technique that was developed was the
FAR technique, in which the robot fingers held the cloth at
the far end of the cloth. The cloth tension control was

developed for the same arrangement, which is shown in

fig. 95-1.

When the robot holds the far end of the cloth, it can only
correct the position of the cloth by rotating it about the
sewing needle. Simultaneously, the robot must track the
cloth feed by moving forwards to maintain a small cloth
tension, using the tension control system described

earlier.



136

Thus the robot cannot directly correct the seam width
error, it may only alter the incident angle of the cloth
axis. This corrective action depends on the forward motion

of the cloth to help eliminate the seam error.

Fig. 5-1: Initial Finger Position for FAR Sewing Technique

5.1.2. Block Diagram

The control system is shown in schematic outline in

fig. 5-2, and the symbols are defined in table S-1.



137

Fig. 5-2: Seam Width Servo Control System

ANSI Std Nomenclature Description
Rs Reference Input desired seam width (mm)
Es Actuating‘Signal seam width error (mm)
Bs Feédbacg Signal measured seam width (mm)
Ce Controlled Variable actual seam width (mm)
Ma Manipulated Variable ALTER data
Ges Control Elements transfer function
Gae System Elements controlled system (Plant)
Hsa Feedbgck Elements vision system

Table S5—-1: Tension Control System Terminology



138

5.1.3. Design Options

The design of the tension control system was based on the
experimental measurement of the frequency response of the:
open loop system, 1i.e. GaH(jw). This design method, which
assumed a linear and continuous system, was necessary since

the system could not be readily analyzed or simulated.

The seam width control system also involves a complex
interaction of non-linearities due to fabric properties,
table friction, motion limitations, etc. Attempts were made
to analyse a model of the system, but they were aborted

when it was realized that too many simplifying assumptions

were necessarye.

A simulation technique was developed for the seam width
control problem which accounted for many system non-
linearities. The simulation was based on two reasonable
assumptions, that the cloth panel was stiff, and that the
robot could accurately manipulate the cloth panel. The
geometry of the system, robot motion limitations, vision
system limitations and system time delays were incorporated

into the simulation model.

5.2. Simulation Program
5.2.1. Development of the Algorithm

The simulation program, which was written in Turbo Pascal,
was developed in 3 phases. First the basic control problem
was simulated in which an ideal robot rotates the cloth by
a . computed correction angle based on accurate sensory

measurements. The actual limitations of the PUMA 560 robot



139

and the measuring accuracy of the Proposed vision system
were then introduced into the program. Finally a - graphic
display routine was added which permitted interactive use

of the program during the simulation experiments.

5.2.1.1. Basic Algorithm

Fig. ©O5-3 describes the basic control problem and defines
the main parameters which were used in the algorithm. The
symbols used in fig. 5-3, together with other parameters
used in the algorithm, are defined in -table S5-2. The
problem is viewed from within the coordinate frame of the
cloth panel,. as if the cloth remains stationary and the

sewing needle rotates and translates across the cloth.

N1

Contour

Fig. 5-3: Seam Width Control Problem




140

Item Definition

XY coordinates of a point w.r.t. axes of sewing m/c
usv coordinates of a point w.r.t. axes of cloth panel
& angle between y axis and u axis

3 angle of cloth contour tangent at y = 0 to x axis
LY corrective rotation angle to reduce seam error

&t system time delay

N, needle position at time ¢t,

Na needle position at time t.

N, P, measured seam width at time t,

Na P2 measured seam width at time t.= t,+ &t

Nz Py measured seam width after cloth rotated by S«
fu) contour of cloth edge

Ve cloth feed velocity

§s distance sewn during &t

Table 5-2: Definitions of Simulation Parameters

The system time delay, d&ts which is the delay between
measurement and actuation, 1is a lumped parameter which
comprises delays due to the vision system, processor

delays, ALTER communication delays and actuation delays.

The origin of the x and y axes is the needle of the sewing
machine as defined in section 2.8.4. In fig. 5-3, at time
t,» the x axis lies along the line N;N., and the y axis

lies along N, P, .
A parabolic function was chosen to define the contour of
the cloth edge, for the simulation program, because of its

gradually increasing curvature. The contour function was :-

flu) = uz / 200 (5.1)



141

INITALIZE N1, a £

MEASURE SEAM WIDTH N1P1 AND
ANGLE g, AND CALCULATE

SEAM WIDTH ERROR, E S

CALCULATE CORRECTIVE ANGLE ) P - P

da = K3E8+ K4ﬂ

Y
TRANSLATION

CALCULATE POSITION N2P2 AFTER

TRANSLATION BY 45 = dT v,

l | NO
\ 4

- ROTATION

ROTATE CLOTH BY ANGLE da
AND CALCULATE P

END OF SEAM 7

3

Fig. 5-4: Flowchart of Simulation Algorithm




142

The basic control algorithm, which is depicted in a
flowchart in fig. S-4, 1is based on the discretization of
the measurement and actuation processes, i.e. the motion of
the cloth due to the cloth feed mechanism and its rotation
by the robot are treated as separate short motion segments

which occur alternately.

Starting from a known initial needle position, N;, the
cloth is first translated along the x axis due to the cloth
feed during the system time delay (te-t;). At time t:. the
rdbot rotates the cloth by the corrective angle d&a which

was computed using measurements taken at time t, .

The cloth translation phase is depicted on fig. 5-3, by the
needle moving from N, to Nz, relative to the cloth contour.
The cloth rotation phase is depicted on fig. 5-3 as the
sewing machine rotating by &« relative to the cloth

contour.

The algorithm progresses along the seam length using the
"fime—marching" technique. At the end of each step the

parameters «s N, and P, are updated and the calculations

are repeated until a termination condition has been met.

5.2.1.2. Calculation of Seam Width Error, E,

The 1line joining the needle and the cloth edge on the
sewing machine y axis, N, P, which can be measured directly
by a vision system, is only an apparent seam width.

Fig. 5-4 compares the actual and apparent seam widths.

Since the apparent seam width changes with the rotation

angle of the cloth, «, 1initial simulation runs confirmed



143

that the control system required a more accurate value for
the seam width. The actual seam width cannot be measured
directly but a satisfactory approximation can be obtained
from the apparent seam width and cloth incident angle, @,

as follows :-
seam_width = N, P, cos @ (3.2)
Hence, the seam width error is given by :-

Eg = N) Pl cCos (3 - Rg . (S5.3)

measured Cloth

Contour

seam

width

actual

B

Cloth Contour Frame

Fig. 5-5: Apparent and Actual Seam Width




144

Equation (5.3) is accurate for a straight line cloth edge
and its accuracy is only dependent on the cloth curvature,
and independent of the cloth angle, «. Consequently, this
relationship was found to be suitable for the seam width

control.

5,2.1.3. Calculation of Cloth Rotation

The position of the cloth edge (P), as detected by the
vision system, for a particular needle position (N) and

cloth rotation angle (x), was calculated from equations

(5.95) and (5.8), which were derived as follows :-

Problem : given N, , N, and «, calculate P, and P,

where (N, yN,) and (P, sP, ) are the coordinates of

N and P relative to the cloth contour.

Solution : NP is a straight line with gradient - tan «.

Thus -tan ¢ = N, - P, (5.4)
Nu - P.
Since P lies on the curve, 200 v = u? (equation (5.1),
200 P, = (P,)2? (5.5)

Eliminating P, between equations (5.4) and (5.5) yields

(P, )2 + tan o« P, - (N, + N, tan ) = 0 (S.6)



145

Hence

P, = = 100 tan « #* 10 J(100 tan?2ax + 2 N, + 2 N, tan «)

(5.7)

Since the required solution lies in the first quadrant,

P. = = 100 tan « + 10 J(100 tanZz2a + 2 N, + 2 N, tan «)

(5.8)

5.2.1.4. Calculation of Cloth Translation

The translation phase of the simulation cycle simulates the
cloth feeding past the needle without any rotation taking
place. In terms of the cloth coordinates u and v, the
needle moves from location N; to Ne. The distance N; Na is
determined by the time delay &t, and the cloth speed V¢, as

follows :-—

N: Ng = é&s = Vr.' Gt - (S.9)

Refering to fig. 5-3, the new needle position, N., is given

by :-

Neu Niv - ( N; Ng sin « ) (5.10)

Nav = Nev - { N; Na cos « )

The new cloth edge location, P, can be calculated from the

cloth rotation equations (5.5) and (5.8).



1446

5.2.1.5. Control Transfer Function, G,

The control system’s transfer function had the following

form :-—-
Y] = Ks Es + Ke 8 (S.11)

Since the incidence angle, B, 1is in effect the derivative
of the seam width error,; Ess the two constants, K and K.,

are analogous to proportional and derivative gains,

respectively.

The derivative component was clearly necessary, especially
since &ux directly affects the angle 8 and only indirectly
affects Es . Thus, the control system must act to minimize

both Es and fi.

Initial simulation runs confirmed that an integral control
component, which would improve steady state errors at the
expense of stability margin, would not be beneficial since
the primary control difficulty was stability and the

steady—-state errors were not critical.

5.2.1.6. Robot Motion Limitations

The preliminary experiments in controlling the PUMA 560
robot via the ALTER channel showed that the tool’s velocity
and acceleration had to be limited to less than 8 mm/hs and
3 mm/hs/hs respectively (section 3.5.1). In addition the
robot’s reach was limited to

-200 mm < vy, < 200 mm (5.12)

where the main finger has coordinates (x, ,y,)



147

For a given correction angle, da, the required displacement
of the robot in the y direction is proportional to xr s the
finger to. needle distance. Thus the limitations of the
robot are more detrimental to seam width control for large
values of xr s 1i.e. when the robot is further away from the

needle.

Thus, in the real system, the robot approaches the needle
together with the cloth, so that the cloth can be rotated
by larger angles towards the end of the seam. In the
simulation program, x, was held artificially constant, so
that the effect of the robot’s limitations would not wvary
during the simulation run. This measure facilitated the
interpretation of the simulation results since the effect

of other variables, such as curvature, could be more easily

jdentified.

5.2.1.7. Simulation of Vision System

The simulation program was modified so that either two or
one camera vision systems could be investigated. A camera
was modelled as a linear array of pixels so that the pixel

resolution and the number of pixels could be specified.

One camera was assumed to lie along the y axis in order to
measure N; P, directly. In a two camera system, the second
camera was placed at a distance xcan in front of and

parallel to the first camera, 1in order to measure the

incident angle, 8.

If a second camera was included, then, vyem, the vy

coordinate of the cloth edge at X = %cans can be measured

directly. In the simulation program;,; vy was calculated



148

from equations 5.10,5.5 and 5.8, by substituting xcam for

N:Na and vyean TOor N:Pe.. The angle 8 was then calculated as

follows :-

(] = tant ( N, P, =~ Yean ) (5.13)

Xcan

If only one camera was specified, then # was estimated from

the rate of change of the seam width :-

f = tan"t ( NPk - NPy ) (S5.14)
ds
where NP is the value of N, P, for this time step

NPx-y is the value of N, P, for the previous time step

5.2.1.8. Graphic Output

The simulation program was extended to generate a graphical

display of the seam width control in real time. This
improved the wusefulness of the program since parameters
could be changed interactively and the results were

displayed graphically within a few seconds.

Two examples of simulation runs are shown in figs.5-6 and

5-7. Fig. S9-6 shows an excellent simulated seam produced
with a two camera vision system, and fig. S5-7 shows an

unstable control resulting from a one camera vision system.

The cloth edge and the ideal needle path, which are the

outer and inner parabolas respectively, were plotted at the
start of the run. At each time step, the line N,P, is
plotted. The P, end of these short lines always lies on the

cloth edge, by definition. The other end represents the



position of the
the beginnéﬁg
clearly visible
Es, 1is shown

needle position

149

needle, relative to the cloth contour, at
of each time step. The variation of dx is
from the gradient and the seam width error,

by the perpendicular distance between the

and the ideal needle path. '

"‘f

rop, KiL 03.087
deriv, K2 1.
init_alpha 5]
initial E £
dist, Xf
max Yf P’

3
8

DULRS

speed, Uc
nax acceln
Y?\ : max velcty
<?k no pixels
<A ix width g
: (ﬁ ine step 0.
%ﬁ\ dist, ¥cam 2
@ seam width 1
7

X~ _
<, P.I. = 27

0 OLOFORNR

[y

Fig. 5-6: Simulation Plot for Two Camera System




150

roy, K1 0O.07
dexriv, K2 1.
init_alprha 8
initial E &
dist, Xf
max ¢f 2
speed, Uc
max acceln 3
nax velcty 8
no pixels
1X width g,
1ne step 0.1
dist, Xcam &)
seam width 13

P.I. = 508.40

OO OSESDNADE

\\ ﬂ

k‘
.
.~
QX;
N —
) ‘.;-"A_.“

P
R g
% v""-ﬂ- .

Fig. 5-7: Simulation\Plot for One Camera System

5.2.2. Simulation Experiments
5.2.2.1. Performance Index (P.I.)
The seam contour function, 200 v = u? used in the

simulation was chosen because the curvature of the contour

gradually increased as the sewing progressed. A convenient




151

measure of control system performance was the distance sewn
before the seam error exceeded 1 mm. The initial values of
the seam width error and alpha were set at 0.5 mm and 0.4
radians,; respectively, for all the simulation runs. The

jnitial v coordinate of the needle was set at 199 mm.

5.2.2.2. Photocell and One Camera Systems

The one camera system was found to be unstable, under all
circumstances (fig. 5-7). The use of one or two photocells,

in place of the two cameras, was investigated, and was also

found to be insufficient.

5.2.2.3. Performance of the Ideal System

Fig. 5-8 shows performance plots for four sewing speeds for
the ideal system, i.e without vision system or robot motion
limitations. Each plot shows the maximum variation in K,
and K, for a speciffc value of performance index. The
parameter settings for the simulation runs that produced

these performance plots are listed in table 5-3.

The system’s stability margin is sensitive to the distance
sewn during the system time delay, &s, which is dependent
on both the sewing speed; Vc» and on the system time delay,

8ty (equation 3.9). Thus, if &t is increased then V: must

be decreased before the same performance is obtained, and

vice versa.

Variation in the desired seam width, R;,; had only a minor
effect on the control system. Large initial values of seam
width error or incidence angle, R, gave rise to

instability.



152

R ! R ! SIS AR t { A i
i : ~ P i i O ; i _ "-“ L -‘
SRR A D R 5
: . * . .. . ‘l . . . : . !
wiomeVe = 90 mm/s ;....;.--....I.‘__._..;.....-._s:.,__, O S
. R Ve = &0 mm/s
- L] . e ’ .-----.~:-u-

:
R I e R :
t [ TN T
R T e B

S T

H H
— e teesa -

Ve = 30 ‘mm/

DERIVATIVE .GAIN,

= ol ;2 i e3 i, e4 ., 08 : e6 I o
B e T R U S R T DS B BN A ey
it " _PROPORTIONAL GAIN, Ke o o {7 . 7i-
e Tee TN . L sy s i"'.'.f ‘25'.—.‘?'?’:'_.‘¢....'"..§‘...:' _Z .; .
Y T O TP . ot

Fig. 5-8: Effect of Speed on Simulated Seam Width

Control

Parameter fig 5-8 fig 5-9 fig 5-10

fig S-11

No. of pixels 71 31 31
Pixel width (mm) 0.9 0.5
Dist, xr (mm) 3 3 3
Delays &t  (s) 0.14 0.14 0.14
Disty Xcan (mm) a3 23
Speed, V¢ (mm/s) &0 &0
Perf. index, PI 268 268 2468
Seam width (mm) 13 13 13
Max. acceln 3 3 3
Max. velociéy 8 8 8
Max yr (mm) 200 200 200

31
0.5

0.14
23
60

208

Table 5-3: Parameter Values for Simulation Tests




153

5.2.2.4., Vision System Limitations

Fig. 5-9 shows the effect of pixel resolution on seam width
control performance. Increasing the pixel resclution (by
reducing the pixel width) significantly improved the
system’s stability for high proportional gains, but
slightly reduced the stability margin for high derivative
gains.
Increasing ‘the length of the pixel array above 8 mm, had
negligible effect on the system’s performance.
R ’ﬁé-;{*m&;*= = i i
AR !
21 PIXEL WIDTH . - 0. v
,:'¥,3;3°.°- e ';]-‘ss?i;;e’l”' " 193 am
E - ; -.3.'. .: ..E R
< 1 i f
EE i - i o
W, g i ‘ '
>t A o
- A U .
g i
> N ] .
ol Pt
@ SO
ai : ;
. ' l
T i : v
! ! . : -
..... i : Ty 1 |
H ! - ; 1 .
S N T ' ' !
N : | ! i
! ! : |
ot H N ] 7 N
.. o .5 %:é.‘::T. : "‘7' L ! ;
s, . M A4 f' ' : ) i
ROPORTIONAL ' I i
S R bl =T U | o l
R B RS R S I ! !

Fig. 5-9: Effect of Pixel Resolution on Simulated Seam
) Width Control




dw2TT

Fig. ©5-10 shows the effect of varying xcan» the distance
between the two cameras, on the system’s performance. The
optimum distance was found to be between 20 and 30 mm.
Performance was impaired for smaller values of xcw because
the accuracy of measuring the angle 8 was affected. Larger
values of xcan affected the accuracy of calculating the

angle # from the measurements, because the calculation was

based on a straight line assumption (equation 5.13).

Keey -+

DERIVATIVE  GAIN,

GAIN,

Ko [l

SR | o] ’ PROPORTIONAL

Fig. 5-10: Effect of xcwn Seam Width Control




155

5.2.2.5. Robot Motion Limitations

All the performance plots shown in figs.5-8 to 5-10, were
based on a performance index of 268 (section 5§.2.2.1.),
which corresponds to sewing accurately round almost the
entire contour up to the origin. However, once the robot’s
limited reach capability (equation 5.12) was included in
the system model, the system could no longer follow the

extreme curvature of the contour in the region of the

origin.

When the maximum reach limitation was introduced into the
simulation program, but without the dynamic robot motion
limitations, the maximum performance index obtainred
decreased as Xs (the robot to needle distance), was
increased. Obviously, this effect was due to the limit that

thejrobot can rotate the cloth.

Fig. S5-11 shows the effect of the robot’s dynamic motion
limitations (i.e. maximum acceleration and velocity) on
system performance. The performance plots are based on a
performance index of 208, which is more realistic for a
real robot with limited reach, since the tangential angle
of the edge contour does not exceed the maximum rotation
angle of the robot about the needle for the values of x,

considered.

Al though fhe acceleration and velocity limitations were
fixed to 3 mm/hs/hs and B8 mm/hs 'respectively, the
performance was plotted against xr, since the effect of
these dynamic limitations on the angular acceleration and
velocify of the cloth was dependent on %, . For small values
of xr» the dynamic limitations have very little affect on
the robot motion, but at large values of x, , they severely

damp down the cloth’s rotational motion.



156

As clearly shown in fig. 5-11, the dynamic motion
limitations improved the stability margin of the system for
large gain values by damping down excessive robot motions.
By preventing the high gain values from generating:
excessive robot motion, these limitations are keeping the

effective system gain within a stable region.

The dashed section of the performance curve for x, = 200 mm
denotes an untested region. The curves were plotted using a
modified version of the simulation program which
automatically found the minimum and maximum values of K,
for a particular value of K;. The search for minimum and

maximum values of K, had been limited to below 7.

—

L IR S L T P IR PR R

.....

\

$. \

J 200 mm .
=z

-

<

I

Lu k]

> m

—

- Al .t 7 b ey s N\ e S LT T .
a

>

Y

m .

w

ol

o 0. F&l : 03 . of oS 0-é 0.z ., 0.
. . ' o ) A

HE : L BTG
| PROPORTIONAL GAIN, Ka ".f” ;
l : l . i ' l f. ; . :

b ..

Fig. S5-11: Effect of x, on Simulated Seam Width

Control




157

5.2.3. Conclusions

The simulation program was a valuable aid in understanding
the system’s control problems and limitations. The
following conclusions were made from the simulation

experiments :-

a) Stable control could not be obtained using one or two

photocells,; or using only one camera.

b) Stable control «could be obtained using two linear
array cameras. The I-SIGHT cameras, which were
proposed for the FIGARO application and are described

later, were shown to provide satisfactory control

performance under simulation.

c) The performance of the seam width control 1is very
sensitive to system time delay, and the maximum sewing

speed is primarily limited by the system time delay.

d) The maximum curvature that could be tracked was
dependent on the robot’s reach limitations and an x.,
the robot to needle distance. The maximum tangential
angle of an edge contour that can be accommodated is

given approximately by :-
tan-? ((200 - Ye Y/ xe ) (5.15)

where vyn is the y coordinate of the main finger’s

initial position, at the start of the seam.

e) The robot’s acceleration and velocity 1limitations
reduced the system’s sensitivity to high values of K,

and K,y by keeping the effective gain values low.



iy

158

L) The initial seam width error and incidence angle

should be kept to a minimum.

g) The two cameras should be placed between 20 and 30 mm

apart.

5.3. Vision System

The simulation program confirmed that the vision system had

to have the following specification :

¥ high speed operation (to limit system time delays)

* two cameras

¥ a pixel resolution of at least 0.5 mm in the object

plane

* a pixel array length of at least 8 mm in the object

plane

5.3.1. Cameras

Two I-SIGHT cameras were installed on the sewing machine,

as shown in fig. 5-12. Each camera has a 32 X 30 pixel

array and their proprietary mode of operation is similar to
that ‘of CCD cameras. These cameras were chosen because of

their semall physical dimensions which permitted direct

attachment to the sewing machine.

Although there were few pixels per row, this crude camera

resolution was compensated by their close proximity to the

table surface, so that an object plane resolution of 0.5 mm



159

was easily achieved. Furthermore, since the processing time
associated with the vision system 1s proportional to the
number of pixels, the relatively small pixel array size

resulted in low system time delay.

Fig. 5-12: The I-SIGHT Cameras Mounted on the Sewing

Machine

The cameras operated in a binary mode only, i.e. a pixel
could be only black or white, and gray levels could not be
differentiated. The threshold between black and white was
determined by specifying an exposure value (between O and

127) which controlled the camera’s exposure time interval.



160

The cameras are focused by rotating the lens iﬁ the camera
body. An advantage of selecting cameras with a crude
resolution 1is that the depth of field is increased and

therefore they do not require accurate focusing [621].

5.3.2. Interface to IBM AT

The manufacturer’s of the I-SIGHT camera, Electronic
Automation Ltds provided an interface card which linked the
cameras to the IBM AT. The card, which 'was installed
directly in the IBM AT bus, contained a 280 microprocessor,
an EPROM and a block of dual ported RAM, in addition to the

necessary digitizing hardware for the cameras.

The 280 performed the frame grabbing and thresholding
operations, thus reducing the vision system overheads of
the 1IBM AT. The block of dual ported RAM constituted the

frame stores for two cameras.

" The 1IBM AT initiated a frame grabbing cycle by setting a
hardware flag to the <Z£80. Utilizing high speed DMA
transfers, the 280 loaded the frame stores with the
digitized and thresholded pixel data. When the 280 had
completed 1its operation, it signalled the IBM AT through
another flag. The 1IBM AT then requested the 280 to
relinquish the data bus to the frame stores and it then

transferred the pixel data to its internal RAM.

More details of the operation of the interface card are to

be found in reference (611,



1461

5.3.3. Lighting Arrangement

The lighting arrangement for the cameras, shown
diagrammatically in fig. ©5-13, comprised a projection lamp
and the mirror surface of the table. The cameras were
mounted vertically above the cloth edge and the lamp was
directed to shine a pool of light on the field of view at

an angle of about 45° to the table surface.

CAMERA

LAMP

CLOTH

SEWING TABLE

Fig. 5-13: Lighting Arrangement

When there was no cloth in the field of view then the
mirror surface reflected the light away from the cameras

and the image was black. When the cloth was present, the



162

light was dispersed by the cloth and the camera image was
white. Although this lighting arrangement was effective
with all kinds and colours of fabric, darker materials
required longer exposure times since they absorbed more of
the 1light and dispersed less. Satisfactory images were

obtained for white material for an exposure value of 10.

Unwanted reflections, which caused false images, were
avoided by careful positioning of the lamp and by painting

some of the polished surfaces black, such as the presser

foot.

' 5.3.4. Projection Lamp

The I1-SIGHT cameras required a lighting system that
provided an intense and uniform pool of light with Hhigh
infra-red content, that covered both fields of view. A
normal filament bulb and reflector system was found to be
unsuitable, since the filament created bright spots on the
illuminated object. Higﬁ qQality projection lamps include a
condenser lens,; which ensures that a uniform pool of light
is produced. A 48 W high intensity lamp, with an iris
diaphragm and focusing condenser assembly, was selected for

the FIGARO system.

The I1-SIGHT cameras are only sensitive to a narrow band of
light (approximately B20 nm wavelength) in the infra-red
portion of the spectrum, and they produce clearer and more
stable images when the object is illuminated by an 820 nh
laser beam. Al though, laser illumination was not
implemented in the FIGARO prototype, it has been used in

some industrial applications of these cameras [4631.



163
5.3.5. Software Implementation

The slave processor architecture of the camera interface
card permitted the IBM AT to perform its real time
processing of sensory data simultaneously with the frame

gabbing operation.

The 1image of the cloth edge captured by the cameras was
quite noisy even when a clean edge was viewed. The image of
the cloth edge would fluctuate by‘one or two pixels. Since
the cameras provided a two dimensional érray of pixels, the
position of the cloth edge at x = O and at x = Xcan were
‘measured by averaging the edge locations taken at three
ad jacent pixel rows, This technique provided a more
accurate and stable measure of the position of the cloth

edge.

ﬁf§§_~ o

2 16] EXPOSURE i
leeseit T l"t.j

T VALUE %

Fig. S5-14: Vision Processing Time vs Camera Exposure Value



164

The pixel data were transferred from the I-SIGHT card to
the IBM RAM using a high speed hardware block move, and the
routines for finding the cloth edge and calculating Es and

3 were optimized for fast execution.

The time taken by the combined system to grab the two
frames, process the pixel data and calculate E, and # was
measured for different camera exposure values and the
results are shown in fig. 5-14. The cameras were usually
set at an exposure value of 10, for which the vision

processing time was approximately 11 ms.

5.3.6. Calibration Technique

The accuracy of measurements based on the camera data
depended on careful calibration of the vision system. 1In
particular the seam width control was very sensitive to
misalignment of the two cameras. Since accurate alignment
and positioning of the cameras’ field of view was
difficult and time consuming to do manually, a calibration
technique was developed in which the true position of the
field of view of each camera was accurately measured in
terms of pixel offsets from the ideal position. These
offsets were then entered as factors into the robotic
sewing program which used them to calculate accurate values

of Es and # from the camera data.

The calibration procedure, which involved a calibration
program and two calibration overlays shown in fig. 5-15,

consisted of the following steps :-

a)l Place the large overlay on the table and, wusing the
sewing needle and alignment marks, accurate locate it

over the cameras’ field of view.



165

b) View the camera images on the screen using the
calibration program. If the cameras’ fields of view
are grossly in error, make manual adjustments to the
position and orientation of the cameras. Fine
adjustments are not necessary.

c) From the statistical data displayed on the screen,
record the row numbers that correspond to the x = O
and X = Xcan coordinates, and the column numbers that
correspond to y = R.

d) Place the small overlay in the field of view of each
camera and align it using the displayed image. Record
the slot width of the image in pixels displayed on the
screen, and hence calculate the pixel resolution.

e) Enter the calibration data into the robotic sewing
program.

NEEDLE —lt mm

HOLE ——1—0 _T

X
CAM
R
— 1
10 mm

Fig. 5-15: Overlays Used in Vision System Calibration




. 166

¥y
4 ‘e 4
ot

PPN ) . A
RPN

s

di 3
-
| = =t
=]
X
X2
L - ]
et =
® g
>
: [« 8 ]
== ]
b
[ }
2
=]
=
- gl
. L
(o U]
. L =
=
[« V]
-
T
==
=]
po- - and
h Lo =
L
it Rt
3t
»2

-4

B 1234356

12 13 14
§ 7

5.
5,
]

?01

e
dth
freq

STRIP row
SEAM
SLOT Wi

F

ig.

S5-16: Calibration Program Display -

Large Overlay




167

s ]

CAMERA 2

CAHERA 1

in ESC to exit

enfep

3123456

cols
freq
freq

STRIP  pows
SLOT width

SEAH

Fig. 5-17: Calibration Program Display - Small Overlay

in Camera 1




168

The calibration program is listed and explained in Appendix
F. A typical display of the calibration program for each of
the two overlays is shown in figs. 5-16 and S5-17. Using the
statistical data shown in figs. 5-16 and 5-17, the vision

system parameters would be set as follows :-

irowl = 3 - row no. along line x = O

irow2 = & - 7rOw no. along line X = Xcan

pixl_offst = @2 - offset in pixels, from y = Rs

pix2_offst = 3 - offset for Camera 2

yl_pixel = 10/24 - pixel resolution in y direction
= 0.42 mm for Camera 1

5.3.7. Vision System Performance

The I-SIGHT/IBM vision system that was integrated into the
FIGARO system was in laboratory prototype form only.
Towards the end of the project, the manufacturer admitted
continued difficulties in debugging the product, and the
delivery of the final production system was delayed

indefinitely.

Two problems seriously affected the perfaormance of the

prototype vision system :-

1) The hardware that refreshes the CCD chip befgre a new
picture 1is captured, appeared to be only partially
effective. It took between 2 and & attempts at taking
a new picture before the pixel data reflected changes
in the field of view. This delay was observed for both

light to dark and dark to light tranmsitions.

2) Camera 2 generated only a partial image, and the

extent of the image varied with the amount of light in



169

the field of view. Thus, in fig. 5-16, the bottom half
of the overléy is missing, but in fig. 5-17, the image

is complete due to the brightness of the field of

view.

The second problem was minimized by aiming the camera so
that only the line xcww passed through the top third of the

image. The first problem effectively increased the system

time delay (section 5.6.3).

S.4. Implementation of Seam Width Control

The simulation program assumed that the cloth panel
reﬁained rigid throughout the sewing operation. However,
fabric panels exhibit very 1low 1lateral rigidity, and
buckling of ‘the cloth was the prime difficulty in

implementing the seam width control system,

S5.4.1. Calculation of Robot Motion to Rotate Cloth

The seam width control required that the robot corrected
the orientation of the cloth panel during sewing. This was
achieved by superimposing two motion elements; rotation of
the main finger about the sewing needle, and rotation of

the auxiliary finger about the main finger.

In fig. 5-18 the cloth is to be rotated about the needle
by an angle da. The geometry clearly shows that the main
finger should be rotated about the needle by §a, and the
auxiliary finger must be rotated about the main finger by

the same angle, Sa, (see fig. S5-18).



170

The ALTER data for rotating the main "finger about the

needle were calculated using the equations derived below.

Consider rotation of the main finger from F, to F. about
the needle, N, (see fig. 5-18). The coordinates of F. s xi
and y, » are known, and the coordinates of F. are calculated

as follows :-

Ya = NFe sin({a + dx)

NFe ( sin « cos ¢ + cos « sin S« )

Applying small angle approximations for S«,

NFe ( sinax + 6« cos « )

<
)
u

NFg ( Y + & X1 )

NF, NF,

No buckling condition requires that NF, = NFs, therefaore

Ve = vy, + dx x, (S.16)

Similarly,

Xe = NF, cos(x + S«)

= NFe ( cos «x cos ¢ - sin fx sin « )

= NFe ( cos &« - 6x sin « )
= NFe X1 - Sx Ya )
NF, NF,

which simplifies to

Xe = X, - da vy, (5.17)



171

Thus, three ALTER components were necessary in order to

rotate the cloth about the needle :~

X increment = X - x,
y increment = vy, - vy,
Rotation about z increment = §«

The x increment was superimposed on top of the x ALTER data

due to the cloth tension control (section &4.4.1.2).

=

y o

axis

R
N

‘: .
N

Ems - EeFecTtaR

Fig. 5—-18: Robot Motion Required to Rotate Cloth About
Needle



172

5.4.2. Robot Reach Limitations

-

In addition to the acceleration and velocity 1limitations

discussed in section 3.5.1, the ALTER data had to be

limited so that the robot was not directed beyond a safe

envelope boundary.

b d
RY-MIN RY-MAX
—d —

SEWING MACHINE

NX MIN2

ROBOT BASE

NX-=MIN1 y

SEWING TABLE

Fig. 5-19: Safe Envelope for Robot Motion




173

The envelope; shown in fig. 5-19, was bounded by five

curves :-—

a If the robot approached too close to its own base,
then either the end-effector would collide with the
base, in the case of a wide end-effector, or the robot

would pass through a wrist singularity region

b . If the robot moved too far to the left, it would go
past the end of the table

(o If the robot arm was toco far ocutstretched, then it

would reach an elbow singularity region

d If the arm moved too far to the right, then the «x
coordinate of the TOOL would exceed the 1024 1limit
{section 2.8.2.3.), and VAL 11 would abort ALTER

e If either of the two fingers approached the area
surrounding the sewing head, there was danger of a

collision

Since the first four boundaries constituted a serious
restriction to the seam width control, these 1limitations
were implemented carefully, so as to minimize the
interference to robot motion. The ALTER data was limited so
that the robot decelerated as it approached a boundary.
When .- the robot approached or moved away from the ¢
boundary, then the high inertia loading of the end-effector
on the outstretched arm caused serious wobbling. This was
corrected by reducing the acceleration and velocity

limitations in this region (section 3.5.1.).



174

Boundaries a and c were applied to the position of the
centre of the flange on the end of the robot. Boundaries b
and d were applied to the position of the main finger and
boundary e was applied to each of the two fingers. The
variable names used in the IBM AT software that define

these limitation are given in fig. 5-19.

S5.4.3. Software Implementation

The SEW Task, in which both the seam width control and the

cloth tension control calculations were performed, had the

following basic algorithm :-—

Initialisations
Trigger 280 to "take a picture"

Start sewing machine sewing slowly

WHILE (seam not complete) DO
BEGIN

calculate average update rate

/% control of sewing machine */
accelerate sewing speed if near beginning of seam

decelerate sewing speed if near end of seam

/* cloth temnsion control calculations %/
read shaft encoder counter
calculate x increment to track sewing revs
read claoth tension

calculate x increment to maintain constant tension

/% seam width control calculations */
check if 280 finished, if not -~ wait until it is

transfer pixel data to local RAM



175

trigger 280 to take a new picture

calculate x, y and rot(z) increments

/% ensure safe robot motion %/
apply acceleration and velocity limits to ALTER data
limit ALTER data if approaching envelope boundary

install new ALTER message for COMM Task to transmit
END

Stop sewing machine

The processing overheads required for one update cycle were
such that one update was performed every two handshakes,

approximately, i.e. an update rate of 0.5 hs-t .,

Several embellishments were added to this basic algorithm,
such as calculation of sewing speed and standard deviation
of seam width and tension errors. Setting up the cloth and
the robot for the sewing operation was performed. by the

higher level MAKE Task (section 6.3).

5.4,4, Prevention of Buckling

1f the cloth panel buckled and lost its rigidity, the robot
could no longer rotate the cloth about the needle, i.e. the
robot lost control of the panel. Consequently, the
prevention of buckling was critical. In addition to the
cloth tension control system, described in Chapter 4,
several other factors were found helpful in controlling

buckling.



176

S.4.4.1. Cloth Takeup

As the cloth emerged from the sewing head, it sometimes
required a smooth and gentle pull, to ensure that the cloth
did not "pile up" just past the needle. In many semi-
automatic commercial seaming units, this function |is
performed by a series of driven belts that may be placed on

the top or bottom surface of the cloth panel.

This approach is unsatisfactory for this application, since
buckling of the cloth is only prevented in the vicinity of
the needle. However, the belts would encourage buckling

between the robot and the sewing head, since they inhibit

rotation of the cloth.

A more satisfactory sclution would be a matrix of
flotation nozzles, inserted into the table surface, and
directed to give the cloth a slight push away from the
sewing head. This gentler action would not inhibit rotation
of the cloth panel. Although, flotation was not
incorporated into the sewing table during this first phase
of the project, it is planned to do so when the project is

continued.

5.4.4.2, Table Friction

The table friction aggravated buckling and the polished
table surface was kept free from dust and grease during the
performance tests in order to minimize table friction.
Experience with the FIGARO system suggests that the
addition of flotation to the table in front of the needle

would also be beneficial.



177

5.4.4.3. Finger Loading

Excessively high spring loading on the fingers aggravated
buckling by increasing the effects of table friction. Too
low a spring force also encouraged buckling Sy permitting
slipping between the cloth and the finger. The satisfactory

range for spring constant was found to be

S < K, < 100 g/mm,.

5.4.4.,4, Damped Motion

Fast 1lateral motion or oscillatory motion of the cloth,
under the robot’s control, tended to encourage buckling.
This was rveflected in the low optimum gain values found
experimentally, which effectively restricted the robot
motion to gentle and smooth corrections of the cloth

incidence angle.

5.4.5. Close Sewing Technique

.when a human operator holds the far end of the cloth panel
during sewings, he can only cope with gradual curvatures,
even with an edge guide. In order to sew a seam in regions
of greater curvature, the operator holds the cloth against
the table with one hand alongside the needle and one hand
in front of the needle. This position facilitates rotation

of the cloth panel and prevents it from buckling.

Similarly, the robot could only track gentle cloth edge
contours when positioned at the far end of the cloth. A
close sewing technique was derived from the far sewing

technique described above,; so that much greater curvatures



178
could be tackled. The auxiliary finger waé‘uﬁoéifibnéd B
alongside the needle, and the end-effector was rotated 90°
so that the main finger held the cloth further down the
panel (fig. 5-20).

In this position, the cloth could be rotated through much
larger correction angles before an envelope boundary was
encountered, and the cloth panel had less tendency to
buckle. However, the sewing length was limited by the
distance between the two fingers, since the fingers had to
be repositioned once the main finger had passed beyond the
needle. Furthermore, the cloth tension could no longer be
measured in this position using the tension sensor, and the
cloth tension control was restricted to the open 1loop

control system (section 4.2).

Fig. 5-20: Initial Position of End-Effector for Close

Sewing



179

x.uy-. SO R B S e
i & 1 1 .

I SN ST (A S Wb R . .

Ao et b s s, il e e B R 5 i e Got=s mat
i i | ! : :

i ' i = ' ' 4 ' : H g

25 AR TR . . M. LGS SO R G (NEN I S M
i i

=l sstsvslissheasdinnde  un oo - PR 2

Edge Contour of Test Panel

o-21

Fig.



180
5.5. Control System Performance

5.5.1. Performance Tests

Extensive performance tests were carried out on a two-ply
cloth panel for a range of sewing speeds, in order to
produce performance plots of the same style as presented
for the simulation results (section §5.2.2.3). Performance
plots were also obtained to determine the effect on:
performance of robot motion limitations, and the number of-

plies. Exploratory tests were performed to investigate the

system’s sensitivity to fabric type.

For the vast majority of the performance tests,; the test
cloth panel was the same fabric as the test fabric used in
the tension control performance tests (section 4.4.4). The
edge contour of fhe test panel, shown in fig. o9-20, is
representative of contours found on trouser, jacket and

skirt panels.

The initial seam width error and incidence angle, @, were
kept to a minimum throughout the tests wusing the fire

ad justment techniques, developed in the setting up
v

operation which is described in the next chapter.

5.5.1.1. Performance Index

As with the cloth tension control (section 4.5.1), either

the standard deviation or the average seam width error
could be wused as a performance criteria. The standard
deviation was selected as the performance criterion since

fluctuations in the seam width, even a gradual undulating



181

seam; are unacceptable aesthetically, whereas a small
constant offset (e.g. producing a 12 mm seam instead of a

13 mm seam) is perfectly acceptable.

The performance curves were plotted according to a
performance index of 0.6 mm, i.e. the seam width control
performance was considered unacceptable if the standard

deviation of the seam width error exceed 0.6 mm.

5.9.1.2. Sample Printout

A typical printout of the robotic sewing test program, with
the details of the performance of the seam width and

tension control systems, is given in fig. 5-22.

5.9.2. Perfofmance Results

Figures 5-23, 95-24 and 5-25 show the effect of sewing
sﬁeed, number of plies and robot velocity 1limitation,
respectively, on seam width control performance. The
performance curves indicate the regions within which the

performance criterion is satisfied (section 5.5.1.1).

The parameter settings that were used for these tests are

listed in table 5-4.



182

03 JAN/B7 20:19:14
Robotic Sewing Development Program

Version 2.10

Input Data

Parameters Set At Compile Time

‘robot stopping dist = 120 mm pixel width - cam #1 = 0,430 mm

maximum RHS motion = 251 mm pixel width - cam #2 = 0.670 mm

maximum LHS motion = 160 mm dist. between 2 fingers = 156 mm

deceleration length = 130 mm inter camera distance = 30.0 mm

stitch length = 3 mm seam width = 12.0 mm

Parameters Set By User

pixel row no. - cam #1 = ¢4 tensn servo, propnl qain = 0,00073

pixel row no. - cam #2 = 7 tensn servo, intgrl gain = 0.,00001

x axis offset - cam #1 = 2 request cloth tension = 70

x axis offset -~ cam #2 = 2 seam servo, propnl gain = 0.050

robot velocity limitatn = 4 seam servo, deriv gain = 0,300

robot accelrtn limitatn = 2

Parameters Set At Run Time

seam lenath = 483 mm sewing speed = 1910.6 rpm

tension offset = e sewing speed = 92.02 mm/s
QOutput Data

Processor Performance Data

no. ALTER handshakes = 244 no. feedback loops = 118

handshakes/update rate 2.07 time period for speed = &4 ticks

Raobotic Sewing Performance Data

seam width servo cloth tension servo

standard deviation = 0.374 standard deviation = 47,160
sum of mean deviation = 17.9 sum of mean deviation = 26253
sum of average error = -13.78 sum of average error = -523
maximum error =  0.91 maximum error = 147
minimum error = =-0.91 minimum error = -70

Fig. S5-22: Sample Printout of Edge Seaming Program



183

S
Parameter fig 5-23 fig S-24| fig 5-25
nominal seam width, Rs 12 12 12
camera distance, xcan 30 30 30
pixel width #1, yl1 pixel 0.43 0.43 0.51
pixel width #2, y2 _pixel 0.65 0.65 0.49
cloth speed, V¢ 40 80
tension prop. gain, K, 0.000750 0.00150
tension deriv. gain, K. 0.000015 0.00003
number of plies e 1
acceleration limitation 3 3
velocity limitation 8 8

Table 5-4: Parameter Settings for Performance Tests
(o}
o LI e
01§ = 12 mm/s
2 [ == = g
g
¥
= |0:-1o | RIS . s
ES
4
w F - R
P ’ __i-. - ...i_ .....
A _;_ x .! e
o r . .
| 0.0l | : oS 5
" PROPORTIONAL GAIN, — Ka
Fig. 5-23: Effect of Cloth Speed on Seam Width Control

Performance




184

"} PROPORTIONAL  GAIN,

of Plies on Seam Width Control

G

Effect of No.

S5-24

Fig.

Performance

: | e i '
— T . = .
. sl L. W s SRl B o — -
Ty d Mo i i
s -l — ~ .m ' el H
T o s, B eeem : SRR C, L -
_ - - - -

o
| i)

l

0.

. X
i 5

Ty

A ‘NIV9 3ATLYATY3T

Effect of Velocity Limitation on Seam Width

Fig. 5-25

Control Performance



185

5.5.3. Summary

The results of the performance tests are summarized as

follows :~

1) An increase in the cloth speed reduces the stability
margin of the seam width control system, reduces the

optimum proportional gain value and increases the

optimum derivative gain value.

2) A two-ply cloth panel has less tendency to buckle than
a single-ply panel, due to its increased stiffness and
extra weight. This was reflected in the performance
results which showed that the two-ply panel had a

larger stability margin.,

3) The tendency to buckle was observed to be different
for different fabrics; heavy or tightly structured
fabrics exhibited greater stiffness than light or open

structured fabrics.

4) When the robot’s motion was damped down by reducing
the velocity limitation, the stability margin was

improved enormously.

5.6. Discussion
S.6.1. Comparison of Performance with Simulation Results

The performance curves of the actual system show a similar
pattern to the simulated performance curves (compare figs.
5-23 and 5-8). The effect of damping the robot’s motion

with excessive dynamic limitations was as predicted by the



186
simulation experiments (compare figs. S5-23 and 5-10).

When the actual and simulated performance results are
compared quantitatively, the optimum gains have quite
different mnumerical values. The optimum gain values
produced from the simulation program were approximately 20
times those found experimentally. There are several factors

that contribute to this apparent discrepancy :-

1) Both the actual and simulated systems generate a
correction angle, J&a; from the gain values wusing
equation (S5.11)., The simulated system then rotated the
cloth by da after the system delay, d&t. However, due
to the real time considerations of the ALTER facility,
the actual system directed the robot to rotate the
cloth at an angular rate of édx rads/hs. For most of
the simulation runs, &t was set at 140 ms, so that the
simulated rotation was performed at approximately S
Sx rads/hs. This accounts for a factor of S between

the simulated and actual gain values.

2) The simulation program was based on a global system
time delay, which accounted for the delay between the
measurement and actuation processes. However, in
practise, the two processes occurred in parallel and
with different associated delays. the actuation delay
was determined by the ALTER facility, and the sampling
delay was determined by the vision system and the

update rate of the servo control calculations loop.

The accuracy of the simulation model could be improved
by differentiating between the sampling rate (i.e. the
delay between obtaining new feedback measurements) and
the actuation delay (i.e. the delay between obtaining

a new measurement and making a correction).



3)

4)

S

187

The simulation results were based on a system time
delay of 140 ms, which was estimated by assuming an
update frequency of 0.5 update/hs and a well behaved
vision system. However, the camera system’s e;ratic
behaviour (section S$.3.7), caused the effective system

time delay to vary between 140 ms and 224 ms.

The simulation model was based on the assumptions that
the cloth panel was stiff and did not buckle, and that
the vision system produced perfect and accurate images
of the edge of the cloth. The effect of the cloth’s
lack of stiffness and of the poor performance of the
vision system on the seam width control was
unpredictable; these random factors constitute a noise

input to the system (section 5.6.2).

Derivative control systems are particularly sensitive
to noise [57]s although the effects of noise can be
countered by damping down the systenm. This is
confirmea by the considerable improvement in stability
margin obtained by damping down the robot’s motion

(fig. 5-25).

The performance plots for the simulation results and
for the actual system were plotted according to
different performance 1indices (sections 5.2.2.1 and

5.5.1.1).

Comparison of the simulated and actual systems suggest that

the seam width control could be improved by

- reducing the signal noise level in the system
- reducing time delays in the system.

-~ reducing actuation errors.



188
S.6.2. Signal Noise

Occasionally, the cloth panel would buckle, when rotated
about the needle, in such a way that the edge of the cloth
panel would curl up around the presser foot, and the vision
system would have an erroneous image of the cloth edge.
Excessive cloth tension and inaccurate robot rotation, in
particular, caused this type of buckling, in addition to
the influence of the presser foot itself. The closer the
fingers were to the presser foot, the greater the
inhibiting effect of the presser foot on the rotation of

the cloth.

The other cause of noise in the image of the cloth edge was
the unstable and erratic image produced by the vision

system itself, as discussed in section 5.6.1.

5.6.3. System Time Delays

Both the .sampling delay and the actuation delay are

detrimental to the control system’s performance.

When the SEW Task routines were optimized and tuned for
fast execution speed, the update rate was kept down to 0.5
updates/hs. The vision system provided a new picture every
2 to 4 attempts, and, although each attempt could be
performed within half a handshake, thé present version of
the software only triggers the £80 once per update (section
5.3.2). Consequently the effective sampling delay is
between 4 and B8 hs (i.e. 112 ms and 224 ms).

In addition to replacing the vision system with a more
competent one, the sampling rate could be improved by

triggering the ¢2B0 more often than once per update.



189

Ideally, the vision system should refresh the camera frame
stores continuously without any external triggering from
the IBM AT, so that the frame stores contain images that
are as recent as possible. A "second best" arrangement
would be an interrupt system, so that the vision processor

could interrupt the IBM AT when a new image was available.

Even with the present vision system, the sampling rate
could be improved. A Timervroutine could be included .that

retriggers the 280 every 14 ms, to exploit the fast capture

time of the vision system.

5.6.4. Actuation Errors

When the cloth buckled between the robot fingers and the
sewing needle, the servo-controlled robot trajectory did
not produce the anticipated rotation of the <cloth. The
factors that affect the tendency of the cloth panel to
buckle, and preventative measures that were implemented,

were discussed in section S.4.4.

Despite good tension control, some buckling of the cloth
was obsefved when the robot rotated the cloth, under the
FAR sewing technique. Buckling of the cloth was more
pronounced with the CLOSE sewing technique, and gross
buckling occurred when a fabric handling technique was
developed to rotate a cloth panel through 90° about a

stationary sewing needle (section 6.95).

The major reason for buckling of the cloth under these
circumstances was the inherent inaccuracies in the robot
and its control system (section 2.4.1). The robot’s poor
accuracy affected the handling and sewing techniques

differently, because of the following factors :-



190

1) The closed loop tension control system minimized the

robot’s errors in the x direction.

2) The visual measurement of the seam width error and the

incidence angle minimized errors in the y direction.

3) The seam width control only required the end-effector
to be rotated within a narrow angular range (* 30°

which minimized errors due to rotation of the end-—-

effector.

Some buckling of the cloth was always present during a FAR
edge seaming operation. The CLOSE edge seaming technique
generated much more buckling of the cloth because it had
only open loop tension control and a larger angular range
of rotation. Thus, both FAR and CLOSE edge seaming
techniques would benefit from a more accurate robot,
although the CLOSE technique is particularly sensitive to

robot inaccuracies.

5.6.5. FAR and CLOSE Sewing Techniques

The FAR and CLOSE techniques have different advantages and
disadvantages. The FAR technique can sew long lengths of
cloth without stopping the sewing machine and repositioning
the fingers. However, it cannot sew contours that require
the robot to rotate the cloth through too big an angle, nor
can it sew with the fingers within 150 mm of the sewing
needle. The CLOSE technique can accommodate much larger
curvatures and can sew right up to the end of the cloth,
but it can only be used to sew relatively short seam

lengths (up to 300 mm).



191

A combination of the FAR and CLOSE techniques §hould be
able to produce a quality edge seam on the vast majority of
cloth panel contours found in the clothing industry. To
confirm this, a panel was cut out in the shape of a jacket
sleeve and, using the CLOSE technique, a high quality seam
was sewn around the shoulder curve. The shoulder curve had

a radius of curvature of 85 mm and an angular extent of

160°

For a particular cloth panel contour, there will be an

optimum strategy for sewing along the edge. This strategy

would specify the following :-

a) number of segments,

b) the length of each segment

c) CLOSE or FAR technique

d) the position and orientation of the fingers on the
panel for each segment

e) the sewing speed for each segment

A technique was developed for automatically repositioning
the robot’s fingers between segments of a sewing operation
to facilitate segmented production of an edge seam, ’and is
described in section 6.3.3. A decision making algorithm
was developed which automatically specified a sewing

strategy for a particular seam based on its length,

The concept of a segmented seam production can be compared
to the manual techniques employed by sewing operators, who
often change hand position on a cloth panel during sewing.
For example, when producing the long seam on a trouser
panel, initially the operator usually grips the cloth close
to the beginning of the seam, in order to control the cloth

accurately during the initial high curvature section. When



192

the 1long straight section has been reached, the operator
will either grip the end of the cloth and accelerate the

sewing machine, or will hold the cloth with alternate hands

as the cloth is fed into the machine.

5.6.6. Damped Robot Motions

The perfbrmance tests showed that the stability margin of
the seam width control was vastly increased when the
robot’s motion was damped by reducing the velocity
limitation. However, excessive damping also reduced the
performance of the control and the optimum velocity
limitation depends on the cloth velocity and on the contour

to be sewn.

At present, the velocity and acceleration limitations are
set by the user, at the initialization phase. A fully
“automatic version of the software would set the limitations
.internally according to the sewing speed. Ideally, an
adaptive contrdl technique should be employed to vary the
control parameters, during the sewing operation, according

to circumstances.

5.6.7. Adaptive Control

Since the seam width control was sensitive to the sewing
speed, exaggerated and wunstable behaviour was often
observed at the beginning and end of a sewing segment, when
the sewing machine was accelerating up to the nominal

velocity or when it was decelerating.

Since the sewing speed is not always held constant during a

sewing operation, and since the sewing speed can be changed



193

externally by a control knob on the sewing machine, a more
robust version of the control system would vary the control
parameters automatically with variations in the sewing
speed. This adaptive control capability could be
implemented by relating the velocity limitation to the
cloth velocity either with an empirical formula, or using a
look—-up table. The 1look-up table could alsc relate the

optimum values of Ky, K, and acceleration limitation to the

cloth velocity.

5.6.8. Conclusions

a) A seam width control system has been developed that,
in conjunction with the tension control (Chapter &)
and the ALTER channel (Chapter 3), can adaptively
perform the edge seaming operation on a cloth panel

with an edge profile of arbitrary contour.

b) The system can accurately sew edge seams at speeds up
to 150 mm/s (or 43500 rpm for 2 mm stitch 1length),
without pucker, for cloth contours with only a slight
curvature. Cloth contours which are moderately curved,
such as for trouser and skirt panels, can be sewn

accurately at 100 mm/s (or 3000 rpm for 2 mm stitch
length). '

c) A CLOSE technique has been developed to accommodate
cloth panels that have intricately curved contours,
and to perform the final segment of seams that extend

right up to the end of the cloth.



d)

e)

)

194

The system is unsuitable, 1in its present form, for
fabrics with poor lateral stiffness, such as knitted
fabrics, since the cloth edge tends to buckle or curl
up around the presser foot. The system performs best
with shirting or worsted woven fabrics which have a

reasonable resistance to buckling.

Similarly, the system.performs better when sewing wup

two-ply panels, which resist buckling better than

single-ply panels.

The optimum settings of the control parameters are
sensitive to the cloth velocity, sand these parameters
are set manually in the present version of the
software. An adaptive control scheme is recommended

for future versions.



195

CHAPTER &

THE DEVELOPMENT OF FABRIC HANDLING TECHNIQUES

In addition to the robotic sewing techniques that have been
described above, several fabric handling techniques were
developed, so that the setting up of the cloth panel for a

seaming operation and the rotation of the panel about the

needle could be performed automatically.

A ply separation device was incorporated into the FIGARO
systemsy so that the robot could pick up fabric plies from a
stack and place them on the table. The automatic
manufacture of an 1irregularly shaped three-sided sub-
assembiy was demonstrated using the techniques developed in

this project.

6.1. Software Organization

The bhierarchical organization of the IBM AT software for
the robotic sewing operations was described in section
3.3.2. The VAL 1l software required for these operations

was relatively simple :-

start ALTER mode
wait until interrupted

end ALTER mode



196

However, the robot motions required for the fabric handling
operations did not need complex sensory feedback control,
and therefore,; instead of using the ALTER channel, the
robot motions were generated directly by VAL 11 programs.
Closer co-operation and synchronization was now necessary
between the IBM AT and the VAL II controller using the GPC

channel described in section 2.6.

4.1.1. IBM AT Implementation

Two levels were added to the éoftware hierarchy described
in section 3.3.2.; the complete software model is shown in:
fig. 6é-1. This model was designed to provide a clear,
logical and modular structure, which would facilitate
modification of the software to include new techniques, or

to make a different sub-assembly.

The CONT Task was responsible for the overall operation of
the FIGAROD sewing station, intluding the following

functions :-

a) initialization and termination of the GPC channel
b) management of interface to supervisor/operator
c) receive data on batch quantities and product type

d) instruct relevant MAKE Task to make required product

e) error recovery

The MAKE Task was responsible for the sequence of
operations required to make a specific sub-assembly. A

separate version of the MAKE Task is required for each

product type.



STATION

LEVEL

PROCESS

LEVEL

OPERATION

LEVEL

COMMUNICATION

LEVEL

197

FIGARO Controller
Task - CONT

Task to Control
Production of a
Sub—-assembly
MAKE

Robotic Sewing

Task - SEW

ALTER Channel
Communication

Tasks

(fig 3.1)

GPC Channel
Communication

Functions and

1SPs

Fig. 6~1: Hierarchical Organization of IBM AT Software




198

6.1.2. VAL 11 Implementation

As described in section 2.2.; a master—-slave relationship
was required between the IBM AT and the VAL 11 controller.
This was achieved by splitting the VAL I1 software into
functions that could be individually requested by the IBM
AT via the GPC channel. A VAL II program called MAIN acted
as the interface between the VAL Il functions and the GPC
channel. The MAIN program waited until it received a
function request,; and then it would call the relevant
VAL II subroutine. When the subroutine had terminated, the
MAIN program returned either the function number‘or zero to

the IBM AT to signal either the successful or unsuccessful

completion of the function.

6.2, Second Prototype of FIGARO End-Effector

During the development of the fabric handling techniques,

several improvements to the simple early prototype end-

effector were considered. An improved end-effector was

assembled which incorporated two improvements :-

a) In place of the original manual adjustment, the
distance between the two fingers could be changed

automatically under program control.

b) the high profile photocells were replaced with a 1low

profile design so that they could be located closer to

the fingers.



199

6.2.1. Programmable Finger Distance

The 1ideal position for the two fingers which ensured that
the cloth panel did not buckle, was to place one finger at
each corner of the end of the cloth panel (fig. é6-2). Thus,
the optimum distance between the fingers was dependent on
the width of the cloth panel. During a typical sequence of
operations, the robot would hold the cloth panel along both
the narrow and the wide sides, and therefore a facility for
changing the finger distance automatically during a sub-

assembly was desirable.

SUDING MOTION

g SEWING NEZDLE

SUIDING CLOTH PANEL ROTATING CLOTH PANEL

ON TABLE ABOUT NEEDLE.

Fig. 6-2: Optimum Location of Fingers



200

6.2.2. Low Profile Photocells 1’2;};f7f”7fi€:3'Ln3RARY
Pia v ad s

UNIVERSITY OF LEEDS

The end-effector was designed with a low profile near the
fingers so that they could approach the sewing head without
any .collisions (section 2.8.2.2). The two original

photocells were 95 mm high and therefore they had to be

mounted 150 mm behind the fingers.

The photocells were used to locate the edge of the cloth
panel in order to place the fingers correctly on the cloth,.
An additional robot motion was required during the search
sequence to accommodate the large offset between the
photocells and the fingers. When low profile photocells
were installed <close to the finger pads, the offset
correction motion could be eliminated and the sequence was

simplified and faster,

&.2.3. Design of Second Prototype
6.2.3.1. The Leeds Ply Separatiaon Device

Towards the end of the project, an industrial prototype of
the University of Leeds ply separation device [72] became
available. The ply separation device included two bayonet
assemblies and a dc servomotor which could vary the
distance between the two bayonets. It was realized that the
ply separation device could be easily modified to perform
the functions of the FIGARO end-effector, and at the same

time provide a programmable finger distance facility.

In addition, the ply separation device could extend the
usefulness of the FIGARO system by adding the following

handling capabilities :-



201

a) picking up a ply from a stack
b) placing one ply on top of the other
c) folding a cloth panel

6.2.3.2., Modifications to Ply Separation Device

The second prototype FIGARO end-effectof, shown in
fig. 5-20, was based on the ply separation device. The
instrumented finger was mounted on the fixed bayonet
housing and the auxiliary finger was mounted on the movable
bayonet. A miniature fibre optic sensor head was mounted on
each finger assembly to perform the same function as the
.original photocells. A fibre optic cable conrected each
sénsor head to a conventional infra-red variable photocell

which was mounted on the robot’s forearm.

&.3. Setting Up for the Edge Seaming Operation

The first handling operation that was automated on the
FIGARDO system was the setting up of the cloth panel for the

edge seaming operation.

6.3.1. Sequence for Setting Up Operation

The sequence Tor the setting up operation is 1listed in

table &6-1 and consists of three sections :

- Place the cloth corner under the needle
- Measure the cloth length and decide on a strategy

- Place fingers on the cloth and make final adjustments



202

Sequence of Functions Func VAL  TI1 IBM AT
tion routine routine
1. Place cloth corner under
needle.
lift sewing m/c presser foot
find cloth on table 3 [findcloth
find top right hand corner corner
slide cloth corner under needle uptoneedle
fine adjust for seam width 19 [fine.adj fine_adj
put sewing needle down ndle_down
remove robot from needle zone 23 |remove
2. Measure cloth length and
W decide on strategy
find cloth end & cloth length 25 |end.cloth
report robot’s position 11 Jjcalc.where |where
decide seam sewing strategy DecideSeam
3. Place fingers on cloth and
make final adjustments
IF using FAR technique THEN
find bottom right hand corner 6 tgo.far.st
IF using CLOSE technique THEN
position fingers for close sew 17 {go.close.st
fine adjust for cloth angle, @ 20 |angle.adj angle_adj

Table 6-1: Sequence for Setting Up Operation



203

6.3.2. Placing Cloth Corner Under Needle

The routines for placing the top right hand corner of the
cloth panel under the sewing needle, which are described
below, can accommodate almost any size and shape of cloth
panel placed anywhere on the sewing table, within the

following limitations (fig. &6-4):-

SEWING MACINE
] 1 3 RIE:
XY
610 mm
o Initial Needle
//
Position
¥
A 8
m
SEVING TABLE '

Fig. 6-3: Starting Conditions for the Setting Up Operation

1) The panel should be placed down on the table so that
the edge to be seamed is on the right hand side, and
the inclination of that edge to the x axis, ¢, is

within 30°.

2) The panel should be placed so that the x = 610 mm line

is covered (i.e. approximately opposite the robot’s

base).



3)

The

204

The seam starts at the top right hand corner. The
angle, ©, between the top edge and the right hand edge
is between 80° and 110°, i.e. the top right hand

corner should be approximately square.

initial position of the cloth panel and the terms and

symbols used in the description of the routines are defined

in fig. 6-4.

6.3.2.1. Finding Cloth Panel

')

2)

3)

The robot scans the table along the line x = 610 mm
until pcelll, the photocell mounted close to the main
finger, detects a transition from "cloth absent” to

"cloth present”, at location A.

The vy coordinate of the first edge is noted and then
the robot continues to scan as before until pcelll

detects the opposite transition, at location B.

The apparent cloth width along that line is calculated
and the robot is moved back so that the two photocells

are centred over the apparent centre of the cloth.

6.3.2.2. Finding Top Right Hand Corner

1)

2)

The robot scans along the cloth in the x direction
until one of the photocells detects the top end of the
cloth.

The robot’s TOOL transformation is reset so that its z

axis 1is coincident with the photocell that detected

the edqe.



205

3) The robot rotates the end-effector about the first
photocell wuntil the other photocell also detects the

end of the cloth. The end-effector is now aligned to

the cloth’s top edge.

4) The robot moves 30 mm back, perpendicular to the cloth
edge, and then traverses parallel to the cloth edge

until pcelll detects the right hand edge.

5) The end effector is now aligned to the top edge and
its position relative to the top right hand corner is
known. The robot is loﬁered until the fingers hold the
cloth, with the main finger close to the top right
hand corner and the auxiliary finger close to the top

left hand cormer (fig. 6.2a).

5.3.2.3. Moving Cloth up to Needle

Once the robot had put its fingers down relative to the tob
right hand corner, the robot was directed to slide the
cloth panel to a taught location, under_ndle. The robot
location transformation, under_ndle, was defined such that
the fingers held the cloth panel with the 1initial sewing

point approximately under the needle, and with the top edge

aligned to the sewing machine’s y axis.

Thus, this handling operation moved the cloth panel from an
unknown location and orientation to a known location and
orientation defined in terms of the sewing machine. Since
the sliding motion was predominantly forwards and the
sidewafs and rotational components of the motion were

gradual, buckling forces on the cloth panel were

insignificant. The tendency to buckle would be further



206

reduced if flotation was incorporated into the sewing table

{section 6.7.2).

6.3.2.4. Fine Adjustment of Seam Width

The sequence so far has positioned the cloth with the
initial sewing point approximately under the needle, with a

repeatability of up to * 3 mm. The following factors

contributed to this inaccuracy :-

1) The PUMA 560 @ is inaccurate (section 2.4.1),

particularly when programmed "off-line" and for

changes in orientation.

2) When a photocell detects the cloth edge, the robot
i
overshoots, and this braking distance depends on the

initial robot velocity.

3) Thé cloth panel has curved edges of arbitrary contour
in addition to an arbitrary starting position and
orientation. However, & technique based on only two
photocells to align the end-effector to the «cloth

edge; assumes that the cloth edge is a straight line,.

The simulation program confirmed that a large initial seam
width error could make the seam width control go unstable.

Consequently; a fine adjustment function was required +to

minimize this initial error.

This function involved close interactioﬁ between the 1I-
SIGHT vision system, the IBM AT and the VAL II system. The
IBM AT used the two I-SIGHT cameras to provide a
measurement of the seam width error, which it communicated

to VAL II. The robot was directed to move the <cloth to



207

reduce the error, and on completion of the move, VAL II
returned an acknowledgement to the IBM AT. This cycle was

repeated until the seam width error was under 0.5 mm.

Following the fine adjustment function, the IBM AT drives
the sewing machine until the needle reaches the "down"
position, piercing the cloth. Once the cloth is held in
position by the needle, the robot’s fingers are carefully
removed from the needle zone, without pulling on the cloth

or colliding with the front camera assembly.

6.3.3., Deciding on Sewing Strategy

The FAR and CLOSE edge seaming techniques, as described in
Chapter S, have different advantages and disadvantages. The
FAR technique is suitable for sewing long seams of gentle
curvature up to 150 mm of the sewing needle. The CLOSE
technique can only be used to sew short segments of a seam
(up to 300 mm)s but can accommodate much larger curvatures

and can sew right up to the end of the cloth.,

Many edge seaming operations will require a combination of
FAR and CLOSE techniques, and the DecideSeam function sets
up a data structure which contains the number of seanm
segments, the sewing technique for each segment, the sewing
speed and the segment length., A sophisticated version of
the DecideSeam function, which would generate a sewing
strategy based on the cloth profile, is discussed 1in

section 7.2.3.3.

The present version of DecideSeam implemented in the MAKE
Tasks was based on the length of the cloth panel in the
direction of sewing. If the cloth was less than 300 mm then

the whole seam was sewn using the CLOSE technique. If the



208

cloth was longer, then the seam was sewn in two sections, a
FAR section up to 200 mm before the needle, and a CLOSE
section to complete the cloth. The FAR section was sewn at
top speed and the CLOSE section was sewn at half top
speed, and the actual top speed was set manually from the

control knob on the sewing machine.

The cloth lenqth was easily determined by searching for the
far edge of the panel (the cloth.end function) and
calculating the distance between the main finger and the

needle (the calc.where function).

6.3.4. Placing Fingers on Cloth Panel

The starting position for the robot’s fingers for the FAR
and CLOSE techniques are shown in figs., S5-1 and 5-20
respectively. The go.far.st function which places the
fingers at the FAR starting position, searches for the far
right hand corner in a similar. fashion to the corner
function, except that'the end-effector is not aligned to

the cloth edge.

The go.close.st function places the fingers at the CLOSE

starting position as follows

1) The end-effector is rotated by 90° in a zone free from

obstructions,

2) The robot searches for the lower left hand corner of

the panel.

3) If the left hand edge is within 180 mm of the needle,
then the robot places the fingers down with the main

finger in the bottom left hand corner and with the



209

second finger as close to the top left hand corner as

possible.

4) If the left hand edge is further from the needle, then
the fingers are placed along the y = 180 mm line, with
the main finger close to the lower edge and the

auxiliary finger close to the top edge.

6.3.5. Fine Angular Adjustment

Once the fingers have been placed down on the <cloth, one
final adjustment 1is required before the sewing operation
can start. Although the cloth was accurately positioned so
that the needle was put down at the correct starting
position, the orientation of the cloth (i.e. the incidence

angle of the cloth edge, ) was still only approximate.

The ang.adj function was identical to the fine.adj
function, except that the IBM AT conveyed measurements of
the angle @ to VAL II, and the robbt rotated the «cloth
panel about the needle to reduce the angular error. The
rotation of the cloth about the needle was performed by the
rotate.ndle routine, which is described below in

section 6.9.

6.4, Completing the Edge Seaming Operation

In order to incorporate the edge seaming function into a
Tfully automatic sequence - of operatiaons, additional

developments were required.



210

6.4.1. Segmented Seam Production

As explained in section 6.3.3, most seams require a
combination of CLOSE and FAR techniques and the DecideSeam
function provides a sequence of CLOSE and FAR segments for
a particular seam. The MAKE Task contained the <following
loop structure immediately after the DecideSeam function in

order to obtain the desired segmented production of the

seam -

for each segment of the seam
begin
if CLOSE segment
go.close.st
else
go.far.st
angle.adj
start up ALTER communications channel
start SEW Task and wait until it is completed
end ALTER communications channel

end

b.4.2. Sewing Up to the End of the Cloth

Most seams are terminated a short distance before the end
of the cloth (seldom more than 10 mm). Consequently, a

technique was required to terminate the sewing operation at

an accurate distance from the cloth end.

Although the distance between the cloth edge and the needle
was known accurately at the start of the sewing operation,
this distance could not be accurately calculated during the

sewing operation for the following reasons :-



211

1) The sewing machine revolutions did not give an
accurate measure of the cloth feed due to the

imprecise feed mechanism.
2) The robot had poor absolute accuracy.

3) The motion of the end-effector in the x direction did
not accurately reflect the cloth edge to needle

distance since slight slipping between the finger pads

and the cloth occasionally occurred.

Caonsequently the cloth end had to be detected using a
sensor. If the robot had been more accurate than the
position of the cloth end could have been calculated from
the ALTER data in the x direction with reasonable accuracy
since the slipping between the fingers and the cloth was
not a significant source of error. However, the use of a
sensor to detect the cleth end, provides additional
feedback information which improves the robustness of the

system.

6.4.2.1, Detection of the Cloth End

Initial attempts to use the I-SIGHT cameras to detect the
end of the cloth failed because of their narrow field of
view. The cloth edge occasionally disappeared totally from
the image of the forward camera during sewing due to large
radius of curvature or excessive rotation of the panel.
Consequently, the forward camera would occasionally give a
false indication of the cloth end. Similarly the primary
camera could not provide a cloth end detection capability
since it would detect the cloth end some time after the
seam width control system had already reacted to an

apparent severe step change in the cloth contour.



2ia

The cloth end was detected by an additional photocell
mounted on the sewing machine so that it gave 28 mm early
warning (i.e. the x component of the photocell to needle
distance). The photocell was mounted 15 mm to the left of
the sewing needle to ensure that the photocell was not
prematurely affected by the rotation of the cloth panel

during the sewing operation.

b.4.2.2. The inch Function

The <cloth end had to be detected before the needle reached
the end of the seam, so that the seam width control system
did not generate erratic robot motion when the cloth end
passed by the field of view of the forward camera. The SEW
Task was therefore terminated as soon as the cloth end was

detected, and the seam finished 28 mm from the cloth end.

The inch function completed the remainder of the seam
length by "inching" along at slow speed. First the robot‘
moved the fingers forward by the required distances which
caused the cloth +to loop upwards and removed any cloth
tension. The sewing machine was then operated for a
specific number of stitches which accurately finished off
the seam. Since there was no cloth tension and the sewing

speed was very slow, the feed mechanism was effective and

repeatable.

The number of stitches was obtained from a calibration
test, and was only dependent on the position of the stitch
length knob on the sewing machine. For a stitch length
nominally set at 3 mm, seven sewing revolutions would
extend the seam up to 10 mm from the cloth end.

Unfortunately; the sewing machine did not have a stitch



213

condensation facility which would have permitted the

control of the stitch width from the IBM AT.

A stitch condensation facility is recommended for future
prototypes, so that the accuracy of the inch function can
be improved, and so that the sewing station 1is more

independent of manual adjustments.

6.5. Rotating Cloth Panel about Needle

A common handling fabric operation which follows an edge
seaming operation is fo rotate the panel about the sewing
needle, which was 1left 1in the "down" position at the
termination of the previous seam, until the adjacent edge

is aligned up ready for seaming.

6£.5.1. VAL 11 Implementation

Rotation of the cloth about the needle during the edge
ceaming operation was performed using the ALTER facility
since the rotation of the cloth was required within a real
time sensory feedback control system (section 5.4.1). When
the robot was required to rotate the cloth panel as a pure
handling operation, sensory feedback and the ALTER facility
were not required, so that the entire function could be

controlled from a VAL Il routine.

The rotation was performed by the VAL II program,
rotate.ndle, which was based on the procedural motion
control mode (section 2.4.1). As described in section
S5.4.1, this rotation operation is composed of two

simultaneous motions; rotation of the main finger about the



214

needle and rotation of the end-effector about the main
finger. The routine was written in a general format, so

that any angle of rotation could be specified.

6.5.2..Effect of Robot Inaccuracy

When the rotate.ndle routine was executed to rotate the
cloth by @0°, 1large errors were aobserved in the final
position and orientation of the end-effector, which caused
the cloth to buckle. The errors were particularly high
because under the procedural motion. control mode the
overall motion is the result of the interpolation of many
intermediate motions, and the intermediate errors are

cumulative.

When the IBM AT software, developed for the seam Qidth
control system, was used in conjunction with the ALTER
channel to perform the same function, identical errors were
cbserved., This showed that the rotate.ndle function was
equivalent to the ALTER version and that the robot’s poor
absolute accuracy was to blame. The effect of the raobot’s
imaccuracy on cloth buckling is further discussed in

section S5.6.4.

6.5.3. Accommodating Robot Inaccuracy

The effect of the robot’s imaccuracy was accommodated by

adopting the following procedure :-

1) The cloth was buckled intentionally by moving the

cloth in towards the needle.

2) The cloth was rotated by 90° using rotate.ndle. Since



215

the cloth was excessively slack, the 1inaccurate
rotation did not generate any pulling of the fabric

between the needle and the fingers.

3) The buckled cloth was straightened out by the

straighten routine.

4) The final orientation of the cloth was adjusted by the
angle.adj function (section 6.3.5), so the accuracy of

the rotate.ndle routine was not critical.

6£.5.4. The straighten Routine

A straighten routine was developed based on a directional
air jet which was incorporated in the support of the main
finger of the first prototype end-effector. The jet was
directed at approximately 43° to the vertical and along the

finger support beam.

The air jet was placed at a location célled blow.position,
in which the jet was positioned over the cloth panel, close
to the sewing machine, and directed along the line x =y
and away from the needle. This technique was only partially
successful at straightening out buckled single-ply panels,.
and it was even less effective with two ply panels and with

heavy fabrics.

The reliability of the air jet technique could be
considerably improved by the simultaneous use of flotation
under the <c¢cloth panel to reduce the table to cloth

friction.

A different technique for straightening the buckled cloth

was developed with the second prototype end-effector, which



2lb

utilized the pneumatic actuators in the end-effector to

lift the fingers off the cloth individually. The

"straighten" function raised the main finger off the table,

and the auxiliary finger stroked the end of the cloth away

from the needle, at 45° to the sewing machine axes. This

straightforward method proved successful and reliable.

Fig. &6-4: Demonstration of Automatic Production of a

Sub-assembly



217

6.6. Demonstration Assembly

The robotic edge seaming technique and the fabric handling
techniques’™ developed during the FIGARO project were
demonstrated in the production of an irregularly shaped
sub-assembly, in which 3 adjacent edge seams of arbitrary
contour are produced fo form a bag. The software
implementation is shown in Appendix E, and a photograph of

the typical results of the sub-assembly production is shown
in fig. 6—4.

&6.7. Discussion

656.7.1. Overhead Camera

The handling techniques developed above used only =
photocells and the I-SIGHT cameras for locatiﬁg or
confirming the location of cloth panel features. Although
the techniques performed @he required operations
satisfactorily ' (when the panel was placed on the table
within the limits given in section 6.3.2), an industrial
implementation would require a more robust and reliable

system that would have more visual feedback.

An overhead camera system might provide a more reliable and
quicker measurement of the location and orientation of the
cloth panel, than using the searching strategies developed
above. The 1limits on the initial position and orientation
of the cloth panel, listed in section 6.3.2, could be
relaxed considerably. In addition, an overhead camera could

provide a measure of the contour profile which could be



218

used in &a more sophisticated version of DecideSeam to
provide an optimum sewing stra%egy automatically (section
7.2.4). However, a static overhead camera would require a
very high resolution in order to have a field of viewAthat
covered most of the sewing table and to locate the ‘cloth

edge within a few millimetres.

A more practical solution, that has been applied to other
robotic assembly systems [62], is to use a combination of a
static overhead camera and an end effector mounted vision
system. In this application, an overhead camera could
provide the gross position and orientation of the panel,
and the two photocells could provide a ‘fine measurement
capability using the techniques developed above.

Overlapping redundant sensory feedback systems are often a
feature of commercial robotic cells, since they improve the

general robustness of the system.

6.7.2. Buckling Prevention

A more accurate robot and the installation of flotation
nozzles in the sewing table would make a major reduction in
the tendency of the «cloth to buckle during handling
operations. However, .techniques for ensuring that the cloth
panel is straight and flat (section 6.5.4), would still be

necessary to provide high reliability.

Another measure that reduced the buckling tendency was the
programmable finger distance feature of the second
prototype end-effector (section 6.2.1). Additional fingers
would be advantagous when rotating large panels about the
needle but the multiple finger arrangement should be
configurable under program control. Furthermore, the design

of the multi-fingered end-effector should not reduce the



219

flexibility of the system to perform other handling and

sewing operations.

Torgerson and Paul [65) developed an algorithm for the
automatic generation of an optimum configuration of a
multi-fingered end-effector according to the shape of the
cloth panel. Although, the end-effector developed in the
(TC) 2 project has a measure of programmable
reconfigurability £[é641, it is large and bulky and was not

intended for handling operations in the vicinity of the

sewing needle.



220
CHAPTER 7

DISCUSSION

This chapter reviews the achievements of this project to

date and discusses the potential of the FIGARO approach and

techniques for future developments.

7.1. Review

7.1.1. Objective

The experimental robotic sewing station and the automatic
sewing and handling techniques described above, wére
déveloped in accordaﬁce.with an adaptive robotic approach
to flexible clothing automation (section 1.5.4.)s in which
the robot controls the fabric panel using sensory feedback.
The objective of this investigation was to ascertain
whether this flexible automation approach could, after
further research and development, become the basis ofv a

commercially viable, industrial, flexible automatic sewing

cell.

7.1.2. The FIGARO Robotic Sewing System

A block diagram of the FIGARD system is shown in fig. 7-1.

A4



‘614

t1-4

wa3sAg Buimag nijoqoy OMYOIL jo weaberqg xd01g

IBM AT — controller

780 signal counter sewing m/c
dition VAL 1l
condl controller
system
frame frame amplifier
store store
no. 1 no. 2
: sewing speed
sewing start/stop
cloth machine| | presser foot
camera camera tension shaft needle up/dn | |PUMA 560
no. 1 no. 2 sensor encoder
L | }

SENSOR SYSTEMS

ACTUATORS

122



geae

A control hierarchy was established so that the robot and
sewing machine could be controlled in real time in

conjunction with multi-sensory feedback.

An IBM AT was wused as the cell controller, but 1its
processing power was found to be insufficient for this
application. More suitable configurations are recommended
in section 7.4.1. The software for the cell controller was
developed for execution within a real time multi-tasking

environment, allowing different processes to run

concurrently.

Two communication channels were set up between the station
controller and robot controller; the ALTER channel was
dedicated to conveying robot motion data in real time, and
the GPC channel was used to provide additional

communication facilities.

The system was based on the PUMA 540 robot, because of its
advanced programming and control system, VAL 1;. However,
the robot was found to be unsuitable for this application
because of poor absolute accuracy. A more suitable robot is

recommended in section 7.4.2.

The sewing machine was interfaced to the cell controller so
that the various functions (e.g. stop/start, sewing speed,
presser foot up/down, needle up/down etc.) could be

controlled from the IBM AT.

A sewing table was constructed around the sewing machine
and was covered with a smooth, mirror surface stainless
steel sheet. The position and height of the robot base
relative to the sewing table were deliberately chosen, to
minimize the effects of the robot’s limited workspace and

to avoid singularity regions.



ea3

Two prototypes of a special purpose end-effector were
developed for handling and manipulating limp fabric on a
table. The end-effector was required to control the fabric
sensitively, in close proximity to the sewing head, without
interfering in the sewing operation or 1limiting the

system’s flexibility.

Two spring—-loaded fingers were incorporated into a low
profile design and their separation distance could be
changed under program control. The fingers were tipped with
a-high friction rubber pad so that the cloth was gripped by
the finger without increasing the table surface friction.
Photocells and microswitches were installed on the end-

effectors in order to locate the cloth panel and as a

safety precation.

7.1.3. Adaptive Control of the Robot

The high speed ALTER communications protocol was
implemented on the IBM AT in a modular fashion, along the
lines of the 0SI Reference Model, The software was
interrupt driven and optimized to minimize the

communication overheads.

The dynamic characteristics of the PUMA S560/VAL I1 system
under ALTER control was investigated experimentally. In
order to obtain smooth and linear motions, wvelocity and
acceleration limitations and, in the case of non-cumulative
mode, an interpolation algorithm had to be applied to raw
ALTER data. The maximum velocity and acceleration had to be
reduced when the arm was outstretched, to limit dynamic
errors.



cc4

7.1.4. Cloth Tension Control System

A robotic sewing technique was developed, in which the
robot held the free end of a cloth panel and the robot
moved with the cloth during the sewing operation. The robot
motion was synchronized with the sewing machine feed
mechanism by tracking the sewing machine shaft encoder
signal. The buffered shaft encoder signal was interfaced to
the IBM AT via a counter circuit. The IBM AT computed the
required robot motion and transmitted it to VAL Il via the

ALTER channel.

This cloth feed tracking system was capable of producing
good quality short straight seams, once the stitch length
had been manually adjusted for a specific speed. However,
under most circumstances,; this system was unsatisfactory
because the cloth slipped 1in the sewing machine feed
mechanism in an unpredictable way, and the robot would
either lag or lead the clqth feed. This either resulted in
excessive cloth tension or in a slack and buckled panel.
The problem was solved by developing a closed loop control
system in which the cloth tension was measured and the
robot motion was modified to maintain a constant cloth

tension.

A cloth tension sensor was designed to provide high
sensitivity' in the direction of sewing, and high
insensitivity in all other directions. The sensor’s signal
was amplified and interfaced to the IBM AT via an ADC. The
cloth tension signal was found to undulate synchronously
with the sewing revolutions during sewing, due to the
intermittent nature of the feed mechanism. A digital peak
detector was incorporated intoc the ADC circuit so that the

cell controller could sample the peak tensions.



eas

Initial experiments with a «closed 1loop cloth tension
control highlighted instability problems due to the non-—
linear behaviour of fabric under tension and due to the
table friction. The system time delay and the initial
start-up acceleration of the sewing machine caused high
initial cloth tensions,; which upset the tension control. A
gradual controlled start-up acceleration corrected this
problem. When the robot attempted to tension the cloth by
moving away from the needle, the table friction created an
apparent cloth tension even though the cloth was still

slack. To avoid this, the robot motion was limited to the

sewing direction only.

A proportional and integral control was required to limit
tension variations within an acceptable range and to
prevent tension build-up, in order to produce good seams.
Since satisfactory control could not be obtained through
trial—-and-error experimentation, the .range in which the
optimum gain yalues were likely to be was obtained using a
Bode design procedure. The Bode procedure required the open
loop fregquency response, thch was measured by imposing a

sinusoidal forcing function on the open loop system.

The performance of the cloth tension control was found to
depend on the fabric’s mechanical properties, the sewing
speed, system time delays and the number of plies. Woven
fabrics sewn along the bias and knitted fabrics, although
operating under good tension control, produced unacceptable
buckling during the sewing operation. The buckling was due
to their high extensibility at the average tensions
suitable for the control system developed. Good performance
was obtained with a variety of woven fabrics at the maximum
sewing speed of 35000 rpm. Fabrics, which were pucker

sensitive, produced good seams at reduced speeds.



226
7.1.5. Seam Width Control System

The robotic sewing technique was extended to sew seams
parallel to an edge of arbitrary contour by including a
vision~-based seam width control system in the adaptive
control of the robot. A simulation technique was developed
which accounted for system non-linearities due to the
vision system, system time delays and robot motion
limitations. The simulation program showed that a design
based on a single camera or on two photocells would not
produce stable control. The simulation showed that the
system was sensitive to the system time delay, pixel
resolution and the initial seam width error. The simulation
provided a specification for the vision system and an

insight into the control problem.

Two miniature cameras were mounted on the sewing machine
and interfaced to the IBM AT. A lighting arrangement was
developed which provided a clear black-and-white image of
the cloth edge, regardless of the fabric colour. A
compréhensive calibration technique was developed to
facilitate the setting up of the system, and to ensure

accurate and stable edge seam production.

\

The seam width control required that the robot corrected
the orientation of the cloth panel during sewing. This was
achieved by superimposing two motion elements; rotation of
the main finger about the sewing needle, and rotation of
the auxiliary finger about the main finger. The robot’s
workspace constraints 1limited the maximum cloth edge
curvature that could be tracked. To minimize the effects of
these constraints, the robot’s permissable envelope was

carefully defined and when the robot approached one of the

bounds of the envelope, the robot was decelerated smoothly.



227

Buckling of the cloth panel was a serious problem in the
-development of the edge seaming technique. When the cloth
buckled, it 1lost 1its rigidity and the robot effectively
lost control. The tendency of the cloth to buckle was
minimized by reducing the table friction, reducing the
spring loading on the fingers and damping down the motion
of the robqt. The poor absolute accuracy of the robot
contributed significantly to the buckling problem. When the
end of the seam approached, the buckling tendency increased

due to the effect of the presser foot.

A CLOSE sewing technique was developed to sew the last
100 mm of a seam or to sew intricately curved seams. In
this technique, the fingers were positioned on the <cloth
alongside the sewing head to manipulate the cloth more
effectively, although the tension control system had to be

restricted to open loop control.

Accurate edge seams were produced at speeds up to 100 mm/s
for typical contours. Fabrics with relatively high buckling
stiffness gave good performance. Fabrics with high
extensibility, such as knitted fabrics, were unsuitable in
the present system, due to the cloth edge curling up around
the presser foot. Two-ply panels gave better performance

than single-ply panels because of their higher stiffness.

7.1.6. Handling Techniques

Techniques were developed to set up a cloth panel for the
edge seaming operation. The robot located a cloth panel
placed down approximately on the table, and slid it into
place with the needle accurately positioned at the start of
the seam. Two photocells and the two cameras mounted on the
sewing machine provided visual feedback during the handling

operation.



228

A technique for rotating the cloth about the needle was
developed which was used to reduce the initial angular
error of the cloth panel and to set up one cloth edge after
sewing up the adjacent edge. The robot’s poor absolute
accuracy caused problems for this operation since sensory

feedback could not be used to compensate for the robot’s

inadequacy.

Segmented seam production was permitted by dividing a seam
up into FAR and CLOSE segments and repositioning the
fingers between segments. The sewing and handling
téchniques were demonstrated in the production of a three-

sided panel of arbitrary contour.

7.2. Capabilities and Limitations of FIGARO system

7.2.1. Introduction

An ideal flexible automatic sewing cell would have the

following features :-

#+ Flexibility ¢to process different shapes, sizes and

fabrics.

* Capability ¢to perform a wide range of sewing and

handling operations.

# No manual intervention required between different
operations or products.

¥ Minimal manual adjustments or maintenance.

# High reliability.

¥ Automatic error detection and recovery.

* Easy to integrate into a CIM environment.



229

Most of these features could be integrated into a
commercial version of the FIGARD system. The hierarchical
control arrangement that was adopted in the FIGARO system,
can easily be incorporated into a CIM environment by
developing an additional communication channel between the
cell controller and a process supervisor. Automatic error
‘detection and recovery capabilities require redundant and
overlapping sensar systems, and extensive processing
capabilities, and the FIGARO system could be extended to
include these facilities. Recommendations regarding the
sewing machines; which is the most unreliable component in
the system and which'requires frequent manual adjustment,

are given in sections 7.3.3 and 7.4.3.

The flexibility of the FIGARO system and its multi-function

capability is discussed in the following sections.

7.2.2. Multi-Function Capabilities
7.2.2.1. Present Capabilities

Techniques have been developed for the FIGARD system, which

perform the following functions :-

1) Sewing & seam parallel +to an edge of arbitrary

contour.,
2) Sewing a straight seam anywhere on the cloth.
3) Setting up a cloth panel for the edge seaming

operation, from an approximate initial position and

orientation,
4) Rotating a cloth panel about the sewing needle.
5) Withdrawing a cloth panel from the sewing machine

after the sewing operation.



230

A ply separation device, developed in a separate project,
was inteqrated into the end-effector in order to provide
the capability to separate and pick up a single ply from a
stack. A vision-based technique for placing one ply
accurately on top of another is being developed in a

parallel project, which could also be integrated into the
FIGARQ system.

7.2.2.2. Potential Capabilities
a) Additional Sewing Functions

Seams with fullness could be produced if the drop feed
sewing machine was exchanged for a machine with a
programmable differential feed. If a button sewing machine
and a button hole machine could be added to the sewing
table, without affecting the performance of any of the
sewing or handling operations already developed, tﬁen two
very useful functions  would be added to the FIGAROD
repertoire. These additional machines would probably
require an extension of the sewing table and inverted
mounting of the robot (section 2.8.3.3). It may be
necessary to mount the robot on a programmable gantry
platform, which 1is a .technique that is often wused to

increase a robot’s working envelope.

b) Folding and Unfolding

Folding &a cloth panel prior to a sewing operation and
unfolding it after the operation were identified by the
(TC)?2 project team as useful handling capabilities, which

can be used, besides other purposes, to reduce the surface



231

area of large panels to facilitate the sewing operation
£171. It is anticipated that some modification of the ply

separation device will be necessary to realize these

capabilities.

Since folding and unfolding are functions in which a human
operator must use both hands, a robotic solution must
include 2 degree of assistance external to the single-
handed robot. A simple and effective solution might be to
use the table’s flotation nozzles to apply suction to the
panel, at the «critical stage in the handling operation.
Alternatively, a portion of the extended sewing table could

be designed as a folding/unfolding station based an

assistance devices.

c) Pocket Setting

The existing system would require some additional
development in order to set and sew up a pocket oﬁto a
ﬁanel. For example, the vision system would have to detect
the edge of the pocket against the panel. Since the table’s
mirror surface could not be used to detect the edge, a
structured light approach might be successful, in which a
laser beam is projected as a narrow line from a low
elevation angle. The vision system could fhen measure the
position of the cloth edge by detecting the step in the
line of light, which is due to the height differential.

7.2.3. Flexibility

Besides offering a qreater ranqge of functional
capabilities, a system based on robotics and sensory

feedback is more flexible and adaptable to changes in the



232

shape, size or characteristics of the workpiece, when

compared to hard automation soclutions.

7.2.3.1. Present System’s Flexibility

In the sewing up of a three sided sub—-assembly
(section 6.6), the FIGARO system demonstrated some
flexibility: in that panels of different sizes and with
different edge contours were successfully sewn up without
"any manual mechanical adjustments or software alterations.
The sensory feedback control systems accommodated minor
changes in fabric characteristics without requiring changes

in the control parameters.

7.2.3.2. Flexibility to Shape

The present end-effector hag two fingers that can be
configured optimally under program control for a specific
panel shape. A multi-fingered end-effector would‘ improve
the system’s performance for a wider range o% shapes, but
the more complex device should be designed in accordance

with the comments made in section 46.2.

7.2.3.3. Flexibility to Edge Contour

Although the vast majority of edge profiles found on
garment panels could be sewn up satisfactorily with an
optimum combination of CLOSE and FAR seam segments, the
seam strategy generator (SSG) implemented in the present
version of the software is unsophisticated and it will only
generate a satisfactory strategy for moderately curved

contours. The current SSG is embodied in the DecideSeam



£33

function, and it generates either a FAR-CLOSE or a CLOSE

strateqys depending on the seam length.

In order to sew along an edge with intricately curved
features,; a sewing strategy would have to be specified by a
programmer by writing a new version of DecideSeam for the
particular seam profile, in which the combination of FAR
and CLOSE segments was based on the seam profile. This is
not a very satisfactory situation since the programmer
would either have to arrive at a successful strategy
through trial-and-error experimentation, or he would
require expert knowledge of the system, its dynamic

characteristics and its limitations.

Consequently, if the FIGAROD system is to be used to its
max imum potential and yet maintain simple task
specification requirements, a much more sophisticated GSG
is required to automatically generate the optimum sewing

strategy for specific edge profiles (section 7.2.4).

7.2.3.4. Flexibility to Fabric Characteristics

The robotic sewing operations are sensitive to the
mechanical properties of the fabric. 1In order to simplify
the requirements of the wuser interface to the FIGARO
system, different fabrics should be classified according
to their mechanical properties, so that the optimum control
parameter settings could be found experimentally for each
category. Consequently, when the system is in operation,
the software could automatically select the optimum control

for a specified fabric cateqgory.

The present system cannot satisfactorily sew knitted

fabrics or woven fabrics cut along the bias, due to



234

excessive shear buckling. This limitation might be removed
if the tension control system was improved so that the

cloth tension could be kept at a much lower level (of the

order of 2 to 10 gf).

The high table-to-fabric friction, which is the major
factor preventing the reduction of the controlled tension
level, can be reduced by adding flotation to the sewing
tablesor it can be eliminated by picking up the end of the

panel and holding it in the air between clips

(section 4.3.1).

7.2.4., A Sewing Strategy Generator (SSG)

The requirement for an automatic, optimizing, sewing
strategy generator was described in section 7.2.3.3. This
sobhisticated §SG would require a reasoning and decision-
making capability, which could be developed using

artificial intelliqence (Al) techniques.

The SSG would require knowledge of the edge contour, which
could be provided in one of two ways. An overhead camera
system could provide an image of the cloth panel which
would be interpreted in real time by a vision processing

system. The edge contour shape would be extracted from the

image using an edqge detection algorithm.

Alternatively, in an advanced CIM system, the shape of all
the cloth panels would already be on record in the CADCAM
database which generated the program for the automatic
cutting machine, and this database could be interrogated by

the sewing cell controller.



235

Several experimental Al programs have been reported which
can perform the "Robot Task Planmning” function [73,741. A
Task Plamner is given a description of the goal (e.g. "put
the red block on top of the white block”, or in this
application "perform an edge seam on the left hand edge of
the panel"), and it will decide how the robot can achieve
the goal and specify the robot motion sequence, relevant

locations and other parameters (in this case;,; the seam

strategy).

A Task Planner requires a World Model, a Knowledge Base and
a reasoning algorithm. In the case of an §5G, the World
Model would be a description of the edge contour and
knowledge about the limitations and capabilities of the
FIGAROD systemy, and the Knowledge Base would contain a set
of empirical rules to guide the reasoning process to find
the optimum sewing strategy. An Al programming language,
such as PROLGOG which is based on predicate logic and has a
built-in backtracking inference engine, would facilitate

the development of the S56G.

7.3. Commercialization Considerations

The FIGARD development is based on an ambitious approach to
solving the clothing automation problem,; and at this early
stage, the development of technical solutions and an
investigation into the fundamental handling problems are
the foremost requirements. Al though, the present
experimental system 1is not expected to be commercially
attractive, some comments can be made as to the potential
for commercial exploitation of the developments in the

future.



236

7.3.1. Speed

Sewing speeds of 3000 rpm have been achieved for moderately
curved cloth panels, and implementation of modifications
recommended above should increase &he sewing speed or the
rates of curvature further. This performance is comparable
to the sewing speed that a human operator can achieve under
similar circumstances, but an operator using an edge guide
and dedicated automatic edge seamers can achieve wup to

6000 rpm for similar curvatures.

Dedicated automation devices are usually faster than the

equivalent flexible automation system because there is a

trade-off between speed and flexibility.

The system can locate and accurately set up a panel for an
edge seaming operation within 20 to 30 seconds, and there
is considerable scope for reducing the times for this and
other handling operations. Since fabric handling accounts
for up to 80 % of an operator’s time (101, improving the
fabric handling times is more important than improving the
sewing speeds. An overhead camera, with associated vision
processing hardware and software, and a faster and more
accurate robot should reduce the fabric handling times to

timings comparable with a human operator.

7.3.2. Cost

7.3.2.1. General Comments

The FIGARO approach is inherehtly expensive when compared
to hard automation solutions, since it involves an adaptive

robot, complex sensor systems, multi-processor



237

architecture; extensive real time processing, and large and
complex software support. This is common, however, to most
applications of robotics and flexible automation, and
particularly in the case of complex systems 1involving
adaptive or intelligent control. The high initial costs
have to be justified commercially by high life expectancy

and utilization of the system [731].

Simulation experiments can assist in determining the

commercial viability of different production methodologies.

The small batch flexibility of a robotic cell 1is best
exploited within a CIM environment, and therefore the
viability of complex intelligent robotic assembly cells is
closely tied to the development and implementation of CIM

systems.

2.3.2.2. Comments Relating to the Clothing Industry

The Clothing Industry has a relatively iow level of
jnvestment in plant and machinery as a proportion of total
sales over time, compared with other sectors of industry
[13. Several factors encourage this situation, such as low
added value ratio on products, unacceptability of shift
working among the work force, short batch production, etc.
Consequentlys the commercial viability of a sophisticated

robotic sewing system is unlikely in the near future.

Nevertheless, there are several factors that indicate that

this situation will change :-

a) Complex and expensive CAD/CAM equipment is becoming

commonplace in cutting rooms (section 1.3.1).



238

b) Semi-automatic sewing units are in widespread use

despite their limited flexibility and relatively high

cost (section 1.3.2.2).

c) Computerized conveyor systems have been adopted and
integrated into production control systems, which Iis
an important step towards developing a CIM environment

(section 1.3.3).

d) Large scale R & D projects are underway in Japan,
FEurope and the USA to develop flexible <clothing
automation (section 1.4), confirming that it is widely

perceived that this techrnology is required urgently.

The (TC)2?2 approach, which is technically more conservative
than the adaptive robot approach, has the disadvantage that
an expensive robot is restricted to handling operations,

and that a complex expensive sewing module is also

. required. The adaptive robot approach, which maximizes the

use of the expensive robot so that the sewing machine and
other peripherals can remain relatively cheap and simple,

ijs much more ambitious.

1f all the technical problems can be solved so that the
cell’s handling time can match that of a human operative,
then it will replace three operatives, assuming round-the-
clock (i.e. three-shift) operation of the <cell. The
current cost of three operatives is approximately £30,000
per year, and the FIGARD project has shown that an
industrial version could well have a capital cost below the
£60,000 target, which gives a two year payback.
Consequently, the adaptive robot approach is well worth

pursuing.



2379

7.3.3. Other Considerations

Sewing machines are notoriously unreliable and they have

frequent stoppages for thread and needle breakages, tension

ad justments and bobbin replacements. This characteristic is

a major problem in the automation of the sewing room, which

can be tackled in two ways.

a)l

b)

Each sewing machine fault could be detected,
jdentified and rectified automatically. Automatic
bobbin changers and needle threading mechanisms have
been developed [B8] which could be integrated into the
cell. An artificial intelligence capability may be
necessary to ensure that system faults are interpreted

correctly and that suitable corrective action |is

chosen.

Alternatively, each sewing cell could have two sewing
headss; either of which could be rotated into place.
One of the sewing heads could then be threaded and
adjuéted manuglly without holding wup production.
Nilsson [186] describes a sewing room with general
purpose sewing cells, in which the material flow could
be modified automatically as cells were removed from

production for rethreading etc.

7.4, Recommendations

7.4.1. Robot

The PUMA 560 robot is unsatisfactory for robotic sewing and

handling applications, due to its poor off-line programming



il LU e S R

240 L_V-» law LIsHARY
UNIvERSITY OF LEEDS |
accuracy (section 2.4.1). Since the end-effector |is

maintained in a perpendicular orientation relative to the
sewing table for all robot motions, a 4 axis robot would
suffice and the PUMA robot has 2 redundant degrees of
freedom. A & axis SCARA type robot is inherently stiffer
and more accurate than the PUMA design, and its real time
motion control calculations are simpler since there are

only 4 axes to control.

The major attraction of the PUMA robot was 1its VAL I1
control system which permits real time path control of the
robot. The Adept SCARA robot is now available with the
VAL II control system, and the Adept robot system achieves
very high off-line programming accuracy by incorporating
the actual dimensions and angular offsets of each specific
robot into the control system’s model. The advantages of
the Adept robot over the PUMA for the FIGARO application,

are summarized below :-—

* 16 ms handshake cycle time, instead of 28 ms
* higher accuracy

# no singularities

* faster maxiQO tool veiocity and acceleration

¥ higher rigidity

7.4.2. Cell Controller

The workload on the IBM AT was considerable, and the

performance of the robotic sewing operation suffered from

insufficient processor power. A commercial implementation

would require much more processor power for additional

communication channels, automatic error detection and

correction, etc.



241

A Tfar more powerful processor could be selected for the
cell controller e.g. the new 32-bit micro-processors,
(80384, 60030, etc.). The workload on the cell controller
should be further reduced by delegating the management of
the ALTER and supervisory communication channels to
dedicated processors, e.g. a microcontroller and a chip of
dual ported RAM could provide a communications support sub-

system (section 3.3.3).
7.4.3, Sewing Machine

Additional sewing functions and a reduction in the number
of manual adjustments required could be obtained by
replacing the lockstitch machine with a machine that can
provide differential top and bottom feed under external
programmable control and that can provide a programmable
stitch length. The differential top and bottom feed would
permit production of seams with fullness, and the
programmable stitch length would permit production of
condensed stitching and reduce the need for frequent manual

ad justments and check-up.

7.4.4. Workstation

Flotation nozzles should be incorporated inte the table
before and after the sewing head. The nozzles after the
sewing head should be directed to push the cloth away from
the needle ddring sewing (section 5.4.4,1), If the nozzles
in the main area of the table could be programmable to
provide either suction or floatation, then the system will

have additional flexibility and reliabilty.

The robot could. be mounted inverted from a gantry to

increase its workspace.



ea2

7.4.5. Future Work

Many recommendations for further research and development
have been suggested earlier, and they are summarized as

follows :-—

1) Extend tension control to a wider range of fabrics.
2) Improve edge seaming per?ormance
3) Reduce timings for fabric handling operations.

4) Develop an SSG to provide AI task planning capability.
5) Develop folding and unfolding techniques.

6) Add overfeed and stitch condensation capabilities.
7) Demonstrate production of a jacket sleeve.
8) Measure mechanical properties of fabrics and determine

tension control parameters for each fabric category.
) Add button-hole and button-sewing machines.
10) Develop handling and sewing techniques for setting and

sewing up a pocket on a back panel.

7.5, Conclusion

An experimental flexible robotic sewing cell was developed
which consisted of an adaptively controlled robot, a

hierarchy of controllers, and several sensory inputs.

Techniques for sewing contoured edge seams (and of course
straight seams) were developed, based on sensory feedback
control systems which maintain the cloth tension and the
seam width during sewing. A cloth tension sensor, vision
processing software and a two-fingered fabric steering end-

effector were developed for the robotic sewing operations.



243

Fabric handling techniques have ‘also  been developed
including detecting‘ a cloth panel; presenting it to the
sewing machine, accurately setting up the cloth for an edge
seam operation, rotatinq the cloth about the needle, and

removing the cloth from the machine after the sewing

operation.

The project has successfully demonstrated technical
solutions to the flexible automation of clothing assembly,
in which the robot performed all the fabric handling and
control needed in the sewing assembly operations. Future
developments of this approach to clothing automation have

been clarified as a result of this research.



244

REFERENCES
Cave P., NEDO, "Economic Overview of the Garment
Industry”, Proc. Conf. on Automation of Garment

Manufacture, Leeds 1986, pp 6-~11.

Walter C.H., Marks & Spencer PLC, " A Retailer’s View
of the Regquirement of Research in Garment
Manufacture", Proc. Conf. on Automation of Garment

Manufacture, Leeds 19846, pp 42-50.

Tyler D.J.5 "Flexible Apparel Automation and Japanese
Initiatives", Hollings Apparel Industry Review, 1985,
Vol 2, No 1, pp 7-24,.

Weston L.s "Some Observations on the Swedish Clothing

Industry", Hollings Apparel Industry Review, 1985, Vol
2y No. 2, pp 153-170.

Saibel M., "Research & Developmipt Program for the
Japanese Apparel Industry", -AAMA Apparel Research
Journal, Bobbin, October 1977, p 138.

"Research & Development in the Apparel Industry", AAMA
Apparel Research Journal, Bobbin, October 1977,
pp 123-137.

Anon, "Automation in Apparel®", Bobbin, 1982, Vol 23,
No S5, pp bba-66h,

Lower J.M.s Singer Inc., "Automation Heard around the

World", Bobbin, 1985, Vol 26, No 8, pp 78-81.

Tredwin P., "Computerised Garment Manufacture", Proc.

World Conf., The Textile Inst., May 1985, London.



10

11

) §=

13

14

15

16

17

18

19

245

Grills Res Brown S., "Productivity in Sewing

Operations", Shirley Institute Publication S20, 1973.

Ogawa S., "Japan’s Automated Séwing System: A National

Research and Design Project",Bobbin, 1984, Vol 23, No
&, pp B82-102. "

Siﬁclair D., "Stand Up and Sew", Apparel
International, 1982, Vol 2, No 2, pp 4-7.

Wong P.C., Hudson P.R.W.s "The Australian Robotic
Sheep Shearing Research and Development Program”,

Robots 7, 1983, pp 10-56 to 10-63.

Hauber F.W., Pfaff, "An Organised Method for Looking
at Sewing Machines", Bobbin, August 1978, pp 114-118.

"Technology and the Garment Industry", NEDO report,
1971.

Edberg B., Nilsson N., "Computerised Clothing
Manufacturing: A Means for Survival", Proc. Annual

World Conf., The Textile Institute, May 1985, London.

Abernathy F.H., Pippins D., "(TC)2 Apparel, Textile
and FEducation at its best", Bobbin, 19856, Vol 28,
No 1, pp 162-168.

Bernardon E., Kondolean A., "Real Time Robotic Control

for Apparel Manufacturing”, Charles Stark Draper

Laboratory Inc., 1985, pp 1-20. &~ &LJS UI/ Dete 198 €,

fr Lo b L-CC
Berkstresser G.A., Takeachi K., "Japan’s Automated
Apparel Manufacturing System Research Project"”,

Bobbin, 1983, Vol 25, No 35 pp 75-84.



20

21

ee

23

24

25

26

e7

28

29

246

"PUMA 500 MK2 Robot System Technical Manual”,
Unimation (Europe) Ltd., England, 506-2057/58.

"Unimate PUMA Robot, Vol. 1 Technical Manual 398H1A",
Unimation Inc., USA, 1981.

El-2orkany H., Liscano R., Tondu B., Sawatzky G.,
"Sensor—-based Location and Trajectory Specification
and Correction in Robot Programming", Proc. Conf. ISIR

16, Brussels 1986, pp 643-656.

Desroches A.s "Introduction to Robot Dynamics and

Control”, IEEE Control Systems, Vol 22, No 1, 1984%4.

Mudge T.N., Turney J.L., "Unifying Robot Arm Control",
IEEE Trans. Industr. Applic. Vol 1A-20, No. &, 1984,

Paul R.P., "Robot Manipulators: Mathematics,

Programming and pontrol", Cambrige Press, 1981,

Dubowsky S., Desforges D. T., "The application of
model-referenced adaptive control to robotic

manipulators.”, Jnl. Dynamic Systems Measurement and

Control,; Vol 101, 1979, pp 193-299.

Freund E.s "Fast non-linear control for robots", Proc.
International Research on Robotics Research", Vol 1,

No 1, 1982, pp 65-78.

Critchlow A.J., "Introduction to Robotics",

19835.

Macmillan,

Johnson D.G., Hill J.J., "Sensory Level Programming: A

New Software System for Improved Control of a Sensory



30

31

3e

33

3a

35

36

37

247

Industrial Robot"y, Proc. Conf. ROVISEC S5, Amsterdam,
1985, pp 383-391.

Dupourque V., Ishacian 0., "Controlling Multi-Robot

Applications from UNIX", Proc. Conf. ISIR 16, Brussels
1986, pp 197-208.

Van Brussel H., De Winter D., Thielemans J.,
Valckenaers P., Claus H., "Introducing Flexibility in

Assembly Systems", Proc. Conf. ISIR 16, Brussels 19864,
pp S557-567.

Smith R.C., Nitzan D., "A Modular Programmable

Assembly Station", Proc. Conf. ISIR 13, Chicago 1983,
pp 5.53-5.75.

Albus J.S., McLean C.R., Barbera A.J., Fitzgerald
M.L.s "Hierarchical Control for Robats in an Automated

Factory", Proc. Conf. Robots 7, 1983, pp 13.29-13.43.

Symcox G., "Interfacing Robots with and without MAP -

a Case Study", Proc. Conf. ISIR 146, Brussels 1986,
pp 209-218.

Paul R.P., Shimano B., Mayer G.E., "Kinematic control
equations for simple manipulators", IEEE Trans.,

Systems Man Cybernetics, Vol SMC-11, Junme 1981,
pp 449-440.

Bazerghi A., Goldenberg A.A., Apkarian J., "An Exact
Kinematic Model of PUMA 600 Manipulator", IEEE Trans.
Systems Man Cybernetics, Vol SMC-14, No 3, May/June
1984, pp 483-487.

"AMX~-86 Multitasking Executive Reference Manual,



38

39

40

41

42

43

4y

43

46

248

PNB55-9", KADAK Products Ltd., 2046-1847 West Broadway

Avenue, Vancouver, B.C.; Canada, 1983.

"User’s Guide to vAL 11, Version 1.1, 398T1",
Unimation Inc., USA, 1984.

Gruver W.A., Soroka B.l1., Craig J.J.; Turner T.L.,
"Industrial Robot Programming Languages: A Comparative
Evaluation"”, IEEE Trrans. Systems Man and Cybernetics,
Vol SMC-14, No &, July/August 1984, pp 565-570.

"IBM AT Technical Reference Manual, PN 1502243", 1984,

Tanenbaum A.S.; "Computer Networks", Prentice Hall,

1981, pp 15-21.

Elgazzar S., "Efficient Kinematic Transformations for

the PUMA 560 Robot", IEEE Jnl. Robotics  and

Automation, Vol RA-1, No 3, 1985, pp 142-151,

Demers K.P.,; Walsh P.M., "Sensor-based Real-time Robot
Control Systems", Robotics Today, Vol S, No 3, 1983,
pp 69-72.

Hill J., Park W.T., "Real Time Control of a Robot with
a Mobile Camera"”s Proc. Conf. ISIR 7, October 1977,
pp 233-246.

Shimano B.E., Geschke C.G., Spalding C.H., Smith P.G.,

"A Robot Programming System Incorporating Real Time

"and Supervisory Control: VAL 11", Proc. Conf. Robots

9, Vol 2, Detroit 1984, pp 20.103-20.119.

Dario P., De Rossi D., "Tactile Sensors and the

Gripping Challenge", IEEE Spectrum, Aug 1985, pp 46-52



47

48

49

a0

o1

o2

93

54

55

56

249

Harmon L.D.; "Automated Tactile Sensing”, Intl, Jnl.

of Robotics Research, Vol 1, No 2, 1982, pp 3-32.

Van Brussel H.; Belian H.; Thielemans H., "Force
Sensing for 'Advanced~ Robot Control", Proc. Conf.

ROVISEC S, Amsterdam, 1985, pp S59-68.

Lestelle D., "Gripper with Finger Built-in

Force/Torque Sensors", Proc. Conf. ROVISEC S5,
Amsterdam, 1985, pp 69-77.

Rosen C.A. et al., "Exploratory Research in Advanced

Automation", Reports 1 to 5, Stanford Research
Institute wunder National Science Foundation Grant

G138100X, Dec 1973 to Jan 1975.

Feldmann Koy Classe D., "Sensor Aided Robot

Programming", Proc. Conf. ROVISEC S5, Amsterdam, 19835,
pp 369-382.

Watson PfC., Drake S.H., "Pedestal and Wrist Force
Sensors for Automatic Assembly”, Proc. Conf. ISIR S,
Chicago, 1973, pp S501-511.

"Materials Selector”, September 1972, pp 35-134.

"Kyowa Strain Gauge and Temperature Sensor,

Instruction Manual”, Kyowa Corp., Japan.

Horowitz P., Hill W., "The Art of Electronics",
Cambridge University Press, 1980,

MacCarthy B.L., Sharp J.M., Burns N.D., "A Constrained

Optimization Technique to Improve the Performance of



57

S8

a9

60

61

62

63

&4

65

=1

250

Strain Gauge Transducers",; Proc. Instn. Mech. Engnrs.,

Vol 200, No C2, 1986.

Kuo B.C., "Automatic Control Systems", Prentice-Hall,

1973, pp 295-302.

"A.I.E.E. Committee Report",; Elec. Eng., Vol 70,
October 1931, p 903.

Nordby, H.A.y "The Load-Elongation Properties of
Fabrics with Special Reference to Hysteresis", Ph.D

Thesis, University of Leeds, 1948.

Hearle J.W.5., Grosberg P.s Backer S., "Structural
Mechanics of Fibres, Yarns, and Fabrics", Volume 1,

Wiley Interscience, 1969, pp 339-346%9.

"Users Manual = IBM AT Interface Card for the I-SIGHT

Cameras", Electronic Automation Ltd., Hull, 1986.

toughlin C., Hudson E., "Eye in Hand Robot Vision",
Proc. Conf. ISIR 13, 1983, pp 263-270.

Naylor, Pos Private Communication, Electronic

Automation Inc., 1986.
Porat, 1.s Private Communication, Univ. of Leeds, 1986

Torgerson E., Paul F.W., "Vision Guided Robotic Fabric
Manipulation for Apparel Manufacturing", to be
presented at the 1987 IEEE Intl. Conf. on Robotics and

Automation.

Parker J.K, Dubey R., Paul F.W., Becker R.J.; "Robotic

Handling for Autoﬁated Garment Manufacturing", Trans.
. ,



67

68

69

70

71

72

73

74

75

251
ASME JInl. of Engineering for Industry, 1982, pp 1-6.

Gershon D., Porat I., "Robotic Sewing Using Multi-

Sensory Feedback", Proc. Conf. ISIR 16, Brussels,
1986, pp 823-834.

Di Stefano J., Stubberud A., Williams 1., "Feedback
and Control Systems", Schaum Series, McGraw Hill,

1976, pp 295-302.

Healy M., "Principles of Automatic Control", The

English Universities Press, 1975, pp 131-156.

Ben Ari M., "Principles of Concurrent Programming",

Prentice Hall, 1982.

Baker F.s "The Causes of Seam Pucker", Bobbin, 1978,
Vol 20, No 3, Nov, pp 188-192.

Porat 1I., Iype C., Gershon D., Moghaddassi M.N.,
Grosberg P. "Clothing Automation at the University of
Leeds", Proc. Conf. on Automation of Garment

Manufacture, Leeds 1986, pp 36-40.

Lozano-Perez T., "Task Planning"”, in "Robot Motion:

Planning and Control®", ed. Brady M., MIT Press, 1982,
pp 473-498.

Winston P., "Artificial Intelligence", Addison Wesley,
1977, pp 158-165.

Scatt P.B., Little A.D., "Guidelines for Economic

Justification of Flexible Automation", Proc. Conf.

ISIR 16, Brussels, 1986, pp 1045-1056.



a5e

APPENDIX A

MISCELLANEQOUS SOFTWARE MODULES

A.1. Software Versions

The version numbers of the various software products that
were used in this project are listed in table A-1.

Product Vendor Version Year
AMX-B6 KADAK Ltd. 1.1 1985
C compiler Lattice Corp. 3.1 1986
LINKER Microsoft Inc. 2.4 1983
TURBO PASCAL Borland Intnl 3.01A 19895
Assembler I1BM 1.0 1981

Table A-1: Software Version Nos.

A.2. AMX C Interface Prefix File

AMX-B86 requires a prefix file to be used at 1link time,
which ensures that the AMX segment definitions are
compatible with the C compiler (see section 1.10 of AMX C
Interface Manual). The prefix file provided was intended
for version 1.15 of the Lattice C compiler and is
incompatible with the different segment naming convention
implemented 1in version 3. A small modification of the AMX
prefix file rendered it compatible with version 3 of the C
compilers and the modified file is listed below :-

NAME AMX2P
PAGE 40,132 sPAGE/LINE SIZE
TITLE AMX2P - PREDEFINE SEGMENTS FOR LATTICE C LINKING

This version is a modification of KADAK’s AMCF845P.ASM
(version 1.1, 1985).

This prefix file has been modified so that AMX is now
compatible with version 3 of the LATTICE C compiler,
the IBM linker and the Microsaft linker.

EV EQU 11H ;REVISION 1.1

DEFINE DUMMY SEGMENTS WHICH WILL RESULT IN ALL AMX8& SEGMENTS
AND ALL LATTICE C SEGMENTS BEING LOADED INTO MEMORY IN THE
CORRECT ORDER.

THE C STACK SEGMENT MUST BE THE ONLY STACK SEGMENT
WITH CLASS ’STACK’. IT MUST ALSO BE LOCATED AS THE
LAST SEGMENT IN THE LINKED MODULE IN ORDER TO PROPERLY

ws Wwe we ws We we we we ) WS we Wwe wa we we we we



253

ALLOCATE STACK AND HEAP.

NOTE: THE AMXB&6 MEDIUM TASK STACK SEGMENT MAY BE FORCED BY
YOUR AMXB& CONFIGURATION MODULE TO BE PART OF DGROUP.
IN THIS CASE, SEGMENTS OF CLASS *MSTACK’ WILL BE
AT THE BASE OF DGROUP AND SEGMENTS OF CLASS ’DATA’
WILL IMMEDIATELY FOLLOW THEM IN DGROUP,

NOTE: THE IBM MASM ASSEMBLER ORGANIZES THE SEGMENTS
ALPHABETICALLY BY SEGMENT NAME. THEREFORE, SEGMENT
NAMES HAVE BEEN CHOSEN TO DEFINE THE PREFERRED ORDER
OF THE SEGMENTS IN THE OBJECT MODULE.
THE MICROSOFT LINKER ALLOCATES SEGMENTS IN THE ORDER
IN WHICH SEGMENT NAMES AND CLASSES ARE ENCOUNTERED.

AAACODE SEGMENT BYTE *CODE’ ;AMX86 CODE SEGMENT
AAACODE ENDS

: .
AAACODL SEGMENT BYTE ;sLATTICE C CODE SEGMENT
AAACODL ENDS

The following segment declaration forces the linker
to arrange the segments in the correct order

AAACODP SEGMENT BYTE PUBLIC ’PROG’ sLATTICE C SEGMENT (v. 3)
AAACODP ENDS

AAASTKI SEGMENT WORD ’TSTACK? ;AMXB6 LARGE MODEL TASK STACK
AAASTK! ENDS '

i
AAASTK2 SEGMENT WORD ’MSTACK’ ;AMXB86 MEDIUM MODEL TASK STACK
AAASTKZ2 ENDS ’

; 1AMXB6 PC SUPERVISOR DATA SEGMENT
AMPCDATA SEGMENT WORD PUBLIC ’DATA’
AMPCDATA ENDS

END

A.3. AMX Configuration Module

The AMX executive requires a configuration module to be
loaded with each application, as described in section
2.3.2.7. The configuration details are summarized below,
followed by the listing of the actual configuartion
module -

8.3.1. Summary of Configuration Details

TASK TASK  TASK  TASK  TASK QUEUE DEPTH
# NAME  ADDR  STACK MODEL LEVO LEV1 LEvV2 LEV3

0 TMR AMTMRT 400 LARGE 0 0 0 0
1 RXMG STRXMG 400 LARGE 0 0



254

TXMG STTXMG 400 LARGE
coMM  STCOMM 500 LARGE
SEW  STSEW 500 LARGE
MAKE STMAKE 500 LARGE
CONT STCONT 500 LARGE
POST STPOST 500 LARGE
PRNT STPRNT 400 LARGE

oNoc UGt wn
FOOO0COOO0O
WOOOOO0OO

RESTART PROCEDURES:

AMTDRR
AMRMRR
AABIA
RTIMER
RPCOM
RPCAMR
RPSEW

CLOCK FREQUENCY IN HZ2. 1S 18,

CLOCK TICKS PER SYSTEM TICK IS {.
TIME/DATE MAINTENANCE IS INCLUDED. ,
TIME/DATE PERIOD IN SYSTEM TICKS IS 18.

TIMERS AND TIMER PROCEDURE ADDRESSES:

TIMER TIMER PROCEDURE
™TD AMTDTR
TMNO1

RESOURCE MANAGER IS INCLUDED.

BUFFER MANAGER IS INCLUDED.

POCLY% & BUFFERS SIze
0 200 130
1 10 160

500 SYSTEM QUEUE PARAMETER BLOCKS ALLOCATED.
EXECUTIVE STACK IS 400 WORDS.
INTERRUPT SERVICE PROCEDURE STACK IS 450 WORDS,

A.3.2. Configuration Module ‘

TITLE CONTi.C 5/2/87

;

;AN AMXB6 CONFIGURATION MODULE DEFINING ALL
;TASKS, TIMERS, QUEUES, STACKS, ETC. REQUIRED
;BY AMXB6 FOR PROPER OPERATION

OQOO0OOO0OO0OO0OO0
WOOOOOO

()
n



; TASK ADDRESSES

EXTRN  AMTMRT:FAR
EXTRN  STRXMG:FAR
EXTRN  STTXMG:FAR
EXTRN  STCOMM:FAR
EXTRN  STSEW:FAR

EXTRN  STMAKE:FAR
EXTRN  STCONT:FAR
EXTRN  STPOST:FAR
EXTRN  STPRNT:FAR

RESTART PROCEDURE ADDRESSES

EXTRN  AMTDPC:FAR
EXTRN  AMRMRR:FAR
EXTRN  AABIA:FAR
EXTRN  RTIMER:FAR
EXTRN . RPCOM:FAR
EXTRN  RPCAMR:FAR
EXTRN  RPSEW:FAR

APPLICATION TIMER PROCEDURES

EXTRN  AMTDTR:FAR

: PAGE
s THE AMX86 PARAMETER SEGMENT
AMXPAR SEGMENT WORD ’CODE’

;ENTRY POINTS REGUIRED BY AMX86

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

AMTDT
AMRPL
AMNUMQ
AMCLKP
AMTMRR
AMISTP

235

s TASK
;s TASK
$ TASK
s TASK
; TASK
s TASK
s TASK
s TASK
; TASK

AMX86 TIMER TASK

L A

0
1
2
3
4
S
()
7
8

; TIME/DATE FOR IBM PC DOS
;RESOURCE MANAGER

; BUFFER MANAGER

sUSER RESTART PROCEDURES

s TIME/DATE TIMER PROCEDURE

s TASK DEFINITION TABLE

;RESTART PROCEDURE LIST

sNUMBER OF QUEUE BLOCKS

;CLOCK PERIOD = # OF INTERRUPTS
s TIMER PROCEDURE LIST

;AMXBS INTERRUPT STACK POINTER

;TIME/DATE PARAMETER TABLE ENTRY POINTS

PUBLIC
PUBLIC
PUBLIC
PUBLIC

AMTDFQ
AMTDTM
AMTDRA
AMTDSH

PUBLIC TMTD
PUBLIC TMNO1

;
s TABLE
' PUBLIC
PUBLIC
PUBLIC
PUBLIC

TNTMR

TNRXMG

TNTXMG
“TNCOMM

; TIMER FREQUENCY

iDISPLACEMENT OF TIME/DATE TIMER
sA(TIME/DATE RAM BLOCK)

;A(USER TIME/DATE SCHEDULER)

TABLE OF APPLICATION TIMER DISPLACEMENTS ENTRY POINTS

; TIME/DATE TIMER

OF INTEGER TASK NUMBERS ENTRY POINTS

;TASK #-0 AMXB& TIMER TASK
TASK # 1
;TASK # 2
;TASK # 3



2356

PUBLIC TNSEW ;TASK # &
PUBLIC TNMAKE ;TASK & 5
PUBLIC TNCONT ;TASK # &
PUBLIC TNPOST ;TASK # 7
PUBLIC TNPRNT ;TASK & 8

RESOURCE MANAGER ENTRY POINTS

PUBLIC AMRDT s RESOURCE DEFINITION TABLE
BUFFER MANAGER ENTRY POINTS

PUBLIC AAPDT ;POOL DESCRIPTION TABLE

PAGE
;AMXB6 TASK DEFINITION TABLE
AMTDT  LABEL  DWORD

L]
;AMX86 TIMER TASK (#0) IS THE HIGHEST PRIORITY
;TASK # O

DD AMTMRT sAC(AMXB6 TIMER TASK)
DD SPTMR sA(TIMER TASK STACK)
DW 0 s TASK ATTRIBUTES
DU 0 ;LEVEL O (UNUSED)
DW 0 ;LEVEL 1 (UNUSED)
DW 0 ;LEVEL 2 (UNUSED)
DW 0 sLEVEL 3 (UNUSED)
H
sTASK # 1
DD STRXMG ;+START ADDRESS
DD SPRXMG sSTACK ADDRESS
DW 0 ;TASK ATTRIBUTES
DW 0 sLEVEL O (UNUSED)
DW 0 sLEVEL 1 (UNUSED)
DW 0 ;sLEVEL 2 (UNUSED)
W 0 ;LEVEL 3 (UNUSED)
9
sTASK # 2
DD STTXMG ;START ADDRESS
DD SPTXMG sSTACK ADDRESS
DW 0 s TASK ATTRIBUTES
DW 0 sLEVEL O (UNUSED)
DW 0 sLEVEL 1 (UNUSED)
W 0 sLEVEL 2 (UNUSED)
DW 0 ;LEVEL 3 (UNUSED)
’
;TASK # 3
DD STCOMM ;START ADDRESS
DD SPCOMM ;STACK ADDRESS
DW 0 s TASK ATTRIBUTES
DW 0 ;LEVEL O (UNUSED)
W 0 ;LEVEL 1 (UNUSED)
DW 0 ;LEVEL 2 (UNUSED)
DW 0 sLEVEL 3 (UNUSED)
1]
;TASK # 4
DD STSEW +START ADDRESS

DD SPSEW 1+ STACK ADDRESS



257

. DW 0 ; TASK ATTRIBUTES
DW 0 ;LEVEL O (UNUSED)
DW 0 ;LEVEL 1 (UNUSED)
DW 0 ;LEVEL 2 (UNUSED)
DW 0 sLEVEL 3 (UNUSED)
9
;TASK # S
DD STMAKE ;START ADDRESS
DD SPMAKE ;STACK ADDRESS
DW 0 s TASK ATTRIBUTES
DW 0 ;LEVEL O (UNUSED)
DW 0 sLEVEL 1 (UNUSED)
DW 0 sLEVEL 2 (UNUSED)
DW 0 sLEVEL 3 (UNUSED)
L]
sTASK # &
DD STCONT ;START ADDRESS
DD SPCONT ~ 3STACK ADDRESS
DW 0 ;TASK ATTRIBUTES
DW 0 ;LEVEL O (UNUSED)
DW ] sLEVEL 1 (UNUSED)
DW ] sLEVEL 2 (UNUSED)
DW 0 ;LEVEL 3 (UNUSED)
]
;TASK # 7
DD STPOST ;START ADDRESS
DD SPPOST ;STACK ADDRESS
DW 0 ; TASK ATTRIBUTES
DW ) ;LEVEL O (UNUSED)
DW 0 sLEVEL 1 (UNUSED)
DW -0 ;LEVEL 2 (UNUSED)
DW 0 ;LEVEL 3 (UNUSED)
$
;TASK # 8
DD STPRNT ;START ADDRESS
DD SPPRNT ;STACK ADDRESS
DW 0 ; TASK ATTRIBUTES
DW 4 ;LEVEL 0
DW 3 ;LEVEL 1
DW 320 ;LEVEL 2
DW 3 ;LEVEL 3
]
DW 2 DUP(OFFFFH)  ;END OF TASKS

TABLE OF INTEGER TASK NUMBERS

’

TNTMR  DW
TNRXMG DW
TNTXMG DW
TNCOMM  DW
TNSEW  DW
TNMAKE DW
TNCONT DU
TNPOST DW
TNPRNT DW

ONONPFWN O

i
;AMXB6 RESTART PROCEDURE LIST IN ORDER OF EXECUTION



258

EVEN
AMRPL  LABEL  DWORD

DD AMTDPC s TIME/DATE FOR IBM PC DOS

DD AMRMRR ; RESOURCE MANAGER

DD ARBIA ;BUFFER MANAGER

DD RTIMER ;USER RESTART PROCEDURES

DD RPCOM

DD RPCAMR

DD RPSEW
' D 2 DUP(OFFFFH)  3END OF LIST
AMNUMG  DW 500 ;# OF SYSTEM @ PARAMETER BLOCKS
AMCLKP  DW 1 sCLOCK PERIOD = # OF INTERRUPTS
AMISTP DD AMISTK ;AMXB86 INTERRUPT STACK POINTER

i
;AMXB6 APPLICATION TIMER PROCEDURE LIST

AMTMRR LABEL  DWORD

DD AMTDTR ;TIME/DATE TIMER PROCEDURE
DD TRDMY

’ W 2 DUP(OFFFFH)  ;END OF LIST

TRDMY PROC  FAR
RET

TRDMY  ENDP

;TABLE OF APPLICATION TIMER DISPLACEMENTS

%HTD DuW 0 s TIME/DATE TIMER
TMNO1 DWW e ‘
;TIME/DATE USER PARAMETER TABLE
EVEN
AMTDFQ' bW 18 s TIMER FREQUENCY
AMTDTM DW 0 ' ;DISPLACEMENT OF TIME/DATE TIMER
AMTDRA DD TDRAM $A(TIME/DATE RaM BLAEK)
AMTDSH DW 2 DUP(OFFFFH) ;NG USER TIME/DATE SCHEDULER

;AMXB86 RESOURCE DEFINITION TABLE
i

EVEN
AMRDT  LABEL  WORD
n o 0 $NUMBER OF RESOURCES

RESOURCE IDENTIFICATION NUMBER TABLE

BUFFER POOL DESCRIPTION TABLE

EVEN _
AAPDT  LABEL  WORD
DW 2 ;NUMBER OF POOLS
DD RAMO ;POINTER TO RAM AREA FOR POOL # O
DW 200 ;NUMBER OF BUFFERS IN POOL # O

DW 150 ;SIZE OF BUFFERS IN POOL # O



DD RAM1
DW 10
DW 160
3
AMXPAR ENDS
§
PAGE
; THE AMXB86 DATA SEGMENT
i
AMXDATA SEGMENT WORD ’DATA’
i
PUBLIC AMDATA
)
AMDATA LABEL  WORD
NT EQU 9
GB EQU 500
TQ EQU 346
NTM EQU 2
i
DW 32 DUP(?)
DW (NT*32)+2 DUP(?)
DW (QB*9)+4 DUP(?)
bW TR DUP(?)
DW NTM DUP(?)
; .
;TIME/DATE RAM BLOCK
%DRAM DB 2 DUP(?)
i
AMXDATA ENDS
’ PAGE
;AMXBL STACK SEGMENTS
AMXESTK SEGMENT WORD ’TSTACK’
PUBLIC AMESTK
DW 400 DUP(?)
AMESTK LABEL  WORD
AMXESTK ENDS
ANXISTK SEGMENT WORD *MSTACK’
DW 430 DUP(?)
AMISTK LABEL  WORD
AMXISTK ENDS
AMXTSTK SEGMENT WORD ’MSTACK?
DW 400 DUR(?)
SPTMR  LABEL  WORD
AMXTSTK ENDS

;AMXBb LARGE TASK STACK SEGMENTS

RXMGTSTACK SEGMENT WORD ’TSTACK’
DW 400 DUP(?)

SPRXMG LABEL  WORD

RXMGTSTACK ENDS

;
TXMGTSTACK SEGMENT WORD ’TSTACK'’

259

;POINTER TO RAM AREA FOR POOL # 1
yNUMBER OF BUFFERS IN POOL # i
3;SIZE OF BUFFERS IN POOL # 1

;END OF AMX86 PARAMETER SEGMENT

3ENTRY POINT FOR AMX8&6 USE

;# OF TASKS IN SYSTEM

;# OF QUEUE BLOCKS IN SYSTEM @

;# OF WORDS REQUIRED FOR TASK Q'S
;# OF APPLICATION INTERVAL TIMERS
;AMXB6 PRIVATE STORAGE

; TASK CONTROL BLOCKS

;AMXB6 SYSTEM QUEUE

; TASK QUEUE STORAGE

;TIMER LIST

;END OF AMX86 DATA SEGMENT

;AMXB6 EXECUTIVE STACK
;AMXB6 INTERRUPT STACK

;AMXB& TIMER TASK STACK

;STACK FOR TASK # 1



DW 400 DUP(?)
SPTXMG LABEL  WORD
TXMGTSTACK ENDS

3
COMMTSTACK SEGMENT WORD ’TSTACK?

DW 500 DUP(?)
SPCOMM  LABEL  WORD
COMMTSTACK ENDS

i
SEWTSTACK SEGMENT WORD *TSTACK’

DW 500 DUP(?)
SPSEW  LABEL  WORD
SEWTSTACK ENDS

i
MAKETSTACK SEGMENT WORD ’TSTACK?

DW 300 DUP(?)
SPMAKE LABEL  WORD
MAKETSTACK ENDS -

: ,
CONTTSTACK SEGMENT WORD ’TSTACK?

DW S00 DUP(?)
SPCONT LABEL  WORD
CONTTSTACK ENDS

i
POSTTSTACK SEGMENT WORD *TSTACK?

DW 500 DUP(?)
SPPOST LABEL  WORD
POSTTSTACK ENDS

i
PRNTTSTACK SEGMENT WORD ’TSTACK’

DuW 400 DUP(?)
SPPRNT LABEL  WORD
PRNTTSTACK ENDS

. PAGE
;AMX86 RESOURCE CONTROL TABLE

i
" AMRMDATA SEGMENT WORD ’DATA’

PUBLIC AMRCT
i
EVEN
AMRCT DW 1 DUP(?)

)
AMRMDATA ENDS

PAGE
sBUFFER POOL STORAGE AREAS

AABMDATA SEGMENT WORD ’DATA’

;
RAMO DB 30806 DUP(?7)
RAM1 DB 1646 DUP(7?)

y
AABMDATA ENDS

END

260

sSTACK FOR TASK # 2

3STACK FOR TASK # 3

;STACK FOR TASK # 4

3STACK FOR TASK # §

$STACK FOR TASK # &

;STACK FOR TASK # 7

$STACK FOR TASK # 8

s ALLOCATE STORAGE

;RAM FOR POOL # O
;RAM FOR POOL # 1



261

A.4. Header File for C Language Modules

The code
language
following

modules :-

#include
#include
#include
#include

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define
g#define
#idefine
#define

VERSION
uges9
UECT
UBa259M
UIRQ3M
UIRA4M
UIRGSM
UCLK
ucLKC
UCLKV
UcoMv
UGPCAV
UGPCBY
ONESEC

UKBD

UKBDC
UKBDR
UKBDV

TNTMR

TNRXMG
TNTXMG
TNCOMM
TNSEW

TNMAKE
TNCONT
TNPOST
TNPRNT
TIMERI

pooLt
POOL2
MAXLINE

PORT_A
PORT_B
PORT_C
SPEED_P
PORT_E
PORT_F
PORT_G

for

header file was

"stdio.h"
“dos,.h"
"math.h"
"limits.h"
2.3
0x20 /%
0x20 /%
Ox21 /%
0x08 /%
0x10 /%
0x20 /%
O0x40 /%
Ox43 /%
8 /*
12 /%
13 /%
11 /%
18 /%
Oxé0 /%
Ox61 /%
0x80 /%
9 /%
0 /%
1 /%
2 /%
3 /*
4 /%
o /%
) /*
7 /%
8 /%
0 /*
0 /%
1 /%
81 /%
0x304 /%
0x305
0x306
0x307 /+
0x308
0x309
0x30a

the IBM AT was divided up into several C
modules and one assembly language module. The
included in all the C language

8239 Interrupt controller port */
end-of-interrupt command #/

8259 interrupt mask register */

IRQ 3 mask (serial comm. port #2 */
IRQ 4 mask (serial comm. port #1 #/
IR@ 5 mask (GPC interrupts) */
clock port (timer O on 8253 CTC »/
8253 clock control #/

clock interrupt type #/

communicat. port #1 interrupt typex/
General Purpose Communication int */
General Purpose Communication int */
no. of AMX86 ticks in one sec #*/

keyboard data port #/
keyboard control port #/
keyboard reset command */
keyboard interrupt type */

AMX Timer Task Number #*/

Receive Message Task #/

Transmit Message task #*/
Communication Supervisor Task #/
Adaptive robotic sewing Task */

Task to make one sub-assembly %/
FIGARO Controller Task #/

Post Mortem Report Generator Task #/
Print messages task */

Timer used for speed calc */

Buffer pool for print messages #/
Buffer pool for txmit messages */
max., no. characters on a line #/

definitions for 1/0 card ports #/

sewing m/c speed analogue signal #/



#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
fidefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#idefine

#define
#define

f#idefine
#define
#define
#define
#define
#define

CB_IO_1  Ox30b
CB_10_2  0x30f
CB_COUNTR 0x30e
LO_COUNT  0x300
HI_COUNT  0x301

262

/* control port for ports E, F & G #/

/% contrl port for counters & latches#/
/% lo byte of counter #/
/% hi byte of counter %/
/% port address for finger #1%/

/* General Purpose Caommuncation Channel Functions #/

FING1 0x310
INIT_GP 1
TERM_GP 2
FINDCLOTH 3
CORNER 4
UPTO_NDLE 5
FAR_RH b
MOVEBACK 7
ST_ALTER 8
END_ALTER 9
RETREAT 10
WHERE 11
PARAM1 12
GO_START 13
ALIGN_F 14
DROP 15
PARAMZ 16
GO_NEAR 17
STARTUP 18
FINEADI 19
ANGLEADI 20
ROTATESO 21

INCHMOVE 22
REMOVE 23
STRAIGHTN 24
END_CLOTH 25
G_AGAIN 26

/%
/%
/%
/%
/%
7%
/*
/*
/%
/*
/%
/%
/*
/%
/%
[/ *
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%

/% Sewing Machine

SEW_START  Ox01
SEW_STOP  0x00
TRIM_THREAD 0x02
NEEDLE_UP  Ox04
SLO_SEW 0x10
FAST_SEW  Ox20
PRESSER_FT Ox40
BACKTACK  OxB80

RESET_CNTR  Ox01
LATCH_EN  0x02
PMBAK 100

TRUE 1
FALSE

ALTER 0x3f8

LCR
I IR
LSR
DLL
DLM

- O uNnw

initialize GP communications */
terminate GP communications */
request robot find cloth */
request robot find upper RH corner #/
put cloth corner under needle */
find far RH corner */
request robot move back a distance %/
request VAL II start up ALTER */
request VAL Il terminate ALTER */
robot retreats from ndle with cloth*/
VAL II report robot position */
input parameters - version i */
request robot move to start positn x»/
request robot aligns finger */
request robot drops onto cloth */
input parameters - version 2 */
request robot move to near.start */
request startup data */
fine adjustment function */
fine angular adjustment function %/
rotate cloth by 90 degrees */
inching motion function */
remove robot from needle zone */
straighten out cloth */
find end of cloth */
ask whether to continue */
Functions #/
/* mask for variable sewing speed #/
/% thread trimming */
/% needle up */
/% sew at slow speed */
/% sew at maximum speed */
/% presser foot up */
/+ backtack */
/% mask to reset counters #/

/%

enable latches #/

/* serial port #! #/



#define
#define
#define
#define
#define

#define
#define

#define
#idefine
#define
#define
#define
#define

#define
#define
#define
#define

#define
- #define
#define
#define
#define
#define
f#idefine
#define
#idefine

#define
#idefine
#define
#define
#define

typedef

typedef

typedef

#define
#define
#define

263

IER 1
MSR 6
MCR 4
ALT_LSR Ox3fd
ALT_IIR Ox3fa
/% max divisor is OxOf (char)#*/
HI_BAUD_RT Ox06 /% 19200 baud #*/
LO_BAUD_RT OxOc /% 9600 baud */
ETX 0203
DLE 0220
DEL 0377
STX o202
SC_FACT 32 /% scale factor for ALTER pars/
NSLOT 200 /% no. slots in circ. list #*/
/% 1-SIGHT camera card defns */
SEGMNT 0x9c00 /* camera card address segmnt®/
CONTRLB Ox3fff /% control byte address */
TRIGGER 0x00 /* ctrl byte to trigger pict #/
FREEZE 0x08 /% freeze control byte */
BUSFRZ 0x09 /% mask for bus + freeze */
CAM1_OFS 0x000 /% offset for camera # 1 */
CAM2_OFS 0x400 /% offset for camera # 2 */
CAM1_FL Ox3f1 /% address of flag of cam #1 %/
CAM2_FL 0x3f3 /+ address of flag of cam #2 */
NCAM 2 , /% mo. of cameras */
NROW 30 /% no. of rows of pixels */
NCOL 3e /* no., of columns of pixels #/
NPIXLS ROW * NCOL /* no. of pixels in picture %/
print_init ajbgb(POOLL,&p.mp);p.outpt=5
prf__ p.n=sprintf(p.mp,
end_print if(ajcall(TNPRNT,2,8p)<0)crash(1162)
displ_init ajbgb(POOL1,8p.mp);p.outpt=2
gpf_start(a) send_gp{(char)a,TRUE)

/% Structure Definitions #/

struct SPMESS ( /% print message struct definition #*/
short int n;

char #*mp;

char outpt;

IPMESS;

char SLOT1; /* 1 byte slots in circ.lists*/

struct SCLIST ¢ /% circular list struct definitions/
char header[(8];

SLOT! slotsINSLOTI;

} CLIST;

/* ROBOT specific parameters */
TOANG (float)2B4.477044 _ /% VAL 11 scaling factor #/
RAD_TO_A (float)57.29577951 /* rads to angles conversn #/

ROT_FACT (float) (~TOANG*RAD_TO_A)
/* scales from radians to VAL*/



/%

264

GRIPPER specific

/%
/%
/%
/%

/*
/%
/%
/%

/%
/%
/*
/*

/%
/%

#define RIGHT_MAX 251x%SC_FACT
#define LEFT_MAX 160%SC_FACT
#define R_MAX B860*SC_FACT
#define R_MIN 415#SC_FACT
#define R_MID &80%SC_FACT
#define MAX_ANG 35*TOANG
g#define NX_MAX BOxSC_FACT
f#define NX_MIN -150*SC_FACT
#define NY_MAX 120%SC_FACT
#define STITCH_LEN 3
#define TRK_FACT 1
#define TOP_SPEED 235
#define MID_SPEED 170
#define SLO_SPEED 50
g#define Y1_PIXEL (float)(0.43*SC_FACT)
#define Y2_PIXEL (float)(0.67*¥SC_FACT)
#define SEAM_W (float) (12%¥SC_FACT)
#define CAM2_DIST (fleat) (30*SC_FACT)
#define F_TO_PC 135#5C_FACT
#define NEAR TRUE
gdefine FAR FALSE
/¥ Referencing all the functions

is provided by the compiler.

extern void

parameters */

max modification dist in y*/
min modification dist in y*/
max reach of robot */
min reach of robot */

limit to z_rot
exclusion zone
exclusion zone
exclusion zone

*/

before ndlex/
after ndle #/
beside ndlex/

stitch length in mm */

tracking proportional gain®/
sewing speed ratio to 256 */
sewing speed ratio to 236 %/

/%
/%
/%
/%
/%

caml, pixel width
cam2, pixel width
nominal seam width
dist Xcam

fing to pcell dist

*/
*/
*/
*/
*/

near technique to be used */
far technique to be used %/

so that debugging information
*/

main{), rtrack(), rpsew(), gpb_isp(), gpa_isp(),

stseam(), stsew(), gp_function(int), gpf_end(int),
read_offset(), set_param(), angle_adj(),
send_word(int), send_gp{char,int), count_reset(),
ndle_down(), e_calc(float #, float %), stpost(),
pr_runtime(), setup_pixels(), stcomm(), inch(),
set_speed(int), delay(int), rpcamr(), rpiptr(),
install(int,int,int), take_picture(), read_cam(),
z80_check(), stprnt{int,char #,char), crash(int),
pr_alt_st(int), rpcom(), init(int,char), rtimer(),
strxmg(), sttxmg(), stack(char #*), sh_delay(),
norm_msg{char #**), pm(int), pr_heading(), comisp(),
~clkisp(), tx_bytel(char), initialise(), adjustlint),
startup_data(), where(), setl_param(), set2_param(),
fine_adj(), std_msgs(), CalcSeamSection();

extern char get_byte(int);

extern int get_word(), speed_control(int), DecideSeam(int *),
tension(), limit(int,int), limitE(int,int),
edge_find(char *,int), find_edge(char #,int),
intrprt(char), read_count(),limit3¢int,int);

extern int tens_corr{int,int,long #*,double),
x_corr{unsigned int *, double),
y_corr{int *,int #,int *),
envelopelint,int,double,int #);

extern float transf_fn(), StdDev(double,double,int);

extern double rcos(double);



265

/+ Referencing global variables, to make them accessi

all the modules. These variables are declared and described
in module A. %/

extern int

extern char

sewwait, GPInWait, GPOutWait, completed, ifeed,
i_hand,  x_total, y_total, SeamSection,
StopDistance, sp_len, x_0, y_0, max_e, min_e,
max_t, min_t, flip, i_t_Avg, rq_tens, accel_lim,
vel_lim, irowl, 1irow2, ipixl_ofst, ipix2_ofst,
in_nbyte, terminate, rxwait, no_int,; newtxpt,
comwait,  pmarrayll, #pstart, #pfinish, #pbuf,
fing_dist, f_r, n_x, n_y, cloth_end, acc_dist,
calc_dist, decel_dist, debug, sew_near, caller;

b_port, msg_in(1, *pt_txmgs; *new_pt, *cc_pt,
*cccb_pt, #*tpl_pt, #*tp2_pt, =+*cami_pt, *cam2_pt,
caml_bufl], cam2_bufll, #StartAckMsg_pt,
*NullMsg_pt;

extern long int t_MeanDev, t_Avg, z_totalj

extern unsigned

extern float

int t_period, offstl, countl, count2;

. pixellll, pixel2l], gain_pix(1, pmdatll,

¥pmdata_pt, blp_fact, e_MeanDev, e_Avg, pixl_ofst,
pix2_ofst, t_gain, int_fact, deriv_gain, pix_gain,
th_0, f_angle, cos_f, sin_f, s_gain;

A.5. Global Variables

All -the global variables used in the C language

were defined in the first module,.

/% flags */

int sewwait;
int GPInWait;
int GPOutWait;
int completed;
int terminate;
int rxwait;
int newtxpt;
int comwait;
int cloth_end;
int sew_near;

/% Global variables */

/* SEW task waiting for handshake
/% waiting for GPC IBF interrupt
/% waiting for GPC OBF interrupt
/% cloth length has been sewn up
/% flag to teminate COMM Task

/* RXMG task waiting for COMISP ?
/* SEW task updated transmit msg?

© /% COMM task waiting for RXMG ?

/* end of cloth detected 7

/* sew section using near technique #/

/% ALTER communication Parameters »/
CLIST rxlist,txlist, chlist;
char msg_in(2601;

char *pt_txmg;
char #*new_pt;

ble

*/
*/
*/
*/
*/
*/
*/
*/
*/

in

modules,

/+ pointer to txmit msg */

: /* pointer to updated txmit msqg #/
char #StartAckMsg_pt, *NullMsg_pt; :

/% pointers to standard txmit msgs */

int in_nbyte, no_int;
int ifeed, i_hand, x_total, y_total;



266

long int z_total;

/% GPC channel Parameters */

char b_port; /* initial contents of PORT_B */
int caller; /* Task No. of calling Task %/

/% Post_mortem and crash parameters #/
int pmarray[PMBAK];
int *pstart, *pfinish, *pbuf;
float pmdat(40001;
float *pmdata_pt = &pmdatl0];
int debug = FALSE;

/% camera parameters %/
float pixl_ofst;
float pix2_ofst; ‘
float pixellINCOL+1]1, pixel2INCOL+1], gain_pix[NCOL+2];
char *#cc_pt, *cccb_pt, *tpl_pt, *tp2_pt, *caml_pt, *cam2_pt;
char cami_bufINPIXLS+2];
char cam2_bufINPIXLS+2];

/% Robot startup data Parameteras #/

int fing_dist; - ‘ /% dist between two fingers #/
int f_r; /% finger-flange radius */
float f_angles; cos_f, sin_f; /* finger-flange angle */
int n_x; _ /* needle position w.r.t. robot base, x coord #*/
int n_y; /* needle position w.r.t. robot base, y coord %/

/* Sewing Task parameters #/

int SeamSection; /* length of seam section to be sewn #/
int StopDistance; /* dist of seam section end to needle #/
unsigned int offstl; /% finger ADC’s offsets at zero load #/
int x_0; /% initial 1st finger x position #/
int y_0; /% initial 1st finger y position #/
float th_0; /% initial theta, &nd finger angle #/
float blp_fact; /* converts blips to y displemnt */
float e_MeanDev; /* seam error mean deviation #/

float e_Avg; /% seam error average ¥/

long int t_MeanDev; /% tension error mean deviation #/
long int t_Avg; /% tension error average #/

int max_e, min_e, max_t, min_t, i_t_Avg;

int flip;

int acc_dist, calc_dist, decel_dist;

/% Parameters for calclulating sewing speed #/
unsigned int countt, count2;
unsigned int %t_period;
int sp_len;

/* Parameters that are reset by set_param() #/

float t_gain; /% Tension servo, proportnl gain #/
float int_fact; /% tension servo, integral gain */
float deriv_gain; /* Seam servo, derivative gain %/
float s_gain; /* Seam serva, proportnl gain %/
float pix_gain; /* proportnl gain per pixel #/

int rq_tens; /% demand tension */

int accel_lim; /% acceleration limitation #/



267

int vel_lim; /% velocity limitation #/

int irowl; /% pixel row no for 1st camera #*/
int irow2;

int ipixl_ofst; /* camera 1 centreline offset #/
int ipix2_ofst; /* camera 2 centreline offset */

A.6. Initialisations

A.b6.1. Restart Procedures

Restart Procedures were written for the communication
Tasks, the vision system and for the SEW Task, and they are
listed in Appendices B, F and D respectively. A simple
Restart Procedure for the AMX timer was also required, as
follows :-— :

void rtimer()

{ ajmodl();
ajbial); /+* initialize all buffer pools */
rpiptr(); /% set up pointers to ISP’s %/

}

A.6.2. AMX Start Up

The AMX executive was started using the following start-up
code :-— '

void _main() /% replace Microsoft’s _main() */
{ maind);
3
void main()
( extern unsigned int _top;
int i,y
_top = OxFFFO; /* disable stack checking #/

/% delay until disk motor off */
for (j =30; j '= 0; j—)
for (i = BOOO; i != 0; i--)

amxgo{); /* start AMX %/

A.7. PRNT Task

Messages were displayed on the screen or printed out via
the PRNT Task. The Task was given the lowest priority so
that higher priority Tasks were not blocked by the printing
out process.



268

void stprnt(n,mpsoutpt)

int nj /* no, of characters in string #*/
char *mp; /% pointer to string %/

char outpt; /* display or print code #*/

{

char *msgp;
ajmodl{();

for ( msgp = mp; msgp € mp+n+!
bdos{outpt,*msgp++); /¥ Lattice library function %/

bdos{outpt,0x0a); /% carriage return & new line %/
bdos{outpt,0x0d);

-e
~—

if (ajbrbimp) 1= 0) /* release message buffer #/
crash(8086);

A.B8. Miscellaneous Functions

Extensive debugging facilities were developed and
incorporated into the code. The crash() function provided a
simple error message facility. The pm() function provided a
post-mortem facility in which values could be stored during
a real time process and printed out afterwards.

Two time delay functions were written, a normal delay() and
a short sh_delay().

void crash{code)

int code;

{
char #*stp, *msgp, stbufl(1201;
int n;
PMESS p;
install(0,0,0); /% stop robot #/
terminate = TRUE; /% stop COMM task #/
ajoutb(PORT_A,0); /% stop sewing m/c %/

stp = &stbufl(0];
n = sprintfistp," CRASH detected, crash code = %d", code);
for (msgp = stp; msgp € stp+n+ij;)

bdos(2,*msgp++);
bdos(2,0x0a);
bdos(2,0x0d);
if (debug) pr_runtime()

b
/% This routine instals a post-mortem code #/
/% into a buffer for debugging purposes */
void pm(code)
int code;
{

#(pbuf++) = code;



269

if (pbuf > pfinish)
pbuf = pstart;

void delay(times)
int times;
{

int i’j;

for (i=0; i < times; i++)
for (§j=0; j € 500; j++)

)

void sh_delay()
{
int i;
fort i=0; 1 < 10; i++)



270

APPENDIX B

SOFTWARE FOR ALTER COMMUNICATION CHANNEL

B.1. The Restart Procedure

void rpcom() /% restart procedure for comm. port #*/
{ PMESS p;
char m_reg;
ajmodl()};
displ_init;
prf__ "restart procedure for ALTER communications task");
end_print;

ajdill);
m_reg = ajinb(UB259M); /% enable IRQ4 interrupt */
m_reg = m_reg & “UIRQ4M; /% reset IRQ4 mask */

sh_delay();
ajoutb(UB239M, m_regq);
init(ALTER,(ChaT)HI_BAUD_RT); /% initialize comm. chip #/
ajei();
/¥ init. circ. lists #/

ajrstl (&rxlist,sizeof(SLOT1),NSLOT);
ajrstl (&txlist,sizeof(SLOT1),NSLOT);

/% init. post-mortem pointers*/
pstart = &pmarrayl(0]; '
pfinish = &pmarray[PMBAK-11;
pbuf = &pmarrayl01;

/% This routine sets up the serial port #/
void init(port,baud)
int port;
char baud;
{ char byte;

ajmodl();

ajoutb(port+IER,0); /% disable all IER interrupts#/
byte = ajinb(port+LSR); /% clear Rx error interrupt #/
byte = ajinb(port); - /% clear Rx data interrupt #/
byte = ajinb(port+IIR); /# clear Tx interrupt #/

byte = ajinb(port+MSR); /* clear modem interrupt */

ajoutb(port+LCR,0);

ajoutb{port+MCR,0);

ajoutb(port+LCR,0x80); /* set DLAB to access baud #/
ajoutb(port+DLL,baud); /% set baud rate divisor #/
ajoutb{port+DLM,0x00);

ajoutb{port+MSR,0x00);

ajoutb(port+LCR,0x03);

ajoutb(port+MCR,0x08); /# 0UT2 must be high for interrpt #/
ajoutb(port+lER,0x07); o P



271

B.2. The COMM Task

/% Communication task - supervises handshaking */
void stcomm()
{
PMESS p;
int alt_stat;

ajmodl();

displ_init;

prf__ "communication task started”);
end_print; K
/% initialise Global variables #/

terminate = FALSE;

rxwait = newtxpt = comwait = FALSE;

i_hand = 0;

alt_stat = 5; /% ALTER not up yet #*/
std_msgs{);

/% infinite loop for handshaking cycle %/
for (i_hand = 0; si_hand++)
(
if (ajtask(TNRXMG) t= 0). /% start RXMG Task %/
crash{9080);
ajshed();

ajdi();
comwait = TRUE; '
ajwait); /% wait until ALTER sends a msg #/
switch({intrprt(msg_inl0l)) /¥ interpret msg #*/
{

case 0 : /% ALTER starting #/

pt_txmg = StartAckMsg_pt;

if (ajtask(TNTXMG) != 0) crash(9081);
ajshed();

pt_txmg = NullMsg_pt;

break;
case 1 3 /% ALTER running #/
if (newtxpt) /% check if new msg ready 7 #/
( ajdi();
newtxpt = FALSE;
pt_txmg = new_pt; /% instal new pointers/
ajei()s
)
ajtask (TNTXMG); /% call TXMG Task #/
ajshed();
break;
case @2 /% ALTER terminating #/
case 3 :
case 4

pr_alt_st(alt_stat);
ajend();

}

if (terminate) ajend();



272

/* This routine sets up the Standard ALTER messages #/

void std_msgs()

(

if (ajbrb(StartAckMsg_pt) < 0); - /% release old buffers %/
if (ajbrb(NullMsg_pt) € 0);

if (ajbgb(POOL2,4StartAckMsg_pt) I= O)
crash(6437);

*StartAckMsg_pt = 1; /+* start acknowledge msg */
#(StartAckMsg_pt+1) = 0;

if (ajbgb(POOLZ2,8NullMsg_pt) != 0)
crash(6436);

#*NullMsg_pt = 25 /* normal acknowledge msg #/
#(NullMsg_pt+l) = 0;
*(NullMsg_pt+2) = 0;

/% this routine prints out the status of the ALTER comms #/

void pr_alt_stlalt_stat)
int alt_stat;

(

PMESS p;

switch (alt_stat)
¢ 4

case O:
displ_init;
prf__ " ALTER starting");
end_print;
break;

case 1:
displ_init;
prf__ " ALTER running");
end_print;
break;

case 2:
displ_init;
prf__ " ALTER pausing");
end_print;
break;

case 3:
displ_init;
prf__ " ALTER terminated");
end_print;
break;

case 4:
displ_init;
prf__ " error detected by VAL II");
end_print;

/* This routine interprets VAL II’s ALTER control byte #/

intrprt{contrib)
char contrlb;

(

PMESS p3



a273

if ((char)(contrlb & Ox07) == 0)

{ switch ({int)( (char)(contrlb & Ox&0) ))

{ case O t return(l); /% ALTER running %/
case O0x20 : return(0); /* ALTER starting */
case Ox40 : return(2); /% ALTER pausing #*/
case Oxb60 : return(3); /% ALTER stopping #*/

}
}
displ_init;
switch ((int)( (char)(contrlb & 0x07) ))

{
case 1:
. prf__ " checksum error detected by VAL");

break;

case 23
prf__ " framing/format error detected by VAL"};
breaks

case 3t
prf__ " data overrun detected by VAL");
break;

case 4: : .
prf__ " too many messages complaint from VAL ");
break;

case 3:
prf__ " pratocol error detected by VAL");
break;

case 63
prf__ " timeout error detected by VAL");
break;

default
prf__ " undefined VAL error. message");

b

end_print;
return(4);

B.3. The RXMG Task

void strxmg() /% Rx message Task #*/
{
char in_msg, dle_det,end_det,start_det, byte, checksum;
void rx_halt();
ajmodl()};

if (sewwait) /* wake up SEW Task befores/
( sewwait = FALSE; /% RXMG suspends itself #*/
if (ajwake(TNSEW) t= Q)
rx_halt();

)

ajdit); /% ensure wait state before #/
rxwait = TRUE; /+ setting flag #/
ajwait(); /% wait for COMISP interrpt #/

if ((ajrbli{&rxlist,tbyte)) < 0) /% take 1st byte #*/



274

rx_halt(); /% off list #*/
msg_inC0]1 = byte;

= /* initialize flags & counters #/
in_msg = TR

checksum =
dle_det
end_det
start_de

o it

while (in_msg)
{ /* check for error conditions #/

if ((in_nbyte > 6 & lIstart_det) ! (in_nbyte > 254))
rx_halt();

ajdiQ);
: /* remove next byte from list #/
if ( (ajrbl(&rxlist,dbyte)) < 0)

{ /% if list empty - wait #/
ajdi€); /% ensure wait state #/
rxwait = TRUE; /% before setting flag */
ajwait();
if ( (ajrbl(&rxlist,tbyte)) < 0) /% try again */

rx_halt();

}

ajei();

msg_inlin_nbyte++] = byte;

if ( end_det ) /* end of msg */
{
if ( (checksum += byte) 1= Q)
rx_halt(};
in_msg = FALSE;
in_nbyte = in_nbyte ~ 3;
)
else if (dle_det)
{
switch ((int)byte)
{ case ETX : end_det = TRUE;
break;
case STX : start_det = TRUE;
dle_det = FALSE;
in_nbyte = 03
break;
case DLE : in_nbyte -= 1;
dle_det = FALSE;
checksum += byte;
break;
default : rx_halt{);
Yy
)

else if (byte == DLE)
dle_det = TRUE;

else if (start_det)
checksum += byte;



275

)
if (comwait)
¢
comwait = FALSE;
ajwake (TNCOMM) ;
}
else
rx_halt(); /% COMM should have been waiting %/
ajend();
} -
void rx_halt()
{
PMESS p;
displ_init;
prf__ " error in incoming ALTER message packet");
end_print;
crash(7);
}

B.4. The TXMG Task

The tx_byte() routine, which transmits a single byte down
the ALTER channel; was written in Assembler, and is listed
in section B.S.

void sttxmg() | /% Transmit message task #/
( .
int nbyte, temp;

char #pt, checksum;

ajmodl();

checksum = 03
nbyte = *pt_txmg;

/% Check that TxHR on Comm Chip is empty before starting #/
if( (ajinb(ALT_LSR) & 0x20) )
crash(6b);
tx_byte((char)DEL);
-tx_bytel(char)DLE);
tx_byte({char)STX);

for ( pt = pt_txmg + 15 pt < pt_txmg + nbyte + 1; pt++)

{
tx_bytelxpt);
checksum += #pt;
if (#pt == (char)DLE)
tx_byte(xpt);
)

tx_bytel(char)DLE);
tx_byte{(char)ETX);



276

checksum = (“checksum) + 1;
tx_byte(checksum);
/% accumulate ALTER data in global variables #/

if (nbyte > 3)

{
x_total += #{pt_txmg+3) + (¥ (pt_txmg+s) << B);
y_total += *(pt_txmg+3) + (*(pt_txmg+s) << B);
temp = *(pt_txmg+7) + (*(pt_txmg+8) << B);
z_total += (long)temp;

)

ajend();

B.5. Assembly Module

PAGE 60,132

e  r e N I X Y
*
# MODULE B - ASSEMBLER ROUTINES FOR ROBOTIC SEWING

* DEVELOPMENT PROJECT
*

'TT22TT SRR SRR 222 S22 22 2222222222222 2222228222 Ess]

%k k Kk *

CONSTANTS DEFINITIONS
(for meanings see header file to C routines)

® WO WE We W WP We Wé WS WE We W

[l

TNRXMG  EQU 1
TNCOMM  EQU 3
ALTER EQU 03FBH
ALT_IIR EQU 03FAH
ALT_LSR EQU 03FDH
us259 EQU 20H
UEOI  EQU 20H
UCLKY  EQU 8
ucomv  EQU 12
ETX EQU 02030
STX EQU 02020
DLE EQU 0220Q

AMXB86 EXTERNAL DECLARATIONS

EXTRN  AARBL:FAR
EXTRN  AAATL:FAR
EXTRN  AAWAIT:FAR
EXTRN  AACLK:FAR
EXTRN  AAEND:FAR
EXTRN  AAINT:FAR
EXTRN  AAINX:FAR
EXTRN  AJMODL:FAR
EXTRN  AAIPTR:FAR
EXTRN  CRASH:FAR
EXTRN  AAWAKE:FAR



277

’

DGROUP GROUP  DATA

DATA SEGMENT WORD PUBLIC ’DATA’
ASSUME DS:DATA

9
EXTRN  RXLIST:BYTE
EXTRN  TXLIST:BYTE
EXTRN  RXWAIT:WORD
EXTRN  MSG_IN:BYTE
EXTRN  IN_NBYTE:WORD
EXTRN  COMWAIT:WORD

’
DATA ENDS

PAGE

i

SUPCODE SEGMENT BYTE *CODE’
ASSUME CS:SUPCODE

1
PUBLIC RPIPTR
PUBLIC COMISP
PUBLIC CLKISP
PUBLIC TX_BYTE

36 96 36 363 326 3 36 3 38 3 36 36 36 30363 3 3639603 936 3 36306 3 3696 96 06 0 2 906 962 96 % 0 %%

x *
* RPIPTR =~ RESTART PROCEDURE TO INSTAL
* INTERRUPT POINTERS *
* *

i 2R A AR SRR SRR SR 22222 2T T T T LY TRREE R R g

PIPTR PROC FAR

call AJIMODL

mov ax ySUPCODE

mov €s,ax

mov bx,; OFFSET CLKISP
mov dl, UCLKY

call AAIPTR

nop

nop

nop

nop :

mov bx, OFFSET COMISP
mov dl, ucoMv

call AAIPTR

nop

nop

nop

nop

ret

we we [} we we we we we W wWs we ws we

es = current segment
es:bx = address(CLKISP)
dl = clock intrpt type

es:bx = address(COMISP)
dl = port intrpt type

-e we

i
RPIPTR ENDP

PAGE



LKISP

ws ws (7)) we we we e we we

’
CLKISP

OMISP

ws () Wwe we we we ws we we ws

’
TOP:

j
RECEIV:

278

NIRRT
* . *
* CLOCK INTERRUPT SERVICE PROCEDURE *
* *
e e e T 22

PROC FAR

call AAINT s inform AMX

push ax

mov al,UEDI

out U8259,al 3 end-of-interrupt signal
pop ax

call AACLK 3 go to AMXB6 clock ISP
call AAINX

iret s dismiss interrupt
ENDP

PAGE

T T T TP I T TSRS T AT T )
* : *
* COMMUNICATIONS INTERRUPT SERVICE PROCEDURE *

* (ALTER COMMUNICATIONS CHANNEL) *
P I e T e Yy s L

PROC FAR

call AAINT

tell AMXB4 about interrupt
call AJIMODL

set data segment

push es

mov ax,ds

mov es,ax

mov dx,ALT_IIR

in al,dx ; read in Interrupt Identification Reg
test al,ol ; while (1((ajinb(ALTER_IIR)) & 0x01))
jnz FININT 3 jump if no interrupt left

cmp al,04 " 3 IIR =4 - byte has been receivd
jz RECEIV

cmp al,oe s IIR =2 - Transmit Hold Reg Empty
jz TXMIT

cmp al,06 3 IIR =6 - framing error

jz FRAME

jmp ToP ; return to check for another interrupt
mov dx,ALTER ; read in byte

in al,dx -
mov bx, OFFSET DGROURP:RXLIST s address of list
mov cl,al ; byte to add to list
call AAATL ; add byte to top of circ list
test axjyax ; test for successful call to AAATL

jns CONTH



’
CONTL:

3
TXMIT:

)
FRAME:

FININT:

’
COMISP

279

mov ax 0001

push ax

call CRASH ; crash(1) if failure to add to list
mov sp,bp

cmp [RXWAIT],0000 ;3 if (rxwait) then
jz TOP :

mov [RXWAIT1,0000 3 rxwait = FALSE
mov dx, TNRXMG

call AAWAKE s wake up RXMG task
test ax,ax

jz ToeP

mav ax,0003

push ax

call CRASH 3 crash(3) if fail to wake
mov sp,bp 3 RXMG when rxwait = TRUE
jmp TOP

mov bx,0FFSET DGROUP:;TXLIST

call AARBL ; remove byte from TXLIST circ list
test ax,ax

js T0P 3 no byte on list, do nothing
mov al,cl

mov dx,ALTER

out dx,al s transmit byte

jmp T0P

mov dx, ALT_LSR

in al,dx ; read LSR to dismiss intrpt
x0T axyax

push ax

call CRASH 3 crash(0) if framing error
mov sp,bp

jmp T0P

pop es

mav ax,UE0]

out uBes9,al ; dismiss interrupt signal
call ARINX ; return via AMXB6

iret

ENDP

PAGE

22222222 2222222222222 s 2222222222322 XL 23
*

»*
* TX_BYTE -~ SUBROUTINE TO TRANSMIT A BYTE DOWN
* ALTER COMMUNICATION CHANNEL *
* *

PI22ZI2IS 2224222223222 2222222222222 222222222222 220 2]

X_BYTE PROC FAR



280

call AJMODL ;5 set data segment

push bp

mov bp,sp

mov al, [bp+b] 3 load parameter - byte

mov cl,al

pop bp
9

push es

mov ax,gs

mov esjax
5

cli

mov bx, OFFSET DGROUP:;TXLIST

call AAATL s add byte to circ. list
;

cli :

test ax,ax ;5 test for successful call to AAATL

jns CONT3

mov ax 0009 -

push ax

call CRASH 7 crash(9) if can’t add byte to list
60NT3: mov dx,ALT_LSR

in al,dx s read in Line Status Register
test al,20H ;5 if Tx Hold Reg is not empty
jz FINTXB ; leave byte on circ. list

mov bx, OFFSET DGROUP:TXLIST
call AARBL

test - ax,ax

jns CONT4

mov ax,0008

push ax

call CRASH s crash(B) if no byte on list
60NT4: mov al,cl

mov dx,ALTER .

out dx,al ;7 transmit byte to comm port
]
FINTXB: sti ; enable interrupts

pop es

ret

TX_BYTE ENDP

UPCODE ENDS

we ws (f) wo ws ws

END

B.6. High Level Interface

High level Tasks, such as the SEW Task, conveyed ALTER data
to the COMM Task using the following instal() routine.



281

void install{(x_displ,y_displ,z_rot)
int x_displ,y_displ,z_rot;

{

char *pt;

if(ajbgb(POOL2,8pt) 1= O)
crash(B876);

y_displ

*pt = 83
*#(pt+l)
*(pt+2)
*(pt+3)
*(pt+4)
*(pt+3)
¥(pt+b)
*(pt+7)
*(pt+B)

(U N (I I I

-y_displ;

0;

0x31;

{char)x_displ;
(char)(x_displ >> 8);
(char)y_displ;
(char)(y_displ >> 8);
(char)z_rot;
(char)(z_rot »> B);

if (ajbrb(new_pt) < 0)

new_pt = pt;
newtxpt = TRUE;



28a

APPENDIX C

THE GPC LINK

C.1. Software Support for GP Communications

C.1.1. IBM AT Implementation

C.1.1.1. Interrupt Service Procedures

/% Interrupt Service Procedure for GPC O/P %/
void gpa_isp() -

{
if (GPOutWait)
¢ GPOutWait = FALSE;
if (ajwake(caller) != 0)
crash(2322);
}
ajoutb(UB257, UEOI);
)

, /% Interrupt Service Procedure for GPC I/P %/
void gpb_isp()

{
if (GPInWait)
( GPInWait = FALSE};
if (ajwakel{caller) i= 0)
crash(2322);
} .
if (icloth_end)
( cloth_end = TRUE;
ajinb(PORT_F); /% dismiss interrupt */
}
ajoutb(uB259, UEOD);
)

C.1.1.2. I/0 Routines

char get_byte(control)
int control;
{ PMESS p;

char temp_b, Ok;

0k = FALSE;

do

{ /% wait until INT clear */
if( 1(ajinb(PORT_G) & 0x01) )
{ ajdi();

caller = ajgetn();
GPInWait = TRUE;



£83

ajwait();
3
temp_b = ajinb(PORT_F);
if (control && !(ajinb(PORT_G) & 0x10))

{
displ_init;
prf__ "Unexpected data byte = %5d",temp_b);
end_print;

)

else

0k = TRUE;
} while (10k) 3
return(temp_b);

}
get_word()
‘ int temp;
temp = get_byte(FALSE);
return( temp + ((int)get_byte(FALSE) << 8) );
}

void send_gpt{bitescontrol)
char bite;
int control;

{
if ( 1{ajinb(PORT_G) & 0x08)) /% wait for OBF clear %/
{ ajdi(); : .
caller = ajgetn();
GPOutWait = TRUE;
ajwait();
) ,
if (control) /% set CONTROL high %/
ajoutb(PORT_B,b_port i= OxB0O);
else /% set Control low %/
ajoutb(PORT_B,b_port &= Ox7F);
ajoutb(PORT_E,bite); , /% output byte #/
sh_delay();
ajoutb(PORT_E,bite); /+* repeat for good luck #/
)
void send_word{word)
int word;
(&

send_gp{(char)word,FALSE);
sh_delay();

sh_delay();

send_gp{(char)(word >> B),FALSE);



284

C.2. VAL Il Implementation of GPC

PROGRAM inword
: tmpbyte = byte

CALL inbyte

PC 2016, 8 = byte

FOR ii 1 70O 30 -

END

CALL inbyte

PC 2024, 8 = byte

word = BITS(2016, 16)

byte = tmpbyte

VOoONNOCUNPFWN -

END

PROGRAM inbyte

1 WAIT SIG(-1008) H
e byte = BITS(1009, 8)
3 IF SIG(1004) THEN
4 incontrol = TRUE
5 ELSE
& incontrol = FALSE
7 END
8 SIGNAL 8
9 FOR ii = 1 TO &0
10 END
11 SIGNAL -8
12 FOR ii = 1 TO 20
13 END
14 RETURN
END

PROGRAM outbyte
WAIT SIG(-1007)
IF contout THEN
SIGNAL -6
ELSE
SIGNAL &
END
PC 9, 8 = COM byte
SIGNAL 7
FORi=1T1T0¢2
END
SIGNAL -7
RETURN
END

PROGRAM ocutword

tmpbyte byte
contout FALSE

PC 2016, 16 = word
byte BITS(20156, 8)

FOR i
END
byte = BITS(2024, B)
CALL outbyte

byte tmpbyte

1 T0 20

OV DNNOCU S WN =

—

; Tead low byte into register

read high byte into register
recompose word

H
3 restore function code

check QUTPUT BUFFER FULL signal

read in data byte from bus
check CONTROL line

toggle ACKNOWLEDGE line
delay

- we

delay for 8255 to respond

check INPUT BUFFER FULL line

put data byte on bus
toggle STROBE? line on
short delay

; toggle STROBE line off

j store function code
reset flag to send data byte

CALL outbyte; send low byte

send high byte
restore function code



1

285

1 contout = TRUE

END

C.3. Calling VAL Il Functions

c.3.1.

IBM AT Implementation

; set control flag

e A—
N ey AT AN

'mztarg¥lﬁxxEH5'LJoﬁAﬂY
UNIVERSITY OF LEEDS

The following routines were used to call a VAL 11 function,
from any Task

void gp_function(code)

int
{

)

code;

gpf_starti(code);
gpf_end(code);

void gpf_end(code)

int
¢
C

code;
PMESS p;
har temp;

temp = get_byte(TRUE);

d

ispl_init;

switch ({int)temp)

{

case 0

.case INIT_GP

case TERM_GP

- case FINDCLOTH

case CORNER
case UPTO_NDLE
break;

case FAR_RH
case MOVEBACK
break;

case ST_ALTER

case END_ALTER
case RETREAT
case WHERE
case PARAMIL
case GO_START
case ALIGN_F
case DROP

case PARAM2
case GO_NEAR
case STARTUP
case FINEADJ
case ANGLEADJ
case ROTATESO
case INCHMOVE
case REMOVE
case STRAIGHTN
break;

case END_CLOTH
default :

pri__
pri__
prf__
pri__
pri__
pri__

pri__
pri__

pri__
prf__
pri__
pri__
pri__
pri__
pri__
prf__
pri__
pri__
pri__
prf__
pri__
prf__
pri__
pri__
pri__

"VAL II bas aborted”); break;
"GPC Channel initiated"); break;
"GPC Channel terminated"); break}

"WAL II reports finding cloth"); break;
"VAL II reports finding corner"); break;
"VAL IT has put cloth under needle");

"VAL II has found far RH corner®); break;
"VAL II has moved back a distance");

"VAL Il has started ALTER"); break;
"VAL 11 has terminated ALTER"); break;

"Robot has

retreated with cloth”); break;

"VAL 11 reported robot position"); break;
"VAL Il has input parameters #1"); break;
"Robot is at start position"); break;
"Instrumented finger is aligned"); break;

"Robot has

dropped onto cloth"); break;

"VAL II has input parameters #2"); break;

"Robot has

moved to start.near"); break;

"VAL Il has sent startup data"); break;
"Fine adjustment completed"); break;
"Fine angular adjust completed"); break;

“Robot has
"Robot has
"Robot has
"Robot has

rotated cloth by 90"); break;
completed inching”); break;
cleared needle zone"); ‘break;
straightened ocut the cloth");

prf__ "Robot has found end of cloth"); break;
prf__ "VAL Il sent unrecognisable code - %4d",




}

end_print;
if ( code != (int)temp)

(

displ_init

286

temp);

prf__ "Program terminated by VAL II - =,
"unsuccesful call to function no. %3d",code);

end_print;

gpf_start(TERM_GP);

ajend();

C.3.2. VAL I1 Implementation

PROGRAM maini
CALL definitions
SPEED hi.speed ALWAYS

TOOL fingl

terminated = FALSE

DO

TOOL fingl

CALL i

IF incontrol THEN H

co

CASE byte OF ;

nbyte

ntout = TRUE

VALUE 1:

/* terminate GP comms #/

check CONTROL line

control codes

TYPE "IBM AT has initiated GP communications"

CALL set.param3
CALL outbyte
VALUE 2:

TYPE "IBM AT has terminated GP communications"

CALL outbyte
terminated = TRUE
VALUE 3:
TYPE “IBM AT request
CALL findcloth
CALL outbyte
VALUE 4 -
TYPE "IBM AT request
CALL corner
CALL outbyte
VALUE S5:
TYPE "1BM AT request
CALL uptoneedle
CALL outbyte
VALUE 6:
TYPE "IBM AT request
CALL far.rh
CALL outbyte
VALUE 7:
TYPE "IBM AT request
CALL moveback
CALL outbyte
VALUE 8:
TYPE "IBM AT request

find cloth"

find cloth corner”

put cloth under needle"

find far RH corner”

move back distance"

start ALTER"



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
&0
61
62
63
64
65
b6
67
&8
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
A
95
96
97
98

287

IF testing THEN
MOVES SHIFT(HERE BY 0, 0,. 100)
BREAK ‘
END
IF testing THEN
ALTER (0, 3)
ELSE
ALTER (0, 19)
END
REACT 1003, cloth.end
CALL outbyte
DELAY 800
TYPE “"leaving start alter loop"
VALUE 9:
TYPE "IBM AT request - terminate ALTER"
BRAKE; remove delay
NOALTER
IGNORE 1003
CALL outbyte
BREAK
VALUE 10:
TYPE "IBM AT request - drag cloth away from needle"
CALL retreat
CALL outbyte
VALUE 11:
TYPE "IBM AT request - robot position data®
MOVES SHIFT(start.near BY 0, 0, 100)
BREAK
CALL calc.where
CALL outbyte
VALUE 12:
TYPE "IBM AT request
CALL set.param
CALL outbyte
VALUE 13:
TYPE "IBM AT request - is robot at start positn 7"
CALL check.start
CALL outbyte
VALUE 14:
TYPE "IBM AT request - align instrumented finger"
CALL align.finger
BREAK
CALL outbyte
VALUE 15:
TYPE "IBM AT request
DELAY 1
CALL set.down
MOVES SHIFT(HERE BY 0, 0, 100)
MOVES start
BREAK
CALL outbyte
VALUE 16:
TYPE " set.param version 2 *
CALL set.param2
CALL outbyte
VALUE 17:
TYPE "IBM AT requests move to start.near"
CALL go.near.start

enter gain parameters"

set down 2nd finger"



99
100
101
108
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

END

CALL outbyte
VALUE 18:

288

TYPE "IBM AT request startup.data”

CALL startup.

CALL outbyte
VALUE 19:

data

TYPE "IBM AT request - fine adjustment"”

CALL fine.adj

CALL outbyte
VALUE 20:

TYPE “IBM AT request - fine angular adjustment"”
CALL angle.adj

CALL outbyte
VALUE 21:

TYPE "IBM AT request - 90 degree turn”
CALL rotate.90

CALL outbyte
VALUE 22:

TYPE "IBM AT

CALL inch

CALL outbyte
VALUE 23:

request - inching motion®

TYPE "IBM AT request - remove robot from needle zone"

CALL remove

CALL outbyte
VALUE 24:

TYPE "IBM AT

CALL outbyte
VALUE 29:

request = straighten cloth”
CALL straighten

TYPE "IBM AT request - find cloth end"
CALL end.cloth

CALL outbyte
VALUE 26:
answer = 0

TYPE "Do you want to continue 7"
PROMPT “To continue enter in - 1 ", answer
IF answer <> 1 THEN

TYPE "IBM AT requests unknown function = ",/15,byte

byte = 0
END
CALL outbyte
ANY
END
ELSE

TYPE "IBM AT sent an unexpected data byte = ",/15,byte

END

UNTIL terminated

PROGRAM definitions

13

Nou S whn

This routine initialises variables and constants

ToOL fingt
table.ht = -498.5
test.level = -484
hi.speed = 120
pcdist = 78

Z coordinate of table height

speed rate for fast motions
distance between photocells



289

2] theta.offset = 1.154 ; ang. offset of fing2 to x axis
9 pc.to.fg = 55 ;s v offset of finger #1 from pcelll
10 fg.to.pc = -20 ; x offset of pcelll to finger #1
11 fing.dist = 136
12 testing = TRUE
13 straightening = FALSE
14 pcellli.on = 1001 3 input no. for photocell #1
15 pcell2.on = 1002 ; input no. for photocell #2
16 r.max = 830 3 max reach of robot for NULL tool
17 RETURN

END

C.4. Uplink Facility

The GPC communication link provided a simple method for
transfering messages between VAL II programs and the AMX
Tasks running on the IBM AT. However, since the UNIMATION
Supervisor communication link was not implemented, other
facilities, such as downloading programs from the IBM to
vaL 1II, were not available. A method was developed for
uploading programs from VAL II to the IBM AT, without
requiring the Supervisor channel.

An RS 232C serial port on the IBM AT was linked to the
PRINTER port on the back of the UNIMATION terminal. The
following program assisted the upload operation :-

#include "FCNTL.H"

#include "STDIQ.H"

#define TRUE 1
#define FALSE 0
#define PUMAT Ox2f8 /% serial port #1 %/
#define LCR 3
#define 1IR e
#define PIIR PUMAT + 11IR
#idefine LSR S
#define DLL 0
#define DLM 1
#define 1ER 1
#define MSR b
#define MCR 4
init(port)

short int port;

{

outp(port+LCR,0x83);
outpi{port+DLL,0xB80);
outp(port+DLM,0x01);



290

outp(port+MSR,0x00);
outp(port+MCR,0x00);
outp(port+LCR,0x03);
outp(port+IER,0x035); /% set IER to ignore TxHRE */
outp(port+IIR,0x01);

}
main()
(
char byte, *mode = "w+", *¥name = "d:puma.lst", datel12];
FILE *fp;
init(PUMAT);
fp = fopen{name,mode);
if (fp == NULL)
printf(”\n error in opening lst file");
printf("\nPress PRINTER button on Unimation terminal.");
printf("\nEnter - PLIST progname at Unimation terminal.");
printf("\n\nWhen listing is completed, press CR on both ");
printf("terminals (IBM first, then Unimation)\n");
getdate(idatel0]);
while(lkbhit())
"~ if (putc(getbytel), fp) == EOF)
printf("Error in writing to file");
3

char getbyta()
{
char iirl, blank = * 73

/% wait for interrupt %/
while ( (iirl = inp(PIIR)) & Ox01 )

if ( iirl == 0x04)
return(inp (PUMAT));
else if (iirl == 0x06)
printf(“\n framing error");
else
printf("\n strange interrupt iirl = %x",iirl);

inp (PUMAT+LSR) ;
returni(blank);



291




D.l.

292

APPENDIX D

THE SEW TASK

Restart Procedure

/* Restart Procedure for SEW, CONT, MAKE and POST Tasks */

void rpsew()

{

PMESS p;

int i;

char m_reg;

static int gpaintcd{16], gpbintcdl(16];
ajmodl(); :

displ_init;

prf__ "restart procedure for sewing task");
end_print;

rpiptr(); /% set up pointers to ISP’s #/

/% send control byte to prog 1/0 chips#/

ajoutb(CB_10_2,0xB80);
sh_delay();
ajoutb(CB_I10_1,0xAE);
sh_delay();
ajoutb(CB_I0_1,0x035);
sh_delay();
ajoutb(CB_I0_1,0x0D);

/% mode t 1/0 for GP comms
/% set INTR for port B

/% set INTR for port A

/* reset counters to zero
ajoutb(CB_COUNTR,RESET_CNTR); .

sh_delay();
ajoutb (CB_COUNTR,0); /% ready to count

sh_delay(); /% enable latches to read count
ajoutb (CB_COUNTR,LATCH_EN);

blp_fact = STITCH_LEN*TRK_FACT#SC_FACT*(-1,0)/34.;
count2 = countl = Q3
t_period = 1;
/+ initialize I/0 ports to sewing m/c
ajoutb(PORT_A,0);
ajoutb(PORT_B,0);
ajoutb(SPEED_P,0);

cloth_end = TRUE; /% disable cloth end signal via GPC

/* Parameter initialisations
GPInWait = GPOutWait

b_port =y 0 =x_0= 0;
pixl_ofst = pix2_afst = 0;

FALSE;

/% instal interrupt pointer
ajiptr(UGPCAV,gpa_isp,gpaintcd);

ajiptr (UGPCBV,gpb_isp,gpbintcd);

m_reg = ajinb(UB259M);
m_reg = m_reg & “UIRQSM;
m_reg = m_reg & “UIRG3M;

/% unmask interrupt

*/
*/
%/
%/

*/
*/

*/

*/
*/

*/

*/



a93

for (1 = 300; 1 = 0; i--);
ajoutb(UBES9M, m_reg);

if(ajtask (TNCONT)) /% start CONT Task */

crash(e23);

D.2. Main Routine of SEW Task

void stsew()
{ PMESS pj

int status, inc_u, inc_x, z_rot, flop, y_displ, dy_old,
last_cnt, i_store, tens;

float freq, e_0, b_O;

unsigned int blp_cnt;

long int t_intgrl;

ajmodl ()

displ_init;
prf__ "SEWing task started");
end_print;

sewwait
blp_cnt
y_displ

/% Initialisations #/
= completed = FALSE;
= j_store = z_rot = ifeed = status = last_cnt
= max_e = max_t = t_MeanDev = t_Avg = inc_x

= i_t_Avg = dy_old = 0;
e_MeanDev = e_Avg = 0.0;

min_e =

min_t = 10000;

t_intgrl = OL}
flip = FALSE; flop = TRUE;

cloth_end
pmdata_pt

ifeed =

FALSE /% awaiting signal via GPC #/
tpmdat(0];

i_hand = 13

tens = tension();
sh_delay();

tens = tension();
count_reset();
set_speed(0);

take_picture();
delay(10);
read_cam();
e_calc(&b_0,%e_0);

ajoutb(PORT_A,SEW_START); /* start sewing now !! */

/*

while ((

SENSORY FEEDBACK LOOP FOR REAL TIME ROBOT PATH CONTROL #/

/* test for end of cloth #/
x_total > StopDistance) && !cloth_end )



294

{ /% control sewing speed %/
status = speed_control(status);
/% calc. avg. update frequency */
freq = (float)ifeed/(float)i_hand;
/% APPLYING CLOTH TENSION CONTROL %/
/+ open loop cloth tension control #/
inc_u = x_corr(&blp_cnt,freql;
/% closed loop cloth tension control */
if (isew_near)
{ /¥ update tension if > 1 rev %/
if ((blp_cnt - last_cnt) > 36)
{ last_cnt = blp_cnt;
tens = tension();
3}
/* reset t_intgrl after slack taken up %/
if (flop && tens > rq_tens)
{ flop = FALSE;
t_Avg = t_intgrl = OL;
t_MeanDev = i_t_Avg =
min_t = 10000;

0;

}
inc_x = tens_corr(inc_u,tens,&t_intgrl,freq);
/# limit x movement */

inc_x = limit(inc_x,B8%SC_FACT);

/% APPLY SEAM WIDTH CONTROL #*/
read_cam{); /% transfer pixel data to buffer %/
take_picture(); /+ trigger 280 to read cameras %/

y_displ = y_corr(&inc_x,%z_rot,&dy_old);

/% install new ALTER message #/
installlinc_x,y_displ,z_rot);

if (ifeed < 100 ) /% store runtime data#/
{ *{pmdata_pt++) (float)x_total;

*(pmdata_pt++) (float)y_total;
*(pmdata_pt++) (float)i_hand;
(

#(pmdata_pt++) float)ifeed;

)

flip = flip ? FALSE : TRUE;

ifeed++;
3 /% end of update Loop */
ajoutb(PORT_A,SEW_STOP) ; /% stop sewing machine 1! %/
install(0,0,0);
cloth_end = TRUE; /% disable signal via GPC #/
displ_init;

prf__ "initial error = %B.3f, initial beta = %8.3f",
e_0/SC_FACT,b_0*RAD_TO_A);
end_print;

if (ajwake(TNMAKE) != 0) crash(2322);



295
D.3. Cloth Tension Control Routines

/% This routine calculates an x displacement for the robot ¥/

/* to track the sewing machine shaft encoder signal. */
x_corr(blp_cnt,freq)
unsigned *blp_cnt;
float freq;
(

int inc_x;
unsigned int new_blip_cnt;

new_bliﬁ_cnt = (unsigned)read_count{);
/+ check for counter overflow %/
if (new_blip_cnt < *blp_cnt)
crash(7313);

inc_x = (float)(new_blip_cnt - *blp_cnt)
*blp_factxfreq;
*blp_cnt = new_blip_cnt;

return{ inc_x ); -

tens_corr(inc_x,tens,t_intgrl,freq)
int inc_x, tens;

long *t_intgrl;

float freq;

( .
int temp;

temp = rq_tens ~ tens;

#t_intgrl += ((float)temp/freq);
t_Avg += temp;

max_t = max(max_t,temp);

min_t = min{min_t,temp);
t_MeanDev += (tempxtemp);
i_t_Avg++;

/* Cloth Feed Servo Transfer Function #/

temp = (float)inc_x#(1.0 - (float)#t_intgrl*int_fact -

) t_gain*(float)temp);
if (temp > Q) /% ensure no moves backwards #/

temp = 0;
return(temp);
}

speed_control(sew_status)
int sew_status;
(
int x;
static int FPos_l, Pos_2, Pos_3;

x = x_totalj;
switch (sew_status)
(



}

296

case 0 : Pos_1 x_0 - acc_dist;

Pos_2 = Pos_1 - calc_dist;
Pos_3 = decel_dist;
sp_len = 03

set_speed(0);
return(l);

case 1 : if (x > Pos_1)
{ if (sew_near)
set_speed(i_hand*2);
else
set_speed(i_hand*10);
return(1);
)
else
return(2);
case 2 : if (sew_near)
set_speed(MID_SPEED);
else
set_speed (TOP_SPEED) ;
ajtput((int)0, (unsigned)Oxffff);
count!l = (unsigned)read_count();
Pos_1 = x3;
return(3);

case 3 : if ( x < Pos_2 )

{ t_period = (unsigned)Oxffff - ajtget((int)0);
count2 = (unsigned)read_count();
ajtoff((int)0);
sp_len = Pos_1 - «x;
return(4);

}

else

return(3);

case 4 ¢ if ( x < Pos_3)
{ set_speed(SLO_SPEED);
return(3);
3
b
return(sew_status);

void read_offset()

(

offstl = ajinb(FING1);
delay(1);
offstl = ajinb(FING1);
delay(13);
offstl = ajinb(FING1);

void count_reset()

(

/% reset counters to zero
ajoutb(CB_COUNTR,RESET_CNTR);

sh_delay(};
ajoutb(CB_COUNTR,0); /¥ ready to count
sh_delay(); ‘

*/

*/



297

ajoutb(CB_COUNTR,LATCH_EN);

/% enable latches to read count */

)
tension()
{ unsigned int tens;
int tmp;
tens = ajinb(FING1);
tmp = {int)(tens - offstl);
‘return( (tmp < O) 7 0 : tmp);
)
limit{qty,lim)
int qtyslim;
< if (qty > 1lim)
return(lim);
lim #= -1;
return({ (qty < 1lim) 7 lim : qty);
)
void set_speed{(sp_req) /% output speed request to m/c
int sp_req;
{
if (sp_req < 0) ‘ /* no -ve value possible
sp_req *= -1;
if ( sp_req > 255) /% max. speed of sewing m/c
sp_req = 253;
ajoutb(SPEED_P,sp_req); /* change speed setting
Y
read_count() /% routine to read sewing m/c count
{
unsigned int count;
ajoutb(CB_COUNTR,0); /% disable latches
count = ajinb(LO_COUNT);
count += (ajinb(HI_COUNT)} << 8}; =
ajoutb (CB_COUNTR, LATCH_EN); /* re-enable
return((int)count);
)

D.4. Seam Width Control Rouines

y corr(inc t, z_rot, dy_old)

int *inc_t, *z_rot, *dy_old;

{ PMESS p}
float alphal, alpha2,del_alpha, x1, yl, x2, y2, dx, dy;
long int z1;

*/
*/
*/

*/

*/

*/

*/



298

int dy_i, dy_lim, b_freq, r, acc_lim;

ajdi); /*calc instantaneous position #/
x1 = x_total; /* calc robot to ndle */
yl = -y_total ;

z1l = z_total ;

ajei();

alphat = (float)zl / ROT_FACT;

: /% apply transfer function #*/
del_alpha = = transf_fn();

/% calc robot position before limiting #/

dx = -yl * del_alpha;
x2 = x1 + dx;

dy = x1 * del_alpha;
y2 = yl + dy;

dy_i = (int)dy;

alpha2 = alphal + del_alphaj

/% APPLY VARIOUS LIMITATIONS #/
i /% velocity limitation #*/
dy_lim = limit(dy_isvel_lim);
if (!sew_near) /% absolute limiting */
dy_lim = limit2(dy_lim, (int)yl);

/% check robot within envelope #/
h_freq = (float)(1.0/freq);
switch {envelope((int)xl,(int)yl,alphal,&r))
{ case 1 : crash(12364);

break; /% fing 1 hits sewing m/c *4
case 2 : crash(1237);

break; /¥ fing 2 hits sewing m/c #*/
case 3 : crash(1238); .

break; /* robot too far %/
case & : crash(1239);

break; /% robot too near ¥/
case S : acc_lim = accel_limxh_freq;

break; /* close to base */
case 6 : acc_lim = accel_lim*h_freq/3;

/% far from base %/
}
/% acceleration limitation #/
dy_lim = limit(dy_lim - *dy_old,acc_lim) + #dy_old;
dy_lim *= h_freq;
dy_lim = limit3(dy_lim, r); /% absolute limiting #/
dy_lim /= h_freq;
. /%+ if limited then recalc position */
if (dy_lim != dy_1)
{ dy_i = dy_lim;
dy = (float)dy_i;
del_alpha = dy/x1};
dx = -(yl#del_alpha);
x2 = x1 + dx;
}

#dy_old = dy_i; /* store del_y for accel limit#/

/¥ return z rot ALTER data #/
#2 _rot = del_alpha * ROT_FACT;

*inc_t += dx; /% return new x ALTER data #/



299

return(dy_i);
)

envelope(x,y,alpha,r_r)

int x;

int vy;

float alphaj

int *r_r;

{ int du,dv,r;
long int f_x, f_y, rx, ry;
float sin_a, cos_a,
double tt;

if (HitSewMc(x,y))
return(l);

sin(alpha);
cos_a = cos(alphal;
du = (float)fing_dist*sin_a;
dv = (float)fing_dist#cos_a;
if (HitSewMc(x = du,y + dv))
return(2);

sin_a =

/* calc position of robot flange
({cos_ax*cos_f) - (sin_a*sin_f);
{sin_a*cos_f) + (sin_f*cos_a);

cos_t =
sin_t =
f_x = (float)f_rxcos_t;
X n_x + x + f_x;

f_y = (float)f_r¥sin_t;
ry =ny -y - fy;

tt (rx#rx) + (ry*ry);
tt sqrt(tt);

r = (int)tt;

*r r =713

if (r > R_MAX)
return(3);

if (r < R_MIN)
return(4);

if (r < R_MID)
return(3);

return(b);

/* this routine returns angular
/% proportional gain (gain_pix)
float transf_fn()

{
float error,beta;
int i;
e_calc(&beta,derror);
e_Avg += error;
e_MeanDev += (error%*error);
min_e = min{min_e,{int)error);

max_e = max(max_e,(int)error);

for({ i =

NCOL; (error € pixell(i-11) &%

/% return new y ALTER data #/

sin_t, cos_t;

/% main finger hits #/

/% calc 2nd finger position %/

/+ 2nd finger hits #/

*/

/* calc robot reach radius %/

/* too far %/

/% too near */

*/
*/

/% close to base
/% far from base

correction based on
and derivative gain (beta),

*/
*/

/% calc error from pixel data#/

/* calc seam error statistics*/

(i =0 ) 3 i--)



(

300

return{(float)({deriv_gain*beta) + gain_pix[il} );

/% This routine calcs. actual seam width error */
void e_calc(beta_pt, error_pt)
float *beta_pt;
float *error_pt;

float np_1, np_2;
int icoll, icol2;

icoll = find_edge(caml_buf,irowl);

np_1 = SEAM_W + pixelllicolll + pixl_ofst;
icol2 = find_edge(cam2_buf,irowd) j;

*error_pt =

limit2(y_dis,old_y)
int y_dis,old_y;

{

int sig, retn, temp;

temp = y_dis + old_y;

if (temp > O)

*beta_pt = (np_1 - np_2) / CAM2_DIST;
{np_1 # rcos{{(double)*beta_pt)) - (float)SEAM_UW;

np_2 = SEAM_W + pixel2licol2] + pix2_ofst;

/% This routine applies absolute limiting #*/

temp = LEFT_MAX - temp;

/% sign

of vy direction

/* dist between limit & vy

/* ~ve y is on the left hand side

temp = RIGHT_MAX + temp;

{ sig = 13
}

else

{ sig = -1;
}

if (temp > 128B0)

return({y_dis);

/% absplute value required

/% 40 mm

well within limits

if ((y_dis > O && old_y ¢ 0) ! (y_dis < O && old_y > 0))
/% approaching centre

return(y_dis);

if (temp > B832)
retn = 192;
else
retn = 160;
else
retn = 94;
else
retn =  b4;
else
retn = 32;
else
return(0);

if (retn € abs(y_dis))
returni{retn*sig);

returnly_dis);

if (temp > 512)
if (temp > 320)
if (temp > 192)

if (temp > 64)

/%
/*
/*
/*
/*
/%
/*
/*
/*
/%

2b
6
16

(%Y
o woum

/%
/%

mm
mm
mm
mm
mm
mm
mm
mm
mm
mm

%/
*/
*/
*/
%/
*/
*/
%/

approaching limit

deceleration

*/
*/

*/
*/

*/
*/
*/

/% dead zone near limit *#/

return deceleration speed #/
else y_dis is slow enough */



301

)
1imit3(y_dis,r) /% This routine applies absolute limiting */
int y_dis,r;
{
int sig, retn, temp;
if (r < R_MID)
{ sig = &; /% sign of y direction #/
temp = r - R_MIN - 150; /% dist between limit & y #/
)
else
{ sig = -1
temp = R_MAX - r - 150;
3
if (temp > 1600) /% SO mm - well within limits #/
return{y_dis);
if ((y_dis > O && r > R_MID) ! (y_dis < 0 && r < R_MID))
return({y_dis); /% approaching centre %/
if (temp > 832) /* 26 mm =~ approaching limit #/
retn = 70; /¥ 6 mom - deceleration #/
else if (temp > 512) _ /% 16 mm */
retn = 950; /% & mm »/
plse if (temp > 320) /¥ 10 mm */
retn = 303 /¥ 3 om %/
else if (temp > 192) /¥ & om %/
retn = 10; /¥ 2 mm %/
else if (temp > 64) /% 2 om */
retn = 5; /¥ 1 mm %/
else if (temp < =194 && sig > O)
retn = -10;
else if (temp ¢ -64 && sig > 0)
retn = =5;
else
return(0); /% dead zone near limit #/
if (retn < abs(y_dis))
returni{retn#*sig); /% return deceleration speed #/
return(y_dis); /% else y_dis is slow enough %/
}
HitSewMc(x,y)
int x,y;
¢ ' /* checking sewing m/c envelope #/
if ({y < NY_MAX) && (x < NX_MAX) &% (x > NX MIN))
return(TRUE); -
return({FALSE);
}

edge_find(cam_buf,irow)
char #*cam_buf;

int irow; /+ no. of pixel row to be searched #*/
c .

int ipix, icol;



302

ipix = (irow*NCOL); /* N.B. irow starts at zero #/

for (icol = 0; icol < NCOL; icol++,ipix++)
{
if ( *(cam_buf+ipix) < OxB80 )
return{icol);
)
return(NCOL-1);
)

find_edge(cam_buf,irow)
char *cam_buf;
int irow;
{
int icoll, icol2, icol3;

icoll = edge_find(cam_buf,irow-1);
icol2 = edge_find(cam_buf,irow);
icol3 = edge_find(cam_buf,irowtl);
return {icoll + icol2 + icol3)/3;

/* approximation based on first 2 terms of the series expansion */
double rcosf{angle)
double angle;
{
return (1.0 - (anglexanqgle/2.0}));
?



E.1.

303

APPENDIX E

THE CONT, MAKE AND POST TASKS

The CONT Task

void stcont()
PMESS p;

{

displ_init; .
prf__ "CONT task started”);
end_print;

debug = FALSE;
ajoutb(PORT_A,PRESSER_FT);
gp_function(INIT_GP);

do
(

gp_function(GO_START);
read_offset();
startup_data();
set_param();

ajtask (TNMAKE) ¢
ajwait();

Y while (again());

gp_function(TERM_GP);

void startup_data()

(

}

gpf start(STARTUP);

fing dist = aet word():

f_r = get_word();

f_angle = (float)get_word()/180,0;
n_x = get_word();

n_y = get_ward();

cos_f = cos(f_angle/RAD_TO_A);
sin_f = sin(f_angle/RAD_TO_A);
gpf_end(STARTUP) ;

void set_param()

(

gpf_start(PARAML);
initialise();
setl_param();

pixl_ofst = Y1 _PIXEL # (float)ipixl_ofst;

/* Initial Sequence %/

/% 1ift presser foot up */
/* initiate GP comms #*/

/% is robot at start? */

/% terminate GP comms#/

/% input parameters #/

pix2_ofst = Y2 _PIXEL * (float)ipix2_ofst;

setup_pixels();
gpf_end (PARAMI) ;



304

void setl_param()

(

prf

PMESS p;
int temp;

do

{ temp = get_word();
if (temp != 0) irowl
temp = get_word();
if (temp = 0) irow2
temp = get_word();
if (temp != 0) ipixi_ofst = temp;
temp = get_word(); .
if (temp != 0) ipix2_ofst temp;
temp = get_word();

temp;

temp;

displ_init; -
"irowl = %4d, irow2 = %4d, ipix1_of = %4d, ipix2_of = %4d",
irowl,irow2,ipixl_ofst, ipix2_ofst);
end_print;

if (temp != 0) s_gain = (float)temp/(100000,0%SC_FACT);
temp = get_word();

if (temp != 0) deriv_gain = (float)temp/10000.0;

temp = get_word{();

if (temp != 0) int_fact = (float)temp/1000000.0;

displ_init; : '

prf__ "s_gain = %6.4f, deriv_gain = %6.3f, int_fact = %9.&f",
s_gain*SC_FACT, deriv_gain, int_fact);

end_print;

pix_gain = s_gain # Y1_PIXEL / SC_FACT;

temp = get_word();

if (temp != 0) t_gain = (float)temp/100000.0;
temp = get_word();

if (temp = 0) rq_tens = temp;

temp = get_word();

if (temp != Q) accel_lim = temp;

temp = get_word();

if (temp t= 0) vel_lim = temp;

displ_init;
prf

"t_gain = %8.5f, rq_tens = %4d, accel_lim = %4.2f, vel_lim = %4d",

}

t_gain,rq_tens,(float)accel_lim/SC_FACT,veI_lim/SC FACT) 4
end_print; -
} while (get_word() != 1);

/% This routine initialises global parameters to default values

void initialise()

{

t_gain = 0.0015;
int_fact = 0.00003;

*/



305

deriv_gain = 0.1;

s_gain = 0,005/SC_FACT;
pix_gain = s_gain * Y1_PIXEL;
rq_tens = 70;

accel_lim = (3.0 * SC_FACT);
vel_lim = B * SC_FACT;

irowl = 2;
irow2 = B;

ipixl_ofst = 0;
ipix2_ofst = 0;
)
again()
{ int ans;
gpf_start(Q_AGAIN);
ans = (int)get_bytel();
return{ ans == G_AGAIN ? TRUE : FALSE);
} B

void setup_pixels()

{
/% PMESS p; */
int gain_sign, centre_pix, i, factor;
int gainswitch;
float halfpix_gain, halfl_width, half2_width;
centre_pix = NCOL / 2;
factor = centre_pix;
halfl_width = Y1_PIXEL / 2.0;
half&_width'= Y2_PIXEL / 2.0;
pixl_ofst ="Y1_PIXEL * (float)ipixl_ofst;
pix2_ofst = Y2_PIXEL # (float)ipix2_ofst;
gainswitch = 0;
gain_sign = -1; ~
halfpix_gain = (Y1_PIXEL/2.0) * pix_gain ;
/% print_init;
prf__ "\npixel arrangement”,
"\n i factor pixelll] pixel2(l = gainll\n");
end_print;
*/
for (i=0; 1 < NCOL; i++)
¢ :
pixelllil = halfl_width - (Y1_PIXEL * factor);
pixel2Cil = half2_width - (Y2_PIXEL * factor);
gain_pixfi] = - (halfpix_gain * gain_sign) -
(pixellli - gainswitchl # pix_gain) ;
/% print_init;

prf__ "%44d%10d%13.2f413.2f%13.3f",
i,factor,pixellti],pixeleti],gain_pix[il);
end_print;
*/
if (factor == 0)
{



3046

gainswitch = 13
gain_sign = 1;
)
factor-—;
}
gain_pixINCOL] = ~ halfpix_gain -
(pixellINCOL - 1] * pix_gain);
/% print_init;
prf__ “%46.5f ",gain_pixINCOL1);
end_print; */

E.2. The MAKE Task

#define REMNANT 30%SC_FACT /% cloth length left to sew

#define NSIDES 3

void stmake()

¢ %
PMESS p; :
int i, section(Bl, i_sect, no_sections;
ajmodl();

- displ_init;

- prf__ "SEAM task started");

- end_print;

. gp_function(FINDCLOTH); /% find cloth
gp_function(CORNER) ' /% find cloth corner
gp_function(UPTO_NDLE); /% put cloth under needle
fine_adj(); .
ndle_down(); /% put needle down to permit pivot

gp_function(REMOVE)

*/

*/
*/
*/

/% remove robot from immediate vicinity of needle #/
/* Looped sequence #*/
for(i=0; i < NSIDES; i++)
{ gp_function(END_CLOTH)
no_sections = DecideSeam(&section(0]);
for (i_sect = 0; i_sect < no_sections; i_sect++)
{ sew_near = sectionli_sectl;
if (sew_near)
gp_function(GO_NEAR);
else
gp_function(FAR_RH);
angle_adj{);
CalcSeamSection();
if (ajtask (TNCOMM))
crash(6343); /% start ALTER Comms %/
ajshed();
ajwatmib); :
gp_function(ST_ALTER); /% start ALTER up */

3jtask (TNSEW) ;
ajwait();

gp_function(END_ALTER); /% terminate ALTER #/



307

}

inch(); /% finish off last 15 mm of seam #*/
if (i == NSIDES~-1) break; A
gp_function(ROTATESO) ; /* rotate cloth by 90 */
gp_function(STRAIGHTN); /% straighten out cloth */

3

ajoutb(PORT_A,TRIM_THREAD) ;

delay(10);

gp_function(RETREAT); /% pull cloth back »/

/% if (ajtask{(TNPOST)) crash(1B837); */
if (ajwake{TNCONT) != 0) crash(2382);
} .

DécideSeam(section)
int *section;

{ where();
if (x_0 > 150%SC_FACT)
{ *¥section = FAR;

*(sectiontl) = NEAR;
return{(2);

)

*section = NEAR;

return{1);

b .
void CalcSeamSection()
( ,
where();
if (sew_near)
{ StopDistance = ~100%SC_FACT;
acc_dist = 20%SC_FACT;
decel_dist = 35#SC_FACT;
SeamSection = x_0;
}
else
{ StopDistance = 1B80*SC_FACT;
acc_dist = 55#5C_FACT;
decel_dist = 10*SC_FACT + StopDistance;
SeamSection = x_0 - StopDistance;
}
calc_dist = x_0 - decel_dist - acc_dist - 20*SC_FACT;
} .

/% this rotine sews up last 30 mm of cloth after #/
/* photocell uncovered %/

void inch()

{ gpf_start (INCHMOVE) ;

send_word( (int)REMNANT) ;

ajoutb(PORT_A,SLO_SEW);

delay(600); /% this delay = 30 mm travel #*/

ajoutb (PORT_A,SEW_STOP);

delay(1350);

ajoutb(PORT_A,PRESSER_FT);

gpf_end ( INCHMOVE) 5



void ndle down{)

308

{
ajoutb (PORT_A,SLO_SEW);
delay(30);
ajoutb (PORT_A,SEW_STOP);
delay(130);
ajoutb (PORT_A,PRESSER_FT);
)

void fine_adj()

{ gpf_start(FINEADT);
ad just (TRUE);
gpf_end(FINEAD]);

)

void angle_adj()

{ gpf_start (ANGLEADT);
ad just (FALSE);

gpf_end (ANGLEADJ) ;
}

void adjust(width_adj)
int width_adj;
{ PMESS pj;
float beta,error;
int ack;

ack = 0;
while (ack ¢ 9)

{ take_picture();

delay(3);
read_cam();

e_calc(&beta,derror);

beta #= RAD_

displ_init;
prf__ "Fine adj. - error =
end_print;

TO_A; /% convert to degrees %/

“6.2f beta = %6,3f ", error, beta);

if (width_adj)

send_wo
else

rd{tint)error);

send_word((int)beta);
ack = get_word();

)
if (ack = 10)
{ displ_init;

prf__ "Program terminated - unsuccesful Fine Adjustment");

end_print;
ajend();

void where()
{ PMESS p;

/# VAL II returns robot position data */ (



309

gpf_start (WHERE);

x_0 = get_word(}; , /# initial x dist #/
y.0 = get_word(); /% initial y_sc %/
th_0 = ((float)get_word(}))/200.0; /% initial theta %/
x_total = x_0; /% initialise counters #/
y_total = y_0; ,

z_total = —(float)(th_O*TOANG);

gpf_end (WHERE) ;
displ_init;

prf__"x_0 = %5d, y_O = %5d, th_0 = %6.2f, z_total = %sld",

x_0,y_O,th_0, z_total);
end_print;

E.3. The POST Task

void stpost()

¢

PMESS p;

float feed_sp, rev_speed, e_StdDev, t_StdDev;

ajmodl();

displ_init;

pri__

"COMM handshakes = %5d, feedback updates = %5d",i_hand,ifeed);
end_print;

feed_sp = (float)sp_len * 18,0 / ((float)t_period * SC_FACT) ;
rev_speed = (float)(count2-countl)#18.0 * &0,0
/{(float)t_periodx*36.0);

/% calc error statistics #/
e_MeanDev /= (float)(SC_FACT+#SC_FACT);
e_Avg /= (float)SC_FACT;
e_StdDev = StdDev(e_MeanDev,e_Avg,ifeed);
t_StdDev = StdDev((float)t_MeanDev,(float)-t_Avg,i_t_Avg);

displ_init;
prf__"no. ALTER handshakes = %é&d
no. feedback loops = %6d",1i_hand,ifeed);
end_print; '
displ_init;
prf__"handshakes/update rate = %4.2f
' time period for speed = %bu ticks",
(float)i_hand/(float)ifeed, t_period);
end_print;

displ_init;

prf__ "\n\nParameters Set At Run Time\n");
end_print; ///
displ_init;

prf__"seam length = %&6d mm



310

sewing speed = %7.1f rpm",
SeamSection/SC_FACT,rev_speed);
end_print;
displ_init;
prf__"tension offset = %béu
sewing speed = W7.2f mm/s",o0ffstl,feed_sp);

end_print; ,

displ_init; )
prf__ "\n\nRobotic Sewing Performance Data\n");
end_print;
displ_init;
prf__"seam width servo cloth tension servo");
end_print;
displ_init;
prf__"standard deviation = %7.3f

standard deviation = %7.3f",e_StdDev,t_StdDev);
end_print; -
displ_init;
prf__"sum of mean deviation = %7.1f

sum of mean deviation = %71d",e_MeanDev,t_MeanDev);
end_print;
displ_init;

prf__"sum of average error = W7.ef
sum of average error = %71d",e_Avg,-t_Avg);

end_print;
displ_init;
prf__"maximum error = %7.2f

maximum error = %7d",
(float)max_e/(float)SC_FACT,-min_t);
end_print;
displ_init;
prf__"minimum error . = %7.2f

minimum error = %7d",
(float)min_e/(float)SC_FACT,-max_t);
end_print;
pr_heading();
print_init;
prf__ "\nParameters GSet At Compile Time\n");
end_print;
print_init;
prf__"robot stopping dist = %éd mm

: pixel width ~ cam #1 = %7.3f mm",
StopDistance/SC_FACT,Y1_PIXEL/SC_FACT);
end_print;
print_init;
prf__"maximum RHS motion = %b6d mm
pixel width - cam #2 = %7.3f mm",

RIGHT_MAX/SC_FACT,Y2_PIXEL/SC_FACT);
end_print;
print_init;
prf__"maximum LHS motion = A6d mm

dist. between 2 fingers = %&d mm",

LEFT_MAX/SC_FACT,fing_dist/SC_FACT);
end_print;

print_init; e

prf__"deceleration length = %6d mm



311

inter camera distance = A7.1f mm",

decel _dist/SC_FACT,CAM2_DIST/SC_FACT);
end_print;
print_init;
prf__"stitch length = %6d mm

seam width = 47.1f mm",
STITCH_LEN;(float)(SEAM_N/SC_FACT));
end print;

print_init;
prf__ "\n\nParameters Set By User\n");
end_print;
print_init;
prf__"pixel row no. - cam #1 = %&d

: ) tensn servo, propnl gain = #8.5f"yirowl,t_gain);
end_print;
print_init;
prf__"pixel row no. ~ cam #2 = %&d

: tensn servo, intgrl gain = %8.5f",irow2, int_fact);
end_print;
print_init;
prf__"x axis offset - cam #1 = %&4d pxls

request cloth tension = %8d",ipixl_ofst,rq_tens);
end_print; .
print_init;
prf__"x axis offset - cam #2 = %&d pxls
. seam servo, propnl gain = %8.4f",
ipix2_ofst,s_gain*SC_FACT);
end_print;
print_init;
prf__"robot velocity limitatn = %&d mm/hs
seam servo, deriv gain = %8.3f",
vel_lim/SC_FACT,deriv_gain);
end_print;
print_init;
prf__"robot accelrtn limitatn = %6.1f mm/hs/hs",
(float)accel_lim/SC_FACT);
end_print;
print_init;
prf__ “\n\nParameters Set At Run Time\n");
end_print;
print_init;
prf__"seam length = %é6d mm
sewing speed = %7.1f rpm",

SeamSection/SC_FACT,rev_speed);
end_print;
print_init;
prf__"tension offset = %bu

sewing speed = %7.2f mm/s",0ffstl,feed sp);
end_print; B

print_init;
prf__ "\n\n%c%c
Cutput Data%cic",27,469,27,70);
end_print;
print_init;
prf__ "\nProcessor Performance Data\n");
end_print;
print_init;

A\



312

prf__"no. ALTER handshakes = %&d
no. feedback loops = %6d",1i_hand,ifeed);

end_print;

print_init;

prf__"handshakes/update rate = %6.2f

time period for speed = %&u ticks",

(float)i_hand/(float)ifeed, t_period);

end_print;

print_init;
prf__ "\n\nRobotic Sewing Performance Data\n");
end_print;
print_init;
prf__"%c%cseam width servo
cloth tension servo’cic",27,69,27,70);
end_print;
print_init;
prf__"standard deviation = %7.3f
standard deviation = %7.3f", e_StdDev,t_StdDev);
end_print; -
print_init;
prf__"sum of mean deviation = %7.1f

sum of mean deviation = %71d",e_MeanDev,t MeanDev);
end_print; -

print_init;
prf__"sum of average error = %7.ef
sum of average error = %71d",e_Avg,-t_Avg);
end_print;
print_init;
prf__ "maximum error = 47.2f
maximum error = %7d",

(float)max_e/(float)SC_FACT,-min_t);
end_print;
print_init;
prf__"minimum error = W7.2f
minimum error = %7d",
(float)min_e/(float)SC_FACT,-max_t);
end_print;

print_init;
prf__ "“Ac",12);
end_print;
pr_runtime();

b

float StdDev( x1, x2, n)
float x1, x2j
int n;

/
return({float)(sqgrt((double) ((x1 - (x2*x2/(float)n) )
/(float)(n=-1)) )));

void pr_runtime()

PMESS p;



313

int ii,i, ind, no_data;
float item{101;

ind = 0;

print_init;

prf__

"%ciic Sensory Feedback Loop Runtime Data%cic",
£27,69,27,70);

end_print;

print_init;

pri__
“\n error beta del_alph dy_i inc_x inc_t ",
" y dis x_total y_total z_total");

end_print;

ifeed = ifeed + 1;
no_data = ifeed > 200 ? 200 : ifeed/2;
for (ii = 0; 11 ¢ no_data ; ii++)
{ /% recoup data from storage #/
for(i=0; i € 10; i++)
itemli] = pmdatlind++];

print_init;

pri__
wws.2f %7.ef w7.2f 47.2f 4A7.2f %47.2f %47.2F %7.1f %7.1f %7.1f",
jtem[0)/SC_FACT,itemC11*RAD_TO_A,
item[2)*RAD_TO_A,iteml31/SC_FACT,iteml{4]/SC_FACT,
item[S51/SC_FACT,iteml61/SC_FACT,
item(73/SC_FACT,item[81/SC_FACT,item[91/TOANG);

end_print;

ajwatm(3);

void pr_heading()

(

PMESS p;

struct (
char secy
char mins;
“char hourj
char day;
char month;
char year;
thar day_of_wk;
char valid;
} tdbuf;

ajmodl();

print_init;

prf__ "hchchchc”,87,67,0,12);
end_print;

ajtdg(dtdbuf);



314

print_init;
prf__ "\n\n\n ")s
p.n += ajtdf(ltdbuf,(int)0x00c2,8p.mplp.n+11);
end_print;
print_init;
pri__
A A Robotic Sewing Development Program",27,69);
end_print;
print_init;
prf__ "idchc Version %&4.

ef",27,70,VERSION) ;
end_print;

print_init;
pri__ "\n\nicic Input Datal%c¥%c",

27,69,27,70);
end_print;

E.4. VAL II Functions

PROGRAM angle.adj
1 tries = 0
e SPEED 10 ALWAYS
3 324 DELAY 0.5
4 CALL inword
5 ang = word '
b TYPE "Angle Adjustment : angle = ", /14, ang
7 IF ABS(ang) < 2 GOTO 325
8 IF ABS(ang) > 45 GOTD 3264
9

angle.req = -ang
10 CALL rotate.ndle
11 tries = tries+l
12 word = tries
13 CALL ocutword
14 DELAY 0.5
15 GOT0 324
16 325 word = 10
17 CALL outword
18 SPEED hi.speed ALWAYS
19 RETURN
20 326 TYPE "excessive angular error"
21 HALT
END

PROGRAM calc.where

DECOMPOSE ptl] = HERE

x.0 = DX(HERE)-DX(at.ndle)

y.0 = DY(HERE)-DY(front.ndle)

th.0 = 90-ptl{31+theta.offset

TOOL t.store

TYPE "x coord of finger w.r.t. needle
TYPE "y coord of finger w.r.t. needle

Yy /Dy x.0 .
"’ /D, Y.O

NSO Fwn e



8

9
10
11
12
13
14
15
16

END

PROGRAM calc.

VOO NPFWN -

10
11
12
13
END

315

TYPE "2nd finger angle ="y /D, th.O

word = x.0#32
CALL outword
word = y.0%32
CALL outword
word = th.0%*200
CALL outword
RETURN

y.inc

This routine calculates the maximum increase in y
for the present x value.

SET t.store = TOOL

TOOL NuLL

y.inc.max = SERT(SGR(r.max)-SQAR(DX(HERE)))-DY (HERE)
TOOL t.store

apply software limitation of short integers scaled by 32

IF (DY(HERE)+y.inc.max) > 1020 THEN
y.inc.max = 1020-DY(HERE)

END

RETURN

PROGRAM check.start

oNOCUNHS W -

END

x = DISTANCE(HERE, start)

IF (x < 0.3) AND (x > -0.3) THEN
RETURN

END

MOVES start

DELAY 2.5

BREAK

RETURN

PROGRAM cloth.end

1

CALL outbyte
RETURN

PROGRAM corner

“-s we we wme

This routine sends robot up cloth length, finds top edge,
aligns hand with cloth, finds LH edge, and places fingers
down on cloth at an offset from top LH corner.

move forward until top edge detected
SET t.store = TOOL

REACTI pcelll.,on

REACTI pcell2.on

SPEED 80

MOVES SHIFT(HERE BY DX(limit.2)-DX(HERE), 0, 0)
BREAK

IF DX(HERE) < DX(limit.2)+30 GOTO 10



14
15
16
17
18-
19
20
el
e

24
25
26
27
a8

316

IGNORE pcelll.on
IGNORE pcell2.on

; move backwards and repeat search slowly and accurately

23

-e wa

MOVES SHIFT(HERE BY 35, 0, 0)
BREAK

REACTI pcelll.on

REACTI pcell2.on

" SPEED 15 ALWAYS

MOVES SHIFT(HERE BY -50)
BREAK

IGNORE pcelll.on

IGNORE pcell2.on

test to decide on next move

test for error condition, i.e. when neither pcell lit up

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

43

46
47
48
49

S0 ;

o1
Se
93
54
55
56
57
o8
59
60
61
be
63
b4
&5
bb
&7
68
69

31

30

S5

3

56

34

33

IF SI1G(pcelll.on) GOTO 31

IF SIG(pcell2.on) GOTO 31

TYPE "error in finding top edge”
GOTO 10

IF SIG(-pcelll.on) GOTO 30

IF SIG(-pcell2.on) GOTO 32
angle = 0

G070 33 ; if both lit up then no need to pivot

pivat photocell no. 2 until pcell no. 1 detects

REACTI pcelll,on

TOOL pcelll

SET pivot = HERE

FOR angle = 90 T0 0 STEP -0.5
MOVE pivot:TRANS(O, 0, O, angle, -90, 0)
IF SIG(pcelll.on) GOTO 55 -

END

BREAK

SET pivot:itemp = HERE

IF angle == 0 GOTO 10

GOTO 34

pivot about pcell 1 until pcell 2 detects edge

TOOL pcelll

REACTI pcell2.on

SET pivot = HERE

FOR angle = 90 TO 180 STEP 0.5
MOVE pivot:TRANS(O, O, O, angle, =90, O)
IF SIG(pcell2.on) GOTO S&

END

BREAK

SET pivot:temp = HERE

IF angle == 0 GOTO 10

calculate angle of cloth
TOOL t.store

DECOMPOSE pt3L]) = temp
angle = 90-pt3(3]

move gripper back a "margin" from top edge
BREAK

edge



317

70 margin = 20
71 x1 = margin*C0S(angle)
72 yl = margin®*SIN(angle)
73 TYPE "cloth orientation angle = ", /15, angle
74 SPEED BO ALWAYS
75 MOVES SHIFT(HERE BY x1, yl, 0); move perpend to edge
76 BREAK |
77 3
78 3 move right to detect corner
79 REACTI pcelll.on
80 yl = DY(limit.1)-DY(HERE)
B1 x1 = -y1*5IN(angle)/COS(angle)
B2 SPEED 30 ALMWAYS
83 MOVES SHIFT(HERE BY x1, yi, @)
84 BREAK
85 IF SIG(-pcelll.on) GOTO 10
86 ;
87 ; move backwards to position fingers over cloth
88 x.0offset = 15
89 y.offset = -83 ; offset in y direction
90 x1 = x.offset*C0S(angle)-y.offset*SIN(angle)
91 yl = x.offset*SIN(angle)+y.offset*C0S(angle)
92 SPEED 70 ALWAYS
93 MOVES SHIFT(HERE BY x1, yl, Q)
94 BREAK
93 3
96 3 lower fingers onto cloth
97 SPEED 12
38 drop = table.ht-D2(HERE)
99 MOVES SHIFT(HERE BY O, 0, drop)
100 BREAK
101 SPEED hi.speed ALWAYS
102 RETURN =
103 10 byte =0
104 TYPE "error in finding corner"
103 RETURN
END
PROGRAM end.cloth
13
2 ; This routine moves robot back to find end of the cloth
3 SPEED 80 ALWAYS
4 REACTI pcelll.on
5 MOVES down.line
6 BREAK
7 IGNORE pcelltl.on
8 SPEED hi.speed ALWAYS
9 RETURN
END
PROGRAM far.rh
1
H find right hand corner
MOVES SHIFT(HERE BY =35, 0, 0)
BREAK ' .

IF SIG(pcelll.on) GOTO 10
REACTI pcelll.on
SPEED 460 ALWAYS

NouUlLS W



8

9
10
11
12
13
14
15
16
17
18
19
20
a1
ee
23
24

END

10

318

CALL cale.y.inc

. MOVES SHIFT(HERE BY 0, y.inc.max, 0)

BREAK
IF SIG(-pcelll.on) GOTO 10
IGNORE pcelll.on

put down fingers

MOVES SHIFT(HERE BY -25, -pc.to.fg-30, 0)
SPEED 10

MOVES SHIFT(DEST BY 0, 0, table.ht-DZ(DEST))
BREAK

SPEED hi.speed ALWAYS

RETURN

byte = 0

TYPE “"error in finding far RH corner"
RETURN

PROGRAM findcloth

OO UMW -

10
11
12
13
14
15
16
17
18
19
20
el
aa
23
24
25
26
27
28
29
30
31
32
33
END

-e

this routine finds cloth, calculates width, and places

gripper in centre of cloth.

SPEED hi.speed

MOVES start 3 high up over table
BREAK

MOVES testt ; down to photocell test level
BREAK

REACTI -pcelll.on ‘

MOVES limit.! i scan right until edge found
BREAK '

IF DY(HERE) > DY(limit.1)-30 GOTO 12

SET temp = HERE ; LH edge of cloth
REACTI pcelll,on

SPEED BO ALWAYS

MOVES 1limit.1 } scan right

BREAK

IF SIG(~pcelll.on) GOTO 12

calculate centre of cloth and move gripper there
width = DY(HERE)-DY(temp)
y2 = (width-pcdist)/2+30
MOVES SHIFT(HERE BY 0, -y2, 0)
BREAK
TYPE "width = ", /15, width

check if cloth too close to robot
IF DY(HERE) < DY(limit.3) GOTO 12
RETURN

12 byte = 0

TYPE "error in placement of cloth®
RETURN

PROGRAM fine.adj

1
2

y.total = 0

tries = 0



319

3 324 DELAY 0.5
4 CALL inword
] y.error = word
5 TYPE "Fine Adjustment : y error = ", /16, y.error
7 IF ABS(y.error) < 12 GOTO 325
8 IF ABS(y.error) ¢ 50 THEN
9 Y.error = y.error/2e
10 END
11 IF y.error > 350 GOTO 326
12 y.total = y.total+ABS(y.error)
3 prevent smash into camera
13 IF y.total > 1250 GOTO 326
14 SPEED 3
15 MOVES SHIFT(HERE BY 0, =(y.error/32), 0)
16 BREAK
17 tries = tries+!
18 word = tries
19 CALL outword
e0 DELAY 0.5
21 G0TO 324
ee 323 word = 10
23 - CALL outword
24 SPEED hi.speed ALWAYS
25 DELAY 0.5
26 RETURN
27 326 TYPE "excessive error at needle"
28 HALT
END
. PROGRAM go
1 CALL mainl
END
PROGRAM go.near.start
1 ; This routine moves robot from end of angle.adj routine
2 ; to the start position for the near sewing
3 MOVES SHIFT(HERE BY 0, 0, 30)
4 MOVES onway.S
5 MOVES near.start
& BREAK
7 SPEED 40 ALWAYS
8 ;
9 ; if cloth uncovered, find edge
10 wide,piece = TRUE
11 IF S1G(-pcelll.on) GOTO 14
12 IF SIG(-pcell2.0n) GOTO 13
13 wide.piece = FALSE
14 REACTI -pcell2.on
15 MOVES SHIFT(HERE BY 0, DY(1limit.S5)-DY(HERE), 0)
146 BREAK
17 IGNORE pcell2.on
18 IF SIG(pcell2.on) GOTO 11
19 IF (DY(1limit.S)-DY(HERE)) ¢ 30+fg.to.pc GOTO 11
20 MOVES SHIFT(HERE BY 0, 15, 0)
21 BREAK
22 ;
23 3 move forward until edge found
24 13 IF SIG(-pcelll.on) GOTO 14



320

L o B LA |

es REACTI -pcelll.on
26 MOVES SHIFT(HERE BY DX(1limit.6)-DX(HERE))
27 : BREAK e e oo e e 5 v v A e
28 IGNORE pcelll.on CLOTHVU iaEns” LISHARY
Sz ; IF SIG{pcelli.on) GOTOD 11 UNlVERSlTY OF LEEDS
31 move back outwards to place fingers near"end of cloth
32 14 MOVES SHIFT(HERE BY -pc.to.fg-20, 10-fg.to.pc, O)
33 SPEED 15
34 MOVES SHIFT(DEST BY 0, O, table.ht-DZ(DEST))
35 BREAK
34 SPEED hi.speed
a7 RETURN
38 11 TYPE "error in finding near.start position"
39 byte = 0
40 RETURN
END
PROGRAM grip.transf
1 TYPE /C1,"PROGRAM TO DEFINE TOOL TRANSFORMATION",/C1
2 .
3 PROMPT "Revising previously defined tool (1 = yes)
7 ", answer
4
S 1IF answer <> 1 THEN
b TYPE “Move the mounting flange to the reference",
. , /S
7 TYPE "location.", /S
8 TYPE /Cl, "Press ", /S
9 TYPE "the COMP mode button on the teach pendant
S when ", /S~
10 TYPE "ready to proceed."
11 ;
12 DETACH; Release the robot to the User
13
14 WAIT (PENDANT(2) BAND ~17) <> 0
15 WAIT (PENDANT(2) BAND ~20) <> 0
16 ATTACH; Regain control of the robot
17
18 TOOL NuLL
19 HERE ref.loc; Record the reference location
20 END
2l
22 TYPE "Instal the new tool, move its tip back to the ", /S
23 TYPE "reference location.", /C1l, "Press the COMP mode “, /S
24 TYPE "button on the teach pendant when ready."
25
26 DETACH; Release the robat to the user
27 .
28 WAIT (PENDANT(2) BAND ~17) <> 0
29 WAIT (PENDANT(2) BAND “20) <> 0
30
31 ATTACH;Regain control
32 TOOL NULL
33 SET new.tool = INVERSE(HERE):ref.loc
34 TOOL new.tool
35

36 STOP



321

END

PROGRAM inch

1 CALL inword
2 SPEED 5
3 MOVES SHIFT(HERE BY -word/32)
4 BREAK
S RETURN
END

PROGRAM moveback

1 CALL inword
2 TYPE "IBM requests a move back of ", /14, word
3 MOVES SHIFT(HERE BY word, 0, 0)
4 BREAK 3 NB This routine has been
5 RETURN s disabled.
END '
PROGRAM remove
13
2 ; This routine withdraws from the needle zone carefully
33
4 SPEED 25 ALWAYS .
5 MOVES SHIFT(HERE BY 0, 0, 12)
& MOVES outway.2
7 BREAK
8 SPEED hi.speed ALWAYS
9 RETURN
END

PROGRAM retreat

1 DELAY 0.5

2 SPEED 40 ALWAYS

3 MOVES fin.1

4 - MOVES SHIFT(DEST BY 0, 0, 30)
S SPEED hi.speed

6 MOVES fin.2

7 SPEED 10

2] MOVES SHIFT(DEST BY 0, O, table.ht-DZ(DEST))
9 SPEED 50 ALWAYS
10 MOVES finish
11 MOVES SHIFT(DEST BY 0, 0, 10)
12 BREAK
13 SPEED hi.speed
14 MOVES start
15 RETURN

END

PROGRAM rotate.90

This routine crumples cloth a bit and then rotates
the cloth by 90 degrees.

SPEED 40 ALWAYS

IF wide.piece THEN .

MOVES SHIFT(HERE BY 0, 0, test.level-DZ(HERE))
MOVES start.rotate

SPEED 18 '

MOVES SHIFT(DEST BY 0, O, table.ht-DZ(DEST))

BREAK

DoOoNoCUNPS WM



10
11
12
13
14
15
16
17
18
19
20
el
22
END

322

END

SPEED 40 ALWAYS

MOVES SHIFT(HERE BY 0, 10, 0)
BREAK

angle.req = -90
CALL rotate.ndle

1ift robot up to testing level for photocells
SPEED 9

MOVES SHIFT(HERE BY 0, 0, test.level-DZ(HERE))
BREAK

SPEED hi.speed ALWAYS

PROGRAM rotate.ndle

33

34

35
END

this routine rotates robot about needle a given angle
(angle.req). Locations required are at.ndle, front.ndle.

calculate distance between main finger and needle
x.0ffst = DX(HERE)-DX(at.ndle)

y.offst = DY(HERE)-DY(front.ndle)

radius = SART(SAR{x.offst)+5QR{y.offst))

calculate locations and transformations

SET pivot = SHIFT(HERE BY -x.offst, -y.offst, 0)
SET temp = INVERSE{pivot):sHERE

angle.0 = ATAN2(DY(temp), DX(temp))

test required angle for size and direction
IF angle.req > 90 THEN
‘TYPE "angle.req is toco large"

HALT

END

IF angle.req > O THEN
istep = 2

ELSE
istep = -2

END

/
SET temp = pivot:TRANS(radius*COS(angle.0),

. radius*SIN(angle.O), 0’ 90’ ‘90) 0)
z.0ffst = DZ(temp)-DZ2(HERE)
ang.offst = 90-angle.O

perform rotation
FOR angle = angle.0 TO angle.O+angle.req STEP istep
MOVE pivot:TRANS(radius*COS(angle),
radius*SIN(angle), z.offst,

angletang.offst, -90, 0)
END
BREAK

RETURN

PROGRAM set.param

1

DO



323

2 TYPE "Enter in parameters as follows:

' (defaults given in brackets)"
3 PROMPT "irowl (2) : ", word

4 €ALL outword

5 PROMPT "irow2 (8) : "y word

s CALL outword

7 PROMPT “ipixl_offst (0) : *, word

8 CALL outword

9
10

PROMPT "ipix2_offst (0) : ", word
CALL outword
11 PROMPT "PIX_GAIN (0.002) : ", tmp
12 word = tmp*100000.
13 CALL outword
14 PROMPT "DERIV_GAIN (0.1) : ", tmp
15 word = tmp*10000
16 CALL outword
17 PROMPT "INT_FACT (0.00003) : "y tmp
18 word = tmp*1000000.
19 CALL outword
20 PROMPT "T_GAIN (0.0015) : ", tmp
21 word = tmp¥100000.
22 . CALL outword
23 PROMPT "RQ_TENS (70) : "y word
24 CALL outword
25 PROMPT "ACCEL_LIM (3) : "y tmp
26 word = tmp*32
27 CALL outword
28 PROMPT "VEL_LIM (8) : "y tmp
29 word = tmp*32
30 CALL outword
31 PROMPT "Parameters set correctly 7 (Yes = 1)", word
32 CALL outword
33 UNTIL word ==
34 RETURN
END

PROGRAM startup.data
f.r = SART(SAR(DX(fing1))+SAR(DY(fing1)))
f.angle = ATANZ2(DY(fingl), DX(fingl))
nx = DX(at.ndle)
ny = DY(front.ndle)

1

2

3

4

5 TYPE “"distance between fingers = ", /D, fing.dist
b6

7

8

9

- ’

TYPE "finger-flange radius =", /Dy, f.r
TYPE "finger-flange angle =", /D, f.angle
TYPE "needle position, x coord = ", /D, nx
TYPE "needle position, y coord = ", /D, ny

10 word = fing.dist*32

11 CALL outword

12 word = f.r*32

13 CALL outword

14 word = f.angle*180

15 €ALL outword

16 word = nx*32

17 CALL outword

18 word = ny*32

19 CALL outword



324

PROGRAM straighten

1 SET templ = HERE

2 SPEED 63 ALWAYS

3 ; MOVES blow.position

4 ; BREAK

53 OPENI

6 DELAY (0.3)

7 3 BREAK;

8 ; CLOSEI

9 MOVES SHIFT(templ BY 30)
10 BREAK

11 TYPE “routine straighten has been called", /B
12 SPEED hi.speed

13 RETURN

END

PRCGRAM uptoneedle

This routine pushes cloth up to needle and stays there
so that the presser foot can come down onto the cloth

SPEED 70

MOVES needle

BREAK

SPEED hi.speed ALWAYS
RETURN

oMW -

END



325

APPENDIX F

CAMERA ROUTINES AND CALIBRATION PROGRAM

F.1. Camera Routines under AMX
F.1.1. Restart Procedure

void rpcamr()

(
PMESS p; -
ajmodl{);
displ_init;
prf__ "restart procedure for initialising cameras”);
end_print;

/% set up I-SIGHT pointers %/
ajsseg(&cc_pt,(unsigned int)SEGMNT);
ajsofs(&cc_pt,(unsigned int)0);
cceb_pt = ce_pt + (int)CONTRLB;
caml_pt = cc_pt + (int)CAM1_OFS;
cam2_pt = cc_pt + (int)CAM2_OFS;
tpl_pt = cc_pt + (int)CAML_FL;
tpe_pt = cc_pt + (int)CAME_FL;

#ccch pt = BUSFRZ;

%{cc_pt+Ox3f4) = 0;

*(cc_pt+0x3fé) = 03

*cccb_pt = FREEZE;
} ,

F.1.2. Routines to Capture a Frame

void take picturel)

(
int i
*ccchb_pt = TRIGGER; /% release FREEZE to trigger 280 %/
for (i=0; 1<400; i++)
5
#ccecb_pt = FREEZE;
}

void read_cam()
{

280_check () /% check that 280 has finished %/
#cccb_pt = BUSFRZ;

movmem(cam!_pt,caml_buf,{unsigned int)NPIXLS);



326

movmem{cam2_pt,cam2_buf,(unsigned int)INPIXLS);
#cccb_pt = FREEZE;

vaoid 280_check()

{
char test;
int i
i=0;
do
4 i++;
*cccb_pt = BUSFRZ;
test = (xtpl_pt != 0 & *tp2_pt != 0);
#cccb_pt = FREEZE;
if (itest)
delay(1);
if (i > 20)
crash(12343);
} while (ltest);
3

F.2. Camera Setup and Calibration Program

The Tfollowing program was used to initialize the camera
card, to set up the exposure levels; and to calibrate the
camera mountings. The camera card had to be initialized
each time that the IBM AT was powered up. :

The program accepts one of the following runtime options :-

-1 performs initialization
-V puts cameras’ views on screen

In the default MODIFY mode, the exposure values can be set
for each camera. On initialization, both cameras are set to
an exposure value of 10,

#include "ec:\lc\stdio.h"
#include "c:\lc\stdlib.h"

#define TRUE 1 i
#define FALSE O

#define ESC e7 /+ ESC key on keyboard #/

/% 1-SIGHT camera card addresses */
#define SEGMNT 0x9c00 /% pcb card segment address #/
#define CONTRLB Ox3fff /% control byte address */
#define INITZ80 Ox02 /% ctrl byte to initial., 280 #/
#define TRIGGER 0x00 /+ ctrl byte to trigger pict */
#define BUSRQ  OxOl /* mask for bus request */
#define FREEZE 0x08 /* mask for freeze control */

#define BUSFRZ 0x09 /% mask for bus + freeze */



#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#idefine
#define
#define

#define
#define
#define

CAM1_OFS0x000
CAM2_OFS0x400
MAX_PIX 0x3c0
CAML_DT Ox3f0
CAM2_DT 0x3f2
CAMI_FL Ox3f1

CAM2_FL 0x3f3
NROW 30
NCOL 32
NPIXLS NROW*NCOL
NCAM 2
L_SCREENSO
A_MEM  OxbB0O
B_MEM  Oxba00
BLOCK  Oxff
BLANK Q
MODIFY ©
INITIAL 1
VIEWING 2

327

/%
/%
/%
/%

/%

/%
/%
/%
/%

/%
/%
/%
/%

/%
/%

extern void alpha(), curs_xy(int,int);
extern void init(), set_cam(int), read_cam(), init_cc(),
view(int), caliblint), delay(int), setup_cam(),
display(int), set_screen(), 280_wait(), take_picture();

char thresh_bINCAM] = (0);

short
short
short

int cam_dtINCAM]
int cam_f1INCAM]

char *cc_pt;
char *cccb_pt;

char cc_

init = TRUE;

char cami_bufI[NPIXLS]1;
char cam2_buf(NPIXLS];

char #*a_

screens*b_screen;

Char thS[] = uu;

void mainlargc,argv)
int argc;
char #*argvll;

{

char option, %*odata;

offset for camera # 1
offset for camera # 2
maximum no. pixels
threshold & invert data

flag for 280 done signal

no, rows of pixels

no. columns of pixels
no. of pixels in picture
no. of cameras

graphics mode definitions
fill-in picture element
blank picture element
permit mod. of values

initialise 280 only
display camera views

*/

*/
*/

*/

*/

*/
*/
*/

*/

*/
*/

*/
*/
*/

/% threshold & invert ctrl byte #/

int cam_ofsINCAM] = {CAMI_OFS,CAM2_OFS);
(CAM1_DT,CAM2_DT);
{CAM1_FL,CAM2_FL);

/* pointer to base of cam. card #/
/* pointer to cc control byte/
/* flag for initializing ctris/

int next = 1, mode = MODIFY;

odata = argopt(argc,argv, opts,8next,%option);

if (odata == NULL)
mode = MODIFY;

else if (option == ?i?)
mode = INITIAL;
else if (option == ’v?)

mode = VIEWING;

init();
switch (mode)

{ case MODIFY : if (ask_init())

init_cc();

display(MODIFY);



328

break;
case INITIAL : init_cc();
setup_cam();

printf(
PAN*RER 1-SIGHT camera card initialisation completed *rke") s
break;
case VIEWING : setup_cam();
display(VIEWING);
}
)
.void display(mode)
int mode;
{ int i = 0;
do
{ if (mode == MODIFY)
S ‘ set_cam(0);
set_cam(1);
}

take_picture();
set_screen();

do

{ read_cam{);
view(0);
view(1);

calib(0);
calib(l);
curs_xy((int)20,(int)17);
if ( *(cam2_buf+150) > 0xB80 )
printf("Yes");
else
printf("No "); '
curs_xy((int)30,(int)17);
printf("%7d",i++);
Y while ( lkbhit() );
Y while {(getch() != ESC);
}

int ask_init()
{ char c;

printf(“\n Initialize 280 7 (Y/N) : ");
c = getchar() 3
getchar() ;
if (c ==Y’ Il c =="y")
return(TRUE);
return(FALSE);
}

void init()
{ long int i ;
/* set up pointers #/
init_pt(&cc_pt,(unsigned int)SEGMNT,(unsigned int)0);
cccb_pt = cc_pt+CONTRLB;

init_pt(%a_screen,(unsigned int)A_MEM, (unsigned int)0);
init_pt(&b_screen,(unsigned int)B_MEM,(unsigned int)0);



}

329

*ccch_pt
#cccb_pt

FREEZE;
BUSFRZ;

" /% init thresholds
for (i=CAM1_DT; i < CAMLI_DT + B; i+=2)

*(cc_pt+i) = 0;
#cccb_pt = FREEZE;

void set_screen()
alpha(); /% set screen up for graphics#/

(

curs_xy((int)0,(int)20);
printf(" STRIP rows := ");
curs_xy{((int)0,(int)21);
printf(" SEAM cols :~ ");
curs_xy{({int)0,(int)22);
printf(" freq := ");
curs_xy((int)0,(int)23);
printf(" SLOT width 3= ");
curs_xy({int)0,(int)24);
printf(" freq = ");
curs_xy({int)30,{int)18);
printf("enter in ESC to exit");

/* The 280 must be initialized only once after power-up

void init_cc()

{

b

void set_cam(icam)

long int i,d;

printf(“\n Initialising'the I-SIGHT camera card");

xccehb_pt = INITZBO; /% Initializing 280

for (1=0;1<1000;i++) /% delay while 280 resets
d = ixh; ‘

*cccb_pt = FREEZE;

for (i=03;i<100Q;i++)
d = ixb;

/% delay while 280 resets

/* routine to set up & init. camera

short int icam;

(

short int dummy, dum;
char answ, error;

error = FALSE;

*®/

*/
*/

*/

*/

do /% enter in threshold#/

{ printf(

"\n enter in threshold value for camera #%d :",icam+l);

scanf("4d",8&dummy);
dum = getchar(); /% remove extra char
error = FALSE};
if (dummy > Ox7f 1} dummy < O)
( printfl
"\n illegal threshold value = %d",dummy);
error = TRUE;
}
)} while (error);
thresh_blicam] = dummy;

printf("\n invert image 7 (Y/N) : ");

*/

*/

/% FREEZE normally up*/



330

scanf("%c" ,&answ);

dum = getchar();

if (answ == ’y’ 1} answ == ’Y?*)
thresh_blicaml = OxBO;

*cccb_pt = BUSFRZ;

*#(cc_pt+cam_dtlicaml) = thresh_

*cccb_pt = FREEZE;
)

void setup_cam()

{ int ij
*cccb_pt = BUSFRZ;
¥(cc_pt+cam_dtiol)
#(cc_pt+cam_dtlll)
*¥cccb_pt = FREEZE;
take_picture();
for (i=0; 1 € 3; i++)
{ delay(100);

read_cam{);

(char)10;
(char)10;

/* request access */
/% instal thresh val.#/
blicaml;

/% release 280 bus */

}

}

void read_cam()

{
z80_wait(); /% wait until picture taken %/
*cccb_pt = BUSFRZ; /* transfer data to buffer »/
movmem(cc_pt+cam_ofslOl,caml_buf,(unsigned)NPIXLS);
movmem(cc_pt+cam_ofsl1l,cam2_buf, (unsigned)NPIXLS);
*cccb_pt = FREEZE;
take_picturel);

),

void take_picture()

{ *ccch_pt = TRIGGER; /%
*¥cccb_pt = FREEZE;

}

void 280_wait{()
¢ short int i,j;

release FREEZE to trigger 280%/
/* reset FREEZE #/

/% routine to check 280 flag %/

char flagl, flag2, *tpl_pt, *tp2_pt;

tpl_pt = cc_pt + cam_f10(03];
tp2_pt = cc_pt + cam_f1(1];

for(j=0; j < 1000; j++)

¢ , ‘

for(i=0; i< 100 ;i++)
s

*ccecb_pt = BUSFRZ;

flagl = *tpl_pt;

flag2 = ¥tp2_pt;
#ccecb_pt = FREEZE;

if (flag! t= 0 && flag2

/% pointer to flag #/

/+ delay for 280 proccessing #/

/+ read flag byte %/

= 0) /% test flag #/

R I — .28 )



331

return;

}
printf("\n excessive waiting for 280");

/* This routine displays the camera picture on the screen. #*/
/% Since screen pixels are rectangular each row of camera %/
/* pixels is repeated 4 times. */

void view(icam)

short int icamj;
{ int ofs_1, ofs_2, start, ny, m, ipix;
char #*cam_buf;

cam_buf = icam ? cam2_buf : caml_buf;
start = icam ? 208 : 1&2;

for ( n = ipix = 0; n < NROW; n++)

{ ofs_1 = (2#nx*L_SCREEN) + start;
ofs_2 = ((2*n + 1) * L_SCREEN) + start;
for (m=0;m < NCOL; m++,o0fs_l++,o0fs_g++,ipix+t+)
{ if ( #(cam_buf+ipix) > Ox80 )
{ #(a_screen+ofs_1) = BLOCK;
*#(a_screentofs_g2) = BLOCK;
*#(b_screen+ofs_1) = BLOCK;
*#(b_screentofs_2) = BLOCK;
)
else
( #{a_screen+ofs_1) = BLANK;
*#(b_screen+ofs_1) = BLANK;
*(a_screen+ofs_2) = BLANK;
#(b_screentofs_2) = BLANKj;
)
}
}
)
edge_find(cam_buf,irow,icol?2)
char *cam_buf;
int irow, %*icol2; /* no, of pixel row to be searched #/

{
int ipix, icol, icoll, phase;
ipix = (irow * NCOL); /% N.B. irow starts at zero «/
phase = 13
*icol2 = O;
for (icol = 0O; icol < NCOL; icol++,ipix++)
¢ /* phase | - search for black edge */
if (phase == 1) .
(
if ( *(cam_buf+ipix) < 0xB0 )
{ phase = 2;
icoll = icol;
)

else /% phase 2 - search for #/



332

{ /% following white edge */
if ( #(cam_buf+ipix) > 0x80 )
{ *icol2 = icolj
return(icoll);
)
}
}
if (phase == 2)
return(icoll);
return(NCOL-1);

}

void calib(icam)
int icam;

{

int start,irow,icol,i,ii,slotINCOL], stripINROW], istrip,
seam(NCOL], icol2;
char *cam_buf;

/¥ reinitialise on entry %/

( slotlil

for (i = 0; i < NC
seamli] =

OL; i++)
0;

0;

)

cam_buf = icam ? cam2_buf : caml_buf;
start = icam ? &4 : 18;

for (istrip = irow = 0 irow < NROW; irowt+)

{
icol = edge_find(cam_buf,irow, &icol2);
if (icol > NCOL-2)
striplistrip++] = irow;
else
seamlicol J++;
if (icol2 > icol)
slotlicol2-icoll++;
)

curs_xylstart,(int)20);
for (i = 0; 1 < 7; i++)
if (i ¢ istrip)
printf("43d",striplil);
else
printf(" ")s
curs_xyfstart,{(int)21);
for (i = 0, ii = 0; 1 < NCOL; i++)
if (seamlil] > 3)
{ ii++;
printf("43d",i);
)
if (i1 < 7)
for (i = 0; i <= 7-ii; i++)
printf(” ")}
curs_xy(start,(int)22);
for (i =0, i1 = 0; i < NCOL; i++)
if (seam(i) > 3)
{ ii++;
printf("%3d",seamlil);
)

L i aeepw  wm



333

if (i1 < 7)
for (i = 0; 1 <= 7-ii; i++)
printf("” ");
curs_xy(start,(int)23);
for (i =0, i1 = 0; 1 < NCOL; i++)
if (slotlil > 2)
{ il++;
printf("43d",1);
}
if (i1 <€ 7)
for (i = 0; 1 <= 7-1i; i++)
printf(" ")
curs_xylstart,(int)24);
for (i = 0, ii = 0; 1 < NCOL; i++)
if (slotlil > 2)
{ ii++;
printf("43d",slotlil);
. ) ‘
if (il <€ 7)
for (i =03 1 <= 7-1i; i++)
printf(" ")
}

void delay(times)
int times;

{

int i,§;

for (i=0; i < times; i++)

for (j=0; j < S500; j++)
H

b

TITLE ASSEMBLER ROUTINES FOR CAMERA PROGRAMS

NAME CAM_SUP

INCLUDE LM8086.MAC
X EQU & ; offset of arquments for L model

PSEG ; code segment begins

module entry points

PUBLIC ALPHA
PUBLIC CURS_XY
PUBLIC INIT_PT

define stack structure for parameter access

CFSS  STRUC

3

CFBP DU ?
CFRA DD ?
CFPA  DW ?
CFPB DM Z

CFPC DU

. P XY ¥



CFPD
’
CFss

’
ALPHA

ALPHA

prcams

dis:

cursor:

DW ?
ENDS
PROC FAR

push bp
mov bp,sp

moyvy ah,0
mov al,é
int 16

mov dl,9
call prcam
mov al,49
call dis
mov dl,61
call prcam
mov al,350
call dis

pop bp
ret .
ENDP

call cursor
mov al,b7
call dis
mov al,65
call dis
mov al,77
call dis
mov al,é%
call dis
mov al,82
call dis
mov al,63
call dis
mov al,32
call dis
ret

mov ah,10
may Cx,1
int 156

call cursor
ret

mov ah,2
mov dh,17
add dl,l
mov bh,0
int 16
ret

334

7 set 640 x 200 bw graphics mode

column postion of cursor
subroutine to print camera title
camera number

subroutine to display a character
column position of cursor

camera number

j subroutine to display camera title

subroutine to display a character
write char at current cursor postion
count of characters to write
video_I0 BIOS routine

subroutine to increment cursor positn

row postion of cursor
increment column postion
Page no.- must be O for graphics mode



pur

335 1 i 170 i
CLOTHWOKERS' LI

TR R o)

UNIVERSITY OF LE

name 3 curs_xy(icol, irow)
char icol, irow;

put screen cursor at specified column and row

pase

$
CURS_XY PROC FAR

3

;
CURS_XY

]
INIT_PT

-e

s
INIT_PT

push bp ; save base pointer on stack
mov bp,sp ; base points to stack for parameters

mov bx, [bpl.CFPA 1st parameter: column no

mov dl, bl
mov bx, [bpl.CFPB $ 2nd parameter: row no
mov dh, bl
mov ah,2 ;s select ’set cursor’ function
mov bh,0 7 page no.- must be O for graphics mode
int 16
pop bp ; replace old base pointer
ret
ENDP
name : init_pti(ptr, segment, offset)
unsigned int segment, offset;
char ##*ptr;
purpose : set up pointer segment and offset
PROC FAR
push bp ; save base pointer on stack !
mov bp,sp ; base pointing to stack for parameters
push es

#1 -~ pointer to pointer
#2 - segment
move segment

les bx,DWORD PTR [bpl.CFPA
mov axy(bpl.CFPC :
mov es:{bx+2l,ax

mov ax,[bpl.CFPD
mov es:lbxl,ax

3rd parameter:; offset
move offset

pop es
pop bp
ret

replace old base painter

ENDP

ENDPS
END



336

APPENDIX G

SIMULATION PROGRAM

PROGRAM simulate(input,output);

{
This program simulates robotic sewing of a curved
cloth contour using a visually servoed robot.
2
CONST
npixels = 31 ;
pixel_width = 0.5;
cloth_length = 190; { dist. to sew in mm.
timelimit = 350 - { time limit for program
seam_width = 13.0; { seam width request
del_t = 0.14 3 { servo loop time interval
cam2_dist = 23.0; { dist. between 2 cameras
x_offset =0 3 { graphic output parameters
y_offset =0 3
u_offset =0 j;
v_offset =0 ;
screenlimit = 199 3
scalefactor = 1,0 ;
display_on = TRUE ;
printout_on = FALSE ;
curved_seam = TRUE 3
TYPE
coord = RECORD
u : real;
v : real
END 3
regs = RECORD
ax,bx,cx,dx,bpysi,di,ds,es,flags : integer ;
END;
timestr = stringl8l;
datestr = string(101];

"VAR

' pixel, gain : ARRAY[O..npixels] OF real ;
upper_pix, lower_pix : integer ;

pix_gain_fact,deriv_gain,alpha_init,

error_init,rtn,cloth_feed,limit_total,

accel limit, vel limit, prop gain : real;

excessive : boolean;

PROCEDURE InitDataj;

BEGIN
prop_gain := 0.07;
deriv_gain := 1.4;
alpha_init := 0.4;
error_init := 0.50;

St N N g



337

rtn t= 300.;
cloth_feed := 60.;
limit_total 3= 200.;
accel_limit := 3.0;
vel_limit = B.0;
END;
PROCEDURE InputDataj
BEGIN
qotoxy(63,1)5 write(’prop, K1 ’,prop gain:b:4);
gotoxy(73,1); read(prop_gain); gotoxy(75,1);

write(prop_gain:é6:4);

gotoxy(65,2); writel’deriv, K2 "yderiv_gain:5:2);
- gotoxy(76,2); read(deriv_gain); gotoxy(76,2);

write(deriv_gain:5:2);

gotoxy(65,3); write(’init alpha ’,alpha_init:5:1);

gotoxy(76,3); readlalpha_init); gotoxy(76,3);

write(alpha init:S:1);

gotoxy(63,4); write(’initial E ’,error_init:5:1);

gotoxy(76,4); readlerror_init); gotoxy(76,4);

write(error_init:S5:1);

gotoxy(63,5); write(’dist, Xf *arin:5:0);

gotoxy(76,5); read(rtn); gotoxy(76,5);
write(rtn:5:0); Y T
gotoxy(63,6); write(’max Yf "»limit_total:S5:0);
gotoxy(76,6); read(limit_total); gotoxy(76,6);

write(limit_total:5:0);

gotoxy(63,7); write(’speed, Vc ’,cloth_feed:5:0);

gotoxy(76,7); read(cloth_feed); gotoxy(76,7);

write(cloth_feed:5:0);

gotoxy(65,8); write(’max acceln ’,accel_limit:S:1);

gotoxy(76,8); read(accel_limit); gotoxy(76,8);

writetaccel limit:5:1);

gotoxy(65,9); write(’max velcty ’,vel_limit:S:1);

gotoxy(76,9); read(vel_limit); gotoxy(76,9);

write(vel_limit:5:1);

gotoxy(65,10); write{’no pixels ’snpixels:S5);

qotoxy(65,11)5 write(’pix width ’,pixel_width:5:2);

gotoxy(65,12); write(’time step *,del_t:5:3);

gotoxy(63,13); write(’dist, Xcam ’,cam2_dist:S:1);

gotoxy(65,14); write(’seam width ’,seam_width:5:1);
END;

PROCEDURE draw line ; N
VAR
seam_offl, seam_off2 : integer ;
BEGIN
seam_offl := round(seam_width * 0.7071 * scalefactor)
seam_off2 := round(seam_width / 0.7071 # scalefactor)
draw (x_offset-seam_offl, y_offset+seam off1i,
x_offset+screenlimit-seam_off2, y_offse€+5creen1imit,
END ;

w

PROCEDURE draw_curve ;
VAR
temp, temp2, temp3 : real ;

1
seam_x, seam_y, X1, x, y, X 0y X_N : integer ;
BEGIN



338

x_0 3= x_offset ;
¥_n := x_0 + round(sqrt(200.0 * screenlimit) ) ;
FOR x1 :=x_o TO x_n DO
BEGIN
x = x1 - x_offset ;
temp = 5
temp2 := sqritemp) ;
y := round(temp2/200.0) ;
temp3 := (seam_width*100. 0)/(sqrt(temp2 + 10000.0))
seam_y $= round(y + temp3) ;
seam_x := round{(xl = (x * temp3 / 100.0) ) ;
platixl, y, 3) ;
plot(seam_x, seam_y,3) ;
END ; :
END ;

PROCEDURE setup_screen j;
BEGIN
graphmode ;
graphbackground(0) ; .
{ draw x and y axes )
draw (x_offset, y_offset, x_offset, y_offset+screenlimit, 3)

draw (x_offset, y_offset, x_offset+screenlimit, y_offset, 3)

IF curved_seam THEN draw_curve
ELSE draw_line j;
END ;

PROCEDURE setup_pixels ;

VAR
nspaces,gain_signscentre_pix,i,factor,gain_switch : integer;
half_pix_gain : real j

BEGIN
pix_gain_fact := prop_ gain*pixel_width;
nspaces := npixels + 1;
centre_pix 3= nspaces DIV 2 ;
factor := 1 - centre_pix j;
gain_switch := 0
gain_sign 3= -1j
half pix gain :=

(pixel width / 2.0) * pix_gain_fact ;

{ IF printout_on THEN

BEGIN -
writeln(lst,’ Pixel arrangement’) ;
writeln(lst) ; writelnflst,
> pixel no. factor spacing gain’);
writeln(lst) ;
END 3 }

FOR i := 0 TO npixels -1 DO
BEGIN
pixellil := pixel_width * factor ;
gainlil := (pixelli - gain_switch] * pix_gain_fact) +
(half_pix_gain # gain_sign) ;
gainlil := - gainlil ;



339

{ IF printout_on AND (gain_sign = -1) THEN

BEGIN
writeln(lst,’ ’y
’ *ygainlil:10);
writeln{lst,’ *yizg,? *sfactor:8,’ ’y
pixellil:10) ;
END ; )
IF factor = 0 THEN gain_switch :=1 3
IF factor = 0 THEN gain_sign =13
factor := factor + 1 ;
END;

gainfi+1] := (pixellil * pix_gain_fact) +

(half_pix_gain # gain_sign) 3
gainli+1l := - gainli+l] ;

IF printout_on THEN
BEGIN
writeln(lst)
writeln(lst)
END 3
END ;

FUNCTION 1limit(qty, lim : real) : real;
BEGIN
IF (qty > lim) THEN
limit := lim
ELSE
BEGIN
lim := lim * -13
IF (qty < lim) THEN
limit 2= lim
ELSE
limit := qty;
END;
END;

FUNCTION np_measured (ndle,pos : coord; cosalpha : real) : real;
VAR
i : integer j
half_pix_width,np_calculated,error_calc,error_meas : real;
BEGIN
i :=0;
half pix width := pixel width / 2.0 ;
np_calculated := (pos.u - ndle.u)/cosalpha ;
error_calc := np_calculated - seam_width ;
WHILE (error_calc > pixellil) AND (i < npixels)
4]0] ix=1i+1;

IF i = npixels THEN
error_meas := pixellnpixels-11 + half_pix_width
ELSE .
error_meas := pixellil - half_pix_width ;

np_measured := error_meas + seam_width ;



340
END 3

FUNCTION calc_error (ndle,pos:coord; cosalpha,beta:real):real;
VAR

np : real ;
BEGIN

np := np_measured (ndle, pos, cosalpha) ;

calc_error := (np * cos(beta)) - seam_width 3
END 3

PROCEDURE rotate (tanalpha réal;ndle : coord; VAR pos ¢

: ¢ coord);
VAR
templ, temp2, temp3d : real ;
BEGIN :
IF curved_seam THEN
BEGIN .
templ := 100.0 * sqgr({tanalpha) j
temp2 := 2.0 % (ndle.v + (ndle.urtanalpha)) ;
temp3 := 100.0 #* tanalpha ;
IF (templ + temp2 < O) THEN
pos.u := 0
ELSE
pos.u = 10,0 # sqrt(templ + temp2) - temp3 ;
pos.v := sqr{pos.u)/200.0 ;
END
ELSE
BEGIN
pos.v = (ndle.v + (ndle.ux*tanalphal))/(1 + tanalpha);
pOS.u 3= POS.V;
END ;
END 3

PROCEDURE translate(dist,alpha,cosalpha : realjndlel : coord;

VAR ndle2,pos : coord);
VAR

sinalpha : real;

BEGIN
sinalpha := sin{alpha) ;
ndle2.u := ndlel.u - (dist ¥ sinalpha)
ndle2.v := ndlel.,v - (dist * cosalpha)

)
3
rotate ( (sinalpha/cosalphal);, ndle2, pos

)
END ;

FUNCTICN  transferfunctn (error, beta : real) : real ;
VAR
i : integer ;
transfer : real ;
BEGIN
i:=0;
WHILE ( error > pixelfil ) AND ( i < npixels )
DO is=1+1;



341

transfer := gainfil + (deriv_gain * beta) ;

’
transferfunctn := transfer ;

END ;
PROCEDURE initial_pos (VAR pos, ndle : coord ) ;
VAR

tanalpha, sinalpha, cosalpha : real ;

BEGIN

sinalpha := sin{alpha init) ;

cosalpha := cos(alpha_init) ;

tanalpha := sinalpha/cosalpha ;

IF curved_seam THEN
BEGIN
ndle.v := 199.0 ;

pos.v := ndle.v - ((seam_width + error init)*sinalpha);
pos.u := sqrt( 200.0 * pos.v ) ;

ndle.,u := pos.u -~ {(ndle.v - pos.v) / tanalpha ) ;

END

ELSE

BEGIN
ndle.v := cloth_length 3 {arbitrary needle postn}
ndle.u := ndle.v - ((seam_width+error_init) #

(sinalpha + cosalpha)) j
pos.u 3= (ndle.v + ndle.u*tanalpha)/(tanalpha + 1) ;
pos.Vv $= pos.u ;

END ;
END ;

PROCEDURE lineplaot ( ny, p : coord ) 3
VAR
nu_i, nv_i, pu_i, pv_i : integer ;
BEGIN
nu_i
nv_i
pu_i
pv_i

round{(({n,u-u_offset)
round({{n.v-v_offset)
round{((p,u-u_offset)
round({(p.v-v_offset)

scalefactor)
scalefactor)
scalefactor)
scalefactor)

x_offset)
y_offset)
x_offset)
y_offset)

ae (1] as (1]
nowonou
* % * *
+ + + +

draw (nu i,nv i,pu i,pv_ 1,3} ;

END 3
PROCEDURE curve_plot (n, p : coord) ;

VAR
nu_iy nv_i, pu_i, pv_i : integer ;

BEGIN
nu_i := round(n.u + x_offset ) ;
nv_i := round(n.v) 3
pu_i := round(p.u + x_offset) ;
pv_i := round(p.v) ;
draw (nu_i, nv_i, pu_i, pv_i, 3) ;

END 3

FUNCTION time : timestr;
VAR
regpack t regs;
hour, min, sec : stringl2];



342

BEGIN
- WITH regpack DO -
ax := $2c shl 8;
MSDOS(regpack);
WITH regpack DO
BEGIN
str{cx shr 8, hour);
strl{cx mod 256, min);
str{dx shr 8, sec);
END;
time := hour+’:’+mint+’:’+sec;
END;

FUNCTION date s datestr; ,
VAR
regpack t regs;
month, day : stringl2];
year : stringl4];

BEGIN
WITH regpack DO
ax := $2a shl 8;
MSDOS(regpack);
WITH regpack DO
BEGIN
str{cx, year);
str{dx mod 256, day);
str(dx shr B, month);
END;
date := day+’/’+month+’/’+year;
END;

PROCEDURE print_heading

BEGIN
writeln(lst,#12,’ ’
A ', date);
writeln(lst, ? ’
’ ’y, time,#10);
writeln({lst,#27#6%,° Simulation of Robotic ’,

'Sewing of Curved Cloth’,#10) 3

write(lst,#27#70,° version 1.8 : cloth’,

?> contour ’)

IF curved_seam THEN

write (1st,’CURVED seam v = sqri(u}/200’)
ELSE

write (l1st,’STRAIGHT seam u=v’) ;
writeln (1st) ;
IF cam2_dist = 0 THEN

writeln(lst,’ . one camera only’)
ELSE
writeln{lst,’ forward feedback’,

' from 2nd camera’);
writeln(lst,’ Acceleration limiting’);
writeln(lst) ;
writeln(lst,’ Input Data’)

writeln (lst) 3



343

write(lst,” no. pixels

’snpixels:4)

writeln(lst,’ derivative gain = ?,deriv_gain:8:4);
write(lst,’ seam width = 'yseam_width:4) ;
writeln(lst,’ proportional gain = ’,prop_gain:B:4);
write(lst,?’ feed speed = *,cloth_feed:4) ;
writeln(lst,”’ servo loop time delay = ’,del_t:8:4) ;
write(lst,’ initial error = 'yerror_init:4) ;
writeln(list,’ initial angle = *,alpha_init:B8:4);
write(lst,” cloth length = ’,cloth_length:4) ;
writeln(lst,’ total limit = ’,limit_total:B:4);
write(lst,’ inter camera distance = ’,cam2_dist:4) ;
writeln(lst,’ inter pixel distance = ’,pixel_width:B8:4);
writeln(lst,? acceleration limit = *saccel_limit:4);
writeln{lst) ;
END ;
PROCEDURE print_table ;
BEGIN »
writeln(lst,? Simulation *,
’ Results’) 3
writeln(lst) ;
writeln(lst,’ error alpha np beta Ty
’ gain y_sc y_displ’);
4 writeln(lst,”’ ndle.u ndle.v i)
’ pos.u pos.v’) 3

writeln(lst) ;
END 3

FUNCTION calc_beta(ndlel,posl:coord;jalpha,cosalphaireall:real;

{ This function returns the locally measured }
{ angle between cloth & sew m/c }

VAR
ndle2, pos2 : coord ;
np_1l, np_2 : real j;

BEGIN
translate (cam2_dist,alpha,cosalpha,ndlel,ndle2;posa);
np_1 := np_measured(ndlel,pos!,cosalphal ;
np_2 := np_measured(ndle2,pos2,cosalpha) ;

calc_beta := arctan{(np_1 -~ np_2)/cam2_dist) ;
END;

PROCEDURE performancelerror,dist : real);
BEGIN
1F excessive THEN exit;
IF abs(error) < 1.0 THEN exit;
gotoxy(68,16); write(’P.1., = ’*,dist:5:2);
excessive := TRUE;
END;



344

{ MAIN PROGRAM )
VAR
error, sew_dist, alpha, total_time, next_error, y_sc, y_displ,
cosalpha, tanalpha, del_alpha, del_dist, yd_old, y_offst,
dedt, np_old, acc lim, vel lim, old y, np, beta : real ;
ndlel, ndle2, posl, pos2, pos3 : coord ;
resultl : regs;
dummy : char; N
cloth_end : boolean;

BEGIN
InitData;
REPEAT BEGIN
IF display_on THEN setup_screen ;
InputDataj
: { initialisations )
initial_pos (posl,ndlel) ;
sew_dist := 0;
alpha := alpha_init ;
cosalpha := cos(alpha) ;
tanalpha := sin(alpha)/cosalpha;
np 3= np measured(ndlel,posl,cosalpha)l ;
del_dist := cloth_feedxdel_t; { incr. feed distance }
total_time := O ;
excessive := FALSE;
cloth_end := FALSE};
y_sc := 03 y_dxspl 1= 0; yd_old := 0; old_y := 0;
y_offst := tanalpha * rtn;

{ convert robot motion limits from handshakes to del_t units }

~vel_lim := vel_limitxdel_t/0.028;

acc_lim := accel_limitedel_txdel_t/0.028/0.028;

IF printout_on THEN print_heading ;

setup_pixels j

IF printout_on THEN print_table ;

IF display_on THEN

BEGIN
IF curved seam THEN curve_plot{ndlel,posl)
ELSE lineplot(ndlel,posl) ;

END ;

REPEAT
np_old := np;

np := np_measuredi{ndlel,posl,cosalpha) ;

IF cam2_dist = 0 THEN
beta := arctan((np_old - np)/del_dist)
ELSE

beta := calc_beta(ndle!l, post, alpha,cosalpha)l;

error := calc_error (ndlel,posl,cosalpha,beta) ;

del_alpha := transferfunctn (error, beta) ;

translate (del_dist, alpha, cosalpha, ndlel, ndle2, pos2) j;
{ update alpha }

alpha := alpha + del_alpha;



345

cosalpha := cos(alpha) ;
tanalpha := sin(alpha)/cosalpha;
: { calculate robot displ in mm & limit it )
y_sc := tanalpha ¥ rtn - y_offst;
y_displ := y_sc - old_y;
y_displ := limit(y_displ,vel_lim);

y_displ := limit(y_displ-yd_old,acc_lim) + yd_old;
y_sc := limit(old_y+y_displ,limit_total);

y_displ := y_sc - old_y;

yd_old := y_displ;

old_y := y_sc;

tanalpha 1= (y_sc + y_offst)/rtn;
alpha := arctan(tanalpha)l;
cosalpha := cos{alpha) 3

rotate ( tanalphé, ndle2, pos3)

{ update parameters

sew_dist := sew_dist + del_dist j
ndlel.u := ndle2.u ;
ndlel.v := ndle2.v ;
posl.u := pos3.u ;
posl.v := pos3.v ;
m

total_time := total_time + del_t ;

performance(errorsysew_dist);
IF (posl.,u < 0) or (posl.v < O) or
(ndlel.u < 0) or (ndlel.v < 0)
THEN cloth_end := TRUE;
IF alpha < O THEN cloth_end := TRUE;

IF printout_on and not cloth_end THEN
BEGIN
writeln(lst, error:b:2,’ ’yalpha:6:3,’ *y npib:igd,
’ 'ybetasb:3,’? ’ydel_alpha:6:3, °* sy

y_scib:l,? ’yy_displ:b:l)

{  writeln(lst,’ ’sndletl,u:10,? ’y ndlel.v:10,
’ 'yposl.u;:l0,’ ’y posi.v:iiO); )

END 3

IF (display_on and (not cloth_end)) THEN

BEGIN
IF curved_seam THEN curve_plot(ndlel,pos!)
ELSE lineplot{(ndlel,posl) ;

END 3

UNTIL (total_time > timelimit) or cloth_end;
gotoxy(68,18); write(’final = ’,sew_dist:5:2);

IF (display_on) AND (printout_on) THEN

BEGIN
print_heading ;
writeln(lst,#10#104#10);
intr(S,resultl);

END;

readln(dummy) ;

END; UNTIL NOT curved_seam;

END.



346

APPENDIX H

INTERFACE CIRCUITS

H.1. IBM AT Interface Card

In addition to the RS232C serial ports which were required
for the ALTER and Uplink facilities, several other
interfaces were necessary between the IBM AT and other
components of the FIGARO system. These interfaces were
implemented on an IBM AT prototype card.

H.1.1. General Purpose Ports

Three 373 tri-state latches and two 8255 PI0O controllers
were installed on the card. Two of the 373 1atches were
configured as output ports, and are referred to as PORTA

and PORTB in the software. The third 1latch, PORTC, was
configured for input.

The PIO controllers provided & ports, PORTE thtough to
PORTJ, which could be configured under program control. The
address of the control port of each PIO is listed in the
header file, under CB I0 1 and CB I0 2.

H.1.2. Sewing Machine Interface

An ADSSB8JIN DAC was incorporated on the card, and configured
to provide an analog ocutput of 0 to 10 VDC. The address of
the DAC was referred to as SPEED_P. The DAC’s output was
connected to the sewing machine’s speed control pin.

The interfacing of the sewing machine’s functions to the
IBM AT is described in table H-1. The lines to the sewing
machine were buffered to accommodate the higher CMOS
voltages in the sewing machine controller.

H.1.3. Counter for Encoder Signal

The shaft encoder signal was connected to a counter circuit
which 1is shown in fig H-1. The two 373 1latches were
referred to as LO_COUNT and HI_COUNT in the header file.
The MASTER RESET and the ENABLE LATCHES lines were taken
from pins 1 and 2 of PORTJ (or CB_COUNTR).



347

PORT & Address Buffer Description
pin no.
Al 772 1lo 7406 middle speed
2 " thread trimming
3 (Ox304) " needle up
4 output " compensation
S " low speed
6 " high speed
7 " presser foot
8 hi " back tack
B 1 773 7406 needle up stop
2 (Ox303) " needle down stop
c1 774 4049 needle up signal
3 (Ox306) " encoder signal

Table H-1: Interface to Sewing Machine Functions

4
[]
cs7 - (o]
’ t1]
IR 4
—dk} 2 [
DATA wl I la 3 )]
F/d (3] L] 0
176
BUS AT
— 4
3 | . s
- 1
0o o e L—{H “w7
14 MASTER RESET
§ L " oF counTmRs
css H 4
[} ’ i
o7 ! % 11 O
y i3 12 S
_{f] {13 yd
DATA “ 3 4 A
q [ s
BUS ra A é i
s . 0
3 L]
Do 1 3 o o
BuBLE I <
SEWING MACHINE
LATCHES
ENCODER SICNAL
Fig. H-1: Counter Circuit for Shaft Encoder Signal




348

H.1.4. GPC Interface

The implementation of the GPC link on the IBM AT is

detailed in table H-2. (PUR is an abbreviation for pull-up
resistor).

PORT & Address Buffer/ Destin Description
pin no. . interfc Address
E 1 776 7406 WX2G Output Data bus
2 (Ox308) " WX10G6 to Unimation
3 " WX11G6
4 " WX126
S " WX13G
1) " WX14G
7 . " WX15G
8 " WX16G
F 1 777 PUR 0X9s Input Data Bus
e (0x309) " 0X10S from Unimation
3 " 0X11S
4 " 0Xx12s
] " 0X13Ss
& " 0X14S
7 " 0X15S
8 " 0X16S
G 1 778 IRQ@3 interrupt - input
e (Ox30A) 7406 WX7G INPUT BUFF FULL
3 PUR 0X7G STROBE - input
4 IRQ@S interrupt = output
5 PUR 0X6S8 CONTROL SIGNAL in
b
-7 PUR ox8s ACKNOWLEDGE -~ out
8 7406 WXBG OUTPUT BUFF FULL

Table H-2: IBM AT Implementation of the GPC Link

H.2. Tension Sensor .

The cloth tension sensor consisted of a bridge of four
strain gauges. The bridge was supplied with *5 VDC
requlated supplies. " The bridge output was amplified 1000
times by an AD324 instrumentation amplifier, which operated -
with *12 VDC regulated supplies. The regulated power
supplies were housed in a separate box to improve noise
insulation. The circuits for the power supply unit is shown
in fig. H-2. The strain gauge bridge and amplifier circuit
is shown in fig. H-3. The overload protection circuit,
descibed in section 4.3.5.2, is shown in fig. H-4.



349

+12v REC
P
<
: +5V REG
< 24 UNRCO
240 WAC 3 - 7812 _l_ 78L05 |
<
5 - -
1 -F,, o 0 :[- an «r_l—
omoUND e -Eg o 10 ':J- e "_l_ GROUND
T «7 «y
—.[- 7912 T 79L05
-34 UNRED -5V REC
=12V REC
Fig. H-2: Power Supply Unit
+2v
SENSE
SIGNAL
REFERENCE
10X
CLOTH TENSION SENSOR
STRAN GAUGE BRIOGE HI:

-12 Vv 100 oF

INSTRUNENTANION ANPURIER

Fig. H-3: Sensor and Amplifier Circuits




350

100pF
+12 .
10k %
SET UPPER < _L AAAA-
THRESHOLD I 0.01F ,
s 8
aw
-12
CLOTH TENSION SIGNAL ROBOT PANIC LINE
AFTER AMPLIFICATION
100pF +12 -
— 100k Ly
1%
-12 ] VVVY LI
I 0.01uF ?
SET LOWER  Q yo% LM311P
THRESHOLD < » 4
[ 4
-12

Fig. H-4: Overload Protection Circuit



351

APPENDIX 1

PAPER PRESENTED AT THE 16th ISIR, BRUSSELS, 1986.

ROBOTIC SEWING USING MULTI-SENSOCRY FEEDBACK

D. BGershon and I. Porat, University of Leeds, England

I.1. ABSTRACT

To date, 1little has been published on the development of

robotic automation for the garment industry. The major
distinction between automating garment assembly and other
manufacturing processes is the extensive -Sensory

capabilities required to perform the simplest of operations
on cloth. ’

This paper describes the development of a robotic cell to
‘sew a contoured seam on cloth. The system was designed and
analysed using a simulation program which accounted for
control transfer function, and non-linearities such as
camera pixel resolution, time delays and arm movement
limitations.

The <cell comprises a PUMA robot under real-time path
control with feedback 1loops for edge tracking, cloth
tension and cloth feed tracking. Cameras, a cloth tension
sensor and the sewing machine shaft encoder provide the
sensory input.



332

I.2. INTRODUCTION

The clothing industry is starved of flexible automation
equipment such as has been available in other manufacturing
industries, despite growing demands for this technology
(1,2,31]. Although dedicated semi-automatic devices have
been developed, the application of flexible automation
systems based on robotics to qarment assembly and handling
operations has been hindered by the unpredictable and
awkward nature of limp fabric [4,35].

The Clothing Automation Group at the University of Leeds
has a comprehensive research programme aimed at the
development of techniques and devices which will pave the
way for the implementation of Flexible Manufacturing
Systems in the clothing industry. One long-term project,
(named FIGARO - Flexible Intelligent Garment Assembly
Robot), investigates robotic fabric handling and sewing
skills.

This paper describes the development of a robotic sewing
capability of a contoured seam without the use of
mechanical guides. '



353

1.3. SYSTEM QUERV1IEW
1.3.1. Concept (fig. 1)

The robot holds the end of the cloth against a smooth table
using two rubber-tipped fingers. The fingers are spring-
mounted onto the end-effector. The cloth is fed into the
sewing machine by the conventional feed mechanism of the
sewing machine. The robot’s path is generated in real-time
by two sensory servo systems :-

a) a seam tracking servo that controls the sideways and
rotational movements of the end-effectors; based on
visual tracking of the cloth edge.

b) a cloth feed tracking servo that controls the forward
motion of the end-effector, based on the sewing
machine shaft encoder signal and and o©on the cloth
tension measured by an instrumented finger.

1.3.2. Development System (fig. &)

The - development system 1is organized around a master
controller with the robot controller and the sensors as
slaves.

The master processor is an IBM AT operating under the AMX-
86 real-time, multi-tasking executive. The interrupt
service procedures and high speed communication routines
are written in 8086 assembler, and the rest of the routines

are written in C.

The robot is a Unimation PUMA 560 with VAL II. A major
advantage of the VAL Il system is the ALTER facility which
permits real-time path control by an external computer.
Full descriptions of the VAL II system may be found in

references [6,7,81.

There are two communications channels between the IBM AT
and VAL II :-

a) The ALTER channel is a high speed (19.2 kbaud) serial
communication line dedicated to transferring real-time
path control data from the IBM to VAL II. The ALTER
protocol permits robot position data to be updated
every 28 ms.

b) A general purpose 8 bit parallel communication channel
was developed by the Leeds University Clothing
Automation Group, which is used for process control,
task synchronization and parameter  passing. The
channel combines the I1/0 binary signals from VAL II
with an 8255 PPI chip in the IBM.

The sewing machine is a conventional Mitsubishi LS2-1%0
lockstitch machine with drop feed, underbed thread trimmer



354

and a microprocessor controlled needle-positioning motor
with a non-contact clutch. The sewing machine controller
was interfaced to the IBM AT permitting central control of
all sewing machine functions.

The seam tracking and cloth feed tracking servo systems are
described in the following sections.

1.4, SEAM TRACKING SERVO SYSTEM

I.4.1. Simulation Program (fig. 3)

The seam tracking servo was developed with the aid of a
simulation program. The program had the following input
variables :-

- pixel resolution of linear array camera in line with
needle

- pixel resolution of optional second linear array
camera :

- distance between cameras -

- servo transfer function and gain parameters

- osystem time delay

- cloth feed speed

- initial seam error

- seam width

- limits on ALTER increments (to ensure smooth robot
motion)

" The system time delay was a single parameter which
accounted for camera sampling rate, processor delays and
actuation delays. The program assumed that sideways motion
of the robot produced perfect pivoting of the cloth about
the needle, without buckling. Figure 4 shows two typical
simulation runs.

The simulation program demonstrated that stable control
depended on applying the transfer function to the actual
seam error and not to the measured error (fig. 3c). The
actual ceam error was calculated from the measured error
and from a calculated incidence angle.

Furthermore the servo was always unstable when a single
camera was used. The servo was well controlled when a
second camera was specified at a distance of 20 mm in front
of the first, and when a large derivative gain was combined
with a small proportional gain. A linear array of thirty
pixels with a resolution of 0.5 mm gave a satisfactory
performance.

Stability was strongly dependent on the system time delay
and seam tracking became more difficult as the sewing speed
was increased. As would be expected, the maximum speed at
which satisfactory performance could be obtained increased
as system time delay decreased.



355

I.4.2. Vision System

Two I-SIGHT cameras were selected because of their small
size and low cost. This 30 by 32 pixel CCD camera is
decribed in reference (9. The camera’s low resolution
permits high frame rates which is so essential in real-time
control. The resclution was satisfactory since only a small
-field of view was required, and because the cameras could
be placed close to the table. The extra pixel dimension,
provided by the camera’s two dimensional array, was
utilised to attenuate signal noise by averaging the edge
position measurement over three rows.

The cameras were interfaced to the IBM via a circuit board
installed in the IBM bus. The camera board consists of
individual frame stores for each camera and a 280 processor
which is responsible for picture grabbing, exposure timing
and thresholding. The IBM AT read the frame stores using a
DMA -block move. Typically the time taken from triggering
the cameras; to reading both frame stores and finally
calculating the seam error was 11 ms.

The 1lighting arrangement consists of a projection lamp
directed at the table’s mirror surface, and was found to be
effective for all types and colours of fabric.

1.4.3. End-Effector Rotation

In order to prevent buckling of the cloth and to encourage
correct pivoting of the cloth about the needle, it was
necessary to combine all sideways movements of the end-
effector with a simultaneous pivoting of the end-effector
about the instrumented finaer. The auxiliary finger was
rotated about the instrumented one so that both fingers
were at all times equidistant from the needle (fig. S5).

With the VAL Il system this rotation was easily achieved by
defining the TOOL transformation so that the WORLD 2 axis
was colinear with the finger’s centre-line..

1.5. CLOTH FEED TRACKING SERVO
1.5.1. Sewing Machine Encoder Signal

The encoder signal was read into a counter to track the
sewing machine revolutions. The counter was set to zero at
the start of a seam so that the robot’s position update
in the forward direction was given by :-

Xx = € % s / b (1)
where x = rvobot position demand
c = instantaneous count



356

b
s

no. of counts per revolution
stitch length

o

Although the robot could track the sewing machine’s feed-
dog speed accurately by using the counter, in practice it
could not track the cloth speed accurately. The discrepancy
between feed-dog speed and cloth speed was due to slipping
between the cloth and the feed mechanism. This discrepancy
could not be compensated for because the slipping was
unpredictable and varied for different fabrics. Evidently
a cloth tension sensor was necessary for correct cloth feed
tracking. ' '

1.5.2. Cloth Tension Sensor (fig. 6)

The cloth tension sensor was designed for minimum
hysteresis and maximum mechanical decoupling. The two
slender parallel beams were machined from a solid block of
Al 2024. Similar force sensors are described in references
[10,11,12]1. A foil strain gauge was bonded to each beam
face. The sensor sensitivity obtained was 2.6 mV/N before
amplification in the x direction. Good decoupling was
achieved with a cross-sensitivity of 0.2 mV/N. Thus, the
ideal cloth tension during sewing, which 1is 0.5N,
represented a signal of 1.3V after amplification.

When the sensor signal was viewed on an oscilloscope, it
showed a regular rise and fall of cloth tension per stitch
due to the intermittent nature of the feed mechanism. Since
the feedback control requires an instantaneous reading of
cloth tension, sampling the raw sensor signal would be

unsatisfactory. The signal was interfaced to a digital
peak detector so that at each sample the processor would
read the peak tension since the previous sample. The

sampling rate was such that the reading obtained was the
peak tension over several stitches.

1.5.3. Cloth Feed Tracking Control

The feedback control based on the cloth tension sensor was
complicated by the effect of friction between the table
surface and the finger (fig. 7). When the robot moves
forward the measured cloth tension is less than the actual
tension because of table friction. However, when the robot
moveg backwards, the table friction changes direction and
the measured tension is larger than the actual tension.

Clearly, control would be impossible if end—-effector
displacements were permitted in both directions.
Consequently, the robot was limited to forward

displacements only, and the small offset due to the table
friction was easily compensated.

Satisfactory cloth feed tracking was achieved by combining
integral and proportional control on the <cloth tension
signal, with the displacement calculated from the shaft
encoder signal (fig. 8).



3357

I.6. SYSTEM PERFORMANCE

1.6.1. Seam Tracking

Figure 9 shows areas of gain values in which satisfactory
seams could be obtained for 2 different sewing speeds. The
solid contour line is the boundary within which
satisfactory seams were obtained, and the dotted line shows
the region within which good seams were obtained.

At 1600 rpm, satisfactory seams were obtained with
increasing derivative gain for 1increased proportional
gains. But when the proportional and derivative gains were
further increased,; unsatisfactory seams were obtained.
However, at higher speeds, large proportional and
derivative gains had to be applied to obtain satisfactory
seams. These larqge gains when applied at the lower speed
produced unsatisfactory seams. An adaptive contral
technique is possibly indicated.

The system stability can be readily improved by minimising
the total time delay between measurement and actuation. The
time delay comprises the following main components :-

- actuation delay (i.e. robot speed)

- VAL II transformation calculations

- ALTER update rate (every 28 ms)

- IBM communication overhead (8.7 ms per 28 ms)
- camera exposure and capture time (10 ms)

The IBM communication overhead could be reduced if a
separate processor was used for managing the ALTER high
speed communications. The use of a four axis SCARA robot
would reduce the VAL II transformation calculations. A
faster robot and a higher ALTER update rate would also
benefit performance.

I.6.2. Tension control

The cloth feed tracking servo limited excessive tension
variations, sufficiently to sew satisfactory seams.,
However, tension variations had an amplitude of up to O.7N.
More work is required to control the tension within closer
limits.

1.6.3. Seam quality

Excessive tension variations and buckling of the cloth
produced seam puckering. The tendency to buckle was
reduced by using a highly polished smooth stainless steel
table top and by limiting robot displacements to ensure a



358

smooth sliding motion. Seam quality varied considerably
for different fabrics; open structure fabrics were very
tolerant of tension variation, heavy fabrics were resistant

to buckling forces, but 1light and tightly structured
fabrics were more sensitive.

The sewing machine’s presser foot, which holds the cloth
against the feed dogs, hinders pivoting of the cloth about
the needle. This effect becomes more severe as the robot
approaches the needle. Consequentlys this method of robatic
sewing is at present only effective for finger to needle
distances between 1000 mm and 250 mm. A refinement of this

technique to enable satisfactory sewing close to the needle
is being developed.

I1.7. CONCLUSION

An adaptive robotic sewing system has been developed that
uses multi-sensory inputs to manipulate the cloth in real-
time. The system is stable within a narrow margin. The
stability margin can be improved by reducing the system

time delay. Seam quality can be improved by a more precise
tension control.,

1.8. ACKNOWLEDGEMENTS

I would like to acknowledge the financial assistance
provided by the Textile and Other Manufactures Requirements
Board of the Department of Trade and Industry.

REFERENCES

1] Lowers; J. M., “"Automation Heard Around the World",
Bobbin, Vol 26, No. 8, April 1985,

{23 Tredwin, P., "Computerised Garment Manufacture", Proc.
Annual World Conference, The Textile Institute,
London, May 1983.

[3] *"Automation in Apparel", Bobbin, Vol 23, No 5, Jan
1982.

4] Nilsson, N., "The Apparel Crisis in Sweden -
Countermeasures and Developments", Bobbin, Dec 1982.

(31 Taylor, G.E., Kemp, D.R., Taylor, P.M., F’ugh, A.s
"Vision Applied to the Orientation of Embroidered

Motifs in the Textile Industry", @2nd ROVISEC,
England, 1982.

{61 Shimanos; B.E., Geshke, G.G., Spalding, G.H., Smith,
P.G. "A Robot Programming System Incorporating Real-
Time and Supervisory Control, VAL II", Proc. of Robots
9, Vol 2, Detroit, June 1984.



€71

(81l

[l

€101

£111

121l

339

Loughlin, C.s Morris, J., Rovetta, A., Franchetti, I.,
"lLine, edge and contour following with eye-in-hand

vision system", 14th ISIR, Gothenburg, Sweden, Oct.
1984.

Van der Heijden, F.J.M., "Assembly of small components

by a vision-controlled robot", Sth ROVISEC, Amsterdam,
Oct. 1985.

Loughlin, C. and Morris, J., "Application of eye in

hand vision", 7th B.R.A., Cambridge, England, May
1984,

Van Brussel, H.; Belien, H.; Thielemans, H., "Force

Sensing for Advanced Robot Control", Sth ROVISEC,
Amsterdam, Oct. 1985.

Lestelle, ‘D., "Gripper with finger built-in
force/torque sensors",; Sth ROVISEC, Amsterdam,
Oct. 1985.

Rosen, C., et al, "Exploratory Research in Advanced
Automation”, Second Report, Stanford Research
Institute, Aug. 1974,



Figure 1.

RN A

Robotic Sewing System

The cameras are mcre clearly seen in the reflectiaon
of the sewing table's mirror surface

NTET e . vy

r
!
: IBM AT - MASTER PROCESSOR
x
|
| .
i 280 AOC + PEAK SEWING M/C VAL II ROBOT! |
g DETECTOR CONTROLLER ICONTROL SYS. 1
’ | st 14/73 |
. |
i FRAME FRAME AMPLIFIER
| | STORE STORE (X 1000)
NO. 1 ND. 2 '
! |— SEWING SPEED
! ;‘ { - START/STOP
g l r l F_—OTH ! !- PRESSER FOOT |
CAMERA | CAMERA { TENSION ; - MEEQOLE UR/DOQAWN]  |PUMA S60 !
NO. 1 [ro. 2 | senson : L—THREAD_TRIMMERJ [ ROBQT l
ilFigur“e 2. Block Diagram of Development System |

s

W=

J.



206/

CLOTH/LCONTOUR

= f {x)

CLOTH CONTOUR FRAME

Figure 3a

INITIALIZE Ni, N2, a, b

A

CALCULATE NEW POSITION
PARAMETERS, NiP{ AND b,
AND HENCE SEAM ERROR, E

Y

APPLY TRANSFER FUNCTION
TQO OBTAIN ANGLE ¢,
¢ = PROP®E + DBERIVxb

CALCULATE N2,P2 DUE TO
SEWING PERPENDICULAR TO
NiP{, DURING TIME DELAY

9

RCBCT RATATES CLQTH

BY ¢, CALCULATE P3

UPDATE
a=a+c¢
N1 = N2
PL = P3

END

QF SEAM
’/

Figure 3b. Flowchart

Figure 3.

N{
N2
NiP4
N2P2
N2FP3

Parameter Definitions

Simulation Pragram

Figure 3c. Seam Width

ANGLE BETWEEN SEWING M/C
AND CLOTH CONTOUR AXES |
CLOTH INCIDENCE ANGLE INTO !
SEWING M/C :
CLOTH ROTATION ANGLE TO
CORRECT FOR SEAM ERROA
NEEOLE POSITION AT TIME ti
NEEOLE POSITION AT TIME t2
MEASURED SEAM WIOTH AT tt
MEASURED SEAM WIOTH AT t2
MEASURED SEAM WIOTH AFTER
CLOTH ROTATED

NP = MEASURED SEAM WIDTH
NR = ACTUAL SEAM WIDTH

Calculation




262

- ——

ONE CAMERA

TWO CAMERAS

CLOTH CONTOUR

y = 200/x

CLOTH CONTOUR FRAME

NO. OF PIXELS
PIXEL DISTANCE
CLOTH FEED
TIME CELAY
PROP GAIN
OERIV GAIN

Figure 4. Simulation Results

32

0.5

100 mm/s
120 ms
0.08/pixel
1.9

———— - —— i - —
e ey ecar ¢ S em tE: wm . —— —

e e ¢ n

NEEOLE

AUXILIARY

. FINGER ;
! \, 7

INSTRUMENTED
FINGER

END-EFFECTOR

Figure 5., Relationship between Rotation and Sideways

Motion of End-Effector

. e e ——

-———




et et

263

[ ——
' SPRING. LOAQING
: !
; BRASS «////’ .-"/” !
' SLEEVE ,,/’ e
% - I ROBOT
' HANOD
. Y l

: 7

| L,/

P ,
' ! :
: |
: RUBBER FINGERTIP !

e

CLOTH TENSION

Figure 6. Cloth Tensicn Sensor

MEASURED TENSION '}
i ne—

ROBOT HAND

FINGER
PRESSURE

ACTUAL CLOTH TENSION
—

i e e e T

-—
TABLE FRICTION

Figure 7. Table Friction and Claoth
Tension Measurement

S, W g BT R e M B o P e A o e gy




3¢k

! SEWING M/C 7 o
REV COUNTER S
! ACTUAL
. TENSION
! REGD + ‘
| fens 2 61 ROBQT
|
! Gp
|
H MEASURED | TENSION
! TENSION SENSCR
Figure 8. Cloth Feed Tracking Control System
1600 RPM  270Q RPM
G000 .

) FAIR o s
- E 8a0 x +
|-'-1
‘o
j @
EY)
. >
) oerd
:JJ
i m
P>
3 e

C

[+§}

Q

-y e i 8 @ v @ vems Mmmtsime

Figure 8. Seam Tracking Perfarmance

Proportional Gain




