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Abstract. 

Skin graft contracture is a problem facing many burns patients treated with skin 

grafts. Currently grafts under suspicion of contraction are treated with pressure 

garments to prevent contractures progressing. Patients may have to wear these for 

many months however once contractures have formed surgical intervention is 

commonly required. 

The aim of this project was to develop a hydrogel drug delivery system to prevent or 

reduce skin graft contracture. Two potential anti-contraction agents, identified based 

on prior work from our laboratory were initially examined for their effectiveness in 

preventing contracture formation using two 3D models of contraction - collagen I 

gels and a reconstructed human skin model. p-aminopropionitrile (PAPN). a non

competitive lysyl oxidase inhibitor significantly reduced contraction in the 

reconstructed skin model but not the collagen gel model while 4-methyl 

umbelliferone (4-MU) reduced contraction in both models. 

For hydrogel drug delivery poly(N-vinylpyrrolidinone) (PNVP) hydrogels were 

developed with material properties suitable for use as a non-cytotoxic wound 

dressing. Two cross linked PNVP's were investigated, one crosslinked with ethylene 

glycol dimethacrylate (EGDMA) and the other crosslinked with diethyleneglycol bis 

allylcarbonate (DEGBAC). The different crosslinkers led to hydrogels with different 

mechanical and slightly different biological properties. Although neither hydrogel 

proved to be suitable for culturing cells on, indirect contact with both showed them 

to be biocompatible and in some cases stimulatory to fibroblasts. These hydrogels 

were evaluated for their uptake and release of PAPN and 4-MU. Hydrogels were 

then used to deliver PAPN and 4-MU to reduce skin cell contraction in both collagen 

gels and the reconstructed skin model with some promising preliminary results 

showing hydrogels releasing 4-MU to reduce contraction in the 3D collagen gel 

model. 
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1. Introduction. 

In the UK approximately 250,000 people suffer bum injuries per annum of these 

175,000 attend an accident and emergency department. 13,000 people are 

subsequently admitted to hospital. 1000 patients have bums severe enough to require 

fluid resuscitation and 50% of these are children under 12 years. On average 300 

deaths occur per annum from bums (Hettiaratchy and Dziewulski 2004a). Globally 

more than 6 million patients require grafts for bum injuries per annum. More than 

30% of these will subsequently suffer hypertrophic scarring and graft contracture 

(Harrison and MacNeil Submitted for publication). 

Skin graft contracture is a major clinical problem associated with healing of grafted 

bums patients. Over the past 15 years the group of Professor Sheila MacNeil at the 

University of Sheffield have been investigating the causes of skin graft contracture, 

developing in vitro models and investigating methods of blocking skin graft 

contracture. 

1.1 Skin morphology. 

Before introducing skin graft contracture it is necessary to briefly introduce skin, its 

structure and function, the normal wound healing process and what happens when 

wounds do not heal correctly. 

Skin is often referred to as the largest organ in the body having a surface area of 1.5-

2 m2
• It has many functions, sensing its surroundings i.e. sensing touch and 

temperature; it also provides a protective barrier against environmental insult i.e. 

ultraviolet radiation and pathogens (Marte, Finkelstein et al. 2007). One of the more 

important aspects of the skins barrier function is the control skin exerts over the loss 

of water from the body (Paranteau, Hardin-Young et al. 2000). Skin is split into two 

main layers the epidermis and dermis. A schematic diagram showing the gross 

morphology of skin is shown in figure 1.1. 
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Figure 1.1 Schematic diagram of skin obtained from http://www.wikipedia.org. 

The epidermis presents a physical barrier between the body and the external 

environment. It is composed primarily of keratinocytes forming a stratified 

squamous epithelium and is subdivided into four further layers the stratum corneum, 

stratum granulosum, stratum spinosum and stratum basale. Proliferative cells are 

found in the stratum basale, and anchor the epidermis to the dermis. These cells 

continually replenish the cells of the epidermis. As cells move upwards towards the 

surface of the epidermis they terminally differentiate until they integrate into the 

stratum corneum. This is a layer of dead cells that provides the physical barrier of the 

skin. This outermost layer is continually being sloughed off the surface of the skin . 

As cells progress upwards from the stratum basale they stop being proliferative, 

Keratin filaments and desmosomes increase the strength and integrity of the 

intermediate layers (stratum granulosum and stratum spinosum). During the later 

stages of differentiation lipids are extruded into the intercellular space. The nuclei 

and organelles inside the cells breakdown and a highly crosslinked protein envelope 

is formed inside the cell membrane. This envelope is connected to a network of 

intracellular keratin filaments increasing the strength of the epidermis. In addition to 

keratinocytes which are the main cell population in the epidermis, Langerhans ' cells; 
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dendritic cells of the immune system, melanocytes; which produce and distribute 

melanin to neighbouring keratinocytes, and merkel cells; which act as sensory 

receptors can be found (Paranteau, Hardin-Young et al. 2000). 

Between the epidermis and dermis is the basement membrane. This is not visible to 

the naked eye or even under a light microscope. It is a specialized complex 

arrangement of extracellular matrix (ECM) proteins, namely collagen IV, VII and 

laminin that attaches epithelial cells to the underlying dermal matrix (Ghosh, Boyce 

et al. 1997; Ralston, Lay ton et al. 1999). The basement membrane appears to be 

produced by both fibroblasts and keratinocytes. It promotes keratinocyte attachment, 

proliferation and differentiation (MacNeil 1994). 

Below the basement membrane is the dermis. As the epidermis can be divided into 

regions so can the dermis. The papillary dermis, directly below the epidermis and the 

reticular dermis directly below that see figure 1.2 below. The upper surface of the 

papillary dermis forms ridges which interlock with similar ridges on the base of the 

epidermis; these ridges are called Rete ridges. The main difference between the 

papillary dermis and reticular dermis is the structure of the collagen bundles found 

there. The papillary dermis contains loose bundles of collagen whilst the reticular 

dermis contains dense bundles of collagen and elastin and it provides skin with its 

overall strength and elasticity. Within the dermis are many different inclusions, hair 

follicles, sebaceous glands, sweat glands etc. The dermis also contains blood vessels, 

nerves and lymphatic vessels The primary cell population in the dermis is the 

fibroblast which secretes large amounts of collagen, they can secrete enzymes such 

as collagenases and other proteases that can 'remodel' the dermis (Ramos-E-Silva 

and Ribeiro De Castro 2002). Other cells found in the dermis include endothelial 

cells which are found lining blood vessels, mast cells which contain granules rich in 

histamine and heparin and are involved in inflammation, macrophages and 

Iymphocytes. 
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ouu lde 01 body 

Figure 1.2 Histology slide illustrating the epidennis, papillary dennis and reticular 

dennis. Image obtained from http://www.bu.edu/histology/p/0820310a.htm. 

1.2 Wound healing. 

As wound healing is a complex process involving multiple cell types, growth factors , 

cytokines, peptides etc. and many different processes a brief overview will be given 

here. There are many factors that affect the wound healing process especially in 

major wounds such as bums, age, nutrition, infection, associated illness and 

cytotoxic treatments all impact in either a positive or negative way. Wound healing 

is traditionally divided into three phases, inflammation, proliferation and 

remodelling or maturation (Broughton, Janis et at. 2006). These three phases of 

wound repair are not mutually exclusive but rather overlap in time (Clark 1995). The 

primary goals of wound treatment are rapid wound closure and a functional and 

aesthetically satisfactory scar. Recent advances in cellular and molecular biology 

have expanded the body of knowledge of the biological processes involved in wound 

healing and tissue regeneration and have led to improvements in wound care (Singer 

and Clark 1999). 

1.2.1 Inflammation. 

The skin serves as a protective barrier against the outside world. Any break in this 

barrier must therefore be mended rapidly. Most cutaneous wounds result in trauma to 

the blood vessels in the dennis, but this is not always the case. If haemorrhage does 
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occur then a temporary repair is achieved in the form of a clot or scab that plugs the 

defect (Martin 1997). This clot enables haemostasis to be re-established and provides 

ECM which aids cell migration into the wound bed. The clot that forms is made of 

collagen, platelets, thrombin, and fibronectin. The cytokines and growth factors 

released by the platelets initiate the inflammatory response (Broughton, Janis et al. 

2006). Chemotactic growth factors released by the platelets in the clot such as 

transforming growth factor-!3 (TGF-!3) and platelet derived growth factor (POGF) are 

among the triggers for leukocyte recruitment to the wound bed. 

Neutrophils are the most abundant leukocytes in the early stages of healing 

(Mutsaers, Bishop et al. 1997). Activation of inflammatory cells is important, 

activated macrophages mediate angiogenesis (the formation of new blood vessels). 

fibroplasia (formation of fibrous tissue) and synthesis of nitric oxide. Neutrophils 

clear the wound of invading bacteria, cellular debris and non-viable tissue. 

Neutrophils can generate oxygen free radicals and secrete proteases with either broad 

specificity i.e. elastase, or matrix metalloproteinase's (MMP's) which have greater 

specificity. Both of these destroy the existing wounded ECM, protease inhibitors 

protect unwounded ECM but this protection can be overwhelmed and penetrated if 

the inflammatory response is extremely robust from a massive release of proteases 

(Broughton, Janis et at. 2006). Neutrophils not only clear the wound bed of wounded 

ECM but clear the wound bed of invading bacteria. They are also a source of pro

inflammatory cytokines that serve as some of the earliest signals to activate local 

fibroblasts and keratinocytes. Unless a wound is grossly infected, the neutrophil 

infiltration ceases after a few days, expended neutrophils are then phagocytosed by 

invading macrophages (Martin 1997). 

Macrophages are vital for normal wound healing and appear to have a pivotal role in 

the transition between inflammation and repair (Singer and Clark 1999). They act 

with neutrophils to phagocytose wound debris and invading bacteria and other 

pathogenic microorganisms. They are also a source of growth factors and cytokines 

such as POGF, TGF-!31,2&3, transforming growth factor-u (TGFu), heparin binding 

epidermal growth factor (HB-EGF), fibroblast growth factors 1,2 and 4 (FGF 1,2&4), 
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vascular endothelial growth factor (VEGF) and tumour necrosis factor-a (TNFa) 

(Martin 1997; Mutsaers, Bishop et al. 1997). 

1.2.2 Proliferation. 

The proliferation phase or tissue formation phases contains epithelialisation, 

angiogenesis and provisional matrix formation (Broughton, Janis et al. 2006). To aid 

keratinocyte migration MMP secretion is up regulated in migrating keratinocytes and 

those close to the wound edge. MMP's up regulated include MMP-9 (gelatinase B). 

MMP-I (interstitial collagenase) and MMP-I0 (stromelysin-2), these quickly start to 

remove wounded tissue and clotted blood from the wound bed (Martin 1997; Singer 

and Clark 1999). Keratinocyte growth factor (KG F) is synthesised and secreted by 

fibroblasts in close proximity to the wound bed. This and the presence of HB-EGF 

and other growth factors such as TGFa and FGF stimulates keratinocytes to migrate 

into the wound bed in a leapfrog like fashion (Clark 1995). Keratinocytes migrate 

from the margins of the wound and the linings of any dermal inclusions i.e. hair 

follicles within the wound bed. Keratinocytes immediately behind the migrating 

keratinocytes begin to proliferate but not differentiate and as reepithelialisation 

progresses basement-membrane proteins reappear in an ordered fashion from the 

margin of the wound inward (Clark 1995; Martin 1997; Singer and Clark 1999; 

Broughton, Janis et al. 2006). Once the wound surface has been covered by a 

monolayer of keratinocytes migration ceases, this is probably caused by contact 

inhibition. From this point on a new stratified squamous epithelium complete with 

basement membrane is established from the wound margin inward. Coincident with 

the synthesis of the basal lamina (the uppermost portion of the basement membrane), 

keratinocyte MMP expression is 'shut off, and new hemidesmosomal adhesions to 

the basal lamina reassemble (Martin 1997). 

Angiogenesis or neovascularisation is the formation of new blood vessels within the 

healing wound and it is necessary to sustain the newly forming granulation tissue. 

Many factors are implicated in angiogenesis the release of growth factors such as 

FGF2, TGFp, and VEGF at the wound margin, and low oxygen tension and elevated 

lactic acid promote angiogenesis (Martin 1997; Singer and Clark 1999; Broughton. 

Janis et al. 2006). Angiogenesis is a complex process that relies on an appropriate 
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ECM in the wound bed as well as phenotype alteration, stimulated migration, and 

mitogenic stimulation of endothelial cells (Clark 1995). Proliferating microvascular 

endothelial cells both adjacent to and within the wound bed deposit fibronectin and 

begin to form new capillary tubes (Singer and Clark 1999; Broughton, Janis et at. 

2006). However once the wound is filled with granulation tissue angiogenesis ceases 

and many of the new blood vessels disintegrate as a result of apoptosis (Singer and 

Clark 1999). 

Fibroplasia consists of granulation tissue components that arise from fibroblasts 

(Clark 1995) and provides provisional support for the migrating epithelium (Linares 

2002). Granulation tissue begins to invade the wound approximately four days after 

injury. The molecules of newly formed ECM contribute to granulation tissue 

formation by providing a scaffold for cell migration into the wound. These 

molecules include fibrin, fibronectin and hyaluronic acid (Singer and Clark 1999). 

Skin fibroblasts are normally sessile and quiescent, but shortly after wounding they 

become activated (Grinnell 1994). Fibroblasts synthesise a matrix comprising mainly 

of collagen. In uninjured skin collagen 80-90% of the collagen is collagen 1 with 10-

20% collagen Ill. In granulation tissue collagen III comprises 30% of the total 

collagen (Broughton, Janis et at. 2006). 

1.2.3 Wound remodelling. 

Clinically, the maturation and remodelling phase is perhaps the most important 

(Broughton, Janis et at. 2006). The main features of this phase are the deposition and 

organisation of ECM in the wound bed, cell maturation and cell apoptosis (Clark 

1995). This third phase overlaps with tissue formation but can proceed for months 

after the wound appears to be healed. Remodelling of the ECM and maturation of 

the neoepidermis, fibroplasia and neovasculature begin at the wound margin while 

granulation tissue is still invading the wound space in all but the smallest of wounds 

(Clark 1995). Remodelling of the collagen meshwork in the wound bed includes 

increased crosslinking, breakdown activity of collagenases, decrease In 

glycosaminoglycans, regression of the capillary neovasculaturity, maintenance of an 

adequateI:IIl collagen ratio, and reorientation of collagen fibres in response to 

mechanical stress (Linares 2002). The degradation of collagen in the wound is 
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controlled by MMP's secreted by macrophages, epidermal cells and endothelial cells 

as well as fibroblasts (Singer and Clark 1999). Along with efforts to reepithelialise 

the wound spatial reduction in the size of the wounded area is also attempted. This 

occurs by means of centripetal movements of the surrounding skin and shrinkage of 

the wound contents (Linares 2002). Wound contraction is the relatively rapid 

mechanical reduction in the size of a wound (Greenhalgh 2002). Any. significant loss 

of dermis tends to contract and distort the skin producing a scar (Ramos-E-Silva and 

Ribeiro De Castro 2002). Collagen remodelling during the transition from 

granulation tissue to scar is dependent on continued synthesis and catabolism of 

collagen at a low rate (Singer and Clark 1999). Clinically, the original redness, 

elevation, and firm consistency of the new scar tissue gradually evolves into a pale, 

flat, soft scar tissue which is level with the adjacent skin surface. This phase of 

'maturation' includes a gradual replacement of the original scar tissue over a period 

of at least six months. A resulting scar may be depressed with respect to the normal 

skin level. show hypotrophic or even atrophic tissue features. be darker or lighter 

than the surrounding skin, or become hypertrophic (Linares 2002). Healed wounds 

never attain the same breaking strength as uninjured skin, at one week, the wound 

only has 3% of its final strength; at three weeks it is 30% and at three months and 

beyond it is approximately 80% (Singer and Clark 1999; Broughton. Janis et al. 

2006). Van Zuijlen et al. (2003) looked to see if there was any difference in the 

collagen morphology or collagen orientation in normal skin and in scar tissue 

especially in scars around joints. Despite their original hypothesis that collagen 

bundles align in a parallel fashion in the direction of mechanical tension during 

scaring, no difference could be found between collagen orientation for joints and 

control areas with respect to the mechanical forces acting on the skin. They 

concluded therefore that mechanical tension caused by joint mobility does not affect 

collagen structure and subsequently questioned whether tensional load is a causative 

factor for wound healing complications, such as contracture. However the collagen 

morphology of scar tissue differed significantly from that of normal skin, as collagen 

bundles of scar tissue were orientated in a more parallel fashion with respect to 

action of the mechanical forces than in normal skin (van Zuijlen, Ruurda et al. 2003). 
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1.2.4 Wound contraction, contracture and the myofibroblast. 

Wound contraction is often attributed to the presence of myofibroblasts in 

granulation tissue. The myofibroblast phenotype is characterised by large bundles of 

a smooth muscle actin containing microfilaments disposed along the cytoplasmic 

face of the plasma membrane of the ceIls, and by ceIl-cell and cell-matrix linkages 

(Martin 1997; Singer and Clark 1999). Myofibroblasts are also characterised by an 

indented nuclear envelope and weIl developed stress fibres (Scott, Ghahary et al. 

2002). According to GrinneIl et al. (1994) research performed in the 1950's 

implicated "connective tissue ceIls" in wound contraction and that subsequently, 

Gabbiani in 1972 demonstrated that granulation tissue could undergo a "smooth 

muscle-like" contraction in vitro. The cells in this granulation tissue exhibited some 

features of smooth muscle cells such as actin filament bundles or stress fibres. These 

'myofibroblasts' were therefore proposed to be responsible for force generation, and 

their presence has turned out to be a general feature of tissues undergoing 

contraction (GrinneIl 1994). In a normaIly healing wound when contraction stops 

and the wound is fuIly epithelialised myofibroblasts disappear in the scar. This could 

be due to myofibroblasts becoming quiescent when the wound is closed or 

myofibroblasts disappearing through apoptosis (Desmouliere 1995). It has been 

noted that hypertrophic scar tissue, but not keloid tissue, contains elevated numbers 

ofmyofibroblasts (Scott, Ghahary et al. 2002; Desmouliere, Chaponnier et al. 2005). 

Therefore, the presence of myofibroblasts has been considered a marker for fibrous 

tissue that is prone to undergo contracture. Keratinocytes have also been implicated 

in contracture formation. Work in the MacNeil group at the University of Sheffield 

has shown that keratinocytes are the primary cell type responsible for contraction of 

tissue engineered skin (Ralston, Lay ton et al. 1999; Chakrabarty, Heaton et at. 2001; 

Harrison, Gossiel et at. 2006c; Thomton, Harrison et at. ProvisionaIly accepted; 

Harrison and MacNeil Submitted for publication). Erdag and Sheridan (2004) 

showed that the addition of fibroblasts to a cultured skin substitute prepared from 

acellular dermis seeded with keratinocytes reduced contraction, increased 

vascularisation and produced a better epidermis (Erdag and Sheridan 2004). 

However the addition ofkeratinocytes to fibroblast populated coIlagen gels increased 

contraction (Oshita, Lee et at. 2006). Souren et al. (1989) showed that keratinocyte 

mediated contraction of collagen gels was more effective when the cells were seeded 
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on top of the gel rather than when they were dispersed through it. It has also been 

shown that inhibition of keratinocyte differentiation inhibits reconstructed skin 

contraction (Thornton, Harrison et at. Provisionally accepted). This correlates with 

Lillie et al. (1988) who suggested that contraction occurs in the stratum spinosum. 

The ability of keratinocytes to contract collagen gels or dermis is closely related to 

the concentration of collagen in the gel (Lillie, MacCallum et al. 1988) or the 

pliability of the dennis (Chakrabarty, Heaton et at. 200 I; Harrison, Gossiel et al. 

2006c). It has been shown that contraction ultimately becomes irreversible and 

appears to be maintained by collagen crosslinking (Harrison, Gossiel et al. 2006c). In 

a recent review Harrison and MacNeil state that it is clear that despite 50 years of 

research in this area, the treatment and prevention of graft contraction have 

progressed very little and understanding of the underlying mechanism remains poor 

(Harrison and MacNeil Submitted for publication). 

Most likely, the process of contraction evolved as a rapid and efficient way to close 

an open wound (Greenhalgh 2002). Loose-skinned animals possess a subcutaneous 

muscle layer called the panniculus carnosus which enables the skin to glide smoothly 

over the underlying tissues leading to wound closure with little scaring or loss of 

function. However, in man, this muscular layer is absent and the skin is more finnly 

attached, so the consequences of wound contraction are less beneficial. ranging from 

a minimal cosmetic scar in some cases to defonnity or disability in others (Gennain, 

Jean et at. 1994; Grinnell 1994; Harrison and MacNeil Submitted for publication). It 

is therefore necessary to distinguish between contraction as a nonnal, integral part of 

the wound healing process and excessive contracture the abnonnal result of the 

wound healing process resulting in significant scaring, disfigurement or loss of 

mobility. Scar contractures occur when the scar is not fully matured and often tend to 

be hypertrophic. They are common after burn injury across joints or skin concavities 

(Bayat, McGrouther et at. 2003). 

1.2.5 Pharmacological methods to reduce contraction - p-aminopropionitrile 

and 4-methyl umbelliferone. 

p-aminopropionitrile (PAPN) is a specific non competitive Iysyl oxidase inhibitor 

isolated from the sweet pea (Arem, Madden et at. 1975). Lysyl oxidase enzymes are 
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a family of enzymes involved in the crosslinking of collagen. It has been shown that 

fibroblasts treated with 0.25 and 0.5 mM PAPN have reduced migration however no 

alteration in cell proliferation or collagen synthesis was observed (Nelson, 

Diegelmann et al. 1988). Harrison et al. (2006a) showed that treatment of 

keratinocyte and fibroblast mono and co-cultures with PAPN increased production of 

PINP the amino terminated procollagen tripeptide. This drug was subsequently 

shown to decrease the contraction of the MacNeil group tissue engineered skin 

model from 60% of original area to approximately 20% of original area at a 

concentration of 200 J.!g.mr1 in Greens medium (Harrison, Gossiel et al. 2006c). 

This is in good agreement with research which showed that treatment of fibroblast 

populated collagen gels with PAPN at a concentration of 1 mM decreased 

contraction (Redden and DooIin 2003). 

Chakrabarty (2001) and Ralston (1997) showed that contraction of the reconstructed 

skin model was primarily driven by keratinocytes. It has also been shown that the 

more differentiated the keratinocytes were the more the skin contracted (Thornton, 

Harrison et al. Provisionally accepted). Reducing the hyaluronan concentration 

around the keratinocytes, temporarily reducing the differentiation of the 

keratinocytes could therefore reduce contraction. Rilla et al. (2005) reported that 

excessive epidermal HA was implicated in the hyperproliferation and disturbed 

terminal differentiation ofkeratinocytes. 4-methyl umbelliferone (4-MU) inhibits the 

synthesis of hyaluronan by suppressing the expression of hyaluronan synthase 

(HAS) enzymes on the plasma membrane of keratinocytes (Rilla et al. 2005). Rilla et 

al. 2005 also showed that decreasing HA synthesis by treating keratinocyte cultures 

with 4-MU strongly inhibited cell proliferation. In monolayer cultures treated with 

0.5 mM 4-MU cell proliferation was completely, but reversibly, blocked. In a more 

physiologically relevant model keratinocytes were grown on a collagen gel at an air

liquid interface to create a fully differentiated normal epidermis. 4-MU did not affect 

the structure or the differentiation pattern of the cultures (Rilla, Pasonen-Seppanen et 

al. 2004). 4-MU has also been shown to increase mRNA expression for MMP-} 

(Interstitial collagenase) resulting in activation of MMP-2 (Gelatinase A / Type IV 

collagenase) in cultured human skin fibroblasts (Nakamura, Ishikawa et al. 2002). 
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Hyaluronan (HA) is a negatively charged extracellular glycosaminoglycan (GAG) 

that accumulates in wound beds. Allison and Grande-Allen (2006) reviewed the uses 

of HA in tissue engineering where it has been used in applications as far ranging as 

tissue engineering scaffolds and drug delivery devices. This review indicates that HA 

is crucial in embryo development, tissue organisation, wound healing and 

angiogenesis. It is most widely known, however for its effects on the biomechanical 

properties of tissues especially in cartilage. The presence of HA in wound beds 

increases keratinocyte migration (Karvinen, Pasonen-Seppanen et al. 2003; Allison 

and Grande-Allen 2006). HA also has an important role in cell adhesion, migration, 

proliferation and differentiation (Nag ira, Nagahata-Ishiguro et al. 2007). Nagira et al. 

(2007) investigated how sulphated HA (sHA) influenced the adhesion of fibroblasts 

and keratinocytes. Nagira et al. also investigated how sHA affected keratinocyte 

proliferation. Differentiation was investigated by analysis of Wnt4, Wnt5a, Wnt6, 

Wnt7a, Notch I, Notch2 and Notch3 expression. This study showed that sHA 

promoted keratinocyte differentiation by increasing the expression of Wnt4 and 

Wnt6 mRNA's. Conversely Notch! expression was down regulated whilst Notch2 

expression remained unchanged and Notch3 expression increased. Fibroblasts 

showed low adhesion to sHA coated surfaced whilst keratinocytes showed high 

adhesiveness to the same coated surfaces. HA interacts with cell surfaces via cell

surface receptors such as CD44 (Allison and Grande-Allen 2006). It was stated in 

this paper that the interaction of HA with CD44 promotes cell migration, 

extracellular matrix remodelling, promotes the inflammatory response and can 

inhibit cell adhesion. 

Reducing the hyaluronan concentration around the keratinocytes, by treatment with 

4-MU, might temporarily reduce the differentiation of the keratinocytes and reduce 

contraction in the reconstructed skin model. 

1.2.6 Burns wounds. 

Bum trauma to the skin can occur through a variety of methods, flames, scalds, 

contact, electrical, chemical, friction and sunburn (Benson, Dickson et al. 2006). 

Bum depth is traditionally divided into four categories; first degree bums affect the 

epidennis only. Second degree bums extend into the dermis whilst third degree 
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bums extend into the subdermal fat. Fourth degree bums extend beyond the 

subdermal fat into the fascia, bone, tendon, muscle or other tissue, this is illustrated 

in figure 1.3 (Greenhalgh 2002). 
/ 
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Figure 1.3 Illustration of bum depth in relation to the gross morphology of skin. 

Image obtained from http://www.burn-recovery.org/treatment.htm. 

Bum injuries can also be divided into three zones, the zone of coagulation, zone of 

stasis and zone of hyperaemia (Quinn, Courtney et al. 1985). The zone of 

coagulation is the most severely affected part of the bum. Here there is irreversible 

tissue loss due to the coagulation of the ECM proteins. The zone of stasis surrounds 

the zone of coagulation. Here the tissue is potentially salvageable, however this zone 

is characterised by decreased tissue perfusion. The zone of hyperaemia is the 

outermost zone and here tissue perfusion is increased. The tissue here will usually 

recover (Hettiaratchy and Dziewulski 2004b). Bums are peculiar injuries because 

they force an organism into a tremendous biological task of equilibrating its 

deranged internal homeostasis and, at the same time, reconstructing its destroyed 

protective barrier against the external environment (Linares 2002). However the bum 

wound is a dynamic living environment that will alter depending on both intrinsic 

factors (inflammation, bacterial contamination etc.) and extrinsic factors 

(dehydration, systemic hypotension, cooling etc.) (Papini 2004). 
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Healing of burn wounds follows the same principles as general wound healing. The 

type of healing that is involved changes, depending on the depth of the wound 

(Greenhalgh 2002). Superficial burns usually heal primarily by reepithelialisation 

within fourteen days and leave minimal scarring. Deep burns have a prolonged 

healing time and usually require surgical intervention i.e. excision and skin grafts 

(Benson, Dickson et al. 2006). When epithelialisation is delayed beyond three 

weeks, the incidence of hypertrophic scarring increases from 33% to 78% (Papini 

2004). Split-thickness skin autografts from uninjured skin remain the mainstay of 

treatment for many patients. However autologous skin has limited availability, is 

associated with additional scarring and unfortunately severe burn patients invariably 

lack sufficient adequate skin donor sites (Atiyeh, Hayek et a!. 2005). If this is the 

case then STSG's can be combined with cadaveric skin or artificial skin substitutes 

(Benson, Dickson et al. 2006). 

According to Bombaro et a!. (2003) hypertrophic scarring following burn injury 

continues to be a real concern and clinical challenge. It is common for burn survivors 

to wear pressure garments in an attempt to reduce hypertrophic scarring. When 

reviewing the prevalence of hypertrophic scaring following burns Bombaro et al. 

(2003) noted that 67% ofthe group examined presented with hypertrophic scars. The 

group was split by race into white versus non-white and the results are shown in 

table 1.1 below. 

Table 1.1 Prevalence of hypertrophic scarring after burns taken from (Bombaro, 
Engrav et a!. 2003) 

Age 1 Years White (%) Non-white (%) 

<15 (n=13) 6/8 (75%) 5/5 (100%) 

15-44 (n=48) 19/32 (60%) 12/16 (75%) 

45-65 (n=23) 13/19 (68%) 3/4 (75%) 

>65 (n=2) 0/2 (0%) -

These results correlate with studies performed by Deitch et a!. and McDonald and 

Deitch (De itch, Wheelahan et al. 1983; McDonald and Deitch 1987) who showed 

that non-white patients were more likely to have hypertrophic scaring after burns 

(Deitch, Wheelahan et al. 1983) or in burns that had been treated with a skin graft 
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(McDonald and Deitch 1987). Children, under 14 years of age, were also more likely 

to have hypertrophic scars after bums than adults especially in grafted sites 

(McDonald and Deitch 1987). As mentioned previously the current gold standard for 

bums wound treatment is the addition of an autologous split thickness skin graft 

(STSG) to the wound bed. However treatment with STSG's is not problem free, 

STSG's have been shown to produce hypertrophic scars and contractures (McDonald 

and Deitch 1987). Stephenson et al. (2000) therefore investigated the effect of full 

thickness skin grafts (FTSG's) on contraction. Unfortunately these grafts still 

contracted significantly despite the initial thought that FTSG's should contract less. 

However there was no comparison made between FTSG's and STSG's in this study. 

Currently problematic scars can be treated with non-invasive treatment, invasive 

treatment or be left alone and managed. Non-invasive treatments include pressure 

therapy i.e. pressure garments, splitting, acrylic casts, masks and clips, various oils, 

drugs, creams and lotions. Hydrotherapy and massage therapy are also used. Invasive 

treatments can involve surgical excision and revision, steroid injections, fluorouracil 

injections, interferon-y, bleomycin, radiotherapy, laser therapy and cryosurgery 

(Bayat, McGrouther et al. 2003). Pressure garments have been the major form of 

treatment for hypertrophic scars and potential contractures since the early 1970's. 

Specific references to treating hypertrophic scars with pressure go as far back as the 

early 1800's (Edgar and Brereton 2004; Macintyre and Baird 2006). Macintyre et al. 

(2006) when reviewing pressure garments suggest that the pressure exerted by 

pressure garments controls collagen synthesis, reduces collagen production and 

encourages realignment of collagen bundles already present. They suggest that these 

effects could increase scar maturation, reduce the incidence of contractures and thus 

the need for surgical intervention. A reduction in the itchiness and pain that is 

associated with active hypertrophic scars is a fortunate side effect of the application 

of pressure to scars (Macintyre and Baird 2006). However, although pressure therapy 

has been used for more than three decades in the management of hypertrophic and 

bum scars, so far scientific evidence is limited. Recommendations about the amount 

of pressure and duration of the therapy are merely based on empirical observations, 

although, there is consensus that the early application of pressure is necessary for an 

optimal outcome (WilIiams, Knapp et al. 1998; Van Den Kerckhove, Stappaerts et 
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al. 2005). Van Den Kerckhove et al. did show a significant difference in the 

thickness of post-burn scars that were preventively treated with garments that were 

delivering pressures with a mean value of 15 mmHg compared to scars treated with 

garments delivering a lower mean pressure (Van Den Kerckhove, Stappaerts et al. 

2005). 

1.3 Wound healing and contraction models. 

Several different contraction models are available for use; they vary from simple 

collagen gel models to in vivo animal models. All of these models have positives and 

negatives. The collagen gel model is very popular especially when populated with 

fibroblasts. It is relatively easy to cast collagen gels into the required shapes for 

mechanical loading (Berry, Shelton et al. 2003), for clamping to allow cellular 

contractile forces to be measured (Freyman, Yannas et al. 2002) or for clamping for 

microscopy (Freyman, Yannas et al. 2001). Collagen gels contract rapidly and 

experiments have been performed over time periods varying from 3 hours (Deveci, 

Gilmont et al. 2005) to 28 days (Helary, Giraud Guille et al. 2005; Helary, Ovtracht 

et al. 2006). Models based on dermal equivalents or reconstructed skin are also used 

and are especially popular in the MacNeil group at the University of Sheffield. In 

this group a model based on sterilised acellular human dermis has been used since 

the mid 1990's. Its uses vary from investigating skin graft contraction (Ralston, 

Lay ton et al. 1997; Chakrabarty, Heaton et al. 2001; Harrison, Gossiel et al. 2006c; 

Thornton, Harrison et al. Provisionally accepted) and other wound healing processes 

(Dawson, Goberdhan et al. 1996; Harrison, Heaton et al. 2006b) to investigating 

melanoma invasion through the basement membrane (Eves, Layton et al. 2000; Eves, 

Katerinaki et at. 2003) and studies of skin pigmentation. The uses of this model have 

recently been reviewed by MacNeil (2007). Animal models could also be used 

although there are complications associated with the presence of the panniculus 

carnosus allowing for the free movement of the skin over the underlying tissue. 

1.3.1 Collagen gels. 

Several in vitro models of wound contraction have been developed using fibroblasts 

cultured in collagen or fibrin matrices (Grinnell 1994). The majority of research into 
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contraction has been performed using fibroblast populated collagen gels. The 

fibroblast populated collagen gel model was introduced by Bell and Ivarsson in 1979 

and has since been widely used for investigating contraction, (Bell, Ivarsson et al. 

1979; Bellows, Melcher et al. 1982; Schaffer, Tantry et al. 1997; Enever, Shreiber et 

al. 2002; Howling, Oettmar et al. 2002; Berry, SheIton et al. 2003; Gentleman, 

Nauman et al. 2004). However collagen matrix contraction requires serum and can 

be stimulated by individual extracellular factors, including TGFpl and POGF or 

inhibited by factors such as epidermal growth factor (EGF) (Schaffer, Tantry et al. 

1997). When fibroblasts are cultured within an extracellular matrix such as collagen 

or fibrin, fibroblasts experience a richer, more complex physical environment and 

markedly different geometry which is more physiologically relevant than cells on 20 

surfaces (Bellows, Melcher et al. 1982; Grinnell 2003). 

According to Grinnell (2003), Paul Weiss showed that fibroblasts cultured in a blood 

plasma clot varied in shape from stellate to bipolar depending on the orientation of 

the fibrous network of the clot. In free floating collagen gels where there is little 

resistance to cellular force fibroblasts can project an elaborate dendritic network of 

extensions interconnected by gap junctions. If the matrix is constrained then tension 

develops within the matrix and the collagen fibrils become orientated in response to 

the force exerted by the cells (Grinnell 2003). It is thought that changes in celI 

proliferation and biosynthetic activity after stress relaxation provide insight into the 

possible mechanism of myofibroblast disappearance at the end of wound healing. As 

long as the tissue is under mechanical stress, cell proliferation and biosynthetic 

activity will persist. Once mechanical stress is relieved, usually by a combination of 

wound contraction and biosynthetic activity, cells will switch to a non-proliferative 

phenotype. Thus fibroblasts in floating gels and those in anchored collagen gels 

show profound differences in celI proliferation (Grinnell 1994). 

Germain et al. (1994) used collagen gels to compare the contractile properties of 

fibroblasts obtained from samples of granulation tissue and dermal fibroblasts. It was 

noted that collagen gels prepared with dermal fibroblasts contracted by 25% of their 

original area over the first 24 hours whilst the gels seeded with wound healing 

fibroblasts contracted by 50% of their original area over the first 24 hours. However 
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after fourteen days in culture there was no significant difference in the surface area 

of the two gels (Germain, Jean et al. 1994). Schliffer et al. (1997) and Moulin et al. 

(1998) also showed that wound healing myofibroblasts contract collagen gels more 

than dermal fibroblasts. Wound fluid also increased the contraction of collagen gels 

populated with dermal fibroblasts but had no effect on the contraction of collagen 

gels populated with wound healing fibroblasts (Schaffer, Tantry et al. 1997). The 

concentration of collagen in the gel can also affect fibroblast behaviour with the rate 

of gel contraction varying inversely with the collagen concentration (Bell, Ivarsson 

et al. 1979). Helary et al. prepared collagen gels with collagen concentrations of 

5 mg.mr l and 40 mg.mr l
• The gels with low collagen concentration showed weak 

myofibroblast proliferation and no apoptosis, however the cells migrated easily. In 

gels with a high collagen concentration, cell proliferation and apoptosis occurred and 

the cells spread more than in the loose matrices (Helary, Ovtracht et al. 2006). 

Expression of a smooth muscle actin (aSMA) and MMPI (collagenase 1) did not 

differ between the 5 mg.mr l and 40 mg.mr l matrices. However, expression of 

MMP2 (gelatinase A) was increased in the high density (40 mg.mr l
) matrices 

(Helary, Giraud Guille et al. 2005). Pullar and Isseroff (2005) used fibroblast 

populated collagen gels to investigate the role of the adrenergic signalling system in 

contraction. Treatment of the gels with a J3-agonist delayed contraction in a 

concentration dependent manner whilst treatment with a J32-adrenergic receptor 

specific antagonist reduced the delay in contraction. The authors report that the J32-
adrenergic receptor is therefore solely responsible for the delay in contraction and 

further showed that this is via a cyclic adenosine monophosphate (cAMP) 

mechanism (Pullar and Isseroff 2005). 

Shannon et al. (2006) used collagen gels to compare buccal mucosa and dermal 

fibroblasts. Collagen gel contraction, as MA expression, growth factor production 

and the effects of TGF-J31&3 were investigated. In this study oral fibroblasts 

contracted collagen gels significantly more than the dermal fibroblasts. The presence 

of TGF-J31 significantly increased collagen gel contraction in a concentration 

dependent manner in both cultures. TGF-J33 significantly increased collagen gel 

contraction in both cultures. In collagen gels populated with oral fibroblasts this was 

in a concentration dependent manner but this was not the case in collagen gels 
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populated with dermal fibroblasts (Shannon, McKeown et al. 2006). TGF-p has also 

been shown to increase contraction of fibroblast populated collagen gels in a 

concentration dependent manner by Grinnell and Ho (2002). The addition of 

keratinocytes into fibroblast populated collagen gels also leads to an increase in 

contraction (Oshita, Lee et al. 2006). 

Collagen gel models are especially popular for investigating the effects of various 

drugs on fibroblast biology and contraction. Redden and Doolin produced fibroblast 

populated collagen gels containing both a high and a low concentration of 

fibroblasts. These gels were treated with the lathyrogen p-aminopropionitrile 

(PAPN) fumarate. The PAPN reduced the contraction of both of the collagen gels 

(Redden and Doolin 2003). Howling et al. investigated the effect of adding chitosan, 

chitin and hyaluronan to the culture medium surrounding the fibroblast populated 

collagen gels. Adding chitosan to the medium inhibited contraction whilst chitin and 

hyaluronan had no significant effect (Howling, Dettmar et al. 2002). Moulin et al. 

(1998) treated collagen gels populated with both wound healing and dermal 

fibroblasts with TGF-PI and interferon-y (IFNy). Treating both collagen gel 

populations with TGF-PI initially increased contraction in both cell populations but 

this increase was stronger with the wound healing fibroblasts. The effect of treatment 

with IFNy was the same for both fibroblast populations. Contraction was reduced 

during the initial 24 hours and then stopped completely thereafter, this also proved to 

be reversible as once the IFNy was removed from the culture system after a 2 day 

delay contraction resumed in the dermal fibroblast populated gels. In wound healing 

fibroblast populated gels very little, if any, contraction was observed when the IFNy 

was removed (Moulin, Castilloux et al. 1998). 

Whilst the collagen gel model is simpler, cheaper and less time consuming collagen 

gels are limited by their lack of dermal architecture and basement membrane. A 

number of factors can influence the effectiveness of this assay. The concentration of 

the collagen in the gel, being a major factor. Personal experience also illustrated that 

the age of the cells particularly the age of the keratinocytes had implications on the 

success of the experiment. Keratinocytes that had been subjected to more than two 

passages struggled to attach to the gels and therefore these gels did not contract as 
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much as gels seeded with lower passage number keratinocytes. However these 

factors do not alter the fact that this model is the accepted model for investigating 

contraction. The time taken to run the experiments, six or seven days, is much 

shorter than the time taken to run other contraction model experiments i.e. 

reconstructed skin models. This makes collagen gels a useful screening tool to 

quickly investigate the effects of a range of drugs at a wide range of concentrations 

on contraction. The addition of keratinocytes to the standard fibroblast populated 

collagen gels makes the model more of a reconstructed skin model but the absence of 

a basement membrane and dermal architecture cannot be overcome and this should 

be taken into consideration when reviewing the data. 

1.3.2 Tissue engineered skin equivalents. 

Skin equivalents for contraction studies have been produced using a variety of 

different methods. Most of the skin or dermal equivalents are produced using 

acellular dermis and primary skin cells, dermal fibroblasts and keratinocytes. It is 

possible to produce acellular dermal matrices in a variety of methods. Erdag and 

Sheridan (2004) report the production of an acellular dermal matrix by rapidly freeze 

thawing cadaver skin. These matrices were seeded with fibroblasts and / or 

keratinocytes and transplanted onto mice. The presence of fibroblasts in these 

matrices reportedly produced a thicker epidermis, reduced contraction and enhanced 

angiogenesis compared to matrices seeded with keratinocytes alone (Erdag and 

Sheridan 2004). Dawson et al. (1996) and Ralston et al. (1997) report the production 

of a sterilised deepithelialised acellular dermis (DED) using increasing 

concentrations of glycerol. Ralston et al. (1997) used this composite to illustrate that 

whilst fibroblasts can contract this composite slightly, when keratinocytes are added, 

composite contraction is more pronounced. Ghosh et at. (1997) investigated how 

changing sterilisation methods affected the quality of the resulting skin composites. 

Glycerol sterilisation and lyophilisation were used to render the skin acellular. 

Ethylene oxide treatment and gamma irradiation were used to sterilise the skin. 

Deepidermisation was carried out by immersion of the skin in 1 M sodium chloride 

solution, phosphate buffered saline (PBS) or dispase solution. It was noted in this 

study that skin can be reconstructed based on either glycerol or ethylene oxide 

treatment but the ethylene oxide treatment produced composites with poorer 
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epidermis' than the glycerol treated composites (Ghosh, Boyce et al. 1997). This 

model has subsequently been used to produce epidermal-dermal composites for 

clinical use and to investigate the mechanism of skin graft contraction especially the 

role of the keratinocyte (Chakrabarty, Dawson et at. 1999; Chakrabarty, Heaton et at. 

2001; Harrison, Heaton et at. 2006b; Harrison, Gossiel et at. 2006c; Thomton, 

Harrison et at. Provisionally accepted). Harrison et al. used this model to investigate 

pharmacological approaches to reduce contraction. Agents such as PAPN, <l2-

macroglobulin and catechin reduced contraction whilst estrone increased contraction 

(Harrison, Gossiel et al. 2006c). This model was also used by Eves et al. to 

investigate melanoma invasion in skin (Eves, Lay ton et al. 2000; Eves, Katerinaki et 

at. 2003). It has been shown that contraction of this skin composite can be affected 

by a number of factors summarised in table 1.2 

Ta bl 1 2 Effi f h f e ect 0 varIOUS agents on t e contractIOn 0 reconstructe d k· s tn. 

Agent Effect on contraction Reference 

Ascorbic acid-2-phosphate Increased (Chakrabarty, Heaton et 

at. 2001) 

Mannose-6-phosphate No significant effect (Chakrabarty. Heaton et 

at. 2001) 

Forskolin No significant effect (Chakrabarty. Heaton et 

at. 2001) 

Galardin Decreased (Chakrabarty. Heaton et 

at. 2001) 

Keratinocyte conditioned Decreased (Chakrabarty. Heaton et 

medium at. 2001) 

Glutaraldehyde pre-treatment Decreased (Harrison. Gossiel et at. 

2006c) 

Insulin like growth factor No significant effect (Harrison. Gossiel et at. 

2006c) 

Estrone or Estradiol Increased (Harrison. Gossiel et at. 

2006c) 

Dexamethasone No significant effect (Harrison, Gossiel et at. 

2006c) 
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Basic fibroblast growth factor No significant effect (Harrison, Gossiel et at. 

2006c) 

Tumour necrosis factor a No significant effect (Harrison, Gossiel et at. 

2006c) 

Prostaglandin-E2 No significant effect (Harrison, Gossiel et at. 

2006c) 

Catechin Decreased (Harrison, Gossiel et at. 

2006c) 

a2-macroglobulin Decreased (Harrison, Gossiel et at. 

2006c) 

p-aminopropionitrile Decreased (Harrison. Gossiel et at. 

2006c) 

Putrescine No significant effect (Harrison. Gossiel et at. 

2006c) 

NTU283 or NTU285* No significant effect (Harrison, Gossiel et at. 

2006c) 

*NTU283 and NTU285 are novel thioimidazolium transglutaminase inhibitors 

synthesised by Prof. M. Griffin at Nottingham Trent University. 

Ascorbic acid-2-phosphate is a stable form of vitamin C and stimulates procollagen 

synthesis. It is a cofactor for hydroxyproline and hydroxylysine (Chakrabarty, 

Heaton et at. 2001). Mannose-6-phosphate inhibits the effects of TGF

p (Chakrabarty, Heaton et at. 2001). Forskolin stimulates adenylate cyclase and 

elevates cAMP (Chakrabarty, Heaton et at. 200 I). Galardin inhibits 

matrixmetalloproteinases (Chakrabarty, Heaton et at. 2001). Glutaraldehyde pre

treatment reduces dermal pliability (Harrison, Gossiel et al. 2006c). Insulin like 

growth factor, Estrone and Estradiol stimulate collagen synthesis (Harrison, Gossiel 

et at. 2006c). Dexamethasone and basic fibroblast growth factor inhibit collagen 

synthesis (Harrison, Gossiel et at. 2006c). TNF-a also inhibits collagen synthesis it 

also inhibits keratinocyte proliferation (Harrison, Gossiel et at. 2006c). 

Prostaglandin-E2 inhibits collagen synthesis and stimulates keratinocytes 

proliferation (Harrison, Gossiel et al. 2006c). Catechin, an antioxidant, inhibits 

collagen degradation (Harrison, Gossiel et at. 2006c). a2-macroglobulin also inhibits 
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collagen degradation and inhibits MMP's (Harrison, Gossiel et al. 2006c). PAPN is a 

non-competitive lysyl oxidase inhibitor and inhibits collagen crosslinking (Harrison, 

Gossiel et al. 2006c). Putrescine is a competitive transglutaminase inhibitor, 

inhibiting collagen crosslinking (Harrison, Gossiel et al. 2006c). NTU283 is an 

irreversible transglutaminase inhibitor, NTU285, a competitive transglutaminase 

inhibitor (Harrison, Gossiel et al. 2006c). 

Investigation into the mechanism by which the reconstructed skin model contracts 

showed that collagen synthesis and degradation (Harrison, Gossiel et al. 2006c) had 

no effect on contraction whilst collagen crosslinking (Harrison, Gossiel et al. 2006c) 

and keratinocyte differentiation (Thornton, Harrison et al. Provisionally accepted) 

significantly affected contraction. Blocking the action of lysyl oxidase by the 

addition of PAPN to the composite culture medium significantly reduced contraction 

at PAPN concentration of200 ~g.mrl (Harrison, Gossiel et al. 2006c). 

Tissue engineered skin equivalents, especially those based on DED have three main 

advantages over collagen gels especially fibroblast populated collagen gels. These 

are namely the presence of basement membrane proteins, an appropriate dermal 

architecture and the presence of multiple cell types. The main disadvantage to this 

model is the lack of suitable skin that can be made into DED. Whilst this laboratory 

is lucky in the quantity of skin that it receives the vast majority of the skin is only 

suitable for cell isolation. Skin of sufficient quality and quantity for DED production 

is rarely obtained. These experiments also take a long time to run i.e. 28 days instead 

of the 6 or 7 days taken for collagen gel contraction experiments. However this 

contraction model is a useful model to verify the results obtained from the collagen 

gel experiments. Once the collagen gels have been used to identify drugs that could 

be used to block or reduce contraction and at what concentrations. 

1.3.3 Animal models. 

As mentioned in section 1.3 the presence of the panniculus carnosus in animals 

makes the majority of animals unsuitable for contraction studies. Selection of an 

animal model depends on a number of factors including availability, cost, ease of 

handling, investigator familiarity, and anatomical/functional similarity to humans 
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(Sullivan, Eaglstein et al. 2001). According to Middelkoop et al. (2004) small 

mammals, such as mice, rats, rabbits and guinea pigs are suitable for studies that 

require large numbers of animals or specific characteristics, such as availability of 

knockouts or transgenic animals (mainly available in mice) (Escamez, Garcia et al. 

2004) or a compromised immune system (athymic mice). Wound healing in rodents 

differs considerably from wound healing in humans as wounds in rodents heal 

primarily by contraction rather than migration of epidermal cells (Middelkoop, Van 

Den Bogaerdt et al. 2004). SuIlivan et al. evaluated a number of different wound 

healing models and compared them to wound healing in humans. The porcine model 

agreed with human studies 78% of the time whilst small mammals agreed with 

human studies 53% of the time and in vitro models 57% of the time (Sullivan, 

Eaglstein et al. 2001). SuIlivan et al. do state that because no model will completely 

replicate clinical human wound healing, it is essential that the model utilized be 

selected with care. For example guinea pigs are generally used to evaluate the effects 

of vitamin C deficiency on wound healing as guinea pigs, like humans, require 

vitamin C from dietary sources. Comparatively few other animals, such as pigs, 

synthesise their own vitamin C but the anatomy and physiology of pig skin is similar 

to human skin and neither mammal possesses a panniculus camosus (Sullivan, 

Eaglstein et al. 2001). This makes the porcine model more suitable for the evaluation 

of therapeutic agents that could, for example, be used to treat scarring. Middelkoop 

et al. (2004) report the use of a porcine bum model to evaluate the efficacy of 

various treatments whilst looking at reepithelialisation, inflammatory response, 

contraction and bacterial contamination. Horan et al. (2005) used mice to evaluate 

the effect of stress on wound contraction. The mice were restrained and deprived of 

food and water for set periods over the experiment. These mice showed delayed 

healing and reduced contraction compared to those mice just deprived of food and 

water for the same time periods but not restrained. Mirastschijski et al. (2004) used 

Sprague-Dawley rats to evaluate the effect of a broad spectrum MMP inhibitor on 

wound healing. The MMP inhibitor reduced wound contraction, decreased 

myofibroblast formation but impaired keratinocyte migration but not keratinocyte 

proliferation, and produced abnormal granulation tissue and blood vessel 

architecture. Spyrou and Naylor (2002) used Hooded Lister rats to investigate the 

effect of basic FGF (FGF2) on scarring. FGF2 was shown to inhibit the 
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differentiation of fibroblasts into myofibroblasts and improved the dermal 

architecture of the healing wound. 

Despite the limitations imposed by the differences in the anatomy and physiology of 

animal skin compared to human skin these animal models are still used to evaluate 

wound treatments. For the purpose of this project an animal model would not be 

required. However, if this wound dressing were to be taken forward to the clinic an 

animal model, ideally a porcine model, would be needed. 

1.4 Wound dressings and skin replacements. 

Mankind has been covering wounds with a variety of materials since the earliest 

written records. Historically, wounds have been treated with homemade remedies 

derived from ritualistic teachings and observation. According to Lionelli and 

Lawrence the ''three healing gestures" were described c2200 BC on an ancient clay 

tablet: 1. washing the wound, 2. making plasters (mixtures of herbs, ointments, and 

oils that were applied to wounds to aid in the healing process), and 3. bandaging the 

wound. References to early wound care are seen in the Bible, ancient Assyrian 

writings and ancient Greek texts such as The Iliad and The Odyssey by Homer and 

writings by Hippocrates in 400 BC (Ramos-E-Silva and Ribeiro De Castro 2002; 

Lionelli and Lawrence 2003) According to Ovington (2007) Sumerian cuneiform 

tablets from before 2000 BC describe the application of poultices formed of mud, 

milk and plants to wounds. Egyptian papyruses from 1550 and 1650 BC provide 

specific details of how to wash the wound, prepare and apply plasters of honey, plant 

fibres, and animal fat and then bandage the wound (Ovington 2007). In the Ebers and 

Edwin Smith papyri (1500-1600 BC) there are descriptions of a variety of dressing 

materials used in ancient Egypt, including bandages with grease which can be seen 

as precursors of tulle gras, one of the earliest non-adherent dressings, which was 

used during the First World War (Lawrence 1982; Lionelli and Lawrence 2003). 

Prior to the early 1960's however dressings had hardly advanced from those used in 

ancient times with dressings consisting primarily of dry non-occlusive gauze and 

non-woven cotton or wool (Cho and Lo 1998). 
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Immediate wound coverage is one of the cornerstones of wound management. Acute 

or chronic wounds can usually be covered by any of a number of synthetic and 

natural dressings (Singer and Clark 1999). However different sized wounds require 

different strategies for closure. The goal should always be to obtain the most 

cosmetic and functional wound closure the first time. Whilst small and clean wounds 

such as a small burn wound or scar can be treated with excision and sutures or 

staples resulting in a relatively narrow scar this is dependent on the size of the 

wound. If infection is suspected the wound can be left open and treated with dressing 

changes for 4-5 days and then closed (Greenhalgh 2002). It is not possible to treat 

larger wounds like this and so for larger areas of skin loss, skin grafts are usually 

used either as sheets or expanded by meshing. According to Greenhalgh (2002) there 

are three stages of graft healing, the first being the phase of imbibition, in this phase 

the graft' imbibes' or survives by diffusion of nutrients from the wound bed. During 

this phase which lasts approximately 2-3 days if there is any barrier to the diffusion 

of nutrients to the graft such as a blood clot, oedema, or nonviable tissue the graft 

will not 'take' and will therefore be lost. The second phase of graft healing is the 

phase of neovascularisation where new blood vessels invade the graft through 

angiogenesis and 'hook up' with those in the graft. The final stage is the phase of 

maturation where collagen bridges form between the graft and the wound bed. This 

phase closely mirrors the maturation phased in wound healing described in section 

1.2.3 (Greenhalgh 2002). The ideal biologic skin substitute or wound dressing has to 

meet a formidable list of criteria listed below which have been taken from 

Ehrenreich and Ruszczak (2006) and added to from Seal et at. (2001), Sheridan and 

Tompkins (2002) and Atiyeh et at. (2005): 

• Absence of antigenicity 

• Tissue compatible 

• Absence of local or systemic toxicity 

• Impermeable to exogenous microorganisms 

• Water vapour transmission similar to normal skin 

• Rapid and sustained adherence to the wound surface 

• Conform to surface irregularities 

• Elastic to permit motion of underlying tissue 
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• Tensile strength to resist fragmentation 

• Inhibition of wound surface flora and bacteria 

• Long shelf life, minimal storage requirements 

• Biodegradable (for permanent membranes) 

• Low cost 

• Minimise nursing care of wounds 

• Minimise patient discomfort 

• Translucent properties to allow direct observation of healing (for dressings) 

• Reduce heal ing time 

• Not increase rate of infection 

• Patient acceptance 

• Grow with a child 

• Can be applied in one operation 

• Prevent heat and fluid loss 

• Does not become hypertrophic or contract 

Currently there are no materials commercially available that meet all these criteria. 

However commercial products, such as Permaderm, are beginning to emerge to meet 

this need (MacNeil 2007), and whilst autologous skin grafts, especially STSG's are 

the current gold standard for treatment of large burns there are a number of problems 

associated with them. Among these are donor site morbidity and the lack of available 

skin especially in patients with extensive severe burns. In essence when skin for an 

autologous graft is taken the surgeon is increasing the total body surface area 

affected by the burn, therefore potentially increasing the problems associated with 

large wounds i.e. fluid loss, and increasing the chance of infection. It has therefore 

been necessary to look at various different methods for closing wounds that could 

either be used in the place of, or in conjunction with STSG's. Table 1.3 summarises 

some commercially available skin substitutes. 

Table 1.3 Table summarising the materials from which some commercially available 
epidermal, dermal and skin replacements are made. 

Trade name Materials used Cells included Reference 

Alloderm Acellular deepithelialised - (Jones, 

(Dennal substitute) cadaver dermis Currie et al. 
2002) 
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Apligraf Collagen Neonatal allogenic (Jones, 

(Skin replacement) fibroblasts & Currie et al. 
2002) 

keratinocytes 

Biobrane Silicone, nylon mesh, - (Jones, 

(Temporary skin collagen Currie et al. 

substitute) 2002) 

BioSeed-S Fibrin glue Cultured autologous (Enoch, 

(Epidermal keratinocytes 
Grey et al. 

substitute) 2006b) 

CellSpray - Cultured autologous (Enoch, 

(Epidermal keratinocytes 
Grey et al. 

substitute) 2006b) 

Dermagraft Polyglycolic acid or Neonatal allogenic (Jones, 

(Dermal substitute) polyglactin-910 fibroblasts 
Currie et al. 
2002) 

Epicel - Cultured autologous (Jones, 

(Epidermal keratinocytes 
Currie et al. 

replacement) 2002) 

E-Z-Derm Chemically crosslinked - (Ramos-E-

(Temporary skin porcine collagen 
Silva and 
Ribeiro De substitute) 
Castro 2002) 

Human Amniotic Allogenic human amnion - (Atiyeh, 

membrane 
Hayek et al. 
2005) 

(Dermal substitute) 

Hyaff-NW Benzyl-esterified Autologous (Atiyeh, 

(Dermal substitute) hyaluronan derivative fibroblasts 
Hayek et al. 
2005) 

Integra Silicone, collagen, - (Jones, 

(Dermal Substitute) glycosaminoglycans 
Currie et al. 
2002) 

Laserskin Hyaluronic acid Cultured autologous (Jones, 

(Epithelial cover) keratinocytes 
Currie et al. 
2002) 

MySkin PVC, acrylic acid Autologous (Heroon, 

(Epithelial cover) keratinocytes 
Dawson et 
al. 2006) 

OrCel Collagen Allogenic fibroblasts (Boyee and 

(Skin substitute) & keratinoeytes 
Warden 
2002) 

Pelnac Silicone, collagen Autologous (Atiyeh, 

(Skin substitute) keratinocytes 
Hayek et al. 
2005) 

Permacol Porcine skin - (MaeNeil 

(Temporary dermal 2007) 

substitute) 
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Permaderm Bovine collagen Autologous (MacNeil 

(Skin substitute) fibroblasts & 
2007) 

keratinocytes 

PolyActive Polyethylenglycol Cultured autologous (Boyce and 

(Skin substitute) terepthalate, fibroblasts & 
Warden 
2002), (Seal, 

polybutylene keratinocytes Otero et al. 

terephthalate 
2001) 

Terumo Collagen Autologous (Atiyeh, 

(Skin substitute) keratinocytes 
Hayek et al. 
2005) 

Tissue Tech Hyaluronic acid ester Autologous (Atiyeh, 

autograft system fibroblasts & 
Hayek et al. 
2005) 

(Skin substitute) keratinocytes 

TissuFleece Collagen foam - (Ng, Khor et 

(Dennal substitute) 
al. 2004) 

Transcyte Silicone, nylon mesh, Neonatal fibroblasts (Jones, 

(Temporary dennal collagen 
Currie et al. 

substitute) 2002) 

VivoDerm Hyaluronan Autologous (Ramos-E-

(Skin substitute) keratinocytes 
Silva and 
Ribeiro De 
Castro 2002) 

1.4.1 Epidermal replacements. 

In 1975 wound management was revolutionised by the development of a technique 

that used cultured human epidermal cells to form sheets suitable for grafting. This 

development was soon followed by the use of autologous cultured epidermal-cell 

grafts for the treatment of bums as well as other acute and chronic wounds (Singer 

and Clark 1999). The application of cultured epithelial autografts (CEAs) to bum 

wounds became an extremely useful and often life-saving adjunct in the management 

of severe bum injuries (Hemon, Harrison et al. In press). Cultured epithelial 

auto grafts (CEA's) are produced from confluent multilayer sheets of keratinocytes 

that have been detached from their culture dishes and attached to a backing dressing 

to aid the application of the CEA onto the wound bed. CEA's cannot be detached as 

an integrated sheet generally before nine days but once confluent they must be used 

within two to three days as beyond this point they begin to blister and detach from 
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the tissue culture plastic (TCP). Therefore once CEA culture starts plans must be 

made to use the CEA's within a very narrow window often to fourteen days or they 

lose the ability to attach to the wound bed. This narrow window where the CEA's 

can be applied means that if the patient's condition changes there can be significant 

wastage of cells. In a recent study Hernon et al. showed that nearly 50% of CEA's 

produced were wasted (Hernon, Dawson et al. 2006). However CEA's do provide a 

wide and permanent skin coverage method (Singer and Clark 1999). More recently 

several alternative methodologies for delivering keratinocytes to the wound bed have 

been explored ranging from spraying on cells to delivering cells on collagen coated 

membranes or chemically defined membranes such as MySkin ™ (Hemon, Harrison 

et al. In press). Wood et al. (2006) reviewed the use of CEA's in the treatment of 

bum injuries and discussed the main limiting factors in the production of and 

treatment with CEA's. The time taken to produce the CEA's, the reliability of 'take', 

vulnerability of grafts, long term durability and the cost implications of treatment 

were assessed. Whilst the study was inconclusive and unable to answer the question 

"do CEA's have a role in the treatment of major bums?" it is typical of the variation 

of opinion found in the literature (Wood, Kolybaba et al. 2006). MySkin™ is one 

example of a dressing being used in an attempt to overcome some of the limitations 

encountered in CEA production. Medical grade carrier polymers were treated with 

an acrylic acid plasma and primary keratinocytes were seeded onto these surfaces 

and could be cultured in serum free conditions, and transferred from these surfaces 

onto deepithelialised acellular dermis (Haddow, Steele et al. 2003; Higham, Dawson 

et al. 2003; Bullock, Higham et al. 2006). The use of this treatment clinically 

resulted in reduced wastage due to the flexibility in the timing of delivery of cells to 

the wound bed as the keratinocytes could be transferred to the wound bed whilst 

subconfluent. This also had the advantage that subconfluent keratinocytes in theory 

have a greater proliferative potential (Hernon, Dawson et al. 2006). 

1.4.2 Dermal replacements and skin substitutes. 

The historic standard for rapid closure of full-thickness wounds with a skin 

substitute is split-thickness, autologous skin applied either as a sheet, or expanded by 

meshing (Boyce and Warden 2002). Although split-thickness autografts remain the 

gold-standard they are not always available in sufficient quantity giving rise to the 
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clinical need for tissue-engineered alternatives (MacNeil 2007). The inclusion of a 

dermal component in skin substitutes helps prevent wound contraction and provides 

greater mechanical stability (Singer and Clark 1999). The production of a tissue 

engineered skin based on human dermis, often supplied by a skin bank, has met with 

some success with reconstructed skin being used clinically (Chakrabarty, Dawson et 

al. 1999) and in the laboratory for research purposes (Dawson, Goberdhan et al. 

1996; Ghosh, Boyce et al. 1997; Ralston, Lay ton et al. 1997; Ralston, Lay ton et al. 

1999; Eves, Layton et al. 2000; Chakrabarty, Heaton et al. 200 I; Eves, Katerinaki et 

al. 2003; Haddow, Steele et al. 2003; Higham, Dawson et al. 2003; Harrison, Dalley 

et al. 2005; Hernon, Dawson et al. 2006; Harrison, Gossiel et al. 2006a; Harrison, 

Heaton et al. 2006b; Harrison. Gossiel et al. 2006c; Thornton, Harrison et al. 

Provisionally accepted). Other materials used in the production of skin substitutes 

include collagen, glycosaminoglycans, hyaluronan, and various polymers (Boyce 

and Warden 2002; lones, Currie et al. 2002; Atiyeh, Hayek et al. 2005). 

Biosynthetic dressings were originally developed to provide temporary coverage to 

optimise wound healing. They were first introduced in 1979 for the treatment of 

donor sites (Bello and Falabella 2001). 

Allogenic materials such as an allograft from a skin bank can be used as a temporary 

wound dressing in bums treatment. Human allograft is generally used as a STSG 

after being procured from organ donors. When used in a viable fresh or 

cryopreserved state, it vascularises and remains the 'gold standard' of temporary 

wound closures (Sheridan and Tompkins 2002). An acellular allogenic dermal 

matrix such as AlIoderm, which was approved by the Food and Drug Administration 

(FDA) in 1992 provides a template with natural dermal porosity for regeneration and 

allows the use of thinner autografts (Ramos-E-Silva and Ribeiro De Castro 2002). 

The allogenic dermis still contains its basement membrane proteins and is intended 

to be combined with a thin epithelial autograft in full thickness bums and chronic 

wounds (Singer and Clark 1999; Jones, Currie et al. 2002; Ramos-E-Silva and 

Ribeiro De Castro 2002; Atiyeh, Hayek et al. 2005; Enoch. Grey et al. 2006b). The 

acellular nature of this product removes the specific immune response and so the risk 

of rejection but there is still a risk of disease transmission (Ng, Khor et al. 2004). 

Once applied to the wound bed it becomes repopulated with the patient's own cells, 

generally revascularises quickly and is incorporated into the healing tissue. It 
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reportedly has a good take rate and reduces the scarring associated with full 

thickness wounds (Jones, Currie et al. 2002; Atiyeh, Hayek et al. 2005). Some other 

commercial dermal matrices used in skin reconstruction are Apligraf, Dermagraft, 

Integra, and CrCel. 

Integra artificial skin is currently the most widely accepted synthetic skin substitute 

to be developed for use on burns patients (Jones, Currie et al. 2002). The FDA gave 

approval in 2002 for Integra to be used in "the postexcisional treatment of life

threatening full-thickness or deep partial-thickness thermal injuries where sufficient 

autograft is not available at the time of excision or not desirable due to the 

physiological condition of the patient. Integra Dermal Regeneration Template is also 

indicated for the repair of scar contractures when other therapies have failed or when 

donor sites for repair are not sufficient or desirable due to the physiological 

condition of the patient" (Schultz 2002). Integra is a biopolymer tissue-engineered 

bilayer material consisting of a bovine collagen and shark chondroitin-6-sulfate 

dermal regeneration template with a temporary silicone epidermal layer (Jones, 

Currie et al. 2002; MacNeil 2007). The dermal regeneration template is 

approximately 2 mm thick and has a 70-200 Ilm pore size that allows for the matrix 

to become vascularised and for fibroblast invasion (Ramos-E-Silva and Ribeiro De 

Castro 2002; Sheridan and Tompkins 2002). Neovascularisation usually occurs 

within 28 days at which point the silicone layer is removed and replaced with a 

STSG or epidermal autograft (Singer and Clark 1999; Atiyeh, Hayek et al. 2005; 

MacNeil 2007). The direct application of cells to the dermal matrix was found to be 

problematic because the cells failed to attach securely (MacNeil 2007). Integra 

provides immediate permanent coverage for surgically excised full thickness burns 

and is also used in reconstructive surgery. It requires a healthy and non-infected 

wound bed (Enoch, Grey et al. 2006b). Case studies show that burn wounds treated 

with Integra show good cosmetic and functional results with softer scars compared to 

STSG's (Kremer, Lang et al. 2000; Papp and Harma 2003; Wisser and Steffes 2003; 

Wisser, RennekampfT et al. 2004). 

Apligraf is a bilayer of a neonatal fibroblast populated bovine collagen matrix seeded 

with neonatal keratinocytes. The exposure of Apligraf to an air-liquid interface 
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during production allows the fonnation of a stratified differentiated epithelium 

(Ehrenreich and Ruszczak 2006). Apligraf is available in a ready to use fonn with a 

five day shelf life and is primarily used in the treatment of chronic ulcers (Jones, 

Currie et al. 2002). It resembles human skin histologically (Ramos-E-Silva and 

Ribeiro De Castro 2002) and it appears to hasten healing especially in deep and 

chronic wounds (Jones, Currie et al. 2002). According to Ehrenreich and Ruszczak 

(2006) Apligraf was initially intended for use in bums treatment. Whilst meshed 

Apligraf over a meshed autograft did not improve the 'take rate' of the autograft, a 

better quality scar was achieved and bums treated in this manner were judged to 

have healed better than those treated with an autograft alone. Despite this promising 

study Apligraf use in bums is rare as Apligraf is only FDA approved for use in 

chronic wounds i.e. ulcers and not in bums (Ehrenreich and Ruszczak 2006). 

OrCel is composed of type I bovine collagen in which neonatal fibroblasts and 

keratinocytes are seeded. The fibroblasts are seeded within a porous collagen sponge 

whilst the keratinocytes are seeded on the nonporous side of the matrix. OrCel is not 

exposed to an air-liquid interface during production and therefore the epithelium is 

not tenninally differentiated (Ehrenreich and Ruszczak 2006). OrCel is commonly 

used in acute and chronic deep dennal ulcers, partial thickness bums and donor site 

wounds. Its main disadvantages are that it cannot be used on infected wounds or on 

patients allergic to bovine collagen (Enoch, Grey et al. 2006b). According to Supp 

and Boyce (2005) OrCel is designed for grafting to partial thickness wounds to 

provide a favourable matrix for host cell migration. Oreel has been indicated for use 

in the treatment of donor sites in patients with bums, and surgical wounds and donor 

sites in patients with epidennolysis bullosa (Supp and Boyce 2005). In a recent study 

comparing two skin equivalents OrCel and Biobrane-L in treating split-thickness 

donor sites in bums patients OrCel was shown to reduce healing time and scarring 

(Still, Glat et al. 2003). However, these findings were deemed not clinically 

meaningful by the FDA (Ehrenreich and Ruszczak 2006). 

Wound healing matrices can be produced using synthetic as well as natural 

materials. One such commercial matrix is Dennagraft which is prepared using 

cryopreserved neonatal fibroblasts seeded in a bioabsorbable polyglactin mesh and is 

usually combined with a meshed autograft (Atiyeh. Hayek et al. 2005; Supp and 
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Boyce 2005). The fibroblasts become confluent among the degrading polymer fibres, 

producing ECM proteins and secreting growth factors in the interstices of the mesh 

(Paranteau, Hardin-Young et al. 2000; Seal, Otero et al. 200 I; Jones, Currie et at. 

2002). Dermagraft has been shown to increase angiogenesis (Naughton 2000) and 

epithelisation but does not close the wound. It is approved by the FDA for use in full 

thickness diabetic foot ulcers but not for use in bums and had no significant effect on 

the 'take' of STSG's when STSG's were placed above Dermagraft in full thickness 

bums (Ehrenreich and Ruszczak 2006). 

Research into new and improved matrices for wound healing is ongoing. Ng and 

Hutmacher (2006) have produced dermal matrices using synthetic rather than natural 

materials. Weft-knitted poly(lactic-co-glycolic acid) mesh and starch dialdehyde

crosslinked collagen-hyaluronic acid matrices were seeded with dermal fibroblasts 

and keratinocytes and were investigated for use as skin equivalents. In vitro these 

showed no sign of contracting. When cultured at an air-liquid interface a stratified 

keratinocyte layer resembling native epidermis was observed more readily on the 

starch-collagen-hyaluronic acid matrix than on the poly(lactic-co-glycolic acid) 

matrix. These matrices were subsequently transplanted onto the backs of rats and the 

wounds contracted to a similar degree as those treated with autografts with untreated 

wounds contracting the most (Ng and Hutmacher 2006). El Ghalbzouri et al. (2004) 

investigated the use of a polybutylene terephthalate I polyethylene oxide 

terephthalate (PBTIPEGT) (PolyActive) porous film as a dermal scaffold. ECM 

proteins such as collagen and fibrin could be incorporated later and keratinocytes 

could be seeded directly onto the matrix or a cultured epithelial sheet added. In 

serum free conditions at an air-liquid interface a full thickness skin equivalent with a 

differentiated epidermis could be produced which did not contract during the culture 

period and was easy to handle (El Ghalbzouri, Lamme et at. 2004). 

1.4.3 Dressings. 

Dressings have been used since antiquity to aid the healing process. The choice of 

which dressing to use for a particular wound requires an understanding of wound 

healing and the properties of the available dressings (Lionelli and Lawrence 2003). 

Over the past century, our understanding of wound healing has changed. Up until the 
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mid 1900's it was thought that wounds healed more quickly if they were kept dry 

and left uncovered. It is now understood that wounds heal faster and better when in a 

moist environment and occluded wounds have been shown to heal with cosmetically 

superior results (Menaker 2001). The idea of an occlusive dressing is not new. The 

Smith Papyrus of 1615 BC states that closed wounds heal more quickly than open 

wounds and describes the creation of a dressing made from linen strips covered with 

a gumlike substance. Hippocrates however stated that chronic wounds should not be 

closed as it was thought that chronic wounds were an indication that something 

harmful needed to leave the body and this attitude continued until the 19th century 

(Eaglstein 2001). In the early 1960's two articles were published in Nature (Winter 

1962; Hinnman and Maibach 1963) which showed in both a porcine model and in 

humans that acute. partial thickness excisional wounds experienced significant 

increases in reepithelialisation rates when the exposed tissues were maintained in a 

moist local environment by a semi-occlusive polyethylene film as opposed to being 

allowed to desiccate when uncovered. This lead to the introduction of semi-occlusive 

dressings for the treatment of chronic wounds in the 1970's (Ovington 2007). 

Traditionally wet-to-dry gauze has been used to dress wounds. Dressings that create 

and maintain a moist environment, however. are now considered to provide the 

optimal conditions for wound healing. Moisture under occlusive dressings not only 

increases the rate of epithelialisation but also promotes healing through moisture 

itself and the presence initially of a low oxygen tension (promoting the inflammatory 

phase). Traditional dressings such as gauze do not exhibit these properties; it may be 

disruptive to the healing wound as it dries and causes tissue damage when it is 

removed (lones. Grey et al. 2006). Occlusive dressings have been shown to be 

effective in the treatment of donor sites for STSG's (Wiechula 2003) and in the 

treatment of second degree bums (Field and Kerstein 1994; Wiechula 2003). 

According to Lionelli and Lawrence (2003) occlusive dressings can be divided into 

two classes, non-biologic and biologic. with non-biologic dressings further divided 

into alginates. films. foams. hydrocolloids and hydrogels (Eaglstein 200 I; Menaker 

2001; Lionelli and Lawrence 2003). The roles of human amnion. alginates. polymer 

films, polymer foams and hydrocolloids as wound dressings will be discussed here. 

With the role of hydrogels as wound dressings covered within the section on 

hydrogels in section 1.5.3. 
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An example of a biologic dressing is amnion. Since 1910 allogenic amnion has been 

used as a wound dressing and it has been claimed that it is one of the most effective 

biological dressings ever used in bum treatment. Its use has special appeal in 

developing countries particularly where religious barriers preclude the acceptance of 

bovine, porcine or cadaveric skin (Atiyeh, Hayek et al. 2005). It is used as a 

temporary dressing for clean superficial wounds such as partial thickness bums, 

donor sites, and freshly excised bums awaiting donor site availability (Sheridan and 

Tompkins 2002). Generally fresh amnion is used but according to Maral et al. (1999) 

the use of frozen, dried, irradiated and lyophilised amnion has also been reported. 

Whilst amnion has been shown to have low antigenicity, be effective in eliminating 

pain, allowing wounds to dry faster and in promoting early reepithelialisation there 

are concerns associated with its use especially with regards to virus and disease 

transmission (Kane, Tompkins et al. 1996; Maral, Borman et al. 1999; Sheridan and 

Tompkins 2002; Atiyeh, Hayek et al. 2005). 

Alginates have their origin in the naturally occurring calcium and sodium salts of 

alginic acid found in the family of brown seaweed Phaeophyceae, kelp and algae 

(Menaker 200 I; Ramos-E-Silva and Ribeiro De Castro 2002; Jones, Grey et at. 

2006). They are composed of soft non-woven, twisted fibres and non-woven mats 

(Cho and Lo 1998; Ramos-E-Silva and Ribeiro De Castro 2002; Lionelli and 

Lawrence 2003). They generally fall into one of two categories, those containing 

100% calcium alginate and those containing both calcium and sodium alginate 

(usually 80:20 Ca:Na) (Jones, Grey et at. 2006). Alginates also contain galuronic and 

mannuronic acid. The amounts of these two compounds in the gel alter the material 

properties with high levels of galuronic acid resulting in firmer gels which maintain 

their shape. Dressings containing high amounts of mannuronic acid are 

correspondingly weaker (Ramos-E-Silva and Ribeiro De Castro 2002). Alginate gels 

release calcium ions and have haemostatic properties (Menaker 2001). According to 

Cho and Lo (1998) when the alginate dressing is applied, sodium from the wound 

exudate and calcium from the alginate fibres undergo an ion exchange reaction, 

forming a soluble sodium alginate gel. The free calcium ions produced during the ion 

exchange reaction act to amplify the clotting cascade, according the alginate 

dressings significant haemostatic properties (Cho and Lo 1998). The soluble sodium 

alginate gel produced during the ion exchange reaction creates an occlusive 
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environment that aids wound healing (Lionelli and Lawrence 2003). Alginates are 

best used in wounds with a moderate to heavy wound exudate and in granulating and 

reepithelialising wounds where some exudate is present. They are especially useful 

in packing exuding wounds and rope alginates are easy to apply. Several alginates 

have good wet strength and can be removed in one piece thus reducing trauma to the 

wound. However a second, protective dressing is always required and there is a risk 

of the dressing drying the wound bed and therefore alginate dressings are not 

recommended for wounds with a low volume of exudate (Eaglstein 200 I). Alginate 

dressings have been successfully used in chronic ulcers, partial and full thickness 

burns and STSG's (Cho and Lo 1998). Several alginate dressings are available 

commercially such as AIgiderm, Algisite, Algosteril, Carasorb, Curasorb Calcium 

Alginate Dressing, Kalginate, Kaltostat, Melgisorb, SeaSorb, Sorbsan, Tegagen. 

Urgosorb, (Menaker 2001; Ramos-E-Silva and Ribeiro De Castro 2002; Lionelli and 

Lawrence 2003; Jones, Grey et a1. 2006; Ovington 2007). 

Polymer films used as wound dressings especially in the early stages of burns 

treatment can be as simple as Clingfilm (polyvinylchloride sheeting) which would 

normally be found covering food in a kitchen (Benson, Dickson et al. 2006). Film 

dressings are typically clear polyurethane or copolyester membranes, usually about 

0.2mm thick coated on one side with an adhesive (Cho and Lo 1998; Menaker 200 I; 

Ramos-E-Silva and Ribeiro De Castro 2002; Lionelli and Lawrence 2003). 

According to Cho and Lo these dressings are highly elastic and transparent, allowing 

continuous inspection of the wound. They are semi occlusive dressings as they are 

permeable to oxygen, carbon dioxide and water vapour but are impermeable to 

wound fluids and bacteria (Cho and Lo 1998). Film dressings have little absorptive 

capacity, so frequent dressing changes are needed (Menaker 2001). Unfortunately 

they can adhere to wounds and so retard wound healing by removing new epithelium 

during dressing changes (Cho and Lo 1998; Menaker 2001). Film dressings are best 

used in donor sites, shallow wounds, superficial burns, partial thickness wounds with 

minimal exudate and abrasions (Eaglstein 2001; Menaker 200 I) Commercially 

available film dressings include Acu-Derm, Bioclusive Transparent Dressing, 

Blisterfilm Transparent Dressing, Carrafilm, Hi/Moist Transparent, Mefilm, 

Omniderm, Opsite Wound Dressing, Polyskin 11 Transparent Dressing, Silon TSR 

(temporary skin replacement), Tegaderm Transparent Dressing, Transeal, Transite 
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Exudate Transfer Film, Transparent Adhesive, Uniflex Transparent Dressing, Visi 

Derm 11 by Medline (Cho and Lo 1998; Eaglstein 200 I; Ramos-E-Silva and Ribeiro 

De Castro 2002; Lionelli and Lawrence 2003). 

Foam dressings tend to be composite materials. They are usually composed of a 

polyurethane or silicone foam mesh inner layer and an outer semi permeable 

membrane of polyurethane, polyester, silicone, or Gore-Tex surrounding a 

polyoxyethylene glycol foam (Cho and Lo 1998; Ramos-E-Silva and Ribeiro De 

Castro 2002; lones, Grey et a!. 2006). Early foam dressings were custom 

polymerised or cut for individual wounds. Foam dressings are both absorbent and 

nonadherent, they are permeable to both water and gases and they can expand and 

conform to wounds with unusual proportions. They are comfortable and can be 

removed easily for cleaning (Cho and Lo 1998; Lionelli and Lawrence 2003). They 

aid the dispersion of wound exudate throughout the absorbent layer and the presence 

of the semi permeable backing dressing prevents leakage (lones, Grey et a!. 2006). 

Disadvantages of polymer foams as wound dressings includes their opacity so the 

wound cannot be visualised, additional dressings are required to secure the foam, the 

dressing needs to be changed every three days, they cannot be used on dry wounds 

and they can become incorporated into the wound (Cho and Lo 1998; Menaker 2001; 

Ramos-E-Silva and Ribeiro De Castro 2002). Foam wound dressings are usually 

used in heavily exudating and partial thickness wounds, especially during the early 

inflammatory phase following debridement and sloughing when drainage is at its 

peak, they are also used as pressure relief, packing in deep cavity wounds and in 

venous leg ulcers (Eaglstein 2001; Menaker 2001). Some commercially available 

foam dressings include Allevyn, Cutinova plus, Flexzan, Flexzan Extra, Optifoam, 

PolyMemn, Revitaderm, Silastic foam, Sof-Foam and Tielle (Eaglstein 200 I; 

Menaker 2001; Ramos-E-Silva and Ribeiro De Castro 2002; Ovington 2007). 

The term hydrocolloid is used to describe a family of dressings containing a 

hydrocolloid matrix composed of such materials as gelatin, pectin, and 

carboxymethylcellulose (Lionelli and Lawrence 2003). Hydrocolloid dressings are 

compound formulations usually composed of an outer polyurethane foam bonded to 

a middle hydrocolloid gelling agent, usually sodium carboxymethylcellulose, and an 

inner adhesive layer (Cho and Lo 1998; Ramos-E-Silva and Ribeiro De Castro 
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2002). Hydrocolloid dressings are available as adhesive wafers, sheets or as pastes or 

powders and were derived from materials used initially as ostomy barrier products 

(Cho and Lo 1998; Lionelli and Lawrence 2003; Jones, Grey et at. 2006). 

Hydrocolloid dressings are impermeable to oxygen, carbon dioxide, water vapour 

and bacteria (Ramos-E-Silva and Ribeiro De Castro 2002; Lionelli and Lawrence 

2003). Other advantages include enhanced angiogenesis and an ability to conform to 

wound contours (Menaker 200 I). The dressing absorbs wound exudate well, and 

upon absorbing the exudate the matrix swells and liquefies forming a viscous, 

colloidal gel that prevents adherence of the dressing to the wound bed (Cho and Lo 

1998; Lionelli and Lawrence 2003). Hydrocolloid dressings are used in wounds 

draining low to moderate amounts of exudate, bums, partial or full thickness wounds 

and pressure ulcers. They have also been used in skin disorders such as psoriasis and 

epidermolysis bullosa and are used to prevent blisters in athletes and diabetics (Cho 

and Lo 1998; Eaglstein 200 I; Menaker 200 I). Hydrocolloid dressings are 

particularly good for use on hands and other small areas of superficial or partial 

thickness bums, although they leave a 'skim' of exudate that needs to be removed to 

allow appropriate assessment of the wound (Senson, Dickson et at. 2006). 

Hydrocolloids cannot be used in wounds with a moderate to heavy exudate, they are 

impermeable to oxygen, and they can break down resulting in time consuming 

removal of the hydrocolloid residue from the wound (Eaglstein 200 I). They should 

not be used on infected wounds and are opaque making visualisation of the wound 

difficult (Ramos-E-Silva and Ribeiro De Castro 2002). Some commercially available 

hydrocolloid dressings include Alione, CombiDERM, CombiDERM N, Corn feel, 

Comfeel Plus, Cutinova Hydro, Cutinova Thin, DuoDERM, Extra Thin, Granuncx, 

Hydrocol, Hyprapad, Intact, Intrasite wound dressing, J & J ulcer dressing, NuDenn, 

Orahesive, RepliCare, Restore, Sween-A-Peel, Tegasorb, Tegasorb Thin and Ultec 

(Cho and Lo 1998; Eaglstein 2001; Lionelli and Lawrence 2003; Jones, Grey et at. 

2006; Ovington 2007). 

Wound dressings continue to develop with more coming onto the market annually, a 

recent study states that in a recent issue of a wound care products buyer's guide lists 

more than 400 individual advanced wound dressings including 25 alginates, 55 

foams, 50 hydrocolloids, 51 hydrogels and 24 transparent films (Ovington 2007). 

Many specialist dressings are available especially for bums wounds. However, the 



51 

prevention of infection is a major problem encountered in wound healing. 

Systemically administered antibiotics should be reserved for treating invasive 

infection whilst topical antibacterials are used for superficial, local management of 

an open wound surface. Antibacterials have been used for centuries and are still in 

widespread use (Leaper 2006). Antimicrobials are among many additives being 

incorporated into wound dressings to aid healing. According to Leaper, the 

introduction of silver into wound care as an antibacterial, particularly in burns is 

relatively recent. There is a growing number of silver dressings commercially 

available these include creams such as Flamazine, foams, hydrogels, hydrocolloids 

and polymeric films and meshes (Hudspith and Rayatt 2004). Dressings containing 

the nanocrystalline form of silver appear to have the best evidence of consistency in 

relation to clinical outcomes. These dressings significantly reduce the bacterial 

burden in chronic wounds and there may be further benefit in reducing infection in 

the management of bums (Leaper 2006). Silver has been incorporated into 

poly(ethylene glycol) hydrogels. This study showed that the muItifunctional 

properties of silver allowed for a simplified polymer that was biocompatible, as 

showed by in vitro testing with fibroblasts and keratinocytes and was still 

antimicrobial (Babu, Zhang et al. 2006). Another antimicrobial incorporated into 

wound dressings is poly(vinylpyrrolidinone)-iodine (PVP-I). Vogt et al. (2006) 

produced a PVP-I hydro some and hydrogel which was shown to prevent infection, 

promote wound healing, improve the quality of healing and increase graft 'take' in 

smokers and on wounds with increased bacterial load. The incorporation of 

curcumin, an antioxidant, into collagen gels for use as wound dressings has also been 

recently shown to increase cell migration towards the wound and so speed up the 

wound healing cascade of inflammation, proliferation and scar formation (Gopinath, 

Ahmed et al. 2004). EGF has also been successfully incorporated into chitosan gels 

to improve wound healing in bums (Alemdaroglu, Degim et al. 2006). 

1.5 Hydrogels. 

Hydrogels as defined by Peppas and Mikos (1986) are water-swollen networks 

(crosslinked structures) of hydrophilic homopolymers and copolymers. They are 

three-dimensional and the cross links can be formed by covalent or ionic bonds. 

Often, weaker forces such as van der Waals forces and hydrogen bonds can serve as 
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crosslinks, thus forming swollen networks which behave as hydrogels. Finally. semi

crystalline, uncrosslinked hydrophilic polymers may form hydrogels upon swelling 

since the crystallites act as physical cross links and do not dissolve in water (Peppas 

and Mikos 1986). Hydrogels may absorb from 10-20% (an arbitrary lower limit) up . 

to thousands of times their dry weight in water (Hoffman 2001). Hydrophilic 

polymers include poly(ethylene oxide), poly(acrylamide), poly(ethylene glycol) or 

poly(vinylpyrrolidinone) (Ramos-E-Silva and Ribeiro De Castro 2002). According 

to Peppas et al. (2006) the polymer engineer can design and synthesise polymer 

networks with molecular-scale control over structure such as crosslinking density 

and with tailored properties, such as biodegradation, mechanical strength, and 

chemical and biological response to stimuli (Peppas, Hilt et al. 2006). Physical 

hydrogels can be formed in many ways, these include warming or cooling of 

polymer solutions to form gels and changing the pH of polymer solutions to form 

gels (Hoffman 2001; Hoffman 2002). Chemical hydrogels can also be formed in a 

variety of different methods. Polymer solids or solutions can be crosslinked with 

radiation, chemical crosslinkers or multi-functional reactive compounds. Monomers 

and crosslinkers can be copolymerised as can monomers and multi functional 

macromers. Interpenetrating networks can be formed via the polymerisation of a 

monomer within a different solid polymer and hydrophobic polymers can be 

converted chemically to hydrogels (Hoffman 2001; Hoffman 2002). 

1.5.1 Polymer synthesis. 

By far the most common method of network synthesis involves conventional free 

radical polymerisation (Patrickios and Georgiou 2003). Free radical polymerisation 

reactions can be separated into three stages initiation, propagation and termination 

reactions. According to Cowie (1991) a free radical is an atomic or molecular 

species whose normal bonding system has been modified such that an unpaired 

electron remains associated with the new structure. The radical is capable of reacting 

with an olefinic monomer to generate a chain carrier which can retain its activity 

long enough to propagate a macromolecular chain under the appropriate condition 

(Cowie 1991). The distinguishing characteristic of chain polymerisation, where the 

reactive species is a free radical, cation or anion, is that polymer growth takes place 

by monomer reacting only with the reactive centre. By far the most common 



53 

example of chain polymerisation is that of vinyl monomers and this process can be 

depicted in the following manner modified from Odian (2004). 

H2C=CHY ~ 
R. • R-C-C· 

H2 ~ 
• 

termination 

• 

Each monomer molecule that adds to a reactive centre regenerates the reactive 

centre. Polymer growth proceeds by the successive additions of hundreds or 

thousands or more monomer molecules. The growth of the polymer chain ceases 

when the reactive centre is destroyed by one or more of a number of possible 

termination reactions (Odian 2004). Typically free radical polymerisation reactions 

can be carried out in one of four different ways I) with monomer on Iy (in bulk), 2) in 

a solvent (in solution), 3) with monomer dispersed in an aqueous phase (in 

suspension) and 4) or as an emulsion (Cowie 1991). 

An initiator is usually used to initiate free radical polymerisation reactions. Initiators 

are susceptible to homolytic fission when exposed to heat, electromagnetic radiation 

or a chemical reaction. a,a'-azobisisobutyronitrile (AIBN) is a commonly used 

initiator that decomposes when exposed to either electromagnetic radiation (360 nm) 

or heat (::::60°C) as follows, reaction scheme taken from Cowie (1991) 

(CH3}2 I N=N1 (CH3h 
CN CN 

The reaction then propagates in a stepwise manner with molecules adding onto the 

growing chain. Initially these will be monomers but as the reaction progresses 

dimers, trimers and larger macromers will be added. In theory the chain should 

continue to grow in this manner until all the mono mer in the system has been used 

up. However free radicals are very reactive and interact quickly to form inactive 

covalent bonds. This produces short chains in systems containing a high 
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concentration of initiator and long chains in systems containing a low concentration 

of initiator. Chain growth can terminate in one of three ways. Termination I) via the 

interaction of two active chains, 2) the reaction of an active chain end with an 

initiator radical or 3) termination by transfer of the active centre to another molecule 

which may be solvent, initiator, monomer, inhibitor or an impurity i.e. oxygen. 

Termination via the interaction of two active chains can occur in one of two ways, by 

the combination or by disproportionation. Termination by combination is where two 

chain ends combine to form one long chain. Termination by disproportionation is via 

hydrogen abstraction from one end to give an unsaturated group and two dead 

polymer chains Cowie (1991). These principles hold true for both homopolymers 

and copolymers. 

Copolymers are produced when more than one monomer is used during the 

synthesis. There are five types of copolymers, statistical, random, alternating, block 

or graft copolymers, some of these are illustrated below where M I and M2 are 

different monomers (Odian 2004). 

Statistical copolymers - there is a statistical distribution of one monomer within the 

other. 

Alternating copolymers - the two monomers alternate along the polymer chain. 

Block copolymers - there are blocks of both monomers in the polymer chain. 

Hydrogels are called permanent or chemical gels when they are covalcntly 

crosslinked networks (Hoffman 2001). Diene monomers are often used in 

copolymerisation reactions to obtain a crosslinked structure. When crosslinking 

occurs in the copolymerisation it depends on the relative reactivity of the two double 

bonds of the diene. The extent of crosslinking depends on the latter and on the 
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amount of diene relative to the other monomer. Several different cases can be 

distinguished depending on the type of diene. In most instances it is assumed that the 

diene is present at low concentrations (Odian 2004). When a crosslinked polymer is 

produced the dimensional stability is improved, the creep rate is lowered, it becomes 

less prone to heat distortion as the glass transition temperature (Tg) is raised and the 

resistance to solvents is increased (Cowie 1991). If the selected crosslinker is 

susceptible to degradation then it is possible to design polymers with predictable 

degradation profiles. These polymers are especially useful in drug delivery and tissue 

engineering applications. Controlling degradation behaviour has been one of the 

critical issues in general biomaterials research. Generally biomaterials need to be 

cleared from the body once they complete their roles in the body, and degradable 

materials could be ideal for this purpose. Two approaches are typically used to 

obtain degradable polymers and hydrogels. In the first, gelling polymers are 

designed such that their backbone is degradable by hydrolysis and I or enzymatic 

action. The second approach involves the introduction of degradable crosslinking 

points to systems that are comprised of non-degradable polymer chains (Lee, 

Bouhadir et al. 2004). Whilst degradable polymers are usually viewed as superior 

materials, they have to be approached with caution. The effects of the degradation 

products i.e. Iow molecular weight oligomers, charged molecular species or larger 

pieces of polymer, on surrounding tissues have to be evaluated. Changes in pH 

associated with the degradation of polymers such as poly(lactic acid) or 

poly(glycolic acid) can also have an adverse effect on the viability of surrounding 

tissues. The rates of degradation also have to be evaluated and the effects of the 

degradation on the material properties of the polymer. A rapidly degrading polymer, 

which lost the majority of its strength within a day or two, would not be suitable for 

a wound dressing which may need to stay in place for a week. 

When a greater degree of control is required over the final product i.e. when the 

molecular weight of the polymer needs to be well defined, living polymerisation 

routes can be used. These include atom transfer radical polymerisation CA TRP) and 

reversible addition fragmentation transfer polymerisation (RAFT) (Odian 2004). 

Living radical polymerisation allows the preparation of polymers with predetermined 

molecular weights, a narrow molecular weight distribution and tailored architecture 

(e.g. end-functional, block, star) and therefore offers a vast range of new and 
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advanced materials (Rizzardo, Chiefari et al. 2000). The molecular weights are 

predetennined by the reagent concentrations and conversion. The polymer products 

can also be reactivated for chain extension or block copolymer synthesis (Moad, 

Mayadunne et al. 2003). 

1.5.2 Hydrogels as biomaterials. 

Hydrogels are appealing for biological applications because of their hydrophilic 

character and potential for biocompatibility. In the last couple of decades, hydrogels 

have attracted a great deal of attention, and significant progress has been made in 

designing, synthesising, and using these materials for many biological and 

biomedical applications (Peppas, Hilt et al. 2006). Many biomaterials have been 

designed to meet particular biological and chemical requirements (e.g. 

biocompatibility, degradability, mediation of cell adhesion, etc.). Other design 

parameters, such as the physical properties of the biomaterial, were regarded with 

respect to the processing conditions, the mechanical load capacity, or the diffusivity 

of solutes, but not with respect to the biological response (Brandl, Sommer et al. 

2007). 

Neutral synthetic polymers can be generated from derivatives of poly(hydroxyethyl 

methacrylate) (PHEMA), poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) 

and poly(N-vinylpyrrolidinone) (PNVP). Polymers that respond to stimuli such as 

changes in temperature or pH can also be produced. Responsive polymers include 

poly(acrylic acid) (PAA) which is sensitive to changes in pH and polymers based on 

poly(N-isopropylacrylamide) (PNIPAAm) which is sensitive to changes in 

temperature. (Peppas, Hilt et al. 2006). 
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Figure 1.4 Representative chemical structures for some synthetic polymers. Neutral 
polymers A) poly(hydroxyethyl methacrylate) (PHEMA), 8) poly(vinyl alcohol) 
(PVA) C) poly(ethylene glycol) (PEG) and D) poly(N-vinylpyrrolidinone) (PNVP). 
Responsive polymers E) poly(acrylic acid) (PAA) and F) poly(N
isopropylacrylamide) (PNIPAAm). 

Hydrogels made from PEG and HEMA are normally neutral and relatively incrt to 

cell attachment (Schneider, English et al. 2004). PEG hydrogels are one of the most 

widely studied and used biomaterials. According to Peppas et al. (2006) PEG 

hydrogels are non-toxic, non-immunogenic, and approved by the US FDA for 

various clinical uses. In many cases PEG has been applied as a 'stealth material' to 

render materials invisible to biological molecules i.e. proteins (Peppas, Hilt et al. 

2006). 

PHEMA hydrogels are also widely used in biomedical applications. PHEMA is a 

common constituent in contact lenses. According to Hoffman (200 I) the hydrogel 

pioneer was a PHEMA hydrogel crosslinked with ethyleneglycol dimethacrylate 

(EGDMA). These hydrogels were first reported for biomedical applications in the 

journal Nature in 1960 and have since been successfully used as soft contact lenses. 

The original PHEMA contact lens was developed by Otto Wichterle in 1961 and 

contained 38% water, had excellent wetability and was much more comfortable to 

wear than the hard contact lenses. These contact lenses were subsequently modified 

by the addition of various hydrophilic monomers such as PNVP and glycerol 

methacrylate (GMA) (Lloyd, Faragher et al. 2001). HEMA has been copolymerised 

with other monomers such as methyl methacrylate to modify the gels material 
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properties i.e. the swelling and mechanical properties. These approaches have lead to 

PHEMA being used in drug delivery and tissue engineering applications (Peppas, 

Hilt et at. 2006). PHEMA based hydrogels have also been used in wound healing 

applications as wound dressings and skin substitutes and they have also been used in 

cartilage tissue engineering (Seal, Otero et at. 2001). 

Schneider et al. (2004) modified the charge of PHEMA and PEG hydrogels to 

produce positively and negatively charged gels as well as the normal neutral gels. 2-

sulfoethyl methacrylate was incorporated into the hydrogels to produce negatively 

charged gels. 2-methacryloxy ethyltrimethyl ammonium chloride was added to 

produce positively charged hydrogels. Gels were produced with fixed charges of 

200, 0 and +200 mM. GRGDS (Glycine - Arginine - Glycine - Aspartic acid -

Serine) adhesion sites were also covalently bound to the hydrogel surfaces. This 

study showed that murine MC3T3-EI osteoblasts and 3T3 fibroblasts preferred to 

attach to the positively charged surfaces instead of the negatively charged and 

neutral surfaces. The osteoblastic cells attached better to both gels than the 

fibroblastic cells. Both cell types preferred the HEMA gels than the PEG gels and 

the cells attached better to the positively charged gels than to the gels with GRGDS 

grafted to the surface (Schneider, English et al. 2004). This contrasts with the work 

of Chen et al. (2005) who showed that bovine foetal aorta endothelial cells 

preferentially attached and proliferated on negatively charged PAA, poly(sodium p

styrene sulfonate) (PNaSS) and poly(2-acrylamido-2-methyl-I-propanesulfonic 

sodium) (PNaAMPS) hydrogels with zeta potentials between -20 m V and -35 m V 

over the neutral PVA and poly(acrylamide) (PAAm) hydrogels (Chen, Shiraishi et 

at. 2005). SoJtys-Robitaille et al. (2001) also demonstrated a link between the surface 

charge of contact lenses and protein adsorption. Cationic proteins such as lysozyme 

adsorbed preferentially to anionic polymers and anionic proteins such as human 

serum albumen adsorbed preferentially to cationic polymers. Nonionic polymers 

showed no detectable protein adsorption (Soltys-Robitaille, Ammon et al. 200 I). 

Kulik and Ikada (1996) showed that hydrogel charge also affected the adsorption of 

platelets to various hydrogels. They showed that platelets adsorbed preferentially 

onto the surfaces of cationic polymers, and reduced adsorption was seen on anionic 

polymers. This was explained by the anionic nature of the platelet cell membrane. 

Platelet adsorption was also reduced on polymers with large water contents i.e. 
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greater than 90% (Kulik and Ikada 1996). Nuttelman et al. (2001) showed that the 

water content of hydrogels affected the ability of proteins, specifically fibronectin to 

adhere to the hydrogel surface. This lack of protein adhesion made cell attachment 

difficult and therefore fibronectin was chemically attached to the surface of the PV A 

hydrogel used in this study to allow NIH3T3 fibroblasts to attach and migrate 

(Nuttelman, Mortisen et al. 2001). The link between the water content of hydrogels 

and cell attachment has also been illustrated by Haigh et al. (2002) and Rimmer et al. 

(2005). 

It appears that a number of factors affect the adhesion of cells to polymers namely 

the charge associated with the polymer surface, the water content of polymers and 

the cells themselves. It has been shown that cells cannot attach directly to polymers. 

Proteins such as fibronectin, laminin or vitronectin must be adsorbed to the polymers 

surface before cells can attach (Nuttelman, Mortisen et al. 2001). If the water content 

of the polymer is too high then the protein will not be able to attach to the surface as 

the surface will not be 'seen' by the protein. The adage of opposites attract is also 

true when looking at the adsorption of proteins to polymers with charged proteins 

adsorbing onto the surfaces of polymers with the opposite charge. Proteins not only 

need to be adsorbed onto the polymer but they need to be the correct proteins for cell 

attachment. According to Nuttelman et al. (2001) the driving force for protein 

adsorption to hydrophilic surfaces is enthalpic, conversely the driving force for 

protein adsorption to hydrophobic surfaces is entropic, and protein adsorption to 

hydrophobic surfaces is usually irreversible, opposed to the reversible adsorption of 

proteins to hydrophilic surfaces. Nuttelman et al. (200 I) also states that maximal cell 

adhesion to polymeric surfaces occurs on surfaces of moderate water wetability. 

Surfaces of high or low water wetabilities discourage cell adhesion. At this time it is 

impossible to decide which is the more important of the material properties i.e. 

surface charge or water content when it comes to cell attachment to polymers. 

I.S.2.1 Poly(vinylpyrrolidinone) 

Poly(vinylpyrrolidinone) (PNVP) which IS sometimes known as 

poly(vinylpyrrolidone) or povidone is the water-soluble homopolymer of N-vinyl-2-

pyrrolidone. PNVP was first developed in Germany at I.G. Farben by Professor 
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WaIter Reppe and his colleagues during the 1930's, PNVP was subsequently widely 

used as a blood-plasma substitute and extender during world war 11 (Robinson, 

Sullivan et al. 1990). However in 1978 the FDA determined that the use of PNVP in 

normal saline was unsafe for use as a plasma expander due to the risk of 

accumulation in the body causing the formation of granulomas. The FDA also stated 

that Povidone also interferes with blood coagulation, haemostasis. and blood typing 

and cross matching (FDA 1998). PNVP still has a wide range of use in biomedical 

applications especially in the pharmaceutical industry where it is used as a binder for 

tablets with the World Health Organisation (WHO) granting an acceptable daily 

intake of 0-50 mg.kg,l.day'1 for PNVP (Robinson, Sullivan et al. 1990). 

PNVP hydrogels are widely used in biomedical applications. PNVP is a common 

constituent in contact lenses where it is used to raise the water content of the lens 

(L1oyd. Faragher et al. 2001). Copolymers of PNVP have been investigated as 

adhesives for surgical wounds (Kao, Manivannan et al. 1997), wound dressings 

(Risbud, Hardikar et al. 2000; Razzak, Darwis et al. 200 I; Vogt, Hauser et al. 200 I ; 

Wu, Bao et al. 2001; Lopergolo, Lugao et a!. 2002; Lugao, Rogero et a!. 2002; Ali i. 
Othman et al. 2005; Sen and Avci 2005; Vogt, Reimer et a!. 2006) and for drug 

delivery applications (Berscht, Nies et al. 1994; Liu, Fullwood et al. 2000; Liu and 

Rimmer 2002a; Liu and Rimmer 2002b; D'Souza, Schowen et a!. 2004; Kaneda, 

Tsutsumi et a!. 2004; Kodaira, Tsutsumi et al. 2004; Bajpai and Dubey 2005; 

Devine, Devery et a!. 2006; Saxena, Mozumdar et al. 2006). PNVP is commonly 

encountered as an antiseptic when complexed with Iodine under the trade name 

Betadine. PNVP hydrogels have also been investigated by the group of T.V. Chirila 

for use as a vitreous substitute (Vijayasekaran, Chirila et al. 1996; Chirila. Ilong et 

al. 1998; Hong, Chirila et a!. 1998). These studies showed that PNVP hydrogels had 

the required material properties i.e. these hydrogels were injectable, had the correct 

optical properties and did not stimulate an excessive immune response 

(Vijayasekaran, Chirila et al. 1996; Hong, Chirila et al. 1998). However in vitro 

cytotoxicity testing showed that these PNVP based hydrogels could significantly 

increase fibroblast viability both in the presence and absence of serum. The extent to 

which cell viability altered when exposed to PNVP was affected by the crosslinkers 

used in the study (Hong, Chirila et al. 1997). The ability of PNVP based hydrogels to 

increase cell viability was confirmed by Risbud et al. (2000) who showed that cell 
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viability could be significantly increased when cells were grown on PNVP-chitosan 

hydrogels. 

PNVP is a common constituent in wound dressings, its extreme hydrophilicity 

means that cells find adhesion difficult. It has also been postulated that PNVP could 

be used in the place of poly(ethyleneglycol) (PEG) due to their similar "stealth" 

properties especially when coating nanopartic1es for infiltration into the body 

(Saxena, Mozumdar et aI. 2006). A series of PNVP polymers have been investigated 

by the group of T.V. Chirila for use as vitreous substitutes. During cytotoxicity 

testing of these polymers a growth promoting effect was observed. This was 

especially potent when 3T3 Swiss mouse fibroblasts were cultured with these 

polymers in the absence of serum, this was also shown to be dependent on the 

concentration of polymer in the medium (Hong, Chirila et aI. 1997). Gels crosslinked 

with Diethyleneglycol Dimethacrylate (DEGDMA) performed best in cytotoxicity 

testing. Cytotoxicity was assessed using the SRB assay, an assay for cell protein 

content. For all of the polymers the equilibrium water contents were between 95· 

98%. The polymers had material properties suitable for use as vitreous substitutes 

and for injecting through a large gauge needle (Hong, Chirila et aI. 1997). In vivo 

testing showed that PNVP was still present in the eyes 4 weeks after operation, the 

eyes however showed signs of giant cell infiltration (Vijayasekaran, Chirila et aI. 

1996). Risbud et aI. (2000) showed that poly(vinylpyrrolidinone-chitosan) hydrogels 

could increase the viability and proliferation, assessed by MTT-ESTA assay and 

image analysis, of both fibroblasts and SiHa epithelial cells. Medium that had been 

incubated in the presence of these polymers was also shown to increase cell viability. 

In the case of the SiHa cells the more conditioned medium was present. up to 30%, 

the greater the increase in viability. For fibroblasts at concentrations of 10 and 20% 

conditioned medium and increase in viability above the tissue culture plastic (TCP) 

control was seen, however once the concentration reached 30% the viability of the 

cells, whilst still greater than the control cells, dropped significantly from that of the 

cells cultured in 20% conditioned medium. 

PNVP has also been investigated for use as a vitreous substitute (Vijayasekaran, 

Chirila et al. 1996; Hong, Chirila et aI. 1997; Chirila, Hong et al. 1998; Ilong. 
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Chirila et al. 1998). In vitro biodegradation experiments indicated that there should 

be no biodegradation over the 4 week examination period. Further in vivo testing 

showed that 50% of the injected crosslinked hydrogel disappeared from the eye 

while over the same period 80% of the homopolymer was lost within the same 

period (Hong, Chirila et al. 1998). This loss of polymer could be a major concern. 

However PNVP has been shown to induce only minor storage-related functional 

changes to organs and this is influenced by molecular weight. Linear PNVP's with 

molecular weights of less than 70 kDa passively excreted by the kidneys (Chirila, 

Hong et al. 1998). Other biodegradation studies (Bruining, Koole et al. 1999) have 

shown that PNVP crosslinked with a novel carbonate crosslinker (figure 1.5) , with a 

crosslinker:NVP mole ratio of 1: I 0.5 was still stable after a week. However with 

decreasing crosslinker concentrations the degradation rate increased 1: 1 05 degraded 

in less than I day and 1:1000 degraded immediately at 37°C in phosphate buffered 

saline. There are no literature studies showing the degradation of P(NVP-co

DEGBAC) hydrogels. However the similarities between the two crosslinkers suggest 

that the degradation profiles may be similar. The structure of DEGBAC is shown in 

figure 1.6 

~/"J/'V~/'Vyv~Jy 
o 0 

Figure 1.5 Novel carbonate crosslinker (Bruining, Koole et al. 1999) 

Figure 1.6 Structure of Diethylene glycol bisallylcarbonate 
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The material and chemical characterisation of poly(vinylpyrrolidinone), of both the 

homopolymer and various copolymers are well documented in the literature. The 

13C_NMR spectrum of uncrosslinked poly(vinylpyrrolidinone) in methanol-d4 is 

shown in 1.7. 
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Figure 1.7 I3C-NMR spectrum of Plasdone C-15 in methanol - d4. A commercially 
available linear homopolymer of poly(vinylpyrrolidinone) with molecular weight 
J 04 Da (Raith, Kuhn et aJ. 2002). 

Material characterisation of various poJy(vinyJpyrroJidinone) copolymers for various 

applications has been approached in different ways. Dynamic mechanical analysis 

(OM A) and differential scanning calorimetry have been used to probe the properties 

of poly(vinylpyrrolidinone)-poly(vinyl alcohol) blends (Cauich-Rodriguez, Deb et 

al. 1996a; Cauich-Rodriguez, Deb et al. 1996b) giving storage moduli , glass 

transition temperatures (T g) and stress-strain (a-E) behaviour. Equilibrium water 

content (EWC) measurements are commonly used to characterise hydrogels as the 

hydrophilicity or hydrophobicity of these polymers is important when polymers are 

considered for biomedical applications. Shantha et al. (2003) investigated how 

increasing N-vinyl pyrrolidinone content in a series of poly(lactose acrylate-N-vinyl-

2-pyrrolidinone) hydrogels and increasing crosslinker concentration affected the 

EWC of these hydrogels. Uniaxial tensile and compression testing of hydrogels is 

also possible. Poly(vinylpyrrolidinone)-gelatin hydrogels have been tested using 
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compression testing (Lopes and Felisberti 2003) whilst other hydrogels have been 

tested using specimens cast into dumbbell moulds for uniaxial tensile testing 

(Hinkley, Morgret et al. 2004). Swelling studies and Fourier transform infrared 

(FTIR) spectroscopy have been used along with differential scanning calorimetry 

(DSC) and other chromatography techniques to characterise 

poly(vinylpyrrolidinone-co-acrylic acid) hydrogels (Devine and Higginbotham 

200S). Rheometry can also be used to examine the material properties of polymers 

and is especially suitable for soft polymers like hydrogels. Devine et al. (200S) used 

rheometry to examine the material properties of a poly(vinylpyrrolidinone-co-acrylic 

acid) hydrogel allowing the shear modulus (G) to be calculated. However when 

examining the material properties of hydrogels, as with any polymer, a number of 

factors such as rubber elasticity theory, viscoelasticity and creep behaviour have to 

be taken into account when designing experiments (Anseth, Bowman et al. 1996). 

It has been shown that PNVP can be conjugated to a number of drugs to produce 

functionalised PNVP's which could be used in pharmaceutical applications (Liu. 

Fullwood et al. 2000; Liu and Rimmer 2002b; D'Souza, Schowen et al. 2004). Liu et 

al. synthesised a number of allyloxycarbonyloxymethyl-5-fluorouracil monomers 

that were subsequently successfully reacted with NVP producing polymers. These 

were slightly rich in NVP at low conversions and rich in S- fluorouracil (5-FU) 

monomer at the latter stages of the reaction and a reactivity ratio of rNVP = 0.97 was 

reported (Liu, Fullwood et al. 2000). Subsequent studies involved these 5-FU 

functionalised NVP oligomers being used in the synthesis of NVP membranes. The 

release of the S-FU from these membranes was highly non-Fickian with the release 

mechanism dominated by chemical degradation of carbonate groups present in the 

polymers (Liu and Rimmer 2002b). Cytotoxicity testing of these NVP/5-FU 

membranes showed that wells containing polymer with the 5-FU functionality were 

not viable. It was also apparent that cell proliferation but not viability was reduced in 

the presence of the polymers lacking the 5-FU group. 

Functional NVP oligomers have also been prepared. These oIigoNVP's with methyl 

ketone end groups could be subsequently transformed to produce oligoNVP's with 

si!yl enol ether end groups (Liu and Rimmer 2002a). It has been suggested that 

living polymerisation methods such as Reversible Addition Fragmentation Chain 
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Transfer (RAFT) polymerisation could be used to produce NVP oligomers with 

functional end groups and narrow polydispersities (Moad, Mayadunne et al. 2003). 

1.5.3 Hydrogels as wound dressings. 

Wound dressings as described in section lA have to meet a formidable list of criteria 

to be successful. Briefly they have to be tissue compatible, non-toxic, impermeable 

to exogenous microorganisms, have a rapid and sustained adherence to the wound 

surface, conform to surface irregularities, be elastic to permit motion of underlying 

tissue, have an appropriate tensile strength to resist fragmentation, have a long shelf 

life, minimal storage requirements, be low cost, minimise nursing care of wounds, 

minimise patient discomfort, be translucent to allow direct observation of healing, 

reduce healing time, and prevent heat and fluid loss (Seal, Otero et al. 2001; 

Sheridan and Tompkins 2002; Atiyeh, Hayek et al. 2005; Ehrenreich and Ruszczak 

2006). Polymers used in hydrogel wound dressings include poly(ethylene oxide), 

polyacrylamides, PNVP, chitosan, glycosaminoglycans, pluronic F127 (a block 

copolymer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) 

(PEO-PPO-PEO)), PHEMA and PEG (Corkhill, Hamilton et al. 1989; Ramos-E

Silva and Ribeiro De Castro 2002) 

Hydrogel dressings are available as either gels, sheets or impregnated gauze (Lionelli 

and Lawrence 2003). There are many advantages to gel dressings, they are soothing. 

they will follow the contours of the wound surface, are non-adherent, are semi

transparent, are relatively easy to apply and remove, are permeable to oxygen and 

water, and antimicrobial agents can be incorporated within the material (Quinn, 

Courtney et al. 1985; Eaglstein 200 I; Menaker 200 I). This last point is especially 

useful as hydrogels are poor bacterial barriers. Therefore an antimicrobial agent can 

be used in conjunction with the hydrogel dressing, either a cream underneath the 

dressing or an antimicrobial agent such as penicillin or PNVP-I being incorporated 

into the dressing (Corkhill, Hamilton et al. 1989; Cho and Lo 1998). Hydrogels have 

an ability to cool the skin upon application. This cooling is a result of their high 

specific heat and this has been quantified at about 5°C. The ability of hydrogels to 

cool the skin upon application reduces pain and inflammation (Cho and Lo 1998; 

Ramos-E-Silva and Ribeiro De Castro 2002). Hydrogels, unlike alginates or 
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hydrocolloids do not need further wound secretions to attain a gelatinous 

consistency. Hydrogels as well as donating moisture to the wound are capable of 

absorbing surplus contaminated exudates and safely retaining them within the gel 

structure. The absorption of secretions causes an expansion of the crosslinks in the 

polymer chains making room for the inclusion of foreign bodies such as bacteria, 

detritus, and odour molecules that are irreversibly taken up with the liquid (Jones and 

Vaughan 2005). One of the major problems with hydrogels is their relatively poor 

mechanical properties. The underlying cause of the limited resistance to mechanical 

deformation and poor tear strength of hydrogels is the plasticizing effect of the water 

held within the polymer network, Ironically, it is this same feature that dominated 

the surface properties, permselectivity and permeability that give hydrogels their 

unique and interesting properties (Corkhill, Hamilton et al. 1989). The poor material 

properties mean that hydrogels tend to be used as part of a composite dressing or 

with a secondary dressing. Other disadvantages include the need for frequent 

dressing changes and the fact that hydrogels do not provide a very good barrier 

against bacteria and actually selectively permit the overgrowth of gram-negative 

organisms. Also as hydrogel dressings are non-adherent bacteria and other pathogens 

may gain entry to the wound from the edges of the dressing (Cho and Lo 1998; 

Ramos-E-Silva and Ribeiro De Castro 2002). Hence the need for antimicrobial 

agents mentioned earlier. 

Hydrogels are considered to be a standard form of management for sloughy or 

necrotic wounds. However, they are not recommended for wounds producing high 

levels of exudate or where there is evidence of gangrenous tissue. In this case the 

wound should be kept dry to reduce the risk of infection (Jones, Grey et al. 2006). 

They are also useful for painful wounds, post-dermabrasion, laser wounds, ulcers, 

chemical peels and partial thickness wounds, burns and scalds. Hydrogel dressings 

are also useful for rehydrating eschar and slough for easy removal from the wound 

surface. They are also useful for creating and maintaining a moist but not wet 

microenvironment over the healing wound (Eaglstein 2001; Ramos-E-Silva and 

Ribeiro De Castro 2002; Jones and Vaughan 2005). 

Examples of hydrogel dressings include Aquaform, Carrasyn, Curafil, Curagel, 

Flexderm, FlexiGel, Geliperm, GranuGel, Hydron Burn Bandage, Intrasite, Lamin, 
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Nu-Gel, Omniderm, Purilon, Skintegrity Hydrogel, SoloSite, Sterigel, Tegagel, and 

Vigilon (Quinn, Courtney et al. 1985; Corkhill, Hamilton et al. 1989; Eaglstein 

200 I; Lionelli and Lawrence 2003; Jones and Vaughan 2005; Jones, Grey et a!. 

2006; Ovington 2007). Of these dressings Geliperm (an agar and polyacrylamide 

gel) and Vigilon (a poly(ethylene oxide) hydrogel with a polyethylene backing film) 

have shown promise in the treatment of bums (Quinn, Courtney et al. 1985). 

1.5.4 Hydrogels in drug delivery applications. 

Hydrogels are commonly used vehicles for drug delivery applications. Drugs can 

range from small molecules such as 5-tluorouracil (5-FU), 4-methyl umbelliferone 

(4-MU) or J3-aminopropionitrile fumarate (I3APN) to larger molecules such as 

proteins, enzymes and DNA or RNA. According to Saltzman (2001) many decades 

after the first descriptions of biocompatible polymers for drug delivery, a handful of 

these are now approved for use in humans (Saltzman 2001). The selection of 

hydrogels used in pharmaceutical applications depends on the characteristics of the 

gel and on the application of the drug or protein. Hydrogels have several important 

characteristics involved in drug diffusion. These include the ionisation of the gel, the 

swelling ratio, and specific mesh or pore size. Functional groups along the polymer 

chain can also react to the external environment for example temperature, pH, ionic 

strength of the swelling agent or a combination of two or more factors (Devine, 

Devery et al. 2006). 

Drug release from polymeric materials has been extensively investigated in the 

literature. Model drugs varying from large proteins such as bovine serum albumen 

(BSA) (Anseth, Metters et al. 2002), lysozyme and IgG (Hennink, Talsma et al. 

1996) to small molecules such as 5-tluorouracil (Liu and Rimmer 2002b) have been 

used in these studies. The group of Peppas et al. studied the kinetics of polymer

solvent-solute interactions extensively (Ritger and Peppas 1987a; Ritger and Peppas 

1987b; Brannon-Peppas and Peppas 1991; Braze I and Peppas 2000). Ritger and 

Peppas (1987a; 1987b) attempted to simplify the data analysis involved in the 

application of the existing Fickian diffusion equation, equation 1.1 which deals with 

the kinetics of drug release from polymers. 



Mt = Mass of drug released at time, t 

Moo = Mass of drug released as time approaches infinity 

n = Diffusional exponent 

D = Drug diffusion coefficient 

I = sample thickness 
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Equation 1.1 

The fractional release (MtlMoo) of the drug from polymers with varying geometries 

relates to the release time (t) using the proposed empirical, exponential expression 

MtfMoo=ktn where n = diffusional exponent and k = rate constant. Using this equation 

generally "Fickian diffusion is defined by n equal to 0.50 and non-Fickian by n 

greater than 0.50" (Ritger and Peppas 1987a). Fickian diffusion is defined as zero 

order release of the solute from the polymer i.e. steady state diffusion, no 

interactions between the solute and the polymer. Non-Fickian diffusion is indicative 

of interactions between the solute and the polymer. Sample geometry influences 

solute release. Ritger et al. (1987b) showed how the diffusion exponent varies for 

samples with different geometries in swellable systems. For cylindrical samples, 

such as the ones used in this study, Ritger states that for Fickian diffusion n=0.45, 

for anomalous (non-Fickian) transport n= 0.45<n<0.89 and for Case-II transport 

n=0.89. Whilst Case-J or Fickian diffusion is described by a diffusion exponent, 

Case-II transport is described by a characteristic relaxation constant. Brazel and 

Peppas (2000) used mathematical models to predict drug release profiles from 

polymers. These predictions showed that sample thickness, water and drug diffusion 

exponents and polymer viscoelastic response markedly change the release profiles. A 

small change in sample thickness can have a large effect on drug release behaviour. 

The controlled release of proteins from hydrogels has been extensively investigated. 

The release of model proteins such as lysozyme, bovine serum albumin (BSA) and 

immunoglobulin G (lgG) has been investigated from dextran based hydrogels 

(Hennink, Talsma et al. 1996; Meyvis, De Smedt et al. 2001). BSA has also been 

used as the model protein in release experiments from glycidyl methacrylate-
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hyaluronic acid and glycidyl methacrylate-hyaluronic acid PEG hydrogels (Leach, 

Bivens et al. 2003). In this study the protein was also loaded into the hydrogels in 

two forms. The BSA was mixed into the hydrogel monomer blend before 

crosslinking or loaded into PLGA microspheres which were mixed into the monomer 

blend before crosslinking. The presence of the microspheres was shown to extend 

the release of the BSA from the system from a few hours to a couple of weeks 

(Leach and Schmidt 2005). The use of microspheres of different types i.e. liposomes, 

hydrosomes, polymersomes are becoming more and more popular for drug delivery, 

especially for the delivery of fragile molecules such as proteins. Bos et al. (200 I) 

report the encapsulation of a wide variety of proteins into a variety of synthetic, i.e. 

PLGA, dextran methacrylate or dextran HEMA, microspheres which were 

subsequently incorporated into the PEGTIPBT copolymer polyActive and various 

hydrogels. These systems proved to be extremely versatile with systems for both 

prolonged and delayed release patterns being achieved (Bos, Verrijk et al. 2001). 

Crosslinked nanoparticles synthesised from PNVP have been designed for use as a 

vector for gene delivery. According to Saxena et al. (2006) it has been observed that 

PNVP uptake by cells and its effect on the intracellular enzymes was very limited. 

Moreover, PNVP is retained within the intracellular vesicles after its uptake. The 

PNVP nanoparticles synthesised in this study were able to evade the rough 

endoplasmic reticulum and therefore were able to remain in circulation for a 

considerable period of time and resulted in an 80% transfection efficiency (Saxena, 

Mozumdar et al. 2006). Drugs like 5-tluorouracil (5-FU) can be conjugated to allyl 

carbonate crosslinkers and then used to produce 5-FU releasing PNVP hydrogels 

(Liu and Rimmer 2002b). The 5-FU was released from these hydrogels by 

degradation of the carbonate groups. The release rates of the 5-FU (37°C and pH 7.4) 

from the PNVP hydrogels investigated in this study showed that the release is 

controlled by Fickian diffusion and interaction with the polymer chains with the 

expected contribution from the rate of crosslinker degradation. The diffusion 

exponents obtained for the release of 5-FU from PNVP hydrogels were between 0.13 

and 0.23 and increased with increasing amounts 'of the 5-FU functionalised 

crosslinker (Liu and Rimmer 2002b). Alternatively D'Souza et al. (2004) conjugated 

the drug para-nitroaniline (PNA) directly to the PNVP chain by opening the lactam 

ring and protection of the resulting amine with t-BOC prior to conjugation of the 
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opened ring with the PNA. The t-BOC could then be removed to produce a 

secondary amine. In the deprotected polymers approximately 35% of the PNA was 

released over a 30 day period (50°C and pH 7.5). The protected polymers released 

only 12% of the PNA in the same conditions and over the same time period. 

D'Souza et al. suggest that these PNVP-PNA conjugates could be suitable for 

controlled release applications due to the relatively slow release kinetics. Kaneda et 

al. (2004) successfully conjugated TNFa to PNVP via a reaction with 

methoxypolyethylene glycol-succinimidyl succinate. PNVP-TNFa after Lv. injection 

has a much longer retention time in the blood than native TNFa with a half life of 

360.1 min ± 45.7 min opposed to 4.6 min ± 2.2 min for native TNFa. PEG-TNFa 

was also synthesised and this had a half life 122.6 min ± 85.0 min. PNVP-TNFa was 

shown to have a more potent antitumor effect than the PEG-TNFa. These polymers 

also showed little sign of tissue accumulation. 

Shantha and Harding (2003) reported entrapment of propranolol hydrochloride 

(PPH) into poly(lactose acrylate-N-vinyl-2-pyrrolidinone) hydrogels. Release of 

PPH from the PNVP based hydrogels followed a characteristic release pattern over a 

period of 48 hours. There was a slight burst release during the first hour of the 

experiment explained by PPH adsorbed onto the hydrogel surface. Approximately 

54% of the entrapped drug was released by hour six. During this initial six hour 

period the release profile followed a near zero-order pattern. This is indicative of 

drug release via diffusion from the hydrogel matrix as it swells to equilibrium. 

PNVP has been copolymerised with polyacryJic acid and aspirin and paracetamol 

incorporated (Devine, Devery et al. 2006). NVP has also been copolymerised with 

itaconic acid and methylene blue incorporated as a model drug in this system (Sen 

and Guven 1999). Copolymerisation of PNVP with acrylic acid allowed for the 

incorporation of vitamin B\2 (Bajpai and Dubey 2005). These pH sensitive hydrogels 

showed maximum release at pH 6.8 with a minimum release at pH 1.2. 
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1.6 Aims. 

In summary whilst great strides have been taken in understanding wound healing and 

in developing wound dressings to aid healing, skin graft contracture is still a major 

problem facing burns patients. Recent work by others in the group had identified two 

candidate drugs for blocking skin contraction in tissue engineered skin. It was 

therefore proposed to develop a wound dressing based on the polymer PNVP that 

could be used to deliver the drugs and prevent or at the very least reduce skin graft 

contracture in burns patients. To develop this active hydrogel dressing a series of 

specific objectives were identified. 

1. To evaluate the cellular cytotoxicity of novel PNVP hydrogels. 

2. To examine the cytotoxicity of the drugs p-aminopropionitrile and 4-methyl 

umbelliferone. 

3. To determine whether p-aminopropionitrile and 4-methyl umbelliferone 

would prevent or reduce contracture in a collagen gel contraction model. 

(The p..-aminopropionitrile had been previously identified on the basis of its 

action on a 3D skin contraction model in this group and the 4-methyl 

umbelliferone on the basis of its action on fibroblast populated collagen gels 

in the group of M Edwards at the University of Glasgow). 

4. To determine if 4-methyl umbelliferone could prevent or reduce contracture 

in the reconstructed skin contraction model. 

5. To examine the loading and release of p-aminopropionitrile and 4-methyl 

umbelliferone into and from PNVP hydrogels. 

6. To examine to what extent hydrogels loaded with p-aminopropionitrile and 

4-methyl umbelliferone would prevent or reduce the contraction of the 

collagen gel contraction model and the 3D reconstructed skin model. 
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2. Materials and Methods. 

2.1 Polymer synthesis and characterisation. 

Materials. 

I-vinyl-2-pyrrolidinone (NVP), Ethylene glycol dimethacrylate (EGDMA), Acrylic 

Acid (AA) and Dimethyl sulfoxide (OM SO) were obtained from Aldrich, UK. 

Absolute Alcohol, Acetone, Ether, Dimethylformamide (OM F), Tetrahydrofuran 

(THF), Propan-2-01 (IPA), Dichloromethane (DCM) and Acetonitrile were obtained 

from Fisher UK. Diethylene glycol bisallylcarbonate (DEGBAC) was obtained from 

Greyhound chromatography, UK. 2.2'-Azobis(2-methylpropionitrile) (AIBN) was 

obtained from Fluka, UK. 100 J-lm poly( ethylene terephthalate) (PET) sheeting was 

obtained from HiFi Industrial Film Ltd. UK), Benzene Dithiobenzoate (BDTB) was 

synthesised by Or Steve Carter, Chemistry dept. University of Sheffield, UK 

synthesis unpublished, I-methoxyphenyl-l-(trimethylsilyloxy)ethylene (MPTMSE) 

was synthesised by Or Prodip Sarker, Chemistry dept, University of Sheffield, UK 

(Lang, Sarker et at. 2004). 

2.1.1 Synthesis of poly(vinylpyrrolidinone) oligomers. 

3 g distilled NVP was placed in a dried degassed flask with 30 mg AIBN. The 

reaction was performed at 60°C and slowly stirred for 5 minutes and then quenched 

with liquid nitrogen. The resulting foam was dissolved in dichloromethane and 

added slowly to gently stirring ether, the poly(vinylpyrrolidinone) oligomers 

precipitate out. The solution was filtered and the solid placed in a drying oven at 

room temperature overnight. 

2.1.2 Synthesis of benzene dithiobenzoate functionalised 

poly(vinylpyrrolidinone) oligomers. 

3 g distilled NVP was placed in a dried degassed flask with 0.464 g benzene 

dithiobenzoate and 30 mg AIBN. The reaction was performed at 60°C for 2 hours 

and then quenched with liquid nitrogen. The resulting oil was added slowly to gently 
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stirring ether, the poly(vinylpyrrolidinone) oligomers precipitate out. The solution 

Vola", t~\\.eteU a~u \.\\~ ~~\\~ ~\'G.".g.~\~ ~ ~~~~ ~"'~~ ~ \~~~ \~m~~\~\\l\~ ~'1~Th.\~\\.\, 

2.1.3 Synthesis of I-methoxyphenyl-l-(trimethylsilyloxy)ethylene functionalised 

poly(vinyJpyrrolidinone) oligomers. 

0.36 ml distilled NVP was placed in a dried degassed flask with 0.16 ml 1-

methoxyphenyl-l-(trimethylsilyloxy)ethylene and 65 mg AlBN. The reaction was 

performed at 60°C for 2 hours and then quenched with liquid nitrogen. The resulting 

oil was added slowly to gently stirring ether, the poly(vinylpyrrolidinone) oligomers 

precipitate out. The solution was filtered and the solid placed in a drying oven at 

room temperature overnight. 

2.1.4 Synthesis of poly(vinylpyrrolidinone) membranes in the presence of 

solvent. 

109 distilled NVP, 0.1 g of EGDMA, and 0.1 g of AlBN were placed into a beaker 

containing 4.4 g DMSO. The solution was gently stirred whilst dry nitrogen was 

bubbled through for 20 minutes. The monomer blend was then injected into a glass 

mould consisting of two glass tiles lined with 100 J.1m PET sheets sandwiching a 

PTFE I mm thick spacer. The volume of the mould was approximately 10 ml. The 

mould was then placed into an oven at 60°C for 24 hours. After 24 hours the glassy 

plaque was removed from the mould and placed into absolute alcohol. The alcohol 

was changed every 24 hours for 5 days. 

2.1.5 Synthesis of poly(vinylpyrrolidinone) membranes in the absence of 

solvent. 

Table 2.1 Formulations of monomer blends for the production of NVP hydroge1s 
with different crosslinker concentrations in the absence of solvent. 

Weight NVP I g Crosslinker I g AIBN I g 

crosslinker 

lwt% 

2wt% 

14.85 

14.7 

0.15 

0.3 

0.1 

0.1 



3wt% 

4wt% 

1 wt%+ 1 wt% 

AA 

14.55 

14.4 

14.7 

0.45 

0.6 

0.15 + 0.15 AA 

0.1 

0.1 

0.1 
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Distilled NVP, crosslinker(s) (1 - 4 wt%), and AIBN, in quantities detailed in table 

2.1 above, were placed into a beaker. The solution was gently stirred whilst dry 

nitrogen was bubbled through for 20 minutes. The monomer blend was then injected 

into a glass mould consisting of two glass tiles lined with 100 J..lm PET sheets 

sandwiching a PTFE 1 mm thick spacer. The mould was then placed into an oven at 

60°C for 24 hours. After 24 hours the glassy plaque was removed from the mould 

and placed into absolute alcohol. The alcohol was changed every 24 hours for 5 

days. 

2.1.6 Synthesis of poly(vinylpyrrolidinone) membranes incorporating 3-

aminopropionitrile fumarate. 

Table 2.2 Formulations of monomer blends for the production of NVP hydrogels 
containing 3-aminopropionitrile fumarate with different crosslinker concentrations in 
the presence or absence of water. 

Weight NVPI Crosslinker I AIBN I pAPN.F I Water 

crosslinker g g g mg 

lwt% 14.85 0.15 0.1 3,3.5, 10.5 0, 

1 ml 

lwt%+ 11.85 0.15 0.1 3,3.5, 10.5 3g 

20 wt% H20 

2wt% 14.7 0.3 0.1 3, 3.5, 10.5 0, 

1 ml 

3wt% 14.55 0.45 0.1 3,3.5, 10.5 0, 

1 ml 

4wt% 14.4 0.6 0.1 3,3.5, 10.5 0, 

1 ml 

Iwt%+ 14.7 0.15 + 0.1 3,3.5, 10.5 N/A 

1 wt%AA 0.15 AA 
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Distilled NVP, crosslinker(s), AIBN and water, in quantities detailed in table 2.2 

above, were placed into a beaker containing 3 mg, 3.5 mg or 10.5 mg of 3-

aminopropionitrile fumarate. The solution was gently stirred whilst dry nitrogen was 

bubbled through for 20 minutes. The monomer blend was then injected into a glass 

mould consisting of two glass tiles lined with 100 J.lm PET sheets sandwiching a 

PTFE 1 mm thick spacer. The mould was then placed into an oven at 60°C for 24 

hours. After 24 hours the glassy plaque was removed from the mould. 

2.1.7 Production of poly(vinylpyrrolidinone) xerogels. 

Alcohol swollen P(NVP-co-EGDMA) and P(NVP-co-DEGBAC) membranes were 

cut to size with a cork borer in sterile conditions. The hydrogel discs were placed 

into a Petri-dish and the lid was fastened with autoclave tape. The Petri-dish was 

then placed into a drying oven at 50°C for 48 hours. The xerogeJs thus formed were 

then stored in sterile containers at room temperature until needed. 

2.1.8 Equilibrium water content measurements. 

Phosphate buffered saline (PBS) swollen hydrogel membranes were stored at room 

temperature prior to measurements. The swollen membranes were cut with a size 3 

cork borer (diameter 7 mm). The excess solvent was gently removed from the 

hydrogels by gently dabbing the polymer with tissue. The polymer pieces were 

weighed and placed on a glass slide. The slide was placed into a vacuum oven at 

50°C for 24 hours. The polymer pieces were weighed again and the equilibrium 

water content calculated using the formula. 

Ewe = wet weight - dry weight x 100 
wet weight 

2.1.9 IH NMR. 

Approximately 5 mg of the sample was dissolved in 1 ml of the appropriate 

deuterated solvent. The I H NMR spectra were obtained using a Bruker AC250 

spectrometer at 250MHz and analysed using Spinworks 1.3 software. 
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2.1.10 I3C solid state NMR. 

BC solid state NMR analysis was kindly performed by Dr David Apperley at the 

University of Durham EPSRC solid state NMR service. A Varian Unity Inova 

Spectrometer with a 7.5 mm MAS probe was used. Approximately 500 mg of 

xerogel was sent to the University of Durham by first class post. At The University 

of Durham the samples were lightly ground in a mortar and pestle prior to analysis. 

2.1.11 Size exclusion chromatography (SEC). 

SEC was performed using 2 x 40 cm kiw molecular weight Styrogel™ 5 mm mixed 

gel columns at room temperature. The eluent was THF at a flow rate of 1.0 cm3.min' 

I. Calibration was performed using polystyrene standards and a combination of RI 

and UV detection was employed. RI detector was a ERC-7512 obtained from ERMA 

inc. and the UV detector was a Lambda-Max LC spectrophotometer model 481. 

Automated sampling used a Gilson auto injector. All detectors were attached to a PC 

running Cirrus ™ GPC software. 

2.1.12 Compression testing. 

Compression testing was performed on a BaSE electroforce 3200 attached to a PC 

running WinTest™ software. PBS swollen hydrogel discs of diameter 13.2 mm were 

cut with a cork borer. Compression testing was performed over a distance of 2 mm at 

a rate of 0.1 mm.s· l
. 

2.1.13 Degradation studies. 

PNVP samples hydrated in PBS were placed in a sealed container with a known 

quantity of PBS. The container was then placed in an incubator at 37°C and samples 

were removed and EWCs calculated for up to 12 days. 
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2.2 Cell Culture. 

Materials. 
Dulbeccos' Modified Eagles Medium (DMEM) and Hams FI2 were obtained from 

Sigma, UK or Biowest Biosera. Foetal calf serum was obtained from Biowest 

Biosera. L-glutamine, amphotercin B, penicillin-streptomycin, human recombinant 

epidermal growth factor, hydrocortisone, cholera toxin, adenine, insulin, apo

transferrin 3,3,S-tri-idothyronine (TT), trypsin-ethylene diamine tetra-acetic acid 

(EDT A) (O.OS% w/v trypsin! 0.02% w/v EDTA), 0.02% w/v EDT A, Collagenase A, 

0.4% w/v Trypan blue, Bovine Serum Albumen (BSA) and Fibronectin were 

obtained from Sigma, UK. Epilife medium and human corneal growth supplement 

were obtained from Cascade Biologies, UK. Phosphate buffered saline tablets 

(Dulbeccos' A) were obtained from Oxoid, UK. Collagen from rats tail was obtained 

from Fluka, UK. Trypsin 0.1 % w/v was obtained from Difco, UK. Mycoplasma 

removal agent (MRA) was obtained from Serotec, UK. 

Skin for cell isolation and production of de-epithelised acellular dermis (DED) was 

obtained from patients undergoing routine abdominoplasties and breast reductions at 

the Northern General Hospital, Sheffield. All patients gave full informed consent for 

skin to be used for research through a protocol approved by the Ethical Committee of 

the Northern General Hospital Trust, Sheffield, UK. 

Adenine O.S g of powder was dissolved in 20 ml of distilled water. I M HCI was 

added drop-wise to get the powder into solution and the volume made up to 80 ml 

with distilled water before being filter sterilised, 2 ml aliquots were stored at -20°C 

before use. Final concentration 1.85 x 10-4 M, 2 ml aliquot used in making up SOO ml 

medium. 

Cells The 12 clone of the NIH 3T3 strain of murine fibroblasts was donated by 

Professor Howard Green at the Massachusetts Institute of Technology, USA or 

isolated from split thickness skin as per section 2.2.6 and section 2.2.7. 

Cholera Toxin 1 mg of cholera toxin was dissolved in 1.18 ml of distilled water and 

stored at 4°C. 0.01 ml of this solution was added to 1 ml of medium containing 

serum to form a base stock 8.47 pg.mr', which was then stored at 4°C. O.S ml was 

used in making up SOO ml medium. 
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Collagenase A was prepared by dissolving Collagenase A powder in fibroblast 

culture medium in sterile conditions to make 0.05% (w/v) solution. 

'Difco Trypsin' 0.1 % w/v was prepared by the adding of 0.5 g of Difco Trypsin 

powder, 0.5 g D-glucose, and 0.5 ml phenol red to 500 ml PBS. This was adjusted to 

pH 7.45 using 2 M NaOH using a pH meter. This was filter sterilised and aliquots 

stored at -20°C until needed. 

Epidermal Growth Factor (Human Recombinant from E.coli) 0.1 mg of EGF 

was dissolved in 1 ml of 10% Greens medium. 0.05 ml aliquots were prepared and 

stored at -20°C until needed. 0.05 ml used in making up 500 ml Greens medium, 

final concentration 10 ng.mr l
• 

Hydrocortisone 250 mg was dissolved in I ml 100% ethanol. I ml of this was 

dissolved in 9 ml of PBS to form a base stock and stored at 4°C. 0.08 ml of stock 

used in making up 500 ml medium. 

Insulin 0.0 I g was dissolved in I ml of 0.0 I M HCI and then added to 9 ml of 

distilled water. This was filter sterilised and stored at 4°C. 0.5 ml of stock used in 

making up 500 ml medium. 

PBS was prepared by adding 1 tablet per 100 ml of distilled water. This solution was 

autoclaved at 115°C for 15 minutes and left to cool before use. 

TransferrinIT3 13.6 mg T3 was dissolved in a minimum amount of 0.02 M NaOH 

and the volume made up to 100 ml. 250 mg apo-transferrin was dissolved in 30 ml 

PBS, 0.5 ml T3 added and volume made up to 50 m!. This was filter sterilised and 

0.5 ml aliquots stored at -20°. Final concentration T3 1.36 J,lgr l
, transferrin 2.5 mg.r l 

0.5 ml used in making up 500 ml medium. 

Trypan Blue stock solution I: I mixture of 0.4% Trypan blue and PBS 

No. 22 scalpel blades were purchased from Swann-Morton, Sheffield, UK. Cell 

counts were performed using a modified Neubauer haemocytometer purchased from 

Weber Scientific International, UK. Stainless steel rings and grids were 

manufactured by the Department of Medical Physics at the Royal Hallamshire 

Hospital, Sheffield, UK. Plasticware for cell culture was obtained from Costar, UK. 

ThinCert™ cell culture inserts were purchased from Greiner, UK. All cells, tissues 

and sterile reagents were handled in Class 11 laminar flow hoods obtained from 

Walker Safety Cabinets, UK. Cell and tissue culture was performed at 37°C, 5% CO2 
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95% humidity, in Sanyo CO2 incubators. Light microscopy of cell cultures was 

performed using an Olympus CK40-F200 light and phase contrast microscope. Still 

photographs were taken using a Nikon Coolpix 990 digital camera. 

2.2.1 Fibroblast culture medium. 

DMEM high glucose (4500 mg.rl glucose) supplemented with 10% v/v foetal calf 

serum (FCS), 2 x 10-3 M I-glutamine, 0.625 J-lg.mr l amphotercin B, 100 l.U.mrl 

penicillin and 100 J-lg.mr l streptomycin. 

The above ingredients were mixed at room temperature in a class 11 laminar flow 

hood to make a total volume of 500 ml. Medium was stored at <4°C for a maximum 

of 6 weeks prior to use. An aliquot of medium was warmed to 37°C before use. 

2.2.2 Serum free fibroblast culture medium. 

DMEM high glucose (4500 mg.r l glucose) supplemented with 2 x 10-3 M 1-

glutamine, 0.625 J-lg.mr l amphotercin B, 100 I.U.mr' penicillin and 100 J-lg.mr l 

streptomyc in. 

The above ingredients were mixed at room temperature in a class 11 laminar flow 

hood to make a total volume of 500 ml. Medium was stored at <4°C for a maximum 

of 6 weeks prior to use. An aliquot of medium was warmed to 37°C before use. 

2.2.3 3T3 culture medium. 

DMEM high glucose (4500 mg.r' glucose) supplemented with 10% v/v new born 

calf serum (FCS), 2 x 10-3 M I-glutamine, 0.625 J-lg.mr l amphotercin B, 100 LU.mr' 

penicillin and 100 J-lg.mr l streptomycin. 

The above ingredients were mixed at room temperature in a class 11 laminar flow 

hood to make a total volume of 500 ml. Medium was stored at <4°C for a maximum 

of 6 weeks prior to use. An aliquot of medium was warmed to 37°C before use. 
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2.2.4 Greens medium. 

A clinically approved cell culture medium suitable for the culture of keratinocytes. 

However fibroblasts are also able to grow successfully in Greens medium (Sun, Mai 

et al. 2005). 

DMEM high glucose and Ham's FI2 medium in a 3:1 ratio supplemented with 10% 

v/v foetal calf serum (FCS), 10 ng.mr l human recombinant epidermal growth factor, 

0.4 J.1g.mr l hydrocortisone, 10.10 M cholera toxin, 1.8 x 10.4 M adenine, 5 mg.mr l 

insulin, 5 J.1g.mr l apo-transferrin, 2 x 10.7 M 3,3,5-tri-idothyronine, 2 x 10.3 M 

glutamine, 0.625 J.1g.mr l amphotercin B, 100 l.U.mr l penicillin and 100 J.1g.mr l 

streptomyc in. 

The above ingredients were mixed at room temperature in a class 11 laminar flow 

hood to make a total volume of 500ml. Medium was stored at <4°C for a maximum 

of 6 weeks prior to use. An aliquot of medium was warmed to 37°C before use. 

2.2.5 HCEC medium. 

Epilife was supplemented with Human Cornea growth supplement. 

2.2.6 Cell counts and viability assessment. 

Cell suspension, Trypan blue solution, Cell culture media. 

Cell counts and viability assessments were performed using trypan blue. Cells were 

suspended in a known volume of cell culture media. 20 J.1l of this cell suspension was 

removed and 20 III of Trypan blue stock solution was added. Non viable cells appear 

blue. Viable cells were counted using a Neubauer haemocytometer and the 

concentration of viable cells in suspension was calculated. 

2.2.7 Isolation and culture of keratinocytes from split thickness skin grafts. 

Split thickness skin from theatre (no more than 3 days old), PBS, 'Difco-Trypsin', 

Foetal calf serum, Greens medium, Trypan blue solution, 0.02% w/v EDTA solution, 

TrypsinlEDT A solution 
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Keratinocyte isolation, split thickness skin (STS) (approximately 2.5 cm2) was cut 

into thin pieces (approximately 0.5 cm x 1 cm) and placed into 10 ml 'Difco

Trypsin'. This solution was incubated at 4°C overnight (typically 12-18 hours). 

Enzymatic activity was stopped after this time by the addition of 5 ml foetal calf 

serum. The skin strips were gently placed into a Petri dish containing a small amount 

(approximately 1 ml) of PBS. The epidermis was gently peeled off the dermis and 

the bottom of the epidermis and top of the dermis gently scraped to remove cells 

(keratinocytes, melanocytes etc). The PBS and cells were transferred to a universal 

containing a 50/50 mix PBS and FCS. Cells in PBS and FCS were spun down at 

1000 rpm for 5 minutes and then suspended in 10% Greens medium. A cell count 

was performed using trypan blue to highlight non viable cells. Cells were seeded at a 

density of;:::;: 4 x 106 in T75 flasks seeded approximately 1 hour earlier with 1 x 106 

i3T3. Cells were cultured at 37°C, 5% CO2 in a humidified atmosphere. The media 

was changed after 24 hours and subsequent media changes were performed every 2-3 

days and the desired 70-80% confluency was generally achieved in 5-7 days. 

Keratinocyte sub-culture, the media was rinsed away with PBS and the i3T3 cells 

were removed by incubation with 5 ml 0.02% w/v EDTA at 37°C. The flasks were 

examined by phase contrast microscopy every 5 minutes and gently tapped to 

encourage fibroblast detachment ensuring that the keratinocytes were still attached. 

The i3T3 containing EDT A solution was then removed and the flask rinsed with 

PBS. 2.5 ml TrypsinlEDTA was then added to the flask and incubated at 37°C. 

Keratinocyte detachment was encouraged by gentle tapping and confirmed by phase 

microscopy after 5 minutes. The cell suspension was added to 10 ml 10% Greens 

medium to neutralise the trypsin and spun down at 1000 rpm for 5 minutes. The 

resulting pellet was then suspended in a known volume of 10% Greens medium and 

a cell count was performed prior to use, again using trypan blue. Keratinocytes were 

used between passages 1 and 3. When keratinocytes were cultured without i3T3's 

the TCP was coated with 0.2 mg.mr l collagen I solution. 
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2.2.8 Isolation and culture of fibroblasts from split thickness skin grafts. 

Split thickness skin from theatre (no more than 3 days old), PBS, Collagenase A, 

Foetal calf serum, Fibroblast culture medium, Mycoplasma Removal Agent. 

Fibroblast isolation, the dermis left from keratinocyte isolation is minced up and 

placed into a Petri dish containing collagenase A solution and incubated at 37°C 

overnight. 10 ml of fibroblast culture medium is added to the Petri dish to stop 

collagenase. The cell solution was removed spun down at 2000 rpm for 10 minutes. 

The cells were then suspended in fibroblast culture medium containing mycoplasma 

removal agent and seeded in a T25 flask and incubated at 37°C, 5% C02 in a 

humidified atmosphere. The medium was changed after 24 hours then every 3-4 days 

until the cells were 80% confluent. 

Fibroblast sub-culture, 2 ml TrypsinlEDT A was added to the fibroblast containing 

flasks after thorough washing with PBS and incubated at 37°C. Fibroblasts were 

encouraged to detach by gentle tapping and detachment was confirmed by phase 

contrast microscopy. This generally took around 5 minutes. The cell suspension was 

added to 10 ml fibroblast culture medium to neutralise the trypsin, the cell 

suspension was then spun down at 1000 rpm for 5 minutes. The pellet was then 

suspended in a known volume of fibroblast culture medium and a cell count 

performed prior to use. Fibroblasts were used between passages 3 and 9. 

2.2.9 Culture of HaCaT cells. 

The HaCaT human keratinocyte cell line was kindly supplied by Professor N .E. 

Fusenig (Institute of Biochemistry, German Cancer Research Centre, Heildelberg, 

Germany) and cultured in fibroblast culture medium at 37°C, 5% C02 in a 

humidified atmosphere. 

Sub-culture Flasks containing HaCaT cells were washed thoroughly with PBS and 

then were incubated with 5 ml 0.02% w/v EDTA at 37°C for 5 minutes, 2 ml 

trypsinlEDT A was then added and cells were incubated for a further 5 minutes. 

HaCaT's were encouraged to detach by gentle tapping and detachment was 

confirmed by phase contrast microscopy. This generally took another 5 minutes. The 
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cell suspension was added to 10 ml fibroblast culture medium to neutralise the 

trypsin. The cell suspension was then spun down at 1000 rpm for 5 minutes. The 

pellet was then suspended in a known volume of fibroblast culture medium and a cell 

count performed prior to use. 

2.2.10 Culture of Human Corneal Epithelial Cells (HCEC). 

A HCEC line (10.014 pRSV-T) was obtained from ATCC, USA. HCEC's were 

cultured on tissue culture polystyrene (TCP) plates coated with a solution of Bovine 

Serum Albumin (0.01 mg.mr\ Fibronectin (0.01 mg.mr l
) and Collagen I 

(0.03 mg.mr l
), in HCEC medium. Cells were cultured in a humidified atmosphere 

at 37°C, 5% C02 and used between passages 45 and 47. 

Sub-culture After washing thoroughly with PBS flasks of HCEC cells were 

incubated with 2 ml trypsin/EDTA at 37°C for approximately 2 minutes. HCEC's 

were encouraged to detach by gentle tapping and detachment was confirmed by 

phase contrast microscopy. The cell suspension was added to 5 ml trypsin inhibitor 

and then spun down at 1000 rpm for 5 minutes. The pellet was then suspended in a 

known volume offibroblast culture medium and a cell count performed prior to use. 

2.2.11 3T3 murine fibroblast culture and irradiation. 

Irradiated 3T3 (i3T3) murine fibroblasts were used as a feeder layer during 

keratinocyte culture. A known number of proliferative 3T3's were stored at passage 

14 in cryovials containing 1 ml of cryopreservation medium (see section 2.3.1) in 

liquid nitrogen (-196°C). 

For production of i3T3 passage 14 3T3's were thawed and expanded using standard 

fibroblast sub-culture protocol (Section 2.2.8). Once sufficient cell numbers had 

been achieved (this was usually achieved at passage 17) the cells were then sub

cultured again. However once in suspension the cells were irradiated by exposure to 

a cobalt-60 source. Cells of known concentration in 3T3 culture medium were 

placed into 25 ml Universal containers. They were then exposed to y-irradiation and 

received a total radiation dose of 25 Grays. 



84 

2.3 Cell cryopreservation. 

Materials. 

Foetal Calf Serum, (DMSO), Cellstar Cryovials were obtained from Greiner Bio

one, UK, Nalgene ™ Cryo 1°C freezing container obtained from Nalgene Co., USA. 

2.3.1 Cryopreservation medium. 

1 ml dimethyl sulphoxide (DMSO) was added to 9 ml foetal calf serum to produce a 

10% solution of DMSO in FCS. This solution was made up fresh each time it was 

needed. 

2.3.2 Method of cryopreservation. 

Immediately prior to cryopreservation, the cells were detached from their culture 

flasks using trypsinlEDT A and suspended in a known volume of the appropriate 

culture medium. A cell count was performed and the cells were spun down at 

1000 rpm for 5 minutes. The cells were then suspended in cryopreservation medium 

to give a total cell count of 1-4 x 106 cells per ml depending on the cell type. The 

cryovials were placed in a Nalgene Freezing Container and placed into a -80°C 

freezer overnight. The cryovials, now containing frozen cells were then transferred 

to a Dewar bucket containing liquid nitrogen (-196°C). 

2.3.3 Thawing of cryopreserved cells. 

Cryovials were removed from the liquid nitrogen and defrosted in a water bath at 

37°C for few minutes. They were then added to 10 ml pre-warmed cell culture 

medium. The cells were then spun down at 1000 rpm for 5 minutes. The supernatant 

was then discarded and the cell pellet suspended in a known volume of cell culture 

medium. A cell count and viability assessment was then performed. 
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2.4 Mono-and co-culture of keratinocytes and fibroblasts on tissue

culture plastic for drug cytotoxicity experiments. 

Materials. 

Costar™ 24-well tissue culture plates, were obtained from Coming, USA. 0.20 J.lm 

non-pyrogenic sterile filters were obtained from Sarstedt, Germany. Cells, Greens 

culture medium, fibroblast culture medium, 3-aminopropionitrile fumarate, 4-methyl 

umbeIliferone sodium salt. 

3-aminopropionitrile (PAPN) solution 3-aminopropioniriIe fumarate was dissolved 

in DMEM to produce a stock concentration of 10 mg.mr'. This was filter sterilised 

and stored at 4°C until needed (no more than 4 weeks). 

4-Methyl umbelliferone (4-MU) solution 4-MU sodium salt was dissolved in 

DMEM to produce a stock concentration of 0.1 M. This solution was filter sterilised 

and made fresh for each experiment. 

Keratinocytes were cultured as per section 2.2.7 and then plated into 24-well culture 

plates coated with 0.2 mg.mr' rat tail collagen at 5 x 104 cells in 1 ml Greens 

medium. Cells at passage 1 and 2 were used. Human skin fibroblasts were cultured 

as per section 2.2.8 and cells at passage numbers 3 to 8 were used. They were plated 

in fibroblast culture medium for monoculture experiments and Greens medium for 

co-culture experiments. Cells were plated in 24-well culture plates at 5 x 104 cells 

per well in 1 ml medium. For co-culture experiments, 1.25 x 104 fibroblasts and 

3.75 x 104 keratinocytes were plated together in a total of 1 ml Greens medium. 

Experiments were performed over 7 days. 
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2.5 Culture of cells in direct and indirect contact with PNVP 

polymers. 

Materials. 

Costar ™ 24-well tissue culture plates, Costar ™ 12-well tissue culture plates, Greiner 

ThinCert™ cell culture inserts, stainless steel rings, cells, cell culture medium, 

PNVP polymers. 

A 

Medium level 

Cells 

Polymer 

Figure 2.1 Cartoon depicting a) indirect contact culture system and b) direct contact 
culture system. 

2.5.1 Culture of cells in direct contact with PNVP polymers. 

A cartoon illustrating the experimental set up is shown in figure 2.I .A. Basically 

PNVP hydrogels were placed into ThinCert™ PET tissue culture inserts with 8 ).1m 

pores and suspended in 24 well plates. Cells were seeded at 5 x 104 cells per well in 

10 ).11 of medium into the ThinCert on top of the hydrogel. This ensured contact 

between the cells and the PNVP. Alternatively to ensure contact between the cells 

and the hydrogels, hydrogel discs of 18 mm diameter were cut and placed into 12 

well Costar™ plates. Stainless steel rings, internal diameter 10 mm were placed on 

top of the gels and cells were seeded into each ring. A tissue culture plastic (TCP) 

control was always included. In the case of experiments performed with 

keratinocytes and HCEC cells the TCP was coated with the appropriate proteins (see 

section 2.2.7 and 2.2.10). Once seeded, cells were placed in the incubator for I hour 

and then extra medium was gently added. Cells were cultured in direct contact with 

PNVP for 4 days. 
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2.5.2 Culture of cells in indirect contact with PNVP polymers. 

A cartoon illustrating the experimental set up is shown in figure 2.1.B. Basically 

cells were seeded at 5 x 104 cells per well in 10 J..lI of medium into standard 24 well 

Costar™ culture plates. PNVP hydrogels were placed into ThinCert™ PET tissue 

culture inserts with 8 J..lm pores either suspended above the cells in the culture well. 

A TCP control was always included. In the case of experiments performed with 

keratinocytes and HCEC cells the TCP was coated with the appropriate proteins (see 

section 2.2.7 and 2.2.10). Once seeded, cells were placed in the incubator for 1 hour 

and then extra medium was gently added. Cells were cultured in the presence of 

PNVP for 4 days. 

2.5.3 Effect of hydrogel-conditioned media on fibroblast viability. 

PNVP hydrogels were placed into wells in a 24 well plate. I ml of appropriate media 

was added (serum free DMEM or fibroblast culture medium). The plates were placed 

into an incubator at 37°C, 5% C02 for 4 days. The now conditioned media was 

transferred to cells plated out at a density of 5 x 104 cells in fibroblast culture 

medium 24 hours previously. Cells were cultured in PNVP conditioned medium for 

4 days. 
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2.6 Cell viability, proliferation and differentiation assays. 

Materials. 

PBS, 3-( 4,5-0imethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (M TT), Propan-

2-01, concentrated hydrochloric acid (HCI), 2-ethoxyethanol (Cellosolve). 4',6-

Diamidino-2-phenylindole (OAPI), Urea, SOS. 

Acidified Isopropanol 25 ,.d concentrated HCI was added to 20 ml isopropanol. 

This solution was stored until needed. 

DAPI Solution Stock solution consisting of 1 mg.mr l of OAPI in PBS was 

prepared. 10 )..1.1 aliquots were frozen at -20°C until needed. These aliquots were then 

diluted 1: 1000 in PBS immediately prior to experimental use. 

Lysis Buffer 48 g of urea and 0.04 g of SOS were dissolved in 100 ml of PBS. 

MTT solution MTT was dissolved in PBS to a final concentration of 0.5 mg.mr). 

The solution was made fresh for each experiment. 

The plate readers used in these experiments were Oynex Technologies MRXII 

microplate reader attached to a PC running Revelation 2.0 software. Fluorescent 

plate reader Bioteck Flx800 microplate fluorescence reader attached to a PC running 

KC4 v3.3 software. The epifluorescence microscope was obtained from Leica 

Microsystems (UK) Ltd, UK. Photographs were taken with a Hamamatsu Orca 

camera from Hamamatsu Photonics UK Ltd, UK. Openlab 3.1.7 software and 

Openlab filter- and shutter-controlling hardware were obtained from Improvision, 

UK. 

2.6.1 DAPI DNA assay. 

Urea, OAPI and SDS were obtained from Sigma, UK. 

Cells were washed with PBS, 1 ml of lysis buffer was added to the cells and 

incubated for 1 hour at 37°C. Samples were collected into micro-centrifuge tubes. 

100 )..1.1 of sample was added to 100 )..1.1 of DAPI solution and fluorescence was read 

using a fluorescent plate reader (Aex = 360/340 nm Aem = 460/440 nm). 
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2.6.2 Involucrin assay. 

Goat serum, IgG 1 anti-human involucrin, mouse isotype involucrin IgG goat anti

mouse JgG-FITC conjugate and sodium hydroxide (NaOH) were obtained from 

Sigma, UK. 10% phosphate-buffered formaldehyde was obtained from Genta 

Medical, UK. Methanol was obtained from Fisher, UK. 

At the end of the culture period cells were fixed in 10% buffered formaldehyde for 

10 minutes at room temperature. Cells were then treated on ice with absolute 

methanol for 5 minutes to permeabilise the cell membrane. The cells were then 

washed three times in PBS and incubated in 10% (v/v) solution of goat serum in 

PBS. The goat serum was then removed and the cells were washed in PBS. The 

wells were then incubated for 45 minutes with 18 Ilg.mr l mouse primary antibody 

IgG 1 antihuman involucrin in PBS. In order to control for the binding specificity of 

the primary antibody, control wells were incubated with 18 Ilg.mr l of a mouse IgG 1 

Kappa antibody in PBS. After washing with PBS, all of the wells were incubated 

with a secondary antibody, goat anti-mouse IgG - FITC conjugate (Fab specific) in 

PBS (1 :500) for 45 minutes. To obtain quantitative values, the fluorescent label was 

eluted by the addition of 0.1 M NaOH at 37°C for 1 hour. The fluorescence of 100 III 

of each sample was read in a Bioteck Flx800 microplate fluorescence reader attached 

to a PC running KC4 v3.3 software, using an excitation wavelength 360/340 nm and 

emission wavelength 460/440 nm. 

Microscopy was performed within 24 hours of staining and DAPI-stained plates 

were kept in the dark at 4°C prior to microscopy. Fluorescent emission was 

visualised using a Leica epifluorescence microscope "-ex = 495 nm, "-em = 5 15 nm 

(for FITC/involucrin visualisation) and "-ex = 358 nm, "-em = 461 nm (for 

DAPIInuclei visualisation) and images were captured using a Hamamatsu Orca 

camera attached to an Apple computer (MAC OS 9.2) running Openlab 3.1.7 

software. 
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2.6.3 MTT-eluted stain assay. 

MTT and Cellosolve were obtained from Sigma, UK. Concentrated HCI was 

obtained from VWR. Propan-2-01 was obtained from Fisher, UK. PBS tablets were 

obtained from Oxoid, UK. 

Samples were washed gently with PBS. For 24 well plates I ml of MTT solution was 

used per well, 12 well plates used 1.5 ml of MTT solution per well. The plates were 

incubated with MTT solution for 40 minutes at 37°C, 5% CO2 in a humidified 

atmosphere. The MTT solution was subsequently removed and for fibroblast cultures 

acidified isopropanol was used to elute the formazan product from the cells. For 

keratinocyte, HaCaT and HCEC cultures and experiments where cells were grown in 

direct contact with the PNVP hydrogels, 2-ethoxyethanol was used to elute the 

formazan from the cells. 75 JlI of the sample was placed in a 96 well plate and the 

optical density was read in a Dynex Technologies MRXII microplate reader attached 

to a PC running Revelation 2.0 software at 540 nm and referenced at 630 nm. 
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2.7 Collagen gels. 

Materials. 

NaOH was obtained from sigma, UK. Collagen from Rat tail was obtained from 

Fluka, UK. Glacial acetic acid was obtained from VWR, UK. DMEM and FCS were 

obtained from Biowest Biosera, UK. 

Acetic Acid solution 0.1 M Glacial acetic acid (17.4 M) was diluted in distilled 

water to produce a 0.1 M solution. This was then taken into a class 11 cell culture 

hood and filter sterilised kept in a sterile bottle until needed. 

Collagen I solution (5 mg.mr1
) Rat tail type I collagen was placed into a sterile 

bottle/container containing a sterile stirring bar and made up to 5 mg.mr' by adding 

sterile 0.1 M acetic acid. This was kept cool and stirred slowly until all the collagen 

had dissolved, and the stock solution was kept at 4°C until needed (no more than 3 

weeks). 

Sodium Hydroxide solution (1 M) Sodium hydroxide pellets were dissolved in 

distilled water to produce a 1 M solution. This was then taken into a class 11 cell 

culture hood and filter sterilised and then kept in a sterile bottle until needed. 

Collagen gels were prepared with a final collagen concentration of 2.7 mg.mr'. 

3.6 ml of 5 mg.mr' collagen solution was placed into a chilled universal. 2.1 ml 

DMEM was added and gently mixed. 1 M NaOH was added dropwise to neutralise 

the acetic acid. 0.9 ml FCS (containing if needed the appropriate number of cells) 

was then added to the collagen solution and mixed well. 350 ).ll of collagen solution 

was used per well of a 24 well plate. The plate was gently rocked to ensure that the 

gels spread out unifonnly. The gels were placed into an incubator to set. After 24 

hours the gels were released from the side of the wells using a fine pipette tip (p20) 

and 1 ml of medium was added to the wells. 

2.7.1 Fibroblast monoculture collagen gels. 

5 x 104 cells per gel were suspended in the FCS used to make the collagen gel. After 

the gel set I ml of fibroblast culture medium was gently added to the wells. 
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2.7.2 Keratinocyte monoculture collagen gels. 

Collagen gels were prepared as per section 2.7 without cells in the FCS. After the 

gels had set 5 x 104 keratinocytes (P 1 or 2) were placed on the top of the gel in 50 J.l.1 

of Greens medium and allowed to attach for 20 minutes at 37°C. 1 ml of Greens 

medium was then gently added to the wells. 

2.7.3 Fibroblast-keratinocyte co-culture collagen gels. 

Collagen gels were prepared as per section 2.7 with 1.25 x 104 fibroblasts per gel in 

the FCS. After the gels had set 3.75 x 104 keratinocytes (PI or 2) were placed on the 

top of the gel in 50 J.l.1 of Greens medium and allowed to attach for 20 minutes at 

37°C. I ml of Greens medium was then gently added to the wells. 

2.7.4 Effect of j3APN and 4-MU on the contraction of co-cultured collagen gels. 

Co-cultured collagen gels were prepared as per section 2.7.3. Before the gels were 

released from the sides of the wells all the media was removed from the gels. Once 

the gels had been released 1 ml of media supplemented with PAPN 50 - 800 J.l.g.mr
l 

or 4-MU 0.125 - 4 mM was added to the wells. Every 24 hours from this point on all 

the media was removed from each well and the collagen gels. The gels were 

photographed for image analysis (see section 2.9) and I ml of fresh PAPN or 4MU 

supplemented media was added. The experiments were run over 6 days. 

2.7.5 Effect of 4-MU on the contraction of mono and co-cultured collagen gels. 

Collagen gels were prepared seeded with mono and co-cultures of fibroblasts and 

keratinocytes as per sections 2.7.1-3. Before the gels were released from the sides of 

the wells all the media was removed from the gels. Once the gels had been released 

1 ml of media supplemented with 2 mM 4-MU was added to the wells. Every 24 

hours from this point on all the media was removed from each well and the collagen 

gels. The gels were photographed for image analysis (see section 2.9) and 1 ml of 

fresh j3APN or 4MU supplemented media was added. The experiments were run 

over 6 days. 
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2.7.6 Effect of PAPN and 4-MU loaded hydrogels on collagen gel contraction. 

4-methyl umbelliferone sodium salt was obtained from Sigma, UK. P(NVP-co

DEGBAC) and P(NVP-co-DEGBAC-co-AA) xerogels were produced as per section 

2.1.7. PBS was produced as per section 2.2. 

4-methyl umbelliferone solution 4-methyl umbelliferone sodium salt was dissolved 

in PBS (produced as per section 2.2) to produce solutions of I mM and 4 mM these 

solutions were then filter sterilised. 

p-aminopropionitrile fumarate solution 3-aminopropionitrile fumarate was 

dissolved in PBS (produced as per section 2.2) to produce solutions of 1 000 ~g.mrl 

and 200 ~g.mrl these solutions were then filter sterilised. 

Sterile xerogels were placed into 30 ml universals containing 25 ml of PAPN or 4-

MU solution at the appropriate concentration. These were placed onto a slowly 

revolving blood rolling table at room temperature for 2 days, until the gels were 

hydrated. The gels were then suspended in ThinCert™ cell culture inserts above 

collagen gels that had just been released from the sides of the well. 1 ml of Greens 

medium was gently added to each well. After 24 hours the medium was completely 

removed from the wells and the cell culture inserts. The inserts were placed into a 

fresh sterile 24 well plate while the collagen gels were photographed for image 

analysis. The inserts were then re-suspended above the gels and 1 ml of fresh Greens 

medium added. This procedure was repeated every 24 hours for 6 days. 

2.7.7 Effect of 4-MU loaded hydro gels, changed regularly, on collagen gel 

contraction. 

Hydrogels loaded with 4mM 4-MU were produced as per section 2.7.6. 

The hydrogels were suspended in ThinCert™ cell culture inserts above collagen gels 

that had just been released from the sides of the well. 1 ml of Greens medium was 

gently added to each well. After 24 hours the medium was completely removed from 

the wells and the cell culture inserts. The inserts were placed into a fresh sterile 24 

well plate while the collagen gels were photographed for image analysis. The inserts 
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were then re-suspended above the gels and I ml of fresh Greens medium added. This 

procedure was repeated every 24 hours for 6 days with the 4-MU hydrogels being 

changed for fresh 4-MU loaded hydrogels every second day. 
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2.8 Preparation of tissue-engineered composites. 

The protocol used was developed within our laboratory and reported by Ghosh 

(Ghosh, Boyce et at. 1997). It was subsequently modified by Chakrabarty 

(Chakrabarty, Dawson et at. 1999). 

2.8.1 Sterilisation of donor skin. 

The skin was received from theatre and stored in PBS supplemented with 

penicillin/streptomycin (penicillin 50 I.U.mrl and streptomycin 50 ~g.mrl) and 

Fungizone (313 Jlg.r l) at 4°C for up to 14 days. The skin was then immersed in a 

sterile mixture of 50% glycerol: 50% PBS (v/v) for 4 hours followed by 85% 

glycerol: 15% PBS for 18 hours. The skin was finally placed into 100% glycerol for 

26 hours. The skin was then sent for further ethylene oxide sterilisation. 

The skin was removed from 100% glycerol (section 2.6.1) and allowed to drip dry 

before any excess glycerol was removed by gently dabbing the skin with absorbent 

paper towel. The skin was the placed into autoclave bags, labelled and sealed with 

autoclave tape. Ethylene oxide sterilisation was performed at the Central Sterile 

Services Department (CSSD) of Leicester Royal Infirmary by the Sterivit™ 

procedure. The bagged skin samples were placed onto racks and exposed to 15% 

ethylene oxide, 85% carbon dioxide (a concentration of 200 mg ethylene oxide per 

litre) at 55°C and a pressure of 5.5 atmospheres for 30 minutes. After sterilisation, 

the samples were stored at room temperature for at least 3 days to allow aeration and 

dissipation of any remaining ethylene oxide gas. Ethylene oxide treated skin was 

then stored, in sealed autoclave bags, at room temperature until needed. 

2.8.2 De-epidermisation of donor skin. 

All procedures were performed in a class 11 culture hood. The sterilised skin was 

removed from the sealed autoclave bags and placed into 100 ml sterile plastic 

containers containing sterile PBS which was then incubated at 37°C for at least 2 

days. The skin was then removed from the PBS solution and placed into 100 ml 

sterile plastic containers containing sterile 1 M sodium chloride solution. The skin 
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was then incubated overnight at 37°C (typically 14 - 18 hours). At this stage there 

was visible separation of the dermis from the epidermis. Epidermis that was still 

attached to the dermis was gently detached by gentle scraping with a blunt-ended 

spatula. The de-epidermised dermis (DED) was then washed twice with PBS and 

incubated in 10% Greens medium at 37°C for a minimum of 48 hours. This had a 

threefold purpose i) ensured that any sodium chloride solution remaining in the DED 

was washed out ii) allowed the DED to become saturated with culture medium and 

iii) provided a rough sterility check for the DED (in the presence of infection, the 

medium becomes more acidic and therefore the phenol red pH indicator in the 

medium changes colour from crimson red to yellow). For anyone experiment, DED 

from a single patient was used and wherever possible cut from the same sheet. This 

was to try to reduce inter-patient variation in skin characteristics and differences in 

thickness. For experimental use the DED was cut into squares with dimensions of 

approximately 1.5 x 1.5 cm and the reticular surface was placed on the bottom of the 

culture well. 

2.8.3 Production of tissue-engineered skin composites. 

Rings and grids were manufactured from medical grade stainless steel by the 

Department of Medical Physics, Royal Hallamshire Hospital, Sheffield. 6-well tissue 

culture plates were Costar™ obtained from Coming Inc., USA. 

Following skin rehydration and de-epidermisation, the DED was cut with a scalpel to 

squares of approximately 1.5 x 1.5 cm and placed into the wells of a six well plate 

with the papillary dermis facing upwards. A chamfered metal ring (internal diameter 

1 cm) was placed in the centre of each piece of DED and was gently pressed down to 

ensure a watertight seal and thus prevent leakage of the cell suspension. 10% Greens 

media was added to the culture well outside the ring to allow the seal to be tested. 

Keratinocytes and fibroblasts were seeded into the centre of the ring (keratinocytes 

3 x 105 in 300 III 10% Greens, fibroblasts 1 x 105 in 200 J.lI 1 0% Greens). The culture 

plates were then incubated at 37°C for 48 hours with the media inside the ring being 

changed twice during this period prior to raising to air-liquid interface (All). After 

48 hours, the media and the seeding rings were removed. A no.22 scalpel blade was 

used to cut around the seeded area and the un seeded DED was discarded. A sterile 
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stainless steel grid was introduced to each well and the composite was placed on this 

grid seeded surface uppermost. Fresh 10% Greens medium, or Greens medium plus 

4-MU was placed into each well until it just touched the reticular surface each 

composite whilst leaving the seeded papillary surface exposed to the air. The 

composites were cultured at 37°C in a humidified 5% CO2 atmosphere for 28 days. 

The cell culture medium was changed every 3 - 4 days. A cartoon illustrating the 

experimental set up for a seeded composite at an ALl is shown in figure 2.2 below. 

Air-liquid interface 

Cell culture medium 

Figure 2.2 Diagram showing schematic for the culture of tissue engineered skin 
composite at an air-liquid interface. 

2.8.4 Effect of 4-MU on contraction of tissue engineered skin composite. 

4-Methyl umbelliferone (4-MU) solution 4-MU sodium salt was dissolved in 

DMEM to produce a stock concentration of 0.1 M. This solution was filter sterilised 

and made fresh for each experiment. 

To examine the effect of 4-MU on the contraction of the skin composite the 

composites were prepared as per section 2.8.3 and the medium was supplemented 

with 4-MU to produce final concentrations of 0.5, I and 2 mM. Every 7 days the 

composites were photographed for image analysis (see section 2.9). 
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2.9 Image analysis. 

The collagen gels and composites were photographed using a Nikon 990 Coolpix 

digital camera. In each case the plate was placed alongside a scale bar so that the 

captured digital image could be calibrated and thus the area of the composite be 

calculated. The camera was placed directly above the plate (without its lid) inside the 

class 11 culture hood to maintain sterility but to minimise distortion of the image. The 

images were imported into ImageJ software and the scale bar used to calibrate the 

image. The zoom facility in the programme was used to increase the size of each 

image to reduce observer error. A computer mouse was used to trace the edge of the 

composite freehand. The software then automatically calculated the area of this plot. 

relative to the calibration derived from the scale bar. The area of the composite on 

day 0 (when it was raised to an air-liquid interface) was designated 100% and all 

changes in area were expressed relative to this initial measurement. 
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2.10 Histology. 

Materials. 

10% phosphate-buffered formaldehyde was obtained from Genta Medical, UK. 

Carazzi's Haematoxylin: 5 g Haematoxylin (Cl 75290) was dissolved in 800 ml 

distilled water, 50 g aluminium potassium phosphate, 0.6 g potassium iodate and 

200 ml glycerol was then added to the solution. The solution was mixed well and 

then filtered. 

Eosin: A 1% w/v solution of eosin (Cl 45280) was adjusted to pH 6.3 with dilute 

HC\. 

Acid/alcohol: I % v/v HCI in 70% ethanol. 

Composites were placed into 10% phosphate-buffered formaldehyde at room 

temperature, which were subsequently embedded in paraffin wax. 5 Ilm sections 

were cut, mounted and stained using haematoxylin and eosin by Dr Christopher 

Lay ton, Department of Histopathology, Northern General Hospital, Sheffield. 

2.10.1 Carazzi's Haematoxylin and Eosin staining. 

This stain was used to show the cellular architecture/interactions within the tissue. 

Haematoxylin stains acidic structures such as cell nuclei purple/blue. Eosin stains 

proteins and other basic structures pink. 

The wax covering the sections was removed by submerging the slides in xylene for 

approximately 10 minutes. The xylene was then removed by taking the slides 

through descending grades of alcohol i.e. 90%, 75% and 50% and then into water. 

The slides were stained with haematoxylin for 3 minutes and then excess stain was 

removed by rinsing the slides in tap water. The haematoxylin stains all cellular 

material not just the nuclei. In order to remove the haematoxylin from the cytoplasm 

of the cell, the slides were differentiated in 1% acid/alcohol for approximately 20 

seconds. Differentiation was confirmed microscopically then sections were washed 

in running tap water. The slides were then stained with eosin for approximately 20 

seconds. Dehydration was achieved by taking the slides through ascending grades of 

alcohol i.e. (50%, 75% and 90%). The slides were then placed back into xylene and 

cover slips were applied. 
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2.10.2 Histological scoring of skin composites. 

In order to assess the effect of 4-MU on the appearance of the reconstructed skin 

composites, a scoring system was used. This was the scoring system used by Miss 

Caroline Harrison and is an adaptation of a previous scoring system devised by Ms. 

R. Dawson, research technician, University of Sheffield; Or C. Lay ton, Department 

of Histopathology, Northern General Hospital, Sheffield and Professor S. MacNeil. 

Scoring was carried out by 5 independent observers within the MacNeil group, who 

each have significant experience examining composite histology. Photomicrographs 

of the H&E stained composites were given a random anonymous reference number. 

Photomicrographs were taken using a Motic digital microscope (85 professional 

series) attached to a PC running Motic Images Advanced 3.1 software. The digital 

photomicrographs were examined on PC monitors by the observers, thus allowing 

the zoom feature to be used during the scoring procedure. 

AREA 

Keratin 

Keratinocyte layer 

Skin scoring system 

DESCRIPTION 

Normal keratin 
Vacuolation within the keratinised layers 
Thin layer of poorly adherent/fragmented keratin 
Non-existent 

SCORE 

A 
B 
C 
D 

Good, organised, thick with differentiation A 
Either parakeratosis or disordered keratinocyte differentiation B 
Thin (2-3 cells), organised, continual C 
Monolayer, patchy D 
Non-existent E 

Dermo-Epidermal Junction 
Fully attached, with rete ridges present A 

Dermis 

Fibroblasts 

Attached but no rete ridges B 
Partial attachment C 
No attachment D 

Increased dermal density 
Normal, organised pattern ofreticular and papillary dermis 
Disorganised, small gaps I holes 
Bland collagen tissue, large gaps I holes 
Disintegrating 

Large number, enhanced proliferation 
Average number 
Few, reduced proliferation I poor survival 
Non-existent 

A 
B 
C 
D 
E 

A 
B 
C 
D 
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2.11 SDS-P AGE electrophoresis and protein staining with 

Coomassie Brilliant Blue TM. 

Materials. 

Tris-HCI, Tris, p-mercaptoethanol, glycerol, bromophenol blue. 30% w/v 

acrylamide/0.8% w/v N,N' -methylene-bis-acrylamide, N,N,N' ,N'· 

Tetremethylethylenediamine (TEMED), ammonium persulphate (APS), glycine, 

glacial acetic acid were obtained from VWR, UK. Coomassie Brilliant Blue R250, 

EDTA, SDS, and SDS-7B molecular weight ladder were obtained from Sigma, UK. 

The proteins used in the SDS· 7B molecular weight ladder were <X2 macroglobulin 

(185 kDa), p-glactosidase (115 kDa), fructose 6-phosphate kinase (84 kDa), 

pyruvate kinase (61.5 kDa), fumarase (55 kDa), lactic dehydrogenase (36 kDa) and 

triose phosphate isomerise (31 kDa). DMEM, DMEM + 10% FCS, FCS Methanol 

was obtained from Fisher, UK. 

Coomassie Brilliant Blue 0.25% (w/v) Coomassie Brilliant Blue™, 40% (v/v) 

methanol, 7% (v/v) acetic acid, deionised water. 

Coomassie Brilliant Blue Destain 40% (v/v) methanol, 7% (v/v) acetic acid, 

deionised water. 

Loading buffer 0.5 ml p-mercaptoethanol, 2 ml glycerol, 1.5 g SDS, 0.0 I g 

bromophenol blue, 0.6 ml 1.25 M Tris HCI pH 6.8, 6.9 ml d&hO. 

Overlay 12.5 ml 1.875 M tris pH 8.8, 36.5 ml deionised water and 1 ml 10% w/v 

SDS. 

Resolving gel (7%) 2.3 ml of 30% w/v acrylamide/0.8% w/v N,N' -methylene-bis

acrylamide, 2.5 ml of 1.875 M Tris buffer pH8.8, 4.92 ml deionised water, 0.2 ml 

10% w/v SDS, 10 III TEMED and 70 III 10%w/v APS. 

Running buffer 3 g Tris, 14.4 g Glycine, 2 g SDS, 0.75 g EDT A dissolved in 

800 ml of ddH20 and make up the volume to 1000 ml with ddlhO. This was stored 

at 4°C until required. 

Stacking gel 0.76 ml 30% w/v acrylamide/0.8% w/v N,N'-methylene-bis

acrylamide, 0.5 ml 1.25 M tris pH 6.8, 3.61 ml deionised water, 0.1 ml 10% w/v 

SDS, 5 J.!I TEMED, 25 J.!I 10% w/v APS. 
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AIl samples (OM EM, OMEM + 10% FCS, FCS, and P(NVP-co-DEGBAC) soaked 

in OM EM, OMEM + 10% FCS and FCS) were placed into micro-centrifuge tubes 

with I: 1 v/v loading buffer for 5 minutes at 100°C. The SDS-7B molecular weight 

ladder was also placed into a micro-centrifuge tube with 1: I v/v loading buffer for 5 

minutes at 100oe. 

The resolving gel solution was placed into a multicasting chamber leaving a 3 cm 

gap at the top. Overlay solution was then gently added to fill the chamber and the gel 

was allowed to polymerise for approximately I hour. The overlay was then gently 

poured off and stacking gel solution added. A lane comb was inserted into the 

stacking gel solution to form the gel lanes. The stacking gel was allowed to 

polymerise for approximately 1 hour. Once the stacking gel had polymerised the 

well comb was carefully removed and the denatured samples added. including 

ladder. The electrophoresis unit was placed into the electrophoresis tank and 

submerged in running buffer. The proteins were separated at a constant voltage of 

200 V for 1 hour. The stacking gel was then removed and the resolving gel placed 

into 1 M acetic acid. The acetic acid was removed and the gel placed into Coomassie 

Brilliant Blue™ solution for 1 hour. This solution was removed and destain added. 

The gel was left in destain for 2 hours and then changed. The destain was then left 

overnight (approximately 12 - 18 hours) and changed again. The gel was then placed 

onto a flat bed scanner attached to a PC running Epson scansmart software. 
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2.12 (3-aminopropionitrile «(3APN) release. 

Materials 

2,4,6-trinitrobenzenesulfonate 5% (w/v) in H20 (TNBS), sodium bicarbonate, 3-

aminopropionitrile fumarate (J3APN) and bovine serum albumen (BSA) were 

obtained from Sigma, UK. Concentrated hydrochloric acid was obtained from VWR. 

P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co-AA) xerogels were produced as 

per section 2.1.7. PBS was produced as per section 2.2. Plate reader used for J3APN 

release assay was a Bioteck ELx800uv microplate reader attached to a PC running 

KCJunior software optical density was measured at 320 nm and referenced at 

630 nm. 

j3-aminopropionitrile fumarate solution 3-aminopropionitrile fumarate was 

dissolved in PBS (produced as per section 2.2) to produce solutions of 1000 J..lg.mr 1 

and 200 J..lg.mr1
• 

Sodium bicarbonate solution 0.1 M solution was produced by dissolving sodium 

bicarbonate pellets in water the pH was then adjusted to p1l8.5 by the addition of 

concentrated hydrochloric acid. 

TNBS solution 0.0 I % solution of TNBS was produced by diluting 2 J.lI of TNBS per 

ml of sodium bicarbonate solution. 

2.12.1 Loading ofPNVP xerogels with J3APN solution. 

Xerogels were placed into 30 ml universals containing 25 ml of J3APN solution at the 

appropriate concentration (200 or 1000 J.lg.mr1
). These were placed onto a slowly 

revolving blood rolling table at room temperature for 2 days, until the gels were 

hydrated. 

2.12.2 Release of J3APN from PNVP hydrogels. 

J3APN loaded hydrogels were produced as per section 2.12.1. The hydrogels were 

gently removed from the universal and gently dabbed with absorbent paper to 

remove any excess solution. The hydrogels were then placed into individual wells of 
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a 48 well plate and 1 ml of PBS gently added to each well. After 24 hours the PBS 

was completely removed and stored for later analysis. I ml of fresh PBS was then 

added to each well and this was repeated every 24 hours for 6 days. 

2.12.3 Detection of I3APN in PBS. 

10 III of the PBS stored from 2.12.2 was transferred to a 96 well plate 90 III sodium 

carbonate buffer was added. SO III of TNBS solution was added to each well and the 

plate left in the dark at room temperature for 2 hours. The absorbance was read at 

320 nm in a Bioteck ELx800uv microplate reader attached to a PC running KCJunior 

software. The absorbance was then converted to ~APN concentration using the 

calibration graph shown in figure 2.3 below. 
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Figure 2.3 Final I3APN calibration curve, samples diluted down to final 

concentrations using Na(C03) 2 buffer pH 8.S (n=6). All data expressed as mean ± 

SEM. 
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2.13 4-methyl umbelliferone (4-MU) release. 

Materials. 

4-methyl umbelliferone sodium salt was obtained from Sigma, UK. P(NVP-co

DEGBAC) and P(NVP-co-DEGBAC-co-AA) xerogels were produced as per section 

2.1.7. PBS was produced as per section 2.2. The plate reader used for 4-MU release 

assay was a Bioteck Flx800 microplate fluorescence reader attached to a PC running 

KC4 v3.3 software. (t..ex = 360/340 nm t..em = 460/440 nm). 

4-methyl umbelliferone solution 4-methyl umbelliferone sodium salt was dissolved 

in PBS (produced as per section 2.2) to produce solutions of I mM and 4 mM. 

2.13.1 Loading of PNVP xerogels with 4-MU solution. 

Xerogels were placed into 30 ml universals containing 25 ml of 4-MU solution at the 

appropriate concentration (1 or 4 mM). These were placed onto a slowly revolving 

blood rolling table at room temperature for 2 days, until the gels were hydrated. 

2.13.2 Release of 4-MU from PNVP hydrogels. 

4-MU loaded hydrogels were produced as per section 2.13. I. The hydrogels were 

gently removed from the universal and gently dabbed with absorbent paper to 

remove any excess solution. The hydrogels were then placed into individual wells of 

a 48 well plate and I ml of PBS gently added to each well. After 24 hours the PBS 

was completely removed and stored for later analysis. 1 ml of fresh PBS was then 

added to each well and this was repeated every 24 hours for 6 days. 

2.13.3 Detection of 4-MU in PBS. 

25 J.lI of the PBS stored from 2.13.2 was transferred to a 96 well plate. To this was 

added 175 J-lI of PBS, the fluorescence was then read using an excitation wavelength 

of 360/340 nm and emission wavelength of 460/440 nm in a Bioteck Flx800 

microplate fluorescence reader attached to a PC running KC4 v3.3 software. The 
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fluorescence was then converted to 4-MU concentration using the calibration graph 

shown in figure 2.4. 
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Figure 2.4 Calibration curve used for drug release experiments. Excitation 

wavelength 360/340 nm, emission monitored 460/440 nm. Data expressed as mean ± 

SEM of n=6 samples. 

2.14 Statistics. 

Statistics used during this project were Students ' T-Test and I-way ANOVA with 

Bonferroni Correction. Statistical significance was assessed by p<O.OS. GraphPad 

InStat 3.06 software from GraphPad software Inc, USA was used for statistical 

analysis. 
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3. Synthesis and characterisation of 

poly(vinylpyrrolidinone) polymers. 

3.1 Functionalised oligomers. 

The production of oligoNVP's with functional end groups could aid the chemical 

incorporation of drugs and other compounds that could aid wound healing and/or 

reduce skin graft contraction. Functionality could also improve the biocompatibility 

of hydrogel membranes synthesised using these oligomers possibly aiding cell 

attachment and thus increasing the number of possible applications of these 

hydrogels. 

3.1.1 Synthesis of oligoNVP. 

Figure 3.1 shows the IH NMR spectrum of oligoNVP synthesised in bulk. GPC 

measurements of the oligoNVP gave a weight average molecular weight (Mw) of 

251 g.mor l with a polydispersity of 1.02 indicating that the oligomers formed 

primarily as dimers with a small proportion oftrimers being produced. Reducing the 

amount of initiator in the reaction system and possibly adding a small amount of 

solvent to retard the reaction slightly could increase the chain length. The wide peaks 

are indicative of the presence of polymer instead of mono mer. 
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Figure 3.1 IH NMR spectrum ofoligoNVP in CHCb. 

3.1.2 OligoNVP functionalised with benzene dithiobenzoate. 

An attempt to produce oligoNVP using RAFT polymerisation using BOTB as the 

RAFT agent gave the NMR spectrum shown in figure 3.2. The yield was 1.63% 

unfortunately this meant that after structural verification there was insufficient 

sample for further GPe analysis. This low yield meant that this synthesis route 

would not be practical for the large quantities of oligomers needed for subsequent 

membrane synthesis. Again the wide peaks seen in this spectrum are indicative of the 

presence of polymeric species. 
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Figure 3.2 IH NMR in MeOH of oligoNVP polymerised in the presence of the 
RAFT agent BDTB. 

3.1.3 OligoNVP fuoctiooalised with silyl eool ether. 

The polymerisation ofNVP in the presence of the silyl enol ether MPTMSE gave the 

NMR spectrum shown in figure 3.3. The GPC analysis of this functionalised 

oligoNVP gave Mw of 266 g.mor 1 with a polydispersity of 1.04. This is indicative 

of the presence ofNVP dimers and trimers again larger oligomeric fragments would 

be required for membrane synthesis. 
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Figure 3.3 'H NMR spectrum in CDCh ofNVP polymerised with MPTMSE. 

3.1.4 Summary of results. 

Living polymerisation routes were used in an attempt to maintain a narrow 

polydispersity. The synthesis of oligomers via RAFT polymerisation with benzyl 

dithiobenzoate was unsuccessful, both in the presence and absence of the solvent 

dioxane due to very low conversions. The synthesis of the NVP oligomers 

functionalised with the silyl enol ethers was also unsuccessful, again due to the 

unstable radical resulting in very low conversions, both in the presence and absence 

of the solvent toluene. The NVP radical is not very stable and it is therefore likely 

that in the presence of solvent the radical transferred to the solvent molecules. 
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3.2 Synthesis and characterisation of NVP based membranes. 

The ultimate aim of this project is the production of PNVP based hydrogel 

membranes. The synthesis of functional oligomers was unsuccessful so membrane 

synthesis was attempted using the monomer I-vinyl-2-pyrrolidinone. 

3.2.1 Synthesis and characterisation of NVP-co-EGDMA membranes. 

Initially membranes were synthesised in the presence of dimethyl sulfoxide (DMSO) 

as a solvent. These membranes were easy to handle and peel away from the PET 

backing sheet after polymerisation. However once swollen in ethanol, to remove 

unreacted monomer, initiator etc., and phosphate buffered saline (PBS) for biological 

testing the membranes became extremely difficult to handle. This was reflected in 

the equilibrium water content (EWC). These hydrogels had a EWC of 98.25% ± 

0.155% as shown in table 3.1 and illustrated in figure 3.4 below resulting in 

problems handling these membranes. 

Table 3.1 EWC measurements. Measurements performed on polymers swollen in 
PBS. Dried at 50°C in a vacuum oven for 24 hours (n=6). Measurements expressed 
as mean ± standard error of mean (SEM). 

Polymer Ewe in PBS @ room SEM I 

temperature I % % 

NVP 1 wt% EGDMA +DMSO 98.3 0.2 

NVP 1 wt% EGDMA 96.2 0.3 

NVP 2 wt% EGDMA 92.3 0.6 

NVP 1 wt% DEGBAC 92.2 0.1 

NVP 2 wt% DEGBAC 89.3 0.2 

NVP 3 wt% DEGBAC 86.1 0.5 

NVP 4 wt% DEGBAC 81.7 0.4 

NVP 1 wt% DEGBAC 1 wt% AA 89.5 0.1 
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Figure 3.4 Effect of synthesis conditions, presence of solvent, crosslinker, 
crosslinker concentration and addition of acrylic acid on equilibrium water content 
of membranes swollen in phosphate buffered saline measurements expressed as 
mean ± SEM (n=6). 

To reduce the EWe the next batch of membranes were synthesised in bulk, i.e. 

without solvent. This did reduce the EWe to 96.18% and raise the membrane 

material properties. However they still did not have the handle-ability required of a 

wound dressing. Increasing the concentration of EGDMA (1-5 wt%) in the 

membranes produced opaque, phase separated membranes as illustrated in figure 3.5. 

Once hydrated these membranes were significantly stiffer than the original 1 wt% 

EGDMA membranes. However, they had little material integrity and flaked easily 

when removed from liquid. Therefore the only membrane where EWe 

measurements were possible was the NVP 2 wt% EGDMA membrane. 
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Figure 3.5 NVP-co-EGDMA membranes swollen in ethanol. EGDMA concentration 
expressed as wt% in the monomer feed. 

I3C Solid state NMR analysis of the I wt% EGDMA membrane revealed a surprising 

amount of unreacted vinyl groups still present, see figure 3.6 below 
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Figure 3.6 l3C NMR spectrum of NVP-co-EGDMA membrane containing I wt% 
EGDMA. The presence of the peak at 110 ppm (*) is indicative of unreacted vinyl 
groups still present in the polymer membrane. 

3.2.2 Synthesis and characterisation of NVP-co-DEGBAC membranes. 

The crosslinker was changed to diethyleneglycol bisallylcarbonate (DEGBAC) in an 

attempt to produce membranes with increased material properties. This crosslinker 

was also chosen because of the potential for degradation inherent in the carbonate 

groups. As the aim of this part of the study was the improvement of the material 
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properties these membranes were synthesised solely in bulk. Increasing the amount 

of crosslinker in these DEGBAC crosslinked membranes produced clear colourless 

membranes. The membranes containing 3 wt% DEGBAC and above shattered 

during the ethanol swelling procedure with the 3 and 4 wt% membranes producing 

pieces of sufficient size for EWC measurements to be performed. However for those 

membranes for which EWC measurements were possible the NVP-co-DEGBAC 

membranes showed reduced water contents compared to NVP-co-EGDMA 

membranes. The I wt% DEGBAC had an EWC of 92.2% ± 0.1 % and the EWC 

reduced with increasing crosslinker concentration. The 2 wt% DEGBAC had an 

EWC of 89.3% ± 0.2 and 3 wt% DEGBAC had an Ewe of 86.1 % ± 0.5% and 

4 wt% DEGBAC had an EWe of 81.7% ± 0.4%. These are illustrated in table 3.1 

and figure 3.4. The 5 wt% DEGBAC membrane shattered into pieces so small that 

Ewe measurements were not possible. Figure 3.7 shows the I3C solid state NMR 

spectrum from the analysis performed on the 1 wt% DEGBAe membrane, once 

again unreacted vinyl groups are present in the spectrum. 
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Figure 3.7 IJC NMR spectrum of P(NVP-co-DEGBAC) membrane containing 
I wt% DEGBAC. The presence of the small peak at 110 ppm (*) is indicative of 
unreacted vinyl groups still present in the polymer membrane. 

A small amount (1 wt%) of acrylic acid (AA) was added to the NVP 1 wt% 

DEGBAC membrane to see if this altered the release profile of either of the anti

contraction agents under investigation see chapter 5. This produced a clear, 

colourless membrane which became slightly hazy when swollen in PBS indicating a 
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certain amount of phase separation within the membranes. The addition of the AA 

reduces the EWC still further. All EWC measurements can be found in table 3.1 and 

figure 3.4. Again the I3C solid state NMR spectrum in figure 3.8 reveals the presence 

of unreacted vinyl groups in the membranes. 
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Figure 3.8 I3C NMR spectrum of P(NVP-co-DEGBAC-co-AA) membrane 
containing I wt% DEGBAC and I wt% AA. The presence of the small peak at 
110 ppm (*) is indicative of unreacted vinyl groups still present in the polymer 
membrane. 

3.2.3 Mechanical testing of NVP based membranes. 

Compression testing of the hydrogels that were considered for biological 

characterisation confirmed that the hydrogels had Young' s moduli (E) suitable for 

the proposed wound dressing application. The data for these experiments are shown 

in table 3.2. For those samples which were tested to failure an ultimate compressive 

stress (UCS) was calculated. Some samples did not fail over the 2 mm test distance 

possibly due to differences in sample thickness. Those that did not fail were 

excluded from UCS calculations and this lead to different replicate numbers for each 

polymer. 
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Table 3.2 Material properties, E and UCS. Measurements performed in compression 
on polymers swollen in PBS in air over a distance of 2 mm at a strain rate of 
01 mm S·I 

Polymer Elastic SEM / Ultimate Compressive SEM / 

Modulus / MPa Stress / MPa MPa 

MPa 

NVP 1 wt% EGDMA 

+DMSO 
Not done Not done 

NVP 1 wt% EGDMA 0.16 0.02 0.03 0.00 

(n=4) (n=3) 

NVP 1 wt% DEGBAC 0.22 0.02 0.29 0.08 

(n=4) (n=2) 

NVP 1 wt% DEGBAC 0.24 0.02 Unable to obtain 

1 wt%AA (n=3) (n=3) 

3.2.3 Degradation of P(NVP-co-DEGBAC) based membranes 

Degradation of P(NVP-co-DEGBAC) hydrogels was initially determined by 

examining the change in equilibrium water content (EWC), the data is shown in 

figure 3.9. Previous studies of carbonate crosslinked PNVP's (Bruining. Koole et al. 

1999; Liu and Rimmer 2002b) suggest that these polymers should degrade rapidly 

via carbonate hydrolysis, so initially measurements were taken every 24 hours. 

However it rapidly became apparent that these polymers did not degrade over the 

time period studied. The Ewe stayed fairly constant over the 10 day period. At this 

point the number of samples left and difficulties keeping the samples at 37°C meant 

that the experiment was continued at room temperature. Degradation from this point 

on was assessed visually, and no apparent degradation was observed after 1 year. 
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Figure 3,9 Effect of crosslinker concentration on the degradation of P(NVP-co
DEGBAC) hydrogels swollen in PBS at 37°C. Degradation assessed using EWC 
measurements, measurements expressed as mean ± SEM (n=6). 

3.2.4 Synthesis ofNVP-co-DEGBAC membranes incorporating J3APN. 

In any drug delivery application controlled release is essential. Too little drug and 

the desired effect is not achieved and too much drug could be harmful to the cells 

and tissues involved. The incorporation of a known amount of the anti-contraction 

agents would hopefully allow an appropriate therapeutic concentration to be 

released. Experiments have shown that (3APN at a concentration of 200 Ilg.mrl is 

effective at reducing contraction of the reconstructed skin model (Chapter 6). Initial 

experiments were performed attempting to incorporate (3APN, in the form of the 

water soluble salt 3-aminopropionitrile fumarate «(3APN.F), into the PNVP-co

DEGBAC membranes. 

Initially membranes were synthesised where (3APN.F at various concentrations was 

mixed into the monomer blend before injection into the mould. These membranes 

were very difficult to peel off the PET sheets. With increasing concentrations of 

(3APN.F the membranes became increasingly golden in appearance. This was 
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presumed to be the organic pAPN.F. The pAPN.F had a tendency to locate around 

the edges of the membrane. A large number of bubbles were seen in the membranes. 

Due to this and the presence of small pAPN.F crystals still present in the monomer 

blend prior to injection, a range of solvents was then tested to improve the 

incorporation of the pAPN.F into the P(NVP-co-DEGBAC) membranes. 

Table 3.3 Table showing the solubility, assessed visually, of 3-aminopropionitrile 
fumarate in 1 ml of solvent. 
Solvent Solubility Solvent Solubility 

10% EtOH In Insoluble DMF Insoluble 

DMSO 

20% EtOH in Insoluble Dioxane Insoluble 

DMSO 

30% EtOH in Insoluble THF Insoluble 

DMSO 

40% EtOH In Insoluble IPA Insoluble 

DMSO 

50% EtOH In Insoluble Acetonitrile Insoluble 

DMSO 

60% EtOH in Insoluble DEGBAC Insoluble 

DMSO 

70% EtOH in Insoluble Methanol Insoluble 

DMSO 

80% EtOH in Insoluble AA Soluble 

DMSO 

90% EtOH in Insoluble NVP Insoluble 

DMSO 

10% H20 in NVP Insoluble 17% H20 in NVP Insoluble 

15% H20 in NVP Insoluble 20% H20 in NVP Soluble 

With pAPN.F soluble in water a small amount of water (l ml per membrane) was 

added to the monomer blend prior to injection. When these membranes still proved 

unsuitable 20 wt% water was added to the monomer blend. Acrylic acid was also 

added to the monomer blend. 
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These membranes still had a golden tinge especially at high concentrations of 

pAPN.F and a large amount of bubbles were still visible in the membranes. The 

membranes containing 20 wt% water were easy to peel off the PET backing sheets 

and extremely pliable. The addition of Acrylic acid to the P(NVP-co-DEGBAC) 

membranes resulted in bubbles and localisation of the pAPN.F around the edges of 

the membrane. It was then thought that PAPN could be loaded into dried hydrogel 

membranes (xerogels) from a known concentration in phosphate buffered saline see 

chapter 7. 

3.2.4 Summary of results 

The synthesis of poly(vinylpyrrolidinone) based hydrogels membranes using a 

mixture of I-vinyl-2-pyrrolidinone, crosslinker and initiator ± solvent was successful 

and produced membranes with material properties suitable for use as a wound 

dressing. Changing the crosslinker from EGDMA to DEGBAC and removing 

solvent from the reaction reduced the water content sufficiently to produce a tough 

flexible hydrogel. The addition of acrylic acid to the P(NVP-co-DEGBAC) 

membranes reduced the EWC still further with a corresponding increase in Young's 

modulus. Young's moduli were achieved of between 0.16 MPa ± 0.02 MPa and 0.24 

MPa ± 0.02 MPa when tested at a strain rate of O. t mm.s- I (6 mm.min- I
) for the 

polymers synthesised in bulk. These values compare favourably with those seen in 

the literature. Cauich-Rodriguez et al. (1996a) synthesised a poly(vinylalcohol) -

poly(vinylpyrrolidinone) blend with similar material properties. The Young's moduli 

were dependent on the heat treatment received by the polymer but were between 

0.15 MPa ± 0.07 MPa and 1.51 MPa ± 1.00 MPa at a strain rate of 5 mm.min- I
. The 

addition of gluteraldehyde to these polymers had no effect on the Young's modulus 

of these polymers (Cauich-Rodriguez, Deb et al. 1996b). The introduction of 

carbonate groups into the membranes via the change in crosslinker from EGDMA to 

DEGBAC did not produce the expected highly degradable hydrogel. A small amount 

of unreacted vinyl groups could still be found in the \3C solid state NMR spectra of 

all the hydrogels. 
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Synthesising P(NVP-co-DEGBAC) membranes where (3APN.F was incorporated 

into the monomer blend prior to injection into the polymerisation mould proved to be 

unsuccessful due to the insolubility of (3APN.F in NVP and the other components of 

the monomer mix. A large amount of water was needed to ensure that the (3APN.F 

remained dissolved in the monomer blend. However in all the membranes where 

(3APN.F was added the (3APN.F had a tendency to localise around the edges of the 

membrane and an unacceptable amount of bubbles were formed during curing. Even 

the addition of acrylic acid to the membranes did not solve this problem. 
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4. Effect of PoJy(vinyJpyrrolidinone) membranes on cell 

viability. 

Experiments in this section were performed with the cells in direct contact with the 

polymers and also in indirect contact. The poor material properties of the P(NVP-co

EGDMA) polymers meant that to force contact between the polymer and the cells 

the polymers had to be placed inside ThinCert™ inserts. The commonly used 

method of seeding cells inside a stainless steel ring did not work in this situation as 

the weight of the ring cut straight through the P(NVP-co-EGDMA) polymer. 

The P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co-AA) polymers are stiff 

enough to be able to support the stainless steel ring. Initial experiments were 

performed to investigate if cells could attach to the P(NVP-co-DEGBAC) polymers 

however problems with seepage from the rings due to the smoothness of the polymer 

surfaces made these experiments difficult to perform and so they were abandoned 

early on. 

4.1 Effect of Poly(vinylpyrrolidinone) membranes on cell viability -

direct contact versus indirect contact. 

4.1.1 Cytotoxicity of P(NVP-co-EGDMA) membranes. 

Initial experiments were performed where P(NVP-co-EGDMA) hydrogels were 

placed in direct contact with human dermal fibroblasts in the presence of serum. 

These experiments are summarised in figure 4.2 below. Student's unpaired T-Test 

was used to determine significant (p<O.05) stimulation or inhibition in cell viability 

as assessed using the MTT-ESTA assay. A large number of experiments were 

required to get a clear picture due to the variation in viabilities encountered during 

these initial experiments. The fibroblasts used were from different donors and 

different passage numbers and the P(NVP-co-EGDMA) membranes came from 

multiple batches. None of these variables affected the range of results obtained. 
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Figure 4.2 Pie charts illustrating the percentage of experiments where cell viability 
was stimulated, inhibited or not affected by A) Direct contact or B) Indirect contact 
with P(NVP-co-EGDMA) hydrogels. Stimulation or inhibition represented a 
statistically significant (p<0.05) difference in cell viability from tissue culture plastic 
control n=20 (3 replicates per experiment). 

The results obtained from cells cultured in direct contact with the polymer can be 

viewed with some suspicion. It can be seen clearly in figure 4.3 how the cells 

(stained blue with MTT in this picture) are found at the bottom of the inserts (A) and 

at the interfaces between the pieces of polymer and the polymer-insert interface. 

These clumps of cells are viable but do not look normal when examined visually as 

shown in figure 4.4.A. However fibroblasts grown in indirect contact with the 

hydrogel have a normal morphology comparable to fibroblasts grown on TCP alone 

as shown in figure 4.4.C. 

Figure 4.3 Photograph of human dermal fibroblasts cultured in direct contact with 
P(NVP-co-EGDMA) for 4 days in ThinCert™ inserts in the presence of serum. Cells 
are stained purple with MTT and can clearly be seen on the bottom of the Insert (A) 
and in small clumps at the interface between the polymer and insert (B). 
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Figure 4.4 Photograph of human dennal fibroblasts cultured in the presence of serum 
for 4 dW A) in direct contact with the P(NVP-co-EGDMA) membrane in 
ThinCert inserts B) grown on TCP in indirect contact with the P(NVP-co
EGDMA) membrane and C) Photograph of fibroblasts grown on TCP only. In all 
photographs cells are stained purple with MTT 

4.1.2 Cytotoxicity of P(NVP-co-DEGBAC) membranes. 

Poor mechanical properties (see chapter 3) meant that the P(NVP-co-EGDMA) 

polymer would be unsuitable for the final application of a wound dressing and so 

another crosslinking agent diethyleneglycol bisallylcarbonate (DEGBAC) was 

investigated. Again cytotoxicity studies were perfonned with the polymer in both 

direct and indirect contact with human dermal fibroblasts in media containing 10% 

FCS. These experiments are summarised in the pie charts in figure 4.5. As in figure 

4.2 Student's unpaired T-Test was used to detennine significant (p<0.05) stimulation 

or inhibition in cell viability as assessed using the MTT -EST A assay. 

A B 
60% 

_ Stimulation 

_ Inhibition 

I I No effect 

Figure 4.5 Pie charts illustrating the percentage of experiments where cell viability 
was stimulated, inhibited or not affected by A) Direct contact or B) Indirect contact 
with P(NVP-co-DEGBAC) hydrogels. Stimulation or inhibition was detennined 
within each experiment by a statistically significant (p<0.05) difference in cell 
viability from TCP control n=5 (3 replicates per experiment). 

Once again the cells are found around the edges of the polymer and underneath the 

polymer growing on the PET membrane on the bottom of the insert. Cells that have 

attached to the membrane, see figures 4.6 and 4.7, again do not look normal however 
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these cells have wetted to the surface and are less rounded than those attached to the 

P(NVP-co-EGDMA) membrane. 

Figure 4.6 Photograph of human dermal fibroblasts cultured in the presence of serum 
for 4 da.(;1 A) in direct contact with the P(NVP-co-DEGBAC) membrane in 
ThinCert inserts B) grown on tissue culture polystyrene in indirect contact with 
the P(NVP-co-DEGBAC) membrane and C) Photograph of fibroblasts grown on 
tissue culture polystyrene only. In all photographs cells are stained purple with MTT. 

Figure 4.7 Photograph of human dermal fibroblasts cultured in direct contact with 
the P(NVP-co-DEGBAC) membrane for 4 days using forced contact by seeding in 
the centre of a stainless steel ring in the presence of serum. Cells are stained with 
MTT and are found primarily growing on the TCP surrounding the polymer (A) 
however a few can be seen on the hydrogel (B). 

4.1.3 Cytotoxicity of P(NVP-co-DEGBAC-co-AA) membranes. 

I wt% acrylic acid (AA) was subsequently incorporated into the P(NVP-co

DEGBAC) membranes in an attempt to modify the release of PAPN from the 

polymers see chapter 7. Cytotoxicity studies performed on these polymers where 

human dermal fibroblast cells were placed in direct and indirect contact with the 

polymer in both the presence and absence of serum are summarised in figure 4.8. 

Fibroblasts cultured in direct contact with the polymers P(NVP-co-DEGBAC-co

AA) polymers once again preferred to grow on the PET insert membrane than on the 

hydrogels. Figure 4.9 shows human dermal fibroblasts stained with MTT growing on 

the insert instead of on the P(NVP-co-DEGBAC-co-AA) hydrogels. 
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Figure 4.8 Pie charts illustrating the percentage of experiments where cell viability 
was stimulated, inhibited or not affected by A) direct contact with the polymer, B) 
indirect contact with the polymer in the presence of serum, stimulation or inhibition 
was taken to mean a statistically significant (p<O.05) difference in cell viability from 
TCP control within each experiment n=3 (3 repeats per experiment) 

Figure 4.9 Photograph of human dermal fibroblasts cultured in direct contact with 
P(NVP-co-DEGBAC-co-AA) for 4 days in ThinCert™ inserts in the presence of 
serum. Cells are stained purple with MTT and can clearly be seen on the bottom of 
the insert. 

4.1.4 Cytotoxicity of P(NVP-co-DEGBAC) membranes on a variety of skin and 

epithelial cells. 

Whilst fibroblasts are suitable for generic cytotoxicity testing they are by no means 

the only cell type found in skin. These polymers will hopefully be used in a wound 

healing application; therefore the polymers will primarily come into contact with 

keratinocytes. Primary normal human keratinocytes and a keratinocyte cell line, the 

HaCaT cellline along with a human cornea epithelial cellline (HCEC) were cultured 

in optimised medium for each cell type in direct and indirect contact with the 

P(NVP-co-DEGBAC) polymer. The results are shown in table 4.1 with 

photomicrographs of cell morphology shown in table 4.2. 
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_ Stimulation 

_ Inhibition 

Table 4.1 Effect of PNVP on viability of HaCaT, HECE and Keratinocyte cells. Cells were grown in direct and 
indirect contact with PCNVP-co-DEGBAC} for 4 days. Results shown are the means ± SEM of 3 experiments (3 
replicates per experiment). *p< 0.05, **p< 0.0 I , ***p< 0.001 

I I No effect 

HCEC Keratinocytes HaCaT's 

Direct 

Contact 

Indirect 

Contact 

n=3 

n=3 

100% 

n=3 n=3 

67% 
100% 
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Table 4.2 photographs of primary normal human keratinocytes, HaCaT's and human cornea epithelial cells stained with MTT after being grown 
in direct or indirect contact with P(NVP-co-DEGBAC) and on tissue culture polystyrene with no P(NVP-co-DEGBAC) present in optimised 
medium. 

Direct 

Contact 

Indirect 

Contact 

Tissue 

Culture 

Polystyrene 

Keratinocytes HaCaT's HCEC 
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4.2 Effect of PNVP membranes on cell viability - The effect of 

serum. 

The ability to successfully culture cells in serum free conditions is an ambition of 

many laboratories due to fears over the disease transmission between species i.e. 

bovine spongioform encephalitis (BSE) and its human analogue Creutzfeld Jacob 

Disease (CJD). Hong et al. (1997) showed that poly(vinylpyrrolidinone) hydrogels 

crosslinked with diethyleneglycol dimethacrylate (DEGDMA) could increase the 

viability of 3T3 cells cultured in serum free conditions to approximately 90% of their 

viability in cultures containing serum. However the crosslinker used in the polymer 

synthesis was shown to moderate this with some crosslinkers proving toxic. The 

indirect contact system was used to see if the crosslinkers used in these experiments, 

i.e. EGO MA, OEGBAC and OEGBAC + AA had a similar effect. 

Initial experiments were performed using the P(NVP-co-EGOMA) and P(NVP-co

DEGBAC) polymers hence for these polymers there are many more experiments for 

analysis than with the P(NVP-co-DEGBAC-co-AA) hydrogels which were 

developed at a much later stage in this project. The latter were developed to modify 

the release of ~APN.F towards the end of the project and therefore there were fewer 

of these for examination. Table 4.3 shows the effect of these hydrogels on the 

viability of human dermal fibroblasts grown in both serum containing and serum free 

medium. 



Table 4.3 Effect of PNVP membranes with different crosslinkers on the viability of human dermal fibroblasts in the 
presence and absence of 10% foetal calf serum in the culture media. Experiments were performed using the indirect 
contact culture system. Stimulation or inhibition was determined by a statistically significant (p<0.05) difference in 
cell viability compared to the same cells grown on tissue culture plastic. (3 repeats per experiment) 

_ Stimulation 

_ Inhibition 

I I No effect 

P(NVP-co-EGDMA) P(NVP-co-D EG BAC) P(NVP-co-DEGBAC-co-AA) 

n= 18 n=3 

55% 
100% 

+ 

Serum 

n=14 n=3 

100% 

Serum 

129 
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4.3 Investigation into the mechanism of action of PNVP based 

hydrogels on human dermal fibroblasts. 

4.3.1 The effect of conditioned polymers and media. 

A number of theories as to what was causing the increase in cell viability had by this 

point been proposed. Thus it was hypothesised that the polymer could be breaking 

down and directly stimulating the cells in some way, the polymer could be acting as 

a mitogen sponge or buffer, the polymer could be acting as a filtration unit and 

cleaning the culture medium of metabolic waste or the polymer could be collecting 

mitogens and forcing the cells into overdrive to produce more. An experiment was 

designed to look at these theories using both P(NVP-co-EGDMA) and P(NVP-co

DEGBAC) and see which, if any, was most reasonable, again the indirect contact 

system was used. The flow chart in figure 4.10 illustrates how the experiment works. 

It was thought that if the polymers were loosely binding something during the initial 

culture period, stage 1, then when the polymer was placed straight back above new 

cells in stage 2 then the action of the pre-cultured polymer would be different to that 

of the new PNVP. The premise for stage 3 is that if the NVP was removing 

something from the culture system and if it was not tightly bound to the NVP then it 

would wash out into the media. If it was a mitogen(s) then the media would 

encourage cell growth however if it was waste metabolites then cell growth would be 

inhibited. The PNVP was placed back into culture to see if the washing step during 

stage 2 again altered the effect of the polymer on the viability of the cells. The MTT

EST A assay was used to determine cell viability. 



Stage 1 

r 

I' ""'\ 

NVP placed into indirect contact with fibroblasts, 
seeded 24 hours previously for 4 days in both the 

presence and absence of serum. 
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I 

!Half of the NVP from stage 1 placed into indirec~ 
contact with fibroblasts seeded 24 hours 

previously for 4 days. Fresh NVP also added as a 
control to cells cultured in both the presence and 

absence of serum. 

I' Half ofthe NVP from stage 1 placed into fresh 
fibroblast culture medium for 4 days. Fresh NVP 
also added as a control in both the presence and 

absence of serum. 

Stage 2 

'-

Stage 3 

, / 

1 

NVP from stage 2, including the fresh NVP ""'\ 
placed into indirect contact with fibroblasts 
seeded 24 hours previously for 4 days. Cells 
cultured in both the presence and absence of 

serum. 

I 

tNvp conditioned medium from stage 2, includin~ 
the fresh NVP conditioned medium placed into 
indirect contact with fibroblasts seeded 24 hours 
previously for 4 days. Cells cultured in both the 

presence and absence of serum. , / 

Figure 4.10 Flow chart illustrating the organisation of the experiment designed to investigate how the PNVP polymers were affecting cell 
viability. 
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Stage 1 of this experiment shown in figu re 4.1 1 illustrates the effect that P(NVP-co

EGDMA) and P(NVP-co-DEGBAC) have on fibroblast viabi lity using the indirect 

contact method assessed using the MTT-ESTA assay. Cells were grown in both the 

presence and absence of serum. Only the P(NVP-co-EGDMA) hydroge l significantly 

increased fibroblast viability in these three experiments and this was only in the 

presence of serum. 
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_ New P(NVP-co-DEGBAC) 

Figure 4.11 Effect of PNVP on fibroblast viability. Cells were grown in indirect 
contact with PNVP for 4 days in the presence and absence of serum. Results shown 
are the means ± SEM of 3 experiments (3 replicates per experiment). Significance 
was assessed using Student' s T-Test *p< 0.05, **p< 0.0 I, ***p< 0.00 I. 
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Stage 2 of this experiment shown in figure 4.12 illustrates the effect that P(NVP-co

EGDMA) and P(NVP-co-DEGBAC) polymers that have previously been in indirect 

contact with fibroblasts for 4 days have on the viability of a new set of fibroblasts. 

The experiment was again performed in both the presence and absence of serum. 

Fresh hydrogels kept in fibroblast culture medium, either in the presence or absence 

of serum were also present. At no point during this part of the experiment was there 

any significant difference in cell viability between the old and new PNVP' s. The 

presence or absence of serum also had no effect. 
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_ Old P(NVP-co-DEGBAC) 

Figure 4.12 Effect of PNVP on fibroblast viability. Cells were grown in indirect 
contact with PNVP for 4 days in the presence and absence of serum. Results shown 
are the means ± SEM of 3 experiments (3 replicates per experiment). Significance 
was assessed using Student's T-Test *p< 0.05, **p< 0.01 , ***p< 0.001. 
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Stage 3 of this experiment shown in figure 4.13 illustrates the effect that P(NVP-co

EGDMA) and P(NVP-co-DEGBAC) polymers that have previously been in indirect 

contact with fibroblasts for 4 days and subsequently washed for 4 days, have on the 

viabil ity of a new set of fibroblasts. The experiment was again performed in both the 

presence and absence of serum. Cell viability was significantly increased when the 

washed polymers were placed in indirect contact with cells in the presence of serum. 

These polymers had no significant effect on cell viability in the absence of serum. 

Again there is no difference between the old and new polymers. 
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Figure 4.13 Effect of PNVP on fibroblast viabi lity. Cells were grown in indirect 
contact with washed PNVP for 4 days in the presence and absence of serum. Results 
shown are the means ± SEM of 3 experiments (3 replicates per experiment). 
Significance was assessed using Student' s T-Test *p< 0.05, **p< 0.01 , ***p< 0.001. 



135 

Stage 3 of this experiment shown in figure 4.14 illustrates the effect that medium 

used to wash P(NVP-co-EGDMA) and P(NVP-co-DEGBAC) polymers that have 

previously been in indirect contact with fibroblasts for 4 days and medium used to 

wash fresh PNVP have on the viability of a new set of fibroblasts. The experiment 

was again performed in both the presence and absence of serum. In all cases when 

the polymers have been placed into serum free medium the cell viability is increased. 

There is no difference between the media used to wash the new polymers and the 

pre-cultured polymers suggesting that the effect of the polymers on cell viability is 

not due to the entrapment of some factor from the culture medium. I f this was the 

case and the polymer was removing some mitogen from the culture system then this 

increase in cell viability would be greater in the medium used to wash the pre

cultured polymers. Therefore it could be suggested that something is being washed 

from the polymer itself. This is not seen as clearly when serum is present. Only the 

new P(NVP-co-EGDMA) polymer had any significant effect on cell viability in the 

presence of serum. 
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Figure 4.14 Effect of PNVP conditioned medium on fibroblast viability. Cells were 
grown in indirect contact with PNVP conditioned medium for 4 days in the presence 
and absence of serum. Results shown are the means ± SEM of 3 experiments (3 
replicates per experiment). Significance was assessed using Student's T-Test *p< 
0.05 , **p< 0.01 , ***p< 0.001. 
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Throughout the experiment the equilibrium water content of the samples was 

monitored . The equilibrium water contents of the hydrogels were measured at the 

start and end of each stage. These hydrogels were treated exactly the same way as 

the hydrogels used for the cell culture part of this experiment above. However at no 

time did these hydrogels come into contact with cells. Each piece of hydrogel was 

placed into I ml of fibroblast culture medium, both in the presence and absence of 

serum and kept in an incubator at 37°C for the same length of time as the hydrogels 

placed into indirect contact with the fibroblasts. At no time over the 12 days of the 

experiments was any significant difference in equilibrium water content observed 

within any of the stages of the experiment with the results shown in figure 4.15 

below. 

New PNVP End Stage 3 

Old PNVP End Stage 3 

New PNVP End Stage 2 

Old PNVP End Stage 2 

Start Stage 213 

End Stage 1 

Start Stage 1 

o 20 40 60 

_ P(NVP-co-EGDMA) 
_ P(NVP-co-DEGBAC) 

80 100 

Equilibrium water content I % 

Figure 4.15 Effect of pre-culture and washing of the polymer on the equilibrium 
water content of P(NVP-co-EGDMA) and P(NVP-co-DEGBAC) hydrogels. Results 
expressed as mean ± SEM of n=6 samples. There was no significant difference in the 
equilibrium water contents for each polymer observed over the course over the 12 
days of the experiment. 
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4.3.2 Investigation into protein binding to PNVP hydrogels. 

A possible mechanism by which the PNVP hydrogels could affect the viability of 

fibroblasts would be through the binding and / or release of proteins and growth 

factors. SDS-PAGE electrophoresis with subsequent protein staining with Brilliant 

Blue ™ was used to briefly investigate this possibility. 

Figure 4.16 7% Polyacrylamide SDS-PAGE gel stained with Brilliant Blue to 
identify proteins. A - SDS-7B ladder, B - Serum free DMEM, C - DMEM + 10% 
FCS D - FCS, E - P(NVP-co-DEGBAC) soaked in Serum free DMEM, F - P(NVP
co-DEGBAC) soaked in DMEM + 10% FCS, G - P(NVP-co-DEGBAC) soaked in 
FCS. 

4.4 Summary of results. 

After the synthesis of PNVP based hydrogels biological characterisation was 

attempted. It became apparent early on that the P(NVP-co-EGDMA) polymers did 

not have sufficient strength to support the stainless steel rings commonly used in this 

laboratory to force contact between cells and substrates. It was therefore necessary to 

develop an alternate methodology to force this contact. The use of ThinCert ™ 

inserts was determined to be the best way forward, as this system also gave the 

opportunity to examine the effect of these polymers when placed in indirect contact 

with cells. 

Examination of the effects of PNVP based polymers synthesised for this study on the 

viability of human dermal fibroblasts showed that it was difficult to grow cells in 

direct contact with the polymers. Those cells that did manage to attach did not 

appear when viewed down a microscope to be viable. Those cells that did manage to 
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escape from direct contact with the polymers preferred to grow elsewhere i.e. the 

tissue culture plastic on the bottom of the wells or the PET membrane on the bottom 

of the ThinCert™ inserts. This could explain the discrepancy between the MTT

EST A viability data and the appearance of the cells when grown in direct contact 

with the polymers. The lack of cell adhesion to these polymers can perhaps be 

explained by the extremely high water contents of these polymers. The high 

hydrophilicity would make protein adsorption to the surfaces extremely difficult and 

the lack of adsorbed proteins would decrease the sites available for cell attachment. 

Haigh et al. (2002) showed that the EWC of hydrogels had an effect on fibroblast 

adhesion and the state of the water in the hydrogels was also a factor. Hydrogels with 

an EWC of 30% appeared to have the optimum conditions for fibroblast attachment 

and spreading. Levels of attachment were lower on polymers with a EWC of greater 

than 30%. Also the presence of free water in the hydrogels was only observed at 

EWC's greater than 25% and this was necessary for cell attachment and spreading 

(Haigh, Fullwood et al. 2002). 

In nearly all cases where fibroblasts were cultured in indirect contact with the 

hydrogels the viability, assessed using the MTT-ESTA assay, was either unaffected 

by the presence of the polymers or increased. This correlates with the visual analysis 

of cell morphology. The fibroblast viability when grown in indirect contact with the 

PNVP based polymers ranged from 46 - 530% of control viability in the presence of 

serum and 15 - 242% of control viability without serum. The average increase in 

viability was 22.5% ± 24.6% for the P(NVP-co-EGDMA) polymer in the presence of 

serum (n= 18 not significant, Students paired T -Test) and 27.2% ± 16.6% in the 

absence of serum (n= 14 not significant, Students paired T -Test), overall the P(NVP

co-EGDMA) polymer increased the average viability by 24.5% ± 15.4% regardless 

of the presence or absence of serum. The P(NVP-co-DEGBAC) polymer increased 

the average viability of fibroblasts grown in indirect contact with the polymer by 

19.5% ± 11.8% in the presence of serum (n=14 p<0.05, Students paired T-Test) and 

19.2% ± 19.2% in the absence of serum (n=18 p<O.OI, Students paired T-Test) and 

regardless of the presence or absence of serum the average increase in cell viability 

was 19.4% ± 7.0%. Overall PNVP based hydrogels increased cell viability by 22.1 % 

± 8.5% regardless of the presence of serum and crosslinker used (n=64 p<O.O I, 

Students paired T-Test). PNVP hydrogels increased the average cell viability by 
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21.2% ± 14.6% in the presence of serum and 23.1 % ± 8.8% in the absence of serum. 

The P(NVP-co-DEGBAC-co-AA) hydrogels had no significant effect on cell 

viability in both the presence and absence of serum when human dermal fibroblasts 

were grown in indirect contact with the polymer. 

Attempts were made to grow primary human keratinocytes, the HaCaT keratinocyte 

cell line and a human cornea epithelial cell line (HCEC) in both direct and indirect 

contact with the P(NVP-co-DEGBAC) polymer. The MTT-ESTA assay was again 

used to assess cell viability along with visual observation of cell morphology. In all 

cases when the cells were grown in direct contact cell viability was decreased. 

HCEC cells and keratinocytes cannot be grown successfully on tissue culture plastic 

(TCP) alone. For successful culture HCEC cells need to be grown on TCP coated 

with a mixture of extracellular matrix proteins (collagen I, bovine serum albumen 

and fibronectin). Keratinocytes need to be grown on TCP coated with collagen I. 

HaCaT cells can be grown successfully on uncoated TCP. The P(NVP-co

DEGBAC) had no significant effect on the viability ofkeratinocytes and HCEC cells 

grown for 4 days in indirect contact with the polymer in all three experiments. In two 

out of the three experiments the P(NVP-co-DEGBAC) hydrogel had no significant 

effect on the viability of HaCaT cells grown in indirect contact with the polymer. In 

one out of the three experiments where HaCaT cells were grown in indirect contact 

with the P(NVP-co-DEGBAC) hydrogel a significant decrease in cell viability was 

observed. 

Attempts to explain how these hydrogels affected the viability of human dermal 

fibroblasts involved investigating the action of both conditioned polymers and 

polymer conditioned media. The polymer could be breaking down. The polymer 

could be removing mitogens or toxins and metabolic waste from the media. These 

could either be released later or removed from the system completely, forcing the 

cells into overdrive. These results showed that polymers once placed in indirect 

contact with fibroblasts for 4 days and then immediately placed into indirect contact 

with another batch of fibroblasts had no significant effect on the viability of this 

second batch of fibroblasts in both the presence and absence of serum. However if 

these polymers were washed before being placed back into indirect contact with the 

fibroblasts in the presence of serum an increase in viability was seen, but there was 
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no significant difference between the old and new PNVP's. In the absence of serum 

there was no significant difference between the cells cultured in the presence or 

absence of PNVP or between the old and hew PNVP's. The conditioned media from 

the old PNVP's also had no significant effect on cell viability in the presence of 

serum. Medium conditioned using new P(NVP-co-EGDMA) did significantly 

increase the fibroblast viability in the presence of serum, whilst the P(NVP-co

DEGBAC) conditioned media had no significant effect on cell viability in the 

presence of serum. In the absence of serum all of the conditioned media significantly 

stimulated cell viability, but there was no difference between the old and new 

PNVP's or between the crosslinkers. These results could suggest that the polymer 

itself directly affects cell viability rather than the entrapment and / or release of 

metabolic waste or mitogens. If the polymers were trapping metabolic waste or 

mitogens there would be a difference in the effect of the pre-cultured polymers and 

the new polymers. This is not observed in either the presence or absence of serum. It 

is interesting to note that by day 12 it is the conditioned media that increases cell 

viability in the absence of serum. However in the presence of serum it is the presence 

of the washed polymers that increases cell viability. It is also interesting to note that 

the unwashed polymers had no effect on cell viability in stage 2. There was no 

significant effect on the water content throughout the course of the experiments 

indicating that over the 12 days of the experiments there was no significant bulk 

degradation. So whilst it appears that the polymers are directly stimulating cell 

viability this is not due to polymer degradation at a scale large enough to be detected 

via equilibrium water content measurements. 

Protein adsorption studies were inconclusive as no bands could be seen in the 

channels into which the polymers were placed. It could therefore be suggested that 

either the polymers are not binding any proteins or that any proteins bound are bound 

so tightly that the electrical field, Tris Hel, SDS, and p-mercaptoethanol are not 

sufficient to separate the proteins from the polymers. 

The P(NVP-co-EGDMA) hydrogel whilst non-cytotoxic does not have sufficient 

material properties for use as a wound dressing, however two hydrogels have now 

been developed that have sufficient material properties for use as a wound dressing, 
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P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co-AA). These hydrogels are also 

non-cytotoxic when cells are grown in indirect contact with the polymers but also 

largely non-fouling, an ideal property in a wound dressing. These hydrogels can also 

stimulate cell viability and this effect is especially potent in serum free conditions. 
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5. The effect of ~-aminopropionitrile and 4-methyJ 

umbelliferone on 

differentiation. 

cell viability, proliferation, and 

In the current experiments cell viability was assessed as before using the M TT

EST A assay. Keratinocyte proliferation was assessed by investigating the total DNA 

content of cultures treated with the anti-contraction agents. Keratinocyte 

differentiation was assessed by investigating involucrin expression in treated 

cultures. Involucrin is a soluble cytoplasmic protein which is crosslinked by 

transglutaminase during the production of the cornified envelope formed during 

keratinocyte differentiation. It is expressed in a rang~ of stratified squamous epithelia 

and is expressed in the suprabasal layers of stratified squamous epithelium (Griffin 

and Harris 1992; Carroll, Albers et al. 1993). According to Griffin et al. (1992) 

involucrin is normally expressed in vivo when cells have lost the ability to divide and 

is therefore considered a marker of terminal keratinocyte differentiation. 
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5.1 Effect of J3APN on cell viability, proliferation and differentiation. 

5.1.1 Effect of ~APN OD cell viability. 

In these experiments the cytotoxic effects of ~-aminopropionitrile (~APN) on 

fibroblasts and keratinocytes was investigated using the MTI -EST A assay . Cells 

were cultured in monolayer in appropriate media supplemented with ~APN at 

concentrations of 0-800 J..I.g.mr l
. Cells were cultured individually and in a 3: 1 co

culture of keratinocytes and fibroblasts for 7 days and the results are shown in figure 

5.1 below. These data show that PAPN at concentrations of between 50 and 

800 J..I.g.mr I does not have a significant effect on the viabi lity of these cells. 
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Figure 5.1 Effect of increasing concentrations of PAPN on viability of fibroblasts, 
keratinocytes and 3: 1 co-culture of keratinocytes and fibroblasts. Viability assessed 
using MTI-ESTA assay. Data expressed as mean ± SEM of n=3 experiments (3 
replicates per experiment). ~APN had no significant affect on cell viability at 
concentrations between 50 and 800 J..I.g.mr l

. 
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5.1.2 Effect of J3APN on keratinocyte proliferation. 

In these experiments the effect of J3APN on the proliferation of keratinocytes was 

investigated by measuring total DNA in the cultures. Cells were cultured in 

monolayer in Greens medium supplemented with PAPN at concentrations of 0-

800 Ilg.mr l for 7 days. DNA content was measured by lysing the cells with a buffer 

made from SOS, Urea and PBS and then treating the lysate with DAPI. The results 

are shown in figure 5.2 below. DAPI is a fluorescent stain which binds strongly to 

DNA. These data show that J3APN at concentrations of between 25 and 800llg.mrl 

does not have a significant effect on the proliferation of keratinocytes. 
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Figure 5.2 Effect of increasing concentrations of J3APN on the proliferation of 
keratinocytes. Proliferation was assessed by measuring total DNA. Data expressed as 
mean ± SEM of n=3 experiments (3 replicates per experiment). PAPN had no 
significant affect on cell proliferation at concentration between 25 and 800 Ilg.mr l as 
assessed by Students' T-Test. 
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5.1.3 Effect of J3APN on keratinocyte differentiation. 

In these experiments the effect of J3APN on the differentiation of keratinocytes was 

investigated by immunolabelling of the involucrin expression in the cultured cells. 

Cells were cultured in monolayer in Greens medium supplemented with PAPN at 

concentrations of 0-800 J.lg.mr l for 7 days. Photomicrographs were subsequently 

taken of the fixed cells which were co-stained with DAPI to enable identification of 

the cell nucleus. These are shown in figure 5.4 below. After the photomicrographs 

were taken the fluorescence from the cells was read in a plate reader to allow the 

results to be quantified. The graphs obtained from these results are shown in figure 

5.3. To allow for differences in cell number between weIls, the fluorescence from the 

involucrin was divided by the fluorescence from the DAPl staining for each well. 

These results shown in figure 5.3.C show the involucrin per well divided by the 

DNA per well gives an index of differentiation for the remaining cells. These data 

shows that at concentrations of 0-400 J.lg.mr l J3APN does not significantly affect 

keratinocyte differentiation. At the highest concentration investigated, 800 J.lg.mr l
, a 

significant increase in keratinocyte differentiation was seen. 



Figure 5.3 Effect of increasing concentrations of PAPN on the differentiation of 
keratinocytes over 7 days. Data expressed as mean ± SEM of n=3 experiments (3 
replicates per experiment) A) DAPI fluorescence staining showing proliferative ce lls 
present expressed as a % of the TCP control. B) Involucrin staining showing 
terminally differentiating cells expressed as a % of the TCP control. C) In C the 
amount of involucrin per cell is estimated by showing the relative involucrin per well 
(expressed with respect to the TCP control) divided by the relative amount of DNA 
per well (expressed with respect to the TCP control). 
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DAPI Involucrin DAPI Involucrin 

o Ilg.mr J j3APN 25 Ilg.mrJ j3APN 

50 Ilg.mr J j3APN 100 Ilg.mrJ j3APN 

200 Ilg.mrJ j3APN 

800 Ilg.mrJ j3APN Negative control 

Figure 5.4 Photomicrographs of keratinocytes treated with j3APN at concentrations 
of 0-800 Ilg.mr J for 7 days. Cells were immunolabelled with OAPI to show the cell 
nuclei and a FITC conjugated antibody for anti -involucrin. 



148 

5.2 Effect of 4-MU on cell viability, proliferation and differentiation. 

5.2.1 Effect of 4-MU on cell viability. 

In these experiments the cytotoxic effects of 4-methyl umbelliferone (4-MU) on 

human skin cells, fibroblasts and keratinocytes was investigated using the MTT

ESTA assay. Cells were cultured in monolayer in appropriate media supplemented 

with 4-MU at concentrations of 0-8 mM. Cells were cultured individually and in a 

3: 1 co-culture of keratinocytes and fibroblasts for 7 days. The results are shown in 

figure 5.5 below. It can be clearly seen that at concentrations of 4-MU greater than 

or equal to 1 mM the cell viability was significantly reduced. Having cells in co

culture did not protect against the cytotoxic effects of the 4-MU. 
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Figure 5.5 Effect of increasing concentrations of 4-MU on viability of human skin 
cells, fibroblasts , keratinocytes and 3: I co-culture of keratinocytes and fibroblasts. 
Viability assessed using MTT-ESTA assay. Data expressed as mean ± SEM of n=3 
experiments (3 replicates per experiment). * indicates significant difference in 
optical density from untreated culture (Student's paired T test). *p<0.05 **p<O.O 1 
***p<O.OO I. 
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5.2.2 Effect of 4-MU on keratinocyte proliferation. 

In these experiments the effect of 4-MU on the proliferation of keratinocytes was 

investigated by measuring total DNA in the cultures. Cells were cultured in 

monolayer in Greens medium supplemented with 4-MU at concentrations of 0-4 mM 

for 7 days. DNA content was measured by lysing the cells with a buffer made from 

SOS, Urea and PBS and then treating the resulting lysate with DAPt. The results are 

shown in figure 5.6 below. DAPt is a fluorescent stain which binds strongly to DNA. 

It can clearly be seen that at concentrations of greater than 0. 125 mM a significant 

inhibition in keratinocyte proliferation is seen. 
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Figure 5.6 Effect of increasing concentrations of 4-MU on the proliferation of 
keratinocytes. Proliferation was assessed by measuring total DNA, data expressed as 
mean ± SEM of n=3 experiments (3 replicates per experiment). * indicates 
significant difference in relative fluorescence from untreated culture (Student' s 
paired T test) *p<0.05. 
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5.2.3 Effect of 4-MU on keratinocyte differentiation. 

In these experiments the effect of 4-MU on the differentiation of keratinocytes was 

investigated by immunolabelling of the involucrin expression in the cultured cells. 

Cells were cultured in monolayer in Greens medium supplemented with 4-MU at 

concentrations of 0 - 4 mM for 7 days. Photomicrographs were subsequently taken 

of the fixed cells which were co-stained with OAPI to enable identification of the 

cell nucleus. These are shown in figure 5.8 below. After the photomicrographs were 

taken the fluorescence from the cells was read in a plate reader to allow the results to 

be quantified. The graphs obtained from these results are shown in figure 5.7. To 

allow for differences in cell number between wells, the fluorescence from the 

involucrin was divided by the fluorescence from the OAPI staining for each well. 

These results shown in figure 5.7.C show the involucrin per well divided by the 

DNA per well gives an index of differentiation for the remaining cells. The 

photomicrographs in figure 5.8 clearly show the reduction in keratinocyte number as 

the concentration of 4-MU in the cell culture medium increases. This corresponds 

with an increase in the index of differentiation calculated for each cell. There is seen 

to be a significant increase in the index of differentiation when the keratinocytes 

were treated with medium containing 2 mM 4-MU. 
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A 

B 

C 

Figure 5.7 Effect of increasing concentrations of 4-MU on the differentiation of 
keratinocytes over 7 days. A) DAPI fluorescence staining showing proliferative cells 
present expressed as % TCP control. B) Involucrin staining showing terminally 
differentiating cells expressed as % TCP control. C) Amount of involucrin per 
proliferative cell. Data expressed as mean ± SEM of n=3 experiments (3 replicates 
per experiment). * indicates significant difference in relative fluorescence from 
untreated culture (Student ' s paired T test) *p<O.OS. 
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0.25 mM 4-MU 0.5 mM 4-MU 

1 mM 4-MU 2 mM 4-M U 
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Figure 5.8 Photomicrographs of kerat inocytes treated with 4-MU at concentration 
of 0 - 4 mM cells were immunolabelled with OAPI to show the cel l nuclei and a 
FITC conjugated antibody for involucrin. 
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5.4 Summary of results 

The aim of this project is the synthesis and characterisation of a polymer membrane 

that could subsequently be used to deliver anti-contraction agents. Two potential 

anti-contraction agents were identified from previous work carried out in Professor 

MacNeil's laboratory and from surveying the literature j3APN had recently been 

investigated for use as an anti-contraction agent in this group by Miss Caroline 

Harrison (Harrison, Gossiel et al. 2006a; Harrison, Gossiel et al. 2006c). However up 

until this point no cytotoxicity testing had been undertaken with j3APN. 4-MU has 

been shown to reduce hyaluronan production by cells (Rilla, Pasonen-Seppanen et al. 

2004; Rilla, Siiskonen et al. 2005; Nagira, Nagahata-Ishiguro et al. 2007). It was also 

associated with a reduction in keratinocyte differentiation and hence was postulated 

that it may also affect keratinocyte contraction of the reconstructed skin. Once again 

there was no information available about the cytotoxic effect of this drug on 

keratinocytes. 

These experiments showed that j3APN had no significant effect on the viability of 

monolayer cultures of dermal fibroblasts and keratinocytes in both single and a 3: 1 

co-culture of keratinocytes to fibroblasts. Similarly j3APN had no significant effect 

on either the proliferation or differentiation of keratinocytes. Conversely 4-MU 

significantly reduced the viability of monolayer cultures of fibroblasts and 

keratinocytes in both single and a 3: I co-culture of keratinocytes to fibroblasts at 

concentrations of 1 mM or greater. There was also a significant reduction in cell 

proliferation in monolayer keratinocyte cultures treated with 4-MU at concentration 

of 0.125 mM or greater. Differentiation was also reduced in these cultures however 

once this was corrected for the effects of 4-MU on cell number it was evident that 

the degree of differentiation of the remaining cells was increased. Thus in summary 

prior information on j3APN (Harrison, Gossiel et al. 2006a; Harrison. Gossiel et al. 

2006c) showed it to have potential as an anti-contraction agent while 4-MU had not 

previously been tested with respect to skin contraction. However it was evident from 

the data from these results that in studying 4-MU the drug was clearly cytotoxic to 

skin cells and therefore could only be examined over a relatively narrow range of 

concentrations. 
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6. Effect of J3-aminopropionitrile and 4-methyl 

umbelliferone on contraction. 

Two contraction models were used to examine the efficacy of PAPN and 4-MU on 

contraction. The first model was a simple collagen gel model and the second was a 

more physiologically relevant reconstructed skin model. 

6.1 Contraction of collagen gels. 

6.1.1 Contraction of collagen gels populated with fibroblasts and keratinocytes. 

As mentioned earlier the majority of research into skin contraction is performed on 

fibroblast populated collagen gels. It was therefore necessary to establish a more 

physiologically relevant collagen gel model to enable better characterisation of the 

drugs under consideration. To this end collagen gels were produced and seeded with 

human dermal fibroblasts and normal human keratinocytes in either mono or co

culture. The cells were either placed directly into the gel or on top of a precast gel. In 

all cases the final cell number was 5 x 104 cells. In keratinocyte containing 

experiments Greens medium was used to feed the cells. Fibroblast culture medium 

was used in fibroblast mono-culture experiments and the experiments were run for 5 

days. In co culture experiments a 3: 1 ratio of keratinocytes (P I or P2) to fibroblasts 

(P3-9) were used. This is to mimic the seeding densities used in the production of the 

reconstructed skin. Image analysis was used to measure the area of the gels at 24 

hour time points and the results are shown in figure 6.1. 

Collagen gels without any cells present did not contract over the time period 

examined. Collagen gels where fibroblasts or keratinocytes were seeded on top of 

the gel contracted the least whilst gels populated with both cell types contracted the 

most. The gels where fibroblasts were seeded inside the gel contracted steadily over 

the culture period however when keratinocytes were seeded inside the gels a sharp 
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reduction in surface area was observed over the first 24 hours and very little 

contraction seen during the following time periods. Unfortunately the error bars for 

the co-culture gels are large and it is not possible to draw any firm conclusion from 

these experiments. However it is clear that both cell types can contract collagen I 

gels. When keratinocytes are placed inside the gels or cultured with fibroblasts these 

gels tend to contract to a greater extent than gels populated with fibroblasts alone. 
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Figure 6.1 Graph showing how the cellular composition of collagen gels affects 
collagen gel contraction over 5 days. Data expressed as mean ± SEM of n=2 
experiments (3 replicates per experiment) for all experiments except keratinocytes on 
and fibroblasts on (n= I). Collagen gels without any cells present did not contract 
over the time period examined. Collagen gels where fibroblasts or keratinocytes 
were seeded on top of the gel contracted the least whilst gels populated with both 
cell types contracted the most. 
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6.1.2 Effect of j3APN on collagen gel contraction. 

These experiments show the effect of j3APN supplemented medium on the 

contraction of collagen gels populated with a 3: 1 ratio of keratinocytes and 

fibroblasts. The medium contained J3APN at concentrations of between 50 and 

800 )lg.mr l
. Unfortunately J3APN does not seem to affect the contraction of 

collagen gels populated with both cell types as shown in figure 6.2 below. 
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Figure 6.2 Effect of increasing concentrations of J3APN on contraction of collagen 
gels over a period of 6 days. Data expressed as mean ± SEM of n=3 experiments (3 
replicates per experiment). On day 6 J3APN had no significant affect on the 
contraction of collagen gels at concentrations between 50 and 800 )lg.mr l as 
assessed using I-way ANOV A + Bonferroni correction. 
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6.1.3 Effect of 4-MU on contraction of collagen gels 

Figure 6.3 shows the effect of 4-MU supplemented medium on the contraction of 

collagen gels populated with a J: I ratio of keratinocytes and fibroblasts. The 

medium contained 4-MU at concentrations of between 0.125 and 4 mM. 4-MU at 

concentration of 1 mM and greater significantly reduced the contraction of the 

collagen gels. However figure 5.5 illustrates that in monolayer co-cultures at 

concentrations of 1 mM or greater 4-MU is significantly toxic. This cytotoxic effect 

may also affect collagen gel contraction. It could be that the reduced cell number is 

responsible for the reduction in contraction. 
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Figure 6.3 Effect of increasing concentrations of 4-MU on contraction of collagen 
gels over a period of 6 days. Data expressed as mean ± SEM of n=3 experiments (3 
replicates per experiment). On day 6 4-MU has no significant affect on the 
contraction of collagen gels at concentrations between 0.125 and 0.5 mM. A 
significant difference in contraction at day 6 was observed in collagen gels treated 
with 4-MU at concentrations of 1 mM and greater. * indicates significant difference 
in area from untreated collagen gels (I-way ANOV A + Bonferroni correction.). 
*p<0.05 **p<O.O 1 ***p<O.OO I. 
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6.1.4 Effect of 4-MU on contraction of fibroblast populated collagen gels. 

Work in the laboratory of Dr. Mike Edwards at Glasgow (data not shown and 

unpublished at this time) suggests medium supplemented with 2mM 4-MU would 

reduce the contraction of fibroblast populated collagen gels. Collagen gels were 

prepared containing 5 x 104 fibroblasts and cultured in 4-MU supplemented medium 

for 6 days. Every 24 hours the medium was completely replaced and the gels 

photographed for later image analysis. The data is shown in figure 6.4 below. 

Unfortunately, whilst there was a trend to suggest that 4-MU could reduce the 

contraction of fibroblast populated collagen gels the variation in the data meant that 

statistical significance was not obtained. 
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Figure 6.4 Effect of 2 mM 4-MU on contraction of collagen gels populated with 
fibroblasts over a period of 6 days. Data expressed as mean ± SEM of n=3 
experiments (3 replicates per experiment). 4-MU has no significant effect on the 
contraction of collagen gels populated with human dermal fibroblasts as assessed 
using I-way ANOV A + Bonferroni correction at day 6. 
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6.1.5 Effect of 4-MU on contraction of keratinocyte populated collagen gels. 

5 x 10
4 

keratinocytes were seeded on top of pre-cast collagen gels and cultured in 

Greens medium supplemented with 2 mM 4-MU for 6 days. Every 24 hours the 

medium was completely replaced and the gels photographed for later image analysis. 

The data is shown in figure 6.5 below. Unfortunately, again whilst there was a trend 

to suggest that 2 mM 4-MU could reduce the contraction of keratinocyte populated 

collagen gels the variation in the data meant that statistical significance was not 

obtained at day 6. A significant difference in contraction was observed despite the 

large errors between days 3 and 5. Suggesting that 4-MU at a concentration of2 mM 

does significantly reduce the contraction ofkeratinocyte populated collagen gels. 
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Figure 6.5 Effect of 2 mM 4-MU on contraction of collagen gels populated with 
keratinocytes over a period of 6 days. Data expressed as mean ± SEM of n=3 
experiments (3 replicates per experiment). 4-MU has no significant effect on the 
contraction of collagen gels populated with keratinocytes as assessed using I-way 
ANOV A + Bonferroni correction at day 6. However a significant difference in 
contraction was observed between days 3 and 5. 
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6.1.4 Effect of 4-MU on contraction of collagen gels populated with fibroblasts 

and keratinocytes. 

Effect of 4-MU at a concentration of 2 mM on contraction of collagen gels populated 

with both fibroblasts and keratinocytes was also investigated. 5 x 104 cells were 

seeded in a 3: I ratio of keratinocytes to fibroblasts. The fibroblasts were seeded 

inside the gel and the keratinocytes on top. These gels were cultured Greens medium 

supplemented with 2 mM 4-MU for 6 days. Every 24 hours the medium was 

completely replaced and the gels photographed for later image analysis. The data is 

shown in figure 6.6 below. Unfortunately, again whilst there was a trend to suggest 

that treatment of the collagen gels with 2 mM 4-MU could reduce the contraction of 

collagen gels the variation in the data meant that statistical significance was not 

obtained. 
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Figure 6.6 Effect of 2 mM 4-MU on contraction of collagen gels populated with a 
3: I ratio of keratinocytes: fibroblasts over a period of 6 days Data expressed as mean 
± SEM of n=3 experiments (3 replicates per experiment). 4-MU has no significant 
effect on the contraction of collagen gels populated with keratinocytes as assessed 
using I-way ANOV A + Bonferroni correction at day 6. 



161 

6.2 Reconstructed skin model 

The reconstructed skin model has been established for many years in Prof. 

MacNeil's group. Although it has many uses, in this project it was used to model 

contraction. It has been clearly shown by Harrison (Harrison, Gossiel et al. 2006c), 

Thomton (Thomton, Harrison et al. Provisionally accepted) and Chakrabarty 

(Chakrabarty, Heaton et al. 2001) how this model can be used to see how various 

potential anti-contraction agents affect contraction. Statistics performed on these data 

were a 2-way ANOV A + Bonferroni correction. These statistics were chosen to 

allow comparison between these data and the data of Harrison et al. (Harrison, 

Gossiel et al. 2006c). 
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6.2.1 The effect of J3APN on contraction of reconstructed skin. 

These experiments (carried out by Miss Caroline Harrison) show the effect of I3APN 

supplemented medium on the contraction of collagen gels after 28 days culture at an 

air-liquid interface in Greens medium. The culture medium contained I3APN at 

concentration of 50, 100 and 200 J.lg.mr l
. Whilst I3APN had no significant effect on 

the contraction of collagen gels (see figure 6.2) Greens medium supplemented with 

200 ).lg.mr l I3APN significantly reduced the contraction of the reconstructed skin 

composite shown below in figure 6.7. 
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Figure 6.7 Effect of I3APN on contraction of the reconstructed skin model n=3 
experiments (3 replicates per experiment). * indicates significant difference in 
surface area from untreated composite (2-way ANOV A + Bonferroni correction). 
*p<0.05 **p<O.O 1 ***p<O.OO 1. No significant difference between I3APN treated and 
untreated DED (p>0.05). Data courtesy of Miss Caroline Harrison (Harrison, Gossiel 
et al. 2006c). I3APN supplemented medium (200 ).lg.mr l

) significantly reduced the 
contraction of the reconstructed skin composite. 
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6.2.1 The effect of 4-MU on contraction of reconstructed skin. 

These experiments show the effect of 4-MU supplemented medium on the 

contraction of the reconstructed skin model after 28 days culture at an air-liquid 

culture in Greens medium. The medium contained 4-MU at concentration of 0.5, I 

and 2 mM. The data is shown in figure 6.8 below. Greens medium supplemented 

with 4-MU at concentration of I mM or greater significantly reduced the contraction 

of the reconstructed skin composite. 
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Figure 6.8 Effect of 4-MU on contraction of the reconstructed skin model n=3 
experiments (3 replicates per experiment). * indicates significant difference in 
surface area from untreated composite (I-way ANOVA + Bonferroni correction). 
*p<0.05 **p<O.Ol ***p<O.OOl. There was no significant difference between 4-MU 
treated and untreated DED (p>O.05). Medium supplemented with 4-MU at 
concentrations of 1 mM and greater significantly reduced the contraction of the 
reconstructed skin. 
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6.2.2 Effect of 4-MU on histology of reconstructed skin. 

The effects of medium supplemented with 4-MU at concentrations of 0, 0.5, 1 and 

2 mM are shown in figure 6.9 below. Composites were cultured for 28 days at an air

liquid interface in Greens medium. Samples were subsequently fixed, embedded, 

mounted, and stained with Haematoxylin and Eosin (H&E). These sections were 

then photographed and sent for blind scoring. The results of the scoring are shown in 

the graphs in figure 6.10. To enable fair scoring with the small number of samples 

two micrographs, randomly numbered, for each condition were sent for blind scoring 

to 5 independent observers within the MacNeil group who each have significant 

experience in examining composite histology. The scoring system used is shown in 

chapter 2.10.2. 

Figure 6.9 Effect of 4-MU on histology of the reconstructed skin model after 28 days 
culture at air-liquid interface. A) 0 mM 4MU, B) 0.5 mM 4-MU, C) 1 mM 4-MU D) 
2mM4-MU. 
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Figure 6.10 Graphs showing the qualitative assessment of histology. A) Assessment of keratin layer, B) assessment of the keratinocyte layers, C) 
assessment of the quality of the dermo-epidermal junction, D) assessment of the quality of the dermis, E) assessment of fibroblast number in the 
composites. Two photomicrographs for each condition were assessed blind by 5 independent members of the MacNeil group and scored 
according to the system shown in section 2.10.2_ Graphs have been drawn to illustrate the number of times a photograph was categorised as A, 
B, C, D or in the case of the quality of the keratinocyte layer and th~ dermis E. 
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At low concentrations of 4-MU very little disruption to the keratin layer is seen with 

the majority of the photomicrographs categorised as normal (A). As the 

concentration of the 4-MU in the culture medium increases more of the 

photomicrographs are categorised as having either a thin layer of poorly adherent / 

fragmented keratin (C) or as having no keratin (D). The same trend is observed when 

assessing the quality of the keratinocyte layer. An increased number of 

photomicrographs were placed in the worst categories i.e. being categorised as 

having a patchy monolayer of keratinocytes (D) or having no keratinocytes (E) with 

increasing concentrations of 4-MU in the culture medium. 

Increasing the concentration of 4-MU in the culture medium also decreases the 

quality of the dermo-epidermal junction. Again as the concentration of the 4-MU in 

the culture medium increases more photomicrographs were categorised as having 

partial (C) or no attachment (0) between the epidermis and dermis than when there 

was no 4-MU in the culture medium. At the highest concentration investigated, 

2 mM, 8 out of the 10 photo micrographs assessed were classified as having no 

attachment between the dermis and epidermis. 

Increasing the concentration of 4-MU in the culture medium does not appear to have 

any effect on the quality of the dermis with the majority of the photomicrographs 

categorised as having normal, organised collagen. 

Increasing the concentration of the 4-MU in the culture medium does appear to have 

a profound effect on the fibroblast number. Even at low concentrations of 4-MU 

more photomicrographs were placed into the reduced proliferation (C) or no 

fibroblasts present (D) categories than in the normal proliferation (B) category. At 

the highest concentration of 4-MU investigated, 2 mM, 7 out of the 10 

photomicrographs were classified as having no fibroblasts. 
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6.3 Summary of Results. 

Initially the collagen gel model was used to examine the efficacy of the two anti

contraction agents under investigation, P-APN and 4-MU. The fibroblast populated 

collagen gel model is a cheap, simple model commonly used to study skin graft 

contraction. However, it does have its limitations; these include the presence of only 

one cell type, the lack of dermal architecture and basement membrane. The lack of 

dermal architecture and basement membrane cannot be easily rectified. A second cell 

type, the keratinocyte, can relatively easily be introduced into the collagen gels. It 

was therefore necessary to determine how the addition of keratinocytes into 

fibroblast populated collagen gels affected contraction. Collagen gels were produced 

with fibroblasts and keratinocytes in single and co-culture. All of the collagen gels 

produced had an initial seeding density of 5 x 104 cells. Whilst there was no 

significant difference observed due to low replicate numbers and large errors the 

collagen gels seeded with both cell types tended to contract more than those seeded 

with a single cell type. The collagen gel model with fibroblasts seeded in the gel and 

keratinocytes seeded on top of the gel in a 3:1 ratio (keratinocytes : fibroblasts) was 

therefore used to evaluate the efficacy of the two anti-contraction agents. 

PAPN had no effect on the contraction of collagen gels populated with both 

fibroblasts and keratinocytes. The 4-MU significantly reduced collagen gel 

contraction at concentrations of I mM or greater. Collagen gels populated with 

single or co-cultures of fibroblasts and / or keratinocytes were also treated with 4-

MU at a concentration of 2 mM. Unfortunately due to variation in the 4-MU treated 

collagen gels no statistical significance was obtained at day 6. However, in the 

keratinocyte populated gels a significant reduction in contraction was seen between 

days 3 and 5 despite the considerable variation present in the data. 4-MU also 

significantly reduced the contraction of the reconstructed skin model at 

concentrations of 1 mM or greater. Harrison et al. (Harrison, Gossiel et al. 2006c) 

had previously shown that PAPN at concentrations of 200 I-lg.mr l can significantly 

reduce contraction in the same reconstructed skin model. Table 6.1 summarises the 

effects of PAPN and 4-MU at various concentrations on the contraction of collagen 
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gels populated with single and co-cultures of fibroblasts and keratinocytes, and the 

reconstructed skin mode l. 

Table 6.1 Effect of PAPN and 4-MU at various concentrations on the contraction of 
the reconstructed skin model and collagen gels populated with single and co-cultures 
of fibroblasts and keratinocytes. 

Drug Model used Cells used, Effect on contraction 

PAPN Collagen I 3: 1 co-c u lture No significant effect 

50-800 Ilg.mrl gels 

4-MU Collagen I 3: 1 co-culture 1 mM and 4 mM significantly 

0.125-4 mM gels reduced contraction 

4-MU Collagen I Fibroblasts No significant effect 

2mM gels 

4-MU Collagen I Keratinocytes No significant effect 

2mM gels 

4-MU Collagen I 3: 1 co-culture No significant effect 

2mM gels 

PAPN* Reconstructed Fibroblasts & 200 ~g.mrl PAPN significantly 

50-200 Ilg.mrl skin keratinocytes reduced contraction 

4-MU Reconstructed Fibroblasts & 1 mM and 2 mM significantly 

0.5-2 mM skin keratinocytes reduced contraction 

* Data courtesy of MIss Carohne Harnson (Harrison, Gosslel et al. 2006c). 

Whilst the 4-MU significantly reduced the contraction of the reconstructed skin 

model it is important to make sure that there is no significant change to the histology 

of the reconstructed skin. H&E were used to stain the sections cut from the 

reconstructed skin composites after 28 days culture at an air-liquid interface. 

Photomicrographs of these sections were sent for independent blind scoring to 5 

members of the MacNeil group who each have significant experience examining 

composite histology. The photomicrographs appear to show a dramatic change in the 

quality of the epidermis, both in the quality of the keratinised layer and in the 

keratinocytes, as the concentration of 4-MU in the medium increases. Again the 

quality of the dermo-epidermal junction decreases with increasing concentration of 

4-MU. No difference was observed in the quality of the dermis at any of the 
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examined concentrations of 4-MU. However, the fibroblast number reduced 

dramatically when the composites were treated with 4-MU at concentrations of 1 

mM or greater. Harrison et al. (2006c) also showed that treatment of the 

reconstructed skin with 200 J.lg.mr l PAPN had no significant effect on the composite 

morphology. 
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7. Release of J3-aminopropionitrile and 4-methyl 

umbelliferone from poly(vinylpyrrolidinone) hydrogels and 

their effect on collagen gel contraction. 

The aim of this project was the development of a hydrogel wound dressing that could 

potentially be used to prevent / reduce skin graft contracture. A noncytotoxic poly 

(vinylpyrrolidinone) (PNVP) hydrogel has been developed with suitable material 

properties for use as a wound dressing. Two potential anti contraction agents have 

been identified, J3-aminopropionitrile (J3APN) and 4-methyl umbelliferone (4-MU). 

J3APN has been shown to be effective in reducing contraction of the reconstructed 

skin model (See chapter 6.2.1) but was unsuccessful in reducing the contraction of 

the collagen gel model (See chapter 6.1.2). 4-MU reduced contraction in both the 

collagen gel and reconstructed skin models (See chapter 6). 

Initial experiments to quantify J3APN release into aqueous media for this project 

involved attempted extraction of the J3APN from the aqueous media, (cell culture 

medium and PBS) into organic solvent, chloroform, for gas chromatography. 

Unfortunately the extraction proved unsuccessful, the J3APN was still present in the 

aqueous media even after treatment of the aqueous medium with potassium 

carbonate in an attempt to free the J3APN from the fumarate. The presence of J3APN 

in the aqueous solution was confirmed by the reaction of the amine group with 2,4,6-

trinitrobenzenesulfonic acid (TNBS). This yellow solution reacts with the amine to 

form an orange derivative as follows. 

+,,0 

O-""n
0 

N ~S ~ 

O~ + I ~ +_ 
N NO 
1- 11 
o 0 

Figure 7.1 Reaction scheme for the reaction of 2,4,6-trinitrobenzenesulfonic acid 

with a primary amine (Hermanson 1996). 
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The TNBS assay has been used for many years to measure the free amino groups in 

proteins (Habeeb 1966). It can also be used as a qualitative check for the presence of 

amines, sulfuydryls, or hydrazides (Hermanson 1996). Further studies showed that 

this TNBS assay could be used to monitor the release of the I3APN into amine free 

aqueous media. 

In monitoring the release of 4-MU into various aqueous media advantage was taken 

of the fluorescent properties of the 4-MU. Friedberg and Shihabi (1997) use 4-MU 

conjugated to glucosaminide as a synthetic substrate to monitor the activity of N

acetyl-l3-glucosaminidase. The product of this reaction is 4-MU and UV absorption 

or fluorescence spectroscopy techniques can be used to quantify the amount of 4-MU 

in solution. This assay has also been used by Calvitti et at. (2004). Lovdahl et at. 

(1994) used a HPLC method to quantify the amount of 4-MU in Williams E Media 

and dog plasma. However, this method was not explored in this study due to 

potential difficulties in the extraction of the 4-MU into acetonitrile. 

7.1 Drug release assay development. 

7.1.1 Assay development for monitoring PAPN release. 

The TNBS assay is used to determine the presence of free amino groups in amino 

acids and peptides. Initial experiments were performed with a protein control, BSA, 

to ensure that the assay worked. Initial experiments as illustrated in figure 7.2.A 

showed that the assay was more sensitive to I3APN than to BSA. It is thought that 

this is due to the protonated nitrogen in the PAPN causing the PAPN to be a more 

reactive species than the primary amines the assay was designed to measure. Further 

experiments were conducted to establish by what factor the experimental samples 

would need to be diluted by to prevent the saturation seen in figure 7.2.A. Dilutions 

of both the PAPN solutions in PBS and the TNBS solution were tried. This showed 

that dilution of the TNBS solution did not affect the concentration at which 

saturation occurred it only lowered the sensitivity of the assay. Dilution of the PAPN 

samples from a known concentration by 1: 1 0 did produce a curve suitable for use. 
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This means that the maximum detectable J3APN concentration for these experiments 

is 120 J..lg.mr l as shown in figure 7.2.B. 

A variety of other aqueous media were also tried to see which would be the best for 

a) releasing the J3APN into and b) diluting the samples by. Media tried were distilled 

water, PBS, PBS + 10% FCS, serum free DMEM, fibroblast culture medium, and 

Greens medium. The serum free DMEM, fibroblast culture medium, and Greens 

medium were investigated both with and without phenol red. In all cases except 

water and PBS the assay did not detect the presence of J3APN. This was thought to 

be due to the presence of the amino acids in these media. The phenol red also 

quenched the majority of the signal from the TNBS (data not shown). It was found 

that the best medium for the J3APN release assay was therefore PBS due to the 

similarities between this medium and the cell culture medium. The best medium for 

the sample dilution was the carbonate buffer used to make the TNBS solution used 

in the assay (data not shown). In all cases the experiments were performed using a 96 

well plate, absorption was measured using a U.V. plate reader at 320 nm. 
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Figure 7.2 Development of the calibration curve for detection of I3APN in phosphate 
buffered saline (PBS) by TNBS. A) Detection of I3APN and BSA (n=6), B) Final 
I3APN calibration curve, samples diluted down to final concentrations using Na(CO-
3)2 buffer pH 8.5 (n=6). All data expressed as mean ± SEM. 
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7.1.2 Assay development for monitoring 4-MU release. 

The assay for detection of 4-MU is already fairly well established using the 

fluorescence of the 4-MU solution with an excitation wavelength of 360 nm and 

emission of 440/460 nm. Initial experiments were performed to ensure the 

concentration dependent peaks stated in the literature were not affected by the 

various potential media that the 4-MU could be dissolved in Figure 7.3.A. Media 

examined included distilled water, phosphate buffered saline (PBS), PBS + 10% 

foetal calf serum (FCS), serum free DMEM, fibroblast culture medium and Greens 

medium. The serum free DMEM, fibroblast culture medium and Greens medium all 

contained phenol red. This shows that it is possible to directly measure the release of 

the 4-MU into the Greens medium that was used for the cell culture experiments. 

Samples also have to be diluted 1:8 producing the curve shown in figure 7.3.B. This 

allows a maximum directly measurable concentration of 0.15 mM. 
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Figure 7.3 Calibration curves for A) 4-MU dissolved in a variety of different 
solvents. 8) Calibration curve used for drug release experiments. Excitation 
wavelength 360 nm, emission monitored at 440/460 nm. Data expressed as mean ± 
SEM of n=6 samples. 
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7.2 Release of (3APN and 4-l\lU from PNVP based bydrogels. 

7.2.1 Release of PAPN from PNVP hydrogels. 

These experiments show the cumulative release of PAPN into 1 ml of PBS from 

P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co-AA) hydrogels loaded with 

PAPN at initial concentrations of 1000 J.lg.mr1 and 200 J.lg.mr1 over a period of 6 

days at room temperature. Graphs show cumulative release over this period. At each 

time point all the PBS was removed from the samples and fresh PBS added. This 

was to mimic the situation seen in the collagen gel contraction experiments in 

chapter 7.3. 

7.2.1.1 P(NVP-co-DEGBAC) hydrogels. 

Figure 7.4 shows the cumulative release of PAPN into PBS over a period of 6 days 

at room temperature from P(NVP-co-DEGBAC) hydrogels. Xerogels, dehydrated 

hydrogels, were swollen in PBS containing PAPN at concentration of 200 J.lg.mr l 

and 1000 J.lg.mr1 for 48 hours. The swollen gels were then allowed to air dry for } 

hour to remove any excess solution before being placed into individual wells of a 48 

well plate. 1 m} of PBS was then added and the plate closed to reduce evaporation. 

At each time point the PBS was completely removed, stored for later analysis and 

fresh PBS added to mimic the conditions of the collagen gel contraction experiment 

described in chapter 7.3. The concentration of PAPN in the PBS was measured at 

each time point and added to the previous days total to obtain the cumulative release. 

It can be seen that in the gels loaded from a solution of 200 J.lg.mr1 PAPN after 48 

hours the majority of the PAPN has been released. The total volume of the swollen 

gel is approximately 500 J.lI and therefore it is important to note that the 

concentration of the final solution would not be the same as the concentration of the 

loading solution i.e. a final cumulative concentration of 200 J.lg.mr1 would not be 

expected. If all the PAPN is being released from a gel loaded from 200 J.lg.mr l a 

maximum achievable concentration would be approximately 100 J.lg.mr1 which is 

close to the value of 70 J.lg.mr1 seen in figure 7.4. The gel loaded from 1000 J.lg.mr l 

could potentially achieve a maximum concentration of approximately 500 J.lg.mr l 
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however this is not seen in figure 7.4 with the maximum concentration of 160 Ilg.mr 

I being obtained. Again most of the drug appears to be released over the first 48 

hours of the experiment. This is further illustrated by the fractional release graphs 

shown in figure 7.5. Figure 7.5.A shows that approximately 80% of the ~APN is 

released within the first 48 hours from the P(NVP-co-DEGBAC) hydrogel loaded 

from a 200 Ilg.mrl solution. Figure 7.5.B shows that a similar quantity of the ~APN 

was also released within the first 48 hours from the P(NVP-co-DEGBAC) hydrogel 

loaded from a 1000 Ilg.mrl solution. The fractional release data have been fitted 

with curves of the form y=kxn. This allows the rate constant (k) and diffusional 

exponent (n) to be calculated. Both of these curves are a fairly good fit with R2 

values of 0.844 and 0.791 respectively. The diffusional exponents derived from these 

graphs, 0.233 ± 0.054 and 0.186 ± 0.023 respectively are much lower than the value 

of 0.5 generally expected for Fickian release or the value of 0.45 expected for 

Fickian release from cylindrical samples. They are close to the values of 0.13, 0.19 

and 0.23 obtained for the release of 5-FU from PNVP based hydrogels by Liu et al. 

(2002b). 
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Figure 7.4 Release of ~APN into phosphate buffered saline from P(NVP-co
DEGBAC) hydrogels over a period of 6 days at room temperature. After reaction 
with TNBS for 2 hours at room temperature absorbance was read at 340 nm and 
referenced at 630 nm. Data expressed as mean ± SEM of n=6 samples. 
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Figure 7.S Fractional release of PAPN into phosphate buffered saline from P(NVP
co-DEGBAC) hydrogels loaded from A) 200 J..lg.mr1 B) 1000 J..lg.mr1 PAPN 
solutions over a period of 6 days at room temperature. Fractional release plotted 
from release data used for figure 7.4 plotted as concentration at time t / final 
concentration. Data expressed as mean ± SEM of n=6 samples. 
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7.2.1.2 PNVP-co-DEGBAC-co-AA hydrogels. 

Figure 7.6 shows the cumulative release of PAPN into PBS over a period of 6 days 

at room temperature from P(NVP-co-DEGBAC-co-AA) hydrogels. Xerogels were 

swollen in PBS containing PAPN at concentrations of 200 J.lg.mr l and 1000 J.lg.mr l 

for 48 hours. The swollen gels were then allowed to air dry for 1 hour to remove any 

excess solution before being placed into individual wells of a 48 well plate. 1 ml of 

PBS was then added and the plate closed to reduce evaporation. At each time point 

the PBS was completely removed, stored for later analysis and fresh added to mimic 

the conditions of the collagen gel contraction experiment described in chapter 7.3. 

The concentration of PAPN in the PBS was measured at each time point and added 

to the previous days total to obtain the cumulative release. It can be seen that in the 

gels loaded from a solution of 200 J.lg.mr l PAPN after 24 hours the majority of the 

PAPN has been released. Again it is important to note that the concentration of the 

final solution would not be the same as the concentration of the loading solution i.e. 

a final cumulative concentration of 200 J.lg.mr l would not be expected. If all the 

PAPN is being released from a gel loaded from 200 J.lg.mr l a maximum achievable 

concentration would be approximately 100 J.lg.mr l which is again close to the value 

of 70 J.lg.mr l seen in figure 7.6. The gel loaded from 1000 J.lg.mr l could potentially 

achieve a maximum concentration of approximately 500 J.lgmr l however once again 

this is not seen in figure 7.6 with the maximum concentration of 150 J.lg.mr l being 

obtained. In this case as with the P(NVP-co-DEGBAC) gels most of the drug 

appears to be released over the first 48 hours of the experiment. This is further 

illustrated by the fractional release graphs shown in figure 7.7. The P(NVP-co

DEGBAC-co-AA) hydrogel loaded from a 200 J.lg.mr l solution releases 

approximately 70% of the PAPN within the first 24 hours as illustrated in figure 

7.7.A. Figure 7.7.B shows that approximately 80% of the PAPN is released within 

the first 24 hours from the P(NVP-co-DEGBAC-co-AA) hydrogel loaded from a 

1000 J.lg.mr l solution. The fractional release profiles obtained from the P(NVP-co

DEGBAC-co-AA) hydrogels loaded from 200 and 1000 /J.g.mr l solutions of PAPN 

give diffusional exponents of 0.171 ± 0.05 and 0.133 ± 0.02 respectively. These 

curves have R2 values of 0.791 and 0.927 respectively. These values again are much 

lower than the value of 0.5 generally expected for Fickian release or the value of 
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0.45 expected for Fickian release from cylindrical samples. Again, they are close to 

the values of 0.13, 0.19 and 0.23 obtained for the release of 5-FU from PNVP based 

hydrogels by Liu et al. (2002b). The addition of the acrylic acid to the P(NVP-co

DEGBAC) hydrogel did alter the diffusion exponents. The exponents obtained for 

the P(NVP-co-DEGBAC-co-AA) hydrogels releasing PAPN were reduced compared 

to the exponents for the P(NVP-co-DEGBAC) hydrogels releasing PAPN from both 

loading solutions. 
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Figure 7.6 Release of PAPN into phosphate buffered saline from P(NVP-co
DEGBAC-co-AA) hydrogels over a period of 6 days at room temperature. After 
reaction with TNBS for 2 hours at room temperature absorbance was read at 340 nm 
and referenced at 630 nm n=6. 
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Figure 7.7 Fractional release of PAPN into phosphate buffered saline from P(NVP
co-DEGBAC-co-AA) hydrogels over a period of 6 days at room temperature. 
Fractional release plotted from release data used for figure 7.6 plotted as 
concentration at time t / final concentration. 
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7.2.2 Release of 4-MU from PNVP hydrogels. 

These experiments show the cumulative release of 4-MU into phosphate buffered 

saline from P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co-AA) hydrogels 

loaded with 4-MU at initial concentrations of I mM or 4 mM over a period of 6 days 

at room temperature. Graphs show cumulative release over this period. At each time 

point all the PBS was removed from the samples and fresh PBS added. This was to 

mimic the situation seen in the collagen gel contraction experiments in chapter 7.3. 

7.2.2.1 PNVP-co-DEGBAC hydrogels. 
Figure 7.8 shows release of 4-MU into Greens medium containing 10% FCS over a 

period of 6 days at 37°C from P(NVP-co-DEGBAC) hydrogels. Xerogels were 

swollen in PBS containing 4-MU at concentration of I mM and 4 mM for 48 hours. 

The swollen gels were then allowed to air dry in sterile conditions for I hour to 

remove any excess solution before being placed into individual wells of a 48 well 

plate. I ml of medium was then added and the plate closed. At each time point the 

medium was completely removed and stored for later analysis and fresh medium 

added to mimic the conditions of the collagen gel contraction experiment described 

in chapter 7.3. The concentration of 4-MU in the PBS was measured at each time 

point and added to the previous days total to obtain the cumulative release. It can be 

seen that in the gels loaded from a solution of 1 mM 4-MU after 24 hours the 

majority of the 4-MU has been released. Again it is important to note that the 

concentration of the final solution would not be the same as the concentration of the 

loading solution i.e. a final cumulative concentration of I mM would not be 

expected. If all the 4-MU is being released from a gel loaded from I mM solution a 

maximum achievable concentration would be approximately 0.5 mM which is near 

to the value of 0.3 mM seen in figure 7.8. The gel loaded from 4 mM could 

potentially achieve a maximum concentration of approximately 2 mM however 

figure 7.8 shows a value of approximately 1.5 mM is obtained. In this case as with 

the gels loaded from a I mM solution most of the drug appears to be released over 

the first 24 hours of the experiment. This is further illustrated by the fractional 

release graphs shown in figure 7.9. Figure 7.9.A shows that approximately 80% of 

the 4-MU is released within the first 24 hours from the P(NVP-co-DEGBAC) 
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hydrogel loaded from a I mM 4-MU solution. Figure 7.9.B shows that a similar 

quantity of the 4-MU was also released within the first 24 hours from the P(NVP-co

DEGBAC) hydrogel loaded from a 4mM 4-MU solution. Both of these curves are 

not a good fit with R2 values of 0.682 and 0.730 respectively. The diffusional 

exponents derived from these graphs, 0.074 ± 0.03 and 0.107 ± 0.03 respectively are 

indicative of non Fickian release. These values again are much lower than the value 

of 0.5 generally expected for Fickian release or the value of 0.45 expected for 

Fickian release from cylindrical samples. Again, they are close to the values of 0. 13, 

0.19 and 0.23 obtained for the release of 5-FU from PNVP based hydrogels by Liu et 

al. (2002b). 
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Figure 7.8 Release of 4-MU into Greens medium from P(NVP-co-DEGBAC) 
hydrogels over a period of 6 days at 37°C. Fluorescence was measured using 
excitation of 360 nm and measuring emission at 440/460 nm n=6. 
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Figure 7.9 Fractional release of 4-MU into Greens medium from P(NVP-co
DEGBAC) hydrogels over a period of 6 days at 37°C. Fractional release plotted from 
release data used for figure 7.8 plotted as concentration at time t / final 
concentration. 
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7.2.2.2 PNVP-co-DEGBAC-co-AA bydrogels. 

Figure 7.10 shows the cumulative release of 4-MU into Greens medium containing 

10% FCS over a period of 6 days at 37°C from P(NVP-co-DEGBAC-co-AA) 

hydrogels. Xerogels were swollen in PBS containing 4-MU at concentration of 1 

mM and 4 mM for 48 hours. The swollen gels were then allowed to air dry for 1 

hour in sterile conditions to remove any excess solution before being placed into 

individual wells of a 48 well plate. 1 ml of medium was then added and the plate 

closed. At each time point the medium was completely removed and stored for later 

analysis and fresh added to mimic the conditions of the collagen gel contraction 

experiment described in section 7.3. The concentration of 4-MU in the PBS was 

measured at each time point and added to the previous days total to obtain the 

cumulative release. It can be seen that in the gels loaded from a solution of 1 mM 4-

MU after 24 hours the majority of the 4-MU has been released. Again it is important 

to note that the concentration of the final solution would not be the same as the 

concentration of the loading solution i.e. a final cumulative concentration of 1 mM 

would not be expected. If all the 4-MU is being released from a gel loaded from 1 

mM a maximum achievable concentration would be approximately 0.5 mM which is 

close to the value of 0.3 mM seen in figure 7.10. The gel loaded from 4 mM could 

potentially achieve a maximum concentration of approximately 2 mM however 

figure 7.1 0 shows a value of approximately 1 mM 4MU is obtained. In this case as 

with the gels loaded from a 1 mM solution most of the drug appears to be released 

over the first 24 hours of the experiment. This is further illustrated by the fractional 

release graphs shown in figure 7.11. Figure 7.11.A shows that approximately 80% of 

the 4-MU is released within the first 24 hours from the P(NVP-co-DEGBAC) 

hydrogel loaded from a 1 mM 4-MU solution. Figure 7.11.B shows that a similar 

quantity of the 4-MU was also released within the first 24 hours from the P(NVP-co

DEGBAC) hydrogel loaded from a 4 mM 4-MU solution. Again both of these curves 

are not a good fit with R2 values of 0.676 and 0.716 respectively. The diffusional 

exponents derived from these graphs, 0.074 ± 0.03 and 0.1 01 ± 0.03 respectively are 

indicative of non-Fickian release. Again these values are close to those obtained for 

the release of 5-FU from PNVP hydrogels (Liu and Rimmer 2002b). The addition of 

the acrylic acid to the P(NVP-co-DEGBAC) hydrogel had no effect on the release of 

the 4-MU. 
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Figure 7.10 Release of 4-MU into phosphate buffered saline from P(NVP-co
DEGBAC-co-AA) hydrogels over a period of 6 days at room temperature. 
Fluorescence was measured using excitation of 360 nm and measuring emission at 
440/460 nm n=6. 
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Figure 7.11 Fractional release of 4-MU into Greens medium from P(NVP-co
DEGBAC-co-AA) hydrogels over a period of 6 days at 37°C. Fractional release 
plotted from release data used for figure 7.10 plotted as concentration at time t / final 
concentration. 
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7.3 Effect of PNVP hydrogels loaded with PAPN or 4MU on collagen 

gel contraction. 

In these experiments the gels were prepared as per chapter 2.7.6. Even though the 

PAPN had no effect on the contraction of collagen gels in chapter 6.1 PAPN loaded 

gels were still included in these experiments. 

7.3.1 Effect of P(NVP-co-DEGBAC) hydrogels loaded with PAPN or 4-MU on 

contraction of collagen gels. 

The graph shown in figure 7.12 illustrates the effect of P(NVP-co-DEGBAC) 

hydrogels loaded with PAPN and 4-MU on the contraction of collagen gels over a 

period of 6 days. The initial contraction seen in the first 24 hours is thought in part to 

be due to the innate elastic properties of the collagen gels with only a small 

contribution from the cells. All of the treated collagen gels contracted significantly 

less over the initial 24 hours than the control. Over the following 24 hours only the 

hydrogel loaded from a 4 mM solution of 4-MU significantly reduced the 

contraction. The hydrogels had no effect on contraction at any further time points. It 

is interesting to note that the hydrogel itself significantly reduced contraction in the 

absence of drug over the initial 24 hours. 
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Figure 7.12 Effect of PAPN and 4-MU loaded P(NVP-co-DEGBAC) hydrogels on 
contraction of co-cultured collagen gels over 6 days. Results shown are mean ± SEM 
of n=3 experiments (3 replicates per experiment). * indicates a significant difference 
in area from untreated collagen gels (I-way ANOV A + Bonferroni correction). 
*p<0.05 **p<O.O I ***p<O.OO 1. 

7.3.2 Effect of P(NVP-co-DEGBAC-co-AA) hydrogels loaded with PAPN or 4-

MU on contraction of collagen gels. 

The graph shown in figure 7.13 illustrates the effect of P(NVP-co-DEGBAC-co-AA) 

hydrogels loaded with PAPN and 4-MU on the contraction of collagen gels over a 

period of 6 days. The initial contraction seen in the first 24 hours is thought in part to 

be due to the innate elastic properties of the collagen gels with only a small 

contribution from the cells. Unlike the P(NVP-co-DEGBAC) hydrogels the P(NVP

co-DEGBAC-co-AA) hydrogels have no significant effect on the contraction of 

collagen gels by themselves. The hydrogels loaded with PAPN from a I 000 ~g.mrl 

solution significantly reduce contraction during the first 24 hours as do the hydrogels 

loaded from a 1 mM solution of 4-MU. The hydrogel loaded from a 4 mM solution 

of 4-MU significantly reduced the contraction of the collagen gels compared to the 

untreated gels up to day 2. 
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Figure 7.13 Effect of PAPN and 4-MU loaded P(NVP-co-DEGBAC) hydrogels on 
contraction of co-cultured collagen gels over 6 days. Results shown are mean ± SEM 
of n=3 experiments (3 replicates per experiment) * indicates significant difference in 
area from untreated collagen gels (I-way ANOVA + Bonferroni correction). 
*p<0.05 **p<O.OI ***p<O.OOl. 
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7.4 Effect of 4 mM 4-MU loaded PNVP hydrogels, changed every 

two days, on collagen gel contraction. 

The graph shown in figure 7.14 illustrates the effect of PCNVP-co-DEGBAC) and 

P(NVP-co-DEGBAC-co-AA) hydrogels loaded with 4 mM 4-MU on the contraction 

of collagen gels over a period of 6 days. In these experiments the hydrogel was 

removed every two days and fresh 4 mM 4-MU hydrogel added. Replacing the 

P(NVP-co-DEGBAC) hydrogel with fresh 4 mM 4-MU hydrogel every two days 

significantly reduces the contraction compared to the untreated control over the full 6 

day period. The P(NVP-co-DEGBAC-co-AA) hydrogel significantly reduces the 

contraction over 5 of the 6 days. However the large error bars on day 6 prevent 

significance being obtained. There was no significant difference observed between 

the two hydrogels. 

110 

100 

90 
ro 
~ 80 
ro 
(ij 70 
c: 
"0, 
";:: 60 
o 

<fl. 50 -c: 
o 40 
U 
~ 30 -c: 
8 20 

10 

*** 
** 

** 
*** 

* 
** 

** 
** 

** 
** ** 

-----J-----i-----;-----*-----y 

!~~ 
~,---+----~:::::::* 

-----!--~ -.- Greens 
-e- 4 mM 4MU P(NVP-co-DEGBAC) 
- . - 4 mM 4MU P(NVP-co-DEGBAC-co-AA) 
-.- NoCells 

o 2 3 4 5 6 

Time / Days 

Figure 7.14 Effect of PNVP based hydrogels loaded with 4 mM 4-MU on 
contraction of co-cultured collagen gels over 6 days. Hydrogels changed every 2 
days. Results shown are mean ± SEM of n=3 experiments (3 replicates per 
experiment) * indicates significant difference in area from untreated collagen gels 
(2-way ANOV A + Bonferroni correction). *p<O.05 **p<O.O I ** *p<O.OO I. 



192 

7.5 Summary of results. 

After the synthesis and characterisation of the hydrogels the evaluation of the 4-MU 

and PAPN drug release profiles were obtained. The TNBS (2,4,6-

trinitrobenzenesulfonic acid) assay, an assay for detection and quantification of 

primary amines in peptide solutions was modified to allow detection and 

quantification of PAPN in phosphate buffered saline. This is not ideal but it was not 

possible to detect the PAPN in cell culture media containing solutions. This was 

thought to be due to the presence of amino acids in the media and proteins in the 

foetal calf serum. The 4-MU was detected using fluorescence and could be 

accurately detected in various media, water, PBS, PBS + 10% FCS, serum free 

DMEM, DMEM + 10% FCS and Greens medium + 10% FCS. 

PAPN was loaded into P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co-AA) 

xerogels (dehydrated hydrogels) from solutions of p-aminopropionitrile fumarate in 

PBS with concentrations of 200 J.lg.mr l and 1000 J.lg.mr l
, Prior to release 

experiments the swollen gels were air dried to remove any excess solution and then 

placed into 1 ml of PBS. There was very little difference observed in the release 

behaviour of the I3APN loaded into P(NVP-co-DEGBAC) from 200 J.lg.mr l and 

1000 J.lg.mr l solutions. Both loading concentrations resulted in non-Fickian 

diffusion of the PAPN from the hydrogels as indicated by diffusion exponents of 

0.231 and 0.186 for the 200 J.lg.mr l and 1000 J.lg.mr l solutions respectively. The 

release profiles for PAPN loaded into P(NVP-co-DEGBAC-co-AA) from 200 J.lg.mr 

I and 1000 J.lg.mr l solutions were markedly different. The addition of the acrylic 

acid to the P(NVP-co-DEGBAC) hydrogel lowered the diffusion exponent. 

Diffusion exponents of 0.171 and 0.133 were calculated for the release of the I3APN 

from the P(NVP-co-DEGBAC-co-AA) hydrogels loaded from 200 J.lg.mr l and 

1000 J.lg.mr l solutions of 3-aminopropionitrile fumarate. 

4-MU was loaded into P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co-AA) 

xerogels from solutions of 4-methyl umbelliferone sodium salt in PBS with 

concentrations of 1 mM and 4 mM. Prior to release experiments the swollen gels 
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were air dried to remove any excess solution and then placed into I ml of PBS. 

There was very little difference observed in the release profiles for the P(NVP-co

DEGBAC) hydrogels loaded from the I mM and 4 mM 4-MU solutions. The release 

profiles calculated for these hydrogels gave diffusional exponents of 0.074 and 0.107 

for the 1 mM and 4 mM loaded hydrogels. With both hydrogels an initial burst 

release was observed during the first 24 hours where 80% of the 4-MU was released. 

The hydrogel loaded from the I mM solution released the remaining 20% of 4-MU 

over the following 48 hours. Similarly the hydrogel loaded from the 4 mM solution 

released the remaining 20% of 4-MU over the following 24 hours. The addition of 

the acrylic acid to the P(NVP-co-DEGBAC) hydrogel had no effect on the release of 

the 4-MU. Diffusional exponents calculated for the release of the 4-MU from the 

1 mM and 4 mM P(NVP-co-DEGBAC-co-AA) hydrogel were 0.074 and 0.101 

respectively. 

Table 7.1 summarises the diffusion exponents calculated for the release of PAPN 

and 4-MU from the PNVP based hydrogels. The acrylic acid was added to the 

P(NVP-co-DEGBAC) hydrogel in an attempt to modify the release of the PAPN 

from the hydrogel. The calculated diffusion exponents show that adding the acrylic 

acid to the hydrogel reduced the diffusion exponent. The addition of the acrylic acid 

to the P(NVP-co-DEGBAC) hydrogel has no effect on the calculated diffusion 

exponents for the release of the 4-MU. All of the diffusional exponents are in the 

same range as those observed by Liu et al. (2002b) for the release of 5-fluorouracil 

from PNVP based hydrogels. However the 5-FU was part of the crosslinker used in 

the hydrogel synthesis. Its release was therefore governed not only by diffusion but 

by crosslinker degradation (Liu and Rimmer 2002b). It was not possible to 

physically incorporate the PAPN or 4-MU into the hydrogels and therefore the 

release mechanism despite the similarities in diffusion exponents cannot be the same. 
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Table 7.1 Summary of diffusion exponents 

P(NVP-co-DEGBAC) P(NVP-co-DEGBAC-co-AA) 

J3APN / 200 0.232 ± 0.05 0.171 ± 0.05 

J..1gmr l 1000 0.186 ± 0.02 0.133 ± 0.02 

4-MU / 1 0.074 ± 0.03 0.073 ± 0.03 

mM 4 0.107 ± 0.03 0.101 ± 0.03 

Collagen gels were then used to evaluate the effects of these drug loaded hydrogels 

on contraction. The hydrogels examined were P(NVP-co-DEGBAC) and P(NVP-co

DEGBAC-co-AA) hydrogels loaded with J3APN from solutions of 200 J..1g.mr l and 

1000 J..1g.mr1 and 4-MU from solutions of 1 mM and 4 mM. Hydrogels swollen in 

PBS in the absence of the J3APN and 4-MU were used as controls. The P(NVP-co

DEGBAC) hydrogels loaded from a 4 mM solution of 4-MU produced a significant 

decrease in the contraction of the collagen gels up to day 2 of the experiment. In all 

cases the contraction of the collagen gels treated with the P(NVP-co-DEGBAC) 

hydrogel was significantly reduced at the 1 day time point. This was unexpected as 

the J3APN loaded hydrogels appeared to reduce contraction whilst J3APN by itself 

had no effect on the collagen gels. The P(NVP-co-DEGBAC-co-AA) hydrogels, 

loaded from a 1000 J..1g.mr l solution of J3APN and 1 mM solution of 4MU produced 

a significant decrease in the contraction of the collagen gels up to day 1 of the 

experiment. However the P(NVP-co-DEGBAC-co-AA) hydrogel loaded from a 

4 mM solution of 4-MU produced a significant decrease in the contraction of the 

collagen gels up to day 2. 

Reduction in collagen gel contraction was only observed up to day 2 when treated 

with any combination of hydrogel and anti-contraction agent. The hydrogels loaded 

from solutions of 4 mM 4-MU however appeared to be the most promising. It was 

therefore proposed to change the hydrogel every two days. Again all the media was 

removed at each 24 hour time point. It should be noted that the cells in the collagen 

gels will not be exposed to a constant concentration of 4-MU. It was shown in 

figures 7.9 and 7.11 that approximately 80% of the 4-MU is released from both the 

P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co-AA) hydrogels with most of the 

remaining 4-MU released over the following 24 hours. This means that on the day 
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when the hydrogels are changed the cells will be exposed to a much higher 

concentration of 4-MU than on the days where the hydrogels are not changed. 

Changing the hydrogel every two days resulted in a significant reduction in collagen 

gel contraction when the gels were treated with both the P(NVP-co-DEGBAC) and 

the P(NVP-co-DEGBAC-co-AA) hydrogels loaded from a 4 mM 4-MU solution at 

the majority of the time points up to 6 days. 
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8. Discussion. 

The overall aim of this project was to develop a novel poly(N-vinylpyrrolidinone) 

(PNVP) based hydrogel wound dressing which could be used to release anti

contraction agents to prevent or reduce skin graft contracture. 

To achieve this a series of specific objectives were identified I) to evaluate the 

material properties and cellular toxicity of novel PNVP hydrogels. 2) To examine the 

cytotoxicity of the identified anti contraction agents. PAPN and 4-MU, 3) to 

determine whether PAPN and 4-MU could reduce contraction in a collagen gel 

model, 4) to determine if 4-MU could prevent or reduce contraction in the 

reconstructed skin model, 5) to examine the loading and release of PAPN and 4-MU 

into and from PNVP hydrogels and 6) to examine to what extent the drug loaded 

hydrogels would reduce the contraction of the collagen gel and reconstructed skin 

models. 

A novel PNVP hydrogel was produced with material properties suitable for use as a 

wound dressing. Cytotoxicity testing showed that whilst cells could not be grown on 

the hydrogel this hydrogel was not cytotoxic. If human dermal fibroblasts were 

grown in indirect contact with the hydrogel then cell viability could be stimulated. 

Cytotoxicity testing of PAPN showed that this drug at the concentrations identified 

was also not cytotoxic. PAPN also had no affect on keratinocyte proliferation or 

differentiation at the concentrations identified. Cytotoxicity testing of 4-MU showed 

that this drug over the concentrations examined could significantly reduce cell 

viability and keratinocyte proliferation and differentiation. Despite or perhaps 

because of these cytotoxic effects 4-MU significantly reduced the contraction of both 

collagen I gels and the reconstructed skin model. PAPN was not shown to have any 

effect on the contraction of collagen I gels but previous work in this laboratory had 

shown PAPN to be effective in reducing the contraction of the reconstructed skin 

model. The water soluble salts of PAPN and 4-MU were loaded into the PNVP 

hydrogels and the release of the drugs from the hydrogels monitored. The drugs were 

released from the hydrogels in a predictable manner over a 48 hour period. The 4-
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MU loaded hydrogels were then shown to significantly reduce the contraction of 

collagen I gels when the hydrogels were changed every two days. 

In this thesis initially attempts were made to produce PNVP oligomers with differing 

functionalities. This was in an attempt to produce PNVP polymers with a greater 

range of applications. Unfortunately attempts to produce functionalised NVP 

oligomers had low yields and these synthesis routes proved impractical for the large 

quantities needed for hydrogel synthesis. Therefore PNVP hydrogel membranes 

crosslinked with either ethyleneglycol dimethacrylate (EGDMA) or diethyleneglycol 

bisallylcarbonate (DEGBAC) were synthesised and their material and biological 

properties evaluated. The P(NVP-co-EGDMA) hydrogels with 1 wt% crosslinker did 

not have material properties suitable for use as a wound dressing. The polymers, 

even when synthesised in the absence of solvent, once swollen in phosphate buffered 

saline (PBS) had an elastic modulus (E) of 0.16 MPa ± 0.02 MPa and ultimate 

compressive strength (UCS) of 0.03 MPa with an equilibrium water content (EWC) 

of 96.2% ± 0.3%. Increasing the amount of EGDMA in the hydrogel resulted in an 

opaque, phase separated polymer that disintegrated easily. Increasing the EGDMA 

content in the polymer to 2 wt% produced a polymer with an EWC of 92.3% ± 0.6%. 

Unfortunately it was not possible to get an elastic modulus or ultimate compressive 

strength for this polymer. Changing the crosslinker to DEGBAC reduced the EWC 

to 92.2% ± 0.1 % and gave an E = 0.22 MPa ± 0.02 MPa and UCS=0.29 MPa ± 

0.08 MPa. Once again increasing the DEGBAC concentration in the monomer blend 

reduced the EWC to 81.7% ± 0.4% for the 4 wt% DEGBAC hydrogel. 

These properties compare favourably with those seen in the literature for hydrogels. 

The viscoelastic nature of hydrogels makes the experimental determination of their 

material properties difficult. Values can be calculated for the elastic modulus, 

ultimate compressive or tensile strength, and the strain at failure. However these 

values will be dependent on the strain rate and temperature at which the experiment 

was performed. All experiments performed for this project were performed at a 

strain rate of 0.1 mm.s- I
, this is equivalent to 6 mm.min- I

, Cauich-Rodriguez et al. 

(1996a) produced a PNVP - PVA hydrogel with similar material properties, 

E = 0.15 MPa ± 0.07 MPa. Unfortunately it was not possible to obtain published 

EWC data for these polymers. The hydrogels produced by Hong et al. (1997) do not 
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have published mechanical data, however data about the EWC's of these polymers 

have been published. The polymers produced by Hong et al. were primarily 

synthesised from NVP and the majority of these contained a small am'ount of HEMA 

as well as a crosslinking agent (divinyl glycol, diallyl ether, ethyleneglycol 

dimethacrylate, diethyleneglycol dimethacrylate or tetraethyleneglycol 

dimethacrylate). All of these polymers had similar EWC's (95.0% - 98.3%) to the 

P(NVP-co-EGDMA) hydrogels produced for this thesis which had EWC's of 92.3% 

- 98.3%. Increasing the amount of another hydrophilic monomer, HEMA, in the 

Hong polymers from 1 wt% to 2 wt% whilst using 0.25 wt% diethyleneglycol 

dimethacrylate as the crosslinking agent increased the EWC from 95.0% to 98.3%. 

The P(NVP-co-DEGBAC) based hydrogels had much lower EWC's (81.7 - 92.2%) 

than those seen in the Hong et al. polymers. The EWC values seen for the P(NVP

co-DEGBAC) based polymers are similar to those obtained by Lopes et al. (2003) 

for their PNVP-gelatin interpenetrating networks. The EWC's obtained for these 

networks ranged from 89.8% for the highest PNVP concentration (70% PNVP : 30% 

gelatin) to 90.2% for the lowest PNVP concentration (30% PNVP : 70% gelatin). 

However the PNVP crosslinked network produced as a control had an EWC of 

89.9% whilst the crosslinked gelatin control had an EWC of 83%. Potassium 

persulphate was used to crosslink the PNVP instead of a larger molecule such as 

EGDMA or DEGBAC and PNVP was used to form the networks instead of the 

monomer NVP used to produce the polymers in this thesis and the studies mention 

previously. 

Generally, the reactivity ratios for polymerization ofNVP and methacrylates do not 

favour the formation of instantaneous polymer compositions that are similar to the 

feeds. This can lead to heterogeneous materials. For example the reactivity ratios for 

copolymerization with furfuryl methacrylate (FM) have been approximated as 

rF A = 3.92 and rNVP = 0.004 (Zaldivar, Peniche et al. 1993). Copolymerization 

with glycidyl methacrylate (GMA) gave values of rGMA = 4.32 - 4.53 and 

rNVP = 0.0075 - 0.0147 (Wen, Xiaonan et al. 1992). The result of this large 

disparity between the pairs of reactivity ratios means that at high conversion 

heterogeneous materials contain regions of high crosslink density connected by long 

linear chains. On the other hand the reactivity ratios obtained by polymerization of 

a-allyl or p-allyl carbonates are much closer. For example Liu et al. (2000) 
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determined that for 5-fluoruracil diallylcarbonates that were copolymerized with 

NVP: ra.-allyl = 0.32 and rNVP = 0.97 and r~-allyl = 0.61 and rNVP = 1.3 (Liu and 

Rimmer 2002b). Therefore, the use of a bisallylcarbonate as a crosslinker in the 

synthesis of hydrogels, by the radical polymerization of NVP should lead to 

materials with more homogeneous distributions of crosslinks. Clearly changes in the 

distribution of crosslinks have a large effect on the properties i.e. EWC, E and UCS, 

of the hydrogels. 

Literature reports (Bruining, Koole et al. 1999) suggested that crosslinking the 

PNVP with a carbonate based crosslinker could produce a highly degradable 

hydrogel which would not be suitable for use as a wound dressing. Bruining et al. 

(1999) reported the synthesis and degradation of a carbonate crossl inked PNVP 

based hydrogel. The novel carbonate crosslinker used in the study was much longer 

than the DEGBAC used in this project and whilst both molecules have two carbonate 

groups the groups on the novel crosslinker appear to be more accessible and 

therefore more susceptible to hydrolysis. This may explain why the polymers 

synthesised by Bruining et al. degraded over time spans varying from under one day 

to polymers which were still stable after one week in studies performed at 3~C in 

PBS. To ensure that the P(NVP-co-DEGBAC) hydrogels would be stable 

degradation studies were performed on these hydrogels. EWC measurements were 

used to monitor hydrogel degradation. If significant degradation was occurring then 

the EWC would increase. No significant increase in EWC was observed over the 12 

days of the experiments. This would suggest that within the limits of the EWC 

measurements no appreciable degradation was occurring. 

Degradable hydrogels are especially useful in drug delivery and tissue engineering 

applications. Controlling degradation behaviour is one of the critical issues in 

biomaterials research. Generally biomaterials need to be cleared from the body once 

they complete their roles in the body, and degradable materials are ideal for this 

purpose. These polymers are usually viewed as superior materials; however, they 

have to be approached with caution. The effects of the degradation products on 

surrounding tissues has to be assessed. Changes in pH associated with the 

degradation of 'traditional' biodegradable polymers such as poly(lactic acid) or 



200 

poly(glycolic acid) can have an adverse effect on the viability of surrounding tissues. 

The rates of degradation also have to be evaluated as do the effects of degradation on 

the material properties ofthe polymer. 

The cytotoxicity of these hydrogels was then investigated. Cytotoxicity studies of 

PNVP based materials reported in the literature shows that PNVP is non cytotoxic 

and has even been shown to increase cell viability particularly in fibroblasts 

(Robinson, Sullivan et al. 1990; Vijayasekaran, Chirila et al. 1996; Hong, Chirila et 

al. 1997; Hong, Chirila et al. 1998; Risbud, Hardikar et al. 2000; Lopes and 

Felisberti 2003; Sen and Avci 2005; Devine, Devery et al. 2006; Saxena, Mozumdar 

et al. 2006). However this appears to be the first comprehensive cytotoxicity study 

using these polymers. 

The MTT assay was used to assess the viability of cells cultured in both direct and 

indirect contact with the hydrogels. Initial studies performed with the P(NVP-co

EGDMA) hydrogel confirmed that PNVP based hydrogels can increase cell viability. 

Fibroblasts grown in direct contact with the P(NVP-co-EGDMA) polymer did not 

appear to adhere well to the polymer. Cells were seen either growing on the bottom 

of the ThinCert™ insert or in small aggregates on the polymer. In both cases the 

cells stained purple after incubation with MTT indicating that they are viable. The 

very high water content of this polymer provides a probable explanation for the lack 

of cell adhesion. For cells to be able to attach successfully to a surface, proteins i.e. 

fibronectin, laminin or vitronectin first have to adsorb to the surface (Nuttelman, 

Mortisen et al. 2001). In the case of this polymer the polymer is so highly hydrated 

that proteins would probably find it difficult to adsorb and therefore the cells would 

be less likely to attach to the polymers. In experiments where fibroblasts were grown 

in indirect contact with the P(NVP-co-EGDMA) hydrogel an increase in viability 

was seen. When fibroblasts were grown in direct contact with the P(NVP-co

DEGBAC) hydrogel there was no increase in fibroblast viability. Again the cells 

preferred to grow on the bottom of the ThinCert™ insert rather than on the hydrogel. 

Whilst these cells stained blue when incubated with MTT indicating that they are 

viable, observations of cell morphology showed that whilst cell attachment to the 

polymer appears to be increased compared to the P(NVP-co-EGDMA) polymer, 

fibroblasts do not appear to be able to successfully adhere to the polymer. Again the 
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high water contents of these polymers may inhibit protein adsorption to the polymer 

surface and therefore inhibit cell attachment to the polymers. When fibroblasts were 

grown in indirect contact with the P(NVP-co-DEGBAC) hydrogel a significant 

increase in fibroblast viability was seen. In all of the experiments where fibroblasts 

were grown in direct contact with P(NVP-co-DEGBAC-co-AA) hydrogels cell 

viability was significantly inhibited. Growing fibroblasts in indirect contact with the 

P(NVP-co-DEGBAC-co-AA) hydrogels had no significant effect on cell viability in 

all three experiments. Again when the fibroblasts were grown in direct contact with 

the P(NVP-co-DEGBAC-co-AA) hydrogel the viable fibroblasts were found 

growing on the bottom of the ThinCert™ insert. 

A variety of human epithelial cells, Keratinocytes, HaCaT cells (an immortalised 

keratinocyte cells line) and a human corneal epithelial cell line, were also grown in 

direct and indirect contact with the P(NVP-co-DEGBAC) hydrogel. At no point was 

a significant increase in cell viability seen when any of the cells were grown in either 

direct or indirect contact with the polymer. Growing keratinocytes in direct contact 

with the hydrogel resulted in a significant inhibition in cell viability in two out of the 

three experiments. However in the other experiment there was no significant 

difference in cell viability observed. In all three experiments where keratinocytes 

were grown in indirect contact with the polymer no significant difference in cell 

viability was observed compared to the control. HaCaT's showed similar behaviour 

to the keratinocytes when grown in direct contact with the P(NVP-co-DEGBAC) 

polymer. Two out of the three experiments showed reduced cell viability compared 

to the control. When HaCaT cells were grown in indirect contact with the hydrogel 

two out of the three experiments showed no significant difference in cell viability 

between the cells grown with the polymer and those grown without. One of the three 

experiments had significantly reduced cell viability. In all of the experiments where 

HCEC cells were grown in direct contact with the P(NVP-co-DEGBAC) hydrogel 

cell viability was significantly reduced compared to the control. Conversely in all 

three experiments where HCEC cells were grown in indirect contact with the 

polymer there was no significant difference in cell viability. Reports of PNVP based 

hydrogels increasing cell viability have primarily used murine 3T3 fibroblast cells 

(Hong, Chirila et al. 1997; Risbud, Hardikar et al. 2000). Risbud (2000) also used 

SiHa epithelial cells and saw a similar increase in viability when these cells were 
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cultured on PNVP-chitosan hydrogels. The results reported in this thesis from the 

growth of human dermal fibroblasts in both direct and indirect contact with the 

PNVP polymers confirm the results of Hong et al. (1997) and Risbud et al. (2000). 

However Risbud et al. (2000) also successfully cultured epithelial cells on PNVP

chitosan hydrogels. However the culture of epithelial cells on P(NVP-co-DEGBAC) 

hydrogels during the course of this project was unsuccessful. Devine et al. (2006) 

also saw an increase in the viability of hepatoma cells grown with a P(NVP-co-AA) 

polymer crosslinked with EGDMA .. 

Growing fibroblasts in indirect contact with PNVP based polymers can increase cell 

viability. Hong et al. (1997) suggest that when fibroblasts are grown in serum free 

conditions in the presence of PNVP crosslinked with diethyleneglycol 

dimethacrylate cell viability could be increased to approximately 90% of that seen 

when fibroblasts are cultured in the presence of serum. This was shown to be 

dependent on both the concentration of the crosslinker in the polymer and the 

concentration of the polymer in the culture medium. To investigate this fibroblasts 

were grown in both the presence and absence of serum in indirect contact with the 

three PNVP based polymers, P(NVP-co-EGDMA), P(NVP-co-DEGBAC) and 

P(NVP-co-DEGBAC-co-AA). In all cases there was no significant difference 

observed in the effects of the polymers on cell viability in the presence or absence of 

serum in the culture medium. This indicates that the effect of the PNVP hydrogels on 

fibroblasts is independent of the presence of serum. Risbud et al. (2000) also showed 

that the presence of the polymer was not always required to see an increase in cell 

viability. Culture medium incubated with the PNVP-chitosan polymer could also 

increase cell viability. This was also shown to be concentration dependent with 

medium containing up to 30% conditioned medium increasing cell viability. 

The ability of the PNVP hydrogels to increase cell viability was unexpected, 

especially when the polymers were in indirect contact with the cells. Therefore a 

series of experiments were performed to investigate how the PNVP hydrogels 

affected the cell viability. A number of theories were proposed to explain how the 

PNVP hydrogels could affect fibroblast viability when the polymers were placed in 

indirect contact with the cells. 1) the polymers could be removing cell metabolic 

waste from the culture medium, 2) the polymers could also be removing mitogens 
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from the culture medium in essence forcing the cell metabolism into overdrive to 

compensate, 3) the polymer could be directly stimulating the cells i.e. degradation 

products could be released from the polymer and directly interact with the cells. 

Hong et aI. (1997), Risbud et a!. (2000) and Devine et aI. (2006) all report an 

increase in cell viability when cells were grown with PNVP based polymers. 

However none of these authors were able to explain how this effect occurs. These 

experiments proved inconclusive with significance only obtained when washed 

polymers were placed into indirect contact with cells in the presence of serum. In the 

absence of serum it was the polymer conditioned media that produced a significant 

increase in cell viability. This could suggest that foetal calf serum may affect the 

mechanism by which PNVP can affect fibroblast viability. The direct stimulation of 

fibroblasts by the polymer would appear to be a promising route for further study. 

At this point it was clear that a poly(vinylpyrrolidinone) hydrogel had been 

synthesised with material properties suitable for use as a wound dressing. The 1 wt% 

DEGBAC P(NVPpcopDEGBAC) hydrogel was flexible, malleable and strong. 

Increasing the crosslinker concentration produced harder, more brittle polymers 

unsuitable for use as wound dressings. Although these hydrogels proved to be non

cytotoxic, cells were unable to grow successfully on the polymers. This is not 

necessarily a bad property in a wound dressing as cells will not be lost when the 

dressing is changed. Attempts to investigate how the polymers affect fibroblast 

viability proved inconclusive and therefore further work would be required to 

determine the mechanism by which PNVP hydrogels affect cell viability when not in 

direct contact with the cells. The results did suggest however that the polymer may 

be directly interacting with the cells, perhaps via degradation products. 

The second objective was to examine the cytotoxicity of the two identified anti 

contraction agents, p-aminopropionitrile (PAPN) and 4-methyl umbelliferone (4-

MU). PAPN is a specific nonpcompetitive Iysyl oxidase inhibitor (Arem, Madden et 

aI. 1975) and therefore inhibits collagen crosslinking. PAPN, at a concentration of 

200 J.1g.mr l has been shown to reduce the contraction of tissue engineered skin 

(Harrison, Gossiel et aI. 2006c). Redden et aI. (2003) showed that I mM PAPN 

significantly reduced contraction of fibroblast populated collagen gels. Nelson et aI. 
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(1988) showed that fibroblasts treated with 0.25 and 0.5 mM PAPN had reduced 

migration however no differences in cell proliferation or collagen synthesis were 

observed, however Harrison et al. (2006c) showed that PINP production was 

significantly increased, indicating increased collagen synthesis, in both fibroblast 

and fibroblast / keratinocyte monolayer cultures treated with 200 JAg.mr! pAPN. The 

effects of PAPN on cell viability and keratinocyte proliferation and differentiation 

were therefore investigated as part of this project. PAPN at concentrations of 

between 50-800 JAg.mr! had no significant effect on the viability of fibroblast and 

keratinocyte mono and co-cultures. At the same concentrations PAPN had no 

significant effect on keratinocyte proliferation or differentiation. 

4-methyl umbelliferone (4-MU) has not previously been identified as a potential 

anti-contraction agent in the literature. 4-MU is a specific inhibitor of hyaluronan 

(HA) synthesis (Rilla, Pasonen-Seppanen et al. 2004). HA affects cell adhesion, 

migration, proliferation and differentiation (Rilla, Siiskonen et al. 2005). Treatment 

of keratinocytes with 0.5 mM 4-MU has been shown to strongly, but reversibly 

reduce cell proliferation (Rilla, Pasonen-Seppanen et al. 2004). The effects of 4-MU 

on cell viability and keratinocyte proliferation and differentiation were therefore 

investigated as part of this project. At a concentration of greater than 1 mM 4-MU 

significantly reduced the viability of fibroblasts and keratinocytes in both single and 

co-cultures. At concentrations of 0.125 mM or greater 4-MU significantly reduced 

keratinocyte proliferation, at concentrations of greater than 0.5 mM 4-MU also 

significantly reduced keratinocyte differentiation. Ideally the effects of 4-MU on 

keratinocyte migration should also be evaluated. 

The cytotoxic effects of 4-MU cannot be ignored. Whilst literature reports suggest 

that these effects are reversible when the 4-MU is removed from the cells (Rilla, 

Pasonen-Seppanen et al. 2004) this was not investigated as part of this project. If the 

treatment of the healing wound with 4-MU results in significant cell death then 

wound healing would be delayed. As mentioned previously when epithelialisation is 

delayed beyond three weeks the incidence of hypertrophic scarring increases from 

33% to 78% (Papini 2004). In addition to concerns about delayed wound healing the 

mode of cell death would be crucial. If the cells die via necrosis and continue dying 
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whilst being treated with 4-MU this could lead to chronic inflammation. However. if 

the cells undergo a programmed cell death i.e. apoptosis then chronic inflammation 

would not occur. The presence of pro-inflammatory cytokines in the wound bed 

serve as some of the earliest signals to activate local fibroblasts and keratinocytes 

(Martin 1997). However prolonged inflammation delays wound healing still further 

and is associated with abnormal scarring (Singer and Clark 1999; Bayat, McGrouther 

et a!. 2003). According to Eming et a!. although the underlying mechanisms for the 

differences in the outcome of scarring is not well understood, there is substantial 

experimental and clinical evidence that differences in scarring reflect an altered 

inflammatory and/or cytokine profile between individuals or in a disease state 

(Eming, Krieg et a!. 2007). Whilst the aim of this project is to reduce skin graft 

contracture it would not be beneficial to the patient to replace one type of scarring 

with another. 

The third objective was to evaluate the efficacy of PAPN and 4-MU on contraction. 

The simple collagen I gel model, based on the commonly used fibroblast populated 

collagen gel model has been widely used since its introduction by Bell and Ivarsson 

in 1979 (2006) to model wound contraction. However skin and therefore burns 

wounds consist of more than one cell type, as well as the fibroblasts present in the 

dermis, keratinocytes, endothelial cells, melanocytes, neutrophils and macrophages 

are among the many cell types that can be found in skin and in the wound bed. 

Whilst fibroblast populated collagen gels are simple and convenient they are not 

particularly physiologically relevant. Therefore keratinocytes were introduced into 

the collagen gels. Oshita et a!. (2006) showed that the introduction of keratinocytes 

into fibroblast populated collagen gels increases contraction. However even the 

introduction of keratinocytes into the fibroblast populated collagen gels cannot 

compensate for the inherent lack of dermal architecture and basement membrane. 

Therefore a second model based on sterilised human dermis was also used to 

evaluate the efficacy of the 4-MU in reducing contraction. This model has been used 

for many years in Professor MacNeil's group. It has been shown that in this model it 

is the keratinocyte that it primarily responsible for contraction (Ralston, Lay ton et al. 

1997; Chakrabarty, Heaton et a!. 2001; Harrison, Gossiel et a!. 2006c). 
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Harrison et a!. (2006c) showed that treatment of this reconstructed skin composite 

with PAPN at a concentration of 200 Ilg.mrl significantly reduced its contraction 

over the 28 days that the experiments were performed over. However PAPN at 

concentrations of between 50 - 800 Ilg.mr1 had no effect on the contraction of 

collagen gels populated with both fibroblasts and keratinocytes. 1 mM f3APN had 

been sho\\n to significantly reduce the contraction of fibroblast populated collagen 

gels by Redden et a!. (2003). A 1 mM solution of f3APN is equivalent to 

256.3 Ilg.mrl, which is slightly higher than the concentration used by Harrison et a!. 

to reduce contraction of the reconstructed skin composite. However this 

concentration is within the range of concentrations examined in this project. 

Previous unpublished data from the group of Dr. Mike Edwards at Glasgow 

University showed that contraction of fibroblast populated collagen gels was 

significantly reduced when these gels were treated with a 2 mM solution of 4-MU. 

However 4-MU does not appear to have been thoroughly investigated as a potential 

therapeutic anti-contraction agent. Collagen gels were therefore prepared containing 

either fibroblasts, keratinocytes or a 3: 1 co-culture of keratinocytes : fibroblasts. 

These gels were treated with 2 mM 4-MU for 6 days. Unfortunately the variation in 

the data obtained from these experiments meant that a statistically significant 

reduction in contraction was only seen at days 3-5 in the keratinocyte populated gels. 

The fibroblast and co-culture collagen gels had no significant reduction in 

contraction. 4-MU successfully reduced contraction in both collagen gels and the 

reconstructed skin model. In collagen gels seeded with both fibroblasts and 

keratinocytes and treated with a concentrations of 4-MU ranging from 0 - 4 mM 

contraction was significantly reduced when the gels were treated with 4-MU at 

concentrations of I mM or greater. When the reconstructed skin model was treated 

with 4-MU at concentrations of 1 mM or greater a statistically significant reduction 

in contraction was seen. Analysis of the histology obtained from these composites 

showed that whilst the quality of the composite decreased with increasing 

concentration of 4-MU, the deterioration in composite quality only became 

significant in composites treated with 2 mM 4-MU. The only exception to this was a 

significant decrease in fibroblast number identified in the composite treated with 1 

mM4-MU. 
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At this point in the project a PNVP hydrogel had been developed with material 

properties suitable for use as a wound dressing. I3APN and 4-MU both appear to be 

promising candidates for use as anti-contraction agents. The next stage in the project 

was the incorporation of these drugs into the hydrogel, this proved to be challenging. 

Initially attempts were made to physically incorporate the I3APN in the form of 3-

aminopropionitrile fumarate into the mono mer blend prior to curing. This was 

unsuccessful, producing hydrogels with a large number of bubbles and large amounts 

of golden brown flecks. These were presumed to be I3APN and were found around 

the edges of the polymer plaque when it was removed from the oven and mould. 

Acrylic acid and water were added to the NVP monomer blend in an attempt to 

dissolve the I3APN. However this still proved unsuccessful. Therefore once the 

P(NVP-co-DEGBAC) and PCNVP-co-DEGBAC-co-AA) hydrogels had been 

washed in ethanol, discs were cut out and dried at 60°C for 48 hours to produce 

xerogels. These xerogels were then rehydrated in PBS containing two different 

concentrations of the water soluble salts of the two drugs, 3-aminopropionitrile 

fumarate and 4-methyl umbelliferone sodium salt. 

The fifth part of this project involved measuring the release of the drugs from the 

hydrogels. To achieve this, assays were required to measure the release of the drugs 

from the hydrogels. To this end an assay for the measurement and detection of 

proteins and amino acids the 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay was 

used to detect I3APN release. The TNBS assay was modified slightly to allow for the 

differences in reactivity between the rJAPN and amino acids. Measurement of 4-MU 

concentration is widely used when monitoring enzymatic activity (Ritger and Peppas 

1987a). In monitoring enzymatic activity a strongly fluorescent molecule, such as 4-

MU, can be conjugated to the natural substrate of the enzyme. The degradation of 

these synthetic substrates by the enzyme releases the 4-MU giving a quantitative 

measurement of activity. 

The exponential relation MrlM",=kt" proposed by the group of Peppas (Ritger and 

Peppas 1987a; Ritger and Peppas 1987b) for the release of solutes from polymeric 

materials was used to analyse the release of the drugs from the polymers. Where 



208 

MrlM", is the fractional release of the drug from the polymer Mt=mass of drug 

released at time t and M", is the total mass of the drug releases by time infinity. k is 

the rate constant and n is the diffusional exponent. It is the value of the diffusional 

exponent that indicates if the drug is being released by Fickian diffusion (n=0.5) or if 

there is some interaction between the solute and the polymer. For cylindrical 

samples, such as the ones used in this study, Ritger states that for Fickian diffusion 

n=0.45, for anomalous (non-Fickian) transport n= 0.45<n<0.89 and for Case-JI 

transport n=0.89 (Liu and Rimmer 2002b). 

The release profiles obtained for the release of both drugs from both of the PNVP 

based hydrogels allowed diffusional exponents of between 0.073 and 0.232 to be 

calculated. These coefficients are similar to those obtained by Liu and Rimmer 

(2002b) for the release of 5-FU from PNVP based hydrogels. In this paper (Liu and 

Rimmer 2002b) the low values of these exponents was attributed to Fickian 

diffusion, and the interaction of the diffusate with the polymer chain. The 

degradat!on of the crosslinker also played a major role in the release of the 5-FU 

from the PNVP hydrogel. There appeared to be no degradation occurring in these 

polymers over the time frame studied and the PAPN and 4-MU were not covalentIy 

bound to the hydrogels. Therefore this last explanation does not hold for this system. 

Further investigation would be required to explain the mechanisms of both drug 

uptake and release. Unfortunately swelling studies were not performed as part of this 

project. These would be needed to accurately compare the loading of the drugs into 

the PNVP polymers to the loading of other drugs into other hydrogels. 

Acrylic acid was also added to the P(NVP-co-DEGBAC) polymer to see if the 

release of the PAPN could be modified. The diffusional exponents obtained for the 

release of the PAPN from the P(NVP-co-DEGBAC-co-AA) hydrogels were as 

expected lower than the exponents calculated for the plain P(NVP-co-DEGBAC) 

hydrogel with values ranging from 0.073 to 0.171. Again these values are similar to 

those calculated by Liu et al. (2002b). Unfortunately at this time it has not been 

possible to obtain diffusional exponents for the release of other drugs from similar 

materials other than those quoted already. The acrylic acid had no effect on the 

release of the 4-MU from the hydrogels. Whilst there are slight variations in the 
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release of the drugs from the hydrogels the majority of the drugs are released from 

the hydrogels over the first 24 hours. Typically about 80% of the drug (both PAPN 

and 4-MU) is released over this time period. Most of the rest of the drugs were 

released over the following 24 hours. 

The final part of this project was to examine to what extent the drug loaded 

hydrogels would reduce contraction in the collagen gel and reconstructed skin 

models. When the PNVP based hydrogels loaded with j3APN and 4-MU were placed 

above collagen gels seeded with both fibroblasts and keratinocytes for six days there 

was no significant difference in the collagen gel contraction at day 6. The P(NVP-co

DEGBAC) hydrogels themselves and the P(NVP-co-DEGBAC) hydrogels loaded 

from 200 and 1000 Jlg.mr l solutions of PAPN and ImM solution of 4-MU also 

reduced contraction at 24 hours. Only the P(NVP-co-DEGBAC-co-AA) hydrogels 

loaded from a 1000 Jlg.mr l solution of PAPN and a 1 mM solution of 4-MU 

significantly reduced collagen gel contraction at 24 hours. However, collagen gel 

contraction was significantly reduced at both 24 and 48 hours when both hydrogels 

loaded from a 4 mM solution of 4-MU were placed in indirect contact with the gels. 

It was therefore decided to change the PNVP based hydrogels loaded from a 4 mM 

solution of 4-MU every two days over the course of the six day experiment. This 

resulted in a significant reduction in collagen gel contraction over the full six day 

period for the 4-MU loaded P(NVP-co-DEGBAC-co-AA) hydrogel. Unfortunately 

large error bars on day 6 for the 4-MU loaded P(NVP-co-DEGBAC) hydrogel meant 

that a statistically significant reduction in contraction was only seen until day 5. 

Time constraints meant that it was not possible to evaluate the effect of the drug 

loaded hydrogels on the reconstructed skin model. 
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9. Conclusions. 

In conclusion the aim of this project was the synthesis of a hydrogel wound dressing 

for the prevention / reduction of skin graft contracture. Two novel 

poly(vinylpyrrolidinone) based hydrogels have been synthesised P(NVP-co

DEGBAC) and P(NVP-co-DEGBAC-co-AA). Both of these hydrogels have material 

properties suitable for use as a wound dressing. 

1. Both of the novel the P(NVP-co-DEGBAC) and P(NVP-co-DEGBAC-co

AA) hydrogels are non-cytotoxic and have even shown an ability to increase 

the viability of dermal fibroblasts which are grown in close proximity. 

Generally cells will grow up to the hydrogels but not on the hydrogels. This 

non fouling property could be useful in reducing additional trauma to healing 

wound beds caused by the changing of the dressings. 

2. PAPN has also been shown to have no significant toxicity associated with its 

use. Treatment of skin cells with PAPN at concentrations of between 50 and 

800 Jlg.mr l had no significant effect on cell viability, keratinocytc 

proliferation or differentiation. However, treatment of skin cells with 4-MU 

showed significant toxicity associated with concentrations of 0.125 mM or 

greater. 

3. At concentrations of greater than 1 mM 4-MU successfully reduced 

contraction in collagen gels populated with co-cultures of fibroblasts and 

keratinocytes. When collagen gels were populated with either fibroblasts or 

keratinocytes and treated with 2 mM 4-MU a reduction in contraction was 

seen but this was not significant. Despite reports in the literature that PAPN 

can reduce the contraction of fibroblast populated gels the PAPN had no 

effect on the contraction of collagen gels populated with a co-culture of 

fibroblasts and keratinocytes. 

4. When the reconstructed skin model was treated with 4-MU at concentrations 

of greater than 1 mM a significant reduction in contraction was seen. This 

corresponded to a reduction in the quality of the reconstructed skin. At the 
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lowest concentration used (0.5 mM) there did not appear to be a significant 

reduction in quality but at the highest concentration used (2 mM) there was 

very little epidermis and what epidermis was visible was not attached to the 

dermis with no fibroblasts present in the dermis. 

5. Both ~APN and 4-MU can be loaded into the PNVP based hydrogels and 

released in a predictable manner over 2-3 days. The addition of AA to the 

P(NVP-co-DEGBAC) hydrogels had very little effect on the release of the 

~APN from the hydrogel. 

6. PNVP hydrogels loaded with ~APN at concentrations had no effect on the 

contraction of collagen gels populated with a co-culture of fibroblasts and 

keratinocytes over 7 days. PNVP hydrogels loaded from 1 mM and 4 mM 

solutions also had no effect on the contraction of collagen gels populated 

with a co-culture of fibroblasts and keratinocytes over 7 days. However 

PNVP hydrogels loaded from a 4 mM solution of 4-MU significantly reduced 

collagen gels contraction over six days when the hydrogel was changed every 

two days. 

These data suggest that this hydrogel could potentially be used as a wound dressing 

to reduce skin graft contracture in bums patients. 
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10. Further work. 

Further work would be required to evaluate the effect of the drug loaded hydrogel on 

the reconstructed skin model. In addition to this further experiments would need to 

be carried out to look at a range loading concentrations of the drugs. Further studies 

looking at manipulating the drug release profiles of the PAPN could also be 

performed. This could involve increasing the acid content of the hydrogels either by 

increasing the concentration of acrylic acid in the gels or by the incorporation of 

other acid functional molecules such as itaconic acid which has two acid groups into 

the hydrogels. 

A more detailed study of degradation would also be advantageous perhaps using size 

exclusion chromatography (SEC), high performance liquid chromatography (HPLC) 

or by measuring the difference in the dry weight of the polymer over a set time 

period. These studies could shed light on I) if degradation products could be 

influencing cell viability and 2) the mode of drug release from the hydrogels. 

The hydrogels produced in this thesis were produced by a thermal curing method. 

This resulted in hydrogels, once hydrated, that were up to 3 mm thick. This would 

result in a very bulky dressing. To reduce the thickness of the hydrogel it could be 

possible to produce the hydrogels using a UV, IR or other curing system. 

Finally, to take this work to the clinic it would be necessary to conduct animal in 

vivo toxicity tests of the hydrogel, drugs and hydrogel with drugs. For this to be 

successful the hydrogels would also have to be able to be produced in a suitably 

clean environment i.e. in a suite of clean rooms. 
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