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Optical Studies of AlGaAs Photonic Crystal Waveguides 

Agoney Z. Garcia-Deniz 

Abstract 

This thesis describes a number of optical spectroscopic measurements in novel one 

and two dimensional photonic crystals patterned in a slab waveguide. 

Two dimensional photonic crystals have also been embedded in a ridge waveguide 

to confine light to the plane containing the photonic crystal. Linear characterization 

of these structures revealed a photonic band gap. Non linear measurements revealed 

pulse· compression, negative differential transmission and showed that the ridge 

waveguide nonlinear response dwarfs that of the photonic crystal. 

Pump-probe spectroscopy is used to study the nonlinear response of 

AlGaAsllnAlGaAs MQW one dimensional photonic crystals. The modulation of the 

reflectivity spectra due to the refractive index change produced by two and three

photon induced free-carriers was measured. Pump-induced blue-shifts in the 

wavelength of photonic resonances were measured. These were followed by rapid 

decay - 25 ps. The blue-shifts in the photonic resonances were as large as 15 nm. 

The lifetime of free-carrier nonlinearities in one dimensional photonic crystals was 

found to depend on the photonic crystal parameters, i.e. period, air fill factor and 

etch depth. It was found that the free-carrier nonlinearities lifetime varied from 8 to 

33.5 ps. 

Ultrafast tuning of the photonic resonances was obtained via the optical Kerr effect 

and the optical (AC) Stark effect. Decay-less tuning was observed. The response 

time was measured to be at FWHM - 300-400 fs. 
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"This is the sort of English up with which I shall not put" 

Winston Churchill, attributed. 

1.1 Motivation and Technological Background 

In 1987, Eli Yablonovitch1
, on his quest to increase the efficiency of 

telecommunication lasers and, Sajeev John2
, whose goal was to achieve light 

localization, separately proposed the first artificial photonic crystals. However, 

photonic crystals have existed for several hundred million years in the form of 

opal gems. These are formed by the self assembly of nanometre sized colloidal 

silica, which naturally tend to form a three dimensional lattice. Incidentally, 

artificial opals are formed in much the same manne~, on a far shorter time scale 

and are a very active area of research. Another example of natural photonic 

crystals is the wings of many butterflies, which are formed by a lattice of air 

holes. This is nothing less than a photonic crystal. 

When in 1947 the transistor effect was discovered and the first device 

manufactured at Bell Labs by Shockley, Bardeen and Brattain, the computer era 

had dawned. Along with the first modem computers came the first networks, in 

the 1960's. ARPANET was the first packet switching network and progenitor of 

the intemet. In 1989, Tim Bemers Lee proposed a global hypertext project, later 

known as the World Wide Web. The project aim was to allow scientists to work 

together by combining their knowledge in a world wide web of hypertext 

documents. The WorldWideWeb program was first made available within 

CERN in December 1990 and on the intemet in the summer of 1991. 
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The explosion of internet use has led to an ever increasing interest and demand 

in telecommunications. Higher bandwidth networks are a necessity as, not only 

the number of broadband connections, but also the bandwidth of these 

connections, continues to increase. Most of the "last mile" network still relies on 

copper wires, but the large backbones use optical fibres due to the larger 

bandwidths. 

The first useful optical fibre was created in 1970 by a team of researchers at 

Coming Glass Works. It consisted of Titanium doped silica that worked at 

/..= 633 nm with a loss of 17 db/km. Nowadays, optical fibres have attenuations 

of 0.2 db/km at /.. = 1.55 J..Lm, which allow bandwidths in excess of several tens 

of Gigabits per second, while there are reports of experimental fibres that have 

bandwidths of one terabit per second. 

The next step in optic fibres could come from photonic crystal fibres. These can 

be of two types: "holey" fibres4 or air guiding fibres5
• Photonic crystal fibres 

could guide light on air. The advantages of this would include: reduced 

nonlinearity, controllable dispersion, increased damage threshold and ultra-low 

optical attenuation. 

While significant improvements have been made on the quality of the fibres, 

regarding attenuation, dispersion and nonlinearity control, the underlying 

circuitry used to process the optical signal is still electronic in nature. The optic 

fibres simply transport light. The light is then converted into electricity, 

processed, and finally converted back into light. This is normally referred to as 

node by node electrical processing. Photonic crystals could be used to create all-



Introduction Chapter I 

optical data and voice communications systems that would operate significantly 

faster, allow larger bandwidths and operate more reliably. All-optical switches 

have been one of the major stumbling blocks to all-optical communications 

systems. The experiments carried out in this thesis will demonstrate the 

suitability of photonic crystals for all-optical switching in picosecond and 

subpicosecond time scales. This will allow switching speeds of tens of gigahertz 

and several terahertz respectively. Furthermore, the nonlinear response lifetime 

in one dimensional photonic crystals will be shown to depend on the photonic 

crystal sample parameters, which could be used for highly customizable all

optical switches. 

The superprism effect can help in dense wavelength division multiplexing 

systems by substituting the silica based waveguide grating filter normally used 

in such systems. This effect is a simple enhancement of the effects of a normal 

prism, i.e. dispersion, and angle steering due to super dispersion and ultra 

refraction which are ultimately caused by the highly anisotropic nature of 

photonic crystals, which make propagation of light through the super prism very 

sensitive to changes in angle and wavelength. Optical time division multiplexing 

could be feasible for two dimensional photonic crystals embedded in ridge 

waveguides (this type of structures will be studied in this thesis), that present 

enhanced third order nonlinearities, which could be accomplished by growing 

quantum dots or quantum wells on the core and/or cladding layers. 

The telecommunications revolution could not have occurred without the 

development in 1960 of the laser by T.H. Maiman6
, an extension of the maser 
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concept to optical wavelengths. But it is not until the development of the 

semiconductor laser, with its low power requirements and minute sizes, along 

with the light emitting diode, that finally allowed the extensive use of lasers and 

light emitting diodes in telecommunications and thus bandwidth capacity 

increased substantially. 

Photonic crystals can be used to create different type of lasers: Band edge lasers 

operate without a cavity as they work by the enhancement of the emission at the 

band edge, which is caused by slow light, due to low group velocity at the edge 

of the Brillouin zone. These devices could not only work as planar lasers, but 

also as vertically emitting lasers. Using this same property of the band structure 

of photonic crystals, i.e. low group velocity at the edge of the Brillouin zone, 

light extraction from light emitting diodes could be greatly enhanced. 

Microcavity photonic crystal lasers, offer another example of photonic crystal 

lasers. These lasers present high quality factors and small mode volume that 

could lead to ultra low threshold lasers. 

The wealth of applications of photonic crystals, particularly in the field of 

telecommunications make photonic crystals a very important field of research. 

1.2 Outline 

This thesis will discuss experimental results obtained from measurements 

performed on AlGaAs based one and two dimensional photonic crystal 

structures. 
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Chapter 2 will begin with an introduction to photonic crystals and its theoretical 

basis. This will be followed by an introduction to nonlinear optics and finally an 

introduction to nonlinear effects in photonic crystals will conclude this chapter. 

In chapter 3 the growth and fabrication methods used to manufacture photonic 

crystals will be discussed. A description of the experimental set-up will be 

given. Linear and nonlinear in-plane transmission measurements of two 

dimensional photonic crystals embedded in ridge waveguides will be presented 

and discussed. The emphasis of this thesis shifted from the in-plane transmission 

measurements on ridge waveguides photonic crystals to reflectivity 

measurements as insurmountable problems were found. The main original 

results of the thesis are presented in chapters 4 and 5. 

Chapter 4 will discuss the linear and nonlinear properties of one dimensional 

high refractive index contrast photonic crystals. These samples include quantum 

wells in the waveguide core to enhance the nonlinear response. An external 

coupling technique in reflectivity geometry will be described. Linear 

spectroscopy will be used for characterization purposes. The nonlinear 

properties will be measured using a spectrally resolved pump-probe technique 

that will allow to measure the temporal and spectral response of the photonic 

crystals at the same time and therefore investigate the effects of free carriers in 

high refractive index contrast one dimensional photonic crystals. 

Chapter 5 will discuss further nonlinear properties of high refractive index 

contrast one dimensional photonic crystals. The ability to engineer the nonlinear 



Introduction Chapter l 

response decay time of one dimensional photonic crystals at fabrication time via 

alteration of the period, air fill factor and etch depth will be discussed. 

Instantaneous switching of photonic resonances via non-resonant pumping 

(optical Kerr effect) and via resonant pumping (optical (ac) Stark effect) will be 

also discussed in this chapter. 

Chapter 6 will give some concluding remarks on the work presented. Also, 

suggestions for future work will be presented. 

1 
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"All generalizations are false, including this one" 

Mark Twain 

2.1 Introduction to Photonic Crystals 

The main feature of a photonic crystal is its band gap, a range of 

frequencies for which electromagnetic radiation is not allowed to propagate 

through the crystal; this is analogous to the band gap in a semiconductor. Such a 

structure could behave as a perfect mirror for a particular range of wavelengths. 

This, in fact, has been known to occur for multilayer dielectric stacks formed by 

multiple layers with different refractive indices of appropriate thickness, usually 

one quarter of the wavelength for which the stack is designed to have high 

reflectivity at, i.e. the stop gap. This type of structure is normally called a 

distributed Bragg reflector. The underlying principle of a distributed Bragg 

reflector is that light undergoes multiple reflections at the different interfaces 

and for light satisfying the Bragg condition, i.e. 2dsin<6 = mA. , constructive 

interference will occur and almost all the light will be reflected. 

A conceptually different approach would be to take the structure as having a 

refractive index that is modulated by some periodic function, a situation 

analogous to the solid state, where atoms are subjected to a periodic potential. 

This modulation of the refractive index can be extended to two and three 

dimensional structures as shown in figure 2-1 below. 

The latter approach will be used throughout this thesis, as it is more adequate for 

the treatment of higher dimensional photonic crystals. 
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1-D 

periodic in 
one direction 

a) 

2-D 

periodic in 
two directions 

b) 

Chapter 2 

3-D 

periodic in 
three directions 

c) 

Figure 2-1 Examples of a one, two and three dimensional photonic crystal 1 

The list of possible applications for photonic crystals is as long as it is varied: 

Threshold less lasers, narrow frequency filters, cavity less lasers, waveguides 

with bend radii of the order the operating wavelength, beam steering devices 

based on the superprism effect to name but a few linear effects2
• 

In this chapter, I give a brief introduction to the physics of photonics crystals and 

nonlinear optics. 

In section 2.2 a theoretical background to photonic crystals will be discussed. 

Topics include the Master equation, symmetry in photonic crystals and the 

physical origin of the photonic band gap. Section 2.3 will give a brief 

introduction to nonlinear optics, while section 2.4 will concentrate in the 

nonlinear effects in photonic crystals. 

11 
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2.2. Theoretical Background 

This section will start with the derivation of a general equation, the so 

called Master equation. The Master equation allows the determination of the 

electromagnetic modes sustained by the crystal. This equation is analogous to 

the Schrt>dinger equation in solid state physics. A brief study of symmetry and 

how it can aid in the study of photonic crystals will follow. Finally, a short 

discussion of the origin of the photonic band gap in one and two dimensional 

structures will close this section. 

2.2.1 The Master Equation 

Maxwell's equations describe the propagation of light in macroscopic 

systems and thus can be used to describe the propagation of light in photonic 

crystals. This set of equations is scale invariant. While the Schrt>dinger equation 

in itself is scale invariant, constants like the Bohr radius or the electron mass set 

a fundamental scale. The analogies and differences between the electronic and 

photonic cases will be explored below. 

Maxwell's equations are: 

V ·D(r,t) = p 

V ·B(r,t) = 0 

V X E(r t) =- oB(r,t) 
· ot 

o H( ) J oD(r,t) vx r,t = +-....:..___;__ ot 

(2.1) 

where D is the displacement field, p is the free charge, B is the magnetic 
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induction field, E is the electric field, H is the magnetic field and J is the current 

density. 

In order to simplify the task of obtaining an all encompassing equation for the 

electromagnetic case, equivalent to the Schrodinger equation in the 

semiconductor case, we shall make several simplifications. 

Firstly, we will restrict the type of media. We shall deal only with a low loss 

mixed dielectric medium, i.e. a composite of regions of different dielectric 

materials with no currents and no free charges. 

Secondly, we shall assume, without great loss of generality, that we are dealing 

with materials that are non magnetic, i.e. llr = 1. This is reasonable assumption, 

at optical frequencies, so long as one is not dealing with ferromagnetic materials. 

With these approximations in place, it is possible to write the induction magnetic 

field as follows: 

B(r,t) = H(r,t) (2.2) 

Thirdly, we shall assume that we are dealing with macroscopic and isotropic 

media, in order to simplify the relationship between the electric field E and the 

displacement field D. 

Fourthly, E(r) will be non-dispersive, i.e. independent of frequency. This is a 

gross simplification, but this assumption will simplify the mathematical 

treatment significantly. 

Finally, we will restrict the electric field to small strengths, such that the 

dielectric function will only include linear terms. With all these assumptions and 

simplifications, the displacement field becomes: 
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D(r,t) = c(r)E(r,t) 

So now (2.1) becomes: 

V· c(r)E(r,t) = 0 

V ·H(r,t) = 0 

V X E(r,t) =- aH~;,t) 

V H( ) ( ) 
BE(r,t) 

x r,t = c r --'-----'-at 

Chapter2 

(2.3) 

(2.4) 

By using a complex valued field, harmonic modes can be written as a field 

pattern times a complex exponential: 

H(r,t) = H(r)ei(tl( 

E(r,t) = E(r)ei(tl( 
(2.5) 

Inserting (2.5) into (2.4) where appropriate we find for the divergence equations: 

V· c(r)E(r) = 0 

V·H(r) =0 

And for the curl equations, repeating the same process yields: 

V x E(r) = -iwH(r) 

V x H(r) = iwc(r)E(r) 

If we now divide equation (2.9) by EoE(r) and then take the curl we have 

V VxH(r) . V E() 
X = lW X r 

c(r) 

This can be simplified if we use equation (2.8) to eliminate E(r) 

V x (-
1-v x H(r)) = w2H(r) 

e(r) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.1 0) 

(2.11) 
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This is the so called Master equation; it is the photonic crystal equivalent of the 

Schrodinger equation in quantum mechanics. 

Equations (2.7) and (2.11) determine H(r). Knowledge of H(r) allows us to 

obtain E( r) using: 

E(r) = (-_i -V x H(r)J 
we(r) 

This in turn, allows us to obtain D(r) using (2.3). 

(2.12) 

The Master equation can be simplified to take the form of an eigenvalue 

equation 

(2.13) 

where ro2 is the eigenvalue, H(r) is the eigenvector and 9 ~V x ( e{r) V x J is the 

differential operator. The differential operator, 9 is linear and Hermitian3
, and 

therefore, has real eigenvalues. 

As discussed before, Maxwell' s equations have no fundamental length scale. 

This is also a property of photonic crystals, which helped the research get off the 

ground by allowing the growth of structure in the microwave regime that 

required feature sizes on the centimetre scale. This property is also embedded in 

the Master equation as shall be demonstrated below. 

Let us assume that we know the solution for the dielectric function E(r) and let 

us define a new dielectric function E'(r) = E(sr). 

The Master equation (2.11) looks like this: 
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V'x(-
1

-V'xH'(sr')J = (msYH'(sr') 
e'(r') 

Chapter2 

(2.14) 

If Hn(r) satisfies the Master equation (2.11) for frequencies ro0 , then the 

solutions of equation (2.14) are Hn'(r) = H0 (sr) with ro' 0 =sro0 .• The solution of 

the Master equation can therefore be easily scaled down or up, thus allowing for 

scaling of the solutions to any part of the electromagnetic spectrum. 

2.2.2 Study of Symmetry 

The study of the different types of symmetries of a crystal can be very 

useful to aid the understanding of the electromagnetic modes sustained by such a 

system. By virtue of their periodicity, all photonic crystals present discrete 

translational symmetry. It is, however, interesting to study a system that has 

continuous translational symmetry, e.g. an infinitely long thin slab of 

homogenous dielectric. Solution of the eigenvalue form of the Master equation 

yields a discrete number of modes below the light line w = ck , and a continuum 

·of states above it. The former are guided on the slab, while the latter lie outside 

and are known as leaky modes 1• 

Let us now consider a system that has discrete translational symmetry. An 

infinite 1-D photonic crystal has a periodic modulation of the refractive index. 

This periodic modulation of the refractive index allows us to define a unit cell 

for the crystal, which forms the irreducible basis which through repetition forms 

the crystal. The primitive lattice vector is a vector with direction on the periodic 

axis and magnitude equal to the length of the unit cell; the length of this unit cell 
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a, is nonnally referred to as the lattice constant of the crystal. Discrete 

translations in integer quantities of the primitive lattice vector will leave the 

crystal unchanged such that c(r) = c{r + R), where R = n a , n is an integer 

and a is a primitive lattice vector. This translation is specified by the translation 

operator T R· The translation operator T R has to commute with the differential 

operator 9 for the crystal to be truly symmetric under a discrete translation. T R 

operates on the eigenfunctions of 9 and changes the value of the eigenvalues by 

R. Addition of a primitive lattice vector to any lattice vector will land us on 

another lattice point with the same eigenvalue, i.e. the states will be degenerate. 

Any linear combination of eigenfunctions is itself an eigenfunction with the 

same eigenvalue. The states can be described as the product of a plane wave 

with a periodic modulation, similar to the Bloch4 functions used in solid state 

physics. 

The infonnation about the modes sustained by a 3-D photonic crystal can be 

neatly stated in tenns of the wavevector k and the periodic Bloch function 

uk (r)= uk (r + R). 

By solving the Master equation (2.13) for uk (r), the eigenvalue equation can be 

rewritten as: 

(2.15) 

where 9• " (ik + V )x ( c(r) (ik + V) x) is the differential operator. This operator 

is also Hennitian 1• 

17 
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One consequence of discrete translational symmetry is that the crystal can be 

fully characterized by looking at a limited number of wavevectors. The Brillouin 

zone5 is defined as the non-redundant range of wavevector values, i.e. 

1t 1t 
--<k ~-. 

a a 

Similarly to the case of continuous translational symmetry, solution of the 

revised Master equation (2.15) yields a set of discrete modes. However, the 

modes now only extend as far as ± n on k-space, due to the discrete 
a 

translational symmetry. By subtracting the appropriate number of reciprocal 

lattice vectors6 (RL V) G, all modes which extend further than ± n can be 
a 

folded back into the Brillouin zone. 

Rotational symmetry allows us to define the irreducible Brillouin zone. This is 

defined as the region within the Brillouin zone, where there are no redundant 

w n (k) . Rotational symmetry, along with mirror reflection and inversion 

symmetry, define the point group symmetry of the crystaf. The corners of the 

irreducible Brillouin zone, see figure 2-2, are high symmetry points and are 

normally referred as r, M and K for triangular lattices and r, X and M for 

rectangular lattices. r represents the centre of the Brillouin zone, K (X) represent 

the nearest neighbour direction and M (M) the next nearest neighbour for a 

triangular (square) lattice. 
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An illustration of the Brillouin Zone and Irreducible Brillouin Zone for the most 

commonly used two dimensional lattice geometries is shown in figure 2-2. 

Figure 2-2 a) represents a two dimensional triangular lattice, and figure 2-2 b) 

represents a two dimensional square lattice. 

X 

a) b) 

Figure 2-2 Examples of Brillouin zone (light grey) and Irreducible Brillouin 

Zone (dark grey) for a triangular a) and a square b) two dimensional lattice. 

To finalize the study of symmetries applied to photonic crystals, mirror 

reflection symmetry will be discussed next. Mirror reflection symmetry allows 

the Master equation (2.15) to be solved separately for each field polarisation. 

This allows the separation of the modes in a one or two dimensional photonic 

crystal as either: Transverse Electric modes for those modes that have the 

electric field E parallel to the plane, i.e. Ex,Ey,Hz or Transverse Magnetic modes 

12 
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for modes having their magnetic field H parallel to plane, i.e. Hx.Hy.Ez. This 

assumes that the plane of the sample surface is the x-y plane. Different 

polarizations will lead to different band structures in two dimensional structures, 

whereas it will only lead to similar band structure with a small splitting in the 

one dimensional case. 

2.2.3. Physical Origin of the Photonic Band Gap 

The simplest type of photonic crystal, a one dimensional multiple bilayer 

structure, see figure 2-1 a), will show a photonic band gap as soon as n1 * n2 

where n 1 and n2 are the refractive indices of the different layers. When a 

travelling wave reaches the end of the Brillouin Zone in a multiple bilayer 

structure with n1 * n2 , Bragg reflections will occur and the waves become 

standing waves proportional to either: eo{:) or sin(:) , with wavelength 

2a, where a is the lattice constant as defined earlier. Such a wave can have its 

nodes positioned either on the high refractive index layers, or on the low 

refractive index layers. 

The variational electromagnetic theorem1 says that the low-frequency modes 

concentrate their energy in the high refractive index regions, and the high

frequency modes concentrate their energy in the low refractive index regions. 

This causes a band gap to open up. The bands on each side of the gap are called 

the dielectric and air bands, where the former is below the gap, and the latter is 
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above it. The size of such a gap will be proportional to the difference in 

refractive index. This only applies to one dimensional multiple bilayer stacks. 

The more interesting case of two dimensional structures (see figure 2-1 b) will 

be discussed next. As discussed in section 2.2.2., mirror reflection symmetry 

allows us to separate the Master equation (2.15) into two different equations: 

transverse electric and transverse magnetic modes. These two different 

polarisations have different band structures. 

A two dimensional square or hexagonal lattice of dielectric columns, can easily 

present a photonic gap for transverse magnetic modes, but not for transverse 

electric modes. The reason for this lies partly on the topology of the lattice but 

mainly on the nature of the fields. The displacement field of the lowest 

transverse magnetic mode, i.e. the dielectric band, concentrates most of its 

energy on the dielectric columns, thus lowering its frequency, whereas the next 

mode, the air band, concentrates most of its energy on the air surrounding the 

dielectric columns, thereby raising its frequency. Thus a photonic band gap is 

created. 

The transverse electric modes do not show a band gap. This is due to their 

displacement field having a significant amount of energy in the air surrounding 

the columns for every band. As a result, there is hardly any contrast in the 

frequency of the bands. This stems from the vectorial nature of the displacement 

field for the transverse electric modes, where the field lines must be continuous 

and thus must go through air. 
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A square lattice of dielectric veins can easily present a band gap for transverse 

electric modes, but does not present a band gap for transverse magnetic modes. 

The reason is that, now, the displacement field can stay in high dielectric regions 

in the dielectric band, whereas on the air band some of the field concentrates on 

air, thus increasing the frequency of the modes and creating a gap. 
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Figure 2-3 Band structure of a two dimensional square lattice of dielectric rods 

with dielectric constant e = 12.69. The rod radius is set tor = 0.2a, where a is the 

period of the lattice. The hatched area represents the photonic band gap for 

transverse magnetic modes . 

22 



Introduction to Linear and Nonlinear Photonic Crystal Chapter2 

Figure 2-3 above shows a typical example of band structure calculation of a two 

dimensional square lattice of infinitely long dielectric rods holes, see figure 

2-2 b). The dielectric constant is set to e = 12.69, this is the refractive index of 

GaAs at a wavelength of 900 run. The rod radius is set to r = 0.2a, where a is the 

period and it is arbitrarily set. This is possible due to scalability, which enables 

photonic crystal to behave identically for completely different parts of the 

electromagnetic spectrum, provided that the ratio !.... is kept constant and that the 
a 

refractive indices of the structures are the same. The calculation was performed 

using the freely available MIT-Photonic bands package8
• 

Note how in figure 2-3, there is a band gap for TM modes only 

from approximately 0.27 _c_ to 0.41 ~,but not forTE modes. 
21Zll 21Zll 

In order to achieve a photonic band gap for both polarisations a different type of 

lattice needs to be used. A triangular lattice of air holes, see figure 2-2 a), can 

present a complete photonic band gap. This type of lattice provides the necessary 

compromise between a hexagonal lattice of dielectric columns and a square 

lattice of dielectric veins. It should be noted that this type of lattice favours 

transverse electric gaps, but a complete gap tends to occur for !.... > 0.42 9. 
a 
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Figure 2-4 Band structure of a two dimensional triangular lattice of air holes. 

The dielectric constant of the lattice is set to & = 12.69. The rod radius is set to 

r = 0.45a, where a is the period of the lattice. The hatched area represents the 

complete photonic band gap for both polarizations. Note how the transverse 

electric band gap is significantly bigger than the complete band gap. 

Figure 2-4 shows a typical example of a band structure for a two dimensional 

triangular lattice. The band structure was again calculated using the MIT 

photonic bands package. The dielectric constant is set to & = 12.69, which is the 

refractive index of GaAs at a wavelength of 900 run. The rod radius is set to 

r = 0.45a, where a is the period and again it is arbitrarily set. As discussed 
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above, r > 0.42a is necessary in order to yield a complete band gap for both 

polarizations. 

The most remarkable feature of figure 2-4 is the presence of a complete photonic 

band gap for all polarizations, indicated by the yellow hatched area. A much 

larger band gap exists for transverse electric modes. The complete band gap is 

~ro = 0.03904 ~, while the TE gap is ~ro = 0.19644 ~. 
21Zll 21Ztl 

To finalize this theoretical introduction to photonic crystals it would be 

interesting to compare quantum mechanics with electrodynamics as applied to 

photonic crystals. As discussed before, one key difference is the fundamental 

scale in the quantum mechanical case imposed by constants like the Bohr radius 

or the electron mass; such a length scale is missing in the photonic crystal case. 

Another key difference is the nature of the Hermitian operators. In quantum 

mechanics the Hamiltonian is a scalar operator, whereas in the photonic crystal 

case it is a vector operator. Table 2-1 summarizes the main similarities and 

differences between quantum mechanics in a periodic potential and 

electrodynamics as applied to photonic crystals. 
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Field 

Eigenvalue 
Equation 

Hermitian 
operator 

Commutation 
Relationship 

Discrete 
Translation 
Symmetry 
Bloch 
Theorem 

Quantum Mechanics in a 
Periodic Potential 

'l'(r,t) = 'l'(r)e;a~~ 

H'l' = E'l' 

v(r)= v(r+R) 

Electrodynamics 
(Photonic Crystals) 

H(r,t) = H(r)e;a~~ 

9-VxUr) Vx) 
[9,TR)= 0 

c(r)= c(r + R) 

Table 2-1 Comparison of Quantum Mechanics in a periodic potential and 

Electrodynamics applied to Photonic crystals 

2.3. Nonlinear optics 

In this section a short introduction to nonlinear optics will be given, 

where only topics relevant to this thesis will be discussed. The underlying 

assumption of linear optics is that the polarization vector, P, depends linearly on 

the electric field E of the light wave. This allows us to write: 

(2.16) 

where x. is the electric susceptibility and Eo is the free space permittivity. 

Equation (2.16) assumes that the medium is homogenous. The optical properties 

of anisotropic materials can be quantified by the susceptibility tensor x.<n> , where 
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n indicates the order of the tensor. In the linear regime, the linear susceptibility 

tensor x.<I) is responsible for the refractive index, birefringence and 

trirefringence. 

In nonlinear optics, the underlying assumption of linear optics is no longer valid 

and equation 2.16 must be modified to include higher order terms, so that it 

becomes: 

(2.17) 

where x.<I) is the linear susceptibility tensor and x.<2) and x.<3> are the second and 

third order nonlinear susceptibility tensors respectively. 

The internal field that binds an atom and an electron together is typically 

E-1010 Vm"1
• An incident intensity ofi-1014 Wcm·2 is required to obtain an 

optical field of such a magnitude. While intensities of this order can, nowadays, 

be achieved by tightly focusing powerful mode-locked lasers, in fact most 

nonlinear effects have a far lower intensity threshold. This is because, in certain 

conditions, the small nonlinear effects of many atoms can add up constructively 

to create a sizeable nonlinear effect. This will occur when the atoms are in phase 

with each other. This is the so-called phase matching condition. 

A medium illuminated by two high intensity waves with different frequencies 

and amplitudes will reemit light at the sum and difference frequencies of the 

input fields. This is commonly referred to as nonlinear frequency mixing. 

Processes involving the mixing of two waves are related to the second order 

susceptibility tensor, x.(2>. The most common example is degenerate sum 



Introduction to Linear and Nonlinear Photonic Crystal Chapter 2 

frequency mixing, which, of course, is the same as second harmonic generation 

or frequency doubling, in this case 2w = OJ + w . 

The frequency doubling process can work the other way round such that: 

m1 + w2 = w and is normally called down conversion. In this process, a single 

input wave creates two waves at different frequencies. It is clear that there is a 

wide range of frequencies that can be created. In fact any frequency that 

maintains the energy conservation condition, should, in theory, be generated. In 

practice it is found that unless the process occurs under phase matching 

conditions, the intensity emitted is almost non-existent. 

Down conversion is a very interesting process as it is the underlying basis of 

parametric amplification. In parametric amplification, a weak beam, called the 

signal, at frequency C.Os can generate a field at frequency C.Oi. normally called the 

idler, when there is a strong pump field at frequency c.o according 

to: w; = OJ- OJs. The idler field increases the signal field amplitude (through 

mixing with the pump field). Thus, under phase-matching conditions, it is 

possible to transfer power from the pump field to the signal and idler fields. The 

degenerate case is the opposite of second harmonic generation. 

The parametric amplification process can lead to parametric oscillation if the 

nonlinear crystal is placed inside a cavity with high reflectivity mirrors for the 

signal and idler frequencies. Thus through frequency mixing it is possible to 

obtain a tuneable "laser" or optical parametric oscillator (OPO) from a fixed 

wavelength laser. In subsequent chapters, an example of such a device will be 

used in the experimental set up. The Travelling wave Optical Parametric 
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Amplifier of Superfluorescence or TOP AS for short will be used as a tuneable 

pump laser. 

The components of the second order susceptibility tensor x(2) are zero for 

isotropic media, such as Centro-symrnetric crystals or fluids due to isotropic 

media having inversion symmetry. This makes third order nonlinear process 

very important for isotropic media, as they are the lowest order nonlinear 

process available on such media. Third order nonlinear processes are generally 

referred to as four wave mixing processes and are related to the third order 

susceptibility tensor X(3)· All the experimental data presented in this thesis 

involve third order nonlinear effects. 

The optical Kerr effect10 is arguably the most important third order nonlinear 

process. It is responsible for phase conjugate reflection, self focusing, soliton 

propagation, self phase and frequency modulation. 

The optical Kerr effect involves four beams with the same frequency and is 

sometimes known as degenerate four wave mixing. Because the nonlinear 

polarization field has the same frequency as the input fields, there are no 

phase-matching conditions to be met. 

One of the most important consequences of the optical Kerr effect is that the 

refractive index depends on the intensity of the input beam such that: 

(2.18) 

where the nonlinear refractive index n2 takes the form (for isotropic media): 

(2.19) 
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The optical Kerr effect is a virtual nonlinear effect. This means that no actual net 

transfer of energy takes place. A very interesting consequence of this is that the 

effect, i.e. the change in the refractive index, will only last for as long as the 

pump beam is on. This has profound implications for all-optical switching 

devices. Experimental evidence of the optical Kerr effect will be shown in 

chapter 5. 

One of the consequences of the optical Kerr effect is self phase modulation. This 

is a change of the phase of an optical pulse due to the change in the refractive 

index caused by the same pulse. The magnitude of the phase shift after a 

distance /, is given by: 

(2.20) 

The intensity varies throughout the pulse, and thus different parts of the pulse 

will have different phase shifts, leading to a frequency shift or chirp in the pulse, 

which is proportional to the distance travelled. 

The instantaneous frequency is then: 

m(t) = m0 + &J(t) (2.2la) 

dt/J 
where &1=--

dt 
(2.2lb) 

Using a constant phase, 1.e. chirp free, hyperbolic secant pulse 

J(t) = /0 sech 2
(:) and inserting into equation 2.20 we obtain 2.22a which, 

then gives 2.22b after substitution into 2.21 b: 
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(2.22a) 

(2.22b) 

The instantaneous frequencies of the trailing half of the pulse are raised, while 

those in the leading half are lowered, provided that n2 > 0; the opposite situation 

occurs for negative values of n2. This can be seen in Figure 2-5 below. The 

frequency chirp leads to spectral broadening which becomes significant when 

the frequency spread exceeds the initial pulse bandwidth. 

d 2k 
It should be noted that the treatment presented above assumes that --

2 
= 0, i.e. 

dm 

th d. . d' . fi al d' . . d 
2 
k 0 e me turn IS not tsperstve, or norm tsperston I.e. --
2 

> , we see an 
d(J) 

enhanced pulse broadening. 

Normal dispersion enhances the spectral broadening caused by self phase 

modulation, because, in linear optics, the pulse in dispersive media contains a 

spread of frequencies that is determined by its Fourier transform. By contrast, a 

medium with anomalous dispersion will reduce the spectral broadening caused 

by the self phase modulation. 
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Figure 2-5 Plot of a 1 ps hyperbolic secant pulse and 6co(t) for positive and 

negative values of n2, shown by red and green curves respectively. The black 

trace is the initial pulse. 

A particularly interesting consequence of anomalous dispersion occurs when the 

anomalous dispersion in a media decreases the spectral broadening by the same 

amount that self phase modulation creates it, i.e. the spectral broadening is 

balanced out by the anomalous dispersion. This situation gives rise to optical 

I. li 11 12 so ttons or so tary waves ' . 

One of the original goals of this thesis was the observation of solitons. These are 

waves that travel without spreading and were first discovered in water waves by 

John Scott Russell on the Union Canal outside Edinburgh. The implications for 
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telecommunications are very interesting, as solitary waves would not suffer 

information loss due to pulse broadening caused by dispersion. 

In periodic materials, (e.g. gratings) the solitary waves are called Bragg grating 

solitons13
• These solitons form due to the balancing of the self phase modulation 

and the dispersion created by the periodic nature of the grating. The dispersion 

due to the periodicity of the grating is several orders of magnitude larger than 

that of the material itself. Another important feature of Bragg grating soli tons is 

that they can travel at any velocity, provided that it is slower than the speed of 

light, which is in clear contrast with fibre grating solitons that can only travel at 

the average speed of light of the medium13
• Bragg solitons can also form in 

photonic crystals, when they form inside the photonic band gap and then they 

are called Gap solitons. These will be discussed in section 2.4. 

The spectral broadening caused by self phase modulation is far from being a 

small effect and can be used for white light continuum generation or seeding 

optical parametric oscillators. White light continuum generation is widely used 

as a tunable femtosecond source and will be used for subsequent experiments in 

this thesis. This process relies on self phase modulation to spectrally broaden the 

laser pulse; self focusing will increase the intensity at the focus point and will 

trigger continuum generation. Field and avalanche ionization of the carriers 

reduces the intensity of the self focused pulse and thus limits the continuum 

bandwidth. Several materials are normally used to generate white light 

continuum, namely ethylene glycol 14
, sapphire, calcium fluoride, optic fibres 15 
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and photonic crystal fibres 16
• Details of the technique used in this thesis are 

described in section 4.4. 

The other important third order nonlinear effect for this thesis is two photon 

absorption. In two photon absorption, two photons are simultaneously absorbed 

to raise a valence electron to twice the photon energy into the conduction band. 

Since two photon absorption is a higher order process, its cross section is several 

orders of magnitude smaller than that of single photon absorption. Hence, two 

photon absorption normally occurs for high intensity laser beams with energies 

such that /i(J) < E g < 21i(J) , for which the material will be optically transparent. 

Two photon absorption is known to induce changes in the refractive index via 

photo-generation of free carriers 17
• This makes two photon absorption an 

interesting process for all-optical switching devices in general and photonic 

crystal based all-optical switching devices in particular. In contrast to the optical 

Kerr effect, discussed previously in this section, this is a real or resonant 

nonlinear effect. In this type of nonlinear effect there is a net transfer of energy, 

and the effect persists for some time after the pump beam has been switched off. 

Despite this limitation, two photon absorption will be used extensively to 

generate free carriers that will alter the refractive index of photonic crystals, with 

the ultimate result of nonlinear shifting of the photonic resonances, as will be 

shown in chapter 4. 

A schematic view of a typical two photon absorption process followed by 

radiative recombination is shown in Figure 2-6. A typical single photon 

absorption process is also shown for comparison. 
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Figure 2-6 Single and Two photon absorption processes followed by radiative 

recombination. 

The two photon absorption coefficient p is defmed by dl = -P/ 2
• It is related 

dz 

to the imaginary part of the third order nonlinear susceptibility tensor, xY>, by: 

(2.23) 

The free carrier density generated by a two photon absorption process can be 

calculated using18
: 

(2.24) 

where I is the intensity of the pump beam, rop is its angular frequency and 't is 

the carrier lifetime. 

If one assumes that the pulse duration, 'tp, is much shorter than the carrier 

lifetime 't, then the number of photo-generated carriers is 19
: 

(2.25) 
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where the pulse is defined such that both the spatial and the temporal 

distributions are included/(r,t) =I. ex{-::, }x{-::) where w 1s the 
waist beam diameter at the sample. 

Experimentally, the intensity of a Gaussian pulse is related to the average power 

P by the following relation19
: 

(2.26) 

where /rep is the repetition rate of the pulsed source and w is the radius of the 

laser spot. 

The refractive index change per carrier pair density can be estimated by0
: 

(2.27) 

where lUpr is the angular frequency of the probe, meff is the reduced effective 

mass of the carriers, which is defined as meff = me · mh . It should be noted that 
me +mh 

this equation refers to the free carrier nonlinearity only. 

2.4. Nonlinear effects in Photonic Crystals 

The nonlinear properties of photonic crystals have been widely studied 

both theoretically and experimentally. The photonic band edge is one of the key 

properties of photonic crystals, perhaps more so, when it comes to nonlinear 

effects. 
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Second order nonlinear effects in photonic crystals, such as frequency doubling21 

or optical parametric processes22
, are not studied in this thesis but are currently a 

very active area of research. 

In this thesis I have concentrated in third order nonlinear processes in photonic 

crystals. Nonlinear shifts in the position of the photonic bands, can be achieved 

by changes in the refractive index due to the optical Kerr effect, or nonlinear 

refractive index, which can lead to bistability, and perhaps more importantly 

from an application point of view, to instantaneous all-optical switching devices. 

Similarly, the optical (ac) Stark effect can also produce instantaneous changes in 

the refractive index of a photonic structure. The optical Kerr effect and optical 

Stark effect will be discussed in sections 5.4 and 5.5 respectively. These two 

effects are virtual nonlinear effects, and therefore will only last for as long as the 

pump beam is on. 

The carriers generated by single, two or three photon absorption can have the 

same effect on the refractive index, and consequently on the photonic bands. 

However, due to the nature of free carrier nonlinearities, i.e. real or resonant, 

these effects will present a rise time and a comparatively slow decay due to real 

carriers. 

Changes in the refractive index are expected not only to shift the photonic band 

gap edges by several nanometres23
, but also to change its bandwidth, as shown in 

Figure 2-7. 
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Figure 2-7(a) A schematic section of a photonic band structure close to the BZ 

edge.(b) Any change in the refractive index contrast (11c) will change the PBG 

(Mg). (c) The effect ~n has on average refractive index of the core/cladding 

structure (nave) and hence the entire shift of the band structure (M). 

There are two key parameters that should be considered: The refractive index 

contrast between the core and cladding layers, n e = n core ' henceforth ne, and 
n c/addmg 

the average refractive index of the core layer, henceforth nave. 

ne and nave can be altered by using different lattice types, periods or air fill 

factors when patterning the structure. nave is inversely proportional to the air fill 

factor. The optical confinement of the waveguide will be affected by the changes 

of the refractive indices of the core and cladding. 

The change in the refractive index and the shift of the photonic resonance are 

related bl3
: 
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AA. 
An~n -

o Ao 

Chapter 2 

(2.28) 

where no is the linear refractive index, A.o is the original spectral position of the 

resonance and A/.. = Ao - Anonlinear· 

The change in the refractive index can be generalised, for high intensities to: 

Anfc (I)= UN • N(t) 

An Thermal (t) = dn . AT(t) 
dT 

(2.29a) 

(2.29b) 

(2.29c) 

(2.29d) 

(2.29e) 

Equation 2.29b refers to photo-generation of free carriers: UN is the change in the 

refractive index per carrier density, see equation 2.27, and N(t) is the number of 

photo-generated carriers. Equation 2.29c refers to the optical (ac) Stark effect, 

which will only occur for structures with large exciton strengths, i.e. samples 

that include multiple quantum wells, or other low dimensional structures. p is 

the exciton oscillator strength, Ep is the magnitude of the electric field, t4 is the 

pump angular frequency and OJEX is the exciton angular frequency. 

Equation 2.29d, refers to the optical Kerr effect. n2 is the nonlinear refractive 

index and /(t) is the pump intensity. Finally, equation 2.29e refers to thermal 

effects, which should not be of any concern in this thesis due to their very long 

time constant. 
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Large densities of photo excited carriers (N- 1018-1019 cm-3) will result in large 

changes in the refractive index An ::::: 0.02 23. Such a change in the refractive 

index will result in large changes in the photonic resonances. Using equations 

2.27 and 2.25 a theoretical estimate of the change in refractive index due to two 

photon absorption can be achieved. This should allow us to estimate the change 

in the photonic crystal resonances and compare it with experimental results, as 

will be discussed in section 4.5. 

Virtual carriers last only as long as the laser excitation lasts, and are therefore 

instantaneous. Examples of such instantaneous effects are the optical Kerr effect 

or the optical Stark effecr4. The optical Kerr effect has been observed in low 

index contrast one dimensional photonic crystal (Bragg Mirrori5
, and two 

dimensional silicon based photonic crystals26, but not in high contrast Ill-V 

based photonic crystals. The optical Stark effect has been observed in Bragg 

Mirrors27 and in quartz based photonic crystals, using (C6HsC2fuNH3)2Pbi4 also 

known as PEPI as the active semiconductor8. 

In addition to ultrafast all-optical switching, third order nonlinear effects have 

several other applications in photonic band gap materials: 

The nonlinear superprism effect, where the angle of refraction for a wave 

transmitted through the photonic crystal is changed by nonlinear shifts in the 

photonic band structure due to the nonlinear changes of the refractive index29. 

Gap solitons30·31 , these are a special case of Bragg grating solitons, as discussed 

before in section 2.3. Gap Solitons form in much the same way normal solitons 

form, i.e. when the group velocity dispersion balances the nonlinearity of the 
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medium, but all of this happens inside the photonic band gap. Gap solitons are 

very interesting solitary waves as they can travel at any speed, as long as it is not 

faster than the speed of light13
, which is not the case for fibre solitons that can 

only travel at the speed of the medium. These effects are not considered further 

as they have not been studied in this thesis. 

2.4 Conclusions 

In this chapter a theoretical introduction to the linear and nonlinear 

properties of photonic crystals has been given. Only those effects of direct 

relevance to this thesis were discussed. 

The Master equation, an equation that can be used to determine the modes 

sustained by the crystal, was derived from Maxwell's equations. The lack of a 

fundamental scale, naturally embedded in Maxwell's equations, is demonstrated 

to also be present in the Master equation. It was shown that the Master equation 

can be recast as an eigenvalue problem, with real eigenvalues, a consequence of 

the hermitian nature of the differential operator. 

A brief discussion of symmetry showed that discrete translation symmetry can 

be used to define the Brillouin zone, which allows the crystal to be fully 

characterized by looking at a limited range of wavevectors. Rotational symmetry 

allows for a further reduction in the number of wavevectors necessary to 

characterize the crystal. Mirror reflection symmetry allows the Master equation 

to be solved differently for transverse electric, i.e. in-plane electric field, and 

transverse magnetic, in-plane magnetic field, polarizations. 
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It was established that the physical origin of the photonic band gap, in one 

dimensional photonic crystals, lies on the refractive index mismatch between the 

different component layers. In two dimensional photonic crystals the situation is 

more complicated, with the band gap also depending on the lattice topology. 

In the introduction to nonlinear optics, particular emphasis was given to self 

phase modulation, and two photon absorption as these effects will play an 

important role in the experiments carried out in this thesis. 

Finally, a general discussion of nonlinear effects in photonic crystals, showed 

the plethora of effects and possible applications of photonic crystals. 
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3.1 Introdudion 

"Another victory like this and we are ruined" 

King Pyrrhus of Epirus 

In the previous chapter a theoretical introduction to photonic crystals was 

presented. The Master equation, an equation that can be used to determine the 

modes sustained by the crystal, was derived from Maxwell's equations. The 

properties of this equation were discussed. Analysis of the different crystal 

symmetries allows us to define the Brillouin zone, the irreducible Brillouin zone 

and to distinguish between transverse electric and transverse magnetic 

polarizations. 

An introduction to nonlinear optics was also presented in the previous chapter, 

where self phase modulation and two photon absorption were explained in more 

detail as they will feature in the experimental results throughout this thesis, 

particularly two photon absorption. 

In this chapter I report preliminary measurements on two dimensional photonic 

crystals embedded in ridge waveguides. Linear characterization measurements 

will reveal a photonic band gap. Nonlinear measurements will show evidence of 

symmetric and asymmetric spectral narrowing of the transmitted pulses. 

In section 3.2 sample growth and fabrication techniques will be discussed. A 

description of photonic crystal waveguides and ridge wave guides will be given. 

Section 3.3 will discuss the linear characterization methods used for two 

dimensional photonic crystals in this thesis. A detailed discussion of the samples 
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and experimental set-up used in this chapter will be followed by transmission 

measurements. 

Finally, section 3.4 will attempt to repeat and improve an experiment carried out 

by Rahn et a/1
• 

3.2 Sample Preparation 

In this section the fabrication methods used to manufacture the photonic 

crystals samples measured in this thesis will be discussed. 

3.2.1 Introduction to Materials 

Silicon has been the mainstay of the semiconductor industry for many 

years, perhaps due to its abundance on the earth's crust; therefore it is not 

surprising that some photonic crystals are manufactured using Silicon, typically 

Silicon on Insulator (SOli or Silicon Nitride3
• Despite its advantages, Silicon 

lacks a simple mechanism to alter its refractive index gradually at the time of 

manufacture. Silicon alloys, like silicon nitride, are also not lattice matched to 

unalloyed silicon. Silicon also lacks good light emission properties, due to its 

indirect band gap. For these reasons, in this thesis I concentrate on GaAs based 

photonic crystals. 

GaAs is a very good light emitter and possesses a simple mechanism to alter the 

refractive index, while remaining lattice matched to GaAs, through the 

introduction of aluminium into the GaAs crystal. This causes the refractive index 

of the crystal to decrease and makes GaAs(AlxGal-xAs) a very interesting 

material for the study of photonic crystals. 
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Additionally, GaAs is robust, has a large optical nonlinearity and its electronic 

band gap edge is located at 1.424 eV at room temperature. 

At room temperature the refractive index of AlxGat-xAs and the band gap energy 

are as follow: 

n = 3.59- 0.7x +0.15x2 at 900 nm (3.1) 

Eg=l.424+1.247x eV x<0.45 DirectEnergyBandGap (3.2a) 

Eg =1.9+0.125x+0.143x2 eV x>0.45 IndirectEnergyBandGap (3.2b) 

In this thesis, two different experimental geometries will be used, namely 

in-plane transmission (discussed in this chapter), and external coupling 

reflectivity (discussed in chapters 4 and 5). Each will require somewhat different 

samples. I will start by considering the fabrication of photonic crystals for in

plane transmission measurements. 

3.2.2 In-Plane Transmission Geometry Samples 

In order to realize a practical two dimensional photonic crystal, a slab 

waveguide needs to be created; this should not be confused with a ridge 

waveguide which is also used for the samples measured for this chapter. Figure 

3-1 below, shows the difference between a slab waveguide, figure 3-1 a)-c) and 

a ridge waveguide figure d)-e). Note how the ridge wave guide is a simple optic 

fibre like waveguide. Without the slab waveguide light would leak out of the 

sample in the out of plane direction, while the ridge waveguide ensures that in

plane light is guided inside it via total internal reflection 4. Thus the simultaneous 
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use of both types of waveguides create a simple and efficient way to confine 

light inside the sample in all three dimensions, so that it interacts with the 

photonic crystal which will be embedded in the ridge waveguide. 

Due to the small size of the photonic crystal samples,( typical areas are several 

thousand square micrometers), transmission measurements are more 

complicated than with semiconductor wafers, in which light is shone on any area 

of the wafer and then collected after it has gone through the sample. Some 

micro-positioning system is required, as well as a means of identifying the 

photonic crystal itself from the rest of the wafer. The main approach used to 

solve this problem adopted in this thesis is to place the photonic crystal in a slab 

waveguide as well as in a ridge waveguide. 

A slab waveguide consists of a central layer of semiconductor, known as the 

core, normally grown by epitaxial methods, surrounded by a material with lower 

refractive index, for instance: air or another semiconductor. Slab waveguides can 

be classified as either symmetric, if the material surrounding the core is the same 

on both sides, see figure 3-1 b)-c), or asymmetric, when the material on either 

side of the core is different, normally air on the top side and a different 

semiconductor on the lower side, see figure 3-1 a). 
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a) b) c) 

d) e) 

Figure 3-1 a)-c) Lateral vtews of an asymmetrical slab waveguide, a 

symmetrical slab waveguide and air bridge structure, respectively, see text for 

further details. The core layer is orange (n ~ 3.5) The cladding is brown (n ~3.2). 

d) Top view of a typical ridge waveguide. e) Lateral view of a typical ridge 

waveguide. 

Placing the photonic crystal in a symmetric photonic crystal slab waveguide5 

with the photonic crystal in the centre layer or core will confine light to the core 

layer and thus, will probe the photonic crystal. This is illustrated in figure 3-2 b), 

where the red arrow shows the direction in which light travels. The light coupled 

to the waveguide is free to roam the plane where the photonic crystal is located. 

This limits the amount of light that will reach the photonic crystal, unless the 

sample is cleaved to impractically small dimensions. Another disadvantage of 

this type of symmetric waveguide is that the confinement can also be fairly 

limited as the refractive index contrast between the layers is not very large 

- 0.3. The e type of slab waveguides are, however, very simple to 

manufacture. 
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A more elegant solution consists of patterning a ridge waveguide, in which a 

photonic crystal has been embedded, in a slab waveguide. The ridge waveguide 

behaves like fibre optic cables and relies on total internal reflection at the 

semiconductor/air interface. Light being guided on these waveguides will probe 

the photonic crystal embedded on them. These waveguides can be asymmetric, 

using a high refractive index semiconductor core surrounded by air on top and 

the lateral sides and lower refractive index semiconductor cladding on the 

bottom layer, or can be symmetric and have air as the top, bottom and side 

cladding. The former will be used in this thesis, whereas the latter are normally 

referred to as air bridge structures6
•
7
. Air bridge structures, see figure 3-1 c), 

have the higher confinement degree of all waveguides, but are fragile and 

complicated to fabricate. 

a) b) 
Figure 3-2 a) Side view of a photonic crystal embedded on a ridge waveguide in 

an asymmetric slab waveguide. b) Side view of a photonic crystal in a 

symmetric slab waveguides. Red arrows indicate direction of propagation of 

light. 

A ridge waveguide patterned in an asymmetric slab waveguide represents a good 

compromise between ease of fabrication, performance and robustness. Such a 
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photonic crystal embedded on a ridge waveguide inside an asymmetric slab 

waveguide is shown in figure 3-2 a). 

The slab waveguides used throughout this thesis are asymmetric8 in nature, with 

the top cladding layer being air n = 1 , the core typically composed of a 200 to 

400 nm thick layer of high refractive index GaAs or AlxGai-xAs; GaAs is not 

normally used for the core as its electronic band edge gives rise to absorption at 

wavelengths shorter than 870 nm. A low Aluminium concentration AlxGa1.xAs 

layer is used instead; with Aluminium concentrations ranging from 1 0% to 20% 

(e.g. Alo.2oGao.soAs has a refractive index n- 3.45 at 900 nm). 

The bottom cladding layer is normally made of a higher aluminium 

concentration AlxGa1.xAs, where the concentrations can, typically, range from 

35% to 90% or even AlAs (e.g. Alo.60Gao.40As has a refractive index 

n- 3.22 at 900 nm). In order to achieve an even higher refractive index contrast, 

and thus higher confinement, the lower cladding layer can be oxidized9
, which 

will reduce its refractive index to n = 1.5 . In fact, natural oxidation can occur for 

aluminium concentrations higher than 60%. This is, no doubt, aided by etching 

the photonic crystal on the slab waveguide. 

The growth of the slab waveguide wafers was carried out by the EPRSC 

National Centre for Ill-V Technologies at the University of Sheffield using 

Metal Organic Vapour Phase Epitaxy (MOVPE). Once the slab waveguide has 

been grown, the photonic crystal must then be processed to create a Photonic 

Crystal Waveguide. The processing of the samples has been done at the 

University of St Andrews, by the Photonic Crystal research group. 
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In this thesis the relevant range of the electromagnetic spectrum is the very near 

infrared. This requires feature sizes of the order of 1 J..lffi. It is, therefore, not 

surprising that the samples are patterned using electron beam lithography, as 

feature sizes of tens of nanometres are easily achievable. It is, however, possible 

to pattern photonic crystals using deep ultraviolet photolithography 10
•

11
• 

2 

BLANK. WAFER Si0
2 

DEPOSITION 

3 4 

SPIN-COAT P:M:MA EBL: PATTERNP:M:MA 

5 6 

RIE: PATTERN Si0
2 

RIE: PATTERN GaAs 

7 8 

REMOVE P:MMA REMOVE Si02 

Figure 3-3 Schematic sequence of the processing of a photonic crystal 

waveguide. (See text for details) 
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Dry etching methods are normally used to etch photonic crystal patterns. This is 

due to the requirements of a good photonic crystal, namely highly parallel 

cylindrical or square holes. In order to achieve this, anisotropic etching is 

required and thus wet etching methods are of little use. Chemically assisted ion 

beam etching or reactive ion etching is used in the samples measured in this 

thesis. 

Aspect Ratios, i.e. the ratio of etch depth to feature size, of 10: 1 can be achieved 

with a combination of electron beam lithography and chemically assisted ion 

beam etching or reactive ion etching. The steps in the processing of the samples 

are described below. 

Once the slab waveguide has been grown, figure 3-3(1 ), a layer approximately 

200 nm thick of Si02 is deposited on the waveguide, figure 3-3(2). This layer 

acts as a mask of the photonic crystal pattern that will be written on the electron 

beam resist. The reason for this is that, the electron beam resist used, typically, 

Poly (Methyl Methacrylate) (PMMA), will not withstand the rigours of dry 

etching down to several hundred nanometres. Thus the pattern needs to be first 

written on the positive electron resist, i.e. PMMA and then transferred to the 

silicon dioxide layer. Once the electron beam resist has been deposited, it is then 

written by the electron beam, figures figure 3-3(3) and 3-3(4) respectively. After 

the pattern has been written on to the positive electron beam resist it is 

developed on IPA:MIBK12 for approximately 30 seconds. The pattern is then 

transferred to the Si02 layer using reactive ion etching with CHF3 and into the 

waveguide using reactive ion etching with SiC4 or SiF4, figures 3-3(5) and 3-
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and 3-3(6) respectively. Once the pattern has been etched into the waveguide, 

forming a photonic crystal waveguide, the PMMA and the Si02 layers are 

removed, as shown in figures 3-3(7) and 3-3(8). 

The photonic crystal waveguide can now be checked by means of a scanning 

electron microscope; this allows us to check the period, air fill factor, the etch 

depth and how parallel the air cylinders are. In order to check the etch depth and 

air cylinder shape, a test sample is normally cleaved. The only way to check the 

shape of the air cylinders is by cleaving a sample. 

Figure 3-4 a) below shows a typical example of a two dimensional photonic 

crystals with period a = 250 nm and air fill factor f = 3 7%. Figure 3-4 b) shows 

a typical two dimensional ridge waveguide sample, where there are ten ridge 

wave guides for each lattice direction and crystal length, of which eight contain a 

photonic crystal, and the outer two, not shown, are blank waveguides, used for 

normalization purposes. The photonic crystals shown here are 16 J.Ul1 long and 

the lattice direction is r -K. A typical sample comprises of four sets of ten such 

wave guides. There are two sets of ten ridge waveguides for each crystal length, 

16 and 4 J.Ull, respectively, and each set has a different lattice direction. Each 

semiconductor chip comprises two such samples. In order to appropriately 

identify each ridge waveguide and waveguide set, the photonic crystal 

parameters are etched above the first waveguide of each set. Each ridge 

waveguide is then assigned a number from one to ten, with one being the first 

blank ridge waveguide below the photonic crystal information and ten being the 
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last blank ridge waveguide which surrounds the ridge waveguides containing 

photonic crystals, which go from two to nine. 

Figure 3-4 Scanning electron m1croscopy micrographs. a) High resolution 

image of a two dimensional triangular lattice with period a = 250 nm and air fill 

factor f = 37%. b) Lower resolution image of a typical photonic ridge 

waveguide sample with several photonic crystals embedded in ridge 

waveguides. The length ofthe photonic crystal is 16 J..Lm. 
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Figure 3-5 shows a side view of a typical ridge waveguide. The etch depth, 

d = 2 J.J.m, is significantly longer than used for photonic crystals, which is 

normally less than 1 J.J.m. This is done to ease the coupling of the laser light to 

the ridge waveguide. The bent trenches are an artefact of the micrograph. 

Figure 3-5 Cross Sectional view of a typical ridge waveguide. The dashed black 

line indicates the boundary between the core and the cladding (not to scale). 

The ridge waveguides m which the photonic crystals are embedded, are 

processed in a similar way to the photonic crystals themselves. The only 

difference lies in the accuracy setting of the electron beam lithography process, 

set to low accuracy for the ridge waveguide, and high for the photonic crystal 

itself. This is down to time constraints as it would take an inordinate amount of 

time to write a 1.5 mm long ridge waveguides at high resolution. 
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In the samples used in this chapter, i.e. photonic crystals embedded in ridge 

waveguides, light could propagate on the region of semiconductor in between 

the ridge wave guides containing the photonic crystals, see figure 3-6 b). In order 

to prevent this from happening, a series of chevrons have been patterned and 

etched in the same way as the ridge waveguides themselves, see figure 3-6 a). 

These chevrons behave like light barriers that prevent light from propagating 

through the semiconductor region between each waveguide. At the 

semiconductor/chevron interface light will be reflected back due to total internal 

reflection. This ensures that only light transmitted through the ridge waveguides 

will be collected. 

t t t t t t t 

t t t t t t t t t 
a) b) 

Figure 3-6 chematic drawing of a typical sample with several ridge 

waveguides with a) and without b) chevrons intercalated between the ridge 

waveguides. The chevrons effectively stop light from propagating. 
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3.2.3 Reflectivity Geometry Samples (1-D Pbotonic Crystal Waveguides) 

The samples designed for reflectivity measurements, discussed m 

chapters 4 and 5, are significantly different from the samples used for in-plane 

transmission measurements, presented in this chapter. 

While the processing of the actual photonic crystal is the same regardless of the 

experimental geometry, the different experimental geometry means that a ridge 

waveguide is not needed for these samples. Samples processed for reflectivity 

measurements are square shaped surrounded by a deep air trench, 20 f.U11 in 

width. The air trench is present to avoid light from the unpatterned wafer being 

accidentally collected. The photonic crystal used in reflectivity measurements 

covers an area of 6400 J.Lm2 (80 by 80 J.Lm). 

Each processed wafer contains several dozens different samples. Most samples 

are exposed twice or three times, with ever increasing exposure doses. This is 

done in order to obtain a satisfactory exposure dose which will yield samples 

with good morphology. In practice, most exposure doses will present photonic 

resonances, even if the quality factors and spectral positions vary from one 

exposure dose to another. 

Figure 3-7 shows an optical photograph of a typical wafer containing several 

samples, with different exposure doses and periods. The resolution is not enough 

to resolve the air moat that surrounds the each photonic crystal. The period and, 

sometimes, the air fill factor are etched above each sample to allow easy 

identification of the correct sample. 
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I 

/ 

Figure 3-7 Optical photograph of a typical "reflectivity" wafer. Three different 

periods, each processed at three different exposure doses are shown. 

3.3 Linear Characterisation Methods 

Investigation of the photonic band structure of a photonic crystal can be 

achieved by two different types of techniques, namely: Transmission 

spectroscopic techniques and reflection spectroscopic techniques. Transmission 

techniques will be discussed in this chapter, whereas reflectivity techniques will 

be discussed at length on chapter 4. 

3.3.1 Experimental Techniques for Transmission Spectroscopy 

In transmission spectroscopy light is shone on one side of the sample and 

collected on the other, thus allowing us to determine where the stop gaps of the 

photonic crystals are by measuring the transmitted light versus the wavelength. 
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This technique has been used extensively in spectroscopy, but it is rather limited 

for our needs. 

We shall use a variation of the transmission geometry: the In-Plane 

Transmission Technique. As its name indicates, light is confined to the sample 

plane, which is done by means of a combination of a slab and ridge waveguides, 

and light collected at the exit edge, thus allowing for the optical properties of the 

photonic crystals to be determined. 
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Figure 3-8 a) Transmission spectrum of2D hexagonal lattice photonic crystal 

for TE polarization along the 1 - K direction b) Corresponding photonic band 

structure. Extracted from reference 5. 
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A photonic band gap will be accompanied by a reduction of the amount of light 

transmitted as the diagram in figure 3-8 shows. However the converse is not 

always true, i.e. a reduction of the transmission does not necessarily mean that 

there is a photonic band gap at that wavelength 13
• 

The probing light used in this technique can either be externally coupled to the 

sample14
, or an internal source can be created from the photoluminescence 

emitted by either quantum dots15 or quantum wells16 excited by a laser. The main 

disadvantage of the internal source approach is the lack of sufficient power from 

the light source to go into the nonlinear regime; this is why we lack a real 

choice, if one is to attempt nonlinear experiments. Another disadvantage is the 

limited emission range offered by quantum dots and quantum wells. 

The in-plane transmission geometry allows the study of interesting structures 

such as point and line defects. The former can be used as a microcavity17
•
18 that 

can be used to obtain low threshold lasers18 whereas the latter can be used as a 

waveguide17
•
19

, which can be engineered to incorporate bends20 with radius of 

the same order of magnitude as the wavelength of operation. 

3.3.2 Experimental Set-Up and Samples 

The experimental setup used to carry out the in-plane transmission 

measurements in this chapter, is schematically shown in figure 3-9 (the imaging 

system is not shown for simplicity). The experimental set-up uses a mode locked 

Ti:sapphire laser tuneable from 700 nm to I 000 nm with a repetition rate of 80 

MHz (Tsunami® by Spectra Physics) and pulses lasting 100 fs. The laser is 
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monitored by means of a spectrwn analyzer connected to an oscilloscope. The 

output of the laser is vertically polarized; a half wave plate is used to rotate the 

polarization of the laser beam if and when required. (When the polarization of 

the laser matches the required polarization, the half wave plate is removed). 

Light is coupled to the sample by means of a microscope objective lens with an 

approximate magnification of 60X and NA = 0.85 mounted on a three 

dimensional micropositioning stage. The sample is mounted on a two 

dimensional stage, which also features tilting controls. Light is then collected 

from the sample by means of an objective lens with magnification 40X and 

NA = 0.65, again mounted on a three dimensional micropositioning stage. Both 

objective lenses are sold by Optics For Research. This objective is also used to 

focus the collected light on to an optic fibre. The optic fibre holder is adjustable 

in the xy plane, thus simplifying the coupling significantly. The fibre has a dual 

purpose here; firstly, it acts as a spatial filter, thus ensuring that only light that is 

coming out of the waveguide and not the surrounding semiconductor or the air 

above the waveguide is collected and secondly it guides the collected light from 

the waveguide on to the spectrograph. Light can also be guided using mirrors, 

but a pinhole is then required, thus making it slightly more complicated than the 

approach used here. Before hitting the spectrograph, the light is collimated by a 

piano-convex lens of focal distance f = 1 0 cm and then focused on to the 

spectrograph by means of a similar piano-convex lens, both made of BK7 glass. 

The spectrograph is equipped with charged coupled device acting as a light 

detector, remotely controlled by a computer. In order to ease the coupling of the 
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light in and out of the sample, an imaging system is incorporated. This consists 

of a white light source that illuminates the edge of the sample. On the input side, 

back reflected light is directed by means of a beam splitter on to an imaging 

camera, which is plugged into a TV monitor. A similar arrangement 

incorporating two mirrors is used on the output side. Neither are shown in figure 

3-9. 

I Ti:sapphire 

Figure 3-9 chematic view of the experimental set-up for in-plane transmission 

measurements on photonic crystals embedded in ridge waveguides samples. 

The sample used for the transmission measurements is the A T218. This is in fact 

a et of semiconductor chips each containing two different periods as explained 

in page 56. There are forty ridge waveguides per period. There are two different 

photonic crystals lengths, namely 4 and 16 f.!m and for each length there are two 

different lattice directions, r -K and r -M, each with ten ridge waveguides, for a 

total of twenty ridge waveguides per photonic crystal length. 
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The period, fill factor, lattice direction and crystal length are all etched above 

each mini-set to unambiguously identify each mini-set. 

The core of A T218 consists of a 400 nm thick layer of Alo.l3G8o.s7As, while the 

cladding is a 2 J.lm thick layer of Al0.60Gao.4oAs. The samples are etched to an 

approximate depth of 800 nm. The whole structure has been grown on a 350 J.lm 

thick GaAs substrate. The two dimensional lattice is a triangular or hexagonal 

lattice, with periods ranging from 250 nm to 350 nm in 20 nm steps and air fill 

factors ranging from 35 % to 41%. 

The limited tuning range offered by our laser source means that it is not possible 

to probe both sides of the photonic band gap on a single sample. Fortunately, 

due to the scalability of Maxwell's equations, this is not a significant problem 

and is overcome by processing several samples with different periods, thus 

spanning the whole bandwidth of the photonic band gap. 

Each lattice was patterned eight times with two blank waveguides flanking them. 

This is done in order to allow measurements that permit us to separate the 

response of the wave guide from that of the photonic crystal itself by comparing 

a blank to a photonic crystal containing waveguide. In order to probe both high 

symmetry directions, i.e. 1 -K and 1 -M, different lattices had to be processed as 

there is no way of rotating the lattice in a ridge waveguide to access the high 

symmetry directions. 
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3.3.3. Experimental Results 

In this section the linear properties of the A T218 sample set will be 

probed. The main objective of this section is to use the in-plane transmission 

experimental set up, as described above, to observe a photonic band gap. It is 

expected that the transmission will decrease sharply as the wavelength is tuned 

into this photonic band gap. 

During the measurements the spectrum analyzer is used to check where the laser 

wavelength is set. The pulse bandwidth is normally set to 1 0 nm full width half 

maximum and kept constant as much as possible. This value can be modified, 

but maintaining the laser mode-locked becomes somewhat of a challenge for 

smaller widths at the edges of the tuning range. 

Once the wavelength has been set, the appropriate waveguide is selected by 

means of either the in-coupling lens stage or the sample stage, or both. Then 

using the out-coupling lens stage light is collected from the appropriate 

waveguide. This is normally trivial, as there is only one waveguide transmitting 

light due to the chevrons patterned on the sample. Finally light is detected by the 

detector after it has been dispersed by the spectrograph. A typical output of a 

blank waveguide is shown in figure 3-10. 

Since our laser system lacks the sufficient pulse energy to genemte a white light 

continuum, we are forced to do a step by step chamcterization of the samples, by 

changing the laser wavelength and taking a measurement at several wavelengths, 

normally from 860 nm to 930 nm, at 10 nm intervals. 
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A piece wise plot of the transmission can be created from the maxima of all the 

individual transmission spectra at nominally low powers. 
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Figure 3-10 Typical transmission spectra from a blank waveguide (AT218). The 

laser wavelength is centred at 850 nm and the average laser power is 125 11W. 

The spectral shape of the transmitted laser pulse can be somewhat misleading as 

it can deviate somehow from a Gaussian like shape typical of the transmitted 

spectrum of a blank waveguide. It, nonetheless, portrays a fairly good picture of 

the transmission properties of every sample. The measurements shown in this 

thesis are all taken on 4 11m long photonic crystals. The lattice orientation is 

always r - K and the polarization is TE unless otherwise stated. 
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Figure 3-11 Piece wise composition of the transmission measurement of the 

AT218 sample. The period is a = 250 run while the air fill factor isf ~ 37%. a) 

and b) are different ridge waveguides, numbers 5 and 8 respectively. 

Figure 3-11 above, shows a typical piecewise composition of the transmission 

spectrum of A T218 for a period a = 250 run for ridge waveguides five and eight, 

figures 3-11 a) and b) respectively. The transmission drops significantly for 

centre wavelength of approximately 'A = 910 run. This is an edge of the photonic 

band gap. There is a slight mismatch (about 1 %) between the locations of the 

photonic band edge on both waveguides; this is most likely due to differences on 

the samples due to the inherent imperfection of the fabrication process. It should 

be noted that the transmission of these photonic crystals containing ridge 

waveguides on a passband is approximately 1%. 
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Ridge waveguide eight, and to a lesser degree, ridge waveguide five, shows 

fringes as the laser wavelength is tuned closer to the photonic band edge. These 

are due to Fabry-Perot modes of the cavity created by the ridge waveguide/ 

photonic crystal interface. 

The transmission spectra of a sample with period a = 270 nm and air fill factor 

f= 40% is shown on figure 3-12 a). It can be seen how the photonic band edge 

has shifted by approximately 50 nm due to the difference in period and air fill 

factor with respect to the sample shown in figure 3-11 b), which had a period 

a = 250 nm and a fill factor f = 3 7 %. 

One significant property of photonic crystals, stemming from Maxwell's 

equations, is scalability. As discussed in section 2.2.1, there is no fundamental 

length scale. This is demonstrated in figure 3-12 b), where a piecewise 

composition of the transmission measurement of two different wave guides with 

different periods, namely ridge waveguide eight from a sample with period 

a= 250 nm and ridge waveguide seven from a sample with period a = 270 nm, 

both of the A T218 sample set, have been plotted on the same graph. When the 

scale is set to normalized wavelengthi , it can be clearly seen how the photonic 

band edge lies on the same normalized wavelength. The agreement between both 

periods is remarkable. This is the sample with the longest period that shows the 

short normalized wavelength edge of the photonic band gap, i.e. the dielectric 

band, with our set-up. In order to see the long normalized wavelength edge of 

the photonic band gap, i.e. the air band, longer periods are required. 

i Normalized wavelength is defined here as u = a/A.. 
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Figure 3-12 Transmission spectra of AT218. a) The period is a = 270 nm, air fill 

factor f = 40%, waveguide 7. b) Comparison of transmission spectra for periods 

250 and 270 nm respectively, waveguides 8 and 7 respectively. c) The period is 

a = 350 nm and the air fill factor f = 39% waveguide 8 
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With a period a = 350 run, the long normalized wavelength side of the photonic 

band gap, i.e. air band, can be probed, as shown on figure 3-12 c). To further 

illustrate how useful the scalability of Maxwell equations is on the study of 

photonic crystals; let us imagine that we only have one sample with period 

a= 250 run. The short normalized wavelength band edge is located at u = 0.274, 

or A.= 890 run, the long normalized wavelength side is located at u = 0.388, 

which is equivalent to A. = 645 run and corresponds to a spectral region with high 

absorption. If instead of a sample with period a = 250 run, a sample with period 

a = 350 nm was used, the photonic band gap edges would be at A. = 890 run and 

1250 nm for the long and short normalized wavelengths edges respectively. In 

order to probe such long wavelengths, an optical parametric oscillator would be 

required as well as an appropriate laser to pump it. A different detector would 

also be required, therefore justifying the approach taken here. 

The property of scalability thus, enables us to bypass the limited spectral range 

available from the laser and the limited detection range of the detector. By using 

piecewise compositions of the transmission spectra of several periods a snapshot 

spanning the whole width of the photonic band gap can be achieved, thus 

allowing the in situ characterization of the samples. 

This is illustrated by figure 3-13, where such a composition of transmission 

spectra has been created by plotting together the piecewise composition of all 

the periods available, i.e. a= 250-350 nm 
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transmission spectra of periods a = 250-350 nm. The polarization is TE and TM 

for a) and b) respectively. 
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The mismatches occurring at several places on both plots can be explained by 

the imperfection of both the photonic crystal and of the ridge waveguides, 

inherent to the manufacturing process. 

It is interesting to compare the two results shown in figure 3-13. On the short 

normalized wavelength side both polarizations show a clear, sharp edge, which 

corresponds to the photonic band edge. The position of the bands on both 

polarizations are u = 0.274 and u = 0.271 for transverse electric polarization and 

transverse magnetic respectively. This is the dielectric band in each case. On the 

long normalized wavelength side, however, there is a sharp edge for the 

transverse electric polarization spectrum only, whereas the transverse magnetic 

polarization shows only a slight increase in the transmission. 

The sharp edge for the transverse electric polarization can be ascribed to the 

other side of the photonic band gap, the air band. Thus it is clear that the band 

structure presents a clearly defined photonic band gap from u = 0.274 to 

u = 0.388 for the f' -K lattice direction. 

The transverse magnetic polarization spectrum does not show a sharp edge like 

the transverse electric spectrum. The reason for this behaviour, most likely, lies 

on the inability of the incident light to couple to the allowed modes in the 

structure, due to a symmetry mismatch between the modes sustained by the 

structure and the incident light I3,2I. The transmission is consequently lower than 

what would be expected. The range affected starts at around u = 0.37, where an 

increase in the transmitted light begins, and continues all the way to u = 0.42 and 

possibly beyond. The amount of transmitted light is somewhat higher than on 
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the band gap region. This is due to the fact that the crystal is not infinite in size 

and therefore the symmetry mismatch is broken to some degree. 

3.4. Introduction to Nonlinear Measurements on Photonic Crystal Ridge 

Waveguides 

In this section the nonlinear properties of the A T218 sample set will be 

explored. The main objective of this section is to see a shift and broadening, or 

narrowing, of the photonic band gap. This shift is caused, as discussed in 

sections 2.3 and 2.4, by a change in the refractive index induced by excited 

carriers, whether virtual or real. The nonlinear properties of the ridge waveguide 

itself will be studied as well as the photonic crystal ridge waveguide system. 

An attempt to separate the response of the photonic crystal from that of the ridge 

waveguide was made, however it proved unsuccessful. The reasons for this lack 

of success will be discussed. 

A successful attempt to change the refractive index via photo excitation of 

carriers will be discussed in chapters 4 and 5. 

3.4.1. Nonlinear Measurements in Photonic Crystal Waveguides 

The experimental set-up used is the same set-up as used to carry out the 

linear characterization of the samples. The nonlinear measurements only involve 

changing the coupling power to reach the nonlinear regime, which can be easily 

accomplished by changing the laser attenuation with the neutral density filter 

wheel, as shown in figure 3-9 
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The work carried out by M.D. Rahn et al. (reference 1) is very similar to the 

work presented here. The main difference resides in the samples, which not only 

are of a different material, but have a different design. In reference 1, symmetric 

and asymmetric spectral narrowing was observed for blank and photonic crystal 

waveguides respectively. This was attributed to self phase modulation and two 

photon absorption coupled with small amounts of chirp in the overall optical 

system. Two photon absorption induced optical limiting was also reported. The 

overall nonlinear response of the samples was dominated by the ridge waveguide 

and the nonlinear response of the photonic crystal itself was very small, due to 

the low intensity that reached the photonic crystal. This was due to the length of 

the ridge waveguide, approximately 0.75 mm long on each side of the photonic 

crystal, compared to the 4 J.1ffi long photonic crystal, which means, that the 

pulses would have propagated through approximately 0. 75 mm of Alo.1JG8o.s7As 

before reaching the actual photonic crystal. Alo.J3G8o.s7As has a non negligible 

nonlinear refractive index n 2 = 4 ·10-13 cm 2 w-' at A.= 900nm. This fact, along 

with, the very high intensities, due to the tight focusing required to couple the 

laser beam into the waveguide, mean that it is very possible that any nonlinear 

response from the photonic crystal will be dwarfed by that of the ridge 

waveguide. The length of the waveguide after the photonic crystal is not critical 

as the intensity of the light beam reaching this waveguide is not enough to go 

into the nonlinear regime. 

In the light of the results presented in reference 1, there is a big question mark 

over this experimental setup as a valid method for measuring the nonlinear 
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response of our photonic crystal ridge waveguides samples. This is an intrinsic 

problem of our samples which can be solved either at the manufacturing level, 

by making either longer photonic crystals and/or shorter waveguides, or at the 

experimental level, by using a different experimental set-up. 

Let us concentrate first on the sample design. The first idea, namely, lengthening 

the photonic crystal has a main drawback, and that is fabrication time. It would 

take an inordinate amount of time to create a photonic crystal of comparable size 

to the waveguide itself. While a longer photonic crystal, around 50 J.lm, is 

feasible. These would not only suffer huge transmission losses, but their 

nonlinear response would almost certainly still be dwarfed by that of the ridge 

waveguide. The second idea, namely to shorten the ridge waveguide, is not 

without its drawbacks either, as leaving the photonic crystal closer to the edge 

increase the probability of damage when cleaving. 

This was verified by using a shorter ridge waveguide, approximately 1 mm long, 

instead of the usual 1.5 mm. The embedded photonic crystals were patterned to 

be as long as 50 J.1ffi and were placed at approximately 0.1 mm from one of the 

edges. Unfortunately, this distance proved not to be long enough and the sample 

was damaged beyond use during the cleaving process. 

For these reasons it was eventually decided to take the second approach and 

design a different experimental set-up. This will be described in section 3.4.3. 

First experimental results for longitudinal pumping similar to the experiment of 

Rahn et a/ will be discussed. 
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3.4.2. Experimental Results 

In this section a set of nonlinear measurements for blank and photonic 

ridge waveguides will be presented. It will be shown that the response of the 

blank ridge waveguide is very interesting as it becomes nonlinear at high 

intensities, showing spectral narrowing, optical limiting and negative differential 

transmission. Similar effects are observed in photonic ridge waveguides. The 

spectral narrowing shown by photonic crystal ridge waveguides is markedly 

different from that shown by blank ridge waveguides; the former being 

asymmetric while the latter is symmetric. 

The nonlinear optical response of blank waveguides was measured first. While 

these waveguides do not contain photonic crystals, they are made of 

Al0.13Gao.s7As which as discussed in the previous section will behave nonlinearly 

at high enough intensities. The laser polarization is set to TE polarization 

throughout this section. 

Figure 3-14 shows the spectrum transmitted through a blank waveguides for 

different input intensities. The first noticeable effect is a spectral narrowing of 

the pulses as the input intensity is increased from 1 GW·cm·2 to 87.6 GW·cm-2
• 

The average power ranges from 125 Jl W to 1 0 m W and the laser pulse width is 

100 femtoseconds. The laser spot radius is taken to be r = 0.5 J..Lm, which seems 

a reasonable figure for a ridge waveguide etched to approximately 900 nm. It 

should be noted that the coupling coefficient is quite low, Cc- 4%, but sensible 

for a ridge waveguide of these dimensions. Furthermore the observed spectral 

narrowing seems to be fairly symmetric as can be seen in figure 3-14. 
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Figure 3-14 Transmitted spectra for different input intensities for A T218. The 

waveguide is a blank ridge waveguide containing no photonic crystal. Ridge 

waveguide number 10 of the 350 run period r -K 4J.lm set. Laser wavelength is 

centred at A. =900 nm. 

The spectral narrowing can be as large as 39 %, when measured at its full width 

half maximum value, for an input intensity of I = 87.6 GW·cm·2
• Interestingly, 

the spectral compression of the pulse is approximately 38% at full width half 

maximum for an intensity I = 43.8 GW·cm·2• This suggests that further increases 

in intensity will not result in any increases in the compression of the pulse 

suggesting some saturation of the process. Unfortunately, further increases ofthe 
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intensity (values above 87.6 GW·cm"2
) appeared to damage the waveguide, so a 

clearer confirmation of this saturation could not be obtained. A similar value for 

the spectral compression was reported on reference 1, for similar input 

intensities I- 90 GW·cm-2
• This spectral narrowing is a rather unusual result of 

self phase modulation, as one normally would expect spectral broadening of the 

pulse accompanied by temporal compression due to self phase modulation1
•
22

• In 

our case, self phase modulation is accompanied by two photon absorption, due 

to our material bandgap and wavelength of interest. This is very important as 

two photon absorption can provide either spectral broadening or narrowing 

depending on the amount of initial chirp. It is large amounts of chirp that provide 

spectral broadening, with small amount of chirp providing spectral narrowing1
• 

With this in mind and a quick consideration of our experimental set-up, which 

only presents the coupling lens as a major source of chirp before the pulse enters 

the sample. Two photon absorption coupled with self phase modulation and the 

small initial chirp lead to a symmetric spectral narrowing, as can be quite clearly 

seen in Figure 3-14. 

Figure 3-15 shows a typical output power versus input power plot. Negative 

differential transmission23
•
24 is observed in addition to optical limiting25 .It is 

interesting to see how the output power is approximately linear up to 1 m W 

input power, it then becomes sub linear as the input power increases up to 5 m W 

and finally decreases for higher powers (>5 m W). The reduction at the highest 

input power is roughly 40 % of the plateau value. 
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Figure 3-15 AT218 Transmitted laser power versus input power plot. The ridge 

waveguide is a blank waveguide. Ridge waveguide number 1 of the 350 nm 

period r -K 4 f.!m set. Centre wavelength is 'A. = 870 nm. 

Cowan et a/ have reported a decrease of the amount of light transmitted, with 

increasing power, to be as high as five times23
. This behaviour is attributed to the 

combined effects of both two photon absorption and free carrier absorption24
• 

The free carriers are generated through two photon absorption. At low 

intensities, the effect of two photon absorption dominates due to the smaller 

density of free carriers but at higher intensities, with a larger free carrier density, 

free carrier absorption dominates and is responsible for the decrease in the 



Linear and Nonlinear Measurements of2-D Photonic Crystal Ridge Waveguides Chapter 3 

transmission. This differential negative transmission effect is reported, in 

reference 23, to require at least a 200 J..Lm long waveguide, this is shorter than the 

ridge waveguides used in the AT218 sample set (ridge waveguides length 

- 1500 J..Lm) and therefore negative differential transmission is observed. 

A study of the transmitted power versus input power for different wavelengths 

reveals negative differential transmission at different wavelengths, see figure 3-

16. 
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Figure 3-16 AT218 Power input versus power output for a centre wavelength 

ranging from A. = 870-920nm. Ridge waveguide number 1 of the 350 nm period 

r - K 4 J..Lm set. 
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Figure 3-16 clearly shows that negative differential transmission occurs for the 

whole range of investigated wavelengths, namely from A =870 nm to 920 nm. 

The reduction in the transmission ranges from: little more than 3%, for a centre 

wavelength of A. = 880 nm, to almost 40 %, for centre wavelengths of A.= 870 nm 

and 900 run. The data in figure 3-16 shows no clear dependence of the reduction 

in the transmission with input wavelength. The difference in coupling efficiency 

for the different wavelengths along with disparities in the input power might 

explain the different results. 

So far in this chapter I have discussed blank ridge waveguides, I will now 

discuss photonic crystal ridge waveguides. The power dependent transmission 

spectra obtained through a blank ridge waveguide, figure 3-14, showed a 

symmetric narrowing of the transmitted spectra. This is not the case for photonic 

crystal ridge waveguide, where there is an asymmetric spectral compression, as 

can be seen in figures 3-17 and 3-18. 

The spectral narrowing, shown in figure 3-17, reaches a maximum value at 

FWHM of approximately 15% for an intensity I= 87.6 GW·cm·2, when 

compared with the linear response. It is interesting to note that the spectral 

narrowing occurs on the long (short normalized) wavelength side of the 

transmitted pulse, i.e. the dielectric band; this is the side where the photonic 

band edge is. 
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Figure 3-17 A T218 Spectral power dependence for a photonic crystal ridge 

waveguide. Ridge waveguide number 8 of the 250 run period r -K 4J..Lm set. The 

laser wavelength is centred at A. =890 run. The dashed violet line represents the 

normalized transmission of the sample. 

Figure 3-18 shows a similar plot to figure 3-17, but this time it is the short (long 

normalized) wavelength edge of the photonic band gap that is being probed as 

opposed to the long normalized one, i.e. the air band as opposed to dielectric 

band. Again an asymmetric spectral narrowing occurs, but this time the spectral 

narrowing occurs on the short (long normalized) wavelength side of the 

transmitted laser pulse, but this is perhaps not surprising as the photonic band 

edge is on that side. 
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The spectral narrowing reaches a maximum value at FWHM of approximately 

60% for an intensity I= 87.6 GW·cm-2
, when compared with the linear response. 

While this reduction might seem extremely large, in real terms is very similar to 

that shown on figure 3-18, !::,./..- 1.3 nm. 

--1 GWcm-2 

-- 8.7GWcm-2 

-- 43.8 GW cm-2 

-- -- 87.6 GW cm-2 

----

870 875 880 885 890 895 900 905 910 

wavelength (nm) 

Figure 3-18 AT218 Spectral power dependence for a photonic crystal ridge 

waveguide. Ridge waveguide number 9 of the 350 nm period[' -K 4J.tm set. The 

laser wavelength is centred at A. =890 nm. The dashed violet line represents the 

normalized transmission of the sample. 

The origin of the asymmetric narrowing of the transmitted pulse is similar to the 

symmetric narrowing in blank waveguides, but the photonic crystal acts as a 
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spectral filter that reduces the power of the pulse on one side of the pulse. This 

reduced power in one side of the pulse means that no spectral narrowing occurs 

on this side, while the other side of the pulse, with its higher intensity, is 

spectrally compressed, resulting in an asymmetrically compressed pulsed. This 

was observed by Rahn et al on the dielectric band edge of the photonic bandgap. 

3.4.3. Perpendicular Pump-Probe Geometry 

Our a priori apprehension regarding the usefulness of longitudinal 

pumping in the study of the nonlinear properties of photonic crystals embedded 

in ridge waveguides have been confirmed by the results presented on the 

previous section, which showed that the nonlinear response of the ridge 

waveguide tends to obscure the effects of the photonic crystal itself. In order to 

overcome this problem, a different experimental set-up was used; the 

perpendicular in-plane transmission pump-probe set-up. 

The laser beam is split into a pump beam and a probe beam, using a 30/70 

(reflection/transmission) beam splitter. The weaker probe has its path length 

changed by means of a translational stage, and is then steered, using several 

mirrors in to the coupling microscope objective, through the sample and then 

collected onto a detector. This part of the experimental set-up is identical to that 

used in the previous set-up, see figures 3-9 and 3-19. 
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Figure 3-19 Schematic view of the experimental set-up as laid out on the optical 

bench. The thin red line represents the probe beam, while the thick red line 

represents the pump beam. 

The strong pump beam is raised by means of a periscope and the focused on to 

the top surface of the sample using a long working distance objective lens from 

Nikon; a long working distance is critical because the objective lenses used for 

coupling the probe in and out of the sample are very close to it, thus making it 

impossible to get closer to the sample than one centimetre. The magnification is 

50X and NA = 0.45. The objective lens is mounted on a three dimensional stage, 

to allow accurate micro positioning of the pump beam on to the sample. An 

imaging system is also set up so that the top of the sample can also be seen, as 

well as the side. This is critical, as accurate micro positioning of the pump beam 

is crucial to be able to pump the photonic crystal only. 
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The pump and probe beams are chopped at frequencies fl and f2 respectively, 

using a mechanical chopper (Stanford Research SR 540 model). This is 

connected on to a lock-in amplifier (Stanford Research SR 830 model) set to 

detect f1+f2. The transmitted signal is detected by a Silicon PIN photodiode 

detector. Figure 3-20 shows a detailed schematic view of the coupling set-up. 

Figure 3-20 a) shows the in-plane coupling set-up, whereas figure 3-20 b) shows 

the perpendicular coupling set-up. 

y z 

Lx L x Pump 

l 
Probe Probe 

l 
a) b) 

Figure 3-20 Schematic view of the in-plane transmission perpendicular pump 

probe set-up. a) Top view. The pump coupling lens is not shown for clarity. b) 

Side view with the probe coupling lenses omitted for clarity. The probe is 

directed perpendicular to the plane of the page. 

While the set-up is designed to be used for degenerate pump-probe 

measurements, non degenerate pump-probe can also be used by doubling the 

pump beam after it has been split by means of a doubling crystal. 
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Despite many different attempts, it was not possible to observe any nonlinear 

changes in the transmission in any of the samples tried. While there is evidence 

of nonlinear interaction, there is nothing to suggest a nonlinear change in the 

refractive index due to the optical Kerr effect or more probably due to two 

photon absorption. 

The reason why no nonlinear effect was observed was the lack of enough 

fluence from the laser. For a very tightly focused pump beam, r = 1 J.Lm, the 

fluence can reach high enough values, namely 4.5 mJ/cm2 (average power 

P = 20m W). The problem encountered is, that, by focusing the laser beam so 

tightly, the area of the photonic crystal that is excited is very limited, and while a 

sizeable effect must certainly occurs on this area (the calculated values yield a 

change of the refractive index L\.n = -0.054 enough to shift the band gap by 

several nanometres26
,2

7
), the rest of the photonic crystal remains unexcited thus 

making the detection of the effect all but impossible. Increasing the focused 

beam radius to r = 2 Jlffi, limits the fluence to F = 1.1 mJ/cm2
, this reduces the 

change in the refractive index to L\.n = -3.24·10-3
, which proves not to be enough 

for a detectable effect. This is not surprising as a similar experiment26 on a 

similar material system only yielded a nonlinear shift ~'A = 1 nm, for a change in 

the refractive index almost twice as large, namely, L\.n = -6.056·1 0"3 27
. 

The lack of fluence from the laser is the ultimate damper on achieving a 

nonlinear shift of the band gap edge. 

An attempt to overcome these difficulties is planned to take place in the near 

future. A white light continuum will be generated by a photonic crystal fibre, 



Linear and Nonlinear Measurements of2-D Photonic Crystal Ridge Waveguides Chapter 3 

which boasts a reduced continuum threshold, approximately 2nJ, which is well 

within the energy range of the laser system. An added advantage of using a 

white light continuum is that it will be possible to continuously probe the 

photonic band structure in a single measurement in sharp contrast to the piece 

wise composition used in this thesis which was quite time consuming. 

3.5 Conclusions 

Using an in plane transmission set-up, a limited portion of the photonic 

band structure of the sample, A T218 was characterised. The limited spectral 

range extends from u = 0.26 to u = 0.42, which was sufficient to find a photonic 

band gap. Owing to the limitations in our experimental equipment, namely the 

tuning range of the laser system used, several samples were used to produce a 

meaningful picture of the sample transmission profile. This was possible due to 

the scalability naturally embedded in Maxwell's equations. 

Measurements were taken for different lattices in order to probe the two high 

symmetry directions possessed by a two dimensional crystal with a triangular 

lattice. No results have been presented for the r -M symmetry direction as this 

direction lacked a photonic band gap in the probed range for either polarization. 

The transmission profile of the sample for the other high symmetry direction, i.e. 

r -K, is markedly different for the two possible polarizations. For the transverse 

electric polarization, the transmission profile shows two clear and sharp drops of 

transmission at the band edges u = 0.274 and u = 0.388 respectively, which are 

indicative of a photonic band gap for that polarization between those values. 
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This is not the case for transverse magnetic polarization, where there is a sharp 

edge on the short normalized wavelength side at u = 0.271, but there is not a 

sharp edge on the long normalized wavelength side. This is most likely due to a 

symmetry mismatch between the parity of the incoming beam and that of the 

photonic band. This symmetry mismatch is responsible for the low value of the 

transmission from u = 0.37 to u = 0.42 and very possibly at longer normalized 

wavelengths. 

Despite the symmetry mismatch, some light does couple to the photonic band. 

This is due to the finite size of the crystal, which allows some coupling to the 

photonic band as the symmetry mismatch is not complete. 

The first conclusion that can be reached from the set of nonlinear experiments 

carried out, is that in the nonlinear regime, the response of the photonic crystal 

was mostly dwarfed by the response of the long waveguide that the laser beam 

sees before interacting with the photonic crystal. 

Optical limiting was observed. This is due to two photon absorption, which 

becomes important at high intensities. However, more interestingly, negative 

differential transmission was also observed at higher intensities. This behaviour 

was attributed to the combined effect of free carrier absorption and two photon 

absorption. The two photon absorption generated free carriers induce absorption 

in the ridge waveguide. This effect becomes dominant at very high intensities 

and ultimately decreases the transmission at those very high intensities. 

A very interesting effect was also observed on blank waveguides, and that is 

spectral narrowing of the transmitted pulse, which is exactly the opposite one 
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would expect from self phase modulation. In our samples two photon absorption 

dominates self phase modulation. This is due to the former being a real carrier 

nonlinear process and thus involving real transitions while the former is a virtual 

transmission that only excites virtual carriers. The combined effects of self phase 

modulation, two photon absorption and small amounts of chirp lead to spectral 

narrowing, which is symmetric in blank waveguides, but interestingly it is 

asymmetric for photonic crystal ridge waveguides. This is due to the fact that the 

photonic crystal acts as a spectral filter, limiting the pulse intensity on one side 

of the pulse. The limited intensity pulse side therefore does not have enough 

intensity to be spectrally compressed, whereas the other side has, leading to 

asymmetric spectral compression. 

To sum up, we have to admit that while we observed some nonlinear behaviour 

from the photonic crystal itself, there has not been any evidence of any nonlinear 

shit of the photonic band gap, thus confirming our a priori apprehension about 

our experimental set-up. Use of the in-plane transmission perpendicular pump

probe set-up does not improve the situation. This is due to the fact that the laser 

system used lacks the sufficient fluence to obtain a sizeable effect on a large area 

of the photonic crystal, and thus renders the nonlinear shift undetectable. Further 

attempts to shift the band edge of two dimensional photonic crystals using a 

modified in-plane transmission perpendicular pump-probe set-up have been 

planned for the near future. The modifications involve generating a femtosecond 

white light continuum with a photonic crystal fibre and using a more powerful 

laser. 
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In order to observe a carrier induced refractive index change, it was decided to 

use a different set up, based on reflection geometry, with a laser capable of 

generating a white light continuum on sapphire, which requires pump energies 

ranging from 1 to 1.5 ,.U, for stable single filament operation. These experiments 

will be discussed in the next chapter. 
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4.1 Introduction 

"No plan survives contact with the enemy" 

Hemulth Von Moltke the Elder 

In the previous chapters, two dimensional photonic crystals embedded in 

a ridge waveguide have been discussed. In this chapter, I shall concentrate on 

one dimensional photonic crystals; these are like Bragg stacks or similar 

multilayer structures but they are constructed by etching a pattern of stripes on a 

slab waveguide, as described in the previous chapter for two dimensional 

photonic crystals. 

The samples used in this chapter include multiple quantum wells, in clear 

contrast to sample AT218 used in chapters 2 and 3, which was a passive sample. 

This means that it lacked an active gain material, such as quantum wells or 

quantum dots. The inclusion of quantum wells was done in order to attempt to 

obtain a resonant nonlinear shift of a photonic mode by means of the optical ( ac) 

Stark effect1
, which is an instantaneous effect where only virtual carriers are 

involved. The inclusion of multiple quantum wells enhances the nonlinear 

response of the samples, due to the real carrier nonlinearity presented by these 

systems. This will increase the nonlinear change of the refractive index and thus, 

the shift of the photonic features. 

In this chapter experimental results will be presented, showing all-optical tuning 

of photonic resonances caused by real carriers excited by single and two photon 

absorption acting together, by two photon absorption in the near infrared and in 



Real Carrier Nonlinear Properties of ID Photonic Crystal Waveguides Chapter4 

the infrared and by three photon absorption in the infrared. Virtual earner 

nonlinearities will be discussed in chapter 5. 

In section 4.2 a brief introduction to semiconductor quantum wells will be given. 

In section 4.3, the samples used in this, and the following, chapter, will be 

discussed. A discussion of the external coupling technique in reflectivity 

geometry will be given along with a discussion of the modelling of the 

reflectivity spectra obtained using this technique. Section 4.4 will show linear 

measurements of the samples used, for the purposes of characterization. Section 

4.5 will discuss all-optical tuning of photonic resonances. Sub section 4.5.1 will 

concentrate on single and two photon absorption when pumping near the 

bandgap, whereas sub section 4.5.2 will concentrate on two and three photon 

absorption with pumping at longer wavelength. Finally, section 4.6 will sum up 

the results and conclusions from the experimental results obtained in this 

chapter. 

4.2. Introduction to Semiconductor Quantum Wells 

The simplest possible quantum well consists of a layer of semiconductor 

material, sandwiched by another material with a larger band gap. A widely used 

material is GaAs, which is then doped with aluminium (to form AlxGa1.xAs) to 

constitute the quantum well barriers2
. A schematic example of the band 

structure of a typical GaAs/ AlGaAs quantum well can be seen in figure 4-1. 
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By reducing the size of the quantum well to values comparable to the electron 

wavelength, i.e. I to I 0 nm, the electrons are effectively confined to move on a 

two dimensional plane. This confinement will lead to quantization effects, which 

will result in discrete energy bands; the energy of these bands is dependent on 

the height and width of the barrier. 

AIGaAs 

Conduction Band 

~~~~~ electron states 

GaAs ! AIGaAs 

1 ~ hole states 

Valence Band 

Figure 4-l Schematic drawing of a GaAs/ AlGaAs single quantum well. 

The quantized energy levels, are responsible for the step wise density of states 

function, in clear contrast to the bulk semiconductor that depends on the square 

root of the energy, as shown on figure 4-2 b). This reduction in size to the order 

of the electronic wavelength can be extended to two or three dimensions, which 

will create quantum wires and quantum dots, respectively. 

Bound electron-hole pairs are normally referred to as excitons3
. The dipole 

moment of an exciton is resonant at an energy Eex = E8 + Eb, where E8 is the 

band gap energy of the material and Eb is the binding energy of the exciton. A 

clear signature of the exciton can be seen through absorption spectroscopy in the 

shape of a clear and sharp peak at E = Eex as can be seen in figure 4-2 a) at 

E- 1.47 eV. 
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Figure 4-2 a) Absorption spectra of GaAs/AlGaAs multiple quantum wells4
• b) 

Density of states function for a 10 run quantum well with infinite barriers and 

bulk semiconductor. The effective mass is m* = 0.8 mo, where mo is the electron 

rest mass, see table 4.3 



Real Carrier Nonlinear Properties of ID Photonic Crystal Waveguides Chapter4 

The binding energy of the exciton states is, theoretically, 4 times stronger in a 

pure two dimensional quantum well than in the equivalent bulk semiconductor. 

In practice, this enhancement is reduced to approximately 2.5 times due to the 

finite width of the quantum well. In any case, the enhanced binding energy 

allows the exciton to be more robust than in the bulk 

In order to obtain sizeable optical effects in absorption, single quantum wells are 

seldom used; multiple quantum wells are normally used instead. These are 

several single quantum wells grown on top of each other, with a barrier thick 

enough to prevent tunnelling between the individual wells. 

In this thesis, the purpose of the quantum wells is to enhance the nonlinear 

response of the samples as the quantum wells are expected to have larger 

nonlinearities than bulk when near resonance with the exciton. The second 

purpose was to enable us to perform optical ( ac) Stark effect measurements. 

Nonlinear phenomena in quantum wells can be classified in two broad 

categories: non-resonant and resonant. Non-resonant excitation generates a 

virtual population of carriers, whereby the sample sees no real change of net 

energy and is restored to its initial state once the process has finished. Virtual 

processes are governed by the uncertainty principle, and so the time scale of this 

type of phenomena is of the order of the pulse length. Pumping below the 

quantum well ground state will ensure that no real carriers are created and thus 

the phenomenon will be non-resonant or virtual. 

If, on the other hand, resonant pumping is used, i.e. above the quantum well 

ground state, a population of real carriers will be created. This population of real 
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carriers has a finite lifetime, which is related to the relaxation time of the carriers 

and is different for every particular material system. Hence resonant 

nonlinearities are expected to be slower than the pulse width. 

In this chapter real carrier nonlinear effects will be studied, virtual carrier 

nonlinearities will be studied in the next chapter. 

4.3 Experimental Methods 

In this section a brief description of the samples used will be given as 

well as a comprehensive description of the experimental set-up. A short 

introduction to the modelling of the reflectivity of patterned one-dimensional 

photonic crystals will also be given. 

4.3.1 Samples 

In contrast with chapter 3, the samples used in this chapter are one 

dimensional photonic crystals. However, these one dimensional samples are not 

a simple alternating sequence of dielectric layers in the form of a dielectric 

mirror, which has been known for many years, but are photonic crystals etched 

on a slab waveguide, fabricated in much the same way as the samples used in 

chapter 3. The reason for opting to use one dimensional photonic crystals rather 

than two dimensional photonic crystals as used so far in this thesis, lies in the 

fact that one dimensional photonic crystals have sharper photonic resonances 

than two dimensional photonic crystals. Sharper photonic resonances make 

detecting nonlinear effects easier, this will be discussed further in section 4.4 
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There is one more key difference, other than dimensionality, between the 

samples used so far and the samples used in this chapter, and that is the inclusion 

of quantum wells on the core of the slab waveguide. The main reason behind this 

decision is an attempt to improve the nonlinear response of the samples as 

discussed in the previous section. 

The sample used is from wafer QT1737b. It consists of 5 Ino.12Alo.2oGao.6sAs 

quantum wells, with an approximate thickness of 9.6 nm, with barriers made of 

Al0.20Gao.soAs and thickness 10 nm. The room temperature photoluminescence 

emission is at approximately A. = 799 nm. The core consists of the multiple 

quantum wells, sandwiched by two layers of Alo.2oGao.soAs with a total thickness 

of 0.4 ~· The cladding is a single layer of Alo.6oGao.40As 1.5 J.Lm thick. A 10 

nm capping layer of GaAs is deposited on top of the sample in order to prevent 

oxidation. The optical effects of this capping layer are negligible due to its small 

thickness. 

There are three different etch depths: 100, 200 and 850 nm. The samples are 

periodically patterned in just one dimension. The periods range from 330 nm to 

880 nm, while the air fill factor ranges from 10 to 30%. There are also two 

exposure doses, which will be referred to as High and Low exposure doses or 

HX and LX respectively. 

A schematic drawing of a typical sample can be seen in figure 4-3 below. The 

inset shows the multiple quantum wells embedded in the slab waveguide more 

clearly. 
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GaAs capping layer 

OA~m 

Figure 4-3 Schematic drawing of a typical sample. Note the multiple quantum 

wells on the inset. 

4.3.2 Reflectivity Measurements 

In contrast to the previous chapter, the experimental technique used in 

this chapter to investigate the samples is the external coupling reflectivity 

method. This technique has been widely used to indirectly measure the band 

structure of photonic crystals5
'
6

. This is possible because the technique allows us 

to vary the incoming light wavevector almost at will; the phase matching 

condition is, normally, expressed as follows: 

k
11 
= m sin (} 

c 
(4.1) 
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where k
11 

is the in-plane wavevector, see figure 4-4, m is the angular frequency, 

and (}is the coupling angle. 

This condition essentially expresses the fact that at the air/sample interface, not 

only the energy but also the momentum have to be conserved in order for light to 

couple to the modes in the photonic crystal at each angle. 

In fact, the azimuthal angle t; also plays a role, as by changing the azimuthal 

angle the lattice orientation is rotated, and so the phase matching condition 

should be rewritten as: 

ku = ~sin e (cos t;i + sin fly) 
c 

(4.2) 

where i and y are the unit vectors defining the plane of the sample surface. 

In practice measurements tend to be made along high symmetry directions and 

the azimuthal angle plays no role along high symmetry directions, therefore the 

phase matching condition can be taken to be equation 4.1. 

The reflectivity technique couples only to the leaky modes of the structure as 

incoming light lacks sufficient momentum 7 to couple to the guided modes. Note 

how this was not the case in the samples in the previous chapter, where the butt 

coupling from the ridge waveguides provided the necessary additional in-plane 

momentum. 

The photonic band structure of the samples can be obtained by changing the 

coupling, or polar angle; by doing this, the in-plane wavevector is changed and 

so the photonic band structure can be mapped out. 
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Figure 4-4 Schematic drawing of the external coupling reflectivity set-up. The 

polarizing optics are omitted for clarity. 
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Figure 4-5 Close up photograph of the experimental set-up as used. The thin 

white line represents the probe beam, the red line represents the pump beam. The 

yellow line is the signal reflected by the sample. Thick white line represents the 

tungsten light bulb light (not set up for measurements in the picture). The probe 

beam angle is set to 45°, and the pump beam angle is set to 30°. Note how the 

sample holder is set at an angle of 45°. 

The experimental set-up used for linear characterization is fairly simple. Figure 

4-4 shows a schematic drawing ofthe underlying basis of the set up, while figure 

4-5 is a photograph of the actual experimental set-up used. A tungsten halogen 

lamp is used as the light source due to its good spectral output in the visible and 
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near infrared; the output power is 150 W. The output light from the tungsten 

lamp is collimated by a piano-convex lens, made of BK7 and with focal length 

f = 10 cm. The divergence of the beam is <2°, which is important to obtain 

accurate spectra. A rotatable Glan-Thomson polarizer is used to select the 

appropriate polarization. After the polarizer, light hits the sample which is 

mounted on a xyz stage, which in turn is mounted onto a goniometre. The 

goniometre is used to change the angle of the sample, as well as the angle of the 

light source. This system allows accurate positioning of the sample on a 

millimetre scale. It would also be possible to mount a Helium flow micro-stat to 

perform measurements at low temperatures but this was never actually done. 

Another BK7 Piano convex lens with focal length/= 1.5 cm is used to magnify 

the reflection from the sample; this is imaged onto a white screen that contains a 

1 mm hole. In this way only light going through the 1 mm hole will be analyzed. 

The reflection from the sample is magnified approximately 40 times, in order to 

allow careful positioning of the sample. A closed circuit television camera with a 

charged coupled device sensor is used to image the magnified reflection from 

the sample. This is not really necessary for linear characterization, as there is 

enough visible light from the tungsten lamp itself but it will be extremely helpful 

when working with weaker near infrared sources, i.e. the femtosecond white 

light continuum. 

After the selecting screen, light is directed via several steering mirrors towards a 

Triax 320 spectrograph. Light was coupled to the spectrograph using a 

cylindrical lens with focal lens f = 10 cm made of BK7 glass. Several other 
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lenses with similar focal lengths were used with no appreciable benefit or 

detriment in performance. The detector used is a silicon charged coupled device 

detector manufactured by Andor that has good responsivity around 800 nm. 

In time resolved reflectivity measurements, the halogen lamp is moved out of the 

way. However it is not completely removed as it provides an easy and reliable 

way to double check the wavelengths of the photonic resonances. The time 

resolved pump probe set up uses a regenerative Ti:sapphire amplifier system 

(Spitfire by Spectra Physics) with limited tuneability from 750 to 850 nm, but up 

to 1 mJ pulse energy, giving a maximum power of 1 W at a repetition rate of 1 

kHz, with a pulse length of 130 fs. A schematic drawing of the Spitfire 

regenerative compression process is shown in figure 4-6. The Spitfire is seeded 

by a mode-locked Ti:sapphire laser, called the Mai Tai. The beam from the Mai 

Tai is stretched before entering the amplifier cavity to avoid optical damage to 

the gain medium which would occur from the high peak powers resulting from 

amplified very short pulses. The pulse is stretched by the stretcher stage which 

consists of a centrally mounted grating that chirps the seed pulse. 

The pump laser, the aptly named Merlin\ is a Q-switched frequency doubled 

Nd:YLF laser with pulse energy of lOmJ at A.= 527 nm, which for a repetition 

rate of 1kHz yields 10 W. Both pump and seed beams overlap in the Ti:sapphire 

crystal within the Spitfire cavity. 

i The engine used in the Second World War fighter plane Superrnarine Spitfire, was the Rolls 
Royce made Merlin. 
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The Pockel cells, PC 1 and PC2 in figure 4-6, control the number of round trips 

the pulse makes inside the amplifier cavity, before exiting via the output coupler, 

OC in figure 4-6. This can be monitored through the signal of an optical 

detector, RX, connected to an oscilloscope. The resulting pulse is compressed on 

the compressor stage to return the pulse to its initial pulse length. 
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Figure 4-6 Schematic of the Spitfire regenerative amplifier laser system. See 

text for details. 
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The output from the Spitfire is split by a beam splitter in the ratio 90/10, 

(reflection/transmission). The reflected beam pumps a Travelling wave Optical 

Parametric Amplifier of Super fluorescence, or TOP AS OP A, with tuneable 

range from 240 nm to 20 J.Un. The output of the TOP AS OP A is used to pump 

the sample and is guided on to the sample by a set of mirrors. The path length of 

the pump beam can be altered by a motorized translation stage controlled 

remotely via a computer which allows a 1 J.Un resolution, i.e. 6.6 femtosecond 

time resolution. This stage lacks an encoder which results in poor repeatability 

and this reduces the time resolution to approximately 300 femtoseconds. The 

pump beam is finally focused onto the sample by means of a piano-convex lens 

with focallen5 f = 20 cm. 

The remaining 10% of light is transmitted through the beam splitter and is used 

to generate a white light continuum, see figure 4-7, by focusing the beam using 

an aespherical lens with focal lens f = 2.5 cm, on to a piece of sapphire 

approximately 2 mm thick. Attenuation by a neutral density filter wheel placed 

before the aespherical lens, is required to ensure stable single filament operation 

of the continuum and prevent damage to the sapphire crystal. An energy of 1-

1.5 ).11 is normally used. The white light is then collimated by means of a small 

focal length f = 1.5 cm lens, and guided on to the sample. This continuum of 

light will be used as the probe beam. Both the sapphire crystal and collimating 

lens are placed on one dimensional translation stages to ease the focusing and 

collimating process. The femtosecond white light continuum is, perhaps, the 

most critical part of the set-up and will be further discussed in section 4.4. 
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Figure 4-7 Femtosecond white light continuum generation apparatus. See text 

for details. 

The detection techniques are quite different depending on the detector used. The 

charged coupled device detector allows us to use a reference beam, which is 

obtained by means of a 90/10 Transmission/Reflection beam splitter placed after 

the white light continuum generator, to normalize the signal in real time. This is 

done by dividing the detector chip into two tracks, and focusing the reference 

onto one track and the signal onto another. A simple division allows us to 

remove intensity fluctuations of the white light continuum. The rest of the set-

113 
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up is identical to the linear characterization set-up, except for the lens used to 

couple light to the spectrometer; this was changed to a piano-convex lens with 

f = I 0 cm, in order to allow the different beams to be focused onto different 

tracks on the detector chip. 

A lock-in technique is used for single channel detection. The probe is 

mechanically chopped by an opto-mechanical chopper. The frequency of the 

chopper is set such that it is synchronous with the laser pulses, with a frequency 

of 500 Hz, i.e. half the repetition rate of the laser. This means that only every 

other pulse will actually hit the sample. A lock-in amplifier then reads the 

reflected light detected by the detector at the chopping frequency only and feeds 

this modified signal to a computer. The detector used for single channel 

detection was an ultra sensitive liquid nitrogen cooled germanium detector sold 

by Edinburgh Instruments. 

It should be noted that the white light continuum is significantly weaker than the 

halogen white light source, and therefore the use of the television camera is 

crucial in order to select the appropriate sample. 

It is also possible to use the TOP AS OPA to generate the white light continuum. 

This will be used for experiments carried out in the next chapter. The alterations 

of the experimental set-up required for this configuration will be discussed in 

section 5.2. 
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4.3.3 ModeUing of Reflectivity Spectra 

Modelling of unpattemed photonic structures, e.g. distributed Bragg 

reflectors or one dimensional microcavities, can be accomplished by the transfer 

matrix method. The transfer matrix is calculated independently for each in-plane 

vector by expanding the field in each layer in terms of plane waves with its 

corresponding perpendicular wavevector and using electromagnetic boundary 

conditions at the interfaces. 

This method works less well for patterned structures because the substrate of the 

structures is significantly different from the structures themselves, i.e. 

unpatterned substrates versus patterned structures. This, then calls, for an 

alternative approach. Our simulations will use the scattering matrix method. This 

method is similar to the transfer matrix method in that it considers the incoming 

waves and outgoing waves at either side of the structure. In the scattering matrix 

method the outgoing waves at the surface and in the substrate are related to the 

amplitudes of the incoming waves on either side of the structure. In contrast, in 

the transfer matrix method, the amplitudes of the incoming and outgoing waves 

are expressed in terms of the amplitude of the waves in the substrate. 

A full discussion on both methods is beyond the scope of this thesis. It is, 

however, interesting, to discuss in further detail how reflectivity spectra are 

modelled as this will be our main use of this modelling tool. A fully detailed 

account of the scattering matrix method is given in reference 8, while a basic 

description of the transfer matrix method can be found in many optics text 

books9
• 
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The reflectivity spectra were calculated using a suite of programs developed by 

D.M. Whittaker. In order to calculate a reflectivity spectrum, firstly the photonic 

band structure is resolved and then a layer by layer field profile is assembled 

using the band structure. Forward and backward propagating waves are used to 

express these field profiles. Boundary conditions are then imposed upon the field 

profiles at each interface. By relating the fields between adjacent layers the 

scattering matrix is constructed and is applied to an expression for the incoming 

light and thus the reflectivity is obtained. 

The scattering matrix method can also provide information on the 

electromagnetic energy density for a particular wavelength at a certain coupling 

angle, i.e. energy and wavevector. Two possible calculations can be performed: 

In-plane average energy density as a function of depth or the in-plane values of 

fields and densities across the unit cell at a particular depth. The average energy 

density is significantly higher when a mode is sustained by the photonic crystal. 

The scattering matrix calculations will give information on the confinement 

order of the mode, i.e. whether it is first order, second order, etc and the in-plane 

distribution in the photonic crystal lattice. 

A comparison between the modelling and the experimental data will be given in 

the next section. 

4.4 Linear Characterization 

In order to have a good grasp of what the spectral response of every 

sample is before attempting time resolved measurements, it is good practice to 
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measure the linear response of the samples; this will help identify suitable 

photonic resonances, and thus will make the time resolved measurements 

significantly faster and easier. The measurements use the linear characterization 

experimental set-up as described in section 4.3.2 and consist of a set of angle 

dependent spectra taken from 20° to 45°, in 5° steps. While the set-up allows for 

a polar angle range of 12.5° to 65°, the samples have been designed to have 

photonic resonances close to the exciton energy for angles around 35° to 45°, 

which are the optimal angles for the experimental set-up. The reason for this 

requirement is that the optical (ac) Stark effect strongly depends on the 

wavelength detuning. Therefore it will be advantageous to have photonic 

resonances close to the exciton at the optimal angles for the set-up. The optical 

Stark effect will be discussed in the next chapter in section 5.5. 

The main objective of these set of measurements is to locate a suitable photonic 

resonance. This has to be reasonably sharp, a quality factor10 around 70 should 

suffice, and ideally be some spectral distance away from 800 nm as the white 

light continuum is generated at 800 nm and thus the resonances are impossible to 

make out clearly. The reasons for this will be discussed in section 4.4. 

A typical example of an experimental set of data is shown in figure 4-8 a), where 

angle dependent spectra have been measured for a sample from the high 

exposure dose with the following parameters: Period a= 435 nm, air fill factor f 

= 30% and etch depth d = 1 00 nm while a corresponding set of angle dependent 

modelled spectra is shown in figure 4-8 b). 
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Figure 4-8 Experimental, a), and modelled, b) angle dependent reflectivity 

spectra. The sample details are as follows: a= 435 nm,f= 30% and d= 100 run. 

The green dashed line indicates the position of the electronic band gap of 

Al0.20Gao.80As, while the red dotted line indicates the position of the exciton. The 

thick black lines indicate the approximate position of the photonic resonances. 
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The sharp coupling resonances, marked by thick black lines, are evident in 

figure 4-8 a). These resonances satisfy the phase matching condition, equation 

4.1. The resonances are superimposed on a slowly oscillating background. This 

background corresponds to Fabry-Perot fringes caused by the cavity created by 

the waveguide core on the vertical direction. 

In reflectivity, the width and magnitude of the photonic resonances is primarily 

determined by the coupling strength of the waveguide modes to the external 

light, while scattering and diffraction losses play a secondary role5
• The coupling 

strength between the photonic crystal waveguide and the external light depends 

on the overlap of the incoming wave with a Bloch function at the photonic 

resonance frequency and the parallel component of the crystal momentum 11
• 

The modelled data, see figure 4-8 b), corresponding to the experimental data in 

figure 4-8 a), shows that the agreement on the position of the photonic modes is 

very good. The shape of the resonances differs somewhat from the experimental 

data. The shape of the photonic resonances depends strongly on where the 

resonance lies with respect to the oscillating background. They appear as peaks 

when they are close to background minima, while they appear as dips when 

close to maxima. Fano like resonances are expected in intermediate positions5
• 

This theoretical model does not automatically take into account interband 

absorption effects. It is possible, however, to incorporate absorption by altering 

the imaginary refractive index, which can help model absorption effects such as 

interband absorption. 
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Figure 4-9 Modelled reflectivity spectra at 20° for non-zero complex refractive 

index. The sample details are as follows: Period a = 435 nm, air fill factor 

f = 30% and etch depth d = 100 nm. 

The effects of the imaginary refractive index can be seen on figure 4-9; where 

the increasing imaginary refractive index results in a progressive decrease of the 

photonic resonance strength. This effect will have a marked impact on the time 

resolved measurements in the following sections. 

Care should be exercised when looking at resonances close to the exciton 

wavelength, i.e. 799 nm marked by a red dotted lihe in figure 4-8 a), due to 

single photon absorption associated with the exciton. This absorption explains 
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why the photonic resonance in figure 4-8 a), present at all coupling angles from 

45° down to 25°, disappears at 20°. 

4.5 Time-Resolved Pump-Probe Reflectivity Measurements 

In this section time-resolved reflectivity measurements will be discussed. 

Wavelength dependent as well as power dependent time resolved measurements 

will be discussed. 

4.5.1. Experimental Details 

The experiments were performed by pump-probe spectroscopy. Pump

probe spectroscopy, is conceptually very simple. A high intensity laser beam is 

split into two components by a beam splitter: a high intensity pump beam and a 

low intensity probe beam. A time delay is introduced between the two beams, 

and the linear response is measured for negative time delay, when the probe 

arrives before the pump, and there is therefore no nonlinear response. At zero 

time delay, the nonlinear effect will be largest and its time evolution will then be 

observed as the time delay increases and the nonlinear effect decays. 

The use of a femtosecond white light continuum, coupled with a charged 

coupled device detector, allows us to perform spectrally resolved measurements 

as well as time resolved measurements at the same time. There are however 

certain limitations to this technique. The main limitation is the useful spectral 

region obtainable from the femtosecond white light continuum. The useful 

spectral region is limited in two ways: 
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Firstly, close to the continuum centre wavelength, (800 nm throughout this 

chapter) the instability of the white light continuum means that photonic 

resonances spectrally close to this wavelength are impossible to make out with 

clarity. This effectively excludes any photonic resonance located between 

770nm and 830 nm from being measured. A simple way to overcome these 

difficulties will be discussed in the next chapter. 

Secondly, the useful spectral region is further limited by the intensity of the 

continuum far away from the centre wavelength. For the long wavelength case, 

and bearing in mind the limitations imposed by the Andor charged coupled 

device detector used, the useful spectral region is limited to approximately 950 

nm. So the useful spectral range available is from 830 nm to 950 nm. This is 

shown in figure 4-10. At longer wavelengths than approximately 950 nm, the 

signal is the background noise due to the many accumulations used to take the 

spectrum. 

Due to the extra noise associated with nonlinear processes that generate it, the 

white light continuum has to be constantly monitored. Regular changes in the 

compression of the seeded pulse on the Spitfire laser system are necessary in 

order to clearly ascertain the presence of a photonic resonance, as the spectral 

shape of the continuum can make the resonances impossible to detect. Different 

continuum spectral shapes will lead to somewhat different shapes for the same 

photonic resonance. 
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Figure 4-10 Spectrum of the femtosecond white light continuum. The hatched 

area represents the useful spectral region. The laser wavelength is 800 nm. 

Whenever appropriate, differential reflectivity spectra will be presented as well 

as reflectivity. Differential reflectivity describes the change in reflection with 

respect to a background reflection signal, Ro. This is taken to be a reflection 

spectrum at negative time, and the differential reflectivity is defmed as L\R/R= 

(R-Ro)/Ro. 

It is interesting to note that photonic resonances of similar linewidth to those at 

30° and 35° in figure 4-8 are the type of feature that will facilitate time resolved 

measurements; in actual fact, every single feature will show some degree of 

change under optical pumping, but a sharper photonic resonance will ease the 
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detection a great deal , as the change in the differential reflectivity can be as high 

as 30% for sharp resonances 12
• In contrast, the change in the differential 

reflectivity for a wavelength far away from a photonic resonance is significantly 

smaller or almost non existent as can be seen on figure 4-11 , where there is a 

change in differential reflectivity of 30% at 859 run, which is where the 

resonance originally lies, a change of 20% at 853 run where the resonance 

moves to, and an almost negligible change at 870 run where there is no photonic 

resonance. 
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Figure 4-11 Time resolved differential reflectivity spectra for a sample with 

period a = 675 run, air fill factor f = 30% an etch depth d = 850 run. The black 

trace shows a negative time delay spectrum while the red trace is at zero delay. 

The dashed blue line indicates the linear position of the photonic resonance, 

while the green dotted line represents the position of the photonic resonance at 

zero time delay. 
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4.5.2 Single and two photon absorption tuning of photonic resonances. 

In this section the nonlinear shift of the photonic resonances due to 

refractive index changes induced by single and two photon absorption processes 

will be studied when the samples are pumped in the range 780-820 nm. 

Due to the active nature of our samples, pumping at energies above the exciton 

energy, i.e. energies above 1.55 eV or wavelengths shorter than 800 nm, will 

result in absorption of the high intensity pump beam and photo creation of 

carriers will follow. This is due to single photon absorption by the multiple 

quantum wells. The high intensity pump beam will also generate carriers in both 

the quantum wells (for pump wavelengths longer than 800 nm) and AIGaAs core 

via two photon absorption. This is a higher order process and thus requires 

significantly higher pump intensities than single photon absorption. As discussed 

in chapter 2, two photon absorption will occur as long as the pump energy. is 

above half the energy of the band gap of the material. In this case, the core 

material is Alo.2oGao.soAs with a band gap of Eg= 1.674 eV. A typical pump 

beam wavelength of 780 nm, gives Epump = 0.94 Eg and so two photon absorption 

from the Alo.2oGao.soAs layer is expected as well as single photon absorption 

from the quantum wells, provided that the intensity is high enough. It will be 

shown in this section how the intensity is more than adequate for two photon 

absorption to take place. It should be noted that the AlGaAs core is considerably 

thicker than the quantum wells. Hence a smaller change in the refractive index 

of the core can still produce a significant effect. 
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When the pump energy is below the exciton energy, single photon absorption 

will not take place in the multiple quantum wells. However two photon 

absorption will continue to take place, as a typical pump wavelength of 81 0 nm 

will lie above half the band gap of Alo.2oGao.soAs which forms the core of the 

samples. 

It is, thus, expected that the change in the refractive index will be smaller when 

pumping at energies below the exciton, where carriers will only be created via 

two photon absorption than when pumping above the exciton, where carriers not 

only will be created via two photon absorption (in the core) but also through 

single photon absorption (in the quantum wells). Consequently the shift of the 

photonic resonance will be larger for the latter case than for the former case. 

As discussed above, any pump wavelength shorter than the exciton wavelength 

will result in photo generation of carriers via single photon absorption and two 

photon absorption, and a corresponding shift of the photonic resonance. A pump 

wavelength of 780 nm was selected, with an average power of 250 J.l W. The 

diameter of the focused laser spot size was measured to be 200 ± 50 J.lm which 

equates to a fluence F = 0.49 mJ/cm2 or, for a pulse width of 'tp = 130 fs, an 

intensity of I= 3.45 GW/cm2. A temporal step size of 3.3 picoseconds was used 

in the experiments presented in this chapter. This step size is longer than the rise 

time, which was measured to be approximately 1 ps (not shown). Experiments 

with finer temporal resolution will be discussed in the next chapter. The sample 

used had a period of a = 880 nm, a fill factor f = 20% and an etch depth 
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d = 850 run, it is a low exposure sample. A typical time resolved measurement 

for these parameters is shown in figure 4-12. 
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Figure 4-12 Time resolved reflectivity spectra taken in 3.3 ps steps. Red and 

green dashed lines indicate positions of the feature at negative delay and zero 

delay respectively. The sample was from the low exposure set and the sample 

parameters are as follows: Period a = 880 run, fill factorf= 20% and etch depth 

d = 850 nm. The pump wavelength is Apurnp = 780 run. The input fluence is 

F = 0.49 mJ/cm2
. 
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A very large shift in the photonic resonance occurs in figure 4-12, approximately 

!J.J.. = -11 nm, where !J.')., = Alinear - Anonlinear, at zero time delay. The exact amount 

of the nonlinear shift near zero time delay is impossible to ascertain correctly as 

the resonance is completely bleached. The reasons for this bleaching will be 

discussed below. 
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Figure 4-13 Plot of !J.')., versus time delay. The open squares represent 

experimental data extracted from figure 4-12. The red line is a frrst order 

exponential decay fit. The fit parameters are presented in the shadowed box. 

The photonic resonance is very sharp with a quality factor Q = 200, marked by 

the dashed red line in figure 4-12, Alinear = 891 nm. At zero time delay the 

resonance is completely bleached. It then quickly recovers to its original shape 
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and spectral position as the time separation of the pump and the probe decreases. 

This broadening at zero time delay means that the error in !l./.. is quite large, as 

shown in figure 4-13. The position of the resonance at zero time delay is 

extrapolated back from the position of the resonance at later times. 

The first order exponential decay fit reveals a time constant 't = 27.1 ± 2. 7 ps. 

This is considerably longer than in previous work by this group12
•
13

, which had 

time constants shorter than I 0 picoseconds. 

In references 12 and 13, two dimensional photonic crystals were used instead of 

one dimensional crystals as is the case in this chapter. The fast relaxation times 

were attributed to surface recombination. Using a very simple model for carrier 

movement will help to illustrate the differences between one and two 

dimensional photonic crystals. This simple model assumes carrier motion will be 

on a straight line and restricted to the plane of motion perpendicular to the 

growth axis of the wafer. 

In a typical two dimensional photonic crystals with a triangular lattice. The 

patterning means that the maximum distance to the surface along the r -M 

· · '11 be I ..fia- 2r h · th h · al 1 · · d dtrection, wt M = , w ere a ts e p otoruc cryst atttce peno 
2 

and r is the hole radius, while along the r -K direction this will be reduced 

a - 2r Th th d' fr th · b · to I K = . ese are e tstances om e centre pomt etween two rur 
2 

cylinders to the surface of an air cylinder along either r -M or r -K symmetry 

directions, as shown in figure 4-14. Using the sample parameters of reference 

12, IK is 145 nm, while /M is 400 nm. These distances are less that the distances 
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travelled by free carriers in bulk AlGaAs where free carriers with a decay time 

of 100 picoseconds14 and a carrier velocity of approximately 20000 m/s 15 travel 

- 2 J..lm. Consequently, there is a significant probability that surface 

recombination will occur for the great majority of free carriers as they will all 

reach a surface before recombining by other channels. Diffusion to the surface is 

therefore likely to be the limiting factor in the nonlinear response decay time in 

two dimensional photonic crystals. 

This is illustrated in figure 4-14, where a scanning electron micrograph of a two 

dimensional photonic crystal, shows !K, !M and the maximum distance that free 

carriers could travel in an unpattemed medium. 

Figure 4-14 Scanning electron micrograph of a two dimensional photonic 

crystal with period a = 700 and air fill factor f = 30%. The two main lattice 

directions are marked by red lines. !K and !M are marked by short blue lines. The 

red circle represents (approximately) the maximum distance free carriers would 

travel in an unpattemed medium, i.e. 2 J..lffi, if originally excited from the red dot. 
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A similar one dimensional lattice will have a maximum distance of half the 

length of the sample, which in this case is 40 J.lm. In the periodic direction the 

maximum distance will be comparable to a two dimensional photonic crystal. 

This, in essence, means that there will be surface recombination due to the 

etching of the crystal, but this is only relevant for carriers generated relatively 

close to any of the surfaces that diffuse towards that surface. The effects of this 

limited amount of surface recombination can be seen on the time constants, 

which are longer than reported on reference 13, (approximately 10 picoseconds 

for a two dimensional photonic crystal) yet shorter than in bulk AlGaAs, where 

the carrier decay time is approximately 100 picoseconds. 

It is quite clear that surface recombination plays a less predominant role in 

carrier relaxation in one dimensional photonic crystals than it does in two 

dimensional photonic crystal due to the different lattice topology. A more 

detailed account of the role played by surface recombination will be discussed in 

the next chapter. 

The second striking feature from the data, is the apparent disappearance of the 

photonic feature at zero time delay. The high intensity pump beam, 

I= 3.45 GW/cm2
, not only causes the photonic resonance to shift in wavelength, 

but it is also causes the photonic resonance to bleach. This bleaching can be 

explained if we assume that the high intensity pump not only induces a large 

change in the real part of the refractive index change but also causes a change in 

the imaginary component of the refractive index. This imaginary part of the 

refractive index causes the photonic resonance to disappear, as shown in figure 
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4-9. Typically, free carrier absorption can be responsible for induced absorption 

in pump-probe experiments; however, the absorption caused by free carrier 

absorption at this wavelength is negligible. Other mechanisms responsible for 

absorption include band gap renonnalization and inter-valence absorption. The 

photonic resonances are simply too far away from the band gap for band gap 

renormalization to be responsible for the absorption. Inter-valence band 

absorption effects are also too far away in the infrared to be responsible for the 

absorption. At this point the mechanism responsible for the absorption remains 

unknown. 

It is only for small shifts of the photonic resonance that the coupling strength is 

approximately maintained and thus the photonic resonance approximately 

maintains its strength and linewidth. This is apparent in the experimental data at 

long time delays in figure 4-12. A purer shift of the photonic resonance can be 

seen on figure 4-1 7, at similar pump intensities. 

Figure 4-15 shows power dependent measurements performed on a sample with 

period a = 860 nm, air fill factor f = 20% %, etch depth d = 850 nm and low 

exposure dose. The pump wavelength was set to 780 nm. The average pump 

power ranged from 0 to 150 J.lW, t.e. fluence ranging from 

0 ~ F ~ 0.44 mJ/cm2
, or intensity 0 ::5 I ~ 3.3 GW/cm2

• This measurement was 

taken with an altered laser spot size of approximately 150 ± 50 J.lm. 

As discussed before in this section, single photon absorption as well as two 

photon absorption are responsible for photo generated carriers for pump 

wavelengths shorter than the exciton wavelength, approximately 799 nm, and 
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longer than the electronic band gap of AlGaAs, in this case 740 run. A pump 

wavelength of 780 run ensures this is the case. 
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Figure 4-15 Power dependent reflectivity spectra plotted at zero time delay. The 

red construction line indicates the position of the photonic resonance. The 

sample details are as follows: period a = 860 run, air fill factor f = 20 %, etch 

depth d = 850 run and low exposure dose. The pump wavelength was set to 

780 run. 

Pump wavelengths longer than the exciton wavelength will not be absorbed by 

the multiple quantum wells exciton, and consequently single photon absorption 

will not occur. However, two photon absorption will still occur in the AlGaAs 
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core, providing that the pump wavelength is between 1480 and 740 run. In actual 

fact, two photon absorption can also occur in the quantum wells 16
•
17

, and 

therefore the wavelength range in which two photon absorption should be from 

740 run to 1600 run. 

In figure 4-15 the red construction line shows the approximate position of the 

photonic resonance at zero time delay for different average pump powers. By 

extracting the magnitude of the nonlinear shift from figure 4-15 is possible to 

plot the nonlinear shift magnitude versus input power as shown in figure 4-16. 
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Figure 4-16 Power dependence plot extracted from figure 4-15. The data points 

are marked by open squares. The red trace is a parabolic fit to the data points 

with the origin set to zero. Green dotted line is a linear fit. Blue dotted line is a 

quadratic fit. 
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Single photon absorption is expected to have a linear dependence with 

intensity18
• This is shown by the green dotted line in figure 4-16, which is a 

linear fit to the data points. The agreement is quite good at low intensities, 

I< 1 GW/cm2
• Two photon absorption on the other hand is expected to have a 

quadratic dependence on the pump intensity, see equation 2.25. This quadratic 

dependence is shown by the blue dotted line in figure 4-16. 

The best overall agreement achieved, as shown by the red trace, includes both a 

linear and a quadratic term with origin at zero and fit parameters a1 = 0.89 ± 0.4 

and a2 = 0.51 ± 0.15. This implies that both single photon and two photon 

absorption are significant. 

By tuning the pump wavelength to a longer wavelength than that of the exciton, 

single photon absorption will be negligible. It is, therefore, expected that a 

smaller shift of the photonic resonance will take place, as carriers are only being 

created via two photon absorption. 

The pump wavelength was selected to 810 nm, the power was set to 250 J.iW, 

which equates to a fluence F = 0.49 mJ/cm2 or an intensity of I= 3.45 GW/cm2
• 

The sample had a period of a = 860 nm, a fill factor f = 20 % and an etch depth 

d = 850 nm. It is a low exposure sample. A set of time resolved spectra for this 

sample is shown in figure 4-1 7. 

The photonic resonance, originally located at 881 nm, can be seen to blueshift 

and broaden at zero time delay. As the temporal delay between the pump and the 

probe increases, the resonance quickly shifts back to its original position. The 

nonlinear shift is markedly smaller on figure 4-17, than it is in figure 4-12. This 
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can be better appreciated in figure 4-18 a), where we that the maximum value for 

!J.')., is 4.5 nm as opposed to 11 nm. 
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Figure 4-17 Time resolved reflectivity spectra. Red and green dashed lines 

indicate positions of the resonance at negative delay and zero time delay 

respectively. The sample was from the low exposure set and the parameters as 

follows: Period a = 860 nm, fill factor f = 20 % and etch depth d = 850 nm. The 

pump wavelength is A.p = 810 nm and the fluence F = 0.49 mJ/cm2
• 
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Figure 4-18 a) Plot of /1/... versus time delay. The open squares represent 

experimental data extracted from figure 4-17. The red line is a first order 

exponential decay fit. Fit parameters are presented in the shadowed box. b) 

Differential Reflectivity plot extracted from figure 4-17. The red trace shows 

negative time delay, whereas the blue trace shows the differential reflectivity at 

zero time delay. 
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This implies that the same power density creates less carriers due to the lack of 

single photon absorption, which results in a reduced change in the refractive 

index and consequently a smaller shift in the resonance. 

The decay time is slightly shorter in figure 4-18 a) t = 24.6 ± 2.4 ps, compared 

to t = 27.1 ± 2. 7 ps for the previous sample in figure 4-13. 

Figure 4-18 b) shows differential reflectivity spectra at negative delay times and 

at zero delay time. The change in reflectivity at the photonic resonance 

(Ao = 880.7 nm) is as large as 50 %. A more modest change of 15 % occurs at 

876 nm, which is where the photonic resonance shifts to. 

Several attempts were made to shift a photonic resonance in a femtosecond time 

scale, either via the optical (ac) Stark effect, or via nonlinear refractive index 

tuning, i.e. the optical Kerr effect. However, the photonic resonances are simply 

too far away from the exciton to be affected by any change in the refractive 

index created by the optical (ac) Stark effect. The optical Kerr effect is also 

expected to alter the refractive index, see equation 2.18, but the effect of real 

carriers is significantly stronger and ultimately makes detecting an instantaneous 

shift of any photonic resonance impossible at this pump wavelength. 

In order to overcome the effect of real carriers, generated via single or two 

photon absorption, it was decided to set the pump wavelength in the infrared 

beyond 1600 nm, as this would get rid of two photon absorption and therefore 

reduce the number of generated real carriers. These experiments are described in 

the next section. 
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4.4.2 Two and Three photon absorption tuning of photonic resonances. 

In this section, two and three photon absorption will be used to tune the 

photonic resonance, in much the same way as in the previous section. The key 

difference is that the pump wavelength will be in the infrared region of the 

spectrum, ranging from 1250 nm to 2135 nm. 

The pump beam focusing lens was changed. A calcium fluoride lens with focal 

length/= 15 cm was used as BK7 behaves less than adequately at wavelengths 

above 1.8-2 J..llll. The lens was also repositioned, and the laser spot size 

remeasured. A value of 1 00 ± 50 J..lil1 was determined. The relatively large error, 

comparable with the measured value, is due to the accuracy of the equipment 

used to measure it. Estimations of fluence and intensity will undoubtedly suffer 

from this lack of accuracy. It should be noted, though, that relative trends will 

still be valid. The bigger laser spot size obtained from the BK7 lens in the 

previous section ensures that a more accurate measurement was made. 

The pump wavelength was set to 1330 nm, using the signal beam from the 

TOPAS OPA, which is collinear with the idler beam at 1950 nm. The same 

sample that was last measured for two photon absorption tuning of the photonic 

resonance is again used here, see data of figure 4-17, i.e. Period a = 860 nm, fill 

factor f = 20 % and etch depth d = 850 nm. It is a low exposure sample. The 

average pump power was set to 300 J.t W, which gives a fluence of 

F = 2.15 mJ/cm2 or a power density of I = 16.6 GW /cm2
• A typical time resolved 

measurement is shown in figure 4-19. 
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Figure 4-19 Time resolved reflectivity spectra. Red and green dashed lines 

indicate positions of the feature at negative delay and zero delay respectively. 

The sample was from the low exposure set and the parameters as follows: Period 

a = 860 nm, fill factor f = 20 % and etch depth d = 850 nm. The pump 

wavelength is Apump = 1330 nm and the fluence is F = 2.15 mJ/cm2
. 
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Similarly to the data presented in the previous section, the photonic resonance 

blueshifts dramatically at zero time delay, it then rapidly redshifts back to its 

original position. This is very interesting as it means that the free carrier 

nonlinearity does not depend on how the carriers are excited onto the valence 

band. The most remarkable difference between figure 4-19 and figure 4-17, is 

the relative strength of the photonic resonance at zero time delay, the blue trace 

in figure 4-19. A comparison of spectra at zero time delay for the same sample is 

shown below in figure 4-20, where the black trace represents the photonic 

resonance at negative time, and the red, green and blue traces represent the 

reflectivity spectrum at zero delay time for pump wavelengths of 780, 810 and 

1330 nm respectively. 

It is clear that an absorption mechanism bleaches the photonic features beyond 

recognition for a pump wavelength of 780 nm. For a pump wavelength of 810 

nm the resonance is almost bleached and the nonlinear is shift is smaller, while 

for a pump wavelength of 1330 nm there is a reduction on the resonance strength 

but it is marginal when compared with pump wavelengths of 810 nm and 

especially 780 nm. 

The origin of this mechanism remains unknown. It is clear that free carrier 

absorption is not responsible for the bleaching as the absorption at the 

wavelengths of interest is almost negligible. Further work will be needed to 

clarify the different absorption mechanisms that are involved. 
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Figure 4-20 Spectra comparison plot at zero time delay for three different pump 

wavelengths. The black trace is a linear spectrum. The coloured traces are 

nonlinear spectra. Coloured vertical lines indicate the position of the photonic 

resonance. Sample parameters as follows: Period a = 860 run, fill factor f = 20 % 

and etch depth d = 850 run. Note the higher fluence for the 1330 run data. 

In the previous section the bleaching of the photonic resonance at zero time 

delay made judging the actual nonlinear shift of the resonance very hard. In this 

section, however, the bleaching of the photonic resonance is less pronounced, 

which makes the job of estimating the nonlinear shift of the resonance 

significantly easier and makes the fit to the decay slightly more reliable. It is 

apparent in figure 4-21 that the decay time in this measurement is slightly longer 

than for previous measurements involving two photon absorption only at a 

wavelength of 810 run, see figure 4-18 a), where the decay constant was 
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estimated from the exponential decay fit to be 't = 24.6 ± 2.4 ps, which compares 

with a decay constant of 't = 28 ± 1.5 ps in this case as shown in figure 4-21. 
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Figure 4-21 Plot of /1/.. versus time delay. The open squares represent 

experimental data extracted from figure 4-19. Red line is a first order 

exponential decay fit. The fit parameters are presented in the shadowed box. 

While the decay constant extracted from the fitted single exponential decay in 

figure 4-21 is slightly longer than expected, it is consistent with measurements 

on the same sample at different powers and at different pump wavelengths as 

shown in table 4-1. 
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Extracting the magnitude of the nonlinear shift allows for plotting the shift 

magnitude versus pump power as shown in figure 4-23. It is apparent that a 

quadratic relationship occurs between the pump power and the nonlinear shift of 

the resonance as indirectly predicted by equation 2.25, which establishes a 

quadratic relationship between the number of photogenerated carriers and the 

incident pump intensity19
. This is as expected for two photon absorption with no 

linear absorption. The quadratic fit is considerably better than in figure 4-16, due 

to the nonlinear shift here being solely due to two photon absorption. 

Using equations 2.25 and 2.29b, it is possible to define x = ~ , which can be 
I 

used to extract the change in refractive index per carrier density ON= -2.3 ± 1.1 x 

10"21 cm3
• This is in good agreement with the calculated value ON= -4.9 x 10"21 

cm3
. The frequency dependence of the change in refractive index per carrier 

density is small, provided that one is far away from the resonance20
• The error in 

the measured value is large, due to the accumulated errors, e.g. laser spot size, 

pump beam average power. 

Once the setup has been thoroughly tested at infrared wavelengths, the 

wavelength was changed to 2050 nm. This will ensure that photo generation of 

free carriers via two photon absorption will be negligible. However, three photon 

absorption as a mechanism for photo generation of free carriers is still present at 

this wavelength, although a significantly higher threshold is expected as this is a 

higher order process mediated by x<S) 21
• Three photon absorption is expected as 

the pump energy is between one third and one half of the band gap, with the 
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band gap for Alo.2oGao.soAs being Eg = 1.674 eV, the former is Eg 113 = 0.558 eV 

(A. = 2220 run) whereas the latter is Eg 112 = 0.837 eV (A. = 1480 run). 
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Figure 4-24 Time resolved reflectivity spectra. Red and green dashed lines 

indicate positions of the feature at negative delay and zero delay respectively. 

The sample was from the low exposure set and the parameters as follows: Period 

a = 860 run, fill factor f = 20 % and etch depth d = 850 run. The pump 

wavelength is Apump = 2050 run and the fluence is F = 2.15 mJ/cm2. 

Figure 4-24 shows the time resolved reflectivity spectra for a pump wavelength 
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of A. = 2050 run and a fluence ofF = 2.15 mJ/cm2 or a power density of 

I = 16.58 GW/cm2
. This is the same fluence used in the previous measurement 

with a wavelength of A. = 1330 run on the same sample used in this section, with 

period a = 860 run, air fill factor f = 20 % and etch depth d = 850 nm. The 

temporal step size is 3.3 ps. 

The magnitude of the nonlinear shift is very large, !).}.. = 15 ± 4.5 run, as is the 

error. This is because the photonic resonance is bleached at zero time delay, 

which makes determining the exact position almost impossible. It is by looking 

at the where the resonance is at a later delay time and extrapolating back that a 

reasonable estimate can be obtained. 
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Figure 4-25 Plot of !).}.. versus time delay. The open squares represent 

experimental data extracted from figure 4-24. The red line is a first order 

exponential decay fit to the experimental data. The fit parameters are presented 

in shadowed box. 
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The decay constant is shorter than for other measurements on this sample at 

different wavelengths, t = 21.4 ± 3.5 ps as shown in figure 4-25, compared with 

t = 28 ± 1.5 ps for a pump wavelength of A = 1330 nm, t = 24.6 ± 2.4 ps for a 

pump wavelength of A = 810 nm and t = 24 ± 2. 9 ps for a pump wavelength of 

A=780nm. 

A summary of these results is presented in table 4-1. Also a summary of 

nonlinear response time decay versus average input pump power is shown in 

table 4-2. 

There is no clear relationship between the pump wavelength and the decay time. 

This is indeed to be expected as once the free carriers have been created they 

will decay via a combination of surface recombination and bulk recombination. 

Similarly, there is no clear dependence of the nonlinear response time decay on 

the pump power as shown in table 4-2. An average value of 24.5 ± 1.4 ps is 

extracted from the values presented in table 4-1, which is similar to the average 

value extracted from table 4-2, i.e. 26.6 ± 1.5 ps. 

The differences in the nonlinear response decay times are, therefore, most likely 

due to experimental errors rather than any genuine trend. 



Real Carrier Nonlinear Properties of ID Photonic Crystal Waveguides Chapter4 

Table 4.1 Time decay for different pump wavelengths (See text for 

details of input power) 

Pump Wavelength (nm) Time Decay (ps) Error (ps) 

24 
780 2.9 

24.6 
810 2.4 

28 
1330 1.5 

2050 21.4 3.3 

Table 4.2 Time decay values for different input powers. Pump 

wavelength Apump = 810 nm. 

Average Input Power Input Fluence 

(mW) (mJ/cm2
) 

150 1.03 

200 1.37 

250 1.7 

325 2.19 

375 2.53 

Time Decay Error (ps) 

(ps) 

30 3.3 

23.33 3.3 

26.7 2.5 

24.3 3.5 

28.4 5.3 

The sample details used for the above tables are as follows: period a = 860 run, 

air fill factor f = 20 % etch depth d = 850 run, low exposure set. 
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In the simplest approximation the three photon absorption coefficient can be 

defined by d/ = -y/ 3
, where y is the three photon absorption coefficient of the 

dz 

medium and is sometimes expressed as either ~3 or a3. It is therefore expected 

that nonlinear shift in the photonic resonance will present a cubic dependence on 

the intensity. 

While there is a wealth of measurements of the two photon absorption 

coefficient of Al(GaAs)22
'
23

'
24

, there is a lack of measurements of the three 

photon absorption coefficient25
, particularly so at the range of wavelengths of 

interest, i.e. 2050 - 2150 nm. The three photon absorption coefficient can be 

calculated using the following formula26
: 

(4.3) 

where Pis the Kane momentum parameter, extracted from EP = 2P:m, which 
h 

is a momentum matrix element27 and has a value of ~21 eV for most direct band 

gap semiconductors23
'
27

• E8 is the band gap energy, w is the angular frequency of 

the photon and n is the refractive index of the material. 

A three photon absorption coefficient of approximately y = 0.3 x 1 o-Is cm3W-2 is 

found upon substitution for the wavelength range of interest. 

Power dependent measurements were performed at this wavelength on the same 

sample as for figure 4-24, i.e. period a = 860 nm, air fill factor f = 20 %, etch 

depth d = 850 nm and low exposure dose. The pump wavelength is set to 

2100 nm. The average pump power ranged from zero to 350 J!W, which is 

151 
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equivalent to a range in fluences of 0 ~ F ~ 2.51 mJ/cm2 or intensities of 0 ~ I ~ 

19.14 GW/cm2
• 

For average pump powers in excess of 350 J..l W, the position of the photonic 

resonance at zero time delay is determined by indirect means as described above, 

due to it being completely bleached. 
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Figure 4-26 Power dependence plot. Reflectivity spectra are plotted at zero time 

delay. The red construction line indicates the position of the photonic resonance 

for each pump power. The sample was from the low exposure set and the 

parameters are as follows: Period a = 860 nm, air fill factor f = 20 % and etch 

depth d = 850 nm. The pump wavelength is Apump = 2100 nm 
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In figure 4-26 the red construction line shows the approximate position of the 

photonic resonance at zero time delay. Note how the feature is completely 

bleached for an average pump power of 350 1..1. W. 

Extracting the magnitude of the nonlinear shift allows for plotting the shift 

magnitude versus pump power as shown in figure 4-27. 
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Figure 4-27 Power dependence plot. The data points are marked by open 

squares. The red trace is a cubic fit to the data points. The inset shows the 

refractive index change divided by the cube of the pump intensity. 
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In contrast with the two photon absorption dominated nonlinear shift at 

1250 nm, shown in figure 4-23, which shows a quadratic relationship with the 

intensity of the pump power, it is expected that this three photon absorption 

dominated nonlinear shift will present a cubic relationship with input intensity, 

see equation 4.4. Figure 4-27 shows that this is indeed the case. 

An estimate of the refractive index change per carrier density, CJN can also be 

obtained in a similar way to the two photon absorption case. Instead of using 

equation 2.25, the three photon absorption equivalent must be used: 

(4.4) 

By using equations 4.4 and 2.29b, it is possible to defme y = ~ . Using the 
I 

fitted value of y, see inset figure 4-27, a value of aN = -6.59 ± 10 x 10"20 cm3 is 

found. This is in reasonable agreement with the calculated value, 

The measured value for CJN extracted from the two photon absorption data is 

lower than that obtained from the three photon absorption data by a factor of 

three. This disparity is attributed to the accumulated errors in the measurements. 

The required physical constants, material properties and experimental conditions 

to calculate CJN and N are summarised in table 4.3. 
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Table 4.3 Parameters required to calculate erN and N 

Physical Constants 

e 

mo 

eo 

h 

Electronic charge 

Electronic rest mass 

Vacuum permittivity 

Planck's constant I 21t 

Material Properties 

Eg Electronic band gap of waveguide core 

no Refractive index of core at ~ 880run 

me Effective mass of electrons 

mh Effective mass ofheavy hole 

p Two photon absorption coefficient for AlGaAs 

y Three photon absorption coefficient for AlGaAs 

Experimental Conditions 

frep Laser repetition rate 

'tp Laser pulse width 

rp Focusedlaserspotradius 

Ap Pump wavelength Two photon absorption 

Three photon 

Apr Probe wavelength 
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1.602 X 10"19 C 

9.1 X 10"31 Kg 

8.85 X 1 0"12 Fm"1 

1.055 X 1 0"34 Js 

1.673 eV 

3.45 

0.079 mo 

0.56 mo 

9 X 10"9 cm W"1 

0.3 X 1 0"18 cm3W"2 

1kHz 

130 fs 

50 J.lffi 

1250 run 

2100 run 

880run 
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4.5 Conclusions 

In this chapter I have demonstrated nonlinear shifting of the photonic 

resonances via single photon and two photon absorption, two photon alone and 

three photon absorption. 

By using a pump wavelength shorter than the exciton wavelength, yet longer 

than the electronic band gap of Alo.zoGao.soAs,(A.p = 780 nm in this case), single 

and two photon absorption processes created free carriers that changed the 

refractive index, which ultimately shifted the photonic resonance by 

approximately !l.A. = -11 nm for a fluence of F = 0.49 mJ/cm2
. Despite the 

relatively low fluence, the photonic resonance is completely bleached at zero 

time delay. A decay time of 't = 27.1 ± 2.7 psis observed. This is longer than 

for previous work carried out by this group in two dimensional photonic crystals. 

The different topology of these samples accounts for significantly reduced 

surface recombination, which was responsible for -1 Ops decay times in two 

dimensional samples. In one dimensional photonic crystals, carriers have, on 

average, to travel longer distances to reach any surface than in higher 

dimensionality photonic crystals and consequently the amount of surface 

recombination taking place is reduced which in turn increases the nonlinear 

response decay time. 

When the pump wavelength is longer than the exciton wavelength, A.p = 81 0 nm 

in this case, single photon absorption will not occur, and two photon absorption 

is the only real carrier creation mechanism. A similar fluence resulted in a 

smaller shift of the photonic resonance, approximately M = -5 nm. This smaller 
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shift is due to two photon absorption being a third order process and 

consequently having a smaller absorption coefficient, thereby generating less 

carriers. 

Changes in the reflectivity as large as 50 % were observed at the original 

(unshifted) photonic resonance position, i.e. Alinear = 881 nm. Smaller changes of 

15 % were observed at the wavelength the photonic resonance shifted to, i.e. 

Anonlinear = 876 nm. 

A significantly larger shift, Al.. = -10 nm, was observed for two photon 

absorption at pump wavelengths in the infrared, f..p = 1330 nm. The pump 

fluence was, however markedly larger F = 2.15 mJ/cm2
• Despite the large pump 

fluence, the photonic resonance is not bleached, in sharp contrast to the 

behaviour at shorter wavelengths where the resonance is completely bleached 

for smaller pump fluences. 

A power dependent measurement confirmed a quadratic dependence of the 

nonlinear shift on the pump intensity. The change of the refractive index per unit 

carrier density was extracted from the power dependent data and was found to 

have a value of erN= -2.29 x 10"21 cm3
, which compares favourably with a 

calculated value of erN= -4.9 x 1 o-21 cm3
. 

A very large shift, Al..= -15 nm, is observed for three photon absorption, for a 

pump wavelength f..p = 2050 nm, for an identical fluence to the infrared two 

photon absorption case, i.e. F = 2.15 mJ/cm2
• It should be noted that there is a 

significant contribution to this shift by the quantum wells which also exhibit 

three photon absorption. As with the infrared two photon absorption case, a 
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power dependent measurement was carried out. In contrast to the two photon 

absorption case, a cubic dependence of the nonlinear shift on the pump intensity 

was found. 

The change of the refractive index per unit carrier density was extracted from the 

power dependent data and was found to have a value of crN = -6.59 x 1 0"20 cm3
, 

in reasonable agreement with the calculated value of crN = -4.9 x 1 0"21 cm3
• 

It is clear that the nonlinear change of the refractive index that ultimately causes 

shifts of the photonic resonances does not depend on how the carriers are 

excited. It depends solely on the free carrier density generated. 

The nonlinear response decay time was found to depend neither on the pump 

wavelength nor on the input pump power. This is to be expected as once the 

carriers have been excited to the conduction band, the decay time will be 

governed by the amount of surface recombination taking place. 

The dependence of the nonlinear decay time on the photonic crystal parameters, 

period and air fill factor, i.e. stripe width and etch depth will be discussed in the 

next chapter along with the nonlinear response of photonic crystals in 

femtosecond time scales. 
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5.1 Introduction 

"Son cinco minutos, la vida es eterna en cinco minutos" 

Te Recuerdo Amanda, Victor Jara 

In the previous chapter the nonlinear properties induced by real carriers 

in one dimensional AlGaAsllnAlGaAs multiple quantum well photonic crystals 

were measured. 

It was found that the carrier decay time was longer than in two dimensional 

photonic crystals. It was also hinted that the decay time of these free carrier 

nonlinearities might depend on the period length due to the effects of surface 

recombination. Surface recombination is responsible for the faster carrier decay 

in photonic crystals 1 than in bulk2
• 

In this chapter a relationship between the period and fill factor (stripe width) and 

the nonlinear response decay times will be studied in detail and explained by a 

simple in-plane surface recombination model. Different etch depths will also be 

studied, in order to further understand how surface recombination affects the 

nonlinear response lifetime in one dimensional crystals. 

One limitation in the nonlinear response of photonic crystals as presented in the 

previous chapter is that the carrier decay time is in the tens of picoseconds range. 

This is, undoubtedly fast, but it is significantly longer than the pulse width, i.e. 

longer than 130 femtoseconds. In the second half of this chapter, experimental 

results will be presented showing a response time of less than 400 femtoseconds. 
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Here, two different ultrafast nonlinear effects, namely the optical Kerr effect and 

optical (ac) Stark effect, will be shown to be responsible for these subpicosecond 

nonlinear responses of the photonic crystals. 

This chapter is organized as follows: section 5.2 will discuss the experimental 

set-up modifications necessary to perform the experiments in this chapter. 

Section 5.3 will discuss the dependence of the nonlinear response decay time of 

one dimensional photonic crystals on fabrication parameters such as the period, 

air fill factor and etch depth. An in-plane model will be introduced to simulate 

the dependence of the nonlinear response decay time on the stripe width, i.e. 

period and air fill factor. 

Section 5.4 will discuss subpicosecond switching of photonic resonances via 

virtual nonlinearities. Sub-section 5.4.1 will discuss subpicosecond switching of 

photonic resonances via the optical Kerr effect for infrared pumping, while sub

section 5.4.2 will also discuss subpicosecond switching of photonic resonances, 

but via a different mechanism, namely the optical (ac) Stark effect, for near 

infrared pumping. 

5.2 Experimental Set-Up Modifications 

The experimental set-up used for these measurements is similar to that 

used in the previous chapter, but several changes were needed to perform the 

experiments in this chapter. The changes will be now discussed. 

The motorized linear translational stage was changed for a different one, with 

claimed 0.1 J.l.ffi, i.e. 0.33 femtoseconds, accuracy. The repeatability of this stage 
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is significantly better than the one used up to this point the only downside is that 

it is almost ten times slower. This is crucial to ensure accurate determination of 

the time delay between the pump and the probe, which for step sizes of 

33.33 femtoseconds, i.e. 0.005 mm, was not guaranteed by the stage used until 

now. 

The lenses used for focusing and collimating light in the white light continuum 

generation part of the set-up were substituted for two BK7 f= 5 cm aespherical 

lenses. This was done to have a greater degree of control over the intensity 

hitting the sapphire plate. The longer focal length results in a larger)aser spot on 

the sapphire, which means that less attenuation is needed and crucially, that the 

white light continuum should be less sensitive to small changes in the 

attenuation, thus helping the stability of the white light continuum. 

Finally, the last change made was only for the experiments carried out in section 

5.5 where the optical (ac) Stark effect is investigated. 

This change was necessitated by the highly resonant nature of the optical Stark 

effect and several initial attempts to measure it ended in failure, due to the fact 

that the photonic resonances were significantly far away from the exciton, 

11/... = Aresonance-Aexciton ranged from 30 to 100 nm. Since it was impossible to 

resolve a photonic resonance closer to the exciton than /...resonance = 830 nm, it was 

decided to alter the experimental geometry somewhat. 

As discussed in chapter three, the output from the Spitfire regenerative amplifier 

is split 90/10, with 90% of the light going into the TOP AS and the remaining 
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I 0% used for generating a white light continuum. This has now been modified 

as follows: 

The beam coming out from TOP AS, formerly used as the pump beam, is now 

generating the white light continuum. The TOPAS wavelength was selected to 

be far away from the exciton, i.e. AmPAS = 700 nm. Quite serendipitously, it was 

found that when the white light continuum was generated using the collinear 

signal beam at Asignai = 1400 nm, it was significantly more stable, albeit much 

weaker. It was, therefore, decided to use this configuration for the experiments, 

with an increased number of accumulations, to overcome the weaker signal. 

The pump beam is now the remaining 10% of the Spitfire beam, formerly used 

to generate the white light continuum. The wavelength is set to Apump = 800 nm. 

This arrangement poses one significant problem, and that is the lack of tunability 

of the pump wavelength. The TOP AS optical parametric oscillator is aligned to 

work with an input wavelength of 800 nm, and so any major change to this 

wavelength will require realigning of the TO PAS. It was found, however, that it 

was possible to tune the Spitfire wavelength by 16 nm, from 792 nm to 808 nm, 

without any need to realign the TOP AS. 

There was a certain degree of concern about the ability of the TOPAS to 

generate a stable white light continuum. The possible increase in noise due to 

nonlinear processes by which light at 700 nm is generated by the TOP AS was 

the major source of concern. These concerns proved to be unfounded as the 

stability of the white light continuum generated using the TOP AS was 

significantly better than that from the Spitfire as discussed above. 
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The useful spectral range available from the white light continuum has now 

improved, as can be seen in figure 5-1. The long wavelength limit is still set by 

the response of the CCD detector. 
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Figure 5-l Spectrum of femtosecond white light continuum. Hatched area 

represents theoretical useful area (for the CCD used). 

Finally, the pump and probe angles were exchanged in order to avoid a time 

consuming setting up process. The pump angle is now Opump = 45° and the probe 

angle is Oprobe = 30°. Note that for all other experiments performed in this chapter 

the pump was set to 30° and the probe to 45°. A photograph of this layout can be 

seen in the previous chapter, figure 4-5. 
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5.3 Nonlinear Response Lifetime Control via Alteration of the Photonic 

Crystal Waveguide Parameters 

In this section it will be shown how the nonlinear response lifetime of 

one dimensional photonic crystal waveguides can be altered at the fabrication 

time, by changing three parameters: The photonic lattice period, a, the photonic 

lattice air fill factor,/, and the photonic lattice etch depth, d. 

A comprehensive study of the dependence of the nonlinear response decay time 

on period and fill factors will be presented on section 5.3 .1. In section 5.3 .2 a 

simple in-plane scattering model will be discussed. 

In section 5.3.3, the dependence of the nonlinear response decay time on the etch 

depth will be explored. 

5.3.1. Period and Fill Factor (Stripe Width) 

The period and air fill factor, determine the width of each individual 

stripe from which a high refractive index contrast photonic crystal is formed. 

The width of each stripe, w, can be calculated using the following 

expression: w = a· (1- f) where a is the period and f is the air fill factor, 

which is expressed as a fraction not a percentage. An illustration of a typical 

sample is shown in figure 5-2. The stripe width is marked for clarity. 

The range of sample periods available goes from 330 nm to 880 nm, and the air 

fill factors used are either 20% or 30%. The range of stripe widths goes from 

231 nm, for a 330 nm period and 30% air fill factor sample to 704 nm, for a 

period of 880 nm and 20% air fill factor. A longer stripe width, w = 792 nm, is 
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available from a sample with a period of 880 nm and 10% air fill factor, but 

unfortunately no resolvable photonic resonances where found at the wavelengths 

of interest. The available range of stripe widths will, nonetheless, be sufficient to 

carry out a systematic study of the dependence of the carrier lifetime on the 

stripe width. 

waveguide 
core with MQW 

Figure 5-2 chematic drawing of a typical one dimensional sample. 

As discussed in section 4.4.1 , surface recombination is responsible for the 

significantly reduced carrier relaxation time in photonic crystals. In the previous 

chapter it was shown that the effect of surface recombination is significantly 

smaller in one dimensional photonic crystals than it is in two dimensional 

photonic cry tals3
. 
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This is due to the fact that in a two dimensional lattice, carriers are always very 

close to the surface, due to the increased surface area created by etching the 

lattice. In one dimensional lattices the distances to any surface are, on average 

longer and therefore nonradiative recombination also plays a significant role in 

the relaxation of photogenerated carrier relaxation. 

In this section the pump wavelength will be kept constant A.pump = 81 0 nm. Time 

resolved spectrally reflectivity measurements similar to those in the previous 

chapter were taken. From these measurements, the magnitude of the nonlinear 

shift of the photonic resonance was extracted, normalized to unity and plotted 

against time delay. Several samples with different stripe widths were measured. 

This can be seen in figure 5-3 a), which shows how the decay time varies with 

the stripe width. The periods shown range from 330 nm, for a stripe width of 

231 nm (air fill factor f = 30% ), to 880 nm, for a stripe width of 704 nm (air fill 

factor f= 20 %) for a constant etch depth of d = 850 nm. It is observed that the 

shorter stripe width has a faster nonlinear response decay time, this variation of 

the nonlinear response lifetime with stripe width cannot be attributed to a 

difference in the pump fluence or the pump wavelength. As the nonlinear 

response lifetime was shown, in the previous chapter, not to depend on the pump 

wavelength or pump fluence, see figure 4-26 
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This very interesting result means that the free carrier nonlinearity lifetime in 

one dimensional photonic structures can be tailor made at the time of fabrication 

by altering the period, air fill factor and, as will be shown in section 5.3.3, the 

etch depth. Precise control of the effects of these parameters could lead to the 

development of highly customizable all-optical switches. 

Figure 5-3 b) shows a linear relationship between the stripe width and the 

nonlinear response time decay constant 't. The ordinate error bars represent the 

error of the exponential decay fit, while the abscissa error bars are set to 5%, 

which is reasonable estimate of the error on the stripe width judging by scanning 

electron micrographs of several samples. 

The average carrier decay time is expected to depend linearly on the stripe 

width. The reason for this lies on the fact that the longer the stripe width the 

greater distances the carriers will have to travel before reaching the surface. This 

simple approximation does not take into account surface recombination 

probabilities. It nonetheless presents a fairly accurate description of the actual 

behaviour of the average carrier decay time. 

5.3.2 Modelling of the Dependence of the Nonlinear Response Lifetime on 

the Stripe Width 

In this section a simple in-plane scattering model will be discussed. The 

main objective of this model is not to provide an accurate prediction of the 

carrier lifetime, (it is too simple to achieve that), but to achieve the more modest 

goal of predicting a trend of behaviour. 
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In order to provide an accurate model of the carrier lifetime in one dimensional 

crystals or two dimensional crystals, all three dimensions must be considered. 

This is due to the fact that the deeper the etching the larger the surface area is 

going to be, and consequently surface recombination will become more 

prevalent as the etch depth increases. This model however calculates in-plane 

scattering only. The main reason for developing the model was to try to obtain a 

simple understanding of the dependence of the nonlinear response lifetime on 

the stripe width. 

The model works by calculating the probability of a carrier reaching the edge of 

a rectangle of width, w = a · (1 - f) where a is the period of the lattice and f is 

the air fill factor of the lattice, and height 80 J.lffi, which is the length of the 

photonic crystal lattice. This rectangle represents one stripe of the one 

dimensional photonic crystal lattice as shown in orange in figure 5-4. 

The model first assumed that the carriers travelled in a straight line with a 

diffusion speed of 20000 m/s 4
• As the samples are one dimensional the only 

source of surface scattering are the edges of the rectangle. This proved to be too 

simple an assumption that overestimated the amount of surface recombination 

taking place, as the calculated distance travelled by the carriers was longer than 

the real distance, which lead to an overestimation of the amount of surface 

recombination. Therefore, in order to simulate the carrier trajectory more 

accurately, the straight line distance travelled by the carrier is multiplied by a 

random number with value between 0 and 1. 

173 



Non linear Switching Properties of lD Photonic Crystals Chapter 5 

This is a more accurate estimation of the actual distance travelled by the carrier 

and more importantly of the carrier final position. This random number is 

calculated for each instance, in order to ensure, a truly random process. The 

effect of this random number can be seen in figure 5-4, where the blue arrows 

represent the calculated trajectories of the carriers. Note how the distances 

travelled for each angle are different. 

w 
• • a 

80Jlm 

y 

X 
Figure 5-4 Schematic vtew of a typical high refractive index contrast one 

dimensional photonic crystal. The orange stripe is the rectangle used in the in

plane model. w is the stripe width, a is the period andfis the air fill factor. The 

modelled carrier trajectories are shown by blue arrows. Positions x 1,y1 and x2,y2 

show carrier trajectories at different positions and for different sweep angles (not 

all angles are shown for clarity). 
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At each position in the stripe, the probability of the carrier reaching an edge of 

the rectangle, i.e. the surface of the stripe, is calculated by performing an angular 

sweep of all possible trajectories. In essence the model calculates the distance 

travelled by the carrier along each angle, the angle step size was set to 5 degrees, 

and then the probability of a carrier moving from that position reaching the edge 

of the rectangle, is calculated by looking at the final carrier position for each 

angle. If the final carrier position is outside the rectangle then surface 

recombination is deemed to have taken place. The probability is calculated by 

dividing the number of surface recombination events by the number of angles 

swept, 72, in this case. 

The position of the carriers is then swept on both in-plane axes, repeating the 

angle sweep process at each point, starting at (0,0) and finishing at 

(80000,80000). The step size is a flexible parameter, ranging from 4 to 10 nm. 

The total probability of surface scattering is then calculated by averaging the 

calculated probability at each point in the rectangle. 

In order to calculate the decay constant, a rather crude method is used. If the 

carrier reaches the edge of the rectangle, then it is deemed to have undergone 

surface recombination, which in GaAs based semiconductors has a decay time of 

several picoseconds. If the carrier does not reach the edge of the rectangle then 

nonradiative recombination is deemed to have occurred with a decay time, in 

AlGaAs, of approximately 100 picoseconds 2• 

The diffusion time is calculated for carriers undergoing surface recombination 

and added to the surface recombination decay time. The average lifetime for 
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carriers at each point is then calculated from the surface recombination plus 

diffusion time for carriers undergoing surface recombination and from the 

literature value of nonradiative recombination in AlGaAs. The final value of the 

decay constant is obtained by averaging over all positions. 

As described in the introduction, this model only calculates in-plane scattering. 

A numerical factor, z, was introduced in a crude attempt to model the different 

etch depths. This numerical factor ranges between 0 and 1 and modulates the 

nonradiative recombination time. A factor of 1 equates to an unpatterned crystal, 

while an infinitely deep patterned structure would have a value of zero. A value 

of z = 0.31 was found to give reasonable estimates for an etch depth of 

d = 850 nm as used in the samples in the previous section. 

This method artificially reduces the nonradiative recombination time. This, in 

essence means that more weight is given to surface recombination processes as 

the etching becomes deeper. This approach will be vindicated by the data shown 

in section 5.3.3. 

At any rate, the principal objective of the model is not to obtain an accurate 

prediction of the carrier lifetime (the model is too simple to do that as has been 

discussed above) but its principal objective is to predict patterns of behaviour, 

i.e. how does the carrier lifetime change with increasing or decreasing the stripe 

width. The model achieves this more modest goal with ease. 

As discussed above a linear dependence of the decay time on the stripe width is 

observed. The model correctly predicts such a linear dependence as shown in 

figure 5-5. The modelled data shows a similar linear dependence between the 



Nonlinear Switching Properties of ID Photonic Crystals Chapter 5 

stripe width and the decay constant to that shown by the experimental data in 

figure 5-3 b). 

There is a reasonable agreement between the calculated and measured decay 

constant values, despite the rather simplistic nature of the model. 
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Figure 5-5 Decay constant versus stripe width plot. The red trace is a linear fit 

to the modelled data points. 

5.3.3 Etch Depth 

In the previous sections the etch depth has been kept constant at 

d = 850 nm, as has been the case so far in this thesis. In this section, samples 

with different etch depths will be measured, namely 1 00 and 200 nm and 
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compared with 850 run etch depth. It will be shown how the etch depth also 

affects the nonlinear response lifetime of one dimensional photonic crystals. 

This is due to the changes in surface area associated with changes in the etch 

depth. As the etch depth increases, so does the surface area, and it is thus 

expected that surface recombination will play an ever increasingly important 

role, which in turn means that the nonlinear response time will decrease 

accordingly. 
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Figure 5-6 Normalized!::../... versus time delay plot for different etch depths. S'A, 

has been set to unity at zero time delay. Period is a = 330 nm, air fill factor 

f= 30% stripe width is w = 231 nm. Fluence F = 0.56 mJ/cm2
. 

It is thus expected that samples with shallower etch depths, i.e. 1 00 and 200 nm, 

will show longer nonlinear response than those measured before, i.e. 
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d = 850 run. This is clearly illustrated in figure 5-6, which compares normalized 

tl.'A. versus time delay for two samples with the same period and air fill factor, 

a= 330 run,/= 30%, giving a stripe width of w = 231 run, but two different etch 

depths, namely 100 and 850 run. 

The change in the nonlinear response lifetime for the different etch depth is 

remarkable. For an etch depth of 850 run, the decay constant is t = 8.5 ± 2.5 ps, 

whereas for an etch depth of 100 run, the decay constant is t = 33.5 ± 2.6 ps. 

This significantly longer nonlinear response lifetime for the shallower etch depth 

is attributed to the reduced surface area due to the etching, which in turns means 

reduced surface recombination. Despite the shallower etch depth, surface 

recombination does still play an important role as a carrier decay mechanism 

because the decay time, while longer than for deeper etching, is still 

considerably shorter than for bulk AlGaAs, i.e. 33 versus 100 picoseconds 

respectively. 

It is interesting to note that the reduction in total surface area on going from an 

etch depth of 850 run to 100 run is approximately 4.5 times. This reduction 

compares quite favourably with the reduction of the nonlinear response decay 

time for the two different etch depths, which is approximately 4 times. 

A further comparison of the dependence of the nonlinear response on etch depth 

is presented in figure 5-7. The sample has the same period as in figure 5-6, i.e. 

a= 330 nm, but the air fill factor is now f= 20 %.'The etch depths are 100 and 

200 nm. The small contrast in etch depth results in a much smaller difference in 

the nonlinear response lifetime when compared with figure 5-6. 
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Figure 5-7 Normalized !:!.')... versus time delay plot for different etch depths. !:!.')... 

has been set to unity at zero time delay. Period is a = 330 nm, air fill factor 

f = 20% stripe width is w = 264 nm. Fluence F = 0.56 mJ/cm2 

For an etch depth of 100 nm, the decay constant is 't = 35.6 ± 2.4 ps, whereas for 

an etch depth of 200 nm the decay constant is 't = 29 ± 2.2 ps. 

The reduction of surface area is just 1.4 times this time, which again compares 

quite favourably with a reduction in the nonlinear response decay time of 1.2 

times. 

As expected the nonlinear response lifetime becomes shorter for deeper etching. 

The difference in the nonlinear response lifetime between both etch depths is 

small due to the small difference in etch depth. 
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These results confirm that the nonlinear response lifetime of one dimensional 

photonic crystals is limited by surface recombination and diffusion. 

Interestingly, the nonlinear response lifetime can be controlled by the design of 

the photonic crystal as has been demonstrated in this section. 

5.4 Subpicosecond Switching via Virtual Nonlinearities 

In this section the optical Kerr effect and the optical (ac) Stark effect will 

be discussed. As discussed in chapter 2, the optical Kerr effect alters the 

refractive index of a nonlinear material. The material's refractive index depends 

on the intensity of the optical pump. As with all virtual effects, it only lasts as 

long as the optical pump is irradiating the material, in other words, the effect is 

only present for a time comparable to the pump pulse width. This effect has been 

reported in Bragg mirrors5 and in silicon based two dimensional photonic 

crystals6
, but has not been reported in III-V based high refractive index contrast 

photonic crystals. 

The other virtual effect that will be discussed is the optical ( ac) Stark effect. In 

this effect the exciton energy is renonnalized by the optical pump. This changes 

the refractive index, which in turn changes the band structure of the photonic 

crystal. The optical Stark effect has been observed in Bragg mirrors 7 and in 

organic based photonic crystals8
, but again it has not been observed in III-V 

based high refractive index contrast photonic crystals. 



Nonlinear Switching Properties of ID Photonic Crystals Chapter 5 

5.4.1. Subpicosecond Switching via the Nonlinear Kerr Effect 

In this section subpicosecond switching of photonic resonances via the 

optical Kerr effect will be discussed. In a Kerr medium the refractive index of a 

material becomes: 

(5.1) 

where no is the linear refractive index and the nonlinear refractive index n2 takes 

the form (for isotropic media): 

n =-1- 'Y(3) 
2 2 Jt. 

noc&o 
(5.2) 

where x.<J) is the electric susceptibility. 

In a Kerr medium, the refractive index depends on the intensity of the pump 

beam. The implications of this effect for photonic crystals are very interesting. It 

has been shown in the previous chapter that nonlinear changes in the refractive 

index lead to nonlinear shifts of the photonic resonances. So far in this thesis, 

these nonlinear shifts in the photonic resonances have been caused by the 

photogeneration of free carriers, which had decay times around of 10-30 

picoseconds. The nonlinear Kerr effect is a virtual effect, and as such, no real 

carriers are created. One main consequence of this is that the effect will only last 

for as long as the pump is on and it is, therefore, expected that this effect will 

last for several hundred femtoseconds, which is approximately two orders of 

magnitude faster than with real carriers. 

As discussed in the previous chapter, several attempts to see subpicosecond 

nonlinear shifts of a photonic resonance at near infrared pump wavelengths, 
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either via the optical (ac) Stark effect, or the nonlinear Kerr effect, failed 

initially, mainly due to the presence of real carriers that shifted the photonic 

resonance by a greater amount than a virtual effect would, making it impossible 

to see any evidence of an subpicosecond nonlinear shift. 

In this section the pump wavelength ranges from 2050 to 2135 nm. This range of 

wavelengths fall very close to the maximum in the three photon absorption 

coefficient as can be seen in figure 5-8. Unfortunately the range of wavelengths 

was limited by a poor choice of filtering optics used to separate the signal from 

the idler beam of the TOP AS output. 
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Figure 5-8 Three photon absorption coefficient versus wavelength plot. The 

graph is reproduced from reference 9. 

This is unfortunate as it means that there will still be photogenerated free 

carriers, as shown in section 4.4.2., which was the main reason for using a pump 



Nonlinear Switching Properties of 1 D Photonic Crystals Chapter 5 

wavelength in the infrared. Fortunately, it was possible to observe a 

subpicosecond shift of the photonic resonance. This nonlinear shift was however 

superimposed on the nonlinear shift due to photogenerated carriers created via 

three photon absorption. 

Figure 5-9 shows a typical time resolved differential reflectivity spectra set for a 

sample with the following parameters: Period a = 860 nm, air fill factor f = 20 % 

and etch depth d = 850 nm from the high exposure set. The pump wavelength is 

set to Apump = 2135 nm and the average pump power is 250 J.LW, which equates 

to a fluence F = 1.8 mJ/cm2 or an intensity I= 13.2 GW/cm2
. The time step is 

0.005 mm or 33.33 femtoseconds. 

A remarkable feature of the data presented in figure 5-9 is how the photonic 

resonance located at 865 nm rises and decays on a femtosecond timescale. This 

is appreciated better by looking at the maximum value of the differential 

reflectivity for every spectra (i.e. the value of the differential reflectivity at the 

original (unshifted) position of the photonic resonance (i.e. 866 nm)) versus time 

delay as shown in figure 5-l 0. 
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Figure 5-9 Time resolved differential reflectivity spectra showing 

subpicosecond switching of a photonic resonance via the optical Kerr effect. The 

sample is from the high exposure set and the parameters are as follows: Period 

a = 860 run, fill factor f = 20 % and etch depth d = 850 run. Blue dashed line 

indicates position of photonic resonance. The pump wavelength 1s 

Apump = 2135 run and the fluence is F = 1.8 mJ/cm2
. 

The photonic resonance does not fully decay to its original state due to the onset 

of three photon absorption which generates a significant change in the refractive 

index and consequently a shift in the photonic resonance as discussed in section 
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4.5.3. It is interesting to note that there is no actual shift of the photonic 

resonance but a change in the absorption (imaginary refractive index). This 

result is somewhat surprising. However, by using a Kerr coefficient value of 

n 2 = 4 ·1 o-13 cm 2 w-1
, at 860 run, and the input intensity used in the experiments 

a calculated shift of the photonic resonance of approximately -0.3 run is found. 

Such a small shift is very difficult to detect with the experimental set-up used . 
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Figure 5-10 Differential reflectivity at 865 run versus time delay (extracted from 

figure 5-9, showing subpicosecond switching of a photonic resonance via the 

optical Kerr effect. The sample is from the high exposure set and the parameters 

are as follows: Period a = 860 run, fill factor f = 20 % and etch depth d = 850 run 

The pump wavelength is Apump = 2135 nm and the fluence is F = 1.8 mJ/cm
2
. 
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Nevertheless figure 5-10 clearly shows subpicosecond switching of a photonic 

resonance due to the nonlinear Kerr effect. As discussed before; the 

subpicosecond switching of the resonance is superimposed on a rising 

background due to real carriers generated by three photon absorption that create 

a nonlinear shift of the photonic resonance on a much longer (tens of 

picoseconds) time scale. 
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Figure 5-11 Nonlinear optical Kerr effect dependence of the differential 

reflectivity on the pump power. The data points are marked by open squares and 

are extracted from figure 5-9. The red trace is a linear fit to the data points. 

A power dependent measurement was carried out on the same sample used in 

this section so far. This is shown in figure 5-11. The data shows an approximate 
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linear dependence of the optical Kerr effect with input pump power. This linear 

relationship between the input power and the change in the refractive index 

stems directly from equation 5.1 

In this section it has been shown, for the first time in Ill-V based high refractive 

index photonic crystals, that it is possible to instantaneously switch a photonic 

resonance using the optical Kerr effect. It is worth noting that the intensities 

used here to obtain ultrafast switching via the optical Kerr effect, 2-13 G W /cm2
, 

are lower than those reported in reference 6, namely 20-100 GW/cm2 where a 

silicon 2D photonic crystal was measured. This result shows the excellent 

potential of these structures for ultrafast all-optical switching devices. 

5.4.2 Subpicosecond Switching via the Optical (AC) Stark effed 

In this section the subpicosecond switching of a photonic resonance via 

the optical ( ac) stark effect will be discussed. This effect can be thought of as a 

highly resonant case of the optical Kerr effect. 

The optical Stark effect causes the atomic levels to shift when submitted to a 

non-resonant excitation. This shift of the atomic levels can be interpreted as 

change in the refractive index of the structure10
. 

The change in refractive index due to the optical Stark is, thus proportional to 

the change in the atomic levels: 

(5.3) 
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where p is the exciton oscillator strength, Ep is the electric field, rop is the 

frequency of the light field and roEx is the frequency of the exciton. 

Equation 5.3 illustrates the three key parameters in the optical Stark effect, 

namely: the exciton oscillator strength, pump intensity and pump frequency 

detuning with respect to the exciton. 

In previous observations of the optical Stark effect, a high number of multiple 

quantum wells have been used (> 1 0)11
'
7
• By contrast the samples used here only 

have five quantum wells, which makes obtaining a sizeable effect somewhat 

harder as the quantum wells are a smaller fraction of the waveguide core. 

Alternatively, a very high exciton oscillator strength material has been used8•12 in 

order to obtain a sizeable effect. 

The use of cryogenic temperatures leads to sharper exciton signatures and 

consequently it has also been used in previous experiments11
•
7
• Unfortunately, 

the present experiments are more difficult to perform using a cryostat, which, 

together with the limited tunability of the experimental set-up precludes any 

meaningful use of cryogenic temperatures here. 

The pump frequency detuning is critical. Resonant pumping will result in photo 

generation of real carriers and consequently no Stark shift will be observed. 

Almost negligible Stark shifts were found for pump wavelengths less than 1 0 nm 

away from the exciton wavelength. 
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A typical set of time resolved differential reflectivity spectra showing 

subpicosecond switching of a photonic resonance caused by the optical Stark 

effect is shown in figure 5-12. 
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Figure 5-12 Time resolved differential reflectivity spectra showing 

subpicosecond switching of a photonic resonance via the optical ( ac) Stark 

effect. The sample is from the low exposure set and the parameters are as 

follows: Period a = 860 nm, fill factor f = 30 % and etch depth d = 850 nm. 

Pump wavelength is Apump = 800 nm. Fluence is F = 0.71 mJ/cm2
• 
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The sample parameters are as follows: Period a = 860 run, fill factor f = 30 % 

and etch depth d = 850 run from the low exposure set. The pump wavelength is 

set to Ap = 800 nm. This means that there is a detuning between the pump 

wavelength and the exciton of 1 run. The average pump power is 100 J.I.W, which 

equates to a fluence F = 0.71 mJ/cm2 or an intensity I = 5.52 GW/cm2
• The 

temporal step size is 0.005mm or 33.33 femtoseconds. 

Figure 5-12 clearly shows an ultrafast change in the photonic resonance located 

approximately at 805 nm. This change is due to the optical Stark effect which 

alters the refractive index, which ultimately causes the photonic resonance to 

blue shift. The signature of the shift is clear with no associated bleaching as with 

real carriers as shown in the previous chapter. As predicted by the virtual nature 

of the optical Stark effect, the photonic resonance has completely recovered after 

less than 350 femtoseconds. Exciton ionization13 cannot be responsible for this 

ultrafast blueshift as the photonic resonance completely recovers to its original 

position. This is easier to see in figure 5-13 below, in which the maximum value 

of the differential reflectivity for every spectra, i.e. the original (unshifted) 

position of the photonic resonance, versus time delay is plotted. 



.--.. 
::J 

~ -
~ ·:;: 
:z; 
(.) 
Q) 

CO:: 
Q) 

0:: 
(ij 
:z; 
c: 
Q) .... 
~ 
0 

Chapter 5 

1.2 
• 

1.0 \ 
iV • 

\ 0.8 • • 
0.6 • ·\I I . l)" 0.4 • 

I 0.2 

\ tVJ " • 
0.0 

"""'v"V\ri'l \;•··· 
• 

-0.2 • 300 fs 

-700 -600 -500 -400 -300 -200 -1 00 0 100 200 300 400 500 600 700 800 

Time delay (fs) 

Figure 5-13 Differential reflectivity at 805 run versus time delay plot showing 

subpicosecond switching of a photonic resonance via the optical (ac) Stark 

effect extracted from figure 5-12. The sample is from the high exposure set and 

the parameters are as follows: Period a = 860 run, air fill factor/= 30% and etch 

depth d = 850 nm. Pump wavelength is Apump = 800 nm. Fluence is 

F = 0.71 mJ/cm2
• 

It is clear from figure 5-13, that the change in the photonic resonance and 

ultimately, in the refractive index, only last for approximately 300 femtoseconds. 

This is approximately twice the pulse width of the laser system. 

The difference between the time responses in figure 5-13, which shows the 

optical tark effect mediated change in the refractive index, and figure 5-l 0, 

which hows the optical Kerr effect mediated change in the refractive index 

stem from the difference in pulse width of the Spitfire regenerative amplifier 
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and that of the TOPAS OPA. The former has a pulse width 'tp = 130 fs 14
, 

whereas the latter has a pulse width of 'tTOPAS = 0.7-l.O 'tp fs, i.e. 

'tTOPAS = 90-130 fs. The white light continuum is generated by the Spitfire for 

optical Kerr effects measurements, shown in the previous section, whereas it is 

generated by the TOP AS OP A in this section. The difference in the pulse widths 

of the white light continuum stems from the different wavelengths used from the 

TOP AS OP A in both experiments and most likely account from the difference in 

the response time. 

In figure 5-13, a sharp rise in the differential reflectivity occurs at a time delay 

of approximately 400 femtoseconds. This rise is attributed to a change in the 

refractive index caused by real carriers. Two photon absorption is responsible 

for photogeneration of these carriers. 

The power dependent response of the optical Stark effect is expected to be 

similar to that of the optical Kerr effect, i.e. linear with pump intensity or 

quadratic with the field, as described by equation 5.3. 

In order to test the expected linear dependence with power, a power dependent 

measurement was carried out on the same sample used in this section so far. This 

is shown in figure 5-14. 
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Figure 5-14 Optical (ac) Stark effect power dependence plot. 11./... versus pump 

power is plotted. The data points are marked by open squares. The red trace is a 

linear fit to the data points. 

Figure 5-14 shows the result of power dependent measurements. The red trace is 

a reasonable fit to the data points. Figure 5-14 shows that there is a linear 

dependence of the induced change in refractive index caused by the optical tark 

effect on the input power as expected from equation 5.3. 

An estimate for the value of nz can be extracted from figure 5-14 using equation 

2.28, to calculate the change in the refractive index associated with the nonlinear 

shift of the photonic resonance caused by the optical Stark effect, and equation 

5.1. A value for nz = 5.2 ± 4.1 x 10- 12 is found. This value compares reasonably 
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well with calculated and measured values for GaAs and low aluminium 

concentrations AlGaAs n2aaAs = 3.2 x 10-13 and n2AIGaAs = 2 x 10-13 see 

reference 15. 

As discussed above a very important factor in the optical Stark effect is its 

dependence on the pump frequency detuning. Due to the nature of the laser-

OP A system used, only a very limited degree of tunability is available, namely 

16 run. 
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Figure 5-15 Photonic resonance nonlinear shift (normalized) versus pump 

wavelength. The red trace is a PL spectrum of the sample, showing the position 

of the exciton to be at 799 run. The green dotted trace represents a typical laser 

pulse centred at 792 run. The tluence is F = 1.25 mJ/cm2.The blue error bars 

represent the pulse bandwidth at each pump wavelength. 
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Figure 5-15 shows a plot of the nonlinear shift of the photonic resonance versus 

pump wavelength detuning. The same sample as for the previous measurement 

is used. The average power was increased to 175 Jl W, this gives a fluence 

F = 1.25 mJ/cm2 or an intensity I= 9.67 GW/cm2
• It is interesting to note the · 

lack of nonlinear shift for wavelengths shorter than 794 nm shown in figure 

5-15. This is due to most of the pump pulse being resonant with the exciton and 

thus generating real carriers. At longer pump wavelengths, 796, 798 nm, a 

significant amount of the pump pulse is non-resonant with the exciton which 

explains why there is an optical Stark effect induced shift at these wavelengths. 

As the pump wavelength is tuned beyond the exciton wavelength, the shift peaks 

and then diminishes. Due to the limited tunability of the experimental set-up it is 

not possible to establish a long wavelength limit of detection of the optical Stark 

effect for these samples. 

5.5 Conclusions 

In this chapter I have demonstrated that the free carrier nonlinearity 

lifetime of a one dimensional photonic crystal waveguide depends on its stripe 

width, which is determined by its period and air fill factor, and on its etch depth. 

By keeping the etch depth constant at 850 nm, the nonlinear response decay 

constant, t, was found to range with stripe width from 8.5 ps for a stripe width of 

231 nm (i.e. sample period of 330 nm and air fill factor of 30 %) to 26.4 ps for a 

stripe width of 704 nm (i.e. sample period of 880 nm and air fill factor of 20 % ). 
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The stripe width affects the amount of surface recombination taking place. 

Longer stripe widths result in less surface recombination, as carriers have to 

travel, on average, longer distances to any surface, and therefore the nonlinear 

response lifetime will be shorter, as more non-radiative recombination takes 

place. A simple model verified this trend, and confirms previous assumptions by 

Bristow et al about the role of surface recombination as a relaxation mechanism 

for excited carriers. 

By using the same sample (i.e. period a= 330 nm, air fill factor/= 30 %) etched 

down to different depths, the decay constant was found to increase significantly 

from 8.5 to 33.5 ps on going from an etch depth of 850 nm to an etch depth of 

100 nm. 

A small change in the decay constant was found for a different sample with 

period a= 330 nm and air fill factor/= 20 %, for a smaller variation of the etch 

depth. For an etch depth of 100 nm the decay constant was measured to be 35.6 

ps whereas for a 200 nm etch depth the decay constant was measured to be 

29ps. 

The variation of the decay time with etch depth can be understood by realizing 

that by reducing (increasing) the etch depth, the surface area is also reduced 

(increased), and therefore the amount of surface recombination taking place 

decreases (increases), which explains the increased (decreased) decay times. 

It was found that there is a good correlation between the relative surface area 

sizes and the relative nonlinear response decay times. A reduction of the surface 

area of 4.5 times, on going from an etch depth of 850 nm to an etch depth of 100 
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nm, resulted in the nonlinear response decay time increasing by 4 times, from 

8.5 ps to 33.5 ps. Similarly, a reduction of surface area of 1.4 times, on going 

from an etch depth 200 nm to an etch depth of 1 00 nm resulted in the nonlinear 

response decay time increasing by 1.2 time, from 29 to 35.6 ps. 

This shows that the nonlinear response decay time of one dimensional photonic 

crystals can be controlled by altering the photonic crystals parameters, namely: 

period, air fill factor and etch depth. 

I have also demonstrated subpicosecond switching of photonic resonances via 

the optical Kerr effect when pumping off resonance at 2.1 ~· A nonlinear 

response time of approximately 400 fs was found for this effect. Interestingly, 

the photonic resonance was not shifted, but partially bleached. The shift of the 

photonic resonance was calculated to be 0.3 nm which is almost undetectable. A 

linear dependence of the change in refractive index on input power was found as 

predicted from theory. 

Finally, resonant subpicosecond switching ofphotonic resonances via the optical 

(ac) Stark effect was also demonstrated when pumping almost resonantly with 

the exciton at 800 nm. 

An even faster nonlinear response time was found: approximately 300 fs. The 

difference in response was attributed to the effect of the different pulse widths 

for the different wavelength of the TOP AS OPA on the pulse width of the white 

light continuum. Similarly to the optical Kerr effect, the optical Stark effect was 

shown to depend linearly on the input power. A value for the nonlinear 
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refractive index n2 = 5.2 ± 4.1 x 1 0"12 was extracted from the data. This value 

compares well with literature values. 

The highly resonant nature of the optical Stark effect was also studied. Resonant 

excitation provided no effect as expected. For a small detuning of 8 nm, the 

effect was reduced by almost 5 times. 

The applicability of the optical (ac) Stark effect in real world devices is limited 

by the effect of real carriers due to two photon absorption which will feature for 

high enough laser intensities. 

These results demonstrate the excellent potential of Ill-V based high refractive 

index contrast photonic crystals in general, and one dimensional high refractive 

index contrast photonic crystals in particular, in ultrafast all-optical switching 

devices. 
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6.1 Summary and Conclusions 

Chapter 6 

"640kb ought to be enough for anyone" 

Bill Gates 

The realization of all-optical photonic crystal based devices that control 

the propagation and emission of light in the visible/near infrared part of the 

spectrum is important in the drive towards miniaturization and faster operational 

speeds. 

Silicon has been the material of choice for the semiconductor industry, mainly 

due to its abundance in the earth's crust. However, other materials from the 11-VI 

and III-V ranges are better suited for the optoelectronics industry. In this work, 

different alloys of AlGaAs have been successfully used to create photonic 

structures. The advantages of AlGaAs are numerous: patterned structures exhibit 

high refractive index contrasts, necessary for full band gaps; fabrication and 

growing techniques are an extension of techniques developed by the 

optoelectronics industry; they possess large nonlinearity and good light emitting 

properties. 

Chapter 2 presents a theoretical introduction to the linear and nonlinear 

properties of photonic crystals. The master equation is derived and its properties 

discussed. Symmetry is studied and it is shown how it can help the study of 

photonic crystals. An introduction to nonlinear optics is also presented. 

In Chapter 3, a photonic stop gap was found for both transverse magnetic and 

transverse electric polarizations along the r -K lattice direction using in-plane 

transmission spectroscopy on photonic crystals embedded in ridge waveguides. 
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The nonlinear response of the photonic crystals was found to be almost 

completely dwarfed by the nonlinear response of the ridge waveguide itself. 

Careful design and patterning is needed to ensure a complete band gap along all 

lattice directions. It is clear that in order to realize the potential in all-optical 

switching devices of these structures the ridge waveguide length has to be 

minimized. The length of the photonic crystal can also be extended, which 

would have the added effect of increasing the attenuation in the photonic band 

gap, thus further increasing the contrast between the on/off states of a switching 

device. The emphasis of the work shifted to reflectivity measurements as the 

obstacles in the study of the nonlinear properties of photonic crystals embedded 

in ridge waveguides proved insurmountable. 

Chapter 4 discusses the linear and nonlinear properties of high refractive index 

contrast one dimensional InAlGaA.s/ AlGaA.s multiple quantum wells photonic 

crystal waveguides. An external coupling technique in reflectivity geometry is 

used to measure these structures. The time resolved nonlinear response is 

measured using a spectrally resolved pump-probe technique. The high intensity 

pump excites free carriers into the conduction band. The photo-generated 

carriers alter the refractive index of the semiconductor, which in turn alters the 

photonic crystal band structure. This alteration results in a nonlinear shift of the 

photonic resonances. 

One photon absorption together with two photon absorption were found to be 

responsible for the excitation of free carriers into the conduction band, for pump 

wavelengths shorter than the quantum wells exciton. Similarly, two photon 
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absorption and three photon absorption were found to be responsible for 

excitation of free carriers, for pump wavelengths in the near infrared (81 0 run, 

1330 run) and the infrared (2.1 J.tm) respectively. The refractive index change 

per carrier density was found to be in the same order of magnitude as for bulk 

AlGaA.s. The wavelength shift results in massive changes in the reflectivity 

close to the photonic resonances. This suggests that this effect could be used in 

all-optical switching devices. 

The nonlinear response decay time was found to be significantly faster than in 

bulk AlGaA.s, around 25 picoseconds. The increased area of photonic crystals 

over bulk results in increased surface recombination which is responsible for the 

reduced lifetime of the free carrier nonlinearity. 

Chapter 5 focuses on the nonlinear properties of high refractive index contrast 

one dimensional InAlGaA.s/ AlGaA.s multiple quantum wells photonic crystal 

waveguides. The free carrier nonlinearity decay time is proved to depend on: the 

stripe width, determined by the period and air fill factor, and the etch depth of 

the photonic crystal waveguide. 

Longer (shorter) stripe widths result in longer (shorter) lived nonlinear 

responses. As the carriers have to travel longer (shorter) distances to reach a 

surface, thus decreasing (increasing) the amount of surface recombination taking 

place and consequently increasing (decreasing) the lifetime of the nonlinear 

response. An in-plane carrier scattering model showed good qualitative 

agreement with the experimental data. A fully fledged three dimensional model 

is needed to better understand the experimental data. 
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Similarly, shallowly (deeply) etched photonic crystal waveguides have longer 

(shorter) lived nonlinear responses due to decreased (increased) surface 

recombination caused by the reduced (increased) surface area associated with 

the shallower (deeper) etching. 

The possibility to control the nonlinear response lifetime at fabrication time 

coupled to the large changes in the reflectivity close to photonic resonances 

make high refractive index contrast one dimensional photonic crystals very well 

suited to be used in all-optical switching devices. 

Subpicosecond switching of photonic resonances was demonstrated via non

resonant pumping, optical Kerr effect, and resonant pumping, optical ( ac) Stark 

effect. The former presented a partial bleaching rather than a wavelength shift of 

the photonic resonance, while the latter presented a wavelength shift. The virtual 

nature of these effects ensures that the shift and partial bleaching of the photonic 

resonances lasts only for as long as the pump beam is on. The optical (ac) Stark 

effect was shown to depend on the pump exciton wavelength detuning. 

These results demonstrate the excellent potential of Ill-V based high refractive 

index contrast photonic crystals in general, and one dimensional high refractive 

index contrast photonic crystals in particular, in ultrafast all-optical switching 

devices. 
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6.2 Future Work 

As discussed in chapter 3, a further attempt to obtain a nonlinear change 

in the refractive index will be carried out. A photonic crystal fibre will be used 

to generate a white light continuum to be used as a probe beam, while a more 

powerful laser is expected to provide the necessary extra intensity that precluded 

the experiments from working. 

In the data presented in chapter 4, the photonic resonances were bleached by the 

high intensity pump, the actual mechanism responsible for this bleaching is not 

known, further work in the field needs to address this problem. Interestingly, for 

pump wavelengths at 1300 nm the bleaching was considerably reduced, the 

reasons for this reduced bleaching also remains unknown, and needs to be 

explained. 

In chapter 5, subpicosecond optical tuning ofphotonic resonances was observed 

via the optical Kerr effect, interestingly, limited bleaching was caused by this 

effect, rather than a wavelength shift of the photonic resonance. Further 

investigations of this effect are necessary to establish its origin. 

The pump exciton detuning dependence of the optical Stark effect needs to be 

studied in closer detail, in order to better understand it. 

An interesting possibility opened up by multiple quantum well photonic crystal 

waveguide is the study of polaritons, coupling of a waveguide mode to the 

exciton. Enhanced exciton oscillator strengths would be required, either by 

increasing the number of quantum wells, by working in cryogenic temperatures 

or both. 
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In order to demonstrate real and virtual carrier switching very high pulse 

energies were required. This needs to be addressed if these effects are ever to be 

used outside a research laboratory. In order to lower the switching energy, high 

Q cavities can be embedded in a ridge waveguide. High Q factors, along with 

small modal volumes, result in enhanced nonlinearities that could lower the 

switching energies. 


